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ABSTRACT 

Cost-effectiveness decision modelling (CEDM) is widely used to inform healthcare resource 

allocation, however there is often a paucity of data to quantify the level of uncertainty around 

model parameters. Expert elicitation has been proposed as a method for quantifying 

uncertainty when other sources of evidence are not available. 

Elicitation refers to formal processes for quantifying experts’ beliefs about uncertain 

quantities, typically as probability distributions. It is generally conducted with multiple experts 

to minimise bias and ensure representation of experts with different perspectives. 

In CEDM, priors are most commonly elicited from individual experts then pooled 

mathematically into an aggregate prior that is subsequently used in the model. When pooling 

priors mathematically, the investigator must decide whether to weight all experts equally or 

assume that some experts in the sample should be given ‘more say’. The choice of method for 

deriving weights for experts’ priors can affect the resulting estimates of uncertainty, yet it is 

not clear which method is optimal. 

This thesis develops an understanding of the methods for deriving weights in opinion pooling. 

A literature review is first conducted to identify the existing methods for deriving weights. 

Differences between the identified methods are then analysed and discussed in terms of how 

they affect the role of each method in elicitation.  

The developed principles are then applied in a case study, where experts’ priors on the 

effectiveness of a health intervention are elicited, and used to characterise parametric 

uncertainty in a CEDM. The findings are used to analyse and compare different methods for 

weighting priors, and to observe the consequences of using different methods in the decision 

model. 

The findings improve the understanding of how different weighting methods capture experts’ 

‘contributions’ while the choice of methods for deriving weights is found to influence the 

decision generated by the model.  
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Chapter 1. Introduction 

1.1. Introduction 

The aim of this thesis is to improve the methodology for expert elicitation when used to 

characterise uncertainty in cost-effectiveness decision modelling in health. 

This chapter sets the scene for the thesis. First, section 1.2 gives context by introducing the 

role of economic evaluation in medical decision making and discusses the use of cost-

effectiveness decision modelling. The section concludes by highlighting the need to represent 

uncertainty in cost-effectiveness analysis. Section 1.3 introduces expert elicitation as a tool for 

informing uncertainty when data is sparse and highlights methodological challenges that 

constrain its implementation. Section 1.4 then sets the thesis objectives and outlines the 

structure. 

1.2. Context: decision making for resource allocation in 

healthcare 

1.2.1. Rationale for efficient resource use in healthcare 

Spending on healthcare is rising. According to the World Health Organisation (WHO) Health 

Expenditure Database, 30 out of 35 countries in the Organisation for Economic Co-operation 

and Development (OECD) increased spending on healthcare as percentage of their national 

Gross Domestic Product (GDP) between 2000 and 2015 (World Health Organization, 2017). In 

the UK, healthcare spending increased from 6.9% to 9.1% of GDP between 2000 and 2015. 

The rise in spending has largely been attributed to rising demand (Sorenson, Drummond and 

Bhuiyan Khan, 2013). An ageing population, the availability of new technologies and rising 

public expectations have all contributed to an increase in demand for healthcare. 

Given the increase in spending, there is continued pressure on efficient resource allocation. A 

report by Monitor, the regulator for health services in England, has estimated that failing to 

increase annual efficiencies and real term funding would produce a £30 billion gap in funding 

by 2020/21 given the growing demand (NHS England, 2014). 
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Economic evaluation is one of the most widely used methods for resource allocation in 

healthcare, where there are constrained budgets. The next section (1.2.2) defines economic 

evaluation and describes its role. 

1.2.2. The role of economic evaluation in resource allocation in 

healthcare 

Economic evaluation is defined as the comparison of the costs and consequences of 

alternative competing options. The principle of economic evaluation is that, for an intervention 

to be funded, its benefits should be greater than its opportunity cost. (Drummond et al., 2015) 

Economic evaluation was first conceptualised in 1976 as part of health technology assessment 

(HTA). HTA refers to a multidisciplinary approach to assessing health technologies to take into 

account the medical, social, ethical and economic implications of developing and 

implementing health technologies (Drummond et al., 2015; WHO, 2015). Economic evaluation 

was first formally introduced in medical decision-making in Australia and Ontario, Canada 

(Commonwealth Department of Health, 1992; Ministry of Health, 1994). In 1999, the UK 

established the National Institute for Health and Care Excellence (NICE), an independent body 

that requires pharmaceutical companies to demonstrate value for money for newly developed 

medicines in order to be funded by the National Health Service (NHS). Since 1999, its role has 

expanded from decisions about whether to approve new medication to resource allocation for 

public health interventions, diagnostics and medical devices. In this thesis, the term 

‘technologies’ collectively refers to medications, interventions, services, devices and 

diagnostics. 

1.2.3. Analytical frameworks for economic evaluation  

There are three broad approaches to economic evaluation described in the literature: cost-

benefit analysis, cost-effectiveness analysis and cost-utility analysis (Drummond et al., 2015). 

Cost-benefit analysis takes a wide approach of including all societal costs and benefits 

pertaining to an intervention, including effects on health, time out of paid and unpaid 

employment, cost to the health system and cost to patients (Drummond et al., 2015). The 

benefits are valued in monetary units, or willingness to pay (Johanesson, 1995; Pauly, 1995), 

and an intervention is considered to be good value for money if the willingness to pay for it is 

greater than the cost of the intervention. There are several practical challenges in CBA 

(Drummond et al., 2015) and these have been discussed extensively. Its use in HTA has been 



17 
 

limited, likely because of the values that underpin it- publicly funded health systems such as 

the NHS in the UK are tasked with maximising the population health with a fixed healthcare 

budget, and so do not consider resource use outside the health budget (e.g. cost to employers) 

and non-health related benefits (e.g. effect on productivity) in their decision making.  

Cost-effectiveness analysis (CEA) compares the cost per unit of effect between competing 

alternatives (Drummond et al., 2015). Effectiveness is measured in terms of clinical outcomes 

common to all comparators, such as life years saved or infection cases averted, thus 

comparison across diseases/populations is challenging. A technology is considered to be cost-

effective if its marginal product (health gained) is greater than its opportunity cost (health that 

would be gained if the resources required to fund the technology were spent elsewhere).  

Cost-utility analysis is a form of cost-effectiveness analysis where effects are measured in 

terms of a broad measure of health gain, comparable across therapeutic areas (Drummond et 

al., 2015). For example, in the UK health system the effect is measured in terms of Quality 

Adjusted Life Years (QALYs), a measure that considers both the length and the Health Related 

Quality of Life (HRQoL) on a unified scale, allowing comparison of interventions from all 

disease areas (Klarman, Francis and Rosenthal, 1968). 

The next section describes how cost-effectiveness (including cost-utility) analysis is used to 

make decisions on resource allocation in healthcare. 

1.2.4. Framework for using cost-effectiveness analysis to make resource 

allocation decisions 

One way of expressing the cost-effectiveness of a health technology is to present the 

Incremental Cost-Effectiveness Ratio (ICER) compared to the marginal opportunity cost to the 

health care system, k. The ICER is the additional cost per unit of health (e.g. QALY) produced by 

the technology, calculated relative to the next best alternative, as shown in Equation 1.1. The 

marginal opportunity cost k is the inverse of the marginal productivity of the health system – 

the amount of health gained/lost with an increase/decrease in expenditure at the margin (e.g. 

QALYs gained /lost per £1 increase/decrease in expenditure). This has previously been referred 

to as the threshold. In the UK, the cost-effectiveness threshold has been assumed to be 

£20,000-£30,000; however, recent empirical studies have found that the average marginal 

opportunity cost of health technologies in England is lower (below £14,000) (Claxton et al., 

2015). 

An intervention is considered to be cost-effective if the ICER<k.  
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       𝐼𝐶𝐸𝑅 = (𝐶1 − 𝐶2)/(𝐻1 − 𝐻2) Equation 1.1 

Where C1 and H1 are the cost and effect of the new technology, and C2 and H2 are the cost and 

effect of the next best alternative. 

Cost-effectiveness can also be expressed in terms of net benefit, either monetary or health. 

Net health benefit represents the difference between the health gained and offset through 

disinvestment elsewhere. It is calculated using Equation 1.2.  

                       (𝐻1 − 𝐻2) > (𝐶1 − 𝐶2)/𝑘 
 

Equation 1.2 

Net monetary benefit represents the monetary value of health gained, minus the opportunity 

cost of health lost. It is calculated using Equation 1.3. 

(𝐶1 − 𝐶2) < (𝐻1 − 𝐻2) 𝑥 𝑘 Equation 1.3 

These measures of cost effectiveness can be generated using within trial (study) methods or 

using decision analytic modelling. The remainder of section 1.2 describes the use of decision 

analytic modelling methods to conduct cost-effectiveness analysis. 

1.2.5. Decision modelling as a framework for CEA 

CEA aims to capture the expected costs to the healthcare system and health effects resulting 

from the technology of interest, and its competing alternatives. (Drummond et al., 2015) While 

Randomised Controlled Trials (RCTs) can be designed to incorporate information on the HRQoL 

and resource use, they are rarely sufficient to capture all costs and effects for the target 

population. Potential limitations include a failure to include all relevant comparators, poor 

generalisability, or a truncated time horizon failing to capture all costs and effects (Sculpher et 

al., 2006). Additional analysis is thus almost always required.  

Decision modelling and evidence synthesis are the most commonly used frameworks for 

bridging the gap between the limitations of RCTs and the requirements for CEA. Decision 

models are a mathematical representation of events that combine multiple information 

sources to define the possible consequences of the alternative strategies being evaluated. 

Their role is illustrated in Figure 1.1. 

Decision models are informed by a range of sources including RCTs, observational studies, and 

registries and synthesised data. Ultimately, the quality of evidence used to populate decision 
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models affects the accuracy of decisions generated by the model (Box, 1979). All evidence has 

some level of uncertainty and so the resulting decisions are inevitably uncertain.  

Figure 1.1. The role of decision modelling and evidence synthesis in bridging the gap 

between limitations of evidence and requirements for CEA. Adapted from Mahon (2014). 

 

Characterisation of uncertainty in decision models is considered an integral part of decision 

modelling (Griffin et al., 2011). The next section discusses why representing uncertainty 

around decisions generated in cost effectiveness decision modelling (CEDM) is important, and 

section 1.2.7 describes the methods for characterising uncertainty. 

1.2.6. The role of uncertainty in cost-effectiveness decision models 

Uncertainty in CEDM results means that there is a certain probability that the decision to 

adopt a new technology will not be the correct one. In some circumstances, the 

implementation of new technologies can carry irreversible costs such as staff training and 

equipment. If the decision to implement a new technology is later reversed, these ‘sunk’ costs 

will represent a loss in health benefit (for example, QALY loss due to administering the 

ineffective treatment) (Claxton, Sculpher and Drummond, 2002). Furthermore, approving a 

new technology can dis-incentivise research, meaning that the cost-ineffective technology 

could remain in use. Therefore, if the net benefit of an intervention is uncertain, it may be 

better to delay the approval decision than to risk approving an ineffective technology. 

(Claxton, Sculpher and Drummond, 2002) Representing uncertainty in CEA can thus inform 

whether a technology should be implemented and whether further research should be 

conducted (Claxton, Sculpher and Drummond, 2002). The methods for characterising 

uncertainty in CEDM are described in the next section. 
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1.2.7. Methods for modelling uncertainty in CEDM 

Uncertainty in cost-effectiveness decision modelling is defined as uncertainty due to limited 

data or knowledge (e.g. uncertainty around the average population level treatment effect of 

an intervention). It is important to distinguish uncertainty from variability, which refers to 

unexplained differences between patients in a population. Unlike variability, uncertainty can 

be reduced by conducting further research. 

There are two approaches to informing uncertainty in decision models: probabilistic and 

deterministic sensitivity analysis. 

Probabilistic sensitivity analysis (PSA) simultaneously combines any uncertainty around each 

model parameter to quantify the overall uncertainty in outputs, namely on estimates of cost-

effectiveness (Claxton et al., 2005). It is conducted by assigning probability distributions to 

each model parameter, then using Monte Carlo simulations to sample possible parameter 

values. Each sample thus yields a possible combination of parameter values. Their output (the 

resulting net benefit) is then recorded and used to calculate the expected net benefit across all 

random samples. The proportion of times that the intervention yields the highest net benefit 

(NB) represents the probability that the intervention will be cost effective.  

Deterministic sensitivity analysis can be univariate or multivariate and involves changing the 

value of one or more parameters and observing the model results.  

Claxton (2008) proposed three reasons why PSA is the preferred method for characterising 

uncertainty in decision models. Firstly, it is required to derive the expected net benefit, as 

CEDM often employs non-linear models and so the mean values of inputs do not necessarily 

lead to the mean net benefit. Secondly, while deterministic sensitivity analysis informs what 

the cost-effectiveness of an intervention is in a particular scenario, PSA informs uncertainty 

around the decision generated by the model (i.e. the probability that it will be cost-effective). 

Thirdly, PSA can be used to determine the value of further research given the uncertainty in 

the model. The methods for using PSA to determine the value of further research are 

described in the next section. 

1.2.8. Value of Information analysis 

Information on parameter uncertainty can be used to conduct Value of Information (VOI) 

analysis. The Estimated Value of Perfect Information (EVPI) (the outcomes of VOI analysis) 

represents the difference between the NB under the current state of knowledge, and the NB if 
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the optimum treatment was always chosen, i.e. if all uncertainty was resolved. Research 

required to resolve uncertainty is considered to be worthwhile only if its cost is lower than the 

value of resolving the uncertainty. 

The EVPI is calculated using Equation 1.4. Since the net benefit of choosing the optimum 

treatment is not known with certainty, it is derived by calculating the net benefit for ‘possible 

outcomes’. The methods are illustrated in more detail in Table 1.1, where the expected net 

benefit of two competing technologies, A and B, is used to derive the value of further research. 

Each row in the table represents a possible outcome, derived from a combination of possible 

parameter values (by sampling from their probability distributions). The expected net benefit 

of treatment B - the best treatment - is 13 but the probability of error is 0.4, as B leads to 

lower net benefit for 2 out of 5 samples. Choosing the best treatment every time (i.e. 

𝐸Ɵ𝑚𝑎𝑥𝑗𝑁𝐵(𝑗, Ɵ) in Equation 1.4) results in NB of 13.6 QALYs. Knowing which treatment is 

optimal thus leads to a potential gain of 0.6 (13.6-13) QALYs. 

                             𝐸𝑉𝑃𝐼 =  𝐸Ɵ𝑚𝑎𝑥𝑗𝑁𝐵(𝑗, Ɵ) − 𝑚𝑎𝑥𝑗𝐸Ɵ𝑁𝐵(𝑗, Ɵ) Equation 1.4 

Table 1.1. Expected net benefit of two competing technologies, A and B, used to derive the 

value of further research.  

A sample of 
parameter values 

Net benefit Health benefit 
of the best 

choice Treatment A Treatment B Best choice 

1 9 12 B 12 

2 12 10 A 12 

3 14 17 B 17 

4 11 10 A 11 

5 14 16 B 16 

Average 12 13 B 13.6 

 

1.2.9. Methodological challenges in cost-effectiveness analysis 

The benefits of PSA as a tool for exploring the impact of uncertainty in decision models is 

widely accepted; however, there is often a paucity of data to quantify the level of uncertainty 

around the missing parameters, particularly in economic evaluation of health interventions, 

diagnostics and medical devices where evidence of effectiveness is not required for market 
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approval and so tends to be sparse (Bojke et al., 2017). While methods for incorporating 

uncertainty into decision models have received substantial attention over the past two 

decades, quantifying what this uncertainty looks like is more problematic. 

Expert elicitation has been proposed as a method for quantifying uncertainty in decision 

models when other sources of evidence are not available (Bojke et al., 2010). The next section 

discusses the role of expert elicitation in CEDM. 

1.3. Expert elicitation as a tool for informing uncertainty in 

cost-effectiveness decision models 

Expert elicitation refers to a formal, structured process to capture the beliefs of individuals 

considered to be experts in the relevant topic (O’Hagan et al., 2006). Beliefs can be captured as 

probability distributions (experts’ priors), as point estimate probabilities (e.g. experts’ beliefs 

about the likelihood of distinct model scenarios) or by ranking in order to prioritise research 

questions or generate an appropriate set of comparators (O’Hagan et al., 2006). In this thesis, 

elicitation is considered in the context of quantifying uncertainty in CEDM, in particular 

parameter second order uncertainty.  

This section summarises the role of elicitation in CEDM. First, section 1.3.1 summarises its 

application to date, and section 1.3.2 discusses potential barriers to wider use. The section 

concludes that uncertainty around the accuracy of elicited priors could be a barrier to its 

implementation, and so the remainder of the section discusses the role of bias in elicitation: 

section 1.3.3 summarises causes of bias in decision and risk analysis, while section 1.3.4 

describes the elicitation process, and discusses how each step in the process can be used to 

minimise bias in elicited priors. Section 1.4 then summarises the outstanding methodological 

challenges in expert elicitation and describes the aims and objectives of this thesis. 

1.3.1. Role of elicitation in health care decision making 

Elicitation has been used in a range of fields including weather forecasting, marine biology, 

environmental science and nuclear science. It has been used to capture initial estimates of 

model parameters when other data is not available, and is not attainable within the set time 

and resource constraints (Cooke, 1991; O’Hagan et al., 2006). 

Similarly, elicitation has been used in CEDM to inform uncertainty around various model 

parameters, including probabilities (or frequencies), time to event, dependency, relative 
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effectiveness, diagnostic accuracy, minimum important clinical difference, and diffusion (rate 

of technology adoption) when other data was not available. The role of elicitation in 

characterising uncertainty when there is no information available is illustrated in Figure 1.2.A, 

where the uncertainty around the value of a hypothetical parameter is shown with and 

without elicitation. If parameter uncertainty is high due to no or limited data, and the expert 

can resolve some uncertainty by eliminating some improbable values from the range or by 

indicating which values in the range are more likely, then elicitation may be useful. 

Other proposed uses for elicitation include improving generalisability and validating or 

calibrating model estimates (Bojke et al., 2017). Figure 1.2.B shows the probability distribution 

of a hypothetical parameter, illustrating how elicitation can be used to improve the 

generalizability of data. Uncertainty around the parameter appears to be lower than for the 

parameter in Figure 1.2.A, but the study that was used to inform the parameter was carried 

out on a sample unrepresentative of the target population for the analysis, and so there is 

uncertainty around its generalisability. Experts’ beliefs can thus inform uncertainty around the 

parameter in the target population, given what has been observed in an alternative 

population.  

Figure 1.2. Uncertainty around hypothetical parameters before and after elicitation. In 

scenario A elicitation is used to resolve uncertainty. In scenario B elicitation is used to 

improve the generalisability of a parameter. 

 

The use of elicitation in CEDM has been limited to date. A recent systematic review identified 

21 applied elicitation exercises (Soares et al., 2018). However, interest is growing, likely to be 

driven by the global increased in the use of CEA in medical decision making (as discussed in 

section 1.2.2). In 2015 the Medical Research Council (MRC) published a call for research on 

methods for expert elicitation in HTA, and NICE has formally included the use of elicited priors 
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as a viable method for quantifying uncertainty in decision models in their Diagnostics 

Assessment Programme manual (National Institute for Health and Care Excellence (NICE), 

2011). 

The next section discusses the barriers to using expert elicitation in CEDM. 

1.3.2. Barriers to using elicitation in CEDM 

One of the key barriers to the use of elicitation in CEDM has been the reluctance to base policy 

on clinical opinion and scepticism around its accuracy. Indeed, elicitation is unlikely to replace 

clinical trials for the purpose of approving new technologies, but it has been proposed to be 

useful for quantifying the current state of knowledge in order to understand the key sources of 

model uncertainty and inform further research (Bojke et al., 2017). 

Nevertheless, the risk of inaccurate priors is non-negligible. Historically, there have been 

numerous occasions where clinicians revealed erroneous beliefs. A commonly cited example in 

medicine are nurses sabotaging the first RCT assessing the effect of oxygen concentration on 

retrolental fibroplasia in neonates because they erroneously believed that high oxygen 

concentrations were beneficial, consequently increasing the number of babies blinded by the 

condition (Silverman, 1980). While elicitation can help characterise uncertainty, the results of 

the CEDM are less likely to be useful for decision making if experts are biased. 

Accuracy of judgement has been researched in a range of fields and the findings often suggest 

that the accuracy of predictions tends to be low. Daniel Kahneman, a psychologist specialising 

in human behaviour and decision making, famously concluded in a study about reliability of 

professional forecasts and predictions that experts ‘produce poorer predictions than dart-

throwing monkeys who would have distributed their choices evenly over the options’ 

(Kahneman, Slovic and Tversky, 1982). In health research, Hoffmann and Del Mar (2017) 

conducted a systematic review of studies comparing clinicians’ expectations of the effects of 

any treatment or test to the effects observed in studies, and found that clinicians’ expectations 

are often inconsistent with observed outcomes: most participants provided a correct 

estimation of benefits in only 11% of outcomes and correct estimations of harm in only 13% of 

outcomes. The methods for comparing experts’ expectations and observed outcomes will be 

discussed later in the thesis; however, the study highlights that expert opinion isn’t accurate by 

default. 

There is a large body of research on how to minimise bias in elicitation – it relies on 

understanding the sources of bias, and using formal processes to elicit experts’ beliefs in a 
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manner that minimises bias (O’Hagan et al., 2006). The following section (1.3.3) discusses the 

sources of bias in elicitation, while section 1.3.4 describes how elicitation methods can be used 

to minimise bias. 

1.3.3. Sources of bias in expert elicitation  

In statistics, bias refers to a systematic difference between an estimator of a parameter (in this 

case the subjective prior) from the true value of that parameter. However, the elicitation 

literature acknowledges that different experts have different knowledge, levels of experience 

and opinions, and thus their priors will inevitably differ, and some will be ‘closer’ to the truth 

than others. O’Hagan (O’Hagan et al., 2006) proposes that  subjectivity in elicited priors is not 

necessarily ‘bad’ (O’Hagan et al., 2006). If experts’ priors vary due to opinion (for example if 

two experts disagree about the duration of effect of a new medicine) recruiting multiple 

experts and combining their priors ensures that all possible views are taken into account and 

the resulting prior will be impartial. If, however, beliefs are based on inaccurate information 

(like the nurses in the RCT described in the previous section), then the aggregated priors will 

be biased, as will the resulting estimate of uncertainty in the model.  

Thus in this thesis, the difference between a prior and the true value of a parameter are 

referred to as accuracy of experts’ beliefs1, while bias is defined as inaccuracy in beliefs caused 

by prejudice, superstition or irrational beliefs. 

There is a vast body of research on the causes of bias. Traditionally, the elicitation literature 

cites two types of bias, based on their origin: cognitive and motivational (Montibeller and von 

Winterfeldt, 2015). Cognitive bias refers to illogical inferences arising from irrational 

processing of information, while motivational bias refers to erroneous, usually conscious, 

beliefs motivated by one's personal situation. The distinction between the two is not always 

clear; experts may base their beliefs on an emotional predisposition for or against a particular 

outcome even if they have no personal stake in it. 

Finally, it is important to note that priors may be biased because they represent experts’ 

beliefs inaccurately, rather than because experts’ beliefs themselves are inaccurate (O’Hagan 

et al., 2006). An expert may believe that a new treatment will be effective but may not be able 

to express their uncertainty accurately in the required format – for example using risk ratios. 

                                                             
1 Accuracy of beliefs and its measures are defined later in the thesis, in section 2.4.3.2 in Chapter 2. 
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The elicitation process aims to minimise the risk of bias in elicited priors by minimising the risk 

of irrational beliefs and by allowing experts to express their beliefs accurately (O’Hagan et al., 

2006). The process involves careful planning and conduct, and transparent reporting. The 

details of the elicitation process are discussed in section 1.3.4. 

1.3.4. The elicitation process 

O’Hagan argued that the aim of an elicitation exercise should be to ‘ensure that the expert 

view the problem from as complete a perspective as possible, utilising all relevant information 

in an unbiased way’ (O’Hagan et al., 2006). In order to achieve this, the elicitation process 

typically consists of six steps as shown in Figure 1.3. The remainder of this section describes 

each step, in turn.  

Figure 1.3. The elicitation process, consisting of six steps: 1) planning, 2) training, 3) 

assessment of background information, 4) elicitation, 5) fitting, evaluation and feedback, 

and 6) aggregation.  

 

1.3.4.1. Planning  

Elicitation requires careful planning to ensure that the priors represent experts’ uncertainty 

around the parameters of interest, and that any bias is minimised. During the planning stage, a 

range of decisions have to be made, including who is an expert in the field, which parameters 
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to elicit, how to elicit them, which elicitation technique to use, how to format the questions 

and how to deliver the exercise. Each factor is discussed here in further detail.  

Who is an expert? 

Knowledge in the field for which elicitation is conducted is referred to as substantive 

expertise, and is proposed to minimise the risk of cognitive bias (Tetlock, Gardner and 

Richards, 2016). For example, clinical knowledge and experience can ensure that experts 

understand factors that can influence the value of a parameter and give informed, plausible 

estimates of it. In contrast, experts who lack such knowledge can be overconfident about 

‘wrong’ values for a parameter (assuming the parameter can be measured) by missing 

important factors that can influence it. Furthermore, substantive knowledge is of value even if 

all experts are perfectly unbiased. If the aim of an elicitation exercise is to capture the current 

state of knowledge in the face of limited evidence, it could be argued that asking an 

uninformed or an inexperienced expert where a more experienced one exists will overestimate 

uncertainty in the model and the value of further research.  

Definitions of substantive experts in the elicitation literature vary. For example, Jenkinson 

(2005) proposes that elicitation participants should be ‘substantive experts in the particular 

area’, Leal et al. (2007) define experts as individuals who have ‘specialist knowledge’ in the 

field and Garthwaite et al. (2005) define them as ‘persons to whom society and/or his or her 

peers attribute special knowledge about the matters being elicited’. The exact skills and 

experience that experts should demonstrate are likely to vary between professions, and 

depend on experts’ availability and willingness to participate. 

How many experts? 

As discussed in section 1.3.3, elicitation exercises tend to include multiple experts, to capture a 

range of views (Winkler and Poses, 1993; Clemen and Winkler, 1999). The optimal number of 

experts is not clear. Knol et al. (2010) argued that between six and twelve experts should be 

included, while Kattan et al. (2016) found that each additional expert (up to 24 experts in their 

sample) improved the accuracy of aggregate predictions, although marginal returns were 

diminishing. Kadane (1986) proposed that experts’ perspective should be taken into account, 

as well as their number. The author argued that the sample of experts should represent the 

expert community. It is not clear how this can be achieved and demonstrated.  



28 
 

What to elicit? 

While the aim of elicitation is to inform model parameters, it has been proposed that experts’ 

ability to give accurate assessments also depends on the parameter itself (Morgan, 2014), and 

so consideration should be given to whether experts can reasonably assess uncertainty around 

the required parameter. Probabilities of rare events, parameters influenced by multiple 

factors, distribution moments (other than the mean) and unobservable parameters have been 

suggested to be difficult to estimate accurately, and so they tend to be elicited indirectly 

(Kadane and Wolfson, 1998). For example, a risk ratio cannot be observed directly, so it tends 

to be derived from elicited priors on the probability of an outcome in those who receive the 

intervention and those who do not (Bojke et al., 2010; Soares et al., 2011). Kleinmuntz (1996) 

found that the accuracy of predictions improved when the probabilities of rare events were 

elicited conditional on preceding events instead of joint. 

Furthermore, there may be more than one way to elicit the same parameter: for example the 

probability that a patient will experience a particular symptom can be elicited as the 

probability itself, or the time required before a certain proportion of patients experience the 

symptoms (Bojke et al., 2017). When there is more than one way to inform uncertainty around 

a parameter, it is not clear which format gives the most accurate estimates. 

Elicitation technique 

It is generally accepted that experts’ beliefs should not be expressed verbally using terms such 

as ‘likely’, ‘probable’ or ‘certain’ as individuals attach different meaning to these. Thus 

techniques are employed to elicit their probability distributions numerically. Experts can be 

asked to specify their probability p that a parameter will take a particular value (or range of 

values) x, or they can be asked to specify a parameter value x given a probability p (O’Hagan et 

al., 2006). These summaries can then be used to describe a distribution that represents the 

expert’s beliefs. 

For each approach, the investigator can chose from a number of techniques to elicit these 

values. The most commonly used techniques in HTA are the histogram (also referred to as the 

‘roulette’ or ‘chips and bins’) method, fixed interval method, and the bisection method. 

(Soares et al., 2018) The histogram technique involves providing experts with a range of 

possible values on a grid, and asking them to distribute ‘chips’ across the range to indicate 

their uncertainty, as illustrated in Figure 1.4-A. The fixed interval method involves eliciting the 

range of possible values, splitting it into intervals (for example, four equal intervals) and asking 

experts to express their probability that the value of the parameter will fall within each 



29 
 

interval. The method is illustrated in Figure 1.4-B. Alternatively, the bisection method asks 

experts for a set of parameter values that splits the distribution into specific quantiles. For 

example tertiles can be elicited by asking for two values x1 and x2 that split the distribution into 

three equally probable intervals, so that P(X < x1) = P(x1 < X < x2) = P(X > x2) = 0.33, where X is 

the expected value of the parameter. 

Figure 1.4. Elicitation methods: a) the histogram (chips and bins) method; and b) the fixed 

interval method. 

 

Note the values entered in A and B are hypothetical and do not represent the same distribution. 
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The chosen elicitation technique can affect the results, although it is not clear which method is 

‘the best’. The histogram technique is generally reported to be easier to use though ease of 

use can lead experts to put less thought into their responses (Grigore, Peters and Hyde, 2016). 

How each technique is implemented can also affect the results (O’Hagan et al., 2009). In the 

fixed interval and bisection methods, asking experts for their mode or median first has been 

suggested to lead to overconfidence due to anchoring, and so the range of plausible values 

tends to be elicited first (Kadane and Wolfson, 1998). The number, the range and the width of 

bins can affect priors elicited using the histogram technique (O’Hagan et al., 2009), as can the 

number of quantiles elicited using the bisection method. Some researchers prefer to elicit 

tertiles (Garthwaite and O’Hagan, 2000) as the accuracy of assessments has been suggested to 

diminish when more extreme quantiles are elicited (Lichtenstein, Fischhoff and Phillips, 1982), 

although quartiles are considered to be more intuitive and are used more commonly in CEDM 

(Soares et al., 2018). 

Which quantity to elicit 

Probability distributions can be elicited as different quantities, for example: 

- Probability, e.g. the probability of having a fall in one year is 0.3 in elderly 

people. 

- Proportions, e.g. the proportion of elderly people who have a fall every year is 

0.3. 

- Percentage, e.g. 30% of elderly people that have a fall every year. 

- Relative frequency, e.g. 30 out of every 100 elderly people have a fall every 

year. 

- Odds, e.g. the ratio of people who have a fall compared to those who do not is 

3:7. 

- Natural frequency, e.g. of 11.4 million people in the UK aged 60 or older, 3.42 

million will have a fall this year. 

The above examples are mathematically equivalent, however the elicitation literature suggests 

that using different quantities for representing uncertainty results in different probability 

distributions (Koehler, 2001b, 2001a; O’Hagan et al., 2006). Gigerenzer (1996) found that 

priors elicited as frequencies were less likely to result in error due to miscalculation (e.g. by 

mistakenly interpreting the probability of 0.3 and 3%). However, Slovic et al. (2000) argued 

that the frequency effect can be eliminated if the problem is presented clearly, for example 

using a Venn diagram that clarifies the relations of the problem.  
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Clear phrasing of questions is important in questionnaire and survey design (Meyer and 

Booker, 1991). Providing multiple phrasings of the same question has been proposed to help 

with cognitive biases; examples include asking for the probability of a binary outcome and the 

counterfactual and highlighting the need for the probabilities to add up to one (Montibeller 

and von Winterfeldt, 2015). 

Mode of delivery 

Elicitation can be undertaken on a face-to-face basis with one or more experts and a facilitator, 

or at distance, for example by email or via the internet (Bojke et al., 2017). Another possibility 

is to use video conferencing facilities rather than simple surveys to allow some level of 

interaction. Face to face interviews allow experts to ask for clarification along the way, and 

they are provided with immediate feedback and interpretation of their responses. Experts may 

feel more motivated to participate and provide more thoughtful answers than in a remote 

survey (Bowling, 2005). However, surveys ensure that all experts receive the same information 

and in the same way, while any interactive features have to be carefully built in a priori. If 

distance elicitation is to be undertaken, resource needs to be invested in a tool which experts 

can use themselves with minimal guidance (Grigore et al., 2013; Bojke et al., 2017). Remote 

elicitation (where the facilitator is not present) has been found to lead to more certain priors; 

it is not clear whether this is desirable (Nemet, Anadon and Verdolini, 2017).  

1.3.4.2. Training 

Elicitation requires experts to evaluate their knowledge and experience and then formulate 

this into beliefs relating to unknown or unobserved parameters. In doing so they must express 

their uncertainty regarding these parameters. The ability to express one’s own beliefs 

quantitatively is referred to as normative expertise in elicitation (Ferrell, 1994; Stern and 

Fineberg, 1996; O’Hagan et al., 2006), as it requires a different skillset to that required for 

substantive expertise in clinical work (such as knowledge of literature and care pathways, or 

communication skills). The training stage of elicitation should be used to ensure that experts 

have sufficient normative expertise to assess their beliefs free from bias and express them in 

the required format. 

Training often includes teaching the concept of uncertainty (to ensure the experts are not 

expressing variability), teaching experts how to use the relevant elicitation technique and 

debiasing (P Garthwaite, J Kadane and O’Hagan, 2005). 
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The effectiveness of debiasing techniques varies. Montibeller and von Winterfeldt (2015) 

proposed that strategy-based (SB) biases, which occur when decision makers use a suboptimal 

cognitive strategy (such as assigning a higher probability to a conjunction of two events than to 

each of those events separately), are the easiest to eliminate, for example by teaching experts 

the meaning of conditional and joint probabilities. Biases that arise due to automatic mental 

associations are more difficult to eliminate (Montibeller and von Winterfeldt, 2015). Asking 

practice questions and highlighting bias in beliefs has been shown to be more effective than 

simply ‘warning’ experts against it (Fischhoff, Slovic and Lichtenstein, 1977; Siegel-Jacobs and 

Yates, 1996; Hammersley, Kadous and Magro, 1997), although there is no consensus on what 

training and practice questions should contain. 

Furthermore, it is not clear whether experts require a certain level of normative skills priors to 

the exercise or whether they can be effectively trained under time constraints of an elicitation 

exercise (typically half a day). Soares et al. (2011) caution that experts in HTA are likely to be 

health care professionals who in general have more limited quantitative training (Sabin, 2001). 

There is a danger that, while they may be taught the constraints of the target parameter (e.g. 

0-1 for probabilities) and what probability distributions tend to look like (for example, to avoid 

U-shaped and bimodal priors), it is not clear whether they can learn to meaningfully assess 

these.  

1.3.4.3. Background information 

Providing background information helps experts view the problem from as complete a 

perspective as possible, utilising all relevant information to minimise the risk of basing their 

priors on false or incomplete information. Background information can be provided in advance 

of or during the exercise. The former can allow time for experts to think and consult other 

references they feel are relevant. 

Furthermore, it is not clear whether experts have the analytical skills required to draw correct 

inferences from evidence.  

1.3.4.4. Conducting an elicitation exercise 

Section 1.3.4.1 discussed that there are different modes of delivering an elicitation exercise: 

face-to-face or remote. 

The interaction with experts can also affect the results, although the optimal level of 

interaction is not clear. Investigators’ feedback and interpretation can minimise bias by 
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querying and clarifying apparently irrational beliefs. However, investigators can also lead 

experts, resulting in priors that do not necessarily represent their beliefs. Similarly, discussion 

between experts can encourage sharing of information, but some bias can also be induced. For 

example, dominance of strong-minded or strident individuals, (Knol et al., 2010) common 

background of group members and socially reinforced irrelevance (i.e. ‘taboos’) (Ayyub, 2001) 

can all reinforce biases and lead to overconfidence. (Sniezek, 1992) 

1.3.4.5. Fitting, evaluation and feedback 

Fitting, evaluation and feedback consists of three steps that can vary in order. Here, each is 

described in turn. 

Fitting 

When fixed interval or bisection methods are used, probabilities are elicited on a limited 

number of intervals for possible parameter values (P Garthwaite, J Kadane and O’Hagan, 

2005). The investigator can then either assume that that probability density is uniform across 

each interval or fit a (smooth) parametric probability distribution, as shown in Figure 1.5.  

Fitting can lead to a discrepancy between elicited quantities and those derived from the fitted 

distribution. This is particularly likely with the histogram method due to the relatively large 

number of quantities that are elicited (i.e. the probability of each interval). If fitting is carried 

out during the elicitation exercise, the fitted probability distribution can be fed back to the 

expert for confirmation. If the distribution is fitted after the elicitation exercise however, the 

investigator must assume that the fitted probability distribution represents experts’ beliefs. 

Figure 1.5. Experts’ priors when a) Beta distribution is fitted to elicited tertiles; and b) 

distribution is not fitted. 
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Evaluation 

Evaluation aims to determine ‘how well’ the elicitation has been done. Evaluation can be 

based on internal consistency and seed-calibration. (Wallsten and Budescu, 1983) 

Internal consistency is the extent to which experts’ priors conform to laws of probability; for 

example, if an expert believes that the probability that a patient is cured is 0.7, then their 

probability of not being cured should be 0.3. If an expert is aware that the probabilities of all 

mutually exclusive outcomes of an event should add up to one but their priors suggest 

otherwise, then their priors can be said not to represent their beliefs. 

Seed-calibration involves eliciting experts’ beliefs about one or more parameters that are 

unknown to the expert but known to the investigator (‘seed’ parameters) (O’Hagan et al., 

2006). The closeness of experts’ priors and the observed value of seeds is referred to as 

calibration, and can be used as an indicator of experts’ accuracy in elicitation. Poor calibration 

can be due to inaccurate beliefs, or an inaccurate representation of experts’ beliefs (O’Hagan 

et al., 2006). 

There are multiple methods for assigning numerical values, or ‘scores’ to experts’ calibration 

performance, although it is not clear how they compare and how they should be selected – 

this topic will be revisited in Chapter 2. 

Feedback 

Feedback refers to the process of showing experts the fitted distribution or interpreting their 

probabilities to ensure they represent their beliefs (P Garthwaite, J Kadane and O’Hagan, 

2005). The investigator can use this opportunity to identify any irrational beliefs and verify 

with experts what they thought, or discuss any discrepancies in priors from different experts. 

Feedback is generally only delivered when elicitation is conducted in person. 

1.3.4.6. Aggregation  

Aggregation involves combining priors elicited from multiple experts to obtain an ‘overall’ 

representation of uncertainty (Clemen and Winkler, 2007). There are two approaches to 

aggregation: behavioural and mathematical. 

Behavioural aggregation focuses on eliciting a single probability distribution from a group of 

experts. In practice there are several ways to achieve this (Clemen and Winkler, 2007). 

O’Hagan recommends eliciting experts’ individual distributions then using them as a basis for a 

group discussion (Rohrbaugh, 1981) – differences in priors can be highlighted and used to 
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identify bias or knowledge asymmetry. For example, if some experts are identified to be basing 

their priors on false information and other experts are aware of this, they can be prompted in 

the discussion to update their priors in light of new information. Similarly, if one of the experts 

possesses more normative skills they can help other experts represent their beliefs. Eventually, 

experts are asked to agree on a ‘rational impartial’ prior that represents their combined views.  

As discussed in section 1.3.4.4, discussion between experts can lead to bias, and it is not clear 

whether facilitators can effectively prevent this by managing the discussion. Furthermore, it 

can be practically challenging to conduct a group discussion, not least because of the practical 

difficultly in convening all experts on one occasion. This is a particularly common challenge 

when eliciting the beliefs of clinicians, where experts tend to have irregular and unpredictable 

working patterns. Grigore et al. (2016) reported that organising one-on-one elicitations took 

approximately three months with each expert – requiring all experts to be in the same room is 

likely to take longer, if at all possible. 

The DELPHI method was introduced to overcome some of the challenges associated with 

O’Hagan’s method whilst encouraging knowledge sharing between experts, in a more 

controlled way (Mullen, 2003). The method involves eliciting priors of individual experts then 

providing controlled, usually written feedback, followed by opportunity to adjust personal 

priors. Several rounds of feedback and adjustment are repeated until experts reach consensus. 

DELPHI can be delivered remotely if organising a face-to-face discussion is not possible, and if 

experts struggle to reach consensus their priors can be aggregated mathematically. 

Mathematical aggregation refers to eliciting probability distributions from each expert 

individually, then aggregating their priors mathematically. (Clemen and Winkler, 2007) It can 

be applied to priors elicited from each expert independently, or as part of DELPHI if consensus 

is not reached after a particular number of rounds. There are two methods for combining 

experts’ priors mathematically: Bayesian approaches and opinion pooling. 

The Bayesian approach involves using experts’ probability assessments to update the decision 

makers’ own prior beliefs about an uncertain parameter. (Moatti et al., 2013) These methods 

have not yet been applied in HTA and the need for the decision makers input is difficult to 

implement in practice. 

Opinion pooling assumes that the aggregate prior is a function of individual priors. The 

relationship can be linear (shown in Equation 1.5) or logarithmic (shown in Equation 1.6) 

(Stone, 1961; Genest and Zidek, 1986). 
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     𝑝(Ɵ) = ∑ 𝑤𝑖  𝑝𝑖(Ɵ)

𝐸

𝑖=1

 Equation 1.5 

Where 𝑖 represents one of E experts; 

𝑤𝑖  represents the weight assigned to expert 𝑖; 

𝑝𝑖(Ɵ) is expert 𝑖 ’s prior on parameter Ɵ. 

     𝑝(Ɵ) = 𝑘 ∏ 𝑝𝑖(Ɵ)𝑤𝑖

𝐸

𝑖=1

 Equation 1.6 

Where k is a normalising constant to ensure that the distribution integrates to 1. 

Mathematical aggregation requires the investigator to determine the contribution of each 

expert. They can either ensure all experts contribute equally so that 𝑤𝑖=1/E for all 𝑖. 

Alternatively, weights can be based on some explicit measure of experts’ contribution. There 

are multiple methods for deriving weights, including scoring experts’ calibration (discussed in 

the ‘Fitting, evaluation and feedback’ section) and clinical experience. It is not clear what the 

optimal method for deriving weights is – this will be discussed in Chapter 2. 

1.3.5. Methodological uncertainties in elicitation 

Section 1.3 introduced expert elicitation and discussed its role in characterising uncertainty in 

CEDMs. The aim of elicitation is to capture the current state of knowledge around uncertain 

quantities, and the structured elicitation processes described are used to achieve this. In 

particular, the elicitation process can ensure that experts base their priors on all available 

information to avoid bias due to inaccurate information and to minimise uncertainty, and to 

help experts assess uncertainty in their beliefs and express them in the required format, free 

from bias. The former is achieved by recruiting substantive and impartial experts, providing 

background information, recruiting multiple experts with different perspectives, and 

encouraging information sharing. The latter is achieved through careful planning and delivery 

of the exercise to minimise bias, training, debiasing, delivery, as well as evaluation and 

feedback. 

However, section 1.3.4 highlighted many methodological uncertainties that make it difficult to 

decide on which methods to use to achieve the stated objectives. For example, it is not clear 

how to identify substantive experts, how to train experts to ensure they have the normative 

expertise required to complete the exercise, how to debias effectively, which technique elicits 
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experts’ beliefs most accurately, the optimal mode of delivery, and how experts’ priors should 

be aggregated.  

This thesis explores a particular aspect of the elicitation process: the methods for opinion 

pooling when experts’ priors are aggregated mathematically. Section 1.4 provides impetus for 

studying pooling methods, and outlines the thesis objectives. 

1.4. Thesis aims and objectives 

This thesis aims to improve elicitation methodology, in particular the methods for opinion 

pooling in mathematical aggregation. 

Mathematical aggregation is appealing in CEDM because it may be more practically feasible as 

well as methodologically superior in this context. As highlighted in section 1.3.4, summoning 

multiple clinicians for a group elicitation may not always be possible and mathematical 

aggregation may be the only viable option. While one-to-one elicitation and behavioural 

aggregation can be achieved using DELPHI, mathematical aggregation is arguably more 

transparent than behavioural aggregation, as experts’ contribution to the aggregate 

probability distribution is not based on personality or peer-assessed expertise, both of which 

have been suggested to be poor indicators of expertise (Bolger, 2017). Indeed, opinion pooling 

is the most commonly used method for aggregating priors in CEDM (Soares et al., 2018). 

Despite the relatively high use of opinion pooling, there is no consensus or guidance on how 

pooling should be performed. There are choices to be made, in particular where the 

investigator must decide whether to weight experts’ priors (P Garthwaite, J Kadane and 

O’Hagan, 2005), giving some experts ‘more say’ than others. In theory, differential weighting 

can adjust for shortcomings in the elicitation process. For example, if some experts are 

believed to be more experienced or their experience is more relevant to the topic for which 

elicitation is being conducted they can contribute to the final (aggregate) probability 

distribution more. The choice of method for deriving weights for experts’ priors can affect the 

resulting estimates of uncertainty (Cooke, ElSaadany and Huang, 2008), yet it is not clear which 

method is optimal. 
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1.4.1. Thesis objectives 

This thesis develops methods for opinion pooling to ensure that the aggregate priors are an 

unbiased representation of the current state of knowledge. Specifically, the thesis addresses 

the following three objectives: 

1. To develop a set of guiding principles for deriving weights in opinion pooling. 

This is explored in Chapter 2. First a literature review is conducted to identify existing 

weighting methods. Then, principles and assumptions that underpin each method are analysed 

and their role in capturing experts’ contribution is discussed. A set of guiding principles is then 

developed for using each method.  

2. To apply the principles developed in Chapter 2 to a case study. 

To achieve this, Chapter 3 identifies an appropriate case study (involving a CEDM) and designs 

an elicitation exercise to inform uncertainty around the model parameters. Chapter 4 provides 

an overview of the results of the elicitation exercise, while Chapter 5 applies and analyses 

different weighting methods specific to that example. 

3. To observe the consequences of using different methods for opinion pooling. 

Chapter 6 applies the different weighting methods analysed in Chapter 5 to a CEDM and 

observes their effect on the cost-effectiveness decision generated by the model in the case 

study, and the resulting value of further research. 

