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ci 

not when the truth is dirty, but when it is 

shallow, does the enlightened man dislike to 

wade into its waters . 1.91 

1. http: //www. brainyquote. com/quotes/authors/f/friedrich-nietzsche. htn-fl 
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This work is dedicated to the memory of James Casey McGinley; a provoker of tradition 
and seeker of truth, and to Louie, for whom thefollo4ing lines have been written: 

(Me Yourney of Lyle 

From the tributaries to the meandzring river 
qhc water is retnovedfrom its source 
Cast in Ferpetuaf nwtion 
Its history in constantffux 
Its orýyins diCutcd and lost 

A cycfe of chaos 
Over infinite boundaries 

Leads to an unknownprace. 

To a Sea of confificting sours 
Yourfate is bequeathed 

Forces beyandunderstanding 

ave no tolerance of individuafity 

And crowdyourfteedmn 
Against the shouUzr; of strangers 
you travef downstream 

A period of cahm precedes turbulence 

Af(wiffbefaffyou, as nature intended 

Ywfd to the currents 

And reffect and rdoice n4th the turn of the tides 

74ith your creator 

And together we come of age 
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Preface 

To justify spending the past four years of my life (excluding any sporadic bursts of 

introverted melancholy and distemper) studying towards my Phl), I feel it is necessary to 

explain to myself, and to those who have not received as much of my attention as they were 

due, the intrinsic value of academic research. 

Presumably, as long as human beings have existed in what may be thought of as a 

vaguely intelligible state, the peculiarity of existence has been a profound preoccupation of 

thought, and an unsettling concept. The Greek philosopher, Socrates (470 - 399 BQ is 

accredited with the quote, "I know nothing except the fact of my ignorance"'. Although there 

may be some level of absolute truth in this statement, it merely reflects the (internally felt) 

insignificance of human life to the totality of the Universe, much in the same way that a musical 

note may be seen as insignificant to the beauty and grandeur of an opera, and a point of view 

that is not particularly useful to the every day life of most human beings. For example, if I 

decided that I wanted to eat baked beans on toast for my tea, my state-of-being is naturally 

concerned with the task of purchasing what I recognise to be a tin of beans, and not with 

whether the baked bean actually exists, what its absolute nature is, or what my metaphysical 

relationship to the bean, which I am going to devour, might be. Once the bean is consumed, 

however, my human curiosity may once again be evoked, as I ponder the profound release of 

gas from such a small, apparently solid object. 
Despite our conunon requirement for the fundarnentals of life, it would appear that a 

thirst for knowledge is one property that separates human beings from the general animal 

population - it is difficult to imagine a moth wondering how IKEA managed to sell a light bulb, 

which singed its eyeballs, for such a cheap price (although this statement may also be applicable 

to many humans). Indeed, Socrates is also believed to have said that, "Tbe unexamined. life is 

not worth living for a human being"'. How then, is it best to examine life? The arts are perhaps 

considered the most human of academic disciplines. One definition of art is, "human skill and 

agency (opp. to nature): application of skill to production of beauty (esp. visible beauty) and 

works of creative imagination"ý The arts allow an expression of the world around us in term 

of our experience, enhancing identity and a sense of emotional security, thereby aiding the 

development of society and culture. 
Science is generally regarded as "knowledge ascertained by observation and 

experiment' s2 or "accounts of the world which depend on no particular perspective on the world 

and no particular type of observef"3. These, rather inhumane, definitions of science puzzle me - 
how is it that a discipline created by human beings can be independent of perspective or 

observer? Far from being the mundane interpretation of observation, it would seem to me that 
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science requires, perhaps, the greatest "creative imagination7 of all and could be regarded as the 

truest of arts. One of the greatest scientists of the modem era, Albeit Einstein (1880 - 1976), 

appeared to have intrinsic "artistic" qualities: "Imagination is more important than knowledge-4; 

"The only real valuable thing is intuition74. The fact that a scientist as great as Einstein 

seemingly centred his beliefs from such an artistic (or human) perception would tend to suggest 

that science, while undoubtedly a faculty centred around observation and experiment, is 

directed, and partially evolves through the artistic nature of human beings. In essence, 

therefore, science is a human interpretation of the world around us, derived by the application of 

thought to observation, providing a means to satisfy our peculiar disposition for knowledge and 

gain some sort of rationalisation to what it means to be alive. In the absence of humans, science 

(as is also the case for any academic enquiry) is absolutely redundant and non-existent: a void 

within a void; an end before a beginning. 

Although the findings of science may often be disconcerting and do not offer the same 

emotional comforts as the conventional arts, far from being an untenable academic subject, or 

simply a means by which human beings can satisfy their ego, science is the material foundation 

of human civilisation via its application through technology. Practically all that we see around 

us (of human creation) is, at least partially, the direct result of the application of scientific 

research. It is no coincidence that periods of human history are often defined by their 

technological skill: the Bronze Age; the medieval agricultural age; the industrial age; the corn 

age. , Naturally, science can be exploited to the detriment of human civilisation (as can art, 

philosophy or religion), for example through its application to the manufacture of weapons of 

war. However, knowledge acquired through scientific research can also be used for the greater 

good of humanity, vividly illustrated by the example of the Antarctic ozone hole. 

In the early 1970's it was observed that the atmospheric concentration of CFC's 

(ChloroFluoroCarbons, used chiefly as aerosol propellants and reffigerants) was approximately 

equal to the total amount ever produced 5. An important study considering the potential 

implications of these observations soon followed 6, predicting that the presence of CFC's in the 

atmosphere could have severe consequences for stratospheric ozone concentrations (the ozone 

layer). Tle ozone layer is essential to life on Earth as it prevents harmful ultraviolet radiation 

reaching the Earth's surface and thermally stabilises the atmosphere. Measurenrnts of 

stratospheric ozone levels in Antarctica by scientists from the British Antarctic Survey (BAS) in 

the late 1970's found that dramatic reductions in ozone were occurring in the lower 

stratosphere, and in 1985 the observed reduction was so dramatic that the BAS scientists 

thought their instruments were broken. Replacing their instruments, the scientists discovered 

that their initial measurements were correct - the Antarctic ozone hole was unambiguously 

identified 7. 
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By proving that CFC's in the atmosphere were directly responsible for the decrease in 

stratospheric ozone, the scientific cominunity forced the world's governments to introduce 

suitable legislation and the Montreal protocol of 1987, with subsequent amendments, saw the 

(almost) complete ban of CFC. production and emission by 1995. To date, only six states (the 

most well known being Iraq) are not ratified to the Montreal Protocol, all of which do not eniit 

significant amounts of ozone depleting substances. Hence, within two decades, the application 

of the research of atmospheric scientists had led to the hypothesis, observation, and (partial) 

solution to the depletion of stratospheric ozone. Since the implementation of the Montreal 

protocol, stratospheric levels of ozone are no longer decreasing and it is thought that a complete 

recovery may be realised within several decades 8. Three scientists were awarded the 1995 

Nobel Prize for chemistry for their contribution towards our understanding of stratospheric 

ozone depletion. Hence the ozone hole is an example of scientific research that has led to the 

satisfaction of the human ego, and unarguable benefit to the health of life on Earth. 

In the current age of global climate change, atmospheric research has never been more 

relevant to the benefits of human civilisation. 'Me British Prime Minister, Tony Blair (1946 - 

present) said in September 2005 that climate change was, "the world's greatest environmental 

challenge', and, "so far reaching in its'impact and irreversibility in its destructive power, that it 

alters radically human existence'9. Sadly, however, the problem of global warming is an 

entirely different beast to that of the ozone hole. The restriction of CFC's had no major impact 

on the economies of the world's super powers, whereas the restricted use of fossil fuels clearly 

does. The policies of governments (which largely reflect the desires, and ignorance, of their 

inhabitants) can only change by the provision of research-driven political pressure resulting 
from incontrovertible evidence of the devastating effects of climate change, coupled with a 

greater public awareness. 
Although my research is a tiny piece of the atmospheric jigsaw (like the note of an 

opera) 1, therefore, feel justified in the essence of my perseverance, and am proud that by the 

application of my thought and will, may help to create a better future for our children. 
I would like to end this preface with a quote from the Dutch Philosopher, Arthur 

Schopenhauer (1788 - 1860) 

"Without books the development of civilisailon would have been impossible. They are 
the engines of change, windows on the world, "lighthouses" as the poet said "erected 
in the sea of time". 77wy are companions, teachers, magicians, banker of the treasures 
of the mind Books are humanity in print. "10 
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Abstract 

'Me impact of halogen chemistry on important atmospheric processes such as ozone 
depletion and (potentially) climate regulation is becoming increasingly apparent. Yet only the 

most fundamental atmospheric chernistry of halogen species is included in global tropospheric 

models. Spectroscopic measurements of the concentration of halogen species within the Earth's 

atmosphere, and the accurate determination of kinetic information regarding the rates and 

mechanisms of chemical processes in the laboratory, greatly facilitate the evolution of our 

quantitative understanding of the atmospheric role of halogen species, ultimately leading to their 
inclusion in atmospheric chemistry models. 

-. 'Me research presented in this thesis addresses previously un-investigated areas (or 

areas requiring further elucidation) of iodine chemistry. Specifically, Chapter Three uses new 

spectroscopic data to reassess the viability of a laser-induced fluorescence (LIF) instrument for 

the detection of ambient iodine monoxide radicals (10), a key species in the atmospheric 

chemistry of iodine, which may help to enhance our understanding of important atmospheric 

processes via its spatially resolved detection. Chapter Four presents a kinetic and spectroscopic 
investigation into the mechanism and products of the reaction of CH21 radicals with 02, which 
has potential implications for particle formation in the marine boundary layer (MBL). The 

reaction of Cl atoms with alkyl iodides, CH3I and CH212, has been studied in detail by the 
detection of adducts formed in these reactions, which have been observed by LIF for the first 

time, and is the subject of Chapter Five. As part of the course of this PhD, the reaction kinetics 

of the reaction of 10 with dimethyl sulphide (DMS) was investigated. Ile results obtained have 
led to a re-evaluation of the atmospheric significance of this reaction. 

The data obtained assist the development of our knowledge of the atmospheric 
chernistry of iodine species and, at a more fundamental level, the electronic structure and 

physical processes of gas phase species. 
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Chapter One: An introduction to the chemical role of halogen species in 

the Earth's atmosphere 

'Me atmospheric role of iodine species is often coupled, and analogous, to that of chlorine 

and bromine compounds, thus a generic review of atmospheric halogen chemistry is required in 

order to appreciate its significance. Further, as the impact of halogen chemistry in the Earth's 

atmosphere largely resides through the interaction of these species with more fundamental 

chemical processes, a basic introduction to the chemistry of the troposphere and stratosphere is 

also necessary in order to understand the atmospheric importance of iodine species. For a more 

complete description of the composition, cheinical behaviour and climatic processes of the 

atmosphere the reader is directed to several accessible and comprehensive texts 1-5 
. 

1.1 Fundamental Chemical Processes of the Troposphere 

The lower region of the Earth's atmosphere, the troposphere, which extends from the 

Earth's surface to an altitude of approximately 10 krn at middle and high latitudes, and around 
17 krn at the tropics, is a wefl-mixed4 convective region in which the most complex atmospheric 

chemistry occurs. The convective nature of the troposphere arises from its negative temperature 

gradient, changing from - 300 K (- 27 *Q at ground level to - 220 K (- -53 'C) at the 

tropopause - the region separating the troposphere and stratosphere - as a result of its heating 

being predominantly controlled by the absorption of ultra-violet (UV) radiation by the Earth's 

surface. Although the concentrations of the bulk constituents of the atmosphere (N2.02, Ar and 
H20), comprising more than 99.9 % of its volume, are determined by natural processes that 

have been occurring for hundreds of millions of years, the concentration of trace constituents, 

such as CO, C02, C14 NO., (NO + N02) and 03, can be altered by anthropogenic (human) 

activity and result in dramatic climatic and chemical change of the troposphere. The trace 

chemical constituents of the atmosphere are generally emitted from the Earth's surface by a 

variety of biogenic and anthropogenic sources. Man's contribution to the accelerated 

greenhouse effect (global warning), mainly by the emission Of C02 from the burning of fossil 

fuels, is an inescapable issue of the modern age, but less well illuminated are the effects of 

anthropogenic and biogenic emissions on the chemical nature of the atmosphere. 
'Me chemistry of the troposphere is largely defined by its oxidising capacity, or the rate of 

production of ozone (03). Despite being harmful to plant and animal life, and acting as a 

greenhouse gas, tropospheric ozone is the precursor to the hydroxyl radical (OH), which acts as 
the -detergent" of the atmosphere by initiating the removal of most trace constituents emitted 
from the Earth's surface by oxidation. Paradoxically, therefore, the presence Of 03 in the 
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troposphere is of both benefit and detriment to life on Earth. In the troposphere, 03 is 

photolysed. by solar radiation, producing electronically excited oxygen atorns, 0 (11)), and 

molecular oxygen (02). The 0 ('D) atoms can then react with water vapour (H20), producing 

two OH radicals, or be quenched to the groundstate configuration, 0 (3P), resulting in the 

regeneration Of 03 

03 + hv (X < 340 mn) -0 (lD) + 02 (P1) 

0 (D) + N2 (or Oi) --+ 0 (P) 
+ Ni(or 02) (R1) 

0 CD) + H20 
--+ 2 OH (R2) 

0 (3P) + 02 +M' 03+M (R3) 

In the background troposphere (i. e. regions of insignificant anthropogenic ernissions), 
OH radicals react with carbon rnonoxide (CO) and methane (014), resulting in the destruction 

Of 03 (and the reduction of the oxidising capacity of the troposphere) in the absence of NO. 

OH + CO H+ C02 

H+02+M H02+M 

H02+ 03 -"' OH +2 02 

Net: CO + 03 - C02 + 02 

OH + C114 - 

CH3+0ý+M 

CH302 + HO2 

CH302H + OH - 

Net: CH4 + OH + HO2 --* 

CH3 + H20 

CH302 +M 

CH302H + 02 

CH20 + H20 + OH 

CH20 +2 H20 

(R4) 

(R5) 

(R6) 

(R7) 

(R8) 

(R9) 

(RIO) 

Or the net production Of 03 (and increase in the oxidising capacity of the atrmsphere) in the 

presence of NO,, 

OH + Co --"' H+ C02 (R4) 
H+02+M H02+M (R5) 
NO + H02 N02 + OH (Rll) 

N02 + hv Q% < 420 mn) NO +0 eP) (P2) 
Oep)+02+M 03+M (R3) 
Net: CO+202 C02+03 
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- OH + C114 - H20 + CH3 (R7) 

CH3 + 02 +M CH302 +M (R8) 
CH302 + NO N02 + CH30 (R12) 

CH30 + 02 CH20 + H02 (R13) 
H02 + NO N02 + OH (Rll) 

2 (N02 + hV) 2 (NO +0 3p) (P2) 

2(03P+02+M) --* 
2(03+M) (R3) 

Net: CH4 +4 02 --1' CH20 + H20 +2 03 

The photolysis of N02. P2, is the predominant (and sole anthropogeniC) Source Of 03 in 

the troposphere. In the background troposphere, - 80 % of the OH radicals react with CO, and 

it is found that an NO nixing ratio of -3-8 pptv is required for a net balance of tropospheric 

Tbus, it is clear that by altering the concentrations of NO.,, and organic compounds erritted 

into the atmosphere, man can have a complex influence on the oxidising capacity of the 

troposphere. 

1.2 Fundamental Chemical Processes of the Stratosphere 

The stratosphere is the region of the Earth's atmosphere directly above the troposphere, and 

extends to an altitude of - 50 kni The temperature profile of the stratosphere is opposite to that 

of the troposphere, increasing with altitude, due to the absorption of UV and infra-red (IR) 

radiation by 02 and 03- The increase in temperature with altitude in the stratosphere hinders 

vertical nixing, and results in the accumulation of 03 (the ozone layer). Ozone has a very 

different role in the stratosphere, than the troposphere, as it absorbs harmful UV-C (A = 200 - 

280 nm) and UV-B (A = 280 - 315 mu) radiation. UV-B radiation is known to have a wide 

range of detrimental effects on plant and animal health7, and the presence of stratospheric ozone 

- the sunscreen of the lower atmosphere - is thus critical to the well-being of life on Earth. 

Stratospheric ozone is formed by the photolysis of molecular oxygen 

02+hv - 20 (P3) 

2(0+02+M) - 2(03+W (R3) 

Net: 302+hV --+ 
203 

However, in the absence of other trace constituents, the stratospheric concentration of 

03 is limited by two further processes: the photOlySiS Of 03, and the reaction of 0 atorns with 03 
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03 + hv -0+ 02 (N) 
0+03 - 202 (R14) 

Processes P3, R3, P4 and R14 are collectively known as the odd-oxygen cycle, or the 

Chapman mechanism and result in the establishment of a steady-state 03 concentration, which 

can be expressed by E. 1.18 

[o 
F3F02T IkA021M] 

R 1.1 I k14 1 J4 

Where J3 and J4 are the photolysis rates of 02 and 03 respectively, and k3 and k14 are the rate 

coefficients for reactions R3 and R14. 

I'lle Chapman mechanism is found to significantly overestirmte the concentration of 

stratospheric 03, however, as in the presence of other trace constituents catalytic 03 destruction 

can occur. For example, nitrous oxide (N20), enitted at the Earth's surface and inert in the 

troposphere, is transported to the stratosphere where it reacts with 0 (11)), generating NO 

N20 +0 'D --* 2 NO (R15) 

Nitric"oxide (NO) interferes in the odd-oxygen cycle, resulting in a net depletion of 
stratospheric 03 

NO + 03 N02 + 02 (RI6) 

03+hv 0+02 (M) 
N02+0 NO + 02 (R17) 

Net: 2 03 + hv --+ 3 02 

Other species that can result in the catalytic destruction of stratospheric 03 are, OH 
(derived from the photolysis of H20 vapour, which is predorninantly produced by the oxidation 
of stratospheric C114), and chlorine and brornine atoms (produced by the photolysis of 
halogenated organic species persisting into the stratosphere). 

Clearly, therefore, the ernission of stable molecules from the Earth's surface can have 

significant effects on the levels of stratospheric ozone, and serious implications for the Earth's 

climate and life-systems. 
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1.3 Atmospheric Chemistry of Halogen Species 

As highlighted by the example of the Antarctic ozone hole, the accurate prediction of 

atmospheric change is inextricably linked to all facets of atmospheric science. Successful 

modeling requires the precise and accurate measurement - of the concentration of trace 

constituents of the atmosphere, the accurate estimation of source strengths, ý and a quantitative 

understanding of the rates and mechanisms of chemical processes in the atmosphere. Although 

a topic of enthusiastic and ever-extending research, tropospheric halogen chemistry is in its 

relative infancy, and only understood at a semi-quantitative level. For that reason, halogen 

chemistry is almost entirely omitted from global tropospheric models. As the atmospheric 

significance of halogen chemistry becomes more evident, therefore, so does the need for the 

accurate quantification of its role. The aim of this central section of the introduction is to detail 

the known and hypothesised roles of halogen species in the atmosphere (with particular 

emphasis on the troposphere), highlighting the most topical areas of research at the time of 

writing. 

1-3.1 Sources of Halogen Species in the Atmosphere 
I 

Halogen species enter the atmosphere in both inorganic and organic form. By weight, 

chlorine, bromine and iodine contribute - 58.2,0.2 and 0.0002 % respectivelyý to the total 

composition of sea salt, and substantial amounts of chlorine (and bromine) therefore enter the 

atmosphere in the form of sea-salt aerosol particles, generated by wave actiorL As much as 
6000 Tg Cl yfl (I Tg = 1012 g) may enter the atmosphere in the form of sea-salt aerosol, 
although - 90 % of this probably returns to the Earth's surface via precipitation and dry 
depositioný However, it is now known. that several reactions, involving heterogeneous 

chemistry, can result in the liberation of gas phase inorganic halogen species from aerosols to 
the atmosphere. For example, the reaction of acids with Na&11 

HN03(s) + NaCk. ) NaNO3(, ) + HCý,, ) 
H2SO4(g) +2 NaCk. ) 

Na2SO4(, ) +2 HCI 

and the reaction of nitrogen oxide (N., Oy) species with NaX (X = Cl or Br)11-15 

2 N02(s) + NaY. (, ) --+ 
N205(g) + NaY. (. ) - 

N03(g) + NaY, (, ) - 

NaNO3(, ) + XNO(g) 

NaNO3(, ) + XN02(s) 

NaNO3(, ) +X 

(R18) 

(R19) 

fDl)o) 
%, Z" 

(R21) 

(R22) 

Is 



Inorganic halogen species are also released by reaction Of 03 169 OH17 
. and H02's with NaCl, and 

from the reactions Of 03 19,20 and 01120,21 with halide ions (Cl- and Br) at the air-water interface 

of aerosol particles. Heterogeneous halogen activation is discussed in greater detail in section 

1.3.3.21. 

Hydrochloric acid, HCI, is also emitted into the atmosphere from volcanic eruptionsý 

and from anthropogenic sources, such as emissions from solid rocket motors3, and molecular 

chlorine, C12, is thought to have substantial industrial sources2ý such as emissions from biocides 

in cooling towers. However, natural oceanic sources are by far the predominant source of 
inorganic halogen species in the atmosphere. 

Sources of inorganic iodine species are not well established. Garland and LUrtiS22 

proposed that 12 can be liberated by the uptake of 03 to the surface of the oceans, and could 

provide a significant flux to the total atmospheric loading of iodine species 

2 r(. q) + 03(g) + 2W(4 - lAs) +%+ H20 (R23) 

and Miyake and Tsunogai23 predicted that 12 can be liberated from the ocean by the 

photochemical oxidation of iodide in sea water 

2 F(4 + 0-5 02 + H20 + hv - 12(s) +2 OIF(4, (R24) 

I Recently, it has been found that biogenic sources of inorganic 12 eXiSt24-26. McFiggans 

et. aL24 observed that Laminaria macroalgae (seaweed) generate 12, under conditions of 

oxidative stress, that can be'emitted to the atmosphere when the seaweed is exposed at low 

ti&2ý0. - Further, Amachi et. aL 26 have found that iodide-oxidising bacteria found in natural gas 
brine waters and seawater emit 12 in large quantities, and could contribute significantly to the 

atmospheric iodine cycle. 

With respect to the enission of organic halogen species, natural sources are also 

predominant. Nearly 4000 organohalogen compounds are known to be produced naturally by a 
diversity of sources: ranging from volcanoes to humans2s, although only the lighter, more 

volatile, of these compounds can be emitted into the atmosphere. 
Over the past few decades, significant anthropogenic sources of organic chlorine 

compounds have included CFC's, e. g. CFC-11 (CFC13) and CFC-12 (CF202), HCFC's 

(hydrochlorofluorocarbons - initial CFC replacements), and CC14 and CH3CC]3, which have 

been used as non-toxic, non-flanunable reffigerants and solvents. Under the Montreal 

Protocol", however, the production and emission of these compounds has been phased out in 

the developed world, although emissions of the current inventories are still allowed in 

developing countries. Methyl chloride (CH3CI) is also emitted in industrial processes but the 

6 



major source of atmospheric C1130 is from biomass burning (i. e. the anthropogenic and natural 

burning of organic matter) and other biogenic sourceS3. 

Anthropogenic bromine emissions are predorninantly in the form of, Halons - the 

bromine analogues of the CFC's, e. g. H-1211 (CBrClF2), which are used as fire extinguishing 

gases, and methyl bromide (CH313r). Tlie production and emission of Halons has also been 

phased out in the developed countries under the Montreal Protocol, although the developing 

world still ernits large quantities. The Peoples Republic of China, for example, is responsible 

for - 90 % of the global emission of H-121130. In addition to emissions associated with 

biornass burning, soil fumigation and automobile emiSSionS3 from the developing world, 

anthropogenic emissions of CH313r continue to be released from some developed countries 31 
, 

despite the passing of the Montreal Protocol's phase-out target last year. , However, biogenic 
2,33 34 

and natural emissions of CH313r: from macroalgae3 , marine diatoms (phytoplankton) , 
fungi35, rice paddieS36 , the photolysis of surface snow37, and volcanoeS38, account for the 

majority of atinospheric methyl bromide3. 

