
Formal veri�cation of
implementations of State�ow charts

Alvaro Heiji Miyazawa

Submitted for the degree of Doctor of Philosophy

The University of York

Department of Computer Science

February 2012

To my mother.

Abstract

Simulink diagrams are widely used in industry for specifying control systems, and a par-

ticular type of block used in them is a State�ow chart. Often, the systems speci�ed are

safety-critical ones. Therefore, the issue of correctness of implementations of these systems

is relevant. We are interested in the veri�cation of implementations of State�ow charts.

In this thesis, we propose a formal model of State�ow charts in the Circus notation. The

proposed model makes a distinction between the general semantics of State�ow charts and

the speci�c aspects of each chart, and maintains the operational style used in the o�cial

informal description of the semantics of State�ow. In this way, we support the comparison

of our model to the informal description as an extra form of validation. Moreover, this

separation allows us to obtain a translation from a State�ow chart to a Circus model based

mostly on the syntactic structure of the chart.

We formalise in Z a translation strategy that supports the generation of the chart speci�c

model which is composed with the model of the semantics of State�ow charts to formalise

the execution of the chart. The translation strategy is implemented in a tool that sup-

ports the automatic generation of the complete model of a chart. The style in which the

translation strategy is speci�ed supports a very direct implementation, thus, minimising

this potential source of error.

We identify an architecture of parallel implementations based on the sequential implemen-

tations automatically generated by a code generator, and propose a re�nement strategy

that applies the Circus re�nement calculus to verify the correctness of the implementation

with respect to the proposed formal model of State�ow charts. The identi�cation of the

architecture allows us to specify the re�nement strategy in a degree of detail that renders

it suitable for formalisation in a tactical language, thus, potentially achieving a high de-

gree of automation. Moreover, this strategy is a starting point for new strategies targeting

di�erent architectural patterns.

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Thesis structure . 4

2 Literature review 5

2.1 State�ow . 6

2.1.1 Elements of the notations . 6

2.1.2 Informal semantics of State�ow charts 9

2.1.3 Early return logic . 13

2.2 Formal models . 14

2.2.1 Veri�cation approaches . 15

2.2.2 Code generation approaches . 19

2.3 Speci�cation languages . 20

2.4 Re�nement calculus . 21

2.5 Circus . 21

2.6 Final considerations . 24

3 Formal Model 25

3.1 Overview . 26

3.2 Process Simulator . 31

3.2.1 Step of execution . 32

3.2.2 Transition . 35

3.2.3 Entering a state . 42

3.2.4 Executing and exiting a state . 48

3.3 Chart process . 52

3.4 Validation . 59

3.5 Final considerations . 60

4 Translation strategy 63

4.1 Syntax of State�ow charts . 64

4.1.1 Names and Identi�ers . 64

4.1.2 Expressions and Actions . 65

vi CONTENTS

4.1.3 State�ow objects . 66

4.2 Well-formedness conditions . 71

4.3 Translation strategy in Z . 72

4.3.1 Renaming functions . 73

4.3.2 Expression and Action functions . 74

4.3.3 Identi�er and binding declaration functions 77

4.3.4 Action, condition and process declaration functions 78

4.4 Automation of the translation strategy . 82

4.4.1 Architecture . 82

4.4.2 Implementation of translation rules 90

4.5 Evaluation . 93

4.6 Final considerations . 95

5 Re�nement strategy 97

5.1 Implementations of State�ow charts . 98

5.1.1 Architecture: data patterns . 99

5.1.2 Architecture: control �ow . 102

5.2 Circus models of implementations . 106

5.3 Re�nement strategy . 108

5.3.1 Data re�nement . 109

5.3.2 Normalisation . 113

5.3.3 Structuring . 117

5.3.4 Parallelism introduction . 158

5.3.5 Action introduction . 166

5.4 Final considerations . 167

6 Conclusions 169

6.1 Thesis contributions . 169

6.2 Related Work . 172

6.3 Future work . 173

A Syntax of Circus 177

B Circus model of State�ow semantics 179

B.1 Basic de�nitions . 179

B.2 State�ow semantics . 180

C Circus models of State�ow charts 197

C.1 Circus model of Shift Logic Chart . 197

C.2 Circus model of Air Controller Chart . 213

D Circus model of the implementation of Air Controller Chart 225

CONTENTS vii

E Novel re�nement laws 231

List of Figures

2.1 Executing a Set of Transitions [98]. 10

2.2 Entering a State [98]. 11

2.3 Executing an active State [98]. 12

2.4 Exiting an active State [98]. 12

2.5 Early return logic example. 13

2.6 The Bu�er process . 22

3.1 Basic architecture of State�ow models. 25

3.2 Example of a State�ow Chart describing a car's shift logic. 27

3.3 Overview of the model . 28

3.4 Structure of the Simulator process. 31

3.5 Executing a Set of Transitions [98] . 43

3.6 Entering a State [98] . 44

3.7 Executing an active State [98] . 49

3.8 Exiting a State [98] . 51

3.9 Structure of the c shift logic process. 53

4.1 Translation strategy: overview. 63

4.2 Architecture of s2c: main packages. 83

4.3 Architecture of the package Parser. 83

4.4 Structure of a .mdl �le. 84

4.5 Excerpt from a .mdl �le. 84

4.6 Architecture of the package MDL Parser. 85

4.7 State label . 85

4.8 Transition label . 85

4.9 Architecture of the package Label Parser. 86

4.10 Syntax of State�ow charts: main packages. 86

4.11 Syntax of State�ow charts: Objects. 87

4.12 Syntax of State�ow charts: Actions. 88

4.13 Syntax of State�ow charts: Expressions. 88

4.14 Syntax of Circus. 89

4.15 Architecture of s2c: the Translator package. 89

x LIST OF FIGURES

4.16 Implementations of the translation rule for variable expressions. 91

4.17 Implementations of the translation rule for the declaration of data. 92

4.18 Implementation of simulation instance rule 92

5.1 Overview of our re�nement strategy. 97

5.2 Air controller chart: supplied with State�ow. 98

5.3 Architecture of implementations of State�ow charts. 99

5.4 Function MDLInitialize. 103

5.5 Structure of the procedure calculate output. 104

5.6 Structure of calculate step and interaction patterns with the servers. . . 104

5.7 Procedure calculate step for our example. 105

5.8 Parallelism in the execution of the parallel states in our example. 106

5.9 Overview of the models of implementations of State�ow charts. 107

5.10 Action Client in implementation models. 107

5.11 Re�nement strategy: data re�nement phase. 110

5.12 Schema D Work Air . 111

5.13 Total functional retrieve relation for our example. 112

5.14 Calculated total surjective functional retrieve relation: general form. 114

5.15 Re�nement strategy: normalisation phase. 115

5.16 Normalisation � Example: Main action after Steps 1 and 2. 115

5.17 Normalisation � Example: Main action at the end. 116

5.18 Structuring starting point. 117

5.19 Structuring target. 119

5.20 Structuring target - chart execution. 119

5.21 Structuring target - writing the outputs. 119

5.22 Re�nement strategy: structuring phase . 121

5.23 Structuring: body of the outmost recursion in the main action after Step 2. 121

5.24 Structuring: part of the main action after Step 2. 122

5.25 Structuring: main action after Step 2 - writing outputs. 122

5.26 Structuring: body of the outmost recursion in the main action after Step 3. 123

5.27 Re�nement strategy: structuring phase - input-event-var-introduction 125

5.28 parallelism-resolution: pre�xing over channel in the synchronisation set on

the right-hand side. 125

5.29 parallelism-resolution: steps for pre�xing over channel in the synchronisation

set on the right-hand side. 126

5.30 parallelism-resolution: result for pre�xing over channel in the synchronisation

set on the right-hand side. 126

5.31 parallelism-resolution: pre�xing over channel not in the synchronisation set

on either side. 128

5.32 parallelism-resolution: leading interleaving on the left-hand side. 129

5.33 parallelism-resolution: result for leading interleaving on the left-hand side. . . 129

LIST OF FIGURES xi

5.34 parallelism-resolution: alternation followed by sequence, on either side. 130

5.35 parallelism-resolution: steps for alternation followed by sequence, on either

side. 131

5.36 parallelism-resolution: possible results for alternation followed by sequence,

on either side. 131

5.37 parallelism-resolution: steps for call action on either side. 132

5.38 parallelism-resolution: leading schema operation on the left-hand side. 133

5.39 parallelism-resolution: result for leading schema operation on the left-hand

side. 133

5.40 parallelism-resolution: explicit recursion on the right-hand side. 133

5.41 parallelism-resolution: result for explicit recursion on the right-hand side. . . 133

5.42 parallelism-resolution: steps for leading pre�xing over channel in the synchro-

nisation set on the left-hand side. 134

5.43 parallelism-resolution: local event broadcast. 135

5.44 parallelism-resolution: steps for local event broadcast. 135

5.45 parallelism-resolution: result for local event broadcast. 136

5.46 Procedure copy . 141

5.47 Re�nement strategy:structuring phase - recursion-introduction. 143

5.48 Re�nement strategy: structuring phase - assignment-introduction 145

5.49 update-output starting point. 146

5.50 Re�nement strategy: structuring phase - update-output 147

5.51 Re�nement strategy: structuring phase - simpli�cation 149

5.52 Re�nement strategy: structuring phase - early-return-simpli�cation 151

5.53 Procedure assumption-distribution. 152

5.54 Re�nement strategy: structuring phase - parallel-state-simpli�cation 153

5.55 parallel-state-simpli�cation: example after step 2. 155

5.56 parallel-state-simpli�cation: example after step 3(a). 155

5.57 parallel-state-simpli�cation: example after step 3(b). 156

5.58 parallel-state-simpli�cation: example after step 3(c)-i. 156

5.59 parallel-state-simpli�cation: example after step 3(c)-ii. 157

5.60 Procedure sequential-state-simpli�cation . 157

5.61 Functions implemented the server for our example 159

5.62 Parallelism introduction - example of execution of parallel states. 159

5.63 Parallelism introduction target - execution of parallel states example. 160

5.64 Parallelism introduction target - server example. 161

5.65 Re�nement strategy: parallelism introduction phase 161

5.66 Parallelism introduction - example: portion of the main action after Step 1. 163

5.67 Re�nement strategy: action introduction phase. 166

Acknowledgements

I would like to, �rstly, thank my supervisor, Ana Cavalcanti, for all her support and

guidance. Without her encouragement and advice this thesis would not have been possible.

I would like to express my gratitude to my examiners, Professor Richard Paige and

Professor Michael Butler, whose comments and suggestions were invaluable to this thesis.

I would also like to thank my colleagues at the Department of Computer Science, and

the members of the Circus group; in particular, I am grateful to Frank Zeyda for many

discussions throughout my time in York, and Leo Freitas who helped me understand Circus

and the CZT framework.

Thanks to my family and friends whose support and friendship helped me maintain

my sanity. Special thanks to my partner, Oleg Lisagor, who read and commented on

various drafts of my thesis and gave me the all support I needed to complete this thesis,

my friends in York, André Freire, Luiza Dias, Jennifer Winter and David E�rd whose

friendship and ad hoc counselling sessions in York's many pubs were indispensable, and

my friends and former colleagues in Brazil � Ana Melo, Paulo Salem, Renata Matteoni,

Jony Arrais, Patrícia Viana, Márcio Medeiros and Renato Massaro � who have provided

me with support that, whilst di�cult to pinpoint, was indispensable.

Most importantly, I am forever indebted to my mother, who throughout my life en-

couraged me to further my studies, and always supported me in all my endeavours. I could

never possibly thank her enough. To her I dedicate this Thesis.

Author's declaration

I hereby declare that the contents of this thesis are the result of my own original contribu-

tion, except where otherwise stated. The material in chapters 3 and 4 has previously been

published in [68, 69, 70].

[68] A. Miyazawa and A. L. C. Cavalcanti. Towards the formal veri�cation of imple-

mentations of State�ow Diagrams. Tech. Rep. YCS-2010-449, University of York,

2010.

[69] A. Miyazawa and A. L. C. Cavalcanti. A formal semantics of State�ow charts. Tech.

Rep. YCS-2011-461, University of York, 2011.

[70] A. Miyazawa and A. L. C. Cavalcanti. Re�nement-oriented models of State�ow

charts. Science of Computer Programming, 2011. doi:10.1016/j.scico.2011.07.007.

An initial version of chapter 5 has previously been published in [71], and the current version

is in the process of being submitted for publication [72].

[71] A. Miyazawa and A. L. C. Cavalcanti. Re�nement-based veri�cation of sequential

implementations of State�ow charts. In Proceedings 15th International Re�nement

Workshop, volume 55, pages 65�83. Electronic Proceedings in Theoretical Computer

Science, 2011. doi:10.4204/EPTCS.55.5.

[72] A. Miyazawa and A. L. C. Cavalcanti. Re�nement-based veri�cations of implemen-

tations of State�ow charts. 2012. (to be submitted).

Chapter 1

Introduction

State�ow is part of the MATLAB Simulink tool [99] and consists of a statechart notation

used to de�ne charts used as blocks in control law diagrams. Control law diagrams are a

popular notation for specifying control systems, and are widely used in the avionics and

automotive industries.

While control law diagrams tackle the aspects of a system that are usually speci�ed by

di�erential equations relating inputs and outputs graphically, State�ow charts are used to

describe the aspects that are better modelled by �nite state machines. For example, in a

system with redundant subsystems, a State�ow chart can be used to specify an automated

recon�guration procedure based on individual subsystems' health monitoring statuses. An-

other example is a switch-over between modes of operation of an aircraft system based on

the phase of �ight (e.g. take-o�, climb, cruise, etc.) as commanded by the pilots and/or

indicated by aircraft sensors (e.g. weight on wheels and ground speed indicators).

Some of the systems speci�ed using Simulink diagrams and State�ow charts are safety-

critical systems. Such systems may cause death, injury, signi�cant environmental damage

or other material loss. The necessary rigour of veri�cation and validation of software

used in safety critical applications is often expressed in terms of Safety (or Software)

Integrity Levels (SILs) which are determined based on the potential severity of the unsafe

system-level conditions (hazards) that the software may contribute to and the extent of the

contribution. For example, a software controller may sometimes be assigned a lower SIL

if its outputs are checked by an independent sub-system (e.g. a monitor or an interlock)

than if the controller has full authority over the system.

Various international standards provide guidance on which design, veri�cation and

validation techniques should be used for di�erent SILs. For instance, the international

standard IEC 61508 [47] recommends the use of formal methods for the speci�cation of

safety requirements as well as for the design and development of software for SILs 2 and 3,

while highly recommending those techniques for SIL4; the standard also recommends the

use of formal proof for the veri�cation of software. Similar recommendations are re�ected

in domain-speci�c adaptations of IEC 61508 such as CENELEC 50128 [25] (for railway

control systems) and the recently published ISO 20262 [48] (for automotive applications).

2 CHAPTER 1. INTRODUCTION

In civil aerospace, the applicable standard DO-178b [83], while not mandating the use of

formal methods, explicitly recognises them as an alternative method. Finally, the currently

superseded UK Military Standard DEF STAN 00-55 [62] makes the use of formal methods

mandatory for SILs 3 and 4; it also requires explicit justi�cation to be provided if formal

methods are not used for lower SILs.

These requirements and recommendations contained in standards demonstrate that

formal techniques that are capable of dealing with modelling languages and notations used

in industry (such as MATLAB Simulink and State�ow) are useful, if not necessary.

There are several approaches to the formal analysis of state diagram notations such as

State�ow. However, most of these approaches focus on the veri�cation of properties, not

on the veri�cation of implementations; the veri�cation of implementations with respect

to a speci�cation can be seen as a particular type of property veri�cation in which the

property in question is that the implementation is a re�nement of the speci�cation. By

restricting ourselves to the veri�cation of implementations we can take advantage of speci�c

techniques (such as the re�nement calculus) that are more adequate for this task.

One of the main approaches used for the veri�cation of implementations consists of

verifying a code generator [102]. This approach makes the implementation immutable

because only generated code is correct by construction; however, in many cases, code

tailored to speci�c situations is necessary, which makes such an approach not applicable.

The veri�cation of implementations, instead of the code generator, can overcome this

problem, but can potentially increase the complexity of the task.

Arthan et al. [4] and Adams and Clayton [3] describe ClawZ, a tool for translating

Simulink diagrams into Z [109] in order to formally verify implementations in Ada. This

approach does not cover the State�ow notation and can only deal with sequential imple-

mentations; to overcome the latter limitation, concurrent aspects are speci�ed in CSP [85]

and analysed through the model checker FDR2 [30].

Cavalcanti and Clayton [17] de�ne the semantics of control law diagrams in the Circus

notation [79], which is a re�nement language that combines Z, CSP, Dijkstra's language of

guarded commands [22], and Morgan's speci�cation statement [73]. This semantics reuses

ClawZ and the CSP approach to concurrency, and extends them to cover a larger subset of

the notation, but it still does not cover the State�ow notation. A Circus model of State�ow

charts is a natural extension of previous work, allowing for the veri�cation of a broader

variety of control law diagrams.

1.1 Objectives

We are concerned with the veri�cation of implementations of State�ow charts, i.e., we

want to verify whether a program correctly implements a State�ow chart or not. We focus

this work in the State�ow variety of state diagrams because it is part of the widely used

MATLAB Simulink tool.

In order to achieve the objective of verifying implementations of State�ow charts, we

1.1. OBJECTIVES 3

need, �rst, a formal semantics of these charts and, second, techniques suitable for the

veri�cation of implementations with respect to the proposed semantics.

The formal semantics of State�ow charts needs to be suitable for formal reasoning about

the correctness of implementations; it must be written in a way that facilitates validation

and be subject to integration with models of Simulink diagrams. This last requirement is

due to the fact that State�ow charts are part of Simulink diagrams, and, in order to verify

a complete system, we must be able to cover both notations.

The veri�cation techniques must allow us to verify code and must also be consistent

with the techniques used for Simulink diagrams, so that Simulink and State�ow blocks

within the same diagram can be veri�ed in a uniform manner.

By using Circus as a speci�cation language, we are able to tackle these desired proper-

ties: ability to formally reason about the model, to verify code and to integrate the model

with the existing models of Simulink diagrams. Since Circus is a formal speci�cation lan-

guage, we can de�ne properties of models and mathematically prove whether they hold or

not.

The veri�cation of code is carried out by proving that the code is (or is not) a re�nement

of a speci�cation, and the integration with existing models of Simulink diagrams is possible

because these models were previously speci�ed in Circus [19].

Due to the informal nature of the State�ow semantics, we need to de�ne a formal model

based on the informal description contained in the State�ow User's Guide [98]. Since there

is no o�cial formal semantics with which we can formally compare our model, we must

validate it through alternative approaches.

We distinguish three main possibilities: one is based on inspection of the informal

description, the second is based on testing and is achieved by comparing a particular chart

and its model by means of simulation, and the third consists of applying the re�nement

calculus to obtain an implementation of the chart.

In order to allow for the �rst form of validation, the model presented in Chapter 3

is de�ned in a way that facilitates the comparison to the informal description, which is

given is steps in the State�ow User's Guide for each of the main semantic rules that

describe the behaviour of states and transitions. The comparison is eased by establishing

a correspondence between the steps and elements of the speci�cation.

The second form of validation can be achieved by simulation of the model and compar-

ison of the traces to the results of the simulation of charts; we can improve this validation

by using techniques for the selection of test cases of charts that yield better coverage.

Finally, by carefully applying the re�nement calculus to models of State�ow charts, we

are able to validate the interaction between the di�erent parts of the model, and spot any

deviations of the expected behaviour of the chart, which might otherwise be overlooked.

In this way, we allow for three di�erent approaches for the validation of the model.

4 CHAPTER 1. INTRODUCTION

1.2 Thesis structure

This section describes the structure of this thesis. Chapter 2 reviews some of the variants

of state diagram notations and formal speci�cation languages that can be used to formalise

the semantics of such notations. This chapter presents a brief introduction to State�ow

charts and Circus, and further reviews the existing approaches to modelling and analysis

of state diagrams.

Chapter 3 presents an operational model of State�ow charts by means of a small exam-

ple; it discusses the rationale behind the particular structure of our models, and describes

the formalisation of the semantics of State�ow charts.

Chapter 4 presents the formalisation of the translation rules necessary to support the

derivation of State�ow models as presented in Chapter 3, and discusses the implementa-

tion of these translation rules in the tool s2c that supports the automatic generation of

Circus models of State�ow charts.

Chapter 5 identi�es an architecture of implementations of State�ow charts, and pro-

poses a re�nement based veri�cation strategy that supports the veri�cation of implemen-

tation conforming to the identi�ed architecture with respect to the models discussed in

Chapters 3 and 4. The architecture described in this chapter is based on the implementa-

tions generated by the Simulink/State�ow code generator [100, 98] and extended to support

parallel implementations of State�ow charts. The veri�cation strategy takes advantage of

the architectural patterns described to provide a detailed step by step re�nement strategy

that can potentially lead to a high degree of automation.

Chapter 6 concludes with a discussion of the main contributions and limitations of our

work, potential solutions to some of the limitations, and future lines of research.

Chapter 2

Literature review

This chapter sets the scene for the remainder of the thesis by presenting a review of the

previous work and languages related to our main objective - veri�cation of implementations

of State�ow charts.

State�ow charts are a variant of Harel's statecharts [36], which are an extension of state

diagrams. These are, basically, directed graphs, where nodes represent states and edges

represent transitions [46]; the latter connect states and can be guarded by conditions. We

identify three main variants of the state diagram notations that are obtained by adding

new features, changing existing ones or modifying the semantics: Harel's statecharts, UML

statecharts and State�ow charts.

Statecharts [36] extend state diagrams to improve the expressive power of the basic

notation, allowing for the speci�cation of complex reactive systems, concurrent systems,

communication protocols, etc. This extension is achieved by introducing concepts such as

hierarchy of states (states within states), concurrency (parallel states) and communication

(local events).

UML statecharts [81] are an object-oriented version of statecharts [53]. They mainly

di�er from Harel's statecharts with respect to the semantics, but also present syntactic

di�erences, such as entry and exit actions in states [107].

State�ow charts [98] extend statecharts by adding, among other features, �ow charts,

temporal logic triggers and di�erent types of actions (during actions, on event actions,

transition actions).

While both State�ow charts and UML statecharts are widely used in industry, ac-

cording to Crane and Dingel [21], even among close variants of statecharts, such as UML

statecharts, Classical statecharts and Rhapsody statecharts, there are several syntactic

and semantic di�erences. Moreover, Fecher et al. [27] identify 29 problems in the de�ni-

tion of the semantics of UML statecharts such as inconsistencies and omitted restrictions.

Consequently, formal models of one variant cannot be easily reused for other variants.

The objective of this chapter is to present the context and the "baseline" of the research

reported in this thesis. The remainder of the chapter is organised as follows. Firstly, we

describe the State�ow notation based on the description contained in the User's Guide [98];

6 CHAPTER 2. LITERATURE REVIEW

we comment on some inconsistencies of this authoritative source and, where possible,

correct the description of the semantics. Section 2.2 then reviews approaches for modelling

and analysis of state diagram notations. The third section presents an overview of some

of the languages that could be used to model State�ow charts (Section 2.3). Section 2.5

presents Circus - the language we have selected for modelling the charts. The chapter

concludes with some �nal observations and remarks (Section 2.6).

2.1 State�ow

In this section, we give an brief overview of State�ow charts based on the User's Guide [98].

State�ow de�nes a new type of Simulink block, namely a State�ow chart, that is used

in a Simulink diagram. A Simulink diagram consists of blocks and wires connecting the

inputs and outputs of the blocks. The execution of a Simulink diagram is done in steps,

in which each of its blocks is executed in a particular order determined by the wiring.

The State�ow chart is the root for the execution of the State�ow model; whenever an

event is directed at a chart, the chart is either entered or executed, depending on whether

it was previously active or not. A chart comprises mainly objects of the following types:

events, data, actions, states, junctions, transitions and function blocks, of which events

and data can be used to communicate with other blocks of the Simulink diagram.

An event can also be used internally to trigger the execution of the chart (or part

of it). This use potentially leads to recursive executions, which may lead the chart to

a con�guration where further execution leads to an inconsistent state. To avoid this,

State�ow uses early return logic to decide when it is safe to continue the execution, and

when part of it must be interrupted. Early return logic is discussed in Section 2.1.3.

2.1.1 Elements of the notations

Events Events are objects that trigger the execution of a Simulink block, e.g. a chart.

They can be distinguished by trigger type and scope. With respect to the trigger type, an

event can be edge-triggered or function-call.

The basic di�erence between edge-triggered and function-call events is the time step

in which outputs of the triggered block are available. If a block is triggered by an edge-

triggered event, it is executed in the same time step as the State�ow chart, but its outputs

are only available in the next time step of the State�ow chart. If a block is triggered by

a function-call event, it is executed in the same time step as the State�ow chart, and its

outputs are available in that same time step, that is, a function-call triggered block is

executed in interleave with the block that produced the function-call event.

The scope characterises an event as input, output, local, exported or imported. An

input event is one generated in a di�erent block in the Simulink diagram and processed

by the chart. Charts can be triggered by a single function-call event, or by a sequence of

edge-triggered events. In the latter case, the order is determined statically in the de�nition

2.1. STATEFLOW 7

of the chart, and is important because at each step the chart is executed once for each

input event that has occurred.

An output event is generated by the chart and processed by some block in the Simulink

diagram. Edge-triggered output events are only communicated to the Simulink models in

the end of the step of execution (along with the output data), and present a queuing

behaviour; if a chart broadcasts the same event more than once in an execution step, it

queues the broadcasts and releases one per execution step. Function-call output events

trigger the execution of a Simulink block immediately, and any outputs of the block (that

are connected to the input ports of the chart) become available to the chart in the same

time step. A local event is generated inside the chart and processed by the same chart; as

previously mentioned, this can potentially lead to recursive behaviour and inconsistency.

An exported event is generated by the chart and processed by a module external to the

chart and Simulink diagram; an imported event is generated by an external module and

processed by the chart.

Data Another type of object is called data; it consists of variables that record values

used by the chart. It can be used to record internal information or to communicate with

the Simulink diagram.

Similar to events, data can be distinguished according to scope. Local data are de�ned

in a particular state (or chart) and are available for their parent and children; input data

are provided to the chart by the Simulink model through input ports; output data are

provided by the chart to the Simulink model through output ports; data store memory are

global variables of the Simulink model available to all blocks. Similarly to events, exported

and imported data are used to share data with other State�ow models or external code.

States A state can be active or inactive, and this status can be changed by entering and

exiting it; it can also have sub-states. This creates a hierarchy of states inside a chart and

because of this hierarchy, every state has a parent, including the top level states whose

parent is the chart itself.

A state has a property called decomposition, which determines which sub-states (if

any) can be active at any given time. The two types of decomposition are sequential

(CLUSTER) and parallel (SET). A state can also have associated actions: entry , during ,

exit and on actions (refer to the description of actions below).

States with sequential decomposition can only have sub-states of type sequential (OR)

and there always must be at most one active sub-state. States with parallel decomposition

can only have sub-states of type parallel (AND) and either all the sub-states are inactive

or all of them are active at the same time.

Junctions Junctions are connective nodes used to de�ne decision points in a chart; they

can be used, for example, to de�ne if-then-else and for statements. Another type of

junction is called history junction; it records information about the most recent active

8 CHAPTER 2. LITERATURE REVIEW

sub-state of a state that contains the history junction. A history junction can stand by

itself inside a state with sequential decomposition, or it can be reached by a transition.

Transitions A transition is usually a connection between two nodes, these nodes can be

either states or junctions; a transition starts in a source node and ends in a destination

node. A transition that starts or ends in a junction is called a transition segment, and a

sequence of transition segments that starts and ends in states is called a transition path. A

transition can connect nodes on di�erent levels of the hierarchy; such a transition is called

an inter-level transition.

A transition can have a trigger that consists of a set of events (possibly empty), a

condition and two types of actions: condition and transition actions (refer to the description

of actions below). A transition is considered to be valid if the event being processed by

the chart triggers it and if its condition evaluates to true.

There are three types of transitions. Default transitions (or transition paths) deter-

mine which sub-state must be entered when entering a state; they have no source node.

Outer transitions (or transition paths) connect a state to an external state. Finally, inner

transitions (or transition paths) connect a state to one of its sub-states.

Actions Actions are objects that allow one to specify how to modify a particular variable,

when to broadcast an event, etc. For example, an action can require that when certain

conditions are met, local variable a is incremented and output event B is broadcast. Actions

are always sequentially executed.

There are a series of actions that depend on the type of object that contains them and

the scenario that triggers their execution. State actions are de�ned in the label of states

and can be of type: entry , exit , during , on or bind .

• entry actions are executed when a state is entered;

• exit actions are executed when a state is exited;

• during actions are executed when an active state is executed and is not left through

an outer transition;

• on actions are executed in the same situation as during actions with the additional

restriction that the state is processing a speci�c event;

• bind actions make an event or data bound to a state, so that only the state and its

children can broadcast the event or modify the data.

On actions can also be used with temporal operator that specify scenarios such as "after

an event occurs n times".

Transitions can have two types of actions: condition and transition actions. A condition

action is executed when a transition is deemed valid and a transition action is executed

when a transition path is successful.

2.1. STATEFLOW 9

Function blocks A function block is an object that allow for the de�nition of functions

that take input values and return output values. There are two types of function blocks

that can be embedded in a State�ow chart: graphical functions and Simulink functions.

The former are de�ned using State�ow objects and the action language, whereas the latter

are de�ned by Simulink diagrams.

2.1.2 Informal semantics of State�ow charts

The semantics of State�ow is given primarily by simulation. However, it is also described

in the User's Guide, scattered across object's descriptions and examples, and in a more

coherent way, in Chapter 3 "State�ow Chart Semantics". In this section, we will focus on

how to execute a transition, and how to enter, execute and exit a state.

The description presented in Chapter 3 of the User's Guide contains some inconsis-

tencies that were partially addressed in an appendix called Semantic Rules Summary.

Although this appendix �xes some of the problems found in the main body of the User's

Guide, some existing problems are not reviewed and new ones are introduced.

In this section, we present modi�ed versions of the semantic rules that determine how

states and transitions are to be interpreted. Except for the underlined parts, the wording

in Figures 2.1, 2.2, 2.3 and 2.4 is mostly that of Chapter 3 and Appendix A of [98].

Executing transitions. Figure 2.1 presents the steps for the execution of a set of tran-

sitions. These steps specify that if a transition is invalid, the next one must be executed,

otherwise it de�nes the execution of the transition according to the destination node. If

the destination is a state, the necessary states are exited, the transition path is executed

and the destination state is entered. If the destination is a junction, the behaviour de-

pends on the outgoing transitions of the junctions. If there are no outgoing transitions,

the execution of the transitions stops, otherwise the outgoing transitions of the junction

are executed.

It is worth emphasising that when executing a transition path, if a state has been

successfully reached, the source state must be exited. However, if the transition path

crosses boundaries, that is, it contains interlevel transitions, it may be necessary to exit

other states in addition to the source. The exact states that must be exited are the ancestors

of the source state up to (and including) the one at the same level of the destination state.

The treatment of interlevel transitions is described in Figure 2.1 by step 2.b. This step

requires that the substates of the parent of the transition path are exited. The parent of

the transition path is the state that is an ancestor of the source and destination states, and

that has no substate that is also an ancestor of both states. Since this state is necessarily

sequential, at most on substate is active, therefore existing all substates only exits the

active one. In this case, the active one is an ancestor of the source of the transition path.

As previously mentioned, the description of the semantics of State�ow in Chapter 3 and

Appendix A of [98] are inconsistent with each other, and with the behaviour observed in

10 CHAPTER 2. LITERATURE REVIEW

1. A set of transition segments is ordered.

2. While there are remaining segments to test, a segment is tested for validity.
If the segment is invalid, move to the next segment in order. If the segment
is valid, execution depends on the destination:

States

(a) No more transition segments are tested and a transition path is
formed by backing up and including the transition segment from
each preceding junction until the respective starting transitions.

(b) The states that are the immediate children of the parent of the
transition path are exited (see Exiting an Active State).

(c) The transition actions from the �nal transition path are executed.

(d) The destination state is entered (see Entering a State).

Junctions with no outgoing transition segments
Testing stops without any states being exited or entered.

Junctions with outgoing transition segments
Step 1 is repeated with the set of outgoing segments from the junction.

3. After testing all outgoing transition segments at a junction, back up the in-
coming transition segment that brought you to the junction and continue
at step 2, starting with the next transition segment after the back up seg-
ment. The set of �ow graphs is done executing when testing of all starting
transitions have been tested.

Figure 2.1: Executing a Set of Transitions [98].

the State�ow tool. For instance, the State�ow User's Guide requires that after the source

state (and any relevant ancestors) is exited, only �the transition action of the �nal transi-

tion segment of the full transition path is executed" [98]. This, however, is not observed in

the simulation tool; the simulation of all examples we tested shows that all the transition

actions in the transition path are executed. The property ignoreUnsafeTransitionActions

cited in [68] can still be set to 0 or 1, but there is no change in the execution of transi-

tion actions. Furthermore, we were unable to �nd any reference to this property in the

documentation supplied by Mathworks.

Entering a state. Figure 2.2 presents a modi�ed version of the steps for entering a

state. It merges the two descriptions in the State�ow User's Guide, adopts a consistent

terminology, and de�nes the correct steps that are recursively executed. Before a state is

entered, some conditions must hold: the parent of the state and the left sibling of the state

(if the state is parallel) must be active. Once these conditions are established, the entry

action is executed and the children (if any) are entered. After a state is entered, if it is

parallel, its right sibling must be entered.

The range of entry steps that are executed in certain situations is a common problem.

2.1. STATEFLOW 11

1. If the parent of the state is not active, perform steps 1-4 for the parent.

2. If this is a parallel state, check the immediate sibling with a higher (i.e., ear-
lier) entry order is active. If not, perform entry steps 1-5 for this state �rst.

3. Mark the state active.

4. Perform any entry actions.

5. Enter children, if needed:

(a) If the state contains a history junction and there was an active child
of this state at some point after the most recent chart initialisation,
perform entry steps 1-5 for that child. Otherwise, execute the default
�ow paths for the state.

(b) If this state has parallel decomposition, i.e., has children that are paral-
lel states, perform entry steps 1-5 for each state according to its entry
order.

6. If this is a parallel state, perform all entry steps for the sibling state next in
entry order if one exists.

7. Else, if the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

Figure 2.2: Entering a State [98].

For instance, when entering a parallel state, the User's Guide states "check that all siblings

with a higher (i.e., earlier) entry order are active. If not, perform all entry steps for these

states �rst" [98]. In fact, only the immediate left sibling is checked and entered if necessary.

Moreover, not all entry steps are executed, only the steps from 1 to 5 are executed for that

state. This fact has been con�rmed independently in [20].

Both descriptions in the User's Guide require that if the history junction in a state

points to one particular substate, the entry action of that state is executed. This would

imply that the substates of that child state are not entered because the entry steps are not

executed on it. This, however, is not the observed behaviour of the simulator. In this case,

we observe that, in fact, the entry steps from 1 to 5 are executed on that child. Step 6

can be ignored because the state is sequential, and step 7 is not executed because the

immediate parent of the child is already active, as it triggered the entering of this state.

This type of inconsistency can also be found in the description of the process of exiting

a state in the main body of the User's Guide; however, it was corrected in the appendix.

Our experiments suggest that step 7 is only executed if the condition of step 6 fails,

that is, if the state is not a parallel state, or if it does not have a right sibling. Since step 6

requires the execution of all entry steps to the right sibling, the step 7 is accumulated for

each parallel state entered, and is therefore executed multiple times. It is our understanding

that step 7 should only be executed once in a sequence of parallel states. If we require that

step 7 is only executed when step 6 fails, it should be executed exactly when the state is

12 CHAPTER 2. LITERATURE REVIEW

sequential, or when (it is parallel and) the last sibling has been entered.

Executing an active state. The steps for executing a state are described in Figure 2.3.

These steps specify that the outer transitions of the state must be executed �rst. If the

state is not exited, the during action is executed, followed by the inner transitions. Finally,

if the inner transitions do not lead to a state transition, the active children are executed.

1. The set of outer �ow graphs execute (see Executing a Set of Flow Graphs).
If this action causes a state transition, execution stops. (Note that this step
never occurs for parallel states.)

2. During actions and valid on-event actions are performed.

3. The set of inner �ow graphs execute. If this action does not cause a state
transition, the active children execute, starting at step 1. Parallel states
execute in the same order that they become active.

Figure 2.3: Executing an active State [98].

Exiting an active state. There are four steps for exiting a state (Figure 2.4). Before a

state is exited, its active right siblings (if the state is parallel) and active children must be

exited. Next, the exit actions of the state are executed. The process concludes by marking

the state as inactive.

1. If this is a parallel state, check that the immediate sibling that became active
after this state have already become inactive. Otherwise, perform all exiting
steps on that sibling state.

2. If there are any active children, perform the exit steps on these states in the
reverse order that they became active.

3. Perform any exit actions.

4. Mark the state as inactive.

Figure 2.4: Exiting an active State [98].

This section has presented the semantic rules for executing transitions as well as for

entering, executing and exiting a state in State�ow. While the rules are largely similar to

those published by Mathworks [98], we have commented on a number of inconsistencies

and omissions found in the User's Guide and corrected those in our presentation above.

Additionally, it is also worth pointing out that the Guide does not clearly de�ne the

di�erence between steps and actions. For example, the term "entry action" is used in the

text ambiguously to denote both the steps of entering the state as well as the action that

must be executed when a state is entered. Taken together, the various inconsistencies,

omissions and errors of the Mathworks o�cial documentation pose signi�cant challenges

for application of formal modelling and analysis techniques in the context of State�ow

2.1. STATEFLOW 13

Figure 2.5: Early return logic example.

diagram; their detection and resolution can therefore be seen as one of the contributions

of this thesis.

2.1.3 Early return logic

Early return logic occurs when a recursive execution (triggered by a local event broadcast)

activates (or deactivates) states that should not be active (or, respectively, inactive) after

the event broadcast. It interrupts part of the execution of the chart to avoid reaching an

inconsistent state (e.g. a state with sequential decomposition and two active substates).

It is worth mentioning that early return logic does not necessarily interrupt the execu-

tion of the whole chart. For example, if the chart has two parallel states and the execution

of the substates of the �rst parallel state is interrupted (in a consistent state) by early

return logic, the execution of the second parallel state may continue, as the inconsistency

was avoided.

Local event broadcasts may occur in entry, during, exit, condition, transition and on

actions. Bind actions do not lead to local event broadcasts. The User's Guide [98] speci�es

the early return conditions for each type of action (on actions are considered as during

actions).

For local event broadcast originating from the execution of the entry actions of state s,

if s is inactive after the broadcast, the process of entering state s is interrupted. The

instructions for during and exit actions are similar, but the processes of executing and

existing, respectively, are interrupted. For condition actions, if the source of the transi-

tion path is inactive after the local event broadcast, the execution of the transitions is

interrupted.

The case of local event broadcasts from transition actions is slightly di�erent. For all

the previous cases, some state that is active before the broadcast, must be active after it.

Since transition actions are executed after the source state (and any necessary ancestor

state) is exited, and before the destination state is entered, all substates of the parent of

the transition path must be inactive before and after the broadcast. If any of them is

active after the broadcast, the execution of the transitions is interrupted.

By way of illustration, we consider the simple chart in Figure 2.5 adapted from an

14 CHAPTER 2. LITERATURE REVIEW

example in [98]. This example shows a situation where an event (E) triggers the execution

of a transition, which raises a di�erent event (F). This event then triggers a di�erent

transition, and since the �rst one was not completed before the event F was raised, it

is abandoned and the simulation proceeds with the second transition. The �rst time this

chart receives an input event E, the state A is entered. When the second event E is received,

the �rst outer transition from A is attempted. Since its trigger is true, the transition is

valid, and consequently the condition action is executed. This broadcasts the local event

F, which triggers the reexecution of the chart under F. The reexecution considers the outer

transitions of the active state, A. The �rst outer transition is not possible because the

trigger does not contain F, but the second transition is possible. It is taken, A is exited,

and the state C is entered. The reexecution �nishes, but the execution of the chart cannot

proceed because the transition from A to B can no longer be executed, since A is not active

anymore. In this case, the original execution is interrupted, the assignment data=1 is not

executed, and the step of execution �nishes.

The User's Guide [98] is not clear about exactly which portions of the execution must be

interrupted. For example, in the case of entry actions, it simply says that "any remaining

steps in entering a state are not performed". We have veri�ed using the simulation tool

that when a local event is broadcast from the entry action of a state s, in certain cases

only the remaining steps for entering s are interrupted, while in other cases the steps for

entering some of the parents are also interrupted.

For example, Step 1 in Figure 2.2 activates the parent state. It is expected therefore

that Step 2 can only continue if the parent is active. Assume that the parent p has a

sequential decomposition, if its entry action exits p (for instance, by executing an outer

transition), Step 3 would mark the substate active, and we would end up with an active

state whose parent is inactive, which is an inconsistency. We believe that early return

conditions should be checked not only after local event broadcasts, but after each step

with respect to the appropriate state (the parent state in the case of Step 1). This is the

approach we took to model the semantics of State�ow charts as presented in Chapter 3 of

this thesis.

2.2 Formal models of state diagram notations

In order to achieve the objective of this thesis, we need some formal account of the nota-

tion. In the literature on veri�cation and analysis of state diagrams, we can �nd di�erent

approaches that can be divided into two types according to how the formalisation is carried

out: formal semantics and translation strategies to a formal notation. Another distinction

can be made with respect to the objectives of this formalisation: veri�cation (of properties

and implementations) and automatic code generation.

Works that establish the formal semantics of a notation allow for the analysis and

veri�cation of diagrams and can be used to de�ne simulation and compilation procedures.

Those that de�ne a translation strategy can achieve the same results, but are able to re-use

2.2. FORMAL MODELS 15

existing technologies for the formal notation to which the state diagrams are translated.

In what follows, we discuss some of the formal approaches to state diagram notations.

We divide them into two groups according to the objectives: veri�cation (Section 2.2.1)

and automatic code generation (Section 2.2.2). Within these groups, we will �nd works

that can be classi�ed according to the formalisation techniques.

2.2.1 Veri�cation approaches

A formal semantics of statecharts was �rst introduced in [40] in an operational style using

a notion of micro-steps to de�ne a step of execution of the chart. Pnueli and Shalev

[82] revise the operational semantics described in [40], and propose a declarative semantics

consistent with the revised operational semantics. It relies on a notion of global consistency

in order to show that both the declarative and operational semantics are consistent with

each other. The execution step of statecharts is de�ned by the set of enabled transitions

at a particular con�guration, which are execute to calculate the next con�guration. This

semantics limits the number of times a transition may be executed in a step, and di�ers

quite signi�cantly from State�ow in the treatment of event broadcasts.

In statecharts, events can be generated only by the transitions, and the transitions

that are enabled by events generated by enabled transitions are restricted to be consistent

with each other, therefore a transition cannot enable, for instance, another transition

originating in the same source state. In State�ow, local events can be broadcast both from

transitions and states, thus the calculation of the set of enabled transitions would depend

on the states being entered, executed and exited as well as the possible transitions. In

addition, the transitions that can be triggered by a local event broadcast in State�ow are

not restricted as in statecharts. This generates the possibility of inconsistency, which is

treated by early return logic. Since the consistency check is performed after the treatment

of the local event broadcast, some actions (that would not occur otherwise) take place. For

this reason, the approach in [82] cannot be applied directly to the semantics of State�ow.

In [38], the semantics implemented in the STATEMATE system [39] is presented, but

again in an informal fashion. Mikk et al. [60] give a formal account of the simulation of the

semantics implemented in STATEMATE; it uses the Z notation to de�ne the semantics.

Given the syntactic and semantic di�erences of STATEMATE statecharts and State�ow

charts, it is not possible to use these results to verify implementations of State�ow charts,

and although Z has a re�nement calculus, it is not clear how this could be used to verify

parallel implementations of such charts. One possibility would be to specify the reactive

behaviour of the chart in Z as described in [26].

The semantics of State�ow charts is given in two forms: an informal description con-

tained in the User's Guide [98] and a simulation semantics implemented in the State�ow

simulator. In [35], an operational semantics for State�ow charts is proposed; however,

it does not cover some features of the notation, e.g. history junctions, and also imposes

restrictions on the use of local events and transitions. It is not clear, however, how to use

16 CHAPTER 2. LITERATURE REVIEW

this semantics in the context of program veri�cation, and how to integrate this semantics

with a semantics of Simulink diagrams. Hamon [34] proposes a denotational semantics

that overcomes some of the limitations of [35]. It claims to models the "the full local event

mechanism" [34], but there is no discussion about the issue of inconsistent states arising

from local event broadcasts, which is treated by early return logic.

The denotational and operational semantics proposed in [35] and [34] can be used to

verify properties and implementations, and automatically generate code; however, because

of the formalism in which the semantics is given, new theories and tools would need to be

developed in order to support such goals.

Whalen [108] proposes a structural operational semantics for three dialects of state-

charts (State�ow, UML Statecharts and Rhapsody [37]) based on [34]. It lifts some of

the restrictions previously imposed, and corrects some aspects of the semantics. However,

history junctions are not covered, and the treatment of local event broadcasts is not clear.

The formal rules for the treatment of local events seem to correctly model the semantics

of local event broadcast, except that early return logic is not treated.

Chen [20] speci�es the semantics of State�ow in a version of CSP accepted by the

model checker PAT [96]. Some of the problems with the informal semantics of State�ow

discussed in [68] were independently observed and corrected. The proposed treatment of

interlevel transitions requires exiting "the highest superstate (in terms of hierarchy) of the

source state", but this requirement is incomplete because the highest substate may be the

parent of the source and destination states, and this state should not be exited. The User's

Guide [98] description requires that the substates of the parent of the transition path are

exited. Our model of State�ow charts de�nes this state as the least upper bound of the

source and destination states with respect to an ancestry relation. The treatment of input

and local events is brie�y mentioned in [20]. Multiple input events are treated using a

notion of priority of transitions, when, in fact, State�ow executes the chart for each input

event that occurs in the same time step. Local event broadcasts are modelled, but early

return logic is not mentioned. It is not clear how the models are obtained, and what is

necessary to support automatic generation.

Boström and Morel [10] propose an approach to support the application of mode-

automata [58] in an industrial setting, while maintaining its formal aspect. The approach

identi�es the subset of Simulink/State�ow necessary to de�ne mode-automata, and gives

a formal semantics to this subset. This semantics is to be used as the basis for the ver-

i�cation of properties of the models, but the veri�cation aspect is not developed further.

The restrictions imposed on Simulink/State�ow are so strong, that the proposed seman-

tics cannot be used as a basis for the veri�cation of implementations of State�ow charts.

Moreover, these restrictions yield a very simple semantics that cannot be easily extended

to include the excluded features of the notation.

Sekerinski and Zurob [90] translate statecharts to the B notation, but impose some

limitations on the structure of valid diagrams. The translation strategy is implemented

in the iState tool that can also generate code in other languages. The choice of the B

2.2. FORMAL MODELS 17

notation as a target language is due to its support of non-determinism and suitability for

safety analysis. Although the B notation supports veri�cation of implementations, this

aspect is not mentioned by the authors. Moreover, using this approach as a basis for

our work would be rather di�cult, given the syntactic and semantic di�erences between

statecharts and State�ow charts.

Latella et al. [53] propose an operational semantics of extended hierarchical automata

and a translation strategy from UML state machines to this formalism. However, the

subset of the language that is formalised is small. This work is signi�cantly extended

in [107]. The extensions include a treatment of the history mechanism, and entry and exit

actions. Lilius and Paltor [55] translate UML state machines to PROMELA [44] and use

the model checker SPIN [45] to analyse the diagrams. None of these works contemplate

the veri�cation of implementations.

Ng and Butler [75] de�ne a translation from UML state machines to CSP speci�cations

by translating UML states to CSP processes and UML events to CSP events. This work

presents an elegant model of UML state machines, but data aspects are not covered.

Furthermore, aspects of statecharts that make the semantics of State�ow charts challenging

(e.g. inter-level transitions) are not discussed. CSP is used primarily for its tool support

for the veri�cation of properties and re�nement of UML state machines.

The approach presented in [84] extends that of Ng and Butler [75] by translating UML

statecharts to Circus speci�cations, covering more aspects of the notation. A state is trans-

lated into a Circus action, and as in the previous work, a UML event is mapped to a

Circus event. None of these works formalise aspects that render the semantics of State-

�ow charts challenging, e.g. local event broadcast, connective and history junctions, etc.

Therefore, formalisations of UML statecharts do not shed much light into the formalisation

of State�ow charts.

Snook et al. [95] propose a strategy for the veri�cation of properties of UML models.

The strategy is based on a translation from UML to UML-B [94] (a graphical notation

similar to UML based on Event-B [2]) and applies the tools and techniques associated with

UML-B and Event-B to verify both the internal consistency of the UML model and the

target properties. This work di�ers from our approach both in the notation covered (UML)

and in the objectives.

Banphawatthanarak and Krogh [6] propose a translation from State�ow charts to the

input notation of the SMV symbolic model checker, thus allowing for the veri�cation of

properties of the charts [7]; they impose restrictions on the types of input signals, number

of transitions reaching a junctions, output signals and transition actions. Tiwari [101]

translates State�ow charts to a formalism called communicating push-down automata and

uses the Symbolic Analysis Laboratory (SAL) framework to analyse the models; this work

contemplates the main aspects of the State�ow notation (parallel and sequential states,

connective and history junctions, transitions, etc), but it is not clear what elements are

not treated.

Scaife et al. [87] translate State�ow models to the synchronous language Lustre [33],

18 CHAPTER 2. LITERATURE REVIEW

allowing for the model checking of the models; the subset treated imposes some limitations

on features such as inter-level transitions. This work extends previous work that de�nes a

translation strategy from discrete-time Simulink to Lustre [12]. Chen [20], Banphawattha-

narak et al. [7], Tiwari [101] and Scaife et al. [87] focus on veri�cation of properties, and

the latter approach could be used for automatic code generation; the veri�cation of imple-

mentations of State�ow charts is not supported by these works or by the notations used

to formalise State�ow charts.

In [104], State�ow charts are formalised in the Z notation. Assumptions that record

the requirements on the states of the chart are then combined with the chart using the

Practical Formal Speci�cation method [59] producing a set of healthiness conditions. These

conditions are veri�ed by the Simulink/State�ow Analyser [103] in order to validate the

State�ow model. While we are interested in verifying that a program correctly implements

a State�ow chart, Toyn and Galloway [104] are interested on whether the chart is the

intended model of the system. Moreover, the Simulink/State�ow Analyser does not support

some of the features of the State�ow notation, such as parallel states and junctions.

Cavalcanti et al. [19] present the most similar work with respect to our objectives; it

describes an approach for translating Simulink diagrams to Circus speci�cations. It uses

extended versions of the ClawZ [4] and ClaSP tools developed by QinetiQ to translate

control law diagrams to Z and CSP, respectively, and to generate a Circus speci�cation.

This allows the veri�cation of functional and concurrent aspects in an integrated manner,

as well as the veri�cation of implementations of control law diagrams.

ClawZ comprises a library of block de�nitions and a translation strategy that maps a

diagram into a Z schema that declares all the input and output signals, and constants;

the predicate of the schema establishes the relationship between inputs and outputs. The

translation strategy also includes in the speci�cation the schemas corresponding to the

blocks used in the diagram.

ClaSP does not produce CSP speci�cations of the control law diagrams, but rather

generates a set of pairs that relate inputs and outputs. For each block A in the diagram,

the pair (x , y), where x is the set of inputs of block A, and y is the sequence of outputs of

block A, is included in this set.

ClawZ and ClaSP are extended to produce more information about the diagrams, so

that it is possible to merge both speci�cations (from ClawZ and ClaSP) into one Cir-

cus speci�cation [19]. For that purpose, ClawZ is extended to include action and enabled

subsystems, as well as merge blocks (i.e, block that output the last input received), whereas

ClaSP is modi�ed so that it includes, for a particular diagram, its name, inputs, outputs

and blocks; the blocks are characterised by their sequence of inputs, sequence of outputs

and �ows of execution.

A translation strategy is de�ned to merge these extended speci�cations. It de�nes the

signals as channels and de�nes a channel called end cycle. The strategy includes the ClawZ

library and translates the diagram into a Circus process called clasp.spec that consists of

the parallel execution of all the blocks in the diagram. The parallel execution of two blocks

2.2. FORMAL MODELS 19

synchronises over the intersection of their alphabets, i.e. the set that contains a block's

input and output channels, determining the order of execution of the blocks. The blocks

also synchronise over the channel end cycle, determining the end of the execution of each

block and marking the end of the execution of a cycle of the diagram.

In [16], an initial Circus semantics of State�ow charts is proposed using a denotational

style, and, while many of the most interesting aspects of the semantics of State�ow are

discussed, they are not formalised. Also, the denotational style used in this work proved

di�cult to extend for the most complex aspects of State�ow (e.g. early return logic), and

hard to validate with respect to the informal semantics.

2.2.2 Code generation approaches

Caspi et al. [13] propose a code generation approach for obtaining embedded software

implemented in a distributed architecture called Time-Triggered Architecture (TTA) [106].

This approach consists of using Simulink for designing control systems, SCADE/Lustre [24]

for designing software and TTA as the distributed platform for the generated code. The

three tools are widely used in avionics and automotive domains.

The decision to use SCADE/Lustre as an intermediate level between Simulink and

TTA is due to a series of features of SCADE/Lustre. The latter has an automatic code

generator quali�ed to SIL-A of the DO-178b standard and is suitable for the development

of high integrity applications; it is supported by analysis tools (model checkers and test

case generators) and presents some features that distinguish it as a programming language,

rather then a simulation tool such as Simulink.

The approach consists, �rst, of translating a Simulink diagram to SCADE/Lustre [24],

and then producing an implementation with the aid of the certi�ed automatic code gen-

erator. This work extends [12] focusing on automatic code generation, but it does not

cover the State�ow notation. However, the fact that the work in [12] was extended to

contemplate the State�ow notation [87] suggests that this approach can also be extended.

Toom et al. [102] and Rugina et al. [86] report on work done in the context of the

Gene-Auto ITEA European project. The goals of this project are to develop a code gen-

erator for Simulink/State�ow and Scicos and to qualify the code generator through formal

approaches. Izerrouken et al. [49] account for the validation and veri�cation of the code

generator. Since this work is based on automatic code generation, the only implementa-

tions that can be deemed correct are those generated by the tool. For this reason, the

implementations cannot be modi�ed. With an approach based on the veri�cation of im-

plementations, modi�ed implementations can be individually assessed; thus allowing, for

example, for manual code optimisation.

20 CHAPTER 2. LITERATURE REVIEW

2.3 Speci�cation languages

In order to verify implementations of State�ow charts, we need to formalise them in a

suitable notation. In this section, we survey speci�cation languages that allow for this

kind of veri�cation and could be used for this formalisation.

Two aspects that can be used to distinguish speci�cation languages are the capability

of representing state on the one hand, and communication on the other. State based

notations, such as Z [109], VDM [51] and B [1], are used mainly to specify sequential

systems with complex data structures. In contrast, process algebras, such as CCS [61],

CSP [85, 88, 41], ACP [9] and LOTOS [23], can specify reactive and concurrent systems.

Arthan et al. [4] and Adams and Clayton [3] use Z to verify implementations of Simulink

diagrams. However, Z is not su�cient to describe all the aspects of such diagrams and

programs. For that reason, CSP is used to describe the concurrent aspects. Given that

State�ow charts can have complex data types, for example arrays and matrices [98], and

complex reactive behaviour, it is convenient to use a speci�cation language that can tackle

both of those aspects.

Fischer [28] and Smith [91] provide an integration of CSP and Object-Z [92], an object-

oriented extension of the Z notation, by de�ning a failures-divergence semantics for Object-

Z classes. Mahony and Dong [56] and Hoenicke and Olderog [43] also integrate CSP and

Object-Z, but add a temporal aspect. Mahony and Dong [56] use Timed-CSP [89] for this,

whereas Hoenicke and Olderog [43] use the duration calculus [112].

Butler and Leuschel [11] and Treharne and Schneider [105] use CSP and the B notation

to provide an integrated notation. The former approach [11] identi�es B operations and

CSP channels. Treharne and Schneider [105] de�ne a compatibility criteria between a B

machine and a CSP speci�cation that allows the CSP speci�cation to direct the B machine

execution.

Taguchi and Araki [97] integrate Z and CCS [61] by providing a state-based semantics

of CCS, and then composing it with the semantics of Z in terms of labelled transition

systems. It also introduces a logic for the speci�cation of properties of systems described

in this formalism.

Woodcock and Cavalcanti [110] de�ne Circus as a combination of Z, CSP, the re�ne-

ment calculus and Dijkstra's language of guarded commands. The semantics of Circus [79]

is de�ned using the UTP [42], and its main advantage is the existence of a re�nement

calculus [78] that supports the veri�cation of implementations of Circus speci�cations.

In the next section, we present a brief description of Circus. We chose Circus as the

basis for our formalisation of State�ow charts because of the existing work on formalisation

of Simulink diagrams and on veri�cation of implementations of such diagrams, as well

as because Circus supports the speci�cation of both the static and dynamic behaviour

and provides a re�nement calculus that supports the veri�cation of implementations of

speci�cations.

While other combinations of state base notations and process algebra (e.g, CSP ‖ B ,

2.4. REFINEMENT CALCULUS 21

CSP-OZ, Event-B) have similar expressive power as Circus to the best of our knowledge,

Circus is the only one that provides a re�nement calculus that supports the veri�cation of

implementations in a calculational fashion. The latter aspects is particularly relevant to

us because the potential automation allowed by the calculational style is fundamental for

the successful adoption of our technique in industrial settings.

2.4 Re�nement calculus

In this thesis, we are concerned with re�nement based veri�cation of implementations of

State�ow charts. In particular, we are interested in the approach known as the re�nement

calculus [5, 73, 74]. In the re�nement calculus an abstract speci�cation is transformed into

a (possibly more concrete) speci�cation by means of sound re�nement laws.

In our approach, we favour the re�nement calculus as it supports a high degree of

automation. The automation derives from the fact that once a re�nement law is selected, its

applicability can, in general, be checked by simple provisos (mostly syntactic). This allows

us to focus on strategies for the selection of re�nement laws that support the veri�cation

of a speci�c implementation.

As previously mentioned, Circus combines the re�nement calculus with Z, CSP and

guarded commands. Besides supporting step-wise development (and veri�cation), the re-

�nement calculus in the context of Circus also support the reasoning about concurrency. In

particular, it allows us to derive (and verify) a concurrent implementation from a centralised

speci�cation. Veri�cation of implementations with respect to speci�cations is carried out

by re�ning the speci�cation into the implementation.

The soundness of the development (or veri�cation) derives from the soundness of the

re�nement laws, which must be proved correct with respect to the semantics of Circus [79].

2.5 Circus

In this section, we present some of the Circus features using a simple Circus process (Fig-

ure 2.6) that models a systems of image transmitters and receivers as an example1. A de-

tailed presentation of Circus can be found in Oliveira et al. [79].

A Circus speci�cation is a sequence of paragraphs: Z paragraphs (axiomatic de�ni-

tions, schemas, and so on), channel and channel set declarations, and process de�nitions

(Appendix A presents the syntax of Circus). The �rst few paragraphs of our example (Fig-

ure 2.6) de�ne the horizontal coordinates as the set HORIZONTAL (of numbers from 1 to

800), the vertical coordinates as the set VERTICAL, the set of colours COLOUR, and the

set of images IMAGE . An image is de�ned as a total function from the horizontal and ver-

tical coordinates to colours. Next, an axiomatic de�nition declares the maximum number

(maxbu�) of images that can be held in the transmitters and receivers as a constant.