Chapter 7 then discusses the findings of the thesis, draws conclusions and makes 

recommendations for further research.  
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Chapter 2. Methods for opinion pooling in 
expert elicitation in CEDM 

2.1. Introduction 

Chapter 1 introduced the role of expert elicitation as a tool for characterising uncertainty in 

cost-effectiveness decision models (CEDM) and proposed that the aim of an elicitation exercise 

is to capture the current state of knowledge around uncertain quantities (such as model 

parameters). To do this, elicitation is conducted using formal processes that encourage experts 

to use all available information and express their priors in an unbiased way. However, in 

navigating the choices available in designing and conducting an elicitation exercise, there are 

many methodological uncertainties. 

This chapter explores a particular aspect of the elicitation process: the methods for deriving 

weights in opinion pooling. 

As discussed in Chapter 1, mathematical aggregation is the process of combining priors elicited 

from multiple experts individually into a single probability distribution that captures 

uncertainty in the parameter of interest. Opinion pooling, specifically, assumes that the 

resulting aggregate probability distribution is a function of individual priors (Stone, 1961; 

Genest and Zidek, 1986). 

In opinion pooling, the investigator must decide whether to weight experts’ priors (P 

Garthwaite, J Kadane and O’Hagan, 2005). Differential weighting assumes that some experts 

should be ‘given more say’ than others and there are multiple methods for deriving weights for 

experts. The choice of method for deriving weights for experts’ priors can affect the resulting 

estimates of uncertainty (Cooke, ElSaadany and Huang, 2008), yet it is not clear which method 

is optimal. 

The aim of this chapter is to develop a set of guiding principles for deriving weights. In order to 

achieve this, the following objectives were set:  

1) To identify existing methods for deriving weights 

2) To discuss the role of weighting in elicitation 

3) To evaluate and compare methods for deriving weights 
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Section 2.2 describes a literature review conducted to identify existing methods for deriving 

weights (objective 1). Given the lack of guidance on how to use different methods for deriving 

weights, section 2.3 discusses factors that provide a basis for differential weighting in opinion 

pooling (objective 2). To do so, the section revisits the aims of elicitation proposed in Chapter 

1, and then discusses factors that could affect experts’ contribution towards achieving those 

aims. Section 2.4 discusses the assumptions, advantages and limitations of existing methods 

and how these affect their role in elicitation (objective 3). 

Section 2.5 then discusses the findings and outlines the structure of the remaining six chapters 

in the thesis. 

2.2. Identification of existing methods for deriving weights  

A literature review was conducted to identify existing methods for deriving weights. Section 

2.2.1 describes the search strategy and reports the number of studies identified in the review, 

section 2.2.2 reports the findings, and section 2.2.3 then summarises the findings and outlines 

the structure of the discussion in the remaining three sections. 

2.2.1. Literature review 

A literature review was conducted to identify existing methods for deriving weights in opinion 

pooling. The chosen search strategy in the review was bidirectional citation searching to 

completion (BCSC).  

BCSC is a ‘pearl growing’ method, where starting citations, or ‘initial pearls’, are identified 

through systematic literature searches, informal literature searches or on advice from experts 

in the field (Hinde and Spackman, 2015). Further literature is then identified by tracing 

references (backward searching) and citations (forward searching) from the initial pearls. The 

process is then repeated for the newly identified citations until saturation, when no new 

relevant citations are identified. BCSC has been proposed to be a useful, even superior 

alternative to traditional Boolean database searches when conducting explorative literature 

reviews (Hinde and Spackman, 2015) because Boolean searches rely on correctly identifying all 

relevant search terms and data bases where relevant literature can be found (Garfield, 2006). 

Elicitation is applied in a wide range of fields; the diversity of potentially relevant literature 

meant that identifying relevant papers would have required searches in numerous databases, 
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with the use of terminology varying between them, and so BCSC was judged to be a more 

appropriate search strategy. 

Sections 2.2.1.1 - 2.2.1.3 provide details of each step in the BCSC, while section 2.2.1.4 reports 

the number of studies identified in the review. 

2.2.1.1. Identifying initial pearls 

Initial pearls were identified on advice from experienced researchers in the field. A pragmatic 

approach was taken to identify health economists with interest in expert elicitation. Identified 

researchers were employed by, or had collaborated with, researchers at the University of York. 

The initial pearls aimed to include the following types of publication: 

1) Literature on the methods for deriving weights; 

2) Applied elicitation exercises in HTA to understand how methods described in 

elicitation literature are applied in practice, and identify practical challenges and 

limitations associated with existing methods; and 

3) Studies comparing and evaluating existing methods for deriving weights. 

2.2.1.2. Backwards searching 

The backward search was performed by extracting references from relevant areas of the text 

only. For example, Bojke et al. (2017) reviewed existing literature on all aspects of elicitation in 

the context of cost-effectiveness modelling, but only references in sections 4.1 (Synthesising 

Multiple Elicited Beliefs), 4.3 (Combining Probability Distributions) and 5 (Assessing the 

Elicitation Process) were considered for inclusion. Similarly, the systematic review of elicitation 

methods in CEDM by Soares et al. (2018) was used to identify applied elicitation exercises in 

the field, and only the studies that reported their pooling methods were shortlisted. The 

extracted references were then reviewed for relevance by reading the full text before 

continuing with the literature search. 

2.2.1.3. Forward searching 

The forward search was performed by searching Google Scholar for citations that cited the 

initial pearls. Google Scholar was chosen based on the results of an informal search performed 

on three different search databases recommended by the University of York: Google Scholar, 

Web of Knowledge, and Scopus, where the former led to the most relevant citations and the 

least repetition. The identified citations were scanned for relevance in three stages: 1) by title 
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where only those that explicitly reported opinion pooling methods and applied examples were 

shortlisted; 2) by abstract; and 3) by full text. 

2.2.1.4. Results  

Fourteen initial pearls were used in the review, and three rounds of bidirectional searches 

were performed before saturation was reached. In total 55 citations were identified; the 

number identified in each round is shown in Figure 2.1. 

Figure 2.1. Stepwise results of the BCSC. 

 

The identified citations were classified into four categories: 

1) Methods for deriving weights; 

2) Applied exercises demonstrating the use of methods for deriving weights; 

3) Papers reviewing the methods for expert elicitation that commented on the use of 

methods for deriving weights; and 

4) Papers that evaluated, compared or critiqued the existing methods. 
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Two references spanned over two categories – they were applied exercises in HTA that also 

proposed a new weighting method (Bojke et al., 2010; Shabaruddin et al., 2010). Table 2.1 

shows the number of references in each of the stated categories. 

Table 2.1. References identified in the BCSC.  

 

 N* References 

Methods for 

deriving 

weights 

12 (Cooke, 1991) (Bojke et al., 2010) (Shabaruddin et al., 2010) (Brier, 

1950) (Hallenbeck, 1920) (Murphy and Murphy, 1973) (Yates and F., 

1994) (Epstein, 1969) (Murphy, 1970) (Murphy, 1971) (Brockhoff, 

1975) (Degroot, 1974)  

Applied 

elicitation 

exercises 

14 (Soares, Dumville and Ashby, 2013) (Bojke et al., 2010) (Speight et 

al., 2006) (Haakma et al., 2014) (Leal et al., 2007) (D Sperber et al., 

2013) (Mckenna et al., 2009) (Stevenson et al., 2009) (Grigore, 

Peters and Hyde, 2016) (Fischer, Lewandowski and Janssen, 2013) 

(Shabaruddin et al., 2010) (Chaloner et al., 1993) (Hallenbeck, 1920) 

(Rakow et al., 2005) 

Reviews of 

existing 

methods 

13 (Bojke et al., 2017) (Grigore et al., 2013) (Soares et al., 2018) 

(O’Hagan et al., 2006) (O’Hagan et al., 2006) (Cooke, 2017) (Cooke, 

2017) (Hartley and French, 2017) (Gosling, 2014) (Knol et al., 2010) 

(P Garthwaite, J Kadane and O’Hagan, 2005) (Cooke and Goossens, 

1999) (EFSA, 2014)  

Evaluation, 

comparison 

and critique 

of existing 

methods 

17 (Colson and Cooke, 2018) (Cooke, ElSaadany and Huang, 2008) 

(Bolger and Rowe, 2015) (Hammitt and Zhang, 2013) (Genest and 

McConway, 1990) (Cooke and Goossens, 2000) (Ferrell, 1985) 

(Clemen, 2008) (Shi-Woei Lin and Chih-Hsing Cheng, 2008) (Shi‐Woei 

Lin and Cheng, 2009a) (Cooke, 2008) (Flandoli et al., 2011) (Eggstaff, 

Mazzuchi and Sarkani, 2014) (Burgman et al., 2011) (Brown and 

Aspinall, 2004) (Cooke and Goossens, 2006) (Aspinall and Cooke, 

2013) 

 

* The total number of references is higher than that reported in Figure 2.1 because two 

references were applied exercise in HTA that also proposed a new weighting method (Bojke et 

al., 2010; Shabaruddin et al., 2010). 
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The rest of section 2.2 reports the findings of the literature review. The methods for deriving 

weights (references in row 1 in Table 2.1) are described in section 2.2.2. References presented 

in row 2 and 3 in Table 2.1 are used along the way to demonstrate the application of each 

method. Then, section 2.2.3 summarises the findings and outlines the structure of the 

discussion. Literature evaluating, comparing and critiquing the existing methods (shown in the 

row 4 in Table 2.1) is discussed later in the chapter (in section 2.4), where methods for deriving 

weights are evaluated and compared.  

2.2.2. Methods for deriving weights in opinion pooling  

The literature review identified two general approaches for deriving weights: 1) based on 

experts’ observed characteristics, and 2) based on experts’ elicitation performance. Sections 

2.2.2.1 and 2.2.2.2 describe each approach in turn. 

2.2.2.1. Deriving weights from observed characteristics 

Weights can be derived from some measure of professional status, seniority, education level 

or historical track record. For example, Haakma et al. (2014) asked experienced radiologists to 

rank tumour characteristics on their importance in detecting malignancies. The weights for 

radiologists were based on their experience:  

- 45% of the score was determined by their length of experience in the field 

(score 1 if <3 years or 2 if three years or more); 

- 45% of the score was determined by the average number of MRI images they 

see per week (score 1 if <5 MRIs per week, score 2 if 5-10 MRIs per week and 

score 3 if more than 10 MRIs per week); and 

- 10% of the score was determined by their experience in using MRI scans in 

other areas (score 1 if no, or 2 if yes). 

Similarly, Shabaruddin et al. (2010) scored experts according to the number of patients they 

prescribe the treatment under consideration. 

In both studies, the cut-off for each category was determined by the investigator and it is not 

clear whether the relationship between characteristics and weights is based on evidence or 

chosen arbitrarily. 

Examples of characteristics used to derive weights in fields other than HTA include weights 

derived from experts’ self-rated expertise on a scale of 1-7 (Brockhoff, 1975), and citation 

counts (Cooke, ElSaadany and Huang, 2008). 
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2.2.2.2. Deriving weights from measured performance 

Weights can be derived by eliciting experts’ beliefs about the value of one or more parameters 

unknown to them but known to the investigator, and comparing their priors to the observed 

value of that parameter once it becomes available (Cooke, 1991). The parameters used to 

measure experts’ performances are referred to as ‘seeds’. The consistency between experts’ 

priors and observed values of the seeds can then be assigned a numerical value, or a ‘score’, 

which is then used to weight them. 

Weighting experts by their performance in elicitation requires the investigator to decide on the 

seed parameter, the method used to score the discrepancy between experts’ priors and the 

observed value of the seed, and the methods used to derive weights from these scores. Here, 

each is described in detail. 

Choosing the seed parameters 

Cooke (1991) argues that numerical scores should capture those skills that a good expert is 

expected to possess; however, he does not detail what skills this should entail. 

Seed questions can be either predictions or retrodictions, and either domain or adjacent 

(Cooke, 2017). Predictions are questions about future quantities not known at the time of the 

elicitation that are observed within the timeframe of the study, while retrodictions refer to 

seeds based on previously collected data. Domain seeds refer to those within the same field of 

expertise as the target parameter, while adjacent seeds are related but not identical to the 

target. The author argues that domain predictions are the preferred type of seed, followed by 

domain retrodictions and adjacent predictions, and that adjacent retrodictions are the least 

desirable, although it is emphasised that the recommendation is based on practical experience 

rather than empirical evidence. Published estimates are thought to be inappropriate because 

the seed does not aim to capture their recall or subject specific knowledge, but their ability to 

assess uncertainty (Cooke, 2017). 

According to Cooke (2017), the types of parameters that have been used as seeds in the past 

include the following: 

- results of measurements performed within the study’s timeframe (e.g. trial results); 

- existing but unpublished measurement results; 

- unfamiliar features of standard datasets; and 

- combining and comparing values from disparate data sets. 
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The effectiveness of different types of seeds in capturing experts’ ability to judge uncertainty is 

not clear. 

In order to gain insight into the types of seeds used in HTA, applied exercises were extracted 

from the systematic review of reported practice of expert elicitation in HTA conducted by 

Grigore et al. (2013) and later updated by Soares et al. (2018). The review by Soares et al. 

(2018) identified five studies that explored the use of measured performance to weight 

experts; these are shown in Table 2.2. Out of the five studies one did not report the number of 

seeds, and the remaining four used between one and eight seeds (mean=3.75). The authors 

did not report how the seeds were selected, although all seeds were related to the target 

parameter for which elicitation was conducted. 
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Table 2.2. Seed and target parameters elicited in HTA context. NR=not reported.  

Study 
Number 

of seeds 
Seed parameters 

Number of 

target 

parameters 

Target parameters 

Bojke et al. 

(2010) 
2 

Expected response to three months of 

treatment for two treatments – 

infliximab and etanercept 

4 

Rate of progression while responding to treatment and 

after treatment failure – for both treatments (infliximab 

and etanercept) 

Soares et al. 

(2011) 
4 NR 10 

Ten parameters relating to the effectiveness of different 

treatments for severe pressure ulceration 

Fischer et al. 

(2013) 
8 

Data published in the literature (specific 

questions not reported) 
15 

‘Uncertain parameters needed for [the] model for 

optimal treatment of haemophilia patients’ 

Sperber et al. 

(2013) 
NR NR 1 

The percentage of patients who develop obstructive 

sleep apnoea within the first year after the onset of 

tetraplegia 

Grigore et al. 

(2016) 
1 

The proportion of patients undergoing 

relevant treatment who experience 

clinically significant complications as a 

result of testosterone flare 

1 

The proportion of patients who experience spinal cord 

compression as result of testosterone flare, also 

experience paraplegia 
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Scoring methods 

Three methods for deriving performance-based weights were identified from the available 

literature: Cooke’s Classical Model (Cooke, 1991), Bojke’s Best Estimate Fractions (Bojke et 

al., 2010), and Budescu and Chen’s (2015) Contribution-Weighted Model. All three methods 

differ in how they score experts’ priors: the Classical Model uses Kullbeck-Liebler 

divergence and the Shannon relative information, the Contribution-Weighted Model uses 

Brier’s probability scores, and the Best Estimate Fractions are based on absolute difference. 

This section describes each scoring method in turn. Furthermore, three additional scoring 

methods were identified that have been used to study the accuracy of probabilistic 

judgments in elicitation. The methods include Decomposition of Brier’s probability score 

(Yates and F., 1994), Ranked Probability Score (Epstein, 1969), and Confidence Interval 

Probability Coverage (Murphy and Winkler, 1977). While these methods have not been 

explicitly used to weight experts, their role is to measure the closeness between experts’ 

priors and observed values of the seed, and so they are also described in this section, and 

their role as potential methods for deriving weights is discussed later in this chapter, in 

section 2.4.3. 

The Classical Model: Kullbeck Liebler divergence and Shannon’s relative information 

The Classical Model, introduced by Cooke (1991), was the first available method for 

deriving weights based on experts’ elicitation performance. The weights are determined by 

two aspects of experts’ performance: calibration (accuracy) and information (uncertainty). 

The calibration score represents the closeness between experts’ priors and observed 

parameter values (Cooke, 1991). An expert is thought to be well calibrated if the 

discrepancy between their probability distribution P and the observed probability 

distribution S is no greater than the discrepancy between two independent variables with 

distribution P. 

The discrepancy between P and S is measured using Kullback–Leibler divergence, as shown 

in Equation 2.1 (Cooke, 1991). 

𝐼(𝑆, 𝑃) =  ∑ 𝑆(𝑖)𝑙𝑛
𝑆(𝑖)

𝑃(𝑖)

𝑀

𝑖=1

 Equation 2.1 

Where 𝑖 is one of M outcomes; 



49 
 

𝑆(𝑖) is the observed probability of 𝑖; and 

𝑃(𝑖) is the expert’s probability of 𝑖. 

In practice, the Classical Model involves eliciting five quantiles (5th, 25th, 50th, 75th and 95th 

percentiles) for a range of seed parameters, then observing the frequency with which the 

observed parameter values fall into each quantile (Quigley et al., 2017). For example, if an 

expert is perfectly calibrated, then 5% of seeds would have a value lower than experts’ 

stated 5th percentile, 20% of the seeds would have a value between 5th and 25th percentile, 

etc. An example is shown in Table 2.3. In the table, each row represents expert’s 

assessment of one seed. Five different quantities are elicited for each seed – the values of 

the 5th, 25th, 50th, 75th and 95th percentiles – splitting the distribution into six intervals (0-

5%, 5-25%, 25-50%, 50-75%, 75-95%, 95-100%). Each interval represents an outcome 𝑖, and 

so M=6. An expert’s probability P that the seed value will be in each of the six intervals is 

(0.05, 0.2, 0.25, 0.25, 0.2, 0.05). Column 7 shows the observed value of that seed, while 

column 8 shows the interval in experts’ priors where the observed value of the seed lies. 

The proportion of observed seed values S that fall within each interval is (0.2, 0.3, 0.2, 0.1, 

0.2, 0). The experts’ discrepancy score is 0.2622.  

The higher the 𝐼(𝑆, 𝑃) the greater the discrepancy between S and P (Cooke, 1991). 

Cooke’s calibration score is then the probability that the discrepancy between observed 

and subjective probability distributions 𝐼(𝑆, 𝑃) is due to sampling variation (see Equation 

2.2) (Cooke, 1991). 

𝐶𝑜𝑜𝑘𝑒’𝑠 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  𝑃𝑟𝑜𝑏{𝐼(𝑆’, 𝑃) ≥  𝐼(𝑆, 𝑃)|𝐶𝑎𝑙(𝑃), 𝑛  Equation 2.2 

Where 𝐶𝑎𝑙(𝑃) is the hypothesis that the elicited priors and observed probability 

distributions are independent and identically distributed with distribution P; and 

n = number of observations, or seeds. 

As the number of observations gets large, 2nI(S,P) follows a Chi-squared distribution with 

M-1 degrees of freedom (Cooke, 1991). 

 

                                                             
2 𝐼(𝑆, 𝑃) = 0.2*ln(0.2/0.05) + 0.3*ln(0.3/0.2) + 0.2*ln(0.2/0.25)  
+0.1*ln(0.1/0.25) + 0.2*ln(0.2/0.2) + 0*ln(0 /0.05) 
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Table 2.3. Hypothetical example of an expert’s priors of ten seeds and observed values of 

those seeds used to derive Cooke’s calibration score.  

 

Seed 

Elicited percentiles 
 

Observed 

value 

Experts’ percentile 
interval in which the 

observed value of the 
seed lies 

5th 25th 50th 75th 95th 

1 1 3 5 6 8 4 25th-50th 

2 7 12 14 16 20 8 5th-25th 

3 1 4 6 8 10 7 50th-75th 

4 5 6 7 9 12 5 5th-25th 

5 3 7 9 10 15 8 25th-50th 

6 3 6 7 8 9 5 5th-25th 

7 4 9 11 12 15 3 5th-25th 

8 1 2 3 4 6 5 75th-95th 

9 6 8 10 12 17 7 5th-25th 

10 1 3 4 5 7 6 75th-95th 

Cooke (1991) argues that, given two identical calibration scores, the expert who expresses 

greater certainty should be assigned a higher (better) score, and proposes information, or 

entropy, as a measure of the spread of probability distributions. Cooke’s information scores 

are derived relative to some other distribution referred to as ‘the background’. The 

background is usually a uniform or log-uniform distribution and its range is the smallest 

possible range that contains all values believed to be plausible by the experts. For example, 

if priors are elicited from two experts – one who believes that the plausible range is 2-4 and 

the other believes that the range is 3-6 – then the background distribution would be a 

uniform distribution with a range of 2-6. 

Cooke’s information score is derived using Equation 2.3, based on Shannon’s relative 

information (Cooke, 1991). 

𝐶𝑜𝑜𝑘𝑒′𝑠 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  
1

𝑁
∑ 𝑝𝑖ln (

𝑝𝑖

𝑠𝑖
)

𝑁

𝑖=1

 Equation 2.3 

N is the number of 𝑖 outcomes; 

pi is experts’ probability of outcome 𝑖; and 

si is the background probability of outcome 𝑖. 
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The lower the score, the more uncertain the expert is. The minimum score is 0, when pi = 

1/n for all 𝑖. The maximum score depends on the range of the background distribution. 

Information does not take into account the value the experts’ distributions take, nor the 

observed value of the seed. This means that an expert who is completely certain about a 

wrong value would score a high (good) information score. 

Cooke combines experts’ calibration and information to weight experts – the methods for 

deriving weights are described later in this chapter (section ‘Methods for converting scores 

into weights’). 

Best Estimate Fractions derived from absolute difference 

Bojke et al. (2010) used the absolute difference to derive Best Estimate Fractions. The 

authors used continuous variables as seeds, and sampled from experts’ priors and the 

observed the probability distribution of the seed (taking into account its parametric 

uncertainty) and derived the absolute difference between them. For each iteration the 

authors assigned one point to one expert whose value was closest to the observed value 

(i.e. the expert who minimised the absolute difference), while the remaining experts were 

assigned zero points. Overall scores were then derived by adding up the total score for each 

expert and dividing it by the total number of iterations. An example is presented in Table 

2.4.  

Table 2.4. Hypothetical example of Best Estimate Fraction scores for two experts, derived 

from four random samples drawn from their priors.  

Iteration 

Sample 
from 

parameter 
distribution 

Expert 1 Expert 2 

Sample from 
experts’ 

prior 
Score 

Sample from 
experts’ 

prior 
Score 

1 3 2 1 6 0 

2 5 1 0 7 1 

3 5 3 0 6 1 

4 4 2 0 5 1 

Overall score 0.25 0.75 
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Brier’s probability score 

Probability scores were introduced by Brier (1950) to measure accuracy of meteorology 

forecasts. Brier’s Probability Score (PS) is given in Equation 2.4.  

         PS = ∑ (𝑝𝑗 − 𝑑𝑗)2
𝑛

𝑗=1
 Equation 2.4 

Where 𝑗 is one of n possible outcomes; 

𝑝𝑗= expert’s prior that outcome j will occur, such that ∑ 𝑝𝑗 = 1; and 

𝑑𝑗is a parameter that takes value of 1 if outcome 𝑗 does occur and 0 if it does not, such that 

∑ 𝑑𝑗 = 1 , and 𝑑𝑗=1 for exactly one j. 

For example, if the seed question is ‘What number of days it will rain next week?’, there are 

eight possible outcomes (0-7 rainy days) and so n=8 and 𝑗 ϵ {0, 1, 2, 3, 4, 5, 6, 7}. If rain is 

observed on four days, then 𝑑𝑗=0 for all 𝑗ϵ{0, 1, 2, 3, 5, 6, 7}, and 𝑑4 = 1. If an expert 

believes that the probability of rain on exactly (0, 1, 2, 3, 4, 5, 6, 7) days is (0.05, 0.1, 0.2, 

0.3, 0.2, 0.15, 0, 0), then their score is 0.643. 

Deriving experts’ scores on the basis of their performance against a single seed question 

can be unreliable. If an event results in a rare outcome (𝑑𝑗=1 but 𝑝𝑗 is small), then the 

expert who assigns a low probability to outcome j will have a bad (high) score, despite 

potentially being right (that the probability of the outcome was low). Thus when Brier’s 

method is used to score experts, multiple seed questions are asked and experts are scored 

using mean PS (𝑃𝑆̅̅̅̅ ) (see Equation 2.5). 

Where n is the number of seed questions. 

Brier’s PS does not take into account the value of the parameter (O’Hagan et al., 2006). If 

two experts are asked how many days in a week they believe will rain, one expert may 

believe that the probability of rain on (0, 1, 2, 3, 4, 5, 6, 7) days is (0.05, 0.1, 0.2, 0.3, 0.2, 

0.15, 0, 0), while another expert believes that it is (0.05, 0.3, 0.2, 0.2, 0.15, 0.1, 0, 0). If rain 

is then observed on exactly one day both experts would have the same score, although the 

second expert placed a higher probability on the values closer to the observed number of 

                                                             
3 (0.05-0)2 + (0.1-0)2+ (0.2-0) 2 + (0.3-0)2+ (0.2-1)2+ (0.15-0)2+ (0-0)2+ (0 -0)2 = 0.64 

       𝑃𝑆̅̅̅̅ =
1

𝑛
∑ 𝑃𝑆 Equation 2.5 
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rainy days, and thus may be intuitively regarded as the more accurate of the two. Brier’s PS 

thus may fail to take into account how wrong experts are when elicited parameters are 

continuous, ordinal or discrete interval variables where magnitude of ‘error’ is relevant. 

Brier’s scores have been used to weight experts in the Contribution-Weighted Model – the 

model is described in detail later in this chapter (in the section ‘Methods for converting 

scores into weights’). 

Decomposition of Brier’s score 

Several researchers have decomposed Briers’ PS into multiple components to understand 

what drives the score. For example, Murphy (1973) decomposed the PS into calibration, 

variance and resolution, where each component is assigned an individual score. Calibration 

captures the difference between experts’ priors on the probability of outcomes and their 

observed relative frequencies. Variance indicates how the relative frequency of outcomes 

influences the PS, considering that outcomes with relative frequency of 0.5 result in lower 

(better) scores than those that occur with probabilities closer to 0 or 1. Resolution shows 

how well experts distinguish between outcomes with a high probability and outcomes with 

a low probability, so that when the calibration score is low (good), the resolution is also 

good, whereas good resolution alone could indicate that the expert places a high 

probability on outcomes with a low relative frequency and vice versa. Yates (1994) 

decomposed the PS into bias, slope and scatter, where bias measures experts’ tendency to 

be consistently higher or lower than the observed relative frequency, slope measures a 

combination of calibration and resolution, and scatter measures the random error in 

experts’ subjective probabilities. 

The final scores derived using these methods are mathematically equivalent to Brier’s PS 

(PS = calibration + variance – resolution = bias + slope + scatter), and so, when scores are 

used to weight experts, they lead to identical weights.  

Ranked probability score 

Ranked probability scores have been developed by Epstein (1969) to take into account the 

distance from true value when scoring experts on ordinal variables. The method was 

developed to score meteorological forecasts and assumes that some outcomes are better 

than others. For example, if there are four outcomes 𝑖 (i=1,2,3,4), where outcome 1 has the 

least costly consequences and outcome 4 has the most costly consequences, predicting 

outcome 1 when 4 occurs is worse than predicting outcome 4 when outcome 1 occurs. The 
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equation for deriving ranked probability scores is specific to Epstein’s (1969) weather 

example; applying the scoring method in HTA would require deriving a new equation 

specific to that example, taking into account the number of possible outcomes and the 

consequences of each of those outcomes.  

Confidence interval coverage probability 

The confidence interval coverage probability (CICP) measures the proportion of the time 

that the interval contains the ‘true value of interest’ (Murphy and Winkler, 1977). Murphy 

and Winkler (1977) have used it to score experts’ predictions of temperature forecasts by 

eliciting priors on temperature predictions and calculating the proportion of observed 

temperatures which were within the elicited distributions. Uncertainty around the true 

value of the parameter can be taken into account by sampling from the probability 

distribution and deriving the proportion of random samples which fall within an experts’ 

prior (see the shaded area in Figure 2.2). Experts are penalised for placing zero probability 

on observed values (i.e. for being overconfident). 

Figure 2.2. Probability distributions derived from an observed sample and elicited from an 

expert. The highlighted area represents the observed values not included in the prior. The 

CICP is 1-the highlighted proportion of the observed probability distribution. 
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This literature review did not identify any examples where CICP scores were used to weight 

experts; their only application has been to compare the accuracy of priors elicited from 

different experts.  

Methods for converting scores into weights 

In the last section it was highlighted that three methods for deriving performance-based 

weights were identified from the available literature: Cooke’s Classical Model (Cooke, 

1991), Bojke’s Best Estimate Fractions (Bojke et al., 2010), and the Contribution-Weighted 

Model (Budescu and Chen, 2015), and the methods used to score experts’ priors were 

described. This section describes how each method uses scores to derive weights. 

The Classical Model 

The previous section shoes how the Classical model derives calibration and information 

scores from experts’ priors. The model then combines the two scores in order to derive 

weights, using Equation 2.6 (Cooke, 1991). 

wα = Indα (calibration score) x calibration score x information score Equation 2.6 

Where Indα is an indicator function such that Indα (x) = 0 if x<α and Indα (x) = 1 otherwise; 

and α is a threshold value an expert must score above in calibration, in order to have a non-

zero score overall. 

Indα was introduced to ensure that very high information cannot compensate for poor 

accuracy (calibration). It is not clear what the value of α should be; the author often uses α 

that maximises the weighted score of all experts combined (Colson and Cooke, 2018). 

Cooke argues that experts who have a score of 0 are not considered to be bad, or 

irrelevant, but their marginal contribution to the aggregate probability distribution when 

priors from all experts are combined is zero (Goossens, 2008a). 

Contribution-Weighted Model 

Budescu and Chen (2015) developed the Contribution-Weighted Model, which aims to take 

into account experts’ performance relative to the crowd by capturing the effect of inclusion 

(or exclusion) of each expert in the sample. The method was designed for categorical 

variables with R outcomes, and used Brier’s Probability Score (Brier, 1950) (see Equation 

2.4) to value their accuracy. 
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To derive experts’ weights, first the aggregate score S for event 𝑖 is calculated using 

Equation 2.7 (Budescu and Chen, 2015). 

                             𝑆𝑖 = 𝑎 + 𝑏 ∑ 𝑃𝑆𝑖𝑟
𝑅𝑖
𝑟=1  Equation 2.7 

Where PS is Brier’s probability score; 

𝑖 is one of N events; 

r is one of R outcomes for event 𝑖 (for a binary event R=2); 

oir is the binary indicator of outcome r for event 𝑖 (1=occur, 0=not occur); 

mir is experts’ average probability assigned to outcome r, of event I; and 

𝑎 and 𝑏 are constants introduced by Budescu and Chen (2015) used to scale experts’ 

scores. The authors set 𝑎 = 100 and 𝑏=-50 to yield scores ranging from 0 to 100, where a 

score of 100 indicates that all experts assigned probability 1 on every outcome r that 

occurred (mir=1 on all outcomes r for which oir =1) and zero to all other outcomes (mir=0 for 

all outcomes r for which oir =0), while a score of 0 indicates the opposite. 

Budescu and Chen (2015) derived weights from experts’ scores by measuring their 

contribution. The contribution C of each judge j is derived using Equation 2.8.  

                         𝐶𝑗 = ∑ (𝑆𝑖 − 𝑆𝑖
−𝑗)/𝑁𝑗

𝑁𝑗

𝑖=1
 Equation 2.8 

where j is one of 𝑁𝑗 experts; 

 𝑆𝑖
−𝑗  is the score of the unweighted aggregate prior for event 𝑖 calculated when expert 𝑗’s 

prior is removed from the sample; and 

𝑁𝑗 is the number of seeds for which expert 𝑗’s beliefs were elicited. The term was 

introduced to allow for the possibility that, for some seeds, not all experts’ beliefs are 

elicited. 

The contribution, 𝐶𝑗 , can take any value between -100 and 100, where positive values 

indicate that the experts’ prior on average improved the crowd’s S, while negative values 

suggest that the experts’ prior reduces the score S of the crowd. 
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Best Estimate Fraction 

As described in the section on scoring methods, Best Estimate Fractions are derived by 

calculating the proportion of random samples from each expert’s prior that minimised the 

distance from the observed value of the seed in comparison to other experts (Bojke et al., 

2010). The scores from different experts summed to 1, and were then used directly to 

derive weights. 

2.2.3. Summary of findings 

Overall, the literature review described in this chapter has identified two approaches to 

deriving weights (based on experts’ observed characteristics and their measured 

performance in elicitation) and multiple methods within each approach. 

The aim of this chapter is to derive guiding principles for choosing between the various 

options for deriving weights. To achieve this, factors that could affect experts’ contribution 

in elicitation are first identified. Section 2.3 revisits the aims of elicitation proposed in 

Chapter 1, then proposes and discusses factors that could affect experts’ contribution 

towards achieving those aims. Section 2.4 discusses the assumptions, advantages and 

limitations of different methods for deriving weights in relation to the discussion provided 

in section 2.3. Section 2.5 summarises the findings from the chapter and discusses the role 

of each method in opinion pooling. The section concludes with highlighting research gaps 

and outlining the structure of the rest of the thesis. 

2.3. Defining the role of weighting in elicitation 

Chapter 1 proposed that elicitation can be used to characterise uncertainty in CEDM when 

other sources of information are unavailable, unattainable within the existing resource 

constraints, or are of uncertain generalisability. The aim of an elicitation exercise is to 

capture the current state of knowledge around uncertain quantities. Structured elicitation 

processes are used to ensure that experts base their priors on all available information to 

avoid bias due to inaccurate or incomplete information and to minimise uncertainty, and to 

help experts assess uncertainty in their beliefs and express it probabilistically, free from 

bias. 
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The different steps in the elicitation process used to elicit informed and unbiased priors 

were discussed in detail in Chapter 1, and a summary of this is shown in Table 2.5. 

Table 2.5. Elicitation process steps taken to ensure experts use all available information, 

and assess and express their uncertainty free from bias. 

Ensure complete information Help experts assess the information 

• Recruit substantive experts 

• Recruit multiple experts 

• Provide background information 

• Encourage information sharing 

• Recruit impartial experts 

• Plan the elicitation process (choice of 

parameter, quantity, elicitation 

technique, delivery method) 

• Training and debiasing 

• Evaluation and feedback 

 

However, methodological uncertainties and logistical challenges mean that it is not always 

clear how to achieve these. Table 2.6 provides examples of such challenges.  

Differential weighting can potentially compensate for methodological challenges by giving 

‘more say’ to experts who are believed to be less affected. For example, if information 

sharing is not possible, experts whose experience is more closely related to the target 

parameter can be assigned a greater weight.  

In this chapter, four factors were identified to give a potential basis for differential 

weighting: 

- substantive expertise; 

- perspective; 

- normative expertise; and 

- the ability to make accurate probabilistic assessments independent of knowledge, 

perspective and normative expertise. 
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Table 2.6. Examples of methodological and logistical challenges in the elicitation process. 

Step in elicitation process Potential challenges in delivering the step 

Recruit substantive experts • It is unclear who is a substantive expert 

Recruit impartial experts • Impartiality is difficult to ascertain 

Recruit multiple experts to 
represent the expert community 

• Composition of the expert community unclear 
• Unable to recruit representative sample 

Provide background information 
• Background information not read by experts 
• Experts have difficulty interpreting the background 

information 

Encourage information sharing 
• Information sharing not possible because it is not 

possible to gather all experts simultaneously 

Planning 
• Methodological uncertainties around what to elicit, how 

to elicit and how to deliver the exercise to minimise bias 

Training and debiasing 
• Optimal method for training and debiasing is unclear 
• Experienced trainers may not be available  
• Unable to demonstrate effectiveness 

Evaluation and feedback 
• Can induce bias 
• Unclear if it leads to ‘improvement’ 

Sections 2.3.1-2.3.4 define and provide justification for each of the proposed factors in 

turn. Section 2.3.5 then discusses what determines the importance of each of the four 

factors. 

2.3.1. Substantive expertise 

Chapter 1 established that experts’ substantive expertise – expertise in the field for which 

elicitation is being conducted – can affect the outcomes of an elicitation exercise by 

ensuring that experts are not basing their priors on inaccurate information, and that 

uncertainty is not overestimated. A perfectly unbiased expert with no field specific 

experience could give unbiased quantities by expressing complete uncertainty, i.e. 

assigning equal probability to all possible outcomes. However, asking an expert with clinical 

(substantive) experience within the field may resolve some of that uncertainty by 

narrowing down the range of plausible values of the elicited parameter. If the aim of the 
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elicitation exercise is to capture the current state of knowledge based on limited evidence, 

it could be argued that asking an uninformed (inexperienced) expert, where a more 

experienced one exists, overestimates uncertainty in the model and the value of further 

research.4 

If in a sample of experts some are more substantive than others, differential weighting can 

potentially ensure that experts who are less likely to base their priors on inaccurate beliefs 

are given more say.  

2.3.2. Perspective 

Perspective refers to an experts’ point of view in relation to the target parameter. 

Perspective can vary between experts with different professions (for example, an 

epidemiologist may have a different perspective to a clinician) or between experts with the 

same profession but different settings (such as primary and secondary care nurses) (Soares 

et al., 2011). 

Perspective is of particular importance if it creates the possibility of motivational bias. 

Garthwaite et al. (2005) highlighted how perspective can induce partiality (even without an 

obvious incentive such as financial gain from a particular outcome) using an example of a 

radiation expert whose beliefs are elicited about the health effects of the radiation release 

at Chernobyl. The relevant individual is likely to have spent years becoming an expert and 

their pay off (in terms of social attention and grant funding) is likely to depend on the 

societal perception of the importance of radiation. As a result, the expert may be 

incentivised to accentuate the dangers of radiation. 

Weights can be based on experts’ perspective to ensure that the expert sample is 

representative of the expert community, as recommended in the elicitation literature 

(Kadane, 1986). For example, a general practitioner (GP) and a geriatrician can both be 

experienced in treating patients who have suffered a fall, but their experience could differ 

in the types of patients they treat. The GP is likely to be more familiar with patients who 

have suffered mild falls, whereas the geriatrician is likely to be more familiar with falls that 

                                                             
4 It is important to note that the above example only suggests that the choice of experts can affect 

results of elicitation. It does not imply that experts who express more confidence (narrow confidence 

intervals) always lead to the best representation of uncertainty, as experts can be certain due to 

bias; for example, they may be overconfident due to irrational beliefs. 
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result in fractures and hospitalisation. If both perspectives are judged to be equally relevant 

in an elicitation exercise but the sample of experts contains more geriatricians than GPs, 

then assigning greater weights to the GPs could be used to ensure that experts with each of 

the two perspectives are given equal say.  

It is important to note the similarity between perspective and substantive expertise – if a 

clinician is only experienced in treating one subgroup of patients they can be argued to be 

less substantive than a clinician with a more general patient population. In this chapter they 

are proposed to be separate concepts where substantive expertise is hierarchal, whereas 

perspective describes differences in experience that can affect experts’ priors but where it 

is not clear which is better. For example, if two clinicians are compared who both have 

equal patient experience, but one is also an experienced researcher, than the researcher 

can be argued to be more substantive. If, however, we compare two experts where one has 

more patient contact but the other has more research experience, they are said to have 

different perspectives as it is not clear which type of experience is ‘better’. 

2.3.3. Normative expertise 

Normative expertise refers to the ability of experts to express their beliefs in the required 

format, usually quantitatively (Ferrell, 1994; Stern and Fineberg, 1996). As discussed in 

Chapter 1, statistically incoherent or inconsistent priors are used as indicators of a lack of 

normative expertise. For example, if an expert knows that probabilities of mutually 

exclusive outcomes must add up to one, but their priors suggest otherwise, then it is likely 

that their priors do not represent their beliefs accurately. 

Incoherent and inaccurate priors can be identified and corrected during the evaluation and 

feedback steps in the elicitation process; however, when elicitation is delivered remotely, 

as is the case in the majority of exercises in HTA (Soares et al., 2018), evaluation tends to be 

carried out after the elicitation exercise and the findings are not fed back to the expert for 

clarification. 

If subsequent priors elicited from some experts are believed not to represent their beliefs 

accurately, it may be desirable to assign those experts lower weights. 

2.3.4. Ability to make accurate probabilistic assessments 

In elicitation, experts are required to process available information to assess the plausible 

values of a parameter and uncertainty around it, free from bias. For example, assessing 
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what proportion of patients who take a particular medicine will experience side effects 

requires consideration of how many patients they observe in clinical practice, the 

proportion of their patients that have the condition, the proportion of patients who receive 

the relevant treatment, the proportion that report side effects and the proportion who may 

be experiencing side effects but do not report these to their clinician. Without careful 

consideration of each of these factors, a clinician could be susceptible to cognitive bias by 

basing their response on whether they can easily remember a patient who experienced side 

effects with the medicine in question. 

Assessment of the plausible values of a parameter are very different tasks to those 

generally involved in clinical work, such as keeping up to date with relevant literature, 

knowledge of care pathways, and communication skills. Not all individuals with substantive 

expertise can make accurate probabilistic assessments in that field; indeed there are 

several examples of studies where clinicians, with substantive skills, made inaccurate 

probabilistic assessments (Hoffmann and Del Mar, 2017). 

Tetlock et al. (2016) studied the ability of lay people to assign probabilities to future 

(unobserved) outcomes of events across a range of topics (including politics, finance, 

entertainment and sports) and scored their performance using Brier’s probability score (see 

Equation 2.4 in section 2.2.2). The authors found that some individuals were consistently 

better at predicting future outcomes than professionals who worked in those fields. These 

individuals, named ‘superforecasters’ by the authors, based their predictions on publicly 

available resources and were 30% more accurate than intelligence officers with access to 

classified information, suggesting that substantive expertise may not be crucial for making 

accurate probabilistic assessments; it is instead about how the available information is 

utilised in generating priors. 

If some experts in the sample are believed to be less susceptible to cognitive bias and more 

accurate at making probabilistic assessments of parameter values (and their uncertainty 

around them), then differential weighting could potentially minimise the bias in the 

aggregate prior by giving more say to those experts. 

2.3.5. Which factors should the weights reflect? 

The last section identified four factors that can affect uncertainty and bias in experts’ 

priors. The different factors are likely to vary between experts, as shown in Figure 2.3. For 

example, experts in sections A, E, I and M are not considered substantive experts but they 
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are familiar with the parameter of interest – this could include junior doctors working with 

the patient population targeted by a new treatment for which elicitation is being 

conducted. In contrast, experts in sections C, G, K and O are substantive but their 

perspective can bias their prior on the target parameter – they could be experienced 

clinicians who work with a specific patient subgroup. Experts in areas B, F, J and N are both 

substantive and have a complete perspective of the target parameter. 

The importance of each of the four factors is likely to depend on the expert and the 

elicitation process. If an expert has a biased perspective (i.e. they only see one specific 

subgroup of patients) then their contribution can depend on their ability to extrapolate 

their knowledge (from their perspective) to make accurate probabilistic assessments. The 

role of their perspective can also depend on the background information provided by the 

investigator. If experts are presented with information on how their experience compares 

to that of other experts, then their priors are less likely to be biased by their perspective, 

and experts in areas F and G in Figure 2.3 could be considered to be ‘equally good’. In 

contrast, if they are unaware that their patient population is different to the general 

population, then perspective may affect their priors more, and so priors elicited from 

experts in area F in Figure 2.3 could be less biased than those elicited from experts in area 

G. 

Figure 2.3. Interaction between factors that affect experts’ priors. 
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The next two sections discuss each of the two approaches to deriving weights, highlighting 

which of the four factors they capture and by what means, and how this affects their role in 

the elicitation process. 

2.4. Evaluation and comparison methods for deriving 

weights 

In what has been covered so far, it is clear that the methods for deriving weights differ in 

the way they measure experts’ contribution. Weights can be based on observed 

characteristics or on the accuracy of their assessment of seed parameters, and multiple 

methods exist within each approach. Methods for deriving weights from experts’ 

characteristics vary in the characteristics used as a basis for deriving weights and how those 

are scored. Methods for deriving weights from experts’ elicitation performance vary in the 

choice of seed, the method used to score experts’ performance, and the methods used to 

derive weights from those scores.  

This section aims to evaluate and compare the existing methods. First, section 2.4.1 

describes the existing literature; sections 2.4.2 and 2.4.3 further explore how the method 

for deriving weights can affect their role in elicitation. 

2.4.1. What the literature says 

This section describes the literature that aims to evaluate and compare methods for 

deriving weights, identified in section 2.2.1 (row 4 in Table 2.). 

Characteristic-based weights have been evaluated by comparing the accuracy of 

characteristic-weighted aggregate priors on a seed parameter to equally weighted priors on 

the same seed (Cooke, ElSaadany and Huang, 2008). 

Performance-based weights have been evaluated using two approaches: 1) an assessment 

of internal validity, and 2) an assessment of external validity. 

Internal validity refers to the ability of performance-based weights to improve the accuracy 

of the aggregate prior on the seed that was used to derive the weights. The purpose of 

assessing internal validity is to determine whether the derived weights effectively capture 

experts’ contribution to the aggregate prior, as demonstrated in Figure 2.4. The figure 

compares priors elicited from two hypothetical experts to the observed probability 
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distribution. Intuitively, Expert A is more knowledgeable than Expert B. Expert A is also, 

overconfident and so placing a very low weight on Experts B could underestimate 

uncertainty of the aggregate prior, making it less accurate than an equally weighted prior 

(Goossens, 2008a). 

External validity refers to the ability of a weighting method to improve the accuracy of the 

aggregate priors on the target parameter (Colson and Cooke, 2017). Since the value of the 

target parameter is rarely known (that is why elicitation is conducted), various methods for 

assessing external validity have been developed. 

Clemen (2008) proposed the remove-one-at-a-time (ROAT) method as a measure for out of 

sample validity of the Classical Model. ROAT involves the use of datasets with priors elicited 

from multiple experts on multiple seeds. One seed question is removed at a time and the 

score is recalculated for the rest of the sample. Then, the derived scores are used to weight 

experts’ priors on the one seed that was removed. The accuracy of the aggregate priors is 

then compared to the accuracy of the prior derived by equal weighting.  

Figure 2.4. Beliefs elicited from two experts about the same seed and its observed 

probability distribution. Experts A is more accurate than expert B but they are 

overconfident so the aggregate priors should take both into account. 

 

Cooke (2008) built on ROAT analysis by splitting each set of seeds into two halves, where 

one half served as the ‘training’ set (i.e. the seeds) and the other half as the ‘test’ set (i.e. as 

the target parameters). They then assessed whether weights derived from the training set 

led to more accurate aggregate priors on the test set than unweighted aggregate priors.  
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Sections 2.4.1.1 to 2.4.1.3 describe the findings of each approach to evaluating methods for 

deriving weights. 

2.4.1.1. Evaluation of characteristic-based weights 

Only one study that evaluated the characteristic weighted priors was identified. Cooke et al. 

(2008) used experts’ citation count to derive weights, and compared citation-weighted 

aggregate priors to unweighted and performance-weighted ones. The authors found that 

the citation weighted priors were more accurate than unweighted, but less accurate than 

the performance-weighted priors. 