Although there are no known major industrial sources of iodine to the atmosphere, very 

high methyl iodide concentrations (up to 3800 ppt, I ppt = 2.5 x IW molecule Clyf3 , at ground- 

level) have been observed in industrial locations, possibly originating from the combustion of 

coal and petroleumý9. 
Biogenic, emissions of the niono-substituted methyl halides are predominantly attributed 

to biological processes involving marine macroalga e32.33. Wuosmaa and Hage ?2 found that 

methyl transferase enzymes, present in samples of certain fungi, algae and plant, efficiently 

catalyse the niethylation of halide ions. A large variety of. di- and tti-substituted organic 
halogen species (e. g. CH212, CH2Br2, CH2lBr, CH21CI, CHBr2CI, CHBr3) have now been 

observed in the atmospher640-48, however, and these compounds are thought to be produced by a 

different mochanism in macroalgae, involving peroxidase enzymes, acting under cell defence in 

conditions of oxidative stressý9-50. The peroxidase enzymes catalyse the reaction of halide ions 

with hydrogen peroxide (H202), resulting in the production of hypohalous acids, HOX (X = Cl, 

Br, 1). The HOX can then react with organic matter, producing a wide range of substituted 

halocarbons, although it is not known whether these halocarbons are predominantly produced 

, 52 inside the algal cell or in the surrounding seawater5l . When the macroalgae are exposed to the 

sun-fit atmosphere, at low-tide, the halogen compounds can be emitted directly into the 

atmosphere. Recent studies 53-55 show that CH212 is not emitted directly into the atmosphere 

from the open-oceans, as its photolysis lifetime in the surface water is too short, but may be 

converted to CHACI, which has a sufficiently long, photolysis lifetime for emission to the 

atmosphere. 

Ilere is growing evidence to suggest that phytoplankton and diatoms 34,41.56 may also be 

responsible for significant production of various organoiodides and bromides, and as these 



species cover - 99.5 % of the Earth's oceans, may provide a prolific liberation of these 

compounds into the marine atmosphere. A recent stud? 7 found evidence for emissions of 
CHC13 and CHBr3 from a peatland source in the West coast of Ireland. 

Finally, it is thought that organic halogen species can be released into the atmosphere 
from the photolysis of compounds within surface snow37, and from volcanic cmissionsýs. 
Anthropogenic emissions of organic halogen species (other than those discussed above) are 

thought to be small, although some industrial processes, such as the desalination of sea-water, 

are known to release di-and tri-substituted halogen compounds into the atmosphere5s. 
Once emitted into the atmosphere, halogen species are removed by photolysis, and 

reaction with OH and Cl atoms, initiating con4)lex chemical mechanisms. As most chlorine 

containing compounds have strong bonds, they are relatively inert to photolysis in the 

troposphere (with the notable exception of C12) and may be transported to the stratosphere, 
initiating catalytic ozone destruction (see next section), whereas the majority of brominated 

compounds (with the exception of Halons and CH3130 are removed in the troposphere. Due to 

their weak, photolabile C-I bonds, all iodocarbons are essentially removed by photolysis in the 

troposphere. There is some speculation as to the possible role of iodine species in stratospheric 
03 depletion, however". 

As a result of their short atmospheric lifetimes and most prolific sources being found in 

marine environments, the tropospheric chemistry of halogen species has predominantly been 

associated with the marine boundary layer (MBL). However, as halogen species have now been 
detected- all over the Earth's marine enviromnenteo-" (e. g. the Arctic, Antarctic, Atlantic, 
Pacific, tropical and coastal regions) and their sources (both anthropogenic and biogenic) are 
still not well identified or quantified, it may well be that halogens are ubiquitous species in the 
Earth's lower atmosphere, and are important for the natural regulation of climate, for 

example'60. 

I-ý Table 1.1-1 lists the chemical formula, typical MBL concentration range, estimated 
source strength and atmospheric lifetime for a number of halogen species emitted into the 

atmosphere. 
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Atmospheric Species MBL Conc. range 

ppt 

CFC13 (CFC-1 1) 
CF202 (CFC-12) 

CHF2CI (HCFC-22) 

CBrCIF2 (H-121 1) 

CH30 
C2H5CI 

CH3Br 

C2H5Br 
CH31 

C2H51 

CH202 

CH21CI 

CH2Br2 

CH2lBr 
CH212 

CHC13 

CHBrC12 

CllBr2CI 

CHBr3 

-262 
61 

543 62b 

140- 63b 

4 .0 
30c 

58543 

3.3 43 

9.3-875 42' 48 

0.09 - 865 4248 

0.12 -183047-48 

< 0.02 - 96.9 42ý48 

9-3964 

0.004 - 12.4 42'48 

0.28 - 262 44'48 

< 0.02 _ 9.9 42,48 

< 0.02 - 19.8 47,48 

18.5-4065 

0.1-24648 

0.3 - 128.2 4248 

1.9 - 393 42-48 

12 <3-9366 

Enfission Rate 

G (109) g yel 

-76.4 
61 a 

-134 
62b 

275 63b 

12.4 30 e 

2800 -4600 
67 

11010 

1000-2000 39 

70068 

10410 

350-60065 

7.910 
1810 

37910 

_ 1000 

Atmospheric 

lifetime 

52 yrs 
61 

100 yrs 
62 

12 yrs 
63 

17 yrs 
30 

- 1.5 yrs 
3 

40 days 64 

-, 292 days 69 

3-5 days 42 

3-5 days 42 

73 - 146 days 70 

Several bn. 42 

53 - 183 dayS 71 
42 

<1 hr. 

-5 ninS. 42 

183 days 65 

40 days 
7Z 

35 days72 
22 days7l 
-8S73 

Table 1.1-1 - Reported MBL concentration range, source strength, and atmospheric 
lifetime of various organohalogen compounds. The values given in b 

and ' are for the 
d 

years of 1999,2000 and 1997 respectively. The source strength given for 12, P is the 
combined estimate from references 22,23 and 66. 

It should be noted that the wide range (and ornission) of some values for the 

atmospheric source strength and lifetime of individual species listed in Table 1.1, largely 

reflects the current lack of information with respect to atmospheric halogen chemistry. Further, 

the wide concentration ranges presented are indicative of the complex nature of the sources and 

sinks of atmospheric halogen species, and their regional dependence. Improving the accuracy 

and precision of these data is of integral importance to our quantitative understanding of the role 

of halogen species within the troposphere. 
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1.3., -2 stratospheric Chemistry of the Halogens 

Due to their lack of sinks in the troposphere, long lived organochlorine and 

organobromine compounds are transported to the stratosphere where they are photolysed4 

releasing reactive halogen atorns. For example, the photolytically initiated destruction of 

CFC_l 12 

CFC13 + hv --* -, - 
C02 + HF +3 Cl (or 3 CIO) (P5) 

Chlorine atoms and chlorine monoxide radicals (CIO) can catalytically destroy stratospheric 03 

via the following cycles 

Cl + 03 CIO + 02 (R25) 

03+hv 0+02 (P4) 
CIO+O Cl+O2 (R26) 

Net: 2 03 + hv 3 02 

CIO + CIO +M C1202 +M (R27) 
C1202 + hv 2 Cl + 02 (P6) 

2 (Cl + 03) 2 (CIO + OD =5) 

Net: 2 03 + hv 302 

Although analogous cycles exist for Br and BrO, the concentration of bromine species 

within the stratosphere is relatively small 64, and catalytic 03 destruction by bromine-onlY 

chemistry is inefficient. The chlorine and bromine cycles may be coupled, however, via the 

reaction of CIO and BrO 

CIO + BrO Br + OCIO W8a) 

Br + CIOO W8b) 

BrCl + 02 w8c) 
OCIO + hv 0+ CIO (P7) 

Cloo +M --- CI+O2+M (R29) 

BrCl + hv -- Br+Cl (pg) 

The halogen monoxides result in further 03 loss by coupling to the HO. (OH + H02) 

cycle 
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XO + H02 HOX + 02 (R30) 

HOX + hv OH+X (PIO) 

OH+03 H02 + 02 (R31) 
X+ 03 XO+02 (R32), 

Net: 203+hv 302 

where, X= Cl or Br. 

Mie reaction of halogen monoxides with CH302 may also be importanJ4. As the 

concentration of atomic oxygen is relatively small in the lower stratosphere (- 15 - 25 km), 03 

destruction is primarily driven by the cross-reactions of CIO, BrO and HO 2 75, whereas the 
76 

contribution from halogen atoms (R25, P4, R26) becomes more significant at higher altitudes 

The extent of halogen-catalysed stratospheric 03 depletion is restricted by reactions that 

lock up the active chlorine and bromine in "reservoir" species. For example 

Cl + C114 - HCI + CH3 (R33) 

Br + H02 - HBr + 02 (R34) 

XO + N02 - XON02 (R35) 

It should be noted, however, that HCI, HBr and the halogen nitrates, XON02, are only 

temporary reservoirs, as the halogens can be released in their active forms by photolysis or 

reaction. For example 

CION02 + hv - Cl + NO3 (PIO) 

HCI + OH --+ Cl + H20 (R36) 

Atom-for-atom, bromine is much more effective than chlorine in 03 destruction as its 

reservoir species are relatively unstable, thus bromine spends more time in its catalytically 

active forms. As no stratospheric iodine reservoirs are known to exist, a total concentration of 

stratospheric iodine species as low as I ppt could make a major contribution to stratospheric 03 

depletion, at altitudes below ~ 20 krn, through the cross reactions of 10 with BrO and CIO 59. 

In addition to photolysis, the halogen nitrates can undergo rapid heterogeneous 

reactions, releasing catalytically active halogen species. These processes can be very important 

in the stratosphere and result in dramatic 03 loss, such as the Antarctic ozone hole, by 

effectively removing all halogen reservoir species. In the Antarctic winter (June - August) the 

temperature of the upper stratosphere drops rapidly due to the lack of sunlight. The cool air 
descends creating a column of cold air with temperatures as low as - 185 K. The temperature 
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gradient between the Antarctic and mid-latitude air masses results in the generation of a vortex. 77 

at the edge of the Antarctic atmosphere, where wind speeds of more than 200 mph isolate the air 

within the vortex, prohibiting latitudinal mixing of Antarctic air. 'Me low temperatures result in 

the dehydration and denitrification of the Antarctic air as water and nitric acid condense on 

sulphate particles forming PSC's (polar stratospheric clouds), which comprise of both solid and 

liquid particles. Hydrochloric acid is then adsorbed onto the surface of the PSC particles, where 
80 it may react with gas phase halogen nitrates78- , generating molecular halogen species in the gas 

phase and nitric acid, which is retained in the PSC due to its low vapour pressure at 

stratospheric temperatures. 

XON02(s) + HCýpsc) ---+ XCýg) + HN03(psc) (R37) 

Ilese reactions are very important for two reasons. First, that halogens are released in 

a catalytically active form (02 and BrCl are rapidly photolysed to halogen atoms), and secondly 

that the retention of HN03 on the PSC results in the denitrification of the Antarctic stratosphere, 

idýibiting the reformation of reservoir species. 
Additional reactionS80-84 also occur on the surface of PSC's, generating catalytically 

active halogen species and denitrifying the atmosphere 

N205(g) + H20(PSC) 2 HNOmc) (R38) 

XON02(s) + H20(psc) HOX(g) + HN03(psc). (R39) 

HOY,, (g)-+HCI(psc) 
XCýs)+H20(PSC) (R40) 

Hence, the concentration of XCI (X = Cl, Br) builds up in the Antarctic vortex over 

winter, and results in the almost complete annihilation of ozone upon the turn of spring (mid - 
late Septen-ber) when the returning sunlight generates high concentrations of halogen atorns, 
initiating an extreme 03 depletion event through the cycles outlined above. The formation of 

the Antarctic ozone hole is thought to be predominantly due to the self-reaction of CIO (R27), 

01ý5. accounting for approximately 75 % of the observed 03 depleti . _. 
Lesser contributions are 

attributed to the reactions of CIO + BrO (- 15 %), CIO +0 (- 5 %) and CIO + H02 (- 5 01b) 85. 

As spring progresses, the vortex collapses and the Antarctic stratosphere begins to 

warm, resulting in the evaporation of PSC's and the re-nitrification of the atmosphere. Thus the 

equilibrium between halogens in their catalytically active and reservoir forms is re-established, 
leading to repair of the Antarctic ozone. From measuring the concentration of CFC's in the 

atmosphere, the Montreal Protocol can be seen to have taken effect 64,86 
, although due to the 

long atmospheric lifetime of some of the CFC's (50 - 100) years, the stratospheric 
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concentration of chlorine compounds will not be low enough to prevent the fori-nation of the 

. 17 
Antarctic ozone hole in the austral spring for several decades6' 

. 
Although halo ge n- catalysed stratospheric ozone destruction also occurs in the Arctic 

polar vortex "'9. an analogous Arctic ozone hole is not formed to the same extent. 'niis is 

primarily due to the higher temperatures of the Arctic stratosphere (- 10 K warmer than the 

Antarctic stratosphere). which inhibit PSC formation and results in a less stable polar vortex, 

90-92 
allowing a greater extent of latitudinal mixing of stratospheric air masses 

1.3.3 Tropospheric Chemistry of the Halogens 

Fig. 1.3-1 outlines the chen-iical role of halogen species within the MBL. As can be 

seen. the chemistry is complex. interlinked. and involves both hon-iogeneous (gas phase) and 

heterogeneous (aerosol) processes. The following sub-sections discuss the most important of 

these processes. 

/ 

'IONO-. *o0 210 N D. 

*0* 

0 

-0 ---------------- 

Fig. 1.3-1 - Schematic diagram of halogen chemistry within the MBL. The figure was 
kindly pro% ided by; Prof. I N1. C. Plane from the University of Leeds. 
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1.3.3.1 Gas Phase Cherrdstry 

1.3.3.1.1 Halogens and Ozone 

Similarly to in the stratosphere, the tropospheric gas phase chemistry of the halogens is 

foremost associated with 03- Paradoxically, however, chlorine chemistry is generally associated 

with 03 formation in the troposphere. Chlorine atoms, once generated by the photolysis of the 

shorter-lived halogen species (notably, C12, BrCI and ICI), have one of two fates in the 

troposphere: i) reaction with 03 (R25), generating CIO; or ii) reaction with organic species, such 

as C114, generating alkyl radicals and HCI 

CI + 014 CH3 + HCI (R41) 

The organic radicals fomied in R41, and analogous reactions, will be consunrd by 02 

producing peroxy species (RO2), which in the presence of NO, will partake in reactions R1 1- 

R13, P2 and R3, generating 03- It is found that one molecule Of C12 can result in the formation 

of 5- 10 molecules Of 03 under certain conditions93 '94. However, note that the formation of 
I ICI, a stable reservoir species, removes the active form of chlorine from the troposphere: the 

chlorine initiated production Of 03 is thus a local phenomenon. Nevertheless, chlorine 

chemistry has been shown to increase 03 levels in urban environments by more than 100 % to 

very high concentrations of > 1()() ppb 12,93,94. Furthermore, recent observations of high levels of 

molecular chlorine in. coastal regionS95'96, suggest that chlorine chemistry can dominate the 

oxidation of organic species within the early sunlit hours, and increase 03 levels in the marine 

atmosphere by as much as 12 ppb 12 
. These studies suggest that Cl atom concentrations may 

reach in excess of 105 molecule Cnf3 in the MBL and, as the rate coefficients for reaction of CI 

atoms with organic species are typically 10 - 100 times higher than the corresponding OH 

reactions? 7-104 (and the concentration of OH in the MBL is typically. 106 molecule ciyf 3), chlorine 

atoms may be the primary oxidant in the MBL (and urban environments) under localised 

conditions. A recent study has also predicted that Cl atoms could be responsible for up to 50 % 
105 of C114 oxidation in some regions of the free troposphere , and another study found that 

hydrocarbon oxidation in the polar troposphere was dominated by chlorine chemistry at polar 

sunrise'06. In order to assess the frequency and global significance of such chemistry, more 

complete and accurate measurements of CI atoms, and/or their precursors, are necessary. The 

reactions of bromine and iodine atoms, with most organic compounds are too slow to compete 

with their oxidation by 011 and Cl, although Br atoms may be important for the oxidation of 

some unsaturated hydrocarbons, such as ethyne'06. 
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Although the photolysis of organoiodine species is rapid in the troposphere, it has been 
07 

proposed that their reaction with CI atoms can be a competitive removal process' . An 

investigation into the reaction kinetics, products, and mechanism of the reaction of CI atoms 

with CH3I and CH212 is the focus of Chapter Five of this thesis. 
As previously stated, Cl atoms may also react with 03 in the troposphere, generating 

CIO. However, the self-reaction of CIO, R27, is of little atmospheric significance in the 

troposphere. This is because, under tropospheric conditions, the CIO dimer, C1202, 

predominantly undergoes thermal decomposition to 2 C10108 , rather than photolysis to 2 Cl + 02 

as in the stratosphere'09. 'Mus, the reformation of CIO means that catalytic 03 destruction does 

not occur. Further, the rate coefficient of the CIO self-reaction is relatively small under 

tropospheric conditions, as is the concentration of Cl atoms in the MBL. However, CIO 

concentrations of up to 25.3 ppb have been measured in volcanic plumes"o and, under these 

conditions, localised 03 depletion is observed. Chlorine-catalysed 03 destruction can occur 
from the reaction of CIO with H02111, BrO112,113 or 10114,115 as these reactions can result in the 

release of active fonrns of the halogens, and have higher rate coefficients than the CIO self- 

reaction. For example 

CIO + 10 1+ OCIO (R42a) 
I+ Cl + 02 (R42b) 
ICI + 02 (R42c) 

Under tropospheric conditions the rate coefficient for R42 is - 20 times greater than that 

of the CIO self-reaction. ý However, it should be noted that I+ OCIO is. the major reaction 
channel of R42 (accounting for 55 % of the products)"5, which does not lead to a net 03 

depletion as OCIO is photolysed to 0+ C10116, thus regenerating 03 via R3. 

Bromine and iodine atonis, generated by the photolysis of molecular halogens, 

organobromines and organoiodines in the troposphere, principally react with 03 to produce 
halogen monoxide radicals, XO. (It has also been proposed that the reaction of CH21, produced 
from the photolysis of CH212, with 02 directly generates 10 radicals' 17 

.A detailed investigation 

into the products of this reaction is the subject of Chapter Four of this thesis). The halogen 

monoxides may be photolysed, reforming X+ 03, or lead to catalytic 03 depletion in the 

presence of other trace specieS39'118, such as H02 

XO + H02 
-: HOX + 02 , (R30) 

HOX + hv - OH +X (PIO) 
OH + 03 --* lio2 + ()ý (R31) 
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X+ 03 XO + 02 (R32) 

Net: 203+hv 302 

other halogen mnoxide radicals 

XO + YO OXO +y (R43a) 

XOYO I (R43b) 
Xy + 02 (R43c) 
X+Y+02' (R43d) 

and N02 

XO + N02 +M XON02 +M (R35) 

XON02 + hv X+N03 (Pil) 

N03 + hv NO + 02 (P12) 
X+ 03 XO + 02 (R32) 

NO + 03 N02 + 02 (RI6) 

Net: '2 (03 + hv) 302 

The reaction of the halogen monoxides with N02 leads to less efficient catalytic 03 

destruction, than indicated by the above cycle, for several reasons. ' First, 10 can react with NO, 

forming I and NO2, which leads to no net 03 destruction, and secondly that N03 can also be 

photolysed to N02'+ 0 119 (resulting in no net destruction of 03). Finally, XON02 may: 'i) be 

photolysed 'to XO + N02 (for BrON02)119; ii) 'Undergo heterogeneous uptake to aerosol 

particles; and iii) be hydrolysed on cloud and aerosol particlesjorming HOX and HN03. As 

these heterogeneous processes result in the denitrification of the troposphere (via the formation 

of nitric acid, which can be removed by precipitation) and the liberation of reactive halogen 

species from aerosol (see section 1.3.3.21), however, tropospheric 03 concentrations are 

indirectly suppressed by the alternative XON02 loss processes. At a recent field campaign in 

the dead sea 120, 'N02 concentrations were observed to decrease below the detection litnit in the 

presence of high halogen monoxide concentrations. Model studies have shown that the 

hydrolysis of BrONO2 on cloud particles can be responsible for more than 40 % of bromine- 

21 driven 03 destruction in the troposphere' , and account for up to 35 % of nitric acid 
05 formation' 

At relatively low XO (and NOO concentrations, the rmjority of halogen-catalysed 03 

destruction occurs through reaction with H02 "- The reaction of 10 with H02 is most 

16 



important, due to the relative instability of HOI,, and can result in a significant reduction of the 

1-102/011 ratio in the MBL'23,124, thus partially counteracting the reduction in the oxidising 

capacity of the troposphere arising from the destruction Of 03- It has also been proposed that the 
122 

reaction of 10 + CH302 (and other R02 species) could be of atmospheric significance 
125-127 

However, there is some uncertainty over the rate coefficient and products of this reaction 
At higher concentrations (typically greater than 2 ppt) 128,129, the self- and cross-reactions 

of BrO and 10 become the dominant halogen-catalysed 03 destruction cycles in the troposphere. 

The efficiencies of these cycles depend on: i) the concentrations of BrO and 10; and ii) the rate 

coefficients and products of reaction. For example, the BrO self-reaction progresses through 

channels R43c (- 20 clo) and R43d (-80 91b) 130 resulting in a net 03 depleting efficiency of 2 03 

--+ 3 02 (note that Br2 is readily photolysed to two Br atoms). However, the rate coefficient for 

this reaction is relatively slow, and in the presence of 10, brornine-driven destruction Of 03 Will 

progress predominantly through the 10 + BrO reaction, which has a rate coefficient - 30 times 

higher than the BrO self-reaction under tropospheric conditions, and a major product channel of 
b 131,132 

Br + 010 (65 - 93 %) . The efficiency of catalytic 03 destruction via the 10 + BrO 

reaction is less clear due to uncertainties in the atmospheric fate of 010 (see below). 

Ile 10 self-reaction is rapid and would appear to predominantly progress through 

channels R43a (- 35 %) and R43b (65 %) at tropospheric temperature and pressure 10,133,134 
.A 

major uncertainty in modeling the atmospheric chemistry of iodine species arises from the lack 

of information regarding the atmospheric fate of 010 and 1202- 1, aboratory studies have shown 
that 010 does not photolyse to 0+ 10 (in contrast to OCIO) but a small fraction may undergo 

photodissociation to I+ 02 134-l. If this is the case then the BrO + 10 and 10 self-reactions 

could result in efficient 03 destruction. However, it is thought that reaction with NO and Oll 

may also be important for the atmospheric chemistry. of 010137,138, particularly in polluted 

environments, and evidence is enrrging for rapid reactions for the self- and cross-reactions of 
10,134,139 

the iodine oxides , such as 10 + 010, and 010 + 010, which may result in the formation 

of new particles in the MBL (see section 1.3.3.2. ii) and be the major sink of 010 in the marine 
131,140 

atmosphere . The existence of such loss mechanisms for 010 in the atmosphere are 

reinforced by the detection of only small day-time concentrations of 010 (< 3 ppt) in the 
66,141 

atmosphere . In a recent study'42, however, 010 was observed at concentrations in excess 

of 10 ppt at night As 12, N03 and 10 were also observed at night, it is thought that the reaction 

Of 12 with N03 - 
143, followed by self-reaction of 10, is responsible for the night-time production 

of 010 

12 + N03 I+ IN03 (R44) 
I+ 03 10 + 02 (R32, X 
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However, the night-time ratio of 10/010 was ý observed to be much smaller than, the 

known chernistry should predict, and the authors hypothesise that there must be an unknown 

reaction that converts 10 to 010: inost probably the reaction of 10 with N03 

10 + N03 --l' 010 + N02 (R45) 

There have been no experimental investigations of R45, which clearly requires future 

efforts, and R44 has only been the subject of one experiinental investigation 143 
. 

The 10 dinier, 1202, has tentatively been detected spectroscopically in the laboratory 

133,144, although little is known about its structure, gas phase / heterogeneous chemistry or 

photochemistry. Clearly the iodine oxides require future theoretical and experimental research. 

