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Developing Fundamental Models of Colloid Transport and Absorption 

in Sand Filters 

 

Project Summary 

This work was undertaken as part of an Industrial Collaborative Awards in 

Science and Engineering (iCASE) research programme, jointly funded by the National 

Nuclear Laboratory (NNL) and the Engineering and Physical Sciences Research 

Council (EPSRC).  The aim was to probe the mechanisms of clogging of sand bed 

filters using particle based computer simulation methods.  Existing models take a top 

down approach, making use of an empirical clogging parameter.  Simulation holds the 

prospect of relating this parameter to properties of the effluent and the sand bed. 

The problem was approached using two computational methods: molecular 

dynamics, and smooth particle applied mechanics.  The molecular dynamics model 

yielded successful results, qualitatively agreeing with existing experimental data with 

regards to the rate of deposition within the bed, and the associated observed pressure 

drop.  The model was systematically explored by varying the nature of the colloid-

fluid-sand forces, the geometry and packing fraction of the sand bed, and the 

concentration of the colloids.  An investigation into the fractal nature of the deposits 

was also performed, suggesting that a lower fractal dimension creates greater physical 

hinderance to the flow.  This serves as additional validation for existing theories. 

The smooth particle model yielded less successful results.  Substantial 

parameterisation of the model was undertaken, however, the model still showed signs 

of instability under certain conditions.  Again, it produced qualitative agreement with 

existing literature, but showed substantial deviation from the results gained from the 

molecular dynamics model.  Ultimately, further parameterisation of this model is 

required to allow for a more effective comparison of the models. 
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1 Introduction 

 

1.1 Background and thesis outline 

Clogging is the reduction in the permeability of a porous membrane due to the 

build-up of deposit within it.  It is not a particularly well understood process.  The aim 

of this work is to provide a mechanistic insight into clogging of sand bed filters using 

a combination of particle and continuum mechanics.   

Unfortunately, it is difficult to probe the mechanisms experimentally due to 

difficulties with non-invasive imaging of particle deposits within a sand bed to high 

enough resolution.  This makes computer modelling an important technique in helping 

to gain an insight that can be verified experimentally.  Models based on colloid 

filtration theory exist, but are largely empirical with little mechanistic basis, 

particularly in relation to the dependence of the pressure head-loss on the specific 

deposit.  It is predicted that the flow rate, the nature of the colloid-colloid and colloid-

sand interactions, and the fractal dimension of the deposit will be contributing factors.   

Chapter one introduces the processes of the Site Ion-Exchange Plant (SIXEP) 

and explains why the problem of clogging of sand bed filters is of importance to the 

nuclear waste cycle.  It then reviews the current literature around filtration science 

discussing the different transport mechanisms that bring colloidal particles into contact 

with sand grain particles, the reasons that colloids are deposited, and the time 

dependent effects of this deposition.  It highlights existing top down modelling work 

and experimental techniques that can be used to test hypotheses.  It also provides a 

brief introduction to the modelling techniques the rest of this work will make use of. 

Chapter two discusses the first modelling technique used in this work: molecular 

dynamics (MD).  The fundamentals of molecular dynamics are explained, which 

provide the basis for the first model developed.   

 Chapter three develops the molecular dynamics model, giving details 

surrounding the decisions taken in creating the model.  Data from the literature and 

from existing models is then used to verify that the model, at least qualitatively, gives 

realistic and reliable results.  A systematic exploration of the parameter space is then 

undertaken, resulting is a series of mechanistic hypotheses.  The effect of the pairwise 
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potentials, the density of the sand, the concentrations of colloids, and the fractal 

dimension of deposits are investigated. 

Chapter four discusses the second modelling technique used in this work: smooth 

particle applied mechanics (SPAM).  The fundamental of continuum mechanics are 

first discussed, then the intricacies of SPAM are examined.  It also highlights the need 

to define constitutive relations.  

In chapter five, the details on how to parameterise a continuum scale model using 

pseudo-experimental data from molecular simulations are discussed.  An equation of 

state and the dependence of viscosity on density/temperature is determined for two 

potentials. 

In chapter six, the parameterised SPAM model is used to perform a similar 

systematic exploration to chapter three.  The continuum scale model is compared with 

the molecular dynamics model, allowing for a direct comparison of the modelling 

techniques. 
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1.2  SIXEP 

The first 11 nuclear power plants built in the United Kingdom were Magnox 

plants and, as of 2015 when the final plant (Wylfa in Angelsey) was shut down, none 

of these remain operational.1  The term Magnox originates from the magnesium-alloy 

used to clad the fuel rods within the reactor.  The legacy waste from these plants 

accounts for the vast majority of waste remaining in the UK.  Due to the low burn-up 

of these 1st generation plants the majority of the fuel was reprocessed to extract usable 

uranium, which at the time was in short supply.  Reprocessing was also required to 

extract plutonium from Magnox stations that were built for the sole purpose of 

generating material for weapons programmes in the UK and US.  Reprocessing 

operations were found to generate a large volume of radioactive effluent.  By the 

1970s, discharge and dispersal of this effluent into the Irish Sea was no longer an 

acceptable option. 

The Site Ion Exchange Plant (SIXEP) at Sellafield reprocessing site is a plant 

designed with the aim of reducing the amount of caesium and strontium discharged to 

the Irish Sea from pond storage water used to store spent Magnox fuel prior to 

treatment.  Since its opening in 1985, it has helped to vastly reduce the environmental 

impact of the Sellafield site (figure 1.1).  Several steps are taken in order to try to limit 

the amount of corrosion of the fuel rods, and therefore limit the amount of strontium 

and caesium released to the pond water:2 

• The pH is maintained at 11.5 by dosing with sodium hydroxide 

• The temperature of the pool is maintained using refrigerant coolers 

• The presence of non-radioactive ions is kept as low as possible 
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Figure 1.1: Discharge of radiation to the Irish Sea. SIXEP was opened 

in 1985.3  

 

Even with these steps in place there is still a degree of corrosion that takes place, 

meaning subsequent measures must be taken to remove the radioactive isotopes prior 

to discharge to the sea.  SIXEP uses three main processes to achieve this goal: 

sedimentation, sand bed filtration, and ion-exchange, outlined in figure 1.2.   

The initial sedimentation step removes any particulates within the waste greater 

than approximately 10 m, leaving an effluent waste containing other colloids and 

residue.   The ion-exchange process must be done at a neutral pH as alkaline conditions 

would dissolve the zeolite catalyst.  The magnesium colloids remaining in the waste 

are soluble in neutral conditions and would blind the ion-exchange column if present.  

Therefore, there is a prior sand-bed filtration process to remove any colloids suspended 

in the effluent waste, which at high pH are insoluble. 

 

 



5 
 

 

Figure 1.2: Schematic showing a simplified flow diagram for SIXEP.  

 

When the plant was designed, a research programme was undertaken to optimise 

its efficiency.  This included selecting the material to be used in the synthetic ion-

exchangers and testing various polyelectrolytes to determine their effect on the process 

of filtration.  The aim when designing the sand bed filters was not only to remove the 

highest percentage of solids from the waste, but also to create the longest time between 

backwashes; as colloids deposit within the filter bed the permeability decreases, 

eventually leading to a pressure drop (and reduction in performance), requiring the 

filter to be backwashed with water to remove the sludge before it can be used again.  

The research programme concluded that a low molecular weight polyelectrolyte such 

as Nalfloc N7607 or Magnafloc 1597 should be used to enhance the sticking of colloid 

particles to the sand bed.2 

The plant has operated successfully and as effectively as the design intent since 

opening.  However, due to closure of other plants on site and a change in the nature of 

the effluent waste being sent to SIXEP, it is becoming increasingly important to ensure 

that there is sufficient knowledge available to be able to accurately quantify the risks 

associated with changes to the waste management cycle.  Future variations in the feed 

stream could include:4 
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• Sand and clinoptilite fines 

• Corrosion products from sludge 

• Miscellaneous beta gamma waste 

• Skip decontamination washings 

• Algae 

and it is not currently known how such changes in feed stream would affect the 

processes at SIXEP.  Morris4 highlighted several key areas where knowledge gaps 

exist associated with the SIXEP cycle, and in particular the process of sand bed 

filtration, and was summarised by Bridge5: “there has been to date a substantial need 

for a more detailed foundational understanding of the physics and chemistry of colloid-

sand interactions within deep bed filtration, and the parameters which control these.”  

This works aims to help address this need. 

 

1.3 Modelling techniques 

The complex nature of how and where colloids deposit within a filter makes 

predicting when a filter will become clogged, and how this will vary with differing 

feed streams, a difficult problem.  Over the last forty years there have been several 

mathematical, experimental, and computational investigations into the phenomena of 

clogging. Jegatheesan and Vigneswaran6 recently reviewed the existing modelling 

work in the area, summarising a variety approaches that have been used to tackle this 

problem.  The techniques were split into two broad categories: microscopic and 

macroscopic.   Macroscopic models consider the cumulative collection of deposits and 

the resulting time-dependent effects, whereas microscopic models consider individual 

particle interactions.  Similarly, Tien and Payatakes7 further split the research into two 

distinct categories: a phenomenological approach and a theoretical approach.  The 

phenomenological approach describes the behaviour of deep bed filter using a set of 

partial differential equations, where the model parameters are required from prior 

experimental work.  This type of model can be used for the basis of design and scale-

up, but gives very little mechanistic information; it is a pragmatic approach that 

requires little fundamental basis, but gives good results.  The theoretical approach, 

however, aims to derive mathematical formulae that describe the dynamics of deep 

bed filtration based on the nature of the filter-fluid and filter-colloid interactions.  This 
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section will outline some of the key theories that define the current knowledge 

surrounding the processes of filtration and clogging. 

 

1.3.1 Microscopic approach 

The microscopic approach investigates the interactions between a single 

collector (a sand grain when modelling a sand bed filter) and a single colloid and 

ignores any time-dependent effects.  The aim is to understand the reasons that a colloid 

travels close enough to a collector to deposit, and the forces that control the likelihood 

of deposition occurring.    

 

Colloid filtration theory 

O’Melia et al8, who formed the basis of colloid filtration theory, suggested there 

are three mechanisms by which a suspended colloid particle can come into contact 

with a collector (a sand grain, in the case of a sand bed): interception, sedimentation, 

and diffusion, outlined in figure 1.3.  It assumes steady, saturated flow conditions.  A 

particle following the streamline may collide with a collector simply as a result of the 

size of the colloid, resulting in interception.  If the density of the suspended particle is 

different to that of the water, then other phenomena, such as fluid drag and buoyancy, 

will affect the trajectory, resulting in sedimentation.  Finally, a colloid particle is also 

subject to a series of random collisions with the fluid and other suspended particles, 

resulting in Brownian motion and diffusion.   In deep bed filtration, this process is 

statistical; the more collectors that a colloid particle flows past, the more likely it is to 

be captured.  The size of the colloids and the viscosity of the water are key to 

determining which process is dominant. 
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Figure 1.3: Basic transport mechanisms, adapted from O’Melia5.  A is 

sedimentation, B is interception, C is diffusion.  

 

These three processes combine to give the single-collector efficiency, 𝜂0, which 

describes the ratio between the total number of particles touching the collector surface 

and the total flux past the collector: 

 

 𝜂0 = 𝜂𝑖 + 𝜂𝑠 + 𝜂𝑑 (1.1) 

 

where 𝜂𝑖 is the number deposited by interception, 𝜂𝑠 is the number deposited by 

sedimentation, and 𝜂𝑑is the number deposited by diffusion.  Levich9 and Spielman10 

showed that analytical expressions for each of these can be obtained in conditions 

where colloid-collector interactions are favourable or when they are repulsive. The 

efficiency of the collector, in terms of retention, would then also depend on the ratio 

of collisions resulting in the colloid being removed from suspension: 

 

 𝜂 = 𝛼𝜂0 (1.2) 
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where 𝛼 is the attachment efficiency (the number of collisions resulting in deposition 

compared to the total number of collisions).  If 𝛼 = 1 then colloid deposition through 

colloid filtration theory can be calculated exactly.   

This model of colloid retention neglects the fact that both the porosity and sand 

grain-sand grain junctions also contribute to the likelihood of colloids being retained.  

In fact, in conditions where a collision with a collector resulting in sticking is unlikely, 

then the rate of deposition by these three methods is going to be low.  Bradford et al11 

suggested that mechanical filtration and straining will be the dominant mechanisms for 

colloid deposition in such conditions.  Mechanical filtration is the retention of colloids 

that are larger than the pores in the filter bed; the particles cannot physically pass 

through the bed.  The deposited particles form a filter cake on top of the bed that grows 

with time and decreases permeability, however this is a phenomenon associated with 

membrane filtration rather than deep bed filtration.  Straining, shown in figure 1.4, 

occurs at grain-grain junctions within the bed, and only occurs at a fraction of the pore 

space (as opposed to mechanical filtration); it is dependent on the ratio of the colloid 

size and the pore size. 

Figure 1.4: An illustration of straining, adapted from Bradford et al11.  
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Colloid-collector interactions 

It is not necessarily true that removal of a colloid from a suspension is 

irreversible; it is a balance between the attractive and physical forces holding the 

colloid in place and those dragging the colloid away.  Therefore the forces that control 

this balance must be considered.  Bradford and Torkzaban12 explain how the 

interaction energies between colloid and collector particles can be calculated using 

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which calculates the 

interaction energy, 𝜙𝑡𝑜𝑡𝑎𝑙, as a sum of the electrostatic, 𝜙𝑒𝑙, and van der Waals forces, 

𝜙𝑣𝑑𝑊: 

 

 𝜙𝑡𝑜𝑡𝑎𝑙(𝑟) = 𝜙𝑒𝑙(𝑟) +  𝜙𝑣𝑑𝑊(𝑟) (1.3) 

 

where r is the distance between the colloid and the collector.  Elimech et al13 have 

recorded expressions for both 𝜙𝑒𝑙 and 𝜙𝑣𝑑𝑊 that can be used to calculate DLVO 

interaction energies for specific interactions.  In conditions where the collector and the 

colloid share the same charge then there will be a repulsive electrostatic interaction, 

though at an energy minimum defined by the van der Waals forces, weak colloid 

retention can occur.  Weak retention is categorised by Bradford12 as occurring when 

only a fraction of colloid collisions result in deposition, and where a fraction of those 

attached may detach due to an increase in kinetic energy.  In the opposite conditions, 

where colloid-collector electrostatic interactions are favourable then it is likely that 

contact with the collector will result in deposition.   

It is clear that, in addition to the DLVO interactions, other forces, such as 

hydrodynamic forces, capillary forces and those resulting from flow velocities will 

also play a role in the mechanism of deposition.  However, Bradford also suggests that 

“at present, non-DLVO interactions are incompletely understood and quantitative 

theory has not been developed or is not generally accepted.” 
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1.3.2 Macroscopic approach 

The theories discussed previously do not consider any time-dependent effects; it 

is assumed that there is always surface area available for deposition, however, this is 

not the case.  The macroscopic investigations discuss the build up of deposit (by any 

mechanism) with time, and how this affects the dynamics. 

 

Blocking/ripening 

Camesano et al14  suggest there are two distinct mechanisms by which colloids 

deposit with time: blocking and ripening.  Blocking occurs when deposited colloids 

fill up available retention sites, therefore reducing the available space for further 

deposition. The volume of reduction depends on both the colloid size and the 

interactions it has with other colloids.  With time, the rate of deposition on a given 

colloid reduces.  A dynamic blocking function can be used to describe the available 

surface area for deposition: 

 

 
𝐵(𝜃) =

𝜽𝒎𝒂𝒙 − 𝜽

𝜽𝒎𝒂𝒙
 

(1.4) 

 

where 𝜽 is the fractional surface coverage and 𝜽𝒎𝒂𝒙 is the maximum possible surface 

coverage.  Ripening is in fact the opposite process; deposited colloids provide 

additional surface area for further deposition.  This is as a result of favourable colloid-

colloid electrostatic interactions.  The rate of deposit for a given collector increases 

with time.  The cluster grows continues to grow with time, causing the pore size to 

become vanishingly small, resulting in mechanical filtration. 
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Concentration with depth 

Considering the filter as a whole (as opposed to the growth of an individual 

cluster), it is expected that the concentration of deposited colloid particles will decrease 

exponentially with depth.6  However, in conditions where there are multiple types of 

colloid particle, or a large particle size distribution, specific colloids can be 

preferentially deposited at the top of the sand bed resulting in a hyper-exponential 

decay.  Additionally, if there are only weak forces (such as those predicted under 

certain conditions by DLVO theory) there is the potential for deposited colloids to 

remobilise and deposit further down the bed resulting in a non-monotonic profile.  

Figure 1.5 outlines these profiles. 

 

Figure 1.5: Illustrations of deposit profiles as a function of depth.  

Left – exponential, middle – hyperexponential, right – non-monotonic.  The 

dotted line shows the expected linear dependence. 

 

Experimental work performed by Veerapaneni15 suggested four observations 

when deposition is favourable within the bed: 

• For a given specific deposit, a larger head loss is observed when the fluid 

velocity is lower. 

• Clogging does not depend primarily on porosity reduction.  With a head loss 

increase of 2-3 times, specific deposit only accounts for less than 1% of the 

filter volume at a porosity of 40%. 

• When clogging is low, head loss scales linearly with specific deposit. 

• When clogging is high, head loss scales quadratically with specific deposit. 
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Clogging 

As colloids deposit within the bed there is a reduction in permeability caused by 

clogging of the filter.  This results in a pressure drop and a loss in performance.  

Clearly, the mechanisms by which colloids deposit within a filter vary extensively 

based on a wide variety of parameters, meaning that there is no overriding relationship 

between the amount of deposit within a filter and the pressure drop that results from it.  

Mays16 suggests that the rate of clogging does not depend solely on the physical and 

chemical effects of the deposited colloids but also on the morphology of the deposits.  

He proposes the fractal dimension as a means of quantifying this: 

 

 𝑀 ∝  𝐿𝐷 (1.5) 

   

where M is the deposit mass, L is its characteristic size (or radius of gyration) and D is 

the fractal dimension.  It is theorised that deposits with a high fractal dimension, 

resulting from conditions where hydrodynamic forces dominate, leave colloid-free 

flow paths.  Where colloid-colloid or colloid-collector interactions are dominant then 

it is likely that the deposits will have a lower fractal dimension, causing more 

disruption to the flow (figure 1.6) 

 

 

Figure 1.6: Illustrations of deposits with a low (left) and high (right) 

fractal dimension, adapted from Mays. 16  The white circles represent 

sand particles and the red spheres represent colloid particles.  The 

fractal dimension is illustrated by the clustering of the colloids. 
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O’Melia and Ali17 parameterised a model based on filtration experiments with 

the aim of predicting head loss from a given specific deposit (specific deposit defines 

the ratio of deposited colloids to the volume of the filter).  The model begins with 

Darcy’s Law (or the Kozeny-Carman equation18,19): 

 

 
𝑢 = −

𝑘𝜌𝑔

𝜇

∆𝐻

∆𝑥
 

(1.6) 

 

where u is the approach velocity, k is the permeability, 𝜌 is the density, g is the 

acceleration due to gravity, 𝜇 is the viscosity, ∆𝐻 is the observed head loss (the 

difference in pressure between the top and bottom of the filter), and ∆𝑥 is a distance in 

the direction of the fluid flow.  The permeability depends inversely on the surface area 

within the filter: 20 

 

 𝑘 ∝ 𝑀−2 (1.7) 

 

where M is the specific area (surface area per bed volume).  The ratio of head loss to 

clean bed head loss is therefore: 

 

 ∆𝐻

∆𝐻0
=

𝑘0

𝑘
= (

𝑀

𝑀0
)

2

 
(1.8) 

 

where 𝑘0 and 𝑀0 are the clean bed permeability and specific area.  For a clean bed, the 

specific area is defined by: 

 

 
𝑀0 =

6(1 − 𝜖)

dC
 

(1.9) 
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where 𝜖 is the porosity and 𝑑𝐶 is the diameter of the spherical collectors.  With 

deposition, the surface area of the collector increases: 

 

 𝐴𝑐 = 𝜋𝑑𝑐
2 + 𝛽′𝑁𝐴𝑝

2  (1.10) 

 

where 𝐴𝑐 is the surface area per collector, 𝛽′ defines the fraction of retained particles 

contributing to the increase in area, N is the number of particles per collector, and 𝐴𝑝  

is the surface area per particle.  The constant bed volume per collector is given by: 

 

 

𝑉𝑐 =
(

𝜋
6) 𝑑𝑐

3

(1 − 𝜖)
 

(1.11) 

 

Combing equations 1.6 and 1.7 gives the specific area for the clogging filter: 

 

 
𝑀 = 6(1 − 𝜖) (

1

𝑑𝑐
+

𝛽′𝑁𝐴𝑝
2

𝜋𝑑𝑐
3 ) 

(1.12) 

 

Substituting equations 1.5 and 1.8 into 1.3 gives: 

 

 ∆𝐻

∆𝐻0
= (1 +

𝛽′𝑁𝐴𝑝
2

𝜋𝑑𝑐
3 )

2

 
(1.13) 

 

The number of attached atoms relates to the specific deposit through: 

 
𝑁 =

𝜋𝑑𝑐
3

6(1 − 𝜖)𝑉𝑝
𝜎 

(1.14) 

 



16 
 

where 𝑉𝑝 is the volume per particle and 𝜎 is the specific deposit.  This leads to the final 

relationship:  

 

 ∆𝐻

∆𝐻0
= (1 + 𝛾𝜎)2 

(1.15) 

where: 

 

 
𝛾 =

𝛽′𝑑𝑐

6(1 − 𝜖)

𝐴𝑝

𝑉𝑝
 

(1.16) 

 

Figure 1.7 shows the results of their model compared to the experimental data 

used to fit it.  They concluded that the size and concentration of the suspended colloids 

were the most important physical variables influencing the filtration process.  As 

Wingert et al21 note, this model has very little predictive power; the empirical nature 

of the clogging parameter and the collector efficiency cannot be easily transposed from 

one case to another.  This top down approach does not allow for prediction of how 

changes in chemistry (or indeed feed stream) would affect the filtration process. 

Figure 1.7: Head loss against time for the fitted model and experimental data.  

Results obtained by O’Melia and Ali.17  The fitted model is based on equations 

1.15 and 1.1.6. 
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Mays and Hunt22 expanded on this work, revealing a power law correlating the 

clogging parameter and the Peclet number, which is a function of the flow rate: 

 

 𝛾 = 106𝑁𝑃𝑒
−0.55±0.09 (1.17) 

 

 
𝑁𝑃𝑒 =

𝑢𝑑𝑐

𝐷𝑝
 

(1.18) 

 

 
𝐷𝑃 =

𝑘𝑇

3𝜋𝜇𝑑𝑝
 

(1.19) 

 

where 𝑁𝑃𝑒 is the Peclet number, u is the flow velocity, dc is the diameter of the 

collector, dp is the diameter of the particle DP is the particle diffusivity, k is 

Boltzmann’s constant, T is the temperature and  is the dynamic viscosity.  Still, the 

problem remains that clogging parameter is empirically determined, and is not based 

on any fundamental physics or chemistry. 

 

1.3.3 Modelling colloid transport 

The processes considered so far are zero-dimensional; they do not describe the 

movement of particles through a filter, rather they describe an instantaneous situation.  

An advection-dispersion equation (ADE) is typically used as an equation of motion to 

describe the rate of change of colloids in the mobile phase as a function of the rate of 

deposition, the rate of advection through the pores, and the rate of dispersion in the 

pore space. 

One of the first models in this area was developed by Herzig et al23.  A series of 

traditional mass balance equations were used to describe the rate of deposition at a 

given depth in the bed with time.  This mass balance is a function of the probability of 

particle sticking per unit depth, through the “filter coefficient,” where the coefficient 

itself changes with time.  Both the pressure drop and filter coefficient were expressed 

as ratios of the instantaneous value and its initial value, where empirical data was used 
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to fit the equations.  Walata et al24 later linked the filter coefficient ratio and the 

pressure drop ratio to the amount of deposit within the bed.  Although these models 

show the trends of the amount of deposit and the pressure drop with time, they do not 

provide mechanistic insight into clogging, and require prior experimental work to 

define the parameters used in the expressions; they are not predictive. 

As an improvement on this, Tien et al25 suggested that the deposition process 

should be split into two phases.  The initial phase is the blocking/ripening phase, where 

the colloids form a layer around the collectors.  This was modelled using colloid 

filtration theory and the sphere in a cell model.26  The second phase is of cluster growth, 

where the pore space reduces with time, leading to an increase in pressure drop, and 

was modelled on flow through a constricted tube.27  The model required the porosity 

of the deposit and the amount of deposit at which the mechanisms swap to be 

experimentally determined. 

More recent examples include models by Bradford et al28 and Yuan et al29.  The 

model consists of two separate regions: the bulk aqueous phase and the solid-water 

interface (SWI), and is illustrated in figure 1.8.  Colloids are transported through region 

1 using an ADE.  First order kinetic expressions define the rate of mass transfer 

between the two regions, and the flow through region 2 is again defined by an ADE 

(although at a much lower velocity).  Only a small fraction of the particles in region 2 

will interact with the solid phase at a given time, and a fraction of these will deposit.  

Immobilised colloids in the solid phase fill up possible retention sites with time. 

  



19 
 

 

Figure 1.8: Schematic of Bradford’s29 model.  Region 2 is the SWI and 

region 1 is the bulk aqueous phase. J is the colloid flux, S is the colloid 

concentration in the solid phase, C is the suspended colloid 

concentration, k is a rate constant and  is the colloid attachment 

efficiency. 

 

The ADE can be written as: 

 

 𝜕𝑐

𝜕𝑡
+

𝜕(𝜌𝑆)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝑐

𝜕𝑐

𝜕𝑥
) −

𝜕(𝑞𝑐𝑐)

𝜕𝑥
 

(1.20) 

 

where Dc is the dispersion coefficient, qc is the volumetric water constant and  is the 

sand bulk density.  The terms on the left hand side represent the change in 

concentration of suspended and deposited colloids with time, and the terms on the right 

hand side describe the dispersive and advective transport of the colloids through the 

filter.  DLVO theory (see earlier) is used to describe the suspended concentration: 
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 𝜕(𝜌𝑆)

𝜕𝑡
= 𝐵𝑘𝑎𝑐𝐶 − 𝜌𝑘𝑑𝑐𝑆 + 𝜑𝑠𝑡𝑟𝑘𝑠𝑡𝑟𝐶 

(1.21) 

 

where B is the dynamic blocking function (eq 1.4), kac and kdc are the attachment and 

detachment rates, 𝜑𝑠𝑡𝑟 describes straining as a function of depth and kstr is the first 

order rate of straining.  The attachment rate is described through colloid filtration 

theory: 

 

 
𝑘𝑎𝑐 =

3(1 − 𝜀)

2𝑑𝑔
𝛼𝜂0𝑣𝑐 

(1.22) 

 

where 𝜀 is the porosity of the sand bed, dg is the sand grain diameter, 𝜂0 is the single 

grain collector efficiency (described by equation 1.1), and vc is the colloid velocity.  