2.4.1.2. Internal validity 

Goossens and Cooke (2008a) analysed the internal validity of seeds for every study in the 

TU Delft database5 published before 2006 (N=45). The authors compared the accuracy of 

aggregate priors derived using equal weights and performance-based weights (derived 

using the Classical Model), and the prior elicited from the most accurate expert (the expert 

who achieved the highest score in the Classical Model). The authors found that in 15 out of 

45 studies the best experts and the performance-based model were identical (i.e. all weight 

was assigned to one expert), in 27 out of 45 studies the performance-weighted aggregate 

priors were the most accurate, in two cases the best expert was the most accurate, and in 

one case it was the equally weighted prior. 

Colson and Cooke (2017) analysed the internal validity of seeds used in every study in the 

TU Delft database published between 2006 and 2015. The authors identified 33 studies in 

total where all studies contained between 7 and 17 seeds, and the majority contained 10. 

The authors found that the equally weighted aggregate priors outperformed the 

performance-weighted priors (using the Classical Model) in 30% of the cases, while the best 

expert was more accurate than the performance weighted prior in 3 out of the 33 studies. 

The findings suggest that, in general, the Classical Model effectively weighs priors, although 

not always. 

2.4.1.3. External validity 

Lin and Cheng performed ROAT analysis on 28 (2008) and then 40 (2009b) studies from the 

TU Delft database. In the first study (Shi-Woei Lin and Chih-Hsing Cheng, 2008) the authors 

                                                             
5 TU Delft database is a database of professionally conducted Classical Model studies.  
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found that the performance-weighted priors were significantly more accurate than the 

equally weighted priors, while in the second study (Shi‐Woei Lin and Cheng, 2009b) the 

difference was not statistically significant. 

Cooke (2008) identified studies in the TU Delft database with 16 or more calibration 

questions. The author split each set of seeds into two halves, where one half served as the 

‘training’ set (i.e. the seeds) and the other half as the ‘test’ set (i.e. as the target 

parameters). They then assessed whether weights derived from the training set led to more 

accurate aggregate priors on the test set than equally weighted aggregate priors. It is not 

clear how the authors selected which seeds were training and which were test sets. The 

performance-weighted aggregate priors outperformed the equally weighted priors in 20 

out of 26 comparisons.  

Flandoli et al. (2011) performed similar analysis on further five data sets, where the size of 

the test set was either 8 seed questions or 30% of the total seed questions – whichever was 

larger. The author sampled all possible combinations of training and test sets and reported 

that performance-weighted priors generally outperformed equally weighted priors. 

Eggstaff et al. (2014) performed cross-validation on the 62 studies in the TU Delft database 

that were available at the time. The authors included every possible training/test set 

combination and found that performance-weighted aggregate priors were significantly 

more accurate than equally weighted priors. 

More recently, Colson and Cooke (2017) performed cross-validation analysis on all studies 

in the TU Delft database published between 2006 and 2015. The authors identified 33 

studies. All studies contained between 7 and 17 seeds, while the majority contained 10. The 

authors found that the overall score was higher for the performance-weighted priors, but 

that this was largely driven by the information score; the calibration (accuracy) score was in 

fact higher in the equally weighted priors. 

Given the inconclusive findings from the existing literature, the next section explores 

factors that affect the ability of weights to improve the accuracy of the aggregate prior. 

Section 2.4.2 discusses methods for deriving weights from experts’ characteristics, then 

2.4.3 discusses methods for deriving weights from experts’ elicitation performance. 
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2.4.2. Further exploration of the methods for deriving weights 

using experts’ characteristics 

Section 2.3.2 identified two elicitation exercises in HTA where experts’ characteristics were 

used to weight their priors (Shabaruddin et al., 2010; Haakma et al., 2014); both based their 

weights on substantive expertise. Haakma et al. (2014) derived scores from experts’ length 

of experience, frequency of use of the technology of interest, and experience of using the 

technology of interest in other areas, while Shabaruddin et al. (2010) scored experts 

according to the number of patients they prescribe the treatment under consideration. 

In both studies, the characteristics used to define experts’ experience and the weights 

assigned to different levels of experience were determined by the investigator, and it is not 

clear whether the relationship between characteristics and weights was based on evidence 

or chosen arbitrarily. 

Identifying the characteristics that can be used in weighting is indeed difficult – Chapter 1 

highlighted the uncertainty in what makes experts substantive. In a recently published book 

chapter, Bolger (2017) discussed expert selection in elicitation and reviewed indicators of 

substantive expertise. The author listed many characteristics as indicators of expertise, 

including job title, role, formal qualifications, proof of completion of training courses, years 

of on-the-job experience, awards, citations, and published papers. However, the author 

cautioned that all stated indicators are associated with limitations. Indicators of rank – such 

as job title, role and awards – can be acquired through means other than skills and 

knowledge; peer-recommendation can be misleading as the way colleagues/service users 

perceive experts may not be a good indicator of that expert’s skill set; qualifications and 

completion of training courses are likely to demonstrate a basic level of knowledge but may 

not always guarantee on-the-job experience, which is believed to be required to develop 

expertise (Shanteau, 1992); and more years of experience do not always lead to more 

expertise (Ericsson, 2006). 

Furthermore, weighting experts on the basis of their substantive experience only assumes 

they are equally normative and accurate when making probabilistic assessments. The role 

of experts’ characteristics in capturing other factors believed to affect their priors is not 

clear. 
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2.4.3. Further exploration of the role of methods for deriving 

weights from experts’ elicitation performance 

Section 2.2.2 suggested that deriving weights from experts’ elicitation performance 

involves three steps: 1) choosing one or more seed parameters; 2) assigning scores to 

experts’ priors on those seeds; and 3) deriving weights from experts’ scores. Sections 

2.4.3.1 to 2.4.3.3 discuss the role of each of these three steps in achieving internal and 

external validity. 

2.4.3.1. Choosing the seed parameter 

The choice of seed can affect the external validity of weights. Weighting experts by their 

elicitation performance assumes that the accuracy of their prior on the seed is 

representative of the accuracy of their prior on the target parameter. This is illustrated in 

Figure 2.5, showing hypothetical priors on one seed and one target parameter elicited from 

two experts. Expert A is assigned a higher score because their prior on the seed parameter 

is closer to the observed value of the seed. Experts A would thus be assigned a greater 

weight than expert B. If the true value of the target parameter is Y then Expert A’s prior on 

the target parameter will be more accurate than the prior from Expert B, and assigning 

higher weight to A will improve the accuracy of the aggregate prior. The score can be said 

to be generalisable. If the observed value of the target parameter is X the opposite is the 

case, and assigning a higher weight to Expert A will bias the aggregate prior. Generalisability 

of the score thus determines whether weighting experts by their measured performance 

improves the accuracy of the aggregate prior. 

The choice of seed can affect the generalisability of the score. Section 2.3 proposed that 

experts’ priors are affected by their substantive expertise, perspective, normative expertise 

and accuracy of assessments (i.e. their susceptibility to bias). If this is the case, their 

performance-based weights will generalise if the extent to which each of these factors 

affect the accuracy of experts’ priors is similar for the seed and the target parameter. For 

example, if an expert has a biased perspective on the seed (because of the patient 

population they see) their score may be low. If their knowledge of the target parameter is 

then less biased, their score will not generalise. In fact assigning lower weight to such 

experts could reduce heterogeneity of the expert sample, which, as discussed in Chapter 1, 

can bias the aggregate prior. 
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Figure 2.5. Hypothetical priors on one seed and one target parameter elicited from two 

experts: A and B.  

 

Quigley et al. (2017) highlighted that there is no empirical evidence on what affects 

generalisability of the seed. The authors argued that seeds should be domain specific, or at 

least adjacent, because experts tend to be more accurate within their domain of expertise. 

Section 2.2.2 identified five applied elicitation exercises in HTA that used performance-

based weights (shown in Table 2.2) and found that all were related to the target parameter. 

However, their generalisability is not certain. Out of the five studies, two reported sufficient 

information to discuss the generalisability of experts’ scores (Soares et al., 2011; Grigore et 

al., 2016). 

Soares et al. (Soares et al., 2011) asked four seed questions and found that different seeds 

lead to disparate weights, suggesting the scores were not generalizable. The authors chose 

to weight experts equally when aggregating the priors. 

Grigore et al. (2016) elicited one seed and one target parameter, using two different 

methods for each: the roulette and the hybrid methods. The authors reported the weights 

generated using each method (shown in Figure 2.6), and experts’ priors on the target 

parameter using each method (shown in Figure 2.7).  
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Figure 2.6. Weights derived from experts prior on the seed parameter using two 

elicitation techniques: histogram and hybrid. Cited from Grigore et al. (2016)  

 

The histogram method placed almost all weight (around 90%) on Experts 1 and 3. Both 

Experts 1 and 3 were assigned similar weights suggesting the accuracy of their priors was 

similar, and different to the remaining three experts. Yet, their priors on the target 

parameter were opposite and extreme, suggesting they could not both be equally accurate 

and better than the remaining three experts. Therefore, the weights are unlikely to 

correlate with their performance on the target parameter. When priors on the same seeds 

were elicited using the hybrid method, the majority of weights were assigned to Experts 1, 

4, 5 and 6, suggesting their performance was similar (in particularly for Experts 4,5 and 6 

who had similar scores). However, experts’ priors on the target parameter suggested that 

Experts 1 had the opposite view to everyone else, while Expert 2, who was assigned a very 

low weight, had a very similar prior to Experts 4, 5, and 6. The weights based on the priors 

elicited using the hybrid method are therefore also unlikely to be correlated with experts’ 

performance on the target parameter. 

The two analysed case studies suggest that experts’ scores in elicitation in HTA do not 

generalise. Colson and Cooke (2017) found that the external validity of performance-based 

weights improved with the addition of new seeds and that over 10 seed questions are 

desirable; however, identifying over 10 seed questions that capture experts’ substantive 

expertise and perspective in HTA can be difficult – the maximum identified in this literature 

review was 8 (Fischer, Lewandowski and Janssen, 2013). 
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Figure 2.7. Priors elicited from six experts, on one parameter, using two techniques: 

a)histogram, b)hybrid. Cited from Grigore et al. (2016) 

 

 

It may be possible to choose seeds that isolate specific characteristics. For example, a seed 

can be a parameter that all experts are known to have equal knowledge and experience on, 

so that any variation in performance can be attributed to their normative expertise and 

ability to make probabilistic assessments. This approach assumes that substantive expertise 

and perspective are comparable between experts. Furthermore, it is not clear how such 
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seeds can be identified – the literature review described in this chapter did not identify any 

applied examples of such seeds. 

2.4.3.2. Choosing the scoring method 

Experts’ priors on seeds can vary in bias and uncertainty (Cooke, 1991). Bias defines how 

close experts are to the ‘true value’ of the parameter, whereas precision is the degree of 

agreement for a series of measurements (i.e. uncertainty). Figure 2.8 demonstrates five 

examples of how priors can vary in bias and precision. Expert 1 (whose prior is identical to 

the probability distribution of the seed) is unbiased and precise. Expert 2 is unbiased, but 

imprecise (uncerconfident) compared to Expert 1. Expert 3 is unbiased but overconfident, 

as they underestimate uncertainty around the parameter. Experts 4 and 5 are both biased 

and precise. They place equal probability on the parameter probability distribution, 

although Expert 4 is less biased than Expert 5. 

Figure 2.8. Beliefs of five experts about a seed parameter and its ‘true’ probability 

distribution used to demonstrate different levels of bias and uncertainty.  

 

Discrepancy between experts’ priors and the true probability distribution (i.e. experts’ 

accuracy) is defined by both bias and precision, but a scoring method may only wish to only 

capture one of the factors. For example, if the seed question does not aim to capture 

experts’ knowledge, but only their ability to assess their own uncertainty accurately, it may 

be desirable to penalise experts’ overconfidence only, rather than bias and imprecision. 

Conversely, if the seed question aims to capture experts’ substantive expertise, it may be 
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desirable to assign better scores to more knowledgeable experts by penalising 

underconfidence and bias.  

The way scoring methods value bias and uncertainty can affect both internal and external 

validity of the resulting weights. Assuming that an accurate prior is unbiased, and as precise 

as the observed probability distribution, the performance-based weights can only improve 

the accuracy of the aggregate prior on the seed (i.e. to be internally valid) if the score takes 

into account the direction of bias in experts’ priors and their uncertainty relative to the 

uncertainty with which the value of the seed is known. This is demonstrated in Figure 2.9, 

showing four samples of two experts. 

In Figure 2.9.A both priors are biased in the same direction (they both underestimate the 

value of the parameter) and the aggregate prior is the least biased if Experts 1 and 2 are 

assigned weights 1 and 0 respectively. In Figure 2.9.B the prior elicited from Expert 3 is 

identical to that from Expert 1 in Figure 2.9.A, while the prior elicited from Expert 4 is as 

biased as that from Expert 2 (the distance between the prior and the observed value are 

identical) but in the opposite direction (they overestimate the parameter value). The 

optimal aggregate prior for Experts 3 and 4 is one where both experts are assigned non-

zero weight as the observed value of the seed is between them. If a scoring method 

captures the size of bias but not the direction, then priors from Expert 1 and 3 will be 

assigned identical weight, as will those elicited from Experts 2 and 4. In addition, Experts 1 

and 3 will be assigned greater weights because they are less biased than 2 and 4 (their 

priors are closer to the observed value). However, unless the weight for Experts 1 and 3 is 

1, and that of Experts 2 and 4 is 0 (so that both aggregate priors are identical), the 

aggregate prior derived from Experts 3 and 4 will be more accurate than that derived from 

1 and 2 because any distribution that combines 1 and 2 is further away from the observed 

value of the seed than any distribution between 3 and 4. 

In Figure 2.9.C the value of the seed is known with certainty, and priors elicited from 

Experts 5 and 6 are both unbiased, but Expert 5 is more certain, or precise, than Expert 

6.The aggregate prior will thus be unbiased, and it will be most informative (precise) if 

Experts 5 and 6 are assigned weights 1 and 0, respectively. In Figure 2.9.D, priors elicited 

from Experts 7 and 8 are identical to those from Experts 5 and 6 but the value of the seed is 

uncertain, so Expert 7 is judged to be overconfident. Their aggregate prior will also be 

unbiased, but assigning weights 1 and 0 (which led to the most informative aggregate prior 
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in Figure 2.9.C) would lead to an overconfident prior. The overconfidence can be prevented 

by assigning a non-zero weight to Expert 8. 

Figure 2.9. The role of scoring methods in achieving internal validity demonstrated 

through hypothetical priors (elicited from four samples of experts). 

 

External validity is also affected by the scoring method. If the seed aims to capture only 

experts’ ability to assess their own uncertainty and express it in the required format, then it 

may be desirable to penalise bias and overconfidence, but not imprecision. If the value of 

the seed is uncertain due to a lack of evidence and experts are judged to be reasonably able 

to know the value with more certainty then it may be desirable not to penalise their 

overconfidence, only bias and imprecision. If the value of the seed is known with certainty, 

and the score aims to capture their substantive expertise, then it may be desirable to 

penalise bias, overconfidence and imprecision. 

Section 2.2.2 identified six methods for scoring experts’ priors based on their accuracy 

(Kullbeck-Liebler discrepancy combined with Shannon’s relative information, Brier’s 

Probability Score, absolute difference CICP), yet no studies were identified that analyse the 
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differences between them. This sections starts with an analysis of how each of the methods 

assigns scores to experts’ priors, then discusses the implications of the findings for their 

role in deriving performance-based weights. 

Classical model 

Section 2.2.2 described that the Classical Model is implemented by eliciting 5th, 25th, 50th, 

75th and 95th percentiles for multiple seed parameters, then comparing the proportion of 

seeds that are observed to be within each elicited interval to the probabilities of each 

elicited quantile (0.05, 0.2, 0.25, 0.25, 0.2, 0.05) (Cooke, 1991). 

Experts’ accuracy is assessed using the Kullbeck-Liebler discrepancy (see Equation 2.1 for 

details on how to derive the score). The KL score compares experts’ probabilities to 

observed relative frequencies. Table 2.7 shows that the method penalises bias, uncertainty 

and overconfidence, as all three lead to discrepancies between the probabilities placed on 

each outcome (or value) of the seed and the frequencies with which they occur. However, 

the scores do not reflect the direction of bias, nor whether experts are overconfident or 

uncertain. 

Table 2.7. KL discrepancy scores derived from four experts with different degrees of bias 

and uncertainty. 

Expert 

Proportion of observed outcomes (or values) of the seed that 
fall between the stated percentiles 

KL score 
0-5th 

P=0.05 

5-25th 

P=0.2 

25-50th 

P=0.25 

50th-75th 

P=0.25 

75th-95th 

P=0.2 

95th-100th 

P=0.05 

Perfect 0.05 0.2 0.25 0.25 0.2 0.05 0 

Imprecise 0.01 0.16 0.3 0.3 0.16 0.01 0.0058 

Overconfident 0.08 0.22 0.2 0.2 0.22 0.08 0.0279 

Biased 0.2 0.35 0.2 0.15 0.1 0 0.3519 

 

The information score (derived using Shannon’s entropy) in the Classical Model is an 

additional measure of uncertainty introduced to place higher weights on experts who are 

more certain, making the aggregate priors more certain (Cooke, 1991). If two experts have 

identical KL scores (because of the proportion of observed seed values that were in each 

quartile of experts’ priors) but one of them is consistently more certain (i.e. their quantiles 
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are closer together) then that expert will achieve a better information score and be 

assigned a higher weight overall. While there may be value in assigning higher weights to 

the more precise expert when two equally accurate experts are compared, it is not clear 

what the value of the information scores is when experts’ priors are not identical, as the 

less certain prior will have already been penalised for its uncertainty in the KL score. 

Absolute difference /best estimate fraction  

As highlighted in section 2.2.2 absolute difference represents the absolute difference 

between random draws from experts’ priors and the observed value of the seed (taking 

into account its parametric uncertainty) (Bojke et al., 2010). Experts are penalised for bias 

and uncertainty, as both increase the distance between the priors and the observed 

probability distributions, decreasing the probability that the experts will be ‘the best’ in the 

sample. Experts are not penalised for overconfidence, as narrow priors decrease the 

maximum distance between priors and the observed probability distribution achieved 

when samples are drawn from opposite ends of the distribution, as demonstrated in Table 

2.8.  

Absolute difference scores have been used to derive the best estimate fraction (Bojke et al., 

2010) that represents the proportion of random samples from an expert’s prior that 

minimises the absolute difference from the observed value of the seed in comparison to 

other experts in the sample. 

Table 2.8. Experts’ priors on a seed with observed mean value of 0.5 and range 0.3-0.7, 

and the resulting maximum distance between random samples of experts’ priors and the 

observed probability distribution. 

Expert Expert’s mean (range) 

Maximum distance between random 

samples (achieved if values are sampled 

from opposite ends of the range) 

Perfect 0.5 (0.3-0.7) 0.4 (0.7-0.3) 

Imprecise 0.5 (0.2-0.8) 0.5 (0.8-0.3 or 0.7-0.2) 

Overconfident 0.5 (0.4-0.6) 0.3 (0.6-0.3 or 0.7-0.4) 

Biased 0.2 (0-0.4) 0.6 (0.6-0) 
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Neither absolute difference nor BEF scores reflect what drives the score (bias, imprecision 

or overconfidence), nor the direction of bias in the prior.  

Brier’s probability score 

Brier’s score (Brier, 1950) compares experts’ probabilities assigned to specific outcomes of 

events to scores of 0 or 1 depending on whether the outcome occurs or not (see Equation 

2.4 in section 2.2.2 for details). Brier’s score assesses probabilities assigned to binary 

variables, and experts are penalised for assigning probabilities that are too high or too low. 

For example, if an outcome occurs with a relative frequency of 0.5, then assigning a 

probability of 0.5 to that outcome will lead to a score of 0.256, and assigning any higher or 

lower probabilities increases (worsens) the scores (e.g. if expert’s probability is 0.7, the 

score is 0.297). 

Decomposition of Brier’s probability score 

Section 2.2.2 highlighted that Brier’s scores can be decomposed to determine what 

determines experts’ performance (for example, calibration, variance or resolution). The 

final scores derived using these methods are mathematically equivalent to Brier’s PS, and 

so, when scores are used to weight experts, they lead to identical weights. This method is 

thus not considered in this section in further detail. 

Ranked Probability Score 

Section 2.2.2 discussed that the ranked probability scores were derived specifically for the 

applied example in meteorology, developed by Epstein (1969); applying the scoring method 

in HTA would require deriving a new equation specific to that example, taking into account 

the number of possible outcomes and the consequences of each of those outcomes.  

Taking into account the cost of wrong decisions would require modelling of each possible 

outcome, which adds complexity and is unlikely to be feasible in HTA, particularly if 

elicitation is conducted to inform the structure of the model. This method is thus not 

considered in further detail in this chapter. 

                                                             
6 𝑑𝑗=1 in 50% of observations, and 𝑑𝑗=0 in the remaining 50% (see Equation 2.4), and so 

 score = 0.52*0.5+0.52*0.5=0.25 
7 0.72*0.5+0.32*0.5=0.29 
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Confidence Interval Coverage Probability 

CICP scores capture the proportion of (point estimate) observed values to experts’ 

confidence intervals. (Murphy and Winkler, 1977) Scores are only affected if experts are 

overconfident, and so the observed values fall outside their range.  

However, it is possible to adjust the methods used to derive CICP to capture uncertainty. If 

the seed is measured as a continuous variable and its parametric uncertainty is taken into 

account, the CICP score can be calculated as the proportion of values sampled from 

experts’ priors that fall within the observed probability distribution. The score derived in 

this way reflects the probability that the experts place on the observed value (see the 

highlighted area in Figure 2.10), i.e. it penalises imprecision. 

Figure 2.10. Probability distribution derived from an observed sample and elicited from 

an expert. The CICP is the highlighted proportion of the subjective probabilities. 

 

Comparison of different scoring methods 

The analysis of different scoring methods has highlighted that these methods vary in how 

they value bias and precision, and Table 2.9 summarises the findings. The table includes 

different variations of methods discussed in this section – the KL scores in isolation (as 

opposed to in combination with the information score as part of the Classical Model), and 

the CICP score that penalises imprecision rather than overconfidence. 
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Table 2.9. The ability of different scoring methods to capture different aspects of experts’ 

beliefs. 

Method 
Penalises 

bias 

Captures 
direction of 

bias 

Penalise 
over-

confidence 

Penalise 
imprecision 

Captures 
uncertainty 
relative to 
the seed 

Classical Model 
(combined 
score) 

     

KL discrepancy      

Absolute 
difference 

     

Brier’s PS NA NA    

CICP     * 

CICP precision 
score 

    ** 

*if overconfident 

**if imprecise 

The way different methods value bias and precision can affect their role in deriving weights. 

None of the scoring methods capture the direction of bias, and so their internal validity is 

uncertain. However, the role of assessing internal validity is not clear; if those experts who 

underestimate the seed also underestimate the target parameter and vice versa, then 

internal validity can be required for the performance-weighted aggregate priors to be more 

accurate than unweighted ones. Conversely, if experts’ priors on seed parameters are 

consistent in accuracy, but exhibit no specific patterns of belief, then performance-based 

weights can potentially improve the accuracy of the aggregate prior on the target 

parameter even if they are not internally valid, by giving more say to those experts who 

tend to be more accurate when making probabilistic assessments. 

CICP does not reflect bias so long as the expert places positive probability on all possible 

outcomes. It is the only method that penalises overconfidence but does not penalise 

imprecision, so it is a suitable method if the scores aim to capture experts’ susceptibility to 

overconfidence and not precision. 

All the remaining methods penalise imprecision. 
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Absolute difference and CICP precision scores do not penalise overconfidence. They could 

be suitable if the value of the seed is uncertain due to a lack of evidence and experts are 

judged to be reasonably able to know the value with more certainty. BEF may be preferred 

to CICP precision scores as they also capture the extent of bias, while CICP precision scores 

only depend on the probability placed on the observed value(s) of the seed. 

The Classical Model, KL discrepancy and absolute difference all penalise bias, imprecision 

and overconfidence and so they are suitable scoring methods when both precision and 

accuracy (lack of bias) are considered to be desirable, and experts are judged not to be able 

to know the value of the seed with more certainty that can be concluded from the data 

used to measure the seed. When KL scores for different experts are not identical, the 

Classical Model additionally penalises the imprecise expert.  

It is also important to note that the methods vary in the format of the seed and the units in 

which the seed is measured. Brier’s score utilises binary variables as seeds; it compares 

experts’ probabilistic assessments (as point estimates) to whether the event has occurred 

or not. The remaining methods use continuous or ordinal variables as seeds. Furthermore, 

the Classical Model and CICP compare the observed value of the seed (the point estimate) 

to experts’ priors, while the Best Estimate Fractions (utilising absolute difference) compare 

the probability distribution of the parameter (taking into account the parametric 

uncertainty) to experts’ priors. 

Methods that consider the point estimates of the seed require elicitation of more seeds to 

take into account the uncertainty with which it is measured. This is likely to be why BEF is 

the most common method for deriving performance-based weights in HTA where the mean 

number of seeds used is relatively small (3.75 as shown in section 2.2.2) (Bojke et al., 2010; 

Soares et al., 2011; D Sperber et al., 2013). 

Brier’s score, the Classical Model and CICP can in theory all be adapted for use in HTA 

where fewer seeds are used but uncertainty around them is taken into account, although 

no applied examples where this has been done were identified in this literature review. 

Brier’s score can be adapted for use with seeds that are continuous variables by using the 

probability distribution of the parameter to sample possible outcomes. The random 

samples can then be compared to the probability that experts placed on that particular 

outcome (or interval of values).  
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KL discrepancy scores can be adapted to take parametric uncertainty into account (and so 

require fewer seeds to be elicited) by sampling from the probability distribution of the 

parameter and treating every observation as a new seed. Alternatively, it is also possible to 

compare experts’ priors and observed probability distributions directly as the KL 

discrepancy score is a measure of discrepancy between probability distributions (Kullback 

and Leibler, 1951). 

It is not clear how the derived KL scores can be used in the Classical Model, as deriving 

scores in the Classical Model requires the sample size (i.e. the number of seeds) while the 

method doesn’t use multiple seeds, only multiple iterations of one seed. 

2.4.3.3. Choosing the method for deriving weights 

Section 2.2.2 described different approaches to deriving weights from experts’ scores. The 

Classical Model combines the calibration and information into a single score, and uses it as 

the weight (while scaling them so they add up to 1 first). Bojke et al. (2010) use the best 

estimate fraction scores directly to derive weights. In both cases the weights are 

proportional to experts’ scores.  

The Contribution-Weighted Model use experts’ contribution to the score of the aggregate 

priors to derive weights. If there are only two experts in the sample, the Contribution-

Weighted Model leads to the same scores as the Classical Model, as removing one expert 

from the sample will give the score of the second expert. 

Both approaches can in theory be applied to all scoring methods – Brier’s score can be 

converted into weights directly, and both the Classical Model and Best Estimate Fraction 

scores can be used to derive weights based on how the score of each individual expert 

affects the score of their unweighted aggregate prior. 

It is not clear which methods is preferred.  

The Contribution-Weighted Model is more likely to lead to internal consistency. This can be 

demonstrated using the examples in Figure 2.11, where hypothetical priors elicited from 

three experts are shown. The observed value of the seed is 0.5. Expert 1 and Expert 3 are 

equally biased but in opposite directions, while Expert 2 is less biased, and their bias is in 

the same direction as that of Expert 1. The classical Model would assign the same score to 

Expert 1 and Expert 3 because they are equally biased, and a higher score to Expert 2 who is 

less biased in comparison. The Contribution-Weighted Model would assign weights based 
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on the accuracy of the aggregate priors derived by pooling two experts at a time. Pooling 

priors from Experts 1 and 3 would lead to an aggregate prior with mean 0.5, as they are 

symmetrical around this value. Pooled priors from Experts 2 and 3 would be less accurate, 

as their mean would be higher than the observed value (0.6). Pooled priors from Experts 1 

and 2 would be the least accurate, as their mean would be 0.3. Removing Expert 2 from the 

sample would lead to the highest score, and so they would be assigned the lowest weight. 

Figure 2.11. Beliefs of three experts about a seed parameter and its observed probability 

distribution used to demonstrate the effect of different methods for deriving weights. 

 

However, as highlighted earlier in this section, internal validity is not required to achieve 

external validity unless experts’ patterns of belief are the same for the seed and the target. 

If this is not the case, then the Contribution-Weighted Model can decrease external validity 

by assigning the lowest weight to the most accurate expert, as shown in the example in 

Figure 2.11 where Expert 2 is assigned the lowest weight despite being the most accurate 

of the three. 

2.5. Summary of findings  

This chapter aimed to derive guiding principles for deriving weights in elicitation. To do so, 

three specific objectives were set: 1) to identify existing methods for deriving weights, 2) to 

discuss the role of weighting in elicitation, and 3) to evaluate and compare methods for 

deriving weights. 
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Section 2.2 conducted a literature review to address the first objective, and identified two 

approaches to deriving weights, and multiple methods within each approach (objective 1). 

The literature review was a non-systematic BCSC. A potential caveat of the BCSC method is 

the reliance on authors’ referencing to identify relevant publications (Hinde and Spackman, 

2015). If a publication is insufficiently referenced, and it has not been cited by other 

publications on the topic of interest, it can lead to a ‘citation island’. Any such citation 

islands could have been missed from the literature search. Furthermore the search strategy 

was focused on applied examples in HTA. It is possible that additional weighting methods 

that have been applied in other fields were missed. The methods highlight the difficulty in 

carrying out systematic searches in elicitation due to its widespread application and varied 

terminology. 

In order to derive guiding principles for choosing between the various options for deriving 

weights, section 2.3 revisited the aims of an elicitation exercise highlighted in Chapter 1, 

and then discusses factors that could affect experts’ contributions towards achieving those 

aims (objective 2). Section 2.4 then discussed advantages and limitations of different 

methods for deriving weights in opinion pooling (objective 3).  

The chapter proposed that weighting can potentially compensate for methodological 

challenges in elicitation by giving ‘more say’ to experts who are believed to be less affected. 

Four factors were identified that could affect experts’ contribution: substantive expertise, 

perspective, normative expertise and ability to make accurate probabilistic assessments. 

Variation in the four factors could provide a basis for differential weighting. 

The importance of each factor is likely to depend on the elicitation process – expert 

recruitment, the provision of background information and an opportunity for discussion 

with other experts are thought to improve substantive expertise and minimise bias due to 

perspective, whereas elicitation process design, training, and evaluation and feedback are 

thought to reduce cognitive biases in assessing quantities and expressing uncertainty. 

Different weighting methods can be used to capture different factors, and understanding 

where the process is lacking can inform which weighting method to use. 

Performance-based weights are affected by experts’ normative expertise and their ability to 

make accurate probabilistic assessments. Seed parameters tend to be domain specific, and 

so are likely to be affected by substantive expertise and perspective as well. It may be 

possible to ask non-domain seeds that all experts have equal knowledge on, in order to 
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capture normative expertise and the ability to make accurate probabilistic assessments 

only, but this has not been used in applied elicitation exercises. 

Weights derived from experts’ characteristics can be used to capture their substantive 

expertise independently of their normative expertise, perspective and ability to make 

accurate probabilistic assessments. It is not clear whether characteristics can be used as 

proxies for other factors that can affect experts’ priors – no applied examples were 

identified in the review. 

The challenge in implementing the outlined principles arises from the lack of understanding 

of how to determine what the challenges in the elicitation process are. For example, it is 

not clear how to demonstrate that training and planning were optimal and that the only 

basis for differential weighting is substantive expertise. 

Furthermore, there are many methodological challenges in deriving weights that make it 

unclear whether they successfully achieve their objective. 

The characteristics that have been used as proxies for substantive expertise and the derived 

weights tend to be chosen arbitrarily. It is not clear whether they successfully minimise bias 

and uncertainty in the weighted aggregate priors. 

When seeds used to derive performance-based weights are domain-specific, their score on 

the seed will represent their performance on the target parameter only if their substantive 

expertise and perspective equally affect the seed and the target parameters. When this is 

not the case, there is a risk that lower weights will be assigned to experts with a unique but 

important perspective, reducing the heterogeneity of the expert sample. Several applied 

elicitation exercises have reported this challenge (Fischer, Lewandowski and Janssen, 2013; 

Grigore et al., 2016). 

The rest of the thesis compares and evaluates different methods for deriving weights in an 

elicitation exercise applied in HTA. Chapter 3 describes the design of the study, while 

Chapters 4, 5 and 6 analyse the results. Specifically, Chapter 4 analyses the results of the 

elicitation exercise. Chapter 5 then explores whether experts’ characteristics can predict 

their elicitation performance, and Chapter 6 observes the effect of different weighting 

methods on the accuracy of the aggregate priors and the results of the cost-effectiveness 

decision model.  
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Chapter 3.  Comparison of methods for 
weighting experts’ priors: REFORM 
elicitation study protocol 

3.1. Introduction 

Chapter 2 identified two general approaches for deriving weights: based on experts’ 

observed characteristics and their measured performance in elicitation. Both aim to 

improve accuracy of the aggregate prior but they differ in the way in which they capture 

experts’ ‘contributions’.  

Chapter 2 concluded that it is not clear which method for deriving weights is optimal. 

This chapter aims to design a study that will compare different weighting methods in an 

elicitation exercise applied in CEDM. The study has two specific objectives: 

1) To explore factors that affect experts’ priors. 

2) To compare the impact of different weighting methods in an applied case study in 

CEDM.  

Understanding factors that affect experts’ priors will inform what is captured by different 

weighting methods and how they should be applied. For example, if priors are 

predominantly affected by experience (substantive expertise and perspective) then weights 

should be based on characteristics (in particular substantive expertise). If, however, they 

are predominantly affected by expert’ ability to make accurate probabilistic assessments, 

then performance-weighting may be preferred, and seeds may not have to be domain 

specific. Furthermore, understanding factors that affect experts’ priors can resolve 

methodological uncertainties in other steps of the elicitation process, such as how to define 

experts for elicitation (what type of experience improves their accuracy).  

Chapter 2 highlighted that only including the most accurate experts in a sample may not 

lead to the most accurate aggregate prior- in fact it can reduce the heterogeneity of the 

sample. The second objective is thus to observe the effect of weighting methods on the 

weighted aggregate prior.  
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Section 3.2 describes the methods employed to design a study that achieves the two 

objectives, while section 3.3- 3.5 describe the study design.  

3.2. Methods 

The study consisted of three stages shown in Figure 3. Stage 1 involved recruiting a 

relatively large sample of experts and capturing characteristics believed to affect their 

priors. Stage 2 elicited a range of seed parameters from experts. Stage 3 elicited experts’ 

priors on at least one target parameter that informed a cost-effectiveness model. 

The results from Stages 1 and 2 were used to achieve the first objective of the study - to 

explore factors that affect experts’ priors – by measuring the effect of the captured 

characteristics on their priors on the seed parameters. The second objective - to compare 

the impact of different weighting methods – was based on the results from all three stages 

where experts’ characteristics and priors on the seed parameters were used to derive 

weights, and their priors on the target parameter were used to observe the effect of 

different weighting methods on the results of cost-effectiveness analysis. 

Figure 3.1. Structure of the elicitation study. 

 

The study was designed in three steps: 

1) Identify a suitable case study. 

2) Derive measures of characteristics believed to affect experts’ priors. 

3) Compile a protocol for the elicitation exercise. 

Sections 3.2.1-3.2.3 describe methods for each step, respectively. 

3.2.1. Identifying a suitable case study 

RCTs are considered to be the gold standard evidence in HTA, and so the optimum measure 

of the ‘true’ value of domain-specific seed parameters. RCTs were therefore identified as 
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suitable case studies for achieving the objectives of the study. Trial outcomes are also 

suggested as appropriate seeds by Cooke (2017). 

The trial used in this case study was required to fulfil the following criteria. 

1) RCT outcomes can be used as seeds. The intervention evaluated in the trial 

must be a novel intervention the effect of which had not been observed by 

experts. 

2) Timely availability of final outcomes. Results of the trial needed to be published 

after the elicitation exercise so that the observed value of the seeds were not 

known to the experts. The trial also needed to report early enough to allow 

analysis before submission of this thesis.  

3) Early access to results. In order to gain access to early results (before 

publication) the study needed to be conducted at the University of York.  

4) Construction of a cost-effectiveness decision model. In order to observe the 

effect of different weighting methods on the cost-effectiveness model outputs, 

the applied elicitation exercise needed to include elicitation of cost-

effectiveness decision model parameters. Thus the trial results needed to 

inform a decision model where data was not available for one or more 

parameters. 

The available trials were identified on consultation with the director of the York Trials Unit 

in the Department of Health Sciences, University of York. 

3.2.2. Methods for deriving measures of characteristics believed to 

affect experts’ priors 

Chapter 2 proposed a set of factors believed to affect experts’ priors and discussed how 

those could be measured. The findings from Chapter 2 were thus used to decide on the 

characteristics that were captured in this study, and to derive measures of each identified 

characteristic. 

3.2.3. Methods for designing an elicitation exercise 

Chapter 1 highlighted the importance of careful and evidence based design of an elicitation 

exercise. The chapter also emphasised numerous methodological uncertainties, requiring 

investigators to decide on the most appropriate methods when designing an elicitation 

exercise. Given that the choice of methods can have a significant impact on the outcomes 
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of an elicitation exercise, a protocol was derived for this case study to ensure transparency 

and accountability. 

The development of the protocol was informed by the health economics elicitation 

literature cited in Chapters 1 and 2, and aimed to follow the reporting guidelines for the use 

of expert judgement derived by Iglesias et al. (2016)  

The protocol development was guided by two clinicians specialising in the field for which 

the elicitation was conducted to gain understanding of the therapeutic area in the trial. 

They were consulted on potential target parameters to determine whether these can be 

reasonably assessed by the experts. 

The exercise was piloted in the following three stages. 

Pilot 1 was used to test different methods for eliciting uncertainty. Chapter 1 highlighted 

that there are multiple techniques for eliciting priors, and that it is not clear which method 

is the best. The aim of Pilot 1 was to determine which method was most likely to lead to 

statistically coherent priors that can be used in the analysis. The methods (described in 

further detail in section 3.5.3) were piloted on a lay participant who was a university-

educated health professional (pharmacist) with quantitative skills comparable to the 

experts recruited in the study. While they did not have domain specific expertise, this was 

not expected to impact the findings from the pilot because the elicited parameter was not 

field-specific- the participant was asked to express their uncertainty around the number of 

days it rained in their locality every November. The pilot was conducted remotely using 

publicly available software MATCH (Morris, Oakley and Crowe, 2014); while the investigator 

guided the participant over the phone. The elicitation piloted techniques and the results of 

Pilot 1 are provided in section 3.5.3. 

Pilot 2 was conducted to test different approaches to eliciting the target parameter. As 

suggested in Chapter 1, a single model parameter can be informed by eliciting different 

quantities and there is no guidance on which is best – it tends to be based on what experts 

find most intuitive. The second pilot was conducted to test different approaches to eliciting 

parameters in this case study. The methods were piloted on two highly quantitative lay 

participants to minimise the burden of training. The participants were both postdoctoral 

Research Fellows in health economics at the University of York. The pilot was delivered in 

the same format as the main study, as described in section 3.5. The piloted quantities and 

the results of Pilot 2 are also discussed in section 3.5.2. 
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Pilot 3 involved testing the final version of the exercise on a sample of seven experts to 

identify any practical challenges with undertaking the exercise. The sample of experts, the 

pilot delivery method are discussed in further detail in section 3.5.7. 

3.3. Case study: REFORM trial 

The chosen case study was the REFORM trial, conducted to measure the clinical and cost-

effectiveness of a multifaceted podiatry intervention designed to prevent falls in the 

elderly. The trial compared the outcomes and the cost of care in people who receive the 

podiatry intervention and in those who received standard care. The outcome measures in 

the trial included fall related behaviour (the rate of falls, the proportion of fallers, the time 

to first fall, the fracture rate), general HRQoL measures (in particular, EQ5D (Klarman, 

Francis and Rosenthal, 1968)), Geriatric Depression Scale (Yesavage, Brink and Rose, 

1982)and two fall-specific outcome measures (Short Falls Efficacy Scale (Kempen et al., 

2007), Fear of falling and Activity of Daily Living (Lachman et al., 1998)). The REFORM trial 

was chosen as it satisfied all criteria set out in section 3.2.1, sections 3.3.1 – 2.3.4 discuss 

why. 

3.3.1. The trial outcomes can be used as seeds 

REFORM trial evaluated the costs and effects of a novel intervention and so its effects had 

not been observed by clinicians. Furthermore, the trial included multiple outcome 

measures allowing elicitation of multiple seeds. 

3.3.2. Construction of a cost-effectiveness decision model. 

Trial analysis required a decision model. Trial results provided information on the cost-

effectiveness of the intervention after one year (the length of trial follow-up). Chapter 1 

highlighted that analysis time horizon for an economic evaluation should be the duration 

over which any differences in costs and benefits between competing interventions are 

apparent (Philips et al., 2006; Sculpher et al., 2006). The podiatry intervention in the 

REFORM trial was designed to be received indefinitely, with a potential effect on mortality 

through reduced risk in falls, and so the appropriate analysis time horizon was lifetime. 

(Sculpher et al., 2006) Costs and effects after one year thus needed to be modelled. The 

structure of the model was influenced by the elicited parameters, and is presented in 

Chapter 6. 
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3.3.3. Timely availability of final outcomes. 

The trial was due to report 18 months into this thesis, leaving sufficient time both to 

conduct the elicitation exercise and to analyse the results after the delivery of the exercise. 

3.3.4. Early access to results 

The trial was conducted at the University of York and access to the trial results was granted. 

Further details of the trial are provided in Appendix 3.1, while the protocol has been 

published in the British Medical Journal (Cockayne et al., 2014). 

3.4. Identifying and measuring characteristics believed to 

affect experts’ priors 

Chapter 2 suggested that experts’ priors are affected by the following four factors: 

- Substantive expertise, 

- Perspective, 

- Normative expertise, and 

- Their ability to make accurate probabilistic assessments. 

This section describes the measures used to reflect each of the factors in the REFORM 

elicitation study. 

3.4.1. Substantive expertise 

As discussed in Chapter 2, a recent review of methods for identifying experts for elicitation 

(Bolger, 2017) found that there are many potential indicators of substantive expertise, 

including job title, role, formal qualifications, proof of completion of training courses, years 

of on-the-job experience, awards, citations, and published papers. 

The author found that all specified measures had potential limitations and so information 

was collected on multiple characteristics, and the effect of each was then explored. 

Specifically, the following information was collected from experts: 

- Their role. Experts are asked to describe their role in free text in as much detail as 

possible.  

- Years of experience in current role, entered as number of years.  
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- Research experience, aiming to use experts’ contribution to the field as a potential 

indicator of expertise. Research experience was captured in two questions: the 

number of publications (0-3, 4-20 or 20-50 or over 50 publications) and the number 

of successful research grants co-written (0, 1-5 or more than 5) to explore the 

effect of different levels of research activity. 

- Proportion of working time spent with patients who are at increased risk of falling, 

either helping prevent falls or treating fall related injuries. Categories were 0-10%, 

11-30%, 31%-50% and 50%-100% to reflect different levels of patient contact.  

- Awareness of any research into podiatry interventions designed to reduce the risk 

of falls (yes/no).  

The role, years of experience and research experience were included, as they were 

suggested as indicators of expertise by Bolger (2017). Patient contact was included as it was 

used as basis for weighting by Soares et al. (2011). Research awareness was used to identify 

experts who specialise in fall prevention but may not spend a significant proportion of their 

time with patients due to additional activities, such as work for professional bodies or 

committees. The question may also identify experts with more in-depth knowledge in the 

field, even for those experts who do spend the majority of their time with the target patient 

population. 

The questions used to collect information about experts’ substantive experience are 

provided in Appendix 3.2.  

3.4.2. Normative expertise 

Normative expertise refers to experts’ ability to complete the elicitation exercise. As 

discussed in Chapters 1 and 2, it involves statistical/quantitative skills required to give 

coherent estimates, and to ensure that the priors accurately represent uncertainty. An 

assessment of the extent to which experts’ priors represent their beliefs is typically based 

on statistical coherence of their priors, and feedback and validation (where the investigator 

describes what experts’ priors imply about the value of the parameter and the expert 

expresses whether they agree or disagree with those descriptions) (P Garthwaite, J Kadane 

and O’Hagan, 2005). In the REFORM elicitation exercise experts were not fed back their 

priors (details on feedback and evaluation are provided in section 3.5.8) and so only 

statistical coherence was used as a measure of normative expertise. 
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The definition of coherence is provided in Chapter 5, when the results of the REFORM 

elicitation study are analysed. 

3.4.3. Experts’ ability to make accurate probabilistic assessments 

The aim was to capture experts’ ability to extrapolate their knowledge to assess their own 

uncertainty without capturing their knowledge of the subject matter. Experts’ ability to 

make accurate probabilistic assessments was measured using a non-domain seed. Experts 

were asked to assess the number of days it rained in York every September. Expert’ beliefs 

were elicited using the same question format, and the same elicitation technique as the 

remaining seed and target parameters in the study, details are provided in section 3.5 and 

Appendix 3.3. 

The seed was chosen as it was, arguably, a quantity all experts are familiar with. An 

unbiased expert would give a range that includes the ‘true’ value, even if they have never 

been to York - they would assess rainfall in a region more familiar to them and how it 

compares to York and if neither are familiar to them they could simply indicate a wider 

range of plausible values. 

Experts’ priors on the non-domain seeds were scored using Confidence Interval Coverage 

Probability (CICP), as it is the only method identified in Chapter 2 that does not reward 

precision and penalise uncertainty. CICP accuracy scores were derived by comparing 

experts’ priors to the average number of rainy days in September recorded by the Met 

Office between 1980 and 2010. Methods for deriving the CICP score are detailed in Chapter 

4. 

Chapter 2 suggested experts’ ability to make judgements depends on their ability to 

interpret information. Experts’ ability to draw inference was thus measured using four 

questions from the Watson-Glaser adaptive thinking test (Watson and Glaser, 2010) 

designed to measure individual’s ability to draw inference. The test involves presenting 

experts with the summary of a study that explored risk factors for cardiovascular disease, 

then presenting them with four possible conclusions of the study. The experts are then 

required to express the extent to which the summary of the study supports each of the four 

conclusions. The text and the questions are provided in Appendix 3.4.  
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3.5. REFORM elicitation exercise design 

The REFORM elicitation exercise aimed to recruit a relatively large sample of experts to 

allow comparison of priors elicited from experts with different characteristics. The resource 

constraints of the exercise meant that experts were not rewarded financially for taking part 

and so, to encourage participation, the exercise was designed to be completed in up to one 

hour. The remainder of section 3.5 details the exercise design. 