1This example has been previously published in [70] and extends the example presented in [18]

22 CHAPTER 2. LITERATURE REVIEW

HORIZONTAL == 1..800
VERTICAL == 1..600
COLOUR == 0..255
IMAGE == HORIZONTAL×VERTICAL→ COLOUR

maxbu� : N1

channel read ,write : IMAGE

processBu�er =̂ begin

stateS == [image : seq IMAGE | # image < maxbu�]
InitState == [S ′ | image ′ = 〈〉]
Read =̂ (# image < maxbu�)N read?x −→ image := image a 〈x 〉
Write =̂ (# image > 0)N write!(head image)−→ image := tail image

• InitState ; (µX • (Read @Write) ; X)
end

Figure 2.6: The Bu�er process

A channel declaration introduces channel names and the types of the values that they

communicate. A channel with no type does not communicate any values; it is used for

synchronisation only. Our model declares two channels read and write of type IMAGE .

A basic process de�nition provides the name of a process, its state, local actions, and a

main action. The state is de�ned by a schema expression. In Figure 2.6, we de�ne a process

Bu�er whose state is given by the schema S . The state contains a single component: the

sequence image of the elements stored in the bu�er. The state invariant de�nes that the

maximum size of the bu�er is given by maxbu� .

A Circus action can freely combine schema expressions, CSP constructs, guarded com-

mands, and speci�cation statements. The bu�er must be initialised before it is used; for

that, we specify the action InitState as an operation schema that establishes that image is

the empty sequence.

The Bu�er can read new information only if there is space to store it. Thus the action

Read has the condition # image < maxbu� as a guard. This requires the size of the image

bu�er to be smaller than maxbu� . If the guard is true, Bu�er can receive a value through

the read channel, and store it in image by concatenating it to the end of this sequence.

Similarly, writing is only enabled if there is some value stored in the bu�er. If the guard

image > 0 is true, the action Write can send the �rst value of the sequence (head bu�er)

through the channel write, and remove it from the bu�er by rede�ning it as the rest of the

sequence (tail bu�er).

The main action de�nes the behaviour of the process. In the case of Bu�er , it initialises

the state, and recursively o�ers the (external) choice (@) of Read or Write. A recursion is

de�ned in the form µX • A(X) where A(X) is an action that contains recursive calls X .

The state of a process is local and encapsulated. Interaction with a process is only possible

via communication through the channels that it uses.

2.5. CIRCUS 23

Processes can also be de�ned through process operators. For example, we can de�ne

a new process by composing two other processes in parallel (JK). Other process operators
are interleave (9), internal choice (u), external choice (@), and sequential composition (;).

Like in CSP, processes can be parametrised, have their components renamed, have
their channels hidden, and so on. For instance, we can specialise the Bu�er process as a
transmitter that reads images from an antenna and sends them through a radio-frequency
channel rfchannel . For that, we de�ne a new process Transmitter by renaming the channels
read and write of the process Bu�er to re�ect this change:

processTransmitter =̂ Bu�er [read ,write := antenna, rfchannel]

The new channels antenna and rfchannel are implicitly declared by the renaming to have
the same type as the corresponding channels read and write. We can de�ne receivers in
the same fashion:

processReceiver1 =̂ Bu�er [read ,write := rfchannel , tv]

processReceiver2 =̂ Bu�er [read ,write := rfchannel , vcr]

Both receivers run in parallel and share the reception through rfchannel . We specify this by
composing them with synchronisation set {| rfchannel |} to de�ne a process called Receivers

as shown below.

processReceivers =̂ Receiver1 J {| rfchannel |} K Receiver2

Finally, the system is de�ned by composing the receivers and the transmitter in parallel.
They communicate through rfchannel , which is hidden. Thus, interactions with the system
use only tv , vcr and antenna.

processSystem =̂ Receivers J {| rfchannel |} K Transmitter \ {| rfchannel |}

Actions can also be composed in parallel. In this case, not only the synchronisation channel

set must be explicit, but also the sets of state components (and local variables in scope)

to which each action writes. Interleaving does not require a synchronisation channel, but

needs the sets of components that are modi�ed. Actions can also be composed in sequence

or in internal choice.

We present a much larger example of a Circus speci�cation and the re�nement calculus,

as we describe our State�ow models in Chapter 3, and our re�nement strategy in Chapter 5.

Finally, Circus o�ers some tool support. A parser and a type checker have been devel-

oped and incorporated in the CZT toolkit [57]. An encoding of Circus in the theorem prover

ProofPower is available [111], and a re�nement tool called CRe�ne [80] are available. The

latter, however, requires further development to fully support the application of re�nement

strategies such as the one proposed in this thesis. A translator from Circus to Java has

been developed for an early version of Circus [31], but is currently not compatible with the

version of Circus used in this thesis. A prototype model checker [32] was developed, but

not made publicly available.

24 CHAPTER 2. LITERATURE REVIEW

2.6 Final considerations

None of the works on formal modelling and veri�cation of state diagram notations cover all

desired features we discussed in Section 1.1. The work in [87] deals in an integrated way

with models of State�ow charts and Simulink diagrams, but does not cover veri�cation of

implementations because the code generated is supposedly correct by construction.

Most of the works on translation of State�ow charts to formal notations focus on veri-

�cation of properties, except, perhaps, [75] and [84], which translate UML state machines

into CSP and Circus, languages that provide means for the veri�cation of implementations.

However, these works are concerned with UML state machines, which do not present the

same complexities as State�ow charts. Also, these works deal only with a well-behaved

subset of UML state machines. For that reason, they do not give much insight into the

formal treatment of more complicated aspects of statechart-like notations.

One approach that can be used in order to formalise State�ow charts is the extension of

the work presented in [19]. This is especially suitable because, in order to model Simulink

function, we need a model of Simulink diagrams, and State�ow charts are always part of

a Simulink diagram.

Although most of the combined notations mentioned in section 2.3 present the features

necessary to formalise State�ow charts, since we are interested in the veri�cation of im-

plementations of such charts, we also need a notation that has a theory that allows us to

verify implementations (for instance, a re�nement theory). Smith and Derrick [93] discuss

the re�nement of speci�cations written in the combination proposed in [91], and Oliveira

et al. [78] propose a re�nement calculus for Circus. Both combinations have re�nement

theories, but Circus is the only one known to support the veri�cation of executable code in

a calculational style [17]. Moreover, Circus is unique in that it supports the speci�cation of

data-rich complex distributed systems, and the re�nement calculus supports the de�nition

of re�nement strategies that can potentially reach a high degree of automation.

The semantics of State�ow presented in this thesis stems from this initial work done

in [16]. However, we took a completely di�erent approach, favouring an operational style

of speci�cation, and a higher degree of connection with the informal semantics to facilitate

the validation.

Chapter 3

A formal model of State�ow Charts

In this chapter, we introduce an operational model of State�ow charts described in Circus.

The model is used as a basis for the veri�cation of implementations of State�ow charts.

Since the established semantics of State�ow is only available through simulation or in an

informal description in the State�ow User's Guide [98], it is not possible to prove that

one particular model is correct (without access to the simulator's code). However, it is

possible to develop a model close enough to the informal description of the behaviour of

such charts, so that its validity can be argued on the basis of inspection with some degree

of con�dence.

STATEFLOW CHART MODEL

Chart Simulator

Figure 3.1: Basic architecture of State�ow models.

Figure 3.1 gives an overview of the architecture of the formal semantics of State�ow charts

as encoded in our models. The model of a particular chart is partitioned into two com-

ponents that capture separately the structure of the particular chart and the semantics

of State�ow. The two components interact with each other to carry the execution of the

chart, and their composition (outer box) interacts with the environment by taking inputs

and relaying them to the appropriate components (input events are directed to Simula-

tor, and input data are relayed to Chart), and by communicating outputs. Outputs are

26 CHAPTER 3. FORMAL MODEL

communicated by the component Chart.

The decomposition of the model into two components allows us to isolate the semantics

of State�ow from chart dependent aspects such as its structure and actions. Since the se-

mantics is independent of a particular chart, only the component Chart must be generated

to obtain a complete model. Moreover, changes to certain parts of the semantics (e.g.,

transition execution) can be contained within the component Simulator.

It is worth mentioning that this decomposition is not commonly used when formalising

the semantics of a language with the goal of veri�cation of implementations. Traditionally,

a more denotational approach is favoured. However, a denotational approach embeds in the

translation rules assumptions and simpli�cations that are not necessarily correct and must

be veri�ed. In our approach, no simpli�cation is performed during the translation process,

and the simpli�cation is tackled by the veri�cation strategy. Besides eliminating the (often

unveri�ed) simpli�cations from the translation process, our operational style yields simpler

translation rules that can be more easily validated against the informal description of the

semantics of State�ow chart, which is given in an operational fashion.

One drawback of our choice of semantic style is that the generated models can be bulky

and contain unnecessary complexity. Additionally, the veri�cation of implementations is

not as directs as in a more denotational setting. These hindrances are formally treated by

our veri�cation strategy which eliminates the unnecessary complexity and transforms the

model into a format more amenable to veri�cation. Our veri�cation strategy is presented

in Chapter 5.

In Section 3.1, we provide an overview of the model, its main components and how

they interact. Section 3.2 presents the formal speci�cation of the simulator process based

on the informal description previously shown in Section 2.1.2. Section 3.3 explains the

part of the model that is speci�c to a particular chart. Finally, Section 3.4 discusses the

validation of our models, and Section 3.5 summarises and discusses our results.

3.1 Overview of the model

We describe and illustrate our models using the chart in Figure 3.2 which was adapted

from a State�ow model called "Modelling an Automatic Transmission Controller" [98].

This chart contains two parallel states gear state and selection state; each of

them has a set of sequential substates. The state gear state comprises sequential states

first, second, third and fourth; the transitions between these states are controlled by

local events (UP and DOWN) that are broadcast by the state selection state. The choice

of which event to broadcast, if any at all, is made according to the relation between the

input variable speed and the local variables up th and down th. These local variables

are updated by the Simulink function calc th that takes variables gear and speed as

parameters every time the state selection state is executed. The chart has a single

output variable gear.

Our models of State�ow charts consist of two Circus processes in parallel: the simula-

3.1. OVERVIEW 27

Figure 3.2: Example of a State�ow Chart describing a car's shift logic.

tor process and the chart process. These processes are combined in parallel to model the

execution of a particular chart. For example, the model of the chart shift logic shown in Fig-

ure 3.2 is given by the Circus process Shift logic that combines the processes c shift logic

and Simulator in parallel. They interact via a set interface of internal channels plus the

channel end cycle.

processShift logic =̂ (c shift logic J interface ∪ {| end cycle |} K Simulator) \ interface

The process Simulator models the semantics of State�ow charts independently of a par-

ticular chart, and the process c shift logic models the particular structure of the chart,

including the actions de�ned in states and transitions. The channels in interface allow the

process Simulator to obtain information from c shift logic, and request the execution of

state and transition actions. These channels are hidden, and, thus, are local to the model.

Figure 3.3 depicts the way in which the chart process is obtained, and the patterns of

communication between the two processes and the environment.

The process c shift logic is generated from the concrete representation of the chart as

provided by the MATLAB Simulink environment (that is, a .mdl �le) by parsing it into

an abstract syntax tree of the chart, and then translating it into a Circus model. The

translation strategy that supports the generation of such models is detailed in Chapter 4

of this thesis.

The chart and simulator processes interact with each other and with the environment

28 CHAPTER 3. FORMAL MODEL

Chart Simulator

executeentryaction

executeduringaction

executeexitaction

executeconditionaction

executetransitionaction

evaluatecondition

checktrigger

result

junction

transition

state

chart

status

history

activate

deactivate

local_event

read_inputs

output

events

output

data

input_events
input

data

write_outputs

interrupt

events

end_local_execution

end_action

end_cycle

Figure 3.3: Overview of the model. Solid arrows indicate communication, solid lines indi-
cate synchronisation, and bold lines indicate external interactions.

through a number of channels. The �rst group of channels is related to the execution of

chart actions (entry, during, exit, condition and transition actions). The �rst �ve channels

request the execution of a particular corresponding action; they communicate the identi�er

of the state or transition (as appropriate) associated with the request. Additionally, the

channel executeduringaction communicates a value of type EVENT because, in our models,

a during action may include actions that are only executed when a particular event is being

handled (on actions). The sixth channel of this group, end action, is used to indicate the

end of a chart action. These six channels are de�ned as follows.

channel executeentryaction, executeexitaction : SID

channel executeduringaction : SID × EVENT

channel executeconditionaction, executetransitionaction : TID

channel end action

The second group consists of channels that are used to check whether a transition is valid

3.1. OVERVIEW 29

or not. The channel evaluatecondition, used to evaluate the conditions of a transitions,

communicates a transition identi�er and a boolean value. The channels checktrigger and

result are used to check whether a transition has been triggered. The former communicates

a transition identi�er and an event, whereas the latter communicates the same information

plus a boolean value.

channel evaluatecondition : TID × B
channel checktrigger : TID × EVENT

channel result : TID × EVENT × B

The third group contains channels used to recover instances of elements contained in the

chart from their identi�ers.

channel junction : JID × Junction

channel transition : TID × Transition

channel state : SID × State

channel chart : State

In general, these channels communicate an identi�er (of one of the types: state, junction or

transition) and an element of the same type. For example, the communication state!sid?s

is used to recover the state whose identi�er is sid . The channel chart simply communicates

the binding that represents the chart; it does not require an identi�er because the identi�er

of a chart is unique.

The channels in the fourth group are used to request information about the status

and history of particular states, and to request the activation and deactivation of states.

They all communicate a state identi�er. The status channel also communicates a boolean

value that represents whether the state is active or not. Finally, the history channel

communicates the additional state identi�er of the last activated substate.

channel status : SID × B
channel history : SID × SID

channel activate, deactivate : SID

The �fth group consists of channels related to local event broadcasts. The channel local event

communicates the event being broadcast along with the state that is the target of the

broadcast. The local event broadcast triggers a local execution (of the chart or of a state)

whose end is marked by a synchronisation on the channel end local execution. Finally, the

channel interrupt communicates a boolean value, and indicates whether or not an early

return logic condition has arisen; it controls the execution of the rest of a chart action after

30 CHAPTER 3. FORMAL MODEL

a local event broadcast.

channel local event : EVENT × State

channel end local execution

channel interrupt : B

The sixth group comprises channels used to communicate data and events. The chan-

nel events communicates the sequence of input events declared by a chart. The channel

input event communicate a sequence of boolean values that identify which input events

have occurred in a step of execution. The channels read inputs and write outputs are used

to request the chart process to, respectively, read the inputs and write the outputs.

channel events : seqB
channel input event : seqEVENT

channel read inputs,write outputs

Finally, the channel end cycle indicates the end of a cycle of execution of the chart.

channel end cycle

We identify below the set of channels that are used exclusively between the chart and

simulator processes, and are hidden from the environment; we call this set interface.

channelset interface == {| executeentryaction, executeexitaction, executeduringaction,
executeconditionaction, executetransitionaction, end action, evaluatecondition,

checktrigger , result , junction, transition, state, chart , status, history , activate, deactivate,

local event , end local execution, interrupt , events, read inputs,write outputs |}

The external channels of our State�ow models include one channel for each input and

output data, one channel for each output event, input event and end cycle. In our example

in Figure 3.2, we have o gear , used for output, and i speed and i throttle, used for input.

There are no output events in our example.

The interaction of models of well formed diagrams and the simulator are deadlock-free

and divergence-free. Deadlock occurs when a state inconsistency arises, and divergence

occurs when a transition loop or local event broadcast lead an in�nite loop. We assume that

the chart under consideration has been analysed using the State�ow tool, thus revealing

issues in the chart that may lead to such situations. Nevertheless, by explicitly addressing

these situations, our models potentially support some reasoning about state inconsistency

and in�nite loops in State�ow charts.

3.2. PROCESS SIMULATOR 31

channel stsuccess, stfail
channelset statetransition == {| stsuccess, stfail |}
processSimulator =̂ begin

entryActionCheck =̂ val sid : SID ; res b : B • . . .
. . .
enterState15Check =̂ val sid : SID ; res b : B • . . .
ExecuteTransition =̂ tid : TID ; path : seqTID ; source : State; ce : EVENT • . . .
CheckValidity =̂ tid : TID ; path : seqTID ; source : State; ce : EVENT • . . .
Proceed =̂ tid : TID ; path : seqTID ; source : State; ce : EVENT • . . .
proceedToState =̂ src, dest : State; path : seqTID ; ce : EVENT • . . .
executePath =̂ path : seqTID ; src, dest : State; ce : EVENT • . . .
proceedToJunction =̂ tid : TID ; path : seqTID ; source : State; ce : EVENT • . . .
executeJunction =̂ j : Junction; path : seqTID ; source : State; ce : EVENT • . . .
ExecuteDefaultTransition =̂ s, tpp : State; ce : EVENT • . . .
EnterState =̂ s, tpp : State; ce : EVENT • . . .
EnterState1 =̂ s, tpp : State; ce : EVENT • . . .
. . .
EnterState7 =̂ s, tpp : State; ce : EVENT • . . .
ExecuteState =̂ s : State; ce : EVENT • . . .
AlternativeExecution =̂ s : State; ce : EVENT • . . .
. . .
ExecuteSequentialStates =̂ ss : seqSID ; ce : EVENT • . . .
ExitState =̂ s : State; ce : EVENT • . . .
ExitStates =̂ ss : seqSID ; ce : EVENT • . . .
ExecuteChart =̂ ce : EVENT • . . .
EnterChart =̂ c : State; ce : EVENT • . . .
ExecuteActiveChart =̂ c : State; ce : EVENT • . . .
LocalEventEntry =̂ sid : SID • . . .
. . .
LocalEventTransition =̂ sid : SID • . . .
TreatLocalEvent =̂ e : EVENT ; s : State • . . .
ExecuteEvent =̂ e : EVENT ; v : B •
ExecuteEvents =̂ es : seqEVENT ; vs : seqB •
Step =̂ . . .
• µX • Step ; end cycle −→ X

end

Figure 3.4: Structure of the Simulator process.

3.2 Process Simulator

The process Simulator provides the main communication interface with a Simulink model;

it accepts a communication that allow input events to trigger the execution of the chart,

and the communication of the end of the chart's cycle of execution. An overview of the

structure of the process Simulator is shown in Figure 3.4. It declares 57 actions that are

used to build the process' main action.

32 CHAPTER 3. FORMAL MODEL

3.2.1 Step of execution

The main action of Simulator recursively executes the Circus action Step and synchronises

on the channel end cycle. The action Step requests, using the channel events, the sequence

es of input events that the chart accepts. The order of the events is important because the

chart is executed once for each active event in the order the events are de�ned in the chart.

Next, it reads through the channel input event a sequence vs of boolean values (of the

same size as es) that indicate which input events have occurred. It then requests (using

the channel read inputs) the chart process to read the input data, executes the chart for

the input events (es) and their associated values (vs) using the action ExecuteEvents, and

�nally requests (using the channel write outputs) the chart to communicate the output

data and events.

Step =̂

(
events?es −→ input event?vs : (# vs = # es)−→ read inputs−→
ExecuteEvents(es, vs) ; write outputs −→ Skip

)

The particular structure of the step of execution of our model supports the future inte-

gration of the models of State�ow with the models of Simulink diagrams. The pattern on

reading input events and data, executing the block and writing the outputs is particularly

important, along with the signalling of the end of the cycle through the channel endcycle.

The execution of the chart for the input events is speci�ed by the action ExecuteEvents.

It takes a sequence of events and a sequence of boolean values as parameters and executes

the chart for each event and the associated value.

ExecuteEvents =̂ es : seqEVENT ; vs : seqB • (; i : id(dom es) • ExecuteEvent(es(i), vs(i)))

Note that this action uses the iterated sequential operator (;) to traverse the list of indices
of the sequence es, and, for each such index i , calls ExecuteEvent with parameters es(i)

and vs(i). The set of events EVENT used above is de�ned as a given set; for each chart,

the values of this set are explicitly declared to contain the input and local events declared

in the chart. The sequence of indices of es is de�ned as the identity function of its domain.

The action ExecuteEvent takes an event and a boolean value, and executes the chart

for that event if the boolean value is true. Otherwise, it does nothing.

ExecuteEvent =̂ e : EVENT ; v : B •

 if v = True−→ ExecuteChart(e)

8 v = False−→ Skip

�


As captured in the de�nition of Step above, the execution of a chart is driven by a Simulink

model that communicates a set of events through input event . It is, however, possible to

de�ne charts that are not driven by input events. This is accommodated in our model by

de�ning a null event (ENULL) as the input event in the chart, and allowing the Simulink

model to trigger the execution of the chart by communicating 〈True〉.

3.2. PROCESS SIMULATOR 33

The execution of a chart depends on whether it is active or inactive; it is modelled by

the action ExecuteChart .

ExecuteChart =̂ ce : EVENT • chart?c −→ status!(c.identi�er)?active−→ if active = True−→ ExecuteActiveChart(c, ce)

8active = False−→ ExecuteInactiveChart(c, ce)

�


This action receives an event as a parameter, and, �rstly, requests the chart c through

channel chart . It then requests the status of the chart by communicating the identi�er of

the chart (c.identi�er) through channel status and receiving the value in active. Finally,

if the chart is active (active = True), ExecuteChart calls the action ExecuteActiveChart ;

otherwise, it calls the action ExecuteInactiveChart .

ExecuteActiveChart =̂ c : State; ce : EVENT •

 if c.substates = ∅−→ ExecuteInactiveChart(c, ce)

8c.substates 6= ∅−→ ExecuteSubstates(c, ce)

�


If the chart has substates, ExecuteActiveChart calls the action ExecuteSubstates to execute

them. Otherwise, it executes the chart as if it were inactive. ExecuteActiveChart receives

a parameter whose type is the schema State.

State

identi�er : SID

default , inner , outer : TID

parent , left , right : SID

substates : seqSID

decomposition : DECOMPOSITION

type : TYPE ; history : B

This schema records the identi�er of the state, the identi�ers of its �rst (if any) default,

inner and outer transitions, the identi�er of its parent state (or chart), left and right

siblings, the sequence of the identi�ers of its substates, its decomposition type, its type,

and whether or not it has a history junction. Identi�ers for states and transitions are

drawn from the sets SID and TID (respectively), which together with the set JID of

junction identi�ers, are de�ned as disjoint given sets. The sets DECOMPOSITION and

TYPE are de�ned by free types. In State�ow, substates in both parallel and sequential

decompositions are ordered. In the case of parallel decomposition, this order determines

the order in which the states are entered, executed and exited. In the case of sequential

decomposition, the order establishes the order in which the states are queried for their

34 CHAPTER 3. FORMAL MODEL

statuses.

TYPE ::= AND | OR | CHART
DECOMPOSITION ::= SET | CLUSTER

A state must be of type AND or OR, and have decomposition of type SET or CLUSTER.

Only a chart (represented as a state in our models) has type CHART .

ExecuteInactiveChart =̂ c : State; ce : EVENT • activate!(c.identi�er)−→

if c.default 6= nulltransition.identi�er ∨ c.decomposition = CLUSTER−→
ExecuteDefaultTransition(c, c, ce)

8c.default = nulltransition.identi�er ∧ c.decomposition = SET−→ if c.substates = 〈〉−→ Skip

8c.substates 6= 〈〉−→ state!(head(c.substates))?�rst −→ EnterState(�rst , c, ce)

�


�


The execution of an inactive chart c triggers the activation of the state denoted by

c.identi�er , which represents the chart as a whole. ExecuteInactiveChart uses the channel

activate to request that the chart process carry out this activation. Afterwards, if the

chart has a default transition (c.default 6= nulltransition.identi�er) or if it has a sequential

decomposition (c.decomposition = CLUSTER), ExecuteInactiveChart executes the default

transition using ExecuteDefaultTransition. If the chart has a parallel decomposition and

no default transitions, ExecuteInactiveChart checks if the chart has any substates. If it

does, ExecuteInactiveChart recovers the binding of the state whose identi�er is the �rst

substate using channel state, and enters it using action EnterState.

ExecuteDefaultTransition =̂ s, tpp : State; ce : EVENT •

if s.default 6= nulltransition.identi�er−→(
var success : B • ExecuteTransition(s.default , 〈〉, s, ce, success);

(if success = True−→ Skip 8 success = False−→ Stop�)

)
8 s.default = nulltransition.identi�er−→

if # s.substates = 0−→ Skip

8 # s.substates = 1−→
(

state!(head s.substates)?saux−→
EnterState(saux , tpp, ce)

)
8 # s.substates > 1−→ Stop

�


�


The action ExecuteDefaultTransition receives two states (s and tpp) and an event (ce) as

parameters. The parameter s corresponds to the state whose default transitions are to be

executed, tpp is the parent of the transition path being executed, and ce is the current

event. The parent of the transition path is the state lowest in the hierarchy that contains

3.2. PROCESS SIMULATOR 35

both ends of a transition path. This information is necessary for the proper treatment of

interlevel transitions (discussed in Section 3.2.2).

If the state has a default transition, we declare a local variable success of type boolean

and call action ExecuteTransition on the default transitions passing the variable success

as a value-result parameter. This variable is used to monitor the success or failure of the

execution of the default transitions. If the execution is successful, ExecuteDefaultTransition

terminates. Otherwise, it deadlocks (Stop), indicating a chart error. This error occurs

because default transitions cannot fail to lead to a state being entered. Chart errors that

lead to deadlock are detected by the State�ow tool, and are modelled in our semantics for

completeness.

If the state does not have a default transition, ExecuteDefaultTransition must identify

the unique state that can be entered (if any). This is only possible if the state has exactly

one substate. If there are no substates, the action terminates successfully. If there is more

than one substate, the action deadlocks. As previously mentioned, the model of a well

formed State�ow chart should never lead to a deadlock.

3.2.2 Transition

The execution of a transition is one of the most complicated aspects of the semantics of

State�ow charts. It is modelled by the action ExecuteTransition that attempts to execute

a sequence of transitions. This sequence is formed by all the transitions that must be

tried. For example, when executing the state steady state (Figure 3.2), there are two outer

transitions to be executed; they are ordered and their execution consists of attempting to

follow the �rst, and, if that fails, trying the second.

ExecuteTransition takes as parameters the identi�er tid of the �rst transition, the

sequence path of identi�ers of the transitions that have been successfully executed, the

source state of the transition path, the current event ce, and a value-result parameter

success. The parameter path is needed in cases where there are junctions in the path of

the transitions and backtracking occurs, and success is used to indicate whether or not the

execution of the transition caused a state to be entered.

ExecuteTransition =̂

val tid : TID ; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •

if tid = nulltransition.identi�er−→
if path = ∅−→ success := False

8 path 6= ∅−→
(

transition!(last path)?lt−→
ExecuteTransition(lt .next , (front path), source, ce, success)

)
�


8 tid 6= nulltransition.identi�er−→
CheckValidity(tid , path, source, ce, success)

�


The backtracking mechanism of transitions has been modelled by means of continuations

36 CHAPTER 3. FORMAL MODEL

[34], but Circus does not support this feature. Thus, we use the parameter path that

contains the necessary information to model the backtracking without the use of explicit

continuations.

ExecuteTransition checks if there are any transitions to execute by comparing tid to

the identi�er of the null transition (nulltransition.identi�er). If they are equal, then

ExecuteTransition evaluates path. If it is empty (path = ∅), no transition has been

followed, and, since tid = nulltransition.identi�er , there are no new transitions to try.

In this case, the execution fails; this is indicated by assigning False to success. If path

is not empty, ExecuteTransition uses the identi�er of the last transition successfully fol-

lowed (last path) to obtain the corresponding transition lt through the channel transition.

It then executes the transition that follows lt (lt .next) on a reduced path excluding the last

transition followed (front path), and the original source state. If tid does not correspond to

the null transition, ExecuteTransition calls the action CheckValidiy on tid , the path, the

source state, the current event, and the parameter success.

Transitions, such as lt , are de�ned by the schema Transition, which records the identi-

�er of a transition, the identi�ers of its source and destination nodes, the identi�er of the

next transition (if any), and the parent state (or chart) of that transition.

Transition

identi�er : TID

source, destination : NID

next : TID

parent : SID

A sequence of transitions is represented by a structure similar to a linked list, where

each transition points to the next (possibly null) transition. The information necessary

to construct this sequence is directly obtained from the textual representation of a chart.

The set NID contains node identi�ers, which are taken from the sets SID and JID .

NID ::= snode〈〈SID〉〉 | jnode〈〈JID〉〉

Returning to the execution of a transition, the action CheckValidity receives the identi-

�er tid of a transition, a sequence path of transition identi�ers, a state source, an event ce,

and a boolean variable success.

CheckValidity requests the chart to evaluate the trigger of the transition by commu-

nicating tid and ce through the channel checktrigger . It then takes the boolean response

e through the channel result . Next, it requests the evaluation of the condition of the

transition through the channel evaluatecondition and stores the received value in c. If the

trigger and the condition are true (e = True ∧ c = True), then CheckValidity requests

the execution of the condition action through executeconditionaction, and calls the action

LocalEventCondition to treat any local event broadcast. It then declares a local variable b

3.2. PROCESS SIMULATOR 37

of type boolean, calls the action conditionActionCheck with b as a value-result parameter

to check the early return logic conditions for condition actions. Consequently, it decides

whether to proceed (if b = False) with the execution of the destination node, or the inter-

rupt the execution of the transition (if b = True). In the latter case, CheckValidity assigns

True to success indicating that the transitions execution was successful. The execution

of the transition is considered successful because the interruption indicates that the local

event broadcast (from the condition action) caused another transition to execute and a

state to be entered.

CheckValidity =̂

val tid : TID ; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •
checktrigger !tid !ce −→ result !tid !ce?e −→ evaluatecondition!tid?c−→

if e = True ∧ c = True−→
executeconditionaction!tid −→ LocalEventCondition(source.identi�er);

var b : B •


conditionActionCheck(source.identi�er , b); if b = True−→ success := True

8 b = False−→ Proceed(tid , path a 〈tid〉, source, ce, success)

�





8 ¬ (e = True ∧ c = True)−→

(
transition!tid?t−→
ExecuteTransition(t .next , path, source, ce, success)

)
�


The execution of the destination node is carried out by calling the action Proceed on

the path extended by the transition identi�er (path a 〈tid〉). (Since the transition was

successfully followed, it is added to path). If the trigger or the condition is false, then

the transition is invalid: the transition t that corresponds to tid is obtained through the

channel transition, and the next transition (t .next) is executed on the same path, source

state, and event.

LocalEventCondition =̂ sid : SID • µX •

local event?e?s −→



TreatLocalEvent(e, s);

var b : B •
conditionActionCheck(sid , b);

if b = True−→
(

interrupt .True−→
end action −→ Skip

)
8b = False−→ interrupt .False−→ X

�






@
end action −→ Skip


Whenever the process Simulator requests the execution of a chart action, there is a possi-

bility that local events are broadcast. When this action is a condition action, local event

broadcasts are treated by the action LocalEventCondition that recursively o�ers a choice

between treating an event and waiting for other local events, or terminating. The �rst op-

38 CHAPTER 3. FORMAL MODEL

tion is modelled by an action that waits for a communication on the channel local event .

If it occurs, the action TreatLocalEvent is called, and the action conditionActionCheck is

called to check the appropriate early return logic conditions. If the early return logic con-

ditions are true, the action interrupts the chart action by communicating true through the

interrupt channel and waits for the end of the chart action on the channel end action. In

contrast, if the early return logic conditions are false, LocalEventCondition indicates that

the chart action can continue by communicating False through interrupt , and recurses.

The second option waits for a synchronisation on end action; the chart process agrees

on that when a state or transition action terminates. In this case, LocalEventCondition

terminates.

The action TreatLocalEvent takes an event e and a destination state s. If s has type

CHART (s.type = CHART), it executes the chart, as de�ned by ExecuteChart , on e.

Otherwise, TreatLocalEvent executes s using ExecuteState again on the new event. Finally,

it signals the end of the local execution on the channel end local execution, thus, allowing

the broadcasting action of the chart (discussed in the next section) to terminate.

TreatLocalEvent =̂ e : EVENT ; s : State • if s.type = CHART −→ ExecuteChart(e)

8 s.type 6= CHART −→ ExecuteState(s, e)

�

 ; end local execution −→ Skip

This treatment of local events uni�es the notions of event broadcast, directed and quali�ed

event broadcasts. The form of broadcast modelled is the directed form. A simple broad-

casting is a directed broadcast to the chart. A quali�ed broadcast is a directed broadcast

to the qualifying state.

Whenever a local event broadcast occurs, the appropriate early return logic conditions

must be checked to avoid the possibility of reaching an inconsistent state 1. In the action

LocalEventCondition, this is achieved by a call to conditionActionCheck , which checks

whether the source of the transition path (source) is still active after the execution of the

condition action. If it is, the execution proceeds as expected. Otherwise, it is halted.

In CheckValidity , the check takes place after the condition action has been completely

executed. In contrast, in LocalEventCondition, conditionActionCheck checks the early

return logic conditions after each local event broadcast (because the same action might

have more than one broadcast).

Local event broadcasts and early return logic are two aspects of State�ow charts that

complicate the semantics. They are particularly di�cult because they are not well doc-

umented. Additionally, in our case, these aspects complicate the model because they do

not respect the separation between chart structure and the simulator as enforced by our

modelling approach. Our solution models a communication protocol that supports the re-

cursive execution of chart (or states) and the interruption of speci�c parts of the execution
1An inconsistency occurs when, for instance, two sequential states are active at the same time, or the

parent of an active state is inactive.

3.2. PROCESS SIMULATOR 39

as required by the early return logic mechanism.

As previously mentioned, a valid transition may lead to the execution of the destina-

tion node by a call to the action Proceed . This action requests the transition identi�ed by

tid through the channel transition. It then determines the type of the destination node

identi�ed by t .destination. If it is a state, t .destination is in the range of the function

snode, which produces node identi�ers from state identi�ers. Otherwise, the destina-

tion node is a junction (and t .destination is in the range of the function jnode, which

associates a node identi�er to a junction identi�er). If the destination is a state dest ,

Proceed recovers it through the channel state, and then calls the action proceedToState.

The state identi�er is obtained from the node identi�er by applying the inverse of the func-

tion snode ((snode ∼)t .destination). If the identi�er of the destination node corresponds

to a junction identi�er, the action proceedToJunction is called.

Proceed =̂

val tid : TID ; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •
transition!tid?t−→

if t .destination ∈ ran snode −→
(

state!((snode ∼) t .destination)?dest−→
proceedToState(source, dest , path, ce, success)

)
8 t .destination ∈ ran jnode −→ proceedToJunction(tid , path, source, ce, success)

�


The de�nition of proceedToState is based on the closest common parent, la(src, dest), of

the source and destination states src and dest (that is the state that is an ancestor of both

src and dest , and that has no substate that is also an ancestor of both these states).

proceedToState =̂ val src, dest : State; val path : seqTID ; val ce : EVENT ; vres success : B •

ExitStates((la(src, dest)).substates, ce);

var b : B •



exitStatesCheck((la(src, dest)).identi�er , b);

if b = True−→ Skip

8 b = False−→
executePath(path, src, dest , ce);

transitionActionCheck((la(src, dest)).identi�er , b); if b = True−→ Skip

8 b = False−→ EnterState(dest , la(src, dest), ce)

�




�




;

success := True


Firstly, the action proceedToState exits all the active substates of the common ancestor

of the source and destination states ((la(src, dest)).substates). Next, it checks the early

return logic conditions for exiting states (exitStatesCheck), and, if they are true (b = True),

interrupts the execution. Otherwise, it executes path as de�ned by executePath, and checks

the early return logic conditions for transition actions (transitionActionCheck). If these

40 CHAPTER 3. FORMAL MODEL

conditions are true, proceedToState interrupts the execution. If they are false, it enters

dest using EnterState. Finally, independent of whether the early return logic conditions

interrupt the execution, proceedToState indicates the success of the transition execution

by assigning True to success. As before, the halting of the execution due to early return

logic is treated as a successful execution.

The call to EnterState takes the closest ancestor of src and dest as the �rst parameter.

The closest ancestor is given by the function la that takes two states and calculates the

least upper bound of the two states with respect to an ancestry relation.

la : (State × State)→ State

∀ s1, s2 : State • la(s1, s2) = µ x : (ancestors(s1) ∩ ancestors(s2)) |
(∀ y : (ancestors(s1) ∩ ancestors(s2)) • x = y ∨ y ∈ ancestors(x)) • x

The function la is de�ned for states s1 and s2 in a chart by applying the Z de�nite descrip-

tion operator to select the sole common ancestor of s1 and s2 that has no substates that

are also common ancestors of s1 and s2.

ancestors : State→ PState

∀ s : State • ancestors(s) = (parent +) L {s} M \{nullstate}

The set of ancestors of a state s is de�ned as the set of all states that are related to s

by the transitive closure of the relation parent (parent +) except for the null state. The

relation parent is de�ned as the set of pairs of states such that the component parent of

the �rst is equal to the component identi�er of the second.

executePath =̂ path : seqTID ; src, dest : State; ce : EVENT •

if # path = 0−→ Skip

8 # path > 0−→



executetransitionaction!(head path)−→
LocalEventTransition((la(src, dest)).identi�er);

var b : B •


transitionActionCheck((la(src, dest)).identi�er , b); if b = True−→ Skip

8b = False−→ executePath(tail path, src, dest , ce)

�





�


The execution of the path executes each of its transition actions; this is de�ned by the action

executePath. If the path is empty (# path = 0), then executePath does nothing. Otherwise,

it requests the execution of the transition action of the �rst transition in the path by

communicating its identi�er (head path) through the channel executetransitionaction. It

then calls LocalEventTransition to deal with any local event broadcast by the transition

action, checks the early return logic conditions for transition actions, and, if the conditions

do not require the interruption of the execution, recurses over the rest of the path (tail path).

3.2. PROCESS SIMULATOR 41

The de�nition of LocalEventTransition is similar to that of LocalEventCondition (above),

except that the early return logic conditions checked are those for transition actions.

Action transitionActionCheck checks that the substates of the closest common ancestor,

la(src, dest), are not active, as they had just been exited before the execution of the path 2.

If the destination of the transition is a junction, proceedToJunction is called. It obtains

the transition t with identi�er tid through the channel transition, and then the destination

junction dj of t by communicating its identi�er (jnode ∼) t .destination through junction.

If dj is not a history junction, it calls executeJunction on dj , the sequence path, the state

source, and the event ce. Otherwise, it obtains the state identi�er lsid that is stored in the

history junction by communicating the identi�er of the parent of the junction (dj .parent)

through history . If lsid is the identi�er of the null state (lsid = nullstate.identi�er), the

default transitions of the state are executed using ExecuteDefaultTransition, and success

is assigned True. Otherwise, proceedToJunction recovers the state ls identi�ed by lsid

through state, and calls proceedToState with ls as the destination state.

proceedToJunction =̂

val tid : TID ; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •
transition!tid?t −→ junction!((jnode ∼) t .destination)?dj−→

if dj .history = False−→ executeJunction(dj , path, source, ce, success)

8 dj .history = True−→ history !(dj .parent)?lsid−→

if lsid = nullstate.identi�er −→

 state!(dj .parent)?s−→
ExecuteDefaultTransition(s, s, ce);

success := True


8 lsid 6= nullstate.identi�er −→

(
state!lsid?ls−→
proceedToState(source, ls, path, ce, success)

)
�


�


The State�ow User's Guide discusses inner transitions to history junctions, but outer and

default transitions are not mentioned. Our experiments show that outer transitions to

history junctions have a behaviour similar to that of inner transitions. On the other

hand, default transitions to history junctions may lead to inconsistencies. In our model,

this may lead to divergence: the �rst time a default transition to a history junction is

followed, it observes nullstate.identi�er , and the default transitions are attempted again

in a potentially in�nite loop. Moreover, inner transitions to history junctions can lead to

an attempt to enter an already active state; in this case, the state is exited, and reentered.

This is captured in proceedToState. As previously explained, this action calls ExitStates

on the substates of the closest common parent of the source and destination states. In this

case, they are the substates of the state with the inner transition. At least one of them is

active, and is deactivated before any attempt at entering is made.

A junction is de�ned by the schema Junction, which records the identi�er of a junc-

2The de�nition of LocalEventTransition and transitionActionCheck can be found in Appendix B.

42 CHAPTER 3. FORMAL MODEL

tion, the identi�er of the �rst (if any) transition leaving it, the identi�er of its parent

state (or chart), and a boolean component indicating whether or not the junction is a

history junction.

Junction

identi�er : JID ; transition : TID ; parent : SID ; history : B

The execution of a junction consists of executing its outgoing transitions. If there are none,

the transition path fails. The action executeJunction compares the identi�er of the �rst

outgoing transition (j .transition) to the identi�er of the null transition. If they are the

same, there are no transitions out of the junction, and the execution failure is indicated

by assigning False to success. Otherwise, executeJunction calls ExecuteTransition.

executeJunction =̂

val j : Junction; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •
if j .transition = nulltransition.identi�er −→ success := False

8 j .transition 6= nulltransition.identi�er−→
ExecuteTransition(j .transition, path, source, ce, success)

�


The key actions that model the execution of transitions are ExecuteTransition, which

we presented above, and ExecuteDefaultTransition. ExecuteDefaultTransition extends

ExecuteTransition by treating the possibility that there are no default transitions to follow,

but the choice of which state to enter is deterministic. This is the case when, for example,

there is only one substate.

The informal description of the execution of a set of transitions is shown in Figure 2.1,

which is repeated in Figure 3.5 for convenience. These steps describe the execution of a set

of transitions as an iterative procedure, where each iteration starts with step 2 and ends

with step 3. ExecuteTransition corresponds to the �rst sentence of step 2 in conjunction

with step 3. CheckValidity corresponds to the rest of step 2, Proceed to the selection

between state and junction destinations speci�ed in the end of step 2, proceedToState to

the four steps under the label States, and executeJunction to the steps under the labels

Junctions with no outgoing transition segments and Junctions with outgoing

transition segments. The action proceedToJunction does not correspond to any step in

the informal description; it extends the execution of transition by modelling the case when

a transition leads to a history junction.

3.2.3 Entering a state

To keep close to the informal description previously shown in Figure 2.2, we preserve the

structure and granularity of the steps in the actions that model the simulation semantics.

For convenience, we repeat in Figure 3.6 the steps for entering a state.

3.2. PROCESS SIMULATOR 43

1. A set of transition segments is ordered.

2. While there are remaining segments to test, a segment is tested for validity. If
the segment is invalid, move to the next segment in order. If the segment is valid,
execution depends on the destination:

States

(a) No more transition segments are tested and a transition path is formed
by backing up and including the transition segment from each preceding
junction until the respective starting transitions.

(b) The states that are the immediate children of the parent of the transition
path are exited (see Exiting an Active State).

(c) The transition actions from the �nal transition path are executed.

(d) The destination state is entered (see Entering a State).

Junctions with no outgoing transition segments
Testing stops without any states being exited or entered.

Junctions with outgoing transition segments
Step 1 is repeated with the set of outgoing segments from the junction.

3. After testing all outgoing transition segments at a junction, back up the incom-
ing transition segment that brought you to the junction and continue at step 2,
starting with the next transition segment after the back up segment. The set of
�ow graphs is done executing when all starting transitions have been tested.

Figure 3.5: Executing a Set of Transitions [98]

The procedure for entering a state s is de�ned by the action EnterState below.

EnterState =̂ s, tpp : State; ce : EVENT • EnterState16(s, tpp, ce)

For each step in Figure 2.2, we de�ne an action whose name is EnterState post�xed by the

number of the associated step. For instance, step 1 is formalised by the action EnterState1.

Similarly, the name of actions that correspond to the execution of a range of steps is

post�xed by the numbers of the �rst and last steps.

For example, the execution of steps 1-6 is modelled by EnterState16. Since some of the

steps can result in a local event broadcast, we must check the early return logic conditions

after each such step, and possibly interrupt part of the execution. For this reason, the

combination of these steps is not straightforward.

EnterState16 =̂ s, tpp : State; ce : EVENT • EnterState1(s, tpp, ce);

var b : B • enterState1Check(s.identi�er , b) ;

 if b = True−→ Skip

8b = False−→ EnterState26(s, tpp, ce)

�


EnterState16 executes step 1 by calling action EnterState1, declares a local variable b,

checks the appropriate early return logic condition by calling enterState1Check with b as

44 CHAPTER 3. FORMAL MODEL

1. If the parent of the state is not active, perform steps 1-4 for the parent.

2. If this is a parallel state, check if the immediate sibling with a
higher (i.e., earlier) entry order is active. If not, perform
entry steps 1-5 for this state �rst.

3. Mark the state active.

4. Perform any entry actions.

5. Enter children, if needed:

(a) If the state contains a history junction and there was an active child
of this state at some point after the most recent chart initialisation,
perform entry steps 1-5 for that child. Otherwise, execute the default
�ow paths for the state.

(b) If this state has parallel decomposition, i.e., has children that are paral-
lel states, perform entry steps 1-5 for each state according to its entry
order.

6. If this is a parallel state, perform all entry steps for the sibling state next in
entry order if one exists.

7. Else, if the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

Figure 3.6: Entering a State [98]

one of the parameters, and uses the value assigned by enterState1Check to b, in order to

decide whether to proceed with the execution of the remaining steps (EnterState26), or to

terminate immediately.

Action EnterState26 is de�ned in a similar fashion. Its de�nition can be found in

Appendix B as well as the de�nitions of the remaining actions that execute a range of steps

while checking the appropriate early return logic conditions. As previously mentioned, the

process of entering a state is modelled by the action EnterState, which executes the steps

from 1 to 6. Step 7 is executed when 6 fails, and is called explicitly from Step 6.

The �rst step of execution requires the execution of steps 1-4 for the parent state. The

action EnterState1 models this step; it takes as parameters the state s to be entered, the

parent of the transition path tpp and the current event ce.

EnterState1 =̂ s, tpp : State; ce : EVENT • status!(s.parent)?active−→ if active = False−→ state!(s.parent)?p −→ EnterState14(p, tpp, ce)

8active = True−→ Skip

�


EnterState1 �rst checks whether the parent of the state is active by communicating its

identi�er (s.parent) through the channel status. If it is active, it does nothing. Otherwise,

it obtains the parent state by communicating its identi�er through the channel state and

calls action EnterState14 on it, thus executing steps 1-4 for the parent state.

3.2. PROCESS SIMULATOR 45

After this step is carried out, the parent must be active. However, a local event broad-

cast that occurs while this step is being executed may deactivate the parent state. There-

fore, the early return logic condition for step 1 is that the parent is still active after the

step has been executed; this check is modelled by action enterState1Check .

enterState1Check =̂ val sid : SID ; vres b : B • state!sid?s −→ entryActionCheck(s.parent , b)

This action receives a state identi�er sid and a value-result parameter b; it obtains the

state s whose identi�er is sid and checks that its parent is still active. This is exactly the

early return logic condition of entry actions applied to the parent of s. We perform this

check by calling the action entryActionCheck on the parent (s.parent) and b.

entryActionCheck =̂ val sid : SID ; vres b : B • status!sid?active −→ b := not(active)

The action entryActionCheck checks the early return logic conditions associated with the

execution of entry actions. After the execution of an entry action if the state whose entry

action has been executed is no longer active (not(, active)), the execution halts. The

action entryActionCheck takes the same parameters as enterState1Check ; it checks the

status active of the state whose identi�er is sid and assigns the negation of this value to b.

The action EnterState2 models the second step of the procedure for entering a state;

it takes the same parameters as EnterState1. It �rst checks whether the state is parallel

(s.type = AND) or not. If it is not, it does nothing. Otherwise, it checks if the state has

a left sibling. Again, if it does not (s.left = nullstate.identi�er), it terminates. Otherwise,

it checks if the left sibling is active by communicating its identi�er (s.left) through the

channel status. If it is, there is nothing left to do. If the left sibling is not active, this

action obtains the state (ls) and executes steps 1-5 for it by calling the action EnterState15.

EnterState2 =̂ s, tpp : State; ce : EVENT •

if s.type = AND−→

if s.left 6= nullstate.identi�er −→ status!(s.left)?active−→ if active = True−→ Skip

8active 6= True−→ state!(s.left)?ls −→ EnterState15(ls, tpp, ce)

�


8s.left = nullstate.identi�er −→ Skip

�


8s.type 6= AND −→ Skip

�


After step 2, it is expected that the left sibling, if any, is active. If a left sibling exists, and it

is no longer active, execution must be halted. This is checked by action enterState2Check ,

which we omit here. The de�nition of enterState2Check can be found in Appendix B.

The action EnterState3 simply requests the activation of the state being entered by

communicating the identi�er of the state through the channel activate. There are no

46 CHAPTER 3. FORMAL MODEL

early return logic conditions associated with this action as it cannot trigger a local event

broadcast.

EnterState3 =̂ s, tpp : State; ce : EVENT • activate!(s.identi�er)−→ Skip

The next action, EnterState4, requests the execution of the entry action of the state being

entered by communicating its identi�er through the channel executeentryaction.

EnterState4 =̂ s, tpp : State; ce : EVENT •
executeentryaction!(s.identi�er)−→ LocalEventEntry(s.identi�er)

Similarly to the execution of condition and transition actions, local event broadcasts are

treated by a call to LocalEventEntry . This action is similar to LocalEventCondition and

can be found in Appendix B. As previously mentioned, after the execution of an entry

action, the state must still be active; otherwise, the execution must be halted.

The �fth step describes two cases to be treated. We model these cases as the ac-

tions EnterState5a and EnterState5b, which are executed in di�erent situations. They are

sequentially composed to form EnterState5.

EnterState5 =̂ s, tpp : State; ce : EVENT • EnterState5a(s, tpp, ce) ; EnterState5b(s, tpp, ce)

Action EnterState5a executes a history junction, if one exists. Otherwise, it executes the

default transitions. An interesting consequence of this step is that if a state with a par-

allel decomposition has a default transition, instead of directly entering the substates, the

default transition is executed and the substates are entered. This fact has been con�rmed

by experiments with the simulation tool.

EnterState5a =̂ s, tpp : State; ce : EVENT •

if s.history = True−→ history !(s.identi�er)?lsid−→ if lsid 6= nullstate.identi�er −→ state!lsid?ls −→ EnterState15(ls, tpp, ce)

8 lsid = nullstate.identi�er −→ ExecuteDefaultTransition(s, tpp, ce)

�


8 s.history = False−→ if s.default 6= nulltransition.identi�er −→ ExecuteDefaultTransition(s, tpp, ce)

8s.default = nulltransition.identi�er −→ Skip

�


�


If s has a history junction (s.history = True), then EnterState5a recovers the state identi-

�er lsid in the history junction by communicating the state identi�er (s.identi�er) through

the channel history . If lsid is the identi�er of the null state (lsid = nullstate.identi�er),

EnterState5a calls ExecuteDefaultTransition on s. Otherwise, it obtains the state ls iden-

ti�ed by lsid through state, and executes the steps 1 to 5. If s does not have a history

junction, but has default transitions, these are executed.

3.2. PROCESS SIMULATOR 47

If the state has a parallel decomposition, EnterState5b executes steps 1-5 for each

parallel substate. However, if there is a default transition, it must be executed instead.

Since, this case is treated in action EnterState5a, we exclude this possibility in action

EnterState5b by conditioning the execution of EnterStates15 accordingly. EnterStates15

executes steps 1-5 for each parallel substate in order. Each execution of these steps may

lead to a local event broadcasts, therefore the appropriate conditions are checked, and

the execution is interrupted if necessary. The de�nition of this action can be found in

Appendix B.

EnterState5b =̂ s, tpp : State; ce : EVENT •
if s.decomposition = SET ∧ s.default = nulltransition.identi�er−→

EnterStates15(s.substates, tpp, ce)

8s.decomposition 6= SET ∨ s.default 6= nulltransition.identi�er −→ Skip

�


The action EnterState6 checks if the state is a parallel state (s.type = AND) and if it

has a right sibling (s.right 6= nullstate.identi�er). If this is the case, it obtains the right

sibling (rs) using channel state, and enters it using action EnterState. Otherwise, this

action executes step 7 by calling EnterState7.

EnterState6 =̂ s, tpp : State; ce : EVENT •
if s.type = AND ∧ s.right 6= nullstate.identi�er−→

state!(s.right)?rs −→ EnterState(rs, tpp, ce)

8s.type 6= AND ∨ s.right = nullstate.identi�er −→ EnterState7(s, tpp, ce)

�


The �nal step is modelled by the action EnterState7. It checks if the state is a chart or

not (s.type = CHART). If it is, the action terminates immediately. Otherwise, it obtains

the parent p by communicating the identi�er of the parent of s (s.parent) through state,

and compares p to the parent of the transition path. If they are the same, the action

terminates. If the parent of the state is not tpp, the transition path that led to this state

being entered contains interlevel transitions. In this case, the action calls EnterState6 on

the parent (thus executing steps 6 and 7).

EnterState7 =̂ s, tpp : State; ce : EVENT •
if s.type 6= CHART −→ state!(s.parent)?p −→

 if tpp 6= p −→ EnterState6(p, tpp, ce)

8tpp = p −→ Skip

�


8s.type = CHART −→ Skip

�


Note that, action EnterState1 guarantees that steps 1 through 4 are executed on all the

inactive ancestors of a state. However, if any of them is a parallel state, it might be the case

48 CHAPTER 3. FORMAL MODEL

that its right siblings are not entered. The action EnterState7 takes care of this scenario,

by recursively applying the action EnterState6 to the necessary states.

3.2.4 Executing and exiting a state

The processes of executing and exiting active states are simple compared to entering a

state or executing transitions. As before, we repeat in this section the informal description

in Figures 3.7 and 3.8.

The action ExecuteState takes a state s and the current event as parameters.

ExecuteState =̂ s : State; ce : EVENT • status!(s.identi�er)?active−→

if active = True−→

var success : B •
ExecuteTransition(s.outer , 〈〉, s, ce, success);

if success = True−→ Skip

8 success = False−→

executeduringaction!(s.identi�er)!ce−→
LocalEventDuring(s.identi�er);

var b : B •
duringActionCheck(s.identi�er , b); if b = True−→ Skip

8 b = False−→ AlternativeExecution(s, ce)

�





�




8active = False−→ Skip

�


ExecuteState �rst checks whether or not the state is active by communicating the identi�er

of the state through the channel status. If the state is not active, ExecuteState terminates

immediately. Otherwise, ExecuteState declares a boolean variable success and calls the

action ExecuteTransition on the outer transitions passing success as a parameter. The call

to ExecuteTransition then updates success to indicate whether or not the execution of the

outer transitions was successful. If it is (success = True), then ExecuteState terminates im-

mediately. Otherwise, it requests the execution of the during and on actions of the state by

communicating the state identi�er and the current event ce through executeduringaction.

Since the execution of a during action can lead to local event broadcasts, ExecuteState

treats such broadcasts (LocalEventDuring), checks the appropriate early return logic con-

ditions (duringActionCheck), and, if necessary, terminates immediately. Otherwise, it calls

the action AlternativeExecution on the state to execute its inner transitions.

AlternativeExecution attempts to execute the inner transitions of the state s in the

same fashion as ExecuteState. The local variable success is used to indicate the success or

failure of the execution, and the alternation controls the remaining execution according to

3.2. PROCESS SIMULATOR 49

1. The set of outer �ow graphs execute (see Executing a Set of Flow Graphs).
If this action causes a state transition, execution stops. (Note that this step
never occurs for parallel states.)

2. During actions and valid on-event actions are performed.

3. The set of inner �ow graphs execute. If this action does not cause a state
transition, the active children execute, starting at step 1. Parallel states
execute in the same order that they become active.

Figure 3.7: Executing an active State [98]

the value of success. If the execution is successful, ExecuteState terminates. Otherwise,

the substates are executed.

AlternativeExecution =̂ s : State; ce : EVENT •
var success : B • ExecuteTransition(s.inner , 〈〉, s, ce, success); if success = True−→ Skip

8success = False−→ ExecuteSubstates(s, ce)

�




The execution of substates must take into consideration the type of decomposition of the

parent state. If the substates are in a parallel decomposition (s.decomposition = SET),

then they are executed by action ExecuteParallelStates, and if they are in a sequential de-

composition (s.decomposition = CLUSTER), they are executed by ExecuteSequentialStates.

ExecuteSubstates =̂ s : State; ce : EVENT • if s.decomposition = SET −→ ExecuteParallelStates(s.substates, ce)

8s.decomposition = CLUSTER −→ ExecuteSequentialStates(s.substates, ce)

�


The action ExecuteParallelStates is de�ned as an implicit recursion that traverses the

sequence of states, executing the active states. After each state is executed, the early return

logic conditions are checked. If they are true, the execution is interrupted. Otherwise, the

remaining states are executed.

ExecuteParallelStates =̂ ss : seqSID ; ce : EVENT •

if # ss = 0−→ Skip

8 # ss > 0−→ state!(head ss)?�rst −→ ExecuteState(�rst , ce);

var b : B •


executeStateCheck(head ss, b); if b = True−→ Skip

8 b = False−→ ExecuteParallelStates(tail ss, ce)

�




�


ExecuteSequentialStates is de�ned in a similar fashion to ExecuteParallelStates; it is a

50 CHAPTER 3. FORMAL MODEL

recursive action that traverses the sequence of states while checking the status of each

state, but as soon as an active state is found, it is executed and the recursion terminates.

ExecuteSequentialStates =̂ ss : seqSID ; ce : EVENT •

if # ss = 0−→ Skip

8 # ss > 0−→ status!(head ss)?active−→ if active = True−→ state!(head ss)?�rst −→ ExecuteState(�rst , ce)

8active = False−→ ExecuteSequentialStates(tail ss, ce)

�


�


Overall, the action ExecuteState models steps 1 and 2 in Figure 3.7, and AlternativeExecution

models step 3. The action ExecuteSubstates distinguishes between sequential and paral-

lel substates as required in step 3, and ExecuteParallelStates and ExecuteSequentialStates

execute the appropriate substates in the right order.

The action ExitState takes a state and the current event as parameters. It �rst checks

if the state has an active parallel right sibling through the channel status and, if it does,

that state is exited. The action then exits all active substates by calling ExitStates on

s.substates, requests the execution of the exit action through channel executeexitaction,

treats any potential local event broadcasts (LocalEventExit), checks the appropriate early

return logic conditions for that state (exitActionCheck) and � as appropriate � either

terminates, or requests the deactivation of the state by communicating the identi�er of the

state through the channel deactivate.

ExitState =̂ s : State; ce : EVENT •



if s.right 6= nullstate.identi�er −→ status!(s.right)?active−→ if active = True−→ state!(s.right)?rs −→ ExitState(rs, ce)

8active = False−→ Skip

�


8s.right = nullstate.identi�er −→ Skip

�


;

ExitStates(s.substates, ce);

executeexitaction!(s.identi�er)−→ LocalEventExit(s.identi�er);

var b : B •


exitActionCheck(s.identi�er , b); if b = True−→ Skip

8b = False−→ deactivate!(s.identi�er)−→ Skip

�





The action ExitState is only called by itself and by the action ExitStates (see below).

In both cases, its execution is conditioned on the state to be exited being active. This

guarantees that no inactive states are ever exited.

A sequence of states is exited by calling the action ExitStates, which takes as parameters

3.2. PROCESS SIMULATOR 51

1. If this is a parallel state, check that the immediate sibling that became active
after this state have already become inactive. Otherwise, perform all exiting
steps on that sibling state.

2. If there are any active children, perform the exit steps on these states in the
reverse order that they became active.

3. Perform any exit actions.

4. Mark the state as inactive.

Figure 3.8: Exiting a State [98]

a sequence of state identi�ers, and the current event. If the sequence is empty nothing is

done. If the sequence is empty, ExitStates terminates. If the sequence has one or more state

identi�ers, ExitStates checks the status of the state that corresponds to the last identi�er

in the sequence, and, if the state is active, exits it. Next, ExitStates checks the early

return logic conditions for exiting a state, and, if they are true, terminates. Otherwise, it

recursively exits the remaining states.

ExitStates =̂ ss : seqSID ; ce : EVENT •

if # ss = 0−→ Skip

8 # ss > 0−→ status!(last ss)?active−→ if active = True−→ state!(last ss)?l −→ ExitState(l , ce)

8 active = False−→ Skip

�

 ;

var b : B •


exitStateCheck(head ss, b); if b = True−→ Skip

8 b = False−→ ExitStates(front ss, ce)

�




�



The action ExitState models steps 1, 3 and 4 of the process of exiting a state shown in

Figure 3.8. Step 2 is modelled by a call to ExitStates.