Brornine oxide concentrations are observed to rapidly increase episodically in the Arctic 

and Antarctic troposphere at polar sunrise, resulting in the almost complete destruction of 03 for 

periods of several days "5. Ile origins of the high BrO concentrations (> 30 ppt)'46 are thought 

to be heterogeneous processes (which are described in the section 1.3.3.2. i). At the observed 

concentrations the 03 destruction is thought to progress primarily through the BrO self-reaction 

(and the CIO + BrO cross-reaction), although it has recently been shown that small amounts of 

iodine species could significantly enhance the 03 depletion 147. Further, the currently 

unpublished observation of -very high concentrations of 10 in the Antarctic boundary layer"' 

suggests that iodine chemistry may be the most important contributor to the depletion Of 03 in 

the polar boundary layer. 

Bromine oxide has been detected at high concentrations in other parts of the MBL, also 

suggesting the involvernent of heterogeneous chernistry 120-149. It is now widely believed that 

BrO rmy be a ubiquitous species in the free troposphere 150 and could account for up to 40 % of 
151 

the total 03 destruction . 
Iodine species are thought to be responsible for up to - 50 % of the total 03 destruction 

152 123,124 in the MBL 118,122, and may significantly alter the ratios of N02/NO and H02/OH 

However, there are major uncertainties with regard to the distribution of 10 in the MBL, and 

atmosphere in general. As the precursors of reactive iodine species are generally short lived and 

ernitted from localised sources, the coastal versus open-ocean concentrations of 10 are not 
known, for example. The development of an in situ detection method, whereby point 

measurements of 10 could be made at terrestrial, oceanic and airborne locations, is thus highly 

desirable, and is the motivation for the work discussed in Chapter Three of this thesis. The 

atmospheric concentration of 10 is discussed in greater detail in section 1.4. 
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1.3.3.1. ii Halogens and Dimethylsulf ide (DMS) , 

Constituting approximately half of the biogenic emission of sulphur compounds into the 

atmosphere 153 
, Dimethylsulfide (DMS) is an important species in the troposphere. The gas 

phase oxidation of DMS by species such as OH and N03 ultimately leads to the formation of 
60,154 S02 and hence 112SO4 . Sulphuric acid forms aerosol particles in the marine atmosphere, 

contributing to the formation of cloud condensation nuclei (CCN). Cloud formation plays an 

important role in the hydrological cycle and in the Earth's albedo - the fraction of solar 

radiation reflected back to space. Thus DMS has been proposed to be a natural regulator of the 

Earth's climate 155 
. Under tropospheric conditions, the reactions of OH and. N03 with DMS 

predoninantly proceed via hydrogen abstraction mechanisms 

X+ CH3SCH3 --l' I-IX + CH3SCH2 (R46a) 

The reactions can also proceed via addition nrchanisms, forniing adducts (CH3SXCH3) 

X+ CH3SCH3 +M --+ CH3SXCH3 +M--- (R46b) 

Generally, the abstraction rnechanism eventually - leads to S 02 and H2S 04 formation - 
60,154 

, and 

the addition rnechanism leads to the forination. of DMSO (CH3SOCH3)60,154 
. DMSO, and its 

derivatives, does not form new particles in the atmosphere but undergo rapid uptake to existing 

aerosols and CCN, increasing their size and rnass. The forrnation of DMSO thus leads to 

increased precipitation and decreases cloud forination in the atrnosphere, reducing the Earth's 

albedo 9,154. 

Chlorine and bromine atoms are known to react rapidly with DMS 156,157 
. The reaction 

of DMS with atomic chlorine predominantly proceeds through the addition mechanism (80 

%)158, possibly leading to the formation of DMSO under atmospheric conditions (depending on 

the extent of reaction of the C113SCICH3 adduct with 02)1m. Bromine atoms also react with 
DMS through the addition channel'57, although under atmospheric conditions the principal, fate 

of the adduct is decomposition back to reactants. A small fraction of the CH3SBrCH3 adduct is 

thought to undergo dissociation to CH3SBr + CH3 159. However, the tropospheric concentration 

of Cl and Br atoms are too low for their reaction with DMS to be of atmospheric significance - 
the reactions do not compete with the oxidation of DMS by. OH (or NOD. Their have been no 

experimental investigations of the reaction of iodine atoms with DMS. Although the rates of 

reactions involving halogen atoms generally decrease in the order Cl > Br > I, as the 

concentration of iodine atoms is relatively high in regions of the MBL, this reaction could 
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potentially be of significance (ultimately depending on the stability of the CH3SICH3 adduct) 

and should be a focus of future research. 
158-160 

The halogen rnonoxides are also known to react with DMS . It would appear that 

these reactions produce DMSO and halogen atoms via the formation of weakly bound adduCtS154 

XO + CH3SCH3 *+ CH3S(OX)CH3 -+ CH3SOCH3 +X (R47) 

T'hese reactions could be of climatic significance, therefore, due to the direct forrnation 

of DMSO (as opposed to S02 and H2SO4), if their atmospheric rates are competitive with the 

oxidation of DMS by OH (and N03). Note also that, as the reactions regenerate halogen atorns, 

they can participate in catalytic 03 destruction 

XO + DMS DMSO +X (R47) 
X+ 03 XO + 02 (R32) 

Net: DMS + 03 --+ DMSO + 02 

Due to the small rate coefficient for the reaction between CIO and DMS, and the low 

concentration of CIO in the MBL, R47 (X = CI) is not important in the atmosphere. However, 

the rate coefficient for the reaction of BrO with DMS is sufficiently large for bromine monoxide 

to be the dominant sink for DMS in the MBL, accounting for up to - 80 % of its total gas phase 

oxidation6o. Although the rate coefficient for the reaction of 10 with DMS was previously 
160 161 considered too small to be of atmospheric significance ,a recent investigation reported the 

rate coefficient to be more than an order of magnitude greater than previously assumed. A 

higher value for the rate coefficient of the reaction of 10 and DMS was also supported by 

theoretical calculations 162 
. As part of the course of this PhD, the reaction kinetics of the 10 + 

DMS reaction was investigated. It was found that the initial evaluation of the rate coefficient 

was correct, and that the reaction probably proceeds via a direct, oxygen atom transfer 

mechanism - in disagreement with the findings of the recent experimental 161 and theoretical 162 

studies. As the work has been published'63, the findings are not presented in the bulk of this 

thesis, but the published article is attached as an appendix. The results of our study have largely 

been confirmed by a further recent experimental investigationý64. The primary implication of 

this result is that 10 is not a predominant oxidant of DMS in the MBL. However, as 10 

concentrations may be much higher than previously assumed'40, the 10 + DMS reaction may 

still be of atmospheric significance under localised conditions. Another interesting inference of 
the work is the apparent reactivity trend of the halogen monoxides with DMS (BrO > 10 = CIO, 

as opposed to the expected 10 > BrO > CIO). This observed reactivity trend is probably due to 

the XO + DMS reactions proceeding through different reaction mechanisms - the formation of a 
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weakly bound adduct in the BrO + DMS reaction, but birmlecular mechanisms in the CIO and 

10 reactions with DMS. It is unclear, however, as to why a BrO-DMS adduct is apparently 

formed, but an 10-DMS adduct is not. 

1.3.3.1. iii Halogens and Mercury 

Atomic mercury (He) is emitted into the atmosphere from a variety of anthropogenic 

sources such as coal fired power stations and mining operations 165 
. Natural sources, such as 

volcanic emissions, also exist 165 
. As He is relatively insoluble in aqueous solution and inert, it 

is persistent in the atmosphere and distributed relatively uniforn-Ay'65. However, at polar 

sunrise, mercury depletion events (MDE's) are known to occur in both hemispheres 166,167 
, in 

which elemental mercury is removed from the gas phase and deposited in the surface snow in 

more soluble forms. 7he accumulation of these soluble forms of mercury has serious 

environmental implications: the contamination of food chains at times of high biological 

activity, for example. 
As polar MDE's coincide with ozone depletion events (and the concentration of He is 

- it is now known that the MDE's are a result of correlated with 03 and anti-coffelated with BrO)I 

bromine chemistry. Atoinic mercury reacts rapidly with Br atoms 
168 (and Bro)169 

Hg+Br+M HgBr+M (R48) 

Hg+BrO+M OHgBr+M (R49) 

Ile HgBr can then react further to generate a variety of species, in which rnercury is in the +2 

oxidation state 170 
, which are relatively soluble and can be deposited by dry deposition to the 

surface snow. 

HgBr +X+M- XHgBr +M . (R50) 

Here, the most likely candidates for X -are Br and BrO, and the final products of mercury 

oxidation are considered to be HOHgBr (derived from reaction of OHgBr with H02) and 
HgBr2169 . 

A recent study'69 has shown that iodine chemistry could significantly contribute to polar 
MDE's, if relatively low concentrations of iodine species are present. The enhanced mercury 

depletion is attributed to an increased Br atom production, from the reaction of 10 with BrO. 

Iodine chemistry is not. considered to directly contribute to the MDE's because HgI, formed 

from the reaction of mercury and iodine atoms, is assumed to undergo rapid dissociation before 

its reaction with other trace species can occur. This assumption is based on the results of one 
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theoretical study 171, however, and should receive experimental verificatiorL The reaction of Hg 

with 10 (and the reactions of HgBr with I and 10) would also appear to be a notable candidate 

for future research, in order to investigate any links between iodine chemistry and MDE's. 

1.3.3.2 Heterogeneous Chemistry 

1.3.3.2.1 Halogen Activation 

Inorganic, gas phase products of halogen chernistry, such as HOX and XON02 (X = Cl, 

Br, 1), are relatively soluble and may undergo uptake to aerosol particles. Although particulate 

scavenging of these species removes gas phase halogens from the atmosphere, heterogeneous 

processes occurring in the bulk, or on the surface, of aerosols can result in halogen activation - 

the liberation of more photolabile, and therefore more reactive, halogen species (e. g. Br2, BrCl, 

C12). For exaniple, the aqueous reaction of hypohalous acids with halide ions result in the 

release of molecular halogens into the gas phase 172 

HOX +Y+ H"' --+ 
H20 + XY , (R51) 

Note that, whereas, X can be Cl, Br or 1, Y is most likely to be chloride or bromide, as iodide is 

a relatively insignificant component of sea-salt. Further, as R51 is acid-catalysed, the aerosol 

particle must be of sufficiently low pH for this reaction to be important. - The reaction of Caro's 

acid (IIS057, formed by aqueous phase chemistry of sulphur species) with halide ions may also 

provide a halogen activation rnechanism72 

IIS05"+)C --* HOX+SO4 2- (R52) 

where the generated hypohalous acid will undergo additional aqueous phase chernistry to 

liberate gas phase halogen species. 
Other reactions, which may contribute to the release of particulate halogen species, 

involve the halogen nitrates (XON02)" 

XON02 + Y- XY + N03- (R53) 

XON02+H20 HOX+HN03 (R54) 

7bese processes have enhanced atrmspheric significance as they result in the denoxification. of 
the atmosphere'73 
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Heterogeneous reactions preferentially liberate bromine species from aerosol particles 

(due to the higher rates of reactions involving bromine species), although the degassing of 

chlorine species become more important as the particles are depleted of bromide 174 
. 

Measurements of the Cl/Br ratio in marine aerosol particles support this argument, where the 

ratio is found to increase with particulate age 175 

Reactions of OH and 03 with halide ions at the air-water interface of aerosol particles 

rmy be of atinospheric significance 
11,20 

OH +K- V2 C12 + Olr (R55) 
03 +X --> Ih X2 + 03- (R56) 

Halide ions have a preference for residing at the surface of aerosol particles, as opposed to the 

bulk aqueous solution, because the asymmetric arrangement of water molecules surrounding the 

halide at the interface results in the creation of a dipole that leads to attractive forces, which 

overcome the partial loss of solvation energy (compared to the bulk solution)". Thus the 

polarizability of the halide ion influences its preference for the interface, and bromide ions are 

more strongly bound at the interface than chloride ions. However, it has recently been shown 
that interface reactions are more important for chloride ions because of their enhanced rate of 

reactions as compared to the bulk solution (which is not the case for the analogous brotnide 

reactions)20 . Ile fact that the surface reactions are not acid-catalysed could have important 

implications for particulate sulphur chemistry. The particulate uptake of S02, and its oxidation 
by 03, is pH dependent - being most efficient in alkaline conditions. As S02 is oxidised to 
H2SO4, the paxticle pH becomes more acidic, and the uptake of S02 is inhibited - the uptake and 

oxidation Of S02 is self-regulating. However, the oxidation of halide ions by OH results in the 
forination of hydroxide ions, which increases the alkalinity of the particles, and thus partially 

neutralises this effect". 
Heterogeneous. chemistry is thought to be responsible for the polar ozone depletion 

events that are witnessed in the Arctic and Antarctic troposphere at polar sunrise 176,177. it is 

thought that a "see4X', such as the heterogeneous reactionOf 03 and Bf (or possibly iodine 

chemistry) 148 initiates the release of Br2(and BrCl) from aerosol particles"-20. When sunlight 

returns at polar spring, the molecular bromine is rapidly photolysed producing two Br atoms, 

which react with03forming two molecules of BrO. 'Me bromine monoxide radicals can then 

react with H02 radicals producing two HOBr imlecules. The hydrobromous acid is then 

adsorbed on the surface of particles where it results in the heterogeneous production of two 

more molecules of Br2 via R51. Ile photolysis of two. niolecules of Br2 now leads to the 

production of four bromine atoms, BrO radicals, and HOBr molecules, and so on - an 
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exponential growth in BrO concentrations results: a phenomenon known as the bromine 

explosion. The overall process can be written as 178 

BrO + 03 + Bf+ H+ surface, HOx 
-., 2 BrO + products (R57) 

It is thought that aerosol particles deposited on sea ice form the surface on which the 

heterogeneous reactions occur 179,180. Here bromide ion concentrations can be enhanced by a 
factor of three relative to the surrounding sea water", and the formation of frost flowers - 

crystalline structures that grow out of the concentrated brines on newly forming sea ice - are 
80,191 thought to play an important role, although there is some uncertainty over this issue' 

Heterogeneous chemistry is probably the most dorninant source of reactive chlorine and 
bromine compounds (and molecular halogens at night-time) at low altitudes in the MBL - the 

photolysis of organochlorines and organobromines becoming more important at higher 

altitudes 121,182 
. Although the major source of reactive iodine species in the MBL has hitherto 

been assumed to be the photolysis of organoiodines and 12'. recent observations 120 of high 10 

concentration in the Dead Sea -a region of low biological activity - suggests that significant 
heterogeneous sources of iodine species n-mst also exist (such as the photochemical liberation of 
12 from the surface water, as suggested by Nfiyake and Tsunogai2). The authors of this study 120 

suggest a new mechanism for the heterogeneous production Of 12 1 

HOI + HOX - 102-+)C+2H+ W8) 

HOI + 102- - 103- +F+ H+ (R59)' 
103- +5 IF +6 ll+ - 312+3H20 (R60) 

312(. 0 -3 12(g') (R61) 

where all reactions occur in the aqueous phase. 
Recent observations of particulate organic iodine suggest that HOI may undergo 

competitive aqueous phase reactions with organic molecules in aerosol particles, rather than 

reaction with halide ions 183 
. Further, recent measurements of much higher 171037 ratios in 

aerosol particles suggest that the previous assumption that particulate iodine is predominantly in 

the form of iodate'18,103-, IS incorrect 183,184 
. It was also previously assumed that iodate was 

relatively inert8.5 - in contrast to the heterogeneous iodate chemistry proposed by Zingler and 
Platt'20 (R5 8- R59). - 

The heterogeneous chemistry of halogen (and in particular iodine) species is only 

partially understood and a more complete knowledge of these processes in integral to our 
understanding of the atmospheric significance of halogen species. For exaniple, a recent study 
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has found that cloud particles (in which the halide content is significantly less than sea salt 

aerosols) could provide an important flux of halogen atoms into the atmosphere 182 

emphasising the potential importance of halogen species on a global basis. 

1.3.3.2. ii New Particle Formation 

A recent study in the North-east Atlantic, PARFORCE (new PARticle FORmation and 
fate in the Coastal Environment)186 reported massive aerosol formation events under conditions 

where the sampled air had passed over exposed coastal areas at low tide in daylight. Analysis 

of the size distribution of the new particles indicated that their size was less than 10 run, 

characteristic of the particles being in the nucleation mode (several - tens of molecules). 

Observations of CH212 42 and 10187 at Mace Head, Ireland (the site of the PARFORCE campaign) 

with peak concentrations at low tide, suggested that the new particle formation may be 

attributable to photolysis of CH212 and subsequent gas-phase chemistry of the iodine oxides. 

Initial laboratory investigations 188-190 showed that particle formation could indeed result 

from the photolysis of CH212 in the presence Of 03, but it was concluded that the known 

concentrations of CH212 in the - MBL were insufficient to explain the observed particle 

production, with required 10 / 010 concentrations of - 50 - 100 / 10 ppt 190 : around an order of 

magnitude higher than measured. A subsequent stud) 24 found that new particle formation also 

results from the irradiation of Laminaria macroalgae (collected from Mace Head), or the 

photolysis Of 12, in the presence Of 03, and that the particles were of sirnilar composition to the 

earlier studies'89. Further, the establishment of a direct link between seaweed biomass, and 

molecular iodine and particle concentration25,191, and the observations Of high 12 

concentrations6ý have now confirmed 12 as the most important precursor to particle formation at 
Mace Head (and possibly most coastal sites, therefore). It is worth mentioning, however, that 

high CH212 concentrations have recently been measured at a coastal site, where 12 was not 
detected above the instrumental detection limit" 

The gas-phase nrchanism to particle forrnation is unclear. Hoffinann el. al. 188, initially,, 

proposed the self-reaction of 010 as the nucleating step to particle forination 

I+ 03 10 + 02 (R32, X= 1) 

10 + 10 010 +I (R43a, X=Y= I) 

010 + 010 1204 (R62) 
1204 + nOlO I-I-0-102-11+n/2 (R63) 

However, the reaction of 10 with 010 has also been proposed as a nucleation step"' 

25 



10 + 010 1203 (R64) 

Transmission electron microscopy (TEM) indicates that the, iodine particles are probably 
24139 139 

composed Of 1205 ,, which Saunders and Plane propose to be formed by the oxidation of 

iodine oxides by 03 (R65), in competition with iodine oxide coagulation (R66) , 

1202 (+ 03) --l' 1203(+03) --"' ' 1204 (+ 03) --+ ' I205(g-) (R65) 

120, + IyOz --"' 12+yOx+z(g-s)' (R66) 

Modeling studies 138,140,192 generally reproduce experimental and field data more satisfactorily 

when R64 is considered as an additional nucleation process to the self-reaction of 010. Further 

experimental and theoretical work is required to deduce the gas-phase chenfistry responsible for 

the formation of the iodine particles. 
Other outstanding issues surrounding the formation of new particles are whether iodine 

species form new particles over the open-oceans'93 , and whether the iodine particles contribute 
140,193,194 to CCN formation (either directly or indirectly) in the marine atmosphere 

1.4 Atmospheric Measurements of 10 

As this thesis is concerned with the atmospheric role of iodine species, and in particular 

10, this section provides a generic review of atmospheric observations of iodine monoxide to 

date. HithertojJ0 has exclusively been detected in the atmosphere by long-path differential 

absorption spectroscopy (DOAS)195. WAS operates on the principle of the Beer-Lambert law, 

E. - 1.4-1 

It = Io exp(-cycl) E. 1.4-1 

where, 1, and Io are the intensities of transmitted and incident radiation respectively, of a light 

source passing through a sample of path length, 1, of an absorbing species of concentration, c. 

The absorption cross-section, cr, of the absorbing species is a fundamental molecular property 

and is dependent on the wavelength of the light source, and the temperature of the sample. 
In a WAS experiment, the light source can be artificial (e. g. a broadband Xe arc-lamp) 

or natural (e. g. the sun). The basic procedure of a typical WAS experiment in the MBL is as 
follows. 'Me broadband emission from a Xe lamp is'passed through a region of the atmosphere 

to a suitable detector, such as a diode array. ý 'Me detector resolves the light into its composite 
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wavelengths, yielding a spectrum, whose structure is dependent on several factors: the natural 

spectrum of the Xe lamp; the absorption of light by atmospheric species; and the scatter of light 

by air molecules (Rayleigh and Raman scattering)-and aerosol particles (Mie scattering). To 

obtain information with regards to any one absorbing species, therefore, relies on that species 

possessing a unique spectral fingerprint (an absorption structure) in the wavelength range of the 

recorded spectrum. For 10, the relevant absorption structure corresponds to several vibrational 

transitions in the A21-13a +- Xýrl3a electronic transition, over an approximate wavelength range 

of 415 - 450 nm (see Chapter Three for a detailed discussion of the spectroscopy of 10). To 

process the recorded spectrum background spectra of the Xe lamp and scattered light are 

recorded and deconvoluted from the total signal, yielding a spectrum that is attributable to any 

atmospheric absorbers over the investigated wavelength range. To determine the atmospheric 

concentration of 10, the deconvoluted spectrum must then be corrected for absorption by any 

known atmospheric absorbers (N02 and H20 in the case of DOAS detection of. 10) using 

reference spectra. The resultant differential absorption spectrum of 10 can then be converted 

into an absolute 10 concentration by prior knowledge of its absorption-cross section., Thus two 

disadvantages of the DOAS technique are immediately apparent. First, that converting the 10 

absorption signal into an absolute' concentration relies on the accurate knowledge of tile 

absorption cross-section of 10 (determined in the laboratory), and secondly that the spectral 

deconvolution procedure is complex and subject to interference from unknown absorbers and 

fluctuation of experimental variables. 

Further, as the absorption signal of a species is directly proportional to the path length 

over which it absorbs, long path lengths are required in DOAS experiments (typically 8- 11 

km) to achieve sufficient instrumental sensitivity. This results in the determined concentration 
being the average value over the experimental path length, which may be erroneous for species 

with localised sources and sinks. This is especially true for coastal 10, where its production 

may be predorninantly governed by local ernissions of iodine containing compounds from 

seaweed. To reduce the required path length, DOAS experiments often utilise reflectors that are 

situated at a suitable location away from the light source, resulting in halving the effective path 
length over which the -absorbing species is averaged. The typical detection limit for 10 in 

boundary layer DOAS experiments is 0.2 - 0.9 ppt 196 
. 

ý, 
Stratospheric measurements. of 10 can. also be performed using DOAS. In these 

experiments, light from a natural source (typically the sun) is collected by a ground-based'97 (or 

balloon-based'98-201) detector. 'Me absorption spectrum is measured as a function of solar zenith 

angle, resulting in a varying path length through the Earth's atmosphere. Similarly to boundary 

layer experiments, the spectral deconvolution procedure is complex 197,201 
, and the concentration 

of 10 can be obtained by applying various radiative transfer and photochemical models, 
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although the vertical distribution of 10 can only be estirnated (particularly for ground-based 

measurearnts). 
Table 1.4-1 lists the niaximum anibient 10 concentrations that have been reported from 

WAS observations at a variety of locations. 