The process is divided into the following nine sections: 

1) What to elicit; 

2) How to elicit; 

3) Elicitation technique; 

4) Expert recruitment: who is an expert, target sample size and recruitment strategy; 

5) Background information; 

6) Training; 

7) Delivery; 

8) Fitting, evaluation and feedback; 

9) Aggregation. 

3.5.1. What to elicit? 

The parameters elicited were chosen on the basis of what was required in the analysis and 

what was reasonable to ask of experts, as recommended in the literature described in 

Chapter 1. The elicitation exercise had two objectives: to elicit experts’ priors on the trial 

outcomes (so they can be used to explore whether experts’ characteristics affect their 

accuracy) and to inform uncertainty around the cost-effectiveness of the intervention after 

the trial end point. 

All parameters that measured the effect of the intervention were considered as candidates 

for elicitation. This meant that the observed effects during the trial could be used as seeds 

and the change in the treatment effect after the trial end point could be used as the target 

variable. The parameters considered for elicitation thus included trial outcomes that could 

affect the cost-effectiveness of the intervention (changes in the risk and rate of falls, the 

risk of having a fracture, HRQoL or costs of care after receiving the intervention for more 

than one year).  
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HRQoL and costs of care were excluded on the basis that they were unlikely to be fully 

observed by healthcare staff, and it is generally accepted that experts should not be asked 

about unobservable quantities, (Kadane and Wolfson, 1998) as highlighted in Chapter 1. 

This narrowed down the list of parameters to the effect of the intervention on the 

proportion of fallers, the time to first fall, the rate of falls, and the risk of fractures. 

As discussed in section 3.2.3, two physiotherapists specialising in fall prevention were 

consulted on which of the remaining parameters would be most appropriate for capturing 

any changes in falls behaviour in individuals that receive the intervention. After discussion 

with the physiotherapists it was concluded that interventions designed to prevent falls can 

have a number of effects. They can: 

- reduce the probability of falling in all patients equally. This would be detected by 

measuring the time to first fall, the proportion of fallers or the rate of falls. 

- They can reduce the frequency of falls in those who fall the most. This would 

reduce the rate of falls but not the proportion of fallers. 

- They can reduce the severity of falls.  If the intervention increased participants’ 

confidence and mobility, their rate of falls could remain unaffected but the nature 

of falls could change with fewer falls resulting in fractures. Such change in the 

severity of falls would only be detected in the rate of fracture. 

In order to capture any of the described effects of the intervention, the parameters chosen 

to be elicited were the proportion of fallers, the rate of falls and risk of fractures. Time to 

first fall was not included on the advice of one of the physiotherapists, who advised that 

exercise (one of the components of the intervention) can take time to work, and so the 

benefit may not be observed until after the patient has had their first fall, making it less 

sensitive to the treatment effect. 

Table 3.1 summarises all parameters that were considered for elicitation and the basis for 

inclusion/exclusion.  
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Table 3.1. Criteria for choosing the elicitation parameter applied to the trial outcome 

measures. 

 Observable Used in the CEA  
Captures the 

treatment effect 

Rate of falls    

Proportion of fallers    

Time to first fall    

HRQoL (EQ-5D)    

Short Falls Efficacy Scale    

Fear of falling    

Activity of Daily Living    

Fracture rate    

Health service utilisation    

Geriatric Depression Scale    

 

3.5.2. How to elicit? 

Chapter 1 highlighted that there are multiple ways to elicit the same parameter. This 

section discusses how the seed and target parameters were elicited in this study. 

The aim of the REFORM elicitation exercise was to elicit experts’ priors on the treatment 

effect during the trial, and any change in the treatment effect after the trial end point. 

Treatment effect is not directly observable, only outcomes in those who have received 

treatment and those who have not. Therefore experts’ beliefs were elicited for outcomes in 

patients who had received the intervention and in those who had not, and the resulting 

priors were used to derive the treatment effect. Similarly, change in treatment effect over 

time is not observable, and so experts’ priors were elicited on the outcomes in patients 

who had received the intervention and continued to receive it after the trial end point, 

generating the treatment effect after the trial. The process is summarised in Figure 3.2.  
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Figure 3.2. Methods for eliciting the treatment effect and changes in the treatment effect. 

 

Sections 3.5.2.1 - 3.5.2.4 describe each of the steps in Figure 3.2 in detail. 

3.5.2.1. Step 1: Methods for eliciting outcomes in the control arm 

Section 3.5.1 described three parameters that were chosen for elicitation: the rate of falls, 

the proportion of fallers and the risk of fracture. Methods for eliciting each parameter are 

described here, in turn. 

Eliciting the rate of falls 

The rate of falls is derived from the frequency distribution of falls in a population. The 

frequency distribution is skewed - approximately one in three (33%) people over the age of 

65 have been reported to have a fall every year (Tinetti, Speechley and Ginter, 1988), 

around half of those (16.5% of over 65s) have been reported to fall more than once, 

(Nevitt, 1989; Tinetti and Speechley, 1989), and the probability of falling more than twice is 

even lower. Estimating the rate of falls requires weighting each possible outcome, in this 

case the number of falls, by its probability. Peterson and Miller (1964) studied experts’ 

ability to determine the expected value of parameters with a skewed frequency distribution 

and found that their mean tends to be biased towards the median, i.e. they do not adjust 

for outliers sufficiently when calculating the expected value. Peterson and Miller’s (1964) 
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findings raise concerns that estimating the expected rate of falls may be cognitively 

challenging, potentially leading to biased priors. 

An informal, non-systematic scoping search of the elicitation literature was conducted to 

identify methods for eliciting probability distributions of rates – the methods used in the 

search are described in Appendix 3.5. However, no relevant studies were identified at the 

time of the search (January, 2016). 

In the absence of evidence from the elicitation literature, a novel method for indirect 

elicitation of rates was designed. The indirect method involved deriving the rate of falls 

from elicited multinomial distributions of the number of falls. 

Indirect elicitation of the rate of falls: multinomial distribution of the number of falls 

For n independent trials where each trial results in one of k mutually exclusive outcomes, 

the multinomial distribution gives the probability of any particular combination of 

frequencies of outcomes (Evans, Hastings and Peacock, 2000). Applied to this example, the 

distribution will give the probability that, for example, of 100 patients exactly 90 do not fall, 

7 suffer one fall, and 3 suffer two falls, or any other combination of outcomes. 

Alternatively, multinomial distributions can be presented as a series of binomial 

distributions. Each pair of events (fall/no fall, 1 fall/>1 fall, 2 falls/>2 falls) is conditional on 

the preceding event occurring and their probabilities add up to 1. The two different 

presentations are shown in Figure 3.3.  

Figure 3.3. Multinomial distribution presented as A) a sequence of binomial distributions, 

conditional on previous events, and B) four outcomes.  
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When eliciting multinomial distributions, assumptions around the relationship between 

different outcomes must be taken into account. (Soares et al., 2013) The possible 

assumptions are the following. 

- No correlation between outcomes, implying that the probability of having more 

than one fall P(𝑥>1) is independent of the probability of falling P(𝑥>0), where 𝑥 is 

the number of falls. This assumption can lead to statistically incoherent priors 

where the probability of falling more than once is higher than the probability of 

falling, and so it was not used in the exercise. 

- Conditional independence means that the probability of falling more than once, 

conditional on the patient having had at least one fall P(𝑥>1| 𝑥>0), is independent 

of the probability of falling P(𝑥>0). 

- Conditional dependence means that the probability of falling more than once, 

conditional on the patient having had at least one fall P(𝑥>1| 𝑥>0), depends on the 

probability of falling P(𝑥>0). 

Eliciting correlation between the conditional probabilities would require training experts in 

the concept of correlation. It would also require additional steps in the exercise. The 

additional training and elicitation steps would add an unfeasible workload to the exercise 

and so, for simplicity, conditional independence was assumed.  

Eliciting multinomial distributions requires consideration of which outcomes the probability 

distributions should be elicited. In this example the outcomes are the numbers of falls (a 

patient can have no falls, one fall, two falls, etc). Studies on fall prevention often report the 

highest number of falls per participant per year to be more than 10 (Spink et al., 2011). 

Eliciting the probability of over ten outcomes would have been cognitively and time 

intensive and so to reduce the burden on experts, possible outcomes (numbers of falls) 

were grouped into three categories. The first category was the probability of falling at least 

once. The probability of falling was also measured in the REFORM trial, and so it provided 

an additional seed. A second category aimed to capture changes in the frequency of falls in 

those participants who fall the most. A trial for a similar intervention was conducted in 

Australia, on a different population group (Spink, Menz and Lord, 2008; Spink et al., 2011). 

The trial found that in the intervention arm no participant fell more than 6 times, while in 

the control arm the highest number of falls was 12. The second category was thus the 

probability of falling more than ten times. A third category was the probability of falling 

more than five times. Five was chosen as the mid-point of the first two categories. These 
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three categories were confirmed as reasonable by a physiotherapist specialising in falls 

prevention who advised on the structure of the exercise.  

The elicited parameters were thus: 

1) P(𝑥 >0), 

2) P(𝑥 >5| 𝑥 >0), 

3) P(𝑥 >10| 𝑥 >5). 

Where 𝑥 is the number of falls.  

Experts’ priors on each category were then used to derive the rate of falls. Ten thousand 

samples were drawn from each prior, and for each iteration joint probabilities P(𝑥 >5) and 

P(𝑥 >10) were derived using Equation 3.1. 

                                                         𝑃(𝑥) = 𝑃(𝑥|𝑦) ∗ 𝑃(𝑦) Equation 3.1 

The probability of observing 1, 2, 3, 4, 6, 7, 8, 9, 11 or more falls was predicted from the 

regression model in Equation 3.2. The probability of each number of falls was then 

calculated using Equation 3.3. The rate of falls was calculated by multiplying each number 

of falls by its corresponding probability. 

                      logit (𝑃(𝑥 > 𝑋)) = 𝛼 + 𝛽𝑥 Equation 3.2 

Where logit (x) = log(x/(1-x); the logit transformation was used to ensure the predicted 

probabilities do not exceed the limits of the parameter (0-1). 

            𝑃(𝑥 = 𝑋) = 𝑃(𝑥 > 𝑋 − 1) − 𝑃(𝑥 > 𝑋) 
Equation 3.3 

 

The methods for eliciting the rate of falls directly, and indirectly were compared in a pilot. 

The results are described in the next section. 

Pilot to determine whether to elicit rates directly or indirectly 

It was not clear which of the two methods for deriving rates was better: eliciting them 

directly or eliciting P(𝑥>0), P(𝑥>5|𝑥>0) and P(𝑥>10|𝑥>5) and deriving the rate of falls using 

Equation 3.1-Equation 3.3. Kleinmuntz (1996) found that decomposing a problem and 

eliciting conditional probabilities leads to more accurate probabilistic predictions, 
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suggesting that deriving rates from priors on conditional probabilities could lead to more 

accurate estimates of the rate of falls than if they are elicited directly. However, the cited 

study only takes into account accuracy of point estimate forecasts; it is not clear how 

representation of uncertainty would differ between the two methods. This was explored by 

piloting both methods on two Research Fellows in health economics at the University of 

York. The pilot is described in detail in section 3.2.3 (Pilot 2). The summary statistics derived 

from the two participants are presented in Table 3.2.  

Table 3.2. Summary statistics of experts’ priors on the rate of falls elicited directly, and 

those derived from elicited multinomial distributions.  

 Mean Median Min Max 

Ex
p

er
t 

1
 

 

Rate (direct 
elicitation) 

1.19 1.10 0.3 2.10 

Rate (derived from 
probabilities) 

0.76 0.73 0.09 1.76 

Ex
p

er
t 

2
 Rate (direct 

elicitation) 
0.28 0.28 0.125 0.475 

Rate (derived from 
probabilities) 

0.80 0.75 0.12 2.22 

 

Directly and indirectly elicited rates were more consistent for Expert 1 than Expert 2. 

There was no constancy in effect from using two different methods – for Expert 1 the 

directly elicited rates were higher than the indirectly elicited rates and their uncertainty 

was comparable, while for Expert 2 the directly elicited rates were much lower and more 

certain. 

Rates derived using the indirect method appear to be similar for the two experts, whereas 

directly elicited rates were very different. Furthermore, both experts expressed that they 

found the indirect method more intuitive and so this was chosen for the exercise. 

The described method for deriving probabilities of each number of falls had the potential to 

result in probabilities that deviated from experts’ expressed beliefs. For example, adding 

the derived probabilities for falling 1-5 times could indicate different probabilities to those 

expressed by the expert. Sensitivity analysis was conducted to evaluate whether the 
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regression model accurately represents the elicited priors. The results are reported in the 

analysis, in Chapter 4.  

The next section describes the quantities used to formulate the question. 

Quantities used to elicit the rate of falls 

As concluded in the last section, the chosen parameters to elicit were three sets of 

probabilities: P(𝑥>0), P(𝑥>5|𝑥>0) and P(𝑥>10|𝑥>5). Chapter 1 highlighted that priors on 

probabilities can be elicited as different quantities (probabilities, proportions, percentage, 

relative frequency, odds and natural frequency) and that using different quantities can lead 

to different priors being elicited (O’Hagan et al., 2006). 

Chapter 1 also highlighted that experts tend to find frequencies the most intuitive when 

representing interactions between different quantities. Rate of falls was derived from 

elicited probabilities and conditional probabilities in two arms and at two time points (as 

will be described later in this section). In order to keep the questions clear, the problem 

was presented using relative frequencies. 

When frequencies are used in elicitation, a choice must be made about the value for the 

denominator –i.e. the sample size for which they have to estimate the number of patients 

who will suffer at least one fall, more than five falls, etc. In this exercise the denominator 

was chosen to be a multiple of 10, for simplicity, and greater than 100 to allow experts to 

express probabilities less than 1%. The denominator was chosen to be 1000.  

The resulting question format is presented in Box 3.1. 
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Box 3.1. Example question for eliciting the rate of falls in control arm. [L] and [M] are the 

modes in experts’ priors in previous questions. 

Question 1 

‘Consider 1000 patients over the age of 70, randomly selected in the UK, who participate 

in the trial but DO NOT RECEIVE the intervention.’ 

‘Out of 1000 people who participate in the trial and DO NOT receive the intervention, how 

many do you think will have a fall in one year, during the trial?’ 

Question 2 

‘Now let’s assume that out of 1000 patients exactly [L] fall at least once.’ (Note that this 

is the number you stated to be the most likely in the grid above.) 

‘How many out of these [L] individuals do you think will fall MORE THAN FIVE TIMES in 

one year?’ 

Question 3 

‘Now let’s assume that out of 1000 patients exactly [L] fall at least once, and [M] fall 

more than five times.’ 

‘How many out of these [M] individuals do you think will fall MORE THAN TEN TIMES in 

one year?’ 

Eliciting the proportion of fallers 

As described in the previous section, the proportion of fallers was elicited in the form of 

frequencies, and used to generate the rate of falls. 

Eliciting the probability of fracture after a fall 

The probabilities of having a fracture after a fall was elicited in form of odds. Odds were 

chosen for two reasons: 1) to compare experts’ priors when assessing uncertainty around 

different types of quantities, and 2) because the risk of fracture after a fall in the literature 

tends to be reported as odds and so this quantity was thought to be more intuitive for 

experts. The resulting question format is presented in Box 3.2. 
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Box 3.2. Example question for eliciting the odds that a fall will result in a fracture in 

control arm. 

‘This section aims to find out about the severity of falls.‘ 

‘For patients who do not receive the intervention, one in how many falls, on average, do 

you think will result in a fracture?’  

3.5.2.2. Steps 2 and 3: Methods for eliciting outcomes in the treatment arm of the 

REFORM trial and deriving the treatment effect 

As described at the beginning of this section (3.5.2) the proportion of fallers, rate of falls 

and the odds of fracture were elicited in the control arm and the treatment arms 

separately. The treatment effect was derived by calculating the relative risk for the elicited 

probabilities8, the rate ratio9 for the rate of falls derived from experts’ priors, and odds 

ratios10 for the odds of having a fracture after a fall.  

When eliciting probabilities in the treatment arm, assumptions about its relationship with 

the probability of falling in control arm can affect the how they are elicited. As discussed in 

‘Step1, three different assumptions can be made: independence (P(x) independent of P(y)), 

conditional independence (P(x|y) independent of P(y)) and conditional dependence (P(x|y) 

depends on P(y)). 

As discussed earlier in the section, eliciting correlation between conditional probabilities 

requires teaching experts about correlation. This is not feasible in this exercise and so 

conditional independence was assumed. Potential implications of this assumption are 

further discussed in Chapter 4. 

The resulting question format used to elicit the rate of falls in control arm is shown in Box 

3.3. 

                                                             
8 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑖𝑠𝑘 =  

𝑃𝑇(𝑥>0)

𝑃𝐶(𝑥>0)
 

9 𝑅𝑎𝑡𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠𝑇

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠𝐶
 

10 𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =  
𝑂𝑑𝑑𝑠 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑇

𝑂𝑑𝑑𝑠 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝐶
 

T subscript indicates the probability of falling and the rate of falls in treatment arm. 
C subscript indicates the probability of falling and the rate of falls in control arm. 
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Box 3.3. Example question for eliciting the rate of falls in treatment arm. [L] and [M] are 

the modes in experts’ priors in previous questions. 

Question 1 

‘Consider 1000 patients over the age of 70, randomly selected in the UK, who participate 

in the trial for a year and are offered to continue with the intervention for [T] years after 

the trial.’ 

‘After this period, how many of them do you think will have a fall in one year?’ 

Question 2 

‘Now let’s assume that out of 1000 patients exactly [L] fall at least once.’ 

‘How many out of these NA individuals do you think will fall MORE THAN FIVE TIMES in 

one year?’ 

Question 3 

‘Now let’s assume that out of 1000 patients exactly [L] fall at least once, and [M] fall 

more than five times.’ 

‘How many out of these NA individuals do you think will fall MORE THAN TEN TIMES in 

one year?’ 

3.5.2.3. Step 4: Methods for eliciting outcomes in treatment arm after the trial end 

point 

The treatment effect after the trial end point was elicited by asking experts to assume that 

the rate of falls in the control arm does not change over time, and then asking them what 

they believe would happen in the treatment arm over time. The information they were 

presented with is shown in Box 3.4. 

In order to elicit experts’ beliefs about the treatment effect after the trial end point, first, a 

series of multiple choice questions (MCQs) were asked to determine whether experts 

believed the treatment effect could change (see Figure 3.4). At the point at which they 

believed that the treatment effect could change over time, a second set of probability 

distributions was elicited (a second time point). 
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Box 3.4. Assumptions about the rate of falls and the treatment effect after the REFORM 

trial end point provided to experts. 

‘This section is about what happens after the trial has finished, given that patients remain 

enrolled in the intervention.’  

‘Let's assume that all patients who were in the trial were offered to continue with the 

intervention in the same way: they continue to wear the appropriate footwear, foot 

orthoses (if required) and do self-directed exercise. Let's also assume that they no longer 

have to report their falling behaviour and they only see their podiatrist if required. We 

would like to know whether you believe that the intervention would have the same effect 

(if any) on the probability of falling as it did in the trial.’  

‘Please take into account any factors that can influence the effect of the intervention on 

the risk of falling. This could be patient compliance after the trial ends, possibility that 

effectiveness of treatment will wear off, the possibility that the intervention will become 

more effective with time, or anything else that you think may be relevant.’  

‘From the following statements, please select ONE that best describes what you believe 

will happen after the trial finishes.’ 

 

The experts were then presented with all their previous answers, as shown in Box 3.5, and 

their priors on P(x>0), P(x>5|x>0) and P(x>10|x>5), and the odds of fracture at the second 

time point were elicited. 
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Figure 3.4. Algorithms used to determine the second time point for which probabilities 

would be elicited. 

 

* X = time point indicated by the expert. 
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Box 3.5. Assumptions about the rate of falls observed in the REFORM trial provided to 

experts. [T] is the second time point in years. 

‘Questions in this section refer to what you think will happen [T] years after the trial 

finishes, provided all patients who DID RECEIVE the intervention in the trial (the 

treatment arm) are offered to continue with the intervention.’ 

‘We will assume that the risk of falling remains the same for those people who do not 

receive the intervention. We would like to know what you think will happen to those 

individuals who DO RECEIVE the intervention (the treatment arm) in the trial and are 

offered to continue with it after the trial has finished.’ 

‘In your responses, assume the following about trial outcomes:’ 

‘Out of 1000 patients who DO NOT receive the intervention [X] fall more than once, [Y] 

fall more than five times and [Z] fall more than ten times.’ 

‘Out of 1000 patients who DO receive the intervention [A] fall more than once [B] fall 

more than five times and [C] fall more than ten times.’ 

‘You can look back at these numbers at any point while answering the next question by 

clicking back on the 'Treatment after the trial' tab on the side panel.’ 

‘You can also change your responses to previous questions by clicking back on relevant 

tabs, but please note that these are not 'correct' answers. These numbers were obtained 

from your previous responses and are different for every expert who completes this 

exercise. If you chose to change your answers, please make sure you save the new 

answers.’ 

   

3.5.2.4. Steps 5 and 6: Deriving the treatment effect after the trial end point, and the 

change in treatment effect over time 

The treatment effect after the trial end point was derived in the same way as during the 

trial, as described in Steps 2 and 3. The change was derived using Equation 3.4. 
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𝛥𝑇𝐸 =  
𝑇𝐸𝑡2 − 𝑇𝐸𝑡1

𝑇𝐸𝑡1
 

Equation 3.4 

 

Where 𝛥𝑇𝐸 = change in the treatment effect, 

𝑇𝐸𝑡1 indicates treatment effect during the trial, 

𝑇𝐸𝑡2 indicates treatment effect after the trial end point. 

Detailed methods for deriving and analysing each elicited parameter are provided in 

Chapter 4. 

3.5.3. Elicitation technique 

Given the questions specified above, the next step is to determine how to elicit the 

probability distributions for these. The methods for eliciting distributions are described in 

Chapter 1. The fixed interval method and the histogram technique are the most widely 

used methods in HTA (Grigore et al., 2013). Both methods were considered for use in this 

study. The methods were piloted on one lay participant, as described in section 3.2.3 (Pilot 

1). When testing the fixed interval method the elicited prior followed a U-shaped 

distribution (the probability density was the highest at the edges or the range) that was 

judged by the investigator to be implausible. The participant verbally expressed confusion 

with the method. They found the histogram technique to be more intuitive and the 

distributions they provided were more plausible (bell-shaped). The histogram technique 

was thus adopted in the exercise. 

For each elicited parameter, experts were first asked to give the minimum and maximum 

plausible values to avoid anchoring, (Kadane and Wolfson, 1998) and to narrow down the 

range of values on the chips and bins grid. The x-axis on the grid had a range of parameter 

values determined by the minimum and the maximum suggested by the expert. The bin 

width was always 1, 2, 5, 10, 20, 50 or 100, whichever of these resulted in as close to 10 

bins as possible. Two extra bins outside the experts’ range were added, unless they were 

outside the limits of the parameter. The grid was always 10 bins high, and there was no 

limit on how many chips could be added to each grid. An example question is shown in 

Figure 3.5.  
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Figure 3.5. An example question used to elicit experts’ uncertainty in the REFORM 

elicitation study. 

 

Experts were trained on the scale of the y-axis - entering more chips indicates increasing confidence 

and the units are relative to other bins (see Appendix 3.7 for details). 
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3.5.4. Who is an expert? 

The following section considers the profile of experts who are considered to have 

substantive expertise for assessing the effects of a podiatry intervention on the risk of falls. 

The exercise required an understanding of falls behaviour in the elderly and how much foot 

and ankle health contributes to the risk of falls. The intervention was delivered by 

podiatrists; however, they are unlikely to observe the effects of the intervention. Additional 

professions were thus considered. The aim was to recruit clinicians who satisfy the 

following criteria: 

- have a good knowledge of foot and ankle physiology,  

- understand the risk factors for falling, 

- have a knowledge of fall prevention interventions and evidence behind them, 

- have experience in delivering behavioural interventions (and knowledge of how 

patients respond to them). 

The professions were first identified by reading literature on fall prevention and observing 

professions of authors who published in the field. This led to identifying physiotherapists 

and geriatricians as potential experts. After seeking advice from physiotherapists who work 

in the field of fall prevention (described in section 3.2.3) it was discovered that each 

hospital in the UK has a fall prevention team. The structure of teams varies (often 

depending on the size of the Trust) but tends to be operated by geriatricians, 

physiotherapists, nurses and occupational therapists (OTs). Experts were thus defined as 

clinicians who work in one of these professions and specialise in preventing falls or treating 

patients who have suffered fall related injuries. 

It was noted that experts in these four professions are most likely to see patients with 

history of falling and fall related injuries. In order to capture beliefs of experts who see a 

broader population of patients at risk of falling, general practitioners (GPs) were also 

targeted.  

Finally, health researchers whose research focuses on fall prevention were included to 

explore the effect of having less clinical experience but thorough knowledge of relevant 

literature on experts’ priors. 

Participants were identified via the following four avenues. 
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- Contacting clinicians who have published research in the field of fall prevention, 

in particular any studies that evaluate the effect of exercise and foot and ankle 

health on falling behaviour. 

- Contacting members of the appropriate professional bodies including, but not 

restricted to, the Chartered Society of Physiotherapy, ASPIRE (a special interest 

group for physiotherapists working with elderly patients) and the British 

Geriatrics Society. 

- Contacting individual fall clinics/departments in NHS trusts in England. Trusts 

will be chosen based on recommendation or geographical location and regional 

patient characteristics to give a heterogeneous sample of experts, as 

recommended in the literature (O'Hagan et al., 2006).  

- On recommendation by contacts gained through these bodies and by other 

research staff at the University of York. 

All experts were contacted via e-mail or phone, using publicly available details or those 

provided by those contacts who recommend them. 

The target sample size was 30 to 50 experts. The sample size was decided to include a 

representative sample of experts from each profession. The upper limit of 50 was based on 

feasibility. 

3.5.5. Background information  

Experts’ were asked to express their uncertainty about the expected trial outcomes. They 

were provided with background information on why the elicitation exercise was conducted 

(shown in Appendix 3.3) and information about the trial. The latter included information 

about the intervention, outcome measures, data collection and inclusion and exclusion 

criteria in the trial (see Appendix 3.6 for details). 

3.5.6. Training 

Training was provided at the beginning of the exercise and consisted of two components: 

explaining uncertainty and teaching experts to use the histogram technique. Sections 

3.5.6.1 and 3.5.6.2 describe the two components, respectively. 
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3.5.6.1. Explaining uncertainty 

The aim of elicitation is to elicit uncertainty around parameter values, rather than 

heterogeneity or variability, as recommended by Bojke et al. (2017). While this is to some 

extent affected by the question format, training included a discussion about the difference 

between uncertainty and variability to help experts understand the difference. The 

information provided is shown in Figure 3.6. 

Figure 3.6. Training on the difference between uncertainty and variability. 

 

3.5.6.2. Training in elicitation technique 

Experts were shown how to use the histogram technique, and were then provided with 

examples of a uniform distribution, a normal distribution and complete certainty with 

explanations of what they imply about experts’ beliefs. The experts were then asked to 

complete a practice example as many times as they required. The experts could not move 

onto the next section without completing the training. The training material is included in 

Appendix 3.7. 
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3.5.7. Delivery 

The exercise was conducted using an R-based, web app. The tool was an extension of the 

MATCH code developed by Morris et al. (2014) modified specifically for the REFORM 

elicitation exercise. 

The tool was designed for independent completion. All experts were given the choice of 

completing the exercise on their own or with the help of the investigator, although the 

latter was encouraged. If they chose to complete the exercise with the investigator, the 

exercise was completed at pre-set times and help was available on the phone or in person. 

When more than one participant was available at the same time, in the same region, the 

exercise was completed with all participants in one room, where the investigator 

introduced the exercise and went through examples with everyone as a group. The experts 

then provided their opinion separately, without consulting each other. To do this, the 

exercise was either conducted in a computer cluster, or on laptops and touchscreen devices 

provided by the investigator. 

The tool guided experts through seven tabs: 1) information about the investigator, 2) 

information about the project and why they had been invited to participate, 3) a 

questionnaire about their professional experience, 4) training, 5) a non-domain seed 

question, 6) information about the trial and questions about trial outcomes, 7) questions 

about the effectiveness of the intervention after the trial finishes. 

The homepage is shown in Figure 3.7. 
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Figure 3.7. Homepage of the REFORM elicitation tool. 

  

The ‘Introduction’ tab provided information about the investigator and about the project. It 

included an explanation of what elicitation is, why the study was being conducted and why 

the experts were included in the study. The print out of the section is provided in Appendix 

3.8. Questions about experts’ professional experience in the ‘About you’ section were 

discussed in section 3.4, while the contents of the ‘Instructions’ tab were provided in 

section 3.5.6. 

Details about the elicited parameters were discussed in sections 3.5.1 and 3.5.2. In 

summary, experts’ priors were elicited on 9 to 13 parameters (depending on their beliefs 

about the change in treatment effect after the trial end point). In order to make the 

workload manageable, the questions were separated into three sections: the non-domain 

seed about the number of rainy days in York (Question 1 in Figure 3.7), those about 

REFORM trial outcomes (Question 2 in Figure 3.7) and those about the probabilities of 

falling and the odds of fracture after the trial end point (Question 3 in Figure 3.7). 

The layout of Question 2 is shown in Figure 3.8. The tab contained three side panels: 

background information about the trial (provided in Appendix 3.6), one page with questions 

about the probabilities of falling in control arm and one in treatment arm, and one page 

with the multiple choice questions about long term effects of the intervention, after the 

trial finishes. 
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Figure 3.8. Screenshot of the question about trial outcomes. 

  

It was not possible for experts to start the exercise without completing the training 

(Question 1 was enabled when experts saved their practice answer), and each subsequent 

question was enabled when their answer to the previous question was saved. Because the 

exercise was on occasions completed without the investigator, it was designed to prevent 

statistically incoherent priors. For example, experts could not enter figures outside the 

given range. 

The tool was piloted on seven podiatrists who delivered the intervention in the REFORM 

trial (Pilot 3). The participants were chosen based on the ease of recruitment (the 

participants were attending a presentation at the University of York), quick delivery (as they 

did not require background information on REFORM trial), and the assumption that their 

quantitative skills were comparable to those of experts in the REFORM elicitation study. 

The participants were delivered a group training session in a presentation that covered the 

contents of the ‘Instructions’ tab (described in section 3.5.6). The experts used the practice 

example in the exercise and completed the exercise independently. The pilot was 

conducted to test the exercise for sense, clarity and ease of use. One technical challenge 

arose in the pilot: several experts entered the minimum and maximum values in the wrong 

field (they entered the minimum in the ‘maximum’ field and vice versa), precipitating an 

error message. As result, the tool was updated to automatically select the smaller value as 

the minimum and the larger value as the maximum. 



117 
 

3.5.8. Fitting, evaluation and feedback 

Chapter 1 discussed that experts’ priors can be fitted using parametric probability 

distributions, prior to use in the cost-effectiveness model. If distributions are fitted, the 

investigator must decide whether to fit during the elicitation exercise (so that the fit can be 

validated by the expert) or after the exercise. Furthermore, if distributions are fitted after 

the exercise, they can be fitted before or after aggregating experts’ priors. The benefits and 

limitations of each approach were discussed in Chapter 1 (section 1.3.4.5). Distributions 

were not fitted during the exercise because training experts on interpreting probability 

distributions is time consuming, and so was not feasible during this exercise. The priors 

were only fitted to probability distributions after aggregation - the rationale and detailed 

methods are provided in the analysis, in Chapters 5 and 6. 

3.5.9. Aggregation 

As discussed in section 3.1, the objectives of this study were to explore the extent to which 

experts’ characteristics explain their priors, and to compare different methods for 

mathematical aggregation. In order to achieve the study objectives priors were elicited 

individually, then aggregated mathematically. Several aggregation methods were compared 

in the analysis – these are described in detail in Chapter 6.  

3.6. Summary of Chapter 3 

The REFORM elicitation study was designed to evaluate and compare different weighting 

methods. The study has two specific objectives: 1) to explore factors that affect experts’ 

priors, and 2) to compare the impact of different weighting methods in an applied case 

study in HTA. 

Several studies have assessed characteristics that affect experts’ priors, or compared 

performance-weighted priors to unweighted ones – these studies tend to analyse results of 

elicitation exercises reported in databases, retrospectively. For example, Nemet et al. 

(2017) measured the effect of experts’ characteristics and elicitation process design on the 

width of experts’ 80% confidence interval in their judgments about future energy 

technologies. The studies evaluating and comparing different weighting methods are 

generally based on the applied exercises in the TU Delft. (Goossens, 2008b; S Lin and 

Cheng, 2009; Flandoli et al., 2011; Colson and Cooke, 2017) Using findings from databases 

can limit the characteristics and weighting methods that can be compared. 
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The REFORM elicitation study is the first study prospectively designed to evaluate and 

compare weighting methods in CEDM. 

In order to fulfil the first objective - to explore factors that affect experts’ priors – the study 

needed to recruit a relatively large sample of experts (30-50, compared to the 8.3 recruited 

for elicitation in CEDM on average) and so ease of completion was an important factor in 

the study design. 

The elicitation exercise was designed to be delivered remotely, in no longer than one hour.  

The aim of the elicitation exercise was to elicit experts’ beliefs on the treatment effect of 

the podiatry intervention evaluated in the REFORM trial, and the temporal change in the 

treatment effect. Chapter 1 highlighted that there is a lack of understanding of how best to 

elicit different types of quantities (see section 1.3.4.1 for details). A decision was made to 

elicit both quantities indirectly, based on practice in previous exercises that elicited the 

treatment effect (Bojke et al., 2010; Soares et al., 2011). The treatment effect was assumed 

to be independent of the rate of falls and risk of fractures (as described in section 3.5.2). 

The elicitation methods required experts’ beliefs on the rate of falls to be elicited in those 

patients who receive the intervention and those who do not. The skewed distribution of the 

frequency of falls made it a difficult parameter for experts to assess. There were no 

identified studies for deriving rates and so a novel method for eliciting rates indirectly was 

derived where a series of binomial distributions was elicited and conditional probabilities of 

different outcomes (number of falls) were assumed to be independent. It is unclear which 

of the two methods (direct or indirect elicitation of rates) is better and so the decision to 

use the indirect method was based on the results of a pilot where the participants 

expressed the indirect method to be more intuitive, and led to more comparable results 

between them. It is not clear whether this also makes it a better method.  

Alternative methods for eliciting multinomial distributions exist – for example eliciting the 

multinomial distribution for the frequency of falls and correlation between conditional 

probabilities of different number of falls,(Clemen, Fischer and Winkler, 2000) but the 

methods require extensive training and active guidance by the investigator (Bojke et al., 

2017) and so were not feasible in this study. 

The plausibility and implications of the assumptions made in the elicitation process are 

discussed in further detail in Chapters 4, 5 and 6 when the results of the elicitation exercise 

are analysed and discussed.  
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Chapter 4.  Interpreting the results from 
the REFORM elicitation exercise 

4.1. Introduction 

Chapter 3 described the REFORM elicitation study conducted to compare different methods 

for deriving weights in elicitation. The study elicited experts’ beliefs on the following 

quantities (9-13 depending on experts’ beliefs about the trajectory of the treatment effect 

after the trial endpoint): 

- One non-domain seed regarding rainfall in York;  

- Eight domain seeds (outcomes measured in the REFORM trial); 

- Four target parameters about the treatment effect after the trial end point, 

provided experts believed that the treatment effect could change over time. 

This chapter presents an overview of the results of the elicitation exercise. Section 4.2 

describes how experts’ elicited quantities were used in the analysis, section 4.3 describes 

the sample of experts who took part, section 4.4 gives an overview of what experts’ priors 

suggest about their beliefs, and section 4.5 evaluates the elicited priors, and the methods 

used to analyse them. Section 4.6 then provides a summary of the findings. 

4.2. Methods to decode experts’ priors 

The REFORM elicitation study elicited one non-domain quantity, and 12 domain-specific 

quantities regarding falls and fractures in participants in the REFORM trial.  

The non-domain seed was a question about the average number of rainy days in York every 

September. The seed was elicited and analysed in terms of frequencies (number of days out 

of 30). As discussed in Chapter 3, experts’ accuracy in assessing rainfall in York was scored 

using CICP, and the scores are used: 

- To explore whether experts’ characteristics can predict their scores in non-domain 

seeds (Chapter 5); 

- To explore whether experts’ accuracy in assessing non-domain seeds predicts 

experts’ accuracy on the domain seeds (Chapter 5); 

- To derive weights (Chapter 6). 
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The 12 quantities elicited about falls and fractures in participants in the REFORM trial are 

summarised in Figure 4.1. These parameters were also observed in the REFORM trial, and 

so they are used as seeds in Chapter 5 where the effect of experts’ characteristics on their 

priors is assessed, and in Chapter 6, where they are used to derive weights for experts’ 

priors on the target parameter. The parameters elicited and derived in Steps 5-7 are used 

to derive the change in the treatment effect after the trial end point; their value was not 

observed in the REFORM trial and so they represent the target parameters used in the CEA 

in Chapter 6. 

Figure 4.1. Elicited quantities regarding the treatment effect of the intervention 
evaluated in the REFORM trial. 

 

*The second time point was determined by experts, as described in Chater 3. 
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Figure 4.1 also shows that there were three different quantities elicited: probabilities, 

conditional probabilities and odds. These were used to derive the rate of falls, the 

treatment effect, and the temporal change in the treatment effect. Sections 4.2.1- 4.2.5 

describes how each of the said quantities were derived from the elicited priors. 

Finally, Chapter 1 discussed that evaluation is an integral part of the elicitation process, 

aiming to determine ‘how well’ the elicitation has been done and so section 4.2.6 describes 

the methods used to evaluate this exercise. 

4.2.1. Priors on the probability of falling 

Experts’ priors on falling were elicited as relative frequencies; these were then converted 

into probabilities. The proportion of fallers was derived by dividing experts’ relative 

frequencies by 1000 (the denominator for their frequencies), as shown in Figure 4.2.  

Figure 4.2. Elicited priors on the frequency of falling and the resulting probability 
summaries used in the analysis. 

 

 

   

Experts’ priors on the number of patients expected to fall more than five times were 

conditional on their mode number of patients expected to fall at least once and so 

P(x>5|x>0) was derived by dividing the frequencies elicited from experts’ by their mode 

number of patients expected to fall at least once. Similarly, P(x>10|x>5) was derived by 
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dividing experts’ frequencies by their mode number of patients who would suffer more 

than five falls. The methods are demonstrated in a hypothetical example in Figure 4.3. 

Figure 4.3. Experts’ priors on the frequency of multiple falls and the resulting probability 
summaries used in the analysis.  
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4.2.2. Deriving the rate of falls  

Methods for deriving rates were described in Chapter 3. In summary, 10,000 random 

samples were drawn from experts’ priors on P(x>0), P(x>5|x>0) and P(x>10|x>5). 

Probability distributions were not fitted to priors elicited from individual experts and so 

when sampling, the probability distribution in each bin was assumed to be uniform. For 

each iteration joint probabilities P(x>5) and P(x>10) were derived using Equation 3.1 in 

Chapter 3, and the probabilities of observing more than 1, 2, 3, 4, 6, 7, 8, 9, 11, etc. falls 

were predicted from the regression model in Equation 3.2. The probability of each number 

of falls was then calculated using Equation 3.3. The rate of falls was calculated by 

multiplying each number of falls by its corresponding probability. 

4.2.3. Odds and risk of fracture 

Experts’ priors on the odds of fractures were elicited by asking - one in how many falls will 

result in a fracture. The elicited quantities represent odd+1. For example, if an expert 

believed that 1 in 2 falls would result in a fracture, the odds of fracture were 1 (Number of 

falls that do not result in a fracture/ Number of falls that result in a fracture). The elicited 

quantities were thus converted into odds by subtracting 1. 

Experts’ priors on the odds of fracture were analysed both as odds and as probabilities of 

fracture conditional on falling P(fracture|fall) for comparison; both quantities were 

analysed because odds were the quantity that was directly elicited, while probabilities were 

the quantity used in the cost-effectiveness model in the case study. The probabilities were 

derived by inverting the elicited quantities. 

The methods are demonstrated in a hypothetical example in Figure 4.4. Note that the 

direction of the axis is different for odds and probabilities – in Figure 4.4 the odds of 10 (the 

upper limit in the grid) represent a probability of 0.09 (the lower end of the probability 

range). 

 



124 
 

Figure 4.4. Experts’ priors on odds and probabilities of fracture and the resulting 
probability summaries used in the analysis.  

 

 

 

 

 

  

4.2.4. Deriving the treatment effect 

Chapter 3 explained that in the REFORM elicitation study experts’ priors on falling and 

fractures in those who do and do not receive the intervention were elicited separately, 

then used to derive the treatment effect of the intervention. The treatment effect on the 

probabilities, rates and odds was measured as relative risk (RR), rate ratios (RtR) and odds 

ratios, respectively. Sections 4.2.4.1 to 4.2.4.3 describes the methods used to derive each 

parameter in turn.  
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4.2.4.1. Deriving the relative risk of falls 

Expert’s frequencies were converted into probabilities as described in Figure 4.3 in section 

4.2.1. The relative risk was then derived using Equation 4.1. 

𝑅𝑅 =  
𝑃𝑇

𝑃𝐶
 Equation 4.1 

Where 𝑃𝑇 is an experts’ probability of falling in treatment arm, 

𝑃𝐶 is the experts’ mode probability of falling in the control arm. 

The methods for deriving the treatment effect are demonstrated in Figure 4.5. 

Figure 4.5. Experts’ priors on the frequency of falling in the treatment arm and the 
resulting treatment effect summaries used in the analysis.  
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4.2.4.2. Deriving odds ratios and relative risk of fractures 

Section 4.2.3 highlighted that experts’ priors on the odds of fracture were analysed both as 

odds and as probabilities of fracture conditional on falling, for comparison. The treatment 

effect of the intervention was thus analysed both as the odds ratio (OR) and the RR. 

Odds of fracture were not elicited conditional on the mode and so the OR was derived by 

sampling from both priors, assuming a uniform probability distribution in each bin. The 

odds ratio was then derived using Equation 4.2. 

𝑂𝑅 =  
𝑂𝑑𝑑𝑇

𝑂𝑑𝑑𝐶
 Equation 4.2 

Where 𝑂𝑑𝑑𝑇 is a random sample of the odd of having a fracture in treatment arm, 

𝑂𝑑𝑑𝑐 is a random sample of the odd of having a fracture in control arm. 

The relative risk of fractures was calculated using Equation 4.3 

𝑅𝑅 =  
𝑃(𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒|𝑓𝑎𝑙𝑙)𝑇

𝑃(𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒|𝑓𝑎𝑙𝑙)𝐶
 Equation 4.3 

Where 𝑃(𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒|𝑓𝑎𝑙𝑙)𝑇 is a random sample of the risk of fracture in treatment arm, 

𝑃(𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒|𝑓𝑎𝑙𝑙)𝐶 is a random sample of the risk of fracture in control arm, 

4.2.4.3. Deriving rate ratios 

The rate of falls in patients who received treatment was derived in the same way as for 

those who did not - the methods are described in section 4.2.2. The mode rate of falls in 

control arm was then derived from mode probabilities of falling in control arm. The rate 

ratio was derived using Equation 4.4. 

𝑅𝑡𝑅 =
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠𝑇

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠𝐶
 Equation 4.4 

 

Where 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠𝑇 is a random sample of the rate of falls in treatment arm, 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠𝐶 is the point estimate of the rate of falls derived from experts’ mode 

probabilities of P(x>0), P(x>5|P>0) and P(x>10|P>5). 
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4.2.5. Deriving the temporal change in the treatment effect 

The treatment effect in the case study was measured as the rate ratio for falls and the 

relative risk of fractures (details are provided in Chapter 6), and so the elicited priors were 

used to derive the temporal change in these two parameters, derived from experts’ priors. 

Step 6 in Figure 4.1 in section 4.1 shows that experts expressed their beliefs about falling 

and fractures in patients who continued to receive the intervention after the REFORM trial 

ended, assuming that falling and fractures in those who do not receive the intervention 

remained the same. The time point (𝑡2) was determined by experts. Their priors were used 

to derive the rate of falls and the risk of fractures (see section 4.2.2 and 4.2.3 for details), 

and the treatment effect (RtR and RR) at the second time point (see section 4.2.4 for 

details). 

The temporal change in the treatment effect, Δ𝑇𝐸, was then derived using Equation 4.5 

(copy of Equation 3.4 in Chapter 3). 

𝛥𝑇𝐸 =  
𝑇𝐸𝑡2 − 𝑇𝐸𝑡1

𝑇𝐸𝑡1
 Equation 4.5 

Where 𝑇𝐸 could be RtR or RR, 

𝑇𝐸𝑡1 is the treatment effect in REFORM trial, 

𝑇𝐸𝑡2 is the treatment effect after the trial. 

𝑇𝐸 can take any value between 0 and infinity, and so ΔTE could take any value between -1 

and infinity, where negative values indicate the treatment effect would decrease, 0 

indicates no change in the treatment effect, and positive values indicate that the treatment 

effect would increase. An increase in the treatment effect means that any harmful effect of 

the treatment is potentiating, or that the beneficial effect is diminishing, while a decrease 

in the treatment effect indicates that harmful effect is diminishing or that any beneficial 

effect is potentiating. 

The second time point at which the treatment effect was elicited t2 varied between 

experts. In order to make experts’ priors on the change in the treatment effect comparable, 

ΔTE was used to derive the annual change in treatment effect, 𝛥𝐴𝑇𝐸. 

The change in the treatment effect was assumed to be linear, and so 𝛥𝐴𝑇𝐸 was derived 

using Equation 4.6.  
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𝜟𝑨𝑻𝑬 =  
𝜟𝑻𝑬

𝒕𝟐
 

Equation 4.6 

Where 𝑡2 is the second time point at which the treatment effect was elicited, measured in 

years. 

In addition, sensitivity analysis was conducted, where the temporal change in the 

treatment effect was assumed to be log-linear, and derived using Equation 4.7. 

𝜟𝑨𝑻𝑬 = 𝒆
𝒍𝒏𝜟𝑻𝑬

𝒕𝟐  
Equation 4.7 

To get the probability distribution around 𝛥𝐴𝑇𝐸, the random samples were drawn from 

experts’ priors on 𝛥𝑇𝐸, and 𝛥𝐴𝑇𝐸 was calculated for each. 

4.2.6. Evaluating the elicitation exercise  

Chapter 1 discussed that evaluation is an integral part of the elicitation process, aiming to 

determine ‘how well’ the elicitation has been done. 