This concludes the process Simulator that models the semantics of State�ow charts

independently of any particular instance of State�ow charts. An advantage of this separa-

tion is that changes and extensions to the semantics of the main components of State�ow

are restricted to this process. Furthermore, since this process is the same for every chart,

the e�ort require to generate the chart speci�c model is reduced signi�cantly.

In the next section, we describe the process that represents the structure of a particular

chart and complements the Simulator process in order to model the execution of the chart.

52 CHAPTER 3. FORMAL MODEL

3.3 Chart process

The chart process records the structure of the chart (state, transitions, and junctions) using

constants, as this information does not change throughout the execution of the chart. The

process state records the data declared in the chart, and information particular to its

execution. For instance, the chart process c shift logic (Figure 3.9) corresponds to our

example in Figure 3.2.

A schema State�owChart captures the general structure of a State�ow chart. It is

de�ned outside of the scope of the chart process, since it is the same for every chart.

State�owChart

identi�er : SID

states : SID 7 7→ State

transitions : TID 7 7→ Transition

junctions : JID 7 7→ Junction

nullstate 6∈ ran states
nulltransition 6∈ ran transitions
nulljunction 6∈ ran junctions
#{s : ran states | s.type = CHART} = 1

(states(identi�er)).type = CHART

∀n : SID | n ∈ dom states • (states(n)).identi�er = n

∀n : JID | n ∈ dom junctions • (junctions(n)).identi�er = n

∀n : TID | n ∈ dom transitions • (transitions(n)).identi�er = n

The component identi�er identi�es the state that represents the chart. The sets State,

Transition and Junction are de�ned by the schemas described in the previous section. The

components states, transitions and junctions are, therefore, �nite functions from identi�ers

to bindings. The invariant de�nes basic structural constraints enforced by the State�ow

notation:

• each of the states, transitions, and junctions components must not contain the null

object (of the appropriate type);

• the range of states must contain a single state of type CHART , that is indicated by

identi�er ; and

• the application of each of the functions states, transitions, and junctions to an iden-

ti�er n in its domain must yield a binding whose component identi�er is equal to n.

In the chart process (see Figure 3.9), an axiomatic de�nition includes State�owChart ,

promoting its components to process constants, and identifying their values. For our shift

logic example, the axiomatic de�nition states that identi�er = c shift logic and that states

includes the pairs (s downshifting ,S downshifting), (s gear state,S gear state) and so

3.3. CHART PROCESS 53

process c shift logic =̂ begin

State�owChart

. . .

SimulationData == [state status : SID 7 7→ B; state history : SID 7 7→ SID | . . .]
InitSimulationData == [SimulationData ′ | . . .]
SimulationInstance == [v gear , v speed , v throttle, v up th, v down th : R]
InitSimulationInstance == [SimulationInstance ′ | . . .]
InitState == (InitSimulationInstance) ∧ (InitSimulationData)
. . .
Activate == (ActivateWithHistory ∨ ActivateNoHistory) ∧ ΞSimulationInstance
. . .
Deactivate == [ΞSimulationInstance; ∆SimulationData | . . .]
state shift logic state == SimulationInstance ∧ SimulationData
entryaction downshifting =̂ executeentryaction.(s downshifting)−→ Skip

. . .
entryactions =̂ entryaction downshifting @ . . . @ entryaction steady state

duringaction downshifting =̂ executeduringaction.(s downshifting)?ce −→ Skip

. . .
duringactions =̂ duringaction downshifting @ . . . @ duringaction steady state

exitaction downshifting =̂ executeexitaction.(s downshifting)−→ Skip

. . .
exitactions =̂ exitaction downshifting @ . . . @ exitaction steady state

conditionaction third fourth =̂ executeconditionaction.(t third fourth)−→ Skip

. . .
conditionactions =̂ conditionaction third fourth @ . . . @ conditionaction default steady state

transitionaction third fourth =̂ executetransitionaction.(t third fourth)−→ Skip

. . .
transitionactions =̂ transitionaction third fourth @ . . . transitionaction steady state upshifting

condition third fourth =̂ evaluatecondition.(t third fourth)!(True)−→ Skip

. . .
conditions =̂ condition third fourth @ . . . condition steady state upshifting

trigger default �rst =̂ checktrigger .(t default �rst)?e −→ result .(t default �rst).(e)!(True)−→ Skip

. . .
triggers =̂ trigger third fourth @ . . . @ trigger upshifting steady state26
getevents =̂ events!(〈ENULL〉)−→ Skip

getstate =̂ state?x : (x ∈ dom(states))!(states(x))−→ Skip

getjunction =̂ junction?x : (x ∈ dom(junctions))!(junctions(x))−→ Skip

gettransition =̂ transition?x : (x ∈ dom(transitions))!(transitions(x))−→ Skip

getchart =̂ chart !(states(identi�er))−→ Skip

status =̂ status?x : (x ∈ dom(state status))!(state status(x))−→ Skip

history =̂ history?x : (x ∈ dom(state history))!(state history(x))−→ Skip

activation =̂ activate?x −→Activate

deactivation =̂ deactivate?x −→Deactivate

ChartActions =̂ . . .
InterfaceActions =̂ . . .
Inputs =̂ . . .
Outputs =̂ . . .
AllActions =̂ . . .
broadcast =̂ e : EVENT ; dest : SID • . . .
check =̂ res erl : B • . . .

• InitState ; µX •

 µY

 AllActions ; Y

@
end cycle −→ Skip

  ; X

end

Figure 3.9: Structure of the c shift logic process.

on, where s downshifting and s gear state are state identi�ers, and S downshifting and

S gear state are bindings of the schema State.

These identi�ers and binding are constants that are de�ned outside the process and

model the main objects of the State�ow notation: states, transitions, junctions and events.

For instance, for each state in the diagram, we de�ne a constant of type State and a constant

54 CHAPTER 3. FORMAL MODEL

of type SID ; the name of the �rst is the name of the state pre�xed by a capital S , and the

name of the second is created in the same fashion, but pre�xed by a lower case s. For state

gear state, the constant S gear state has type State and the value of its components are

de�ned by the following binding.

S gear state : State

S gear state = 〈|identi�er == s gear state, default == default �rst ,

inner == nulltransition.identi�er , outer == nulltransition.identi�er ,

parent == s shift logic, left == nullstate.identi�er ,

right == s selection state, substates == 〈s �rst , s second , s third , s fourth〉,
decomposition == CLUSTER, type == AND , history == False|〉

This state's identi�er is s gear state. It has a default transition whose identi�er is

default �rst . It has no inner or outer transitions, no left sibling, but has a right sib-

ling that has identi�er s selection state. It has a sequence of substates and sequential

decomposition (CLUSTER). It is a parallel (AND) state and has no history junction.

Identi�ers and binding of transitions and junctions are de�ned in a similar way. The

remaining identi�er and binding de�nitions for our example can be found in Appendix C.1.

Input and local events are de�ned as constants of type EVENT . For our example, the event

identi�ers are de�ned as follows.

e UP , e DOWN ,ENULL : EVENT

As discussed in the previous section, at each cycle, the process Simulator executes the

chart once for each input event that has occurred. If the chart does not have any input

events, we declare the dummy event ENULL to allow the Simulator to execute the chart.

The de�nition of the schema SimulationData is independent of a particular chart. It

declares the state components of the chart process that record the status of each state

in the chart (state status), and the last active substate for those with a history junc-

tion (state history). If state status n is true, the state n is active; state history is a

function from state identi�ers to state identi�ers.

SimulationData

state status : SID 7 7→ B
state history : SID 7 7→ SID

dom state status = dom states

dom state history = {j : ran junctions | j .history = True • j .parent}
∀ s : ran states | s.decomposition = CLUSTER •

#{ss : ran s.substates | state status(ss) = True} ≤ 1

The predicate of SimulationData states that the domain of state status contains the iden-

3.3. CHART PROCESS 55

ti�ers of all states, that the domain of state history contains the identi�ers of all parent

states of history junctions, and that for all states with a sequential decomposition, at

most one substate can be active at any given time. The (omitted) initialisation opera-

tion InitSimulationData for SimulationData marks all states as inactive, and associates all

states in the domain of state history with the identi�er of the null state.

The schema SimulationInstance (in Figure 3.9) declares the data and output events

de�ned in the chart. For each data, it declares a variable of the same type whose name is

the name of the data pre�xed by v . For each output event, the schema declares a variable

of type N whose name is the name of the event pre�xed by counter .

For our example, there are no output events, and the declared data are v gear , v speed ,

v throttle, v up th, v down th. The initialisation action InitSimulationInstance assigns to

them the default values of their types; in this case, it sets them to 0.

In summary, the state of a chart process includes all the components declared in

SimulationInstance, which de�nes the data declared in the chart, and in SimulationData,

which records the status of the states and history junctions.

The operations that initialise the state of the process, and activate and deactivate State-

�ow states are de�ned by the schemas InitState, Activate and Deactivate. InitState is de-

�ned as the conjunction of the operations, InitSimulationInstance and InitSimulationData,

that initialise the two schemas that de�ne the state of the process. Activate marks a state

as active, and is de�ned as the schema operation that does not change the components of

SimulationInstance (ΞSimulationInstance), and activates the state di�erently according to

whether or not it has a history junction (ActivateWithHistory ∨ ActivateNoHistory). The

schema Deactivate that marks a state as inactive is de�ned similarly. Their de�nitions are

available in Appendix C.

The main action of a chart process initialises its state and recursively o�ers a choice of

actions that are selected by the process Simulator through the channels in interface. The

choice of actions available is encoded in the Circus action AllActions. As shown below,

AllActions is de�ned as the external choice of actions called conditions, triggers, Inputs,

Outputs, ChartActions, and InterfaceActions.

AllActions =̂ (conditions @ triggers @ Inputs @ Outputs @ ChartActions @ InterfaceActions)

The Circus action conditions o�ers the choice of all the actions that encode the evaluation of

a condition in a transition. The Circus action triggers similarly o�ers the actions encoding

the evaluation of a trigger. The Circus actions Inputs and Outputs o�er the possibility of

reading the inputs or writing the outputs of the chart. The Circus action ChartActions

o�ers the choice of all the state and transition actions, and once the selected action is

completed, it synchronises on end action signalling that the chart action has �nished;

this is necessary because the simulator waits for a local event broadcast or the end of the

chart action. Finally, InterfaceActions o�ers the actions used by the Simulator to obtain

information about the chart.

56 CHAPTER 3. FORMAL MODEL

The evaluation of a condition is speci�ed as a Circus action that communicates true

through the channel evaluatecondition if the condition holds, and false otherwise. For

example, the condition of the transition between the states steady state and downshift-

ing (of Figure 3.2) is de�ned as follows.

condition steady state downshifting =̂
if (v speed<Av down th) 6= 0−→

evaluatecondition.t steady state downshifting !True−→ Skip

8 ¬ ((v speed<Av down th) 6= 0)−→
evaluatecondition.t steady state downshifting !False−→ Skip

�


First, the predicate (v speed<Av down th) 6= 0 is evaluated; if it is true, the action of-

fers a synchronisation on evaluatecondition with the identi�er of the condition's transition

(t steady state downshifting) and the boolean value True. Otherwise, it o�ers a commu-

nication with False. The operation <A returns 0 if the �rst operand is not less than the

second operand, otherwise, it returns a number di�erent than 0.

The evaluation of a transition trigger is de�ned by a Circus action that waits for the

communication of an event e along with the transition identi�er through checktrigger , and

then evaluates the trigger with respect to e. Afterwards, it communicates the identi�er,

the event, and the boolean result of the evaluation through result . For the trigger of the

transition between the states �rst and second, we have the following action.

trigger �rst second =̂ checktrigger .t �rst second?e−→ if e = e UP −→ result .t �rst second .e!True−→ Skip

8 ¬ (e = e UP)−→ result .t �rst second .e!False−→ Skip

�


This action communicates True if the event received through the channel checktrigger is

e UP , and False otherwise.

The Circus action Inputs waits for a synchronisation on read inputs and reads the

values of the input variables in interleaving. A channel of the appropriate type is declared

for each input and output data, as well as for each output event. In our example, there are

two input variables, v speed and v throttle, and their values are communicated through

the channels i speed and i throttle.

Inputs =̂ read inputs −→

 i speed?x −→ v speed := x

||[{v speed} | {v throttle}]||
i throttle?x −→ v throttle := x


The interleaving requires the partitioning of the state components that are written to by

each parallel action to avoid race conditions. This interleaving terminates when all the

input variables are read and recorded in the appropriate state component.

3.3. CHART PROCESS 57

The Circus action Outputs is also de�ned by a communication followed by an interleav-

ing (if necessary). Each interleaved action communicates an output variable or an output

event. For each output event, the action that communicates it �rst checks the counter

associated to that event. If the counter is positive, the actions decrements it, and commu-

nicates True through the appropriate channel. If the counter is zero, the value False is

communicated. For our example, there are no output events, and the only output variable

in the example is v gear ; therefore there is no need for an interleaving. The action Output ,

for our example, is as follows.

Outputs =̂ write outputs −→ o gear !(v gear)−→ Skip

The action ChartActions o�ers a choice between the actions entryactions, duringactions,

exitactions, conditionactions, and transitionactions, which are all de�ned as the external

choice of all the actions of the appropriate type. For example, entryactions is de�ned by

an external choice of all the Circus actions that model the execution of an entry action. In

our example, the state �rst, for instance, has an entry action that consists of assigning the

value 1 to the variable gear; this is modelled by the following Circus action.

entryaction �rst =̂ executeentryaction.(s �rst)−→ v gear := 1

This action waits for the communication of the state's identi�er on executeentryaction, and

assigns the value 1 to the state component v gear . As previously discussed, the execution

of during actions requires information about the current event. This is supplied to the

chart process as an additional value communicated by the channel executeduringaction.

The same approach is taken for the other types of actions. For example, the condition

action of the �rst transition from upshifting to steady state is modelled as follows.

conditionaction upshifting steady state26 =̂

executeconditionaction.(t upshifting steady state26)−→
var b : B • broadcast(e UP , s gear state) ; check(b); if b = True−→ Skip

8¬ (b = True)−→ Skip

�




The number post�xed to the transition name uniquely identi�es it, as there are two transi-

tions with the same source and destination states. The action waits for the communication

of the transition identi�er through executeconditionaction, broadcasts the event e UP to

the state s gear state, and waits for the simulator to check the appropriate early return

logic conditions by calling the action check . The local variable b is used to store the result

of the early return logic condition. Finally, an alternation decides to proceed (b = False)

or terminate (b = True). In our example, there are no actions after the broadcast, and

the alternation immediately terminates in both cases. The action check , therefore, must

58 CHAPTER 3. FORMAL MODEL

always be called after a call to broadcast as it o�ers the process Simulator the information

necessary to perform the veri�cation of the early return logic conditions.

A local event broadcast can be directed at the whole chart or speci�c states. In the

shift logic example, the local event broadcasts are used to trigger a change of state within

the parallel state gear state.

The Circus action broadcast that speci�es the broadcasting mechanism takes two pa-

rameters: the local event e and the identi�er of the destination state dest .

broadcast =̂ e : EVENT ; dest : SID •

local event !(e, states(dest))−→ µX •

 (AllActions ; X)

@
(end local execution −→ Skip)


First, the action broadcast communicates e and the destination state states(dest) through

the channel local event . Next, it recursively o�ers a choice between AllActions followed

by a recursive call to X , and a terminating action that waits for a synchronisation on the

channel end local execution, and terminates the recursion.

Every call to broadcast is followed by a call to the action check that takes a result param-

eter erl of type boolean, and recursively o�ers the option either to execute InterfaceActions

and recurse, or to terminate the recursion by reading a value on interrupt and assigning

it to erl . The actions in InterfaceActions are o�ered to allow the simulator to inspect the

state of the chart and decide whether the early return logic conditions hold or not. Once

the simulator has �nished checking the conditions, it communicates True or False on the

channel interrupt , thus, terminating the recursion.

check =̂ res erl : B • µX • (InterfaceAction ; X @ interrupt?x −→ erl := x)

Whenever the local event broadcast is followed by another action, an alternation decides

whether to proceed with the execution or not based on the value assigned by check to a

local variable b.

The only during action in the chart in Figure 3.2 involves the use of the Simulink

function calc th. This is speci�ed as the application of a Z function with the same name

whose de�nition must be provided in a separate Z library. The Circus action that models

these during action waits for the communication of the state identi�er, s selection state,

through executeduringaction and executes the assignment.

duringaction selection state =̂ executeduringaction.(s selection state)?ce−→
var aux : R× R •
(aux := calc th(v gear , v throttle) ; v down th := aux .1 ; v up th := aux .2)

Since calc th returns a pair whose elements are assigned to a vector formed by two compo-

nents of the process state, we de�ne an auxiliary variable aux , assign the pair to it, and

then assign the values in aux to the appropriate state components. More precisely, the

3.4. VALIDATION 59

�rst value of aux , that is, aux .1 is assigned to v down th, and the second value (aux .2)

is assigned to v up th.

The action InterfaceActions o�ers a choice of actions that are the same for every chart.

InterfaceActions =̂

(
getevents @ getchart @ getstate @ getjunction @ gettransition

@status @ history @ activation @ deactivation

)

These Circus actions allow the Simulator to recover the bindings that specify objects of

the chart using their identi�ers, obtain information about the status of a state, or about

the history junction of a state, and activate and deactivate a state.

The action getstate, for example, receives a state identi�er and outputs the correspond-

ing state, and the action getevents outputs the sequence of input events of the chart. The

order of the input events is important because the simulator executes the chart once for

each input event that has occurred in a time step, in the order speci�ed in the chart and

recorded in the textual representation of the chart.

Finally, the main action of the chart process consists of two nested recursions. The

inner recursion repeatedly o�ers a choice between AllActions and a synchronisation on

end cycle, which terminates the inner recursion, and marks the end of an execution step.

In this section, we presented a brief overview of the model of the chart process of the

shift logic example. The complete model of this example can be found in Appendix C.1.

3.4 Validation

As previously mentioned in Chapter 1, we identify three main avenues for evaluating and

validating our models: inspection, testing and re�nement.

The model of the simulator presented in Section 3.2 was developed with evaluation by

inspection in mind. We maintained in our speci�cation the granularity of the informal

description, associating the Circus actions of the process Simulator to steps or clearly

identi�ed parts of steps in the informal description by means of naming conventions. For

instance, in the speci�cation of the process of entering a state, this correspondence is made

explicit by post�xing the name of the action with the number of the step it models.

The second form of validation was carried by simulating our models. Since there is no

simulation tool for Circus we have translated the Circus models of State�ow charts to CSP,

and used tools such as ProBE [29], ProB [54] and FDR2 [30] to simulate and analyse the

models.

State components are modelled in CSP as one one-place bu�ers: every assignment is

converted to a communication, and every use of a state component must be preceded by

a communication that reads the value of the state component and puts it in scope. This

signi�cantly increases the amount of communication in the model, restricting further the

complexity of models that can be simulated using the available tools.

While the translation of simple models is straightforward, it does not scale for more

60 CHAPTER 3. FORMAL MODEL

complex models, and the (informal) link between the speci�cation and the informal se-

mantics is lost in the translation. Because of this and due to the support of veri�cation of

implementations, as well as the availability of a re�nement calculus, Circus is still a better

choice for modelling State�ow charts. Nevertheless, better tool support is necessary.

We used ProBE and ProB to simulate the models and compare the results of the simu-

lation to the execution of the chart in the State�ow toolbox; FDR2 and ProB were used to

model check our models for interesting properties such as deadlock-freedom, divergence-

freedom and determinism. It is worth mentioning, that for larger examples, ProB performed

signi�cantly better than ProBE and FDR2 both when executing the model and verifying

properties.

Finally, the third form of validation was performed by applying the re�nement calculus

to the veri�cation of the implementation of small examples, and describing a re�nement

strategy for the veri�cation of parallel implementation of State�ow charts (presented in

Chapter 5). With the support of appropriate tools3 this validation can be strengthened by

applying our re�nement strategy to larger examples and industrial case-studies.

The evaluation of our models (and similar models) can be performed using either of the

three approaches mentioned. However, the easiest method is the inspections of the models.

For this reason, it is important that any formalisation that follows our approach take this

into consideration and document the link between the formal and informal descriptions.

3.5 Final considerations

In this chapter, we gave an overview of our models of State�ow chart, and discussed in

further details the two main components of these models: the simulator process and the

chart process. These processes are composed in parallel to obtain a process that represents

the simulation of the given chart. The main action of the chart process o�ers the structure

and the actions of the chart, and the main action of the process Simulator waits for an

event and executes a step of the simulation.

As previously mentioned, the external channels of our State�ow models include one

channel for each input and output data, one channel for each output event, input event

and end cycle. The channel input event triggers the execution of a cycle of the chart, and

the channel end cycle marks the end of a cycle.

The separation between the execution of charts, and the structure of a particular

chart (including its actions) leads to a simpler set of translation rules since the com-

plex semantics of State�ow charts is almost completely isolated in the process Simulator .

Moreover, when updating our models to re�ect changes in the semantics of State�ow, these

changes can potentially be restricted to the process Simulator and have minimal impact

on the translation rules.

3We have developed a (incomplete) prototype tool to support the application of basic re�nement laws.
While this was helpful in the beginning of the validation process, it soon became clear that for any practical
application, a more complete and robust tool is necessary.

3.5. FINAL CONSIDERATIONS 61

Since it is not possible to formally verify our models with respect to the simulator

embedded in State�ow, we have to rely partially on inspection and peer-reviewing to

validate the models. In this context, it is important to manage the complexity of our

models to facilitate the validation. The separation between chart and simulator is intuitive

and supports a divide-and-conquer approach to validation.

The model described in this chapter extends those presented in [68, 69, 70]. In partic-

ular, it provides a more complete account for the possibility of early return logic in local

event broadcasts. This model covers aspect that were left untreated on other works, such

as history junctions, local events and inter-level transitions. Other aspects, in particular

the interaction with Simulink blocks, are not yet formalised. The complete speci�cation

of the process Simulator and the supporting de�nitions can be found in Appendix B. The

complete model of the chart in Figure 3.2 can be found in Appendix C.1.

In the next chapter, we discuss the formalisation of a translation strategy that auto-

matically generates models of State�ow charts, such as the one presented in Section 3.3.

Chapter 4

Translation strategy: from State�ow

charts to Circus

Having presented a formal model of State�ow charts in the previous chapter, we now

turn to the formalisation and implementation of a translation strategy. Since the model

presented in Chapter 3 segregates the chart-speci�c information from the general encoding

of the semantics of State�ow (modelled in the process Simulator), we only need to concern

ourselves with the translation of the former. Furthermore, since most of the complexity of

the semantics of State�ow is isolated in the process Simulator , the translation of State�ow

chart can be described by means of simpler rules, which can be more easily validated. As

a means for further validation, we have formalised the translation rules in the Z notation.

While the chart process is simpler than the process Simulator , the translation rules

are by no means trivial. In the interest of conciseness, we present an overview of the

translation strategy, and focus on the most interesting aspects of the formalisation. The

complete formalisation of the translation rules can be found in [67].

Circus

Formal

syntax of

Circus

and Z

Formal

syntax of

Stateflow

.mdl file

ASCII text

Java Java

LaTeXParser RenderingTranslation
Rules

s2c tool

Figure 4.1: Translation strategy: overview.

In this chapter, we explain and formalise the algebraic strategy devised in order to

translate a State�ow chart into a Circus model. The translation process is implemented

by the s2c tool, which re�ects the steps of the formalised strategy and is depicted in

64 CHAPTER 4. TRANSLATION STRATEGY

Figure 4.1. The translation starts with a textual representation of the chart (in the form

of a .mdl �le), which is parsed to produce an intermediate representation of the chart

(based on our formalisation of the syntax of State�ow). Next, our formal translation rules

(as implemented in the tool) are applied to the intermediate representation to produce

a Circus model (encoded in our formalisation of the syntax of Circus and Z). Finally, the

Circus model is rendered in LATEX by direct translation.

The choice of Z as the notations for the speci�cation of the translation rules stems from

our familiarity with the notation and the availability of tools that support parsing, type

checking and veri�cation. While we did not perform any veri�cation beyond type checking,

the formal nature of the speci�cation opens the possibility for the veri�cation of properties

of the veri�cation strategy. It is worth noting that other (perhaps more) suitable notations

exist, but for the purposes of this work, we believe any bene�ts would be overshadowed by

the e�ort of re-speci�cation and re-validation.

This chapter is organised as follows. The �rst three sections discuss the formalisation of

the translation strategy: Section 4.1 introduces the formal syntax of State�ow charts that

is used as a basis for formalisation of the translation rules, Section 4.2 discusses the well-

formedness conditions that characterise valid charts and Section 4.3 presents the translation

rules used to produce the Circus models of charts. Section 4.4 discusses the implementation

of the translation rules previously presented, and in Section 4.5, we discuss the evaluation

and validation of the translation rules and s2c tool (Section 4.5) before concluding the

chapter with a discussion of results and limitations (Section 4.6).

4.1 Syntax of State�ow charts

In this section, we explain the formalisation of the syntax of State�ow charts that is used

as a basis for the de�nition of the translation rules and implementation of the translation

tool. The syntax is formalised in Z [109], and basic knowledge of the Z notation is assumed.

The syntax of State�ow charts is captured by seven main groups of objects: charts,

states, junctions, transitions, functions, events and data. Supporting the de�nition of some

of these objects are identi�ers, names, expressions and actions. Section 4.1.1 discusses

names and identi�ers, Section 4.1.2 presents the syntax of expressions and actions, and

Section 4.1.3 describes the syntax of the main objects previously mentioned.

4.1.1 Names and Identi�ers

Every State�ow object contains an identi�er that makes it unique among all objects de�ned

in a .mdl �le. Moreover, some objects contain names that are used as references in actions

and expressions. The objects that are named are charts, states, functions, events and data.

We de�ne the set NAME of names (as a given set) as well as �ve subsets that correspond

to each group of objects that are given names in State�ow. The set of names of charts,

states, functions, events and data are disjoint sets of names.

4.1. SYNTAX OF STATEFLOW CHARTS 65

CNAME ,SNAME ,FNAME ,ENAME ,DNAME : PNAME

disjoint〈CNAME ,SNAME ,FNAME ,ENAME ,DNAME 〉

We de�ne the sets of identi�ers of each of the groups of objects in the same way we de�ned

the sets of names. We must also include sets of identi�ers of junctions and transitions

(which, while having an identi�er, have no name).

CID ,SID , JID ,TID ,EID ,DID ,FID : PN

disjoint〈CID ,SID , JID ,TID ,EID ,DID ,FID〉

Names and identi�ers play an important role in allowing references to be made both in the

encoding in the .mdl �le and in the expressions and actions used within certain objects.

For example, in a .mdl �le, the chart associated with a state is referred to by its identi�er,

while a piece of data is referred to by its name in an action or expression.

4.1.2 Expressions and Actions

One of the most basic elements of the State�ow notation are expressions, which are elements

of the notation that are associated with a value. An expression can be a variable name, a

scalar value, a vector, a matrix, a function application, an operator applied to one or more

expressions, or a temporal expression.

The set EXPR of expressions is de�ned as a free type � a Z construct that supports the

de�nition of a set by specifying its elements in terms of constants and constructor functions.

Free types and schemas are the constructs of Z commonly used to model syntax. The free

type de�nition of the set EXPR is partially shown below. The constructors not , and , and

or are used to build logical expressions from other expressions or pairs of expressions.

EXPR ::= . . . | not〈〈EXPR〉〉 | and〈〈EXPR × EXPR〉〉 | or〈〈EXPR × EXPR〉〉 | . . .

It is worth noticing that expressions which refer to State�ow objects always do so by name,

rather than by identi�er. For example, the constructor in builds an expression from a state

name which returns 1 if the state referred by the expression is active, and 0 otherwise.

in〈〈SNAME 〉〉

There is a special set of expressions called temporal expressions; they are built by the

following constructors:

after〈〈EXPR × ENAME 〉〉 | before〈〈EXPR × ENAME 〉〉 | at〈〈EXPR × ENAME 〉〉 |

every〈〈EXPR × ENAME 〉〉 | tempCount〈〈ENAME 〉〉 |

66 CHAPTER 4. TRANSLATION STRATEGY

The set of temporal expressions is the range of the constructors of those expressions.

TEXPR == ran after ∪ ran before ∪ ran at ∪ ran every ∪ ran tempCount

The complete de�nition of the set EXPR can be found in [65].

Actions, in general, alter the state of the system and do not have an associated value.

A State�ow action can be the broadcasting of an event, the execution of an expression, the

assignment of an expression to a variable, or the assignment of an expression to a vector

of variables.

ACTION ::= bcast〈〈ENAME 〉〉 |

expr〈〈EXPR〉〉 |

assign〈〈DNAME × seqEXPR × EXPR〉〉 |

massign〈〈seqDNAME × EXPR〉〉

Multiple assignment actions, represented above using the constructor massign, only occur

when assigning the return value of a function with multiple output data.

In general, an expression being used as an action can be ignored, since it does not

a�ect the state of the chart. However, the evaluation of certain expressions can trigger

changes to the chart. In particular, a function can be de�ned to alter the value of data

in the chart that contains the function. In this case, we cannot ignore the evaluation of

the expression, as this could change the behaviour of the chart. Our current treatment

of functions does not cover the modelling of functions which change data values because

they are speci�ed externally to the chart process, and therefore do not have access to its

variables. In Chapter 6, we discuss how this limitation can be overcome.

A derived type of action is an on action, which associates an action to an event name.

ONACTION == ENAME × seqACTION

As already mentioned, expressions and actions are used in the de�nition of the main objects

of State�ow, which are discussed next.

4.1.3 State�ow objects

The main objects of the language of State�ow charts are states, junctions, transitions,

events, data, functions and charts. These are the objects used to build charts; the expres-

sions and actions (previously de�ned) are used to complement the behaviour of some of

these objects (states and transitions).

4.1. SYNTAX OF STATEFLOW CHARTS 67

4.1.3.1 State

A state contains an identi�er, a name, a reference to its parent, information about its type

and decomposition, entry, during and exit actions, and a list of bound variables and events.

While the decomposition of a state refers to the organisation of its sub-states, the type of

a state refers to the way it is organised with respect to its siblings.

While the terms used to represent both type and decompositions are the same, they

encode di�erent facts. A state with a decomposition of type SEQ contains sequential

substates, while a state with a type SEQ is the substate of a state with sequential decom-

position.

DECOMP ::= SEQ | PAR

STYPE == DECOMP

The type State is de�ned as a Z schema that includes all the components needed to char-

acterise a state as described above.

State

identi�er : SID ; name : SNAME

parent : CID ∪ SID
decomp : DECOMP

type : STYPE

entry , exit : seqACTION

during : seqDACTION

binding : seq(ENAME ∪DNAME)

history : B
default , inner , outer : optTID

left , right : optSID

substates : seqSID

The parent of a state can be either a state or a chart, so the set of possible identi�ers of a

parent is CID ∪SID . Some of the information contained in a state are optional, e.g. entry

and exit actions. Unlike entry and exit actions, a during action can be either a regular

action or an on action. We de�ne the type of during actions as follows.

DACTION ::= action〈〈seqACTION 〉〉 | on〈〈ONACTION 〉〉

The components entry and exit of the schema State are sequences of actions, and the

component during is a sequence of during actions. Notice that some of the components

have an opt type; components of this type are optional components, that is, they may

or may not have a value (of the appropriate set) associated with them. The opt type is

de�ned as the set of all sequences of size one plus the empty sequence.

68 CHAPTER 4. TRANSLATION STRATEGY

4.1.3.2 Junction

A junction has an identi�er, a reference to its parent and the �rst outgoing transition, and

an indication of whether or not it is a history junction.

Junction

identi�er : JID

parent : CID ∪ SID
transition : optTID

history : B

The schema Junction represents two types of junctions: connective junctions and history

junctions; this di�erence is established by the component history . If the parent of a junction

is the chart or a state with parallel decomposition, then it should not be a history junction.

Well-formedness conditions like this are formalised in [65] and are discussed in Section 4.2.

4.1.3.3 Transition

A transition has a sequence of triggers, a condition, a condition action and a transition

action.

Transition

identi�er : TID ; parent : CID ∪ SID
source : opt (SID ∪ JID)

destination : SID ∪ JID
trigger : seqTRIGGER

condition : optEXPR

condact , transact : seqACTION

next : optTID

Default transitions do not have source states, thus, the component source takes an op-

tional value ranging over the set of state and junction identi�ers. A trigger is either an

event (which must be an input or local event) or a temporal expression.

TRIGGER ::= e〈〈ENAME 〉〉 | t〈〈TEXPR〉〉

As in the case of states, condition and transition actions are recorded as sequences of

actions. Finally, the component next points to the next transition in a list of transitions.

4.1. SYNTAX OF STATEFLOW CHARTS 69

4.1.3.4 Event

An event has a trigger type and scope. The former can be rising edge, falling edge, either

edge or function call, whereas the latter can be local, input or output.

EVENTTRIGGER ::= RISINGEDGE | FALLINGEDGE |

EITHEREDGE | FUNCTIONCALL

EVENTSCOPE ::= LOCALEVENT | INPUTEVENT | OUTPUTEVENT

The representation of an event consists of an identi�er and a name, a reference to its

parent, and information about its scope and trigger type.

Event

identi�er : EID ; name : ENAME

parent : CID ∪ SID
scope : EVENTSCOPE ; trigger : EVENTTRIGGER

4.1.3.5 Data

Data has a larger choice of scope; it can be local, input, output, constant, parameter, or

data store memory. We restrict the type of the data to scalar types and multi-dimensional

vectors of scalar types. Other possibilities are �xed-point and enumerated types.

DATASCOPE ::= LOCALDATA | INPUTDATA | OUTPUTDATA |

CONSTANTDATA | PARAMETERDATA |

DATASTOREMEMORYDATA

DATATYPE ::= scalar〈〈SCALAR〉〉 | vector〈〈SCALAR × seqN〉〉

SCALAR ::= BOOLEAN | DOUBLE | SINGLE | INT32 | INT16 |

INT8 | UINT32 | UINT16 | UINT8

A vector is characterised by a sequence of natural numbers; they encode the number of

dimensions (size of the list) and the size of each dimension. The scalar types available are

boolean, �oating point numbers, signed integers and unsigned integers.

A piece of data consists of an identi�er and a name, a reference to its parent, and

information about its scope and type.

Data

identi�er : DID ; name : DNAME

parent : CID ∪ SID
scope : DATASCOPE ; type : DATATYPE

70 CHAPTER 4. TRANSLATION STRATEGY

4.1.3.6 Functions

A Simulink function consists of an identi�er and a name, a sequence of names of input

variables, a sequence of names of output variables, a reference to its parent, and the name

of the Simulink block that de�nes the function.

SimulinkFunction

identi�er : FID ; name : FNAME

inputs, outputs : seqDNAME

parent : CID ∪ SID
block : NAME

A graphical function is similar to a Simulink function, but instead of a block name, it

includes an identi�er of a chart as a component. The chart to which the function refers is

obtained from the �owchart that de�nes the function. The schema GraphicalFunction can

be found in [65].

4.1.3.7 Chart

The top object of a State�ow model is a chart. It contains an identi�er, a name, the

identi�er of the �rst default transition (if one exists), a sequence of state identi�ers, its

decomposition, and partial functions from identi�er to the objects contained in the chart.

Chart

identi�er : CID

name : CNAME

default : optTID

substates : seqSID

decomp : DECOMP

states : SID 7→ State

junctions : JID 7→ Junction

transitions : TID 7→ Transition

events : EID 7→ Event

data : DID 7→Data

sfunctions : FID 7→ SimulinkFunction; gfunctions : FID 7→GraphicalFunction

The default component is a reference to the �rst default transition of the chart; its type is

optTID since this reference is optional because a chart with parallel decomposition or an

unambiguous start point does not need to de�ne a default transition.

There are two levels of representation in a chart: the chart as a container, and a chart

as an object in itself. The latter perspective is associated with the �rst �ve components,

whereas the former is associated with the remaining components.

4.2. WELL-FORMEDNESS CONDITIONS 71

4.2 Well-formedness conditions

In this section, we brie�y discuss the well-formedness conditions for the syntax of the

State�ow notation. These conditions are characterised by the de�nition of sets of well

formed expressions and objects, culminating in the de�nition of the set of well formed

charts. The well-formedness conditions are by no mean complete; they simply characterise

the minimal properties that must hold for the translation rules to applied successfully.

The translation strategy assumes that the chart is accepted by the State�ow tool as a

valid chart.

The functions snames, dnames, enames, sfnames and gfnames are used to extract

information about names of states, data, events, Simulink functions and graphical functions

from a chart. They are de�ned in [65].

We further de�ne three sets, unary , binary and tempbinary , of expressions that repre-

sent, respectively, unary expression, binary expressions, and temporal binary expressions.

The well-formedness conditions over expressions are de�ned in terms of these sets in order

to simplify the speci�cation.

Well-formedness of expressions is characterised inductively over the constructors of

expressions, and always depends on a chart. For instance, a name expression is well formed

with respect to a chart if, and only if, its name component corresponds to a piece of data

in the chart, and the expressions in the index sequence are well formed with respect to the

chart.

WF EXPR : Chart ↔ EXPR

∀ c : Chart ; n : DNAME ; s : seqEXPR • (c,name(n, s)) ∈WF EXPR ⇔
n ∈ dnames(c) ∧ (∀ e : ran s • (c, e) ∈WF EXPR)

∀ c : Chart ; n : NAME ; s : seqEXPR • (c, fun(n, s)) ∈WF EXPR ⇔
n ∈ sfnames(c) ∪ gfnames(c) ∧ (∀ e : ran s • (c, e) ∈WF EXPR)

∀ c : Chart ; a : A • (c, value(a)) ∈WF EXPR

∀ c : Chart ; s : seq1 A | # s > 1 • (c, array(s)) ∈WF EXPR

∀ c : Chart ; s : seq1 seq1 A | # s > 1 •
(c,matrix (s)) ∈WF EXPR ⇔ ∃n : N | n > 1 • ∀ row : ran s • # row = n

∀ c : Chart ; e : EXPR; op : unary • (c, op(e)) ∈WF EXPR ⇔ (c, e) ∈WF EXPR

∀ c : Chart ; e1, e2 : EXPR; op : binary •
(c, op(e1, e2)) ∈WF EXPR ⇔ (c, e1) ∈WF EXPR ∧ (c, e2) ∈WF EXPR

∀ c : Chart ; s : SNAME • (c, in(s)) ∈WF EXPR ⇔ s ∈ snames(c)

∀ c : Chart ; e : EXPR; n : ENAME ; op : tempbinary •
(c, op(e,n)) ∈WF EXPR ⇔ (c, e) ∈WF EXPR ∧ n ∈ enames(c)

∀ c : Chart ; n : ENAME • (c, tempCount(n)) ∈WF EXPR ⇔ n ∈ enames(c)∀

A function application is well formed if, and only if, the name corresponds to a Simulink

or graphical function in the chart, and the expressions that form the sequence of indexes

72 CHAPTER 4. TRANSLATION STRATEGY

are well formed. A value expression is always well formed, and an array of values is well

formed if, and only if, its size is greater than one. A matrix is well formed if, and only

if, all the rows have the same size and the number of rows and columns is greater than

one. The application of a unary operator to an expression is well formed if, and only if,

the expression is well formed; the application of a binary operator to two expressions is

well formed if, and only if, both expressions are well formed. The application of a binary

temporal operator to an expression and an event name is well formed if, and only if, the

expression is well formed and the name corresponds to an event. An expression formed by

applying tempCount to a name is well formed if, and only if, the name corresponds to an

event.

Similarly to expressions, we de�ne the well-formedness of actions inductively.

WF ACTION : Chart ↔ ACTION

∀ c : Chart ; e : Event ; d : (SID ∪ CID) • (c, bcast(e.name, d)) ∈WF ACTION ⇔
(e.scope 6= INPUTEVENT ∧ e ∈ ran c.events ∧

(d ∈ (dom c.states) ∨ d = c.identi�er))

∀ c : Chart ; e : EXPR • (c, expr(e)) ∈WF ACTION ⇔ (c, e) ∈WF EXPR

∀ c : Chart ; n : DNAME ; s : seqEXPR; e : EXPR •
(c, assign(n, s, e)) ∈WF ACTION ⇔
(n ∈ dnames(c) ∧ (∀ e : ran s • (c, e) ∈WF EXPR) ∧ (c, e) ∈WF EXPR)

A broadcast action is well formed if, and only if, the name corresponds to a local or output

event, and the destination is either the identi�er of the chart or the identi�er of one of

its states (d = c.identi�er ∨ d ∈ dom states). An action formed by an expression is well

formed if, and only if, the expression is well formed. An assignment is well formed if, and

only if, the assigned name corresponds to a piece of data, the expressions that form the

sequence of indexes are well formed, and the expression being assigned is also well formed.

Well-formedness conditions for the other syntactic categories are formalised in [65].

Like for expressions and actions, the de�nitions are relatively straight forward an excluded

from this thesis in the interest of conciseness.

Finally, a chart is well formed if, and only if, each of its states, junctions, transitions,

data, events, graphical functions and Simulink functions is well formed.

4.3 Translation strategy in Z

The translation strategy devised for obtaining Circus models of State�ow charts is de�ned

in a top-down fashion and is formalised as a set of translation rules. The translation

process starts by the application of one translation rule which uses other translation rules

to treat speci�c features, and these rules potentially rely on other translation rules, and

so on. Here, we present and exemplify the main groups of translation rules (the complete

formalisation can be found in [67]).

4.3. TRANSLATION STRATEGY IN Z 73

In order to support the formalisation of the translation rules, we formalised the syn-

tax of Circus and Z1 in a similar fashion to our formal syntax of State�ow charts. The

formalisation consists of a set of constructs which are used to build elements of the Cir-

cus notations, such as actions and processes, as well as elements of the Z notations, such

as free types and schemas. Because the rules are fully formalised, we are able to parse and

type check them. This, in turn, allows us to conclude that the application of Circus and Z

constructors in the translation rules is correct with respect to the syntax of Circus.

A translation rule is an equation that contributes to the de�nition of a function mapping

a well formed construct of a State�ow chart, that is, an element of one of the sets de�ned

in the previous section, to a Circus construct. We can divide the translation rules in

four groups: renaming functions, expression and action functions, identi�er and binding

declaration functions, and action and process declaration functions. These groups are

explained in the following sections.

4.3.1 Renaming functions

These functions are responsible for eliminating ambiguity in the names of State�ow ob-

jects. For example, in State�ow, two states can have the same name as long as they are

not siblings, but in the Circus model this creates complications. How the ambiguity is

eliminated is not speci�ed, but the implementation uses pre�xes and su�xes to eliminate

ambiguity. In particular, numerical su�xes and type pre�xes are attached to the names.

For example, the pre�x S is attached to the name of a state, and, in the case of two states

with the same name, the unique identi�er of the state is su�xed to each one of them.

There are also renaming functions for the declaration of identi�ers in the model, which

behave like the renaming functions for names, but attach a lower case letter pre�x to the

name. For example, the identi�ers of states are given the pre�x s instead of S .

There are over twenty such renaming functions; they take a well formed object (state,

transition, junction, and so on) and return a name. For example, Rule 4.1 below declares

the function used to rename states.

Rule 4.1. Renaming function for states.

statename : WF STATE � NAME

As stated above, we do not specify how unique names are to be constructed. The functions

chartname, statename, junctionname and transitionname give names for the respective

objects, whereas their identi�er counterparts, chartid , stateid , junctionid and transitionid

provide unique identi�ers for these objects. The functions dataname and eventname do

not have an identi�er counterpart, because data and events are not represented as bindings

of some schema; they are given names, that are determined by these functions. There is

an additional renaming function for data, datachannelname, which gives the name of the
1This formalisations can be found in [64, 66].

74 CHAPTER 4. TRANSLATION STRATEGY

channel used to communicate the values of the variables to the environment. The renaming

functions for output events give the name of the counter variable associated with the event

(eventcountername), and the name of the output channel for communicating such events

(outputeventchannelname).

The functions processname and processstatename de�ne, respectively, the name of the

process that models the chart, and the name of the schema that represents that chart

(and is part of the process' state). The functions entryactionname, duringactionname

and exitactionname de�ne the name of the action that models entry, during and exit

actions, respectively. The functions conditionactionname and transitionactionname name

condition and transition actions after the corresponding transition, whereas conditionname

and triggername name the Circus actions that specify the conditions and triggers of a

transition. The range of all the renaming functions is speci�ed to be disjoint. The same

holds for the functions that provide identi�ers.

4.3.2 Expression and Action functions

The second group of functions translates expressions, actions, on actions, during ac-

tions, predicates, triggers, and sequences of these objects. It consists of translateExpr ,

translateExprs , translateAct , translateActs , translateONAct , translateDAct , translateDActs ,

translatePred , translateTrigger and translateTriggers . The complete de�nition of these func-

tions can be found in [67]; below, we discuss a selection of the rules that we consider most

interesting.

Variable expression The translation of this type of expression is separated into two

cases: simple variable and vector position. A simple variable is translated by obtaining the

corresponding data and calculating the appropriate name through the renaming function

dataname. A vector position requires us to �rst translate the expressions that are used as

indexes, calculate the appropriate name of the variable (as in the case of simple variables)

and apply this name to the translated expressions. Rule 4.2 (F) presents the formal

translation rule for variable expressions.

Rule 4.2 (F). Formal translation rule for variable expressions.

∀n : DNAME ; es : seqEXPR; c : WF CHART | (c,name(n, es)) ∈WF EXPR •

translateExpr (c,name(n, es)) =


if # es = 0

then reference(ref (dataname(c, getdatabyname(c,n))))

else functionapplication(

app(dataname(c, getdatabyname(c,n)),

translateExprs(c, es)))


As mentioned above, the domain of translateExpr is the set of well formed expressions.

We apply the function to a well formed chart c, and a well formed variable expression

formed by a name n and a sequence of vector indexes es. If the sequence es is empty

4.3. TRANSLATION STRATEGY IN Z 75

(# es = 0), then we recover the data to which the name refers, calculate its name with

function dataname, and build a reference from this name using the Z constructors reference

and ref . If the sequence es is not empty, we build a function application from the name

of the data (obtained as in the previous case) and the sequence of translated expressions

obtained by applying the function translateExprs to es.

The formal translation rule can be hard to read because of the amount of constructor

applications used to build the expressions; this is necessary to keep the syntactical and

type information correct. Rule 4.2 shows the same translation rule as Rule 4.2 (F), but in

a semi-formal fashion; instead of building the expression from the language constructors,

we show how the expression would be rendered in Circus.

Rule 4.2. Semi-formal translation rule for variable expressions.

translateExpr (name) = dataname(c, getdatabyname(c,name))

translateExpr (name[e1] . . . [en]) =

dataname(c, getdatabyname(c,name))(translateExpr (e1), . . . , translateExpr (en))

All the translation rules take a well formed parameter, and all well formed parameters

contain an instance of a chart. In the semi-formal translation rules, we leave the chart

parameter c implicit (except where it is the only parameter). Rule 4.2 shows the two

possible cases of variable expressions: simple variable and vector position. In the case of

a simple variable, the translation returns the name of the data processed according to

Section 4.3.1, otherwise a function application is build by applying the name of the data

(as before) to the translated indexes. Henceforth, we only present the semi-formal versions

of the rules. The complete formalisation of the translation rules can be found in [67].

Broadcast action The translation of broadcast actions depends on the type of event

being broadcast. If it is an output event, the associated counter obtained through the

function eventcountername is incremented. Otherwise, the broadcast is translated into a

call to action broadcast followed by a call to action check . This is speci�ed in Rule 4.3.

Rule 4.3. Semi-formal translation rule for broadcast action.

translateAct(E) =
if (geteventbyname(E)).scope = OUTPUTEVENT

then let counter == eventcountername(c, geteventbyname(c,n)) •
eventcountername(counter) := eventcountername(counter) + 1

else broadcast(eventname(c, geteventbyname(c,n)), chartid(c)) ; check(b)


translateAct(send(E , dest) =

broadcast(eventname(c, geteventbyname(c,n)), stateid(c, getstatebyid(c, dest))) ; check(b)

The call to broacast takes the event and the destination as parameters, whereas the call to

check takes a local variable b as parameter. Note that, well-formedness conditions require

that the event is not an input event.

76 CHAPTER 4. TRANSLATION STRATEGY

Assignment action The translation of assignment is also separated into the two cases

depending on whether the variable being assigned is a simple variable or a vector posi-

tion. The simple variable case is trivial, and consists of renaming the variable (as previ-

ously discussed), and building the Circus assignment expression. The vector position case

n[e1] . . . [em] is more interesting. Namely, because multi-dimensional vectors are speci�ed

as �nite functions, the assignment of a value to one position needs to alter the function

only in that position. This is achieved by overriding (⊕) the function with the mapping

(indexes) 7→ value and assigning the result to the function variable. Rule 4.4 formalises

this translation rule.

Rule 4.4. Semi-formal translation rule for assignment actions.

translateAct(name = e) =

dataname(getdatabyname(name)) := translateExpr (e)

translateAct(name[e1] . . . [en] = e) =

dataname(getdatabyname(name)) :=

dataname(getdatabyname(name))⊕

{(translateExpr (e1), . . . , translateExpr (en)) 7→ translateExpr (e)}

The translation rule is de�ned for the two cases previously mentioned. If the variable

being assigned is simple (name = e), we recover the data to which name refers, calculate

its name with function dataname, and use this name together with the translation of the

expression e to build an assignment. If the variable being assigned is a vector position, we

�rst obtain the name of the data in the same way as in the previous case. We then build

an assignment from this name and from an expression obtained by applying the override

operator to the name of the variable and a mapping that speci�es the change to the vector

position. This mapping is composed by the translated indexes of the vector position and

the translated expression that is being assigned.

On action These actions are conditionally executed according to the current event being

processed. Rule 4.5 shows the semi-formal translation rule for on actions.

Rule 4.5. Semi-formal translation rule for on action.

translateONAct(onn : a1, . . . an) =


if E = eventname(geteventbyname(n))−→

translateActs(〈a1, . . . , an〉)
8E 6= eventname(geteventbyname(n))−→

Skip

�


On actions are translated to an alternation that executes the associated action if the current

event is the one speci�ed by the on action, otherwise it terminates immediately.

4.3. TRANSLATION STRATEGY IN Z 77

Sequence of actions The translation of a sequence of actions is relatively simple, except

in the case where one of the actions is a local event broadcast. In this case, any remaining

action after the broadcast is conditioned on the value of a local variable b. The local variable

is declared by the translation rules that generate chart action declarations. Rule 4.6 shows

the translation of a sequence of actions.

Rule 4.6. Semi-formal translation rule for a sequence of actions.

translateActs(〈A〉a AS) =
if A is a local event broadcast

then translateAct(A) ;

 if b = True−→ Skip

8b = False−→ translateActs(AS)

�


else translateAct(A) ; translateActs(AS)


The case of a sequence of during actions is similar, but the conditioning of the remaining

actions is performed in two levels: inside an on action, which has multiple actions, and

immediately after an on action that contains a local event broadcast.

4.3.3 Identi�er and binding declaration functions

Every chart, state, junction and transition in a model has a unique identi�er. We de-

�ne these identi�ers through axiomatic de�nitions and the identi�er renaming functions.

Rule 4.7 shows the translation function that produces the declaration of all state identi�ers

belonging to a well formed chart.

Rule 4.7. Semi-formal translation rule for the declaration of state identi�ers.

StateIdenti�erDeclaration(c) =

stateid(c.states(1)), . . . , stateid(c.states(# c.states)), chartid(c) : STATEID

This rule takes a well formed chart, calculates the sequence of processed identi�ers (as

discussed in Section 4.3.1) of the states in the chart (using the function stateid), creates a

sequence containing the processed identi�er of the chart (obtained by applying the function

chartid), and returns an axiomatic description that declares these names as belonging to

the set SID . The rules for declaring junction and transition identi�ers are similar [67].

Once the identi�ers of the chart, states, junctions and transitions are declared, we need

to declare the bindings (of the appropriate type) that represent them in the Circus model.

Rule 4.8 presents the rule that declares a junction; it takes a well formed junction j and

returns an axiomatic description that declares a variable of type JUNCTION and equates

it to the appropriate binding.

78 CHAPTER 4. TRANSLATION STRATEGY

Rule 4.8. Semi-formal translation rule for the declaration of junctions.

JunctionDeclaration(j) =

junctionname(j) : JUNCTION

junctionname(j) =

〈|junction identi�er(j), junction transition(j), junction parent(j),

junction history(j)|〉

This rule uses four functions to specify the binding extension: junction identi�er , junc-

tion transition, junction parent and junction history . Each of these functions takes a well

formed junction and returns a pair (n, e) where n is a name and e is an expression. This

pair correspond to the element n == e in a binding. The same approach is taken for declar-

ing states, transitions and charts. Notice that charts are declared both as states (function

ChartAsStateDeclaration) and as proper charts (function ChartDeclaration).

The local and input events are declared as members of the set EVENT ; they do not

have any additional information in their declaration. This can be done because the rele-

vant information about an event is either treated separately or ignored. For example, we

are not treating the distinction between events triggered by rising edge, falling edge and

both-edges; the scope is treated at the level of the translation by treating input, output

and local events appropriately. The function that declares the events is similar to the

functions that declare identi�ers [67]. The translation of output events di�ers in that we

do not declare them as elements of type EVENT . Instead, the translation of output events

generates event counters and communication channels as speci�ed by the translation rules

OutputEventDeclaration and ChannelsDeclaration in [67].

Event counters and data are declared in the schema SimulationInstance generated

by the translation rule SimulationInstanceDeclaration. The rule ProcessStateDeclaration

produces the state of the chart process by conjoining SimulationInstance and the schema

SimulationData de�ned in the stateflow toolkit library (see Appendix B).

4.3.4 Action, condition and process declaration functions

There are �ve types of action declaration rules, corresponding to �ve translation functions:

EntryActionDeclaration, DuringActionDeclaration, ExitActionDeclaration, ConditionAc-

tionDeclaration, and TransitionActionDeclaration. The �rst three take a well formed state,

and the remaining ones take a well formed transition as parameter; all of them return a

Circus action that encodes the corresponding action. Rule 4.9 generates an entry action

declaration.

4.3. TRANSLATION STRATEGY IN Z 79

Rule 4.9. Semi-formal translation rule for the declaration of entry actions.

EntryActionDeclaration(s) =

if s.entry has a local event broadcast

thenEntryActionName(s) =̂

(
executeentryaction.stateid(s)−→
var b : B • (translateActs(s.entry))

)

elseEntryActionName(s) =̂

(
executeentryaction.stateid(s)−→
translateActs(s.entry)

)


This function takes a state, and returns an action whose name is calculated based on the

name of the state and is de�ned as a pre�xed action. The pre�x is the communication

through channel executeentryaction of the identi�er of the state, while the action is the

translation of the sequence of entry actions (which yields the Skip action if the sequence

is empty). The translation of the sequence of actions is enclosed in a local variable block if

the actions contains a local event broadcast. This local variable block declares variable b

of type B, which is used to decide whether or not to stop the execution of the sequence of

actions after a local event broadcast. The value of this variable is updated by the action

check , which is always called after a local event broadcast, as discussed in Section 4.3.2.

After the entry actions of all states are declared, they are joined in an action called

entryactions that o�ers them in an external choice. This action is generated by the rule

EntryActionsDeclaration shown in Rule 4.10. The same approach is adopted for the dec-

laration of during, exit, condition and transition actions.

Rule 4.10. Semi-formal translation rule for the declaration of the external choice of all

entry actions.

EntryActionsDeclaration(c) =

entryactions =̂


EntryActionName(c.states(1))

@
. . .

@
EntryActionName(c.states(# c.states))



The declaration of conditions (Rule 4.11) is similar to the declaration of actions, but

involves the use of an alternation; the action communicates the truth value of the condition

through channel evaluatecondition. All the conditions are joined in an action in the same

fashion as in Rule 4.10 above.

80 CHAPTER 4. TRANSLATION STRATEGY

Rule 4.11. Semi-formal translation rule for the declaration of conditions.

if # t .condition = 0

then ConditionDeclaration(t) =

ConditionName(t) =̂ evaluatecondition.transitionid(t).True−→ Skip

else ConditionDeclaration(t) =

ConditionName(t) =̂


if translatePred (head t .condition)−→

evaluatecondition.transitionid(t).True−→ Skip

8¬ translatePred (head t .condition)−→
evaluatecondition.transitionid(t).False−→ Skip

�


The condition declaration translation rule takes a transition as parameter and builds a Cir-

cus action, named after the transition, through the function ConditionName. Since a condi-

tion is optional, it is recorded in the transition t as a sequence of size at most 1. If there is no

condition, this action is de�ned as a communication over the channel evaluatecondition of

the identi�er of the transition and the valueTrue. If there is a condition (head t .condition),

this action is de�ned as an alternation. The �rst guard checks if the translated condition

is di�erent than zero; the associated action communicates the identi�er of the transition

and the value True through channel evaluatecondition. The second guard checks if the

translated condition is equal to zero; the associated action then communicates the iden-

ti�er of the transition and the value False through the same channel as in the �rst case.

Note that State�ow conditions yield integer values; zero corresponds to false, and values

di�erent than zero correspond to true.

Trigger declarations are speci�ed to evaluate the triggers of a transition; they use two

communication channels checktrigger and result to, respectively, prompt the evaluation of

the trigger and to obtain the result of the evaluation. The declaration consists of two cases:

if there is no trigger, the action returns True as a default value, otherwise, it calculates

the truth value and returns it. Rule 4.12 speci�es the declaration of triggers.

Rule 4.12. Semi-formal translation rule for the declaration of triggers.

if # t .trigger = 0 then TriggerDeclaration(t) =

(TriggerName(t) =̂ checktrigger .transitionid(t)?E−→

result .transitionid(t).E !True−→ Skip)

elseTriggerDeclaration(t) = TriggerName(t) =̂ checktrigger .transitionid(t)?E−→ if translateTriggers(t .trigger)−→ result .transitionid(t).E !True−→ Skip

8¬ translateTriggers(t .trigger)−→ result .transitionid(t).E !False−→ Skip

�


This translation rule takes a transition as parameter and generates a Circus action whose

name is the result of the function TriggerName, and whose behaviour depends on whether

4.3. TRANSLATION STRATEGY IN Z 81

the transitions has a trigger or not. If there is no trigger, the action uses channel checktrigger

to synchronise on the transition identi�er and receive the current event E . It then uses

channel result to synchronise on the transition identi�er and event, and output the value

True. If there is a trigger, the action communicates through channel checktrigger in the

same way as before, and uses an if-statement to o�er two di�erent communications. If the

translation of the trigger is true, the channel result is used to synchronise on the transition

identi�er and current event, and output the value True; otherwise, instead of True, the

value False is communicated through the channel result .

The process declaration rule takes a well formed chart and produces a Circus pro-

cess that encloses the appropriate paragraphs produced by other functions; it is shown in

Rule 4.13. Because of the size of the rule, some parts are omitted for clarity.

Rule 4.13. Semi-formal translation rule for the declaration of chart processes.

ProcessDeclaration(c) =

process processname(c) =̂ begin

ChartDeclaration(c))

SimulationInstanceDeclaration(c)

InitSimulationInstanceDeclaration(c)

ProcessStateDeclaration(c)

EntryActionDeclaration(s1)

. . .

EntryActionDeclaration(sn)

EntryActionsDeclaration(c)

. . .

ConditionActionsDeclaration(c)

. . .

ConditionsDeclaration(c) . . .

TriggersDeclaration(c)

GetStateDeclaration

. . .

• MainActionDeclaration

end

This rule takes a chart c and returns a Circus process whose name is the result of applying

processname to c. The body of the process consists of a series of schema and action

declarations which are obtained by applying the appropriate translation functions. For

instance, the axiomatic de�nition that represents the chart is part of the process, this is

speci�ed in the rule by the application of the translation rule ChartDeclaration.