Region Location, (Year) [101. / ppt Reference 

MBL Mace Head, Ireland (1997) 6.6 ± 0.5 187 

MBL Mace Head, Ireland (1997) 3.0 ± 0.4 196 

MBL Mace Head, Ireland (1998) 7.2 ± 0.3 205 

MBL Mace Head, Ireland (2002) 7±0.5 (day) 66,142 

3±0.5 (night) 66,142 

MBL 'Tasmania (1999) 2.3 ± 0.4 196 

MBL Tenerife (1997) 3.5 ± 0.4 196 

MBL Antarctica (1999) 10 202 

MBL Antarctica (2004) 20.5 ± 1.2 148 

MBL Kerguelen Islands, Indian Ocean 9.8 203 

MBL Kerguelen Islands, Indian Ocean 4.4 204 

'MBL Mediterranean Sea, Crete <0.8 203 

MBL Arctic 0.73 ± 0.23 203 

MBL Dead Sea (Israel) (2001) 10.2 ±2.4 120 

MBL North Sea (Germany) (2002) 2.1± 0.5 48 

MBL Brittany (2003) 7.7 ± 0.5 48 

UTLS Kitt Peak, Arizona (1995) 0.20: t 0.01 198 

UTLS Sweden, Norway, France (1995)' 0.2 (+0.3, -0.2) 199 

UTLS Arctic (1997) 0.8 ± 0.2 197 

UTLS 'Arctic (1999,2000) Ll ± 1.2 200 

UTLS Arctic (1997) 0.1 ± 0.02 201 

Table 1.4-1 - Concentrations and locations of atmospheric measurements of 10 (MBL--- 
Marine Boundary Layer, UTLS = Upper Troposphere - Lower Stratosphere). I 

The data presented in Table 1.4-1 highlights the wide range of concentrations and locations that 

10 has been detected at in the atmosphere. Alicke et. aL187 suggested that a mixing ratio of 6 

ppt 10 can enhance the destruction Of 03 by as much as 70 % over the ocean and 10 % over the 

land, and significantly alter the [HO21/[OHI and [N021/[NO] ratios, illustrating the impact of 
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relatively low concentrations of 10 in the MBL. - However, it is considered that ambient 10 

concentrations may be underestimated by WAS observations. For example, a recent modeling 

study'40 of the experimental observations of Saiz-Lopez and Plane 66,142 
, showed that the DOAS 

measured [10]/1121 ratio could not be reproduced unless the iodine species were located over 

approximately 8% of the 4.2 kin path length, and that the average 10 concentration could have 

been as high as 47 ppt in this inter-tidal zone, under conditions where particle bursts were 

observed (low tide and solar irradiance). Clearly, ambient 10 concentrations of this magnitude 

have serious implications for particle formation, CCN production, and the oxidising capacity of 

the MBL, albeit under very localised and temporary conditions. Conversely, another recent 

study48 found that the observed 10 concentrations in a coastal region of Brittany could 

adequately be reproduced by the measured iodocarbon concentrations (and were predominantly 

governed by CH2I2). Although molecular iodine was not detected in that study, adding a small, 

estimated 12 concentration (< 0.5 ppt) to the model, significantly enhanced the modelled 10 

concentration, indicating that either 12 was not a significant source of atmospheric iodine at that 

location, or that (by omitting particle formation) an important 10 sink was missing from the 

model. The authors recommend that future research should focus on point measurements of 10 

and 010, and particle production at such locations. An 101 LIF instrument, designed and 

constructed as part of the course of this Phl), is making preliminary measurements of 10 at a 

coastal site in Brittany at the time of writing - representing the first point measurement of this 

species in the atmosphere. The initial results suggest that 10 concentrations have reached in 

excess of 20 ppt. 
T'he ambient concentrations of 10 hitherto measured (or not measured) in the LJTLS 

indicate that iodine chemistry makes no significant contribution to stratospheric ozone 
depletion. For example, Bosch et. A201 have shown that their measured concentration of 

stratospheric 10 contributes less than I% to the total ozone destruction. However, Solomon et. 

al. 59 have suggested that iodine concentrations of I ppt in the stratosphere could enhance 03 

destruction by as much as 30 %. The measurements of Wittrock et. aL 197 therefore suggests that 

iodine chemistry could be significant in the stratosphere, although there, is no apparent reason 

why their measured 10 concentrations are greater than those from the other UTLS studies 201. it 

would appear that significant iodine concentrations in the stratosphere are generally the 

exception rather than the rule. However, the poor spatial resolution of DOAS measurements 

may mean that the observed stratospheric concentrations of 10 are underestimated, and that 
iodine chemistry has a much greater impact, occurring under localised conditions, than 

previously thought. Trifluoromethyl iodide (CFýI), a potential halon replacement, has recently 
been found to have a substantially greater potential for stratospheric 03 depletion than 

previously thought206. 
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Clearly, the development of a point nwasurement detection method for 10 in coastal, 

open ocean and UTLS regions would greatly enhance our understanding of iodine chemistry in 

the atmosphere and is the focus of the work reported in Chapter 111ree of this thesis. , 

1.5 Summary 

In this introduction to halogen chemistry, it has been shown that major uncertainties exist 

with regards to the sources, gas-phase chemistry, heterogeneous chemistry, and concentration of 

halogen (and in particular iodine) species within the Earth's atmosphere. The work reported in 

the remainder of this thesis is motivated by the need to improve our quantitative understanding 

of atmospheric iodine chemistry, with the long-term goal of the inclusion of halogen chemistry 

within global atmospheric chemistry models. 
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Chapter, Two: Experimental ý Procedures for Determining the Physico- 

Chemical Properties of Atmospheric Species 

2.1 Introduction 

This chapter will provide an outline of the experimental techniques employed in this thesis 

for the determination of physico-chemical properties of atin- ospherically relevant species. The 

work reported in this study specifically focuses on the spectroscopy and reaction kinetics of gas- 

phase systems. Spectroscopy is a generic term for the study of spectra: "a display of different 

frequencies over a certain range". In the context of this study, spectroscopy refers to the way 
in which specific chemical species interact with electromagnetic radiation in the ultra-violet 
(UV) and visible regions (i. e. light). Every molecule reacts with fight in a unique way as a 

result of its physical and chemical structure: the mass and number of electrons associated with 

the individual components (atoms) of the molecule; and the nature of the chemical bonds. The 

spectrum of a molecule can therefore be regarded as its "fingerprint", which can be exploited by 

experimental methods to gain information of atmospheric relevance. For example, knowing the 

precise spectroscopic properties of a molecule may allow the detection, and determination of the 

absolute concentration, of that species in the atmosphere. From this information we can assess 

the atmospheric importance of such a species and test our current understanding of the complex 

workings of the chernical atmosphere. 
Reaction kinetics is "the study of the rates at which chernical reactions proceed, and the 

influence of such factors as temperature, pressure and concentrations of reactants upon the rates 

of reaction7l. Knowing the reaction kinetics -of a chemical reaction is paramount in order to 

assess its potential influence in the atmosphere. Studying the reaction kinetics of potentially 
important reactions in the laboratory can be achieved by following the temporal profile of one, 

or more, of the chemical species involved, in a simplified system designed to simulate the 

physical properties of the atmosphere. 

2.2 Reaction Kinetics of Gas-Phase Systems 

This section will briefly discuss two important classes of gas-phase reactions - bimolecular 

and association (also known as tennolecular) reactions - and how their reaction kinetics can be 

determined in the laboratory. 

A birmlecular reaction involves the interaction of two species that leads to an overall 
chen-fical change of the systern, such as the reaction between hydroxyl radicals and methane 
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OH + CH4 - H2C) + CH3 (R2-1) 

By definition, a bimolecular reaction is independent of pressure and proceeds via the 

formation of a short-lived reactive intermediate (transition state) that undergoes rearrangement 

to reaction products. A biniolecular reaction can proceed solely to one set of reaction products 

or yield a number of product channels depending on the nature of the transition state and the 

thern-iodynan-ic accessibility of the possible reaction products. Bimolecular reactions are 

usually temperature dependent, and most commonly display a positive dependence on 

temperature (their rate increases with increasing temperature). 'Me temperature dependence of 

a bimolecular reaction is commonly expressed by an empirical relationship given by the 

Arrhenius equation 

k(T) = Ae(-E I 'RT) E. 2.2-1 

where: k is the bimolecular rate coefficient at temperature, T; A is known as the pre-exponeniial 
factor-, E. is the activation energy; and R is the niolar gas constant (R = 8.314 J Klmol-1) and 

allows the evaluation of the average translational energy (or kinetic energy) of a gas at 
temperature, T. 

If every collision between two ideal gas molecules resulted in reaction then the 

theoretical gas-kinetic rate coefficient is given by the product of the collision cross-section, or 

and the relative mean speed of the gas molecules, Fj. If we suppose that N2 and 02 undergo 

reactive collisions, at 300 K, the gas-kinetic rate coefficient can be calculated to be - 2.7 x 10-10 

ci2moleculd"s" (cr = 0.42 nrW, F,, = 650 ms-1). In reality, however, birnolecular reactions do 

not proceed at the gas-kinetic limit. This is because most rates of reaction depend on the 

relative orientation of colliding species and hence the probability (or loss of entropy) of forming 

a reactive transition state. Further, not all collisions will occur with sufficient energy to 

overcome the energetic barrier (the activation energy) that may be associated with the initial 

rearrangement of electrons in a reactant molecule, which is required for reaction. In the 
Arrhenius equation therefore, the pre-exponential factor, A, can be regarded as the limit of the 
bimolecular rate coefficient for a particular reaction (i. e. the upper limit if the reaction has a 
positive temperature dependence, or the lower limit for the converse), and the exponential term, 

exp(-E, /R7), can be regarded as the fraction of molecules which possess sufficient energy to 
undergo reactive collisions. Fig. 2.2-1 displays the potential energy of a chemical system for a 
typical bimolecular reaction. 
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I P-4 

Reactants 
A. H, 

Products 

Reaction coordinate 

Fig. 2.2-1 - Potential energy diagram for a chemical system moving from reactants to 
products. The activation energy, E,, is the difference in energy between reactants and 
transition state. AH,, is the enthalpy of reaction: the difference in energy between products 
and reactants. 

The definition of a bimolecular reaction is somewhat open to personal interpretation. 

For, example, the reaction of OH with acetone (CH3COCH3) proceeds via the formation of a 

weakly bound intermediate involving hydrogen bonding, but as this intermediate does not 

contribute to the overall bimolecular rate coefficient, the reaction can still be described as a 
bimolecular processý This is even true when a reaction intermediate does contribute to the 

overall bimolecular rate coefficient, such as for the reaction of OH with methanethiOl (CH3S 11)2. 

Examples of bimolecular reactions that may proceed via weakly bound intermediates, and are 

relevant to this thesis, are the 10 self-reactioný'4 I ý. . 

10+10 --). 010+1 

--+ 1202 

--), 21+02 

---)' 12+02 

and the reaction of 10 with dirmthylsulfide (DMS)5,6 

10 + DMS - DMSO +I 

(30-46%) 

(42-55%) 

(7-15%) 

(0-5%) 

(100%) 
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If the concentration of reactants is equal, or comparable, in a bin-iolecular reaction then 

the reaction kinetics will obey second-order kinetics: the rate of reaction will depend on the 

product of the concentration of reactants. For example, let us consider the 10 self-reaction. The 

rate of removal of 10 is given by 

d[IO] 
= -2k[, 012 E. 2.2-2 

di - 

where, k is a constant of proportionality, i. e. the biniolecular rate coefficient. If we state that the 

concentration of 10 at the initiation of reaction is [IO]o, and [101, at a later time, t, we can 

rearrange and integrate E. 2.2-2 

d[IO] 
= 2kdt 

1101 2 

liol 
-1d 

[10 
= 2k 1 dt 

[IOL 
VO] 

0 

and as the integral of l/%2 is -l1x we obtain E. 2.2-3 

11 2kt E. 2.2-3 
TioTt _TI-0-1-0,2 

Thus, a plot of 1/[101, against time should yield a straight line with slope, 2k, and intercept, 

1/110]0. Note, therefore, that in order to obtain the rate coefficient of a second-order reaction it 

is necessary to know the absolute concentration of reactants as a function of reaction time. 

Now let us suppose that we are monitoring the decay of 10 in the presence of 

dimethylsulfide (DMS). ne rate of 10 rernoval is given by E. 2.2-4 

d[IO1 
= -k[IOIDMS] E. 2.2-4 

dt 

Again, the reaction is second order. However, if we arrange the reaction conditions 

such that the concentration of DMS is in great excess to that of 10 (pseudo-first-order reaction 

conditions), [DMS] effectively becomes a constant and we can rewrite E. 2.2-4 as 

d[IO] 
= -k'[IO] E. 2.2-5 

dt 
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where, 

k'= k[DMS] E. 2.2-6 

Rearrangement and integration of E. 2.2-5 for the reaction limits yields E. 2.2-7 

[101 = [IOJO e 
(-k*t) 

E. 2.2-7 

'Mus the 10 decay will be observed to follow exponential behaviour. ' This is a useful result as 

the pseudo-first-order rate coefficient, V, can be extracted by fitting the temporal behaviour of 
10 to an exponential function, in which the units of concentration are irrelevant as long as we 
have some experimental signal which is directly proportional to [10]. Hence, to determine the 

rate coefficient, knowledge of the absolute concentration of 10 is not required, increasing the 

range of experimental techniques that can be used to investigate the reaction kinetics. If the 

pseudo-first-order rate coefficient, k', is determined as a function of [DMS] then the 

bimolecular rate coefficient, k, can be determined from the gradient of a plot of k' against 
[DMS] (see E. 2.2-6). The rate coefficient of any bimolecular reaction can be determined by 

this procedure. 
To determine the Arrhenius parameters of a bimolecular reaction, A and E., the 

bimolecular rate coefficient is measured as a function of temperature. A plot of ln(k) against the 

reciprocal temperature thus yields a straight line with slope, -E, /R and intercept, ln(A) (see E. 

2.2-1). 

An association, or termolecular reaction, is a third-order process whose rate depends 

upon the concentration of three species. An example of an association reaction is that of 10 

with N02 7,8 

10 + N02 +M --ý' ION02 +M (R35, X= 1) 

Initially the reaction proceeds via a bimolecular encounter of the two reactant molecules 

resulting in the formation of an energetically excited reaction intermediate (also known as an 

association complex or adduct), ION02*. The excited association complex can have one of 
three fates: i) unimolecular decomposition back to reactants; ii) unimolecular decomposition to 

reaction products, or; iii) pressure stabilisation by collisional encounters with a third body, M. 
The rate of reaction is therefore dependent on pressure, [M], and also the nature of M, as 
different third bodies have different efficiencies of collisional stabilisation due to their internal 
degrees of freedom that can except excess energy from the excited adduct. The complexity of 
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the adduct will also affect the pressure dependence of the association reaction as large 

association complexes will have a high density of states, and more niodes of internal motion, in 

which excess energy from the- reaction can be dissipated. The yield of the various products 
from an association reaction will often display a pressure dependence, as different product 

channels become more accessible or favourable. Association reactions most commonly have a 

negative temperature dependence, as the increased thermal energy at higher temperatures 

favours dissociation of the association complex, and results in less efficient collisional 

stabilisation. Fig. 2.2-2 displays a typical potential energy surface for an association reaction. 

ci) 

I P-4 

Accn. -; at; r%im 

----------------------- 

1, 
. 

JE. 

Reaction coordinate 
Fig. 2.2-2 - Typical potential energy profile for an association reaction in moving from 
reactants to association complex to products. The enthalpy of association reaction is given 
by AH,, and the binding energy of the adduct by, Eb. Note that the reaction has a negative 
activation energy, E. - 

Ile pressure dependence of an association reaction can be investigated by determining 
the effective birnolecular rate coefficient as a function of pressure. The biniolecular rate 
coefficient at any given pressure is determined as previously described and for a specific third 
body and temperature. Fig. 2.2-3 displays how the effective bimolecular rate coefficient of an 
association reaction may typically vary with pressure of the third body. 
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Total pressure of M 

Fig. 2.2-3 - Typical dependence of the effective bimolecular rate Foefficient on 
concentration of M for an association reaction. The low - and high - pressure rate 
coefficients are represented by ke and k. respectively. Note that ko is equal to the slope In 
the low pressure region. 

The high pressure limit, k., of an association reaction is the effective bimolecular rate 

coefficient at infinite pressure, where the rate of adduct stabilisation is infinitely greater than the 

rate of adduct dissociation, and the reaction proceeds as if a bimolecular process. 7be high 

pressure limit is independent (or weakly dependent) of temperature and third body, although the 

total pressure at which it is reached will depend on both of these variables. The low pressure 
limit, ko, is the rate coefficient of the third order process, and is dependent on both temperature 

and third body. 'Me high and low pressure limits of an association reaction can be determined 

by Troe fittings of the experimental data? 

kqmlT) = 
ko k- [M IF, X 

E. 2.2-8 Tk- + ko FMT 

where, X+ [Iog(ko [M ]/ QP ý1, 
and F. is known as the broadening factor and is typically 

0.6. 

47 



2.3 Pulsed Laser Photolysis 

, In order to investigate the reaction kinetics of a chemical system (or the spectroscopy of an 

unstable species), a method is required in which to initiate the chemical reaction (or generate the 

required radicals). Pulsed laser photolysis (PLP) was exclusively employed for this purpose in 

the course of this work. PLP involves the irradiation of a suitable precursor mixture with UV 

laser radiation prior to detection of the species of interest by another experimental technique 

(described subsequently). 
For example, in order to generate the 10 radical, ground state oxygen atoms (0 3P) are 

commonly reacted with trifluoroniethyliodide (CF31). 0 atoms are highly reactive radical 

species, requiring in situ generation, and a comm- on 0 atom source is the 193 run photolysis of 
N20. The 0 atoms are initially produced in an electronically excited state (0 1D) but are 

quickly quenched to the ground state in a sufficient pressure of bath gas, such as N2. The 

reaction sequence is thus 

N20 + 193 mn N2 +0 (D) M-2) 

0 (D) + N2 0 eP) + N2 (R2-3) 

0 eP) + CF31 10 + CF3 (R2-4) 

The amount of 0 atonis (and hence 10) generated will depend on the photon density (fluence) of 
the laser radiation, and the concentration and absorption cross-section of N20. Absorption 

cross-sections are strongly wavelength dependent and usually weakly dependent on 
temperature. Equation 2.3-1 gives the relationship between the concentration of species, X, 

generated from the photolysis of precursor, Y. 

[X]= [Y]F(: ry(IT)(Dy(IT) E. 2.3-1 

where, [I is the concentration of X or Y (molecule Cnf3), F is the laser fluence (photons cuf 2 ), 

ay(A, 7) is the absorption cross-section of species Y at wavelength, A, and temperature, T, (cm2 

molecule-'), and (D is the photolysis quantum yield of species Y at wavelength, 4 and 
temperature, T. 'Me photolysis quantum yield of a molecule is the fraction of molecules which 
dissociate per photon absorbed. Ilus if every 193 mn photon absorbed by N20 at 298 K results 
in dissociation to 0 (D) + N2 (which it does'), the photolysis quantum yield is unity. The 

photolysis quantum yield of a molecule can be greater than one: for example, the photolysis 

quantum yield for Oll production from the 248 nin photolysis of H202 is tWO10. Ibus, for a N20 

concentration of Ix 1015 molecule CIIf3 and a laser fluence of 50 nj Cnf2 (4.86 x 1016 p hotonS 
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cm72 at 193 nin), the concentration of 0 atoms generated at 298 K will be 4.35 x 1012 molecule 

Cnf3 (CrN7.0(193nm, 298K)=- 8.95 x 10-20 cmý molecule-)10. 

T'he wavelength of laser radiation chosen for the generation of radical species in a PLP 

experiment requires- careful consideration of the reagent mixture, and the nature of the 

experiment. For example, if we were intending on measuring the rate coefficient for the 

reaction of 10 with DMS, the method outlined above would be unsuitable for the generation of 
16. As discussed in section 2.2 the reaction would be studied under pseudo-first-order 

conditions so that the 10 decay rate would be measured as a function of [DMS] (which would 

always remain in great excess to [10]). Although the absorption cross-section of CF31 is 

relatively small at 193 nm (a= 2x 10721 Crr? molecule-1)10 the'absoiption cross-section of DMS 

is large (a= Ix 10-17 cm2moleculd-1)" and, therefore, a significant amount of radicals will be 

produced by its photolysis, which will vary with the concentration of DMS. ' If these unwanted 

photolysis products were to react with 10, then the determined reaction kinetics of the reaction 

of 10 with DMS could be subject to interference and therefore uncertainty. A better method for 

10 generation would involve a longer (lower energy) photolysis wavelength that would not 

result in significant photolysis of the reagent precursors (with the exception of the 0 atom 

precursor). For example, at 351 nm, N02 can be dissociated with unit efficiency to yield NO + 
0 OPY0. The absorption cross-sections of CF31 and DMS are negligibly small at 351 nrn (< 2x 

1 ff22 cn? molecule-1)10"1, thus the reaction of 10 with DMS can be studied under photolytically 

clean conditions (providing that the concentration of N02, and hence NO, is unchaýged 
throughout the experiment). 

For spectroscopic experiments, where we are only concerned with'the interaction of 
molecules with light, these considerations are not as important as we only require the target 

species to be present at sufficient concentration to be detectable, and at an approximately 

constant concentration for any given time between its generation and detection. 

In all experiments reported in this work, an Excimer laser was employed as the source of 
PLP radiation. An Excimer laser operates via the electrical discharge of a mixture containing 
both inert (e. g. Kr/XeJNe) and halogen containing (e. g. F2/HCI) gases in a He buffer. Upon 

electrical discharge a high energy complex (an exciplex) is formed between ions generated in 

the gas nixture (such as Kr"F for example), which spontaneously emits a photon of UV 

radiation as it returns to the groundstate. As the groundstate is dissociative, a population 
inversion -a prerequisite of a laser - is maintained between the ground and excited states of the 

exciplex. The emitted radiation is focused and collimated into a well defined beam of high 

energy laser radiation and emitted from the laser cavity. Ile wavelength of the laser radiation 
depends on the nature of the exciplex and, therefore, the gas mixture. The most frequently 

employed Excin-cr wavelengths are 193 nin (Ar, _172, He), 248 nin (Kr, F2, He), 308 nm (Xe, 
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HCI, He) and 351 nm (Xe, F2, He). At 193 nm, the photon energy (- 620 U mol-1) is more than 

sufficient for the dissociation of most covalent chemical bonds of gas phase molecules. Due to 

the short fluorescence lifetime of the exciplex, the pulse width of an Excimer laser is typically 

10 - 20 ns, meaning that the radical species are produced over a narrow and well-defined 

temporal span. The variable pulsed repetition frequency (PRF) and high laser powers (< 500 mJ 

pulse7') at which Excimer lasers can, be operated makes them particularly useful tools in 

laboratory PLP experiments, and capable of generating high radical concentrations from 

relatively low amounts of precursor concentrations. 

2.4 Laser Induced Fluorescence 

Laser induced fluorescence (LIF) is an extremely useful and adaptable technique for 

studying the spectroscopy and reaction kinetics of systems relevant to atmospheric (and general 

physical) chemistry. LIF is a spectroscopic technique, which utilises laser radiation to transit a 

population of molecules from one state of energy to another. At temperatures relevant to 

atmospheric chemistry, the majority of diatomic (and many small polyatomic) molecules will 

exist in their ground electronic and vibrational states - the states of lowest energy - as the 

available thermal energy is much less than the spacing between successive states. Ile laser 

frequency is tuned to the exact energy required to excite a population of molecules from a 

specific rotational level in the ground state to a specific ro-vibrational level in a bound, 

electronically excited state. The terminal state will be selected on consideration of a number of 
factors. It is fundamental that the excited electronic state is bound (i. e. not significantly 

dissociative), exhibits fluorescence and is accessible from the ground state on the basis of the 

electronic selection rules. An excited bound electronic state may have a number of possible 
fates. These include: i) fluorescence - the spontaneous emission of radiation as the molecule 

relaxes to a lower energy state; ii) energy transfer - the redistribution of the excited state 

population from the initially populated ro-vibrational level; iii) phosphorescence - inter system 

crossing (ISC) of the molecule to another electronic state (of different spin), and subsequent 

emission of radiation; iv) quenching - deactivation of the electronically exited state by collision 

with other molecules (in either reactive or unreactive collisions); or v) predissociation - the 

transfer of excited state population to an unbound state, resulting in dissociation. The 

fluorescence lifetime of a molecule will depend on all of the above factors and is typically in the 

region of tens to hundreds of nanoseconds. 7hus in an_ LIF experiment, an excited electronic 

state will be selected in which fluorescence is the predominant fate - or at least where the 

magnitude of the fluorescence quantum yield (the fraction of photons ernitted per photon 

absorbed) allows sensitive detection of the target species. 
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Fig. 2.4-1 displays a schematic diagram of the possible fates of an electronically excited 

state and the basis of a typical LIF experiment. 

AB* 
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laser excitation 
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AB 

Fig. 2.4-1 - Schematical representation of the typical processes involved in LIF. The 
molecule is excited from the groundstate, AB, to an excited state, AB*, by laser radiation. 
The excited state ro-vibrational level, initially populated, undergoes energy transfer to 
other rotational and vibrational levels, and the total excited state population is 
depopulated by fluorescence, predissociation, collisional quenching and phosphorescence. 

Essentially no spectroscopic selection rules are applicable to changes in vibrational 

level for a concomitant electronic transition. Thus the terminal vibrational level of an excited 

state will be selected predominantly by the magnitude of the Franck Condon factor (FCF) for 

the transition between ground and excited states: the probability of a transition between the two 

states, or more specifically the square of the overlap of the excited and ground state 

wavefunctions. The fluorescence lifetime of the excited state may be dependent on vibrational 

level (as for 10)' 2. which may also have to be taken into consideration. 