The rate constant defining the mass transfer between region 2 and the solid phase is 

defined based on the current filtration state: 

 

 𝑘12 = 𝑘𝑟  and 𝑘21 = 0 when 0 < 𝜎 ≤ 𝜎𝑟 (1.23) 

 𝑘12 = 𝑘𝑎𝑐 and 𝑘21 = 𝑘𝑑  when 𝜎𝑟 < 𝜎 ≤ 𝜎𝑢 (1.24) 

 𝑘12 = 0 and 0 = 𝑘𝑑  when 𝜎 = 𝜎𝑢 (1.25) 

 

where 𝜎 is the specific deposit, 𝑘𝑟 is the attachment rate during the initial ripening 

stage, 𝑘𝑎𝑐 is the attachment rate during the operable stage, and 𝑘𝑑 is the detachment 

rate during the operable stage.  Equations 1.15-1.19 are used to define the pressure 

drop based on the amount of deposit.  This type of model is used widely in the water, 

filtration, and aerosol industries as a method of scaling from laboratory experiments to 

operational filters.  Still, the problem persists that many of the parameters are required 

from existing literature or from experimental work; the attachment efficiency, collector 

efficiency, attachment and detachment rates, threshold specific deposits and the 

clogging parameter must all be specified.  Additionally, the model gives no 
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mechanistic information describing the morphology or locations of deposited particles.  

In order to create truly predictive models, a more fundamental approach is needed. 

 

1.3.4  Modelling colloid interactions 

There are numerous methods that have been used to model colloid interactions 

in suspension.  Due to the fact that colloids often move on a timescale orders of 

magnitude slower than that of solvent particles, modelling colloid particles in 

suspension is a difficult task.  Therefore, truly atomistic molecular dynamics 

simulations may not be the ideal approach.  

Dissipative particle dynamics (DPD) has often been used to model colloidal 

behavior with success.  Particles trajectories are defined by Newton’s second law of 

motion, where a dissipative force proportional to particle velocities and a random force 

create the total force on each particle.  E. Boek et al30 showed that a colloid suspension 

can be modelled as a system of large colloidal particles in a liquid of interacting point 

particles, where DPD defines the interactions.  They were able to detect characteristic 

shear-thinning behaviour when applying a steady-shear rate, and suggested this 

method as a useful technique in studying the rheology of particulate suspensions. 

Dzwinel at al31 showed how a combination of DPD and molecular dynamics 

(MD) can be used to realistically model colloidal behaviour.  They used a two-level 

model, where colloids interacted with other colloids, and with solvent particles, 

through a combination of DPD and MD potentials, where each interaction type 

(colloid-colloid, solvent-solvent, and colloid-solvent) was treated with discrete 

parameters.  The MD potential used was a Lennard-Jones potential.  They were able 

to recreate 2D hexagonal colloidal arrays that can be seen in experiments, and 

suggested that a generalization of this combination, called the Fluid Particle Model, 

could be used to increase the length scales of simulation.32 

Horbach and Frenkel33 suggested Lattice-Boltzmann as a method for modelling 

colloid transport.  They argue that this is an improvement on modelling colloids using 

a Yukawa-like potential as it uses Navier-Stokes equations to model the 

hydrodynamics of the system, in addition to the interaction-dependent properties.  

Similarly, Padding and Louis used coarse-grained molecular dynamics and stochastic 
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rotation dynamics to successfully model the effects of Brownian motion and 

hydrodynamics forces in colloidal suspensions.34 

 

1.3.5 Experimental techniques 

There have been several experimental techniques, both on a micro-scale and on 

a meso-scale, used to either try to investigate the mechanisms involved in particle 

deposition or to help validate or parameterise models.   

Bridge et al35 used time-lapse fluorescence imaging as a non-invasive means of 

imaging colloid and fluid transport to a millimeter level.  In this technique, suspended 

tracers (particles tagged with fluorescent molecules) are pumped through a small-scale 

sand filter.  A camera with a filter fitted to the emission wavelength is used to capture 

images of the fluorescent molecules, allowing the visualization of the trajectories and 

locations of the deposited particles.  Both the feed stream and the sand bed can be 

treated to provide different electrostatic conditions.  They were able to measure the 

effect of changing the pH, flow rate, and ionic strength, and even calculate an 

attachment efficiency based on the retained mass profiles.   

In a similar vein, Zevi et al36, have used confocal microscopy to image sand 

grain-grain junctions and the methods of colloid deposition within them.  They were 

able to obtain images containing 512 square pixels, representing 374 m2.  They 

concluded that the technique is a viable method of quantifying the number of colloids 

passing a collector in a given time and the number of colloids deposited by different 

mechanisms. 

Various other imaging techniques are discussed and analysed by Ochiai et al37, 

and they highlight the current reliance on the porous media being “ideal” such that it 

does not represent natural colloids or porous media.  They conclude that “a key 

challenge that remains is the development of tools to investigate transport of natural 

colloids in natural porous media.”  
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1.4 Mechanics 

There are two broad categories that underpin the work undertaken throughout this 

project: atomistic simulation and continuum simulation.  This brief section will introduce 

and outline the methods, which are discussed in detail in chapters 2 and 4. 

Matter can be described using two sets of fundamentally different mechanics1.  

Particle mechanics is used to describe the interactions between individual particles, 

whereas on a larger scale, continuum mechanics uses assumed relationships to describe 

the continuum nature of matter.38  The methods differ significantly in their assumptions, 

the nature of the results obtained, and, usually, in the type of algorithm used to solve 

problems. 

Particle mechanics, as the name suggests, evolves the trajectories of a number of 

mass points in order to obtain information about a system.  The ordinary differential 

equations (ODEs) that define the classical equations of motion are solved over time.  A 

forcelaw defines the interactions between particles, usually, due to difficulties calculating 

higher order interactions, between pairs of particles, which in turn, define their motion.  

This means there is no need for any additional information, such as transport laws or an 

equation of state; this is all inherent within the dynamics.  This makes it a particularly 

useful technique when trying to determine transport properties such as heat flux or 

viscosity, as they can be easily calculated as statistical averages of functions of particle 

momenta and coordinates.  The main limitations of particle mechanics are associated 

with the length scales that can be readily reached and the accuracy of the forcelaw. 

Continuum mechanics, however, makes use of pre-defined relationships where 

particles and forcelaws have no role.  Instead, partial differential equations (PDEs) evolve 

the state of the continuum, and the fluxes of energy, mass and momentum within it.  It is 

based on the fundamental assumption that the macroscopic appearance of a system is 

continuous, and that a system’s properties vary gradually.   The combination of the 

assumed relationships and the conservation laws form the partial differential equations 

that have an infinite number of degrees of freedom, which, when simulating, need to be 

reduced to a finite number.  The PDEs are sufficient to evolve a system when constitutive 

relationships and a series of boundary conditions are defined.  Microscopic fluctuations 

are not present in continuum mechanics, and it cannot be used for determining transport 

                                                           
1 When not considering quantum mechanics 
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properties.  Instead, once the appropriate continuum descriptions have been obtained 

from other means, such as from experimental data or from atomistic simulation, 

continuum mechanics allows simulations to reach much larger time and length scales, 

and to make contact with experimental data. 

The two methods can indeed overlap and agree when the forcelaws correspond to 

the continuum equations, and when microscopic fluctuations can be ignored (as they are 

absent in continuum mechanics but not particle mechanics).  Furthermore, the two 

approaches can be related by using particles to represent a continuum; smooth particle 

applied mechanics (SPAM) uses a series of particles that represent the fluxes of the 

conserved quantities to solve problems in continuum mechanics.  The similarity between 

the algorithms used in MD and SPAM is an area that this work aims to make use of by 

using MD as a means of not only validating, but also parameterising, SPAM simulations.  

 

1.5 Summary 

Filtration is a complex process that is not easily predictable.  There are several 

transportation methods via which a colloid may end up in contact with a collector, and 

the chance of the colloid being retained is a delicate balance of the electrostatic and 

van der Waals forces holding it in place, and the hydrodynamic forces dragging it 

away.  Regardless of the mechanism by which colloids stick, over time the buildup of 

deposit causes clogging, a process that has been subject to experimental work resulting 

in empirical relationships linking the specific deposit, head loss, and the Peclet number 

through a clogging parameter, 𝛾.   

Currently there is a knowledge gap that exists in describing this parameter; it is 

not based on any fundamental physics or chemistry.  This work aims to give a 

mechanical and physical insight into the clogging parameter through computer 

simulation by linking the rate of deposit and head loss to properties of the sand bed 

and the colloid particles themselves.  The existing work uses a top down approach; 

experimental data is used to parameterise models to predict future changes.  Instead, 

this work will make use of molecular and continuum simulation to build models from 

the bottom up, starting with the fundamental physics of particle trajectories.  

Additional elements will be added to tune the model towards a filtration process.  The 

mechanisms by which a single colloid can stick are well defined, and described by a 
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combination of colloid filtration theory, straining, DLVO and non- DLVO interactions, 

and will be vastly simplified in this work.  Instead, the effect of a growing cluster of 

colloid particles around a collector will be the focus.  This works aims to achieve the 

following: 

• Create a coarse grained molecular dynamics model that contains the essential 

 physics of filtration, while simplifying the process of deposition. 

• Test whether this model qualitatively agrees with existing literature regarding 

 the rate of build-up specific deposit, increase in pressure drop, and deposit 

 concentration with depth. 

• Explore this model by systematically changing the available parameters.  The 

 geometry, porosity and lattice structure of the sand particles can be varied, in 

 addition to the nature of the fluid/colloid/sand interactions, the flow rate and 

 the probability of deposition. 

• Test whether deposits created using this model have a fractal dimension, and 

 if so, test the effect of the fractal dimension on the system. 

• Parameterise a continuum scale model of the same process using smooth 

 particle applied mechanics.  This allows for the time and length scales of 

 simulation to be increased. 
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2   Molecular dynamics 

Molecular Dynamics (MD) is a computer simulation method for studying the 

evolution of many body systems using the laws of classical mechanics.  It has been an 

area of active research since the 1950s, and has nearly as long a history as modern 

computers.  Berni Alder pioneered the method when developing techniques to study 

dense fluids, and it is now accepted that, alongside experiment and theory, computer 

simulation is a third branch of physics.3 

In conventional MD simulations, a series of particles, which are modeled as point 

objects, move within a simulation cell.  The trajectories of these particles are evolved 

by solving the classical equations of motion, where the force acting on each particle is 

a vector sum of its neighbours, and any non-conservative forces (such as friction).  The 

pairwise force is calculated from a chosen potential energy function (or force field).  

Once the total force acting on a particle, and therefore the acceleration it experiences 

is calculated, the trajectory it would travel on can be predicted. 

Once the potential energy function, boundary conditions and initial conditions 

have been defined, MD is essentially exact.  This allows for thermodynamic properties 

of interest to be calculated from time averages of functions of the positions and 

momenta of particles, through Boltzmann’s statistical mechanics.  In order to obtain 

useful information from a computer simulation, the model must be both accurate in 

terms of modeling the particle interactions, but also be able to run quickly enough that 

results can be obtained on a reasonable timescale. 

 Take, for example, a system of N particles.  The entire state of the system is 

defined by the 3N generalised coordinates, q, and the 3N generalised velocities, q̇ 

(where q is shorthand for {qi} etc.).  The equations of motion are used to relate the 

current coordinates and velocities to future time steps.  The Lagrangian equation of 

motion, based on Hamilton’s principle of least action, is a second order ordinary 

differential equation: 
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 𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝒒̇
) =

𝜕𝐿

𝑑𝒒
 

(2.1) 

 

where L is the Lagrangian of the system, which is simply the difference between the 

kinetic energy, K, and the potential energy, U: 

 

 𝐿(𝒒, 𝒒̇) = 𝐾 − 𝑈 (2.2) 

 

Hamilton devised a description of the mechanics of a system of particles (more 

general than that of Newton) where the momenta, p, are used to move the system 

forward in time, rather than the velocity.  It gives the same results as Netwonian 

mechanics (and Lagrangian).  In Hamilton’s formulation the generalised momenta are 

defined as: 

 

 
𝒑 =

𝜕𝐿(𝒒, 𝒒̇)

𝜕𝒒̇
 

(2.3) 

 

which are on an equal footing with the generalised positions.  The equations of motion 

are defined as two sets of coupled first order ordinary differential equations 

 

 
𝒒̇ =

𝜕𝐻

𝜕𝒑
 

(2.4) 

 

 
𝒑̇ = −

𝜕𝐻

𝜕𝒒
 

(2.5) 

 

 

where H, the Hamiltonian, is defined as 
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 𝐻(𝒒, 𝒑) = (𝒒̇, 𝒑) − 𝐿 (2.6) 

 

Using these equations of motion, having specified the initial q and p, the entire 

phase space trajectory of the system is known, and the equations are themselves time 

reversible; meaning the history of the trajectory can also be determined from the 

solution going backwards in time.  The use of Hamiltonian and Lagrangian mechanics 

and general coordinates as opposed to Newtonian mechanics allows a much larger 

class of problems in mechanics to be solved more easily, particularly those systems 

involving constraints.   

 

2.1  Initial conditions 

In order to evolve the particle trajectories, the initial state or initial conditions of 

the system must be specified.  This means assigning each particle within the system a 

position and a momentum.  

Any convenient set of positions can be used.  Typically when simulating a liquid 

a lattice structure is used, such as a cubic lattice (in three dimensions), or a square 

lattice (in two dimensions).  This is for computational simplicity only, as during the 

equilibrium phase all memory of the initial structure is lost.  Usually, MD simulations 

are carried out at constant density, as the unit cell size does not change, therefore the 

initial particle spacing and the cell size are determined by the required density. 

The momenta may be chosen so that the system starts at a particular energy or 

temperature.  This can be achieved by sampling from a distribution, where the variance 

is related to the required temperature, or by running the simulation in the presence of 

a thermostat until the correct temperature is reached.  To stop the simulation cell from 

drifting away from the origin it is important to rescale the velocities so that there is no 

initial net momentum in any direction.  Finally, the momenta are rescaled to give the 

starting temperature, as zeroing the linear momentum will change the sum of the 

squared momenta, from which the temperature is computed. 
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2.2  Boundary conditions 

Molecular dynamics problems require the use of boundary conditions in order to 

create realistic systems.  They are used to describe the behavior of particles at the edge 

of the simulation cell.  At the boundaries, mass, momentum and energy can enter or 

leave the system, and the location, velocity and temperature of the boundaries can be 

specified.  They create the required conditions for the simulation, not only by defining 

where the edges of the system are, but also, in some cases, by affecting the dynamics 

and the flow.  Several different types of boundary condition can be used in molecular 

dynamics, and are used throughout this work. 

 

2.2.1  Periodic boundary conditions 

Periodic boundary conditions, first introduced by Born and Von Karman in 

19124, are used to allow the simulation of a bulk material by creating a pseudo infinite 

system (usually) free from edge effects.  In MD, the simulation time is proportional to 

the number of atoms squared, (unless special measures are taken – see later), therefore 

one is restricted to a moderate value for the number of atoms.  Without periodic 

boundary conditions, the simulation cell would have a high proportion of particles at 

the edge, due to the restriction on the total.  Consider a two-dimensional cell containing 

100 atoms in a 10 x 10 grid; over one third of the particles would be at the edge.  When 

simulating a fluid the particles at the surface are not of interest, instead, the properties 

of the bulk are being investigated.   In most conditions, replication of the simulation 

cell through space removes the edge effects, however it remains possible for longer 

range hydrodynamic effects to persist across the boundary.   
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Figure 2.1:  An illustration of periodic boundary conditions in two 

dimensions.  The red circles represent the starting positions, and the 

blue circles the final positions.  As a particle leaves the central 

simulation cell it is replaced by its periodic image. 

 

Figure 2.1 illustrates two-dimensional PBCs.  The simulation box is the central 

cell.  A particle leaving the central cell and entering the cell below it is replaced by its 

periodic image entering the central cell from above.  The length of the cell must be longer 

than the range of the interatomic potential being used to make sure that a particle does 

not interact with its own periodic image.  It is important to note that PBCs impose an 

artificial periodicity on the system, which can have unintended consequences when 

calculating transport coefficients.  In this example, the simulation cell is a square, though 

this is not strictly necessary; alternative PBCs include hexagonal, octahedral etc. 
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2.2.2  Minimum image convention 

The force resulting from the pairwise interatomic potential on each particle is a 

vector sum of pairwise interactions between itself and all periodic images.  As the PBCs 

create an infinite number of particle neighbours, the potential needs to be truncated.  The 

minimum image convention is used to limit the number of particle interactions to a 

computable number.  Here, each particle in the primary cell is considered in turn.  The 

particle of interest is considered to be at the centre of a box with the same dimensions as 

the primary cell and the pair forces between it and all other particles that lie within this 

box are calculated, including those from periodic image particles.  The minimum image 

separation, rij
m between two particles, i and j, is: 

 

 𝑟𝑖𝑗
𝑚 = 𝑟𝑖𝑗 − 𝑛 𝐿 (2.7) 

 

where n is the is number of box lengths that particle i is from particle j (must be an 

integer), and L is the box length.  To additionally limit the number of pair force 

calculations, the potential is usually truncated at some cut-off point within the unit cell.  

Potentials that fall off slowly with distance require larger truncation radii than those that 

fall off more quickly. 
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Figure 2.2:  An illustration of the minimum image convention.  Each 

particle from the central cell is considered in turn.  It is placed at the 

center of a box with the same dimensions as the cell.  The force between 

itself and all other particles within this cell is calculated, shown by the 

coloured particles.  The circle represents the potential cutoff. 

 

2.2.3 Other boundary conditions 

Other types of useful boundary conditions include elastic boundaries, stone wall 

boundaries, and mirror boundaries.  Elastic (or rigid) boundaries, shown in figure 2.3, 

are used when the boundary is a physical boundary fixed in space.  They are 

implemented by either having a rigid wall with which particles elastically collide, 

where kinetic energy in conserved (their velocity in the appropriate direction is 

reversed upon impact), or by having a series of particles at the boundary with a steep 

repulsive potential.  Both of these methods prevent particles from passing through the 

boundary, and are useful when modelling systems with a physical boundary, such as 

the flow of a fluid through a porespace. 
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Figure 2.3:  An illustration of elastic boundary conditions.  The 

particle’s perpendicular component of velocity is reversed upon impact 

with the wall.  The red circles represent the starting positions, and the 

blue circles the final positions.     

 

 

 

Figure 2.4:  An illustration of mirror boundary conditions where the 

dashed line is the mirror boundary.  The particles interact with a 

mirrored version of themselves.  The red circles represent the 

simulation positions, and the blue circles the mirror particles. 
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Mirror boundaries, shown in figure 2.4, work by having a mirror image of 

particles near the boundary on the other side with which they can interact.  The 

mirrored particles can move or be static.  This allows properties to be continuous across 

the boundary, giving rise to such phenomena as heat flow through the fluid properties.  

Mirror boundaries are useful in inhomogeneous models, such as modelling the 

interaction between a liquid and a heated surface.5 

In confined fluid problems, the most common boundary condition is the 

stonewall (or non-slip) boundary.  When a particle comes into contact with the 

boundary its normal velocity is set to zero, and its tangential velocity is set to the 

velocity of the wall.  This is illustrated in figure 2.5, and is used when modelling 

Poiseuille flow. 

  

Figure 2.5:  An illustration of stone wall boundary conditions.  The 

perpendicular component of velocity is set to zero, the parallel 

component of velocity is set to the velocity of the wall upon collision 

with the wall.  The red circle represents the starting positions, and the 

blue circle the final positions.     

 

There are, of course, many other types of boundary condition.  It is sometimes 

necessary to use boundary conditions that, rather than representing bulk properties in 

a confined space, create a certain set of conditions.  The Lees-Edwards boundary 

conditions (see section 5.3.2) are an example of this, where they are used to create a 

shear flow. 
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2.3  Integration schemes 

In all but a very few trivial examples, numerical methods are required to integrate 

the equations of motion of a many body system.  Numerical integration schemes are 

used to reduce a derivative to a finite difference quotient; formally it is a truncated 

Taylor Series.  The aim, given a set of variables at the current time, t, is to obtain the 

same set of variables at a future time, t+ 𝛿t.  A Taylor series takes the form6: 

 

 
𝑓(𝑡 + 𝛿𝑡) = 𝑓(𝑡) + 𝑓′(𝑡)𝛿𝑡 + 𝑓′′(𝑡)

𝛿𝑡2

2!
+ 𝑓′′′(𝑡)

𝛿𝑡3

3!
+ ⋯

+ 𝑓𝑛(𝑡)
𝛿𝑡𝑛

𝑛!
 

 

(2.8) 

There are a multitude of integration schemes available for solving problems in 

particle mechanics, with varying accuracy and computing power required.  Methods 

are either self-starting, where trajectories can be evolved with only information from 

the current time step, or not self-starting, where data from previous or other time steps 

is required.  The timestep, δt, will vary with the algorithm used; generally, a smaller 

timestep will increase accuracy but also increase simulation time.  The timestep should 

be much shorter than the time it takes a particle to travel its own length. 

 

2.3.1  Euler algorithm 

The Euler method is the simplest method of numerical integration.  It is a self-

starting method that assumes that the velocity is constant over the timestep7: 

 

 𝒓(𝑡 + 𝛿𝑡) = 𝒓(𝑡) + 𝒗(𝑡)𝛿𝑡  (2.9) 

 

The Taylor series is truncated at the first derivative.  This results in poor 

numerical accuracy.  It is a first order method, meaning that the error per time step is 

proportional to 𝛿𝑡 2.  
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2.3.2 Verlet algorithm 

A more widely used integration scheme, often used in computer games, and 

based on the centred difference method of Störmer, is the Verlet algorithm7.  It is an 

example of an integration scheme that is not self-starting, rather, it is based on the 

current positions and accelerations, r(t) and 𝐫̈(t), and the positions from the last time 

step, r(t-δt).   The addition of two Taylor series, one for r(t+δt) and one for r(t-δt) leads 

to the following expression for r(t+δt): 

 

 𝒓(𝑡 + 𝛿𝑡) = 2𝒓(𝑡) − 𝒓(𝑡 − 𝛿𝑡) + 𝒗̇(𝑡)𝛿𝑡2 (2.10) 

 

where odd powered δt terms have cancelled, and the series has been truncated at the 

quadratic term. 

One clear disadvantage of this method is that it does not explicitly handle 

velocities, which, for instance, are required for calculation of temperature.  They may 

be calculated from the predicted positions: 

 

 
𝒗 =

𝒓(𝑡 + 𝛿𝑡) − 𝒓(𝑡 − 𝛿𝑡)

2𝛿𝑡
 

(2.11) 

   

This method leads to improved numerical accuracy.  It is a second order method 

where the local error per time step is proportional to 𝛿𝑡 4. 

 

2.3.3  Velocity Verlet algorithm 

The velocity Verlet algorithm makes improvements on the original Verlet 

algorithm by storing the positions, velocities, and accelerations at once.  A truncated 

Taylor series expansion for r(t+δt) is used to advance the positions: 

 

 
𝒓(𝑡 + 𝑡) = 𝒓(𝑡) +  𝒗(𝑡)𝛿𝑡 +  𝒗̇(𝑡)

𝛿𝑡2

2
 

(2.12) 
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From the new positions (and the potential), the pair forces can be calculated, and 

hence the accelerations.  From the current velocities and the accelerations, the new 

velocities can be calculated: 

 

 
𝒗(𝑡 + 𝛿𝑡) = 𝒗(𝑡) + [𝒗̇(𝒕) + 𝒗̇(𝑡 + 𝛿𝑡)]

𝛿𝑡

2
 

(2.13) 

 

This then allows for the calculation of energies, and it has the distinct advantage 

that it is self-starting.  This method has the same error associated with it as the original 

Verlet algorithm. 

 

2.3.4  Runge-Kutta algorithm 

The Runge Kutta (RK) methods overcome the deficiency of the Euler method 

by using a weighted average of a number of time derivatives.  They were developed 

by Carl Runge, and are based on Martin Kutta’s root finding technique, and use 

information about the slope at more than one point to extrapolate to the next time 

step.9,10  The two methods outlined below, RK2 and RK4, use two and four time 

derivatives respectively, designed to give the first n terms of the Taylor series 

expansion. 

 

RK2 

This method is the simpler and less accurate of the two.  It advances the 

coordinates and velocities in two stages: 

 

     { 𝒓′(𝑡 + 𝛿𝑡) = 𝒓(𝑡) + 𝒗(𝑡)𝛿𝑡  ; 

  𝒗′(𝑡 + 𝛿𝑡) = 𝒗(𝑡) + 𝒗̇(𝑡)𝛿𝑡} 

  (2.14) 
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{𝒓(𝑡 + 𝛿𝑡) = 𝒓(𝑡) +

𝛿𝑡

2
[𝒗(𝑡) + 𝒗′(𝑡 + 𝛿𝑡)]  ;  

 (2.15) 

 
𝒗(𝑡 + 𝛿𝑡) = 𝒗 +

𝛿𝑡

2
[𝒗̇(𝑡) + 𝒗̇′(𝑡 + 𝛿𝑡)] } 

  

 

where ‘ denotes the first guess.  The first guess accelerations 𝐫̈′ are calculated from the 

pair forces generated by the first guess coordinates, 𝐫′.  The method is second order 

with regards to the timestep δt, meaning that the errors in the resulting velocities and 

coordinates at time t+δt are proportional to δt3. 