In this study, two aspects of the elicitation exercise were explored: 1) the plausibility and 

implications of the assumptions imposed in the exercise, and 2) how well the elicited priors 

represent their beliefs. The methods used for both of these are described in sections 

4.2.6.1 and 4.2.6.2. 

4.2.6.1. Exploring the plausibility and implications of the assumptions imposed 

in the exercise 

Chapter 3 described the elicitation methods in detail and the discussion in section 3.6 

highlighted that the methods employed were based on a series of assumptions. In 

summary, the following assumptions were made: 

1. Conditional probabilities of different outcomes (1-5, 6-10 and >10 falls) are 

independent; 

2. The rate of falls derived from experts’ priors accurately represents their’ beliefs; 

3. The treatment effect of the podiatry intervention is independent of the baseline 

rate of falls and risk of fractures; 

4. The change in the treatment effect is linear. 

These assumptions may affect the validity of the results – if the assumptions do not hold, 

then the derived probability distributions of the rate of falls, the treatment effect, and the 



130 
 

change in the treatment effect don’t represent experts’ uncertainty, their score’s don’t 

represent their accuracy, and any effect of experts’ characteristics on their scores is invalid. 

The plausibility of each assumption was thus explored as follows. 

Assumption 1 

The assumption could not be tested directly post-hoc as it requires input from experts to 

indicate whether they agree with the assumption or not. Instead, correlation coefficients 

between expert’ mode P(x>0) and P(x>5|Px>0), P(x>0) and P(x>10|Px>5), and P(x>5|Px>0) 

and P(x>10|Px>5) were derived to explore whether there was any correlation between the 

conditional probabilities.  

The correlation coefficient measures the strength of relationship between two variables. 

(Sedgwick, 2012) The coefficient can take any value between -1 and 1, where positive 

values indicate positive correlation, and negative values indicate negative correlation. The 

higher the absolute value the stronger the correlation. 

Assumption 2  

Section 4.2.2 described that the rate of falls was derived by predicting the number of 

having 1, 2, 3, etc. falls from experts’ elicited probabilities on P(x>0), P(x>5) and P(x>10).  

In order to test whether the derived rates represented experts’ beliefs, first, the 

probabilities of having 1-5, 6-10 and >11 falls, predicted by the model used to derive rates 

(see Chapter 3, section 3.5.2 for details), were compared to those derived directly from 

experts’ priors, using Equation 3.1 in Chapter 3 to derive P(x>5) and P(x>10), and 

subsequently  Equation 4.8 to derive probabilities P(0<x≤5), P(5<x≤10), and P(10<x≤30). 

P (a < x ≤ b) = P (x > 0) – P (x > b)  Equation 4.8 

 

The probabilities were compared for five randomly chosen experts from the sample 

selected using the random number generator in R.  

Furthermore, the plausibility of the assumption was explored by comparing the rates 

derived using the method described in Chapter 3 to those derived using two alternative 

methods. 

Both methods involved deriving P(x>5) and P(x>10) using Equation 3.1. Then, probabilities 

P(0<x≤5), P(5<x≤10), and P(10<x≤30) were derived using  Equation 4.8. The maximum 
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number of falls was assumed to be 30 (P(x>30)=0) as the model for deriving rates predicted 

that the probability of having more than 30 falls was negligible. The first alternative method 

assumed that the probabilities of all outcomes within each category (1-5 falls, 6-10 falls and 

11-30 falls) were equal. For example, if an expert believed that the probability of 1-5 falls is 

0.5, then the probability of 1, 2, 3, 4 and 5 falls was 0.1 (0.5/5).  

The second method assumed that the probability of each category (1-5, 6-10 and 11-30 

falls) was that stated by the expert, but the probability of each additional fall within that 

category decreases at a constant rate. The probability of each number of falls was 

calculated using Equation 4.9. 

                    𝑃(𝑥 = 𝑓) =  𝑃(𝑥 = 𝑓 + 1) +
𝑃(𝑐𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑐𝑚𝑎𝑥)

∑ 𝐶𝑓
  Equation 4.9 

Where 𝑓 is one of 30 falls, 

𝐶𝑓  is the number of falls in category of fall 𝑓, so if 𝑓 = 4 then 𝐶𝑓 = (1, 2, 3, 4, 5), and ∑ 𝐶𝑓  = 

15, 

𝑐𝑚𝑖𝑛is the smallest number of falls in category 𝐶(𝑓), so if 𝑓 = 4 then 𝑐𝑚𝑖𝑛=1 

𝑐𝑚𝑎𝑥 is the largest number of falls in category 𝐶(𝑓), so if 𝑓 = 4 then 𝑐𝑚𝑖𝑛=5. 

For example, if an expert believed that the probability of falling more than 10 times was 

0.1, and the highest possible number of falls was 30 (an assumption imposed in the 

analysis), then the model assumed that the probability of 31 falls was 0 and distributed the 

0.1 probability across the remaining outcomes (11-30). This probability constantly 

decreases by 0.000476 (generated by Equation 4.9) for each fall between 11 and 30. This 

results in the sum of probabilities for having 11-30 falls of 0.1. The probability of having 11 

falls was thus estimated to be 0.010 (20*0.000476). Similarly, if the same expert believed 

that the probability of having 6-10 falls was 0.3, then the probability of each additional fall 

(for 6-11 falls) was assumed to decrease at a constant rate. Hence, the probability of 

exactly six falls was estimated to be 0.106 and the probability of having each additional fall 

was 0.0194 lower so that the sum of probabilities of having 6-10 falls was 0.3. 

Assumption 3 

Like Assumption 1, Assumption 3 could not be tested post-hoc, but the correlation 

coefficient between experts’ mode probabilities of falling, odds of falling, and rate of falls 

and the treatment effect on these were derived to explore whether there was any 
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consistency in the way experts’ beliefs about falling and fractures affected their beliefs 

about the treatment effect. 

Assumption 4 

In the REFORM elicitation study, the experts expressed when they expected the treatment 

effect to diminish or plateau (time point t3), their priors were then elicited at a second time 

point t2. When experts believed the treatment effect would diminish, t2 = t3/2, whereas 

when they believed the treatment effect would potentiate, t3 = t2. In order to test whether 

the estimated annual change in the treatment effect reflected experts’ beliefs, it was 

applied to the mode of experts’ treatment effect after one year to derive the treatment 

effect at the time point t3. When the change in the treatment effect was assumed to be 

linear, the treatment effect at the time point t3 was derived using Equation 4.10 (derived 

from Equation 4.5 and Equation 4.6). 

                                                               𝑇𝐸𝑡3 = 𝑇𝐸𝑡1 ∗ (1 + 𝛥𝐴𝑇𝐸 ∗ 𝑡3)   Equation 4.10 

Where 𝑇𝐸𝑡3 is the predicted treatment effect at time t3, 

𝑇𝐸𝑡1 is expert’s mode within trial treatment effect, 

𝛥𝐴𝑇𝐸  is the annual change in the treatment effect derived from expert’s priors. 

When the change in the treatment effect was assumed to be log linear, the treatment 

effect at the time point t3 was derived using Equation 4.1111. 

                                                               𝑇𝐸𝑡3 = 𝑇𝐸𝑡1 ∗ 𝛥𝐴𝑇𝐸𝑡3  Equation 4.11 

For experts who believed the treatment effect would diminish, the predicted 𝑇𝐸𝑡3 should 

be close to 1 indicating no treatment effect. In this study ‘close to 1’ was defined as 0.8 - 

1.2. Predicted values outside this range would indicate that the change in the treatment 

effect is not linear (or log linear). 

 

                                                             
11 Since 𝑙𝑛𝑇𝐸𝑡3 = 𝑙𝑛𝑇𝐸𝑡1 + 𝑙𝑛𝛥𝐴𝑇𝐸 ∗ 𝑡3  
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4.2.6.2. Evaluating experts’ priors 

Methods for evaluating the elicited priors were discussed in Chapter 1 (section 1.3.4, 

Fitting, Evaluation and Feedback) and include internal consistency and seed-calibration. 

(Wallsten and Budescu, 1983) 

Seed calibration was not used to evaluate the elicitation exercise in this chapter, as detailed 

analysis of experts’ calibration is provided in Chapter 5. While the elicitation exercise was 

designed to prevent any statistically incoherent responses – for example, experts could not 

exceed the parameter limits when expressing their range – experts’ priors on the treatment 

effect after the trial could be inconsistent with their verbal responses (to MCQs) about the 

same. Experts’ internal consistency was thus used to assess whether the elicited priors 

represented experts’ beliefs. 

In their answers to the MCQs, experts could express five beliefs about the effectiveness of 

the intervention after the trial end point. Of these five, four led to further elicitation and so 

were used to assess internal consistency, as shown in Table 4.1.  

Table 4.1. Indicators of internal inconsistency in experts’ priors.  

Beliefs expressed in MCQs Indication of internal inconsistency 

The intervention will be as 

effective, indefinitely 
N/A 

The effect of the intervention is 

most likely to stay the same 

although the expert is not 

certain. 

Expert’s confidence interval of 𝛥𝑇𝐸 does not include 

0, suggesting the expert is certain the treatment 

effect would change over time 

The intervention is most likely 

to become less effective over 

time. 

Expert’s median 𝛥𝑇𝐸 is positive indicating 𝑇𝐸 is most 

likely to potentiate (regardless of whether the expert 

thought the intervention was harmful or beneficial)  

The intervention is most likely 

to become more effective over 

time. 

Expert’s median 𝛥𝑇𝐸 is negative indicating 𝑇𝐸 is most 

likely to (regardless of whether the expert thought the 

intervention was harmful or beneficial) 

The intervention effect is likely 

to change over time, but the 

expert is not sure whether it 

will get better or worse. 

Expert’s confidence interval of 𝛥𝑇𝐸 does not include 

0, suggesting the expert is certain about the direction 

of change in the treatment effect (i.e. it is either 

positive or negative)  
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Furthermore, exercise was evaluated by visually inspecting experts’ priors to identify any 

features that could indicate that experts did not understand the task. 

4.3. Sample description 

The number of experts who completed the REFORM elicitation study was 39. This included 

physiotherapists, geriatricians, academics, nurses, occupational therapists (OTs), and 

general practitioners (GPs). Section 4.3.1 describes the recruitment and completion rate, 

section 4.3.2 shows the composition of the sample, and section 4.3.3 reports on the mode 

of delivery. 

4.3.1. Recruitment and completion rate 

Experts were recruited via four different avenues: 1) approached directly based on 

publications and/or their role at conferences; 2) recruited at conferences; 3) self-referred 

through a colleague or an email sent from a society; 4) contacted on recommendation from 

experts recruited through the first three routes. The number of experts approached and 

recruited through each of these routes is presented in Figure 4.6. Initially, 55 experts 

consented to taking part, of which 16 did not complete the exercise. Fifteen experts did not 

complete the exercise because they encountered technical problems. These were almost 

exclusively due to poor internet connection – once experts were disconnected they had to 

commence the exercise from the beginning. One more expert terminated the exercise due 

to time constraints. 

Forty-one experts expressed their priors about falling during the trial, and 39 answered 

MCQs about the effectiveness of the intervention after the trial end point. Two experts 

dropped out because their internet connection failed. Thirty-eight experts completed the 

entire exercise while one additional expert dropped out before completion due to a poor 

internet connection. Of the 38 experts who completed the exercise, 36 expressed their 

priors on the treatment effect at the second time point, after the trial. One experts did not 

express their priors at the second time point because they believed that the intervention 

treatment effect would remain the same, while one expert believed that the effect of the 

intervention would diminish within three months and so instead of eliciting their priors 

about the effect at the second time point it was assumed that it would diminish 

immediately in the analysis in Chapter 6.  
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Figure 4.6. Recruitment and completion rate of the REFORM elicitation study. 

 

*Three additional exerts provided the range but did not express their uncertainty as the 
chips and bins grid failed to show. 

An additional four experts who completed the exercise could not express their priors on the 

odds of fractures – they could input the minimum and maximum but the chips and bins grid 

failed to show.  

4.3.2. Composition of the sample 

Table 4.2 shows the profession and method of recruitment for the 55 participants who 

provided information about their professional experience. The method of recruitment 

differed according to the profession. This variation to some extent reflects the differences 

in operations between different professional bodies. The British Geriatrics Society (BGS) has 

no branch or sub group specialising in fall prevention so participants in this profession were 

recruited by attending regional branch meetings and conferences. There are a large 

number of such meetings and so this was the most efficient method of recruitment. 
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Table 4.2. Method of recruitment by profession.  

 
N 

Identified by 
investigator 

Recommende
d by peers 

Self-
referred 

Recruited at 
conference 

Physio. 20 4 4 10 2 

Geriatricians 21 3 2 0 16 

Academics 1 1 0 0 0 

Nurses and OTs 7 0 4 1 2 

GPs 4 1 2 0 1 

Other 2 1 1 0 0 

Total 55 10 13 11 21 

The Chartered Society of Physiotherapy (CSP) has a professional network for 

physiotherapists (and other health professionals) who work with older people, AGILE. AGILE 

sent an email invitation to its network to invite participation in the exercise to all members 

in England, which is likely to be the reason they have the highest proportion of self-referred 

participants. 

The majority of publications in fall prevention are written by physiotherapists, geriatricians 

and health researchers in fall prevention (academics), which is likely to be why they have 

the highest number of experts who were directly approached for the study. 

Nurses and occupational therapists were recruited at BGS meetings, through AGILE and on 

recommendation from physiotherapy colleagues who work in fall prevention clinics. The 

participation rate from these groups is low as relatively few nurses are members of these 

societies.  

4.3.3. Mode of delivery 

Mode of completion, time taken to complete the exercise and proportion of experts who 

amended their answers are presented in Table 4.3 (classified by profession).  
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Table 4.3. Summary of experts’ elicitation, classified by profession. Time taken to complete refers to the time experts took to complete the question 
about the outcomes of the REFORM trial. 

 

 

  

No assistance
Assistance over 

the phone

Assistance in 

person, one-on-

one

Assistance in 

person, in 

groups

Physiotherapists 0.15 0.15 0.62 0.08 18.8 0.46 13

Geriatricians 0.73 0.07 0.2 0 13.7 0.2 15

Academics 0 0 1 0 16 0 1

Nurses and OTs 0.57 0.14 0.29 0 18.7 0.43 7

GPs 0.25 0 0.5 0.25 18 0.25 4

Other 0 0 1 0 15 0 1

Proportion who 

ammended 

their answers

N

Mode of completion (proportions)

Time taken to 

complete (min)
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The mode of delivery was self-reported so some inconsistencies exist. For example, all 

geriatricians who completed the exercise at regional meetings and conferences declared 

that they completed the exercise independently, while one physiotherapist and one GP 

who completed it at a BGS regional meeting along with other geriatricians felt that they 

were guided by the investigator in a group. 

The remainder of this chapter provides an overview of the results of the elicitation exercise. 

4.4. Results: Overview of experts’ priors  

This section describes experts’ priors on each elicited parameter. All priors elicited from 

experts who completed the domain seed on falling are reported including: 

- 41 priors on the non-domain seed, 

- 41 priors on the probabilities of falling and the treatment effect on falls during the 

REFORM trial, 

- 37 priors on the odds of having a fracture and effect of the intervention on 

fractures during the trial, 

- Beliefs of 38 experts about the probabilities of falling after the trial (36 priors), and 

- Beliefs of 34 experts about the odds of having a fracture after the trial (32 priors). 

The number of priors is not identical to the number of experts whose beliefs were elicited 

about the treatment effect after the trial, because two experts expressed beliefs that did 

not warrant further elicitation – further details are provided in section 4.4.4. 

4.4.1. Non-domain seed 

Experts’ priors on the non-domain seed (the number of rainy days in York in September) are 

shown in Figure 4.7 and summarised in Table 4.4 in comparison to the average number of 

rainy days in September recorded by the Met Office, as discussed in Chapter 3 (section 

3.4.3). 
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Figure 4.7. Experts’ priors on the number of rainy days in September in York. Box = 
median and interquartile range, whiskers = range. Horizontal lines = mean and 95% 
confidence interval of the observed values.  

 

 

Table 4.4. Summary of experts’ priors on the number of rainy days in September in York 
(the non-domain seed).  

 
Mean of experts’ 
modes (range of 

modes) 

Range indicated to 
be plausible by 

experts 

Observed number 
of rainy days (95% 

CI) 

Days of rainfall - out 
of 30 (n=41) 

13.3 (5-29) 2-31 8.6 (4.3-13.7) 

On average, experts overestimated the total number of rainy days – their priors indicated 

that the most likely number of rainy days in York was 13.3 compared to the 8.6 days 

recorded by the Met Office. There was considerable variation in experts’ beliefs – their 

modes varied between 5 and 29, and the range varied across almost the entire range of 

possible values (2-31). 

4.4.2. Falling and fractures without treatment 

The summary of experts’ priors about the probabilities of falling in those patients who do 

not receive the intervention are presented in Figure 4.8 and in Table 4.5.  
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Figure 4.8. Experts’ priors on the probabilities of falling in patients who did not receive the intervention and the values observed in the REFORM trial 
(RCT). Box = median and interquartile range, whiskers = range. Horizontal lines = mean and 95% confidence interval observed in the trial. 
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Table 4.5. Summary of experts’ priors on the probability of falls and fractures without 
treatment. 

Quantity 
Mean of experts’ 
modes (range of 

modes) 
Plausible range 

Observed in 
REFORM trial 

(95% CI) 

P(x>0) (n=41) 0.241 (0.025-0.725) 0-0.850 0.585 (0.542-0.627) 

P(x>5|x>0) (n=41) 0.195 (0.001-0.806) 0.004-0.968 0.088 (0.058-0.122) 

P(x>10|x>5) (n=41) 0.258 (0.017-0.767) 0-1 0.192 (0.068-0.361) 

Overall experts underestimated the proportion of fallers– their priors suggested that on 

average the most likely proportion of fallers in the control arm would be less than one 

quarter of all patients (0.241) compared to 0.585 reported in the REFORM trial. The 

conditional probabilities of falling more than five and more than ten times were higher in 

the elicited priors (the average most likely values were 0.195 and 0.258 respectively) than 

observed in the trial (0.088 and 0.192 respectively).  

Experts’ priors varied substantially – experts believed that the most likely probability of 

falling (i.e. the mode) could be as low as 0.025 and as high as 0.725 while the plausible 

range was between 0 and 0.85, and the conditional probabilities of falling more than five 

and more than ten times included almost the entire possible range 0-1. 

Rate of falls 

The rates of falls derived from experts’ priors are shown in Table 4.6 and Figure 4.9.  

Table 4.6. The summary of the rate of falls derived from experts’ priors.  

Elicited quantity 
Mean of experts’ 
modes (range of 

modes) 

Plausible 
range 

Observed in 
REFORM (95% CI) 

Derived rate of falls (n=41) 0.945 (0.085-2.825) 0.002-7.054 1.57 (1.366-1.777) 

 

Overall experts underestimated the rate of falls – on average experts’ most likely number of 

falls was 0.945, compared to the 1.5 rate observed in the trial, likely because they 

underestimated the proportion of fallers (as shown in Figure 4.8), which subsequently 

influenced the rate of falls derived from their priors. Indeed, the majority of experts who 

underestimated the proportion of fallers (Experts 13, 18, 19 and 33) also underestimated 
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the rate of falls. However, some experts (such as Expert 12) overestimated the proportion 

of fallers also overestimated the rate of falls, by assigning high probabilities to the 

probabilities of having more than five and more than ten falls.  

Figure 4.9. Rate of falls derived from experts’ priors without treatment and the 
probability observed in the REFORM trial (RCT). Box = median and interquartile range, 
whiskers = range. Horizontal lines = mean and 95% confidence interval observed in the trial. 

 

Risk of fracture 

Experts’ priors on the odds and probabilities of having a fracture after a fall is shown in 

Table 4.9 and Figure 4.10. On average, experts underestimated the odds of fracture (21.4 

compared to 55.9 observed in the trial), although their modes varied from every fall to one 

in 149, while plausible range varied between every fall to one in 1000 falls. 

Table 4.7. A summary of the risk of fractures derived from experts’ priors.  

Quantity 

Mean of experts’ 
modes 

(range of modes) 

Plausible range 

Observed in 
REFORM trial 

(95% CI) 

Odds of having a 
fracture (n=37) 

21.4 (1-149) 1-1000 55.9 (42-71) 

P(fracture|fall) (n=37) 0.127 (0.007-0.5) 0.001-1 0.018 (0.010-0.027) 
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Figure 4.10. Experts’ priors on the odds and probabilities of having a fracture in patients 
who do not receive the intervention and the probability observed in the REFORM trial 
(RCT). Box = median and interquartile range, whiskers = range. Horizontal lines = mean 
and 95% confidence interval observed in the trial. 

 

 

The probability of suffering a fracture is inversely proportional to the probability of falling, 

and so it was higher in the elicited priors than observed in the trial (0.127 compared to 

0.028 observed in the trial). The scale between the two parameters is different – for 

example, probabilities between 0 and 0.2 equate to odds of 4-infinity and so experts whose 

priors on the probability of fractures were very low and precise (such as Expert 1 and Expert 

17) lead to uncertain priors, indicating high odds of fractures. The opposite is also the case, 

as experts whose priors on the odds place high probability on a narrow range of low values 

(such as Expert 30) lead to uncertain priors on the probability of falling. 
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4.4.3. Treatment effect during the trial 

The treatment effect derived from experts’ priors are summarised in Table 4.8, Figure 4.11 

and Figure 4.12. 

Table 4.8. Summary of experts’ priors on the treatment effect of the intervention. 

Elicited quantity 
Mean of experts’ 
modes (range of 

modes) 
Plausible range 

Observed in 
REFORM trial 

(95% CI) 

Relative risk for 
P(x>0) (n=41) 

0.872 

(0.109-9.935) 
0.003-10.645 

0.915 

(0.819-1.022) 

Relative risk for 
P(x>5|x>0) (n=41) 

1.543 

(0.081-14.516) 
0.064-241.936 

1.014 

(0.594-1.733) 

Relative risk for 
P(x>10|x>5) (n=41) 

1.339 

(0.088-8.571) 
0.178-12.857 

1.809 

(0.688-4.754) 

Odds ratio (n=41)* 
1.527 

(0.318-12.498) 
0.1-50 

0.751 

(0.364-1.550) 

 

On average, experts predicted the direction of change in the probabilities of falling and the 

odds of fractures correctly - their priors indicate that the proportion of fallers would 

decrease but the conditional probability of falling more than five and more than ten times 

would increase after treatment. 

Priors on fractures (in Figure 4.12) are generally more uncertain than those on the 

probabilities of falling (in Figure 4.11), possibly because the odds of fractures in patients 

who receive the intervention were not elicited conditional on outcomes in patients who do 

receive the intervention. 

The predicted change in falling and fractures could imply that those who fall the least will 

benefit from the intervention the most, and that the conditional probabilities of falling 

more than five and more than ten times will increase because of the lower denominator, 

but it could also imply that those who fall the most will fall even more.  
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Figure 4.11. Experts’ priors on the relative risk of falling and the treatment effect observed in the trial (RCT). Box = median and interquartile range. 
Whiskers = range excluding outliers. Points = outliers. Solid horizontal lines = mean and 95% confidence interval observed in the trial. 
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Figure 4.12. Experts’ priors on the OD and RR of fractures, and the treatment effect 

observed in the REFORM trial (RCT). Box = median and interquartile range. Whiskers = 

range excluding outliers. Points = outliers. Solid horizontal lines = mean and 95% 

confidence interval observed in the trial. 

 

Experts’ priors are analysed in further detail to understand their beliefs about the nature of 

the treatment effect. 

First, experts’ priors were used to derive the rate of falls and the rate of fractures, to 

understand their beliefs about the effect of the intervention on the overall number of falls 

and fractures. The rate of fractures was derived by multiplying the rate of falls by the 

probability of having a fracture after a fall. The mode for the rate of fracture was generated 

for each expert by multiplying their mode probability of fracture by their mode rate of falls. 
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The range for each expert was derived by sampling from experts’ priors on each quantity 

and multiplying out the random samples. 

Experts’ priors on the proportion of fallers, the rate of falls and the rate of fractures in the 

control and treatment arm are shown in Table 4.9. 

Table 4.9. Summary of experts’ priors on the outcomes of REFORM trial.  

 Mean of experts’ modes 
(range of modes) 

Plausible range 

REFORM trial 
outcomes, 
control arm 

Elicited P(x>0) 

(n=41) 
0.247 (0.025-0.725) 0-0.850 

Derived rate of falls 
(n=41) 

0.945 (0.085-2.825) 1.368-1.779 

Derived rate of 
fractures (n=37) 

0.100 (0.007-0.679) 0.001-1.329 

REFORM trial 
outcomes, 
treatment arm 

Derived relative risk 
for P(x>0) (n=41) 

0.872 (0.109-9.935) 0.033-10.645 

Derived rate of falls 
ratio (n=41) 

0.696 (0.110-1.990) 0.002-8.667 

Derived rate of 
fractures ratio (n=37) 

0.766 (0.024-2.475) 0.022-3.765 

 

Overall experts’ priors suggested that the proportion of fallers, the rate of falls and the rate 

of fractures would all decrease, although the highest mode elicited from experts’ was 

higher in treatment arm than in control arm (3.364 compared to 2.825), suggesting that not 

all experts agreed that the rate of falls would decrease. 

Table 4.10 shows the elicited beliefs on the treatment effect for individual experts. Out of 

41 experts who expressed their beliefs about the risk and rate of falls, 36 believed that the 

proportion of fallers would be lower in the treatment arm and 33 believed that the rate of 

falls would be lower in treatment arm. Furthermore, 31 out of the 37 experts who 

expressed their beliefs about the rate of fractures, believed it would be lower in the 

treatment arm. Out of 37 experts who expressed their beliefs about all elicited outcomes, 

26 believed that the proportion of falls, the rate of falls and the rate of fractures would all 

decrease. Furthermore three believed that the proportion and rate of falls would decrease 

but the rate of fractures would increase, while four believed that the proportion of fallers 

and rate of fractures would decrease but the rate of falls overall would increase after 
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receiving the intervention. Priors from two experts indicated that the intervention would 

increase the proportion of fallers, the rate of falls and the rate of fractures, suggesting that 

overall the intervention was harmful.  

Table 4.10. Experts’ beliefs about the effect of the podiatry intervention on the risk and 
rate of falls and the rate of fractures.  

 

Fracture rate 
lower in 

treatment 
arm 

Fracture rate 
higher in 

treatment 
arm 

Did not 
express 
beliefs 

about the 
rate of 

fractures 

Total 

Probability of 
falls lower in 
treatment 
arm 

Rate of falls lower 
in treatment arm 

26 3 3 32 

Rate of falls 
higher in 
treatment arm 

4 0 0 4 

Probability of 
falls higher in 
treatment 
arm 

Rate of falls lower 
in treatment arm 

0 1 0 1 

Rate of falls 
higher in 
treatment arm 

1 2 1 4 

Total 31 6 4 41 

 

4.4.4. Temporal change in the treatment effect 

As discussed in section 4.3.1, 39 experts expressed their beliefs about the temporal change 

in the treatment effect after the trial verbally in MCQs, and 37 of those completed the 

exercise. Their responses are shown in Table 4.11. Experts predominantly believed that the 

treatment effect would diminish after the trial (33/39 experts), while one expert was not 

certain whether it would change, two believed the treatment would become more effective 

after the trial and two believed the treatment effect would change, but were not certain 

whether it would diminish or potentiate. 
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Table 4.11. Experts’ responses to MCQs regarding treatment effect after the trial end 
point.  

 

Certain 
treatment 

effect would 
not change 

Uncertain 
whether the 
treatment 

effect would 
change 

Certain the treatment effect would change 

Certain it 
would 

diminish 

Certain it 
would 

increase 

Uncertain 
whether it 

would 
increase or 

diminish 

N 1 1 33 2 2 

 

Experts who thought the treatment effect would potentiate thought it would plateau after 

3 years on average, while experts who thought it would decrease thought it would diminish 

after 3.2 years.  

One expert believed the treatment effect would not change- their temporal change was 

assumed to be 0. One further expert believed that the treatment effect would wear off 

immediately -their temporal change was assumed to equal the treatment effect so that the 

treatment effect after the trial is 1. 

The temporal change derived from experts’ priors is shown in Table 4.12 and Figure 4.13. 

Section 4.2.5 discussed that Δ𝐴𝑇𝐸 can take any value between -1 and infinity, where 

negative values indicate the treatment effect would decrease, 0 indicates no change in the 

treatment effect, and positive values indicate that the treatment effect would increase. An 

increase in the treatment effect means that any harmful effect of the treatment is 

potentiating, or that the beneficial effect is diminishing, while a decrease in the treatment 

effect indicates that harmful effect is diminishing or that any beneficial effect is 

potentiating. 

Table 4.12. Summary of experts’ priors on the temporal change in the treatment effect.  

 Mean of experts’ modes 
(range of modes) 

Plausible range 

Annual change in rate ratio (n=38) 0.370 (-0.843-6.86) -1.562-193 

Annual change in odds ratio (n=34) 0.039 (-0.98-2.33) -0.995-8.255 

Overall the priors are consistent with experts’ verbal responses - the mean modes in Table 

4.12 are positive (0.370 and 0.039) suggesting that on average experts believed the 

treatment effect would diminish over time. 
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Figure 4.13. Probability distributions of the annual change in treatment effect derived from experts’ priors. Box = median and interquartile range. 
Whiskers = range excluding outliers. Points = outliers. Solid horizontal line=no temporal change. 

 

 
RtR = rate ratio; RR = risk ratio.  
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In Figure 4.13, priors elicited from 23 experts expressed priors that included 0 suggesting 

the rate ratio (of falls) could both increase and decrease, whereas 6 thought the same 

about the relative risk. Experts were more certain about the change in the relative risk than 

the rate ratio, possibly because it was a simpler parameter – the change in the rate ratio 

was derived from 9 other priors. 

Furthermore, 10 experts in Figure 4.13 expressed priors that were strictly negative, 

suggesting they were certain the treatment effect would potentiate – this is contrary to the 

verbal responses in the MCQs where only 2 experts were certain the treatment effect 

would potentiate.  

The change presented in Table 4.12 and Figure 4.13 assumed that the change in the 

treatment effect was linear. The implications of assuming a log-linear change in the 

treatment effect were also explored in sensitivity analysis; the results are presented in 

section 4.5.1.4. 

Internal consistency of individual experts is considered in further detail in section 4.5.2. 

4.5. Results: Evaluation of the elicitation exercise 

This section evaluates the plausibility of assumptions in the elicitation exercise (4.5.1) and 

the coherence and internal consistency of the elicited priors (4.5.2), the methods of which 

are described in sections 4.2.6.1 and 4.2.6.2, respectively.  

4.5.1. Exploring the plausibility of assumptions in the elicitation 

methods 

Section 4.2.6 highlighted four assumptions imposed in the elicitation exercise and the 

methods used to evaluate them. Sections 4.5.1.1 - 4.5.1.4 presents the results for each 

assumption in turn. 

4.5.1.1. Correlation between conditional probabilities of having >0, >5 and >10 

falls  

The correlation coefficients between the proportion of fallers and the conditional 

probabilities P(x>5|x>0) and P(x>10|x>5) are shown in Table 4.13. The correlation 

coefficient can take any value between -1 and 1, where positive values indicate positive 

correlation, and negative values indicate negative correlation. The higher the absolute 

value the stronger the correlation. The coefficients in Table 4.13 range from -0.11 to 0.27 – 
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these are relatively low values and with varying signs suggesting that the probabilities are 

not correlated. 

Table 4.13. Correlation between conditional probabilities of different outcomes (1-5, 6-10 
and >10 falls)  

Conditional probabilities Correlation coefficient 

No treatment 

P(x>0), P(x>5|x>0) -0.05 

P(x>0), P(x>10|x>5) -0.05 

P(x>5|x>0), P(x>10|x>5) 0.17 

Treatment within trial 

P(x>0), P(x>5|x>0) -0.11 

P(x>0), P(x>10|x>5) 0.1 

P(x>5|x>0), P(x>10|x>5) 0.27 

Treatment after the trial 

P(x>0), P(x>5|x>0) -0.07 

P(x>0), P(x>10|x>5) 0.08 

P(x>5|x>0), P(x>10|x>5) 0.12 

 

4.5.1.2. The rate of falls derived from experts’ priors accurately represent their’ 

beliefs 

Section 4.2.2 explained that the method used to derive the rate of falls required predicting 

the probabilities of having 1, 2, 3, etc. falls, and that the derived probabilities of having at 

least one fall, more than five falls and more than ten falls may deviate from experts’ 

expressed beliefs. In order to assess whether such discrepancies existed, five experts from 

the sample were chosen at random, using the random number generator in R. For these 

five experts the elicited probabilities were compared with those predicted by the regression 

model in Equation 3.2. Details of the methods are described in section 4.2.6.1, while the 

results are shown in Table 4.14.  

Of the fifteen analysed priors (three priors from five experts), only three probabilities 

differed by more than two percentage points -these are highlighted in the table. The 

highest difference between predicted and elicited probabilities was 0.07 (or 7 percentage 

points); Expert 19 believed that the probability of falling between one and five times was 

0.217 (mean) whereas the predicted probability was 0.143.  
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Table 4.14. Elicited and predicted mean probabilities of 1-5, 6-10 and more than 11 falls 
(range) for five experts chosen at random. 

 P(1-5 falls) P(6-10 falls) P(>11 falls) 

Expert 11 

Elicited  
0.186 

(0.141-0.260) 
0.038 

(0.022-0.073) 
0.012 

(0.005-0.034) 

Predicted  
0.173 

(0.118-0.263) 
0.045 

(0.025-0.088) 
0.011 

(0.004-0.030) 

Expert 15 

Elicited  
0.267 

(0.201-0.360 
0.043 

(0.022-0.090) 
0.008 

(0.002-0.027) 

Predicted  
0.258 

(0.171-0.385) 
0.047 

(0.022-0.102) 
0.007 

(0.002-0.024) 

Expert 19 

Elicited  
0.217 

(0.201-0.250) 
0.010 

(0.009-0.011) 
0.007 

(0.007-0.008) 

Predicted  
0.143 

(0.132-0.166) 
0.026 

(0.024-0.031) 
0.004 

(0.004-0.005) 

Expert 34 

Elicited  
0.396 

(0.101-0.800) 
0.145 

(0.017-0.451) 
0.111 

(0.013-0.367) 

Predicted  
0.356 

(0.080-0.764) 
0.195 

(0.030-0.546) 
0.095 

(0.009-0.320) 

Expert 36 

Elicited  
0.166 

(0.101-0.300) 
0.042 

(0.021-0.108) 
0.012 

(0.004-0.043) 

Predicted  
0.161 

(0.090-0.310) 
0.045 

(0.022-0.11 ) 
0.011 

(0.004-0.040) 

 

Section 4.2.2 explained that two alternative methods for deriving rates were explored. The 

rates derived using the three different methods are presented in Table 4.15.  

When the probabilities for each number of falls are assumed to be decreasing, the direct 

method and predicted probabilities yields very similar results to those obtained using 

regression – the maximum difference in rates was 0.09 for Expert 34. Assuming an equal 

probability of all outcomes within a category resulted in higher rates than with the other 

two methods, as it assigned greater probability to higher number of falls within each 

category than the other two methods.  

 

 



154 
 

Table 4.15. Rates of falls derived using three different methods.  

 

Mean rate of falls derived using different methods 

Uniform 
distribution 

assumes across 
outcomes of the 
same category 

Decreasing 
probabilities 

assumed across 
outcomes of the 
same category 

Predicted 
probabilities of 
each outcome 

Expert 11 
0.89 

(0.59-1.54) 

0.74 

(0.47-1.28) 

0.73 

(0.47-1.28) 

Expert 15 
1.11 

(0.74-1.85) 

0.90 

(0.57-1.56) 

0.90 

(0.57-1.55) 

Expert 19 
0.79 

(0.63-0.91) 

0.56 

(0.52-0.65) 

0.50 

(0.46-0.58) 

Expert 34 
3.30 

(0.59 -9.12) 

2.73 

(0.46-7.7) 

2.82 

(0.45-7.76) 

Expert 36 
0.86 

(0.46-1.86) 

0.72 

(0.39 -1.61) 

0.71 

(0.38 -1.57) 

 

4.5.1.3. The treatment effect of the podiatry intervention is independent of the 

rate of falls and risk of fractures in patients who do not receive the 

intervention 

The correlation coefficients between conditional probabilities are shown in Table 4.16. 

The correlation coefficient between outcomes and the treatment effect ranged from -0.35 

to -0.06. The coefficient is always negative, indicating the higher the risk of falls and 

fractures, the lower the treatment effect. However, the coefficient is relatively low, 

indicating a weak correlation.  
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Table 4.16. Correlation between outcomes and the treatment effect on those outcomes.  

Treatment effect Correlation coefficient 

Within trial (after 1 year) 

RR for P(x>0) -0.21 

RR for P(x>5|x>0) -0.19 

RR for P(x>10|x>5) -0.32 

RtR -0.10 

OR for fractures -0.16 

Treatment effect after the 
trial 

RR for P(x>0) -0.28 

RR for P(x>5|x>0) -0.32 

RR for P(x>10|x>5) -0.35 

RtR -0.06 

OR for fractures -0.14 

 

4.5.1.4. Temporal change in the treatment effect is linear  

Section 4.2.6 described that the plausibility of the assumption that the rate of change in the 

treatment effect is linear was explored by observing the predicted treatment effect in those 

experts who believed the treatment effect would diminish, at time point t3 when they 

expected the treatment effect to diminish completely. The results are shown in Table 4.17. 

Twenty three experts believed the treatment effect on the rate of falls would diminish over 

time. Constant rate of depreciation led to a treatment effect between 0.8 and 1.2 in 6 of 

those 23 experts. Thirteen experts believed the treatment effect would diminish (TE = 1) 

before t3.  

Priors elicited from 8 experts suggested that the treatment effect on the risk of fractures 

would diminish. Constant rate of depreciation led to a treatment effect between 0.8 and 

1.2 in all 8 experts. However, none of the predicted treatment effects had reached 1 

(diminished completely) by that point, suggesting it would take longer for the treatment 

effect to diminish completely. 
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Table 4.17. Predicted treatment effect at t3 derived from priors that indicated the 

treatment effect would diminish over time.  

 N 0.8 < TEt3 < 1.2 TE diminishes by t3 

Rate ratio (falls) 23 6 13 

Relative risk (fractures) 8 8 0 

 

In addition, the implications of assuming a log-linear change in the treatment effect 

(derived using Equation 4.7 in section 4.2.5) were also explored. The annual change in the 

treatment effect ΔATE was then applied to the treatment effect, using Equation 4.11.The 

predicted treatment effect at t3 were judged to be implausibly high – for one expert who 

believed the treatment would increase the risk of fractures, and the treatment would 

potentiate over time, the predicted relative risk of fractures after 5 years was 3125. In 

another expert, who believed the treatment would decrease the risk of fractures, but the 

treatment effect would depreciate over time, the predicted relative risk of fractures after 

five years was 92. Since assuming a log change in the treatment effect led to predictions 

that were judged to be implausible, the change was assumed to be linear in the rest of the 

thesis.  

4.5.2. Visual evaluation of experts’ priors 

All priors were visually inspected to identify any features that could indicate that experts 

had difficulty completing the task. 

Experts’ used a range of shapes to express their beliefs. The number of bricks used varied 

from 1 to 80 and the shapes included uniform, bimodal, bell-shapes and skewed 

distributions.   

One expert provided a very narrow range for the non-domain seed, suggesting that 28 to 

30 days every September were rainy, and placed one chip in the 30-31 bin suggesting they 

were certain the number of rainy days every September (out of 30) was between 30 and 

31. The same expert provided a range of values for every question but only used one chip in 

every histogram suggesting they were disengaged. One additional expert completed all 

questions on the probabilities of falling, and provided ranges for the odds of fracture, but 

did not utilise the entire grid to express their uncertainty around the odds of fracture – they 

only placed one brick in each grid. 
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Four additional features were identified that could indicate that experts had difficulty 

completing the exercise: 

- Bimodal priors. While all distribution shapes are theoretically possible, bimodal 

distribution of the mean is unlikely, yet three experts used bimodal priors to 

express their beliefs. 

- Probability placed in bins outside the stated range. Experts were trained that the 

range should include values so that they believe that the quantity of interest is 

highly unlikely to be outside this range; placing bricks that represent relatively high 

probabilities outside their stated range could indicate that either the range or the 

histogram did not represent experts’ beliefs accurately. In the REFORM elicitation 

study 20 experts placed more than 0.05 probability outside their range, and 9 did it 

consistently, in more than three of their priors. 

- Mode close to the end of the range. An example of such distribution is shown in 

Figure 4.14, where Expert A placed the greatest number of chips in the first bin, 

suggesting that there was a 0.24 probability (18/76 chips) that the risk of falling at 

least once was between 0.072-0.076 and zero probability that it was any lower than 

0.072. It is difficult to judge when this is implausible – the chips represent blocks of 

probability, thus the sensitivity of the chips and bins methods is limited.  

- Very narrow range. For example, in Figure 4.14, Expert B expressed a very narrow 

range of patients who may suffer a fall – the risk of falling derived from their priors 

was between 3 - 4% (30/1000-40/1000). However, it is not clear how narrow a 

range is too narrow. 

Figure 4.14. Examples of priors on the risk of falling. The x-axis represents the number of 
people out of 1000 who may suffer a fall.  

 

Furthermore, experts’ internal consistency was measured by comparing the temporal 

change in the rate ratio and the relative risk of fractures derived from their priors with their 
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responses to MCQs about the same. The definition of internal consistency is provided in 

section 4.2.6.  

Table 4.18 shows the results. Experts’ priors on the risk of fractures were more likely to be 

consistent with their verbal responses, likely because it was a less complex parameter. Out 

of the 36 experts in the sample, 19 were consistent on both measures of treatment effect. 

Table 4.18. Experts’ internal consistency  

Experts’ beliefs about the 
treatment effect after the trial, 

expressed verbally in MCQs 
N 

Number of experts whose 
priors were inconsistent 

with their verbal 
responses 

Number of 
experts whose 
priors were not 

inconsistent 
with their 

verbal 
responses 

Rate ratio 

(N=36) 

Relative risk 
of fractures 

(N=32) 

The effect of the intervention is 
most likely to stay the same 
although the expert is not certain. 

1 1 0 0 

The intervention is most likely to 
become less effective over time. 

31 8 8 18 

The intervention is most likely to 
become more effective over time. 

2 1 0 0 

The intervention effect is likely to 
change over time, but the expert is 
not certain whether it will get 
more or less effective. 

2 1 0 1 

Total 36 11 8 19 

4.6. Summary  

This chapter provided an overview of the results of the elicitation exercise, conducted as 

part of the REFORM elicitation study. The chapter had four objectives: 

- To describe how experts’ elicited quantities were used in the analysis; 

- To describe the sample of experts who took part in the elicitation; 

- To give an overview of what experts’ priors suggest about their beliefs; 

- To evaluate the elicited priors, and the methods used to analyse them. 

Section 4.2 describes how the parameters required in the cost-effectiveness analysis 

(Chapter 6) were derived from experts’ elicited quantities, given the indirect elicitation 

methods employed in the study (objective 1). Section 3.6 in Chapter 3 has highlighted that 
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it is not clear whether the employed methods were optimal for eliciting the required 

parameters – they were chosen because they were considered more intuitive for experts 

than direct elicitation of the treatment effect and the change in the treatment effect. 

Section 4.3 described the sample of experts who took part (objective 2). Overall the sample 

size was relatively large (n=41, compared to the average sample size of 8.83 in CEDM 

(Soares et al., 2018)) and within the target set out in Chapter 3. Experts from all targeted 

professions were recruited, although the sample of academics was small (n=1), likely 

because of a smaller pool of experts available to recruit from. One additional expert who 

was not in the listed occupations was recruited on recommendation – they had experience 

in fall prevention in a specific patient subpopulation.  

Section 4.4 gave an overview of what experts’ priors suggest about their beliefs (objective 

3). Experts predominantly thought that the podiatry intervention in the REFORM trial would 

be effective, and that the treatment effect would diminish over time, although there was 

some variation between experts.  

The accuracy of the reported priors is analysed and discussed in Chapter 5, but their 

coherence and internal consistency were assessed in section 4.5.2. The results were varied - 

internal consistency in priors on P(fracture|fall) was better than in the priors on the rates of 

falls, possibly because it was a simpler parameter to elicit - the change in the rate ratio was 

derived from nine elicited priors compared to the change in the risk of fractures that was 

derived from three priors. Incoherence and inconsistency in priors are likely to be a 

common challenge when elicitation is delivered remotely, Chapter 6 explores the effect of 

including inconsistent experts in the aggregate prior. 

Section 4.5.1 evaluated the assumptions imposed by the elicitation methods: 

1. Independence between conditional probabilities; 

2. The rate of falls derived from experts’ priors accurately represent their’ beliefs; 

3. Independence between the treatment effect of the podiatry intervention and the 

baseline rate of falls and risk of fractures; 

4. Linear change in the treatment effect. 

The outlined assumptions can affect the validity of the results – if the assumptions do not 

hold, then the derived probability distributions of the rate of falls, the treatment effect, and 

the change in the treatment effect don’t represent experts’ uncertainty, their score’s don’t 

represent their accuracy, and any effect of experts’ characteristics on their scores is invalid. 
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The analysis found no evidence that assumptions 1-3 were implausible – there was no 

correlation between experts’ assessments of conditional probabilities (section 4.5.1.1), no 

correlation between baseline falls and fractures and the treatment effect (section 4.5.1.3), 

and the methods for deriving the rate of falls predicted similar probabilities of falling 1-5, 6-

10 and more than 11 times to those suggested by experts (section 4.5.1.2).  

The plausibility of assumption 4 is less clear. In section 4.5.1.4 a linear diminishing effect of 

the treatment effect was applied to the risk of fractures elicited from 8 experts, whose 

priors suggested that the treatment effect would diminish. All eight predicted treatment 

effects at time t3 were between 0.8-1.2 suggesting that the linear change was a plausible 

assumption. For the rate ratio the 26 experts believed that the treatment effect would 

diminish. Predicted treatment effect at time t3 was between 0.2 and 1.2 in only six of those 

26 experts. The majority of priors (13) suggested that the treatment effect would diminish 

before t3. 
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Chapter 5. Exploring factors that 
motivate experts priors: results of the 
REFORM elicitation study 

5.1. Introduction 

Chapter 2 identified four factors that have been proposed to affect the accuracy of experts’ 

priors in the literature: field-specific knowledge and experience (substantive expertise), 

their perspective, their ability to express their beliefs in the required format (normative 

expertise), and their ability to make accurate probabilistic assessments of their uncertainty. 