Generally. rotational transitions between ground and excited states are firnited to those 

in which the rotational quantum number does not change by more than one, AJ = 07 ± 1. As the 

absorption intensity of a spectroscopic transition is directly proportional to the groundstate 
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population (see Chapter Three), the groundstate rotational level excited in an LIF experiment 

will typically be that of maximurn population, as governed by the Boltzmann (thermal) 

distribution. 

Let us suppose that the molecule, AB, depicted in Fig. 2.4-1 has both a 2rl groundstate 

and first excited state (i. e. the electronic configuration is described by a single electron located 

in a p-orbital). The transition occurring would thus be described as the R(3) Aýn +- Xýn 

transition of the (4,0) band. That is: the rotational transition is in the R manifold (Aj =+ 1) and 

arises from J" =3 in the groundstate; the vibrational transition is between the ground 

vibrational state and the fourth vibrationally excited level in the upper state: v' =4 +- v" = 0; 

and the electronic transition is between a 2rl groundstate (X) and 2n excited state (A). As the 

line width of a typical laser employed for LIF experiments is generally smaller than the spacing 
between rotational energy levels of a diatonic molecule (a fraction of a wavenumber as 

compared to a few wavenumbers), LIF transitions typically originate from a single ro- 

vibrational level in the groundstate and terminate in a single ro-vibrational level in the excited 

state. As the separation between rotational levels is small, however, collisional rotational 

energy transfer (RE"D is rapid and results in the quick thermalisation of the excited state 

population, even at moderate pressures. Thus fluorescence originates from a distribution of 

rotational states. Vibrational energy transfer (VIM can also occur on a timescale comparable to 
fluorescence (depending on the pressure), thus increasing the number of states from which 
fluorescence can originate. Fluorescence will terminate in a number of vibrational (and 

rotational) levels in the groundstate, the intensity of which win be governed by the FCF's of the 
individual vibrational transitions (and the appropriate selection rules). In LIF experiments, 
therefore, fluorescence is-usually significantly red-shifted (i. e. occursat longer wavelengths) io 

the excitation wavelength. 
Fluorescence is detected by a light-sensitive d6vice, usually a photomultiplier tube 

(PMT) that converts photons of the visible region into an an4)lified flow of electrons, or current. 
LIF is therefore a direct but relative technique - the fluorescence signal is directly proportional 
to the absolute concentration of the fluorescing species, but provides no quantitative information 

as to its magnitude, in the absence of an accurate calibration (the observed fluorescence signal 
from an accurately known concentration of substance). A successful LIF experiment requires 
the efficient separation of fluorescence from laser light as a PNff is indiscriminate to the origin 

of the photons it detects, and the laser radiation will be of much greater intensity than that of the 
fluorescence. The fact that fluorescence is often red-shifted to the excitation wavelength aids- 
this process, as a suitable interference filter can be introduced to the experimental system that 

provides an impervious shield to the PMT from laser radiation but allows the transmission of 
fluorescence at longer wavelengths over a limited range. Very favourable instrumental signal- 
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to-noise (S/N) is thus obtainable in LIF experiments, where the fluorescence signal can 

effectively be monitored on a zero background, enabling the detection of very low 

concentrations of reactive species. In reality, interference filters are imperfect and the S/N of an 

LIF instrument is usually the limiting factor to the detection limit of the apparatus. As the 

temporal profile of a laser pulse (10 - 20 ns) is shorter than the fluorescence lifetime of many 

species, fluorescence can be distinguished from laser radiation by monitoring the PMT signal at 

times where no laser radiation remains - gated fluorescence collection. Fig. 2.4-2 illustrates a 

gated fluorescence experiment. 

. 
21 
En 

Fig. 2.4-2 - Illustration of gated fluorescence collection. The solid red line represents the 
fluorescence intensity from a species with a 100 ns fluorescence lifetime, excited at time 
zero by a laser pulse (solid black line) of Gaussian form with a 20 ns FWHM. The solid 
green line represents the fluorescence collection gate: the period of time over which the 
fluorescence signal is integrated. The shaded area indicates the fraction of fluorescence 
detected. 

In the example given in Fig. 2.4-2 the fluorescence collection gate is set to integrate the 

fluorescence signal over the temporal range of 35 - 500 ns after the laser pulse. Thus a large 

fraction of the total fluorescence (- 70 %) can be detected in the complete absence of laser 

radiation. Note that fluorescence can be detected in the absence of an interference filter via 

gated collection. which is particularly important if the molecule only fluoresces resonantly, i. e. 

at the same wavelength as excitation (, as is predominantly the case for the (0,0) band of the A21' 

<-- X2 F13'2 System of OH ý13 . 
However, in this situation. electronic gating of the PMT is required 

in order to reduce the effects of its electronic saturation. which can have a significant recovery 

time. This can be achieved with the incorporation of an electronic switching device (or "gating 

box") which effectively turns off the voltage supply to the PMT over the duration of the laser 
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pulse. This method is successfully employed for the LIF detection of the OH radical in the 

atmosphere by the FAGE technique'4-17 enabling an extremely low detection limit of -Ix 10 5 

molecule Cnf3. If the fluorescence lifetime of a species is shorter, or coniparable, to the duration 

of the laser pulse (as is the case for the (2,0) band of the AýI-I3n +- XýI-I3/2 system of 10) 12 gated 

fluorescence detection cannot be employed as all fluorescence occurs within the laser pulse. In 

this scenario, fluorescence must be detected off-resonantly, at longer wavelengths than the 

excitation, with the incorporation of interference filters. 

For all LIF experiments reported in this thesis, a Dye laser was used for generation of 

the excitation wavelength. A Dye laser operates on the stimulated emission of an organic dye 

molecule. Laser radiation from an Nd: YAG or Excimer laser is focused into a dye cuvette that 

contains a circulating dye solution. Upon excitation of the dye molecule, rapid vibrational 

relaxation in the excited state occurs, followed by fluorescence to many vibrational levels in the 

groundstate. This process creates a population inversion between the low-lying vibrational 
levels of the excited state and vibrationally excited levels of the groundstate. Although 

fluorescence occurs over a large range of frequencies and in all directions in space, some 

photons will be emitted parallel to the dye laser cavity. The dye laser cavity consists of two 

iniffors, one highly reflecting and the other, near the laser exit, partially reflecting. A 

diffraction grating allows the selection of a specific wavelength of dye emission to be reflected 
between the two iniffors. When the selected photons, parallel to the laser cavity, are reflected 
through the laser they repass through the dye solution and stimulate further emission from the 

excited state at the same frequency, and propagating in the same direction, to the incident 

radiation. This additional radiation then traverses the dye laser cavity generating yet more 

stimulated emission. The increasing extent of stin-mlated ernission soon begins to predominate 
over other processes occurring in the excited state, such as fluorescence and intersystem 

-crossing, and lasing results. A well defined laser beam of narrow frequency range is thus 

established and exits from the laser through the partially reflecting laser miffor. Due to the 

range of excitation wavelengths with which a dye can be pumped, the range of frequencies that 

can be selected with a diffraction grating, the incorporation of frequency doubling and mixing 
crystals, and the wide range of organic dyes available, Dye lasers are extremely versatile and 
can be used to generate an extensive range of wavelengths to which perform LIF experiments. 

In sununary, LIF is an extremely sensitive and selective technique for the investigation 

of the spectroscopy and reaction kinetics of chemical systems in the laboratory. Selectivity is 

enhanced relative to other techniques, such as absorption spectroscopy, as any species which 
may pose as a potential interference must absorb and fluoresce at the same wavelength as the 
investigated species (and possess a similar spectral structure), and over a similar timescale. in 

effect, both the absorption structure and excited state dynamics of a fluorescing molecule can be 

exploited to enhance the selectivity of an LIF experirnent, and the possibility of detecting 
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fluorescence in noise-free conditions yields LIF superior sensitivity with respect to other 

experimental techniques. 

Fig. 2.4-3 shows the schematic arrangement of apparatus for a PLP-LIF experiment, as 

used in this study. 
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Fig. 2.4-3 - Schematic arrangement of apparatus for an LIF experiment. B Baratron; 
BC = gated integrator and boxcar averager; BD = beam dump; BUFFER buffer gas 
supply; DA = digital-to- analogue converter; DG = delay generator; DL = Dye laser; EL = 
Excimer laser; FCU = mass flow control unit; hv = photolysis laser beam; HV = high 
voltage supply; IF = interference filter; LIT = LIT excitation region; MFC = mass flow 
controller; OSC = oscilloscope; PC = control personal computer; PMT = photomultiplier 
tube; PR = pressure read out unit; PROBE = excitation laser beam; PUMP = pump laser 
beam; RC = reaction cell; RM = reagent mixture; RMM = reagent mixing manifold; T 
two-way tap; VP = vacuum pumping system. 

A suitable reagent inixture is prepared and adninistered to the reaction cell via a gas 

handling line. The gas handling line is constructed of stainless steel tubing linked together by a 

series of two-way taps and connected to a vacuum pumping system. The vacuum system 

consists of an oil diff-usion pump and a rotary-vane pump. The rotary pump evacuates the gas 

handling line to a base pressure of - 10 mTorr, which is further reduced to - 10-2 mTorr by the 

diffusion pump. The diffusion pump is important for the removal of reagents from the walls of 

the system between experiments. and the efficient evacuation of the glass bulbs in which 

i FCU I 
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reagent mixtures are prepared. Reagent mixtures are prepared in 5 litre glass bulbs by diluting 

the required precursor in a suitable buffer gas (usually He or 112). 'Me total pressure of the glass 

bulb is made up to -2 atm and the mole fraction of reagent is adjusted according to the 

concentration of precursor required in the experiment, which may vary greatly. The precursor 

molecule may typically represent 0.001 - 10 % of the total concentration of gas in the precursor 

mixture. The pure reagent, often in the liquid phase, is introduced to the gas handling line via 

an (otherwise evacuated) glass finger by means of the pressure gradient between the base 

pressure of the gas handling line and vapour pressure of reagent. Prior to introduction to the gas 

line, the precursor is purified by several freeze-pump-thaw cycles, which involves pumping on 

the thawing reagent (initially frozen at 77 K) thus removing impurities with higher vapour 

pressures that may be dissolved in the liquid. For low precursor concentrations, multiple 

dilutions of the reagent molecule (i. e. of the reagent mixture within the glass bulb) are usually 

performed in order to ininimise uncertainty associated with the calculated mole fraction. All 

pressures are measured with comniercial Baratrons (or capacitance manometers), powered fi-orn 

appropriate power supply / pressure read-out units. Once prepared, the reagent mixture is 

administered to the reaction cell through stainless steel tubing and via calibrated mass flow 

controllers (MFC's), which are preset to allow the transit of an accurately known flow of gas 

(usually in the range of I- 5000 sccm. )18, and a reagent nixing manifold allowing thorough 

diffusion of the gas mixture prior to entering the reaction cell. In order for efficient transfer of 

reagents to reaction cell, a significant pressure gradient must exist between the reaction cell and 
the backing pressure of the MFC's. 

- 
The total pressure in the reaction cell is controlled by the 

total gas flow rate through the MFC's and the extent of throttling to the vacuum system attached 

to the reaction cell. Ile total gas flow rate is maintained at a value that ensures the LIF 

excitation region is replenished with a fresh gas mixture many times between laser pulses. In 

some circumstances, where the build-up of unreactive, long-lived fluorescing species may pose 

a potential interference to the LIF measurements, the flow rate may be sufficiently high that the 

entire reaction cell is replenished with fresh gas between laser shots. 

, 
Two main types of reaction cell can be employed in the LIF experiments, which are 

specifically designed for measurements conducted above or below room temperature. For high 

temperature experiments, the reaction cell is constructed. of cast iron and has several cartridge 
heaters embedded into the body of the cell, which can be electrically heated. The cell 
temperature is measured and regulated by a feedback loop between the electrical supply to the 

cartridge heaters and a type K thermocouple, situated near to the centre of the reaction cell. For 

low temperature experiments, a jacketed stainless steel reaction cell is employed. 'Me 

surrounding jacket can be filled with a cooling agent, such as a watertice slurry or 

solvent/cardice slurry. Similarly, the temperature of the reaction cell is determined by means of 

a thermocouple. Both types of reaction cell usually consist of a six-way cross of cylindrical 

56 



arms. Four arm are arranged on the horizontal axis, and two on the vertical axis of the reaction 

cell. All reaction cell ports (with the exception of the pumping axis) are covered with 50 nun 

diameter fused silica windows and sealed with o-rings. T'he internal volume of a reaction cell is 

typically 500 cm3. 

To generate the species to be monitored by LIF, the reagent rnixture is irradiated with a 

pulse of Excimer (or photolysis) laser radiation, which initiates a set of reactions resulting in the 

formation of the target species. At sonic time later, At, the pun4) laser (either a second Excimer 

laser or Nd: YAG laser) is fired, stimulating the emission of radiation of a preselected frequency 

from the probe laser (Dye laser). The two laser beams are arranged orthogonally on the 
horizontal cell axis and intersect at the cell centre (the LIF excitation region). When the target 

species is irradiated with probe laser light (of frequency corresponding to a specific LIF 

transition), fluorescence is emitted with an intensity that is directly proportional to its 

concentration. Ile fluorescence is detected on the vertical reaction cell axis, by a PMT. 'Me 

PMT is shielded from the photolysis and probe laser radiation by means of a suitable 
interference filter, situated between the PMT and cell window, allowing only the transmission 

of fluorescence. 'Me analogue fluorescence signal recorded by - the PMT - is sent to an 
oscilloscope and a gated integrator and boxcar averager. The oscilloscope displays the 

unprocessed fluorescence signal from the PMT and is interlinked to the boxcar so that the 
fluorescence collection gate can be set, at the appropriate width and sensitivity to record the 
integrated fluorescence signal. An analogue-to-digital converter transfers the boxcar signal to a 
control PC for storage and, analysis at a later date. The photolysis and pump lasers are 
externally triggered by a delay generator that operates under control of, the PC. 'Me 

oscilloscope and boxcar are also triggered by the delay generator, at the same time as the pump 
laser, to observe signal from the PMT during fluorescence only. The frequency of the dye laser 
is controlled by the PC and is tuned to the correct frequency of an LIF transition by means of a 
waverneter. 

For reaction kinetics experiments, the probe laser frequency is maintained at a constant 

value and the delay time between photolysis and pump lasers, At, is varied over a suitable range 
to observe the growth or decay of the species of interest. Fig. 2.4-4 displays a typical kinetic 

trace for the formation of the CH31-Cl adduct in a reagent mixture of Cl2SO/CH31/N2 after 

photolysis at 248 nni 
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Fig. - 2.4-4 - Kinetic formation of CH31-Cl in a precursor mixture Of C12SO/CH31IN2 

post photolysis at 248 nin. Experimental conditions: T= 296 K; P= 102 Torr; 
[Cl2S01 = 6.06 x 10P molecule cmý; [CH311 = 7.1 x 1612 molecule cm73; [N21 = balance; 
Ap, = 360.57 nm; Pp,, = 1.4 mj pulse'; L,, = 248 mn; P.,, =3 mJ pulse*'. Note that all non- 
standard abbreviations used in figure captions throughout this thesis are defined in the 
Glossary of Terms (p. xxvii). 

The LIF signal of CH31-Cl increases as the extent of reaction between CI and CH31 progresses. 

When all Cl atoms are consunied the LIF signal increases no more, and at larger values of At, 

the LIF signal will be seen to decrease as CH3I-Cl diffuses out of the LIF excitation region and 

reacts with other species within the reaction cell. Ile reaction kinetics of Cl + CH31, and the 

spectroscopy of CH31-Cl are discussed in length in Chapter Five. A spuriously high signal at At 

=0 is apparent in the kinetic trace displayed in Fig. 2.4-4. This is due to incomplete 

discrimination of excimer laser radiation by the interference filter (and/or red-shifted scatter 
from the reaction cell walls, and fluorescence from the substrate of the interference filter, 

induced by scattered excimer laser radiation). However, the excimer laser pulse is so short (< 

20 ns) on the timescale of the kinetic experiment that it poses no interference to the LIF signal 

at any other delay time as all excimer laser radiation has long expired before the probe laser and 
boxcar are triggered by the delay generator. 

For PLP-LIF experiments designed to probe the spectroscopic properties of molecules, 

the delay time between photolysis and probe lasers may typically be held constant and some 

other parameter varied, such as the probe laser frequency thus obtaining an LIF spectrum. Fig. 

2.4-5 displays a LIF spectrum of the (2,0) band of the Aýn3/2 +- Xý113a electronic transition of 

I0. 
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Fig. 2.4-5 - LIF spectrum of the 10 (2,0) A 21IN2 +- X2r62 band. Experimental conditions: 
T= 296 K; P= 150 Torr; [N20] =1x 161,5 molecule cnf3; [CF311 =2x 1014 molecule Cmw3 
[N21 = balance; 193 nm; P.,, = 15 mj pulse'; Pp, = 100 0 pulse"; At 3000 gs. 

A detailed discussion of the spectroscopy of the AýH +- X211 system of 10 is given in Chapter 

Three. 

2.5 Absorption Spectroscopy 

As all mlecules absorb to some extent in the UV and visible regions of the 

electromagnetic spectrum absorption spectroscopy is, in principle, a universal technique. As 

the method depends only on the absorption of light, it is more applicable than other techniques, 

such as LIF, where the fate of an excited state may also be relevant. Ile amount of light 

absorbed by an absorbing species is related to its concentration by the Beer-Lambert law, 

E. 2.5-1 

I= Ioe(") E. 2.5-1 

where, I is the intensity of transmitted radiation of a particular wavelength of light (with initial 

intensity, lo) after passing through a sample of absorbing species of concentration, c, in path 

length, 1, with absorption cross-section, cr, at the wavelength of incident radiation. Ile Beer- 

Lambert law only strictly applies for relatively low levels of absorption, as it relies on a 

population gradient between ground and excited states. If the excited state of a molecule is 

long-lived then strong absorption will result in significant population of that state and stirrmlated 
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emission will compete with absorption (i. e. the excited state will absorb radiation, stinmlating 

emission that will propagate in the same direction and be of the same frequency as the incident 

radiation, thus competing with absorption). As a result, absorption spectroscopy can be an 

extremely useful technique for studying molecules with short-lived excited states such as BrO'9 

(and 10) 12 where LIF cannot always be employed due to the extremely short fluorescence 

lifetime, and hence negligible fluorescence quantum yield. 

A wide variety of light sources can be used for the incident radiation in absorption 

spectroscopy. A particularly useful and common source of UV-vis radiation is a Xe arc lamp 

due to the wide range of wavelengths generated. An electrical discharge promotes groundstate 

Xe atoms to electronically excited states. As the Xe atoms are present at high pressure, they 

ernit radiation over a large frequency range as they relax to the groundstate. The emitted 

radiation is reflected and focused inside the lanip housing and emitted in a beam of broadband 

UV-vis radiation. A general disadvantage of absorption spectroscopy is that many species will 

tend to absorb over a particular wavelength range of the electromagnetic spectrum and a 

broadband light source will provide no discrimination between them, or speciation. The 

deconvolution of the individual components of an absorption signal for a particular excitation 

wavelength can therefore be a complex process. To partially resolve this issue, lasers are 

sometimes employed in absorption experiments, where the frequency range of the laser 

radiation is sufficiently narrow to allow the specific absorption of individual rovibrational 

transitions of an electronic transition. However, these experiments are still not -as selective as 

LIF experiments, where the properties of the excited state provide an additional discriminatory 

asset. Cavity ring down spectroscopy (CRDS) is a relatively recent and successful application 

of narrow-band lasers in absorption spectroscopy2O . In CRDS, a laser pulse traverses a reaction 

cell with two highly reflective miffors at each end. As the laser pulse reflects off the surface of 

each mirror, a small ainount of radiation leaks through the mirror and is detected by a PMT. 

The intensity of the detected radiation decays exponentially as the laser pulse traverses the 

cavity. The observed decay constant is characteristic of the apparatus and is known as the ring- 
down time., When an absorbing species is introduced to the reaction cell, additional losses of 

the laser radiation occur, and the ring-down time decreases (the decay rate of the laser radiation 
increases). The tneasured change in ring-down time, in the presence and absence of absorbing 

species, allows the determination of the absolute concentration of the absorbing species 

providing that the path length of the apparatus (the length of the cavity nultiplied by the 

number of passes made by the laser pulse) and the absorption cross-section of the species are 
known. 

Another general disadvantage of absorption spectroscopy is its sensitivity. Ile 

detection of a molecule requires a measurable change in the intensity of light before and after 

passing through a saniple of absorbing species, which is hindered by the large background 
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signal of the incident radiation. It can be seen from E. 2.5-1 that this relies on either a 

substantial concentration of the absorbing species or a sufficiently long path length. For the 

atrnospheric detection of 10 by DOAS21,22 ,a path length of >8 km is required in order to gain 

sufficient sensitivity for its measurement, resulting in a poor spatial resolution and hence the 

assumption that the 10 is equally partitioned along the path length of absorption. CRDS has the 

advantage that, as the laser pulse can traverse the reaction cell thousands of times, an effective 
km pathlength can be achieved for a point measurement instrument. 

For the absorption experiments reported in this thesis, a pulsed laser photolysis single- 

pass absorption (PLP-SPA) system was used. Fig. 2.5-1 shows a schematic diagram of the 

apparatus involved. 

Broadband UV-vis PL Xe 
AM lamp 

Osc 
DG 

I-- r-_ -__ 
Fm I 

1ý-L- 

ýý H MON 

Gas out 
I 

BD- 11 DM 

"Now 
11 RC 

T 
hv 

Gas handling line EL 

Fig. 2.5-1 - Schematic arrangement of apparatus for a PLP-SPA experiment. AM = 
aluminium coated mirror; Broadband UV-vis = analysis beam; DM = dichroic mirror; 
Gas out = reaction cell exhaust; I= iris; MON monochromator; PL = piano-convex lens 
and collimating and focusing optics; Xe lamp Xe are lamp. All other apparatus are as 
previously assigned in Fig. 2.4-3. 

The expanding. broadband emission of a Xe arc lamp is collimated and directed through a 

reaction cell (typically of one metre length) via a series of plano-convex lenses and aluminiurn 

coated mirrors. A pulsed beam of Excimer laser radiation is directed through the reaction cell, 

parallel to the incident UV-vis radiation, using suitable dichroic mirrors and terminated at a 
beam dump. The dichroic rnirrors reflect the Excirner laser radiation but allow the transmission 

of radiation of all other wavelengths (i. e. the analysis light). 'Me analysis light is trimmed by 
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means of an iris prior to entering the reaction cell so that there is a complete overlap between 

analysis and photolysis light beams. After exiting the reaction cell, the analysis light is directed 

into a monochromator via a series of miffors and focusing and collimating optics, ensuring 

maximum collection of light. A diffraction grating inside the monochromator reflects the 

analysis light so that only a specified frequency of radiation, corresponding to a vibrational- 

electronic transition of the species of interest, is detected by the PMT. The resolution of the 

monochromator, or wavelength range detected by the PMT, is governed by the number of 

grooves on the diffraction grating and the entrance and exit slit widths of the monochromator. 

The diffraction grating of the monochromator is electronically controlled by the PC and the 

wavelength and resolution of the monochromator are calibrated by comparison to the known 

positions of Hg atomic emission lines from an Hg Pen Ray lamp. A more detailed description 

of a monochromator is given in Chapter Three. The signal from the PMT is sent to an 

oscilloscope, prior to digitisation, and transferred to a control PC for analysis at a later date. 