 

RK4 

The four-stage Runge-Kutta scheme is arguably the most useful of the  Runge 

Kutta schemes due to the large increase in accuracy.  The first stage is the same as in 

the RK2 method: 

 

 {𝒓𝟏
′ (𝑡 + 𝛿𝑡) = 𝒓(𝑡) + 𝒗(𝑡)𝛿𝑡   ;  (2.16) 

 𝒗𝟏
′ (𝑡 + 𝛿𝑡) = 𝒗(𝑡) + 𝒗̇(𝑡)𝛿𝑡}  

 

The remaining three stages are calculated iteratively based on the coordinates and 

velocities, and therefore the accelerations, calculated in the previous step: 

 

 
{𝒓𝟐

′ (𝑡 +
𝛿𝑡

2
) = 𝒓(𝑡) +

𝛿𝑡

2
𝒗𝟏(𝑡)  ;   

(2.17) 

 
 𝒗2

′ (𝑡 +
𝛿𝑡

2
) = 𝒗(𝑡) +

𝛿𝑡

2
𝒗̇1(𝑡)} 

 

 

 
{𝒓𝟑

′ (𝑡 +
𝛿𝑡

2
) = 𝒓(𝑡) +

𝛿𝑡

2
𝒗𝟐

′ (𝑡 +
𝛿𝑡

2
)  ;   

(2.18) 

 
𝒗𝟑

′ (𝑡 +
𝛿𝑡

2
) = 𝒗(𝑡) +

𝛿𝑡

2
𝒗̇𝟐

′ (𝑡 +
𝛿𝑡

2
)} 
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{𝒓𝟒

′ (𝑡 + 𝛿𝑡) = 𝒓(𝑡) + 𝛿𝑡𝒗𝟑
′ (𝑡 +

𝛿𝑡

2
)   ;    

(2.19) 

 
𝒗𝟒

′ (𝑡 + 𝛿𝑡) = 𝒗(𝑡) + 𝛿𝑡𝒗̇𝟑
𝟒 (𝑡 +

𝛿𝑡

2
)} 

 

 

 The last step is to average the four derivatives: 

 

 {𝒓(𝑡 + 𝛿𝑡) = 𝒓(𝑡) +
𝛿𝑡

6
[𝒗(𝑡) + 2𝒗𝟐

′ (𝑡 +
𝛿𝑡

2
) + 2𝒗𝟑

′ (𝑡 +

𝛿𝑡

2
) + 𝒗𝟒

′ (𝑡 + 𝛿𝑡)]  ;  

(2.20) 

 𝒗(𝑡 + 𝛿𝑡) = 𝒗(𝑡) +
𝛿𝑡

6
[𝒗̇(𝑡) + 2𝒗̇𝟐

′ (𝑡 +
𝛿𝑡

2
) + 2𝒗̇𝟑

′ (𝑡 +

𝛿𝑡

2
) + 𝒗̇𝟒

′ (𝑡 + 𝛿𝑡)]}    

 

 

The four stages are weighted {1/6, 1/3, 1/3, 1/6}.  This method is fourth order 

with respect to the timestep δt, giving a local error per timestep proportional to δt5.  It 

is therefore clear that this will give vast improvements in accuracy.  The increase in 

evaluations of the right hand side associated with an increasing number of stages 

causes a rise in the amount of computing power required.  The key is to find the right 

balance between accuracy and calculation time. For higher order methods, such as 

RK5, the extra accuracy is outweighed by the increased numerical work. 

 

2.3.5  Comparison of integration schemes 

Simple simulations can be used to illustrate the differences between the methods.  

Take, for example, the problem of a one-dimensional harmonic oscillator.  Here, a 

particle oscillates around a fixed equilibrium point, obeying the equation:11 

 

 𝐹 =  −𝑘(𝑞 − 𝑞𝑒𝑞) (2.21) 
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where F is the restorative force, 𝑞 − 𝑞𝑒𝑞 is the displacement and k is the restorative 

force. 𝑞𝑒𝑞 is typically taken to be the origin for simplicity. In the absence of friction 

the system undergoes sinusoidal oscillation with a constant amplitude and frequency 

(simple harmonic motion).  If there is a dampening force present the system’s 

amplitude decreases with time towards the equilibrium point.  Hamilton’s equations of 

motion for this example are: 

 

 𝑞̇ = 𝑝 (2.22) 

   

 𝑝̇ =  −𝑘𝑞 (2.23) 

   

where q is the coordinate and p is the momentum.  It is easy to show that equations 

2.22 and 2.23 have an analytical solution: 

 

 𝑞(𝑡) = 𝑞0 cos 𝑤𝑡 +
𝑝0

𝑤𝑚
sin 𝑤𝑡 (2.24) 

   

 𝑝(𝑡) =  −𝑞0𝑚𝜔 sin 𝜔𝑡 + 𝑝0 cos 𝜔𝑡 (2.25) 

   

where 𝜔 = √
𝑘

𝑚
, and p0 and q0 are the momentum and coordinate at t=0 respectively.  

Squaring each of the above equations and adding them to one another shows that the 

phase space trajectory is an ellipse: 

 

 𝑝2 + 𝑚2𝜔2𝑞2 = 𝑞0
2𝑚2𝜔2 + 𝑝0

2 (2.26) 

   

Setting p0 = 0, m = 1, and k = 1 creates a special case in which the trajectory is a 

circle of radius q0.  Three different numerical algorithms have been used to solve 

equations 2.21 and 2.22 approximately: Euler, RK2 and RK4 respectively.  Figure 2.6 
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shows the resulting trajectories together with the analytical solution.  The same 

timestep, 𝛿𝑡 = 0.1 (reduced units) was used in all three numerical schemes, and each 

simulation was run for 1000 time periods.  The Euler method is shown to be the most 

inaccurate as both the amplitude and frequency are increasing with time, forming a 

spiral phase space trajectory.  The RK2 method is also shown to be inaccurate, 

although to a lesser extent:  the line thickens with time rather than forming an ellipse.  

The RK4 forms the expected phase space, showing how comparatively accurate the 

method is, and is the integration scheme used throughout this work. 

 

Figure 2.6: A comparison of phase space plots for the Euler method 

(top left), RK2 method (top right), RK4 method (bottom left), and the 

analytical solution (bottom right).  Both the Euler and RK2 methods 

are shown to have significant integration errors compared to the RK4 

method.  δt is the same in all cases.  
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A more enlightening analysis can be obtained by examining the maximum error 

produced by each integrator as a function of timestep size. 

Taking k = 1, m = 1, and an initial condition q0 = 1, p0 = 0, the analytical solution 

for the coordinate is q = cos(t).  Defining the coordinate error as q-cos(t), the trajectory 

was followed for 2 periods (τ = 4π) using all 4 integration schemes, across a series of 

10 timestep sizes, starting at Δt  = 2π/50, decreasing by a factor of 2 in each case.  The 

maximum error was recorded over the cycle.  Figure 2.7 shows a plot of the natural 

logarithm of this maximum error as a function of the natural logarithm of the time step 

size.  Straight line fits to the 4 data sets reveal slopes of 1, 2, 2 and 4, for the Euler, 

RK2, Verlet, and RK4 integration schemes respectively, confirming their global errors 

as δt, δt2, δt2 and δt4.  The local single step errors in each case are δt2, δt3, δt4 and δt5. 

Figure 2.7: Global error as a function of timestep size for four 

integration schemes described in the text, applied to a 1D simple 

harmonic oscillator.  Lines are least squares fits to the data. 
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2.4  Potential energy functions 

When using conservative forces, MD simulations require the use of a potential 

energy function (sometimes referred to as a force field) to describe the way in which 

the atoms interact.  They can be written in many forms, ranging from a fully quantum 

description to the readily used pair potentials, which are an embodiment of classical 

mechanics.  The potential energy of a system can be written as a sum of one-body, 

two-body, three-body (…etc.) terms, with the terms representing the contribution of 

single atoms, pairs of atoms and triplets of atoms (…etc.): 

 

 Φ = ∑ ϕ1

𝑖

(𝒓𝑖) + ∑ ∑ ϕ2(𝒓𝑖, 𝒓𝑗)

𝑗>𝑖𝑖

 

+ + ∑   ∑ ∑ ϕ3(𝒓𝑖, 𝒓𝑗 , 𝒓𝑘) + ⋯

𝑘>𝑗>𝑖𝑗>𝑖𝑖

 

(2.27) 

 

where 𝜙 is the potential energy.  The first term represents the potential energy from 

any external field acting on the system, and each successive term represents two-body, 

three-body (…etc.) interactions.  Due to the difficulties with including three-body (and 

higher) interactions in potential energy calculations, a two-body potential with 

adjusted parameters is often used: 

 

 Φ = ∑ ∑ ϕ2
𝑒𝑓𝑓

𝑗>𝑖𝑖

(𝑟) 
(2.28) 

 

where ϕ2
𝑒𝑓𝑓

is an effective pair potential, accounting for higher body interactions, and 

r is the interparticle separation |𝒓𝑖𝑗|.  Once the potential energy for all pairs of particles 

within a system is known, the force acting on each particle can be calculated using the 

following equation: 
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 𝑭𝑖 = −𝛁𝑖ϕ ≡ −ϕ′(r)𝑟𝑖𝑗; (2.29) 

 

where rij is the distance between particles i and j.  The total force on particle i is 

calculated by summing the force from all pairwise interactions.  

 

 

𝑭𝑖 = ∑ 𝑭𝑖𝑗

𝑁

𝒋=𝟏

 

(2.30) 

 

where Fij is the force between particles i and j.  Newton’s third law means that 

only half the number of calculations are required (Fij = Fji).  There are many different 

potential energy functions that are widely used, and this section will discuss those 

relevant to this work. 

 

2.4.1  Hard sphere potential 

The simplest potential energy function is the hard sphere potential:12 

 

 ϕ𝑖𝑗
ℎ𝑠 =  ∞   𝑟 < 𝜎 (2.31) 

                                   = 0   𝑟 ≥  σ                            

 

where 𝜙ℎ𝑠 is the potential energy, r is the distance between the centers of the particles, 

and σ is the diameter of the hard sphere.  This is a discontinuous potential, where 

particles undergo elastic collisions.  Figure 2.8 describes a hard sphere potential.  This 

model finds use in developing statistical mechanic theories of liquids, particularly in 

perturbation theory. 
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Figure 2.8: A plot of energy against interparticle distance for the hard 

sphere potential.  When the separation is equal to or smaller than the 

diameter of the hard sphere the potential energy is infinite. 

 

 

2.4.2  Square well potential 

An improvement on the hard-sphere potential is the square-well potential.123 

This potential has an attractive region in addition to the hard repulsive core.  As, before, 

the potential goes to infinity when the separation is less than σ, but it also approximates 

the attractive region using a rectangular well of depth .  The width of the well is 

dependent on a dimensionless parameter, R/σ > 1.   

 

             ϕ𝑖𝑗
𝑠𝑤    = ∞                𝑟 ≤  𝜎 (2.32) 

                   = −𝜀              𝜎 < 𝑟 < 𝑅𝜎       

        = 0       𝑅𝜎 ≤ 𝑟      
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 The width of the well is the product of σ and R.  Figure 2.9 illustrated the potential. 

Figure 2.9: A plot of energy against interparticle distance for the 

square well potential.  When the separation is smaller than the diameter 

of the hard sphere the potential energy is infinite, and the attractive 

region is approximated by a square well. R = 1. 

 

2.4.3  Lennard-Jones potential 

One of the most commonly used potential energy functions is the Lennard-Jones 

potential, given by:14 

 

 
ϕ𝑖𝑗

𝐿𝐽 = 4𝜀 [(
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

] 
(2.33) 

 

It is a pair-additive function used to describe the interaction between a pair of 

neutral atoms, and is illustrated in figure 2.10.  When the distance between the atoms is 
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small they repel each other.  The distance, σ, is the van der Waals radius.  This is an 

approximation of Pauli repulsion, and is represented by the r-12 term.  The r-6 term is the 

attractive term, and describes the long-range attractive forces.  At an infinite separation, 

the attraction is considered to be zero.  As the particles get closer the potential energy 

becomes increasingly negative, until a potential energy minimum is reached.  With a 

judicious choice of parameters this potential can accurately simulate Argon.  

 

 

Figure 2.10: A plot of potential energy against interparticle distance 

for the Lennard-Jones potential.   
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2.4.4  Short range, soft repulsive potential 

Using a pair core potential that is only active at short separations is an effective 

way to maintain particle separation.2 

 

 

ϕ𝑖𝑗 = 𝜀 [1 −
𝑟𝒊𝒋

𝟐

𝜎2
]

4

;  |𝑟𝑖𝑗| < 𝜎 

(2.34) 

 

This potential produces a force that discourages overlaps, and can be combined 

with other potentials, such as the embedded atom density dependent potential energy 

function.  Without a pair core potential, the embedded atom function has a tendency 

to make string structures, causing a lack of uniformity of density within a relaxed 

system.  The pair core potential fixes this problem, allowing the system to relax 

towards a potential energy minimum.  Figure 2.11 describes a pair core potential. 

Figure 2.11: A plot of potential energy against interparticle distance 

for the soft-sphere potential.   
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2.5 Link cells 

Performing loops over pairs of particles is computationally expensive, and when 

using the RK4 integration scheme, the pairwise forces are calculated 4 times per 

timestep.  To further optimise the algorithm used to calculate the pair forces (and 

energies), link cells can be used to remove unnecessary calculations, shown in figure 

2.3.  The central simulation cell is split into a series of link cells, whose width and 

height are at least equal to the cut-off distance of the interatomic pair potential.  At the 

start of each time step each particle is assigned to the appropriate link cell.  When 

calculating the pairwise forces, instead of looping over all pairs of particles, each link 

cell is considered in turn.  Then each particle inside the link cell is selected, and the 

usual force calculation is performed, however, only particles in the current link cell, 

and any adjacent cells (including any boundary conditions) are considered.  In figure 

2.12, the current link cell is highlighted in red, and all particles considered for the force 

calculation of particles within this cell are red.  The dark particles are more than 2 link 

cells away from the selected cell, and therefore the particles within cannot be close 

enough to interact (and are not considered in the double loop).  The initial process of 

sorting particles into cells is computationally inexpensive, so the time benefit from 

using link cells is vast. 
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Figure 2.12:  An illustration of link cells.  The simulation cell is split 

into link cells, and only particles in the selected cell and adjacent cells 

are considered when calculating forces.  The red particles are close 

enough to interact, and the dark particles are too far away. 

 

 

2.6  Calculating thermodynamic properties 

In order to obtain meaningful results from simulations it is important to be able 

to calculate properties of interest, such as kinetic energy (hence also temperature), and 

pressure. 

In molecular dynamics, thermodynamic properties can be calculated 

instantaneously from functions of the readily available coordinates and momenta of all 

of the atoms within the system.  In a system at thermodynamic equilibrium the 

instantaneous values fluctuate around the average.  This means that taking a statistical 

average of properties over time will result in accurate expressions of these properties.  
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Equilibrium molecular dynamics generates the microcanonical ensemble,14 

where N, V, and E are constant.  Here, the temperature and pressure are not explicitly 

conserved; rather, they fluctuate around their average values.  Temperature and 

pressure can be calculated by taking time averages of the instantaneous values. 

 

2.6.1  Potential energy 

The potential energy may be calculated by simply averaging the instantaneous 

values of potential energy, Φ.  This is done at the same time as the force is calculated, 

and although it is not necessary to perform this calculation, is useful in verifying that 

energy is being conserved (although energy is not conserved when using a thermostat).   

 

 

 

Φ(𝑡) = ∑ ∑ ϕ(𝒓𝒊𝒋)

𝑗>𝑖𝑖

 
(2.35) 

 

This gives the instantaneous total potential energy.  This is simply summed at each 

timestep then divided by the number of timesteps. 

 

2.6.2  Kinetic energy 

Instantaneous kinetic energy, K, is given by: 

 

 

 

𝐾(𝑡) =
1

2
∑ 𝑚𝑖

𝑖

𝒓̇𝒊
𝟐 = ∑

𝒑𝑖
2

2𝑚𝑖
𝑖

 
(2.36) 

 

where mi is the mass.  Again, the average kinetic energy is calculated by time averaging 

the instantaneous values. 
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2.6.3  Total energy 

Total energy, E, is simply the sum of the potential and kinetic energies: 

 

 

 

𝐸 = 𝐾 + 𝛷 (2.37) 

In the microcanonical ensemble generated in equilibrium molecular dynamics 

the total energy should remain constant (to machine accuracy if a smooth potential is 

used in combination with the RK4 integration scheme, though there will be some drift 

in other conditions), throughout a simulation.  If the timestep used is too large, or the 

forces are discontinuous at the cut-off, then integration errors can take effect, causing 

slight fluctuations.  A drift in energy will diverge exponentially from the expected 

value.  If the total energy drifts with time then the thermodynamic state of the system 

is also changing so equilibrium properties cannot be measured.   

 

2.6.4  Temperature 

In the canonical ensemble the temperature is constant, however, in the 

microcanonical ensemble the temperature fluctuates around the average total. The 

equipartition formula states that the average kinetic energy of a system of N particles 

is equal to kBT/2 per degree of freedom: 

 

 

 

𝐾 =
𝐷

2
𝑁𝑘𝐵𝑇 

(2.38) 

 

where DN is the number of degrees of freedom.  If each particle has three degrees of 

freedom, the kinetic energy would equal 3NkBT/2.  In a molecular dynamics system 

the total linear momentum is often conserved, meaning that the number of degrees of 

freedom becomes D(N-1). 
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2.6.5  Pressure 

The most common method for calculating pressure in a molecular dynamics 

simulation is based on the Clausius virial function.  This virial is the sum of the product 

of the coordinates of all the particles in the system and the forces acting on them: 

 

 

 

𝑊 = ∑ 𝒓𝒊 ∙ 𝒑̇𝒊

𝑁

𝑖=1

 

(2.39) 

 

where r is the coordinate of particle i and ṗ is the force.  The virial theorem gives the 

pressure: 

 

 

 

𝑃𝑉 = 𝑁𝑘𝐵𝑇 +
1

𝐷
           ∑ 𝒓𝒊 ∙ 𝒑̇𝒊

𝑁

𝑖=1

 

(2.40) 

 

which, when using periodic boundary conditions, becomes: 16 

 

 

 

𝑃𝑉 = 𝑁𝑘𝐵𝑇 +
1

𝐷
           ∑ 𝒓𝒊𝒋 ∙ 𝒑̇𝑖𝑗

𝑁

𝑖=1

 

(2.41) 

 

The pressure (and temperature) fluctuate throughout a simulation, so the average 

over many timesteps (usually the whole duration of the production simulation) should 

be taken. 
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2.7  Thermostats 

Being able to monitor and control the temperature is desirable in molecular 

dynamics.  In standard molecular dynamics the system is driven by only the 

interatomic forces; there are no external forces used to control the dynamics, and 

energy is conserved.  In many real experiments, however, the temperature is controlled 

instead of the energy, making the ability to control temperature in molecular dynamics 

simulations desirable.  This is achieved by working in the Canonical ensemble. 

Thermostats are used in NEMD in order to control the temperature of the system.  

There are many different techniques with the aim of achieving this, some of which will 

be discussed here, and one must consider whether both the thermodynamics and the 

dynamics are preserved. 

 

2.7.1  ad hoc velocity rescaling 

The simplest method of applying a thermostat is to multiply all of the velocities 

of the particles in a system by the same factor, α: 

 

 

𝛼 = √
𝑇𝑟𝑒𝑞

𝑇(𝑡)
 

(2.42) 

 

where 𝑇𝑟𝑒𝑞 is the target temperature, and T(t) is the instantaneous microscopic 

temperature.  Because the same factor is applied to all of the velocities there is no 

effect on the centre of mass.  This rescaling is usually applied after a pre-determined 

number of timesteps, or when the calculated kinetic energy goes outside a set limit 

around the target value.  This method can produce useful results when the time 

averaged properties do not depend on the ensemble chosen, however it falls down 

when the properties of interest are dependent on fluctuations (as opposed to averages) 

as it creates discontinuities in phase space, and it does not generate the properties of 
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the canonical ensemble; if the rescaling were to be applied every timestep the kinetic 

energy would remain constant, not allowing for any energy fluctuations. 

 

2.7.2  Andersen Thermostat 

The Andersen thermostat is shown to generate the correct canonical ensemble 

over infinitely long trajectories.  It works by introducing random collisions of the 

particles in the system with an imaginary heat bath, sampling the new velocity from a 

Maxwell-Boltzmann distribution at the desired temperature.17  

 

 
𝜌(𝑣𝑥,𝑖) = (

𝑚𝑖

2𝜋𝑘𝐵𝑇
)

1/2

𝑒𝑥𝑝 (−
𝑚𝑖𝑣𝑥,𝑖

2

2𝑘𝐵𝑇
) 

(2.43) 

 

Particles are either chosen randomly and a collision performed, or all particles 

have all components of their velocities reassigned simultaneously.  After this event, 

the centre of mass motion needs to be removed.  As with velocity rescaling, this is not 

done every time step, but is performed on a collision frequency.  

Although this method accurately generates the correct kinetic and potential 

energies, due to the stochastic nature of the collisions, correct molecular kinetics is not 

maintained.  This means that particle trajectories de-correlate from previous timesteps 

more quickly than in the canonical ensemble, creating erroneous results when 

measuring properties such as diffusion coefficients. 

 

2.7.3 Gaussian thermostat 

As mentioned previously, the main drawback of the ad hoc velocity rescaling 

method is that it produces discontinuities in the momentum phase space, due to the 

rescaling mechanism.  The Gaussian thermostat applies Gauss’ principle of least 

constraint to add a constraint force term to the equations of motion ensuring the kinetic 

energy (and hence temperature) is a constant of the motion:18 
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 𝒒̇ =
𝒑

𝑚
 

(2.44) 

 

 𝒑̇ = −𝑭 − 𝛼𝒑 (2.45) 

 

 
𝛼 =

∑ 𝐹 ∙ 𝒑

∑ 𝑝 ∙ 𝑝
 

(2.46) 

 

where 𝛼𝝆 is the constraint force, with 𝛼 being calculated instantaneously equation 

2.46.  This generates the isokinetic ensemble, but not the canonical ensemble.  The 

equations of motion are deterministic avoiding the problems caused by the stochastic 

nature of the interactions in other thermostats 

 

2.7.4  Nosé-Hoover thermostat 

The Nosé-Hoover thermostat provides a method to simulate systems, 

asymptotically, in the NVT ensemble by introducing a fictitious force that guides the 

total temperature of the system towards the target temperature.19,20  The coefficient, ζ, 

has a frictional effect that either speeds up or slows down particles.  It obeys a feedback 

equation based on the ratio of the current kinetic energy to the target kinetic energy: 

 

 𝒓̇𝑖 =
𝒑𝑖

𝑚
 

(2.47) 

 

 𝒑̇𝑖 = 𝐹𝑖 − 𝜁𝒑𝑖 (2.48) 

 

 
𝜁̇ = [(∑

𝒑2

𝑚
/ ∑ 𝑘𝐵𝑇0) − 1] /𝜏2 

(2.49) 
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where, T0 is the temperature corresponding to the kinetic energy K0, and 𝜏 is the 

damping force (typically in the region of 500 reduced units).  This frictional force is 

contained within the equations of motion, and equation 2.49 is treated as another 

ordinary differential equation to be integrated giving 𝜁at each timestep. 

This thermostat generates the canonical ensemble.  It is commonly used in the 

molecular simulation community.  
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3  Molecular dynamics simulation of sand bed filtration 

 

3.1 Overview 

In this work, molecular dynamics was used with the twin aims of probing the 

mechanisms involved in the process of clogging and of providing data to help validate 

the continuum scale model.  The idea was not to create an atomistic scale model that 

accurately modelled the interactions of sand particles with individual water molecules 

and specific colloidal particles, rather, it was to create a simplified model of sand bed 

filtration containing the essential physics.  This allows for physical insight free from 

unnecessary complication.  It was therefore of great importance to maintain simplicity 

in the design, using existing literature as validation and guidance throughout the 

process.  This chapter will discuss the design of the model, the techniques used to 

validate it, and highlight the key results.  It is worth noting that all units discussed in 

this and further chapters are reduced units. 

 

3.2 Model design 

The model aims to predict the flow of a binary mixture of fluid and colloid 

particles through a sand bed, where the colloids were capable of sticking to the sand 

particles, causing clogging.  It was a two-dimensional coarse grained molecular 

dynamics model, where all particles (fluid, colloid, and sand) are represented by soft 

discs, of the same size.  The sand bed consisted of a lattice of static discs.  All inter-

particle interactions were defined by variations of the same short-range smooth pair 

core potential, which is entirely repulsive.  An applied field acts in the y-direction to 

represent gravity, which entices the fluid to flow through the sand bed.  To model 

chemical adsorption of colloid particles on the sand grains, colloids approaching 

within a capture distance of a sand grain were stripped of their velocity if a random 

number sampled on [0,1] was less than a specified sticking probability.  Additional 

particles were introduced at the top of the system at regular intervals creating a 

continuous flow through the filter.  Over time, colloids deposited within the sand bed 

causing clogging. 
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To analyse the simulation, the thermodynamic properties of interest (density, 

pressure, temperature) were calculated both globally and locally.  The pressure drop 

and specific deposit, which are two key parameters used to analyse the problem of 

clogging at SIXEP, were also monitored, which gave a means of comparing this model 

to existing models and literature.  The model is split into two stages: the equilibration 

stage and the filtration stage, which are depicted in figure 3.1. 

 

 

Figure 3.1: A schematic showing the molecular dynamics filtration 

model.  The yellow particles are the sand particles, the blue particles 

are fluid particles and the red particles are colloid particles.  The dashed 

line is an elastic boundary that is present in the first stage. 

 

3.2.1 Equilibration stage 

 The left-hand image in figure 3.1 depicts the initial stage, where a binary 

mixture of fluid and colloid particles was suspended over the lattice of sand particles.  

A gravitational field was applied and the fluid was allowed to relax.  The binary fluid 
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mixture cannot interact with the sand particles at this point.  When equilibrium was 

reached the elastic boundary separating the fluid and the sand particles was removed, 

ending the first stage. 

Initial conditions 

Each particle was assigned an initial coordinate and momentum.  The 

coordinates of the fluid were chosen to create a square lattice.  This was a convenient 

choice as it is computationally simple to assign the coordinates in this way.  Within a 

few timesteps, all memory of this lattice will be lost as the system becomes a fluid. 

The density and number of particles were defined as input parameters for each 

simulation, which therefore defined the size of the column of fluid and the initial 

spacing between particles.  The type of particle (fluid or colloid) was decided randomly 

to create a system where the colloids were initially scattered throughout the fluid, and 

is illustrated in figure 3.2.  The desired ratio of colloid/fluid particles was defined in 

the input file, and a random number generator was used to sequentially determine the 

type of each particle. 

 

 

Figure 3.2: Illustration showing the initial fluid conditions.  The blue 

particles are fluid and the red are colloids.  The type of each particle is 

randomly decided based on the ratio.  This example shows a 4:1 ratio 

of fluid:colloid. 

The momenta were calculated so that the average kinetic energy per particle 

equalled the value that the simulator chose (typically 1.0).  First, a random number 

generator assigned each particle a velocity of between -1.0 and 1.0.  The centre of mass 

velocity was then removed to stop the simulation box from drifting: 
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𝒒̇𝑖′ = 𝒒̇𝒊 −
1

𝑁
∑ 𝒒̇

𝑁

𝑖=1

 

(3.1) 

 

Finally, the momentum was rescaled so that the average kinetic energy equalled the 

input value. 

It is worth noting some details about the random number generator used to define 

the initial velocities.  A random number generator requires a new seed each time a 

series of random numbers is generated, otherwise the exact same series of pseudo 

“random numbers” will be created.  In order to create a new series of random numbers 

each time a simulation was run the system clock time was used as a seed, resulting in 

a unique seed, hence, unique velocities.  If repeated simulations with the same initial 

velocities were required, the simulator could choose not to use a seed to generate the 

numbers.  See appendix A for a segment of FORTRAN code used to generate a random 

seed. 