Rule 4.13 includes in the body of the process the declarations of the chart, the schemas

SimulationInstance and SimulationData, the initialisation and operation schemas, the state

82 CHAPTER 4. TRANSLATION STRATEGY

of the process, and all the actions. It completes the process by declaring the main action

through the function MainActionDeclaration.

The root translation rule, translate, takes a well formed chart and outputs a Circus spec-

i�cation. This rule is structured in the same way as the process declaration rule. It declares

the paragraphs external to the process (e.g. identi�er declarations) and the process through

previously de�ned translation rules.

4.4 Automation of the translation strategy

The manual translation process is extremely error prone, a mechanisation of such process

is clearly bene�cial. Moreover, when the translation of very simple charts (6 states and 7

transitions) generates more than ten pages of speci�cation, the translation of larger charts

is prohibitively costly. For example, one of our experiments on an industrial case study

yielded a 180-page speci�cation.

A mechanisation of the translation process can reduce the cost of the translation,

thus increasing the viability of any task that depends on a Circus model. In addition,

mechanising the translation provides extra validation of the model (and translation rules),

uncovering potential errors and inconsistencies. Since the Circus models are meant to

be used in the formal veri�cation of implementations of State�ow charts, the mechanical

translation increases the number and size of charts that can be tackled, and minimises the

possibility that translation errors occur.

In this section, we describe the tool s2c which implements the translation rules discussed

in the previous sections. s2c takes a .mdl �le and produces a Circus speci�cation containing

the processes that model the charts contained in the �le.

The translation of State�ow charts into Circus processes is de�ned in a manner that

makes it suitable for mechanisation; namely, by using formal and yet concrete transla-

tion rules. Since the implementation of s2c resembles the formal speci�cation, it can be

inspected and compared to the formalisation.

The implementation of s2c is guided by one main principle: to keep a close relationship

between the implementation and the formalisation of the translation rules. The advantage

of an implementation based on this principle is that it is easy to identify how components

of the code map to the formal rules, thus, facilitating the validation of the implementation

with respect to the formalisation.

Section 4.4.1 discusses the architecture of the tool, and Section 4.4.2 discusses the

implementation of the translation rules.

4.4.1 Architecture

The architecture of s2c is organised in �ve main packages: parser, stateflow abstract

syntax, Circus syntax, Z syntax and translator (Figure 4.2). The translator package

is the main one, and uses all the other packages to perform the translation. We now discuss

4.4. AUTOMATION OF THE TRANSLATION STRATEGY 83

Figure 4.2: Architecture of s2c: main packages.

Figure 4.3: Architecture of the package Parser.

each package in more detail.

The parser package. This package contains two sub-packages: MDL parser and label

parser (Figure 4.3). The MDL parser provides classes that support taking a .mdl �le and

converting it into a tree structure that facilitates the manipulation of data. The label

parser provides classes that build states and transitions from labels that encode these

objects in the .mdl �le. The Java class Builder uses both packages to de�ne a method to

build the abstract syntax tree of the chart. In the following, we give more details about

these packages, and explain how the class Builder interacts with them in order to build

the abstract syntax tree.

The MDL parser package. This package provides a class MDLParser that takes a .mdl

�le that has a particular structure and builds a data structure that facilitates the querying

and manipulation of the data contained in the �le. As depicted in Figure 4.4, a .mdl �le

contains groups of attribute-value pairs, which may contains other groups. The hierarchy

established by a .mdl �le makes it simple to extract some of the information needed to build

an abstract syntax tree, but not all. Namely, the representation of states and transitions

contains a pair whose attribute is called labelString, and whose value encodes, for states,

the name and the actions of the state, and, for transitions, the trigger, the condition, and

the actions of the transition. This encoding is processed separately by the label parser,

as we explain later.

Of the top groups in a .mdl �le (that is, groups without a parent group), the one that

is relevant to State�ow charts is called Stateflow. This group contains other groups that

describe charts, states, transitions, junctions, data and events. Each one of these groups

has attribute-value pairs (e.g. the pair "id 2" associates the value 2 to the attribute id)

and may contain other groups (for example, a transition group contains a src group and

a dst group that represent, respectively, the source and the destination of the transition).

Figure 4.5 shows an excerpt from a .mdl �le.

84 CHAPTER 4. TRANSLATION STRATEGY

Figure 4.4: Structure of a .mdl �le.

Stateflow {

chart {

id 2

name "Chart"

decomposition CLUSTER_CHART

...

}

state {

id 3

labelString "State1"

type OR_STATE

decomposition CLUSTER_STATE

...

}

transition {

id 9

labelString "{Data = Data+1;}"

src {

}

dst {

id 3

}

chart 2

...

}

...

}

Figure 4.5: Excerpt from a .mdl �le.

4.4. AUTOMATION OF THE TRANSLATION STRATEGY 85

Figure 4.6: Architecture of the package MDL Parser.

state name
en: action
du: action
ex: action
on event name: action
on event name: action
. . .

Figure 4.7: State label

trigger[expression]action/action

Figure 4.8: Transition label

We observe that, as we mentioned before, the actions, conditions and triggers used in

a chart are encoded in the label (labelString attribute) of the appropriate object. For

example, in Figure 4.5, in the group transition, the attribute labelString is associated

with a string that encodes the condition action of the transition.

The MDL parser processes a .mdl �le and structures it in a way that facilitates the

manipulation of the groups and pairs. From this structure, a method in the class called

Builder builds the charts, states, transitions, junctions, data and events. In order to pro-

cess the labels of states and transitions (that contain the actions, conditions and triggers),

the Builder class uses the label parser. The class MDLParser extends the class Parser

which is automatically generated by the tool jacc [52], and uses the class Lexer, which is

automatically generated by the tool j�ex [50], as shown in Figure 4.6.

The label parser package contains two parsers: state parser and transition parser.

These parsers are contained in the same package because, although state and transition la-

bels have di�erent structures, they have common units of information; namely, expressions

and actions. The syntax of expressions and actions constitutes most of the syntax of la-

bels. Therefore we reuse the parser of expressions and actions in both parsers. Figures 4.7

and 4.8 show the structure of state and transition labels.

The state parser takes the value of the attribute labelString of a state group, and

returns a State object with the appropriate actions assigned to it. The rest of the in-

formation that is not available from the label is �lled in by a method in the Builder

class. The same process is carried out by the transition parser, with the di�erence that

the object returned is of type Transition. As with the MDL parser, both the state parser

86 CHAPTER 4. TRANSLATION STRATEGY

Figure 4.9: Architecture of the package Label Parser.

Figure 4.10: Syntax of State�ow charts: main packages.

and the transition parser were automatically generated by the tool jacc, and the class

Lexer, which is common to both parsers, was generated automatically by the tool j�ex.

The classes TransitionParser and StateParser respectively extend the automatically

generated classes TParser and SParser, as shown in Figure 4.9.

Both state and transition objects are de�ned in the abstract syntax of State�ow, which

de�nes the main State�ow objects, i.e. chart, state, transition, junction, data and event,

as well as the action language used in the labels. The state�ow abstract syntax is an

implementation of the formal syntax of State�ow charts discussed in the Section 4.1. We

now discuss its implementation.

The stateflow abstract syntax package is organised in three packages: Objects,

Actions and Expressions, as shown in Figure 4.10. The package Objects contains the

classes that represent the main objects of the language. The package Actions contains the

class model of the action language, which uses the model of expressions contained in the

package Expressions.

As can be seen in Figure 4.11, data, event and junction are simple objects, while state,

transition and chart contribute most of the complexity to the chart structure. A chart

object contains sets of state, transition, junction, data and event objects. A state object

contains two sequences of actions, entry and exit, and a sequence of during actions. A

transition object has two sequences of actions, condition action (condAction) and transition

action (transAction), an optional expression condition, and a sequence of triggers trigger.

4.4. AUTOMATION OF THE TRANSLATION STRATEGY 87

Figure 4.11: Syntax of State�ow charts: Objects.

Figure 4.12 depicts the representation of the syntax of actions. There are four subclasses

representing four types of actions: massign, assign, bcast and expr. Objects of the class

massign represent multiple assignments in which the left-hand side of the assignment is an

array of variables. Objects of the class assign represent simple assignments and objects

of the class bcast represent broadcasting of events. Object of the class expr represent

expressions used as actions. Objects of the class ONACTION represent actions that are

executed only if a certain trigger occurs. Objects of the more abstract class DACTION

represent during actions and can belong either to ACTION or ONACTION class.

The model for the syntax of expressions is the largest, but it is fairly simple. The

only noteworthy type of expression is the variable expression, which can take a sequence

of expressions as indexes, in the case where the variable represents an array. The class

diagram is shown in Figure 4.13.

Each free type constructor de�ned in the formal de�nition of the State�ow syntax in

Section 4.1 is now represented by a class. For example, for the free type ACTION, we have

the constructors bcast , expr , assign, and massign, which correspond to the classes bcast,

expr, assign, and massign. The type of the constructor functions determines the type of

the constructor methods of the corresponding classes. For example, the constructor bcast

takes a value of type ENAME and a state name, both of which are implemented as objects

of type String; therefore, the method bcast takes String objects as parameter. The type

of the constructor is not represented in the diagrams, but is speci�ed in the formal syntax

and implemented in the tool.

The Circus syntax package implements the Circus syntax di�erently from the way the

State�ow abstract syntax is implemented. Instead of de�ning classes for each element

of the syntax, we de�ne functions that return the Circus element encoded in some form.

We adopt this approach because we do not need to manipulate Circus syntax trees in the

88 CHAPTER 4. TRANSLATION STRATEGY

Figure 4.12: Syntax of State�ow charts: Actions.

Figure 4.13: Syntax of State�ow charts: Expressions.

4.4. AUTOMATION OF THE TRANSLATION STRATEGY 89

Figure 4.14: Syntax of Circus.

Figure 4.15: Architecture of s2c: the Translator package.

tool. Moreover, the use of functions to build Circus speci�cations makes the resulting code

resemble the formal speci�cation more closely. We de�ne an interface that contains the

functions that can be used to build Circus statements and provide an implementation of

this interface that produces LATEX code. Note that it is simple to implement the interface

to generate speci�cations suitable for other tools.

The Z syntax package is structured in exactly the same fashion. The Circus syntax

interface and implementation extend, respectively, the interface and implementation of the

Z syntax, as shown in Figure 4.14.

Finally, the Translator class contains a method translate that takes a State�ow chart

represented in the abstract syntax and produces the Circus speci�cation of the chart. The

translator uses an implementation of the Circus syntax interface and a name generator to

produce the speci�cations. The name generator is responsible for taking State�ow objects

and returning their names in an appropriate format. For example, we disambiguate state

names (when needed) by su�xing the unique identi�er of the state. State identi�ers are

obtained by pre�xing the (disambiguated) name of the state with a lower case "s", while

state names are obtained by pre�xing the name with a capital "S". Figure 4.15 shows the

architecture of the translator package.

90 CHAPTER 4. TRANSLATION STRATEGY

4.4.2 Implementation of translation rules

We illustrate the strategy used for implementing the translation rules through an example.

For convenience, Rule 4.14 reproduces the formal speci�cation of the translation function

for variable expressions. This function takes a well formed expression (the set of well

formed expressions is de�ned in [65]) and produces a Z and Circus expression (Z and Circus

expressions are de�ned in [66, 64]). The resulting Z expression depends on whether the

variable expression represents a simple variable or a position in a vector. If the expression

represents a simple variable, the function returns a reference to the appropriate data. We

observe that the name of the piece of data being treated needs to be processed in order

to avoid duplicated names and attach the variable pre�x v . This is the objective of

the function dataname. If the variable is a position in a vector, the function returns the

application of the name of the appropriate data to the translated expressions contained

in the index sequence; multi-dimensional arrays are modelled as functions from a set of

indexes to the appropriate type.

Rule 4.14. Formal translation rule for variable expressions.

translateExpr : WF EXPR→ Expression

∀n : DNAME ; es : seqEXPR; c : WF CHART |
(c, variable(n, es)) ∈WF EXPR) •
translateExpr (c, variable(n, es)) =

if # es = 0

then reference(ref (dataname(c, getdatabyname(c,n))))

else functionapplication(app

(
dataname(c, getdatabyname(c,n)),

translateExprs(c, es))

)


Figure 4.16 shows the implementation of the Rule 4.14. The translateExpr function is

translated into a Java method called translate expr. The local variables introduced by

the let expression in the formal rule are translated into local variables of the method. The

function getdatabyname is mapped to a static function of the same name contained in the

class ObjectGetters, and the function dataname is mapped to a function from the object

n of a class that implements the interface NameGenerator. The constructor functions are

used exactly in the same way as in the formal speci�cation. Each of them is mapped to

a method of the same name contained in the object c of a class that implements the

interface CircusSyntax. Calls to other translation functions are mapped to methods of

the Translator class with equivalent names. For example, the function translateExprs is

mapped to the method translate exprs.

The implementation of the example shown in Rule 4.14 is straightforward once we

provide an embedding of the syntax of State�ow charts, of Circus, and of Z operations used

in the formal speci�cation. The implementation of some of the translation rules, however,

impose a challenge; this is due mainly to the use of sequence extensions of the form 〈a, b, c〉,
and set comprehensions.

4.4. AUTOMATION OF THE TRANSLATION STRATEGY 91

pub l i c S t r ing t rans la te_expr (Chart c , EXPR e) {
i f (e i n s t an c e o f v a r i a b l e) {

St r ing n = ((va r i a b l e) e) . dname ;
Li s t<EXPR> es = ((va r i a b l e) e) . e s ;
Data d = ObjectGetters . getdatabyname (c , n) ;
i f (e s . s i z e () == 0) {

return _c . r e f e r e n c e (_c . r e f (_n. dataname (c , d))) ;
}
e l s e {

re turn _c . f un c t i o n app l i c a t i o n (_c . app (
_n. dataname (c , d) , t rans la t e_exprs (c , e s))) ;

}
}
. . .

}

Figure 4.16: Implementations of the translation rule for variable expressions.

Sequence extension Rule 4.15 shows the translation rule that takes a well formed data

and produces the declaration associated with that data. The constructor variable requires

a sequence of declared names (built through the application of the constructor decl to a

name) and an expression that de�nes the type of the variables being declared. In this case,

the sequence contains only the declared name of the data being declared.

Rule 4.15. Formal translation rule for the declaration of data.

DataDeclaration : WF DATA→Declaration

∀ c : WF CHART ; d : Data | (c, d) ∈WF DATA • DataDeclaration(c, d) =

variable(〈decl(dataname(c, d))〉, translateType(d .type))

In order to translate the DataDeclaration function, we de�ne an instance method called

DataDeclaration that takes a chart and a piece of data, and returns a String that contains

the declaration. The use of a sequence extension as an argument to the constructor variable

is tackled by introducing an auxiliary variable (in this case, called declarations) of type

List<String>, instantiating it, and adding the appropriate element to the list. Finally,

the auxiliary variable is used in place of the sequence extension. The implementation of

the function shown in Rule 4.15 is presented in Figure 4.17.

Although the structure of the implementation of this function is di�erent than the spec-

i�cation, by establishing how the translation of sequence and set constructors is done, we

provide a simple way to assess its correspondence. In the next example, we examine the im-

plementation of functions that contain set comprehensions of the form {x : S | p(x) • f (x)},
where x is a variable, S is a set, p is a predicate, and f is a function.

92 CHAPTER 4. TRANSLATION STRATEGY

pub l i c S t r ing DataDeclarat ion (Chart c , Data d) {
List<Str ing> de c l a r a t i o n s = new LinkedList<Str ing >() ;
d e c l a r a t i o n s . add (_c . dec l (_n. dataname (c , d))) ;
r e turn _c . v a r i a b l e (d e c l a r a t i on s , t rans la te_type (d . type)) ;

}

Figure 4.17: Implementations of the translation rule for the declaration of data.

pub l i c S t r ing S imu la t i on In s tanceDec l a ra t i on (Chart c) {
Lis t<Str ing> va r i a b l e s = new LinkedList<Str ing >() ;
f o r (In t eg e r i : c . data . keySet ()) {

v a r i a b l e s . add (DataDeclarat ion (c , c . data . get (i))) ;
}
Li s t<Str ing> outputevents = new LinkedList<Str ing >() ;
f o r (In t eg e r i : c . events . keySet ()) {

i f (c . events . get (i) . scope == EVENTSCOPE.OUTPUTEVENT) {
outputevents . add (OutputEventDeclaration (c , c . events . get (i))) ;

}
}
v a r i a b l e s . addAll (outputevents) ;
S t r ing dec l = _c . d e c l p a r t_ve r t i c a l (v a r i a b l e s) ;
r e turn _c . s chemade f in i t i on (

_n.SIMULATIONINSTANCE() ,
_c . schematext_vert i ca l (

new Opt<Str ing >(dec l) ,
new LinkedList<Str ing >())) ;

}

Figure 4.18: Implementations of the translation rule for the declaration of the simulation
instance.

Set comprehension Rule 4.16 shows a function that declares a schema used as part of

the state of the chart process. The function takes a well formed chart and produces a Z

paragraph. Notice that the local variable variables is de�ned as a sequence by applying the

function squash to a set comprehension. The set comprehension takes the indexes of the

sequence c.data and produces a partial function from natural numbers to data declarations

by applying a translation function to the data contained in c.data.

Rule 4.16. Formal translation rules for the declaration of the simulation instance.

SimulationInstanceDeclaration : WF CHART → Paragraph

∀ c : WF CHART • SimulationInstanceDeclaration(c) = let

variables == squash{i : dom c.data • i 7→DataDeclaration(c, c.data(i))};
outputevents == squash{i : dom c.events | (c.events(i)).scope = OUTPUTEVENT •

i 7→OutputEventDeclaration(c, c.events(i))} • let
decl == declpart(variables a outputevents) •

schemade�nition(SimulationInstance, schematext(〈decl〉, 〈〉))

As shown in Figure 4.18, the set comprehension is translated into the instantiation of a list

4.5. EVALUATION 93

(because the function squash applied to the set comprehension, in this example, de�nes a

list) which is assigned to the variable variables. The list is then �lled in with all the data

declarations obtained from the data in the list c.data. The same is done for the list of

output events, and the two lists are joined together before the declaration is built. Note

that we use the class Opt which implements the type Opt de�ned in the speci�cation to

obtain, more easily, lists of size zero or one.

Set comprehensions could be implemented by the Java class Set, but, in most cases,

the sets de�ned in the speci�cation are transformed into sequences. Since a sequence can

be seen as an ordered set, we do not lose information by using sequences instead of sets.

In some of the rules, we use a function set2seq which takes a set and produces a

sequence with the same objects. The de�nition of this function is underspeci�ed, stating

only that the range of the sequence obtained from the application of the function to a set S

must be equal to S . Since the order of the elements in the list is clearly not important, we

add them directly to a list, instead of a set, thus rendering the use of the function set2seq

unnecessary in the implementation.

The implementation of s2c2 has approximately 19000 lines of code, 75% of which im-

plements the various parsers and is automatically generated. In the next section, we will

discuss the usage and evaluation of the tool s2c.

4.5 Evaluation

The tool s2c takes a .mdl �le that contains the de�nition of a number of charts, and pro-

duces a Circus process for each chart; each process and associated de�nitions are enclosed

in a Z section. The tool ignores de�nitions of Simulink and graphical functions, truth

tables, as well as Simulink blocks. The existence of functions implies that there are data

de�nitions of the input and output variables of the function; these are also ignored.

Since Simulink and graphical functions are not translated, but are widely used in charts

along with matlab and C functions, we adopt a strategy for dealing with functions whereby

the user is required to supply the formal de�nition of the functions being used in the form

of libraries. Each library is speci�ed in a separate �le within a named Z section which is

inherited by the section that contains the model of the chart that uses the library.

Our evaluation strategy consists of testing the tool on three distinct sets of examples:

basic charts, complete examples, and industrial case studies. The group of basic charts

contains models that exercise speci�c features of the State�ow notation, for example, for

each type of action a, we have a chart formed by a single state whose entry action is a.

The group of complete examples is formed by those charts (or collections of charts) that

model a simpli�ed system (usually "toy-examples"), but whose complexity is larger. For

example, we have used the shift logic chart of the Automatic Transmission Control example

supplied with State�ow and used in Chapter 3. The third group consists of models supplied

by industrial collaborators. These models usually describe the whole system. For example,

2The tool can be downloaded from http://www-users.cs.york.ac.uk/~alvarohm/s2c/tool/

94 CHAPTER 4. TRANSLATION STRATEGY

one of the case studies with which we have tested s2c was supplied by Airbus Operations

and describes a generic Fuel Management Control System.

By testing basic charts, we can easily track any errors in the tool to the speci�c feature

being tested. Moreover, since these models are very small, it is possible to check the gen-

erated speci�cation and notice any potential errors. With this approach, while validating

the tool, we also validate the translation strategy and the model presented in Chapter 3.

On the other hand, the complete examples allow us to test the interaction between dif-

ferent features of the notation, and while their size makes it di�cult to manually check

the generated speci�cation, it is still feasible to track errors in the translation process to

features of the State�ow model. The speci�cation generated by industrial case-studies can

be extremely large, and, therefore, not tractable manually, and, while it is possible to track

translation errors to pieces of the model, it is a demanding task. Nevertheless, testing in-

dustrial case-studies allows us to evaluate the correctness, robustness and e�ciency of the

tool.

We now turn to the results of testing the tool with all three groups. Due to the number

of examples in the �rst group, we only give an overview of how they were built, and discuss

the main �ndings.

We have tested the tool with the basic charts in di�erent stages of development, and

errors found during the development were corrected. The main problems found during test-

ing were concerned with the handling of elements not treated by the translation strategy,

and simple programming errors (such as index out of bound errors, un-initialised variables

etc). The latter errors were easily �xed, while the former required us either to treat the

features in the translation strategy, or �nd a way to overcome the features when they

appear in a chart.

The testing of the tool has highlighted two features that were not treated, one known

and the other unknown. The former is the treatment of functions, and the latter is the use

of the time symbol t .

The treatment of functions is not a simple issue, because the functions that can be used

in charts are not restricted to the types of functions that can be de�ned within a chart �

MATLAB and even C function can be used. The complete treatment of function would

require us to formalise all the possible functions (including the MATLAB and C ones). Our

approach to this issue was to assume that the user of the tool has a library of de�nition of

the functions being used in the chart. It is worth mentioning that this approach is limited in

the sense that it does not allow the speci�cation of graphical functions with side-e�ects (i.e.,

graphical functions that change the state of the chart). However, if a separate translation

strategy is de�ned for graphical functions, it can be easily incorporated to the tool, thus,

eliminating this limitation.

The proper treatment of the time symbol t was delegated to the Simulink diagram and

referenced by a process variable which is updated through a channel time. The reason why

the treatment of t can be delegated to the Simulink diagram is that this symbol represents

the "absolute time inherited from a Simulink signal" [98].

4.6. FINAL CONSIDERATIONS 95

The two industrial case studies we use to test the tool were provided, respectively,

by Embraer S.A and Airbus Operations. The example from Embraer is fairly simple and

the translation, although laborious, is trivial. This example uses the abs function, which

reinforced the need to reconsider our treatment of functions, and motivated the use of

libraries for specifying functions.

The case study from Airbus is larger, and the translation of four charts found in one

of the �les resulted in a 180-page speci�cation. It also required the treatment of functions

and the symbol t . We observe that the charts contained in both case studies extensively

used functions (MATLAB functions and graphical functions), and that the approach to

the treatment of general function by use of Z libraries has proved successful so far.

In its current version, the tool translates, without errors, all the tested examples, and

the speci�cations generated by the tool are all correctly parsed and type checked by the

Circus CZT toolkit [57].

4.6 Final considerations

In this chapter, we discussed the syntax of State�ow charts, the conditions that establish

the well-formedness of charts, the translation rules that guide the translation process, and

the automation of the translation strategy implemented in the tool s2c. The syntax, well-

formedness conditions and translation rules, as well as their automation, cover a large

portion of the State�ow notation, including many aspects that, as far as we know, are not

covered in other approaches presented in the literature.

To the best of our knowledge, no other work has treated history junctions, unrestricted

transitions and early return logic. Moreover, as far as we know, no one has provided

a partial (or complete) treatment of functions. The main features that are usually not

treated by other approaches to veri�cation of State�ow charts are: during actions, inter-

level transitions, local event broadcast, �ow-charts, and in expressions.

It is worth noticing, however, that some features that are speci�ed in the syntax are not

treated by the translation rules. They are temporal expressions, bind actions, function-

call events, and constant, parameter and data store memory data. Graphical and Simulink

functions are only partially treated. Our models can be easily extended to cover such

function by integrating it with the existing models of Simulink diagrams. The reason the

syntax covers features not treated by the translation rules is that this will allow us to

extend the translation rules to cover such features in the future.

Our translation has been evaluated through a number of case studies that ranged in

scale and complexity (from small feature-focused examples to case studies supplied by

industrial collaborators). These experiments not only validated the translation strategy

and the rules implemented by the s2c tool, but also provided additional con�dence in the

correctness of our model of the semantics of State�ow presented in Chapter 3.

Furthermore, the use of the models generated by the tool as the basis for the veri�cation

of implementations described in the next chapter provided an additional validation of both

96 CHAPTER 4. TRANSLATION STRATEGY

the tool and the translation rules implemented in it.

It is worth noting that while the choice of Z as the basis for the formalisation of the

translation strategy proved suitable, a notation that supports automatic code generation

might be more appropriate. The main disadvantage of the approach we have taken is

that the translation strategy has to be implemented separately. In retrospect, since the

formality of Z was not fully explored, our choice of notation for the translation rules should

have favoured automatic code generation more heavily.

Chapter 5

Re�nement strategy

In this chapter, we propose a re�nement strategy that supports the veri�cation of parallel

and sequential implementations of State�ow charts with respect to the models discussed in

the previous chapters. Our aim is to describe a re�nement strategy in enough detail that

it can be automated.

Structuring
Parallelism

Introduction

Action

Introduction

Data

Refinement
Normalisation

Model of the chart

Server Procedures

Chart

Figure 5.1: Overview of our re�nement strategy.

Our re�nement strategy aims at deciding whether an existing implementation of a

State�ow chart is a re�nement of the model of the chart. The strategy takes as inputs

that Circus model of the chart, the chart itself, and the procedures of the implementation

that implement any parallel server. The re�nement strategy is divided in �ve phases: data

re�nement, normalisation, structuring, parallelism introduction, and action introduction,

and the inputs are used throughout these phases to support the application of the re�ne-

ment laws. An overview is provided in Figure 5.1.

In the following, we �rst present an architecture with which we assume the implemen-

tations comply. Next we describe in details the re�nement strategy for the veri�cation of

implementations that follow the described architecture. This architectural restriction is

important because it allows us to increase both the level of detail in which the strategy

can be speci�ed, and the level of automation that can be achieved.

Our running example is shown in Figure 5.2; it is a chart (supplied with MATLAB

98 CHAPTER 5. REFINEMENT STRATEGY

PowerOn

FAN1 1
On

Off

FAN2 2
On

Off

SpeedValue

du: airflow = in(FAN1.On) + in(FAN2.On);

3

PowerOff
en:
airflow = 0;

SWITCH SWITCH

[temp < 120]

[temp >= 120]

[temp< 150]

[temp>= 150]

Figure 5.2: Air controller chart: supplied with State�ow.

State�ow) that models a temperature controller for a ventilation system. The chart has one

input variable temp, one output variable airflow, and is triggered by two events: SWITCH

and CLOCK. The event CLOCK is not shown in Figure 5.2; it is part of the Simulink diagram

that includes the State�ow block de�ned by this chart. In every step of the Simulink

diagram, the State�ow block is executed if SWITCH or CLOCK occurs. In the execution of

the block, the chart is executed once for each of the events that occurred. This is recorded

in the properties of the State�ow block de�ned by the chart (even though it is not included

in its diagrammatic description).

The Circus model of this example is obtained through the application of the translation

rules described in the previous chapter and follows the structure detailed in Chapter 3.

The complete model of this chart is in Appendix C.2

Section 5.1 describes the architecture of the implementations we consider, Section 5.2

discusses the Circus models of implementations, Section 5.3 presents the re�nement strat-

egy that supports the veri�cation of implementations of State�ow charts, and Section 5.4

summarises and discusses our results. In the sequel, we illustrate our approach using an

implementation of the chart in Figure 5.2, and the Circus models of the chart and of the

implementation. The implementation can be found in [63], and its model is in Appendix D.

5.1 Implementations of State�ow charts

Our re�nement strategy focuses on the implementations of State�ow charts that may be

generated by the Realtime Workshop [100] in association with the State�ow Coder [98],

but also covers programs that, perhaps, result from modi�cations of such implementations,

but preserve speci�c architectural patterns. In particular, we are interested in parallel im-

5.1. IMPLEMENTATIONS OF STATEFLOW CHARTS 99

Program

BlockIO D_Work ExternalInputs ExternalOutputs

Server: parallel states

state1

stateN

Client

MdlInitialize

calculate_output

calculate_step

Iterate up to the number of input events

Figure 5.3: Architecture of implementations of State�ow charts.

plementations of State�ow charts, and while sequential implementations can be obtained

automatically through the use of code generators, the same is not true for parallel ones.

We propose a pattern for the introduction of parallelism in a sequential implementation,

and equip our strategy with the means for verifying both sequential and parallel imple-

mentations.

The programming language used by State�ow Coder, and that we adopt in examples, is

a subset of C. Our strategy, however, is in no way restricted to C, but to the architectural

pattern described here, which can be realised by programs written in other languages, like

SPARK Ada [8], for instance.

Figure 5.3 gives an overview of the pattern. We distinguish two major aspects of the

architecture: data types (represented by slanted boxes in Figure 5.3) and control �ow (rect-

angular boxes). The �rst determines how information regarding the status of the states,

history junctions, input, output and local data, and events are represented. The second

de�nes how states and transitions are executed, and includes patterns for parallel execu-

tion of states. Section 5.1.1 discusses the data patterns, and Section 5.1.2 the execution

patterns.

5.1.1 Architecture: data patterns

An implementation of a State�ow chart uses a number of variables to record input, output

and local data, input, output and local events, and execution data used to determine the

state of the chart. The variables that store these values are grouped in records represented

by the slanted boxes in Figure 5.3. They are used as types of global variables used to control

100 CHAPTER 5. REFINEMENT STRATEGY

the execution of the chart. We also have an extra global variable that records the event

under which the chart is being executed in a particular step. It is called sfEvent C ,

where C is the name of the chart. For our example, the variable is sfEvent Air.

The variables of type ExternalInputs and ExternalOutputs are shared. They are

used to communicate with the implementation of other blocks of the Simulink diagram.

For instance, in the end of the cycle, the values of the output data and events are written

to the ExternalOutputs record to make them available.

The BlockIO record groups the variables that store output data and events; it is used

to construct their �nal values. For each output data variable od, a variable of the same

name and type is included in BlockIO. For each output event oe, a variable of the same

name and type Boolean is included; it records whether the event has occurred or not. The

pattern adopted in the declarations of this record is as follows.

typedef struct { <type od;>* <boolean_T oe;>* } BlockIO_C;

The corresponding record for the chart in Figure 5.2 is shown below; it contains only one

variable that records the value of the output data variable airflow. (Its type, uint8 T,

is de�ned by the code generator for the unsigned integers of 8 bits.) There are no output

events in this example.

typedef struct { uint8_T airflow; } BlockIO_Air;

The second record, D Work, contains the variables that model local data, variables that

record the status of the states and history junctions, and output event counters. Its general

structure is as follows.

typedef struct {

<type ld;>*

<uint8_T is_active_S1;>*

<uint8_T is_S2;>*

<uint8_T was_S3;>*

<uint32_T oeEventCounter;>*

} D_Work_C;

For each chart local data variable ld, a corresponding variable of the appropriate type is

declared. For each parallel state S1, that is, for each state S1 in a parallel decomposition,

a variable whose name is pre�xed by is active is declared with type integer. Such a

variable is also de�ned for the chart. For each state S2 with a sequential decomposition, an

integer variable whose name is pre�xed by is is declared. For each state S3 with a history

junction, an integer variable whose name is pre�xed by was is declared. For each output

event oe, a variable of type integer whose name is post�xed by EventCounter is declared.

The encoding of the status of the individual states in D Work relies on two groups of

variables. The variables pre�xed by is active record the status of parallel states and

the chart. The variables pre�xed by just is record the status of sequential states: those

5.1. IMPLEMENTATIONS OF STATEFLOW CHARTS 101

contained in a sequential decomposition. This encoding relies on the fact that at most one

substate in a sequential decomposition is active at any given time. While all variables have

type uint8 T, those in the �rst group are used as boolean variables, and the ones in the

second store values that indicate which substate is active or that no substate is active.

The record D Work in the implementation of the chart in Figure 5.2 is shown below.

Since the chart has no local data, output events or history junctions, this record encodes

only the status of states.

typedef struct {

uint8_T is_active_c1_Air;

uint8_T is_c1_Air;

uint8_T is_active_FAN1, is_active_FAN2;

uint8_T is_FAN1, is_FAN2;

uint8_T is_active_SpeedValue;

} D_Work_Air;

The variable is active c1 Air records the status of the chart, and is active FAN1,

is active FAN2 and is active SpeedValue record, respectively, the status of the par-

allel states FAN1, FAN2 and SpeedValue. The variable is c1 Air records the status of the

substates of the chart, and is FAN1 and is FAN2 record the statuses of the substates of,

respectively, FAN1 and FAN2.

The values of the is variables are de�ned as constants. For our running example,

they are shown below.

#define Air_IN_NO_ACTIVE_CHILD (0U)

#define Air_IN_Off (1U)

#define Air_IN_On (2U)

#define Air_IN_PowerOff (1U)

#define Air_IN_PowerOn (2U)

A was variable, corresponding to a history junction, records the constant for the last

active substates.

As already said, the third record, ExternalInputs, is used to share values of the input

variables and events. The input events are represented by an array of real values. The size

of the array corresponds to the number of input events, and the real values indicate whether

the corresponding event occurred or not. The order in which the events are represented in

the array is determined by an implicit ordering in the chart, record by State�ow (although

not shown in the diagram). The general structure of this record is as follows.

typedef struct {

<type id;>*

real_T inputevents[<nev>];

} ExternalInputs_C;

102 CHAPTER 5. REFINEMENT STRATEGY

For each input data id, a variable of the same name and appropriate type is declared, and

an array inputevents of real numbers (type real T). Below, we show the corresponding

record for our implementation. The variable temp corresponds to the input data of the

same name, and the array inputevents is used to store values associated to each of the

two events of the chart, SWITCH and CLOCK.

typedef struct {

real_T temp;

real_T inputevents[2];

} ExternalInputs_Air;

Finally, as already mentioned, the fourth record, ExternalOutputs, is used to communi-

cate, at the end of the cycle, the values associated to the output data and events. Unlike

input events, outputs events are communicated individually, not through an array. The

pattern for this kind of records is shown below.

typedef struct {

<type od;>*

<boolean_T oe;>*

} ExternalOutputs_C;

For each output data od, a variable of the appropriate type and same name is declared,

and for each output event oe, a boolean variable of the same name is declared. This record

for our example is shown below.

typedef struct { uint8_T airflow; } ExternalOutputs_Air;

In the next section, we identify the patterns used to implement the chart's control �ow.

5.1.2 Architecture: control �ow

With respect to the execution �ow of the chart, the relevant procedures of the program

are depicted in Figure 5.3: MdlInitialize, calculate output, calculate step, and the

procedures that correspond to the execution of the states implemented in parallel (generally

denoted state1 through stateN , in the �gure).

The control �ow is organised in a client-server pattern, where there is one client that

iteratively calculates the outputs, and a number of servers that carry out the execution

of particular states. If no states are executed in parallel, the implementation has no

servers: the client fully implements the execution of the chart.

Each server consists of an iteration that waits for a request from the client, executes

some code, and signals to the client the completion of the execution. In our implementation,

these synchronisations are realised as barriers, and each server is run in a separate thread

of execution.

The client initialises the execution of the chart by calling the procedure MdlInitialize,

and iteratively calculates the outputs by calling the procedure calculate output. The

5.1. IMPLEMENTATIONS OF STATEFLOW CHARTS 103

calculation of the outputs depends on the procedure calculate step, which implements

the execution step of the chart.

The procedure MDLInitialize initialises the components of the records of type D Work

and BlockIO. For our example, MDLInitialize is sketched in Figure 5.4. It initialises the

components of the variable Air DWork of type D Work Air that represent state status to

0 (value 0U that represents an unsigned 0), indicating that every state is inactive. It also

initialises the single component of the variable Air B of type BlockIO Air; the initial

value of output data is de�ned in the chart. We omit in Figure 5.4 the commands that

relate to aspects of the program that we do not model, like time control.

void MdlInitialize(void)

{

...

Air_DWork.is_active_c1_Air = 0U;

Air_DWork.is_c1_Air = 0U;

Air_DWork.is_active_FAN1 = 0U;

Air_DWork.is_active_FAN2 = 0U;

Air_DWork.is_FAN1 = 0U;

Air_DWork.is_FAN2 = 0U;

Air_DWork.is_active_SpeedValue = 0U;

Air_B.airflow = 0U;

}

Figure 5.4: Function MDLInitialize.

Figure 5.5 presents an overview of the procedure calculate output. It processes the

array inputevents, and calls calculate step for each event that occurred. Once the chart

is executed for all events, calculate output shares the values recorded in the variable of

type BlockIO, by copying them to the variable whose type is ExternalOutputs. Moreover,

for each output event raised, it decrements the associated counter in the BlockIO record.

In our example, this procedure is implemented by the function Air output.

The procedure calculate output generated by the Realtime Workshop [100] uses a

local variable c previousEvent to save the value of the global variable sfEvent C ,

and restore it after each call to calculate step. Our strategy uncovered that this is

unnecessary. The only situation where the program is required to save and restore the value

of sfEvent C is when there is a local event broadcast. For instance, if the broadcast

is directed towards the chart, a variable c previousEvent is used inside the procedure

calculate step. Our target implementations do not contain the redundant uses of this

variable.

Figure 5.6 shows the structure of calculate step, and how it uses the servers in a

parallel implementation. The procedure calculate step implements one complete exe-

cution of the chart. If the chart is triggered, this execution depends on the particular

event being treated. In a parallel implementation, calculate step is decomposed into

other (server) procedures that encode the execution of particular states. Its structure con-

104 CHAPTER 5. REFINEMENT STRATEGY

calculate_output

analyse

inputevents

and update the

local variables.

define a local

variable eN for

each input event.

check if e1

indicates event 1

occurred.

assign the event 1 to

_sfEvent_C_ and

execute

calculate_step.

if yes

check if eN

indicates event N

occurred.

assign the event N to

_sfEvent_C_ and

execute

calculate_step.

check if e2

indicates event 2

occurred.

assign the event 2 to

_sfEvent_C_ and

execute

calculate_step.

if yes

if yes

assign the values in

the record of type

BlockIO to variables

of the record of type

ExternalOutputs.

for each output

event, if the

associated counter is

positive, update the

variable of type

ExternalOutputs

and decrement the

counter.

Figure 5.5: Structure of the procedure calculate output.

Server: parallel states

state1

stateN

calculate_step

stateA

Figure 5.6: Structure of calculate step and interaction patterns with the servers.

sists of a number of nested alternations that evaluate the status of the chart and states,

and the transition guards, and proceeds according to the semantics embedded in the code

generator.

In Figure 5.6, the rectangular boxes correspond to blocks of statements, and the

diamond-shaped boxes to decision points. While, for clarity, our �gure shows only bi-

nary decision points, they correspond in fact to both if and switch statements. The

dotted lines indicate synchronisation points. The block stateA, for instance, represents

a procedure that is to be executed in parallel with the server procedure state1. In this

case, before stateA is executed, calculate step synchronises with the appropriate server

triggering the execution of state1, executes stateA in parallel, and waits for the triggered

server to signal completion of its execution. At this point, the server iterates and waits

for another request, and the client continues. This pattern generalises for any number of

procedures implementing parallel states.

The decision points correspond to the evaluation of state (and chart) status, and tran-

sition guards. While the transition conditions can be rather complex, the evaluation of

5.1. IMPLEMENTATIONS OF STATEFLOW CHARTS 105

status is extremely simple. In the case where the state S is in a parallel decomposition, an

if statement with a condition is active S == 0 is used. If S is in a sequential decom-

position, a switch statement over the is variable named after the parent state is used.

Each case branch then treats one of the substates.

In our example, the procedure calculate step is implemented by a function called

Air chartstep c1 Air, an excerpt of which is shown in Figure 5.7. This function �rst

checks whether or not the chart is active. If it is not active, it enters the state (omitted in

the �gure), otherwise it proceeds to check the status of the substates (switch statement).

This illustrates the two forms a decision point can take.

static void Air_chartstep_c1_Air(void) {

if (Air_DWork.is_active_c1_Air == 0) {

...

} else {

switch (Air_DWork.is_c1_Air) {

case Air_IN_PowerOff:

...

break;

case Air_IN_PowerOn:

...

break;

default:

...

break;

}

}

}

Figure 5.7: Procedure calculate step for our example.

As mentioned before, the states in a parallel decomposition are executed in an order

statically determined by the structure of the chart. In Figure 5.6, therefore, each decision

(sub)tree with a block of statements (rectangular box) as a root may actually correspond

to a sequence of decision trees: one for each parallel state.

Under certain circumstances, the order in which the parallel states are executed is not

relevant (e.g. if they do not share variables). In this cases, they can be implemented in

parallel using the client-server pattern previously described. For our example, the execution

of the state FAN1 is implemented in parallel with the execution of the state FAN2. Figure 5.8

shows the excerpt of the function Air chartstep c1 Air that executes the parallel states

FAN1, FAN2 and SpeedValue. The �rst call to sychronise prompts the server to start

calculating, and the second acknowledges that it has �nished its calculation. The switch

statement enclosed between the two synchronisation points corresponds to the execution

of the substates of FAN2. The last assignment executes the state SpeedValue.

The execution of a transition is carried out by an if statement whose condition is the

conjunction of its trigger and condition. A group of transitions connected by junctions is

106 CHAPTER 5. REFINEMENT STRATEGY

synchronise();

switch (Air_DWork.is_FAN2) {

...

}

synchronise();

Air_B.airflow = (uint8_T)((Air_DWork.is_FAN1 == Air_IN_On) +

(Air_DWork.is_FAN2 == Air_IN_On));

Figure 5.8: Parallelism in the execution of the parallel states in our example.

executed by nested alternations executing each of the transitions. In this case, multiple

branches of the alternations may signal the failure in the execution of the transitions, and

initiate the execution of during actions and substates.

In general, we are not concerned with the particular structure of the decomposition of

this procedure, except when it stems from the broadcast of local events. In this case, the

whole chart or part of it is reexecuted under a new event. When the chart is reexecuted,

the procedure calculate step is called recursively. When the broadcast is directed at

a particular state, only the portion of the execution that corresponds to the execution of

the target state is reexecuted. In this case, this portion is decomposed into an auxiliary

procedure, and a call to the new procedure is substituted for every instance of its body.

We do not treat programs that include mutual recursion, which might arise from the

automatic generation of code from charts that have potentially nonterminating loops, or

certain forms of event broadcast. Although, we can (easily) generate Circus models for

them as explained in the next section, our re�nement strategy needs to be generalised.

This is not di�cult, as pointed out in Section 5.4, but is left as future work. We observe

that language subsets used in the safety-critical industry do not allow even the use of

simple recursion.

5.2 Circus models of implementations

In this section, we discuss the Circusmodels of implementations that follow the architectural

pattern presented in the previous section. The architecture of the models is close to that

of the programs; Figure 5.9 gives an overview. The di�erence is that the Circus model has

actions read inputs and write outputs that do not correspond to a program component;

they encode the State�ow block behaviour.

The Circus model is composed of a single process. Schemas BlockIO C , D Work C ,

ExternalInputs C , and ExternalOutputs C , where as before C stand for the name of the

chart, are used to model the record types of the program. The state of the process includes

components C B , C DWork , C U , and C Y of these types, and a component sfEvent C ,

all corresponding to global variables of the program. The (possibly parallel) main action

re�ects the client-server control pattern of the program.

The generation of Circus models of implementations involves two di�erent aspects:

5.2. CIRCUS MODELS OF IMPLEMENTATIONS 107

process ProgramModel

Server: parallel states

state1

stateN

Client

MdlInitialize

calculate_outputs

calculate_step
read_inputs

write_outputs

BlockIO D_Work ExternalInputs ExternalOutputs

Figure 5.9: Overview of the models of implementations of State�ow charts.

Client =̂ MdlInitialize ;

 µX •

 input events?s −→ C U .inputevents := s;
read inputs ; calculate output ;
write outputs ; end cycle −→ X

 
Figure 5.10: Action Client in implementation models.

translation and abstraction. The programming language statements are translated into

Circus actions, and aspects of the program that are not covered by our models of State�ow

chart (for instance, time control) are abstracted.

The calculations of the time steps that determine the execution of a chart are abstracted

by synchronisations over the channels input event and end cycle that mark, respectively,

the start and end of a cycle (step). The way in which these channels are used to abstract

time is shown in Figure 5.10, which presents the action Client . It initialises the state,

and recursively reads input events, reads input data, calculates outputs, writes outputs,

and signals the end of the cycle. (As an aside, we observe that the name of the action

calculate output is speci�c to each example; for our example, it is Air output . Moreover,

in the code generated by Realtime Workshop, the procedure Air output has a parameter

tid, probably for uniformity with programs generated for the Simulink diagram. Our

strategy shows that this parameter is not needed, and we simplify the code and the model

to avoid useless features. This is in line with guidelines adopted in the development of

safety-critical systems.)

As illustrated in (the �rst two boxes of) Figure 5.5, the treatment of input events in

the implementation involves calculations that identify which events occurred according

108 CHAPTER 5. REFINEMENT STRATEGY

to values supplied by the Simulink model in an array inputevents. In our models, we

abstract from this calculation by assuming that this is an array of booleans that indicate

the occurrence of each event, not its associated value. As a consequence, we cannot reason

about di�erent types of input events (rising, falling, or either edge trigger).

Finally, sharing is modelled as communication. For instance, the use of a global shared

variable of type ExternalInputs is modelled by an action that reads in interleaving the

input variables and the array of events modelled as a sequence of boolean values, and writes

them to the state component of type ExternalInputs. Similarly, the use of a global shared

variable of type ExternalOutputs is modelled by an action that communicates the values

of the components of the state component of type ExternalOutputs in interleaving. The

channels used to read inputs and write outputs, and the channel used to communicate input

and output events are the same channels used in the model of the chart being implemented.

This ensures that the Circus models of the chart and of the program can be compared by

re�nement.

Another aspect of the implementations that involves sharing is the client-server pattern

of parallel implementations. In our models, the di�erent threads are modelled as Circus

parallel actions Client and Servers. The state of the process is handled by Client , and

Servers is itself the parallel composition of actions that model the procedures that execute

parallel states. As for interleaving, the state needs to be partitioned between parallel

actions to avoid racing conditions. We, therefore, model the initial synchronisation between

Client and a server action as a communication that sends the complete state from the

client to the server. The �nal synchronisations are modelled as a number of interleaved

communications that send the components modi�ed by each server to the client. Once all

the values are received by Client , it updates the state.

Except for the aspects discussed above, the Circus models of the implementations are,

in general, obtained by direct translation. Circus includes constructs that map directly

into imperative programming languages. Records are translated into schemas, loops into

recursive actions, if and switch statements are mapped to alternations, and procedures

are mapped to named Circus actions.

5.3 Re�nement strategy

In this section, we present a new re�nement strategy suited for the veri�cation of (par-

allel) implementations of State�ow charts that follow the architectural pattern presented

in Section 5.1. It is a tactic of re�nement, which we de�ne as a procedure for systematic

application of re�nement laws.

As previously mentioned, our re�nement strategy is organised in �ve phases: data

re�nement, normalisation, structuring, parallelism introduction, and action introduction;

an overview is provided in Figure 5.1. The main input is the model of the State�ow chart,

which as already explained, can be automatically generated. We also use the chart itself,

for instance, to guide our calculation of a concrete state, and of a retrieve relation between

5.3. REFINEMENT STRATEGY 109

the concrete and abstract states. We also need to extract from the program information

like the names of the states that are implemented in parallel, and the procedures that

implement these states. (It is not di�cult to automate the extraction of this information.)

The strategy is a tactic that proves that the model of the chart is re�ned by that of

the implementation by transforming the former into the latter using the algebraic laws of

Circus.

In general terms, the data re�nement phase introduces the data model of the implemen-

tation, the normalisation phase removes the structure of the abstract chart model, which

re�ects the State�ow semantics, and the next three phases introduce the control aspects of

the implementation architecture. The structuring phase introduces the sequential control

pattern, the parallelism introduction phase introduces the client-server pattern, if present,

and the last phase, action introduction, introduces the appropriate naming of actions as

adopted in the program model (read inputs, calculate output , and so on).

In the sequel, we present each individual phase, and conclude with a discussion of the

automation of this strategy, as well as the impact on our strategy of modi�cations to the

architecture of programs.

5.3.1 Data re�nement

The data re�nement phase transforms the state of the chart process. The result is a process

whose concrete state already includes many of the components of the implementation

model. The exceptions are the components that correspond to output events in C B ,

the component inputevents of C U , and the components C Y and sfEvent C , which are

related to the treatment of input and output events, and output data, and are introduced

later in the structuring phase. Figure 5.11 describes the steps of the data re�nement phase.

The laws for which we do not give a reference in this �gure, and in others to follow, can

be found in Appendix E.

We calculate the concrete state of the implementation model, and a retrieve relation

that allows us to calculate a data re�nement of the chart process using the Circus re�ne-

ment calculus. It preserves the structure of the process, and transforms the assignments,

operation schemas, and communications. In the sequel, we detail each of the steps. We

use our running example for illustration.

Step 1. To support a higher degree of automation and enable certain simpli�cations

later on (see Section 5.3.3.7), we calculate, besides the concrete state of the model of the

implementation, properties of its components that become the concrete state invariant.

Namely, we de�ne three schemas: BlockIO C , D Work C , and ExternalInputs C , where,

as before, C stands for the name of the chart, as follows.

BlockIO C For each output variable in the chart, we declare a component of the same

name and type.

110 CHAPTER 5. REFINEMENT STRATEGY

1. Calculate the concrete state. Use the provided templates.

2. Calculate the retrieve relation. Use the provided template.

Transform the chart process as follows.

3. Introduce the abstract state invariant as an assumption after the
initialisation. Apply Law C.29 [76] to the initialisation schema in the
main action, and distribute the assumption towards the assignments (apply
Laws C.37-C.54 [76] exhaustively until all assignments are reached).

4. Convert any actions of the form {inv} ; v := e. Apply Law assign-
schema-conv to all of them.

5. Calculate the simulation. Apply the Circus laws of action simulation to
the chart process (Laws C.1-C.25 [76]).

Figure 5.11: Re�nement strategy: data re�nement phase.

D Work C To characterise the general form of D Work C , we consider the unique

identi�ers LV1, . . . ,LVm for the chart local variables of types T1, . . . ,Tm , the identi�ers

PS1, . . . ,PSn for the parallel states and for the chart, the identi�ers SS1, . . . ,SSo of the

states that have a sequential decomposition, possibly including the chart, and the identi�ers

HS1, . . . ,HSp of the states that contain a history junction. Additionally, we consider the

names OE1, . . . ,OEq of the output events. To specify the invariant of D Work C , we

also use substates, a function that associates (the identi�er of) each state to the set of

(identi�ers of) its substates. With these, we can specify that D Work C is to be de�ned

as follows.

D Work C

LV1 : T1; . . . ; LVm : Tm

is active PS1, . . . , is active PSn : N
is SS1, . . . , is SSo : N
was HS1, . . . ,was HSp : N
OE1EventCounter , . . . ,OEqEventCounter : N

∀ i : 1 . . o • is SSi ∈ {C IN NO ACTIVE CHILD} ∪ {s : substates(SSi) • C IN s}
∀ i : 1 . . p •

was HSi ∈ {C IN NO ACTIVE CHILD} ∪ {s : substates(HSi) • C IN s}

For each chart local variable, we declare a component of the same name and type. All

the remaining components are of type N. We also declare, for each parallel state S and

the chart, a component is active S . For each S with a sequential decomposition, we

declare is S . For each history junction within a state S , we declare was S , and for each

5.3. REFINEMENT STRATEGY 111

D Work Air
is active c1 Air : N
is c1 Air : N
is active FAN 1, is active FAN 2 : N
is FAN 1, is FAN 2 : N
is active Speedvalue : N

is c1 Air ∈ {Air IN NO ACTIVE CHILD ,Air IN PowerOn,Air IN PowerO� }
is FAN 1 ∈ {Air IN NO ACTIVE CHILD ,Air IN O� ,Air IN On}
is FAN 2 ∈ {Air IN NO ACTIVE CHILD ,Air IN O� ,Air IN On}

Figure 5.12: Schema D Work Air .

output event e, we declare a component eEventCounter . For each state S with a sequential

decomposition, possibly including the chart, the invariant requires that the value of is S is

restricted to one of the identi�ers of the substates of S , or C IN NO ACTIVE CHILD ,

when none of them are active. Similarly, the value of a was S variable is restricted to

the substates of S , or C IN NO ACTIVE CHILD , if none of them have been active yet.

Figure 5.12 shows the D Work C schema for our example.

ExternalInputs C For each input data, we declare a component of the same name and

type. In the case of our example, we have a schema ExternalInputs Air with a single

component v temp : R.

The concrete state is de�ned by a schema ConcreteState with three components C B ,

C DWork , and C U , whose types are the schemas de�ned above. In our example, we

have Air B , Air DWork , and Air U .

Step 2. The retrieve relation maps the components of BlockIO C (that correspond to

input and output variables) and the components of D Work C that correspond to lo-

cal variables to components of SimulationInstance. The eEventCounter components of

D Work C are mapped to the counters in the schema SimulationInstance. The com-

ponents of D Work C that record the status of the states and the history junctions,

precisely, those whose names are pre�xed with is active , is or was , are mapped to the

components state status and state history of SimulationData.

The correspondence between variables is trivial. It is obtained by equating each of the

concrete variables to the corresponding abstract variable whose name is the same except

for a pre�x v . For event counters, we also have a simple mapping: each eEventCounter

component is equated to the corresponding counter e.

The speci�cation of the relation between the is active and is pre�xed variables and

the function state status in SimulationData is de�ned by equating state status to a set

comprehension that speci�es the status of the states using the is active and is variables.

112 CHAPTER 5. REFINEMENT STRATEGY

RetrieveFunction
P Air S
ConcreteState

v air�ow = Air B .air�ow
state status = {s : dom states; active : B •

s = s PowerOn ∧ active =

 if Air DWork .is Air = Air IN PowerOn
thenTrue
elseFalse

 ∨
. . .
s = c Air ∧ active = if Air DWork .is active Air 6= 0 then True else False
}
state history = {}
v temp = Air U .temp

Figure 5.13: Total functional retrieve relation for our example.

Figure 5.13 gives the retrieve relation that we calculate for our example. The set compre-

hension is over state identi�ers s, and booleans active. For each is active S variable, it

requires s = S ∧ active = (if C DWork .is active S 6= 0 then True else False), where

C DWork is the concrete state component whose value is a binding of type D Work C .

For each is S variable and for each substate SS of S , the set comprehension requires

s = s SS ∧ active = (if C DWork .is S = C IN SS then True else False). All these

conditions are composed in a disjunction. In our example, the condition for the state

PowerOn equates s to s PowerOn, and active to True or False depending on whether

the value of is Air , which corresponds to the chart and records its active sequential state,

is Air IN PowerOn or not.

The general form of the retrieve relation that we calculate in this step is shown in Fig-

ure 5.14. It also speci�es the relation between the was pre�xed variables and state history

using a set comprehension. It simply uses Z (nested) conditional expressions to de�ne, us-

ing the value of a was S component, the value of the state identi�er to be associated to s S

in state history . Since our example does not contain history junctions, the D Work Air

record in its implementation has no was �eld. The model of the implementation, there-

fore, has no component that models the state component state history of the chart process.

In this case, in the retrieve relation, we equate state history to the empty function.

In the de�nition in Figure 5.14, we use the following notation.

• Identi�ers PS1, . . . ,PSn for the parallel states and the chart.

• Identi�ers SS1, . . . ,SSo for the states that have a sequential decomposition, possibly

including the chart.

• A function substate(i ,SSj) that identi�es the i-th substate of a state SSj .

• Identi�ers HS1, . . . ,HSp for the states that contain a history junction.

5.3. REFINEMENT STRATEGY 113

• The number ri of substates of SSi .

• Identi�ers LV1, . . . ,LVm for the local variables.

• Identi�ers IV1, . . . , IVs for the input variables, and OV1, . . . ,OVt for the output

variables.

• Names OE1, . . . ,OEq of the output events.

The retrieve relation is always a total function because it is speci�ed by a set of equations

that de�nes each abstract state component as a total function of the concrete components.

Steps 3 and 4. Some of the assignments in the chart, and therefore, in the (abstract)

chart process are implemented as assignments to components of records. In the implemen-

tation model, they become assignments to records themselves. For instance, the assignment

v air�ow := 0 in the action entryaction PowerO� in the chart process corresponds to an

assignment Air B := 〈|air�ow == 0|〉 in the model of the implementation. The simulation

law for assignment, however, does not handle records directly, and therefore, in these steps

we transform the assignments to schema operations.

For that, in Step 3, we introduce the abstract state invariant after the initialisation

operation in the main action of the chart process, and distribute it to just before each of

the assignments in AllActions. The application of the distribution laws raises no proof

obligations because all data operations in the chart process preserve its state invariant. In

Step 4, we convert the assumptions followed by the assignments into schema operations.

For the assignment v air�ow := 0, we get the schema below.

Assign1

∆P Air S

state status ′ = state status ∧ state history ′ = state history

v temp′ = v temp ∧ v air�ow ′ = 0

Step 4 uses a novel, but very simple Law assign-schema-conv. It is de�ned in Appendix E.

Step 5. This is a standard data re�nement step. Using the retrieve relation, we apply

the Circus laws of simulation [76] to obtain a Circus process C P Air Controller by data

re�nement of the process P Air Controller . The state of the new process contains three

components Air B , Air DWork , and Air U .

5.3.2 Normalisation

The objective of this phase is to remove the top (parallel) structure of the chart model,

which re�ects the operational semantics of the State�ow notation (see Chapter 3). This

results in a model whose monolithic, but simple, process structure is adequate as a starting

114 CHAPTER 5. REFINEMENT STRATEGY

RetrieveRelation
AbstractState
ConcreteState

∀ i : 1 . . s • v IVi = C U .IVi

state status = {s : dom states; active : B •
s = s PS1 ∧
active = (if C DWork .is active PS1 6= 0 then True else False) ∨
. . . ∨
s = s PSm ∧
active = (if C DWork .is active PSm 6= 0 then True else False) ∨
s = s substate(1,S) ∧
active = (if C DWork .is SS1 = C IN (substate(1,SS1)) then True else False) ∨
. . . ∨
s = s substate(r1,SS1) ∧
active = (if C DWork .is SS1 = C IN (substate(r1,SS1)) then True else False) ∨
. . . ∨
s = s substate(1,SSn) ∧
active = (if C DWork .is SSn = C IN (substate(1,SSn)) then True else False) ∨
. . . ∨

s = s substate(rn ,SSn) ∧
active = (if C DWork .is SSn = C IN (substate(rn ,SSn)) then True else False)
}
state history = {s : dom states; sub : dom states |
s = s HS1 ∧

sub =



if C DWork .was HS1 = C IN (substate(1,HS1))
then substate(1,HS1)

else


. . .

else

 if C DWork .was HS1 = C IN (substate(r1,HS1))
then substate(r1,HS1)
elsenullstate.identi�er





∨ . . . ∨
s = s HSp ∧

sub =



if C DWork .was HSp = C IN (substate(1,HSp))
then substates(1,HSp)

else


. . .

else

 if C DWork .was HSp = C IN (substate(rp ,HSp))
then substates(rp ,HSp)
elsenullstate.identi�er





}
∀ i : 1 . . p • v LVi = C DWork .LVi

∀ i : 1 . . q • counter OEq = C DWork .OEqEventConter
∀ i : 1 . . t • v OVi = C B .OVi

Figure 5.14: Calculated total surjective functional retrieve relation: general form.

point for us to introduce the structure of the architectural pattern of implementations in

the later phases of the re�nement strategy.