A suitable reagent mixture is prepared on a gas handling line, similar to that described 

in section 2.4, and introduced to the reaction cell. Ile total gas flow rate through the reaction 

cell is maintained so that the entire reaction cell has been replenished with a fresh supply of gas 

between Excimer laser pulses, preventing the build-up of long-lived photolysis and reaction 

products that may pose interference to the absorption measurements, but limiting the temporal 

resolution of the experiment. Prior to a laser pulse of photolysis radiation, the PMT detects the 

initial intensity of analysis light Qo) at the desired frequency. When the Excimer laser fires, a 

series of reactions is initiated, generating the species of interest. As the absorbing species is 

formed, the amount of light detected by the PMT (1) begins to decrease, before returning to the 

pre-Excimer laser background as the absorbing species is removed by reaction and diffusion out 

of the analysis zone. The Excimer laser and oscilloscope are triggered by a delay generator, and 

synchronised so that the signal from the PMT is only recorded over a temporal range where 

absorption occurs. To enhance the sensitivity of the apparatus, the absorption signal from 

numerous laser shots is averaged to increase the S/N of an absorption trace. Fig. 2.5-2 displays 

a typical absorption trace for 10 (detected at 427.2 nm - the peak of the (4,0) Aýrll, *-- X21713,2 

transition) in a mixture of N20/CF3I/N2, post photolysis at 193 rim. As can be seen from the 

absorption trace in Fig. 2.5-2, before time zero (i. e. when the Excixxrr laser fires) the PMT 

observes the initial intensity of the Xe arc lamp emission at 427.2 nni Afte*r the Excimer laser 

fires, the signal from the PMT begins to decrease as 10 is formed from the reaction of 0+ CF31, 

and absorbs, some of the 427.2 nin analysis light. As, 10 begins to react with itself, its 

concentration diminishes and the light intensity returns to the pre-Excimer laser value as the 

absorption due to 10 becomes weaker. 
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Fig. 2.5-2 - Absorption trace for 10 in a reagent mixture of N20/CF31/N2, post photolysis 
at 193 nm. Experimental conditions: T= 296 K; P= 760 Torr; [N20] = 5.6 x 1017 molecule 
cm73; [CF31] = 4.5 x 10 molecule cnO; [N21 = balance; A. = 427.2 nm; Monochromator slit 
width = 100 Pm; 4, = 193 nm; P,, = 50 mj pulse'. 

An advantage of PLP-absorption experitnents is that an entire absorption (or kinetic) trace 

is obtained for every laser pulse, Le. the absorption signal does not have to be recorded as a 

function of At, as the analysis light comes from a continuous source. To record the absorption 

spectrum of an absorbing species, the absorption intensity is measured as a function of 

wavelength of analysis light, which is achieved by altering the position of the diffraction grating 
in the monochromator, thus varying the wavelength of radiation detected by the PMT. For each 

new wavelength, the transmitted light intensity through the reaction cell must be recorded in the 

absence and presence of absorbing species. Ile absorption spectrum of 10 is discussed in 

Chapters Tbree and Four. 

2.6 Mass Spectrometry 

Not involving the use of light, and due to the fact that all matter possesses mass, mass 

spectrome, try (MS) is effectively a universal detection method. In MS experiments, the gas 

sample is ionised by photoionisation or electron impact and the resulting ions are detected 

according to their mass, usually by one of two types of spectrometer: i) a quadrupole mass 

spectrometer; or ii) a time-of-flight (TOF) mass spectrometer. A quadrupole mass spectrometer 

operates by deflecting the flight path of ions in an oscillating electric field. ý 'Me extent of 
deflection of the ions is dependent on their charge and mass ratio, and the strength and 
oscillatory frequency of the electric fieldL 'Ibus species of different mass can be discriminated 
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by scanning the position of an ion detector in a constant electric field, or varying the strength of 

the electric field for a fixed ion detector location. A TOF-MS operates on the principle of 

detecting ions according to their flight time between formation and detection, which is inversely 

proportional to their kinetic energy and, therefore, an indicator of their mass. The ionised gas 

sample is collimated into an ion beam by a series of electric fields and directed on to an ion 

detector. The time taken for an ion to reach the detector is proportional to the square root of its 

mass. 
The universal nature of MS means that it can be an ideal technique for studying the 

reaction kinetics of chemical systems as the temporal profile of reactants, products and reaction 

intermediates can be monitored simultaneously, potentially yielding a complete description of 

the reaction mechanism and the determination of product branching ratios. Disadvantages of 

the technique are that not all species will be ionised by the ionisation source and/or some 

reagent molecules may undergo photofragmentation to generate ions of the same mass as the 

reactants or products of the reaction being studied, thus posing an interference to their detection. 

Further, as MS is a non-spectroscopic technique, speciation between molecules of the same (or 

very similar mass) cannot be achieved. 
For the NIS study described in Chapter Four of this thesis, a laser photoionisation TOF-MS 

experiment was employe&3. The apparatus is schematically represented in Fig. 2.6-1. A 

typical experiment is performed by the following procedure. A reagent mixture, prepared on a 

gas handling line, is introduced into the reaction cell (a quartz flow tube of - 50 cm length and 
10 nun diameter) and irradiated with a beam of Excimer laser radiation, which overlaps the 

entire length of the reaction cell. 'Me reaction cell is maintained at a total pressure of -I Torr, 

and a small amount of the reagent mixture is allowed to diffuse through a pinhole (of -I mm 
diameter in the reaction cell wall) into a low pressure vacuum chamber, which is pumped 
independently to a pressure of - 10-5 Torr. The gas exiting the pinhole is photoionised in the 

vacuum chamber by an intersecting laser pulse of VUV (vacuum ultra-violet) radiation, which is 

triggered at a specific delay time, At, after the Excimer laser pulse. The photoionisation 

radiation is generated from an Nd: YAG-pumped dye laser. The second harmonic of the 
Nd: YAG laser at 532 nm. excites a pyridine dye in the Dye laser, generating radiation in the 680 

- 720 nm range. 'Me red light is frequency doubled by a SHG crystal inside the Dye laser 

before being passed through a tripling cell, containing Xe gas at - 80 Torr total pressure, to 

generate the VUV photoionisation radiation. Depending on the frequency of the red radiation 

selected by the diffraction grating of the Dye laser, a tuneable photoionisation wavelength range 

of - 113 - 120 nin is accessible, thus allowing some degree of specificity to ionisation, which 

can be of use in experiments where ionisation of the precursor could be problematic. 
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Fig. 2.6-1 - Schematic diagram of TOF-MS apparatus used in this study. CIB = 
collimated ion beam; E= electrodes; IB = photoionisation beam; ID = ion detector; PH = 
pinhole; PR = photoionisation region; TC = tripling cell; TOF-MS = time-of-flight mass 
spectrometer; VC = vacuum chamber. All other apparatus are as previously assigned in 
Fig. 2.4-3. 

Once ionised. the gas sample is drawn into the mass spectrometer by a negatively charged 

electric field. which is generated by a series of electrodes inside the mass spectrometer. The ion 

stream entering the mass spectrometer is collimated and accelerated by a series of electric fields, 

and directed through the flight chamber to an electron multiplier detector (ion detector). The 

flight chamber of the mass spectrometer is independently pumped to a base pressure of ~ 10-6 

Torr. The signal from the electron multiplier is sent to an oscilloscope and to an ion-counting 

card on the control PC. The Excimer laser. Nd: YAG laser, osciHoscope and ion-counting card 

are triggered by a delay generator operating under computer control. As the flight time of ions 

within the mass spectrometer is of the order of microseconds, the ion-counting card has a 

nanosecond resolution in order to sufficiently resolve the mass of the ions reaching the detector. 

The resolution of the mass spectrometer is such that I mass in 200 can be detected, i. e. 

discritni nation between species of inass 200 and 201 can be achieved. The ion-counting card 

is triggered at the same time delay as the photoionisation laser and bins the ion signal at regular 

intervals (of a few nanoseconds) over a suitable time period. To record a kinetic trace, At, is 

varied over a suitable range to observe the kinetic growth and decay of the various species 

present in the reaction mixture (and rnass spectrum). Thus the mass spectrum of the reaction 
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mixture is recorded as a function of At and the temporal evolution of reactants and products are 

recorded simultaneously. Averaging of the signal from numerous Wer shots, for a particular 

value of At, can be used to enhance the S/N of the apparatus and increase the sensitivity. The 

experimental range of values over which At can be varied is limited to - 100 gs - 20 rns, as the 

gas sample requires - 100 gs to diffuse from pinhole to photoionisation region, and the 

residence time of the reaction cell is - 20 ms. For kinetic experiments, therefore, the conditions 

are arranged so that the reaction occurring will evolve on a much slower tin-rscale than 

diffusion of the gas mixture through the pinhole (e. g. k' = 100 - 1000 s") so that the extent of 

reaction is effectively the same inside the reaction cell flow tube and at the photoionisation 

region, reducing complications to the kinetic analysis. Fig. 2.6-2 shows a mass spectrum of 
CH212 after photolysis at 248 nra 

17 
CO) 

(0 

Mass / KM. U. 
Fig. 2.6-2 - Mass spectrum of CH212 post photolysis at 248 nm. Experimental conditions: 
T= 296 K; P=1.1 Torr; [CH2121 =IX 1012 molecule cm73; [021 =1x 1014 molecule cnfa; 
[He] = balance; A= 118 mn; P, =3 mj pulse'; P.,, = J(X) mi pulse';, &t = 500 ps. 

Ile predominant peaks in the mass spectrum displayed in Fig. 2.6-2 are attributable to I*, CH21* 
and CH212* at 127,141 and 268 atomic mass units respectively. Ile mass spectrum of CH212. 
and the reaction kinetics of the reaction of CH21 + 02 arr. explored in Chapter Four. 
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Chapter Three: A Spectroscopic Investigation of the 10 Radical Relating to 

the Development of an LEF Instrument for its Detection in the Atmosphere 

3.1 Introduction 

As discussed in Chapter One, the 10 radical plays an important role in the tropospheric 

chemistry of the marine atmosphere. However, a major deficiency in our quantitative 

understanding of its importance arises fi-orn the lack of an in situ detection method for 

determining the ambient concentration of 10. Local 10 concentrations, particularly in coastal 

regions, may be significantly underestimated by differential optical absorption spectroscopy 

(DOAS) measurements due to local sources of iodine compounds emitted during periodic 

"bursts" of chemical activity. As important processes in the marine boundary layer (MBL), 

such as new particle formation and the oxidation of dimethylsulfide (DMS), are likely to be 

sensitive to localised concentrations of 10, the development of a point measurement detection 

method for 10 is particularly desirable. In addition, the implementation of an in situ instrument 

would allow atmospheric measurements of 10 to be extended into largely unexplored regions, 

such as over the open ocean and in the upper troposphere - lower stratosphere (UTLS), by 

deployment of the instrument on boat or aeroplane. 

In a previous paperi, we assessed the feasibility of an LIF instrument for the ambient 

detection of 10 and estimated a theoretical limit of detection (LOD) of < 0.004 ppt (< 1W 

molecule cnA more than sufficient for the detection of 10 in the atmosphere. However, in that 

work, various assumptions had to be made with regards to certain physical properties of 10 (and 

the physical conditions of the experiment), specifically: the wavelength dependence of the 

fluorescence intensity; and the rate of excited state fluorescence quenching. The aim of the 

work reported in this chapter was to investigate, and quantify, these previously unreported 

parameters and to reassess the theoretical sensitivity of an 10 LIF field instrument, which has 

ultimately led to its construction and implementation in a field campaign (RHaMBLE - 
Reactive Halogens in the Marine Boundary Layer Experiment) in the late sununer of 2006. 

3.2 The Atmospheric Detection of Ambient Species by LIF 

Laser induced fluorescence (LIF) is a suitable in situ detection method for atmospheric 

species due to its high sensitivity and selectivity, and has been extensively employed for the 
-5 measurement of OH and H02 in the atmosphere . In addition to the fundamental molecular 

properties discussed in Chapter Two, the viability of an atmospheric LIF instrument often relies 

on the molecule of interest exhibiting extensive rotational structure, so that a correction for the 
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background contribution to the fluorescence signal from other absorbing species can be applied 

by taking "on-line' and "off-line- measurements. In a typical atmospheric LIF experiment the 

fluorescence signal, observed when the laser is tuned to the peak of a specific LIF transition of 

the species of interest, is averaged over a specified time periodL This type of data point is 

known as an on-line measurement, and the averaging time, 1, defines the temporal resolution of 

the instrument. To obtain an off-line data point, the laser wavelength is tuned to a nearby 

frequency where no absorption by the species of interest occurs, and the background 

fluorescence signal is averaged (usually over the same time period). The difference between the 

on-line and off-line measurements yields the ILIF signal due to the species of interest, which is 

related to its atmospheric concentration by a calibration factor, C,.. The LOD of an atmospheric 
LIF instrument is given by E. 3.2-1 

+ Ssb +s F- 3.2-1 [LOD] (sib ds) 
sIn 

(Cx I P)PýIF+ 
It 

where, &W is the signal-to-noise ratio of the instrument; P is the laser power, m is the number of 

on-line measurement points; n is the number of off-line measurement points; SIb is the laser 

background; Sb is the solar background; and Sdb is the dark-count background of the PMT. The 

calibration factor, C., is given by E. 3.2-2 

cx S, E 3.2-2 Fxl 

where, S,, is the LIF signal observed for a known concentration of the species of interest, M. 
C., can therefore be determined experimentally, providing a quantifiable source of X is 

available, or theoretically by E. 3.2-3 4 
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Notable parameters in E. 3.2-3 (all parameters in E. 3.2-3 are discussed in greater detail in 

section 3.6.1) are: Bif - the Einstein coefficient for absorption of the LIF transition; 

(FAV 
D2+ AVL2 

)-I 
_a tenn relating to the overlap of the laser spectral linewidth and the natural 

linewidth of the species of interest; N(,,, j. ) 
_ the fractional population of the electronic N 
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groundstate rotational level(s) excited by the laser; qT - essentially the fraction of fluorescence 

detected by the PMT; and 0- the fraction of excited state population undergoing fluorescence 

(or the fluorescence quantum yield). 
In the work of Bloss el. aLl, assumptions had to be made with regards to the parameters, 

t7T and 0, and the aim of the work reported in this chapter is to quantify the processes relating to 

these terms via a spectroscopic study of 10. The information obtained is used for a re- 

evaluation of the theoretical sensitivity of an 10 LIF field instrument, its optimam operating 

conditions, and its construction, calibration and deployment. 

3.3 Spectroscopy Relating to the LIF Detection of 10 

As LIF is a spectroscopic technique, and the interpretation of the results presented in this 

chapter requires some spectroscopic knowledge, a relatively brief discussion of the spectroscopy 

of 10 (relating to its detection by LM is pertinent here. 

As discussed in Chapter Two, a molecular electronic transition relies on the groundstate 

absorption of radiation resulting in the population of a bound electronically excited state. The 

electronic groundstate of 10 is described by the term symbol, X211. A term symbol is a short 
hand description of the spin and orbital angular momentum of the uppermost occupied 

molecular orbital, which is most descriptive of the chernical properties of a species. In the term 

symbol, Xýn, the X denotes that the electronic state is the groundstate; the 2 denotes the 

component of the spin angular momentum along the internuclear axis, which is given by the 

multiplicity 2S+I, and indicates that the uppermost occupied molecular orbital contains an 

unpaired electron (the spin of an electron, S, is 1/2); and the rI denotes the axial component of 

the electronic orbital angular momentum which is I for anstate. In a diatomic molecule, the 

axial components of the spin, M, and orbital, A, angular momentum couple to give the total 

angular momentum along the internuclear axis, Q, and as the there are 2S +1 components of Z, 

there are also 2S+1 components to Q. Thus a 2n state is split into two rrmltiplets with total 

angular morrrntum along the internuclear axis of 1/2 and 3/2. The difference in energy between 

multiplets depends on the strength of interaction between the axial components of the orbital 
and spin angular momenturn, and is known as the spin-orbit coupling constant, A, which 
increases rapidly with an increasing number of electrons. In 10, the axial components of the 

spin and orbital angular momentum are strongly coupled, resulting in a relatively large spin- 
orbit coupling constant of 2091 cmýl 6. At room temperature, states separated in energy by 2091 

cnf 1 have a population ratio of -4x 1075, thus the X21713a multiplet can be regarded as the "true" 

groundstate of 10 (note that 10 has an inverted groundstate as the 2ny2multiplet is the lower in 

energy). It should also be noted that all electronic states possessing orbital angular momentum 
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are doubly degenerate. and can be separated in energy by interaction of molecular rotations with 

the orbital angular momentum -a process known as A-type doubling. However. the splitting of 

states by A-type doubling is very small (fractions of a wavenun-ber), and is negligible for the 

X21713/2 state of 10 in comparison to the spectral linewidth of most lasers". 

The selection rules governing the allowed electronic transitions of a diatornic mlecule are 

principally deterinined by the various ways in which the different types of angular momentum 

couple together to form the total angular momentun-L J. For 10. or any diatomic molecule 

possessing non-zero orbital angular momentum and more than a few electrons. the coupling of 
the different types of angular momentum is best described by Hund's case a 9. which is depicted 

in Fig. 3.3-1. In Hund's case a. the spin, S. and orbital. L. angular momentum are strongly 

coupled to the internuclear axis (and only very weakly coupled to the nuclear rotation). and the 

total axial angular momentum- Q, couples with the nuclear angular momentum. N. to form the 

total angular momentum vector, J. As, for 10 (or any 211 state), Q is half-integral and a 

component of J, j also takes half-integer values of, J= 12.9+1 ý Q+2. ... Hence. J cannot be 

less than 0 and the lowest rotational state of a2 F13/2 state is j= 3/22. 

A1 7 

L 

Fig. 3.3-1 - Vector diagram for Hund's case a (adapted from Herzberg% displaying the 
coupling of the various angular momentum vectors for the X2rl state of 10. Note that the 
total spin, S, and orbital, L, angular momentum vectors are strongly coupled to the 
internuclear axis. The axial components of the spin, 1, and orbital, A, angular momentum 
couple to form the total axial component of angular momentum, Q, which couples with the 
nuclear rotation, N, to form the total angular momentum, J. 

Hund's case a leads to the following selection rules with respect to an electronic transition: 

i) AJ = 0. +- I (with the restriction of J=0j= 0) 

ii) AA=O, ± I 

iii) AM 0 (if both states are case a) 

iv) AQ 0, ±I (if Q=0 in both states then Aj =0 is forbidden) 
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Effectively no selection rules apply to concomitant changes in vibrational quantum number for 

an electronic transition (Av = 0, : L- 1,2,3,4 .... ). 

The lowest lying electronically excited state of 10 accessible from the groundstate (and 

the only non-ionic electronically excited state of 10 to have received experimental investigation) 

is the AýI`I state. 7bus the detection of 10 by LIF is limited to transitions of the type, A2113a 

(V V) 4-- XýIIN2 (v"J"). In consideration of the concomitant vibrational transition, it is clear 

that the LIF transition must originate in v" =0 (as all other vibrational levels win have 

negligible population at room temperature), but the chosen terminal vibrational level of the A21`1 

state requires more careful consideration. Electronic transitions are also known as vertical 

transitions - in that the initial internuclear separation of the excited state will have the same 

geometry as that of the groundstate. This is due to the Franck-Condon principle that states: as 

nuclei are so much more massive than the electrons, an electronic transition takes place very 

much faster than the nuclei can respond. An electronic transition will therefore most probably 

terminate in the vibrational level that has an internuclear separation, which is closest to that of 

the groundstate. However, several nearby vibrational states will also have an appreciable 

probability of having the same internuclear separation as the groundstate, hence transitions will 

occur to all vibrational states around this region (see Fig. 3.4-1). Ile absolute intensity of 

absorption is proportional to the square of the overlap of the ground and excited state 

wavefunctions, or the Franck-Condon Factor (FCF). Fig. 3.3-2 displays an absorption spectrum 

of the AýI_IN2 +- XýII3n transition of 10. In the absorption spectrum, the "banded" structure is 

due to the vibrational progression of Aý1713a (vl) +- X71'Im (v" = 0) transitions. Ascanbeseen, 

the (4,0) vibrational band is most intense, indicating that the FCF of the (4,0) transition is 

largest. Thus we might assume that the (4,0) band of the A +- X transition will be most 

favourable for the LIF detection of 10. However, the Aý1`13/2 state of 10 is known to be highly 

predissociativW-10 - the excited state potential energy surface is crossed by repulsive, unbound, 

electronic potential energy surfaces that results in the dissociation of the. I-0 bond. 

Furthermore, the rate of predissociation is found to be dependent on the vibrational level (and 

rotational level for v' = 2) of the 
' 
electronically excited state. Predissociation of the v1 = 1,4 

and 5 vibrational levels is found to be extremely rapid, resulting -in excited state lifetimes of 
0.88,0.59 and 0.09 ps respectively'O. Indeed, the lifetime of these states is so short that the 

absorption spectra exhibit no rotational structure. Thus LIF transitions terminating in any of 

these vibrational levels are undesirable (and would essentially be undetectable), irrespective of 

the magnitude of the FCF's, as the fluorescence quantum yield will be negligibly small. 
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Fig. 3.3-2 - Assigned absorption spectrum of the A2H3a +- X2rIM transition of 10- Only 
transitions originating from V=0 are labelled. The weak absorption bands that are 
evident to the red side of the (3,0), (2,0), (1,0) and (0,0) bands are the (4,1), (3,1), (2,1) and 
(1,1) hot bands respectively. The absorption spectrum was kindly provided by Dr. W. J. 
Bloss from the University of Leeds. 

The v' = 0,2 and 3 vibrational levels'exhibit rotational structure and v' =0 and 3 have Jý- 

independent lifetimes of 17.6 and 6.6 ps respectivelylo. The lifetime of vI =2 is found to be 

rotational level dependent, varying linearly with JV+ 1) (rotational energy) from -I ns in J' = 
1.5 to - 15 ps in T= 50.5 10. Thus, although the FCF for the (3,0) vibrational transition is 

greater than that of the (2,0) band (and much greater than that of the (0,0) band - see Fig. 3.3-2), 

the (2,0) vibrational transition of the A-X system of 10 is the only rational choice for its LIF 

detection (where sensitivity is paramount, as in field measurements) due to the longer excited 

state lifetime (providing that the transition terminates in relatively low J' levels). Hence, the 

AýHM W= 2) +- XýH3n (v" = 0) transition possesses all requirements for the atmospheric 

measurement of 10 by LIF - viL relatively strong absorption, an appreciable fluorescence 

quantum yield and extensive rotational structure. 
In selecting an appropriate rotational transition for the LIF detection of 10, several 

considerations should be made. For example, the ground rotational state should have a 

significant population. For a diatonic molecule, the rotational state of maxinaum population at 
temperature, T, can be approximated by F- 3.3-19 

[-k-. -T- i 
i- lý --i F- 3.3-1 

2bcB 
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where, B is the rotational constant (- 0.34 cnfl for the ground vibrational state of 10;. From E. 

3.3-1 it is found that the maximum rotational population of 10 at 300 K is found in J" = 16.5 

(assuming the absorption cross-section is independent of J'ý. Thus transitions arising from this 

state will give maxinium absorption intensity. However, as rotational transitions are limited by 

the selection rule, Aj =±I (the Q branch, Aj = 0, is of very weak intensity for a 2171 - 'rl 

transition)9 we must also consider the excited state lifetime of the rotational level populated by 

the LIF transition (as the fluorescence quantum yield will decrease with increasing JI due to 

enhanced predissociation). Thus there is a balance between the groundstate rotational 

population and the fluorescence quantum yield of the rotational level in the electronically 

excited state. Assuming (for now) no rotational energy transfer (REI) in the excited state, it is 

found that the optimum, single-line, LIF transition for the detection of 10 is PI(5) (i. e. A21713/2 

(vI = 2, J' = 4.5) - Xý17I3a (v" = 0, J" = 5.5)". However, as the rotational constant of the 

X2rI312 v" =0 state is larger than that of the Aý113a vI =2 state (- 0.27 crif )10, it is found that 

the rotational spectrum of the (2,0) band has a vortex, or bandhead, in the R, branch, with a 
turning point in the spectrum where several rotational lines are separated by an energy that is 

smaller than the natural linewidth of the transitions. These transitions correspond to the RI(2) - 
RI(4) rotational lines, and the combined populations of these low J" levels, combined with the 
longer fluorescence lifethm of the excited state rotational levels (J' = 3.5 - 5.5), means that the 
R, (2,0) bandhead yields optimum sensitivity for the LIF detection of 10. Fig. 3.3-3 displays a 
LIF spectrum of the (2,0) band of the A-X transition of 10, with a partial rotational 
assignment. 
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FIg. 3.3-3 - LIF spectrum of the (2,0) band of the AlILa - X21L4 transition of 10. Experimental conditions: P= 10 Torr; T 
296 K; [N201 = 1.1 x 16" molecule cm4; [CI411 = 2.2 X 1614 molecule cm'3; [N21 = balance; A., = 193 nm; P.,, = 20 mj pulse- Pp. = SOO JIJ puW; At = 200 p& Note that the rotational transitions are only Partially labelled for clarity. As the J values 

of a arl state are half-integral, the nomenclature of the rotational transitions Is such that, for example, RI(27) corresponds to the rotational transition, JI = 28-5 - J" = 27-5, and PI(18) corresponds to the rotational trwwtion, JA = 17.5 +- J" = 18.5. 
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From the 10 LIF spectrum, it can be seen that the most intense fluorescence signal is observed 

at the (2,0) bandhead, consistent with the spectroscopy of 10 discussed above (note also that the 

most intense single-line transition is PI(5) - also in agreenrnt with the above discussion). 