 

Equations of motion 

The equations of motion solved for the colloid and fluid particles were: 

 

 𝒒̇𝑖 =
𝒑𝑖

𝑚𝒊
 

(3.2) 

 

 

𝒑̇𝑖 = ∑ 𝑭𝑖𝑗

𝑁

𝑗=1

− 𝑚𝑖𝑔𝒌 

(3.3) 

 

where F is the force acting on each particle as a result of the inter-particle 

potential, Φ, g is the gravitational field strength and k is a unit vector in the positive y-

direction.  The mass, m, of all particles in the simulations was 1.  The particles that 

comprised the fluid were allowed to relax under gravity, with a viscous damping force, 
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τ, being used to remove excess kinetic energy until equilibrium was reached.  The 

damped equation of motion becomes: 

 

 

𝒑̇𝑖 = ∑ 𝑭𝑖𝑗

𝑁

𝑗=1

− 𝑚𝑖𝑔𝒌 −
𝒎1|𝒒̇

𝜏
 

(3.4) 

 

Interatomic potential 

All of the inter-particle interactions were based on variations of the same short-

range smooth pair core potential: 

 

 
Φ(𝑟 < 𝜎) = 𝜀 (1 − (

𝑟

𝜎
)

2

)
4

 
(3.5) 

 

where 𝜎 and 𝜀 define the strength and effective diameter of the particle respectively, 

and r is the inter-particle distance (𝑟 = |𝑟𝑖𝑗|; 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗).  This potential was chosen 

as it is computationally simple and short-ranged, but still capable of producing 

complex results.   Related potentials have been used extensively in dissipative particle 

dynamics (DPD) to successfully model colloidal behaviour.1,2,3  The potential is 

entirely repulsive, however, in the presence of multiple particle a depletion force can 

be created by adjusting 𝜀.  To demonstrate this, a simulation was run modelling the 

behaviour of a binary mixture of 400 particles (200 particles of type fluid, and 200 of 

type colloid).  The ε value for fluid-fluid and colloid-colloid interactions was 20.0, but 

the ε value for fluid-colloid interactions was 25.0.  Figure 3.3 shows the computed 

particle coordinates after 100 and 10,000 timesteps.  Using this simple distinction, 

phase separation was shown.  This serves as good evidence that although the potential 

is simple, it can still produce complex and realistic results.   
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Figure 3.3: Snapshots showing the computed particle locations of a 

binary mixture after 100 and 10,000 timesteps using periodic boundary 

conditions.  11 = 22 = 20.0 12 = 25.0.  Δt = 0.01. 

 

With 2 types of particle, there are 4 possible ε values, however, due to symmetry, 

only 3 of these are distinct: colloid/colloid, fluid/fluid,  and colloid/fluid.  Each of these 

ε values was defined in the input file. 

 

Boundary conditions 

Figure 3.4 illustrates the boundary conditions employed in the first stage.  An 

elastic boundary was used to keep the fluid above the sand particles and the lateral 

boundaries were periodic.   The dimensions of the simulation cell were chosen based 

on the input values of the number of fluid/colloid particles (and their density).  An 

arbitrary choice was made to start the column of fluid in an aspect ratio of 2:1.  This 

ratio created a column with a sufficient width ensuring that particles would not interact 

with their own image.  The image on the right hand side of figure 3.6 shows the 

coordinates at the end of stage 1. 
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Figure 3.4: Computed particle locations showing the initial conditions 

(left) and final coordinates (right) of a binary mixture containing 1024 

particles (512 colloid, 512 fluid).  The simulation length was 1,000,000 

time periods, Δt = 0.01, g = 0.1, τ = 1/ Δt. 

 

 

 

 

 



71 
 

3.2.1 Filtration stage 

The second stage of the simulation was the filtration stage.  During this stage the 

fluid could flow past and interact with the sand particles, and the thermodynamic 

properties of interest were monitored.  The sand particles  were static, so they did not 

have any equations of motion associated with them.  The equations of motion for the 

fluid mixture remained the same. 

 

Interatomic potential 

In order to probe the effect that the porosity of the filter has on the flow rate, it 

was important that the sand particles had a size.  A potential with a slightly different 

form was used to achieve this; a shifted core potential allows the sand particles to be 

given a finite size, rs: 

 

 
Φ(𝛿𝑟 < 𝜎) = 𝜀 (1 −

𝛿𝑟

𝜎

2

)

4

 
(3.6) 

 

 𝛿𝑟 = 𝑟 − 𝑟𝑠 (3.7) 

 

Instead of the potential energy (and force) being calculated from the spacing between 

two mass points, it is calculated from the nearest point on the outer radius of the sand 

particle, as shown in figure 3.5 

Figure 3.5: Illustration showing the shifted core potential.  The 

distance is calculated from the surface of the sand particle rather than 

the centre. 
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This potential shifts the interaction between the sand particles and the colloids 

by the size of the sand particle.  With 3 types of particle, there are 9 possible ε values, 

however, due to symmetry, only 6 of these are distinct: colloid/colloid, fluid/fluid, 

sand/sand, colloid/fluid, colloid/sand, and fluid/sand.  Each of these ε values was 

defined in the input file. 

 

Initial conditions 

The sand particles were fixed in space, therefore they did not have any 

momentum associated with them.  They either formed a square lattice, a triangular 

lattice, both of which are illustrated in figure 3.6.  The algorithms to define the lattice 

coordinates were simple, and just required the simulator to define the initial packing 

fraction. 

 

 

Figure 3.6: Illustration showing the sand particle coordinates.  The left 

shows a triangular lattice (coordination number of 6) and the right 

shows a square lattice (coordination number of 4). 

 

Boundary conditions 

The elastic boundary was removed to start the second stage.  The lateral 

boundaries remained periodic.  The original fluid phase would eventually work its way 

through the filter resulting in termination of the simulation.  To prolong the simulation, 

new fluid particles were introduced at regular intervals.  The number of particles, Nnew, 

and how often they were created, were defined in the input file.  They were created at 
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the top of the simulation cell (as shown in figure 3.7), with an even spacing, where the 

spacing, rnew, is obtained by: 

 

 𝑟𝑛𝑒𝑤 =  
𝑤

𝑁𝑛𝑒𝑤
 (3.8) 

 

where w is the width of the simulation cell.  The new particles had a velocity in the y-

direction of 0, as the gravitational force soon generated this.  The x-velocity was 

chosen randomly.  Similarly, the type of each new particle (colloid or fluid) was also 

selected at random, where the chance of each type of particle being created was based 

on the starting ratio. 

Because the integration scheme loops over pairs of particles, additional particles 

vastly increase simulation time.  It was therefore important to keep the number of 

particles to a minimum.   Fluid particles that travelled beyond the final layer of sand 

particles were removed.  The simulation continued for either a set number of timesteps, 

or until a certain pressure drop was reached.  In the latter case, once the filter was 

clogged, the addition of new particles would cause the simulation to become 

unreasonably lengthy due to their slower transport through the membrane before they 

were ultimately removed. 
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Figure 3.7: Image depicting the start of the second phase.  The elastic 

boundary has been removed, and the fluid and the sand can now interact 

with each other. 

 

Particle sticking 

In a similar method to the models discussed in section 1.3.3, a sticking 

probability was used to determine the chance of a colloid depositing within the sand 

bed.  Two variables were used in order to achieve this.  The first d, was the clogging 

distance.  This was the maximum distance between the surface of the sand particle and 

the colloid at which there was a chance of sticking, which was akin to the solid-water 

interface described in NNL’s model.  The second, p, was the probability of deposition, 
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and was a value between 0 and 1; p = 0 represents zero sticking, while particles would 

always stick if p = 1.  When the separation between the colloid and the sand particle 

was less than d, a random number was generated.  If this number was less than the 

sticking probability then the particle was taken to be deposited, and in this state its 

velocity was set to be zero.  This was an irreversible process, and the immobile 

deposited particle continued to interact with all other particles. 

This method of sticking modelled a situation where similar to the process of 

physisorption.  There was a finite space around each sand particle for colloids to 

deposit, and as time passed the possible retention sites were filled, resulting in a 

maximum amount of deposit per sand particle.  This was representative of blocking, 

which was modelled in previous work using a dynamic blocking function.   

The opposite effect to blocking is ripening, which is likely to result from 

chemisorption.  This occurs when colloid-colloid interactions are attractive, where 

deposited colloids actually provide additional surface area for further colloid 

deposition.  This can lead to improved colloid retention, though if the attractive forces 

are too strong, it will result in large deposits that cause complete clogging.  To model 

this, an additional sticking probability was used.  The same algorithm was 

implemented, though the distance calculated was the colloid-colloid separation.  This 

allowed colloids to deposit on top of other colloids, continually growing the clusters. 

 

3.2.3 Calculating properties 

To probe this model effectively it was necessary to monitor how properties 

varied across the filter.  There are several techniques that allow local thermodynamic 

properties to be calculated, such as the histogram approximation (bins method)4 and 

the method of planes.5 

An inherently simple approach is to employ smooth particle averages, where a 

weight function is used to calculate each particle’s contribution to the property at that 

plane.6  At a given plane, the total value of the property of interest is a sum of the 

weighted contributions of all particles within the cut-off distance of the weight 

function (the smoothing length), h.  This method is illustrated in figure 3.8. 



76 
 

 

 

Figure 3.8: Schematic showing the weighted method of planes.  Each 

particle whose distance, rj, from the plane of interest is less than the 

smoothing length, h, contributes to the property at that plane.  Red 

particles are within the smoothing length of the plane highlighted in 

red, grey particles are not. 

 

An appropriate choice of weight function is Lucy’s one-dimensional weight 

function (which is used in SPAM).  The weight function is illustrated in figure 3.9, and 

takes the form: 

 

 
𝑤(𝑟 < ℎ) =

5

4𝜋
[(1 + (3

𝑟

ℎ
))] [1 − (

𝑟

ℎ
)]

3

 
(3.9) 
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Figure 3.9: Plot showing the one-dimensional Lucy weight function 

used to weight particle influence at a plane. 

 

A series of tests were performed in order to illustrate how this method can be 

used to monitor various properties.  
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Mass density 

The mass density at a plane is given by: 

 

 𝜌(𝑟, 𝑡) = ∑ 𝑚𝑖

𝑖

𝑤𝑦𝛼𝑖 
(3.10) 

 

 𝑤𝑦𝛼𝑖 = 𝑤(|𝑦𝛼 − 𝑦𝑖|) (3.11) 

 

where 𝑤𝑦𝛼𝑖 is the weight function calculated for the distance between the plane of 

interest, yα, and each particle, i.   Two simulations were run to illustrate this method 

using the short-range pair core potential: the first with no gravitational force, and the 

second with a gravitational force of 1.0.  400 identical particles were simulated for 

100,000 timesteps, where Δt = 0.01.  The side boundaries were periodic, and the 

bottom and top boundaries were elastic. Figure 3.10 shows the computed particle 

coordinates at the start and the end of the simulation. 

 

 

Figure 3.10: Computed particle locations for two simulations where 

the gravitational force, g = 0.0 (left) and 1.0 (right).  Δt = 0.01, total 

timesteps = 100,000, 0 = 1.0.  
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The density in the y-dimension was calculated every 10 timesteps at 100 planes 

equally spaced in the y-direction using equation 3.9 and the Lucy weight function 

(equation 3.8).  It was then averaged by the number of snapshots taken to give the 

density profiles shown in figure 3.11.  In the first case, where there was no gravitational 

field; the density was evenly spread across the system.  The density profile shows a 

uniform value of 1.0 across all coordinates.  When there was a gravitational field 

applied, there was a density gradient produced.  A higher density was found at the 

bottom of the system compared to the top, and this was correctly captured using this 

profiling technique. 

 

Figure 3.11: Density profiles without (left) and with (right) a 

gravitational field.  Density was calculated at 100 planes in the y-

directions every 10 timesteps. 
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Momentum density 

The momentum density at a given plane is calculated using the following 

expression: 

 

 𝐽𝑦(𝑦𝛼 , 𝑡) = ∑ 𝑚𝑖

𝑖

𝒗𝑖𝑤(|𝑦𝛼 − 𝑦𝑖|) 
(3.12) 

 

where 𝒗𝑖 is the lab-frame velocity of particle i, consisting of the thermal (microscopic) 

and streaming (macroscopic) components.  The streaming velocity is calculated from 

the ratio of the momentum and mass density, 𝐽/𝜌.    

A suitable test to validate the reliability of the momentum density calculation is 

to model Poiseuille flow.  This is the flow of a fluid through two parallel walls, where 

the flow is generated by an external field, and is well described in literature; Poiseuille 

flow should produce a quadratic velocity profile across the pore.  This process was 

modelled by simulating the flow of 2048 particles through a pore space for 1,000,000 

timesteps, with a timestep of 0.001.  The flow was generated using a force in the y-

direction of 0.1.  100 profile planes evenly spaced in the x-direction were used to 

calculate velocity across the pore.  The walls were elastic boundaries, where the excess 

energy generated by the external force was removed using velocity rescaling upon 

collisions with the wall, following the example of Ziaran and Mohamad.7  The 

resulting velocity profile is shown in figure 3.12.  The least squares fit of the velocity 

profile does indeed show the expected quadratic dependence, with the results agreeing 

excellently across most of the pore, showing slight deviations towards the walls. 
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Figure 3.12: Velocity profile across a pore 

 

Pressure 

Pressure at a plane is calculated using the same approach, however there is an 

important addition.  The first term on the right-hand side is the kinetic contribution, 

which is straightforward to calculate.  The potential contribution (the second term) 

requires an arbitrary choice to be made on how to distribute the force from each 

particle.  This work follows previous examples by Hoover in assigning half of the 

𝑦𝑖𝑗𝐹𝑖𝑗
𝑦

 contribution to each member of the interaction pair. 

 

 𝑃𝑦𝑦(𝑦𝛼, 𝑡) = ∑ 𝑚𝑖

𝑖

𝑦̇𝑖
2𝑤(|𝑦𝛼 − 𝑦𝑗|)

+ ∑ ∑ 𝑦𝑖𝑗𝐹𝑖𝑗
𝑦

𝑤(|𝑦𝛼 − 𝑦𝑗|)

𝑗𝑖

 

(3.13) 
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The pressure drop (or head loss) is used at SIXEP as an indicator of clogging, 

and was therefore an important parameter in this model.  The pressure drop was 

calculated as the difference between the pressure at the top of the filter (which was the 

plane with the highest pressure) and the bottom of the filter (the plane with the lowest 

pressure).  Figure 3.13 shows how the planes were used to measure thermodynamic 

properties across the filter, and highlights the two planes from which the pressure drop 

was calculated. 

 

 

Figure 3.13: Image showing the profile planes used to measure the 

thermodynamic pressures across the filter.  The pressure drop is the 

difference in pressure at profile planes A and B. 

 

To illustrate this, a simulation was run with a sufficiently high sticking 

probability and sticking distance for the colloids to quickly deposit at the top of the 

bed, causing complete clogging of the filter.   Figure 3.14 shows the computed particle 

locations at 5 stages during the simulation.  As can be seen, as soon as the colloids 

were allowed to interact with the sand they began to stick, clogging the filter.  The 
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pressure was calculated at 100 evenly spaced planes in the y-direction every 10 

timesteps. 

Figure 3.14: Snapshots showing particle coordinates at 5 stages during the same 

simulation.  The purple circles are the colloidal particles, the light blue circles are 

the fluid particles, the dark blue circles are the clogged colloidal particles and the 

orange circles are the sand particles.  Sticking probability = 0.001, sticking distance 

= 0.75. 

 

Figure 3.15 shows the obtained pressure profiles.  The filter bed begins at a y-

coordinate of 0.  The black line shows the pressure profile at t = 0, before the particles 

were allowed to interact with the sand.  As expected, there was no pressure observed 
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below a y-coordinate of 0 during the initial phase.  As the colloids started to stick, the 

pressure at the top of the filter became increasingly high; as more particles entered the 

simulation from the top, and with very few particles passing through the top layer of 

clogged colloids, the pressure continued to build.  This, of course, was an exaggerated 

situation, where the purpose was to show that the techniques being used to analyse the 

simulation were sufficient to monitor the pressure drop. 

 

 

Figure 3.15: Pressure profiles for the 5 computed particle locations in 

figure 3.14. 
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3.3 Model validation 

Before systematically exploring this model to probe the mechanism of clogging, 

it was important to verify that the results, at least qualitatively, showed the same trends 

as those in other models and experiments.  Two main sources were used to validate the 

model: existing literature, and a one-dimensional model created by the National 

Nuclear Laboratory (NNL).  The model was based on an advection-dispersion equation 

and empirical rates of deposition and clogging, and was discussed in section (1.3.3).  

There are 3 main areas for comparison: the rate of specific deposit, the rate of increase 

in pressure drop, and the deposit concentration with depth.  It is worth noting that all 

simulations discussed in this section, unless otherwise stated, used the input parameters 

detailed in appendix B. 

 

3.3.1 Specific deposit 

Specific deposit, , is defined as the mass of deposit per unit of filter volume.  

There are two phases during the filtration lifecycle: blocking/ripening and operation.  

According to Camesano et al8, deposition should increase linearly with time, with the 

rate of deposit being dependent on the current phase.  This theory has been used to 

parameterise existing models in the field, with the NNL model using the following 

equations to determine the rate of deposit: 

 

 𝑘12 = 𝑘𝑟 and 𝑘21 = 0 when 0 < 𝜎 ≤ 𝜎𝑟 (3.14) 

 𝑘12 = 𝑘𝑎𝑐  and 𝑘21 = 𝑘𝑑  when 𝜎𝑟 < 𝜎 ≤ 𝜎𝑢 (3.15) 

 𝑘12 = 0 and 0 = 𝑘𝑑  when 𝜎 = 𝜎𝑢 (3.16) 

 

where k12 is the rate of attachment, k21 is the rate of detachment, kr is the rate during the 

ripening/blocking phase, kac and kd are the rates during the operation stage, and σr and 

σu are the threshold values of specific deposit. 

 

 



86 
 

MD model prediction of specific deposit 

All particles in the molecular dynamic simulations had a mass of 1.0, therefore 

the specific deposit was simply calculated as the number of deposited particles divided 

by the volume of the filter.  The volume of the filter was defined as the width of the 

simulation cell multiplied by the depth of the sand bed (see figure 3.6).  There were 

two distinct sticking mechanisms that were used in the molecular dynamics model.  

The first was where colloids could only stick to the sand particles (blocking), the 

second was where colloids could stick to both sand particles and already deposited 

colloids (ripening).   

Figure 3.16 shows the specific deposit build up for a simulation using the 

blocking mechanism.  This result qualitatively agrees with the predictions of 

Camesano; there were two phases shown, which equate to the two phases of filtration 

(blocking and operation).   As the first layer of colloids surrounded the sand bed 

particles there was a steep increase in the specific deposit.  At a threshold value of 

around r = 2.7, the rate of deposition decreased to a second linear rate.  Taking the 

gradient of the slopes of the two regimes results in values of 2.0 x 10-4 and 9.2 x 10-5 

for kr and kac respectively.  
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Figure 3.16: Specific deposit against time showing the two filtration 

stages. Here blocking is modelled: colloids only stick to the sand 

particles, colloid clogging distance = 0, colloid sticking probability = 

0. 

 

Figure 3.17 shows the growth of the clusters throughout this simulation.  Before 

1000 timesteps, where the change in rate occurred, there was little coverage of the sand 

particles.  It was easy for colloids to get close enough to deposit.  At 1000 timesteps there 

was approximately one layer of colloids surrounding each sand particle, causing the 

change in deposition rate; it was now more difficult for colloids to deposit on the sand 

particles.  Throughout the rest of the simulation, the clusters gained density, but were not 

growing.  The process being modelled was blocking; the deposited colloids did not 

provide additional surface area for deposit, rather, they hindered further deposition.  This 

serves as evidence that the molecular dynamics model both qualitatively shows the 

correct linear trends when modelling deposition that causes blocking, but also generates 

two phases with a threshold specific deposit, agreeing with the existing literature. 
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Figure 3.17: Computed particle locations at 5 stages during the 

simulation shown in figure 3.15. 

 

Figure 3.18 shows the results from a simulation where ripening was modelled; 

colloid particles could stick to already deposited colloids, causing continual cluster 

growth.  Again, there were two distinct regimes, though this time the rate of deposition 

increased after a threshold value of specific deposit.  Taking the gradient of the slopes 

of the two regimes results in values of 1.2 x 10-4 and 2.2 x 10-4 for kr and kac 

respectively. 
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Figure 3.18: Specific deposit against time showing the two filtration 

stages. Here ripening is modelled: colloids stick to both sand particles 

and deposited colloid particles.  Colloid clogging distance = 0.5, 

colloid sticking probability = 0.00. 

 

Figure 3.19 shows the particle locations at varying stages throughout this 

simulation.  At t = 1000, there was a slight coverage of each sand particle, which is 

when the mechanism began to change.  Instead of having to deposit on top of the sand 

particles, the deposited colloids provided additional surface area for deposition, 

resulting in an increase in the rate.  The clusters continued to grow throughout the 

simulation, decreasing the pore space.  At t = 100,000 the pore spaces are nearly 

completely blocked, which would result in mechanical filtration. 
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Figure 3.19: Computed particle locations at 5 stages during the 

simulation shown in figure 3.18. 

 

Again, the model qualitatively agrees with existing literature regarding the build-

up of specific deposit: it successfully models the two stages of filtration, where the rate 

of deposit changes at a threshold value.  When blocking was modelled, the rate of 

deposition decreased in the second phase, and when ripening was modelled, the rate 

of deposition increased in the second phase.  The gradient of the slopes equate to the 

rate constants used in NNL’s model, and the value of specific deposit at which the 

rates change equates to σr. 
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3.3.2 Pressure drop 

The second area for validation was the pressure drop.  Experimental work done 

by Veerapaneni9 suggested that the pressure drop should scale linearly with specific 

deposit during the initial phase, and scale quadratically with specific deposit during 

the second stage.  Mays and Hunt10 determined the following relationship between 

specific deposit and normalised pressure drop: 

 

 ∆𝐻

∆𝐻0
− 1 = 2𝛾𝜎 + (𝛾𝜎)2 

(3.17) 

 

where ΔH is the instantaneous pressure drop, ΔH0 is the pressure drop across a clean 

filter, and γ is the clogging parameter.  This relationship suggests a transition from a 

linear to a quadratic dependence based on the specific deposit, and is the equation that 

the NNL model uses to predict the pressure drop.    

 

MD model calculation ΔH0 

The method used to calculate the pressure drop in the molecular dynamics 

simulations is outlined in section 3.2.5.  Pressure drop is often defined as a ratio of the 

instantaneous pressure drop and the pressure drop across a clean filter.  Therefore, a 

simulation was run to determine the pressure drop of a clean filter using the molecular 

dynamics model in order to allow future results to be normalised.  Instead of the fluid 

containing a mixture of colloid and water particles, it contained only water particles.  

This meant that there was no deposition within the filter bed, and therefore, no 

clogging.  Figure 3.20 shows the pressure drop as a function of time.  Initially the 

pressure drop was overestimated, creating the transient peak.  This was due to the fact 

that when the fluid first started to flow through the filter, pressure was only created on 

the top of the filter – this is an artefact of the method of planes as opposed to a physical 

property of the system.  Once the first fluid particles reach the bottom of the filter a 

more reasonable trend was seen.  Once a steady state was reached the value for the 

pressure drop of this clean filter settled at around H0 = 800.  This value was used to 

normalise future simulations. 
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Figure 3.20: Pressure drop against time for a clean filter, used to 

establish ΔH0. 

 

MD Model dependence of ΔH with σ 

Figure 3.21 shows the pressure drop for the same sample molecular dynamics 

simulation as figure 3.16, where the pressure drop has been normalised.  The results 

are in excellent agreement with the trends predicted by Veerapaneni and Mays and 

Hunt.  During the first phase, there was indeed a linear increase in the pressure drop 

with specific deposit.  After 10000 timesteps, where the mechanism changed, the 

dependence became quadratic, again agreeing with equation 3.11.  This change 

occurred at the same threshold value of specific deposit seen previously in section 

3.3.1. The model not only successfully shows the two regimes expected of a filtration 

process, it also shows a transition from a linear to a quadratic relationship between 

pressure drop and specific deposit.  Based on the linear fit in the first phase, this result 
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suggests a clogging parameter of 1.4, and based on the quadratic fit for the second 

phase, a clogging parameter of 4.0. 

 

Figure 3.21: Pressure drop as a function of specific deposit.  The linear 

fit describes the relationship between pressure drop and specific 

deposit during the first phase.  The quadratic fit shows the dependence 

between pressure drop and specific deposit in the second phase. 
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3.3.3 Concentration with depth 

A constant first order rate of deposition predicts that the concentration of 

deposited colloids will decrease exponentially with depth11.  However, in conditions 

where there are multiple types of colloid particle, or a large particle size distribution, 

specific colloids can be preferentially deposited at the top of the sand bed resulting in 

a hyper-exponential decay.  Additionally, if there are only weak forces (such as those 

predicted under certain conditions by DLVO theory) there is the potential for deposited 

colloids to remobilise and deposit further down the bed resulting in a nonmonotonic 

profile (see figure 3.22). 

 

 

Figure 3.22: Illustrations of deposit profiles as a function of depth.  

Left: exponential, middle: hyper-exponential, right: non-monotonic.  

Adapted from Bridge.12 

 

The NNL model did not provide any information regarding the concentration of 

deposited colloids with depth, therefore the only means of available validation in this 

area was with the existing literature.  This highlights the key advantage of a particle-

based approach: additional mechanistic information can be easily obtained.   
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MD model prediction of concentration with depth 

Figure 3.23 shows the concentration of deposited colloids as a function of depth 

at a porosity of 0.7 obtained using the molecular dynamics model.  The specific deposit 

decreased exponentially with depth, which is agreement with the experimental 

predictions of Jegetheesan.11 

Figure 3.23: Specific deposit against depth obtained using the MD 

filtration model. Porosity = 0.7.  Error bars are negligibly small.  The 

solid line is a linear fit. 

 

When the porosity of the filter was decreased (by increasing the packing fraction 

of the sand) the trend became hyper-exponential.  Figure 3.24 shows the concentration 

profile where the porosity was decreased to 0.4.  This decrease in porosity caused 

colloids to be deposited favourably at the top of the bed, changing the deposit profile. 
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A non-monotonic profile cannot be observed using the current molecular 

dynamics model as this occurs when colloids remobilise and redeposit further down 

the bed; sticking is permanent in this model. 

Figure 3.24: Specific deposit against depth obtained using the MD 

filtration model. Porosity = 0.4.  Error bars are negligibly small.  The 

solid line is an illustration of an expected linear trend. 

3.2.4 Summary 

A series of tests were performed using the molecular dynamics model to validate 

it against existing literature and modelling work.  The model showed the two expected 

phases of filtration: ripening/blocking and operation.  Additionally, the results showed 

that the specific deposit increased linearly with time, with the rate of increase changing 

at a threshold value of specific deposit.  Similarly, the results showed a change from a 

linear increase in pressure drop to a quadratic dependence at the same threshold value.  

These trends agree with both experimental work and with the assumption inherent in 

the NNL model.  Furthermore, the simulations show an exponential decrease in 

deposited colloid concentration with depth, that becomes hyper-exponential under 

certain conditions.  This also agrees with experimental results.  
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3.4 Systematic exploration 

Having used the data from available literature to try to validate the results and 

trends from the MD model, the next stage was to systematically explore this model to 

further probe the mechanism of clogging.  The following sections will show the results 

gained from varying parameters in isolation. 