When experts’ priors are aggregated mathematically, the investigator can weight priors 

elicited from individual experts if they believe that some experts should contribute more 

towards the overall prior. 

In Chapter 2, two general approaches for deriving weights were identified: 1) based on 

experts’ observed characteristics and 2) based on their measured performance in 

elicitation. Both aim to improve the accuracy of the aggregate prior but they differ in the 

way that they capture experts’ ‘contribution’. Chapter 2 also highlighted that both methods 

were associated with limitations, and their effectiveness in improving the accuracy of the 

aggregate prior is uncertain. 

Chapter 3 described the protocol of the REFORM elicitation study, designed to compare 

different weighting methods, while Chapter 4 provided an overview of the results of the 

elicitation exercise. This chapter uses the results of the study to explore factors that affect 

experts’ priors.  

In particular, the following three objectives were set in this chapter: 

1) To score experts’ priors; 

2) To define the characteristics to be used as proxies for the factors believed to affect 

experts’ priors in the REFORM elicitation study: substantive expertise, perspective, 

normative expertise, and the ability to make accurate probabilistic assessments. 

3) To explore whether the identified characteristics explain variation in priors elicited 

from different experts. 
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The findings can be used to determine what is captured by different weighting methods 

and how these methods should be applied. For example, if priors are predominantly 

affected by experience (substantive expertise and perspective) then weights should be 

either based on characteristics (in particular substantive expertise) or experts’ performance 

on domain seeds so that scores reflect experts’ experience with the target variable. If, 

however, they are predominantly affected by expert’ ability to make accurate probabilistic 

assessments, then performance-weighting may be preferred, and seeds may not have to be 

domain specific. Furthermore, understanding factors that affect experts’ priors can resolve 

methodological uncertainties in other steps of the elicitation process, such as how to define 

experts for elicitation, i.e. what type of experience improves their accuracy. 

Section 5.2 describes the methods employed to achieve the objectives of the Chapter and 

sections 5.3 - 5.5 analyse the results. Section 5.3 shows experts’ scores, section 5.4 provides 

an overview of experts’ characteristics and section 5.5 then explores whether variation 

between priors elicited from different experts is explained by the captured characteristics. 

Section  5.6 then summarises the findings. 

5.2. Methods 

Section 5.1 set out three objectives for this Chapter. Sections 5.2.1 – 5.2.3 describe the 

methods used to achieve each objective, in turn.  

5.2.1. Scoring experts’ elicitation performance 

In total, 13 seeds were used to assess experts’ performance: one non-domain seed 

regarding rainfall in York and the following 12 domain seeds: 

1) Elicited P(x>0) in control arm, 

2) Elicited P(x>5|x>0) in control arm, 

3) Elicited P(x>10|x>5) in control arm, 

4) Rate of falls in control arm, derived from experts’ priors on 1-3, 

5) Elicited odds of having a fracture, 

6) Derived P(fracture|fall) derived from experts’ priors on 5, 

7) Relative risk of Elicited P(x>0), P(x>5|x>0), P(x>10|x>5), 

8) Odds ratio for fractures, 

9) Rate of falls ratio, 

10) Relative risk of fractures, 
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The rationale for the use of each seed and the methods used to derive them were discussed 

in Chapter 4. This section describes the scoring methods, by discussing how the reference 

values of each seed were obtained (section 5.2.1.1), how the scoring methods were 

selected (section 5.2.1.2), and how the scores were derived (sections 5.2.1.3 and 5.2.1.4). 

5.2.1.1. Reference values of the seeds 

The reference value of the non-domain seed, to which experts’ priors were compared, was 

the average number of rainy days in September recorded by the Met Office between 1980 

and 2010, at the Lynton-on-Ouse weather station. The reference values of the domain 

seeds were observed in the REFORM trial. 

In order to take into account the uncertainty surrounding the value of each seed, 

parametric probability distributions were fitted to the observed data. The observed values 

of each seed and their fitted distribution are shown in Table 5.1. 

Table 5.1. Probability distributions fitted to each trial outcome. Methods for deriving RR, 

RtR and OR are described in Chapter 4.  

Parameter Observed value (95% CI) 
Probability distribution of 

trial outcome 

P(x>0) 0.585 (0.542-0.627) Beta (nx>0, nx=0) 

P(x>5|x>0) 0.088 (0.058-0.122) Beta (nx>5, n0<x<6) 

P(x>10|x>5) 0.192 (0.068-0.361) Beta (nx>10, n5<x<11) 

Rate of falls 1.57 (1.366-1.777) Gamma (μ2/σ2, σ2/ μ) 

Odds of fracture 55.9 (42-71) Poisson (odds) 

P(fracture|fall) 0.018 (0.010-0.027) Beta (nf>0, nf=0,x>0) 

Risk ratio for P(x>0) 0.915 (0.819-1.022) N (log(RR), σRR/√𝒏) 

Risk ratio for P(x>5|x>0) 1.014 (0.594-1.733) N (log(RR), σRR/√𝒏) 

Risk ratio for P(x>10|x>5) 1.809 (0.688-4.754) N (log(RR), σRR/√𝒏) 

Rate of falls ratio 0.906 (0.818-1.003) N (log(RtR), σRtR/√𝒏) 

Odds ratio for fractures 0.751 (0.364-1.550) N (log(OR), σOR/√𝒏) 

Risk ratio for fractures 1.679 (0.569-2.790) N (log(RR), σRR/√𝒏) 
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nx>0 = number of patients who fell at least once; 

nx=0 = number of patients who did not fall; 

nx>5 = number of patients who fell more than five times 

n0<x<6 = number of patients who fell 1-5 times; 

nx>10 = = number of patients who fell more than ten times; 

n5<x<11= number of patients who fell 6-10 times; 

nf>0,x>0 = number of patients who had a fracture; 

nf=0,x>0 = number of patients who fell but did not have a fracture. 

5.2.1.2. Choosing the scoring methods 

Chapter 2 suggested that the optimal scoring method depends on the type of parameter 

used (discrete or continuous), whether precision in priors is desirable, and the certainty 

with which the seed is known. All seeds elicited in the REFORM elicitation study are 

continuous or ordinal (number of rainy days) variables. Experts’ were asked to assess the 

outcomes of a clinical trial; it was assumed that they could not know the value of the seed 

with more certainty than that derived from the trial results, and so the scoring method 

needed to penalise overconfidence. Finally precision was judged to be an important 

indicator of experts’ performance, and so the scoring method needed to penalise 

imprecision. In Chapter 2 (Table 2.9 in section 2.4.3.2) KL scores were proposed to penalise 

uncertainty, overconfidence, and can be used on continuous variables, and so they were 

utilised in this chapter.  

Chapter 2 proposed that experts’ performance depends on their bias and precision. While 

the KL score is affected by both it does not reflect specific characteristics of priors. 

Secondary measures of bias and precision were thus used to understand what determined 

experts’ scores.  

The next two sections describes how KL scores and the secondary measures of bias and 

precision were derived. 

5.2.1.3. Deriving KL scores 

Chapter 2 (section 2.2.2) described the methods for deriving KL scores. To summarise, the 

scores are derived using Equation 5.1 (copy of Equation 2.1 in Chapter 2) (Cooke, 1991). 
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𝐼(𝑆, 𝑃) =  ∑ 𝑆(𝑖)𝑙𝑛
𝑆(𝑖)

𝑃(𝑖)

𝑀

𝑖=1

 Equation 5.1 

Where 𝑖 is one of M outcomes, 

 𝑆(𝑖) is the observed probability of 𝑖, 

𝑃(𝑖) is the expert’s probability of 𝑖. 

In the Classical Model each 𝑖 represents a seed question for which a point estimate is 

observed. In this chapter, in order to account for seed uncertainty, 𝑖 represents an interval 

of the possible values of the seed.  

The width of the intervals compared could affect experts’ scores. Wide intervals could fail 

to capture subtle differences in experts’ performance, and so the lowest possible bin width 

was chosen as the 𝑖 for each parameter.  

For the non-domain seed, 𝑖 was the number of rainy days so that M=31, and 𝑖 Є 

{0,1,2,…,30}. The probabilities that an expert placed on each 𝑖 were then compared to the 

integral of the beta distribution between two values – for example, the integral between 0 

and 1 days (0 and 1/30), 1 and 2 days (1/30 and 2/30) and so on. 

When the proportion of fallers were scored, 𝑖 was the number of patients out of 1000 (or a 

proportion of 0.001) so that M=1000 and 𝑖 Є {0, 0.001, 0.002,…,1} 

Intervals for the probabilities elicited in the control arm were probabilities of 0.001 and for 

odds they were 1, as these was the narrowest possible bin width for those quantities. The 

treatment effect was derived from elicited priors on the control and treatment arms, and 

so there was no minimum bin width that could be used as an interval. Several different 

interval widths were tested and width of 0.01 was chosen for the analysis as it gave the 

most reasonable number of intervals (20-406) for which probabilities could be compared.  

When the interval of parameter values was narrower than the expert’ bin width, a uniform 

distribution across the bin width was assumed. Uniform distributions were chosen instead 

of fitting parametric probability distributions because fitting was likely to lead to varied 

goodness of fit across priors. If fitting affected the scores of some priors more than others, 

then the resulting scores would have been less representative of that experts’ 

performance, potentially biasing the results of the analysis.  
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 The KL scores can be difficult to interpret. In order to gain insight into how much experts’ 

accuracy varied between different seeds, for each domain seed a prior that scored close to 

the mean KL score for that seed was identified. The selected priors were then compared 

qualitatively by plotting them (and the observed value of each seed) in a histogram and 

noting any differences between them.  

5.2.1.4. Methods for scoring experts’ bias and precision 

As described in Chapter 2, experts’ priors vary in bias and precision, where bias refers to a 

tendency for experts’ priors to be consistently higher or lower than the observed relative 

frequency, whereas precision refers to experts’ certainty about their priors. In order to 

understand what drives experts’ KL scores, their bias and precision were measured using 

CICP scores. Chapter 2 highlighted that CICP scores represent the proportion of the 

observed probability distribution that experts’ place positive probability on (see section 

2.2.2 in Chapter 2 for details), while CICP precision scores represent the probability that 

experts place on the observed probability distribution (see section 2.4.3 in Chapter 2). The 

implications of different combinations of scores are shown in Table 5.2. 
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Table 5.2. Implications of different combinations of CICP accuracy and CICP precision 

scores. 

 CICP precision score 

High Low 
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  Unbiased, precise 

 

  Unbiased, imprecise 
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  Unbiased, overconfident 

 

  Biased, overconfident 

 

 

5.2.2. Defining the proxies for the factors proposed to affect 

experts’ priors 

Chapter 2 suggested that experts’ priors are affected by: 

- Substantive expertise, 

- Perspective, 

- Normative expertise, 

- Their ability to make accurate probabilistic assessments. 
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The interaction between these four factors is shown in Figure 5.1; the definition of each 

factor and the interactions between them were discussed in Chapter 2 (section 2.3).  

Figure 5.1. Venn diagram showing the interaction between different factors believed to 

affect their priors. (Copy of Figure 2.3 in Chapter 2).  

 

The reform elicitation study explored characteristics that can be used as proxies for each of 

these factors, in order to understand to what extent they influence experts’ elicitation 

performance. Sections 5.2.2.1 - 5.2.2.4 described the methods for measuring each of the 

four factors. 

5.2.2.1. Substantive expertise 

As outlined in Chapter 3, substantive expertise was measured using information on experts’ 

professional experience, collected as part of the REFORM elicitation study. As described in 

Chapter 3 (section 3.4.1) the following characteristics were recorded: 

1) Role, recorded in free text. 

2) Research experience determined by two categorical variables: the number of 

publications (0-3, 4-20, 21-50, or more then 50) and the number of successful 

research grant proposals co-written (0, 1-5, more than 5). 

3) Time spent with patients who are at an increased risk of falling, either helping them 

prevent falls or treating fall related injuries. Experts indicated whether they spent 

less than 10%, 10-30%, 30-50% or more than 50% of their time with the relevant 

patient population. 
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4) Awareness of research into podiatry interventions designed to reduce the risk of 

falls in the elderly (yes/no). 

Points 1) and 2) were used to reflect experts’ experience or seniority, while 3) and 4) 

reflected how specialised they are in the field of falls prevention. 

5.2.2.2. Perspective 

Experts’ perspective was determined by their profession indicated in the MCQ prior to the 

elicitation exercise. The perspectives thus included: physiotherapists, geriatricians, nurses 

and occupational therapists, and academics. 

5.2.2.3. Normative expertise 

Chapter 4 evaluated experts’ priors and identified five possible indicators that experts’ 

lacked normative expertise: bimodal priors, chips in bins outside the stated range, mode 

close to the end of the range, very narrow ranges and internal inconsistency, defined as 

inconsistency of experts’ priors on the treatment effect after the trial with their verbal 

responses (in MCQs) about the same. 

Three of these characteristics were used as indicators of normative expertise: 

- Bimodal priors. While all distribution shapes are theoretically possible, a bimodal 

distribution of the mean is unlikely and so they were used as an indicator of a lack 

of normative expertise.  

- Chips in bins outside the stated range. While probabilities outside the stated range 

are not statistically incoherent, experts were trained that the range should include 

values so that they believe that the quantity of interest is highly unlikely to be 

outside this range. Placing bricks that represent more than 5% of their probability 

outside their stated range suggested that either the range or the histogram did not 

represent experts’ beliefs accurately, and so it was used as an indicator of a lack of 

normative expertise. 

- Internal consistency. A lack of internal consistency indicates that experts’ priors do 

not represent their beliefs. The definition is described in detail in section 4.2.6 in 

Chapter 4. 

Experts were classified as normative or not normative depending on whether they 

exhibited the above characteristics or not. 
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Mode close to the end of the range and very narrow ranges were not used to define 

normative expertise as it was difficult to determine a precise definition of implausible priors 

using the described features – for example, it is not clear how narrow a range is implausibly 

narrow.  

5.2.2.4. Ability to make accurate probabilistic assessments 

As outlined in Chapter 3, experts’ ability to make accurate probabilistic assessments was 

based on their prior on the non-domain seed. Details on the non-domain seed were 

provided in section 3.4.3. Experts’ priors were scored using CICP scores, penalising only 

experts who were biased and overconfident. For details on how to derive CICP scores, see 

section 2.2.2 in Chapter 2. 

5.2.3. Exploring the relationship between experts’ characteristics 

and their priors 

The aim of this chapter was to measure the extent to which each of the four factors 

affected experts’ accuracy in elicitation. 

The effect of experts’ characteristics was explored using two types of seeds: non–domain, 

about the number of rainy days in York, and 12 domain seeds about REFORM trial 

outcomes. For each type of seed different characteristics were used to reflect the factors 

believed to affect their priors. Sections 5.2.3.1 and 5.2.3.2 describe the methods for 

measuring the effect of experts’ characteristics on their priors on non-domain and domain 

seeds in turn. 

5.2.3.1. Exploring factors that affect experts’ priors on the non-domain seed 

The non-domain seed question was ‘Out of 30 days in September, how many days does it 

rain in York, on average?’  

The effect of three characteristics on experts’ priors on non-domain seeds were explored: 

- Normative expertise, measured using statistical coherence and internal 

consistency, as described in the previous section. 

- The ability to draw inference, measured using the inference section from the 

Glacier Watson (GW) test for adaptive reasoning (see section 3.4.3 in Chapter 3 for 

details). 

- Location of recruitment 
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The ability to draw inference is one of the requirements for accurate probabilistic 

assessment and so it was important to ascertain if this characteristic can be used as a proxy 

for it. 

Location of recruitment was used to reflect experts’ substantive expertise and perspective. 

While the aim was to use a seed independent of their field of expertise (fall prevention), 

some experts may be more familiar with York weather than others and so can be 

considered either to be more substantive, or to have a perspective resembling the elicited 

parameter more closely. In order to take into account this potential variation in substantive 

expertise and perspective, experts’ venue of recruitment was noted, and priors elicited 

from experts who were recruited in the Y&H region were compared to those elicited from 

experts recruited elsewhere. 

Including expert’ normative expertise, GW inference scores and their venue of recruitment 

meant that the effect of three characteristics was explored. Two of those were binary 

(region of recruitment and normative expertise) and one was ordinal (GW inference scores 

could take values between 0 and 4). Given the relatively small sample size (target sample 

size was 30-50), the GW test scores were converted into a binary variable of scores ranging 

0-2 and 3-4. The effect of using different cut-offs was explored in a sensitivity analysis. 

With an unlimited sample size the comparison would be performed using regression 

analysis where the calibration score would be the independent variable and each 

characteristic would be an independent variable. However, the sample size in the REFORM 

elicitation study was unlikely to afford sufficient power to detect the effect of each 

characteristic using regression analysis. If each of the three factors thought to affect 

experts’ priors were represented using one binary variable, there would be 8 (23) possible 

combinations of characteristics to compare. In a sample of up to 50 experts (as was the 

target population size in the REFORM elicitation study) there would be, on average, up to 

6.25 (50/8) experts with each combination of characteristics. This is a relatively small 

sample size and regression analysis would be unlikely to detect any statistically significant 

results. 

Instead, a stepwise approach was used to observe the effect of specific characteristics on 

experts’ scores and patterns of belief. Experts with a specific set of characteristics were 

grouped together and their mean score was derived. In each step, a different set of 

characteristics was compared. Comparison of individual characteristics does not lead to 

conclusive results as any variation in scores could be confounded by other characteristics. 
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For example, if substantive experts also tend to be more normative, then comparison of 

scores between substantive and not substantive and normative and not normative experts 

could lead to the same conclusion but it cannot be said which of the two caused the 

difference. Interaction between different characteristics can further complicate analysis – 

for example, the effect of normative expertise can depend on experts’ substantive 

expertise. Comparison of individual characteristics and combinations of characteristics in a 

stepwise manner allowed exploration of characteristics that consistently led to higher or 

lower scores. 

The comparison of three binary characteristics resulted in 8 combinations of characteristics 

in total and 7 possible comparisons as shown in Figure 5.2. 

Figure 5.2. Venn diagram showing possible combinations of experts’ characteristics and 

resulting comparisons in the analysis. 

 

A=substantive, not normative, GW test score below 3; B=substantive, normative, GW test 

score below 3; C= Substantive, normative, GW test score 3-4; D=substantive, not 

normative, GW test score 3-4; E= not substantive, normative, GW test score below 3; F= 

not substantive, normative, GW test score 3-4; G= not substantive, not normative, GW 

test score 3-4; H= not substantive, not normative, GW test score below 3. 

 

In the analysis, all seven comparisons in the table in Figure 5.2 were explored in two steps: 

- The Kruskal-Wallis test was used to detect whether differences in scores between 

groups were statistically significant. The Kruskal-Wallis test of statistical significant 

was used as it is the recommended test for non-parametric comparison of 3 or 

more groups in statistical literature (Corder and Foreman, 2009).  
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- Mean scores for all experts with similar characteristics were compared by visual 

inspection. Visual comparison was used because the sample size was unlikely to be 

sufficiently large to spot a statistically significant difference, as discussed earlier in 

this section, yet the results could still provide a useful insight into factors that 

affected experts’ priors. 

Visual inspection involved identifying any characteristics that consistently led to higher or 

lower scores. For example, with reference to Figure 5.2, if substantive expertise (A,B,C,D) 

scored higher than non-substantive experts (E,F,G,H), the effect of substantive expertise in 

other comparisons was observed – e.g. whether AD (substantive and normative) experts 

also score higher than EF (not substantive but normative) and BC (substantive but not 

normative) higher than GH (not substantive and not normative), and so on.  

5.2.3.2. Exploring factors that affect experts’ priors on the domain seeds 

The effect of the four characteristics on experts’ priors on domain seeds were explored: 

substantive expertise, perspective, normative expertise, and their ability to make accurate 

probabilistic assessments. The methods for capturing each factor were described in section 

5.2.2. 

The effect of experts’ characteristics on their priors was explored in two stages. Stage 1 

involved measuring the effect of substantive and normative expertise, and accuracy of 

probabilistic assessments. The role of perspective was not explored in stage 1 as it was not 

clear which professionals were the most familiar with the elicited parameter; in other 

words, it was not possible to determine whether experts represent areas B, F, J and N, or 

areas C, G K and O in Figure 5.1. Stage 2 then compared priors elicited from different 

professionals to explore the extent to which experts’ perspective affected their priors. Each 

stage is described here in further detail. 

Stage 1: The effect of substantive and normative expertise, and accuracy of probabilistic 

assessment on experts’ priors 

The REFORM elicitation study collected information about four categorical variables that 

defined experts’ substantive expertise (see section 5.2.2.1 for details), leading to a 

minimum of 14412 possible combinations of characteristics. This number increased to 576 if 

                                                             
12 A minimum of two types of role, three categories of publications, three categories for experience 
in research grant proposal writing, four categories for the amount of working hours spent with target 
patient population and two categories for awareness of research into podiatry interventions for fall 
prevention. 2x3x3x4x2=144 
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normative expertise and the ability to make accurate probabilistic assessments were taken 

into account. The final sample size in the REFORM elicitation study was 41 (as reported in 

Chapter4), and so it was likely to be too small to detect the effect of all six variables, and 

interactions between them. Instead, the information collected was used to classify experts 

as substantive or not substantive, normative or not normative and accurate or inaccurate 

when making probabilistic assessments. 

Normative expertise was a binary variable, as described in section 5.2.2.3. 

In order to derive a binary variable for substantive expertise, first experts’ role, research 

experience and patient contact were simplified into binary variables, as follows: 

- Experts’ role was categorised as Level 1 and Level 2, where Level 2 included 

specialist clinical roles such as consultant geriatricians, and other healthcare 

professionals specialising in fall prevention, and Level 1 included clinicians who do 

not have a specialist role, such as physiotherapists without a speciality and trainee 

geriatricians. 

- Research experience was simplified into ‘research experience’ and ‘no research 

experience’. 

- Patient contact was defined as less than or more than x% of time spent with the 

stated patient population. 

This resulted in 16 possible combinations of characteristics, represented by letters A-P in 

Figure 5.3. Experts were then classified as substantive if they were in a Level 2 role, had 

research experience, spent over x% of their time with the relevant patient population and 

were aware of research into podiatry interventions designed to reduce the risk of falls, 

represented by the area F in Figure 5.3. The exact definition of research experience and the 

time spent with patients were determined in the analysis based on the sample, to ensure at 

least six experts in the sample satisfied all four criteria, possessed normative expertise and 

made accurate probabilistic assessments. Six was chosen to represent a sample of 

substantive experts that may be recruited for an elicitation exercise, considering that the 

average sample size in elicitation in HTA was 8.83. (Soares et al., 2018) 
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Figure 5.3. Venn diagram showing interaction between different measures of experience 

and speciality. 

 

The accuracy of experts’ probabilistic assessments was converted into a binary variable by 

classifying experts whose CICP score on the domain seed was less than 0.5 as inaccurate, 

and those whose score was higher than 0.5-1 as accurate. 

In the analysis the mean score derived from experts who were substantive, normative and 

made accurate probabilistic assessments were compared to those who were not – i.e. by 

comparing the average score for experts in area C in Figure 5.4 to the average score of 

experts in all other areas.  

Figure 5.4. Skills explored in the first stage of the analysis.  
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The effect of experts’ skills was first compared using: 

- Experts’ mean KL scores for all domain seeds, 

- Experts’ mean KL scores for seeds on trial outcomes in control arm only, 

- Experts’ mean scores for seeds on the treatment effect only, 

- Experts’ KL scores non-domain seeds. 

It is important to note that definitions of categories (e.g. characteristics that define 

substantive expertise) may affect the findings. Sensitivity analysis was conducted to explore 

whether changing the definition of substantive expertise and accuracy of probabilistic 

assessments affected the KL scores. The definitions explored in the sensitivity analysis are 

shown in Table 5.3. 

Table 5.3. Definitions of expertise explored in the sensitivity analysis. 

Factors believed to affect 
experts’ priors 

Characteristic used to 
reflect each factor 

Sensitivity analysis  

Substantive 
expertise 

Experience 

Seniority level 
Exclude the variable from 

the definition of substantive 
expertise 

Research experience 
(more than three 
publications or at least one 
successful research grant 
application) 

Vary the number of 
publications that define 

research experience 

Speciality 

 

Time spent with patients 

Vary the proportion of time 
spent with patients for an 
expert to be considered 

specialised 

Awareness of research 
Exclude the variable from 

the definition of substantive 
expertise 

Normative expertise Statistical coherence None (binary variable) 

Ability to make accurate 
probabilistic assessments 

Non-domain seed score 
Change the score required 

for an expert to be 
considered ‘accurate’ 
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Stage 2: The effect of experts’ perspective on their scores  

Stage 2 of the analysis compared mean scores derived from experts in each individual 

profession. The results were used to assess whether the effect of experience, normative 

expertise and accuracy in elicitation were affected by experts’ perspective. 

As described in Stage 1, the analysis was performed on all domain seeds combined, as well 

as on outcomes in patients who do not receive the intervention, and the treatment effect 

separately. 

5.3. Results: experts’ scores 

This section compares experts’ scores for each seed. The scores for the probabilities of 

falling and the rate of falls include 41 experts, while those on the odds and probability of 

fractures include 37 experts, as the chips and bins grid for the odds of fractures failed to 

show for 4 experts (as outlined in section 4.3.1 in Chapter 4).  

First, section 5.3.1 shows the KL scores, then 5.3.2 shows and analyses the CICP scores. 

5.3.1. KL scores for different seeds 

KL scores represent the discrepancy between two probability distributions, where the lower 

the score the lower the discrepancy (i.e. the more accurate the expert) (Kullback and 

Leibler, 1951). 

Experts’ KL scores for different seeds are summarised in Table 5.4. All parameters scores in 

the control arm were higher than the treatment arm, indicating that the experts were less 

accurate when assessing baseline probabilities (retrospective domain seeds). Out of the 

three probabilities of falling in the control arm, experts were the most accurate on the 

probability of falling more than ten times – the mean score for all experts was 0.1995 in 

comparison to scores 4.681 and 3.673 on the risk of falling and the probability of falling 

more than five times, respectively. This contrasts with the general literature suggesting 

experts are less accurate when predicting rare events.  

Experts were less accurate (higher KL scores) on the directly elicited parameter (P(x>0, 

P(x>0|x>5), P(x>5|x>10) and odds of fracture) than they were on the indirectly elicited ones 

(rate of falls, P(fracture|fall) and the treatment effect) – their mean KL score on the directly 

and indirectly elicited parameters were 4.078 and 1.963, respectively. 
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Table 5.4. KL scores for each seed. 

Seed Mean KL score (range) 

Non-domain 
seed 

Number of rainy days 1.814 (0.078-3.986) 

Seeds regarding 
outcomes in 
control arm 

P(x>0) 4.681 (1.82-5.391) 

P(x>5|x>0) 3.673 (0.158-5.684) 

P(x>10|x>5) 1.995 (0.233-4.19) 

Rate of falls 2.065 (0.154-2.917) 

Odds of having a fracture after a fall 5.962 (0.807-6.474) 

P(fracture|fall) 6.184 (0.9-6.963) 

Seeds regarding 
outcomes in 
treatment 
effect 

Risk ratio for P(x>0) 1.995 (0.071-2.913) 

Risk ratio for P(x>5|x>0) 0.895 (0.074-2.916) 

Risk ratio for P(x>10|x>5) 1.059 (0.055-2.524) 

Rate of falls ratio 1.815 (0.089-4.136) 

Odds ratio for having a fracture after 
a fall 

0.702 (0.065-2.878) 

Relative risk for the probability of 
fractures 

0.987 (0.052-2.914) 

 

Priors on the odds of fractures, and the probability of fractures conditional on falling, and 

odds ratio and relative risk for fractures were derived from the same priors. The scores on 

these seeds are similar, although not identical (5.962, 6.184 for odds and probabilities and 

0.702, and 0.987 for OR and RR), suggesting that the format in which priors are elicited can 

affect experts’ perceived performance. Scores on odds and the odds ratio were better 

(lower) than on the P(fracture|fall) and the relative risk of fractures (5.962 and 0.702 for 

odds compared to 6.184 and 0.987 for probabilities). 

The odds and probabilities of fractures were the least accurate of all seeds.  

Experts’ priors on the treatment effect were consistently lower (the priors were more 

accurate) than on outcomes without treatment, and are comparable to their scores on the 

number of rainy days in York. There is no apparent difference in the scores when the 

treatment effect was elicited conditional on the mode outcome without treatment (risk 

ratios for P(x>5|x>0), P(1x>5|x>0) and P(1x>10|x>5)), and those elicited conditional on the 
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probability distribution of outcomes without treatment (odds ratio and relative risk of 

fractures).  

Section 5.2.1.3 highlighted that the differences in KL scores across different seeds are 

difficult to interpret if the seeds are not measured on the same scale. In order to gain 

insight into how much experts’ accuracy varied between different seeds, for each domain 

seed, a prior that scores close to the mean KL score for that seed was identified.  

Figure 5.5 shows the selected priors in comparison to the probability distribution of the 

seed against which they were scored.  

The priors on the odds and the risk of fractures - on which the experts attained the highest 

(worst) scores (5.962 and 6.184, respectively) - did not overlap with the observed 

probability distribution. The remaining scores appear to be correlated with the uncertainty 

in the value of the seed. For example, the priors on the risk of more than five and more 

than ten falls appear to have comparable distance from the observed value of those seeds, 

however there is less uncertainty around the observed value of the risk of falling more than 

five times, and so there is a greater disparity between the probability density of experts’ 

prior and the observed value, than there is for the risk of falling more than ten times. A 

similar pattern follows for all seeds. Experts were more accurate on the treatment effect 

than on the control arm outcomes, and there is more uncertainty in the former. 
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Figure 5.5. Examples of priors that achieved mean scores for each domain seed. The 

histogram represents experts’ priors whereas the line represents the probability 

distribution of the seed value. 
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5.3.2. CICP scores 

Chapter 2 proposed that experts’ performance depends on their bias and precision. While 

KL score captures all three, it does not determine what is driving the score. CICP accuracy 

and precision scores were thus used to understand what motivates experts’ scores, as 

described in section 5.2.1. The results are shown in Table 5.5.  

As discussed in section 5.2.1, KL scores can take values between 0 and infinity, and the 

lower the KL score the lower the discrepancy between experts’ priors and the observed 

probability distribution. CICP scores can take any value between 0 and 1, and in contrast to 

KL scores, it is assumed that the higher the CICP precision score, the more precise the 

expert is, as the score represents the probability that experts’ placed on the 95% 

confidence interval of the observed probability distribution. Similarly, the higher the CICP 

accuracy score, the less overconfident they are, as the score represents the proportion of 

the observed probability distribution included in their prior.  

CICP precision scores were lower for the baseline outcomes (falls and fractures without 

treatment) than they were for the treatment effect – the average CICP score for all baseline 

outcomes was 0.183, compared to 0.500 for the treatment effect. Similar is the case for 

CICP accuracy scores – experts scored 0.338 on baseline parameters compared to 0.565 on 

the treatment effect. 

The lower CICP accuracy and precision scores suggest that experts were both more biased 

and overconfident on the parameters regarding outcomes without treatment, compared to 

those regarding the treatment effect. 

It is important to note that CICP and KL scores are not perfectly correlated; for example, 

CICP scores on P(x>5|x>0) (0.254 and 0.37) were higher than those on P(x>0) (0.026 and 

0.214) indicating the experts were less biased and overconfident, yet the mean KL score for 

on P(x>5|x>0) was worse than the KL score for P(x>0) (KL scores were 5.062 and 4.681, 

respectively). This can occur if experts were unbiased, and include all observed values in 

their prior, but their probability is concentrated on a small range of values, leading to a high 

discrepancy between the priors and the observed probability distribution and consequently 

a worse KL score. 
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Table 5.5. Secondary measures of performance for each seed. Rates and proportion of 

fractures conditional on falling were not assessed for coherence as they were not elicited, 

but derived from elicited priors. RR=risk ratio; OR=odds ratio. 

Seed 
KL scores 
(range) 

Mean CICP 
precision 

scores (range) 

Mean CICP 
accuracy 

scores (range) 

Non-
domain 
seed 

Number of rainy 
days 

1.814 (0.078-
3.986) 

0.562 (0-1) 0.527(0-0.997) 

Domain 
seeds: 
falling and 
fractures 
without 
treatment 

P(x>0) 
4.681 

(1.82-5.391) 

0.026 

(0-0.197) 
0.214 (0-1) 

P(x>5|x>0) 
3.673 (0.158-

5.684) 

0.254 

(0-1) 
0.37 (0-1) 

P(x>10|x>5) 
1.995 (0.233-

4.19) 

0.597 

(0-1) 
0.531 (0-1) 

Rate of falls 
2.065 (0.154-

2.917) 

0.077 

(0-0.526) 
0.699 (0-1) 

Odds of having a 
fracture after a fall 

5.962 (0.807-
6.474) 

0.041 

(0-0.59) 
0.107 (0-1) 

P(fracture|fall) 
6.184 (0.9-

6.963) 

0.101 

(0-1) 
0.104 (0-0.97) 

Domain 
seeds: 
treatment 
effect on 
falling and 
fractures 

RR for P(x>0) 
1.995 (0.071-

2.913) 

0.152 

(0-0.955) 
0.424 (0-1) 

RR for P(x>5|x>0) 
0.895 (0.074-

2.916) 

0.623 

(0-1) 
0.534 (0-1) 

RR for P(x>10|x>5) 
1.059 (0.055-

2.524) 

0.801 

(0.049-1) 
0.51 (0-0.98) 

Rate of falls ratio 
1.815 (0.089-

4.136) 

0.146 

(0-0.819) 
0.746 (0-1) 

OR for having a 
fracture after a fall 

0.702 (0.065-
2.878) 

0.609 (0-1) 
0.523 (0.004-

1) 

RR for 
P(fracture|fall) 

0.987 (0.052-
2.914) 

0.656 (0-1) 0.652 (0-1) 

 

5.4. Results: Experts’ characteristics 

Experts who took part in the REFORM elicitation study completed a questionnaire on their 

professional experience, as described in Chapter 3. Their responses were used to define 
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their substantive expertise and perspective, while their statistical coherence and internal 

consistency were used to measure their normative expertise.  

Sections 5.4.1-5.4.3 describe the results of each. 

5.4.1. Experts’ normative expertise 

Section 5.2.2 outlines that experts’ normative expertise was based on the shape of their 

priors, the probabilities placed outside their stated range, and their internal consistency. 

Section 4.5.2 showed that three experts used bimodal priors to express their uncertainty. 

Of those three, only one expert expressed a single bimodal prior, and they highlighted they 

were having difficulty adding chips on the tablet they were using. The remaining two 

experts completed the exercise on a laptop and elicited at least two bimodal priors. Only 

the latter two were classified as ‘not normative’. 

Furthermore, section 4.5.2 showed that 20 experts added bricks, that represented 

probabilities greater than 0.05, to bins outside their stated range. Probabilities outside the 

stated range is not strictly incoherent, instead it suggests that the expert could have 

misunderstood the task. Thus not all 20 experts who added more than 0.05 probability to 

bins outside their range were judged to be not normative, only those who did it repeatedly. 

The cut off was set at more than 3 priors. 

The expert who only used one brick in each histogram, and expressed that the number of 

rainy days in York was between 30-31 was also classified as non-normative. 

Table 4.18 in Chapter 4 reported experts’ internal consistency, while Table 5.6 summarises 

experts’ normative expertise. 

Table 5.6. Summary of experts’ statistical coherence and internal consistency.  

Experts with less normative expertise 

Normative Total Incomplete 
priors 

Bimodal 
Probability 

outside stated 
range 

Inconsistent 

2 2 9 17 17 41 

 

In total, 17 out of 41 experts elicited priors that were inconsistent with their MCQs. Of 

those, six experts also elicited priors that were statistically incoherent. Furthermore seven 

experts elicited priors that were statistically incoherent but internally consistent. Seventeen 
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experts provided consistent and coherent priors and so were considered to be normative 

experts. 

 

5.4.2. Experts’ substantive expertise 

The questions about experts’ professional experience aimed to capture how specialised 

experts are in fall prevention (or treatment), their level of seniority based on their role, 

research experience, patient contact (proportion of their working time spent with patients 

who are at an increased risk of falling, either helping them prevent falls or treating fall 

related injuries), and awareness of research into podiatry interventions designed to reduce 

the risk of falls in the elderly. The details of how information was collected on each of the 

four characteristics is provided in section 5.2.2. 

As highlighted in section 5.2.3, the sample size was too small to explore individually the 

effect of every stated characteristic on experts’ scores. Instead, the information on experts’ 

experience was used to classify them as substantive or not substantive. The aim was to 

have a minimum of 6 experts who were substantive, normative and accurate when making 

probabilistic assessments to represent a typical sample of experts in elicitation. The 

definition of ‘substantive’ experts was thus based on the characteristics of the sample. 

First, research experience and time spent with patients were simplified into binary 

variables: research experience or no research experience, and patient contact or no patient 

contact. The decision on how to define research and patient experience was based on the 

sample size, as follows. A summary of experts’ characteristics is provided in Table 5.7. 

Table 5.7 shows that only one expert had published over 50 research papers, and so 

experts with 20-50 and more than 50 publications were combined into a single category 

and four different definitions of research experience were considered: 1) More than 3 

publications or at least one successful research grant proposal; 2) More than 20 

publications or at least one successful research grant proposal; 3) More than 3 publications 

and at least one successful research grant proposal; and 4) More than 20 publications and 

at least one successful research grant proposal. Table 5.8 shows the number of experts in 

the REFORM elicitation study with different levels of experience, per role. Only two experts 

in the sample had more than 20 publications and experience in writing at least one 

research grant proposal (research experience 4 in Table 5.8) and so this definition of 

research experience was not chosen as the baseline scenario in the analysis.  
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Table 5.7. Summary of experts’ characteristics. 

  Level 1 role Level 2 role Total 

Number of 
publications 

0-3 6 24 30 

4-20 2 7 9 

21-50 0 1 1 

>50 0 1 1 

Number of 
protocols 

0 7 24 31 

1-5 1 9 10 

>5 0 0 0 

Patient 
contact 

0-10% 0 4 4 

11-30% 2 5 7 

31-50% 0 4 4 

>50% 6 20 26 

Aware of research 1 19 20 

Total 8 33 41 

 

Table 5.8. The number of experts with different levels of patient contact and research 

experience. 

 
Research Experience 

Percentage of 
working time spent 
with target patient 

population 

Aware 
of 

domain 
specific 

research 

Total 

1* 2* 3* 4* >50% >30% >10% 

Level 1 2 1 0 0 6 6 8 1 8 

Level 2 10 9 8 2 20 24 29 19 33 

*Research experience 1 = More than 3 publications or at least one successful research 

grant proposal; research experience 2 = More than 20 publications or at least one 

successful research grant proposal; research experience 3 = More than 3 publications and 

at least one successful research grant proposal; and research experience 4 = More than 20 

publications and at least one successful research grant proposal. 

 



186 
 

Further decisions on how to define substantive experts were based on the combinations of 

characteristics of experts in the sample. Table 5.9 shows the sample size for experts who 

were in Level 2 roles and were aware of relevant research with different levels of research 

experience and patient contact. When research awareness and a Level 2 role were used to 

define substantive expertise, the sample size of experts who were substantive, normative 

and made accurate probabilistic assessments was never greater than 5. Removal of 

research awareness from the definition of substantive expertise was considered in order to 

obtain a greater sample size. 

Table 5.9. Number of experts who were in Level 2 roles and were aware of research into 

podiatry interventions designed to reduce the risk of falls. *Definitions of different 

research experience are shown in Table 5.8.  

Research 
experience 

Patient 
contact 

Total 
Number of experts who 

were normative 

Number of experts who 
were normative and 

accurate 

Any 

Any 19 8 5 

>10% 17 7 5 

>30% 14 6 4 

>50% 12 4 3 

1* 

Any 10 4 3 

>10% 9 4 3 

>30% 6 3 2 

>50% 4 1 1 

2* 

Any 9 4 3 

>10% 8 4 3 

>30% 6 3 2 

>50% 4 1 1 

3* 

Any 8 4 3 

>10% 7 4 3 

>30% 5 3 2 

>50% 3 1 1 

4* 

Any 2 1 0 

>10% 2 1 0 

>30% 2 1 0 

>50% 1 0 0 

 

The sample size of experts who were in Level 2 roles with different levels of research 

experience and patient contact are shown in Table 5.10. The sample size of experts with 

research experience was the same with and without research awareness indicating that 
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everyone with any research experience was also aware of literature on podiatry 

interventions designed to reduce the risk of falls. As a result, only excluding research 

experience from the definition of substantive expertise led to a sample size greater than 5. 

Table 5.10. Number of experts who were in Level 2 roles. *Definitions of different 

research experience are shown in Table 5.8.  

Research 
experience 

Patient 
contact 

Total 
Number of experts who 

were normative 

Number of experts who 
were normative and 

accurate 

All 

Any 33 13 7 

>10% 29 11 6 

>30% 24 10 5 

>50% 20 8 4 

1* 

Any 10 4 3 

>10% 9 4 3 

>30% 6 3 2 

>50% 4 1 1 

2* 

Any 9 4 3 

>10% 8 4 3 

>30% 6 3 2 

>50% 4 1 1 

3* 

Any 8 4 3 

>10% 7 4 3 

>30% 5 3 2 

>50% 3 1 1 

4* 

Any 2 1 0 

>10% 2 1 0 

>30% 2 1 0 

>50% 1 0 0 

 

Level 2 role and more than 10% patient contact (the only experience that led to a sample 

size greater than 6) were assumed to be insufficient to capture substantive expertise, and 

so a smaller sample of experts was used in the analysis. Substantive expertise was defined 

in a way that maximised their expertise, while ensuring a sample size of six or more 

substantive experts. 

Research experience 2 and patient contact more than 30% were chosen as the definition of 

substantive expertise, in addition to Level 2 role and research awareness (see Figure 5.6 for 

diagrammatic representation). Increasing patient contact or research experience both led 

to a sample size below 6. 
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Figure 5.6. Venn diagram showing the definition of substantive expertise in the baseline 

scenario.  

 

Other definitions of substantive expertise were explored in sensitivity analysis, where one 

characteristic was removed or altered at a time and the effect on experts’ scores was 

observed. The definitions explored in the sensitivity analysis are shown in Figure 5.7 and 

included: 

- A different definition of research experience (more than 3 publications and at least 

one successful research grant proposal, compared to only one of the two 

conditions used in the baseline scenario) to assess whether more research 

experience affected experts’ priors (Figure 5.7.A), 

- Excluded awareness of podiatry interventions and research experience from the 

definition to achieve a greater sample size for experts who were substantive, 

normative and made accurate probabilistic assessments (Figure 5.7.B), 

- Excluded research experience from the definition (Figure 5.7.C), 

- Excluded patient contact from the definition (Figure 5.7.D). 

The effect of the seniority level was not explored in the definition of substantive expertise 

as it was considered to be fundamental to the definition of substantive expertise. 
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Figure 5.7. Venn diagrams showing definitions of substantive expertise explored in the 

sensitivity analysis. The area highlighted in grey represents characteristics of substantive 

experts. Research experience is defined in Table 4.22. Definitions A, C and D represent 

rows 15, 3 and 13 in Table 5.9 respectively, while definition B represents row 3 in Table 

5.10.  

 

5.4.3. Experts’ perspective 

Section 5.2.2 explained that experts’ perspective was defined by their profession. Table 4.2 

in section 4.3.2 showed the number of experts recruited in each role. In this section, Table 

5.11 shows the characteristics of experts in each profession.   
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Table 5.11. Professional experience by role.  

  

 Proportion of 

sample in each 

type of role 
Years in 

role 

Percentage of working time 

spent with patients** 

Proportion of experts with 

research experience 

Research 

awareness 

Proportion of 

experts who were 

classified as experts 

N 
 

Level 1 Level 2 0-10  11-30 31-50 >50 1* 2* 3* 4* Subst. 

Subst. 

+ 

Norm. 

+ 

Accurate 

Physios  0.15 0.85 8.2 0 0.08 0.15 0.77 0 0 0 0 0.38 0 0 13 

Geriatricians  0.33 0.67 6.64 0 0.2 0.13 0.67 0.53 0.47 0.47 0.13 0.47 0.27 0.13 15 

Nurses  0.14 0.86 10 0 0.29 0 0.71 0.14 0 0 0 0.57 0 0 7 

GPs  0 1 2.5 0.5 0.25 0 0.25 0.5 0.5 0.25 0.25 0.5 0.25 0 4 

Academics  0 1 5 1 0 0 0 1 1 1 0 1 0 0 1 

Other  0 1 NA 1 0 0 0 0 0 0 0 1 0 0 1 

*Definitions of different research experience are shown in Table 5.8.  

** Either helping them prevent falls or treating fall related injuries. 
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The majority of experts from all professions were in Level 2 roles. Geriatricians had the highest 

proportion of experts in Level 1 roles, this is likely to be because regional meetings, where these 

experts were recruited, were organised for trainee geriatricians. Senior staff attending (consultants) 

were teaching or presenting. 

Overall physiotherapists and nurses had high patient contact and little research experience. 77% of 

physios and 71% of nurses spend more than half of their time with such patients, and they had the 

longest experience in the role (8.2 and 10 years respectively). None of the physiotherapists had any 

research experience and 14% of nurses had ‘Research experience 1’. 

Geriatricians had similar contact time with the target patient population (67%), and they were the 

group most involved in research - more than half (53%) had published at least one paper or been 

involved in writing successful research grant proposals, and 47% had been involved in both. This may 

be due to the fact that all senior geriatricians involved were recruited either through their 

involvement in research on fall prevention, or through training days. It is possible that consultants 

who attend training days are more likely to be involved in teaching and research.  

Geriatricians and GPs were the only ones who were considered substantive in the baseline scenario, 

and of those only geriatricians were also normative and substantive. 

5.5. Effect of experts’ characteristics on their priors 

This section reports the effect of experts’ characteristics on their priors on non-domain and domain 

seeds, in turn. 

5.5.1. Exploring the effect of experts’ characteristics on the non-domain 

seed  

This section explores whether experts’ Grace-Watson test scores, statistical coherence and internal 

consistency explain their priors on the non-domain seed.  

Experts’ priors and scores on the non-domain seed are shown in Figure 5.8. Experts who live in the 

Y&H region scored higher overall – Y&H experts were more likely to include the observed value and 

cover the range, although with the current sample size the difference is not statistically significant. 
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Figure 5.8. Priors on the number of rainy days elicited from A) experts who were recruited outside 

Y&H; B) experts who were recruited in Y&H. The median, range and CICP score represent the 

average (mean). Box = the median and the interquartile range. Whiskers = 95% confidence 

interval. The red box (MO) = reference value from the Met Office.  