Further, as no rotational structure is present at the low wavelength side of the bandhead4 this 

line is particularly suitable for the atmospheric detection of 10, where tuning the laser frequency 

on and off the 10 transition is straightforward, and not subject to contanination by UF from 

other close lying rotational transitions of 10. 

3.4 Dispersed Fluorescence of the A 2rIN2 State of 10 and the Detem-dnation of Relative 

FCFls for Various V --+ vll Transitions of the A 2nW __* X2rbn System 

Due to the rapid predissociation of the Aý1-13a state, the fluorescence lifetime of 10 is short 

(r <1 ns) and fluorescence consequently occurs within the laser pulse employed to induce the 

LIF transition. Therefore, fluorescence of 10 cannot be distinguished from laser radiation by 

temporal electronic gating of the PMT (as for OH), or by any other method, and must be 

collected off-resonantly (red-shifted to the laser wavelength) by the incorporation of 

interference filters. Fluorescence from the excited state of 10 will occur in distinct "bands", 

corresponding to the wavelengths of the various V=2 --o. v11 transitions, and the relative 

intensity of the different bands will be governed by the appropriate FCFs. Although calculated 

FCF's for the (2,0) - (2,5) vibrational transitions of the Aý113a - XýI`I3a system of 10 are 

reported in the literature'2, these calculations have only been compared to the results of one 

experimental stud Y13 - Further, fluorescence from V=2 of the AýI-I3n state of 10 has been 

reported to extend to wavelengths of up to 619.3 nmý4,15 (corresponding to the (2,10) vibrational 

transition), although only visual estimates of the fluorescence intensity could be achieved. As 

the collection of 10 fluorescence in a LIF instrument requires the use of optical filters, which 

must successfully block light from both laser scatter and solar scatter (whilst transmitting the 

maximum fraction of 10 fluorescence), knowledge of the relative intensity and wavelength of 

fluorescence from the different vibrational bands is required in order to design an appropriate 

filtering' system. FCF's are also important from a fundamental point of view, allowing the 

comparison of theoretical and experimental data, and provide important information with 

respect to the potential energy surfaces of molecules. Thus an experimental investigation into 

the relative FCF's of various vibrational transitions in the AýI I3a __* X2n3, System Of jo would 

provide a useful addition to the existing literature, and is the focus of this section. 

A useful experimental technique for evaluating the relative FCF's of vibrational transitions 

is that of dispersed flu orescence. In a dispersed fluorescence experiment, the molecule of 
interest is excited from its groundstate to an excited vibrational level (often in an electronically 
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excited state. as in a typical LIF experiment) and the ensuing fluorescence is resolved as a 
function of wavelength by dispersion through a monochromator. For a large, polyatomic, 

molecule. the dispersed fluorescence spectrum will be relatively unstructured due to multiple 
transitions between a large density of states. and extracting useful infomation with regards to 

FCF's can be difficult. However. the bands of radiation corresponding to the vibrational 

progression of an electronic transition of a diatomic mlecule can readily be resolved by a 

monochromator of moderate resolution. 

Fig. 3.4-1 illustrates the fluorescence scheme of the A 2n 3/2 W= 2) state of 10, once 

populated by laser radiation. 

A2F] 3/2 

V= 2 

10 

v" =5 

0 

IVO= 51! 

JVO- 68, ' 

Fig. 3.4-1 - Fluorescence scheme for the A2 1762 W= 2) state of 10. The diagram on the 
left schematically represents the vibrational progression resulting from the v' =2- v" 
vibrational manifold (up to the (2,10) vibrational transition) of the A2R. 2 ---* X2 RV2 
transition. The dashed arrows represent the possibility of fluorescence originating from 
other vibrational levels in the A2n. V2 state, as a result of vibrational energy transfer (VET), 
although this is considered improbable for reasons discussed in the text. The potential 
energy surfaces of the ground and electronically excited states are represented on the 
right, and the approximate wavefunctions of several vibrational levels within them. Note 
that the solid black circles represent the most probable nuclear geometry for the different 
vibrational levels (i. e. the square of the wavefunction) and that these move towards the 
turning point of the potential energy curve, where the nuclear motion is slowest, as the 
vibrational quantum number increases. 
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Briefly, the excited state population can undergo collisional processes (RE7, VE7 and 

quenching) and predissociation and fluorescence. Fluorescence will occur to all vibrational 
levels in the groundstate that have wavefunctions that exhibit appreciable overlap with that of 

the excited state (the (2,5) vibrational transition will have maxirnum intensity of those depicted 

in Fig. 3.4-1). 'Me effective fluorescence intensity of any one vibrational band will be governed 
by the rate of radiative decay to the groundstate, which is governed by the FCF of the 

vibrational transition. Although VE7, quenching and predissociation will result in an increased 

rate of excited state decay, reducing the fluorescence quantum yield, these processes will have 

an equal effect on all transitions of the vibrational manifold and the relative band intensities will 
be unaltered. Note that the occurrence of VET could result in fluorescence originating from 

lower vibrational energy levels (vI =I and vI = 0) in the Aýn3a state, complicating the 
dispersed fluorescence spectrurn. However, this is considered unlikely, as vI =I has an 
extrernely short lifetime (0.88 ps)'O and any population of this vibrational level may therefore be 

considered a loss process with respect to fluorescence. 

To obtain relative FCF's by a dispersed fluorescence experiment, the diffraction grating 
of the nionochrornator is scanned over a suitable wavelength range, resolving the total 
fluorescence signal into its band cornponents. Once corrected for the spectral response of the 
PMT and the monochrornator diffraction grating, the relative FCF's are thus obtained. 

3.4.1 Experimental 

As a monochromator is an integral part of the apparatus of a dispersed fluorescence experiment 
(and the absorption experiment discussed in Chapter Four), the basic principles of the light 
dispersal properties of a monochromator will be discussed here, and are displayed schematically 
in Fig. 3.4-2. A polychromatic light source is introduced orthogonally through an entrance slit 
formed by the spacing between two adjustable metal plates, into the monochromator. Inside the 
monochromator, the analysis light is reflected and collimated onto a diffraction grating by a 
series of appropriate miffors. The diffraction grating consists of a plate with a highly reflective 
Aluminium. (or gold) coating. 7be grating surface (the blaze) contains many fine grooves, 
which are arranged in a tooth-like pattern, and as the collimated light source hits the grating, the 
fight is reflected as from a point source from the long edge of the blaze, establishing a complex 
interference pattern from the wavefronts reflected from adjacent grooves on the grating. For 
any particular wavelength of light, constructive interference only occurs at specific angles 
(relative to the grating noriml) given by the equation, nA = dsinO, where n is any integer, A is 

the wavelength, d is the grating spacing (the length of a groove), and 0 is the angle of 
diffraction. Although waves of a particular wavelength of light only become slightly out of 
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phase as the diffraction grating angle is moved away from the ideal, because there are so many 

grooves on the grating (> 300 per mm) the interference pattern is so chaotic that essentially no 
light intensity is transmitted at any other angle. The grating works most efficiently for first- 

order diffraction (n = 1), and the incident polychromatic radiation is thus resolved (or dispersed) 

into its individual components. The dispersed radiation is reflected from the grating onto 

another series of mirrors, which focus the light onto a second pair of slits at the monochromator 

exit. Although all wavelengths of light are reflected by the second series of mirrors, only light 

of a particular wavelength, to which the angle of the diffraction grating is set, will be focused 

onto the exit slit. All other wavelengths of light are dumped onto the back wall of the 

monochromator, which is blackened so as to minimise the internal scatter of radiation. - 
The absolute resolving power of a monocbromator is defined by the number of grooves 

on the diffraction grating, the quality of the diffraction grating blaze, and the distance between 
diffraction grating and exit slits in the monocbromator. However, experimentally, the resolution 
is predominantly determined by the exit (and entrance) slit widths of the monochromator, as a 

range of wavelengths will be focused onto the exit slit. The wavelength of light detected by the 
PMT is primarily governed by the angle of the diffraction grating with respect to the incident 

radiation. Thus, a dispersed spectrum is obtained by scanning the diffraction grating (altering 

the relative angle of the diffraction grating with respect to the incident radiation), and hence 

constantly changing the central wavelength of light which is focused onto the exit slits of the 

monochromator. However, it should be noted that higher orders of light will also be detected at 
a particular diffraction angle due to the equation, nA = dsinO. Thus a diffraction grating angle 
corresponding to a first-order diffraction of 600 nm light, will also transmit second-order (300 

nin) diffracted light and third-order (200 nm) diffracted light, although first-order diffraction is 

usually most intense. In experiments where higher orders of diffraction may be problematic, 
appropriate filtering of the incident radiation can be employed prior to the entrance slits of the 
monochromator. 

The monochromator employed in this study (Acton SpectraPro-2358) has three 
diffraction gratings, arranged on a triangular mount (as depicted in Fig. 3.4-2), of 300,600 and 
1200 grooves/mm, which are operated under computer control. For the 1200 grooves/mm 
diffraction grating, the absolute resolution of the spectrometer is 0.1 nm. The experimental 
resolution is controlled by altering the entrance and exit slit widths of the monochromator, 
which can be manually varied between - 10 and 3000 gm. 

79 



DG EXS 

II 

('\ 

MON 

Fig. 3.4-2 - Schematic diagram showing the principal workings of a monochromator and 
diffraction grating. The inset displays a microscopic schematic of the diffraction grating 
blaze. PCLS = polychromatic light source, ETS = entrance slits, DG = diffraction grating, 
EXS = exit slits, PMT = photomultiplier tube, ML = monochromatic light, M= mirror, 
MON = monochromator housing. 

In order to calibrate the resolution of the monochrornator, light from a low pressure Hg Pen-Ray 

larnp was directed through the monochrornator and the (Ifull width at half maximum) FWHM of 

an Hg atomic emission line at 435.8335 nm was deterrnined as a function of both 

monochromator slit width and diffraction grating. Note that the line width of an atorrfic 

emission line at low pressure is sufficiently small (a fraction of a pm), that the measurement of 

its FWHM is strictly indicative of the monochromator resolution. Tle monochromator grating 

was scanned at a constant speed over the Hg line, and the light intensity detected by the PMT 

was monitored on an oscilloscope. The time taken for the diffraction grating to scan over the 

FWHM of the signal observed by the PMT was converted into a wavelength range (by the scan 

speed of the experiment) to yield the resolution of the nionochromator. 'Me results are 

displayed in Fig. 3.4-3. 
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Fig. 3.4-3 - Calibration curves of monochromator resolution as a function of diffraction 
grating and slit width. Diffraction grating: black = 1200 grooves/mm, red = 600 
grooves/mm, green = 300 grooves/mm. The data are fitted to second order polynomial 
functions. 

The experimental apparatus employed for the dispersed fluorescence experiment were 

essentially the same as that described in section 2.4, with the notable exception that the reaction 

cell had two additional horizontal axes (which were both 45* with respect to the laser axes), one 

of which was used as the dispersed fluorescence axis. The total fluorescence signal from 10 

was, via the standard procedure, monitored by a PMT at the top port of the vertical cell axis, and 
fluorescence was collimated and softly focused into the monochromator by two plano-convex 
lenses situated in a cylindrical tube connecting the reaction cell to the monochromator entrance 

slit. Both ends of the optics tube were surrounded by black cloth to minimise the amount of 

scattered room light entering the monochromator. An Hg Pen-Ray lamp was placed outside the 

reaction cell. opposite the monochromator on the dispersed fluorescence axis, in order to 

provide a calibration source for the monochromator wavelength. The fourth horizontal reaction 

cell axis was redundant. The laser system consisted of an Excimer laser operating on an ArF 

exciplex at 193 nm, and an Nd: YAG pumped dye laser operating on a Cournarin 2 dye. The 

photolysis energy was typically 20 mJ pulse-1, and the excitation energy was - 0,5 nij pulse-' at 
445 nm. For all experiments described in this section, 10 was generated by the reaction ofO 
(3 P) atoms with CH-Al. Groundstate 0 atoms were generated by the 193 mn. photolysis of N20 in 

an excess of N2 [to quench the initially formed 0 ('D)I. All reagents were purified and 

administered to the reaction vessel by the normal procedure, and all concentrations ofreagents 

were calculated from the appropriate mass flow rates and total reaction cell pressure. All 

experiments were conducted at a room temperature of 296 K. 
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To record a dispersed fluorescence spectrurn, the frequency of the probe laser was tuned 

to the peak of the bandhead of the (12,0) band of the A2F13/2 4___ X2 F13/2 transition of 10.17he 

delay time between photolysis and probe lasers, At, was fixed to a value where the LIF signal 

from 10 was found to be at a maximum (as defined by the precursor concentrations and 

experimental conditions) and the dispersed fluorescence spectrum of 10 was obtained by 

scanning the monochromator diffraction grating over a suitable wavelength range. The total 

fluorescence signal from 10, measured on the vertical cell axis with a filtered PMT, was used to 

normalise the dispersed fluorescence spectra for any fluctuations on a point-to-point basis, 

originating from experimental noise. 

3.4.2 Dispersed Fluorescence from 10 A 2n M (Vý = 2) 

For modest concentrations of 10 (- 1013 rnolecule Cnf 3) the dispersed fluorescence 

spectrum originating from the A2 F13/2 W= 2) state of 10 was readily observed. While the 

diffraction grating of the monochromator was scanned at constant speed, the raw analogue 

output from the monochromator PMT was sent to an oscilloscope, integrated by a boxcar 

averager and stored on a control PC, allowing the fluorescence intensity of 10 to be 4termined 

as a function of wavelength. 'Me integration gate of the boxcar was set to capture all 
fluorescence from 10 (i. e. positioned over the entire probe laser pulse). Fig. 3.4-4 displays a 
dispersed fluorescence spectrum of 10 thus obtained. 

(2,1) (2,3) (2,5) (2,7) (2,9) (2,11) 

iiiiiiiiiiI -i 
(2,2) (2,4) (2,6) (2,8) (2,10) (2,12) 

.0 2 

0 

450 500 550 600 650 

Wavelength / nm 

Fig. 3.4-4 - Dispersed fluorescence spectrum of the A 2HM2 W= 2) state of 10. 
CM-3. Experimental conditions: P= 50 Torr; T= 2% K; [CH31] = 1.1 x 1015 molecule 

[N201 = 1.2 x 1016 molecule CM-3; [N21 = balance; At 170 ILs; Ap, = 444.890 nm; Pp, = 500 
1, LJ pulse"; A.. = 193 nm; P, = 20 nij pulse"; M. 1200 grooves/mm; M, = 0.55 nm; 
M. 

. ý, = 10 mn/min. Note that the dispersed fluorescence spectrum is normalised for the 
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total fluorescence signal of 10 (which varied by < 10 % over the entire experiment) and 
also for the spectral response of the monochromator PMT and diffraction grating, as 
defined by the manufacturers specifications. The blue peak corresponds to the probe laser 
radiation at 444.890 nm and, consequently, fluorescence from the (2,0) band could not be 
observed. The green peaks correspond to Hg atomic emission lines at 435.8335 and 
546.0750 nm (first-order diffraction) and 507.3042 nm (second-order diffraction of 
253.6521 nm line). Although the second-order line is - 2.5 times the intensity of the first- 
order en-dssion lines, the absolute intensity of the 253.6521 mn line is - 30 times greater 
than those at - 436 and 546 nm (which are of equal intensity)16, thus first-order diffraction 
is - 12 times more efficient than second-order diffraction in the monochromator. The 
black peaks correspond to fluorescence from 10. Note that 10 fluorescence was not 
observed for vibrational bands beyond the (2,12) band. The wavelength of the dispersed 
fluorescence spectrum of 10 was calibrated relative to the three Hg emission lines and the 
laser radiation, and assuming a linear relationship between monochromator scan speed 
and diffraction grating angle (from the calibration plot, W=0.999995 ). 

The intensity of 10 fluorescence was normalised for the spectral response of the monochromator 
PMT and diffraction grating (which had a combined effect of altering the 10 fluorescence signal 
by a factor of - three at the longest wavelength studied), and the total fluorescence signal of 10 

as recorded by a second channel on the boxcar averager. Fluorescence from the A 211 3a (v' = 2) 

state of 10 was observed to extend up to a wavelength of 666.3 nin, attributed to the (2,12) 

vibrational band. All structure assigned to the dispersed fluorescence spectrum of 10 was 

confirmed by recording "background" dispersed fluorescence spectra, in which 10 was removed 
from the reaction cell by removing the 0 atom source (N20)- With the exception of the laser 

radiation and the Hg emission lines, no other structure was present in the background spectra. 
As a result of the short fluorescence lifetime of 10, fluorescence from the resonant 

transition (the (2,0) band) could not be observed due to the intense laser radiation. In order to 

overcome this limitation of the experiment, fluorescence from the (2,0) band was observed by 

LIF excitation in the (2,1) "hot band7'. As the vibrational constant of the X211y2 state of 10 is 

relatively small (vo = 681.7 cmý)B, a non-negligible equilibrium population exists in v11 =I at 

room temperature (- 3 %). Thus if 10 is excited from v" =I --). v' =2 in the electronic 
transition, the resonant transition is the (2,1) vibrational band, and fluorescence from the (2,0) 

band can be observed blue-shifted relative to the laser radiation. To excite 10 in the (2,1) band 

the probe laser radiation was changed to a wavelength of - 459 nm by operating the probe laser 

on a Coumarin 47 dye. In order to sufficiently prevent the detection of probe laser radiation by 

the PMT (monitoring the total fluorescence signal of 10), the cut-on wavelength of the colour- 

glass interference filter had to be increased to 515 nin. Fig. 3.4-5 displays an LIF spectrum of 
part of the (2,1) band of 10, recorded after making the appropriate experimental changes. 
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Fig. 3.4-5 - LIF spectrum of low J" region of the (2,1) A' 'rI3. +-- X21I3n transition of 10. 
Experimental conditions: P= 50 Torr; T= 2% K; [01311 = 1.9 x 1015 molecule cnf 3; [N201 = 2.2 x 
1016 Molecule Cnf3 ; [Nzj = balance; At = 70 JIS; Ppr = 500 PJ PUISe-1; Ax = 193 mn, P. = 20 nij pulse-', 
PRF =5 llz. Note that the line on the extreme left of the LIF spectrum is the (2,1) R, bandhead at 
458.7.36 wrn. 

In order to determine the relative intensity of (2,0) fluorescence. the dispersed fluorescence 
2 

experiment was repeated by exciting 10 at the (2,1) R, bandhead of the A F13/2 4__ X2 F13/2 

transition. Fig. 3.4-6 displays the resulting dispersed fluorescence spectrum 

21 11 (2,2) (2,5) (2,8) (2,10) 
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Fig. 3.4-6 - Dispersed fluorescence spectrum of the A 2r,. 
2 (V, = 2) state of 10, post excitation in the 

(2,1) band at 458.736 nm. Experimental conditions: P= 50 Torr; T= 296 K; [Cltjj = 1-9 x 10'5 
molecule Crlf3; IN201 = 2.2 x 10 16 molecule cm3 ; [N21 = balance; At = 70 jAs; Ap, = 458.7-% run; 
Ppr 1.6 nij pulse-; A,, = 193 nm; P,, = 20 mj pulse'; M. = 12(K) grooves/mm; M, = 0.55 nm; 
M, 10 mn/min. The blue peak corresponds to the probe laser wavelength and the black peaks 
correspond to the dispersed fluorescence spectrum of 10. 

84 

458.8 458.9 459.0 459.1 459.2 459.3 

Wavelength / nm 



The blue-shifted fluorescence from the (2,0) band is clearly visible in the dispersed fluorescence 

spectrum, yielding the complete description of the (v' =2- v") vibrational progression ofthe 

A2 F13/2 ---* X2FI 1/2 system of 10. 

To compare the relative intensities of the (2,1) - (2,12) vibrational transitions, the total 

area under each band of the vibrational progression was integrated in Microsoft Origin for three 

dispersed fluorescence spectra recorded under identical conditions, and where the LIF excitation 

of 10 was at the (2,0) bandhead. In order to obtain the relative intensity of the (2,0) transition, 

the total area under the (2,0) and (12,27) vibrational bands was integrated for three dispersed 

fluorescence spectra, recorded under identical conditions and where 10 excitation was in the 

(2,1) hot band, and the average values were normalised to the intensity of the (2,2) band as 

previously determined. Fig. 3.4-7 displays the relative FCF's determined in this study (once 

normalised to the FCF of the (2,1) band as calculated by Rao el. al. 12), along with the calculated 

12 13 
values of Rao et. al. . and the relative FCF's determined experimentally by Spietz et. al. 

LL 

LL 
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Fig. 3.4-7 - Experimental (black = this work, green = Spietz et. aL 13 ) and theoretical FCF's 
for the W=2- v") vibrational transitions of the Alri-. 2 4-- X 2rj'V2 system of 10. The 
experimental fluorescence intensities, determined in this work, are converted to relative 
FCF's by normalisation of the most intense transition (the (2,1) band) to the FCF 
calculation of Rao et. A 12 

. The error bars represent the 2o, standard deviation of the 
average experimental fluorescence intensities. The relative FCF's of Spietz et. aL 13 were 
determined by absorption spectroscopy, and are also normalised to the (2,1) band. The 
theoretical FCF's are taken from Rao et. aL 12 

. 

The relative FCF's of the (2 - v") progression determined in this study are in excellent 

agreement with the FCF calculations of Rao el. al. 12. In the experimental study of Spietz et. 

al. 13 vibrational band strengths were extracted from absorption spectra recorded in photolysis 

mixtures of 12/0-4. Thus in their work relative FCF's could only be obtained for vibrational 
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progressions containing a common groundstate vibrational level, such as (vI +- 0), which 

explains why their results (presented in Fig. 3.4-7) only extend up to v" = 5. The work of 

Spietz et. aL 13 was subject to interference from additional absorbers in the photolysis system 

(such as 010) and also the weak intensity of transitions arising from higher groundstate 

vibrational levels (due to their weak population). Ibe results obtained in this work should 

therefore be regarded as preferential. However, for a more rigorous treatment, fiirther FCF 

calculations extending to higher vibrational levels in the groundstate are required. Table 3.4-1 

lists the relative FCF's determined in the course of this work, along with the relevant 

experimental determinations of Spietz et. aL 13 
, and the calculations of Rao et. aL 12 

, 
for the 

(2 -+ v") vibrational progression of the Aý113a +- X2fl3a system of 10. The experimental and 

theoretical wavelengths for the vibrational bands are also given. 

1 FCFexp 2 FCFewc Band 4XPI AW, FCF. XP 

(2,0) 444.9 445.0 0.045 ± 0.003 0.054 0.044 

(2,1) 458.9 458.8 0.124: t 0.003 0.124 0.124 

(2,2) 473.3 473.2 0.092 ± 0.009 0.065 0.094 

(2,3) 488.2 488.3 0.006 ± 0.002 - 0.003 

(2,4) 504.3 504.3 0.059 ± 0.012 0.022 0.052 

(2,5) 521.0 521.0 0.095 ± 0.022 0.119 0.108 

(2,6) 538.6 538.7 0.032 ± 0.006 - - 
(2,7) 557.2 557.3 0.007 ± 0.004 - - 
(2,8) 576.7 576.9 0.064± 0.006 - - 
(2,9) 

, 
597.0 597.6 0.069 ± 0.010 - - 

(2,10) 618.4 619.5 0.043 ± 0.011 - - 
(2,11) 641.8 642.7 0.011 ± 0.008 - - 
(2,12) 666.3 667.2 0.006± 0.004 - - 

Table 3.4-1 - Relative FCF's (FCF., 
pl = this work, FCF. xp 

2= Spietz et. Al) and observed 

wavelengths (A,, 
pl = this work) for the vibrational bands of the A 211 

N2 (vq = 2) __., X2113f2 
(v") system of 10. The errors for the FCF's determined in this work are the 217standard 
deviation of the average fluorescence intensities of the vibrational bands. The estimated 
precision of the experimental wavelengths is ± 0.2 nm, as inferred from the reproducibility 
of the band positions in the dispersed fluorescence spectra. The calculated FCF's (FCF,. Ic) 
are taken from Rao et. aL 12 and the calculated wavelengths (Ac.,,, ) are obtained using the 
spectroscopic data of Newman et. aLlo and Miller et. W. 