 

3.4.1 Interatomic Potentials 

One of the primary areas for investigation of the molecular dynamics model was 

to examine how the nature of the interatomic potentials effects the dynamics.  It has 

already been shown that the soft core repulsive potential being used is capable of 

causing phase separation, in a similar way to the depletion force.  The effect of the 

strengths of the interatomic potentials was investigated by simply varying each 

interatomic pair potential in isolation. 

 

Colloid-colloid potential 

The first pair potential investigated was the colloid-colloid potential, which 

defined both the interactions between colloids suspended in the fluid, and the 

interactions between deposited colloids and those suspended in the fluid.  cc was 

varied between 2.0 and 100.0, and the resulting rates of build-up of specific deposit 

and rate of increase in pressure drop were measured.  Figure 3.25 (a) shows the effect 

on specific deposit, and figure 3.25 (b) shows the effect on the pressure drop. 

It can be seen that the initial ripening phase showed little dependence on the 

colloid interaction strength, with the rate of deposition being constant throughout.  This 

was expected as the mechanism for deposition depends solely on the strength of the 

interaction between the sand and the colloid particles.  However, once this phase had 

completed and there was a layer of colloidal particles surrounding the sand particles, 

further deposition was prohibited by a strong repulsive colloid/colloid interaction; the 

rate of deposition decreased with an increasing ε.  The stronger repulsive forces kept 

the separation between the colloids larger, allowing fewer of them to get close enough 

to the sand particles to interact and deposit.   
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Figure 3.25: Specific deposit (a) and pressure drop (b) against time 

whilst varying the strength of the colloid-colloid pairwise potential 

from  = 2.0 to  = 100.0.   
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Even with a lower value of specific deposit, the pressure drop increased with 

increasing colloid repulsion.  The strong repulsive forces not only hindered further 

deposition, but also stopped colloid particles from passing through the bed, causing an 

increase in pressure due to the increased number of particles above the bed. 

Figure 3.26 shows the density profiles obtained from the simulations of the 

highest and the lowest interaction strength.  It is clear that the hyper-exponential nature 

of the deposit increased with increasing colloid repulsion: the strong repulsive 

interactions caused a sharper drop-off in the density profile.  This means that colloids 

were being deposited favourably towards the top of the filter compared to the bottom; 

the additional repulsion between colloids hindered them from penetrating further into 

the bed, resulting in a higher density of deposit at the top of the bed.  Even though, 

overall, there was less deposit within the filter with higher colloid-colloid repulsion, 

the pressure drop was higher due to the favourable deposition at the top of the bed.   

 

Figure 3.26: Density profiles comparing the weakest (left) and 

strongest (right) colloid-colloid interactions from figure 3.1.  The 

density includes contributions from all fluid particles. 

 

To maximise efficiency in the industrial process, it is therefore ideal to create a 

situation where the colloid-colloid interaction is not so unfavourable that the deposited 
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colloid particles not only block other colloids from depositing, but also stop them 

penetrating further into the bed causing a premature head loss.  Having strong colloid-

colloid repulsion both hinders deposition, increases the pressure drop, and causes 

favourable deposition at the top of the bed. 

 

Colloid-sand potential 

The second potential investigated was the colloid-sand potential, which affected 

how close the colloid particles could get to the sand particles.  The strength of the 

potential was increased from 2.0 to 100.0, and the rates of build up of specific deposit 

and the increase in pressure drop were measured.  

Figure 3.27 shows the results of this exploration.  It is clear that there was no 

significant deviation in either the rate of deposition (a) or the increase in pressure drop 

(b).  Once the sand particles had a layer of colloid particles surrounding them, and the 

second phase began, the rate-limiting interaction for the rate of deposit was the strength 

of the colloid-colloid interaction, as seen earlier.   

However, what is of more interest is that the initial ripening phase also showed 

no dependence on the strength of the colloid-sand interaction.  It may seem natural to 

assume that a stronger repulsive force between the sand and the colloid would cause 

the ripening phase to lengthen.  This is likely to be due to the fact that the sticking 

probability (which is akin to a chemical bond) dominates the weaker van der Waals 

forces between sand and the colloids. 

  



101 
 

 

Figure 3.27: Specific deposit (a) and pressure drop (b) against time 

whilst varying the strength of the colloid-sand pairwise potential from 

 = 2.0 to  = 100.0.   
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Fluid-colloid potential 

The fluid-colloid interaction was investigated in a similar manner to the previous 

examples.  The strength was varied from 2.0 to 100.0, and the results are shown in 

figures 3.28 (a) and 3.28 (b). 

As the repulsion between the colloid and fluid increased, the pressure drop also 

increased; the colloids blocked the flow paths, and the stronger repulsive forces 

stopped the fluid from passing.  However, what is of more interest in this case is the 

specific deposit data; there was an increase in the rate of deposit from an epsilon value 

of 2.0 to 25.0, then a sharp decrease in the rate of deposit from 25.0 to 100.0.   

Figure 3.29 shows snapshots of these simulations.  In image a, where the 

interaction strength between the fluid and colloid ( = 2.0) was actually weaker than 

that colloid-colloid interaction ( = 10.0), it was favourable for the fluid to pass down 

the column more quickly than the colloids.  The pressure build up comes from the 

colloids, as opposed to the fluid, struggling to penetrate, which can be seen from the 

dominance of the red particles in the image.  As the fluid-colloid interaction strength 

increased, the fluid particles contributed more to the pressure build up as they too 

struggled to pass through the filter.  At  = 50.0 (f), and subsequently  = 100.0 (g), 

the fluid blocked all of the available flow paths towards the top of the sand bed, 

meaning that not only was there an increase in the pressure drop, there was also a 

decrease in the rate of deposit.  The filter was effectively clogged, not by a layer of 

filtrate causing mechanical clogging as seen previously, rather, the repulsion between 

the clogged particles and the fluid stopped the fluid from penetrating into the sand bed, 

blocking all available flow paths. 
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Figure 3.28: Specific deposit (a) and pressure drop (b) against time 

whilst varying the strength of the colloid-fluid pairwise potential from 

 = 2.0 to  = 100.0.   
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Figure 3.29 (part 1): Snapshots of the particle locations after 100,000 

timesteps for the simulations in figure 3.27, with increasing fluid-

colloid repulsion from left to right.  The red particles are colloid, the 

light blue fluid, and the dark blue are clogged. 
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Figure 3.29 (part 2): Snapshots of the particle locations after 100,000 

timesteps for the simulations in figure 3.27, with increasing fluid-

colloid repulsion from left to right.  The red particles are colloid, the 

light blue fluid, and the dark blue are clogged. 
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Pairwise potential - summary 

The results of the investigation surrounding the pairwise potentials used to model 

the processes involved in filtration have yielded some interesting developments.   

Firstly, it has been shown that the rate of deposit depends greatly on the 

interactions between the fluid and the colloid particles, showing little dependence on 

any interaction with the sand particles.  Once a layer of colloid particles surrounds the 

sand particles (which is a relatively rapid process), the mechanics are dominated by 

the interactions of those colloid particles with the fluid passing them.  If there is a 

strong repulsion hindering the trajectories of the colloid particles then the fluid passes 

easily down the bed and the colloids struggle to penetrate.  This results in a preference 

for the particles to deposit at the top of the bed, leading to an increased pressure drop 

and, ultimately, clogging.  A hyper-exponential deposit profile is an indicator of this.  

If the opposite is true, and the fluid particles suffer from a larger repulsion, colloid 

particles travel deeper into the bed resulting in a linear deposit profile, and a pressure 

build up from the fluid particles. 

In terms of the mechanisms involved in complete clogging, this model suggests 

that there are two distinct mechanisms by which this occurs.  The first is mechanical 

clogging, which occurs when deposited colloids completely block the flow paths 

between the sand particles.  The other is not caused directly by colloid particles 

clogging the pore spaces, but is caused by a backlog of fluid particles that are unable 

to travel down the bed, and is shown in figure 3.29.  A small amount of deposited 

colloid particles that strongly repel the fluid cause the pore spaces to become blocked 

with fluid particles unable to flow down the bed, even though the pore space still exists 

to travel through.  This results in the same indicators of clogging; there is a large 

increase in pressure drop, and also there is a decrease in the rate of deposit.  The 

clogging could be further investigated using a model that had different sizes for the 

colloid and fluid particles; a fluid made up of many fluid particles per colloid would 

allow further probing of the diffusion of fluid particles through a clogged pore space, 

though such a simulation (with differing timescales of movement of colloid and fluid) 

would require considerably more computational power. 
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3.4.2 Lattice structure 

The lattice structure of the sand particles is a variable that can be easily adjusted.  

Two sets of simulations were run, where the only difference was the structure of the 

lattice.  A square lattice, where each sand particle has 4 nearest neighbours, and a 

triangular lattice, where each sand particle has 6 nearest neighbours, were investigated. 

The results are shown in figure 3.30.  To give a range of simulations for 

comparison, the lattice structure was compared for a series of simulations where the 

strength of the colloid-colloid interactions was varied from 2.0 to 100.0.  This choice 

was motivated by the fact that this parameter has a large influence on both the specific 

deposit and pressure drop.  Both sets of simulations were run with the same packing 

fraction, meaning that only difference between the two series was the coordinates of 

the sand particles.  The results show that in the case of a square lattice both the rate of 

deposit and pressure drop varied remarkably little with interaction strength.  This is in 

stark contrast to the results when the sand bed has a triangular lattice. 

Figure 3.31 shows the coordinates of the clogged particles of the highest 

interaction strength for the two lattice structures, where the red dashed line is a 

hypothesised flow path for the fluid.  This schematic can help to explain the 

observations above: as the deposits build up around the sand particles, a much simpler 

flow path is created when the sand particles are in a square lattice.  In a triangular 

lattice, there is more interference from the clogged particles causing the increase in 

pressure drop, whereas in a square lattice, the fluid can flow through the channels 

relatively easily.   

In terms of the lower rate of deposit build up in a square lattice, it can be seen 

that a colloid that travels around a sand particle is less likely to come close enough to 

a sand particle in the next layer to interact.  In a triangular lattice, it is more difficult 

for the particles to flow through the layers without interacting with the sand, and will 

therefore deposit at a faster rate. 
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Figure 3.30: Comparison of specific deposit against time (top) and 

pressure drop against time (bottom) whilst varying the colloid-colloid 

interaction strength for a square lattice (left) and triangular lattice 

(right)   
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Figure 3.31: Comparison of the coordinates of clogged particles in a 

triangular lattice (left) and a square lattice (right). The dashed line 

shows a suggested flow path. 

 

3.4.3 Colloid concentration 

The ratio of colloid/fluid particles is an important parameter, yet it is difficult to 

control on plant.  This is, however, easy to vary within a molecular dynamics 

simulation.  On plant, the concentration of colloids in the effluent waste is in the region 

of parts per million.  Due to time restrictions it is not possible to model a situation 

where the concentration of colloids is as low as this; a 4% colloid solution, simulating 

2500 particles (total of fluid + colloid particles), would run for over 24 hours without 

producing significant clogging.  A series of simulations was conducted in which the 

colloid concentration was increased from a minimum value of 10%. 

Figure 3.32 show the results.  As expected, both the specific deposit (a) and 

pressure drop (b) increased with increasing colloid concentration, showing the same 

trends as previously.  The concentration of the colloid particles had little mechanical 

effect; having a higher concentration simply speeds up the clogging process. 
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Figure 3.32: Specific deposit (a) and pressure drop (b) against time 

whilst varying the concentration of colloid particles from 10% to 50%.  

The apparent decrease in pressure drop is a transient artefact of the 

normalisation process, emphasised by lowering the  concentration. 
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3.4.4 Porosity 

Porosity, , is a measure of the empty space within a material and is expressed 

as a fraction between 0 and 1 or as a percentage between 0 and 100.  Being able to 

measure the porosity of the filter is important in determining the effect that the packing 

fraction of the sand particles has on the filtration process. 

A quick and simple way to measure porosity is to probe the coordinate space 

using random sampling.  A test particle with randomly generated coordinates is placed 

within the simulation cell.  If the coordinates of the particle lies within a circle of radius 

sand centred on a sand particle, then it is considered to be a hit, otherwise it is a miss.  

This process is repeated to cover the coordinate space.  Figure 3.33 show an example 

of the results obtained from this method. 

 

 

Figure 3.33: Example results from probing porosity.  The purple dots 

are misses, and the blue dots are hits.  1,000,000 trial insertions were 

performed. 
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In order to gain an accurate value for the porosity it is important the enough 

samples were made to extensively cover the coordinate space.  Figure 3.34 shows the 

results of a series of simulations where the number of trial insertions was increased.  It 

is clear that the results start to converge between 10,000 and 100,000 particles.  

Therefore, it was decided that 100,000 trial insertions was more than sufficient to 

obtain an accurate value. 

 

 

Figure 3.34: Porosity (as a percentage) as a function of number of test 

particle trial insertions created, N. 

 

A series of simulations were run where the porosity was varied from 1.44% to 

70.57% and all other variables were kept constant, the results of which are shown in 

figure 3.35.  As expected, the pressure drop increased with decreasing porosity.  

However, what is of more interest is the rate of deposition.  Instead of there being a 

constant increase in the rate of deposit with decreasing porosity, there was actually a 

point at which the opposite effect was seen.   
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Figure 3.35: Specific deposit (a) and pressure drop (b) against time 

whilst varying the porosity of the sand bed from 1.44 to 70.57. 
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At a porosity of less than 42.24, the rate of deposition decreased with increasing 

porosity, even though the rate of pressure drop continued to increase.  By examining 

the coordinates of the clogged particles (figure 3.36) it can be seen that the mechanism 

of deposition changed at this porosity.  Rather than forming clusters around the sand 

particles, the entire filter became mechanically clogged.  Colloids could not penetrate 

past the top layer of sand easily, causing a decrease in the rate of deposition, though 

the rate of pressure drop still increased. 

Figure 3.36: Image showing the coordinates of the clogged particles 

for the simulations shown in figure 3.36, with porosity decreasing in a 

clockwise direction. 

Figure 3.37 shows the pressure drop as a function of porosity at t = 90,000.  As 

can be seen, this model predicted a quadratic decay, with the data converging much 

more quickly at lower porosity.  Once the deposit mechanism changed from forming 

clusters to forming a solid bed (see figure 3.36), the dependence between porosity and 

pressure drop decayed.  
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 Figure 3.37: Pressure drop as a function of porosity.  The data is taken 

from figure 3.35, where t = 90,000. 

 

3.4.5 Fractal dimension 

Non-fractal objects have a definite topological dimension; a line is one-

dimensional, a circle is two-dimensional, and a sphere is three-dimensional.  Fractals 

have a dimension that lies between the usual topological dimensions.  For example, a 

fractal object embedded in a two-dimensional space has a fractal dimension between 

one and two.   Fractals result from one of two methods.  The first method produces 

self-similar fractals, which are fractals built up using a deterministic set of rules.  The 

Koch curve is an example of a self-similar fractal (see figure 3.38).  It results from an 

iterative process where, initially, a single line has its middle third removed and 

replaced with two equidistant lines forming an equilateral triangle with no base.  This 

process repeats.  After each iteration, the scale is reduced by a factor of three, and four 

new objects that each resemble the whole at the start of the current iteration are created.  
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This means that fractal dimension is ln(4)/ln(3) = 1.26 , and the shape looks identical 

at any scale.   

Figure 3.38:  An illustration of the Koch Curve, a deterministic fractal 

created using an iterative process. 

 

The second method results in disordered fractals, where the self-similarity only 

arises when looking at the average properties.  Processes that are random or chaotic 

can result in disordered fractals, the coastline of Britain being one such example. 

It is hypothesised that the fractal dimension of the deposits within a filter will 

have an impact on the flow rate12; a high fractal dimension, where the deposits tend 

towards a two-dimensional shape, will result in less physical and chemical interruption 

to the flow compared to low fractal dimension deposits.  This is because a high fractal 

dimension will divert the flow through colloid-free pores, as opposed to being more 

distributed throughout space, and is illustrated in figure 3.39. 

 

Figure 3.39: Illustrations of deposits with a low (left) and high (right) 

fractal dimension, adapted from Mays15. 
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Measuring fractal dimension 

The fractal dimension arises from the fact that fractals are shown to follow 

scaling laws, whereby the number of particles within a cluster scales as a power law 

in the radius of the object. 

 

 𝑁~ 𝑅𝐷 

 

(3.18) 

where N is the number of particles, R is the radius of the cluster and D is the fractal 

dimension.  This relation can be linearised by taking logarithms, giving: 

 

 ln𝑁 = 𝐷ln(𝑅) + ln(𝐶) (3.19) 

   

where C is a constant.  The fractal dimension may then be obtained from the slope of 

a linear least squares fit to this logarithmically transformed data.   

The radius of gyration is used to measure the radius of the cluster as a function 

of the number of particles.  This refers to the distribution of the particles around the 

centre of mass of the cluster.  It is defined for a cluster with N particles as:13 

 

 

𝑅𝑖𝑗
2 =

1

𝑁
∑(𝑥𝑖

𝛼 − 𝑥𝑖)(𝑥𝑗
𝛼 − 𝑥𝑗)

𝑁

𝛼=1

 

(3.20) 

 

where xi is the ith coordinate of the centre of mass of the cluster (and ranges from 1 to 

2 in two-dimensions), and α = 1,…,N denotes the particular particle within the cluster.  

The tensor can be diagonalised to obtain its eigenvalues, i, i = 1,…,d.  For d = 2, 

which is the case in this model, the asphericity parameter, which is a measure of the 

shape of the cluster, A2, is defined as: 
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𝐴2 =

〈(𝜆1 − 𝜆2)2〉

〈(𝜆1 + 𝜆2)2〉
  

(3.21) 

 

where the angled brackets represent an average over multiple clusters.  Calculating 

these values gives important information about the shape of the cluster.  For a circular 

cluster, A2 = 0 as 1 = 2, whereas A2 = 1 for a straight rod (1 = , 2 = 0).  If 1 ≠ 2, 

the ratio of the eigenvalues gives the lengths of the axes the ellipsoid.   

Before attempting to determine whether the molecular dynamics model shows a 

relationship between the fractal dimension of deposits and the rate of deposition or 

pressure drop, it was first necessary to determine whether the deposits do indeed have 

a fractal dimension.  As has been discussed previously, there are two mechanisms by 

which particles can stick within the filter.  The first mechanism only allows colloids to 

deposit directly onto the sand particles, and the second allows colloids to additionally 

deposit onto already deposited colloids.  In order to determine the radius of gyration 

and the number of particles in each cluster the simulation must record which sand 

particle each colloid has deposited onto.  In the case of the first mechanism this is 

simple.  However, in the case of the second mechanism this requires a more complex 

recursive process, illustrated in figure 3.40.  This algorithm occurs after the distance 

and sticking probability calculation, and therefore only happens once a particles is 

definitely going to stick. 

 

Figure 3.40: Flow diagram showing how to determine which sand 

particle a colloid has stuck to. 
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Fractal dimension in molecular dynamics simulations 

In order to determine whether the deposits have a fractal dimensions a series of 

simulations were run in both the blocking and ripening regime.  Figure 3.40 shows the 

deposited particle locations in the ripening regime where the colloid clogging distance 

was 0.3.  As can be seen, the clusters continue to grow with time, and form patterns 

that show the expected features of fractal shapes. 

Figure 3.42 shows the log-log plot of the number of particles in each cluster 

against the radius of gyration.  It is clear that all of the clusters showed the linear 

relationship expected of a fractal shape.  The gradient of each fit is shown in table 3.1.  

For the first four clusters, the fractal dimension is significantly far from both 1.0 and 

2.0, giving good evidence that the clusters do have a fractal dimension.  Cluster 5 has 

a dimension of 1.044, suggesting that this cluster does not have a fractal dimension. 
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Figure 3.41: Snapshots of the deposited colloid particles on five sand 

particles at varying time throughout the simulation.  Colloid particles 

could deposit on top of other colloid particles.  The colloid clogging 

distance was 0.3. 
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Figure 3.42: Log-log plot of number of particles against radius of 

gyration.  The colloid clogging distance is 0.3.  The fractal dimension 

is taken from the gradient of the slope. 

 

 

 

Cluster  Fractal dimension 

Cluster 1 1.564 

Cluster 2 1.724 

Cluster 3 1.784 

Cluster 4 1.614 

Cluster 5 1.044 

 

Table 3.1: Fractal dimension for each of the five clusters.  The fractal 

dimension is the slope of the linear fit shown in figure 3.40. 

 

 



122 
 

Figure 3.43 shows the cluster growth when the colloid clogging distance was 

increased from 0.3 to 0.4.  The colloids can now stick to each other at a slightly longer 

distance causing a faster growth in the cluster size. 

 

Figure 3.43: Snapshots of the deposited colloid particles on five sand 

particles at varying time throughout the simulation.  Colloid particles 

can deposit on top of other colloid particles.  The colloid clogging 

distance is 0.4. 
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As figure 3.44 shows, the clusters again show a linear relationship between 

number of particles and the radius of gyration, though there was a significant reduction 

in the average fractal dimension (approximately 20 %): an increase in the separation 

distance at which the colloids can stick to each other causes a decrease in the fractal 

dimension.  Importantly, this gives a direct means of testing the theory proposed by 

Mays (see figure 3.37). 

 

Figure 3.44: Log-log plot of number of particles against radius of 

gyration.  The colloid clogging distance is 0.4.  The fractal dimension 

is taken from the gradient of the slope. 
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Cluster  Fractal dimension 

Cluster 1 1.618 

Cluster 2 1.367 

Cluster 3 1.267 

Cluster 4 1.179 

Cluster 5 1.374 

 

Table 3.2: Fractal dimension for each of the five clusters.  The fractal 

dimension is the slope of the linear fit shown in figure 3.42. 

 

A series of simulations were run where the colloid sticking distance was reduced 

from 4.0 to 3.0.  The average fractal dimension was measured in addition to the rate of 

deposition and the rate of pressure drop.  Figure 3.45 shows the dependence of the 

fractal dimension of the clusters against the sticking distance.  There is a general 

decrease in the fractal dimension with increasing sticking distance. 

 

Figure 3.45: Fractal dimension against sticking distance. 
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The two data sets with the highest (1.671) and lowest (1.296) fractal dimensions 

were chosen for comparison.  Figure 3.46 shows the difference in rate of deposition 

for the two simulations.  In the case of a lower fractal dimension, a faster rate of deposit 

was observed.  This in itself is not surprising; the longer sticking distance means 

colloids are more likely to stick. 

 

Figure 3.46: Specific deposit as a function of time for two data sets, 

with fractal dimensions of 1.671 and 1.296. 

 

A better means of comparison is to compare the number of fluid particles that 

pass through the filter for a given specific deposit.  The fluid particles are not affected 

by the change in sticking distance, therefore any observed differences cannot be 

attributed to this change.  Figure 3.47 shows this comparison.  It is clear that for the 

same value of specific deposit, there is a significant difference between the number of 

fluid particles that are able to pass through the filter.  The deposits with a lower fractal 

deposit cause more interference, allowing fewer fluid particles to pass through.  This 

agrees with the theory proposed by Mays. 
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Figure 3.47: Concentration of fluid passing through the filter against 

specific deposit. 

 

3.5 Summary 

A coarse grained molecular dynamics model was used to investigate the 

process of clogging of sand bed filters.  The model was validated against existing 

literature, experimental work, and simulations, and qualitatively agreed in several key 

areas.  Firstly, the amount of specific deposit was shown to increase linearly with time, 

showing two distinct regimes.  The linear rate changed at a threshold value of deposit, 

to either a faster rate when modelling ripening, or a slower rate when modelling 

blocking.  Secondly, the dependence of the pressure drop with specific deposit was 

shown to change from a linear relationship to a quadratic relationship at the same 

threshold value.  Furthermore, the concentration of deposited colloids was seen to 

decrease exponentially with depth.  Significantly, these results agree with the 

experimental observations of Veerapaneni.   

A systematic exploration of this model was then performed, allowing for a 

mechanistic insight into process of clogging.  The strength of the colloid-colloid and 
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the fluid-colloid potentials were shown to be factors that significantly affected the rate 

of clogging.  The model showed two mechanisms by which clogging occurs: the first 

where deposited colloids completely block the pore spaces, and the second where a 

small amount of deposited colloids that strongly repel the fluid particles cause the pore 

spaces to be filled with fluid that cannot penetrate through the filter.  The effects of the 

lattice structure, the porosity of the filter, and the colloid concentration were also 

examined. 

A final investigation into the fractal dimension of the deposits was performed.  

It was shown that the colloid-colloid sticking distance was a parameter that allowed 

for control of the fractal dimension; a longer sticking distance resulted in a lower 

fractal dimension.  Deposits with a lower fractal dimension were seen to increase the 

rate of clogging (for the same value of specific deposit).  This agrees with the 

predictions of Mays, and is a significant result of the investigation. 
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4  Continuum mechanics 

Continuum mechanics describes the motion of matter using pre-defined 

relationships that define the fluxes of energy, mass and momentum contained within 

it.  The densities of these conserved quantities can only change via redistribution, and 

this process is observable on a macroscopic scale.1  It is assumed that the matter 

completely fills the space it occupies, and continuum mechanics therefore ignores the 

fact that matter is made of atoms.  On length scales much larger that inter-atomic 

distances, this assumption allows for accurate modelling.  Fundamental laws, such as 

the conservation of mass, momentum, and energy, may be applied to derive differential 

equations that describe the behaviour of a fluid in a continuum, and constitutive 

relationships describe information particular to the fluid being studied. 

 

4.1 Conservation equations 

The equations that define the fluxes can be obtained by considering an 

infinitesimal volume, V, enclosed by an arbitrary surface, S. 