5.3. REFINEMENT STRATEGY 115

1. Remove the parallelism between the chart and the Simulator pro-
cesses. Apply the de�nition of process parallelism (De�nition B.43 [76]).

2. Move the hiding to the main action. Apply the de�nition of process
hiding (De�nition B.45 [76]).

Transform the main action of the resulting process as follows.

3. Isolate the initialisation operation. Apply Law C.73 [76].

4. Distribute the hiding. Apply Law C.125 [76].

5. Eliminate the hiding over the initialisation. Apply Law C.120 [76].

6. Evaluate the parallel recursions. Apply Law rec-par-merge.

7. Re�ne the initialisation. Apply Law seq-assign-conv.

Figure 5.15: Re�nement strategy: normalisation phase.

•


(CInitState ; µX • (µY • (AllActions ; Y @ end cycle −→ Skip)) ; X)

J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {}K

(µX • Step ; end cycle −→ X)

 \ interface
Figure 5.16: Normalisation � Example: Main action after Steps 1 and 2.

The steps of this phase are described in Figure 5.15. We �rst eliminate the parallelism

between the chart and Simulator processes, and then rewrite the main action of the result-

ing new process to a normal form: an initialisation action, followed by a recursive action

that captures each step of execution of the chart.

Following the Circus de�nition of process parallelism [76], we construct the new process

by taking the state of the chart process (since the Simulator process is stateless). For the

main action, we combine those of the chart and Simulator processes in parallel in the same

way the processes were combined. In a parallelism of Circus actions, however, to avoid race

conditions, the variables in scope need to be partitioned among the interleaved actions.

All actions have access to the value of all variables before the parallelism, but can write

only to those in their own partition. In the parallelism created in the Step 1 of this phase,

the name sets that de�ne the partitions list the state components of the original processes.

We also use the de�nition of process hiding to move the hiding of the set interface

of channels to the main action of the resulting process. For our example, it is shown in

Figure 5.16. The parallel action (µX • Step ; end cycle −→ X) is the main action of the

Simulator process. As mentioned before, Step encodes the operational semantics of one

step of execution of an arbitrary chart. The end of a step is marked by a synchronisation

on the channel end cycle.

The following steps, namely, Steps 2 to 7, transform the parallelism of recursions in the

116 CHAPTER 5. REFINEMENT STRATEGY

•


Air U := 〈|temp == 0|〉 ; Air B := 〈|air�ow == 0|〉;
Air DWork := 〈|is active c1 Air == 0, . . . |〉; µX •

 (µY • AllActions ; Y @ end cycle −→ Skip)
J . . . K

Step; end cycle −→ Skip

 ; X

 \ interface


Figure 5.17: Normalisation � Example: Main action at the end.

main action to obtain a single recursion; the result for our example is shown in Figure 5.17.

For conciseness, we omit the name and synchronisation sets in the parallelism, which do

not change.

The Steps 2 to 7 are very simple. The only interesting novelty is the speci�c Law rec-

par-merge, presented below, which transforms a parallelism of recursions into a recursion of

parallelisms. The channel end is instantiated to end cycle in our strategy, and the actions

A and B are instantiated to AllActions and Step.

Law[rec-par-merge]

(µX • (µY • A ; Y @ end −→ Skip) ; X) J ns1 | cs | ns2 K (µX • B ; end −→ X)

=

(µX • ((µY • A ; Y @ end −→ Skip) J ns1 | cs | ns2 K B ; end −→ Skip) ; X)

provided

• end ∈ cs; end 6∈ usedC (A,B)

• wrtV (A) ∩ usedV (B) = ∅; usedV (A) ∩ wrtV (B) = ∅

The two parallel recursions proceed in synchrony. This is enforced by the �rst proviso of

the Law rec-par-merge, which states that the channel end is in the synchronisation set cs

and is only used where explicitly shown. The syntactic function usedC (A) gives the set

of channels used in the de�nition of the action A [76]; also, we use usedC (A,B) as an

abbreviation for usedC (A) ∪ usedC (B).

In the parallel recursions, a communication over end terminates the inner recursion of

the �rst parallel action, and, therefore, one step of its outer recursion, and one step of the

recursion in the second parallel action. In the recursion of parallelisms, this synchronous

behaviour is captured as a single recursion.

We use usedV (A) to denote the set of variables used (read, but not written) by A, and

wrtV (A) the set of variables written by A. The second proviso of the Law rec-par-merge

guarantees that each parallel recursion does not use the variables written by the other.

This is necessary because, after each step of the recursion of parallelisms, the parallel

actions have access to the new values of variables updated in the previous step. This is

not the case in the parallel recursions, because the parallelism does not terminate.

In our veri�cation, the application of Law rec-par-merge allows us to take advantage of

5.3. REFINEMENT STRATEGY 117


MdlInitialize; µX •

 µY • AllActions ; Y @ end cycle −→ Skip
Jns1 | interface ∪ {| end cycle |} | ns2K

Step; end cycle −→ Skip

 ; X

 \ interface


Figure 5.18: Structuring starting point.

the fact that, in both the chart and the Simulator process, each step of execution of the

chart is marked by a synchronisation on end cycle. For each of the steps of the simulator,

an arbitrary number of executions of AllActions may be necessary to provide and update

information about the chart components.

The other new law used in Figure 5.15 are very simple and are listed in Appendix E as

usual.

5.3.3 Structuring

In this phase, we introduce the sequential control structure of the implementation: the

structure of the client in Figure 5.9. For parallel implementations, the next phase (paral-

lelism introduction) introduces the servers.

Starting point The steps of this phase are to be applied to the normalised process

obtained in the previous phase. The general form of its main action is illustrated in

Figure 5.17 and described in Figure 5.18, where MdlInitialize stands for a sequence of

assignments that initialise the state. The action Step of the Simulator process is de�ned

as shown and explained below. A detailed description is in Chapter 3.

Step =̂

 events?es −→ input event?vs : (# vs = # es)−→ read inputs−→
ExecuteEvents(es, vs);

write outputs −→ Skip


ExecuteEvents =̂ es : seqEVENT ; vs : seqB • (; i : id(1 . .# es) • ExecuteEvent(es(i), vs(i)))

ExecuteEvent =̂ e : EVENT ; v : B •

 if v = True−→ ExecuteChart(e)

8 v = False−→ Skip

�


Step requests from the chart a sequence es of input events, reads a sequence vs (of the

same size) of boolean values associated to these events, requests the chart to read the input

data, executes the chart for each event by calling another action ExecuteEvents(es, vs), and

requests the chart to write its outputs.

ExecuteEvents is de�ned by an iterated sequence of calls ExecuteEvent(es(i), vs(i))

that execute the chart for each of the events in es (and their associated values in vs).

ExecuteEvent(e, v) models the execution of the chart for the event e; the boolean parameter

118 CHAPTER 5. REFINEMENT STRATEGY

v indicates whether it occurred or not. An alternation calls the action ExecuteChart(e) if

e did occur, that is, v = True. It is ExecuteChart(e) that models the execution of the

chart for e. (Its de�nition is in Chapter 3).

Target In this phase, the state of the normalised process is extended to include the

components sfEvent C , which records the event being handled, and C Y , which records

the �nal value of the output data and events in each step, and to extend the record in

C B , to include components that keep the value of the output events as they are calculated

during a step of execution, and the record in C U , to include a component inputevents

that keeps the input values associated with each event. Basically, the global variables and

the components of the record-valued global variables of the program that are used in the

treatment of inputs and outputs are introduced and allocated in the right record of the

program data model.

The main action of the process resulting from this phase of re�nement is completely

sequential, and has no schema operations, just assignments. Its overall structure, which

is depicted in Figure 5.9 and formalised in Figure 5.10, is described in more detail in

Figures 5.19, 5.20, and 5.21: we also provide the structure of calculate output , which

corresponds to that of the model of the procedure calculate output in Figure 5.5.

As already said, this main action initialises the state (MdlInitialize) and starts a recur-

sion whose iterations model the implementation of the execution of one step of the chart.

In each iteration, (1) the inputs are read using an action that we denote as ReadInputs in

Figure 5.19; (2) some calculations are carried out, as de�ned by the sequence of alterna-

tions in Figure 5.19; (3) the outputs are written using an action whose pattern is de�ned

in Figure 5.21; and (4) the end of the step is signalled using end cycle.

In the calculations, for each input event represented by the i-th element of the sequence

C U .inputevents, if it occurred (C U .inputevents(i) = True), the action updates the

value of the state component sfEvent C to the corresponding event (Ei), and executes the

chart. The order of the events is determined by the chart. The pattern of the actions that

execute the chart is sketched in Figure 5.20.

If the chart is not active (C DWork .is active C = 0), an action that executes the

chart activates it by changing the value of is active C in the state component C DWork

to 1. This is modelled by an assignment to a binding component (or, more precisely,

an assignment to a binding that changes the value of just one component). Afterwards,

the action executes the tasks required to enter the states of a chart. This is omitted in

Figure 5.20 and further discussed later. If the chart is active, the action checks which

substates Si are active (if any), and executes them. In Figure 5.20, we show the pattern

for a chart with a sequential decomposition and substates S1, S2, and so on.

If a state contains a local event broadcast to the whole chart, the pattern of the execu-

tion of that state includes a recursive call in a pattern illustrated in Figure 5.20 as part of

the execution of S1. It uses a local variable c previousEvent to record the current event,

updates sfEvent C to the broadcast event LE , and makes a recursive call to reexecute the

5.3. REFINEMENT STRATEGY 119

MdlInitialize;

µX •



ReadInputs;


if C U .inputevents(1) = True−→
sfEvent C := E1 ; . . . (Figure 5.20)

8 C U .inputevents(1) = False−→ Skip
�

 ;

. . . ;
if C U .inputevents(n) = True−→
sfEvent C := En ; . . . (Figure 5.20)

8 C U .inputevents(n) = False−→ Skip
�




;

(Figure 5.21)
; end cycle −→ X




Figure 5.19: Structuring target.



µY •



var c previousEvent : N •

if C DWork .is active C = 0−→
C DWork := 〈|is active C == 1, . . . |〉 ; . . .

8 C DWork .is active C > 0−→

if C DWork .is C = C IN S1−→

. . .


c previousEvent := sfEvent C ;
sfEvent C := LE ;
Y ;
sfEvent C := c previousEvent ;

 ; . . .

8 C DWork .is C = C IN S2−→

. . .

 µZ •

 if ct −→ . . .Z
8 ¬ ct −→ Skip
�

  ; . . .

8 . . .
�


�






Figure 5.20: Structuring target - chart execution.


if C DWork .counter E > 0−→

C DWork := 〈|counter E == (C DWork .counter E − 1), . . . |〉 ; C B .E := True
8 C DWork .counter E = 0−→ E := False
�

 ;

. . . ;
C Y := C B ;
o E !(C Y .E)−→ Skip 9 . . . 9 o v !(C Y .v)−→ Skip 9 . . .

Figure 5.21: Structuring target - writing the outputs.

120 CHAPTER 5. REFINEMENT STRATEGY

chart under the new event. Afterwards, sfEvent C is restored.

The pattern of the implementation of a transition loop (involving just junctions) is

shown in Figure 5.20 as part of the execution of S2. It introduces a recursion, where an

alternation decides the termination of the loop. We use ct to stand for the check of the

guard (condition and trigger) of the �rst transition in the loop. If the transition is to be

followed, we eventually have a recursive call. If not, the loop is terminated.

As previously mentioned, Figure 5.21 describes the form of the action that communi-

cates the output events and variables. Through a channel o E corresponding to an event

E , we communicate a boolean, indicating whether E occurred or not. This is determined

by a preceding alternation that checks the counter for E in C DWork , and stores the

result of the check in a new component of C B also named E . If the counter is positive,

its value is decremented. The assignment C Y := C B records in the C Y component,

which corresponds to a shared variable of the program, the calculated values of the output

variables and events recorded in C B . The interleaving of communications realises the

sharing by outputting the value of the components of C Y . Through o E we communi-

cate the value of E as stored in C Y , and through a channel o v we communicate the

value of the variable v stored in C Y .

Re�nement steps Figure 5.22 shows the steps of the structuring phase; each of them

is the application of a separate re�nement procedure speci�ed later in this section. The

�rst step introduces local variables that later become part of the concrete state, the follow-

ing four steps introduce di�erent elements of the control structure of the implementation

architecture, and the last step simpli�es the resulting actions. In the sequel we give an

overview of these steps and of the re�nement procedures.

Step 1 The procedure input-event-var-introduction is presented in Section 5.3.3.1. It intro-

duces inputevents and sfEvent C as local variables in the parallel action Step (originally in

the Simulator process), and then extends their scope. This gives Step control over the new

state components in the parallelism: as a result of these steps, inputevents and sfEvent C

are added to the name set ns2 of the parallelism (see Figure 5.18).

Step 2 In general terms, the procedure parallelism-resolution systematically applies, to

the body of the outer recursion in the main action, step laws to resolve the parallelism

between the recursion o�ering AllActions, and Step. As it does so, it unravels the structure

embedded in AllActions and Step: alternations that check the status of chart states, the

occurrence of events, and guards of transitions. The result, which we sketch in Figures 5.23,

5.24, and 5.25, is an action whose structure is closer to that of the implementation model,

but may still retain some parallel actions. This arises if the chart has local event broadcasts

or transition loops (involving just junctions). These parallelisms are the target of the next

step of the structuring phase.

The overall structure (Figure 5.23) is a sequence, where ReadInputs is followed by

5.3. REFINEMENT STRATEGY 121

1. Introduce input event variables. Apply procedure input-event-var-
introduction.

2. Introduce alternations in calculate output. Apply the procedure
parallelism-resolution to the body of the outer recursion in the main action.

3. Introduce recursions that implement event broadcast and transi-
tion loops. Apply the procedure recursion-introduction to the body of the
outmost recursion in the main action.

4. Introduce assignments. Apply procedure assignment-introduction to the
body of the outmost recursion in the main action.

5. Introduce update of outputs. Apply procedure update-output to the
second action in the sequence that de�nes body of the outmost recursion in
the main action.

6. Simplify. Apply the procedure simpli�cation to the recursion in the main
action.

Figure 5.22: Re�nement strategy: structuring phase



ReadInputs;

if C U .inputevents(1) = True−→ sfEvent C := E1 ; . . . ; (Figure 5.24)
8 C U .inputevents(1) = False−→

. . .
if C U .inputevents(n) = True−→
sfEvent C := En ; . . . ; (Figure 5.24)

8 C U .inputevents(n) = False−→ end cycle −→ Skip
�




�





Figure 5.23: Structuring: body of the outmost recursion in the main action after Step 2.

nested alternations that check the value of each of the input events in order. If the

i-th event occurred (C U .inputevents(i) = True), then Ei is recorded as the current

event (sfEvent C := Ei), and the chart is executed. This involves internal communica-

tions (omitted in Figure 5.23 and eliminated in Step 6), followed by a variable block as in

Figure 5.24.

The body of the variable block also contains internal communications followed by an-

other group of nested alternations that check for the active states and valid transitions. It

is as part of executing a state or following a transition that there may remain parallelisms.

Those that are sketched in Figure 5.24 correspond to a local event broadcast (as part of

executing S1) and a transition loop involving just junctions (as part of executing S2). Once

all the checks and executions are carried out, further alternations (similar to those in Fig-

ure 5.23) check whether the remaining events, if any, have occurred. When all events have

been considered, the outputs are produced, and a synchronisation on end cycle signals the

122 CHAPTER 5. REFINEMENT STRATEGY

var c previousEvent : N • . . . ;

if C DWork .is active C = 0−→ . . .
8 C DWork .is active C 6= 0−→ . . .

if C DWork .is C = C IN S1−→

. . .


c previousEvent := sfEvent C ; sfEvent C := LE ; µY • AllActions ; Y @ end local execution −→ Skip

Jns1 | cs | ns2 ∪ {sfEvent C}K
ExecuteChart(sfEvent C) ; end local execution −→ Skip

 ;

sfEvent C := c previousEvent

 ; . . .

8 C DWork .is C 6= C IN S1−→

if C DWork .is C = C IN S2−→

. . .



if ct−→

. . .

 (µY • AllActions ; Y @ end cycle −→ Skip)
Jns1 | cs | ns2 ∪ {sfEvent C}K

ExecuteTransition(t , p, s, sfEvent C)


8 ¬ ct −→ . . .
�


8 C DWork .is C 6= C IN S2 −→ . . .
�


�


�



Figure 5.24: Structuring: part of the main action after Step 2.






if C DWork .counter E > 0−→

C DWork := 〈|counter E == (C DWork .counter E − 1), . . . |〉;
o E !(True)−→ Skip

8 C DWork .counter E = 0−→ o E !(False)−→ Skip
�


||[{C DWork .counter E} | . . .]||

. . .


||[. . . | . . .]||

(o v !(C B .v)−→ Skip 9 . . .)



Figure 5.25: Structuring: main action after Step 2 - writing outputs.

end of the step.

Figure 5.25 describes the action that communicates the outputs. It shows that the

main action resulting from this step also retains interleavings. They arise from the parallel

communications of output events and variables, and are tackled in Step 5 to produce an

action in the target form de�ned in Figure 5.21. Like parallel actions, interleaved Circus

actions are associated with name sets that partition the variables in scope to avoid race

conditions. In fact, as de�ned in [76], parallelisms and interleavings do not accept partitions

at the level of �elds of individual record-valued components as in Figure 5.25. For this, we

need to extend the de�nition of parallelism (and, consequently, interleaving). In the Circus

semantics, the state after a parallel action is determined by a merge operation that takes

5.3. REFINEMENT STRATEGY 123



µY •

var c previousEvent : N • . . . ;

if C DWork .is active C = 0−→ . . .
8 C DWork .is active C 6= 0−→ . . .

if C DWork .is C = C IN S1−→

. . .


c previousEvent := sfEvent C ;
sfEvent C := LE ;
Y ;
sfEvent C := c previousEvent

 ; . . .

8 C DWork .is C 6= C IN S1−→

if C DWork .is C = C IN S2−→

. . .

 µZ •

 if ct −→ . . .Z
8 ¬ ct −→ . . .
�

 
8 C DWork .is C 6= C IN S2 −→ . . .
�


�


�






Figure 5.26: Structuring: body of the outmost recursion in the main action after Step 3.

into account the partition. So it is enough to change this merge operation to support the

kind of partitioning that we are using.

The details of the procedure parallelism-resolution are presented in Section 5.3.3.2. It is

rather extensive, as it has to consider the several forms of parallelism that can arise from

the application of the step laws.

Step 3 This deals with the parallelisms left in the previous step, if any. The procedure

recursion-introduction de�nes new recursive actions and proves their equivalence to the

existing parallel actions. The result of this step transforms the main action so that variable

blocks like those in Figure 5.24 change: in the case illustrated, where we have a local event

broadcast to the chart as a whole, the block itself becomes a recursive action as sketched

in Figure 5.26. We present recursion-introduction in Section 5.3.3.4.

Step 4 This step re�nes the main action so that all calls to actions de�ned by schema

operations are re�ned to assignments, by applying the procedure assignment-introduction.

It is presented in Section 5.3.3.5. After this step, we have no abstract speci�cation of data

operations left, just assignments.

Step 5 As already mentioned, as a result of Step 2, output events and data are commu-

nicated in interleaving (see Figure 5.25). The objective of this step is to gather together

the construction of the values to be output, before making all outputs available (still in

124 CHAPTER 5. REFINEMENT STRATEGY

interleaving). As a result, we introduce the action described in Figure 5.21. The proce-

dure update-output used for that is described in Section 5.3.3.6.

Step 6 To conclude the structuring phase, we have a �nal simpli�cation step. The

operational semantics of State�ow charts, as speci�ed in the Simulator process of the

chart models, considers all possible paths of execution that might arise in the execution

of an arbitrary chart. Typically, the semantics of a particular chart, as de�ned by the

chart process, does not involve all these paths. We, therefore, in carrying out the Steps 2

and 4 above, which basically evaluate the semantics of the chart in a systematic way, may

introduce unnecessary assignments, and alternations. They are eliminated in this step.

Unnecessary assignments arise, for example, when a transition loop leads to a path that

exits and subsequently enters the same state. In this case, during this step we remove the

sequence of two assignments that record the state as inactive and then active. Unnecessary

alternations arise, for example, when absence of local event broadcast makes it unnecessary

to check early return logic conditions. In this case, during this step we remove alternations

whose conditions can be shown to be always true or false.

Additionally, in this step, we remove unnecessary local variables (that arise from the ac-

tion that models early return logic checks). Finally, we also eliminate internal channels that

are originally used for communication between the chart and Simulator processes. These

communications are no longer necessary, since the parallelism between these processes has

been eliminated.

The procedure simpli�cation applied in this step is described in Section 5.3.3.7.

5.3.3.1 Procedure input-event-var-introduction

The steps of this procedure are presented in Figure 5.27. The �rst two steps are related to

the introduction of inputevents, and the Steps 3 and 4 to the introduction of sfEvent C .

The �nal step promotes both variables to state components. The Law var-assign-intro used

in Steps 1 and 3 to introduce both variable allows us to introduce both a local variable

declaration and an assignment to initialise the new variable. The new, but simple, laws

used in Steps 2 and 4 extend the scope of a variable declaration.

5.3.3.2 Procedure parallelism-resolution

This procedure takes as parameters a set loopT of transitions that start loops, a set treatedT

of such transitions that have already been treated by the procedure, which is initially empty,

and the parallel action A being re�ned. It is a recursive procedure de�ned in terms of the

syntactic structure of A.

In the sequel, we describe how each form of parallelism is re�ned by this procedure.

For each (non-trivial) case, we present up to three �gures: the �rst de�nes a pattern of

parallel actions, the second speci�es the re�nement steps to be applied to actions in this

pattern, and the third gives an overview of the resulting re�ned action. The third �gure

5.3. REFINEMENT STRATEGY 125

1. Introduce variable inputevents. Apply Law var-assign-intro to the action
pre�xed by the communication input event?vs : (# vs = # es). The type
to be used for inputevents is seqB, and the initialisation value is vs.

2. Extend the scope of inputevents to the whole action. Apply Law var-
pre�x-ext twice, apply Law C.138 [76] to the parallelism, Law var-tail-rec-ext
to the recursion, and �nally Law var-seq-ext-left to the outer sequence.

3. Introduce variable sfEvent C of type N. Apply Law var-assign-intro to
the call to ExecuteChart . The type to be used for sfEvent C is N, and the
initialisation value is es(i).

4. Extend the scope of sfEvent C to the whole action. Apply Law var-
alt-dist to the alternation, apply Law var-iter-seq-ext to the iterated se-
quential composition, Law C.100 [76] to action pre�xed by read inputs,
Law C.137 [76] to the right-hand side of the parallelism, Law C.138 [76] to
the parallelism, Law var-tail-rec-ext to the recursion, and Law var-seq-ext-left
to the outer sequence.

5. Promote sfEvent C and inputevents to a state component. Apply
Law A.5 [14] to the process twice.

Figure 5.27: Re�nement strategy: structuring phase - input-event-var-introduction

(µY • AllActions ; Y @ end cycle −→ Skip) J ns1 | cs | ns2 K c −→ A

Figure 5.28: parallelism-resolution: pre�xing over channel in the synchronisation set on the
right-hand side.

also boxes the subactions of the result to which the procedure is applied recursively. The

possible cases are determined by the form of the AllActions and Step actions of our model.

A. Parallel composition unity (base case) The rather trivial �rst case is the base

case of our procedure: a parallelism Skip J ns1 | cs | ns2 KSkip. It requires the application
of Law C.90 [76] to obtain Skip.

B. Pre�xing over channel in the synchronisation set on the right-hand side

This case covers the situation where the right-hand side (originally, the process Simulator)

is requesting the left-hand side (originally the chart process) to execute an action. This is

characterised in Figure 5.28, where c is in cs.

In our re�nement strategy, for every model, this is the �rst case applicable, by the

de�nition of Step, the action on the right-hand side of the target of the Step 2, which

uses parallelism-resolution. As explained above, Step is a pre�xing over a communication

through events, which is in the synchronisation set.

The re�nement has to evaluate the communication. Since, the synchronisation is of-

fered by AllActions, we need to unfold the recursion. The precise steps are described in

Figure 5.29.

126 CHAPTER 5. REFINEMENT STRATEGY

1. Unfold recursion. Apply Law C.128 [76] to the left-hand side of the
parallelism.

2. Expand action calls. Apply to the outermost occurrence of AllActions
the copy rule exhaustively, except to calls to broadcast .

3. Distribute sequence. Apply Law C.112 [76].

4. Distribute parallelism. Apply Law C.87 [76] from right to left.

5. Introduce deadlocks. Apply Law C.92 [76] exhaustively.

6. Eliminate deadlocks. Apply Law C.114 [76] exhaustively.

7. Recurse. Apply the procedure parallelism-resolution.

Figure 5.29: parallelism-resolution: steps for pre�xing over channel in the synchronisation
set on the right-hand side.

c −→ B ; (µY • AllActions ; Y @ end cycle −→ Skip) J ns1 | cs | ns2 K c −→ A

Figure 5.30: parallelism-resolution: result for pre�xing over channel in the synchronisation
set on the right-hand side.

In the �rst step, we unfold the recursion on the left-hand side of the parallelism to

obtain an external choice between AllActions and end cycle−→Skip. In the second step,

we expand the de�nition of AllActions and all its subactions (except for the chart action

broadcast , since this is not needed and would lead to nontermination, due to recursive calls

to AllActions itself). The result is of the following form.

(((c1 −→ . . . @ . . . @ cn −→ . . .) ; (µY • AllActions . . .)) @ end cycle −→ Skip) J ns1 | cs | ns2 K c −→ A

It is an external choice, which is sequentially composed with the original recursion; this

sequence is itself in choice with end cycle −→ Skip, and this external choice is in parallel

with the right-hand actions. Steps 3 and 4 distribute the sequential composition over the

external choice, and then the parallel composition over the resulting external choice, to

obtain an external choice of parallel actions. Each parallel action so obtained is pre�xed

by a single communication. Step 5 evaluates the deadlocked parallelisms to Stop, and

Step 6 eliminates them from the choice (using the unit law of external choice). Because

for each possible request c there is necessarily a unique matching initial communication

in AllActions, we are guaranteed to have exactly one non-deadlocked parallelism after

Step 4. Finally, we recursively apply parallelism-resolution to the remaining parallel action.

The parameters of the recursive call are loopT and treatedT unchanged, and the boxed

action in Figure 5.30, which gives the form of the action resulting in this case.

For our example, when this case is applied, we obtain the action below (before recurs-

5.3. REFINEMENT STRATEGY 127

ing).

 events!〈e SWITCH , e CLOCK 〉 −→ Skip ; (µY • AllActions ; Y @ end cycle −→ Skip)

J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K
(events?es −→ input event?vs : (# vs = # es)−→ inputevents := vs ; read inputs −→ . . .)


Since the �rst communication of Step is an input events?es, the matching output through

events in AllActions is revealed. The assignment to inputevents now on the right-hand

side of the parallelism was introduced as a result of the Step 1 of the structuring phase

described previously.

C. Synchronisation This case occurs as a result of re�nement carried out in the previ-

ous case; it evaluates the parallel pre�xed actions that are unfolded (see Figure 5.30) using

standard step laws. If we have a simple synchronisation, we apply Law C.105 [76]. If we

have a pair of input and output communications c?x and c!e, we apply Law C.107 [76]

to obtain a(n internal) communication c.e followed by a parallelism in which e is substi-

tuted for x on the input side (and to which we apply the procedure parallelism-resolution

recursively, with parameters loopT and treatedT unchanged as in the previous case).

Proceeding with our example, we obtain the action below as a result of applying this

case.

events.〈e SWITCH , e CLOCK 〉−→ Skip ; (µY • AllActions ; Y @ end cycle −→ Skip)

J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K
(input event?vs : (# vs = 2)−→ inputevents := vs ; read inputs −→ . . .)


The communication on events is evaluated and extracted from the parallelism. Addition-

ally, in the input side of the parallelism, the value of e is determined by the output: # es,

for instance, can be resolved to 2. (In the case of es, this also allows us to remove the use

of the iterated sequence operator in ExecuteEvents.)

D. Leading Skip on either side In this case we clear any leading Skip actions

that are left over on either side of the parallelism, or more precisely, simplify actions

(Skip ; A) J ns1 | cs | ns2 K B for example. For that, we use a unit law of sequence

(Law C.132 [76]), before recursing. The similar case where the assignment is on the right-

hand side can be handled by a similar law (or by relying on commutativity of parallelism).

In the sequel, for every case, like this one, where the pattern of interest can be charac-

terised by either parallel action, we explain what to do when it appears on the left-hand

side. The re�nement for the situation where it appears on the right-hand side can either

rely on commutativity or on a set of similar laws.

Proceeding with our example, after this case, we remove the Skip before the recursion

involving AllActions.

128 CHAPTER 5. REFINEMENT STRATEGY

(c −→ A) J ns1 | cs | ns2 K B or A J ns1 | cs | ns2 K (c −→ B)

Figure 5.31: parallelism-resolution: pre�xing over channel not in the synchronisation set on
either side.

E. Pre�xing over channel not in the synchronisation set on either side This

case deals with the communications with the environment. The relevant channels are the

input and output channels (used in the left parallel action) and input event (used in the

right action). In general, this case covers parallelisms as shown in Figure 5.31. A simple

step law pre�x-parallelism-dist-2 carries out the re�nement to extract the communication

from the parallelism. We can show that its provisos always hold, since the structure of

the process we are re�ning is quite restricted. For instance, it is easy to show that for

all communications that are relevant to this case, the �rst possible communication on the

opposite side of the parallel composition is over a channel in the synchronisation set. (On

the left, we have communications on input and output channels; according to the de�nition

of Simulator , at these points Step is always waiting for an internal communication. On the

right, we have a communication on input events, and the de�nition of AllActions shows

that its initials only contains communications in the synchronisation set.)

Proceeding with our example, we obtain the action below.

events.〈e SWITCH , e CLOCK 〉 −→ input event?vs : (# vs = 2)−→ µY • AllActions ; Y @ end cycle −→ Skip

J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K
(inputevents := vs ; read inputs −→ . . .)


The communication with the environment on input events is extracted from the paral-

lelism.

F. Leading assignment on either side This case covers parallel actions of the form

(v := e ; A) J ns1 | cs | ns2 K B or AJns1 | cs | ns2 K (v := e ; B). Basically, we use

our simple law assign-par-dist to extract the assignment from the parallelism. Its provisos

require that the assigned variables are in the name set of the parallelism, and are not

used by the other parallel action. These always hold by construction, since assignments

result from the re�nement of schema operations in the normalisation phase, or from the

introduction of local variables in the Step 1 of the structuring phase. In the �rst case, the

assignments change state components, which are always used exclusively by the left-hand

side of the parallelism, and whose names are in the appropriate name set by construction

of the model. In the second case, the local variable and the assignment are introduced in

one side of the parallelism, thus the other side does not use them, and when the scope of

the local variable is expanded over the parallelism on the other side, the variable name is

included in the appropriate name set. Therefore, in both cases, the provisos raised by this

case are satis�ed.

Proceeding with our example, the re�nement in this case extracts the assignment

5.3. REFINEMENT STRATEGY 129

  A1

||[ns1 |
⋃
i : 2 . . n • nsi]||

(. . . ||[nsn−1 | nsn]|| An)

 ; B

 J nsx | cs | nsy K C

Figure 5.32: parallelism-resolution: leading interleaving on the left-hand side. A1

||[ns1 |
⋃
i : 2 . . n • nsi]||

(. . . ||[nsn−1 | nsn]|| An)

 ; (B J nsx | cs | nsy K C)

Figure 5.33: parallelism-resolution: result for leading interleaving on the left-hand side.

inputevents := vs from the parallelism. Moreover, further recursive applications of previous

cases extract the internal communication read inputs, and the external communication in

AllActions over the channel i temp corresponding to the input variable temp. In general,

however, there may be several input variables and, consequently, several input communi-

cations in interleaving. This is the object of the next case.

G. Leading interleaving on the left-hand side This case covers actions characterised

as shown in Figure 5.32. We have on the left an interleaving of actions A1, . . .An , followed

by an action B , all in parallel with another action C . Each Ai is associated in the inter-

leaving with a name set nsi , so that the name set of the interleaving of actions Ai to An

is the union of the sets nsi to nsn .

In this case, we simply apply the step law C.84 [76] to extract the interleaving from the

parallelism (and recursively call the parallelism-resolution procedure). The result is shown

in Figure 5.33.

The provisos of Law C.84 always hold by the construction of the model. This case only

arises after the re�nement related to communications over read inputs and write outputs.

In the �rst case, the �rst communication on the right-hand side is over the channel chart in

the synchronisation set, and in the second case, the �rst communication is over end cycle,

which is also in the synchronisation set. All the communications in the interleaving are

over channels not in the synchronisation set because they communicate inputs and outputs

of the chart. The variables written by the interleaving are not used by the right-hand side

of the parallelism. In the case the interleaving preceded by read inputs, the variables

written by the interleaving are the input variables, and in the case of the interleaving

preceded by write outputs, the written variables correspond to event counters. In both

cases, these variables are only written by the action on the left-hand side of the parallelism,

which originates from the chart process, and are contained in its name set. Moreover, both

parallel actions are divergence free, also by construction of the model and its re�nement.

H. Alternation followed by sequence, on either side As already mentioned, the

structure of AllActions and Step involves a number of alternations. This case covers their

treatment, considering actions of the form shown in Figure 5.34 or the similar cases where

130 CHAPTER 5. REFINEMENT STRATEGY

  if g −→ A1

8¬ g −→ A2

�

 ; B

 J ns1 | cs | ns2 K C

Figure 5.34: parallelism-resolution: alternation followed by sequence, on either side.

the alternation is on the right-hand side of the parallelism. All alternations have mutually

exclusive guards g and ¬ g .

Proceeding with our example, at this stage, we have the action below, where the alter-

nations now shown on the right parallel action are originally part of ExecuteEvent .

events.〈e SWITCH , e CLOCK 〉 −→ input event?vs : (# vs = 2)−→ inputevents := vs;

read inputs−→

µY • AllActions ; Y @ end cycle −→ Skip

J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K


if inputevents(1) = True−→

sfEvent Air := e SWITCH ; ExecuteChart(sfEvent Air)

8 inputevents(1) = False−→ Skip

�

 ;


if inputevents(2) = True−→

sfEvent Air := e CLOCK ; ExecuteChart(sfEvent Air)

8 inputevents(2) = False−→ Skip

�

 ;

write outputs −→ end cycle −→ Skip




In general, the alternations can involve checks that depend on the current state of the

chart, for instance, the veri�cation of the guard of a transition, or can decide how to

proceed based solely on the structure of the chart. These arise from the generality of the

semantics encoded in the process Simulator . The two types of alternation can be easily

distinguished by the names used in the guards. If a guards refers to state components,

it is of the �rst type. If not, it is of the second type, and can be eliminated using the

static information that de�nes the structure of the chart. This is achieved in this step. In

our example above, the alternation refers to the state component inputevents and is not

eliminated.

The re�nement steps to be carried out in this case are shown in Figure 5.35, and the

possible outcomes of this case are shown in Figure 5.36. We �rst distribute the sequential

composition over the alternation, and then the parallelism using the fact that the guards

of the alternation are mutually exclusive. Next, if the guard refers to state components, we

recursively apply the procedure parallelism-resolution to the actions in each branch. If the

guard does not refer to state components, we remove the alternation using the de�nitions

of constants like s O� 3, states, and transitions (see Appendix C). Finally, we recursively

apply this procedure to the remaining action with the remaining parameters unchanged.

The result depends on whether the alternation is eliminated or not: both option are

5.3. REFINEMENT STRATEGY 131

1. Apply Law alt-seq-dist.

2. Distribute parallelism. Apply Law alt-par-dist.

3. If g refers to a state component, recursively apply parallelism-resolution to
each branch. Otherwise, apply Law alt-elim, before recursing.

Figure 5.35: parallelism-resolution: steps for alternation followed by sequence, on either
side. 

if g −→ (A J ns1 | cs | ns2 K B1)

8 ¬ g −→ (A J ns1 | cs | ns2 K B2)

�

 or (A J ns1 | cs | ns2 K B)

Figure 5.36: parallelism-resolution: possible results for alternation followed by sequence, on
either side.

shown in Figure 5.36.

If we proceed with our example, we obtain the following action.

events.〈e SWITCH , e CLOCK 〉 −→ input event?vs : (# vs = 2)−→ inputevents := vs ; read inputs−→

if inputevents(1) = True−→

µY • AllActions ; Y @ end cycle −→ Skip

J . . . K

sfEvent Air := e SWITCH ; ExecuteChart(sfEvent Air);
if inputevents(2) = True−→

sfEvent Air := e CLOCK ; ExecuteChart(sfEvent Air)

8 inputevents(2) = False−→ Skip

�

 ;

write outputs −→ end cycle −→ Skip




8 inputevents(1) = False−→

µY • AllActions ; Y @ end cycle −→ Skip

J . . . K


if inputevents(2) = True−→

sfEvent Air := e CLOCK ; ExecuteChart(sfEvent Air)

8 inputevents(2) = False−→ Skip

�

 ;

write outputs −→ end cycle −→ Skip




�


At this stage, recursive calls to parallelism-resolution lead to a number of applications of

the previous cases, until we reach a parallelism whose right-hand parallel action is a call

to ExecuteChart .

I. Call action on either side Whenever a call action is the leading action in one of the

sides of the parallelism, and none of the other cases apply, we expand it using a procedure

copy. This simply replaces a call to an action with its de�nition, with the appropriate

parameters substituted. This procedure is described in Section 5.3.3.3. It basically applies

132 CHAPTER 5. REFINEMENT STRATEGY

1. If action called is ExecuteTransition(t , p, s, e, success) and t ∈ loopT .

(a) If t 6∈ treatedT
i. Expand call. Apply procedure copy to expand the de�nition.
ii. Recurse. Recursively apply the procedure parallelism-resolution

to the parallel action with parameters loopT and treatedT ∪ {t}.
(b) else, do nothing.

2. else

(a) Expand call. Apply the copy procedure.

(b) Recurse. Apply the procedure parallelism-resolution with the original
parameters.

Figure 5.37: parallelism-resolution: steps for call action on either side.

the copy rule, dealing with both value and value-result parameters, and eliminates the

spurious local variables introduced as a consequence. With an application of this case, we

can proceed with our example to expand the call to ExecuteChart .

If the action that is called is the Simmulator action ExecuteTransition, however, the

re�nement to be carried out in this case is di�erent. Figure 5.37 shows the re�nement

steps for this case, where calls to ExecuteTransition are singled out. ExecuteTransition

models the execution of a sequence of transitions; it takes as parameters the identi�er

tid of the �rst transition, the sequence path of identi�ers of the transitions that have been

successfully followed so far, the source state of the transition path, the current event ce and

the value-result parameter success used to indicate the success or failure of the execution.

When executing a transition loop through a call to ExecuteTransition, the uncontrolled

application of the procedure copy leads to nontermination. To avoid that, we use the

parameters loopT and treatedT of parallelism-resolution.

If in a call to ExecuteTransition, the �rst argument t is the identi�er of a transition

that starts a loop (t ∈ loopT), there are two possible situations: a call to ExecuteTransition

with t as argument has already been expanded previously (t ∈ treatedT), or not. If this

is the �rst call to ExecuteTransition with t as argument to which parallelism-resolution is

applied, the call is expanded as usual, using the procedure copy, and parallelism-resolution is

applied recursively action with parameters loopT and treatedT ∪{t}, that is, t is marked as
�treated". If t is already in treatedT , we leave the parallelism unresolved. It is re�ned later

in the Step 3 of the structuring phase. If the call to ExecuteTransition has an argument t

that does not start a loop (t 6∈loopT), or the call is not to ExecuteTransition, we expand the

call, and recursively apply parallelism-resolution to the parallel action with the remaining

parameters unchanged.

Whatever the outcome of this case, we are left with a parallel action. Additionally, if

as a result we have a recursive call to parallelism-resolution, we now have eliminated

the action call.

5.3. REFINEMENT STRATEGY 133

(SchAct ; (µY • AllActions ; Y @ end cycle −→ Skip)) J ns1 | cs | ns2 K A

Figure 5.38: parallelism-resolution: leading schema operation on the left-hand side.

SchAct ; ((µY • AllActions ; Y @ end cycle −→ Skip) J ns1 | cs | ns2 K A)

Figure 5.39: parallelism-resolution: result for leading schema operation on the left-hand
side.

A J ns1 | cs | ns2 K (µX • B [X])

Figure 5.40: parallelism-resolution: explicit recursion on the right-hand side.

A J ns1 | cs | ns2 K B [(µX • B [X])]

Figure 5.41: parallelism-resolution: result for explicit recursion on the right-hand side.

J. Leading schema operation on the left-hand side In our example, after expanding

ExecuteChart , several of the previous cases apply. Eventually, we reach a parallelism where

on the left-hand side we have a schema operation. The process Simulator does not have

schema operations, and so this kind of action can only appear on the left. They are used to

model chart actions (entry, during, and so on) and activation and deactivation operations.

Just like assignments, these schemas are extracted from the parallelism.

Figure 5.38 shows the general pattern covered in this case; as said above, it arises

from applications of the previous cases to unfold the recursion on AllActions. Figure 5.39

presents the result of this step of the procedure, which is just an application of Law C.73 [76].

The provisos require that the variables modi�ed by the schema are in the name set of the

parallelism, and are not used by the other parallel action. These always hold by construc-

tion of the model. (The Simulator process does not change or use the state of the chart

process.) As usual, we recursively apply the procedure to the remaining parallel action as

indicated in Figure 5.39. The other parameters of the recursive application are loopT and

treatedT (both unchanged).

K. Explicit recursion on the right-hand side The action ExecuteChart involves

communication that request the execution of a chart action. These are speci�ed as se-

quences of Circus actions, some of which may correspond to local event broadcasts. In Step,

at this point, we have, therefore, a call to one of the Simulator actions LocalEventEntry ,

LocalEventDuring , LocalEventExit , LocalEventCondition or LocalEventTransition, depend-

ing on the type of chart action. These Simulator actions are all recursions (that o�er a

choice between treating a local event and recursing, or signalling the end of the chart

action). Additionally, at several points in Step, we have a call to transitionActionCheck ,

which is also a recursion (that checks the status of the substates of another state as part

of the modelling of the check of early return logic condition).

In this case, we unfold the recursions. It applies to actions of the form shown in

134 CHAPTER 5. REFINEMENT STRATEGY

1. Distribute sequence. Apply Law C.112 [76].

2. Distribute parallelism. Apply Law C.87 [76].

3. Introduce deadlocks. Apply Law C.92 [76].

4. Eliminate deadlocks. Apply Law C.114 [76].

5. Recurse. Apply the procedure parallelism-resolution.

Figure 5.42: parallelism-resolution: steps for leading pre�xing over channel in the synchro-
nisation set on the left-hand side.

Figure 5.40, applies Law C.128 [76], and produces the action in Figure 5.41, to which

parallelism-resolution is applied recursively. This does not lead to nontermination because

any chart action involves only a �nite number of local event broadcasts, and every state

has a �nite number of substates.

L. Leading pre�xing over channel in the synchronisation set on the left-hand

side A Circus action that models a local event broadcast uses internal channels (local event

and end action, both in the synchronisation set) to control the Simulator . In this case, we

consider a parallelism where the left-hand action is a communication on such a channel. In

the right-hand action, at these points, Step always o�ers a(n external) choice that accepts

the communication, followed by some other action. The general pattern that is covered is

c −→ A J ns1 | cs | ns2 K (c −→ B1 @ d −→ B2) ; C , where both c and d are in cs.

In this step, re�nement resolves the external choice. The particular re�nement steps to

be carried out are shown in Figure 5.42. We distribute the sequence and the parallelism

over the external choice, eliminate the deadlocked parallel actions. The provisos of the

laws applied follow from the fact that c and d are both in the synchronisation set, and

are di�erent. The result is the action c −→ A J ns1 | cs | ns2 K c −→ (B1 ; C); a recursive

application of parallelism-resolution to it solves the synchronisation.

M. Local event broadcast In the Simulator actions LocalEventEntry , LocalEventExit ,

LocalEventDuring , LocalEventCondition or LocalEventTransition, we have a call to the

action TreatLocalEvent . It decides whether to reexecute the whole chart or a speci�c chart

state, depending on the kind of broadcast.

This call to TreatLocalEvent cannot be expanded indiscriminately (as in the case call

action on either side, for instance) because the resulting action can involve a recursive

call to ExecuteChart , or to ExecuteState, the Simulator action that models the execution

of a chart state. The situation is similar to that of calls to ExecuteTransition, which are

singled out in the case call action on either side. Here, however, we have a di�erent

pattern because we do not have a tail recursion.

Calls to TreatLocalEvent occur in parallel with the Circus actions of the chart process

that model local event broadcasts. In those, we have recursions, which provide the services

5.3. REFINEMENT STRATEGY 135

 (µZ • AllActions ; Z @ end local execution −→ Skip) ; A)
Jns1 | cs | ns2K

(TreatLocalEvent(e, s) ; B


Figure 5.43: parallelism-resolution: local event broadcast.

1. Use state component sfEvent C Apply Law use-state-comp to
TreatLocalEvent(e, s) to introduce a local variable c previousEvent of type
N, with initial value sfEvent C , whose temporary value becomes e.

2. Extend and distribute. Apply Laws var-seq-ext-right and C.138 [76],
and apply Law C.84 [76] twice.

3. Expand action call. Apply the copy procedure to TreatLocalEvent(e, s).

4. Simplify the alternation. Try to apply Law alt-elim to eliminate each of
the branches of the alternation that de�nes TreatLocalEvent .

5. Distribute the parallelism. Apply Law par-seq-dist.

6. Recurse. Apply the procedure parallelism-resolution to the second paral-
lelism.

Figure 5.44: parallelism-resolution: steps for local event broadcast.

of AllActions for the Simulator , while it reexecutes the chart, or part of the chart, as a

consequence of the broadcast. Termination of this recursion is triggered by a synchronisa-

tion on the channel end local execution, whose role is similar to that of end cycle in the

main action of the chart process. It is concerned, however, with executions triggered by a

local event broadcast.

The pattern for this case is as shown in Figure 5.43. The objectives of the re�nement

are twofold. First, we resolve the decision embedded in TreatLocalEvent , which is based

solely on the syntactic structure of the chart: namely, the target of the broadcast. Second,

we split the parallelism to isolate the encoding of the execution of the broadcast from

that of the continuation of the execution of the chart. Figure 5.44 presents the re�nement

steps to be carried out, and Figure 5.45 the resulting action, which contains a sequence

of parallelisms: the �rst corresponds to the execution of the local event broadcast and is

further re�ned in the Step 3 of the structuring phase, and the second is the target of a

recursive application of parallelism-resolution. In splitting the parallelism, a local variable

c previousEvent is used to store the current event in sfEvent C , before it is updated to

the broadcast event, so that later, the value of sfEvent C can be restored.

Step 1 applies the novel, but simple, Law use-state-comp presented below.

136 CHAPTER 5. REFINEMENT STRATEGY



var c previousEvent : N •

c previousEvent := sfEvent C ; sfEvent C := e; µX • AllActions ; X @ end local execution −→ Skip
Jns1 | cs | ns2K

ExecuteChart(sfEvent C) ; end local execution −→ Skip

 ;

(A J ns1 | cs | ns2 K sfEvent C := c previousEvent ; B)




Figure 5.45: parallelism-resolution: result for local event broadcast.

Law[use-state-comp]

A(e) = (var x : T • x := v ; v := e; A(v); v := x)

where e, of type T , is a value argument of A.

provided

• v 6∈ FV (A);

• x is fresh.

This law applies to an action call A(e), where e is a value argument. A more general version

explicitly allows for more arguments, as is the case of the call TreatLocalEvent(e, s) in the

pattern in Figure 5.43. For simplicity, we only indicate e in the speci�cation of Law use-

state-comp. It can be used to declare a fresh local variable x (of type T), which is initialised

with the value of a variable v not used in A, which is then updated to hold the value of e

temporarily for the execution of A, after which it recovers its original value.

In the re�nement carried out in this case, we use Law use-state-comp to substitute

TreatLocalEvent(e, s) with the declaration of a local variable c previousEvent of type N,
record the value of the state component sfEvent C in c previousEvent , store the argu-

ment e of the call to TreatLocalEvent in sfEvent C , call TreatLocalEvent with the e sub-

stituted with sfEvent C , and restore the value of sfEvent C . In the Step 2, we extend the

scope of c previousEvent over the parallel action, and apply a step-law twice to distribute

the assignments over the parallelism. The (partial) result is as follows.
var c previousEvent : N • c previousEvent := sfEvent C ; sfEvent C := e; (µZ • AllActions ; Z @ end local execution −→ Skip) ; A

Jns1 | cs | ns2K
TreatLocalEvent(sfEvent C , s) ; sfEvent C := c previousEvent ; B




In Step 3, we expand TreatLocalEvent(sfEvent C , s); this results in an alternation whose

guards do not refer to state components. It establishes whether the destination of the

broadcast is a state or the chart, in order to call the appropriate action. Step 4 simpli�es

this alternation to one of its branches by attempting to apply Law alt-elim to eliminate

the �rst branch, and then the second, if unsuccessful. One of the applications necessarily

succeeds, since the model constants that record the structure of the chart can be used to

5.3. REFINEMENT STRATEGY 137

determine that one of the guards of the alternation is True and the other is False. For

the sake of example, we assume that the alternation simpli�es to the �rst branch, and we

obtain the result below.
var c previousEvent : N • c previousEvent := sfEvent C ; sfEvent C := e; (µZ • AllActions ; Z @ end local execution −→ Skip) ; A

Jns1 | cs | ns2K
ExecuteChart(sfEvent C) ; end local execution −→ Skip ; sfEvent C := c previousEvent ; B




Finally, Step 5 applies the novel Law par-seq-dist to separate the parallelism into a sequence

of two parallel compositions. It considers a parallelism of sequences (and relates it to a

sequence of parallelisms). The action of the left-hand side of the parallelism is the second

component of a pair (M ,N) of actions de�ned by mutual recursion. The �rst component

M may o�er a communication over a channel l and start the second component N , and N

o�ers a choice between calling M and recursing on N or synchronising on a channel el and

terminating. The �rst action of the sequence on the right-hand side of the parallelism is

a simple recursion that communicates on l , conditionally recurses, and synchronises on el

afterwards. The second action of the right-hand side starts with a synchronisation on el .

In our application of this law as part of our strategy, N is the recursion o�ering

AllActions with el as end local execution. The action M is AllActions itself, which ac-

cepts communications on a channel local event and then starts a new recursion identical

to the one that called it. So, l is the channel local event . The actions ExecuteChart and

ExecuteState are both recursions: they treat local event broadcasts themselves, and that

involves recursive calls to either ExecuteChart or ExecuteState. For example, ExecuteChart

can be written as a parametrised explicit recursion as follows.



µX • ce : EVENT • chart?c −→ status!(c.identi�er)?active−→

if active = True−→ . . .

8 active = False−→ activate!(c.identi�er)−→

if c.default 6= nulltransition.identi�er ∨ c.decomposition = CLUSTER −→ . . .

8 c.default = nulltransition.identi�er ∧ c.decomposition = SET−→

if c.substates = 〈〉−→ Skip

8 c.substates 6= 〈〉−→ . . . ; executeentryaction!(�rst .identi�er)−→


local event?e?s−→ if s.type = CHART −→ X (e)

8 s.type 6= CHART −→ ExecuteState(s, e)

�

 ;

end local execution −→ . . .


@
end action −→ Skip


; . . .

�


�


�





138 CHAPTER 5. REFINEMENT STRATEGY

The chart is obtained through channel chart and its status is queried through channel

status, then depending on whether the chart is active or not, the substates are executed or

entered. We omit the execution of the substates, and show the entering of the substates.

That depends on the type of decomposition and whether or not the chart has default

transitions. For example, if there are no default transitions and the chart has a parallel

decomposition (c.decomposition = SET), if the chart has substates, then the �rst one

is executed. This leads to the execution of the entry action (executeentryaction), which

caters for local events (local event?e?s−→ . . .). The action that carries out the local event

execution is a conditional that matches that in Law par-seq-dist. The same pattern occurs

for every recursive call X to ExecuteChart .

ExecuteState can also be de�ned in an explicit recursive form. Whenever ExecuteState

requests the execution of a chart action, it caters for local event broadcasts in the same way

as shown above for ExecuteChart . We have a communication on local event , conditionally

executing ExecuteChart or itself, followed by a synchronisation on end local execution,

before continuing with its execution.

Law[par-seq-dist]

N ; B1 J ns1 | cs | ns2 K (µX • A2[l −→

 if b −→ X

8¬ b −→ C

�

 ; el −→ Skip]) ; el −→ B2

= (N J ns1 | cs | ns2 K (µX • A2[l −→

 if b −→ X

8¬ b −→ C

�

 ; el −→ Skip]) ; el −→ Skip);

(B1 J ns1 | cs | ns2 K B2)


where (M ,N) =̂ µX ,Y • (F [l −→ Y], (X ; Y) @ el −→ Skip)

provided

• {| l , el |} ⊆ cs;

• {| l , el |} ∩ usedC (F ,A2) = ∅;

• initials(M) ⊆ cs;

• usedV (B1) ∩ ns2 = usedV (B2) ∩ ns1 = ∅.

In the parallelism of sequences, l and el are in the synchronisation set and are only used in

the recursions as explicitly shown, as stated in the �rst two provisos. Each communication

on l , therefore, triggers a recursive call Y to N on the left-hand side, and, on the right-

hand side, a recursive call or a call to C . When either of those calls on the right-hand

side terminates, we have a synchronisation on el . Since N is o�ering to synchronise on

el or reexecute X (that is, M , which is waiting for a communication on a channel in the

synchronisation set as stated by the third proviso) both sides synchronise on el and the

most recent recursive call to N terminates. When the recursion on the right-hand side

terminates, a second synchronisation on el prompts the mutual recursion to terminate.

5.3. REFINEMENT STRATEGY 139

Since there is no possibility of B2 communicating with the mutual recursion or B1 commu-

nicating with the simple recursion because both recursions terminate synchronously, and

B2 does not use variables written by the mutual recursion and B1 does not use variables

written by the simple recursion (last proviso), we can separate the parallel action in two

parallel actions in sequence.

As already mentioned, we apply this Law par-seq-dist to the action obtained from

step 4, with the recursion on the left-hand side as N , ExecuteChart(sfEvent C) as the

recursion on the right-hand side, local event as l and end local execution as el . Since

local event , end local execution and initials(AllActions) are all in the synchronisation set,

each parallel action does not use the variables written by the other, and local event and

end local execution are, respectively, only used immediately before and after a recursive

call in both AllActions and ExecuteChart , the application is successful. For our example,

we have the following result.
var c previousEvent : N • c previousEvent := sfEvent C ; sfEvent C := e;

 (µZ • AllActions ; Z @ end local execution −→ Skip)

Jns1 | cs | ns2K
ExecuteChart(sfEvent C) ; end local execution −→ Skip

 ;

A J ns1 | cs | ns2 K sfEvent C := c previousEvent ; B




Step 6 applies the procedure parallelism-resolution to the second parallel action.

The resulting action shown in Figure 5.45 is for a local event broadcast directed at the

whole chart, as is the example shown above. The same steps apply for broadcasts directed

at particular states. The resulting action di�ers solely on the action call that executes the

state: instead of ExecuteChart(sfEvent C), we have ExecuteState(s, sfEvent C), where s

is the target state.

N. Leading local variable declaration on either side Following the execution of a

local event broadcast, both the chart and the Simulator processes carry out early return

logic checks. For that, they use a local boolean variable b that records the result of the

check. In our example, the action B above is such a variable block. In this case, therefore,

we consider parallelisms A J ns1 | cs | ns2 K (var b : B • B). We apply Laws var-rename

and C.138 [76] to give b a fresh name and expand its scope out of the parallelism, before

recursing. The result is a block like var bi : B • (A J ns1 | cs | ns2 ∪ {bi} K B [bi/b]), where

bi is a fresh name.

Since parallelism-resolution is recursive, termination is an issue. In the sequel, we present

a detailed argument based on the structure of the parallel actions found in our chart models.

Termination of parallelism-resolution Since parallelism-resolution is recursive, we now

address the issue of its termination. Our argument is based on the structure of the right-

hand parallel action.

140 CHAPTER 5. REFINEMENT STRATEGY

There are two base cases: A, and I. The other cases can be divided into three groups: those

that do not change the right-hand action, those that reduce its structure, and those that

expand it. The cases in the �rst group can be applied only a �nite number of times: they

do not lead to an in�nite sequence of steps that do not reduce the right-hand action. As we

explain next, this is due to the structure of the left-hand parallel action: after applications

of such cases, we eventually apply a case in another group.

The cases in this �rst group are: B, D, E, F, G, H, I, J, N. Case B simpli�es the

left-hand action to allow the pre�x on the right-hand action to be addressed by case C.

Cases D, E, F, G and N remove an action on the left to apply the other cases to the

remaining action to resolve the parallelism. Any sequence of applications of these cases

must be followed by an application of case C, or case B followed by C, which reduce

the structure of the right-hand action. Case H simpli�es the structure on the left-hand

action to allow the other cases to handle the actions in each branch of the alternation.

Finally, case I for the left-hand action only expands the de�nition of broadcast , which is

not expanded by case B. Each occurrence of this case must necessarily be followed by an

application of case L, which reduces the structure of the right-hand action.

For cases in the second group, since each application reduces the structure of the right-

hand parallel action to that of one of its components, eventually we reach end cycle−→Skip.
Re�nement, using cases B and C, leads to the application of the base case A, which elim-

inates the parallelism and terminates the procedure. This group contains the cases C, D,

E, F, H, L, and N.

The cases in the third group, that is, I, K, and M, expand the right parallel action.

Case I could potentially expand calls to recursive actions. If such an action allowed a non-

terminating recursion, then the procedure parallelism-resolution would not terminate due to

successive indiscriminate applications of I. The right parallel actions, however, come from

the Simulator process, so we know exactly to which actions case I is applied. The only

recursive action as above is ExecuteTransition, when executing a transition that starts a

loop. Case I treats it as a special case, only expanding once the execution of a transition

that starts a loop.

Case M is applied to each local event broadcast. Since there is only a �nite number

of broadcasts in a chart, and recursions introduced by local event broadcasts are not

unfolded, this case only expands the right-hand action a �xed number of times. All the

actions introduced in this expansion can be treated by the remaining cases.

Case K, similarly to case I, unfolds the recursion, but in the recursive application of

parallelism-resolution, case F is applied to extract the assignment to sfEvent C , and then

case N is applied to the right-hand side to treat the local variable declaration that always

follows a call to TreatLocalEvent . In any case, any such recursion can be unfolded up to

a �nite number of times (number of local event broadcasts in an action). Eventually, an

application of case C, resolving a synchronisation over channel end action) will terminate

the recursion. The channel end action signals the end of a chart action.

Finally, case K unfolds a recursion on the right hand side, this recursions are associated

5.3. REFINEMENT STRATEGY 141

1. Copy-rule. Apply de�nitions B.37, B.39 [76], and copy-rule.

2. For each variable block corresponding to a value-result parameter

(a) Eliminate the local variable. Apply law var-value-result.

3. For each variable block corresponding to a value parameter

(a) Distribute assignment. Exhaustively apply laws assign-seq-com and
assign-seq-dist-2.

(b) Eliminate local variable. Apply law var-assign-elim.

Figure 5.46: Procedure copy

to the treatment of local event broadcasts and with the checking of properties of lists of

substates. In both cases, the recursion can only be unfolded a �nite number of times (local

event broadcasts are �nite, and each state has a �nite number of substates), and the action

introduced by the unfolding can be treated by the remaining cases.