 

Experts’ scores according to different characteristics are shown in Table 5.12. Priors elicited from 

experts recruited outside Yorkshire and Humber were less accurate (scored lower) than those were 

recruited within Yorkshire and Humber, suggesting that a lack of substantive expertise can lead to 

overconfidence. However, substantive expertise alone does not ensure accurate priors (low scores) - 

experts who were substantive but scored 0-2 on the GW critical thinking score and were not 

normative were most likely to be overconfident of all experts. 

When GW scores were not taken into account, normative expertise improved scores both for 

substantive and non-substantive experts. 

When normative expertise was not taken into account, higher GW scores improved the CICP score in 

Y&H experts, whereas they reduced it in non-substantive experts. This finding was counterintuitive, 

as inference skills were expected to be beneficial to the non-substantive experts who were required 

to extrapolate their knowledge about their local weather to assess the number of rainy days in York, 

compared to the substantive experts who were only required to express their beliefs. 

When both normative expertise and GW scores were taken into account, no pattern in beliefs was 

identified. 
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Table 5.12. Experts’ scores according to different characteristics. 

Experts’ characteristics  Y&H Not Y&H All 

Score (N) 
P-

value 
Score (N) 

P-
value 

Score (N) 
P-value 

Normative 
+ 0.329 (7) 

0.416 
0.498 (10) 

0.713 
0.428 (17) 

0.473 
- 0.408 (5) 0.530 (19) 0.505 (24) 

GW test 
score 3-4 

+ 0.265 (3) 
0.578 

 0.634 (9) 
0.194 

 0.542 (12) 
0.3892 

- 0.395 (9)  0.467 (20) 0.445 (29) 

Normative 
and GW 
score 

Normative, GW 
score 3-4 

0.393 (2) 

0.578 

0.506 (5) 

0.194 

0.473 (7) 

0.369 

Not normative, 
GW score 3-4 

0.008 (1) 0.795 (4) 0.637 (5) 

Normative, GW 
score 0-2 

0.303 (5) 0.490 (5) 0.397 (10) 

Not normative, 
GW score 0-2 

0.508 (7) 0.459 (15) 0.440 (19) 

All 0.362  0.519  0.362  

 

None of the effects were statistically significant. This is likely to be due to the small sample size. 

 

5.5.2. Exploring whether experts’ characteristics explain their priors on 

substantive seed parameters 

The analysis of the effect of experts’ characteristics on their priors was conducted in two stages, as 

described in section 5.2.3: stage 1 explored the effect of substantive and normative expertise, and 

their ability to make accurate probabilistic assessments on experts’ elicitation scores, while stage 2 

explored the effect of experts’ perspective. The results for each stage are presented here, in turn.  

Stage 1: The effect of substantive and normative expertise, and accuracy of probabilistic 

assessments 

Experts’ priors on seed parameters were scored using KL scores; the scores were then compared for 

those experts who were substantive and those who were not, and between experts who were 
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substantive, normative and adaptive and those who were not. The results of these comparisons are 

shown in Table 5.13.  

Table 5.13. Mean KL scores on different seeds for experts and non-experts. 

Seeds included 

Substantive only 
Substantive, normative and 

accurate 

Experts 

(N=6) 

Non-experts 
(N=35) 

Experts 

(N=2) 

Non-experts 
(N=39) 

All domain seeds 
Score 

2.432 

(0.078-6.916) 

2.717 

(0.052-6.963) 

2.469 

(0.166-6.879) 

2.686 

(0.052-6.963) 

P-value 0.319 0.512 

Seeds outcomes 
without 
treatment 

Score 
3.795 

(0.315-6.916) 

4.144 

(0.154-6.963) 

4.443 

(0.791-6.879) 

4.075 

(0.154-6.963) 

P-value 0.459343 0.549 

Seeds about 
treatment effect 

Score 
1.068 

(0.078-2.923) 

1.276 

(0.052-4.136) 

0.496 

(0.166-1.012) 

1.284 

(0.052-4.136) 

P-value 0.376 0.029 

Non-domain seed 
Score 

2.062 

(0.336-3.223) 

1.772 

(0.078-3.986) 

0.81 (0.336-
1.285) 

1.866 (0.078-
3.986) 

P-value 0.580 0.215 

 

Priors elicited from substantive experts were more accurate (achieved lower KL scores) than those 

elicited from non-substantive experts on all domain seeds, while the opposite was the case for the 

non-domain seed where substantive experts achieved a mean score of 2.062, whereas the non-

experts achieved 1.772.  

The effect of normative expertise and accuracy of probabilistic assessments is less clear. When non-

normative and inaccurate experts were excluded from the sample, scores for priors on the 

treatment effect and the non-domain seed decreased (from 1.068 to 0.496, and from 2.062 to 0.81, 

respectively), suggesting that normative expertise and the ability to make accurate probabilistic 

assessments improved experts’ scores both on domain and non-domain seeds. The difference 

between the experts’ and non-experts’ scores for the treatment effect was the only statistically 

significant difference (P-value 0.029). 
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However, exclusion of non-normative and inaccurate experts had the opposite effect on the scores 

for outcomes in the control arm – these increased from 3.795 to 4.443, and experts scored worse 

(higher) than non-experts (4.443 compared to 4.075). 

Sensitivity analysis was used to explore the effect of changing the definition of substantive expertise 

on experts’ scores. It also explored the effect of normative expertise and the ability to make 

accurate probabilistic assessments individually to understand which of the two had a greater effect 

on experts’ scores. 

The results of the sensitivity analysis are shown in Table 5.14. Substantive experts were more 

accurate than non-substantive experts in all scenarios. In scenario A, when the definition of 

expertise was changed to include more than three publications and at least one successful research 

grant proposal (as opposed to more than 20 publications or at least one successful research grant 

proposal) experts’ priors were on average more accurate than in the baseline scenario (score 

decreased from 2.432 to 2.338). In scenario C, when research experience was not included in the 

definition of substantive expertise, the scores of substantive expert had increased from 2.432 to 

2.64 suggesting the priors were less accurate than when experts with no research experience were 

added to the sample. 

In scenario D, when patient contact was excluded from the definition of substantive expertise, the 

scores were higher than in the baseline scenario (from 2.432 to 2.595), suggesting that experts who 

had more patient contact were more accurate. Excluding patient contact from the definition of 

substantive expertise led to better (lower) scores than when research experience was excluded 

(2.595 compared to 2.64), suggesting that experts with research experience were more accurate 

than experts with patient contact. 

Excluding research awareness from the definition of substantive expertise (Scenario B) slightly 

improved scores in comparison to scenario D (2.595 to 2.522) where research awareness was 

included. However, the scores in scenario B were worse than in the baseline scenario, suggesting 

that research experience improved experts’ scores more than research awareness. 

Scenario A has the highest difference in scores between substantive experts and non-substantive 

experts (mean KL scores 2.338 and 2.722, respectively), while scenario B was the only scenario 

where the comparison of the accuracy of substantive experts to non-experts was statistically 

significant (P-value 0.019). The statistical significance in scenario B (and a lack thereof in other 

scenarios) is likely to be due to the higher sample size – in scenario B there were 20 experts, 

compared to 2-12 experts in all other scenarios.  
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Table 5.14. Mean KL scores on all domain seeds for experts and non-experts, when different definitions of expertise were used. 

Seeds 
included 

Substantive only Substantive and normative Substantive and accurate 
Substantive, normative and 

accurate 

Experts Non-experts Experts Non-experts Experts Non-experts Experts Non-experts 

X 
Score 

2.432 
(0.078-6.916) 

N=6 

2.717 
(0.052-6.963) 

N=35 

2.593 
(0.166-6.916) 

N=3 

2.682 
(0.052-6.963) 

N=38 

2.457 
(0.166-6.879) 

N=3 

2.692 
(0.052-6.963) 

N=38 

2.469 
(0.166-6.879) 

N=2 

2.686 
(0.052-6.963) 

N=39 

P-value 0.319 0.759 0.320 0.512 

A 
Score 

2.338 
(0.078-6.916) 

N=5 

2.722 
(0.052-6.963) 

N=36 

2.593 
(0.166-6.916) 

N=3 

2.682 
(0.052-6.963) 

N=38 

2.457 
(0.166-6.879) 

N=3 

2.692 
(0.052-6.963) 

N=38 

2.469 
(0.166-6.879) 

N=2 

2.686 
(0.052-6.963) 

N=39 

P-value 0.175 0.759 0.320 0.512 

B 
Score 

2.522 
(0.052-6.963) 

N=20 

2.894 
(0.065-6.956) 

N=21 

2.702 (0.065-
6.933) 

N=8 

2.666 
(0.052-6.963) 

N=33 

2.548 
(0.052-6.963) 

N=9 

2.728 
(0.055-6.956) 

N=32 

2.791 
(0.114-6.933) 

N=4 

2.659 
(0.052-6.963) 

N=37 

P-value 0.019 0.800 0.088 0.862 

C 
Score 

2.64 
(0.055-6.963) 

N=12 

2.693 
(0.052-6.956) 

N=28 

2.876 
(0.114-6.916) 

N=4 

2.64 
(0.052-6.963) 

N=37 

2.752 
(0.071-6.963) 

N=6 

2.659 
(0.052-6.956) 

N=35 

2.946 
(0.114-6.879) 

N=3 

2.646 
(0.052-6.963) 

N=38 

P-value 0.734 0.438 0.959 0.457 

D 
Score 

2.595 
(0.078-6.956) 

N=8 

2.695 
(0.052-6.963) 

N=33 

2.632 
(0.166-6.916) 

N=4 

2.680 
(0.052-6.963) 

N=37 

2.530 
(0.166-6.879) 

N=4 

2.691 
(0.052-6.963) 

N=37 

2.562 
(0.166-6.879) 

N=3 

2.684 
(0.052-6.963) 

N=38 

P-value 0.784 0.882 0.457 0.687 

X = baseline scenario (Level 2 role, research awareness, patient contact >30%, research experience 2); A = Level 2 role, research awareness, patient contact 

>30%, research experience 3; B= Level 2 role, patient contact >30%; C= Level 2 role, research awareness, patient contact >30%; D= Level 2 role, research 

awareness, research experience 2. The definitions are also presented diagrammatically in Figure 5.7 (section 5.4.2). 
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When experts were defined by their substantive and normative expertise and the accuracy 

of their probabilistic assessments, the results varied. The sample of substantive experts in 

the baseline scenario (scenario X in Table 5.14) and scenario A differed in one expert who 

was substantive in scenario X but not in scenario A. This expert was neither normative nor 

accurate, so the sample of substantive, normative and adaptive experts in the two 

scenarios is identical. In these scenarios both normative expertise and the ability to make 

accurate probabilistic assessments led to better (lower) scores in experts than non-experts 

(KL scores 2.593, 2.457 and 2.469 in experts, and 2.682, 2.692 and 2.686 in non-experts). 

Substantive and accurate experts attained better (lower) scores than experts who were 

substantive, normative and accurate (KL scores of 2.457 and 2.469). Furthermore, priors 

elicited from all substantive experts regardless of their normative expertise and ability to 

make accurate probabilistic assessments attained better (lower) scores (KL=2.432) than 

those elicited from experts who satisfied all three criteria (KL=2.469). The same pattern 

follows in scenario D – including normative and accurate experts led to better (lower) 

scores in comparison to non-experts, but the sample that included all substantive experts 

led to the best (lowest) scores. 

In scenarios B and C– when research experience was not included in the definition of 

substantive expertise - all three (normative expertise only, accurate only and normative and 

accurate) led to higher (worse) scores in experts than non-experts. Furthermore, excluding 

non-normative and inaccurate experts from the sample worsened (increased) the scores. 

Stage 2: The effect of experts’ perspective on their scores  

As shown in Table 5.11 geriatricians and GPs were the only experts who satisfied the 

criteria of substantive expertise, and of those, only geriatricians were also normative. Priors 

elicited from experts with different professions were compared to assess whether different 

professions led to different levels of accuracy and patterns of belief. The results are shown 

in Table 5.15.  

Physiotherapists were the most accurate on the treatment effect and on the control (mean 

KL scores 3.864 and 1.07, respectively), followed by geriatricians (KL 1.115 and 4.043, 

respectively). The results should be interpreted with caution as different professions had 

different levels of experience. As shown Table 5.11 in section 5.4.3, geriatricians had the 

lowest proportion of Level 2 expert, so it is not clear whether their scores were lower 

because of their substantive expertise or their role.  
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Table 5.15. Scores and patterns of belief elicited from experts in different professions.  

 
Physios 
N=13 

Geriatrics 
N=15 

Nurses 
and OTs 

N=7 

GPs 
N=4 

Academic 
N=1 

Other 
N=1 

KL scores on 
all domain 
seeds 

2.467 
(0.055-
6.963) 

2.579 
(0.052-
6.956) 

3.1 
(0.114-
6.949) 

2.712 
(0.151-
6.855) 

2.883 
(0.197-
6.561) 

3.658 
(0.154-
6.834) 

KL scores on 
baseline falls 
and 
fractures 

3.864 
(0.198-
6.963) 

4.043 
(0.155-
6.956) 

4.502 
(0.154-
6.949) 

4.056 
(0.32-
6.855) 

4.585 
(0.901-
6.561) 

4.618 
(0.154-
6.834) 

KL scores on 
treatment 
effect 

1.07 
(0.055-
3.72) 

1.115 
(0.052-
4.136) 

1.697 
(0.114-
3.921) 

1.368 
(0.151-
2.913) 

1.18 
(0.197-
2.913) 

2.217 
(0.84-
2.913) 

 

5.6. Summary of findings 

This chapter explored whether variation in experts’ priors can be explained by their 

characteristics. The chapter had three distinct objectives: 

1) To score experts’ priors on different seeds; 

2) To define characteristics that can be used to reflect the factors believed to affect 

experts’ priors in the REFORM elicitation study: substantive expertise, perspective, 

normative expertise, and the ability to make accurate probabilistic assessments. 

3) To explore whether the identified measures explain variation in priors elicited from 

different experts. 

The findings of each are summarised here in turn. 

5.6.1. Scoring experts’ performance 

In this Chapter, the methods used to score experts priors were chosen based on the guiding 

principles developed in Chapter 2 – KL scores were chosen to capture experts’ bias, 

overconfidence and imprecision. 

The priors were scored with reference to probability distributions of the seeds rather than 

point estimates, to take into account uncertainty around their true value – a method 

commonly used in CEDM (Bojke et al., 2010) but not in other sectors. (Colson and Cooke, 

2017) 
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This is the first identified study where KL scores were used to score experts’ priors on seeds 

associated with uncertain values, in order to compare their accuracy, and so it was not clear 

how best to implement the method. KL scores are derived by comparing intervals of the 

continuous scale of parameters values. Since probability distributions were not fitted to 

experts’ priors (as discussed in Chapter 3), the width of the intervals compared could affect 

experts’ scores – narrow intervals could penalise experts’ in a uniform distribution across 

the interval is assumed, whereas wide intervals could fail to distinguish between experts 

with marginal differences in performance. The width of bin can affect the score but it is not 

clear whether the effect is comparable between experts or some are affected more than 

others. 

Furthermore, not fitting could fail to penalise bias if both experts place the same probability 

on the observed values of the seed, but one is more biased than the other. 

Overall experts’ scored lower (better) scores on the indirectly elicited priors (such as the 

treatment effect and the rate of falls), compared to those that were elicited directly (the 

probabilities of falling without treatment) and on the treatment effect compared to the 

baseline probabilities of falling and fractures. 

However, when priors on different seeds are compared the difference is difficult to 

interpret, as the scores were dependent on the certainty with which the seed is known. 

Priors on seeds that were known with more certainty (for example, the risk of falling) 

attained relatively worse (higher) scores than those that were uncertain, and so it is not 

clear whether differences in performance across different parameters are driven by 

experts’ performance or the sample size used to measure the value of the seed (where 

larger sample size, and so less uncertainty, can lead to worse (higher) scores). 

 

5.6.2. Can experts’ characteristics be used to reflect the factors 

believed to affect experts’ priors? 

The literature review in Chapter 2 found that experts’ characteristics have only been used 

to capture experts’ substantive expertise. (Goossens, 2008b; Shabaruddin et al., 2010; 

Haakma et al., 2014) This chapter aimed to define characteristics that can be used as 

proxies for all four factors believed to affect experts’ priors (namely substantive and 

normative expertise, and perspective), in the REFORM elicitation study. 
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Many characteristics that could potentially reflect substantive expertise were identified, 

(Bolger, 2017), the characteristics used in this study were role, research experience, patient 

contact, and research awareness, and various combinations of these. 

Statistical coherence and internal consistency were used to reflect experts’ normative 

expertise. This chapter identified two features of experts’ priors that could indicate 

statistical incoherence: bimodal priors and probabilities placed outside the experts stated 

range. Additional features were identified that could indicate difficulty in expressing one’s 

beliefs using the chips and bins method, these included implausibly narrow ranges and a 

mode at the end of the distribution. These were not chosen as indicators of normative 

expertise because of the difficulty in determining what is plausible, i.e. it requires subjective 

judgement.  

Perspective was based on experts’ role. Experts’ perspective is likely to have varied within 

each profession as well (for example, physiotherapists could be based in primary and 

secondary care), but in the REFORM elicitation study the experts did not provide sufficient 

information to further clarify their roles. 

The literature is not clear on how to measure the ability to assess probabilistic assessments. 

The GW test score is used here to capture experts’ ability to draw inference, but this did 

not affect their non-domain seed so was not used in further analysis. 

5.6.3. Do the identified characteristics explain variation in priors 

elicited from different experts? 

The effect of experts’ characteristics on non-domain and domain seeds were explored 

separately. 

The non-domain seed was the number of rainy days every September in York. Priors elicited 

from experts who were recruited in the Yorkshire and Humber region attained better 

scores than those were recruited in other regions of the UK suggesting that the scores were 

affected by substantive expertise/perspective. Normative expertise was correlated with 

better performance.  

The domain seeds were the REFORM trial outcomes. Experts’ scores varied across seeds 

more than they did between experts but the effect of expertise was relatively constant 

across parameters. 
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Substantive expertise was found to improve scores on domain seeds, but not the non-

domain seed, suggesting that substantive expertise does improve scores. The effect was 

consistent when different definitions of substantive expertise were used, although it was 

not statistically significant, likely because of the sample size. 

The effect of normative expertise and accuracy of probabilistic assessments on the domain 

seeds is less certain. 

The implications of the findings for the role of different weighting methods is uncertain. 

This chapter only explored accuracy of individual experts. It is not clear whether including 

only more accurate experts improves the accuracy of the aggregate prior, or whether the 

‘Wisdom of Crowds’ outweighs any benefit incurred by only including accurate experts. 

Furthermore, the impact of the improvement in prior accuracy on the results of cost-

effectiveness analysis is not clear. These themes are explores in Chapter 6. 
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Chapter 6. Comparison of different 
weighting methods: results and impact 
of the REFORM elicitation study 

6.1. Introduction 

Chapter 2 identified two approaches for deriving weights- based on experts’ observed 

characteristics and their measured performance in elicitation – and concluded that it is not 

clear which approach leads to more accurate aggregate priors. Chapter 3 designed the 

REFORM elicitation study that compared different weighting methods in an elicitation 

exercise applied in HTA. Chapter 5 used the results of the elicitation study to explore 

whether experts’ characteristics explained their priors and predicted their accuracy. The 

findings suggested that the accuracy of priors elicited from individual experts was affected 

by their substantive and normative expertise, as well as their ability to make accurate 

probabilistic assessments outside their domain of expertise. However, the discussion 

highlighted that eliciting from the most accurate experts only may not lead to the most 

accurate aggregate prior. 

This chapter compares the effect of using different weighting methods applied to the 

REFORM elicitation study. The results from the study were used to explore the following 

three objectives. 

1) To apply different weighting methods identified in Chapter 2 to the REFORM 

elicitation study. 

2) To compare the effect of different weighting methods on the accuracy of the 

aggregate prior. 

3) To observe the impact of different weighting methods on estimates of uncertainty 

in cost-effectiveness analysis. 

Section 6.2 describes the analysis methods, while sections 6.3 - 6.5 present the results. 

Section 6.6 then provides a summary of the findings. 
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6.2. Methods  

This section describes the methods used to observe the effect of different weighting 

methods in elicitation. Section 6.2.1 describes how weights were derived in the REFORM 

elicitation study (objective 1). Section 6.2.2 describes the methods used to compare the 

effect of the different weighting methods on the accuracy of the aggregate prior (objective 

2), while section 6.2.3 describes the methods used to observe their effect on the results of 

cost-effectiveness analysis (objective 3).  

6.2.1. Deriving weights from the results of the REFORM elicitation 

study 

This chapter compared eight different weighting methods in total, where six were based on 

experts’ characteristics and two were based on their elicitation performance, to 

unweighted priors. 

Characteristics used to derive weights were based on the information collected in the 

REFORM elicitation study. Chapter 5 described the characteristics used to reflect three of 

the four factors proposed to affect elicitation performance in Chapter 2: substantive 

expertise, perspective and normative expertise. In Chapter 6, six different sets of weights 

were derived using different combinations of characteristics.  

- Two methods for deriving weights from experts’ substantive expertise, 

- Perspective, 

- Substantive expertise and perspective, 

- Normative expertise, 

- Substantive expertise, normative expertise and perspective. 

Chapter 2 concluded that external validity of performance-weighted priors can depend on 

the seed, the scoring method, and the method for deriving weights. Seeds tend to be 

domain-specific, and so experts’ performance on domain-seeds was used as one of the 

methods for deriving weights in this chapter. Furthermore, Chapter 2 proposed that, in 

theory, non-domain seeds can be used to capture experts’ normative expertise and ability 

to make accurate probabilistic assessments, independent of their substantive expertise, 

and so the performance on non-domain seeds was another method for deriving weights.  

The remainder of this section describes each of the ten weighting methods in detail. 
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6.2.1.1. Methods 1 and 2: Deriving weights from experts’ substantive expertise 

The accuracy of priors, weighted by experts’ substantive experience only, was explored in 

this chapter because Chapter 2 found substantive expertise to be the most common 

characteristic chosen as the basis for weighting. 

Chapter 5 (section 5.5.2) explored four different characteristics that could be proxies for 

substantive expertise: research experience, seniority, patient contact, and awareness of 

research in podiatry interventions designed to reduce the risk of falls. The former three of 

the four characteristics were found to improve experts’ elicitation performance; these were 

thus used as basis for differential weighting. 

Chapter 2 (section 2.4.2) highlighted that the relationship between experience and 

elicitation performance is not clear, and that weights derived from experience tend to be 

assigned arbitrarily. Given the lack of guidance on how to derive weights from 

characteristics, in this study one point was added for each of the following three 

characteristics: 

- Level 2 role (specialist clinical roles such as consultant geriatricians, and other 

healthcare professionals specialising in fall prevention); 

- More than 50% of working time with the relevant patient population; 

- More than five publications or at least one successful research grant proposal.  

In addition, experts who had both more than three publications and had written successful 

research grant proposals were assigned an extra point, as having both was found to 

improve their scores in Chapter 5 (see section 5.5.2 for details). 

Experts could thus score 0-4 points. The number of experts with each number of points, 

and the weights assigned to those experts are shown in Table 6.1. The table shows weights 

derived using two different methods for converting scores into weights.  

Table 6.1. Experts’ scores based on substantive expertise and resulting weights. 

Score 0 1 2 3 4 

N 2 10 15 4 4 

Weight per expert 
(method 1) 

0 0.0147 0.0294 0.0441 0.0588 

Weight per expert 
(method 2) 

0 0.01 0.0133 0.075 0.1 
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Method 1 was employed by Haakma et al. (2014) and uses Equation 6.2. 

𝑤𝑖 =
𝑠𝑐𝑜𝑟𝑒𝑖

∑ 𝑠𝑐𝑜𝑟𝑒𝑖
𝑁
𝑖=1

 
Equation 6.2 

Where 𝑖 is one of N experts (N=35), 

𝑤𝑖  is the weight of expert 𝑖, 

𝑠𝑐𝑜𝑟𝑒𝑖 is the number of points assigned to expert 𝑖. 

It is important to note that Method 1 assigns greater weights to experts with 2 points, than 

those with 3 or 4 points because their sample size is greater (15 x 0.0294 > 4 x 0.0441 and 

15 x 0.0244 > 4 x 0.0588). Method 2 was derived to ensure overall weight assigned to 

experts with the same number of points was proportional to the number of points, as 

shown in Equation 6.3.  

𝑤𝑗 =
𝑗

∑ 𝑗4
𝑗=0

 Equation 6.3 

 

Where 𝑗  represents the number of points and ranges 0-4, 

𝑤𝑗  is the weight assigned to all experts with 𝑗 points. 

All experts with 𝑗 points were then assigned equal weights that summed to 𝑤𝑗 . 

6.2.1.2. Method 3: Deriving weights from experts’ perspective 

As highlighted in Chapter 1, the elicitation literature recommends using a sample of experts 

that represent different perspectives in the domain in which elicitation is conducted, and so 

experts’ were assigned weights that ensured that the aggregate prior reflected the beliefs 

of a heterogeneous sample of experts. 

Perspective was defined by experts’ role: physiotherapists, geriatricians, nurses and 

occupational therapists (OTs), GPs and academics, and all professions were assigned equal 

weights (1/5) so they contribute equally towards the aggregate priors. When there was 

more than one expert with the same perspective, all experts with that perspective were 

assigned equal weights that summed to 0.2 (1/5). The resulting weights assigned to 
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individual experts within each profession are shown in Table 6.2. Academics were assigned 

the greatest weight per expert as they constituted the smallest proportion of the sample of 

experts, whereas geriatricians were assigned the lowest weights per expert because they 

were the most represented in the sample.  

Table 6.2. Weights assigned to individual experts in each profession. 

 N Weight per expert 

Physiotherapists 10 0.02 

Geriatricians 13 0.0154 

Nurses and OTs 7 0.0286 

GPs 4 0.05 

Academics 1 0.2 

Total 40 1 

 

6.2.1.3. Method 4: Deriving weights from substantive expertise and perspective 

Deriving weights from experts’ perspective alone assumed that all experts within each 

profession contributed equally towards the aggregate prior. Another method for deriving 

weights was explored, where each perspective (profession) was assigned equal weights 

(0.2, as described in section 6.2.1.2), but experts within each profession were not weighted 

equally. Instead only the most substantive experts within each profession were assigned 

non-zero weights. 

The most substantive experts were identified based on their seniority level, patient contact 

and research experience. Where more than one expert existed with the same perspective 

and substantive expertise, they were both included and assigned equal weights that 

summed to 0.2 (the weight assigned to each perspective). 

The overview of experts’ substantive expertise in each profession are shown in Table 6.3. 

Only geriatricians had at least one expert with each characteristic, so characteristics of 

individual experts were analysed to identify the most substantive ones.  

Out of the 11 physiotherapists in a Level 2 role, 6 spent over 50% of their time with the 

target patient population, and none had more than 3 publications or any successful 

research grant applications. These 6 physiotherapists were thus assigned weight of 0.0333 

each (0.2/6) 



207 
 

Three Level 2 geriatricians had 50% patient contact or more. Of the three geriatricians, one 

had over 50 publications and 1-3 successful research grant applications – more research 

experience than all other geriatricians. This expert was chosen as the substantive expert 

within their ‘perspective’.  

Table 6.3. Number of experts with different characteristics defining substantive expertise, 

per profession.  

 

N 
Level 2 

role 

Level 2 role 
and research 
experience 

Level 2 role 
and >50% 

patient 
contact 

Level 2 role, 
research 

experience 
and >50% 

patient 
contact 

Physiotherapists 10 8 0 6 0 

Geriatricians 13 8 6 6 3 

Nurses and OTs 7 6 0 4 0 

GPs 4 4 2 1 0 

Academics 1 1 1 0 0 

Total 35 27 9 17 3 

 

Out of 6 nurses and OTs in level 2 roles, expert had less patient contact and research 

experience than the remaining five experts, and so that experts was excluded and the 

remaining five were assigned equal weights that summed to 0.2 (i.e. 0.04 each). 

Out of 4 GPs, one had over 50% patient contact while another had less than 50% patient 

contact but more research experience than all other GPs. Both were included in the sample 

and assigned equal weights than sum to 0.2. 

There was only one academic and so they were included in the sample and assigned 0.2 

weight.  

The resulting number of experts in each profession, and the weights assigned to them are 

shown in Table 6.4. 
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Table 6.4. Weights assigned to individual experts in each profession. 

 N Weight per expert 

Physiotherapists 9 0.0222 

Geriatricians 1 0.2 

Nurses and OTs 5 0.04 

GPs 2 0.1 

Academics 1 0.2 

Total 18 1 

 

6.2.1.4. Method 5: Deriving weights from experts’ normative expertise 

Normative expertise was a binary variable, determined by experts’ statistical coherence and 

internal consistency. Deriving weights from experts’ normative expertise aimed to explore 

the effect of excluding experts whose priors were statistically incoherent, or inconsistent 

with their verbal responses. 

Chapter 4 highlighted that 17 experts were normative, and so all were assigned weights 

0.059 (1/17). 

6.2.1.5.  Method 6: Deriving weights from substantive expertise, perspective and 

normative expertise  

This method ensures that a range of views is represented, and that for each perspective 

only the most substantive experts are included who are also normative. 

Weighting method 4 included the most substantive experts from each perspective. The 

sample of experts who were assigned non-zero weights in Method 4 was then analysed to 

identify experts who were also normative. The results are shown in Table 6.5.  

Of the 9 substantive physiotherapists 4 were also normative, so these were assigned equal 

weights that summed to 1. 

The most substantive geriatrician was not normative, so geriatricians in level 2 roles who 

were also normative were identified, and their patient contact and research experience 

were analysed to identify the most substantive ones. Of 4 such geriatricians, two had less 

than 50% patient contact and no research experience, one had more than 50% patient 

contact and more than five publications, and so the latter expert was assigned a weight of 

0.2. 
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Table 6.5. Number of experts with substantive and normative expertise, per profession. 

 
N Substantive 

Substantive and 
normative 

Physiotherapists 10 6 3 

Geriatricians 13 1 0 

Nurses and OTs 7 5 2 

GPs 4 2 1 

Academics 1 1 0 

Total 35 15 7 

 

Out of 5 substantive nurses and OTs, two were normative; both had more than 50% patient 

contact and no research experience, so both were assigned equal weights. 

Out of two normative Level 2 GPS, one had no patient contact and no research experience 

and the other had more than 10% patient contact and more than three publications, and so 

the latter was included in the sample and assigned a weight of 0.2. 

The academic in the sample was not normative but they were included in the sample to 

represent their perspective, because they were the only academic. 

The resulting weights are shown in Table 6.6. 

Table 6.6. Weights assigned to individual experts in each profession. 

 N Weight per expert 

Physiotherapists 4 0.05 

Geriatricians 2 0.1 

Nurses and OTs 2 0.1 

GPs 1 0.2 

Academics 1 0.2 

Total 10 1 

 

6.2.1.6. Methods 7: Deriving weights from experts’ measured performance - domain 

seeds  

Method 7 used experts’ scores on the seeds about falling and fractures without treatment. 

Experts’ priors were scored using KL divergence, as described in Chapter 4. KL scores 
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decrease with accuracy, and so the weights were derived by inverting the score (1/KL) to 

ensure that weights increase with accuracy. The inverted scores were scaled so they 

summed to 1. 

6.2.1.7. Method 8: Deriving weights from experts’ measured performance - non-

domain seeds 

The non-domain seed was the number of rainy days in York. Priors were scored using CICP 

scores, to ensure experts were not penalised for knowledge, only their bias and 

overconfidence (as discussed in section 3.4.3). The higher the CICP score the more accurate 

the expert and so their weights were derived by scaling the CICP score so that all weights 

add up to 1. 

6.2.1.8. Method 9: Equal weights 

Unweighted priors were derived by assigning equal weights (1/40) to each expert in the 

sample. 

 

6.2.2. Comparing the effect of weighting methods on the accuracy 

of the aggregate prior. 

The accuracy of weighted priors (using methods in section 6.2.1) was assessed using 

methods proposed by Cooke et al. (2008). The performance-weighted priors were assessed 

by splitting the seeds into the training and the testing set, and using training set to derive 

performance-based weights. The accuracy of the performance-weighted priors from the 

training set was then compared to the characteristic weighted and unweighted priors on 

the same seeds. Seed questions about falling and fractures in patients who do not receive 

treatment were used as the training set (to derive weights), and the treatment effect was 
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used as the testing set (to assess whether the weighted priors were more accurate than the 

unweighted ones). 

The remainder of this section describes how experts’ priors were aggregated (section 

6.2.2.1), fitted (section 6.2.2.2) and scored (section 6.2.2.3).  

6.2.2.1. Aggregating priors 

Experts’ priors were aggregated using linear pooling (using Equation 1.5 in Chapter 1). 

Linear pooling was used as this is the commonly applied aggregation method in HTA. 

(Soares et al., 2018)  

The aggregate prior on each parameter was derived by sampling from each experts’ prior, 

where the number of random samples drawn from each expert’s prior was proportional to 

their weight. A total of 10000 random samples was used for each seed, so for example, if an 

expert was assigned a weight of 0.2, 2000 samples were drawn from their prior.  

6.2.2.2. Fitting 

Linear aggregation can result in multimodal probability distributions; to avoid using 

multimodal priors in the model, the parametric distributions were fitted to the aggregate 

priors. The seeds were relative risk, and odds and rate ratios, and so log normal 

distributions were fitted to all parameters, as recommended in the literature (Briggs, 

Claxton and Schulpher, 2006). 

6.2.2.3. Scoring aggregate priors 

The aim was to compare the accuracy of aggregate priors derived using different scoring 

methods. Accuracy was assessed using KL scores, as they penalise bias, imprecision and 

overconfidence (as discussed in Chapter 2). The methods for deriving scores were described 

in section 6.2.1). 

6.2.3. Observing the impact of different weighting methods on 

uncertainty in cost-effectiveness analysis 

While different weighting methods can affect the accuracy of the aggregate prior, it is not 

clear whether the effect on the aggregate priors is clinically and economically impactful. To 

test this, the aggregate priors derived using nine different weighting methods described in 

section 6.2.1, were used to populate a cost-effectiveness decision model (CEDM), and 

observe whether the weighting methods affected the resulting model uncertainty. 
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Building an externally valid model, populated by systematically reviewed data was out of 

scope of this chapter – the aim was to develop a simplistic model that utilised data from the 

REFORM trial and the REFORM elicitation exercise to assess the cost-effectiveness of the 

podiatry intervention designed to prevent falls. 

The remainder of this section describes the CEDM. Section 6.2.3.1 describes the model 

structure, section 6.2.3.2 describes the parameters used to populate the model while 

section 6.2.3.3 describes the methods for conducting sensitivity analysis. Section 6.2.3.4 

then describes how the CEA results based on different aggregate priors were compared. 

6.2.3.1. The model structure 

As highlighted at the beginning of section 6.2.3, the model was designed to utilise data 

from the REFORM trial and the REFORM elicitation exercise, to assess the cost-effectiveness 

of the podiatry intervention designed to prevent falls.  

Section 3.3.2 in Chapter 3 highlighted that the intervention could affect both the frequency 

and the severity of falls. In order to reflect any changes in the frequency and the severity of 

falls a probabilistic four-state Markov model was used, shown in Figure 6.1. Patients were 

assumed to start in the ‘no fall’ state; subsequently they could stay in the ‘no fall’ state, 

have a fall that did not result in a fracture, have a fall that resulted in a fracture, or die. Each 

state represents patients’ falling behaviour in that cycle, and all health effects and costs 

associated with a state were assumed to be observed in the cycle in which the patient 

transitioned into that state. Thus, in subsequent cycles, all living patients could transition 

into all other states, regardless of their falling history (for example, a patient who had a fall 

in the first cycle, may not have a fall in the second cycle). The cycle length was 1 year based 

on previous models on fall prevention (Eldridge et al., 2005). The analysis time horizon was 

a lifetime, to capture the long term effect of the intervention, and any effect of the 

intervention on mortality, through reduced risk in falls. 

Since the model was designed solely to observe whether the effect of weighting methods 

was clinically and economically impactful, its clinical plausibility was not explored in further 

detail in this thesis. 
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Figure 6.1. Model schematic 

 

6.2.3.2. Model parameters 

The CEA was conducted from a health system perspective, reflecting all costs that fall on 

the health system, and all health effects for the patient. Health effects were measured in 

terms of QALYs (described in Chapter 1), as recommended by NICE (National Institute for 

Health and Care Excellence (NICE), 2013) to capture the effect of the intervention on both 

the length and quality of life. 

The cost and utility values for each state were assumed to be the same with and without 

treatment; i.e. the intervention was assumed to affect costs and outcomes by reducing the 

number of falls and fractures only.  

The REFORM trial reported the overall cost and utility in patients who received the 

intervention and those who did not. While this is sufficient in trial based analysis, the model 

in Figure 6.1 required the cost and utility of each individual state, and so other sources 

were sought. 

In order to identify model parameter values from the team of health economists and 

statisticians involved in the trial based analysis of the REFORM trial were approached. The 

health economist recommended studies that evaluated cost-effectiveness of intervention 

designed to prevent falls. The recommended studies were selected for use in the model 

based on their time and country of publication, where the most recent UK based studies 

were prioritised. The parameters defined in the model and their sources are shown in Table 

6.7. 

The cost of treating falls were derived form a falls prevention economic model published by 

the Chartered Society of Physiotherapy (Chartered Society of Physiotherapy, 2016). The 

model is a decision tree that calculates the average cost of treatment of minor (£355.00), 
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moderate (£469.00) and severe falls (£18,352.40). The model in this chapter assumed that 

falls that results in a fracture were severe, falls without fracture but with injury were 

moderate, and falls without fracture or injury were mild. REFORM trial reported that 0.58 

of falls without fracture resulted in injury. The cost in death state was assumed to be £0.00, 

all other states were added a cost of £2125.00 – the average NHS spending per head in 

England (Nuffield Trust, 2014). The cost of social care (for example, incurred by patients 

moving into sheltered accommodation or care homes after suffering a fall) was not 

included. 

The utility values for no fall and fracture states were derived from a recent UK-based paper 

on the utility values in the most common fractures. (Svedbom et al., 2018) The authors 

reported that the average QALY state before having a fracture was 0.84, and having a 

fracture led to a utility decrement of 0.22. Brazier et al. (2002) reported the utility 

decrement of falls without fractures to be 0.018. As discussed earlier in this section, the 

REFORM trial reported that 0.58 falls without fracture resulted in injury, and so a 0.018 

utility decrement was applied to 0.58 of falls without fracture. The utility in the death state 

was assumed to be 0. 

The transition probabilities in the first cycle were derived from the REFORM trial. The trial 

reported the rate of falls and the proportion of falls that resulted in a fracture. The risk of 

death was used directly in the model, whereas the latter two were converted into 

transition probabilities using Equation 6.4 to Equation 6.7.  

𝑃(𝑓𝑎𝑙𝑙) = 1 − 𝑒−λt 
Equation 6.4 

𝑃(𝑓𝑎𝑙𝑙, 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒) = 𝑃(𝑓𝑎𝑙𝑙) 𝑥 𝑃(𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒|𝑓𝑎𝑙𝑙) 
Equation 6.5 

𝑃(𝑓𝑎𝑙𝑙, 𝑛𝑜 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒) =  𝑃(𝑓𝑎𝑙𝑙) −  𝑃(𝑓𝑎𝑙𝑙, 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒) 
Equation 6.6 

𝑃(𝑛𝑜 𝑓𝑎𝑙𝑙) = 1 − 𝑃(𝑑𝑒𝑎𝑡ℎ) −  𝑃(𝑓𝑎𝑙𝑙) 
Equation 6.7 

The transition probabilities into ‘no fall’, ‘fall-no fracture’ and ‘fall and fracture’ were 

assumed to be the same irrespective of which state the patient was in. 
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Table 6.7. Model parameters. SE= standard errors, N=sample size 

 Mean (standard 
error) 

Source 

QALYs  

Utility in non-fallers (SE) 

Disutility after a fall - no fracture, no injury  

Disutility after a fall - no fracture, no injury 
(SE) 

Disutility after a fracture (SE) 

  

0.84 (0.13) 

0.00 

0.018 (0.014) 

 

0.22 (0.17) 

  

(Svedbom et al., 2018) 

Assumption 

(Brazier and Green, 
2002) 

(Svedbom et al., 2018) 

Costs 

Non-fallers 

Fallers - no fracture, no injury 

Fallers – no fracture, injury 

Fallers (fracture) 

Cost of intervention - fixed (SE) 

 

£2125 

£360 

£474 

£18,352 

£155.79 (55.02) 

(Nuffield Trust, 2014) 

(Chartered Society of 
Physiotherapy, 2016) 

REFORM trial 

Probabilities   

Mortality risk – no fall (age 65-75) 

                                        (age 75-85) 

                                        (age 85+) 

Mortality risk  - fall, no fracture (age 65-75) 

                                                         (age 75-85) 

                                                         (age 85+) 

Mortality risk  - fall, fracture (age 65-75) 

                                                    (age 75-85) 

                                                    (age 85+) 

Rate of falls in control arm (SE) 

Rate ratio in year 1 (SE) 

Annual change in the rate ratio 

P(fracture|fall) (N) 

P(no fracture|fall) (N) 

P(no injury|no fracture) (N) 

P(injury|no fracture) (N) 

Relative risk of fracture in year 1 (SE) 

Annual change in the relative risk of 
fracture 

  

0.023 

0.059 

0.144 

0.033 

0.069 

0.154 

0.193 

0.229 

0.314 

1.503 (0.105) 

0.915 (0.057) 

*** 

0.0175 (762) 

0.9825 (762) 

0.42 (748) 

0.58 (748) 

1.324 (0.362) 

*** 

  

(Eldridge et al., 2005) 

(Eldridge et al., 2005) 

(Eldridge et al., 2005) 

(Eldridge et al., 2005) 

(Eldridge et al., 2005) 

(Eldridge et al., 2005) 

(Eldridge et al., 2005) 

(Eldridge et al., 2005) 

(Eldridge et al., 2005) 

REFORM trial 

REFORM trial 

Elicited 

REFORM trial 

REFORM trial 

REFORM trial 

REFORM trial 

REFORM trial 

Elicited 

*** varied depending on the aggregation method 
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The risk of death was obtained from Eldridge et al. (2005). The authors reported the 

mortality risk in patients who fear falling, patients who do not fear falling and the mortality 

risk following a fracture. The study reported that patients generally feared falling as result 

of a fall in the past, and so the risk of death in no fall and fall-no fracture states was 

assumed to be equal to the risk in patients who do not fear falling and those who do, 

respectively (Eldridge et al., 2005). The risk was assumed to increase every ten years, as 

reported in the study. (Eldridge et al., 2005) 

The transition probabilities after the first cycle were informed by the priors elicited in the 

REFORM elicitation study. Chapter 4 described how experts’ priors on the treatment effect 

after the trial end point were converted into the annual change in the treatment effect. The 

change in the treatment effect could take any value between -1 and infinity, where 

negative values indicated that the treatment effect would decrease over time, while 

positive values indicated the treatment effect would increase. When the treatment effect 

was expected to diminish, it was assumed to change until it became ineffective; so the 

change in treatment effect was only applied to the transitional probabilities until the 

treatment effect was 1. When the treatment effect was expected to potentiate, the change 

in the treatment effect was assumed to decrease for up to 3 cycles – the mean time when 

experts indicated the treatment effect would plateau (as reported in section 4.4.4). 

All costs and effects were discounted at 3.5% rate, as recommended by NICE (National 

Institute for Health and Care Excellence (NICE), 2013). 

6.2.3.3. Sensitivity analysis  

Chapter 1 emphasised the need to characterise uncertainty in decision models, and 

discussed why probabilistic sensitivity analysis was the optimal method for doing this. To 

this effect, each model parameter was sampled from a probability distribution. The 

distributions applied to each parameter are shown in Table 6.8. 

The model outcomes were measured in terms of the Net Monetary Benefit (defined in 

Chapter 1, section 1.2.3) and the probability the intervention was cost-effective. 

The value of further research (EVPI) was estimated using Equation 1.4 in Chapter 2, while 

population EVPI (EVPIP) was estimated by multiplying EVPI by the effective population size 

using Error! Reference source not found.. 
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𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
𝐼𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=1

 Equation 6.8 

  

Where 𝑡 is the year of treatment, 

𝐼𝑡  is the population affected in year 𝑡, 

𝑟 is the discount rate. 

 𝐼𝑡  was assumed to be 1,093,894 over 10 years (Chartered Society of Physiotherapy, 2016), 

while the discount rate was 0.035 (or 3.5%), as recommended by NICE (National Institute 

for Health and Care Excellence (NICE), 2013). 

Table 6.8. Probability distributions of model parameters 

Parameter Distribution 

QALYs 

Utility in non-fallers 

Disutility after a fall (no fracture) 

Disutility after a fall (fracture) 

 

Beta 

Gamma 

Gamma 

Costs 

Non-fallers 

Fallers (no fracture) 

Fallers (fracture) 

Intervention fixed cost 

 

Gamma 

Uniform* 

Uniform* 

Gamma 

Transition probabilities 

Risk of death 

Rate of falls in control arm 

Rate ratio in year 1 

Annual change in the rate ratio 

Probability of fracture after a fall 

Relative risk of fracture in year 1 

Annual change in the relative risk of fracture 

 

Beta 

Gamma 

Log normal 

Log normal** 

Beta 

Log normal 

Log normal** 

* The authors did not provide information about uncertainty, so the parameter was 

samples from a uniform distribution and the range of costs was assumed to be ± 10% of the 

reported value. 

** The annual change in treatment effect can take any value between -1 and infinity.  The 

values were thus added 1 before fitting a log normal distribution. 
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6.2.3.4. Comparison of weighting methods 

Nine aggregate priors on the change in the rate ratio for falls and the relative risk of 

fractures (derived using methods described in section 6.2.1) were used to inform the 

temporal change in the treatment effect in the model shown in Figure 6.1. The model was 

ran for each set of aggregate priors separately. Furthermore, the model was once ran 

without the aggregate priors, where the treatment effect was assumed to remain constant 

over time. The latter scenario was used to simulate the results of the analysis if experts’ 

priors hadn’t been elicited. 

For each method, the NHB, probability of cost-effectiveness, and EVPIp were derived and 

compared.  

6.3. Results: Overview of weighted priors 

The aggregate priors were derived using 8 different weighting methods, and compared to 

unweighted priors. The weighting methods were described in detail in section 6.2.1, and 

include the following. 