 

4.1.1 Conservation of mass 

The total mass, M, contained within the volume element is given by: 

 

 

𝑀 = ∫ 𝜌(𝒓, 𝑡). 𝑑𝒓

𝑉

 

(4.1) 

 

where 𝜌(𝒓, 𝑡), is the mass density at time t and position r.  As mass is conserved, it 

follows that the mass will only change with flow through the enclosed surface:   

 

 
𝑑𝑀

𝑑𝑡
= − ∫ 𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡) ∙ 𝑑𝑺

𝑆

 

(4.2) 
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where the mass flux is the product of the mass density and the streaming velocity, 

𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡).  Using the divergence theorem: 

 
𝑑𝑀

𝑑𝑡
= − ∫ ∇ ∙ [𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)]𝑑𝒓

𝑉

 

(4.3) 

 

where 𝛻 is the spatial gradient operator with components, 
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
.  The rate of 

change of mass can also be written in terms of the change in mass density: 

 

 
𝑑𝑀

𝑑𝑡
= ∫

𝜕𝜌(𝒓, 𝑡)

𝜕𝑡
𝑑𝒓

𝑉

 

(4.4) 

 

Equating 2.52 and 2.53 gives the mass continuity equation in an Eulerian frame: 

 

 𝜕𝑝(𝒓, 𝑡)

𝜕𝑡
= −∇ ∙ [𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)] 

(4.5) 

 

An alternative form can be obtained by using a co-moving frame of reference: 

 

 𝑑𝑝(𝒓, 𝑡)

𝑑𝑡
= −𝜌(𝒓, 𝑡)∇ ∙ 𝒖(𝒓, 𝑡) 

(4.6) 
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4.1.2 Conservation of momentum  

A similar method can be used to obtain the momentum continuity equation.  If 

G(t) is the total momentum contained within the volume element, then the rate of 

change of momentum is: 

 

 
𝑑𝑮(𝑡)

𝑑𝑡
= ∫

𝜕[𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)]

𝜕𝑡
𝑑𝒓

𝑉

 

(4.7) 

   

The total momentum can change in two ways.  Firstly, momentum can flow through 

the surface resulting in convection.  This convective contribution is given by: 

 

 
𝑑𝑮𝒄𝒐𝒏𝒗

𝑑𝑡
= − ∫ 𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)𝒖(𝒓, 𝑡) ∙ 𝑑𝑺

𝑆

 

(4.8) 

   

The second contribution is from the pressure exerted on the volume by the surrounding 

fluid, called the stress contribution.  The force, dF, exerted is linearly proportional to 

the surface area, dS: 

 

 𝑑𝑭 = −𝑑𝑺 ∙ 𝑷 (4.9) 

   

where P is the pressure tensor. The stress contribution is therefore given by: 

 

 
𝑑𝑮𝒔𝒕𝒓𝒆𝒔𝒔

𝑑𝑡
= − ∫ 𝑑𝑺 ∙ 𝑷

𝑆

 

(4.10) 

   

Adding equations 4.10 and 4.7 results in the following: 
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 ∫
𝜕[𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)]

𝜕𝑡
𝑑𝒓

𝑉

= − ∫ 𝑑𝑺 ∙ [𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)𝒖(𝒓, 𝑡) + 𝑷]

𝑆

 

(4.11) 

   

Again, using divergence theorem to convert surface integrals to volume integrals gives 

the momentum continuity equation in an Eulerian frame: 

 

 
 
𝜕[𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)]

𝜕𝑡
= −∇ ∙ [𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)𝒖(𝒓, 𝑡) + 𝑷] 

(4.12) 

   

It can be shown that an alternative form of the momentum continuity equations, in the 

co-moving frame, is: 

 

 
 𝜌(𝒓, 𝑡)

𝑑𝒖(𝒓, 𝑡)]

𝑑𝑡
= −∇ ∙ 𝑷 

(4.13) 

 

 

4.1.3 Conservation of energy 

If the total energy per unit mass is e(r,t.) the total energy density is 𝜌(𝒓, 𝑡)𝑒(𝒓, 𝑡).  

The total energy consists of two contributions: a kinetic (convective) component and 

an internal energy density: 

 

 
 𝜌(𝒓, 𝑡)𝑒(𝒓, 𝑡) =

1

2
 𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)2 +  𝜌(𝒓, 𝑡)𝑈(𝒓, 𝑡) 

(4.14) 

 

 The total energy inside the volume, E, will therefore change according to: 
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𝑑𝐸

𝑑𝑡
= ∫

𝜕[ 𝜌(𝒓, 𝑡)𝑒(𝒓, 𝑡)]

𝜕𝑡
𝑉

𝑑𝒓 

(4.15) 

 

The total energy can change by convection through the surface, diffusion across the 

surface, and by work done by the surface stresses.  These three mechanisms result in: 

 

 
𝑑𝐸

𝑑𝑡
= ∫ 𝑑𝑺 ∙ [ 𝜌(𝒓, 𝑡)𝑒(𝒓, 𝑡)𝒖(𝒓, 𝑡)]

𝑆

+ ∫ 𝑑𝑺 ∙ 𝑱𝑄

𝑆

+ ∫ (𝑑𝑺 ∙ 𝑷(𝒓, 𝑡)) ∙ 𝒖(𝒓, 𝑡)

𝑆

 

(4.16) 

 

where JQ is the heat flux vector.  Again, using divergence theorem equation 4.16 give 

the energy continuity equation: 

 

 𝑑𝐸

𝑑𝑡
= −∇ ∙ [

 𝜌(𝒓, 𝑡)𝑒(𝒓, 𝑡)𝒖(𝒓, 𝑡) + 𝑱𝑄(𝒓, 𝑡) +

𝑷(𝒓, 𝑡) ∙ 𝒖(𝒓, 𝑡)
] 

(4.17) 

  

 This can be expressed in a co-moving frame as20: 

 

 𝑑𝐸

𝑑𝑡
= −∇ ∙ 𝑱𝑄(𝒓, 𝑡) −  𝑷(𝒓, 𝑡)𝑇: ∇𝒖(𝒓, 𝑡) 

(4.18) 
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4.1.4 Constitutive relations 

The conservation equations described in section 2.3.1 express the fluxes of mass, 

momentum and energy.  In order to obtain a closed system of equations constitutive 

relations are required that relate the forces and fluxes.  A combination of the 

constitutive relations and the continuity equations leads to the Navier-Stokes 

equations; once the boundary conditions are applied this leads to a complete 

description of a fluid close to equilibrium. 

 

Newton’s law of viscosity 

Newton’s law of viscosity is an approximation based on experimental evidence 

that holds true in certain situations.  It states that the shear stress between adjacent fluid 

layers is proportional to the negative value of the velocity gradient between the two 

layers: 

 

 
𝜏𝑦𝑥 = −𝜇

𝑑𝑢𝑥

𝑑𝑦
 

(4.19) 

 

where 𝜇 is the shear viscosity and 𝜏 is the stress.  This law holds true for Newtonian 

fluids, but has its limitations.  Materials that display shear thinning or shear thickening 

do not obey this law, and are non-Newtonian fluids. 

 

Fourier’s law 

Fourier’s law is an empirical relationship relating the heat flux vector, JQ, to the 

temperature gradient: 

 

 𝑱𝑄 = −𝜆∇𝑇 (4.20) 

 

where 𝜆 is the thermal conductivity and T is the thermodynamic temperature. 
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Fick’s law of diffusion 

Fick’s law of diffusion relates the mass flux vector to the mass gradient: 

 

 𝒋𝑨 = −𝑝𝐴𝐷𝐴𝐵∇𝜔𝐴 (4.21) 

 

where jA is the mass flux vector, 𝑝𝐴 is the concentration of species A, 𝜔𝐴 is the mass 

fraction of species A, and 𝐷𝐴𝐵 is the diffusion coefficient of species A in a mixture of 

A and B. 

 

4.2 Smooth particle applied mechanics 

 

4.2.1 Overview 

Conventional continuum mechanics is a field theory, meaning the field variables 

(such as density, velocity etc.) vary continuously in space and time.  The equations to 

be solved are the conservation equations of mass, momentum, and energy discussed 

earlier.  Combined with the constitutive relations and boundary conditions, they form 

a closed system which can be solved.  However, due to the spatial variation of the field 

variables, the equations naturally have an infinite number of degrees of freedom; in 

order to be able to simulate systems, the number of degrees of freedom needs to be 

reduced to a computable number.  Techniques such as the finite element method and 

finite difference method exist that split the continuum into a grid, with each grid 

segment having a finite number of degrees of freedom.  These techniques fall down 

when the structure under simulation undergoes extreme changes in shape, suffers from 

mechanical failure, or involves a combination of solids and liquids.  Instead, more 

flexible techniques are needed. 

SPAM overcomes these problems by using a set of smooth particles whose 

coordinates define the grid for the interpolation of field variables.  This makes it a 
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flexible technique that can inherently handle mixtures, mechanical failure, and chaotic 

flows such as turbulence without any meshing problems.  The technique was created 

by Gingold, Lucy and Monoghan in 1977 as a means of overcoming the problems 

associated with using a fixed grid, and has a wide range of applications since its 

conception.2 

 

4.2.2 SPAM approximation of the continuity equations 

The partial differential equations to be solved in Lagrangian continuum 

mechanics are: 

 

 𝜌̇ = −𝜌∇ ∙ 𝒗 (4.22) 

 

 
𝑣̇ = −

1

𝜌
𝜌∇ ∙ 𝑷 

(4.23) 

 

 
𝑒̇ = −

1

𝜌
𝑷: ∇ −

1

𝜌
∇ ∙ 𝐐 

(4.24) 

 

Smooth particle applied mechanics interpolate the field variables (,v,e,P,Q) 

using a weight function.  For any of these variables, the local average value is 

calculated as a weighted average of all particles whose distance, r = |𝑟𝑖𝑗| is less than 

the smoothing length, h: 

 

 
𝑓(𝑟𝑖) = ∑ 𝑚𝑗

𝑓𝑗

𝜌𝑗
𝑤(𝑟)

𝑗

 
(4.25) 
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where f is the value of the field variable, m is the particle mass, and w is the weight.  

The smooth particle approximation for the local density is obtained by setting 𝑓𝑗 =

𝜌𝑖 ≡ 𝜌(𝑟𝑖):  

 

 𝜌𝑖 = ∑ 𝑚𝑗𝑤(𝑟)

𝑗

 
(4.26) 

 

The density at a given point or particle location is calculated by summing the 

weighted contribution of all particles within the smoothing length: there is therefore 

no need to solve the mass continuity equation. 

Approximations for the conservation laws of momentum and energy can also be 

derived, resulting in the following two expressions: 

 

 
𝑚𝑣̇ = − ∑ 𝑚𝑖𝑚𝑗 (

𝑷𝑖

𝜌𝑖
2 +

𝑷𝒋

𝜌𝑗
2) ∙ ∇𝑗𝑤(𝑟)

𝑗

 
(4.27) 

 

 
𝑚𝑒̇ = −

1

2
∑ 𝑚𝑖𝑚𝑗 (

𝑷𝑖

𝜌𝑖
2 +

𝑷𝒋

𝜌𝑗
2) : 𝒗𝑖𝑗∇𝑗𝑤(𝑟)

𝑗

− ∑ 𝑚𝑖𝑚𝑗 (
𝑸𝑖

𝜌𝑖
2 +

𝑸𝑗

𝜌𝑗
2) ∙ ∇𝑗𝑤(𝑟)

𝑗

 

(4.28) 

 

These ordinary differential equations can be treated with an algorithm that is 

very similar to that used in molecular dynamics, though the right-hand side takes on a 

different form.  An appropriate numerical integrator such as RK4 (see section 2.2.3) 

can be used to evolve these equations; given a set of initial conditions and boundary 

conditions, the particle trajectories and the flux of energy between these particles can 

be calculated, along with the field variables at particle locations.  The constitutive 

relations must be defined by the simulator, and are discussed in detail in chapter 5. 
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4.2.3 Weight functions 

The weight function spreads each particle’s influence through space, making the 

choice of the smoothing length, h, of great importance.  If h is too short, the discrete 

nature of particles is given too much influence meaning there is poor variable 

interpolation, and if h is too large then the computation time required vastly increases.  

It is up to the simulator to find a suitable balance, and it is suggested that the smoothing 

length should be high enough to incorporate contributions from approximately 20 

particles.3 

The function must satisfy several conditions: w'(0) = 0, w(h) = 0, w' ' (h) = 0 and 

w’’(h) = 0 (where ‘ denotes the first derivative).  A suitable choice was introduced by 

Lucy to be used in two dimensions (shown in figure 4.1): 

 

 
𝑤(𝑟 < ℎ) = (

5

𝜋ℎ2
) (1 + 3

𝑟

ℎ
) (1 −

𝑟

ℎ
)

3

 
(4.29) 

 

Figure 2.10 shows the Lucy weight function.  The weight function, and both the 

first and second derivative, cut off at the smoothing length, and both the derivatives 

are continuous below this.  This means that the spatial derivatives of the field variables 

can have no discontinuities.  This function has been chosen for this work as it has been 

used extensively in previous work, making for easier comparison with existing results. 
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Figure 4.1:  Lucy’s 2-dimensional weight function (red), where h = 3, 

along with the first (blue) and second (green) derivatives. 

 

4.2.4 Artificial viscosity 

The numerical integration of the Navier-Stokes equations used in SPAM can 

result in instabilities; shock waves can arise from local pressure waves, which, when 

too steep, cannot be resolved by the mesh.  As a result, it is necessary to introduce an 

artificial viscosity as a device to spread the shockwaves out over several particles.  One 

of many ways of achieving this is to add an additional viscous component to the force 

expression: 
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𝑚𝑣̇ = − ∑ 𝑚𝑖𝑚𝑗 (

𝑃𝑖

𝜌𝑖
2 +

𝑃𝑗

𝜌𝑗
2 + Π𝑖𝑗) ∇𝑗𝑤(𝑟)

𝑗

 
(4.30) 

 

where Π𝑖𝑗 is the viscous component, defined by: 

 

 
Π𝑖𝑗 = −𝛼ℎ

𝑐𝑖 + 𝑐𝑗

𝜌𝑖 + 𝜌𝑗

𝒗𝑖𝑗 ∙ 𝑟𝑖𝑗

𝑟𝑖𝑗
2 + 𝜖ℎ2

 
(4.31) 

 

where c is the speed of sound of the fluid particle, 𝛼 is a dimensionless factor used to 

control the strength of the dissipation and 𝜖 ~ 0.01 and avoids singularities in the case 

that particles are too close to each other.  In order for energy to conserve, the artificial 

viscosity must also be added to the energy expression: 

 

 
𝑚𝑒̇ = −

1

2
∑ 𝑚𝑖𝑚𝑗 (

𝑷𝑖

𝜌𝑖
2 +

𝑷𝑗

𝜌𝑗
2 +  𝚷𝑖𝑗) : 𝒗𝑖𝑗∇𝑗𝑤(𝑟)

𝑗

− ∑ 𝑚𝑖𝑚𝑗 (
𝑄𝑖

𝜌𝑖
2 +

𝑄𝑗

𝜌𝑗
2) ∙ ∇𝑗𝑤(𝑟)

𝑗

 

(4.32) 

 

A more pragmatic approach is to maintain a minimum particle separation using 

an interparticle potential (as used in molecular dynamics).  A hard sphere potential 

(equation 2.31) would stop the formation of shockwaves by means of elastic collisions, 

and a short range repulsive potential (equation 2.34) would achieve this by 

discouraging overlaps.  Hoover has previously used this technique, showing that the 

properties of the system do not depend on the artificial viscosity providing the 

interaction distance is significantly smaller than the smoothing length. 
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4.2.5 Boundary conditions 

The boundary conditions used in SPAM are the same as those used in MD (see 

section 2.2.2).  There is, however, one important addition to note.  If non-periodic 

boundaries are used it would be the case that the calculated particle density (and other 

field variables) at the simulation edge would be half the value of the bulk density; the 

weight function would only receive a contribution from half the number of particles 

compared to the bulk4 (figure 4.2).  This can cause irregularities such as a layer of 

particles that appear to be stuck to the edge.  This problem can be overcome by using 

mirrored particles on the other side of the boundary to replace the “missing” particles. 

 

Figure 4.2:  Comparison of elastic (left) and mirror (right) boundary 

conditions.  The density calculated at the particle at the boundary for 

the elastic case is half that of the mirrored case.  When calculating the 

density at the dotted line, an additional contribution is included from 

the mirrored particles. 

 

4.2.6 Initial conditions 

As with molecular dynamics, both the initial coordinates and momenta of all 

particles in the simulation must be defined.  This is achieved using the same methods 
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as described in section 2.1.  Additionally, SPAM simulations require the starting 

energies of all particles to be defined, to allow for the change in energy according to 

equation 4.32.  This can be calculated from the equation of state; energy is a function 

of density and temperature.   

 

4.2.7 Particle size 

It is important to note that the size of the particles used in a SPAM simulation is 

in fact arbitrary; the same sample can be modelled using different simulations with 

differing particle sizes.  Consider replacing each particle in a simulation with two 

particles each with half of the mass.  Calculating the density at a given point through 

the equation: 

 

 𝜌𝑖 = ∑ 𝑚𝑗𝑤(𝑟 − 𝑟𝑗)

𝑗

 
(4.33) 

 

would result in the same value; there is a contribution from twice as many particles, 

each with half of the mass.  The same applies for calculating the trajectories.  This 

means that SPAM simulations can be altered to give more detail in areas of interest; 

one large particle can be split into multiple small particles to increase resolution.  
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5  Constitutive relations  

 

5.1 Overview 

In order to model a continuum the simulator must first define a series of 

constitutive relations that predict how the material will behave in both equilibrium and 

non-equilibrium conditions.  These relations replace the microscopic particle 

interactions that naturally define the nature of the system in particle dynamics as a 

method of transporting both momentum and energy.  There are two methods that can 

be used to gather the required information to define these relations: performing real  

experiments, and using molecular simulation to gather pseudo-experimental data.  This 

work will use pseudo-experimental data from molecular dynamics simulations to 

derive the constitutive relations.  This gives the distinct benefit of being able to use the 

coarse grained molecular dynamics filtration model as a means of validating the SPAM 

model, as the fluid being modelled in the continuum is parameterised from the same 

interatomic pair potential. 

This chapter will outline the techniques used to define an equilibrium equation 

of state, and to gather the data to create the constitutive relation defining the viscosity 

of the fluid away from equilibrium.  The interatomic pair potential being investigated 

is the same as that used throughout the previous molecular dynamics work (chapter 3): 

 

 
Φ(𝑟) = 𝜀 [1 − (

𝑟

𝜎
)

2

]
4

 
(5.1) 

 

where r is the inter-particle distance, 𝜀 is the interaction strength, and 𝜎 is the effective 

diameter of the particle.  Two sets of constituent relations will be defined: the first 

where 𝜀 = 10.0 and σ = 1.0, the second where 𝜀 = 100.0 and σ = 1.0.  Although this 

requires additional simulation time to gather the data required, it gives the advantage 

of being able to compare not only the agreement between the molecular dynamic 

filtration model and the continuum model with different fluid parameters, it also allows 

the continuum model to be further explored by examining how changing the fluid 

interaction strength effects the flow. 
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 5.2 Equilibrium Equation of State 

An equation of state relates pressure, P, and energy, E, to density, ρ, and 

temperature, T, at thermodynamic equilibrium.  This allows the pressure and energy to 

be calculated for any given scenario for the system and is necessary when modelling a 

continuum.  It follows that, in order to create an equilibrium equation of state, the 

change in both pressure and  energy of the fluid as functions of density and temperature 

must be defined.  This can be done through relatively simple molecular dynamics or 

Monte Carlo simulations.   It is worth noting that an equation of state is usually only 

valid in one phase.  If a system that requires multiple phases is being modelled then 

the equation of state either has to incorporate both phases, or a separate equation of 

state is needed for each phase.  This work focuses only on a dense fluid, therefore the 

equation of state needs to hold for the fluid phase. 

 

5.2.1  = 100 

Hoover1 investigated the potential of equation 5.1 using  = 100 and unit cutoff 

(σ = 1).  He chose a reference state of unit density and unit temperature, resulting in 

values for PV/N and E/N of 5.040 and 1.443 respectively.  For small deviations from 

this reference state, the pressure, temperature, and energy can be expanded as a double 

Taylor series in the derivatives e, T, and .  A series of simulations run at constant 

energy (NVE) and constant temperature (NVT) were then conducted in order to 

determine the expansion coefficients, resulting in the following equations:   

 

 𝑃𝑉

𝑁𝜀
= 5 + 8𝛿𝜌 + 2.5𝛿𝜀 + 9𝛿𝜌2 + 2𝛿𝜌𝛿𝜀 

(5.2) 

 𝑘𝑇

𝜀
= 1 − 𝛿𝜌 + 0.7𝛿𝜀 − 0.86𝛿𝜌2 − 0.5𝛿𝜌𝛿𝜀 

(5.3) 

 𝐸

𝑁𝜀
= 1.443 + 1.5𝛿𝜌 + 1.5𝛿𝜏 + 2.4𝛿𝜌2 + 1.26𝜌𝛿𝜏 

(5.4) 

 
𝛿𝜌 = (

𝑁𝜎2

𝑉
) − 1.0 

(5.5) 
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𝛿𝜀 = (

𝐸

𝑁𝜀
− 1.443) 

(5.6) 

 
𝛿𝜏 = (

𝑘𝑇

𝜀
− 1.0) 

(5.7) 

 

In SPAM, the first two expansions are used to provide the particle local 

equilibrium pressures and temperatures, which contribute to the particle accelerations 

and heat flux respectively.  The third expansion is needed when there is heat flow. 

The timestep and integration scheme used in the molecular dynamics were not 

reported in the literature, therefore, in order to investigate the range over which this 

equation of state holds, it was important to first examine the sensitivity to the timestep.  

To achieve this, a series of NVE simulations were run at several state points, including 

the reference state, spanning to a significant deviation above and below, with varying 

timesteps.  At constant energy, equation 5.2 becomes: 

 

 𝑃𝑉

𝑁𝜀
= 5 + 8𝛿𝜌 + 9𝛿𝜌2 

(5.8) 

 

The RK4 integration scheme was used for all simulations in this chapter.  Figure 

5.1 shows the results of a series of simulations, for timesteps ranging from 0.05 to 

0.0001.  The calculated pressure from the MD simulation is plotted against the density.  

The black line shows the results predicted by the equation of state.  It is clear that the 

results with a larger timestep (0.05 and 0.03) deviate significantly from the expected 

values.  As the timestep decreases, the results converge to those obtained from the 

equation of state, with there being no significant increase in accuracy when reducing 

the timestep below 0.01.  This highlights the importance of the timestep when 

performing molecular dynamics simulations; using a large timestep can result in vast 

integration errors that change behaviour of the fluid. 
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Figure 5.1:  Pressure against density, comparing results from MD 

simulations of 1024 particles with different timesteps.  The black line 

shows the results generated using the equation of state (equation 5.8).  

The length of all simulations was 500 reduced units. 

 

To test how far away from the reference point the full set of equations (4.2 – 4.4) 

are valid, a series of molecular dynamics simulations were conducted.  For each 

simulation in the series, the variable of interest (density, temperature, or energy) was 

increased slightly, and the average of this property was measured throughout the 

simulation.  This was repeated across the required range to develop the dependence of 

pressure and energy on density and temperature.  Logically, from figure 5.1, it follows 

that any discrepancies between the equation of state predictions and the molecular 

dynamics simulations cannot be attributed to the timestep, providing the timestep is 

below 0.01.  All simulations run throughout this section were run with a timestep of 

0.001, using the RK4 integration scheme, simulating 1024 particles for 1,000,000 

timesteps. 
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Pressure 

In order to validate the first expansion (equation 5.2), two series of simulations 

were run: one at constant energy whilst varying the density of the system, and one at 

constant density whilst varying the total energy of the system.  

Firstly, to test the dependency of pressure on density, the system was kept at a 

constant energy, 
𝐸

𝑁𝜀
= 1.443, such that 𝛿𝜀 = 0 and the density was varied between 0.5 

and 1.5.  The pressure energy dependence is therefore defined by equation 5.8.  This 

is included for the sake of completeness, even though the same simulation was 

performed to produce figure 5.1. 

 

 

Figure 5.2:  Pressure against density, comparing results from MD 

simulations against the predictions from the equation of state.  

 

Figure 5.2 shows the results of these simulations.  At the reference state, the 

agreement between the equation of state and the molecular dynamics data is, as expected, 
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exact.  The results obtained away from the reference state also show excellent agreement; 

even up to a density of 1.4 there was only slight difference between the prediction and 

the simulated data.  As the density decreased below 0.7, the results started to diverge, 

suggesting the equation of state was not optimised below this value. 

The second set of simulations were run to determine the dependency of pressure 

on energy.  The energy, rather than being fixed at 1.443, was varied around the reference 

state, with the density being kept constant at unity, so that 𝛿𝜌 = 0.  At unit density, 

equation 5.2 becomes: 

 

 𝑃𝑉

𝑁𝜀
= 5 + 2.5𝛿𝜀 

(5.9) 

 

The results (figure 5.3) show the linear trend expected from examination of 

equation 5.9, and the agreement between the simulations and the equation of state was 

excellent to a significant deviation from the reference state.  As the energy decreased 

below 1.1 the results started to diverge. 

Figure 5.2 and 5.3 show that the parameters used in the equation of state for 

predicting pressure are highly accurate to at least a density of 1.4 and an energy of 1.8  

The accuracy begins to diverge below values of 0.7 and 1.1 for density and energy 

respectively. 
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Figure 5.3:  Average pressure against energy, comparing results from 

MD simulations against the predictions from the equation of state. 

 

Temperature 

To investigate the range over which the temperature expansion (equation 5.3) is 

accurate a similar series of simulations were conducted.  Rather than measuring the 

pressure throughout the simulation, the average kinetic temperature was calculated. 

The first series of simulations were run at a constant energy of 1.443, and density was 

varied around the reference state.  At this energy, equation 5.3 becomes: 

 

 𝑘𝑇

𝜀
= 1 − 𝛿𝜌 − 0.86𝛿𝜌2 

(5.10) 

 

Figure 5.4 shows the results of this series of simulations.  At the reference point 

the agreement is exact, and remains accurate to a large deviation at higher and lower 
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densities.  However, at a density of 1.3, significant deviation was observed.  Figure 5.5 

shows the particle locations after 1,000,000 timesteps at densities of 1.2 and 1.4.  It is 

clear that above a density of 1.2 the systems started to change phase, explaining the 

deviations observed in figure 5.4.  The equation of state has only been parameterised 

using the fluid phase. 

 

 

Figure 5.4:  Kinetic temperature against density, comparing results 

from MD simulations against the predictions from the equation of state.  
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Figure 5.5:  Snapshots of the computed particle locations for a constant 

density of 1.2 (left) and 1.4 (right).  

 

The second series of simulations were run in order to test the dependence of 

temperature on energy.  The total energy of the system was fixed for each simulation, 

and was varied around the reference state.  The density of the system was fixed at 

unity, so that 𝛿𝜌 = 0.  Equation 5.3 becomes: 

 

 𝑘𝑇

𝜀
= 1 + 0.7𝛿𝜀 

(5.11) 

 

Similarly to the dependence of pressure on energy, the results show excellent 

agreement not only at the reference point, but also to a substantial deviation.  The linear 

trend predicted by the equation of state matches the results closely, showing that the 

equation of state is accurate to a sufficient variation around the reference point. 
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Figure 5.6:  Average kinetic temperature against energy, comparing 

results from MD simulations against the predictions from the equation 

of state.  Density was fixed at unity. 

 

Energy 

Finally, equation 5.4 was validated by testing the dependence of the total energy 

of the system on both density and temperature.  Again, the variable of interest was 

varied around the reference point, and the average total energy of the system was 

calculated.  Here, however, the simulations were conducted in the NVT ensemble; a 

Gaussian isokinetic thermostat was used to control the kinetic temperature. 