5.3.3.3 Procedure copy

This procedure simply substitutes a call to an action by the de�nition of the action with the

value and value-result parameters substituted. We illustrate this procedure by applying it

to a call to action transitionActionCheck with a transition identi�er t and variable v .

transitionActionCheck(t , v)

The �rst step applies the de�nitions of action call with value and value-result parameters.

The de�nition copy-rule states that unspeci�ed parameters are treated as value parameters,

this di�ers from [76], where a call to an action with unspeci�ed parameters is de�ned as the

syntactic substitution of the values for the parameters. This step introduces local variable

declarations and assignments which are treated by the remaining steps. The result of

applying the de�nition of transitionActionCheck to our example is as follows.

var sid : SID ; b : B • sid := t ; b := v ;

entryActionCheck(sid , b) ; var ss : seqSID •
state!sid?s −→ ss := s.substates;

µX •


if ss = 〈〉−→ Skip

8 ss 6= 〈〉−→
status!(head ss)?active −→ (b := or(b, active) ; ss := tail ss ; X)

�



 ;

v := b

The formal parameters sid and b become local variables and are initialised with the actual

parameters (t and v), the body of the action is executed, and the local variable corre-

142 CHAPTER 5. REFINEMENT STRATEGY

sponding to the value-result parameter is assigned to the actual parameter v .

For each blocks var x : T • x := y ; A ; y := x introduced by de�nition B.39 [76],

Step 2(a) removes the local variable. In our example, this step applies to the parameter b; it

is eliminated by an application of the law var-value-result that substitutes the local variable

by the actual parameter, provided the actual parameter is not used in the de�nition of the

action, resulting in the following action.

var sid : SID • sid := t ;

entryActionCheck(sid , v) ; var ss : seqSID •
state!sid?s −→ ss := s.substates;

µX •


if ss = 〈〉−→ Skip

8 ss 6= 〈〉−→
status!(head ss)?active −→ (v := or(v , active) ; ss := tail ss ; X)

�




In step 3, for each local variable introduced in step 1 by de�nition B.37 [76], we distribute

the assignment over the variable block, and eliminate it. In our example, the result of this

step is the action below.

entryActionCheck(t , v) ; var ss : seqSID •
state!t?s −→ ss := s.substates;

µX •


if ss = 〈〉−→ Skip

8 ss 6= 〈〉−→
status!(head ss)?active −→ (v := or(v , active) ; ss := tail ss ; X)

�




The assignment to sid is distributed over the sequential composition towards the end of

the local variable block, and the local variable is eliminated.

5.3.3.4 Procedure recursion-introduction

This procedure is used in Step 3 of the structuring phase. It receives the same parameters

loopT and treatedT as parallelism-resolution, which it uses to call that procedure. It acts on

the body of the outermost recursion in the main action to transform the remaining parallel

actions into recursions.

So far, in resolving the parallelism between the chart and Simulator processes and

actions, the re�nement has basically instantiated the generic operational semantics de�ned

by Simulator to the speci�c chart de�ned in the chart process. This unravels a sequential

structure of conditionals that establish the paths of execution available in the chart. Where,

however, we have loops in these paths, we need to introduce recursions. (Some of them

become loops in the program.) For that, we calculate the recursive actions, and then show

that they re�ne the parallel actions. Figure 5.47 shows the re�nement steps.

5.3. REFINEMENT STRATEGY 143

While there are remaining parallelism p in the main action

1. Calculate a possibly recursive action. Applying the procedure
parallelism-resolution to p.

2. Re�ne parallel action.

(a) If the calculated action is a recursion µX • F (X), apply Law unique-
�xed-point to p and F .

(b) Else, substitute the calculated action for the parallelism.

Figure 5.47: Re�nement strategy:structuring phase - recursion-introduction.

For each parallel action (left unresolved by the procedure parallelism-resolution in Step 2

of the structuring phase) we �rst calculate (Step 1 in Figure 5.47), by re�nement, a (possi-

bly recursive) sequential action. If the calculated action is recursive, we re�ne the parallel

action to that recursion using a standard �xed-point law (Step 2(a) in Figure 5.47). Other-

wise, we simply replace the parallelism with the calculated action (Step 2(b) in Figure 5.47),

since the procedure used to calculate it establishes equivalence.

To calculate the new action, we apply the procedure parallelism-resolution to p, which is

a parallel action AJns1 | cs | ns2KB . The result may be of the form F [AJns1 | cs | ns2KB] or

F , that is, it may or may not contain the same parallelism. If it does, the calculated action

is a recursion µX • F [X] whose body is the result obtained with parallelism-resolution,

where all parallelisms A J ns1 | cs | ns2 K B are replaced with a recursive call X . If it does

not contain the parallelism, the result of this calculation is the action F itself.

A proof obligation generated by the Law unique-�xed-point in Step 2(a) requires F (p) = p.

This is a consequence of the way in which F is calculated: parallelism-resolution establishes

equivalence. The other proof obligation, namely, p is deterministic, is true of our models.

As mentioned previously, we use the procedure recursion-introduction with the assump-

tion that there are no mutually recursive actions to be introduced. This means that the

calculated actions do not contain themselves any further parallelisms, which would generate

a recursion.

To illustrate this procedure, we consider the parallel action that executes a transition

in Figure 5.24. By applying parallelism-resolution to it, we obtain the action below.

if ct−→

. . .

 (µY • AllActions ; Y @ end cycle −→ Skip)

Jns1 | cs | ns2 ∪ {sfEvent C}K
ExecuteTransition(t , p, s, sfEvent C)


8 ¬ ct −→ . . .

�


This does contain the parallel action that originated it, so we de�ne a recursion by sub-

stituting a recursive call for all the occurrences of the parallelism to obtain an action

144 CHAPTER 5. REFINEMENT STRATEGY

µX • if ct −→ . . .X 8 ¬ ct −→ . . .�.

Finally, we re�ne the parallelism in Figure 5.24 to the calculated action, by applying

Law unique-�xed-point. This generates two provisos: the body of the recursion is determin-

istic, which follows from the de�nition of our models, and the parallelism is a �xed point

of the recursion. This last proviso is shown below.



if ct −→ . . . (µY • AllActions ; Y @ end cycle −→ Skip)

Jns1 | cs | ns2 ∪ {sfEvent C}K
ExecuteTransition(t , p, s, sfEvent C)


8 ¬ ct −→ . . .

�


=

 (µY • AllActions ; Y @ end cycle −→ Skip)

Jns1 | cs | ns2 ∪ {sfEvent C}K
ExecuteTransition(t , p, s, sfEvent C)



This is exactly the result of applying the procedure parallelism-resolution to the right-hand

side of the equation.

Figure 5.26 shows the result of applying recursion-introduction to both parallelisms in

Figure 5.24.

5.3.3.5 Procedure assignment-introduction

Figure 5.48 presents the procedure assignment-introduction. As indicated previously, it

re�nes to assignments all schema operations. We distinguish two types of schema opera-

tions: (1) those that activate or deactivate a particular state, and (2) those introduced in

the data re�nement phase plus the initialisation schema.

The operations in the �rst group are speci�ed by a renaming of the schema Activate

or Deactivate, which are originally de�ned in the chart process. They specify data oper-

ations that record an input state x? as active or inactive. Renamings Activate[s S/x?]

and Deactivate[s S/x?] are used in the main action at this stage to de�ne (data re�ned)

operations that activate or deactivate a speci�c state S .

All assignments introduced are of bindings to the state component C DWork , which

records the status of states and history junctions. The predicates in the schemas of the

second group are conjunctions of equalities, and so we convert them into assignments

directly (using a Z re�nement law). The schemas in the �rst group do not enjoy such

property, so we �rst convert them to speci�cation statements (also using a Z law).

The actual assignments are determined by the kind of schema operation, by the type of

the state being activated or deactivated (parallel or sequential), and by whether the parent

P of a sequential state being activated has a history junction or not. These conditions

identify the components of C DWork that are to be modi�ed. The identi�cation is based on

the naming conventions described in Section 5.3.1. For instance, activation or deactivation

of a parallel state S modi�es the component is active S of C DWork . In the steps shown

in Figure 5.48, the ellipses in the bindings on the right-hand side of the assignments

indicate that all other components of the binding that de�nes the value of C DWork are

left unchanged.

5.3. REFINEMENT STRATEGY 145

For each call to a schema operation

1. Convert schema. If it is of the form Activate[s S/x?] or Deactivate[s S/x?],
apply the Law bC [15].

2. Introduce assignment.

(a) If it is of the form Activate[s S/x?]

• If S is a parallel state, apply Law assigI [15] to introduce
C DWork := 〈|is active S == 1, . . . |〉.
• else, if the parent P of S has a history junction, apply Law assigI [15] to
introduce C DWork := 〈|is P == C IN S ,was P == C IN S . . . |〉.
• else, apply Law assigI [15] to introduce
C DWork := 〈|is P == C IN S , . . . |〉.

(b) If it is of the form Deactivate[s S/x?]

• If S is a parallel state, apply Law assigI [15] to introduce
C DWork := 〈|is active S == 0, . . . |〉.
• else, if the parent P of S has a history junction, apply Law assigI [15] to
introduce

C DWork := 〈| is P == C IN NO ACTIVE CHILD ,
was P == C IN NO ACTIVE CHILD . . . |〉

• else, apply Law assigI [15] to introduce

C DWork := 〈|is P == C IN NO ACTIVE CHILD , . . . |〉

(c) If it is not of the form Activate[s S/x?] or Deactivate[s S/x?], apply
Law assC [15].

Figure 5.48: Re�nement strategy: structuring phase - assignment-introduction

5.3.3.6 Procedure update-output

This procedure data re�nes the process to introduce a new state component, namely, C Y ,

which, as previously explained, records the values of the output variables and events to

be communicated at the end of the step. The procedure update-output also expands the

de�nition of the schema type of C B , to include boolean components that record whether

the output events have occurred or not.

As a parameter, update-output takes the sequence output events of output events in

the order in which they are de�ned in the chart. The starting point of update-output is

the second action in the sequence that de�nes the body of the outmost recursion in the

main action: this is the whole body, except ReadInputs. It has the general form shown in

Figure 5.26, and contains a number of interleavings (omitted in Figure 5.26) repeated at

the end of the innermost branches of the nested alternations. These interleavings have the

general form shown in Figure 5.49; each is an interleaving of alternations communicating

events, and communications of output variables. In Figure 5.49, the interleaved actions

shown are an alternation that communicates an output event E , and a pre�xing that

146 CHAPTER 5. REFINEMENT STRATEGY






if C DWork .counter E > 0−→

C DWork := 〈|counter E == (C DWork .counter E − 1), . . . |〉;
o E !(True)−→ Skip

8C DWork .counter E = 0−→ o E !(False)−→ Skip
�


||[{C DWork .counter E} | . . .]||
. . .


||[. . . | . . .]||
(o v !(C B .v)−→ Skip 9 . . .)



Figure 5.49: update-output starting point.

communicates the output variable v .

The procedure update-output is shown in Figure 5.50. First, it extracts the inter-

leavings to the end of the action. This is possible because the interleavings, followed by

a synchronisation on end cycle, are the �nal action in all innermost branches of all al-

ternations. The procedure parallelism-resolution pushes them inside the alternations, and

recursion-introduction may introduce tail recursions that terminate with them.

Next, for each event E in the sequence of output events, we identify the alternation that

communicates the output event: that with a communication through o E . We introduce

a local variable E of type B, assign to it the value v that is being communicated through

o E , and communicate E instead. Afterwards, we extend the scope of the local variable

over the main action, and promote it to a state component. The result of these steps on

the alternation in Figure 5.49 is shown below.
if C DWork .counter E > 0−→

C DWork := 〈|counter E == (C DWork .counter E − 1), . . . |〉 ; E := True ; o E !(E)−→ Skip

8C DWork .counter E = 0−→ E := False ; o E !(E)−→ Skip

�


We now extract the pre�xings o E !(E) −→ Skip that communicate the local variables

from the alternation, and then extract the alternation from the interleaving obtaining the

action below.
if C DWork .counter E > 0−→

C DWork := 〈|counter E == (C DWork .counter E − 1), . . . |〉 ; E := True

8C DWork .counter E = 0−→ E := False

�

 ;


 o E !(E)−→ Skip

||[{} | . . .]||
. . .

 ||[. . . | . . .]|| (o v !(C B .v)−→ Skip 9 . . .)


After all output events have been considered, we data re�ne the process to include the

5.3. REFINEMENT STRATEGY 147

1. Isolate outputs. Exhaustively apply Laws alt-seq-dist and tail-rec-seq-dist to the
whole action.

2. For each output event E in output events

(a) Introduce local variable. Apply Law var-assign-intro to pre�xing actions
of the form o E !v −→ Skip to introduce a fresh local variable E of type B
and initialise it with v , and then apply Law assign-seq-dist to the assignment
followed by the pre�xing.

(b) Extend scope. Apply Laws var-seq-ext-left to the branch of the alternation
that initialises E with True, var-alt-dist-both to the alternation, var-int-dist
to the interleaving, C.137 [76] to the body of the outmost recursion, var-tail-
rec-ext to the recursion, and var-seq-ext-left to the outer sequence.

(c) Promote to state component. Apply Law A.5 [14] to the process.

(d) Extract communication. Apply Law alt-seq-dist to the alternation with
the communications over o E .

(e) Step-law. Apply Law int-seq-dist to the interleaving, with A as the alter-
nation.

3. Data re�nement. Apply Laws C.1-C.25 [76] to the whole process (to include
the new state components in C B).

4. Introduce local variable. Apply Law var-assign-intro to the interleaving in-
troduce a local variable C Y of type ExternalOutputs C and initialise it with
C B .

5. Substitute variable for value. Apply Law assign-seq-dist to the sequence con-
taining the new assignment and the interleaving.

6. Extend scope. Apply Law C.137 [76] to the body of the outmost recursion to
extend the scope of C Y , Law var-tail-rec-ext to the recursion and var-seq-ext-left
to the outer sequence.

7. Promote to state component. Apply Law A.5 [14] to the process.

Figure 5.50: Re�nement strategy: structuring phase - update-output

newly added state components in the component C B . This is achieved by �rst de�ning a

new concrete state identical to the current state, except that the variables that were just

promoted are components of the schema BlockIO C . The retrieve relation equates each

promoted variable to the corresponding variable of the component of type BlockIO C of the

new concrete state. The laws of action simulation determine the required data re�nement.

After the data re�nement, we apply Law var-assign-intro to the remaining interleaving

to introduce the variable C Y and initialise it with C B . (This is now possible because

the bindings of ExternalOutputs C and BlockIO have the same components). Next, we

substitute C Y for C B in the interleaved communications, and distribute the local vari-

able over the main action. Finally, we promote it to a state component. The result, as

probably expected, is the action shown in Figure 5.21.

148 CHAPTER 5. REFINEMENT STRATEGY

5.3.3.7 Procedure simpli�cation

This procedure, which is applied in the last step of the structuring phase, eliminates

redundant code, simpli�es the control structure, and adds inputevents to the record C U .

It is applied to the whole of the main action, and basically, this aligns its speci�cation with

the code of the implementation.

Figure 5.51 shows the steps of simpli�cation. Step 1 distributes the hiding of the channel

set interface over the whole action, thus eliminating the internal communications and the

hidings themselves. This is possible because of the sequential and deterministic structure

of the starting action.

Before the application of this procedure, the action may contain assignments deactivat-

ing a state, followed by the activation of the same state or a sequential sibling. The second

step of simpli�cation removes such redundant assignments. It applies to sequences where

the �rst action is a deactivation assignment: an assignment DWork C .is active S := 0

or is S := C IN NO ACTIVE CHILD , for some chart state S . It moves such assign-

ments forward as far a possible, and then eliminates redundancy if it arises. For exam-

ple, is S := C IN NO ACTIVE CHILD ; A ; is S := C IN Sp may be re�ned to

A ; is S := C IN Sp , if A does not use is S . This is an optimisation frequently used to

avoid unnecessary assignments.

The only local variables that should remain in the model of the implementation are

those that record the current event when a local event broadcast occurs, namely the local

variables c previousEvent . In the third step, we remove all other (spurious) local variables

by moving them over sequential compositions (using Laws assign-seq-com and assign-seq-

col), extracting them from alternations (using Law alt-seq-dist from right to left), and

eliminating them using Laws C.136 [76], from right to left, and var-assign-elim.

The procedure simpli�cation uses three other procedures that we present later on in

this section. The procedure early-return-simpli�cation, used in the fourth step, attempts to

simplify alternations that verify early return logic conditions. It introduces and distributes

assertions about the status of the states, and uses them to eliminate some of these alterna-

tions. The �fth step uses the procedure parallel-state-simpli�cation to simplify alternations

that model the entering, executing, and exiting of parallel states, whenever possible. It

relies on two facts: (1) whenever a state is inactive, all its substates are inactive too; and

(2) in most cases, whenever an active state with a parallel decomposition is being exe-

cuted, all its substates are also active. (The latter is not necessarily true when there is

local event broadcast; in this case the alternation cannot be simpli�ed.) The sixth step

�attens the alternations that execute sequential states using sequential-state-simpli�cation.

It relies on the fact that at any point at most one sequential substate may be active, and

that the values of a component C DWork .is S are in a one-to-one correspondence with

the substates of S .

The execution of transitions may result in nested alternations, the �rst checking the

trigger of the transitions and the second evaluating its condition, and in tail recursions

5.3. REFINEMENT STRATEGY 149

1. Distribute the hiding. Exhaustively apply distribution laws for hiding to the
main action: Laws C.120 [76], C.122 [76], C.125 [76], alt-hide-dist, var-rec-hide-dist,
rec-hide-dist, var-tail-alt-rec-hide-dist,pre�x-hide-dist-1, and pre�x-hide-dist-2.

2. Simplify deactivations. For each chart state S , and assignment
DWork C .is active S := 0 or DWork C .is S := S IN NO ACTIVE CHILD ,
try to eliminate it as follows.

(a) Distribute assignment. Apply Law assign-seq-comp exhaustively.

(b) Eliminate the assignment. Apply Law assign-seq-col exhaustively.

3. Eliminate local variables. For each local variable di�erent from
c previousEvent , exhaustively apply Laws assign-seq-com and assign-seq-col to
sequences containing assignments to it, Law alt-seq-dist from right to left to al-
ternations �nishing in assignments to it, and Laws C.136 [76], from right to left,
and var-assign-elim to its declaration.

4. Simplify early return logic. Apply the procedure early-return-simpli�cation to
the main action.

5. Simplify parallel states. Apply the procedure parallel-state-simpli�cation to the
main action.

6. Flatten sequential states. Apply the procedure sequential-state-simpli�cation
to the main action.

7. Simplify transition executions. Exhaustively apply Laws alt-alt-dist, alt-simp,
and tail-rec-seq-dist from right to left, if necessary, to nested alternations and
recursions that execute transitions.

8. Fold recursion. Exhaustively apply Law C.128 [76] from right to left to the
main action.

9. Eliminate assumptions. Exhaustively apply Law C.35 [76] to the main action.

10. Eliminate Skip. Exhaustively apply Laws C.100, from right to left, and
C.132 [76] to the main action.

11. Eliminate actions. Apply Law action-intr [14] from right to left to the process
and each of its actions.

12. Data re�nement. Data re�ne the process to make inputevents a record compo-
nent of C U .

Figure 5.51: Re�nement strategy: structuring phase - simpli�cation

whose main body is a alternation that may stop the recursion. In the �rst case, Step 7

�attens the nested conditionals, and in the second case, it additionally extracts the actions

executed when the recursion terminates. The starting point of this step is the whole main

action, however the actions to which the law alt-alt-dist applies are those of the form below.

150 CHAPTER 5. REFINEMENT STRATEGY

if trigger −→ (if condition −→ A ; C 8 ¬ condition −→ B �) 8 ¬ trigger −→ B �

The resulting actions are, therefore, as shown below.

(if trigger ∧ condition −→ A ; C 8 ¬ trigger ∨ ¬ condition −→ Skip�) ; B

The guards of the alternation are now determined by the guards of the transitions.

As previously discussed, Step 2 of the structuring phase leaves some parallelisms un-

resolved, some of which are then re�ned in the Step 3 of that phase to recursions. This

is illustrated by the actions in Figures 5.26 and 5.20. In Figure 5.26, we have an action

obtained using the recursion-introduction procedure in the Step 3 of the structuring phase.

As indicated, in that action, we use another action shown in Figure 5.20; its de�nition

is similar to that of the action in Figure 5.26 itself. Omitted in Figure 5.26 are internal

communications. Once they are eliminated in Step 1 above, we can fold any recursions left

unfolded. This is carried out in Step 8.

Step 9 eliminates any assumptions left over from previous steps. Step 10 applies pre�x

and sequence unit laws to eliminate unnecessary uses of Skip. Step 11 eliminates the

actions of the original chart and Simulator processes that are no longer used: Steps 2 and

3 of the structuring phase expand action calls.

Finally, Step 12 data re�nes the process to make the state component inputevents,

added by the Step 1 of the structuring phase, a component of C U . The retrieve relation

equates the component inputevents of C U (in the concrete state) to the state component

of the same name in the original state. This results in the state used in the program model,

so that the following phases do not involve any further data re�nement.

Procedure early-return-simpli�cation This tries to simplify as many alternations that

check for early return conditions, as possible. The general form of the actions that early-

return-simpli�cationmodi�es is shown below; A activates and deactivates a number of states,

and is followed by an early return check.

A ; if early return condition −→ Skip 8 ¬ early return condition −→ B �

Using early-return-simpli�cation, assumptions are extracted from the assignments in A that

change the status of states, distributed towards the early return check, and used to elimi-

nate it, if possible, resulting in A ; B .

The steps for this procedure are shown in Figure 5.52. First, in Step 1, we extract

assumptions about the status of states (from assignments that activate and deactivate

states), and then distribute them throughout the action using a procedure assumption-

distribution. This procedure is discussed in the sequel; it systematically distributes an

assumption through an action as far as possible, towards the assignments. In Step 2, for

each alternation that checks the status of states, early-return-simpli�cation merges any pre-

ceding assumptions into one, and tries to simplify the alternation using these assumptions.

5.3. REFINEMENT STRATEGY 151

1. Introduce and distribute assumption. For each assignment to a compo-
nent is or is active of C DWork followed in sequence by any action A, apply
Law assign-assump-intro to the assignment, and apply the procedure assumption-
distribution to the sequence formed by the introduced assumption and A.

2. For each alternation whose guard uses the components is or is active of
C DWork

(a) Merge assumptions. Exhaustively apply Law C.26 [76] to the assumptions
that immediately precede the alternation.

(b) Simplify. Try to apply Law assump-alt-elim to the alternation and the pre-
ceding assumption.

3. Remove assumptions. Exhaustively apply Law C.35 [76].

Figure 5.52: Re�nement strategy: structuring phase - early-return-simpli�cation

The �nal Step 3 removes all the assumptions introduced, since they are no longer needed.

In our example, entering the substates of PowerOn involves an early return check as

shown below.

Air DWork .is active FAN 1 := 1 ; Air DWork .is FAN 1 := Air IN O� ; if ¬ (Air DWork .is active FAN 1 6= 0)−→ Skip

8 Air DWork .is active FAN 1 6= 0−→ (Entering state FAN2)

�


First the state FAN1 is activated (Air DWork .is active FAN 1 := 1), then the default

transition whose destination is Off is followed. This leads to the substate Off being

entered (Air DWork .is FAN 1 := Air IN O�). Since entering a state can generate

recursive executions due to a local event broadcast, an early return logic check is ex-

ecuted before the next state is entered. In this case, the state FAN1 must still be ac-

tive: Air DWork .is active FAN 1 6= 0. (This condition actually requires that the state is

not inactive.) We omit above the action that models the continuation when there is no

need for an early return: namely, entering FAN2.

Step 1 introduces assumptions for the assignments that activate states FAN1 and Off.

Air DWork .is active FAN 1 := 1 ; {Air DWork .is active FAN 1 = 1};
Air DWork .is FAN 1 := Air IN O� ; {Air DWork .is FAN 1 = Air IN O� }; if ¬ (Air DWork .is active FAN 1 6= 0)−→ Skip

8 Air DWork .is active FAN 1 6= 0−→ (Entering state FAN2)

�


Next, the �rst assumption is moved over the second assignment, and both assumptions are

152 CHAPTER 5. REFINEMENT STRATEGY

distributed through the alternation. The result is as follows.

Air DWork .is active FAN 1 := 1;

Air DWork .is FAN 1 := Air IN O� ;

{Air DWork .is active FAN 1 = 1} ; {Air DWork .is FAN 1 = Air IN O� };

if ¬ (Air DWork .is active FAN 1 6= 0)−→
{Air DWork .is active FAN 1 = 1} ; {Air DWork .is FAN 1 = Air IN O� } ; Skip

8 Air DWork .is active FAN 1 6= 0−→
{Air DWork .is active FAN 1 = 1} ; {Air DWork .is FAN 1 = Air IN O� };
(Entering state FAN2)

�


Next, assumption-distribution proceeds to distribute both assumptions over the omitted

action that models entering FAN2. Once the distribution is completed, Step 2(a) joins

the assumptions before the alternation above, and Step 2(b) above eliminates it using

Law assump-alt-elim and Air DWork .is active FAN 1 = 1. The assumptions left are elim-

inated in Step 3. The result is as follows.

Air DWork .is active FAN 1 := 1 ; Air DWork .is FAN 1 := Air IN O� ; (Entering state FAN2)

We are left with the assignments and the action that models entering FAN2.

Procedure assumption-distribution This procedure systematically distributes an as-

sumption over an action formed solely by assumptions, pre�xings, assignments, alterna-

tions and interleavings. The steps for this procedure are shown in Figure 5.53.

1. For each A in a sequence of actions, do

(a) if A = (v := e), apply law assign-assump-dist or assign-assump-dist-nofv;

(b) if A = (p −→ B), apply one of the laws C.41 [76], C.43 [76], C.45 [76],
C.47 [76] or C.49 [76], and continue with B ;

(c) if A = (if 8i : I • pi−→Bi �), apply law assump-alt-dist, apply this procedure
to each Bi , and apply law alt-seq-dist to extract the assumption;

(d) if A = 9 i : I • Jcsi K Bi , apply law C.39 [76], apply this procedure to each
Bi , and apply law int-assump-extract;

(e) if A = {p}, apply law assump-com.

Figure 5.53: Procedure assumption-distribution.

The procedure assumption-distribution takes an assumption followed by a sequence of

action, and, for each action in the sequence, it tries to distribute the assumption over that

action. It distinguishes �ve cases: assignment, pre�xing, alternation, interleaving, and

assumptions. The cases for assignment and assumption are simple; the procedure applies

the appropriate laws to distribute the assumption, and iterates.

5.3. REFINEMENT STRATEGY 153

1. Introduce assumption. Apply Law assign-assump-intro to the initialization of
C DWork in the �rst action of the outer sequence, and Law C.27 [76] to introduce
the assumption described in the text.

2. Distribute assumption. Apply Law assump-rec-dist to the recursion, and apply
procedure assumption-distribution to the body of the recursion.

3. For each alternation with a guard of the form is active S = e or is P = C IN S ,
where S is a state with parallel decomposition

(a) Introduce assumption. Apply Law alt-assump-intro.

(b) Distribute assumption. Apply procedure assumption-distribution to the
branches.

(c) For each alternation (nested in the branch) whose guards contain
is active Si , where Si is a substate of S

i. Merge assumptions. Apply Law C.26 [76] to merge the assumptions
preceding it.

ii. Simpify. Apply Law assump-alt-elim to simplify the alternation, if pos-
sible.

Figure 5.54: Re�nement strategy: structuring phase - parallel-state-simpli�cation

For the case of a pre�xing, the procedure tries to distribute the assumptions over the

pre�x, and recursively applies assumption-introduction to the pre�xed action. In the case of

an alternation, the assumption is distributed to the branches of the alternations, and the

procedure is recursively applied to each branch. Once all the recursive calls to assumption-

distribution have terminated, if all branches �nish in the assumption being distributed, the

assumption is extracted from the branches, and the procedure continues. The treatment

of interleavings is similar, but uses a simple novel law int-assump-extract to extract the

trailing assumption from the interleaved actions.

This is a recursive procedure over the syntactic structure of actions; it terminates

because the structure of the actions is �nite, and every recursive call is made to a strict

subaction of the action being treated.

Procedure parallel-state-simpli�cation When entering, executing or exiting a state

with a parallel decomposition, its substates may be entered, executed or exited. In this

case, the status of each substate is checked before proceeding. As already mentioned,

this procedure tries to simplify the corresponding alternations because some of the checks

can be removed. For instance, in a chart without local event broadcasts, it is always the

case that at the beginning of the cycle, every parallel substate of an inactive state is also

inactive.

The alternations re�ned by this procedure all contain guards that refer to state com-

ponents of the form C DWork .is active S or C DWork .is S . Figure 5.54 presents the

steps.

154 CHAPTER 5. REFINEMENT STRATEGY

In Step 1, we introduce an assumption from the initialisation of the state component

C DWork (stating that every state is inactive), and introduce the assumption below as a

consequence of that.

∃C State •
RetrieveFunction ∧
∀ s : ran state | s.decomposition = SET •

(state status(s) = True⇒ (∀ ss : ran s.substates • state status(ss) = True)) ∧
∀ s : ran state •

(state status(s) = False⇒ (∀ ss : ran s.substates • state status(ss) = False))




This assumption states that for every parallel state, if it is active, all its substates are

active as well. This holds because the initialisation marks all states as inactive making the

assumption trivially true.

Step 2 distributes the assumption over the recursion, and, subsequently, distributes it as

far as possible through the body of the recursion towards the assignments. This is achieved

using assumption-distribution, already used in the procedure early-return-simpli�cation pre-

sented previously, except that we �rst apply Law assump-rec-dist to move the assumption

into the recursion. (This has itself a re�nement as a proviso.)

In Step 3, for each alternation with a guard that checks the status of a state S with

parallel decomposition (is of the form is active S = e or is P = C IN S), the procedure

introduces the assumptions established by the guards, and distributes them through the

branches using assumption-introduction again. Finally, for each alternation inside a branch

that checks the status of a substate, Step 3(c) merges the assumptions that precede this

inner alternation, and tries to simplify it using the merged assumption.

We illustrate the Step 3 of this procedure by simplifying the model of the execution of

the states FAN1, FAN2, SpeedValue in our example. After Step 2, the assumption intro-

duced in Step 1 has been distributed through the whole action, and has been kept before

each alternation. Step 3 targets alternations such as the one sketched in Figure 5.55,

where {. . .} abbreviates occurrences of the assumption distributed in Step 2, one of which,

however, is sketched more fully: that just before the �rst of the innermost alternation.

Step 3(a) introduces the assumptions derived from the guards of the outermost alterna-

tion (Figure 5.56).

Step 3(b) distributes these assumptions using the procedure assumption-introduction as

before. We show in Figure 5.57 the result for the second branch of the alternation. For

the �rst branch, since PowerOff has no substates, the distribution is straightforward, and

reaches no further nested alternations.

In this example, Step 3(c) is concerned with the alternations whose guards refer to the

components is active FAN 1, is active FAN 2 and is active SpeedValue of Air DWork .

Starting at the �rst of them in Figure 5.57, in Step 3(c)-i we merge the assumptions that

precede it to obtain the assumption shown in Figure 5.58.

In Step 3(c)-ii we simplify the alternation since this assumption implies the guard of

5.3. REFINEMENT STRATEGY 155

{. . .} ;



if Air DWork .is c1 Air = Air IN PowerO� −→ . . .
8 Air DWork .is c1 Air = Air IN PowerOn −→ {. . .};

if sfEvent Air = Air event SWITCH −→ . . .
8 ¬ (sfEvent Air = Air event SWITCH)−→


. . . ∧
Air DWork .is c1 Air = Air IN PowerOn ⇒ Air DWork .is active FAN 1 = 1 ∧

Air DWork .is active FAN 2 = 1 ∧
Air DWork .is active SpeedValue = 1


 ;

 if Air DWork .is active FAN 1 = 1−→ (FAN1)
8 ¬ (Air DWork .is active FAN 1 = 1)−→ Skip
�

 ;

{. . .}; if Air DWork .is active FAN 2 = 1−→ (FAN2)
8¬ (Air DWork .is active FAN 2 = 1)−→ Skip
�

 ;

{. . .}; if Air DWork .is active SpeedValue = 1−→ (SpeedValue)
8 ¬ (Air DWork .is active SpeedValue = 1)−→ Skip
�




�


�



Figure 5.55: parallel-state-simpli�cation: example after step 2.

{. . .} ;


if Air DWork .is c1 Air = Air IN PowerO�−→
{Air DWork .is c1 Air = Air IN PowerO� } ; . . .

8 Air DWork .is c1 Air = Air IN PowerOn−→
{Air DWork .is c1 Air = Air IN PowerOn} ; {. . .} ; . . .

�


Figure 5.56: parallel-state-simpli�cation: example after step 3(a).

156 CHAPTER 5. REFINEMENT STRATEGY

{. . .} ;



if Air DWork .is c1 Air = Air IN PowerO� −→ . . .
8 Air DWork .is c1 Air = Air IN PowerOn−→

{. . .} ; {Air DWork .is c1 Air = Air IN PowerOn};
if sfEvent Air = Air event SWITCH −→ . . .
8 ¬ (sfEvent Air = Air event SWITCH)−→

{. . .} ; {Air DWork .is c1 Air = Air IN PowerOn}; if Air DWork .is active FAN 1 = 1−→ (FAN1)

8 ¬ (Air DWork .is active FAN 1 = 1)−→ Skip
�

 ;

{. . .} ; {Air DWork .is c1 Air = Air IN PowerOn}; if Air DWork .is active FAN 2 = 1−→ . . .
8 ¬ (Air DWork .is active FAN 2 = 1)−→ Skip
�

 ;

{. . .} ; {Air DWork .is c1 Air = Air IN PowerOn}; if Air DWork .is active SpeedValue = 1−→ . . .
8 ¬ (Air DWork .is active SpeedValue = 1)−→ Skip
�




�


�



Figure 5.57: parallel-state-simpli�cation: example after step 3(b).


. . . ∧ Air DWork .is c1 Air = Air IN PowerOn ⇒

 Air DWork .is active FAN 1 = 1 ∧
Air DWork .is active FAN 2 = 1 ∧
Air DWork .is active SpeedValue = 1

  ∧
Air DWork .is c1 Air = Air IN PowerOn


Figure 5.58: parallel-state-simpli�cation: example after step 3(c)-i.

5.3. REFINEMENT STRATEGY 157

{. . .} ;



if Air DWork .is c1 Air = Air IN PowerO� −→ . . .
8 Air DWork .is c1 Air = Air IN PowerOn−→

{. . .} ; {Air DWork .is c1 Air = Air IN PowerOn};
if sfEvent Air = Air event SWITCH −→ . . .
8 ¬ (sfEvent Air = Air event SWITCH)−→



. . . ∧
Air DWork .is c1 Air = Air IN PowerOn ⇒ Air DWork .is active FAN 1 = 1 ∧

Air DWork .is active FAN 2 = 1 ∧
Air DWork .is active SpeedValue = 1


 ∧

Air DWork .is c1 Air = Air IN PowerOn


;

(Entering state FAN1);
{. . . ∧ Air DWork .is c1 Air = Air IN PowerOn};
(Entering state FAN2);
{. . . ∧ Air DWork .is c1 Air = Air IN PowerOn};
(Entering state SpeedValue);


�





Figure 5.59: parallel-state-simpli�cation: example after step 3(c)-ii.

1. While there are nested alternations, where one branch of the outermost alternation
has a guard containing C DWork .is S

(a) Flatten alternation. Apply Law alt-alt-dist.

(b) Rewrite guard. For each branch whose guard is a conjunction of one
equality and a number of inequalities, apply Law alt-guard-rewrite to rewrite
the guard as the single equality.

Figure 5.60: Procedure sequential-state-simpli�cation

its �rst branch. All other alternations are re�ned in a similar way. The �nal result is as

in Figure 5.59. All alternations are removed, but the assumptions are left behind (and

removed later).

Procedure sequential-state-simpli�cation As explained previously, this is the proce-

dure that �attens the nested alternations that execute sequential states, to obtain a multi-

branch alternation. Each branch, except the last, corresponds to the execution of one state

of a sequential decomposition, and its guard checks if it is active. The last branch caters

for the case where no state is active (and so, its guard is a conjunction of inequalities).

The steps of this procedure are in Figure 5.60.

This procedure systematically �attens and rewrites nested alternations whose guards

refer to a component C DWork .is S , and therefore relates to a state S that has a sequential

decomposition. Each alternation is transformed by applying the Law alt-alt-dist to �atten

it, and by rewriting its guards using Law alt-guard-rew. The guards resulting from applying

158 CHAPTER 5. REFINEMENT STRATEGY

law alt-alt-dist may be either conjunctions of inequalities

C DWork .is S 6= C IN S1 ∧ . . . ∧ C DWork .is S 6= C in Sm

or an equality conjoined to a conjunction of inequalities

C DWork .is S = C IN Sp ∧ C DWork .is S 6= C IN S1 ∧ . . . ∧
C DWork .is S 6= C in Sn

The �rst type of guard is left unchanged; the second type is rewritten to the single equality

that it contains.

5.3.4 Parallelism introduction

The previous phase introduced the sequential control structure of the implementation. In

this phase, which is necessary only for the veri�cation of parallel implementations, we

introduce in the process actions that de�ne servers and their composition. Additionally,

we transform the main action into a parallel composition of the client and server actions,

according to the architectural pattern described in Section 5.2.

This phase relies on the following information about the implementation and its model: for

each server, the block of code that implements its core functionality, the block of code of

the client delimited by the synchronisations with that server, the input and output chan-

nels it uses to communicate with the client, and the state components modi�ed by it. As

previously explained, the input and output channels communicate, respectively, the whole

state of the process, and the modi�ed state components. The synchronisation points in the

program are modelled in Circus as communications between the client and server actions,

and the use of shared variables by communication of the relevant values at the synchroni-

sation points: the whole state in the �rst synchronisation, and the altered components in

the second.

Precisely, the parameters for this phase are a sequence servers of pairs of blocks of code

of the implementation, a sequence channels of pairs of channels, and a sequence changes

of lists of state component names. The �rst block of code in each pair of servers is the

implementation of the functionality of the server, and the second is the code of the client

with which the server state is run in parallel. The pair of channels in position i of channels

corresponds to the input and output channels used to model the i-th server code in servers.

The list in changes(i) gives the state components modi�ed by that same code.

The parallel implementation of our running example has only one server, which is

implemented by the function FAN1 shown in Figure 5.61. It is an in�nite loop that, at

each step, synchronises with the client, executes the function Air FAN1, also shown in

Figure 5.61, and synchronises with the client again signalling the end of its calculation.

The function Air FAN1 implements the core functionality of this server.

In this example, therefore, the parameter servers contains the pair where the �rst el-

5.3. REFINEMENT STRATEGY 159

void *FAN1(void *arg) {

while(1) {

synchronise(); Air_FAN1(); synchronise();

}

}

static void Air_FAN1(void) {

switch (Air_DWork.is_FAN1) {

case Air_IN_Off:

if (Air_U.temp >= 120.0) {

Air_DWork.is_FAN1 = Air_IN_On;

}

break;

case Air_IN_On:

if (Air_U.temp < 120.0) {

Air_DWork.is_FAN1 = Air_IN_Off;

}

break;

default:

Air_DWork.is_FAN1 = Air_IN_Off;

break;

}

}

Figure 5.61: Functions implemented the server for our example



if Air DWork .is FAN 1 = Air IN O�−→ if Air U .temp ≥ 120−→ Air DWork .is FAN 1 := Air IN On
8¬ (Air U .temp ≥ 120)−→ Skip
�


8Air DWork .is FAN 1 = Air IN On−→ if Air U .temp < 120−→ Air DWork .is FAN 1 := Air IN O�

8¬ (Air U .temp < 120)−→ Skip
�


8
(

Air DWork .is FAN 1 6= Air IN O� ∧
Air DWork .is FAN 1 6= Air IN On

)
−→ Air DWork .is FAN 1 := Air IN O�

�



;



if Air DWork .is FAN 2 = Air IN O�−→ if Air U .temp ≥ 150−→ Air DWork .is FAN 2 := Air IN On
8¬ (Air U .temp ≥ 150)−→ Skip
�


8Air DWork .is FAN 2 = Air IN On−→ if Air U .temp < 150−→ Air DWork .is FAN 2 := Air IN O�

8¬ (Air U .temp < 150)−→ Skip
�


8
(

Air DWork .is FAN 2 6= Air IN O� ∧
Air DWork .is FAN 2 6= Air IN On

)
−→ Air DWork .is FAN 2 := Air IN O�

�



Figure 5.62: Parallelism introduction - example of execution of parallel states.

160 CHAPTER 5. REFINEMENT STRATEGY

(in FAN 1!(θConcreteState)−→

if Air DWork .is FAN 2 = Air IN O�−→ if Air U .temp ≥ 150−→ Air DWork .is FAN 2 := Air IN On
8¬ (Air U .temp ≥ 150)−→ Skip
�


8Air DWork .is FAN 2 = Air IN On−→ if Air U .temp < 150−→ Air DWork .is FAN 2 := Air IN O�

8¬ (Air U .temp < 150)−→ Skip
�


8
(

Air DWork .is FAN 2 6= Air IN O� ∧
Air DWork .is FAN 2 6= Air IN On

)
−→ Air DWork .is FAN 2 := Air IN O�

�



;

out FAN 1?x −→ Air DWork .is FAN 1 := x

Figure 5.63: Parallelism introduction target - execution of parallel states example.

ement is the body of the function Air FAN1, and the second element is the block of code

that executes state FAN2. The parameter channels contains the pair of input and output

channels (in FAN 1, out FAN 1), and changes the singleton list containing the state com-

ponent Air DWork .is FAN 1. The channel in FAN 1 communicates the whole state under

which the client is to be executed, and the channel out FAN 1 communicates a value of

type N corresponding to the single element modi�ed by the server (Air DWork .is FAN 1).

Starting point As previously mentioned, this phase acts upon the process obtained from

the last phase, whose main action models a sequential implementation of the chart. Its

general structure is shown in Figure 5.19. It initialises the state and recursively reads the

inputs, executes the chart, and writes the output. As indicated in Figure 5.19 itself, the

execution of a chart is de�ned by an action like that in Figure 5.20. There, parallel states

executions are de�ned by sequences of alternations. For our example, we have alternations

in sequence for FAN1, FAN2, SpeedValue. Those for FAN1 and FAN2 are shown in Figure 5.62.

Target As mentioned above, the main action after this phase is a parallelism. The Client

parallel action is similar to that in Figure 5.19. It initialises the state, and recursively

reads the inputs, executes the chart, and writes the outputs. In executing the chart,

however, it executes states in parallel. For our example, the execution of the chart involves

the execution of FAN2 and a request for the server to execute FAN1; this is depicted in

Figure 5.63. The server side of the parallelism executes FAN1 as shown in Figure 5.64.

Re�nement steps Figure 5.65 presents the steps of the parallelism introduction phase.

Step 1(a) calculates the Circus actions Si and Ci that model the blocks of code in each

pair of servers. In our example, we obtain the Circus actions corresponding to the body

of the function Air FAN1 (see Figure 5.61) and the execution of state FAN2 in servers.

The �rst action is identical to the outermost alternation in Figure 5.64, and the second is

5.3. REFINEMENT STRATEGY 161

µX •

varAir B : BlockIO Air ; . . . ; sfEvent Air : N •

in FAN 1?s −→ (Air B := s.Air B ; . . . ; sfEvent Air := s.sfEvent Air);

if Air DWork .is FAN 1 = Air IN O�−→ if Air U .temp ≥ 120−→ Air DWork .is FAN 1 := Air IN On
8¬ (Air U .temp ≥ 120)−→ Skip
�


8Air DWork .is FAN 1 = Air IN On−→ if Air U .temp < 120−→ Air DWork .is FAN 1 := Air IN O�

8¬ (Air U .temp < 120)−→ Skip
�


8
(

Air DWork .is FAN 1 6= Air IN O� ∧
Air DWork .is FAN 1 6= Air IN On

)
−→

Air DWork .is FAN 1 := Air IN O�
�



;

out FAN 1!(Air DWork .is FAN 1)−→ Skip



; X



Figure 5.64: Parallelism introduction target - server example.

1. For i = 1 . .# servers

(a) Calculate Circus action. Obtain the Circus actions Si and Ci that, respectively,
model the portions of code in servers(i).1 and servers(i).2

(b) Introduce server. Apply Law server-intro with parameters
{d1, . . . , dn} = usedV (Si) ∪ wrtV (Si), {t1, . . . , tm} = changes(i),
in = channels(i).1, out = channels(i).2, and S = Si to the left parallel
action of the innermost parallelism in the main action. (For i = 1, this is the
main action itself.)

(c) Synchronise server and client. Exhaustively apply Law sync-client-server to
sequences of the form

(channels(i).1!s −→ channels(i).2?x −→ t := x) ; Ci

2. Introduce interleaving in the server. Apply Law par-int-intro to the main action
of the process.

Figure 5.65: Re�nement strategy: parallelism introduction phase

162 CHAPTER 5. REFINEMENT STRATEGY

exactly the second action in the sequential composition in Figure 5.62.

Step 1(b) re�nes the main action of the process into a parallelism between the server

and the original main action re�ned to use the server. It applies the novel Law server-intro

presented below.

Law[server-intro]

A ; (µX • B [S] ; X)

=

A ; (µX • B [in!(d1, . . . , dn)−→ out?x −→ t1, . . . , tm := x .1, . . . , x .m] ; X)

J{d1, . . . , dn} | {| in, out |} | {}K µX •


var d1 : Di ; . . . ; dn : Dn • in?s −→ d1 := s.1 ; . . . ; dn := s.n;

S ;

out !(t1, . . . , tm)−→ Skip


 ; X




\ {| in, out |}

where

• {d1, . . . , dn} = usedV (S) ∪ wrtV (S).

• {t1, . . . , tm} are variables and components of record-valued variables that are

changed by S .

• di has type Di , and ti has type Ti .

• in has type D1 × . . .×Dn and out has type T1 × . . .× Tm .

provided

• in 6∈ usedC (A,B);

• out 6∈ usedC (A,B).

This law applies to a non-terminating tail-recursive action A ; (µX • B [S] ; X), where

a (server) action S occurs in the body of the recursion. It transforms that action into

a parallelism where the left-hand parallel action is the original recursive action with all

occurrences of S changed. Instead of S , we have, �rst, a communication over a fresh

channel in to send the value of the variables d1, . . . , dn that are used and written by S . A

second communication over another fresh channel out reads a tuple of new values x for the

variables t1, . . . tn changed by S . An assignment updates these variables according to x .

Correspondingly, the right-hand parallel action recursively declares variables corresponding

to the used and written variables of S , reads their values from in and assigns the values

to the appropriate local variables, executes S and communicates through out the values of

the variables written by S .

In the resulting parallel action, every communication on in prompts the execution of a

step of the server action S on an exact copy of the state at that moment, when otherwise

S would have been executed. Once the server �nishes its calculations, it communicates

the changed variables through out , and these are read by the client action, which up-

5.3. REFINEMENT STRATEGY 163

in FAN 1!(θConcreteState)−→ out FAN 1?x −→ Air DWork .is FAN 1 := x ;

if Air DWork .is FAN 2 = Air IN O�−→ if Air U .temp ≥ 150−→ Air DWork .is FAN 2 := Air IN On
8¬ (Air U .temp ≥ 150)−→ Skip
�


8Air DWork .is FAN 2 = Air IN On−→ if Air U .temp < 150−→ Air DWork .is FAN 2 := Air IN O�

8¬ (Air U .temp < 150)−→ Skip
�


8
(

Air DWork .is FAN 2 6= Air IN O� ∧
Air DWork .is FAN 2 6= Air IN On

)
−→ Air DWork .is FAN 2 := Air IN O�

�



Figure 5.66: Parallelism introduction - example: portion of the main action after Step 1.

dates the state accordingly. In this way, the result of executing the substituted action

(in!(. . .)−→ out?x −→ . . .) is exactly the same as if S had been executed at that point.

The result of applying Step 1(b) of this phase, therefore, is a parallel main action

calculated by the above law. For our example, we have a parallelism between the server in

Figure 5.64 and the original action with the sequence shown in Figure 5.62 replaced with

that in Figure 5.66.

At this stage, the main action has the following form, where k is the number of servers

considered so far.


A ;

(
µX • B [ink !(. . .)−→ outk?t −→ vk := ek ; Ck] ; X

)
JαConcreteState | {| ink , outk |} | {}K

(µX •
(
var . . . • ink?s −→ . . . ;

Serverk ; outk !(. . .)−→ Skip

)
; X)

\{| ink , outk |}
. . .

JαConcreteState | {| in1, out1 |} | {}K

(µX •
(
var . . . • in1?s −→ . . . ;

Server1 ; out1!(. . .)−→ Skip

)
; X)


\{| in1, out1 |}

In the parallel client action, ink !(. . .)−→outk?t −→ vk := ek ; Ck requests the execution of

the server (ink !(. . .)), and waits for its conclusion (outk?t), before starting the client action

Ck . In Step 1(c), we move the �nal synchronisation out k?t with the server to after Ck , so

that it can then proceed in parallel with Serverk . This is possible because our architectural

constraints ensure that Ck and Serverk do not share variables.

Step 1(c) applies the novel Law sync-client-server presented below.

164 CHAPTER 5. REFINEMENT STRATEGY

Law[sync-client-server]

 A ; (µX • B [in!a −→ out?x −→ v := e ; C] ; X)

Jns | {| in, out |} | {}K
(µX • (var d : T • in?y −→D ; out !b −→ Skip) ; X)

 \ {| in, out |}
= A ; (µX • B [in!a −→ C ; out?x −→ v := e] ; X)

Jns | {| in, out |} | {}K
(µX • (var d : T • in?y −→D ; out !b −→ Skip) ; X)

 \ {| in, out |}
provided

• in 6∈ usedC (A,B ,C ,D) and out 6∈ usedC (A,B ,C ,D);

• usedV (out?x −→ v := e) ∩ wrtV (C) = ∅ and v 6∈ usedV (C).

This law applies to a parallel action where the right action is a server communicating over

channels in and out , and the left action is a client that requests the execution of the server

through in, reads the server's answer from out , updates the state, and executes an action

C . This law modi�es the parallelism to allow C to run in parallel with the server. This is

possible if C and the preceding pre�xing on out do not share variables, and if in and out

are not used anywhere else in the action.

In the original parallelism, if a communication over in occurs, the server starts executing

D and the client waits for a communication on out . After the communication on out occurs,

the server recurses and waits for the next request on in, and the client executes C . In

the transformed parallelism, after the initial communication on in, the server executes D

and the client immediately executes C , then the client and the server communicate on out

and proceed. These are the only possible interactions because channel in and out are not

used anywhere else in the action. Since C does not communicate over any channels, it is

not possible to distinguish whether C occurs before or after the synchronisation on out .

Furthermore, C and out?x −→ v := e do not share variables, thus we may exchange the

two actions.

As mentioned above, Step 1(c) reorganises the communication between the server and

the client using the facts that ink and outk are not used anywhere else except in the server,

and that vk := ek and Ck do not share variables. The resulting action is as follows.




A ;

(
µX • B [ink !(. . .)−→ Ck ; outk?t −→ vk := ek] ; X

)
JαConcreteState | {| ink , outk |} | {}K

(µX • (var . . . • ink?s −→ . . . ; Serverk −→ outk !(. . .)−→ Skip) ; X)

 \ {| ink , outk |}
. . .

JαConcreteState | {| in1, out1 |} | {}K
(µX • (var . . . • in1?s −→ . . . ; Server1 −→ out1!(. . .)−→ Skip) ; X)


\ {| in1, out1 |}

In this step, we assume that the server action Si models the execution of a parallel state

5.3. REFINEMENT STRATEGY 165

S, Ci models the execution of one or more parallel states CS (that do not share variables

with S) and that these states are adjacent to each other with respect to their execution

order as de�ned in the chart. If there are any other states PS between S and CS in that

sequence, there are three possible situations: (1) S, PS and CS are independent (do not share

variables) and, thus, can all be put in parallel, (2) PS depends on S, or (3) CS depends

on PS. We assume that the parallelism of the chart is fully explored at least within an

individual group of parallel states, thus, in the �rst case we require the states PS are also

put in parallel. The other two cases present complications because they require reordering

of states. In case (2), we must show that CS does not depend on PS and exchange both

blocks before applying Step 1(c) to synchronise the client and the server. In case (3), the

blocks that execute S and PS must be exchanged. We do not treat these cases as they

require further analysis of the chart. We leave this extension of our strategy as future

work.

After Step 1 terminates, the main action has the following structure.




A ;

(
µX • B ; X

)
JαConcreteState | {| inn , outn |} | {}K

(µX • (var . . . • inn?s −→ . . . ; Servern −→ outn !(. . .)−→ Skip) ; X)

\{| inn , outn |}
. . .

JαConcreteState | {| in1, out1 |} | {}K
(µX • (var . . . • in1?s −→ . . . ; Server1 −→ out1!(. . .)−→ Skip) ; X)


\{| in1, out1 |}

Since the servers communicate only with the client, it is possible to rearrange the main

action as a single parallelism between the client action and all the servers in interleave.

This is achieved by Step 2, which exhaustively applies Law par-int-intro below to transform

the action into the desired parallelism.

Law[par-int-intro]

((A J ns | cs1 | {} K B) \ cs1 J ns | cs2 | {} K C) \ cs2
=

(A J ns | cs1 ∪ cs2 | {} K (B 9 C)) \ cs1 ∪ cs2

provided

• usedC (B) ∩ usedC (C) = ∅;

• cs1 = usedC (B);

• cs2 = usedC (C);

• cs1 ∪ cs2 ⊆ usedC (A).

This law applies to an action formed by two nested parallel compositions. The innermost

parallelism is between actions A and B synchronising on cs1, and only A writes to any

variables. The outermost parallel action combines the parallelism just described, and an

action C ; they synchronise on cs2, and only the inner parallelism writes to variables (be-

166 CHAPTER 5. REFINEMENT STRATEGY

1. Introduce actions. Apply Law action-intr [14] to the process and each
action in the model of the implementation.

2. Introduce call actions. Exhaustively apply the copy rule from right to
left to the main action and the newly introduced actions.

Figure 5.67: Re�nement strategy: action introduction phase.

cause A does). The hiding over the inner parallelism can be expanded over the whole

action, because C does not communicate over the channels on cs1 (since cs1 is the set of

channels used in B , and the sets of channels used by B and C are disjoint). Since cs1 and

cs2 are the sets of channels used by, respectively, B and C , and these two actions do not

share channels, they can be interleaved. B and C both communicate with A, because the

union of cs1 and cs2 is in the set of channels used by A, thus, they can be put in parallel

synchronising on the union of their communication sets. Finally, in both parallelisms, the

only action that can write to variables in the scope of the parallelism is A.

The general form of the action that results from the application of the �nal Step 2 is

shown below.

A ;
(
µX • B ; X

)
JαConcreteState | {| in1, out1, . . . , inn , outn |} | {}K (µX • (var . . . • in1?s −→ . . . ; Server1 −→ out1!(. . .)−→ Skip) ; X)

9 . . .9
(µX • (var . . . • inn?s −→ . . . ; Servern −→ outn !(. . .)−→ Skip) ; X)




\ {| in1, out1, . . . , inn , outn |}

This structure matches the architectural pattern shown in Figure 5.9. Since our example

has only one server, this step has no impact on the �nal result.

5.3.5 Action introduction

After the parallelism introduction phase, the main action of the re�ned process should

be the same as that of the model of the implementation, except that the main action of

the implementation is decomposed into a number of subactions. In this phase, we re�ne

our process to match exactly the process that models the implementation. Figure 5.67

describes the steps for this phase.

In the �rst step, the actions of the model of the implementations are introduced in the

process being re�ned. Next, in Step 2 we exhaustively apply the copy-rule from right to

left to replace occurrences of the de�nitions of the actions introduced in Step 1 with a call

to the appropriate action. The main action of the process resulting from the application

of this phase to our example is as follows.

ExecuteChart J { sfEvent Air ,Air U ,Air B ,Air DWork ,Air Y } | {| in FAN 1, out FAN 1 |} | {} K FAN 1

ExecuteChart calls the action MdlInitialize to initialise the state, and recursively reads

5.4. FINAL CONSIDERATIONS 167

the inputs using the action read inputs, executes the chart using Air output , writes the

outputs using write outputs, and signals the end of the step by synchronising on end cycle.

The action FAN 1 is that in Figure 5.64.

This completes the veri�cation of our example.

5.4 Final considerations

In this chapter, we have identi�ed a simple, but general architectural pattern for the par-

allel implementation of State�ow charts, based on the sequential architecture implemented

by MATLAB's automatic code generator [98, 100]. Based on this pattern, we have pro-

posed a re�nement strategy for the veri�cation of implementations. While parts of the

strategy are dependent on the architecture of the implementation (namely, data re�ne-

ment, structuring (except steps 2 and 3) and parallelism introduction phases), other parts

can be reused in strategies that target di�erent architectures.

In particular, the normalisation phase and the procedure parallelism-resolution are cen-

tral to any strategy that deals with our models as they support the collapsing of the process

parallelism. The procedure parallelism-resolution is particularly important as it supports the

use of our modelling approach, where the core of the semantics is separated from structural

aspects of the notation.

Additionally, the architecture-dependent procedures can also be a starting point for

other strategies. While their details may require revision, the fundamental underlying

principles are bound to remain the same. For instance, procedures similar to those used

in the structuring phase, where appropriate assumptions are introduced and distributed

through the action to simplify the structure, are likely to be widely applicable.

Our re�nement strategy makes a number of assumptions about the automatically gen-

erated models of State�ow chart: deadlock free, divergence free, and deterministic. All of

these properties can be checked with a model checker, but they are also evident from the

structure of the model. It is not inconceivable that it is possible to prove that every model

of a well formed chart satis�es these properties. The strategy uses the Circus re�nement

calculus and derives its soundness from the soundness of the re�nement laws.

Our re�nement strategy should produce the process that models the implementation.

If this is not true, then either the implementation is incorrect, or it does not follow the

architectural patterns veri�ed by this strategy. In the �rst case, the comparison between

the two process may shed some light into what is the actual problem. Although the issue

of error traceability is interesting one, we leave it as future work. In the latter case, we can

directly apply the re�nement calculus to the model, or identify the architectural patterns

used in the implementation, and adapt our re�nement strategy to explore them.

Additionally, as already mentioned, we do not treat programs that include mutual

recursions. Our strategy, however, can be extended to treat mutual recursions by modifying

the procedure recursion-introduction to extract information about mutual recursions from

the implementation, calculate the appropriate recursive action, and apply a version of the

168 CHAPTER 5. REFINEMENT STRATEGY

law unique-�xed-point that re�nes actions to mutual recursions.

In general, the provisos generated by the re�nement laws are simple and can be dis-

charged using a theorem prover, except for the proviso of the law assump-rec-dist, which

requires that the assumption holds before and after the body of the recursion. It is used

to distribute an assumption through the recursion that characterises the step of execution

of the chart. For charts without recursions originating from local event broadcasts, it is

possible to describe a re�nement strategy that discharges this proviso, and we leave this

as future work. For cases where local event broadcast leads to recursive behaviour in the

chart, the occurrence of early return logic may leave the chart in a state that violates some

of the assumptions. In this case, the proviso does not hold, and the model is not further

simpli�ed. It is important to note, however, that the State�ow code generator does not

simplify the implementation in these cases either.

The re�nement strategy we propose shows that our choice of a more operational model

can be easily treated by a appropriately designed veri�cation strategy. The veri�cation

of implementation through re�nement has its advantages and disadvantages. It support a

higher degree of automation and possibly scales better to larger cases studies1 as it does

not rely so strongly on theorem proving. The main disadvantage of our approach is that

the veri�able implementations are very restricted, and, for more general implementations,

new re�nement strategies need to be developed.

For any similar treatments of the problem of veri�cation of implementations, it is

extremely important that the assumptions about the implementation are well understood

and delimited because this facilitates the de�nition of the re�nement strategy.