- Method 1: Substantive expertise; 

- Method 2: Substantive expertise (greater weight applied to the most substantive 

experts); 

- Method 3: Perspective; 

- Method 4: Perspective and substantive expertise; 

- Method 5: Normative expertise; 

- Method 6: Substantive and normative expertise, and perspective; 

- Method 7: Domain seeds; 

- Method 8: Non-domain seeds; 

- Method 9: Unweighted. 

Section 6.3.1 shows the aggregate priors on the seed parameters, while section 6.3.2 shows 

the aggregate priors on the target parameters. 

6.3.1. Aggregate priors on seed parameters 

The priors on seed parameters derived using different weighting methods, and probability 

distribution fitted to them are shown in figures Figure 6.2 to Figure 6.7. 
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Visual inspection of the priors suggests that the goodness of fit varied between priors. 

Generally, bimodal priors (such as Method 5 in Figure 6.4, Method 4 in Figure 6.6, and all 

priors in Figure 6.7) and those with pronounced peaks (such as Method 6 in Figure 6.3) 

were led to less-well fitted probability distributions. 

The impact of different weighting methods varied across parameters.  

For the relative risk of P(x>0) (in Figure 6.2), all aggregation methods resulted in priors 

where the majority of the probability density was between 0 and 2. Methods 3,5,7,8 and 9 

included values between 9 and 11 because one expert (Expert 32 in Figure 4.11 in section 

4.4.3) believed that the RR was close to 10. That expert was normative but not substantive, 

and so they were assigned 0 weight in methods 1,2,4 and 6, and non-zero weights in 

methods 3, 5, 7, 8 and 9. However, Expert 32 was an outlier and so the probability 

distributions fitted to the priors did not include their range (i.e. the probability of the 

relative risk being between 9 and 11 was very low). 

For the relative risk of P(x>5|x>0) (in Figure 6.3) the majority of the probability density was 

between 0 and 4. Methods that included experts’ perspective (3, 4 and 6) assigned greater 

probability to values in the tail of the distribution. The skewedness was caused by Expert 13 

who was the only academic in the exercise and so were assigned a relatively high weight of 

0.2 in methods 3, 4 and 6). Expert 13 believed that the relative risk was 3-4 and their 

inclusion affected the fitted probability distribution as the distributions fitted to priors in 

methods 1, 3 and 6 placed 0.05 probability on the range 3-4, compared to methods 1,2 and 

5 where Expert 13 was assigned 0 weight, where the fitted probability distributions of the 

same range were 0.013-0.017. (The probabilities were derived by integrating the fitted 

probability distribution between the two values.) 

Priors on the rate of falls (in Figure 6.5) all suggest that the rate ratio is most likely between 

0.5 and 1. Method 7 places visibly higher probability on values between 0.25 and 0.5, 

suggesting that experts who accurately assessed the rate of falls in patients who do not 

receive the intervention believed the treatment effect would be higher (lower rate ratio). 

Expert 25 believed that the rate ratio was between 1.8 and 4.2. They were normative and 

so they were assigned higher weights in Methods 5 and 6 (weights 0.067 and 0.05 

respectively, compared to weights 0.013-0.029 in the remaining methods), leading to 

higher probability being assigned to values between 2 and 4 in those two methods.  
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Priors on the odds of fracture (in Figure 6.6) appear to be more precise when experts are 

weighted according to their substantive expertise (Methods 1, 2, 4 and 6).  

Priors on the probability of fracture (in Figure 6.7) were derived from the same priors as the 

odds of fracture, but on an inverted scale. The priors on the relative risk of fractures are 

overall more precise than those on odds. Three experts believed that the relative risk was 

between 2.5 and 4 – all three were normative and substantive compared to other experts 

in their profession, and so they were assigned relatively high weights in Methods 4, 5 and 6 

(weights 0.17, 0.2 and 0.3, respectively), compared to Methods 1, 2, 3, 7, 8 and 9 (weights 

0.05-0.10), leading to bimodal priors with the second mode between 2.5 and 4.  

Comparing across parameters, weights derived from experts’ perspective generally leads to 

less precision (in all priors in Figure 6.2 - Figure 6.7 except the relative risk of P(x>0)). No 

other consistent effects were identified by visual inspection, further analysis is provided in 

section 6.4 when scores for each method are presented.  
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Figure 6.2 Aggregate priors on the RR of P(x>0) 
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Figure 6.3. Aggregate priors on the RR of P(x>5|x>0) 
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Figure 6.4 Aggregate priors on the RR of P(x>10|x>5) 
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Figure 6.5. Aggregate priors on the rate of falls 
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Figure 6.6 Aggregate priors on the OR for fractures 
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Figure 6.7. Aggregate priors on the RR of P(fracture|fall) 
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6.3.2. Aggregate priors on target parameters 

Priors on target parameters derived using different weighting methods are shown in Figure 

6.8 and Figure 6.9. 

The majority of priors on the change in the rate ratio are positive and close to 0, suggesting 

a small increase in the treatment effect over time. Experts predominantly believed that the 

treatment would be effective, and so an increase in the treatment effect indicates that the 

treatment effect would diminish. 

Priors on the annual change in the rate ratio derived using methods 1 and 2 (substantive 

expertise) have multiple peaks, caused by two substantive experts (Experts 14 and 40 in 

Figure 4.13, section 4.4.4) who assessed the change to be more extreme than others in the 

sample. They were not normative, nor the most substantive in their profession, and so they 

were not included in methods 4, 5 and 6. 

The aggregate priors, like those of individual experts shown in Figure 4.13 (section 4.4.4), 

were more precise on the relative risk of fractures than the rate ratio of falls. 

The change in the relative risk of fractures appears to be more likely to decrease over time 

than the rate ratio. Figure 6.7 suggested that experts on average believed that the risk of 

fracture would be higher in patients who receive treatment, and so a decrease in the 

treatment effect suggests the effect would diminish (the risk of fractures would decrease 

over time). 
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Figure 6.8. Aggregate priors on the annual change in rate ratio 
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Figure 6.9. Aggregate priors on the annual change in relative risk of fractures. 
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Aggregate priors on the annual change in the relative risk of fractures were more precise in 

methods 1 and 2 (when weights were based on substantive expertise) while weights 

derived from non-domain seeds (method 8) led to the least precise priors. This is likely to 

be because the scores on the non-domain seed penalised overconfidence, and so assigned 

greater weight to uncertain experts. 

6.4. Results: the effect of weighting methods on the 

accuracy of the aggregate prior 

The accuracy of the aggregate priors on seed parameters was measured using KL scores, 

ranging from 0 to infinity, where the lower the score the more accurate the prior. The 

results are shown in Table 6.9. Experts’ priors on the relative risk of P(x>0) and the rate 

ratio for falls were the most biased and overconfident, and so their scores are higher than 

for the remaining parameters. Differences in scores achieved using different weighting 

methods also varied as result; for example, the scores on the relative risk of falling more 

than ten times ranged from 0.286 – 1.061, whereas the scores for the relative risk of falls 

ranged from 40.5-93.8.  

Overall, weights based on substantive expertise (methods 1 and 2) consistently improved 

the score in every seed compared to the unweighted prior (method 9). Furthermore, 

method 2 (where greater weights were assigned to more substantive experts) led to more 

accurate priors than method 1 in 4 out of 6 parameters in Table 6.9, suggesting that placing 

greater weight on the most substantive experts improved the score of the aggregate prior. 

Weights based on substantive expertise and perspective (method 4) were more accurate 

(attained lower scores) than weights based on perspective only (method 3), although they 

were not always more accurate than the equally weighted priors (method 9), suggesting 

that including experts with a range of perspectives does not necessarily improve the 

accuracy of the aggregate priors, while assigning greater weight to substantive experts 

does. 
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Table 6.9. Mean scores for aggregate priors on different seeds, derived using different weighting methods. The lower the score the more accurate the 

aggregate prior.  

 
RR for P(x>0) 

RR for 
P(x>5|x>0) 

RR for 
P(x>5|x>0) 

Rate ratio Odds ratio 
for fractures 

P(fracture|fall) 

Characteristics S (method 1) 44.9 0.590 0.434 29.9 0.79 0.605 

S (method 2) 40.5 0.481 0.380 25.4 0.75 0.604 

P (method 3) 71.4 1.517 0.619 44.4 1.53 1.207 

SP (method 4) 59.7 1.189 0.286 23.1 1.37 0.932 

N (method 5) 44.1 1.130 1.061 56.6 1.80 1.724 

SNP (method 6) 93.8 1.464 0.847 56.0 1.69 1.276 

Performance Domain seeds 

(method 7) 
50.8 1.022 0.621 65.5 1.03 0.683 

Non domain 

(method 8) 
55.3 0.750 0.441 51.7 0.94 0.731 

Unweighted (method 9) 55.8 1.083 0.642 50.0 1.09 0.877 
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Weights derived from substantive and normative expertise, and perspective (method 6) 

consistently led to worse (higher) scores than equal weighting. Furthermore, weights 

derived from normative expertise and perspective both led to worse (higher) scores than 

equal weighting – normative expertise increases scores for all but one seed (relative risk of 

P(x>0)), while weights based on perspective attained higher scores than unweighted priors 

in 4 out of 6 seeds. 

Performance-weighted priors (methods 7 and 8) led to more accurate aggregate priors than 

equal weighting on all parameters except the rate ratio. However, they were consistently 

less accurate (higher scores) than methods 1 and 2. Weights based on non-domain seeds 

(method 8) led to more accurate priors than those derived from domain seeds (method 7) 

in 4 out of 6 parameters. 

6.5. Results: the effect of weighting methods on the results 

of the cost-effectiveness analysis 

The results of the CEA informed by different weighting methods are shown in Table 6.10. 

Overall, the intervention led to a QALY loss in all scenarios, likely because the REFORM trial 

reported that more patients had a fracture in the treatment arm than in the control arm. 

While the rate of falls was lower in the control arm, the increase in the risk of fractures 

meant that overall more people suffered fractures after treatment. Mortality risk was 

higher following a fracture, and so higher rate of fractures also led to higher mortality, and 

consequently further QALY loss. 

The QALY loss was greater when effectiveness of the intervention was assumed to be 

constant over time (i.e. when experts’ priors were not used in the model). This is likely to 

be because, as discussed in section 4.4.4, the majority of experts believed that the 

treatment effect would diminish. 

While the intervention incurred additional costs (mean cost £155.79 as discussed in section 

6.2.3.2), the incremental cost was negative – i.e. the intervention reduced the cost of 

treatment. Since the treatment of fractures was costly, and the intervention increased the 

rate of fractures, the cost reduction is likely to result from the increased mortality. 
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Table 6.10. Results of CEA when different weighting methods are used, in comparison to 

the assumption of a constant treatment effect over time. 

Weighting methods 
QALY 
gain 

Incremen
tal cost 

NHB 
Prob. 
cost 

effective 

EVPIP 
(billions) 

C
h

ar
ac

te
ri

st
ic

s 

S (method 1) -0.328 -7863.50 1291.35 0.4200 8.794 

S (method 2) -0.307 -8048.75 1898.48 0.4328 8.311 

P (method 3) -0.200 -8061.59 4056.94 0.4517 8.708 

SP (method 4) -0.342 -7649.11 817.25 0.4105 9.563 

N (method 5) -0.356 -7872.31 754.86 0.4064 9.279 

SNP (method 6) -0.525 -7803.51 -2688.21 0.3609 6.712 

P
er

fo
rm

an
ce

 

Domain seeds 
(method 7) 

-0.300 -7897.65 1896.44 0.4301 8.759 

Non domain 
(method 8) 

-0.242 -7890.75 3154.13 0.4391 8.934 

Unweighted (method 9) -0.246 -7993.20 3074.75 0.4394 8.675 

Assume indefinite 
effectiveness of the 
intervention (ΔTE=1) 

-0.525 -7897.65 -5974.07 0.3258 2.816 

 

When constant treatment effect was assumed over time (i.e. experts’ priors were not used 

in the model) the NHB was negative, while using experts’ priors led to positive NHB in all 

but one scenario (method 6 where weights were based on substantive and normative 

expertise and perspective). 

The methods that resulted in the most extreme disparity in the results of the CEA were 

explored in further detail to determine what caused the change: these were method 3 

(weights based on experts’ perspective only) that led to a NHB of 4056.94 and method 6 

(weights based on substantive and normative expertise and perspective) that led to 

negative NHB of -2688.21 (see Table 6.10 for details). The aggregate priors derived using 

different methods are shown in Figure 6.10. 
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Figure 6.10. Aggregate priors on the annual change in the rate ratio for falls and the 

relative risk of fractures derived using methods 3, and 6, in comparison to other methods. 
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Method 6, which was the only method that led to a negative NHB, shows a higher annual 

change in the rate ratio (the probability distribution is further right than the other eight 

priors). This means that, when method 6 was used in CEA, the beneficial effect of the 

intervention on the rate of falls diminished more quickly than when other aggregate priors 

were used. Furthermore, the relative risk of fractures derived using method 6 was relatively 

precise, and close to 0, indicating that the (detrimental) effect of the intervention on the 

risk of fractures would not change. The opposite is the case when method 3 was used to 

derive weights – the change in the rate ratio was lower than for other experts, suggesting 

the beneficial effect of the intervention on the rate of falls would diminish at a lower rate, 

or potentiate.  

When experts’ priors were used in the decision model the estimates of cost-effectiveness 

were more uncertain – the probability of cost-effectiveness was greater than 0.4 in all nine 

scenarios, compared to 0.3258 when priors were not used. Consequently, the EVPIP was 

also higher, although the value of information was high in all scenarios (£2.861bn or 

greater). In practice, the intervention is unlikely to be recommended or warrant further 

research, as the positive NHB was driven by the cost reduction due to an increase in 

mortality. 

6.6. Summary of findings 

Chapter 6 had three specific objectives: 

- To apply different weighting methods identified in Chapter 2 to the REFORM 

elicitation study. 

- To compare the effect of different weighting methods on the accuracy of the 

aggregate prior. 

- To compare the effect of different weighting methods on the results of the cost-

effectiveness model used to analyse the results of the REFORM trial. 

Section 6.2.1 described 9 different weighting methods derived from various characteristics 

collected about experts, and their elicitation performance (objective 1). The overview of the 

priors derived using different weighting methods (shown in Figure 6.2 - Figure 6.9 in section 

6.3) did not show any consistent patterns in how weights affected priors (for example in 

terms of the direction of bias or precision). 
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However, section 6.4 explored the effect of weighting methods on the accuracy of the 

aggregate prior (objective 2) and found that weights derived from substantive expertise 

consistently led to lower (better) scores on seed parameters, and substantive and 

perspective improved accuracy in comparison to perspective alone (see Table 6.9 for 

details). Performance weighted priors also improved accuracy in comparison to unweighted 

ones. 

Normative, substantive and perspective consistently led to highest (worst) scores and were 

consistently less accurate than equally weighted priors. 

Section 6.5 explored the effect of different weighting methods on estimates of uncertainty 

in cost-effectiveness analysis (objective 3). 

Including experts’ priors in the analysis changed the decision generated by the model in 8 

out of 9 scenarios. One weighting method (based on substantive and normative expertise, 

and perspective) resulted in a different decision to the remaining 8 methods. 

The two weighting methods that led to the most disparate NHBs were compared to explore 

the reason for this variation. The variation was caused by the interaction between the 

nature of the treatment effect and the change in the treatment effect. 

All scenarios indicate high value of information although further research is unlikely to be 

recommended as the intervention reduced costs by increasing mortality. 

It is important to note that the model was founded on several assumptions of uncertain 

clinical plausibility. For example, all health effects and costs of falls and fractures were 

assumed to be observed within the year in which they occurred (one cycle), the cost of care 

following falls and fractures were not taken into account, and the risk of falls and fractures 

was assumed to be independent of patients’ history of falling. Assessment of the plausibility 

of the stated assumptions was beyond the scope of this chapter. Nevertheless, the results 

presented in section 6.5 demonstrate an important point – that apparently small 

differences in the assessment of parameter uncertainty (such as those arising from 

different weighting methods presented in Figure 6.8 and Figure 6.9), can be clinically and 

economically impactful, emphasising the importance of developing the methodology for 

deriving weights.  
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Chapter 7. Discussion 
 

The aim of this thesis was to develop an understanding of the methodology for deriving 

weights in expert elicitation, when used to characterise uncertainty in cost-effectiveness 

decision modelling in health. 

Chapter 1 introduced the role of expert elicitation as a tool for characterising uncertainty in 

cost-effectiveness decision models (CEDM) and proposed that the aim of an elicitation 

exercise is to capture the current state of knowledge around uncertain quantities (such as 

model parameters). To do this, elicitation is conducted using formal processes that 

encourage experts to use all available information and express their priors in an unbiased 

way. However, in navigating the choices available in designing and conducting an elicitation 

exercise, there are many methodological uncertainties. 

This thesis explored a particular aspect of the elicitation process: the methods for assigning 

weights to experts’ priors when the priors are elicited from multiple experts individually, 

and mathematically aggregated into a single probability distribution that captures 

uncertainty in the parameter of interest.  

Differential weighting assumes that some experts should be ‘given more say’ than others 

and there are multiple methods for deriving weights for experts. The choice of method for 

deriving weights can affect the resulting estimates of uncertainty, (Cooke, ElSaadany and 

Huang, 2008) yet it is not clear which method is optimal. 

The thesis improved understanding of the existing methods for opinion pooling to ensure 

that the aggregate priors are an unbiased representation of the current state of knowledge. 

In order to achieve this, three objectives were set. 

1. To identify the existing methods for deriving weights and develop a set of guiding 

principles for choosing between different options. 

2. To apply the principles developed in Chapter 2 to a case study. 

3.  To observe the consequences of using different methods for opinion pooling. 

This sections starts by providing a summary of the findings in each chapter (section 7.1), 

then a discussion is provided on the key contributions of the thesis (section 7.2). Section 7.3 

discusses the limitations, while section 7.4 provides recommendations for further research. 
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7.1. Summary of findings 

Chapter 2 identified the existing methods for deriving weights and developed a set of 

guiding principles for deriving weights (objective 1). A literature review was first conducted 

to identify the existing methods for deriving weights – the review identified two general 

approaches (based on experts’ observed characteristics and their measured performance in 

elicitation), and multiple methods within each approach.  

In order to derive guiding principles for choosing between the various options for deriving 

weights, section 2.3 in Chapter 2 revisited the aims of an elicitation, and then discussed 

factors that could affect experts’ contribution towards achieving those aims.  

The chapter proposed that weighting can potentially compensate for methodological 

challenges in elicitation by giving ‘more say’ to experts who are believed to be less affected. 

Four factors were identified that could affect experts’ contribution: substantive expertise, 

perspective, normative expertise and ability to make accurate probabilistic assessments. 

Variation in the four factors could provide a basis for differential weighting. 

The importance of each factor was proposed to depend on the elicitation process. Expert 

recruitment, provision of background information and opportunity for discussion with other 

experts are likely to improve substantive expertise and minimise bias due to perspective, 

whereas elicitation process design, training and evaluation and feedback help reduce 

cognitive biases in assessing quantities and expressing uncertainty. 

Section 2.4 in Chapter 2 then analysed the assumptions that underpin the existing methods 

for deriving weights, exploring their role in elicitation. 

Chapter 2 concluded that different weighting methods can be used to capture different 

factors, and understanding where the process lacks can inform which weighting method to 

use. For example, performance-based weights are affected by experts’ normative expertise 

and their ability to make accurate probabilistic assessments, whereas weights derived from 

experts’ characteristics can be used to capture their substantive expertise independently of 

their normative expertise. 

The challenge in implementing the proposed principles arises from the lack of 

understanding of how to determine what the challenges in the elicitation process are. For 

example it is not clear how to demonstrate that training and planning were optimal and 

that the only basis for differential weighting is substantive expertise. 
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Furthermore, there are many methodological challenges in deriving weights that make it 

unclear whether they successfully achieve their objective. 

For example, weights derived from experts’ characteristics have only been based on their 

substantive expertise. It is not clear whether characteristics can be used as proxies for other 

factors that can affect experts’ priors. 

The characteristics that have been used as proxies for substantive expertise and the derived 

weights tend to be chosen arbitrarily. It is not clear whether they successfully minimise bias 

and uncertainty in the weighted aggregate priors. 

When seeds are used to derive performance-based weights that are domain-specific, their 

score on the seed will represent their performance on the target parameter only if their 

substantive expertise and perspective equally affect the seed and the target parameters. 

When this is not the case, there is a risk that lower weights will be assigned to experts with 

unique but important perspective, reducing the heterogeneity of the expert sample. 

Several applied elicitation exercises have reported this challenge. (Fischer, Lewandowski 

and Janssen, 2013; Grigore et al., 2016) 

The literature review in Chapter 2 highlighted that studies comparing different weighting 

methods, based on different approaches, are sparse.   

The remainder of the thesis thus applied the principles developed in Chapter 2 to a case 

study in CEDM in order to explore to what extent the different factors that provide basis for 

differential weighting affected experts’ priors and how this affected the role of different 

methods for deriving weights. 

In Chapter 3 different weighting methods were compared in an elicitation exercise applied 

in CEDM (thesis objective 2). The study was based on a clinical trial (REFORM trial) 

conducted to measure the clinical and cost-effectiveness of a multifaceted podiatry 

intervention designed to prevent falls in the elderly. 

The REFORM elicitation study was designed to recruit a relatively large sample of experts, 

collect information about experts’ professional experience and elicit a range of seed and 

target parameters. The trial outcomes were used as seeds, while the change in the 

treatment effect was used as the target parameter. 

The information about experts and their priors on seed parameters were used later in the 

thesis (in Chapter 5) to explore factors that affect experts’ priors – by measuring the effect 
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of the captured characteristics on their priors on the seed parameters. They were also used 

to derive weights in Chapter 6, and observe the effect of different weighting methods on 

the target parameter and on the results of cost-effectiveness model populated by the 

priors. 

Chapter 4 gave an overview of the results of the elicitation exercise, while Chapters 5 and 6 

analysed the results to assess the effect of different weighing methods (thesis objective 3). 

Specifically, Chapter 5 applied the guiding principles developed in Chapter 2 to score 

experts’ priors on seed parameters, and used the information about experts’ professional 

experience and the derived scores to explore the effect of the captured characteristics on 

their elicitation performance. The effect of experts’ characteristics on non-domain and 

domain seeds were explored separately. 

The non-domain seed was the number of rainy days every September in York. Priors elicited 

from experts who were recruited in the Yorkshire and Humber region attained better 

scores than those recruited in other regions of the UK suggesting that the scores were 

affected by substantive expertise/perspective. Normative expertise was also correlated 

with better performance.  

The domain seeds were the REFORM trial outcomes. Experts’ scores varied across seeds 

more than they did between experts but the effect of expertise was relatively constant 

across parameters. 

Substantive expertise was found to improve scores on domain seeds, but not the non-

domain seed, suggesting that substantive expertise does improve scores. The effect was 

consistent when different definitions of substantive expertise were used, although it was 

not statistically significant, likely because of the sample size. 

The effect of normative expertise and accuracy of probabilistic assessments on the domain 

seeds was less clear. 

While Chapter 5 provided useful insight into factors that affect experts’ priors, the 

implications of the findings for the role of different weighting methods were uncertain. 

Chapter 5 only explored accuracy of individual experts and it is not clear whether including 

only more accurate experts improves the accuracy of the aggregate prior, or whether the 

‘Wisdom of Crowds’ outweighs any benefit incurred by only including accurate experts. 

Furthermore, the impact of the improvement in prior accuracy on the results of cost-

effectiveness analysis is not clear. These themes were explored in Chapter 6. 
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In Chapter 6 the results from the REFORM elicitation study were used to apply different 

weighting methods identified in Chapter 2, and to compare the effect of the derived 

methods on the accuracy of the aggregate priors on seed parameters, as well as on the 

cost-effectiveness analysis of the REFORM trial. 

Eight different weighting methods were derived from various characteristics collected 

about experts, and their elicitation performance. The choice of methods was found to 

affect the accuracy of experts’ priors on the seed parameters. 

The findings from Chapter 6 suggest that weights based on experts’ substantive expertise 

and performance-based weights both improved the accuracy of the aggregate priors in 

comparison to equal weighting, and the former were more accurate than the performance-

weighted priors. Weights derived from experts’ perspective and normative expertise was 

detrimental to experts’ scores in comparison to unweighted priors. 

Chapter 6 also applied the derived weighting methods to the temporal change in the 

treatment effect. The treatment effect observed in the trial, and the temporal change in the 

effect derived from experts’ priors were used to populate a CEDM, and used to observe the 

effect of different weighting methods on the cost-effectiveness decision generated by the 

model, and the resulting value of further research. 

Despite apparently small differences in the estimated temporal change in the treatment 

effect, the different weighting methods were found to affect the decision generated by the 

model.  

7.2. Key contributions of this thesis to the literature 

The focus of the thesis has been methods for deriving weights. This thesis has developed an 

understanding of the differences between existing methods used to derive weights, the 

effect they may have on aggregate priors and how this affects their role.  

Chapter 2 identified the existing methods and analysed the assumptions that underpin each 

method, allowing transparency when choosing methods and helping direct further research 

by highlighting the challenge in determining which method is optimal.  

Chapters 3-6 then developed a better understanding of the existing methods by applying 

the guiding principles in a case study. 
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Several studies have assessed characteristics that affect experts’ priors, or compared 

performance-weighted priors to unweighted ones – these studies tend to analyse results of 

elicitation exercises reported in databases, retrospectively. For example, Nemet et al. 

(2017) measured the effect of experts’ characteristics and elicitation process design on the 

width of experts’ 80% confidence interval in their judgments about future energy 

technologies. The studies evaluating and comparing different weighting methods are 

generally based on the applied exercises in the TU Delft database (Goossens, 2008b; S Lin 

and Cheng, 2009; Flandoli et al., 2011; Colson and Cooke, 2017). Using findings from 

databases can limit the characteristics and weighting methods that can be compared. 

The REFORM elicitation study is the first study prospectively designed to evaluate and 

compare weighting methods in CEDM; prospectively designing the exercise to compare 

different weighting methods allowed exploration of: 

 Methods for capturing factors that affect experts’ priors;  

 Methods for scoring experts priors; 

 Methods for eliciting and scoring different types of parameters. 

The results of the applied work suggest that experts’ priors are influenced by their 

substantive expertise, and that both substantive characteristics and performance-based 

seeds can improve the accuracy of aggregate priors.  

It is important to note that generalisability, of the findings is unclear, because the study was 

conducted in a very specific setting. Training, conduct of elicitation (e.g. face-to-face vs 

remote delivery), elicited parameters and background information can all affect elicitation 

results, and consequently the relative importance of different factors thought to affect 

experts’ priors. Furthermore, the methods applied in the REFORM elicitation exercise may 

not be applicable in other case studies; for example, when analysis is not conducted 

alongside a trial and so trial outcomes cannot be used as domain-specific seeds. Further 

research on weighting methods is required, across a range of settings, to develop guidance 

on the optimal method to derive weights. Nevertheless, the study provides an initial step in 

understanding the optimal approach to weighting.  

In addition to improving the understanding of the existing weighting methods, the REFORM 

elicitation study has developed elicitation methods more broadly. The REFORM elicitation 

study developed methods for eliciting complex parameters in a remotely delivered 
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elicitation exercise. The elicited parameters included the rate of falls, treatment effect, and 

the temporal change in the treatment effect.  

7.3. Limitations 

This section describes the methodological challenged encountered in this thesis in turn. 

Literature review 

Section 2.2 conducted a literature review to address the first objective of the thesis, and 

identified two approaches to deriving weights, and multiple methods within each approach. 

The literature review was a non-systematic BCSC. A potential caveat of the BCSC method is 

the reliance on authors’ referencing to identify relevant publications (Hinde and Spackman, 

2015). If a publication is insufficiently referenced, and it has not been cited by other 

publications on the topic of interest, it can lead to a ‘citation island’. Any such citation 

islands could have been missed from the literature search. In order to minimise the risk of 

missing citation islands, the initial pearls were selected from a range of fields, and included 

general elicitation references (Cooke, 1991; P Garthwaite, J Kadane and O’Hagan, 2005; 

O’Hagan et al., 2006). 

Furthermore the search strategy was focused on applied examples in HTA. It is possible that 

additional weighting methods that have been applied in other fields were missed. The 

methods highlight the difficulty in carrying out systematic searches in elicitation due to its 

widespread application and varied terminology. 

REFORM elicitation study protocol 

When designing the REFORM elicitation exercise, methodological challenges arose from the 

lack of understanding of how best to elicit different types of quantities (as discussed in 

Chapter 1). The aim was to elicit experts’ beliefs on the treatment effect of the podiatry 

intervention evaluated in the REFORM trial, and the temporal change in the treatment 

effect. A decision was made to elicit both quantities indirectly, based on practice in 

previous exercises that elicited the treatment effect. (Bojke et al., 2010; Soares et al., 2011) 

the treatment effect was assumed to be independent of the rate of falls and risk of 

fractures. 



 

244 
 

The elicitation methods required experts’ beliefs on the rate of falls to be elicited in those 

patients who receive the intervention and those who do not. The skewed distribution of the 

frequency of falls made it a difficult parameter for experts to assess. There were no 

identified studies for deriving rates and so a novel method for eliciting rates indirectly was 

derived where a series of binomial distributions was elicited and conditional probabilities of 

different outcomes (number of falls) were assumed to be independent. It is unclear which 

of the two methods (direct or indirect elicitation of rates) is better and so the decision to 

use the indirect method was based on the results of a pilot where the participants 

expressed the indirect method to be more intuitive, and led to more comparable results 

between them. It is not clear whether this also makes it a better method.  

Alternative methods for eliciting multinomial distributions exist – for example eliciting the 

multinomial distribution for the frequency of falls and correlation between conditional 

probabilities of different number of falls (Clemen, Fischer and Winkler, 2000), but the 

methods require extensive training and active guidance by the investigator (Bojke et al., 

2017) and so were not feasible in this study. 

The plausibility of assumptions imposed by the elicitation methods were evaluated in 

section 4.5.1 and found no evidence that the assumptions were implausible. 

Methods for capturing experts’ characteristics 

Chapter 2 highlighted the lack of understanding of which characteristics should be used as 

proxies for substantive expertise, perspective, normative expertise and the ability to make 

accurate probabilistic assessments. The REFORM elicitation study proposed using experts’ 

role, research experience, research awareness and patients contact to reflect their 

substantive expertise, to use experts’ statistical coherence to capture their normative 

expertise, and to capture their perspective using their profession, although more research 

in this field is required.  

Methods for assessing the effect of experts’ characteristics on their elicitation 

performance 

While the REFORM elicitation study used multiple characteristics to capture experts’ 

performance, it was not possible to assess the impact of each characteristic due to the 

small sample size of experts (n=41). This is a common challenge in elicitation in CEDM 

where the average number of experts recruited is 8.83 (Soares et al., 2018).  
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Methods for observing the impact of different weighting methods in cost-effectiveness 

analysis 

The model used in Chapter 6 was founded on several assumptions of uncertain clinical 

plausibility. Assessment of the plausibility of the stated assumptions was beyond the scope 

of this chapter. Nevertheless, the results presented in section 6.5 demonstrate an 

important point – that apparently small differences in the assessment of parameter 

uncertainty arising from different weighting methods, can be clinically and economically 

impactful, emphasising the importance of developing the methodology for deriving 

weights.  

7.4. Further research 

The impetus for research in this thesis was to understand how to use elicitation methods in 

a way that generate unbiased, informed estimates of uncertain quantities for use in CEDM. 

The findings suggest that characteristics and performance-based weights can improve the 

accuracy of the aggregate priors but further research is required to fully understand what 

the optimum elicitation methods are. Three specific research streams are discussed here 

that could help inform the optimum implementation of elicitation methods.  

1. Develop methods for selecting experts. 

This thesis suggested that priors elicited form substantive experts were more accurate than 

those elicited from non-substantive experts. The findings could potentially be applied to 

ensure only substantive experts are recruited, rather than to recruit vast pools of experts 

and use their experience to weight them. However, further research is required to 

determine what characteristics should be sought in the recruitment process. 

2. Develop methods for within-elicitation validity assessments. 

The REFORM elicitation study used a relatively large sample of experts and extensive 

analysis to determine which weighting method led to the most accurate aggregate prior in 

the case study. Given the many methodological uncertainties, and options for delivering 

elicitation, there is a need for within elicitation validity assessments to give indication of 

how well the exercise has done. Chapter 1 highlighted that methods for assessing internal 

validity exist, there are no empirical evidence-backed guidelines on how to assess validity of 

an elicitation exercise. 
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3. Experiment-based research on elicitation methods.  

Given the many variables in the elicitation process (discussed in Chapter 1) the 

generalisability of methodological studies is often uncertain. Experiment-based research 

can help resolve specific methodological challenges by testing hypotheses in controlled 

conditions.   
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Appendix 3.1. REFORM trial background information 

Background 

Falls are a major cause of morbidity and mortality in the elderly population in the UK 

(Torgerson, 2001; Iglesias, Manca and Torgerson, 2009) with an associated cost burden of 

£1.8 billion per year (Torgerson, 2001). Falls result from a combination of environmental 

and physiological factors (Lord et al., 2007). Several studies suggest that footwear, foot pain 

and foot and ankle strength can affect balance and the risk of falls (Koepsell et al., 2004; 

Menz, Morris and Lord, 2005, 2006, Menant et al., 2008, 2009). Several studies have 

suggested that some treatments provided by podiatrists may play a role in improving 

balance (Kobayashi et al., 1999; Balanowski and Flynn, 2005; Hijmans et al., 2007), but none 

of these studies measured their effect on the frequency and severity of falls. Furthermore, 

previous studies addressed individual risk factors (footwear, foot pain or foot strength 

alone). Only one randomised controlled trial (RCT) has assessed the clinical effectiveness of 

a multifaceted podiatry intervention aiming to reduce the risk of falls by addressing all of 

the above mentioned risk factors (Spink, Menz and Lord, 2008; Spink et al., 2011). The 

study was conducted in Australia and did not measure the costs of the intervention. 

The REFORM trial aimed to evaluate the clinical and cost-effectiveness of a similar, 

multifaceted podiatry intervention, in a UK setting. 

Intervention 

The intervention consisted of the following four components: 

- foot orthoses (insole designed to reduce pain by redistributing pressure away from 

foot lesions), 

- a home based exercise programme aiming to stretch and strengthen the muscles of 

the foot and ankle. They were demonstrated by the podiatrist at the participant’s 

initial visit and were supplemented by a DVD demonstrating the exercises and an 

illustrated explanatory booklet showing how to do them at home. 

- Footwear assessment was carried out, and where participants do not have 

appropriate footwear they were provided with footwear vouchers and advice on 

optimal footwear. 

- Falls prevention advice leaflet was sent to participants. 
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Outcome measures 

The primary outcome measurement in the trial was the rate of falls, defined as the average 

number of falls patients suffer per year. Secondary outcome measurements were: 

a) Proportion of patients who suffer at least one fall  

b) Proportion of patients who suffer multiple falls (more than two)  

c) Patient reported time to first fall during follow-up 

d) Health related quality of life as measured by the EQ-5D 

e) Short Falls Efficacy Scale  

f) Fear of falling 

g) Activity of Daily Living 

h) Fracture rate 

i) Health service utilisation 

j) Geriatric Depressions Scale  

These were all considered as potential target parameters in section 3.5.1. 

Patient population 

The target sample size in the trial was 890 (445 in each arm).  

Participants were included in the trial if: 

- they were 70 years of age and over, 

- they were community dwelling, 

- they have had at least one fall in the past 12 months; or one fall in the past 24 

months requiring hospital attention.  

Participants were excluded from the study if: 

- They were known to have neuropathy. 

- They were known to have a neurodegenerative disorder.  

- They failed to return all monthly falls diaries over the first three month period (the 

pilot) or failed to return the baseline questionnaires.  

- They had had a lower limb amputation (including partial foot amputation)  

- They were unable to walk household distances (10 metres/32 feet) unaided.  

- At recruitment they were wearing a full or 3/4 length in-shoe foot orthotic with the 

purpose of altering or modifying foot function in order to treat, adjust, and support 

various biomechanical foot disorders. 
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- They were known to have dementia.  

- They were unable to read or speak English.  

- Their usual footwear had been adapted in such a way which would not have 

allowed an orthotic to be fitted. 
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Appendix 3.2. Questions about experts’ substantive expertise 

Please select your role from the list by ticking the appropriate box.  

□ Podiatrist 

□ Occupational therapist 

□ Physiotherapist 

□ Orthopaedic surgeon 

□ Geriatrician 

□ Academia 

 

What is your job title? Please include as much detail as possible, such as specialty, level or 

band.  

__________________________________________________________ 

 

How many years have you been in this role? Please include experience at other locations. 

___________________________________________________________ 

 

What proportion of your time do you spend working with patients at risk of falling, either 

helping them prevent falls or treating fall related injuries? 

□ 0-10% 

□ 11-30% 

□ 31-50% 

□ More than 50% 

 

Are you aware of any ongoing or published research on podiatry interventions designed to 

reduce the risk of falls? 

□ Yes 

□ No 

 

Have you been a co-author on any published research? If so, how many publications do you 

have? (Please note these do not have to be on a topic related to falls.)  



 

267 
 

□ Less than 3 

□ 4-20 

□ 21-50 

□ More than 50 

 

Have you ever been involved in writing a successful research grant proposal? If so, how 

many?  

□ 0 

□ 1-5 

□ More than 5 
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Appendix 3.3. The non-domain seed elicited to capture 

experts’ ability to make accurate probabilistic assessments 

Figure 3.1. Question used to capture experts’ normative skills. 
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Appendix 3.4. Questions assessing experts’ inference skills 

The following question was taken from a standard tool (called Watson-Glacer appraisal) 

used in research to gain understanding of how people process information. Please read the 

paragraph below to answer.  

‘Studies have shown that heart disease is more common among people living in the north 

of England than people living in the south of England. There is little if any difference, 

however, in rate of heart disease between northerners and southerners who have the 

same level of income. 

‘The average income of southerners in England is considerably higher than the average 

income of northerners. 

Let's assume that the information in the paragraph is correct. The following four questions 

contain conclusions that some people might draw from the paragraph. For each statement 

please chose ONE available option that BEST describes its degree of truth or falsity, based 

on the paragraph above.  

a) The easiest way to eliminate heart disease in England would be to raise the general 

standard of living.  

□This is true 

□This is probably true 

□There is insufficient information 

□This is false 

□This is probably false 

b) People in high income brackets are in a better position to avoid developing heart 

disease than people in low income brackets. 

□This is true 

□This is probably true 

□There is insufficient information 

□This is false 

□This is probably false 

c) There is a lower rate of heart disease among northerners with relatively high incomes 

than among northerners with much lower incomes.  

□This is true 

□This is probably true 



 

270 
 

□There is insufficient information 

□This is false 

□This is probably false 

d) Whether northerners have high incomes or low incomes makes no difference to the 

likelihood of their developing heart disease. 

□This is true 

□This is probably true 

□There is insufficient information 

□This is false 

□This is probably false 
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Appendix 3.5. Targeted search for methods for eliciting 

rates 

Aim 

As highlighted in section 3.5.2, a pragmatic, non-systematic search was conducted to 

identify existing methods for eliciting rates. 

Methods 

Two search strategies were employed: 

- Searching elicitation literature identified and discussed in Chapter 1,  

- Conducting a targeted database search. 

The targeted database search was conducted in the three search databases recommended 

by the University of York: Google Scholar, Web of Knowledge, and Scopus. Details of the 

searches are provided in Table A3.1. Additional search terms were considered, such as 

‘expert’ or ‘expert knowledge’. An informal scoping search suggested that the additional 

search terms led to more references that were less relevant. 

Table A3.1. Search terms used in the targeted search. 

Datebase Search terms (anywhere in text) Additional restrictions 

Google Scholar (elicit OR eliciting OR elicitation) 

AND rate 

English language 

Web of Knowledge elicit* AND rate English language 

Scopus elicit* AND rate English language 

The identified references were scanned for relevance in three stages: 1) by title, 2) abstract, 

and 3) full text. 

Results 

The Google Scholar, Web of Knowledge and Scopus database searches returned 827,000, 

22,275 and 32,397 results, respectively. Careful consideration of each individual reference 

was not feasible, instead, the first 300 results were reviewed in each.  

The results of the searches are shown in Table A3.2. 
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Table A3.2. Results of the scoping search. 

Search method 
Number of citations identified at each stage of the search 

Total 
Shortlisted 

by title 
Shortlisted 
by abstract 

Shortlisted 
by full test 

Citations used in Chapter 1 
48 12 0 0 

Databased 

searches 

Google 

Scholar 300 12 2 0 

Web of 

Knowledge 300 7 0 0 

Scopus 
300 5 0 0 

 

No studies describing methods for eliciting rates were identified. 
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Appendix 3.6. Background information about REFORM trial 

About the trial 

It is a randomised controlled trial (RCT) aiming to evaluate the clinical and cost 

effectiveness of a multi-component podiatry intervention for the prevention of falls in 

patients over the age of 70. 

Why? 

There is evidence that foot and ankle problems are associated with increased risk of falls.  
To read the summary of evidence click here. 

A recent prospective study of 176 older people indicated that ankle flexibility, toe 

plantarflexor strength and plantar sensation were significant and independent predictors 

of balance and functional test performance.  

A 12-month follow-up of this cohort confirmed that these factors, in addition to foot pain, 

were significant independent predictors of falls. 

A number of studies have assessed footwear in older people who have fallen and suggest 

that walking barefoot or wearing stockings, increased shoe heel height and smaller sole 

contact area can all increase the risk of a fall. 

A number of other studies have investigated the main features of a shoe thought to affect 

balance, and found that increased heel height and reduced sole hardness have detrimental 

effects on balance. 

Several studies have suggested that some treatments provided by podiatrists, such as 

lesion debridement, foot orthoses and foot and ankle exercises, may play a role in 

improving balance.  

Given the emerging evidence that foot problems and inappropriate footwear increase the 

risk of falls, it has been suggested that podiatry may have a role to play in falls prevention. 

About the intervention 

The intervention aims to address all foot and ankle related risk factors for falling. It consists 

of four components: foot orthoses, foot and ankle exercise programme, footwear 

assessment and shoe provision and a fall prevention leaflet. 
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- Foot orthoses are insole designed to redistribute pressure away from plantar 

lesions. 

 

To read more about the orthoses click here (FOOT ORTHOSES). 

 

- The exercise programme aiming to stretch and strengthen the muscles of the foot 

and ankle involves 30 minute home based exercise to be undertaken three times 

per week indefinitely. The exercises will be demonstrated by the podiatrist at the 

participant’s initial visit and will be supplemented by a DVD demonstrating the 

exercises and an illustrated explanatory booklet showing how to do them at home. 

To view the details of the exercise programme click here (EXERCISE). 

- Footwear assessment will be carried out. Participants who do not have appropriate 

footwear will be provided with footwear vouchers and advice on optimal footwear. 

- Falls prevention advice leaflet (“Staying steady. Improving your strength and 

balance” designed by AgeUK) will be sent to participants. 

Foot orthoses 

Participants will be fitted with a prefabricated insole (Formthotics TM Foot Science) 

manufactured from a thermoformable cross-linked closed cell polyethylene foam which will 

be shaped to fit the participant’s foot. The orthoses will then be appropriately customised 

using 3mm thick PPT urethane to redistribute pressure away from any plantar lesions. The 

orthosis will be supplied either by the podiatrist delivering the intervention or by a 

manufacturer in response to a prescription from the podiatrist.  
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Exercise  

Activity  Description Dosage Increments 

Ankle range of 

motion 

Sitting with knee extended. 

Rotate foot in clockwise 

direction and then anti-

clockwise. 

1x10 repetitions 

for each foot in 

each direction. 

None. 

Ankle inversion 

strength 

Sitting, hip and ankle at 90º. 

Invert foot against resistive 

exercise band anchored by 

chair leg. 

3x10 repetitions 

for each foot. 

Increase 

resistance 

strength of 

resistive exercise 

band. 

Ankle eversion 

strength 

Sitting, hip and ankle at 90º. 

Evert foot against resistive 

exercise band anchored by 

chair leg.  

3x10 repetitions 

for each foot. 

Increase 

resistance 

strength of 

resistive exercise 

band. 

Ankle dorsiflexion 

strength 

Sitting, hip and ankle at 90º. 

Dorsiflex both feet to end 

range of motion and hold. 

Hold feet in 

dorsiflexion for 

3x10 seconds. 

Increase 

repetitions up to 

maximum of 10. 

Adductor hallucis 

stretch 

Elastic band around both 

halluces. Move feet apart. 

2x20 seconds. None. 

Toe 

plantarflexion 

strength 

Place heel on plate of 

Archxerciser™. Place toes 

over spring loaded toebar. 

Retract bar with toes. 

3x10 repetitions 

for each foot. 

Increase distance 

bar is retracted. 

Toe 

plantarflexion 

strength 

Pick up 25mm diameter 

stones and place in box. 

Pick up 2x20 

stones for each 

foot. 

None. 
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Ankle 

plantarflexion 

strength 

From standing, rise up onto 

toes of both feet and then 

lower back down. 

3x10 repetitions. Increase 

repetitions up to 

maximum of 50. 

Calf stretch Standing stretch leaning 

against wall. Stretch knee is 

extended. Place support leg 

forward with knee flexed. 

Hold stretch for 

3x20 seconds on 

each leg. 

Increase forward 

lean to increase 

stretch as 

required. 

 

Data collection 

They will then complete a questionnaire at 1, 3, 6 and 12 months after randomisation to 

collect data on compliance with the exercise programme, wearing the foot orthoses and 

the number of falls they had. They will keep monthly exercise and fall calendars to help 

them complete the questionnaire. 

Follow-up questionnaires will be sent to participants in the post. Participants who provide 

an email address will be given the opportunity, if they prefer, to complete the 

questionnaire on-line.  

Who will take part? 

Trial participants be 

- 70 years of age and over 

- Community dwelling 

- have had at least one fall in the past 12 months; or one fall in the past 24 months 

requiring hospital attention.  

Participants will be excluded if:  

- They are known to have neuropathy. 

- They are known to have a neurodegenerative disorder.  

- They fail to return all monthly falls diaries over the first three month period (the 

pilot) or fail to return the baseline questionnaires.  

- They have had a lower limb amputation (including partial foot amputation)  

- They are unable to walk household distances (10 metres/32 feet) unaided.  
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- They are currently wearing a full or 3/4 length in-shoe foot orthotic with the purpose 

of altering or modifying foot function in order to treat, adjust, and support various 

biomechanical foot disorders. 

- They are known to have dementia.  

- They are unable to read or speak English. 

- They would be excluded if their usual footwear has been adapted in such a way which 

would not allow an orthotic to be fitted. 
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Appendix 3.7. Histogram technique training (Instructions 

tab from Figure 3.6) 
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Appendix 3.8. Introduction into the elicitation exercise 

  

 

 

 