The first set of simulations were run at a constant kinetic temperature, 
𝑘𝑇

𝜀
= 1, 

such that 𝛿𝜏 = 0.  The density of the system was then varied around unity, and the 

total energy was measured.  Equation 5.4 becomes: 
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 𝐸

𝑁𝜀
= 1.443 + 1.5𝛿𝜌 + 2.4𝛿𝜌2 

(5.12) 

 

The results are shown in figure 5.7.  Again, the results show excellent agreement 

in and around the reference state.  Similarly to figure 5.5, the results begin to diverge as 

the density was increased past 1.4.  This is due to the system solidifying at this point (see 

figure 5.6).  Additionally, the results begin to diverge as density goes below 0.6, 

suggesting the equation of state does not hold true below this value. 

 

 

Figure 5.7:  Total energy against density, comparing results from MD 

simulations against the predictions from the equation of state.  The 

kinetic temperature was fixed at unity. 

 

The final set of simulations conduced investigate energy as a function of 

temperature.  Pressure was kept constant at 𝜌 = 1.0, so that 𝛿𝜌 = 0, and the 

temperature was varied around the reference state.  Equation 5.4 becomes: 
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 𝐸

𝑁𝜀
= 1.443 + 1.5𝛿𝜌 + 1.5𝛿𝜏 + 2.4𝛿𝜌2 + 1.26𝜌𝛿𝜏 

(5.13) 

 

Again, the agreement between the equation of state and the simulation data is 

almost exact, showing that the equation of state can be used to accurately predict the 

total energy to a high temperature. 

 

Figure 5.8:  Average total energy against temperature, comparing 

results from MD simulations against the predictions from the equation 

of state.  The density is fixed at unity. 

 

Summary 

The range at which equations 5.2 - 5.4 are accurate was investigated by running 

a series of NVE and NVT molecular dynamic simulations.  The only significant 

deviations between the predictions of the equation of state and the calculated data 

occurred at high density where a phase transition was observed.  The equation of state 
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will be used in the continuum scale model, and will give an accurate prediction of P, 

T, and E, providing the density of the fluid stays within the validated range. 

 

5.2.2 𝜺 = 𝟏𝟎 

Additionally, a macroscopic dense fluid equation of state with an interaction 

strength, 𝜀, of 10 was investigated.  This interatomic pair potential will have weaker 

interactions between individual particles when compared to the previous parameters, 

resulting in a softer fluid that will most likely not solidify until a higher density. 

To develop an equation of state, as opposed to simply validating it, a similar 

technique was used.  NVE simulations were conducted to determine the dependence of 

pressure and temperature on density and energy individually.  Once the dependence 

across the required range was determined, a plot of the difference in pressure/temperature 

against energy/density was used to determine the coefficients used in the expansion.  At 

the reference state, 𝜌 = 1 and   
𝑘𝑇

𝜀
= 1, the values of   

𝑃𝑉

𝑁𝜀
 and 

𝐸

𝑁𝜀
 are 2.47 and 1.44 

respectively.  

 

Pressure 

To determine the relationship between pressure and density, a series of NVE 

simulations were conducted at various densities, and the pressure was calculated.  Figure 

5.9 shows the results, where the differences of the pressure and density from the reference 

point are plotted against each other.  As expected, using the previous Taylor series 

expansions as a basis, it forms a 2nd order polynomial, where the first and second terms 

are the parameters used in the expansion: 

 

 𝑃𝑉

𝑁𝜀
= 2.47 + 4.2𝛿𝜌 + 2.3𝛿𝜌2 

(5.14) 

   

 

 

 



158 
 

Figure 5.9:  Difference in pressure against difference in density.  The 

reference point, (0,0), is at a density and temperature of 1.0. 

 

Similarly, to determine the relationship between pressure and energy, 

simulations were conducted where the energy was varied around the reference point, 

and the pressure was calculated.  Figure 5.10 shows the results; a linear dependence as 

expected.  This results in the following equation: 

 

 𝑃𝑉

𝑁𝜀
= 2.47 + 1.2𝛿𝜀 

(5.15) 
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Figure 5.10:  Difference in pressure against difference in energy.  The 

reference point, (0,0), is at a density and temperature of 1.0. 

 

The coefficients in figures 5.9 and 5.10 combine to give the following expansion: 

 

𝑃𝑉

𝑁𝜀
= 2.47 + 4.2𝛿𝜌 + 1.2𝛿𝜀 + 2.3𝛿𝜌2 + 𝜒𝛿𝜌𝛿𝜀 

(5.16) 

  

where 𝜒 remains to be determined.  The final coefficient was calculated by simply 

running several simulations at different fixed densities and energies and calculating 

the pressure; pressure, 𝛿𝜌 and 𝛿𝜀 are both known, meaning 𝜒 is the only remaining 

unknown.  10 simulations were run at random densities and energies, and the total 

pressure measured, resulting in an average 𝜒 of 1.8, giving the final expansion for 

pressure: 

 

𝑃𝑉

𝑁𝜀
= 2.47 + 4.2𝛿𝜌 + 1.2𝛿𝜀 + 2.3𝛿𝜌2 + 1.8𝛿𝜌𝛿𝜀 

(5.17) 
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Temperature 

The dependence of temperature on density and energy was determined by 

conducting a series of simulations, varying each parameter in isolation.   

Figures 5.11 shows the results of the density variation.  As expected, temperature 

decreases with density, following a second order polynomial: 

 

 𝑘𝑇

𝜀
= 1 − 0.6𝛿𝜌 − 0.19𝛿𝜌2 

(5.18) 

 

 

Figure 5.11:  Difference in temperature against difference in density.  

The reference point, (0,0), is at a density and temperature of 1.0. 
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Figure 5.12 shows the dependence of temperature on energy, reveling a linear 

relationship: 

 

 𝑘𝑇

𝜀
= 1 − 0.7𝛿𝜀 

(5.19) 

 

 

Figure 5.12:  Difference in temperature against difference in energy.  

The reference point, (0,0), is at a density and temperature of 1.0. 

 

Equations 5.18 and 5.19 combine to give: 

 

𝑘𝑇

𝜀
= 1 − 0.6𝛿𝜌 + 0.7𝛿𝜀 − 0.19𝛿𝜌2 − 𝜒𝛿𝜌𝛿𝜀 

(5.20) 

 

where 𝜒 is a constant that is yet to be determined.  Again, the final coefficient was 

determined by running a series of simulations at different densities and temperature, 
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where , 𝛿𝜌 and 𝛿𝜀 are known, and the temperature was calculated.  This resulted in an 

average 𝜒 of 0.8, giving the final expansion for temperature: 

 

𝑘𝑇

𝜀
= 1 − 0.6𝛿𝜌 + 0.7𝛿𝜀 − 0.19𝛿𝜌2 − 0.8𝛿𝜌𝛿𝜀 

(5.21) 

 

Summary 

An equilibrium equation of state was defined for the soft sphere potential, where 

ε = 10.  This was achieved using an analogous method to that of Hoover.1  Pressure 

was shown to depend quadratically on density and linearly energy.  Temperature was 

also shown to depend quadratically on density and linearly on temperature.  Equations 

5.17 and 5.20 were proposed as the equation of state. 

 

5.3 Viscosity 

Shear viscosity is a measure of a system’s resistance to flow.  A shear force is 

created when two parallel plates surrounding a flow move in opposite directions, 

dragging some of the fluid along with them.  The rate at which the plates move is the 

shear rate, and the force applied to the liquid by the plates is proportional to their 

velocity and area: 

 

𝜏 =
𝐹

𝐴
 

(5.22) 

 

where 𝜏 is the shear stress, F is the force, and A is the area.  This shear stress creates 

an anisotropic flow fastest nearest the plates, with layers of fluid decreasing in 

momentum towards the center: 

 

𝜏𝑥𝑦 = 𝜇𝛾 (5.23) 
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where 𝜇 is the viscosity, and γ is the shear strain rate.  There are several methods that 

have been developed to obtain shear viscosity by observing a fluids response to an 

induced shear flow, either by using boundaries or a fictitious force to drive the 

flow.2,3,4,5 

 

5.3.1 The sliding wall method 

Naturally, due to the similarities with experimental methods of calculating 

viscosity, using a sliding wall is a sensible starting point when looking to determine 

viscosity through simulation; in a physical system, heat energy would be removed 

through contact with the wall, rather than through a thermostat.  Ashurt and Hoover 

introduced the sliding wall method2, where the fluid is surrounded by two walls made 

of equivalent particles to the fluid, allowing for energy to transfer between them.  The 

walls are forced to translate in opposite directions with a velocity proportional to the 

shear rate, creating a sliding wall that drags fluid along with it.  This creates the steady 

state velocity profile expected.  The particles that make the wall are attached to 

Hookean springs, and their momenta are rescaled using the ad hoc method. 

Figure 5.13: An illustration of the sliding wall method.  The red 

particles make up the wall.  The wall moves with a fixed velocity in the 

x-direction proportional to the shear rate.  The structure of the walls is 

maintained using Hookean springs. 

 



164 
 

However, the use of a physical wall in molecular dynamics simulations can cause 

issues associated with the interactions of the particles in the fluid and the wall.  The 

wall can begin to impose its structure on fluid atoms in close proximity resulting in an 

inhomogeneous fluid, making interpretation of results difficult.  Additionally, at large 

shear rates this method falls down; the viscous heat generated is produced faster than 

it can be removed by interactions with the wall, causing disintegration of the walls.3   

 

5.3.2 Lees-Edwards method 

Lees and Edwards4 introduced a technique that uses adapted periodic boundary 

conditions to model planar Couette flow, and is a method that overcomes the 

difficulties that arise from having a physical boundary.  Rather than implementing a 

sliding wall, the boundary conditions are used to drive the flow, which ensures the 

system remains spatially homogenous.   

Figure 5.14: Lees-Edwards periodic boundary conditions.  The top and 

bottom layer of periodic images are offset proportionally to the 

effective strain rate, n.  The particle leaving the simulation cell is 

shifted when being mirrored. 
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Figure 5.14 is an illustration of the Lees-Edward boundary conditions.  The 

image cell origins in the planes above and below the central cell move relative to it: 

 

𝒖(𝒓, 𝑡) = 𝒊𝛾𝑦 (5.24) 

  

where u(r,t) is the velocity of the cell origin, i is a unit vector in the x-direction, and 𝛾̇ 

is the shear rate.  As the distance from the central cell increases the cells therefore 

move proportionally faster.  When a particle crosses the periodic boundary in the y-

direction, instead of being directly mirrored to its new location (as is the case with 

standard periodic boundary conditions), the periodic image is repositioned 

proportionally to the shear rate in the x-direction: 

 

𝑟𝑥
𝑛𝑒𝑤 = 𝑟𝑥

𝑜𝑙𝑑 ± (𝑛 +
𝐿

2
) 

(5.25) 

 

where L is the length of the cell, and n is proportional to the shear rate.  This lateral 

movement is akin to the velocity gained by interaction with a sliding wall.  The 

repetition of particles crossing the periodic boundary over time generates the linear 

velocity profile expected, without the inherent problems of modelling surface 

interactions. 

 

5.3.3 The SLLOD method 

The main drawback with the Lees-Edwards method is that it takes a period of 

time for the steady state linear velocity profile to be set up; this means that the method 

cannot be used to study time-dependent phenomena.  Because of this, further work has 

been done to incorporate the strain field within the equations of motion themselves (as 

oppose to at the boundaries).  The first attempt at this was the DOLLS tensor method 

in which the modified equations of motion include a mechanical flow induced by the 

shear stress5: 
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𝒒̇𝑖 =
𝒑𝑖

𝑚
+ 𝒒𝑖 ∙ ∇𝒖 

(5.26) 

 

𝒑̇𝑖 = 𝑭𝒊 − ∇𝐮 ∙ 𝒑𝑖 (5.27) 

 

where m is the particle mass, p and q are the generalised coordinates and momentum 

F is the total force acting on the particle, and ∇𝒖 is the strain rate tensor.  Although the 

DOLLS tensor equations simulate the correct velocity profile in the linear regime, 

outside of the linear shear regime they produce incorrect results.6  By transposing the 

Cartesian components coupled to the strain rate tensor the SLLOD equations of motion 

are obtained, the name being the inverse of DOLLS, which are used to model planar 

Couette flow in this work:7 

 

𝒒̇𝑖 =
𝒑𝑖

𝑚
+ 𝒒𝑖 . ∇𝒖 

(5.28) 

𝒑̇𝑖 = 𝑭𝒊 − 𝒑𝑖. ∇𝐮       (5.29) 

  

The SLLOD equations of motion have the distinct advantage of both producing 

the correct shear in the linear regime and the non-linear regime, whilst avoiding the 

issues associated with interaction with a surface.   

The SLLOD method was chosen for this work.  It was hoped that Green Kubo 

correlation functions would be used to validate the results gained, though this fell 

beyond the scope of this work due to the additional time required to develop an 

additional code to perform these simulations. 
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5.3.4 Calculating viscosity through extrapolation 

The viscosity at a given shear rate is calculated using the relation: 

 

𝜇(𝛾) = −
〈𝑃𝑥𝑦〉

𝛾
 

(5.30) 

 

The aim of the technique is to calculate the viscosity when the shear rate, 𝛾, is 0, 

however, it is clear that this cannot be achieved directly as it would involve a division 

by zero.  Instead, a series of viscosities are calculated at different shear rates, and the 

viscosity in the absence of shear can then be estimated through extrapolation.  The type 

of fit that correctly predicts the viscosity has been the subject of some debate.   

Alder and Wainwright8 were the first to attempt to use computer simulation to 

determine transport coefficients.  They came to the conclusion that the Navier-Stokes 

transport coefficients diverge in two-dimensions.  This was not to suggest that a two-

dimensional fluid is infinitely resistant to shear flow, rather that the constitutive 

relation (equation 5.28)is not a suitable definition.  However, more recent work has 

shown this assumption to be wrong. 

Gravina et al9 compared NEMD results with Green-Kubo simulation data and 

suggested that a Lorentzian function accurately predicts this relationship in two 

dimensions.  The fitting function takes the form: 

 

𝜇(𝛾) = 𝑎 +
𝑏

(1 + 𝑐𝛾2)
 

(5.31) 

 

Figure 5.15 shows the example results from a series of SLLOD simulation.  The 

shear rate was gradually increased from 0.0001 to 0.5.  At lower shear rates the error 

in the results is larger, meaning it is important to have sufficient results at low shear to 

get an accurate estimate of viscosity.    A Lorentzian fit was used to predict the value 

of viscosity at zero shear rate.  As can be seen, the functional fit is excellent, suggesting 

it is a viable method of predicting viscosity, and shows that the transport coefficient 

does converge in two-dimensions. 
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Figure 5.15: Shear rate against viscosity for a series of SLLOD 

simulations, run at unit density and temperature.  Each simulation was 

run for 7,000,000 timesteps, with a timestep of 0.001, using 1024 

particles.  A Lorentzian function is used to fit the data.  The inset shows 

the same data on a log scale.  Error bars are present but negligibly small 

in this instance. 

 

Alternatively, Travis et al10 suggested that a four parameter Cross equation can 

be used to describe viscosity as a function shear rate (which is formally the same as 

equation 5.29 in the case that p = 2): 

 



169 
 

𝜇(𝛾) − 𝜇∞

𝜇0 − 𝜇∞
=

1

(1 + (𝐾𝛾)𝑝)
 

(5.32) 

 

where 𝜂0 and 𝜂∞ are values of viscosity at very low and very high strain rates, and K 

and p are constants.  Figure 5.16 shows the same data fitted with a Cross equation.  

Again, the functional fit is excellent, showing that both a Lorentzian and a Cross 

equation  are acceptable methods of fitting two-dimensional SLLOD data. 

 

Figure 5.16: Shear rate against viscosity for a series of SLLOD 

simulations, run at unit density and temperature.  Each simulation was 

run for 7,000,000 timesteps, with a timestep of 0.001, using 1024 

particles.  A four parameter Cross equation is used to fit the data.   

 

Hoover et al11 conducted an investigation into the dependence of the 

extrapolated estimation of  shear viscosity and the number of particles simulated.  They 

varied the number of particles from 64 to 264196.  They observed that the calculated 
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value of viscosity increased with number of particles significantly up to 1024 particles.  

Beyond this, there was little further increase in accuracy of the estimated value.  

However, further increasing the number of particles caused a large increase in 

computation time.  Using this investigation as a basis, it was therefore decided to 

simulate 1024 particles in all SLLOD simulations in this work. 

The dependence of shear viscosity with both density and temperature was 

determined by conducting a series of SLLOD simulations, analogous to those shown 

in figures 5.15 and 5.16.  This was conducted for both ε = 100 and ε = 10. 

 

5.3.5 𝜺 = 100.0 

Each series of SLLOD simulations was run for 7,000,000 timesteps using a 

timestep of 0.005 and simulating 1024 particles.  The first set of simulations were 

conducted to determine the dependency of viscosity on density.  Temperature was 

fixed at 1.0 throughout using a Gaussian isokinetic thermostat, and density was varied 

from 0.2 to 1.3. 

Figure 5.17 shows the results from these simulations.  Each series was fitted with 

a Lorentzian function (weighted by the error per data point).  As the density 

approached 1.3 the trend changed and the viscosity at low shear rates became 

proportionally much higher than the viscosity at high shear rates, as shown by the 

steepness of the curve.  Figure 5.5 shows that the fluid begins to solidify at this density.  

As the continuum model will only model the fluid phase, this is the limit at which the 

viscosity data was required. 
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Figure 5.17: Viscosity against shear rate for a series of SLLOD 

simulations, run at unit temperature.  Density was increased from 0.2 

to 1.3 gradually.  Top: ρ = 0.9 – 1.3, bottom ρ = 0.2 – 0.8. 
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To determine the density dependence of the zero shear rate viscosity, each set of 

results in figure 5.17 had to be extrapolated to zero shear rate.  This was obtained from 

the Lorentzian model.  Figure 5.18 shows the results of these extrapolations.  This data 

can be conveniently described by the following functional fit across this range: 

 

𝜇 = 0.443 + 0.003𝑒5.68𝜌 (5.33) 

 

The continuum mechanics simulations will use equation 5.31 to determine the 

viscosity at a given density.  These results agree well with trends observed in 

experimental investigation into the dependence of viscosity on density.12  At low 

density the viscosity dependence is only slight, which increases as the phase change 

approaches.  It is expected that the curve would again level off if simulations were 

performed at higher densities. 

Figure 5.18: Zero-shear rate viscosity dependence on density.  The 

data is taken from extrapolation of figure 5.17. 
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The second set of simulations were run to calculate the relationship between 

viscosity and temperature; a series of SLLOD simulations were run where the 

temperature was gradually increased and the density was fixed at unity.  Figure 5.19 

shows the results from these simulations.   

 

 

Figure 5.19: Viscosity against shear rate for a series of SLLOD 

simulations, run at unit density.  Temperature was increased from 0.2 

to 1.6 gradually. 

 

Again, the viscosity data has been extrapolated to estimate the viscosity at each 

temperature at zero shear rate.  The results are shown in figure 5.20.  The potential 

only exhibits a weak viscosity dependence on temperature, and fits well with results 

obtained using similar soft-sphere potentials.13  The continuum simulation will use this 

relationship to predict the local temperature at each particle’s coordinates. 
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𝜇 = 1.245 + 0.067𝑇 (5.34)  

 

 

Figure 5.20: Viscosity dependence on temperature at unit density, the 

viscosity data is taken from extrapolation of the SLLOD simulations in 

figure 5.18.  The full lines is a linear fit used to predict viscosity for a 

given temperature. 
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5.3.6 𝜺 = 10.0 

The same method was used to define the relationship between 

density/temperature with viscosity where the effective strength of the potential was 

reduced to 𝜀 = 10.0.  The softer nature of the potential resulted in significantly larger 

errors.  In an attempt to reduce these errors, the total number of particles was increased 

from 1024 to 2048, and the total number of timesteps increased to 10,000,000; 

increasing both the number of particles and the number of timesteps gives a larger 

statistical sample and therefore reduces the errors. 

Figure 5.21 shows the results of a series of SLLOD simulations where the density 

was varied from 0.7 to 1.4.  It is clear that there is still a degree of noise in the data, 

which could be reduced by further increasing both the number of particles and 

timesteps.  However, this lies beyond the scope of this work. 

 

Figure 5.21: Results from SLLOD simulations run at constant 

temperature, varying density from 0.7 up to 1.4.  ε =10.0.  The full lines 

are Lorentzian fits used to extrapolate to zero shear rate. 
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Figure 5.21 (part B): Results from SLLOD simulations run at 

constant temperature, varying density from 0.7 up to 1.4.  ε =10.0, 

shown on a logarithmic scale.  The full lines are Lorentzian fits used to 

extrapolate to zero shear rate. 

 

The data was extrapolated to estimate the value for viscosity at zero shear rate, 

the results of which are shown in figure 5.22.  In the range explored the dependence of 

viscosity on density is linear; the softer fluid did not show the increase in viscosity 

associated with a phase change.  The following relationship will be used to estimate 

the viscosity at a given density in the SPAM simulations: 

 

𝜇 = 0.184 + 0.360𝜌 (5.35) 
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Figure 5.22: Viscosity against density.  The data is extrapolated from 

SLLOD simulations, using the same scale as figure 5.18 for 

comparison. 

 

The final set of simulations conducted determined the relationship between 

temperature and density.  Figure 5.23 shows the results of the SLLOD simulations.  

The trend is similar to that seen when ε = 100, showing a linear dependence within the 

range explored.  The results were extrapolated to predict the zero shear rate viscosity, 

which is shown in figure 5.24.  This data can be described by the following equation: 

 

𝜂 = 0.380 + 0.157𝑇 (5.36) 
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Figure 5.23: Results from SLLOD simulations run at constant density, 

varying temperature from 0.6 up to 2.5.  ε =10.0. 

Figure 5.24: Viscosity as a function of temperature.  The data was 

extrapolated from figure 5.22. 
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Summary 

The temperature and density dependence of zero shear rate viscosity was 

investigated for two soft-sphere potentials: ε = 100, ε = 10.  These relationships can be 

used by continuum scale models to predict the behaviour of the soft sphere fluid within 

the range investigated.  The first potential, ε = 100, was shown to depend linearly with 

density at low density, and exponentially with density as the phase transition 

approached.  It was also shown to increase linearly with temperature.  The second 

potential, ε = 10, was shown to linearly with both temperature and density within the 

range explored, with the shift in phase transition being a result of the softer nature of 

the potential. 
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6  SPAM simulation of sand bed filtration 

 

6.1 Overview 

Smooth particle applied mechanics was used in order to create a continuum scale 

simulation of sand bed filtration, where the previous data collected from the molecular 

dynamics model was used as validation.  The equations of state and calculated shear 

viscosity data from chapter 5 were used to construct this model.  An introduction to 

the methodology is given in chapter 4.  The aim was to test the validity of a continuum 

scale model parameterised from pseudo-experimental data by comparing its agreement 

with existing literature, and also directly with the molecular dynamics model. 

 

6.2 Model design 

The smooth particle model was designed to be as similar to the molecular 

dynamics model as possible:  the boundary conditions, initial conditions, sticking 

mechanism and property averaging techniques were all implemented using the same 

methods described in chapter 3.  Using this analogous approach allows for direct 

comparison between the two methods (SPAM/MD), giving validation to the SPAM 

simulation in a similar method to that discussed by Travis and Hiddlestone.1   

The model aims to predict the flow of a binary mixture of fluid and colloid 

particles through a bed of static sand particles.  The key difference between the two 

models being that the fluid particles are now modelled as smooth particles obeying the 

SPAM equations of motion (equations 4.26 – 4.27).  The fluid is assumed to be 

incompressible, leaving the equation of state and the shear viscosity as the constitutive 

relations remaining to be defined.  Chapter 5 outlined the techniques used to define 

these relations.  Figure 6.1 shows a schematic of the simulation, highlighting the two 

types of particle used.  The colloid particles are still treated as soft, repulsive discs 

similar to how they were treated in MD, interacting through a soft-disc potential 

(equation 6.1).  This avoided the need to develop a more complex equation of state for 

a binary fluid mixture. 
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ϕ𝑖𝑗 = 𝜀 [1 −
𝑟𝒊𝒋

𝟐

𝜎2
]

4

;  |𝑟𝑖𝑗| < 𝜎 

(6.1) 

 

 

Figure 6.1: A schematic showing the smooth particle model.  The 

yellow particles are static sand particles, the blue particles are fluid 

particles modelled as SPAM particles, and the red particles are colloids, 

modelled as coarse-grained discs. 

 

Two sets of constitutive relations have been calculated for the soft-disc potential, 

one with ε = 100, and one with ε = 10. σ = 1. 
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ε = 100 

Hoover calculated the equilibrium equation of state for this forcelaw:2 The full 

set of equations giving the dependence of pressure and temperature on density and 

energy are summarised below. 

 

 𝑃𝑉

𝑁𝜀
= 5 + 8𝛿𝜌 + 2.5𝛿𝜀 + 9𝛿𝜌2 + 2𝛿𝜌𝛿𝜀 

(6.2) 

 𝑘𝑇

𝜀
= 1 − 𝛿𝜌 + 0.7𝛿𝜀 − 0.86𝛿𝜌2 − 0.5𝛿𝜌𝛿𝜀 

(6.3) 

 
𝛿𝜌 = (

𝑁𝜎2

𝑉
) − 1.0 

(6.4) 

 
𝛿𝜀 = (

𝐸

𝑁𝜀
− 1.443) 

(6.5) 

 

The relationship between shear viscosity, temperature and pressure was 

established in chapter 5. The results were: 

 

𝜂 = 0.443 + 0.003𝑒5.68𝜌 (6.6) 

𝜂 = 1.245 + 0.067𝑇         (6.7) 

 

ε = 10 

Chapter 5 also details the method used to define a new equilibrium equation of state 

when ε = 10: 

 𝑃𝑉

𝑁𝜀
= 2.47 + 4.2𝛿𝜌 + 1.2𝛿𝜀 + 2.3𝛿𝜌2 + 1.8𝛿𝜌𝛿𝜀 

(6.8) 

 𝑘𝑇

𝜀
= 1 − 0.6𝛿𝜌 + 0.7𝛿𝜀 − 0.19𝛿𝜌2 − 0.8𝛿𝜌𝛿𝜀 

(6.9) 

 
𝛿𝜌 = (

𝑁𝜎2

𝑉
) − 1.0 

(6.10) 
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𝛿𝜀 = (

𝐸

𝑁𝜀
− 1.443) 

(6.11) 

 

Finally, chapter 5 also outlines the method used to define the relationship 

between pressure/temperature and viscosity for this potential: 

 

𝜂 = 0.184 + 0.360𝜌 (6.12) 

𝜂 = 0.286 + 0.2213𝑇 (6.13) 

 

The constitutive equations (equations 6.2 – 6.13) feed into the SPAM 

conservation equations that define the density, motion and energy of the SPAM 

particles: 

 

 𝜌𝑖 = ∑ 𝑚𝑗𝑤(𝑟)

𝑗

 
(6.14) 

 

 
𝑚𝑣̇ = − ∑ 𝑚𝑖𝑚𝑗 (

𝑷𝑖

𝜌𝑖
2 +

𝑷𝒋

𝜌𝑗
2) ∙ ∇𝑗𝑤(𝑟)

𝑗

 
(6.15) 

 

 
𝑚𝑒̇ = −

1

2
∑ 𝑚𝑖𝑚𝑗 (

𝑷𝑖

𝜌𝑖
2 +

𝑷𝒋

𝜌𝑗
2) : 𝒗𝑖𝑗∇𝑗𝑤(𝑟)

𝑗

− ∑ 𝑚𝑖𝑚𝑗 (
𝑸𝑖

𝜌𝑖
2 +

𝑸𝑗

𝜌𝑗
2) ∙ ∇𝑗𝑤(𝑟)

𝑗

 

(6.16) 

 

 

where w is the weight calculated from Lucy’s weight function: 
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𝑤(𝑟 < ℎ) = (

5

𝜋ℎ2
) (1 + 3

𝑟

ℎ
) (1 −

𝑟

ℎ
)

3

 
(6.17) 

 

All simulations run in this chapter were performed with the coefficients for ε = 100, 

besides the section detailing the comparison between the two different constitutive 

relations.  Unless otherwise stated, all simulations used the parameters defined in 

appendix C, using a RK4 integration scheme, and a timestep of 0.001.  The 

constitutive equations combine with the conservation equations to give a closed 

system where the motion of particles can be calculated. 