Overall, our strategy is a general approach for the veri�cation of, possibly parallel,

implementations of State�ow charts. Moreover, it is a substantial starting point for the

development of other re�nement strategies, tailored for other architectural patterns, as it

tackles aspects of the re�nement process that are fundamental to any veri�cation based on

our automated technique for generation of chart models.

1This point is speculative, and needs further investigation

Chapter 6

Conclusions

In this chapter, we discuss the main contributions of our work, compare it with the closely

related results in the literature, and provide directions for future work.

6.1 Thesis contributions

The use of graphical notations in general, and more speci�cally Simulink and State�ow, is

widespread in industry for the speci�cation of a variety of systems. Furthermore, some of

the systems modelled in such notations are safety critical, and thus require a higher level

of assurance of correctness. At present, the use of formal methods in this context is almost

exclusively restricted to the veri�cation of properties of the models [20, 7, 101, 87]. While

there has been some work on the veri�cation of code generators [102, 86], and veri�cation of

implementations of Simulink diagrams [19], we are not aware of any proposed approaches

for the veri�cation of implementations of State�ow charts. Our work stands as a di�erent

direction for the use of formal speci�cation and re�nement for graphical notations. The

main contributions of the work presented in this thesis can be divided in �ve areas.

A new approach to semantic description. Traditionally, models of graphical nota-

tions that are tailored for veri�cation of properties and implementations follow a denota-

tional style, where each component of the notation is associated with some complete and

independent element of the model. We adopt a completely di�erent approach, in which we

prioritise comprehensive coverage of the notation, and support for validation by inspection

of the informal description, over the particular scenarios in which the models are to be

used.

Our approach yields a number of advantages. Firstly, it provides a better support for

the formalisation of the semantics of inherently non-compositional notations such as State-

�ow. Secondly, it allows us to separate the semantics of the notation from the structure

of particular charts, reducing the size of the chart-speci�c model. Finally, our approach

does not embed simpli�cations of the semantics based on the particular chart structures,

as such simpli�cations may introduce errors in the semantics of the charts.

170 CHAPTER 6. CONCLUSIONS

A comprehensive modelling approach for State�ow charts. Most of the formali-

sation of State�ow charts (and other varieties of state diagram notations) identify a well-

behaved subset of the notation, and restrict the de�ned semantics to this subset. In

particular, as far as we know, there has not been a formalisation of State�ow charts that

completely treat local event broadcasts and early return logic. Our models provide a

thorough treatment of these features, and describes without restrictions most of the core

elements of the notation.

We have validated our models through:

• Translation of the models of some examples into CSP;

• Analysis and simulation of the CSP models;

• Comparison of the results of simulations to the expected behaviour;

• Translation of large industrial case-studies.

Formalisation and implementation of a technique for automatic generation of

models. We have formalised the translation rules that characterise our models of State-

�ow charts and de�ne a technique for the automatic generation of these models. While

most of the literature on formal semantics of State�ow charts either does not give an ac-

count of the translation process, or provide rather informal translation rules, we formalise

in Z the syntax of State�ow and Circus, and the translation rules for each element of

State�ow that we cover in our models. Furthermore, frequently the translation of smaller

aspects of the notation are overlooked (e.g. action language). Our translation rules cover

these aspects as well. We provide an implementation of the translation rules in the tool

s2c. We have thoroughly validated this tool and the models it generates by means of a

number of examples, including industrial case-studies. The tool was further validated by

parsing and type checking the generated models.

Architecture for implementations. We described an architecturals pattern for (par-

allel) implementations of State�ow charts based on the architecture enforced by State�ow

code generator, extended with a client-server pattern for the execution of parallel states.

This architecture identi�es the main aspects of implementations that are required to sup-

port the automation of a re�nement strategy. As far as we know, this is the �rst approach

to parallel implementations of State�ow charts.

Re�nement strategy. We propose a re�nement strategy that supports the veri�cation

of implementations of State�ow charts with respect to our models. This strategy relies

on the identi�ed architecture to support a high degree of automation, and its soundness

is derived from the soundness of the re�nement laws used to de�ne it. The motivation

for a highly specialised veri�cation strategies is that they are necessary to support a high

6.1. THESIS CONTRIBUTIONS 171

degree of automation in the veri�cation task, which is a key requirement for the adoption

of formal techniques by industry.

The strategy is structured in �ve phases: data re�nement, normalisation, structuring,

parallelism introduction and action introduction. The normalisation and action introduc-

tion phases are completely independent of the architecture of the implementations.

The structuring phase describes how to systematically collapse the parallelism between

the process that models the semantics of State�ow and the process that models the chart's

structure. It also determines how to carry out simpli�cations in the nested structure of

alternations that characterise the execution of the chart. This phase is key to the success

of our approach to the description of graphical notations using an operational style, as it

produces simpler, correct by construction, models of the chart by eliminating the unneces-

sary aspects of the semantics, which in other approaches are simpli�ed in the translation

strategy. While the portion of this phase that resolves the parallelism of the model is

completely independent of the implementation, the portion that simpli�es the structure of

the model depends on the particular architectural patterns of the implementation.

The data re�nement phase depends heavily on the state of the implementation. Simple

restructuring of the state of implementations, however, can easily be re�ected in this phase,

provided the data patterns are equivalent. More sophisticated changes to the state of

implementations can be incorporated provided the appropriate retrieve relation is de�ned.

The parallelism introduction phase relies on the client-server pattern used in our parallel

implementations of State�ow charts. In general, it can be adapted to di�erent patterns

of parallelism based on synchronisation. The use of explicit schedulers may require some

changes to this phase, but we note that it has been previously treated in Circus for Simulink

diagrams [14].

Our re�nement strategy is extremely general in that it supports a wide range of State-

�ow features as well as a number of architectural choices for the implementations. Fur-

thermore, it can be extended to cover new architectural patterns and State�ow features.

The failure of the re�nement strategy indicates either that the implementation is in-

correct or that it does not follow the associated architecture. In the latter case, the archi-

tectural patterns can be identi�ed, and we can de�ne a new strategy potentially reusing

parts of the strategy proposed in this thesis. In the former, knowledge of the exact point

of failure may help correct the program, as the phases and procedures of the re�nement

strategy target speci�c aspects of the implementation.

While the semantics of State�ow is rather cumbersome in some points (e.g., local event

broadcast), it is undeniably a notation that is actively used in industry. Most approaches

to the veri�cation of State�ow tend to restrict the subset of the notation that is allowed,

however, it is our belief that such a restriction should come from the users of the notation.

If di�cult aspects of the notation such as early return logic are used in industry, the

issue of veri�cation of this aspect is relevant and cannot be simply ignored if veri�cation

approaches are to have a chance of industrial adoption.

Our approach aims at minimising the need for expert guidance during the veri�cation

172 CHAPTER 6. CONCLUSIONS

process, this limits the robustness of our veri�cation strategy, but increases the chances of

industrial adoption. We believe that this is a reasonable trade-o�.

6.2 Related Work

Our approach combines a direct semantic formulation of State�ow charts, and a specialised

re�nement strategy to verify implementations. It partially follows the approach proposed

for Simulink diagrams presented in [19, 17], but diverges mainly on the style of the proposed

semantics and the complexity of the required re�nement strategy. The technique used to

de�ne the semantics of Simulink diagrams in [19] does not translate well for the task of

de�ning a semantics for State�ow charts because the behaviour of State�ow charts is not

as compositional as that of Simulink diagrams.

Hamon and Rushby [35] propose an operational semantics of State�ow, but it does

not cover history junctions and imposes restrictions on transitions. Hamon [34] describes

a denotational semantics heavily based on the notion of continuations. They claim to

cover most of the notation, but Simulink functions and events of type function-call are not

mentioned, and early return logic is not taken into consideration in the treatment of local

event broadcast.

While we do not use continuations in our models, our treatment of transition backtrack-

ing and state execution is similar to that of [34]. For transition backtracking, we keep a

record of the transitions that have been successfully executed, which upon failure allows us

to recover the last executed transition and attempt the next transition. This behaviour is

modelled in [34] by passing a continuation that executes the appropriate transition in case

of failure. The same continuation scheme is used to execute outer and inner transitions,

during actions and substates when executing a state. We use a value-result parameter to

assess the success or failure of a transition (in causing a state transition), and decide how

to proceed based on this parameter.

Banphawatthanarak et al. [7] restrict input signals to boolean values, and do not cal-

culate output signals. It also imposes restrictions on the number of transitions reaching a

junction, and the types of actions supported.

The work in [87] imposes a series of restrictions on the charts it treats. It does not allow

multi-segment transition paths that represent loops. Variable assignment on transitions

must be made solely on transition actions or the condition action of the last segment.

It avoids backtracking of transitions by requiring that conditions of outgoing transitions

from junctions form a cover, that is, the disjunction of the conditions is true. It also

avoids relying on orderings determined by position of elements in the diagram by requiring

that transitions leaving a node have disjunct conditions, for instance. Toyn and Galloway

[104] impose even stronger restrictions; they do not cover parallel states, junctions, local

variables, and so on.

In contrast to the above, in de�ning our models of State�ow charts, we provide an

extensive coverage of the notation. Our models cover edge-triggered input and output

6.3. FUTURE WORK 173

events, local events, input and output data, entry, during, exit, condition, transition and

on actions, parallel and sequential states, connective and history junctions, and transitions

without imposing restrictions other that those already imposed by the State�ow notation.

The features that distinguish these models are the unrestricted treatment of states, junc-

tions and transitions, and the thorough account of local event broadcasts and early return

logic. Simulink and graphical functions are partially supported, but function-call events,

temporal expressions, �xed-point and enumeration types are not supported.

There are few approaches to the veri�cation of implementations of graphical notations.

Arthan et al. [4] and Adams and Clayton [3] describe ClawZ, a tool for translating Simulink

diagrams into Z [109] in order to formally verify implementations in Ada. This approach

does not cover the State�ow notation and can only deal with sequential implementations.

To overcome the latter limitation, concurrent aspects were speci�ed in CSP [85] and anal-

ysed through the model checker FDR2 [30].

Cavalcanti and Clayton [17] de�ne the semantics of control law diagrams in the Circus

notation [79]. This semantics reuses ClawZ and the CSP approach to concurrency, and

extends these works to cover a larger subset of the Simulink notation, but it still does not

cover the State�ow notation. The Circus model of State�ow charts presented in this thesis

is a natural extension of previous work, allowing for the veri�cation of a broader variety

of control law diagrams.

Cavalcanti et al. [14] proposes a re�nement strategy that supports the veri�cation of

parallel implementations of Simulink diagrams. It builds upon the models proposed in

[17], therefore it does not consider State�ow blocks. Our work is a natural extension of

[17, 14], but di�ers in the approach to the de�nition of the semantics of State�ow, and, as

a consequence of this, the requirements of the re�nement strategy.

6.3 Future work

Due to the complexity of the semantics of State�ow charts and the size of our models,

the manual application of the re�nement strategy to the smallest of charts is already an

extremely time consuming task. We have rigourously applied the re�nement calculus to

verify a simple example, and selectively applied speci�c phases to simple examples. The

complete veri�cation of most State�ow charts requires tool support that is currently un-

available, and the complete veri�cation of industrial case studies requires the automation

of the re�nement strategy. Currently, even the task of simulating our models is not pos-

sible. Therefore, it is indispensable that better tool support is developed. In particular,

simulation and re�nement tools are of extreme importance to the approach proposed in

this thesis.

Our models of State�ow chart do not model the interaction between the chart and other

Simulink blocks. Since a State�ow chart is always de�ned in the context of a Simulink

diagram, a model that integrates both notations is essential, but goes beyond the scope of

this thesis. To solve this drawback, we must �rst re�ne the treatment of input events to

174 CHAPTER 6. CONCLUSIONS

accept Simulink signals. Next, the treatment of type in the translation of State�ow chart

and Simulink diagrams must be harmonised, and the translation strategy for Simulink

diagrams must be extended to include State�ow blocks.

When considered in the context of a Simulink diagram, the current treatment of events

is not su�ciently detailed. Our current treatment of events must be extended to distinguish

di�erent types of triggered events and to include function-call events. Di�erent types of

edge-triggered events can be supported by extending the de�nition of events to include

type, and by re�ning the treatment of input events to accept Simulink signals.

Function-call events require some further modi�cations. The Simulink models must

be extended to support enabled subsystems, and the step of execution of Simulink blocks

needs to be revised to allow multiple executions of a block in the same step of the diagram.

Furthermore, the models of State�ow charts must also be updated to re�ect these changes.

Our models do not treat bind actions, which in general specify scope properties that can

be checked statically, but, in the special case of function-call events, may yield a behaviour

similar to that of enabled subsystems. A complete treatment of bind actions must start by

integrating the models of Simulink diagrams and State�ow charts, and by extending both

models to support function-call events.

Temporal expressions are not treated; they can be supported by re�ning the de�nition

of events in order to record information about the number of times an event has been

broadcast. Simulink and graphical functions can be fully supported by integrating our

models to the models of Simulink diagrams: Simulink functions are Simulink diagrams,

and graphical functions are State�ow charts containing only junctions and transitions.

While the operational style adopted proved suitable for most of the semantics of State-

�ow charts, the di�culties faced in modelling local event broadcasts and early return logic

raise the question of whether a denotational approach would be better suited. As future

work, we would like to further develop the denotational model that inspired this work

[16] and compare the treatment of local event broadcast and early return logic in the two

models.

The current re�nement strategy targets parallel implementations that follow a fairly

restrictive architecture. In particular, only parallel states that do not share variables can

be run in parallel. As future work, we would like to relax some of the restrictions and de�ne

new re�nement strategies to support the veri�cation of a wider variety of implementations.

Furthermore, once an integration of the models of State�ow charts and Simulink diagrams

exists, a natural development is the integration of the available re�nement strategies to

support the veri�cation of Simulink diagrams that contain State�ow charts.

Currently, our re�nement strategy must be thoroughly validated with large industrial

case-studies. As previously discussed, two industrial case studies were used to validate the

translation strategy, but they are too large to be manually veri�ed using our re�nement

strategy. In order to support semi-automatic veri�cation, we must �rst formalise the strat-

egy in a tactic language for re�nement, such as ArcAngel [77], and then use a re�nement

tool like CRefine [80] to verify larger examples. However, in its current state CRefine

6.3. FUTURE WORK 175

does not fully support the application of a re�nement strategy such as the one proposed

in this thesis. Thus, as previously mentioned, a more robust re�nement tool needs to be

developed to fully support our veri�cation approach.

Finally, since the re�nement strategy derives its soundness from the re�nement laws

used, providing mechanised proofs for all the re�nement laws is a requirement for any

practical use of the strategy. Since Circus has theorem proving support [111], these law can

be formalised in ProofPowerZ and veri�ed. This task, however, is not simple, and requires

deep understanding of the semantics of Circus and of the theorem prover.

It is still the case that the use of formal methods in industry is limited, and in order

to change this, both communities must bridge the gap between academic and industrial

practice. Our work contributes to this goal by providing a formal treatment of the problem

of correctness of software in the context of a graphical notation widely used in industry.

Appendix A

Syntax of Circus

The syntax presented in this appendix is based on that published in [76].

Program ::= CircusPar∗

CircusPar ::= Par | channelCDecl | channelsetN == CSExp | ProcDecl

CDecl ::= SimpleCDecl | SimpleCDecl ; CDecl

SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp

CSExp ::= {| |} | {|N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp | CSExp \ CSExp

ProcDecl ::= processN =̂ ProcDef | processN [N+] =̂ ProcDef

ProcDef ::= Decl • ProcDef | Decl � ProcDef | Proc

Proc ::= beginPPar ∗ stateSchemaExpPPar∗ • Action end

| Proc ; Proc | Proc @ Proc | Proc u Proc | Proc J CSExpr K Proc |

| Proc 9 Proc | Proc \ CSExpr | (Decl • ProcDef)(Exp+) | N (Exp+) | N

| (Decl � ProcDef)bExp+c | N bExp+c | Proc[N+ := N+] | N [Exp+]

| ; Decl • Proc |@Decl • Proc |uDecl • Proc | JCSExpr K Decl • Proc

| 9Dec • Proc

NSExp ::= {} | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp | NSExp \ NSExp

PPar ::= Par | N =̂ ParAction | namesetN == NSExp

ParAction ::= Action | Decl • ParAction

Action ::= (SchemaExp) | Command | N | CSPAction | Action[N+ := N+]

178 APPENDIX A. SYNTAX OF CIRCUS

CSPAction ::= Skip | Stop | Chaos | Comm −→ Action | (Pred) N Action

| Action ; Action | Action @ Action | Action u Action

| Action J NSExp | CSExp | NSExp K Action

| Action ||[NSExp | NSExpr]|| Action | Action \ CSExp | ParAction(Exp+)

| µ N+ • Action | ; Decl • Action |@Decl • Action |uDecl • Action

| J CSExp K Decl • JNSExp K Action |9Decl • ||[NSExp]|| Action

Comm ::= NCParameter∗ | N [Exp+]CParameter∗

CParameter ::= ?N |?N : (Pred) |!Exp | .Exp

Command ::= N+ := Exp+ | if GActions � | varDecl • Action | N+ : [Pred ,Pred]

| {Pred} | [Pred] | valDecl • Action | resDecl • Action

| vresDecl • Action

GActions ::= Pred −→ Action | Pred −→ Action 8 GActions

Appendix B

Circus model of State�ow semantics

B.1 Basic de�nitions

section basic toolkit parents circus toolkit

[NAME]

R : PA

r : Z× N→ R

generic(opt)

optX == {s : seqX | # s ≤ 1}

b2r : B→ R

∀ v : B • b2r(v) = (if v = True then 1 else 0)

truthvalue : A→ B

∀ x : A | x > 0 • truthvalue(x) = True

∀ x : A | x ≤ 0 • truthvalue(x) = False

180 APPENDIX B. CIRCUS MODEL OF STATEFLOW SEMANTICS

B.2 State�ow semantics

section state�ow toolkit parents circus toolkit , basic toolkit

function 40 leftassoc (∧A)

function 40 leftassoc (∨A)

function(¬ A)

function 40 leftassoc (∧B)

function 40 leftassoc (∨B)

function 40 leftassoc (⊕B)

function(¬ B)

function 40 leftassoc (<<)

function 40 leftassoc (>>)

function 40 leftassoc (<A)

function 40 leftassoc (>A)

function 40 leftassoc (≤A)

function 40 leftassoc (≥A)

function 40 leftassoc (=A)

function 40 leftassoc (6=A)

∧A : A× A→ A
∨A : A× A→ A
¬ A : A→ A
∧B : A× A→ A
∨B : A× A→ A
⊕B : A× A→ A
¬ B : A→ A
<< : A× A→ A
>> : A× A→ A
<A : A× A→ A
>A : A× A→ A
≤A : A× A→ A
≥A : A× A→ A
=A : A× A→ A
6=A : A× A→ A

∀ x , y : A • x ∧A y = ¬ A(¬ Ax ∨A ¬ Ay)

∀ x , y : A • x ∧B y = ¬ B(¬ Bx ∨B ¬ By)

∀ x , y : A • x ⊕B y = (x ∧B ¬ By) ∨B (¬ Bx ∧B y)

B.2. STATEFLOW SEMANTICS 181

DECOMPOSITION ::= SET | CLUSTER
TYPE ::= AND | OR | CHART
DESTINATION ::= STATE | JUNCTION
[SID ,TID , JID ,EVENT]

NID ::= snode〈〈SID〉〉 | jnode〈〈JID〉〉
SFBOOL == Z

State

identi�er : SID

default , inner , outer : TID

parent , left , right : SID

substates : seqSID

decomposition : DECOMPOSITION

type : TYPE

history : B

Junction

identi�er : JID

transition : TID

parent : SID

history : B

Transition

identi�er : TID

source, destination : NID

next : TID

parent : SID

nullstate : State

nulljunction : Junction

nulltransition : Transition

nullstate.history = False

nulljunction.history = False

182 APPENDIX B. CIRCUS MODEL OF STATEFLOW SEMANTICS

State�owChart

identi�er : SID

states : SID 7 7→ State

transitions : TID 7 7→ Transition

junctions : JID 7 7→ Junction

nullstate 6∈ ran states
nulltransition 6∈ ran transitions
nulljunction 6∈ ran junctions
#{s : ran states | s.type = CHART} = 1

(states(identi�er)).type = CHART

∀n : SID | n ∈ dom states • (states(n)).identi�er = n

∀n : JID | n ∈ dom junctions • (junctions(n)).identi�er = n

∀n : TID | n ∈ dom transitions • (transitions(n)).identi�er = n

parent : State↔ State

∀ s1, s2 : State • parent(s1) = s2 ⇔ s1.parent = s2.identi�er

ancestors : State→ PState

∀ s : State • ancestors(s) = (parent +) L {s} M \{nullstate}

la : (State × State)→ State

∀ s1, s2 : State • la(s1, s2) = µ x : (ancestors(s1) ∩ ancestors(s2)) |
(∀ y : (ancestors(s1) ∩ ancestors(s2)) • x = y ∨ y ∈ ancestors(x)) • x

channel read inputs,write outputs

channel input event : seqB
channel events : seqEVENT

channel local event : EVENT × State

channel executeentryaction, executeexitaction : SID

channel executeduringaction : SID × EVENT

channel executeconditionaction, executetransitionaction : TID

channel evaluatecondition : TID × B
channel checktrigger : TID × EVENT

channel result : TID × EVENT × B

B.2. STATEFLOW SEMANTICS 183

channel activate, deactivate : SID

channel junction : JID × Junction

channel transition : TID × Transition

channel state : SID × State

channel chart : State

channel status : SID × B
channel history : SID × SID

channel end local execution, end action

channel interrupt : B
channel end cycle

channelset interface == {| executeentryaction, executeduringaction, executeexitaction,
executeconditionaction, executetransitionaction, evaluatecondition, checktrigger , result ,

junction, transition, state, chart , status, history , activate, deactivate, read inputs,

write outputs, end local execution, end action, local event , interrupt , events |}

and , or : B× B→ B
not : B→ B

or(False,False) = and(False,False) = and(True,False) = and(False,True) = False

and(True,True) = or(True,True) = or(True,False) = or(False,True) = True

not(True) = False

not(False) = True

processSimulator =̂ begin

entryActionCheck =̂ val sid : SID ; vres b : B • status!sid?active −→ b := not(active)

duringActionCheck =̂ val sid : SID ; vres b : B • entryActionCheck(sid , b)

exitActionCheck =̂ val sid : SID ; vres b : B • entryActionCheck(sid , b)

conditionActionCheck =̂ val sid : SID ; vres b : B • entryActionCheck(sid , b)

transitionActionCheck =̂ val sid : SID ; vres b : B •
entryActionCheck(sid , b) ; var ss : seqSID •

state!sid?s −→ ss := s.substates;

µX •


if ss = 〈〉−→ Skip

8 ss 6= 〈〉−→
(

status!(head ss)?active −→ b := or(b, active);

ss := tail ss ; X

)
�





184 APPENDIX B. CIRCUS MODEL OF STATEFLOW SEMANTICS

exitStatesCheck =̂ val sid : SID ; vres b : B • transitionActionCheck(sid , b)

enterState1Check =̂ val sid : SID ; vres b : B •
state!sid?s −→ entryActionCheck(s.parent , b)

enterState2Check =̂ val sid : SID ; vres b : B • state!sid?s−→ if s.left = nullstate.identi�er −→ b := False

8 s.left 6= nullstate.identi�er −→ entryActionCheck(s.left , b)

�


executeStateCheck =̂ val sid : SID ; vres b : B •

state!sid?s −→ entryActionCheck(s.parent , b)

exitStateCheck =̂ val sid : SID ; vres b : B • state!sid?s −→ entryActionCheck(s.parent , b)

enterState15Check =̂ val sid : SID ; vres b : B • entryActionCheck(sid , b)

ExecuteTransition =̂

val tid : TID ; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •

if tid = nulltransition.identi�er−→
if path = ∅−→ success := False

8 path 6= ∅−→
(

transition!(last path)?lt−→
ExecuteTransition(lt .next , (front path), source, ce, success)

)
�


8 tid 6= nulltransition.identi�er−→
CheckValidity(tid , path, source, ce, success)

�



CheckValidity =̂

val tid : TID ; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •
checktrigger !tid !ce −→ result !tid !ce?e −→ evaluatecondition!tid?c−→

if e = True ∧ c = True−→

executeconditionaction!tid −→ LocalEventCondition(source.identi�er);

var b : B •
conditionActionCheck(source.identi�er , b); if b = True−→ success := True

8 b = False−→ Proceed(tid , path a 〈tid〉, source, ce, success)

�





8 ¬ (e = True ∧ c = True)−→

(
transition!tid?t−→
ExecuteTransition(t .next , path, source, ce, success)

)
�



B.2. STATEFLOW SEMANTICS 185

Proceed =̂

val tid : TID ; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •
transition!tid?t−→

if t .destination ∈ ran snode −→
(

state!((snode ∼) t .destination)?dest−→
proceedToState(source, dest , path, ce, success)

)
8 t .destination ∈ ran jnode −→ proceedToJunction(tid , path, source, ce, success)

�



proceedToState =̂

val src, dest : State; val path : seqTID ; val ce : EVENT ; vres success : B •

ExitStates((la(src, dest)).substates, ce);

var b : B •

exitStatesCheck((la(src, dest)).identi�er , b);

if b = True−→ Skip

8 b = False−→
executePath(path, src, dest , ce);

transitionActionCheck((la(src, dest)).identi�er , b); if b = True−→ Skip

8 b = False−→ EnterState(dest , la(src, dest), ce)

�




�




;

success := True



executePath =̂ path : seqTID ; src, dest : State; ce : EVENT •

if # path = 0−→ Skip

8 # path > 0−→



executetransitionaction!(head path)−→
LocalEventTransition((la(src, dest)).identi�er);

var b : B •
transitionActionCheck((la(src, dest)).identi�er , b); if b = True−→ Skip

8 b = False−→ executePath(tail path, src, dest , ce)

�





�



186 APPENDIX B. CIRCUS MODEL OF STATEFLOW SEMANTICS

proceedToJunction =̂

val tid : TID ; val path : seqTID ; val source : State; val ce : EVENT ; vres success : B •
transition!tid?t −→ junction!((jnode ∼) t .destination)?dj−→

if dj .history = False−→ executeJunction(dj , path, source, ce, success)

8 dj .history = True−→ history !(dj .parent)?lsid−→

if lsid = nullstate.identi�er−→(
state!(dj .parent)?s−→
ExecuteDefaultTransition(s, s, ce) ; success := True

)
8 lsid 6= nullstate.identi�er−→(

state!lsid?ls−→
proceedToState(source, ls, path, ce, success)

)
�


�



executeJunction =̂ val j : Junction; val path : seqTID ;

val source : State; val ce : EVENT ; vres success : B •
if j .transition = nulltransition.identi�er−→

success := False

8 j .transition 6= nulltransition.identi�er−→
ExecuteTransition(j .transition, path, source, ce, success)

�



ExecuteDefaultTransition =̂ s, tpp : State; ce : EVENT •

if s.default 6= nulltransition.identi�er−→(
var success : B • ExecuteTransition(s.default , 〈〉, s, ce, success);

(if success = True−→ Skip 8 success = False−→ Stop�)

)
8 s.default = nulltransition.identi�er−→

if # s.substates = 0−→ Skip

8 # s.substates = 1−→
(

state!(head s.substates)?saux−→
EnterState(saux , tpp, ce)

)
8 # s.substates > 1−→ Stop

�


�



B.2. STATEFLOW SEMANTICS 187

EnterState =̂ s, tpp : State; ce : EVENT • EnterState16(s, tpp, ce)

EnterState24 =̂ s, tpp : State; ce : EVENT • EnterState2(s, tpp, ce);

var b : B • enterState2Check(s.identi�er , b); if b = True−→ Skip

8 b = False−→ EnterState34(s, tpp, ce)

�



EnterState14 =̂ s, tpp : State; ce : EVENT • EnterState1(s, tpp, ce);

var b : B • enterState1Check(s.identi�er , b); if b = True−→ Skip

8 b = False−→ EnterState24(s, tpp, ce)

�



EnterState35 =̂ s, tpp : State; ce : EVENT • EnterState34(s, tpp, ce);

status!(s.identi�er)?active −→

 if active = True−→ EnterState5(s, tpp, ce)

8 active = False−→ Skip

�



EnterState25 =̂ s, tpp : State; ce : EVENT • EnterState2(s, tpp, ce);

var b : B • enterState2Check(s.identi�er , b); if b = True−→ Skip

8 b = False−→ EnterState35(s, tpp, ce)

�



EnterState15 =̂ s, tpp : State; ce : EVENT • EnterState1(s, tpp, ce);

var b : B • enterState1Check(s.identi�er , b); if b = True−→ Skip

8 b = False−→ EnterState25(s, tpp, ce)

�



EnterState56 =̂ s, tpp : State; ce : EVENT • EnterState5(s, tpp, ce);

status!(s.identi�er)?active −→

 if active = True−→ EnterState6(s, tpp, ce)

8 active = False−→ Skip

�



188 APPENDIX B. CIRCUS MODEL OF STATEFLOW SEMANTICS

EnterState36 =̂ s, tpp : State; ce : EVENT • EnterState34(s, tpp, ce);

status!(s.identi�er)?active −→

 if active = True−→ EnterState56(s, tpp, ce)

8 active = False−→ Skip

�



EnterState26 =̂ s, tpp : State; ce : EVENT • EnterState2(s, tpp, ce);

var b : B • enterState2Check(s.identi�er , b); if b = True−→ Skip

8 b = False−→ EnterState36(s, tpp, ce)

�



EnterState16 =̂ s, tpp : State; ce : EVENT • EnterState1(s, tpp, ce);

var b : B • enterState1Check(s.identi�er , b); if b = True−→ Skip

8 b = False−→ EnterState26(s, tpp, ce)

�



EnterState1 =̂ s, tpp : State; ce : EVENT • status!(s.parent)?active−→
if active = False−→

state!(s.parent)?p −→ EnterState14(p, tpp, ce)

8 active = True−→ Skip

�



EnterState2 =̂ s, tpp : State; ce : EVENT •

if s.type = AND−→

if s.left 6= nullstate.identi�er −→ status!(s.left)?active−→ if active = True−→ Skip

8 active 6= True−→ state!(s.left)?ls −→ EnterState15(ls, tpp, ce)

�


8 s.left = nullstate.identi�er −→ Skip

�


8 s.type 6= AND −→ Skip

�



EnterState3 =̂ s, tpp : State; ce : EVENT • activate!(s.identi�er)−→ Skip

B.2. STATEFLOW SEMANTICS 189

EnterState4 =̂ s, tpp : State; ce : EVENT •
executeentryaction!(s.identi�er)−→ LocalEventEntry(s.identi�er)

EnterState34 =̂ s, tpp : State; ce : EVENT • status.(s.identi�er)?active−→ if active = True−→ Skip

8 active = False−→ EnterState3(s, tpp, ce) ; EnterState4(s, tpp, ce)

�



EnterState5 =̂ s, tpp : State; ce : EVENT •
EnterState5a(s, tpp, ce) ; EnterState5b(s, tpp, ce)

EnterState5a =̂ s, tpp : State; ce : EVENT •

if s.history = True−→ history !(s.identi�er)?lsid−→ if lsid 6= nullstate.identi�er −→ state!lsid?ls −→ EnterState15(ls, tpp, ce)

8 lsid = nullstate.identi�er −→ ExecuteDefaultTransition(s, tpp, ce)

�


8 s.history = False−→ if s.default 6= nulltransition.identi�er −→ ExecuteDefaultTransition(s, tpp, ce)

8s.default = nulltransition.identi�er −→ Skip

�


�



EnterState5b =̂ s, tpp : State; ce : EVENT •
if s.decomposition = SET ∧ s.default = nulltransition.identi�er−→

EnterStates15(s.substates, tpp, ce)

8 s.decomposition 6= SET ∨ s.default 6= nulltransition.identi�er −→ Skip

�



190 APPENDIX B. CIRCUS MODEL OF STATEFLOW SEMANTICS

EnterStates15 =̂ ss : seqSID ; tpp : State; ce : EVENT •

if # ss = 0−→ Skip

8 # ss > 0−→ status!(head ss)?active−→ if active = False−→ state!(head ss)?�rst −→ EnterState15(�rst , tpp, ce)

8 active = True−→ Skip

�

 ;

var b : B •


enterState15Check(head ss, b); if b = True−→ Skip

8 b = False−→ EnterStates15(tail ss, tpp, ce)

�




�



EnterState6 =̂ s, tpp : State; ce : EVENT •
if s.type = AND ∧ s.right 6= nullstate.identi�er−→

state!(s.right)?rs −→ EnterState(rs, tpp, ce)

8 s.type 6= AND ∨ s.right = nullstate.identi�er −→ EnterState7(s, tpp, ce)

�



EnterState7 =̂ s, tpp : State; ce : EVENT •

if s.type 6= CHART−→

state!(s.parent)?p −→

 if tpp 6= p −→ EnterState6(p, tpp, ce)

8 tpp = p −→ Skip

�


8 s.type = CHART −→ Skip

�



B.2. STATEFLOW SEMANTICS 191

ExecuteState =̂ s : State; ce : EVENT • status!(s.identi�er)?active−→

if active = True−→

var success : B •
ExecuteTransition(s.outer , 〈〉, s, ce, success);

if success = True−→ Skip

8 success = False−→

executeduringaction!(s.identi�er)!ce−→
LocalEventDuring(s.identi�er);

var b : B •
duringActionCheck(s.identi�er , b); if b = True−→ Skip

8 b = False−→ AlternativeExecution(s, ce)

�





�




8active = False−→ Skip

�



AlternativeExecution =̂ s : State; ce : EVENT •
var success : B • ExecuteTransition(s.inner , 〈〉, s, ce, success); if success = True−→ Skip

8success = False−→ ExecuteSubstates(s, ce)

�




ExecuteSubstates =̂ s : State; ce : EVENT • if s.decomposition = SET −→ ExecuteParallelStates(s.substates, ce)

8 s.decomposition = CLUSTER −→ ExecuteSequentialStates(s.substates, ce)

�



ExecuteParallelStates =̂ ss : seqSID ; ce : EVENT •

if # ss = 0−→ Skip

8 # ss > 0−→ state!(head ss)?�rst −→ ExecuteState(�rst , ce);

var b : B •


executeStateCheck(head ss, b); if b = True−→ Skip

8 b = False−→ ExecuteParallelStates(tail ss, ce)

�




�



192 APPENDIX B. CIRCUS MODEL OF STATEFLOW SEMANTICS

ExecuteSequentialStates =̂ ss : seqSID ; ce : EVENT •

if # ss = 0−→ Skip

8 # ss > 0−→ status!(head ss)?active−→ if active = True−→ state!(head ss)?�rst −→ ExecuteState(�rst , ce)

8 active = False−→ ExecuteSequentialStates(tail ss, ce)

�


�



ExitState =̂ s : State; ce : EVENT •



if s.right 6= nullstate.identi�er −→ status!(s.right)?active−→ if active = True−→ state!(s.right)?rs −→ ExitState(rs, ce)

8 active = False−→ Skip

�


8 s.right = nullstate.identi�er −→ Skip

�


;

ExitStates(s.substates, ce);

executeexitaction!(s.identi�er)−→ LocalEventExit(s.identi�er);

var b : B •


exitActionCheck(s.identi�er , b); if b = True−→ Skip

8 b = False−→ deactivate!(s.identi�er)−→ Skip

�






ExitStates =̂ ss : seqSID ; ce : EVENT •

if # ss = 0−→ Skip

8 # ss > 0−→ status!(last ss)?active−→ if active = True−→ state!(last ss)?l −→ ExitState(l , ce)

8 active = False−→ Skip

�

 ;

var b : B •


exitStateCheck(head ss, b); if b = True−→ Skip

8 b = False−→ ExitStates(front ss, ce)

�




�



ExecuteChart =̂ ce : EVENT • chart?c −→ status!(c.identi�er)?active−→ if active = True−→ ExecuteActiveChart(c, ce)

8 active = False−→ ExecuteInactiveChart(c, ce)

�



B.2. STATEFLOW SEMANTICS 193

ExecuteInactiveChart =̂ c : State; ce : EVENT • activate!(c.identi�er)−→

if c.default 6= nulltransition.identi�er ∨ c.decomposition = CLUSTER−→
ExecuteDefaultTransition(c, c, ce)

8 c.default = nulltransition.identi�er ∧ c.decomposition = SET−→
if c.substates = 〈〉−→ Skip

8 c.substates 6= 〈〉−→
state!(head(c.substates))?�rst −→ EnterState(�rst , c, ce)

�


�



ExecuteActiveChart =̂ c : State; ce : EVENT • if c.substates = ∅−→ ExecuteInactiveChart(c, ce)

8 c.substates 6= ∅−→ ExecuteSubstates(c, ce)

�



LocalEventEntry =̂ sid : SID • µX •

local event?e?s −→



TreatLocalEvent(e, s);

var b : B •
entryActionCheck(sid , b);

if b = True−→
interrupt .True−→ end action −→ Skip

8 b = False−→ interrupt .False−→ X

�






@
end action −→ Skip



LocalEventDuring =̂ sid : SID • µX •

local event?e?s −→



TreatLocalEvent(e, s);

var b : B

•


duringActionCheck(sid , b);

if b = True−→
interrupt .True−→ end action −→ Skip

8 b = False−→ interrupt .False−→ X

�






@
end action −→ Skip



194 APPENDIX B. CIRCUS MODEL OF STATEFLOW SEMANTICS

LocalEventExit =̂ sid : SID • µX •

local event?e?s −→



TreatLocalEvent(e, s);

var b : B

•


exitActionCheck(sid , b);

if b = True−→
interrupt .True−→ end action −→ Skip

8 b = False−→ interrupt .False−→ X

�






@
end action −→ Skip



LocalEventCondition =̂ sid : SID • µX •

local event?e?s −→



TreatLocalEvent(e, s);

var b : B

•


conditionActionCheck(sid , b);

if b = True−→
interrupt .True−→ end action −→ Skip

8 b = False−→ interrupt .False−→ X

�






@
end action −→ Skip



LocalEventTransition =̂ sid : SID • µX •

local event?e?s −→



TreatLocalEvent(e, s);

var b : B

•


transitionActionCheck(sid , b);

if b = True−→
interrupt .True−→ end action −→ Skip

8 b = False−→ interrupt .False−→ X

�






@
end action −→ Skip



TreatLocalEvent =̂ e : EVENT ; s : State • if s.type = CHART −→ ExecuteChart(e)

8 s.type 6= CHART −→ ExecuteState(s, e)

�

 ; end local execution −→ Skip

B.2. STATEFLOW SEMANTICS 195

ExecuteEvent =̂ e : EVENT ; v : B •

 if v = True−→ ExecuteChart(e)

8 v = False−→ Skip

�


ExecuteEvents =̂ es : seqEVENT ; vs : seqB • (; i : id(1 . .# es) • ExecuteEvent(es(i), vs(i)))

• (µX • Step ; end cycle −→ X)

end

Appendix C

Circus models of State�ow charts

C.1 Circus model of Shift Logic Chart

section calc th parents basic toolkit

calc th : (R× R)→ (R× R)

section sf car shift logic parents state�ow toolkit , calc th

s downshifting , s gear state, s fourth, s second , s third , s �rst ,

s selection state, s upshifting , s steady state, c shift logic : SID

t third fourth, t second third , t �rst second , t fourth third , t default �rst ,

t second �rst , t third second , t steady state upshifting , t default steady state,

t upshifting steady state23, t steady state downshifting ,

t downshifting steady state25, t downshifting steady state24,

t upshifting steady state26 : TID

198 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

C shift logic : State

C shift logic =
〈|identi�er == c shift logic, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == nulltransition.identi�er ,

parent == nullstate.identi�er , left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈s gear state, s selection state〉,
decomposition == SET , type == CHART , history == False|〉



S downshifting : State

S downshifting =
〈|identi�er == s downshifting , default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t downshifting steady state24,

parent == s selection state, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



S gear state : State

S gear state =
〈|identi�er == s gear state, default == t default �rst ,

inner == nulltransition.identi�er , outer == nulltransition.identi�er ,

parent == c shift logic, left == nullstate.identi�er ,

right == s selection state, substates == 〈s fourth, s third , s �rst , s second〉,
decomposition == CLUSTER, type == AND , history == False|〉



S fourth : State

S fourth =


〈|identi�er == s fourth, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t fourth third ,

parent == s gear state, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



C.1. CIRCUS MODEL OF SHIFT LOGIC CHART 199

S second : State

S second =


〈|identi�er == s second , default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t second third ,

parent == s gear state, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



S third : State

S third =


〈|identi�er == s third , default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t third fourth,

parent == s gear state, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



S �rst : State

S �rst =
〈|identi�er == s �rst , default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t �rst second ,

parent == s gear state, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



S selection state : State

S selection state =
〈|identi�er == s selection state, default == t default steady state,

inner == nulltransition.identi�er , outer == nulltransition.identi�er ,

parent == c shift logic, left == s gear state, right == nullstate.identi�er ,

substates == 〈s upshifting , s downshifting , s steady state〉,
decomposition == CLUSTER, type == AND , history == False|〉



200 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

S upshifting : State

S upshifting =
〈|identi�er == s upshifting , default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t upshifting steady state26,

parent == s selection state, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



S steady state : State

S steady state =
〈|identi�er == s steady state, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t steady state upshifting ,

parent == s selection state, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



T third fourth : Transition

T third fourth =

 〈|identi�er == t third fourth, source == snode(s third),

destination == snode(s fourth),next == t third second ,

parent == s gear state|〉



T second third : Transition

T second third =

 〈|identi�er == t second third , source == snode(s second),

destination == snode(s third),next == t second �rst ,

parent == s gear state|〉



T �rst second : Transition

T �rst second = 〈|identi�er == t �rst second , source == snode(s �rst),

destination == snode(s second),next == nulltransition.identi�er ,

parent == s gear state|〉



C.1. CIRCUS MODEL OF SHIFT LOGIC CHART 201

T fourth third : Transition

T fourth third = 〈|identi�er == t fourth third , source == snode(s fourth),

destination == snode(s third),next == nulltransition.identi�er ,

parent == s gear state|〉



T default �rst : Transition

T default �rst = 〈|identi�er == t default �rst , source == snode(nullstate.identi�er),

destination == snode(s �rst),next == nulltransition.identi�er ,

parent == s gear state|〉



T second �rst : Transition

T second �rst = 〈|identi�er == t second �rst , source == snode(s second),

destination == snode(s �rst),next == nulltransition.identi�er ,

parent == s gear state|〉



T third second : Transition

T third second = 〈|identi�er == t third second , source == snode(s third),

destination == snode(s second),next == nulltransition.identi�er ,

parent == s gear state|〉



T steady state upshifting : Transition

T steady state upshifting = 〈|identi�er == t steady state upshifting , source == snode(s steady state),

destination == snode(s upshifting),next == t steady state downshifting ,

parent == s selection state|〉



202 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

T default steady state : Transition

T default steady state = 〈|identi�er == t default steady state, source == snode(nullstate.identi�er),

destination == snode(s steady state),next == nulltransition.identi�er ,

parent == s selection state|〉



T upshifting steady state23 : Transition

T upshifting steady state23 = 〈|identi�er == t upshifting steady state23, source == snode(s upshifting),

destination == snode(s steady state),next == nulltransition.identi�er ,

parent == s selection state|〉



T steady state downshifting : Transition

T steady state downshifting = 〈|identi�er == t steady state downshifting , source == snode(s steady state),

destination == snode(s downshifting),next == nulltransition.identi�er ,

parent == s selection state|〉



T downshifting steady state25 : Transition

T downshifting steady state25 = 〈|identi�er == t downshifting steady state25, source == snode(s downshifting),

destination == snode(s steady state),next == nulltransition.identi�er ,

parent == s selection state|〉



T downshifting steady state24 : Transition

T downshifting steady state24 = 〈|identi�er == t downshifting steady state24, source == snode(s downshifting),

destination == snode(s steady state),next == t downshifting steady state25,

parent == s selection state|〉



C.1. CIRCUS MODEL OF SHIFT LOGIC CHART 203

T upshifting steady state26 : Transition

T upshifting steady state26 = 〈|identi�er == t upshifting steady state26, source == snode(s upshifting),

destination == snode(s steady state),next == t upshifting steady state23,

parent == s selection state|〉



e UP , e DOWN ,ENULL : EVENT

channel o gear : R; i speed : R; i throttle : R

processP shift logic =̂ begin

State�owChart

identi�er = c shift logic

states = {(c shift logic,C shift logic), (s downshifting ,S downshifting),

(s gear state,S gear state), (s fourth,S fourth), (s second ,S second),

(s third ,S third), (s �rst ,S �rst), (s selection state,S selection state),

(s upshifting ,S upshifting), (s steady state,S steady state)}
transitions = {(t third fourth,T third fourth), (t second third ,T second third),

(t �rst second ,T �rst second), (t fourth third ,T fourth third),

(t default �rst ,T default �rst), (t second �rst ,T second �rst),

(t third second ,T third second),

(t steady state upshifting ,T steady state upshifting),

(t default steady state,T default steady state),

(t upshifting steady state23,T upshifting steady state23),

(t steady state downshifting ,T steady state downshifting),

(t downshifting steady state25,T downshifting steady state25),

(t downshifting steady state24,T downshifting steady state24),

(t upshifting steady state26,T upshifting steady state26)}
junctions = {}

SimulationInstance

v gear , v up th, v speed , v down th, v throttle : R

204 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

InitSimulationInstance

SimulationInstance ′

v gear ′ = 0

v up th ′ = 0

v speed ′ = 0

v down th ′ = 0

v throttle ′ = 0

SimulationData

state status : SID 7→ B
state history : SID 7→ SID

dom state status = dom states

dom state history = {j : ran junctions | j .history = True • j .parent}
∀ s : ran states | s.decomposition = CLUSTER •

#{ss : ran s.substates | state status(ss) = True} ≤ 1

InitSimulationData

SimulationData ′

state status ′ = {n : dom states • n 7→ False}
state history ′ = {n : dom state history ′ • n 7→ nullstate.identi�er}

ActivateNoHistory

∆SimulationData

x? : SID

x? ∈ dom state status

(parent (states x?)).history = False

state history ′ = state history

state status ′ = state status ⊕ {x? 7→True}

C.1. CIRCUS MODEL OF SHIFT LOGIC CHART 205

ActivateWithHistory

∆SimulationData

x? : SID

x? ∈ dom state status

(parent (states x?)).history = True

state history ′ = state history ⊕ {((states x?).parent) 7→ x?}
state status ′ = state status ⊕ {x? 7→True}

Activate == (ActivateWithHistory ∨ ActivateNoHistory) ∧ ΞSimulationInstance

Deactivate

∆SimulationData

ΞSimulationInstance

x? : SID

x? ∈ dom state status

state history ′ = state history

state status ′ = state status ⊕ {x? 7→ False}

InitState == (InitSimulationInstance) ∧ (InitSimulationData)

state shift logic state == (SimulationInstance) ∧ (SimulationData)

entryaction downshifting =̂ (executeentryaction.(s downshifting)−→ Skip)

entryaction gear state =̂ (executeentryaction.(s gear state)−→ Skip)

entryaction fourth =̂ (executeentryaction.(s fourth)−→ (v gear := 4 ; Skip))

entryaction second =̂ (executeentryaction.(s second)−→ (v gear := 2 ; Skip))

entryaction third =̂ (executeentryaction.(s third)−→ (v gear := 3 ; Skip))

entryaction �rst =̂ (executeentryaction.(s �rst)−→ (v gear := 1 ; Skip))

entryaction selection state =̂ (executeentryaction.(s selection state)−→ Skip)

entryaction upshifting =̂ (executeentryaction.(s upshifting)−→ Skip)

entryaction steady state =̂ (executeentryaction.(s steady state)−→ Skip)

entryactions =̂


entryaction downshifting @ entryaction gear state@
entryaction fourth @ entryaction second @ entryaction third@
entryaction �rst @ entryaction selection state@
entryaction upshifting @ entryaction steady state



206 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

duringaction downshifting =̂ (executeduringaction.(s downshifting)?ce −→ Skip)

duringaction gear state =̂ (executeduringaction.(s gear state)?ce −→ Skip)

duringaction fourth =̂ (executeduringaction.(s fourth)?ce −→ Skip)

duringaction second =̂ (executeduringaction.(s second)?ce −→ Skip)

duringaction third =̂ (executeduringaction.(s third)?ce −→ Skip)

duringaction �rst =̂ (executeduringaction.(s �rst)?ce −→ Skip)

duringaction selection state =̂ executeduringaction.(s selection state)?ce−→(
var aux : R× R • aux := calc th(v gear , v throttle);

v down th := aux .1 ; v up th := aux .2

)
duringaction upshifting =̂ (executeduringaction.(s upshifting)?ce −→ Skip)

duringaction steady state =̂ (executeduringaction.(s steady state)?ce −→ Skip)

duringactions =̂


duringaction downshifting @ duringaction gear state@
duringaction fourth @ duringaction second@
duringaction third @ duringaction �rst@
duringaction selection state @ duringaction upshifting@
duringaction steady state



exitaction downshifting =̂ (executeexitaction.(s downshifting)−→ Skip)

exitaction gear state =̂ (executeexitaction.(s gear state)−→ Skip)

exitaction fourth =̂ (executeexitaction.(s fourth)−→ Skip)

exitaction second =̂ (executeexitaction.(s second)−→ Skip)

exitaction third =̂ (executeexitaction.(s third)−→ Skip)

exitaction �rst =̂ (executeexitaction.(s �rst)−→ Skip)

exitaction selection state =̂ (executeexitaction.(s selection state)−→ Skip)

exitaction upshifting =̂ (executeexitaction.(s upshifting)−→ Skip)

exitaction steady state =̂ (executeexitaction.(s steady state)−→ Skip)

exitactions =̂


exitaction downshifting @ exitaction gear state@
exitaction fourth @ exitaction second@
exitaction third @ exitaction �rst@
exitaction selection state @ exitaction upshifting@
exitaction steady state



conditionaction third fourth =̂ (executeconditionaction.(t third fourth)−→ Skip)

conditionaction second third =̂ (executeconditionaction.(t second third)−→ Skip)

conditionaction �rst second =̂ (executeconditionaction.(t �rst second)−→ Skip)

conditionaction fourth third =̂ (executeconditionaction.(t fourth third)−→ Skip)

conditionaction default �rst =̂ (executeconditionaction.(t default �rst)−→ Skip)

conditionaction second �rst =̂ (executeconditionaction.(t second �rst)−→ Skip)

conditionaction third second =̂ (executeconditionaction.(t third second)−→ Skip)

C.1. CIRCUS MODEL OF SHIFT LOGIC CHART 207

conditionaction steady state upshifting =̂

(executeconditionaction.(t steady state upshifting)−→ Skip)

conditionaction default steady state =̂

(executeconditionaction.(t default steady state)−→ Skip)

conditionaction upshifting steady state23 =̂

(executeconditionaction.(t upshifting steady state23)−→ Skip)

conditionaction steady state downshifting =̂

(executeconditionaction.(t steady state downshifting)−→ Skip)

conditionaction downshifting steady state25 =̂

executeconditionaction.(t downshifting steady state25)−→
var b : B • broadcast(e DOWN , s gear state) ; check(b); if b = True−→ Skip

8¬ (b = True)−→ Skip

�




conditionaction downshifting steady state24 =̂

(executeconditionaction.(t downshifting steady state24)−→ Skip)

conditionaction upshifting steady state26 =̂

executeconditionaction.(t upshifting steady state26)−→
var b : B • broadcast(e UP , s gear state) ; check(b); if b = True−→ Skip

8¬ (b = True)−→ (Skip)

�




conditionactions =̂



conditionaction third fourth @ conditionaction second third@
conditionaction �rst second @ conditionaction fourth third@
conditionaction default �rst @ conditionaction second �rst@
conditionaction third second@
conditionaction steady state upshifting@
conditionaction default steady state@
conditionaction upshifting steady state23@
conditionaction steady state downshifting@
conditionaction downshifting steady state25@
conditionaction downshifting steady state24@
conditionaction upshifting steady state26



208 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

transitionaction third fourth =̂ (executetransitionaction.(t third fourth)−→ Skip)

transitionaction second third =̂ (executetransitionaction.(t second third)−→ Skip)

transitionaction �rst second =̂ (executetransitionaction.(t �rst second)−→ Skip)

transitionaction fourth third =̂ (executetransitionaction.(t fourth third)−→ Skip)

transitionaction default �rst =̂ (executetransitionaction.(t default �rst)−→ Skip)

transitionaction second �rst =̂ (executetransitionaction.(t second �rst)−→ Skip)

transitionaction third second =̂ (executetransitionaction.(t third second)−→ Skip)

transitionaction steady state upshifting =̂

(executetransitionaction.(t steady state upshifting)−→ Skip)

transitionaction default steady state =̂

(executetransitionaction.(t default steady state)−→ Skip)

transitionaction upshifting steady state23 =̂

(executetransitionaction.(t upshifting steady state23)−→ Skip)

transitionaction steady state downshifting =̂

(executetransitionaction.(t steady state downshifting)−→ Skip)

transitionaction downshifting steady state25 =̂

(executetransitionaction.(t downshifting steady state25)−→ Skip)

transitionaction downshifting steady state24 =̂

(executetransitionaction.(t downshifting steady state24)−→ Skip)

transitionaction upshifting steady state26 =̂

(executetransitionaction.(t upshifting steady state26)−→ Skip)

transitionactions =̂



transitionaction third fourth @ transitionaction second third@
transitionaction �rst second @ transitionaction fourth third@
transitionaction default �rst @ transitionaction second �rst@
transitionaction third second@
transitionaction steady state upshifting@
transitionaction default steady state@
transitionaction upshifting steady state23@
transitionaction steady state downshifting@
transitionaction downshifting steady state25@
transitionaction downshifting steady state24@
transitionaction upshifting steady state26



C.1. CIRCUS MODEL OF SHIFT LOGIC CHART 209

condition third fourth =̂ (evaluatecondition.(t third fourth)!(True)−→ Skip)

condition second third =̂ (evaluatecondition.(t second third)!(True)−→ Skip)

condition �rst second =̂ (evaluatecondition.(t �rst second)!(True)−→ Skip)

condition fourth third =̂ (evaluatecondition.(t fourth third)!(True)−→ Skip)

condition default �rst =̂ (evaluatecondition.(t default �rst)!(True)−→ Skip)

condition second �rst =̂ (evaluatecondition.(t second �rst)!(True)−→ Skip)

condition third second =̂ (evaluatecondition.(t third second)!(True)−→ Skip)

condition steady state upshifting =̂
if((v speed>Av up th) 6= 0)−→

evaluatecondition.(t steady state upshifting)!(True)−→ Skip

8¬ (((v speed>Av up th) 6= 0))−→
evaluatecondition.(t steady state upshifting)!(False)−→ Skip

�


condition default steady state =̂

(evaluatecondition.(t default steady state)!(True)−→ Skip)

condition upshifting steady state23 =̂
if((v speed<Av up th) 6= 0)−→

evaluatecondition.(t upshifting steady state23)!(True)−→ Skip

8¬ (((v speed<Av up th) 6= 0))−→
evaluatecondition.(t upshifting steady state23)!(False)−→ Skip

�


condition steady state downshifting =̂

if((v speed<Av down th) 6= 0)−→
evaluatecondition.(t steady state downshifting)!(True)−→ Skip

8¬ (((v speed<Av down th) 6= 0))−→
evaluatecondition.(t steady state downshifting)!(False)−→ Skip

�


condition downshifting steady state25 =̂

if((v speed≤Av down th) 6= 0)−→
evaluatecondition.(t downshifting steady state25)!(True)−→ Skip

8¬ (((v speed≤Av down th) 6= 0))−→
evaluatecondition.(t downshifting steady state25)!(False)−→ Skip

�


condition downshifting steady state24 =̂

if((v speed>Av down th) 6= 0)−→
evaluatecondition.(t downshifting steady state24)!(True)−→ Skip

8¬ (((v speed>Av down th) 6= 0))−→
evaluatecondition.(t downshifting steady state24)!(False)−→ Skip

�



210 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

condition upshifting steady state26 =̂
if((v speed≥Av up th) 6= 0)−→

evaluatecondition.(t upshifting steady state26)!(True)−→ Skip

8¬ (((v speed≥Av up th) 6= 0))−→
evaluatecondition.(t upshifting steady state26)!(False)−→ Skip

�



conditions =̂



condition third fourth @ condition second third@
condition �rst second @ condition fourth third@
condition default �rst @ condition second �rst@
condition third second@
condition steady state upshifting@
condition default steady state@
condition upshifting steady state23@
condition steady state downshifting@
condition downshifting steady state25@
condition downshifting steady state24@
condition upshifting steady state26



trigger third fourth =̂ checktrigger .(t third fourth)?e−→ if e = e UP −→ result .(t third fourth).(e)!(True)−→ Skip

8¬ (e = e UP)−→ result .(t third fourth).(e)!(False)−→ Skip

�


trigger second third =̂ checktrigger .(t second third)?e−→ if e = e UP −→ result .(t second third).(e)!(True)−→ Skip

8¬ (e = e UP)−→ result .(t second third).(e)!(False)−→ Skip

�


trigger �rst second =̂ checktrigger .(t �rst second)?e−→ if e = e UP −→ result .(t �rst second).(e)!(True)−→ Skip

8¬ (e = e UP)−→ result .(t �rst second).(e)!(False)−→ Skip

�


trigger fourth third =̂ checktrigger .(t fourth third)?e−→ if e = e DOWN −→ result .(t fourth third).(e)!(True)−→ Skip

8¬ (e = e DOWN)−→ result .(t fourth third).(e)!(False)−→ Skip

�



C.1. CIRCUS MODEL OF SHIFT LOGIC CHART 211

trigger default �rst =̂ checktrigger .(t default �rst)?e−→
result .(t default �rst).(e)!(True)−→ Skip

trigger second �rst =̂ checktrigger .(t second �rst)?e−→ if e = e DOWN −→ result .(t second �rst).(e)!(True)−→ Skip

8¬ (e = e DOWN)−→ result .(t second �rst).(e)!(False)−→ Skip

�


trigger third second =̂ checktrigger .(t third second)?e−→ if e = e DOWN −→ result .(t third second).(e)!(True)−→ Skip

8¬ (e = e DOWN)−→ result .(t third second).(e)!(False)−→ Skip

�


trigger steady state upshifting =̂ checktrigger .(t steady state upshifting)?e−→

result .(t steady state upshifting).(e)!(True)−→ Skip

trigger default steady state =̂ checktrigger .(t default steady state)?e−→
result .(t default steady state).(e)!(True)−→ Skip

trigger upshifting steady state23 =̂ checktrigger .(t upshifting steady state23)?e−→
result .(t upshifting steady state23).(e)!(True)−→ Skip

trigger steady state downshifting =̂ checktrigger .(t steady state downshifting)?e−→
result .(t steady state downshifting).(e)!(True)−→ Skip

trigger downshifting steady state25 =̂ checktrigger .(t downshifting steady state25)?e−→
result .(t downshifting steady state25).(e)!(True)−→ Skip

trigger downshifting steady state24 =̂ checktrigger .(t downshifting steady state24)?e−→
result .(t downshifting steady state24).(e)!(True)−→ Skip

trigger upshifting steady state26 =̂ checktrigger .(t upshifting steady state26)?e−→
result .(t upshifting steady state26).(e)!(True)−→ Skip

triggers =̂



trigger third fourth @ trigger second third@
trigger �rst second @ trigger fourth third@
trigger default �rst @ trigger second �rst@
trigger third second @ trigger steady state upshifting@
trigger default steady state @ trigger upshifting steady state23@
trigger steady state downshifting @ trigger downshifting steady state25@
trigger downshifting steady state24 @ trigger upshifting steady state26



getevents =̂ (events!(〈ENULL〉)−→ Skip)

getstate =̂ (state?x : (x ∈ dom(states))!(states(x))−→ Skip)

getjunction =̂ (junction?x : (x ∈ dom(junctions))!(junctions(x))−→ Skip)

gettransition =̂ (transition?x : (x ∈ dom(transitions))!(transitions(x))−→ Skip)

getchart =̂ (chart !(states(identi�er))−→ Skip)