 

6.3 Fluid behaviour 

Before modelling the process of filtration, a series of simulations were run to 

test the behaviour of the parameterised fluid under different conditions.  These tests 

aimed to prove that the SPAM fluid behaved in a similar way to the MD fluid from 

which it was parameterised. 

 

6.3.1 Binary mixture of colloids and fluid 

The behaviour of a binary mixture of fluid and colloid particles was tested by 

simulating 1024 particles (512 colloid and 512 fluid) for 10,000 timesteps, with a 

timestep of 0.01.  All boundaries were periodic, and there was gravitational force.  The 

trajectories of the fluid particles were defined by the SPAM equations of motion, and 

the trajectories of the colloid particles by the soft disc potential with the same 

parameters from which the SPAM fluid was parameterised (ε = 100, σ = 1).  The cross-

particle interaction was also described by the soft disc potential, though with a different 

interaction strength (ε = 25.0).  It would therefore be expected that with time the 

mixture would separate into two distinct phases, each with the same properties.  Figure 

6.2 shows snapshots at the start (left) and end (right) of the simulation.  The binary 

mixture did indeed show signs of separating, showing similar behaviour to the mixture 

discussed in section 3.2.2.  This serves as evidence that the SPAM fluid experiences a 

depletion force similar to that observed in the equivalent MD simulations. 



186 
 

 

Figure 6.2: Snapshots showing the computed particle locations of a 

binary mixture of 1024 particles (512 fluid, 512 colloid) after 100 and 

10,000 timesteps using periodic boundary conditions. Δt = 0.01.  Blue 

particles are the SPAM fluid, and red particles are colloids. 

 

6.3.2 Fluid behaviour under gravity 

 The behaviour of the parameterised fluid under gravity was tested by simulating 

1024 particles under a gravitational force, g = 1, for 100,000 time periods, with a 

timestep of 0.01.  The lateral boundaries were periodic and the bottom boundary was 

elastic.  Figure 6.3 shows the particle coordinates at the start and the end of the 

simulation for both equations of state.  In general, the fluid behaved as expected; the 

fluid density increased towards the bottom of the simulation, maintaining particle 

separation.  However, the structured order of the particles obtained when ε = 100.0 

suggests that the equation of state may struggle to correctly model the fluid behaviour 

at increased density.  Figure 3.10 shows an MD simulation of the same process; it is 

clear that the MD more closely resembles the behaviour observed when ε = 10.0. 

Additionally, an important phenomenon was observed at the elastic boundary.  

A layer of isolated particles appeared to be “stuck” to the boundary, which remained 

there throughout the length of the simulation.  This is an inherent problem with the 

implementation of an elastic boundary when using weighted particle averages, and has 

been observed previously by Hoover.3  This problem could be overcome by 
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implementing mirrored boundaries (discussed in section 4.2.5).  In the interests of 

pragmatism, mirrored boundaries were not implemented.  When the elastic boundary 

was removed, to allow the fluid to flow through the filter, all memory of this structured 

layer is lost within a few timesteps, and it did not cause any functional issues. 

 

 

Figure 6.3: Computed particle locations of the SPAM fluid under a 

gravitational force of 0.1.  t = 100 (top), t = 100,000 (bottom), Δt = 

0.001.  The images on the left are for ε = 100.0, and the images are the 

right for ε = 10.0.  The bottom boundary is elastic, and the lateral 

boundaries are periodic. 
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6.4 Simulation instabilities 

A known issue when modelling a continuum with smooth particles is the 

tendency for local pressure waves to turn into shockwaves, causing instabilities in the 

simulations.4  Instabilities were indeed observed when investigating the SPAM fluid 

and appeared to be as a result of increased local pressure or density.  As discussed in 

chapter 5, the constitutive relations are only considered to be valid within a certain 

range of density, therefore, modelling a system outside of this range will cause errors; 

the continuum equations of motion are unable to resolve the pressure waves at 

increased density. 

Figure 6.4 highlights an example of such instabilities.  In this case the 

gravitational force, g = 2.0, caused particles to become too densely packed, resulting 

in a local instability.  Shortly after this snapshot, the simulation suffered from complete 

failure. 

  

Figure 6.4: Computed particle locations, highlighting a local 

instability.  g = 2.0.  
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There are several known techniques that can be employed to try to alleviate 

this problem.  Introducing an artificial viscosity into the SPAM equations of 

conservation is one such method, where an additional viscous force contributes to 

the pressure at any coordinates where the flow is contracting.  This is a purely 

numerical device (that is to say it is not based on any physics) used to stabilise a 

spreading instability over several particle diameters.  Section 4.2.4 discusses one 

method of achieving this, where the SPAM equations of conservation of 

momentum and energy are altered to include an additional force. 

This work followed the example of Hoover5 by employing an additional 

force to particle pairs where the relative velocity of the pair was negative.  This 

additional force, therefore, was only applied when the particles in the pair were 

approaching each other.  A pragmatic choice was to use the same smooth core 

potential that defined interactions in the MD simulations (equation 6.1).  In order 

to minimise the influence on the continuum dynamics, it was important to keep its 

effect to a minimum.  Values of ε = 1.0, and σ = 0.75 were used; this provided a 

strong enough repulsion to separate particles that clustered, but was also only active 

at distances significantly less than the smoothing length (h = 3).  The addition of 

this force removed the instabilities observed at a constant number of particles.   

However, further instabilities occurred when new particles were added to 

the system at regular intervals.  If the new particles were introduced before the 

previous set of particles had traversed a distance equal to or greater than the 

smoothing length down the filter, significant problems arose.  The frequency at 

which new particles could be added to the system was therefore greatly limited; it 

was found introducing new particles every 1000 timesteps was sufficiently slow to 

avoid this problem.  This frequency is 1/5 of the frequency employed in the MD 

simulations.  The SPAM simulations were therefore run for 500,000 timesteps (5 

times longer than the MD simulations) to give the same total number of particles. 
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6.5 Specific deposit and pressure drop 

To validate that the SPAM model qualitatively agreed with the MD model in 

terms of the trend of rate of deposition and the trend of rate of increase in pressure 

drop, several simulations were run.  It is unlikely that the results would quantitively 

agree due to the small changes in simulation conditions; the SPAM flow rate was 1/5 

that of the MD flow rate, and the SPAM fluid employed an additional artificial 

viscosity.   

 

6.5.1 Specific deposit 

Specific deposit, σ, was defined as the number of deposited colloids divided by 

the volume of the filter.  A more detailed discussion of the expected relationship with 

time is discussed in section 3.3.1.  The key points are: 

• the amount of deposit should increase linearly with time 

• the rate of deposit should change at a threshold value of σ 

The dependence on specific deposit with time for the SPAM model was 

determined using a similar method to section 3.3.1.    Figure 6.5 shows the results.  The 

results do indeed show two linear regimes, agreeing with both the MD model and the 

experimental predictions of Camesano.6  Taking the gradient of the slopes of the two 

phases gives rate constants of kr = 4.1 x 10-5 and kac = 1.7 x 10-5 for the blocking and 

operation phases, respectively.  Table 6.1 compares these values with those from the 

equivalent MD simulations.  Although the rates cannot be directly compared, the 

relative rates can; both the MD and SPAM show a decrease in rate of deposit of just 

over half from stage one to stage two.  This result is encouraging, suggesting the SPAM 

model is capturing similar dynamics to the MD model. 
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Figure 6.5: Specific deposit as a function of time showing the two 

linear stages.  

 

 MD SPAM 

kr 2.000 x 10-04 4.100 x 10-05 

kac 9.200 x 10-05 1.700 x 10-05 

 

Table 6.1: Linear rate constants for the MD and SPAM simulations.   

 

6.5.2 Pressure drop 

As discussed in section 3.3.2, the pressure drop is expected to scale linearly 

with time during the first phase, and quadratically with time during the second 

phase. 

The pressure drop was calculated using the same method outlined in section 

3.2.6.  Figure 6.6 shows the pressure drop as a function of specific deposit, comparing 

the SPAM simulation to the MD simulation.  The general trend of the results is the 
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same, with the SPAM model showing a quadratic relationship between the normalised 

pressure drop and specific deposit.  This agrees with the experimental results of 

Veerapeneni7, and the predictions of Mays and Hunt8.  However, there are obvious 

differences in the quantitative data between the two methods:  at low values of specific 

deposit the SPAM simulation slightly overestimates the pressure drop, whereas at high 

values of specific deposit the SPAM simulation greatly underestimates it.   

 

 

Figure 6.6: Pressure drop as a function of specific deposit, comparing 

the results from MD and SPAM simulations.  

 

The parameterisation of the equation of state is likely to be the cause of this 

underestimation.  As the simulation progresses, the clogging of particles causes an 

increased density (and therefore increased pressure) at the top of the filter bed.  

Without the implementation of an artificial viscosity (in this case, through a soft 

sphere potential), this would most likely lead to instabilities through shockwaves.  

The additional potential prevents this, but it does not correct the values of pressure 
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obtained from the equation of state; pressure remains underestimated at high 

densities.  This discrepancy widens with time.  To fix this further parameterisation 

of the soft-sphere potential at higher densities is required, which is beyond the 

scope of this work. 

 

6.6 Comparison with MD 

To further compare the SPAM model with the MD simulation results, a 

systematic exploration of the parameter space was performed.  This involved 

varying the porosity of the filter, the colloid interaction strength, and the lattice 

structure.  These parameters were chosen for two reasons: analogous simulations 

had already been run using the MD model allowing for direct comparison, and 

these parameters were shown to have distinct trends when varied in the MD model.  

The MD data for comparison is taken from chapter 3.  All simulations in this 

section were run using the Runge-Kutta 4 integration scheme, with Δt = 0.001. 

 

6.6.1 Colloid-colloid potential 

The comparison with the MD model was performed by varying the strength 

of the colloid-colloid interaction from 2 to 100.  Figure 6.7 shows the dependence 

of σ on ε for the two methods.  It is clear that the results differ in several areas.  The 

SPAM model consistently predicts a total deposit of approximately 30 % less than 

the MD model at high interaction strength.  The trend above an interaction strength 

of ε = 20 was similar, with there being no significant dependence on deposit with 

interaction strength.  However, at lower interaction strength the MD predicted an 

increase in specific deposit, whilst the SPAM predicted a decrease.  This is likely 

to be a result of the mechanics being dominated by the SPAM particles, rather than 

the colloid particles at low interaction strength. 
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Figure 6.7: Specific deposit as a function of colloid-colloid interaction 

strength. 

  

6.6.2 Porosity 

The porosity of the filter was varied from 70.57 to 1.44.  Figure 6.8 shows 

the dependence on specific deposit with porosity for the two models.  Again, the 

SPAM simulations underestimated the overall deposit in the filter. SPAM also 

showed an increase in deposit with decreasing porosity.  Conversely, the MD 

results showed a maximum at a porosity of 42.24, where a further decrease in 

porosity did not equate to an increase in deposition.  This was shown to be because 

the filter became mechanically clogged at this point (section 3.4.4).  The fact that 

the SPAM simulations did not show this maximum suggests that there was not 

enough deposit in the sand bed to cause complete clogging. 
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Figure 6.8: Specific deposit as a function of porosity, comparing the 

MD and SPAM simulations.  

 

Figure 6.9 shows the calculated pressure drop as a function of porosity for 

the same simulations.  The increase observed with decreasing porosity was only 

slight for the SPAM model, and is constant with the underestimation of pressure 

seen previously.  The trend seen is the same, suggesting further parameterisation 

of the pressure equation of state would help to reduce the difference in results. 
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Figure 6.9: Pressure drop as a function of porosity, comparing the MD 

and SPAM simulations.  

 

6.6.3 Square lattice 

The effect of changing the lattice structure from a triangular lattice to a square 

lattice was examined by running an analogous set of simulations to section 3.4.2.  

The results are shown in figure 6.10.  The MD simulations showed a slight increase 

in specific deposit, along with a slight increase in pressure drop with increasing 

colloid repulsion.  As discussed previously, the square lattice creates a much 

simpler flow path, meaning an increase in repulsion does not necessarily hinder the 

trajectories of the particles.  It is clear that the results from the SPAM simulations 

are distinctly different.  A much larger increase in pressure drop is observed with 

increasing repulsion, suggesting that the SPAM particles suffer from increased 

hindrance when travelling through pore spaces than the MD particles.  The reasons 

for this are, again, likely to be as a result of the parameterisation.  The increased 

density in the pore spaces takes the simulation away from the accurately modelled 
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area of the equation of state.  This could be further explored by separating the fluid 

particles in the pore spaces into multiple smaller particles, giving higher resolution, 

highlighting one of the important advantages of the SPAM method.  This would 

require additional code changes, and would b an area explored further in future 

work. 

 

 

 

Figure 6.10: Specific deposit as a function of porosity, comparing the 

MD and SPAM simulations.  
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6.6.4 Equation of state 

The effect of changing the continuum potential from ε = 100 to ε = 10 was 

investigated by running a series of simulations with varying colloid interaction 

strength (analogous to section 6.4.1), with the second parameterised potential.  

Figure 6.11 shows the results.  The consistent underestimation of deposit remains, 

however, the trend now matches that seen in the MD simulations, with a higher rate 

of deposition observed at lower colloid interaction strength.  This suggests that the 

ε = 10 equation of state is better parameterised than the ε = 100.   

 

Figure 6.11: Specific deposit as a function of porosity, comparing the 

MD and SPAM simulations.  

 

The softer fluid is capable of withstanding a much higher density before 

giving rise to significant deviations in either pressure or viscosity (compare figure 

4.9 to 4.2, and 4.21 to 4.18).  Indeed the predicted relationship between viscosity 

and density observed was linear up to a density of 1.6 when ε = 10, and exponential 

when ε = 100. The observed difference in pressure from a density of 1 to 1.6 was 3 

when ε = 10, and 8 when ε = 100.  The softer continuum fluid is capable of more 
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accurately predicting the behaviour of the soft-sphere potential at the densities 

created by the filtration simulations.  At extreme densities, it is likely that 

significant deviations between the two methods would again be observed. 

 

6.7 Summary 

Smooth particle applied mechanics was used to create a continuum scale 

model of a filtration process.  Instabilities were initially observed at increased 

densities, ultimately causing simulation failure.  A type of artificial viscosity that 

discouraged particle clustering was used to alleviate this.  This was a pragmatic 

choice, and was made with the intent of causing as little effect on the dynamics as 

possible.  Introducing surface tension, bulk viscosity, or an artificial viscosity 

incorporated into the SPAM equations of motion would perhaps be an 

improvement on this, but the implemented method was ultimately successful. 

An attempt to validate the model against the results gained from MD and 

trends reported in literature was undertaken.  The dependence on specific deposit 

with time showed the characteristic two phases associated with filtration, with both 

phases being linear.  In addition to this, the pressure drop was shown to depend 

quadratically with the amount of deposit.  These are encouraging results, 

suggesting the smooth particle approach can be used to model filtration. 

However, the SPAM model was shown to consistently underestimate both 

the total deposit within a filter, and the associated pressure drop.  It is likely that 

this was a result of the range under which the equation of state was valid.  In order 

to accurately model a filtration process, where the continuum model can manage 

sufficiently high densities to give accurate predictions of the pressure drop, further 

parameterisation is required.   
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7. Conclusions and further work 

The overriding aim of this work was to probe the mechanism of clogging of sand 

bed filters using computer simulation.  The existing work in this field makes use of either 

small scale experimental techniques or top down empirical modelling techniques.  These 

methods provide useful information about the specific deposit and pressure drop 

observed in filtration processes, allowing for prediction of these parameters under certain 

conditions.  However, they do not give truly predictive results; prior experimental work 

is required to define parameters used in the resulting expressions.  Computer simulation 

allows for a mechanistic insight into the process of clogging, giving the prospect of 

relating the empirical parameters seen in previous work to properties of the colloid, fluid, 

and sand particles that make up a filter. 

The scientific case and technical scope provided by NNL (who part funded this 

work) provided several key aims for the particle-based simulation: 

• predict the relationship of specific deposit with time. 

• predict the dependence of pressure drop on specific deposit. 

• use existing literature to validate these dependencies. 

• test the mechanical hypothesis proposed by Mays and Hunt:1 “The fractal 

dimension of colloidal deposits has been speculated to be an important 

parameter controlling the amount of clogging.  Deposits of high and low 

fractal dimension might arise as aresult of the competition between the 

colloid-colloid interactions and hydrodynamic forces.” 

• perform a systematic exploration of the system by varying properties of the 

sand, colloid and fluid particles, and their associated interactions. 

 

Two particle-based simulation techniques were used to achieve these aims: 

molecular dynamics and smooth particle applied mechanics.  The first model developed 

made use of coarse-grained molecular dynamics, modelling the system as a series of soft-

discs interacting through a smooth, soft core potential.  The simulations yielded several 

significant results.  The build-up of specific deposit was shown to depend linearly with 

time, with the rate of deposit changing at a threshold value of σ.  This result agreed with 

previous experimental work, and was directly comparable to the equations used to predict 

deposition in existing empirical models.  Furthermore, ΔH, was shown to depend linearly 
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on deposit at low deposition, and quadratically with deposit at high deposition.  

Importantly, this result also agreed with previously developed expressions for pressure 

dependence on deposit.  Further validation to the dynamics was given when examining 

the deposition concentration with depth; the concentration of deposited colloids 

decreased exponentially with depth in most conditions.  In conditions where colloids 

were favourably deposited at the top of the filter, a characteristic hyper-exponential 

profile was observed.  These results showed that the molecular dynamics model, at least 

qualitatively, agreed with other methods.  This was a key success of this research. 

An investigation into the fractal dimension of the colloidal deposits was then 

performed.  This showed that the deposits generated through molecular dynamics did 

indeed have a fractal dimension.  It was then suggested that varying the sticking distance 

parameter was a means of controlling the fractal dimension of the deposits, with a longer 

sticking distance resulting in a lower fractal dimension.  This allowed for the comparison 

of the flow through filters with deposits of both high and low dimension.  The results 

agreed with the hypothesis proposed by Mays and Hunt.  This is a significant mechanistic 

insight, and highlights the main advantage in particle based methods. 

A systematic exploration of this model was also undertaken.  The strength of the 

colloid-colloid, colloid-fluid, and colloid-sand interactions were varied in isolation.  The 

results suggest that both the nature of the colloid-colloid and the colloid-fluid interaction 

have an important impact on the dynamics.  A strong colloid-colloid repulsion leads to 

an increased pressure drop and a decrease in deposit rate; the deposited colloids both 

hinder further deposition, and block colloids from flowing through the filter.  

Interestingly, a strong colloid-fluid repulsion has a similar effect, though the mechanism 

observed is different.  Rather than the pore spaces being clogged with deposited colloids, 

pore spaces become clogged with fluid particles unable to penetrate further into the filter.  

The effect of the changing lattice structure, packing fraction, and concentration of 

colloids was also observed. 

The results obtained from this model achieved all of the aims of the project from 

the outset, however, the work done with it is by no means at a maximum.  An additional 

area for exploration lies in the packing fraction and size of the sand particles.  A real sand 

bed is likely to suffer from a sedimentation process where larger particles settle toward 

the bottom of the bed.  The model assumes a uniform size and packing fraction of sand 

particles.  Using a particle size distribution to vary the size of the sand particles, alongside 

a random lattice structure would allow for further exploration of the dynamics of the 
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system.  In addition, the model assumes a simple, irreversible, sticking mechanism, 

which could be improved upon.  Using a short range potential with an attractive well 

would perhaps achieve more realistic results.  This would allow deposited colloids to 

move and dislodge as a result of hydrodynamics, and could potentially lead to a 

characteristic nonmonotonic deposit profile being observed.  Furthermore, quantitative, 

rather than qualitative, agreement with experimental data could be achieved through 

using interatomic potentials parameterised on a realistic system of water, sand and colloid 

particles.  This is far beyond the scope of this project, but would provide an extra layer 

of validation to the results proposed.  

A more novel approach was used to model the same system using continuum 

mechanics.  Smooth particle applied mechanics is a particle based solver of continuum 

mechanics that holds the potential to increase the time and length scales accessible by 

computer simulation.  This required substantial parameterisation to describe the 

behaviour of the fluid in various conditions.  To allow for direct comparison between the 

two models, the continuum model was parameterised using pseudo-experimental data 

from molecular dynamics.  The equation of state used to describe the fluid was obtained 

using equilibrium molecular dynamics simulations of the smooth, soft core potential.  

The shear viscosity dependence on pressure and temperature for the same potential was 

obtained using non-equilibrium molecular dynamics. 

An equilibrium equation of state developed by Hoover was investigated, showing 

it to be valid to a substantial deviation from the reference point.  A similar equation of 

state was developed using the same method for a much softer interaction strength (ε = 

10).  The dependence on viscosity with shear rate was probed through a series of SLLOD 

simulations, yielding relationships between pressure and temperature with viscosity for 

both potentials (ε = 10 and ε = 100).  The results of this parameterisation were used to 

develop a continuum scale model of filtration.  Additionally, future simulators can use 

these results to create continuum scale models other processes, giving use to the collected 

data far beyond this work. 

The SPAM model showed signs of instability under certain conditions.  An 

artificial viscosity was used to alleviate this problem, giving rise to a stable continuum 

scale model of filtration.  The model showed the same characteristic linear dependence 

of specific deposit with time, and quadratic dependence of pressure drop with deposit, 

which is a positive result.  However, the quantitative agreement between the models was 

far from exact.  Further parameterisation of the fluid would lead to a better agreement 
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between the two methods.  The SPAM model consistently underestimated the pressure 

drop at high deposits, suggesting that further characterisation of the fluid at high density 

is required.  Additionally, the model did not include surface tension, a constitutive 

relation that could also be obtained from molecular dynamics simulation.  
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Appendix A: A useful random number generator. Creates a random seed 

based on the system clock time. 

 

          SUBROUTINE init_random_seed() 

             INTEGER :: i, n, clock 

             INTEGER, DIMENSION(:), ALLOCATABLE :: seed 

           

             CALL RANDOM_SEED(size = n) 

             ALLOCATE(seed(n)) 

           

             CALL SYSTEM_CLOCK(COUNT=clock) 

           

           seed = clock + 37 * (/ (i - 1, i = 1, n) /) 

             CALL RANDOM_SEED(PUT = seed) 

           

             DEALLOCATE(seed) 

          END SUBROUTINE 
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Appendix B: Input parameters used to in MD simulation of filtration 

Parameter Type Value Notes 

Number of timesteps Integer 100000 
 

Timestep Double 0.001 
 

Initial density Double 1.000 
 

Load coordinates Integer 1 

0 = start from square lattice, 1 = load 

coordinates 

Side boundary Integer 1 0 = none, 1 = periodic, 2 = elastic 

Top boundary Integer 2 0 = none, 1 = periodic, 2 = elastic 

Shape of simulation cell Integer 1 0 = square, 1 = rectanlge 

Gravity Double 1.000 
 

Damp Double 0.000 
 

Seed Integer 1 

0 = no input seed, 1 = use system clock as 

seed 

Initial kinetic energy Double 1.000 
 

Number of fluid particles Integer 512 
 

Number of colloid 

particles Integer 512 
 

Sigma Double 1.000 
 

Epsilon fluid Double 10.000 
 

Epsilon colloid Double 10.000 
 

Epsilon sand Double 10.000 
 

Epsilon fluid/colloid Double 10.000 
 

Epsilon fluid/sand Double 10.000 
 

Epsilon colloid/sand Double 10.000 
 

Number of planes Integer 100 
 

Average planes 

frequency Integer 100 
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Filter Integer 1 0 = do not filter, 1 = filter 

Filter height Double 30.000 
 

Number of sand particles 

per row Integer 5 
 

Number of new particles Integer 30 
 

Frequency of new 

particles Integer 200 
 

Sticking probability Double 0.001 
 

Clogging distance Double 0.500 
 

Colloid sticking 

probability Double 0.001 
 

Colloid clogging distance Double 0.500 
 

Lattice type Integer 1 0 = square, 1 = triangular 

Smoothing length Double 3.000 
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Appendix C: Input parameters used in SPAM simulations 

 

Parameter Type Value Notes 

Number of timesteps Integer 100000 
 

Timestep Double 0.001 
 

Initial density Double 1.000 
 

Load coordinates Integer 1 

0 = start from square lattice, 1 = load 

coordinates 

Side boundary Integer 1 0 = none, 1 = periodic, 2 = elastic 

Top boundary Integer 2 0 = none, 1 = periodic, 2 = elastic 

Shape of simulation cell Integer 1 0 = square, 1 = rectanlge 

Gravity Double 1.000 
 

Damp Double 0.000 
 

Seed Integer 1 

0 = no input seed, 1 = use system clock as 

seed 

Initial kinetic energy Double 1.000 
 

Number of fluid particles Integer 512 
 

Number of colloid 

particles Integer 512 
 

Sigma Double 1.000 
 

Epsilon colloid Double 10.000 
 

Epsilon sand Double 10.000 
 

Epsilon fluid/colloid Double 10.000 
 

Epsilon fluid/sand Double 10.000 
 

Epsilon colloid/sand Double 10.000 
 

Number of planes Integer 100 
 

Average planes 

frequency Integer 100 
 

Filter Integer 1 0 = do not filter, 1 = filter 
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Filter height Double 30.000 
 

Number of sand particles 

per row Integer 5 
 

Number of new particles Integer 30 
 

Frequency of new 

particles Integer 200 
 

Sticking probability Double 0.001 
 

Clogging distance Double 0.500 
 

Colloid sticking 

probability Double 0.001 
 

Colloid clogging distance Double 0.500 
 

Lattice type Integer 1 0 = square, 1 = triangular 

Smoothing length Double 3.000 
 

MD separation force Integer 1 

0 = no separation force, 1 = use separation 

force 

MD separation sigma Double 1.000 
 

MD separation epsilon Double 0.750 
 

Equation of sate Integer 2.000 1 = eps(10), 2 = eps(100) 

 