212 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

broadcast =̂ e : EVENT ; dest : SID • local event !(e, states(dest))−→
µX • (AllActions ; X @ end local execution −→ Skip)

check =̂ res erl : B • µX • (InterfaceActions ; X @ interrupt?x −→ erl := x)

status =̂ (status?x : (x ∈ dom(state status))!(state status(x))−→ Skip)

history =̂ (history?x : (x ∈ dom(state history))!(state history(x))−→ Skip)

activation =̂ (activate?x −→ (Activate))
deactivation =̂ (deactivate?x −→ (Deactivate))

ChartActions =̂

 entryactions @ duringactions@
exitactions @ conditionactions@
transitionactions

 ; end action −→ Skip

InterfaceActions =̂

(
getevents @ getchart @ getstate @ getjunction @ gettransition@
status @ history @ activation @ deactivation

)

Inputs =̂ read inputs −→

 i speed?x −→ v speed := x

||[{v speed} | {v throttle}]||
i throttle?x −→ v throttle := x


Outputs =̂ write outputs −→ o gear !(v gear)−→ Skip

AllActions =̂

(
conditionactions @ triggers @ Inputs @ Outputs@
ChartActions @ InterfaceActions

)

• (InitState) ;

 µX •

 µY •

 AllActions ; Y

@
end cycle −→ Skip


 ; X


end

process shift logic =̂ (P shift logic J interface ∪ {| end cycle |} K Simulator) \ interface

C.2. CIRCUS MODEL OF AIR CONTROLLER CHART 213

C.2 Circus model of Air Controller Chart

section air Controller parents state�ow toolkit

s O� 3, s On4, s FAN 2, s SpeedValue, s O� 7, s On8, s FAN 1, s PowerOn,

s PowerO� , c Controller : SID

t On8 O� 7, t O� 7 On8, t PowerO� PowerOn, t default PowerO� ,

t PowerOn PowerO� , t On4 O� 3, t O� 3 On4,

t default O� 3, t default O� 7 : TID

C Controller : State

C Controller =
〈|identi�er == c Controller , default == t default PowerO� ,

inner == nulltransition.identi�er , outer == nulltransition.identi�er ,

parent == nullstate.identi�er , left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈s PowerOn, s PowerO� 〉,
decomposition == CLUSTER, type == CHART , history == False|〉



S O� 3 : State

S O� 3 =
〈|identi�er == s O� 3, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t O� 3 On4,

parent == s FAN 2, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



S On4 : State

S On4 =
〈|identi�er == s On4, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t On4 O� 3,

parent == s FAN 2, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



214 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

S FAN 2 : State

S FAN 2 =
〈|identi�er == s FAN 2, default == t default O� 3,

inner == nulltransition.identi�er , outer == nulltransition.identi�er ,

parent == s PowerOn, left == s FAN 1,

right == s SpeedValue, substates == 〈s O� 3, s On4〉,
decomposition == CLUSTER, type == AND , history == False|〉



S SpeedValue : State

S SpeedValue =
〈|identi�er == s SpeedValue, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == nulltransition.identi�er ,

parent == s PowerOn, left == s FAN 2,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == AND , history == False|〉



S O� 7 : State

S O� 7 =
〈|identi�er == s O� 7, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t O� 7 On8,

parent == s FAN 1, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



S On8 : State

S On8 =
〈|identi�er == s On8, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t On8 O� 7,

parent == s FAN 1, left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



C.2. CIRCUS MODEL OF AIR CONTROLLER CHART 215

S FAN 1 : State

S FAN 1 =
〈|identi�er == s FAN 1, default == t default O� 7,

inner == nulltransition.identi�er , outer == nulltransition.identi�er ,

parent == s PowerOn, left == nullstate.identi�er ,

right == s FAN 2, substates == 〈s O� 7, s On8〉,
decomposition == CLUSTER, type == AND , history == False|〉



S PowerOn : State

S PowerOn =
〈|identi�er == s PowerOn, default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t PowerOn PowerO� ,

parent == c Controller , left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈s FAN 1, s FAN 2, s SpeedValue〉,
decomposition == SET , type == OR, history == False|〉



S PowerO� : State

S PowerO� =
〈|identi�er == s PowerO� , default == nulltransition.identi�er ,

inner == nulltransition.identi�er , outer == t PowerO� PowerOn,

parent == c Controller , left == nullstate.identi�er ,

right == nullstate.identi�er , substates == 〈〉,
decomposition == CLUSTER, type == OR, history == False|〉



T On8 O� 7 : Transition

T On8 O� 7 = 〈|identi�er == t On8 O� 7, source == snode(s On8),

destination == snode(s O� 7),next == nulltransition.identi�er ,

parent == s FAN 1|〉



T O� 7 On8 : Transition

T O� 7 On8 = 〈|identi�er == t O� 7 On8, source == snode(s O� 7),

destination == snode(s On8),next == nulltransition.identi�er ,

parent == s FAN 1|〉



216 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

T PowerO� PowerOn : Transition

T PowerO� PowerOn = 〈|identi�er == t PowerO� PowerOn, source == snode(s PowerO�),

destination == snode(s PowerOn),next == nulltransition.identi�er ,

parent == c Controller |〉



T default PowerO� : Transition

T default PowerO� = 〈|identi�er == t default PowerO� , source == snode(nullstate.identi�er),

destination == snode(s PowerO�),next == nulltransition.identi�er ,

parent == c Controller |〉



T PowerOn PowerO� : Transition

T PowerOn PowerO� = 〈|identi�er == t PowerOn PowerO� , source == snode(s PowerOn),

destination == snode(s PowerO�),next == nulltransition.identi�er ,

parent == c Controller |〉



T On4 O� 3 : Transition

T On4 O� 3 = 〈|identi�er == t On4 O� 3, source == snode(s On4),

destination == snode(s O� 3),next == nulltransition.identi�er ,

parent == s FAN 2|〉



T O� 3 On4 : Transition

T O� 3 On4 = 〈|identi�er == t O� 3 On4, source == snode(s O� 3),

destination == snode(s On4),next == nulltransition.identi�er ,

parent == s FAN 2|〉



C.2. CIRCUS MODEL OF AIR CONTROLLER CHART 217

T default O� 3 : Transition

T default O� 3 = 〈|identi�er == t default O� 3, source == snode(nullstate.identi�er),

destination == snode(s O� 3),next == nulltransition.identi�er ,

parent == s FAN 2|〉



T default O� 7 : Transition

T default O� 7 = 〈|identi�er == t default O� 7, source == snode(nullstate.identi�er),

destination == snode(s O� 7),next == nulltransition.identi�er ,

parent == s FAN 1|〉



e SWITCH , e CLOCK : EVENT

channel o air�ow : N; i temp : R

processP Controller =̂ begin

State�owChart

identi�er = c Controller

states = {(c Controller ,C Controller), (s O� 3,S O� 3), (s On4,S On4),

(s FAN 2,S FAN 2), (s SpeedValue,S SpeedValue), (s O� 7,S O� 7),

(s On8,S On8), (s FAN 1,S FAN 1), (s PowerOn,S PowerOn),

(s PowerO� ,S PowerO�)}
transitions = {(t On8 O� 7,T On8 O� 7), (t O� 7 On8,T O� 7 On8),

(t PowerO� PowerOn,T PowerO� PowerOn),

(t default PowerO� ,T default PowerO�),

(t PowerOn PowerO� ,T PowerOn PowerO�), (t On4 O� 3,T On4 O� 3),

(t O� 3 On4,T O� 3 On4), (t default O� 3,T default O� 3),

(t default O� 7,T default O� 7)}
junctions = {}

218 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

SimulationInstance

v air�ow : N
v temp : R

InitSimulationInstance

SimulationInstance ′

v air�ow ′ = 0

v temp′ = 0

SimulationData

state status : SID 7→ B
state history : SID 7→ SID

dom state status = dom states

dom state history = {j : ran junctions | j .history = True • j .parent}
∀ s : ran states | s.decomposition = CLUSTER •

#{ss : ran s.substates | state status(ss) = True} ≤ 1

InitSimulationData

SimulationData ′

state status ′ = {n : dom states • n 7→ False}
state history ′ = {n : dom state history ′ • n 7→ nullstate.identi�er}

ActivateNoHistory

∆SimulationData

x? : SID

x? ∈ dom state status

(parent (states x?)).history = False

state history ′ = state history

state status ′ = state status ⊕ {x? 7→True}

C.2. CIRCUS MODEL OF AIR CONTROLLER CHART 219

ActivateWithHistory

∆SimulationData

x? : SID

x? ∈ dom state status

(parent (states x?)).history = True

state history ′ = state history ⊕ {((states x?).parent) 7→ x?}
state status ′ = state status ⊕ {x? 7→True}

Activate == (ActivateWithHistory ∨ ActivateNoHistory) ∧ ΞSimulationInstance

Deactivate

∆SimulationData

ΞSimulationInstance

x? : SID

x? ∈ dom state status

state history ′ = state history

state status ′ = state status ⊕ {x? 7→ False}

InitState == (InitSimulationInstance) ∧ (InitSimulationData)

stateController state == (SimulationInstance) ∧ (SimulationData)

entryaction O� 3 =̂ (executeentryaction.(s O� 3)−→ Skip)

entryaction On4 =̂ (executeentryaction.(s On4)−→ Skip)

entryaction FAN 2 =̂ (executeentryaction.(s FAN 2)−→ Skip)

entryaction SpeedValue =̂ (executeentryaction.(s SpeedValue)−→ Skip)

entryaction O� 7 =̂ (executeentryaction.(s O� 7)−→ Skip)

entryaction On8 =̂ (executeentryaction.(s On8)−→ Skip)

entryaction FAN 1 =̂ (executeentryaction.(s FAN 1)−→ Skip)

entryaction PowerOn =̂ (executeentryaction.(s PowerOn)−→ Skip)

entryaction PowerO� =̂ (executeentryaction.(s PowerO�)−→ v air�ow := 0)

entryactions =̂

 entryaction O� 3 @ entryaction On4 @ entryaction FAN 2@
entryaction SpeedValue @ entryaction O� 7 @ entryaction On8@
entryaction FAN 1 @ entryaction PowerOn @ entryaction PowerO�



220 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

duringaction O� 3 =̂ (executeduringaction.(s O� 3)?ce −→ Skip)

duringaction On4 =̂ (executeduringaction.(s On4)?ce −→ Skip)

duringaction FAN 2 =̂ (executeduringaction.(s FAN 2)?ce −→ Skip)

duringaction SpeedValue =̂ (executeduringaction.(s SpeedValue)?ce−→
v air�ow := (b2r(state status(s On8)) + b2r(state status(s On4))))

duringaction O� 7 =̂ (executeduringaction.(s O� 7)?ce −→ Skip)

duringaction On8 =̂ (executeduringaction.(s On8)?ce −→ Skip)

duringaction FAN 1 =̂ (executeduringaction.(s FAN 1)?ce −→ Skip)

duringaction PowerOn =̂ (executeduringaction.(s PowerOn)?ce −→ Skip)

duringaction PowerO� =̂ (executeduringaction.(s PowerO�)?ce −→ Skip)

duringactions =̂


duringaction O� 3 @ duringaction On4 @ duringaction FAN 2@
duringaction SpeedValue @ duringaction O� 7@
duringaction On8 @ duringaction FAN 1@
duringaction PowerOn @ duringaction PowerO�



exitaction O� 3 =̂ (executeexitaction.(s O� 3)−→ Skip)

exitaction On4 =̂ (executeexitaction.(s On4)−→ Skip)

exitaction FAN 2 =̂ (executeexitaction.(s FAN 2)−→ Skip)

exitaction SpeedValue =̂ (executeexitaction.(s SpeedValue)−→ Skip)

exitaction O� 7 =̂ (executeexitaction.(s O� 7)−→ Skip)

exitaction On8 =̂ (executeexitaction.(s On8)−→ Skip)

exitaction FAN 1 =̂ (executeexitaction.(s FAN 1)−→ Skip)

exitaction PowerOn =̂ (executeexitaction.(s PowerOn)−→ Skip)

exitaction PowerO� =̂ (executeexitaction.(s PowerO�)−→ Skip)

exitactions =̂


exitaction O� 3 @ exitaction On4 @ exitaction FAN 2@
exitaction SpeedValue @ exitaction O� 7@
exitaction On8 @ exitaction FAN 1@
exitaction PowerOn @ exitaction PowerO�



conditionaction On8 O� 7 =̂ (executeconditionaction.(t On8 O� 7)−→ Skip)

conditionaction O� 7 On8 =̂ (executeconditionaction.(t O� 7 On8)−→ Skip)

conditionaction PowerO� PowerOn =̂

(executeconditionaction.(t PowerO� PowerOn)−→ Skip)

conditionaction default PowerO� =̂

(executeconditionaction.(t default PowerO�)−→ Skip)

conditionaction PowerOn PowerO� =̂

(executeconditionaction.(t PowerOn PowerO�)−→ Skip)

C.2. CIRCUS MODEL OF AIR CONTROLLER CHART 221

conditionaction On4 O� 3 =̂ (executeconditionaction.(t On4 O� 3)−→ Skip)

conditionaction O� 3 On4 =̂ (executeconditionaction.(t O� 3 On4)−→ Skip)

conditionaction default O� 3 =̂ (executeconditionaction.(t default O� 3)−→ Skip)

conditionaction default O� 7 =̂ (executeconditionaction.(t default O� 7)−→ Skip)

conditionactions =̂



conditionaction On8 O� 7@
conditionaction O� 7 On8@
conditionaction PowerO� PowerOn@
conditionaction default PowerO� @
conditionaction PowerOn PowerO� @
conditionaction On4 O� 3@
conditionaction O� 3 On4@
conditionaction default O� 3@
conditionaction default O� 7



transitionaction On8 O� 7 =̂ (executetransitionaction.(t On8 O� 7)−→ Skip)

transitionaction O� 7 On8 =̂ (executetransitionaction.(t O� 7 On8)−→ Skip)

transitionaction PowerO� PowerOn =̂

(executetransitionaction.(t PowerO� PowerOn)−→ Skip)

transitionaction default PowerO� =̂

(executetransitionaction.(t default PowerO�)−→ Skip)

transitionaction PowerOn PowerO� =̂

(executetransitionaction.(t PowerOn PowerO�)−→ Skip)

transitionaction On4 O� 3 =̂ (executetransitionaction.(t On4 O� 3)−→ Skip)

transitionaction O� 3 On4 =̂ (executetransitionaction.(t O� 3 On4)−→ Skip)

transitionaction default O� 3 =̂ (executetransitionaction.(t default O� 3)−→ Skip)

transitionaction default O� 7 =̂ (executetransitionaction.(t default O� 7)−→ Skip)

transitionactions =̂



transitionaction On8 O� 7@
transitionaction O� 7 On8@
transitionaction PowerO� PowerOn@
transitionaction default PowerO� @
transitionaction PowerOn PowerO� @
transitionaction On4 O� 3@
transitionaction O� 3 On4@
transitionaction default O� 3@
transitionaction default O� 7



222 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

condition On8 O� 7 =̂ if(v temp<A120) 6= 0−→ evaluatecondition.(t On8 O� 7)!(True)−→ Skip

8¬ ((v temp<A120) 6= 0)−→ evaluatecondition.(t On8 O� 7)!(False)−→ Skip

�


condition O� 7 On8 =̂ if(v temp≥A120) 6= 0−→ evaluatecondition.(t O� 7 On8)!(True)−→ Skip

8¬ ((v temp≥A120) 6= 0)−→ evaluatecondition.(t O� 7 On8)!(False)−→ Skip

�



condition PowerO� PowerOn =̂

(evaluatecondition.(t PowerO� PowerOn)!(True)−→ Skip)

condition default PowerO� =̂

(evaluatecondition.(t default PowerO�)!(True)−→ Skip)

condition PowerOn PowerO� =̂

(evaluatecondition.(t PowerOn PowerO�)!(True)−→ Skip)

condition On4 O� 3 =̂ if((v temp<A150) 6= 0)−→ evaluatecondition.(t On4 O� 3)!(True)−→ Skip

8¬ ((v temp<A150) 6= 0)−→ evaluatecondition.(t On4 O� 3)!(False)−→ Skip

�


condition O� 3 On4 =̂ if((v temp≥A150) 6= 0)−→ evaluatecondition.(t O� 3 On4)!(True)−→ Skip

8¬ ((v temp≥A150) 6= 0)−→ evaluatecondition.(t O� 3 On4)!(False)−→ Skip

�


condition default O� 3 =̂ (evaluatecondition.(t default O� 3)!(True)−→ Skip)

condition default O� 7 =̂ (evaluatecondition.(t default O� 7)!(True)−→ Skip)

conditions =̂


condition On8 O� 7 @ condition O� 7 On8@
condition PowerO� PowerOn @ condition default PowerO� @
condition PowerOn PowerO� @ condition On4 O� 3@
condition O� 3 On4 @ condition default O� 3@
condition default O� 7



C.2. CIRCUS MODEL OF AIR CONTROLLER CHART 223

trigger On8 O� 7 =̂

(checktrigger .(t On8 O� 7)?e −→ (result .(t On8 O� 7).(e)!(True)−→ Skip))

trigger O� 7 On8 =̂

(checktrigger .(t O� 7 On8)?e −→ (result .(t O� 7 On8).(e)!(True)−→ Skip))

trigger PowerO� PowerOn =̂ checktrigger .(t PowerO� PowerOn)?e−→ if e = e SWITCH −→ (result .(t PowerO� PowerOn).(e)!(True)−→ Skip)

8¬ (e = e SWITCH)−→ ((result .(t PowerO� PowerOn).(e)!(False)−→ Skip))

�


trigger default PowerO� =̂ checktrigger .(t default PowerO�)?e−→

(result .(t default PowerO�).(e)!(True)−→ Skip)

trigger PowerOn PowerO� =̂ checktrigger .(t PowerOn PowerO�)?e−→ if e = e SWITCH −→ (result .(t PowerOn PowerO�).(e)!(True)−→ Skip)

8¬ (e = e SWITCH)−→ ((result .(t PowerOn PowerO�).(e)!(False)−→ Skip))

�



trigger On4 O� 3 =̂

checktrigger .(t On4 O� 3)?e −→ (result .(t On4 O� 3).(e)!(True)−→ Skip)

trigger O� 3 On4 =̂

checktrigger .(t O� 3 On4)?e −→ (result .(t O� 3 On4).(e)!(True)−→ Skip)

trigger default O� 3 =̂

checktrigger .(t default O� 3)?e −→ (result .(t default O� 3).(e)!(True)−→ Skip)

trigger default O� 7 =̂

checktrigger .(t default O� 7)?e −→ (result .(t default O� 7).(e)!(True)−→ Skip)

triggers =̂


trigger On8 O� 7 @ trigger O� 7 On8@
trigger PowerO� PowerOn @ trigger default PowerO� @
trigger PowerOn PowerO� @ trigger On4 O� 3@
trigger O� 3 On4 @ trigger default O� 3@
trigger default O� 7



getevents =̂ (events!(〈e SWITCH , e CLOCK 〉)−→ Skip)

getstate =̂ (state?x : (x ∈ dom(states))!(states(x))−→ Skip)

getjunction =̂ (junction?x : (x ∈ dom(junctions))!(junctions(x))−→ Skip)

gettransition =̂ (transition?x : (x ∈ dom(transitions))!(transitions(x))−→ Skip)

getchart =̂ (chart !(states(identi�er))−→ Skip)

224 APPENDIX C. CIRCUS MODELS OF STATEFLOW CHARTS

broadcast =̂ e : EVENT ; dest : SID • local event !(e, states(dest))−→

µX •

 (AllActions ; X)

@
(end local execution −→ Skip)


check =̂ res erl : B • µX • (InterfaceActions ; X @ interrupt?x −→ erl := x)

status =̂ (status?x : (x ∈ dom(state status))!(state status(x))−→ Skip)

history =̂ (history?x : (x ∈ dom(state history))!(state history(x))−→ Skip)

activation =̂ (activate?x −→ (Activate))
deactivation =̂ (deactivate?x −→ (Deactivate))

ChartActions =̂

 entryactions @ duringactions@
exitactions @ conditionactions@
transitionactions

 ; (end action −→ Skip)

InterfaceActions =̂

 getevents @ getchart @ getstate@
getjunction @ gettransition @ status@
history @ activation @ deactivation



Inputs =̂ (read inputs −→ (i temp?x −→ v temp := x))

Outputs =̂ (write outputs −→ (o air�ow !(v air�ow)−→ Skip))

AllActions =̂

(
conditionactions @ triggers @ Inputs@
Outputs @ ChartActions @ InterfaceActions

)

• (InitState) ; µX •


 µY •

 (AllActions ; Y)

@
end cycle −→ Skip


 ; X



end

processController =̂ (P Controller J interface ∪ {| end cycle |} K Simulator) \ interface

Appendix D

Circus model of the implementation of

Air Controller Chart

sectionAir impl parents circus toolkit , basic toolkit

Air IN NO ACTIVE CHILD == 0

Air IN O� == 1

Air IN On == 2

Air IN PowerO� == 1

Air IN PowerOn == 2

Air event CLOCK == 1

Air event SWITCH == 0

CALL EVENT == − 1

BlockIO Air == [air�ow : N]

D Work Air

is active c1 Air , is c1 Air : N
is active FAN 2, is FAN 2 : N
is active SpeedValue : N
is active FAN 1, is FAN 1 : N

ExternalInputs Air == [temp : R; inputevents : seqB]

ExternalOutputs Air == [air�ow : N]

226
APPENDIX D. CIRCUS MODEL OF THE IMPLEMENTATION OF AIR

CONTROLLER CHART

is active c1 Air : D Work Air × N→D Work Air

∀ b : D Work Air ; v : N • is active c1 Air(b, v) =

〈|is active c1 Air == v , is c1 Air == b.is c1 Air ,

is active FAN 2 == b.is active FAN 2, is FAN 2 == b.is FAN 2,

is active SpeedValue == b.is active SpeedValue,

is active FAN 1 == b.is active FAN 1, is FAN 1 == b.is FAN 1|〉

is c1 Air : D Work Air × N→D Work Air

∀ b : D Work Air ; v : N • is c1 Air(b, v) =

〈|is active c1 Air == b.is active c1 Air ,

is c1 Air == v , is active FAN 2 == b.is active FAN 2,

is FAN 2 == b.is FAN 2, is active SpeedValue == b.is active SpeedValue,

is active FAN 1 == b.is active FAN 1, is FAN 1 == b.is FAN 1|〉

is active FAN 2 : D Work Air × N→D Work Air

∀ b : D Work Air ; v : N • is active FAN 2(b, v) =

〈|is active c1 Air == b.is active c1 Air ,

is c1 Air == b.is c1 Air , is active FAN 2 == v ,

is FAN 2 == b.is FAN 2, is active SpeedValue == b.is active SpeedValue,

is active FAN 1 == b.is active FAN 1, is FAN 1 == b.is FAN 1|〉

is FAN 2 : D Work Air × N→D Work Air

∀ b : D Work Air ; v : N • is FAN 2(b, v) =

〈|is active c1 Air == b.is active c1 Air ,

is c1 Air == b.is c1 Air , is active FAN 2 == b.is active FAN 2,

is FAN 2 == v , is active SpeedValue == b.is active SpeedValue,

is active FAN 1 == b.is active FAN 1, is FAN 1 == b.is FAN 1|〉

is active SpeedValue : D Work Air × N→D Work Air

∀ b : D Work Air ; v : N • is active SpeedValue(b, v) =

〈|is active c1 Air == b.is active c1 Air ,

is c1 Air == b.is c1 Air , is active FAN 2 == b.is active FAN 2,

is FAN 2 == b.is FAN 2, is active SpeedValue == v ,

is active FAN 1 == b.is active FAN 1, is FAN 1 == b.is FAN 1|〉

227

is active FAN 1 : D Work Air × N→D Work Air

∀ b : D Work Air ; v : N • is active FAN 1(b, v) =

〈|is active c1 Air == b.is active c1 Air ,

is c1 Air == b.is c1 Air , is active FAN 2 == b.is active FAN 2,

is FAN 2 == b.is FAN 2, is active SpeedValue == b.is active SpeedValue,

is active FAN 1 == v , is FAN 1 == b.is FAN 1|〉

is FAN 1 : D Work Air × N→D Work Air

∀ b : D Work Air ; v : N • is FAN 1(b, v) =

〈|is active c1 Air == b.is active c1 Air ,

is c1 Air == b.is c1 Air , is active FAN 2 == b.is active FAN 2,

is FAN 2 == b.is FAN 2, is active SpeedValue == b.is active SpeedValue,

is active FAN 1 == b.is active FAN 1, is FAN 1 == v |〉

air�ow : BlockIO Air × N→ BlockIO Air

∀ b : BlockIO Air ; v : N • air�ow(b, v) =

〈|air�ow == v |〉

temp : ExternalInputs Air × R→ ExternalInputs Air

∀ b : ExternalInputs Air ; v : R • temp(b, v) =

〈|temp == v , inputevents == b.inputevents|〉

inputevents : ExternalInputs Air × (seqB)→ ExternalInputs Air

∀ b : ExternalInputs Air ; v : seqB • inputevents(b, v) =

〈|temp == b.temp, inputevents == v |〉

Air state

sfEvent Air : Z
Air B : BlockIO Air

Air DWork : D Work Air

Air U : ExternalInputs Air

Air Y : ExternalOutputs Air

228
APPENDIX D. CIRCUS MODEL OF THE IMPLEMENTATION OF AIR

CONTROLLER CHART

channel in FAN 1 : Air state

channel out FAN 1 : N
channel input event : (seqB)

channel i temp : R
channel o air�ow : N

processAir =̂ begin

stateAir state

Air FAN 1 =̂

varAir B : BlockIO Air ; Air DWork : D Work Air ; Air U : ExternalInputs Air ;

Air Y : ExternalOutputs Air ; sfEvent Air : Z •
in FAN 1?s −→ Air B ,Air DWork ,Air U ,Air Y , sfEvent Air :=

s.Air B , s.Air DWork , s.Air U , s.Air Y , s. sfEvent Air ;

if Air DWork .is FAN 1 = Air IN O�−→ if Air U .temp ≥ 120−→ Air DWork := is FAN 1(Air DWork ,Air IN On)

8¬ (Air U .temp ≥ 120)−→ Skip

�


8Air DWork .is FAN 1 = Air IN On−→ if Air U .temp < 120−→ Air DWork := is FAN 1(Air DWork ,Air IN O�)

8¬ (Air U .temp < 120)−→ Skip

�


8¬ (Air DWork .is FAN 1 = Air IN O� ∨ Air DWork .is FAN 1 = Air IN On)−→

Air DWork := is FAN 1(Air DWork ,Air IN O�)

�



;

out FAN 1!(Air DWork .is FAN 1)−→ Skip



FAN 2 =̂

if Air DWork .is FAN 2 = Air IN O�−→ if Air U .temp ≥ 150−→ Air DWork := is FAN 2(Air DWork ,Air IN On)

8¬ (Air U .temp ≥ 150)−→ Skip

�


8Air DWork .is FAN 2 = Air IN On−→ if Air U .temp < 150−→ Air DWork := is FAN 2(Air DWork ,Air IN O�)

8¬ (Air U .temp < 150)−→ Skip

�


8¬ (Air DWork .is FAN 2 = Air IN O� ∨ Air DWork .is FAN 2 = Air IN On)−→

Air DWork := is FAN 2(Air DWork ,Air IN O�)

�



229

Air chartstep c1 Air =̂

if Air DWork .is active c1 Air = 0−→ Air DWork := is active c1 Air(Air DWork , 1);

Air DWork := is c1 Air(Air DWork ,Air IN PowerO�);

Air B := air�ow(Air B , 0)


8¬ (Air DWork .is active c1 Air = 0)−→

if Air DWork .is c1 Air = Air IN PowerO�−→

if sfEvent Air = Air event SWITCH−→

Air DWork := is c1 Air(Air DWork ,Air IN PowerOn);

Air DWork := is active FAN 1(Air DWork , 1);

Air DWork := is FAN 1(Air DWork ,Air IN O�);

Air DWork := is active FAN 2(Air DWork , 1);

Air DWork := is FAN 2(Air DWork ,Air IN O�);

Air DWork := is active SpeedValue(Air DWork , 1)


8¬ (sfEvent Air = Air event SWITCH)−→ Skip

�


8Air DWork .is c1 Air = Air IN PowerOn−→

if sfEvent Air = Air event SWITCH−→

Air DWork := is active SpeedValue(Air DWork , 0);

Air DWork := is FAN 2(Air DWork ,Air IN NO ACTIVE CHILD);

Air DWork := is active FAN 2(Air DWork , 0);

Air DWork := is FAN 1(Air DWork ,Air IN NO ACTIVE CHILD);

Air DWork := is active FAN 1(Air DWork , 0);

Air DWork := is c1 Air(Air DWork ,Air IN PowerO�);

Air B := air�ow(Air B , 0)


8¬ (sfEvent Air = Air event SWITCH)−→

in FAN 1!(θAir state)−→ Skip;

FAN 2;

out FAN 1?f 1−→ Air DWork := is FAN 1(Air DWork , f 1);

Air B := air�ow(Air B ,

(if Air DWork .is FAN 1 = Air IN On then 1 else 0)+

(if Air DWork .is FAN 2 = Air IN On then 1 else 0))


�


8¬ (Air DWork .is c1 Air = Air IN PowerO� ∨

Air DWork .is c1 Air = Air IN PowerOn)−→(
Air DWork := is c1 Air(Air DWork ,Air IN PowerO�);

Air B := air�ow(Air B , 0)

)
�


�



230
APPENDIX D. CIRCUS MODEL OF THE IMPLEMENTATION OF AIR

CONTROLLER CHART

Air output =̂


if Air U .inputevents(1) = True−→

sfEvent Air := Air event SWITCH ; Air chartstep c1 Air

8¬ (Air U .inputevents(1) = True)−→ Skip

�

 ;


if Air U .inputevents(2) = True−→

sfEvent Air := Air event CLOCK ; Air chartstep c1 Air

8¬ (Air U .inputevents(2) = True)−→ Skip

�

 ;

Air Y := Air B



MdlInitialize =̂

sfEvent Air := CALL EVENT ;

Air DWork := is active FAN 1(Air DWork , 0);

Air DWork := is FAN 1(Air DWork , 0);

Air DWork := is active FAN 2(Air DWork , 0);

Air DWork := is FAN 2(Air DWork , 0);

Air DWork := is active SpeedValue(Air DWork , 0);

Air DWork := is active c1 Air(Air DWork , 0);

Air DWork := is c1 Air(Air DWork , 0);

Air B := air�ow(Air B , 0)



FAN 1 =̂ µX • Air FAN 1

read inputs =̂

(
input event?es −→ Air U := inputevents(Air U , es);

i temp?v −→ Air U := temp(Air U , v)

)

write outputs =̂ o air�ow !(Air Y .air�ow)−→ Skip

ExecuteChart =̂ MdlInitialize ;

(
µX • read inputs ; Air output ;

write outputs ; end cycle −→ X

)

•

 ExecuteChart

J{ sfEvent Air ,Air U ,Air B ,Air DWork ,Air Y } | {| in FAN 1, out FAN 1 |} | {}K
FAN 1



end

Appendix E

Novel re�nement laws

We present here, in alphabetical order, the novel re�nement laws of Circus that we need.

Law[alt-alt-dist]


if g1 −→ A1

8 g2 −→

 if g3 −→ A2

8 g4 −→ A3

�


�

 =


if g1 −→ A1

8 g2 ∧ g3 −→ A2

8 g2 ∧ g4 −→ A3

�


provided

• g1 ∨ g2;

• g1 ⇒ ¬ g2;

• g3 ∨ g4;

• g3 ⇒ ¬ g4.

Law[alt-assump-intro]

(if b1 −→ A1 8 b2 −→ A2 �) = (if b1 −→ {b1} ; A1 8 b2 −→ {b2} ; A2 �)

provided

• b1 ∨ b2;

• b1 ⇒ ¬ b2.

232 APPENDIX E. NOVEL REFINEMENT LAWS

Law[alt-elim]

(if b1 −→ A1 8 b2 −→ A2 �) = A1

provided

• b1 ∨ b2;

• b1 ⇒ ¬ b2;

• b1 ⇔ True.

Law[alt-guard-rew]

(if b1 −→ A1 8 b2 −→ A2 �) = (if b3 −→ A1 8 b2 −→ A2 �)

provided

• b1 ∨ b2;

• b1 ⇒ ¬ b2;

• b1 ⇔ b3.

Law[alt-hide-dist]

(if p −→ A 8 ¬ p −→ B �) \ cs = (if p −→ A \ cs 8 ¬ p −→ B \ cs �)

Law[alt-par-dist]

(if b1 −→ A1 8 b2 −→ A2 �) J ns1 | cs | ns2 K B
=

(if b1 −→ A1 J ns1 | cs | ns2 K B 8 b2 −→ A2 J ns1 | cs | ns2 K B �)

provided

• initials(B) ⊆ cs

• B is deterministic.

Law[alt-seq-dist]

(if b1 −→ A1 8 b2 −→ A2 �) ; B = (if b1 −→ A1 ; B 8 b2 −→ A2 ; B �)

provided

• b1 ∨ b2

• b1 ⇒ ¬ b2

Law[alt-var-dist-both]

233

(if b1 −→ (var x : T • A) 8 b2 −→ (var x : T • B) �)

=

var x : T • (if b1 −→ A 8 b2 −→ B �)

provided

• b1 ∨ b2;

• b1 ⇒ ¬ b2.

Law[assign-assump-intro]

v := e = v := e ; {v = e}

provided v 6∈ FV (e)

Law[assign-par-dist]

(v := e ; A) J ns1 | cs | ns2 K B = v := e ; (A J ns1 | cs | ns2 K B)

provided

• v ∈ ns1

• v ∩ usedV (A2) = ∅

Law[assign-schema-conv]

{inv} ; v := e = [∆S | vs ′ = vs ∧ v ′ = e]

where

• S == [dv , dvs | inv]

• dv is the declaration of v

• dvs is the declaration of the remaining variables

• inv is the state invariant

provided inv ⇒ inv ∧ (∃ d ′ • inv ′ ∧ vs ′ = vs ∧ v ′ = e)

Law[assign-seq-col]

(x := e1 ; x := e2) = x := e2[e1/x]

234 APPENDIX E. NOVEL REFINEMENT LAWS

Law[assign-seq-com]

(x := e ; A) = (A[e/x] ; x := e)

provided x 6∈ wrtV (A)

Law[assign-seq-dist]

(x := e ; A) = (x := e ; A[e/x])

provided x 6∈ wrtV (A)

Law[assump-alt-dist]

{g} ; (if b1 −→ A1 8 b2 −→ A2 �) = {g} ; (if b1 −→ {g} ; A1 8 b2 −→ {g} ; A2 �)

provided

• b1 ∨ b2;

• b1 ⇒ ¬ b2.

Law[assump-alt-dist-move]

{g} ; (if b1 −→ A1 8 b2 −→ A2 �) = (if b1 −→ {g} ; A1 8 b2 −→ {g} ; A2 �)

provided

• b1 ∨ b2;

• b1 ⇒ ¬ b2.

Law[assump-assign-dist]

{g} ; v := e = v := e ; {g}

provided g ∧ (v ′ = e)⇒ g ′

Law[assump-rec-dist]

{g} ; (µX • A ; X) v {g} ; (µX • {g} ; A ; X)

provided {g} ; A v A ; {g}

235

Law[int-seq-dist]

(A ; B) ||[ns1 | ns2]|| C = A ; (B ||[ns1 | ns2]|| C)

provided

• usedC (A) = ∅;

• wrtV (A) ⊆ ns1;

• wrtV (A) ∩ usedV (C) = ∅.

Law[pre�x-hide-dist-1]

(c −→ A) \ cs = c −→ (A \ cs)

provided c 6∈ cs

Law[pre�x-hide-dist-2]

(c −→ A) \ cs = A \ cs

provided c ∈ cs

Law[pre�x-par-dist]

((c −→ A) J ns1 | cs | ns2 K B) = c −→ (A J ns1 | cs | ns2 K B)

((c?x −→ A) J ns1 | cs | ns2 K B) = c?x −→ (A J ns1 | cs | ns2 K B)

((c.e −→ A) J ns1 | cs | ns2 K B) = c.e −→ (A J ns1 | cs | ns2 K B)

provided

• c 6∈ cs

• x 6∈ usedV (B)

• initials(B) ⊆ cs

• B is deterministic

Law[seq-assign-conv]

[∆S | c′1 = e1 ∧ . . . ∧ c′m = em ∧ c′m+1 = cm+1 ∧ . . . ∧ c′n = cn] v c1 := e1 ; . . . ; cm := em

where

• S = [d | inv]

• c1, . . . , cn are state components (elements of αd)

syntactic restriction αd and αd ′ are not free in e1, . . . , en .

provided inv [e1, . . . , em/c1, . . . , cm]

236 APPENDIX E. NOVEL REFINEMENT LAWS

Law[tail-rec-hide-dist]

(µX • A ; X) \ cs = µX • A \ cs ; X

provided A \ cs is deterministic

Law[tail-rec-seq-dist]

(µX • if p −→ A ; X 8 q −→ Skip�) ; B = (µX • if p −→ A ; X 8 q −→ B �)

provided

• p ∨ q ;

• p ⇒ ¬ q .

Law[unique-�xed-point]

A = µX • F (X)

provided

• F is deterministic;

• F(A) = A.

Law[var-alt-dist]

(if p −→ (var x : T • A) 8 q −→ B �)

=

var x : T • (if p −→ A 8 q −→ B �)

provided

• p ∨ q

• p ⇒ ¬ q

• x 6∈ FV (B , p, q)

Law[var-assign-elim]

(var x : T • A ; x := e) = A

provided x 6∈ fv(A)

237

Law[var-assign-intro]

A = (var y : T • y := e ; A)

provided y 6∈ FV (A)

Law[var-int-dist]

(var x : T • A) ||[ns1 | ns2]|| B = (var x : T • (A ||[ns1 ∪ {x} | ns2]|| B))

provided x 6∈ FV (B) ∪ ns1 ∪ ns2

Law[var-iter-seq-ext]

(; i : Ti • (var v : Tv • A)) = (var v : Tv • (; i : Ti • A))

Law[var-pre�x-ext]

c −→ (var x : T • A) = (var x : T • c −→ A)

provided x 6∈ FV (c)

Law[var-rec-hide-dist]

(µX • A ; X ; B) \ cs = (µX • A \ cs ; X ; B \ cs)

provided A \ cs ; X ; B \ cs is deterministic

Law[var-rename]

(var x : T • A) = (var y : T • A[y/x])

provided y 6∈ FV (A)

Law[var-seq-ext-left]

A ; (var x : T • B) = (var x : T • A ; B)

provided x 6∈ FV (A)

Law[var-seq-ext-right]

(var x : T • A) ; B = (var x : T • A ; B)

provided x 6∈ FV (B)

238 APPENDIX E. NOVEL REFINEMENT LAWS

Law[var-tail-alt-rec-hide-dist]

(µX • (if p −→ A ; X 8 ¬ p −→ B �)) \ cs
=

(µX • if p −→ A \ cs ; X 8 ¬ p −→ B \ cs �)

provided (if p −→ A \ cs ; X 8 ¬ p −→ B \ cs �) is deterministic.

Law[var-tail-rec-ext](µX • var v : T • A ; X) v var v : T • (µX • A ; X)

The above is a re�nement law because in the action where the variable block is local to

the recursion, a new arbitrary value is given to the variable at each iteration. On the other

hand, in the action where the recursion is local to the variable block, the value of the

variable at each iteration is always that at the end of the previous iteration (and arbitrary

just in the �rst iteration).

Bibliography

[1] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University

Press, New York, NY, USA, 1996. ISBN 0-521-49619-5.

[2] J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge

University Press, 2010. ISBN 978-0-521-89556-9.

[3] M. M. Adams and P. B. Clayton. ClawZ: Cost-E�ective Formal Veri�cation for

Control Systems. In K.-K. Lau and R. Banach, editors, ICFEM, volume 3785 of

LNCS. Springer-Verlag, 2005. ISBN 3-540-29797-9. doi: 10.1007/11576280_32.

[4] R. Arthan, P. Caseley, C. O'Halloran, and A. Smith. ClawZ: control laws in Z. In

ICFEM, 2000. pp. 169.

[5] R.-J. Back. On the Correctness of Re�nement Steps in Program Development. PhD

thesis, Åbo Akademi, Department of Computer Science, Helsinki, Finland, 1978.

Report A�1978�4.

[6] C. Banphawatthanarak and B. H. Krogh. Veri�cation of state�ow diagrams using

smv: sf2smv 2.0. Technical Report CMU-ECE-2000-020, Carnegie Mellon University,

2000.

[7] C. Banphawatthanarak, B. Krogh, and K. Butts. Symbolic veri�cation of executable

control speci�cations. In Proceedings of the 1999 IEEE International Symposium on

Computer Aided Control System Design, pages 581�586, August 1999.

[8] J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003. ISBN

0321136160.

[9] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.

Theoretical Computer Science, 37(1):77�121, 1985.

[10] P. Boström and L. Morel. Mode-Automata in Simulink/State�ow. Technical Report

772, Turku Centre for Computer Science, 2006.

[11] M. Butler and M. Leuschel. Combining CSP and B for Speci�cation and Property

Veri�cation. In J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, Formal Methods

240 BIBLIOGRAPHY

2005, number LNCS 3582, pages 221�236. Springer-Verlag, January 2005. URL

http://eprints.ecs.soton.ac.uk/10388/.

[12] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating discrete-

time Simulink to Lustre. In R. Alur and I. Lee, editors, EMSOFT'03 LNCS. Springer-

Verlag, 2003.

[13] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From

simulink to SCADE/lustre to TTA: a layered approach for distributed embedded

applications. ACM SIGPLAN Notices, 38(7):153�162, 2003. ISSN 0362-1340. doi:

10.1145/780731.780754.

[14] A. Cavalcanti, P. Clayton, and C. O'Halloran. From control law diagrams to Ada

via Circus. Formal Aspects of Computing, pages 1�48, 2011. ISSN 0934-5043. doi:

10.1007/s00165-010-0170-3.

[15] A. L. C. Cavalcanti. A re�nement calculus for Z. PhD thesis, Oxford University

Computing Laboratory, 1997.

[16] A. L. C. Cavalcanti. State�ow Diagrams in Circus. Electronic Notes in Theoretical

Computer Science, 240:23�41, 2009. ISSN 1571-0661. doi: 10.1016/j.entcs.2009.05.

043.

[17] A. L. C. Cavalcanti and P. Clayton. Veri�cation of Control Systems using Circus. In

Proceedings of the 11th IEEE International Conference on Engineering of Complex

Computer Systems, pages 269 � 278. IEEE Computer Society, 2006.

[18] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Re�nement

Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 � 181, 2003.

[19] A. L. C. Cavalcanti, P. Clayton, and C. O'Halloran. Control Law Diagrams in Circus.

In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM 2005: Formal Methods,

volume 3582 of LNCS, pages 253 � 268. Springer-Verlag, 2005.

[20] C. Chen. Formal Analysis for State�ow Diagrams. In Proceedings of the Fourth

International Conference on Secure Software Integration and Reliability Improvement

Companion (SSIRI-C), pages 102 �109, june 2010. doi: 10.1109/SSIRI-C.2010.29.

[21] M. L. Crane and J. Dingel. UML Vs. Classical Vs. Rhapsody Statecharts: Not All

Models Are Created Equal. Software and Systems Modeling, 6, 2007. doi: 10.1007/

s10270-006-0042-8.

[22] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-

grams. Commun. ACM, 18(8):453�457, 1975. ISSN 0001-0782. doi: 10.1145/360933.

360975.

BIBLIOGRAPHY 241

[23] P. V. Eijk and M. Diaz, editors. Formal Description Technique Lotos: Results of

the Esprit Sedos Project. Elsevier Science Inc., New York, NY, USA, 1989. ISBN

0444872671.

[24] Esterel Technologies, Inc. Scade suiteTM. http://www.esterel-technologies.com/.

[25] European Committee for Electrotechnical Standardization (CENELEC). Railway

applications � Communications, signalling and processing systems � Software for

railway control and protection systems, March 2001.

[26] A. Evans. An Improved Recipe for Specifying Reactive Systems in Z. In ZUM

'97: Proceedings of the 10th International Conference of Z Users on The Z Formal

Speci�cation Notationes, pages 275�294, London, UK, 1997. Springer-Verlag. ISBN

3-540-62717-0.

[27] H. Fecher, J. Schönborn, M. Kyas, and W. P. de Roever. 29 New Unclarities in the

Semantics of UML 2.0 State Machines. In ICFEM, pages 52�65, 2005.

[28] C. Fischer. CSP-OZ: a combination of Object-Z and CSP. In FMOODS '97: Pro-

ceedings of the IFIP TC6 WG6.1 international workshop on Formal methods for open

object-based distributed systems, pages 423�438, London, UK, UK, 1997. Chapman

& Hall, Ltd. ISBN 0-412-82040-4.

[29] Formal Systems (Europe) Ltd. Process Behaviour Explorer, 2003. www.fsel.com.

[30] Formal Systems (Europe) Ltd. Failures-Divergence Re�nement, 2010. www.fsel.com.

[31] A. F. Freitas and A. L. C. Cavalcanti. Automatic Translation from Circus to Java. In

J. Misra, T. Nipkow, and E. Sekerinski, editors, FM 2006: Formal Methods, volume

4085 of Lecture Notes in Computer Science, pages 115 � 130. Springer-Verlag, 2006.

[32] L. Freitas. Model-checking Circus. PhD thesis, Department of Computer Science,

The University of York, UK, 2005. YCST-2005/11.

[33] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-�ow

programming language LUSTRE. In Proceedings of the IEEE, volume 79, pages 1305

� 1320, 1991.

[34] G. Hamon. A denotational semantics for State�ow. In W. Wolf, editor, EMSOFT,

pages 164�172. ACM, 2005. ISBN 1-59593-091-4. doi: 10.1145/1086228.1086260.

[35] G. Hamon and J. Rushby. An operational semantics for State�ow. In M. Wermelinger

and T. Margaria-Ste�en, editors, Fundamental Approaches to Software Engineer-

ing:7th International Conference (FASE), volume 2984 of LNCS, pages 229�243,

Barcelona, Spain, 2004. Springer-Verlag.

[36] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3):231�274, 1987.

242 BIBLIOGRAPHY

[37] D. Harel and H. Kugler. The Rhapsody Semantics of Statecharts (or, On the Ex-

ecutable Core of the UML) - Preliminary Version. In SoftSpez Final Report, pages

325�354, 2004.

[38] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Trans-

actions on Software Engineering and Methodology, 5(4):293�333, Oct. 1996. ISSN

1049-331X.

[39] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The Statemate

Approach. McGraw-Hill, Inc., New York, NY, USA, 1998. ISBN 0070262055.

[40] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the formal semantics

of statecharts. In Proceedings of the 2nd IEEE Symposium on Logic in Computer

Science, pages 54�64, New York, 1987. IEEE Press.

[41] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1985. ISBN 0-13-153271-5.

[42] C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice Hall,

1998.

[43] J. Hoenicke and E.-R. Olderog. Combining speci�cation techniques for processes,

data and time. In IFM '02: Proceedings of the Third International Conference on

Integrated Formal Methods, pages 245�266, London, UK, 2002. Springer-Verlag. ISBN

3-540-43703-7.

[44] G. J. Holtzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[45] G. J. Holtzmann. The model checker SPIN. In IEEE Transactions on Software

Engineering, volume 23, May 1997.

[46] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363.

[47] International Electrotechnical Commission (IEC). Functional safety of electrical/-

electronic/programmable electronic safety related systems � Part 1: General require-

ments (IEC 61508-1), 1997.

[48] ISO. Road vehicles � Funcional safety (ISO 26262), 2011.

[49] N. Izerrouken, X. Thirioux, M. Pantel, and M. Strecker. Certifying an Automated

Code Generator Using Formal Tools. In ERTS'08, 4th European symposium on Real

Time Systems, 2008.

[50] JFlex. JFlex - The Fast Scanner Generator for Java, 2009. http://jflex.de/ [Last

accessed 2009].

BIBLIOGRAPHY 243

[51] C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-

tional, 1986.

[52] M. P. Jones. jacc: just another compiler compiler for Java, 2004. http://web.cecs.

pdx.edu/~mpj/jacc/ [Last accessed 2009].

[53] D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics of

uml statechart diagrams. In Proceedings of the IFIP TC6/WG6.1 Third Interna-

tional Conference on Formal Methods for Open Object-Based Distributed Systems

(FMOODS), page 465, Deventer, The Netherlands, The Netherlands, 1999. Kluwer,

B.V. ISBN 0-7923-8429-6.

[54] M. Leuschel and M. Butler. ProB: A Model Checker for B. In A. Keijiro, S. Gnesi,

and M. Dino, editors, Formal Methods Europe 2003, volume 2805, pages 855�874.

Springer-Verlag, LNCS, 2003. URL http://eprints.ecs.soton.ac.uk/8341/.

[55] J. Lilius and I. P. Paltor. The Semantics Of UML State Machines. Technical Report

273, Turku Centre and Computer Science, May 1999.

[56] B. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: an introduction to

TCOZ. In ICSE '98: Proceedings of the 20th international conference on Software

engineering, pages 95�104, Washington, DC, USA, 1998. IEEE Computer Society.

ISBN 0-8186-8368-6.

[57] P. Malik and M. Utting. CZT: A Framework for Z Tools. In ZB. Lecture, pages

65�84. Springer-Verlag, 2005.

[58] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-speci�c construct

for the development of safe critical systems. Science of Computer Programming, 46:

219�254, March 2003. ISSN 0167-6423. doi: 10.1016/S0167-6423(02)00093-X.

[59] J. McDermid, A. Galloway, S. Burton, J. Clark, I. Toyn, N. Tracey, and S. Valentine.

Towards industrially applicable formal methods: Three small steps, and one giant

leap. In Proceedings of the International Conference on Formal Engineering Methods,

pages 76�88. Press, 1998.

[60] E. Mikk, Y. Lakhnech, C. Petersohn, and M. Siegel. On formal semantics of state-

charts as supported by statemate. In In Second BCS-FACS Northern Formal Methods

Workshop. Springer-Verlag, 1997.

[61] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1982. ISBN 0387102353.

[62] Ministry of Defence. Requirements for safety related software in defence equipment

(Def Stan 00-55), 1997.

244 BIBLIOGRAPHY

[63] A. Miyazawa. Source �les for a parallel implementation of the State�ow chart

in air.mdl , 2012. Available from http://www-users.cs.york.ac.uk/~alvarohm/

thesis/.

[64] A. Miyazawa. Formal syntax of Circus, 2012. Available from http://www-users.

cs.york.ac.uk/~alvarohm/thesis/.

[65] A. Miyazawa. Formal syntax of State�ow charts, 2012. Available from http://

www-users.cs.york.ac.uk/~alvarohm/thesis/.

[66] A. Miyazawa. Formal syntax of Z, 2012. Available from http://www-users.cs.

york.ac.uk/~alvarohm/thesis/.

[67] A. Miyazawa. Formal translation rules for State�ow charts, 2012. Available from

http://www-users.cs.york.ac.uk/~alvarohm/thesis/.

[68] A. Miyazawa and A. L. C. Cavalcanti. Towards the formal veri�cation of implemen-

tations of State�ow Diagrams. Technical Report YCS-2010-449, University of York,

2010.

[69] A. Miyazawa and A. L. C. Cavalcanti. A formal semantics of State�ow charts.

Technical Report YCS-2011-461, University of York, 2011.

[70] A. Miyazawa and A. L. C. Cavalcanti. Re�nement-oriented models of State�ow

charts. Science of Computer Programming, 2011. doi: 10.1016/j.scico.2011.07.007.

[71] A. Miyazawa and A. L. C. Cavalcanti. Re�nement-based veri�cation of sequential

implementations of State�ow charts. In J. Derrick, E. Boiten, and S. Reeves, edi-

tors, Proceedings 15th International Re�nement Workshop, volume 55, pages 65�83.

EPTCS, 2011. doi: 10.4204/EPTCS.55.5.

[72] A. Miyazawa and A. L. C. Cavalcanti. Re�nement-based veri�cations of implemen-

tations of State�ow charts. 2012. (to be submitted).

[73] C. C. Morgan. Programming from Speci�cations. Prentice-Hall, 2nd edition, 1994.

[74] J. M. Morris. A theoretical basis for stepwise re�nement and the programming

calculus. Sci. Comput. Program., 9(3):287�306, 1987.

[75] M. Y. Ng and M. J. Butler. Towards formalizing UML state diagrams in CSP. In

SEFM, page 138. IEEE Computer Society, 2003. ISBN 0-7695-1949-0.

[76] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus.

PhD thesis, Department of Computer Science - University of York, UK, 2006. YCST-

2006-02.

BIBLIOGRAPHY 245

[77] M. V. M. Oliveira and A. L. C. Cavalcanti. ArcAngelC: a Re�nement Tactic Language

for Circus. Electronic Notes in Theoretical Computer Science, 214C:203 � 229, 2008.

doi: 10.1016/j.entcs.2008.06.010. c© Elsevier B. V.

[78] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Formal development

of industrial-scale systems. Innovations in Systems and Software Engineering, 1(2):

125 � 146, 2005.

[79] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP Se-

mantics for Circus. Formal Aspects of Computing, 21(1):3 � 32, 2007. doi:

10.1007/s00165-007-0052-5.

[80] M. V. M. Oliveira, A. C. Gurgel, and C. G. de Castro. CRe�ne: Support for the Circus

Re�nement Calculus. In A. Cerone and S. Gruner, editors, 6th IEEE International

Conferences on Software Engineering and Formal Methods, pages 281�290. IEEE

Computer Society Press, 2008. ISBN 978-0-7695-3437-4.

[81] OMG. UML 2.0 Superstructure Speci�cation. Technical report, Object Management

Group (OMG), August 2005.

[82] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In

Theoretical Aspects of Computer Software. Springer-Verlag, 1991.

[83] Radio Technical Commission for Aeronautics (RTCA). Software Considerations in

Airborne Systems and Equipment Certi�cation (DO-178B), 1992.

[84] R. Ramos, A. Sampaio, and A. Mota. A semantics for UML-RT active classes via

mapping into Circus. In M. Ste�en and G. Zavattaro, editors, FMOODS, volume

3535 of LNCS, pages 99�114. Springer-Verlag, 2005. ISBN 3-540-26181-8. doi: 10.

1007/11494881_7.

[85] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in

Computer Science. Prentice-Hall, New York, 1998. ISBN 0-13-674409-5. Oxford.

[86] A. E. Rugina, D. Thomas, X. Olive, and G. Veran. Gene-Auto: Automatic software

code generation for real-time embedded systems. In DASIA 2008, the International

Space System Engineering Conference, 2008.

[87] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. De�ning and

translating a "safe" subset of simulink/state�ow into lustre. In G. C. But-

tazzo, editor, EMSOFT, pages 259�268. ACM, 2004. ISBN 1-58113-860-1. doi:

10.1145/1017753.1017795.

[88] S. Schneider. Concurrent and Real Time Systems: The CSP Approach. John Wiley

& Sons, Inc., New York, NY, USA, 1999. ISBN 0471623733.

246 BIBLIOGRAPHY

[89] S. Schneider and J. Davies. A brief history of Timed CSP. Theoretical Computer

Science. 1995.

[90] E. Sekerinski and R. Zurob. Translating Statecharts to B. In Springer-Verlag, editor,

IFM 2002, volume 2335 of LNCS, pages 128�144, 2002.

[91] G. Smith. A Semantic Integration of Object-Z and CSP for the Speci�cation of

Concurrent Systems. In FME '97: Proceedings of the 4th International Symposium

of Formal Methods Europe on Industrial Applications and Strengthened Foundations

of Formal Methods, pages 62�81, London, UK, 1997. Springer-Verlag. ISBN 3-540-

63533-5.

[92] G. Smith. The Object-Z Speci�cation Language. Kluwer Academic Publishers, Nor-

well, MA, USA, 2000. ISBN 0-7923-8684-1.

[93] G. Smith and J. Derrick. Speci�cation, Re�nement and Veri�cation of Concur-

rent Systems�An Integration of Object-Z and CSP. Formal Methods in System

Design, 18(3):249�284, 2001. ISSN 0925-9856. doi: http://dx.doi.org/10.1023/A:

1011269103179.

[94] C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML. ACM

Transactions on Software Engineering and Methodology, 15(1):92�122, January 2006.

URL http://eprints.ecs.soton.ac.uk/10169/.

[95] C. Snook, V. Savicks, and M. Butler. Veri�cation of UML models by translation to

UML-B. LNCS, 6957:251, 2011. URL http://eprints.ecs.soton.ac.uk/22921/.

[96] J. Sun, Y. Liu, J. S. Dong, and J. Pang. Pat: Towards �exible veri�cation under

fairness. In CAV, pages 709�714, 2009.

[97] K. Taguchi and K. Araki. The state-based CCS semantics for concurrent Z speci�-

cation. In ICFEM '97: Proceedings of the 1st International Conference on Formal

Engineering Methods, page 283, Washington, DC, USA, 1997. IEEE Computer Soci-

ety. ISBN 0-8186-8002-4.

[98] The MathWorks,Inc. State�ow and State�ow Coder 7 User's Guide, October 2008.

Available at http://www.mathworks.com/products/stateflow [Last accessed Oc-

tober 2008].

[99] The MathWorks,Inc. Simulink, October 2009. Available at http://www.mathworks.

com/products/simulink [Last accessed October 2008].

[100] The MathWorks,Inc. Real-Time Workshop 7 User's Guide, March 2010. Available

at http://www.mathworks.com/products/rtw [Last accessed March 2010].

BIBLIOGRAPHY 247

[101] A. Tiwari. Formal semantics and analysis methods for Simulink State�ow models.

Technical report, SRI International, 2002. URL http://www.csl.sri.com/users/

tiwari/html/stateflow.html.

[102] A. Toom, T. Naks, M. Panter, M. Grandriau, and I. Wati. Gene-Auto: an Automatic

Code Generator for a safe subset of Simulink/State�ow and Scicos. In ERTS'08, 4th

European symposium on Real Time Systems, 2008.

[103] I. Toyn. Simulink/State�ow Analyser user's manual. Technical report, Department

of Computer Science, University of York, 2005.

[104] I. Toyn and A. Galloway. Proving properties of State�ow models using ISO Standard

Z and CADiZ. In In ZB-2005, vol. 3455 of LNCS, pages 104�123, 2005.

[105] H. Treharne and S. Schneider. Using a process algebra to control B OPERATIONS.

In IFM'99 1st International Conference on Integrated Formal Methods, pages 437�

457, York, June 1999. Springer-Verlag. URL http://www.cs.rhbnc.ac.uk/~helent.

[106] TTA-Group. TTA � A Dependable Real-Time Communication Platform for Safety-

Relevant Applications, 2007. URL http://www.ttagroup.org/technology/tta.

htm.

[107] M. von der Beeck. A structured operational semantics for UML-statecharts. Software

and Systems Modeling, V1:130�141, 2002.

[108] M. W. Whalen. A Parametric Structural Operational Semantics for State�ow, UML

Statecharts, and Rhapsody. Technical Report 2010-1, University of Minnesota Soft-

ware Engineering Center, 200 Union St., Minneapolis, MN 55455, August 2010.

[109] J. Woodcock and J. Davies. Using Z: speci�cation, re�nement, and proof. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1996. ISBN 0-13-948472-8.

[110] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert, J. P.

Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Speci�cation and

Development in Z and B, volume 2272 of LNCS, pages 184�203. Springer-Verlag,

2002.

[111] F. Zeyda and A. Cavalcanti. Encoding Circus Programs in ProofPowerZ. LNCS.

Springer-Verlag, 2009. Awaiting publication.

[112] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. In Information

Processing Letters, volume 40, pages 269�276, 1991.