Ile experimental and calculated wavelengths are in excellent agreement for the (2,0) - (2,8) 

vibrational transitions, although a discrepancy is apparent for transitions terminating in the V" 
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=9- 12 vibrational levels. However, it should be emphasised that the main aim of this study 

was to obtain the relative intensity of vibrational transitions originating from the A2 Ma (v' = 2) 

state of 10 and less attention was accorded to the wavelength calibration of the monochromator, 

which was achieved with four points over the 430 - 550 nm range. Despite an R2 value of 
0.999995 from the calibration plot, the error associated with calculating a wavelength from the 

slope statistics was approximately ±2 nm. Further, although the diffraction grating of the 

monochromator was found to scan linearly with wavelength over the 430 - 550 nm range, it is 

possible that a slight non-linearity ensued at higher wavelengths (corresponding to transitions 
terminating in higher v"). The high resolution studies of Newman el. A10 and Miller et. aLs 
were designed for the accurate determination of spectroscopic constants, which are very 
sensitive to the exact frequency of spectroscopic transitions, and are now well defined in the 
literature. In summary, the calculated wavelengths of the vibrational transitions (using the 

experimental data of Newman et. A10 and Miller et. A8) should be preferred. 
It should be stated that spectroscopic transitions between the (2,3), (2,7), (2,11) and 

(2,12) bands of the A21713a - X21-13a system of 10 have not previously been observed in 

absorption or emission spectroscopy, highlighting the high sensitivity of this study. 

Dispersed Fluorescence from 10 A 21IM2 (Vq = 0) 3.4.3 

Although the primary focus of the dispersed fluorescence study was to quantify the 
relative intensity of vibrational transitions originating from the Aý1713n (v' = 2) state, from a 
fundamental point of view it is also interesting to investigate the intensity of other vibrational 

progressions of the A2rI3n --+ X21`13n system of 10. In addition to v' = 2, the v' =0 and 3 

vibrational levels of the A71`13n state of 10 are known to be LIF active 17-19. Due to the combined 

effect of the excited state lifetimes and FCF's, fluorescence from the (0,0) and (3,0) bands is of 
comparable intensity, and I-2 orders of magnitude weaker than that from the (2,0) band'8. As 
the excitation wavelength required for LIF detection of 10 in the (0,0) band (465 - 467 nm) 
could be generated with the Dye laser configuration employed for the (2,1) band experiments, 
an investigation into fluorescence originating from the Aý1713a (v' = 0) state *of 10 was carried 
out. Fig. 3.4-8 displays a LIF spectrum of the (0,0) band of 10 obtained in this study. 
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Fig. 3.4-8 - LIF spectrum of the (0,0) band of the A2 Jj3n 4-- X2113n transition of 10. 
Experimental conditions: P= 50 Torr; T= 296 K; [CH311 = 2.3 x WS molecule cne; [N201 

= 4.3 x 1016 molecule cre; [N2] = balance; At = 50 ILs, Pp,, = 1.2 mJ pulsCl; A.,, = 193 nm; 
P., = 20 mj pulse"; PRF =5 Hz. Note that the rotational lines of the (0,0) band are 
lifetime broadened (with respect to the (2,0) band) due to the short excited state lifetime, 

and are not fully resolved at low JI (near the bandhead) where the spacing between 

rotational transitions is small. 

To record the dispersed fluorescence spectrum originating from V=0, the probe laser 

frequency was tuned to the bandhead of the (0,0) transition at 465.64 nm, and the experiment 

was conducted using the same procedure as previously described. Initially, only light from the 

excitation laser was detected by the monochromator PMT but after increasing the operating 

voltage of the PMT, widening the entrance and exit slits of the monochromator, and employing 
the lowest resolution diffraction grating of the monochromator, a low intensity band structure 

was observed in the dispersed fluorescence spectrum. To obtain the dispersed fluorescence 

spectrum of the (0 - v") vibrational progression of 10, the experiment was repeated in the 

presence and absence of N20 (and hence 10). Although the band structure, attributable to 

spectroscopic transitions of 10, was not present in the absence of N20, an artefact signal with a 

central wavelength of - 523 wn was observed (as was the laser radiation). The source of this 

spurious signal is unknown, although once subtracted from the spectrum recorded in the 

presence of N20 (and 10), its interference was minimised. Fig. 3.4-9 displays dispersed 

fluorescence spectra recorded in the absence and presence of 10, and the dispersed fluorescence 

spectrum of the (0 --+ vI 1) vibrational progression of 10 obtained from their residual. 
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Fig. 3.4-9 - Dispersed fluorescence spectra obtained in the presence and absence of 10 
(bottom panel: + 10 = blue; and, - 10 = red) for a laser excitation wavelength of 465.64 

nm, and the residual W=0- v") vibrational progression of the A2R. 2 -4 X2 r62 system 
of 10 (top panel). Experimental conditions: P= 50 Torr; T= 296 K; [CH311 = 2.3 x 101r, 

molecule CM-3; [N201 = 4.3 x 10'6 molecule CrW3; [N21 = balance; At = 50 ps; A,,. = 465.64 

nm; Ppr = 1.2 mJ pulse-; 193 nm; P,., = 20 mj pulse"; M. = 300 grooves/mm, M, 
6.26 nm, M,, = 10 nm/min. The spectra are normalised for the total 10 LIF signal (as 

monitored by a filtered PMT on a separate detection axis), and the spectral response of the 

monochromator diffraction grating and PMT. 

Despite the residual spectrum having a relatively poor signal-to-noise ratio the (0 - v") 

progression, originating from the A 2FI 
1/2 stale of 10, is clearly visible and extends up to a 

wavelength of 568.7 nrn - corresponding to the (0,6) vibrational transition. The experiment was 

repeated a total of three times and the area under each vibrational band was integrated and 

averaged to obtain the relative fluorescence intensities. The fluorescence intensities were 

converted to FCF's by normalisation to the FCF of the (0,4) band, as calculated by Rao el. al. 12 
. 

Note that the FWHM's of the vibrational bands obtained in this study are much greater than 

those observed in the v' =2 investigation (cf. Figs. 3.4-4 and 3.4-6), reflecting the lower 

resolution of the monochromator. Fig. 3.4-10 displays the relative FCF's of the (0,1) - (0,6) 

vibrational transitions as determined in this study, along with the FCF calculations of Rao el. 

al. 12 
. and the experimental results of Spietz et. al. 13 

. 
Although, in principle, the dispersed 

fluorescence from the (0.0) band could be measured by exciting 10 in the (0, I) hot-band 

(similarly to the determination of the (2,0) fluorescence intensity in the v' =2 experiments), the 

fluorescence intensity would be too weak to observe the dispersed fluorescence spectrum (due 

to the small vibrational population ofv" =I and the short excited state lifetime of' v' = 0), and 
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the tuneable range of the Dye laser did not extend to the required wavelength (480.8 nrn). Thus 

the relative fluorescence intensity of the (0,0) band could not be obtained in this work. 

0 

LL 0 

LL 
0 

0 

0 

c 
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Fig. 3.4-10 - Experimental (black = this work, green = Spietz et. al. 13 ) and theoretical (red 
12 2 

--4 X 2n. 
2 Rao et. al. ) FCF's for the (v' =0 --- * v") vibrational transitions of the AnN. 2 

system of 10. The experimental fluorescence intensities have been converted to relative 
FCFIs by normalisation to the FCF of the (0,4) band, as calculated by Rao et. al. 12 

- The 

error bars represent the 2orstandard deviation of the average experimental fluorescence 
intensities. 

From Fig. 3.4- 10 it can be seen that the results of Rao et. al. 12 and Spietz et. al. 13 are in excellent 

agreement and that the FCF's determined in this study are significantly higher than those of the 

other two studies for vibrational transitions terminating in v" <_ 3. However, if the experimental 

FCF's were obtained by normalisation of the relative fluorescence intensities to the (10,3) FCF 

12 calculation of Rao et. al. , this discrepancy would shift to higher v". 'Me artefact signal at 523 

nm (Fig. 3.4-9) could have interfered with the determination of the (0,3) band intensity in this 

work, as could the laser radiation with the (0, I) and (0,2) bands, but the subtraction of the 

background spectrum should have accounted for contamination from these sources. Despite the 

relatively poor signal-to-noise ratio of the experimental data obtained in this study, the 

reproducibility of the dispersed fluorescence spectrum was reasonably satisfactory (as indicated 

by the 2 ry error bars in Fig. 3.4- 101) and as all spectra were corrected for the spectral response of 

the monochromator PMT and diffraction grating by the same procedure as that used in the v' 

2 study (the results of which were found to be in good agreement with the FCF calculations' 2 

the reason for the observed discrepancy is unclear. 

Table 3.4-2 lists the wavelengths and FCF's for the W=0- v") vibrational 

progression of the A2r]3/2 __* X2 113/2 system of 10 obtained in this study, along with the 
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calculated transition wavelengths and FCF's of Rao et. aL'2 , and the experimental FCF's of 

Spietz et. aL 13 
. All of the vibrational bands reported in Table 3.4-2 have been previously 

observed (as well as the (0,7) band) in emission spectroscopy 15 
. 

Band 4XPI Uý FCFXPl FCFtXP2 FCF,,,, 

(010) - 465.7 0.003 0.005 

(0,1) 480.9 480.8 0.050: t 0.027 0.027 0.035 

(0,2) 496.5 496.6 0.148: tO. 026 0.113 0.109 

(0,3) 512.5 513.3 0.302: t 0.079 0.230 0.198 

(0,4) 530.6 530.9 0.241 ± 0.089 0.241 0.241 

(0,5) 549.7 549.6 0.212 ± 0.035 0.206 0.204 

(0,6) 568.7 569.2 0.148 ± 0.062 - - 

Table 3.4-2 - Relative FCF's (FCF,. pl) and observed wavelengths (Aexpl) of the vibrational 
2rI3,2 (Vq = 0) X211L I bands of the A 3a (v") system of 10 determined in this work. Note the 

errors for the FCF's are the 2astandard deviation of the average fluorescence intensity of 
the vibrational bands. The estimated error of the experimental wavelengths is ± 0.2 nm, 
as inferred from the reproducibility of the band positions in 'the dispersed fluorescence 

2 13 spectra. Relative FCF's (FCF e. P ) determined by Spietz et. aL are also presented. The 
calculated FCFIs (FCF,,,, ) are taken from Rao et. aL 12 and the calculated wavelengths are 
obtained using spectroscopic data of Newman et. aLlo and Miller et. W. 

3.4.4 Discussion 

The work reported in this section represents the first quantitative investigation of the 

relative intensity of vibrational transitions originating from the A2 IIN2 state of 10. In total 19 

vibrational transitions have been observed: 13 originating from v' = 2; and the remainder from 

v1 = 0. The detection of fluorescence from the (2,3), (2,7), (2,11) and (2,12) vibrational bands 

represents the first experimental observation of these transitions in the A21'13a - X2 rl 3a system 

of 10, reflecting the high sensitivity of the experiment and the ease of detecting low intensity 

spectroscopic transitions on a low-noise background. The relative intensity of transitions 

originating from v' =2 are in excellent agreement with existing FCF calculations 12 
, although 

calculations extending to higher groundstate vibrational levels (v" =6- 12) are required for a 

more rigorous comparison. The results obtained are also in reasonable agreement with a recent 

absorption study 13 
. although the findings of this fluorescence study are considered preferential 

due to less potential experimental interferences. The band intensity of transitions arising in the 
(A2113a) v' =0 state of 10 are not in as good agreement with the other studies'Z13 , the reason for 

which is unclear. The results obtained in this work are useful for the development of an LIF 
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instnunent for the detection of 10 in the atmosphere, which is discussed in greater detail in 

section 3.6. 

211312 
state of 10 3.5 Fluorescence Quenching of the A- 

In section 3.2 it was stated that an evaluation of the parameter, ý, is necessary in order to 

determine the theoretical sensitivity of an LIF instrument 0 is known as the fluorescence 

quantum yield, and is equal to the number of photons of radiation emitted as fluorescence by an 

excited state, per photon absorbed by the groundstate. More specifically, for a molecule which 

does not undergo ISC or internal conversion, 0 is given by E. 3.5-1 

kf 
E. 3.5-1 

kf +kp +kq2 

where kf is the mtural rate of radiative decay of the excited state (i. e. the reciprocal of the 

natural radiative lifetime, I/T,. d), 4 is the predissociation rate of the excited state, and Aý is the 
b4nolecular quenching rate coefficient for collisional. deactivation of the excited state by 

quencher, Q (assuning that quenching is linear with pressure). An alternative way of writing 
E. 3.5-1 is, ý= ift,. d, where r is the fluorescence lifetime of the excited state. 'Ibus the 
fluorescence lifetirne, of an excited state is given by R 3.5-2 

Ir kf + kp 
1+ 

kq 51 E. 3.5-2 

If the fluorescence lifetime of a species can be directly determined, therefore, the various 
parameters of E. 3.5-2 can be investigated by a Stern-Volmer analysis, where the fluorescence 
lifetime is measured as a function of pressure of Q. Plotting the reciprocal fluorescence lifetime 

against [Q] thus yields a straight line, with gradient, kq, and intercept, (kf + 4). Conunonly, kf 

>> kp, and the natural radiative lifetime of an excited state can be determined directly from a 
Stern-Volmcr analysis. 

Although predissociation of the A21FIR2 state of 10 has received experimental 
investigatior? "O, there are no reported investigations of the collisional quenching of excited state 
fluorescence in the existing literature. As the theoretical sensitivity of an 10 LIF instrument is 
directly related to the fluorescence quantum yield, the aim of the work reported in this section 

was to investigate the importance of fluorescence quenching in the Aýrl3n state of 10. 
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3.5.1 ExperimentaI 

As previously mentioned, the fluorescence lifetime of the Aýri,,, state of 10 cannot be 

determined directly because it is shorter than the width of a typical laser pulse. Therefore, a 

Stern-Volmer analysis (as described above) cannot be performed, and an alternative method 

must be devised to probe fluorescence quenching of the Aýn-', state of 10. From equations 

3.2-2 and 3.2-3 it can be seen that the fluorescence signal from an excited state is directly 

proportional to the fluorescence quantum yield of that state. Thus if the fluorescence signal 

from a constant concentration of 10 is measured as a function of total pressure, any changes in 

fluorescence signal must be attributable to quenching of the excited state (as ý and kq are the 

only pressure dependent terms in equations 3.2-3 and 3.5-1 respectively). More specifically, the 

pressure dependent fluorescence signal of 10 can be expressed by E. 3.5-3. 

SIO =ß 
kf 

E. 3.5-3 
kf +kp +kqUI 

where, P is an experimental constant, Clo'[10] (where Clo'= Cjotý). Thus a modified Stern- 

Volmer analysis can be performed by plotting the reciprocal of the fluorescence signal against 

the number density of Q, as expressed in E. 3.5-4 (providing that P is maintained at a constant 

value as a function of [Q]). 

kf +kF kq[Q] 
E. 3.5-4 -0 +0 

The resultant plot should yield a straight line with intercept, (kf + 4)/P and gradient, k, 10. 

However, as 0 is an unknown constant (in the absence of absolute calibration of the LIF 

instrument) no direct information with regards to the quenching rate coefficient can be obtained 
from this procedure. Despite this limitation of the experiment, the relative rate of kq (with 

respect to kf + kp) can be obtained by dividing E. 3.5-4 through by the intercept term yielding E. 

3.5-5 

1 1+ 
kq IQ] E. 3.5-5 717 kf + kz, 

where, IlSjo' is the normalised value of the reciprocal fluorescence signal. Now, a plot of l/Slo' 

against [Q] yields a straight line with unity intercept, and gradient, k/(kf+kp). From the 
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gradient, the absolute quenching rate coefficient can be obtained by dividing through by the 

fluorescence lifetime of the excited state (as measured in the CRDS experiments of Newman et. 

A10, which were conducted at a low pressure of -I Torr - Le conditions of negligible 

collisional quenching). Thus, for a particular rotational level in the Aý113a (V = 2) state of 10, 

the quenching rate coefficient can be obtained from F- 3.5-6 

F- 3.5-6 (kf +kpý 

where'r can be calculated from the expression 

or =. -I EA. 5-7 ýUcr 

where, r is the Lorentzian line width of a rotational line, corresponding to J', and is calculated 
from the experimentally derived relationship expressed in E. 3.5-820 

r=0.004 + rJ'(J+ 1) E. 3.5-8 

where, F has units of cnf 1, and ic is a constant of proportionality (113 x 1^ 

To perform a quenching experiment, therefore, requires generating a constant 

concentration of 10 as a function of total pressure. To achieve this, 10 was generated by the 

reaction of 0 atoms with either CH31 or CF31. These reactions are known to be independent of 

pressure2l thus providing a reactive system in which the temporal profile of 10 is independent of 
pressure. Groundstate 0 atorns were generated by the 193 mn photolysis of N20 in the presence 
of a large excess of N2 (to rapidly quench 0 (113) to 0 (3P)). Reagent mixtures of CH31 (or 
CF31) and N20 were prepared in N2 via the normal procedure and administered to the reaction 
cell at different total pressures. 'Me concentrations of N20 and iodide were maintained constant 
as a function of total pressure via a combination of adjusting the total gas flow rate and 
throttling of the reaction cell vacuum system. Ile various processes determining the 

concentration of 10 at any particular reaction time are as follows 

N20 + 193 nm N2 +o (ID) ki 
0 (D) + N2 0 (ýP) + N2 k2 

0 (3P) + RI 10 +R k3 

10 + 10 products k4 
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10 --+ loss ks 

where k5 represents the pseudo-first-order rate coefficient for loss processes of 10 other than the 

10 self-reaction. However, as the experimental conditions were arranged so that k2' >> k3' and 

the concentration of 10 was low enough (typically 1.8 X 1012 molecule cmýý to approximate its 

removal as first-order, the above reaction scheme can be simplified to 

0+ RI 10 +R kgromh 

10 loss ki... 

where k,,,,, ffi is the pseudo-first-order rate coefficient for the rate of formation of 10, and ki. is 

the pseudo-first-order rate coefficient for the loss of 10 in the Idnetic system. Solving the 

differential equations for the concentration of 10 at a particular reaction time, t, yields E. 3.5-9 

liol 
= 

kgrowh 1101nm 

e-kl-f -e -k, _. d E. 3.5-9 

where [101. (= P[Olo, Le. the amount of 0 atoms generated by the excimer laser multiplied by 

some experimental constant) is effectively the peak 10 LIF signal (SIO in E. 3.5-3), which is 

directly proportional to the concentration of 10. 

The same experimental apparatus as used for the dispersed fluorescence experiment was 

employed for the LIF detection of 10, with the exception that no monochromator was 

employed, and the fluorescence from 10 was detected directly by a filtered PMT- The majority 

of experiments focused on quenching of the Ri bandhead of the Aýn-12 (v' = 2) *- X2 Ma 0ý'P. = 

0) transition of 10 in N2, as this is the LIF transition to be used in the field instrument. 

However, a limited number of experiments were also performed in Ar and He bath gases, and 

for different rotational transitions and bands of excitation. All experiments were conducted at 
296 K 

For a particular quenching experiment, kinetic traces of 10 were recorded as a function 

of total pressure, and fitted to E. 3.5-9, returning a value for [10],,.,,. The data points were 

collected in a random fashion so that kinetic traces were not recorded for consecutive pressure 

points, reducing the potential interference from systematic fluctuations of experimental 

variables. All data were normalised to the excimer laser power, which was measured at the rear 

reaction cell window after each kinetic trace was recorded- Fluctuations in the excimer laser 

power were observed to be relatively insignificant, deviating by no more than - 10 % over the 

course of a quenching experiment. Fig. 3.5-1 displays some kinetic traces recorded at different 
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total pressures, and Fig. 3.5-2 displays a plot of [101. against the total number density of N2 

obtained in a particular quenching experiment. 
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Fig. 3.5-1 - Kinetic traces of 10 as a function of total N2 pressure (black = 20.1 Torr, 

red = 302.7 Torr, green = 698.5 Torr). The solid lines are fits of E. 3.5-9 to the 

experimental data. From the fits: [101,,,.., = 3.45 ± 0.04 (black), 2.58 ± 0.03 (red) and 
1.61 ± 0.03 (green); kg,.. th (s-1) = 4670 ± 160 (black), 4930 ± 200 (red), 4250 ± 220 (green); 
ki. (s-1) = 180 ± 10,210 ± 10,235 ± 15. All errors are the 2er standard error 
returned from the fitting procedure. Experimental conditions: T= 2% K; 
[CFý411 = 1.09 X 1015 molecule CM 3; [N201 = 1.84 x 1015 Molecule CM-3; [N21 = balance; 
4,, = 193 nm, P,.., = 37 mj pulse", Ppr = 340 jJ pulse", 4r = 444.89 mn. 

From the kinetic traces of 10, and the plot of 10,. against JN21 (Fig. 3.5-2). it can clearly be 

seen that the fluorescence intensity is observed to decrease with increasing pressure. Further. 

the similarity in the temporal evolution of 10 indicates that the concentration of species within 

the reaction cell - and most importantly 10 - is relatively constant as a function of pressure and 

that the reduction in fluorescence intensity is likely to be due to fluorescence quenching. rather 

than a diminished concentration of 10 at higher pressures. Values of kgrowth and ki., (obtained in 

the same experiment as the data presented in Fig. 3.5-2) are displayed in Fig. 3.5-3, emphasising 

the apparent independence of pressure to the kinetics of the systen-L 
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Fig. 3.5-2 - Dependence of 10 fluorescence intensity on the total pressure of N2. Excitation 
is at the R, (2,0) bandhead of the A 211 M *. - X2rl_m electronic transition. Experimental 
conditions: T= 296 K; [CF31] = 3.1 X 1614 molecule cm73; [N20] = 1.35 x 1615 molecule cre; 
[N2] = balance; L. = 193 nm; P.,, = 14 mj pulsCl; Pp, = 53 pJ pulse"; Ap, = 444.89 nm. 
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Fig. 3.5-3 - Formation and loss rates of 10, in the 0+ CF31 system, as a function of [N2]. 
The experimental conditions were identical to those given in the caption to Fig. 3.5-2. 
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3.5.2 Quenching of the J= 3.5 - 5.5 Rotational Levels of the A 2H 3a (Vt = 2) State of 10 

Fig. 3.5-4 displays the normalised Stem-Volmer plot of the data from the quenching 

experiment displayed in Fig. 3.5-2. 
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Fig. 3.5-4 - Stern-Volmer plot for quenching of the A 2HN2 (V, = 2, P=3.5 - 5-5) state of 10 
by N2. Excitation is at the R, (2,0) bandhead of the A 21IN2 4- X2 17IN2 electronic transition. 
The experimental conditions are identical to those given in the caption to Fig. 5.3-2. From 
the linear fit, kq/(kf + kp) = (1.00 ± 0.06) x W19 cn? molecule`1: 0- 

Excitation of 10 was at a wavelength of 444.89 nin, corresponding to the R, (2,0) bandhead of 

the Aýl 13a +- Xý1713a electronic transition. As stated in section 3.2, the Ri bandhead is a blend 

of three rotational transitions, originating from the J11 = 2.5 - 4.5 groundstate rotational levels. 

Tberefore, the T=3.5 -. - 5.5 rotational levels of the excited state are initially populated by the 

laser radiation. As discussed in the experimental section, in order to convert the relative rate 

coefficient obtained from the slope of the Stern-Volmer plot into an absolute quenching rate 

coefficient, the lifetime of the excited state (under conditions of negligible collisional 

quenching) is required. If it is assumed that the average lifetime of the excited state populated 
in the LIF transition can be approximated by the J1 = 4.5 state, then from equations 3.5-8 and 
3.5-7 we obtain, r= 781 ps. Ibus, substituting the appropriate values into F- 3.5-6, we obtain 

the quenching rate coefficient for the (2,0) bandhead by N2 at 296 K, kq = (12.8 ± 0.8) x 10-11 

crr? moleculd"s-1. Note that this deternination of the quenching rate coefficient assumes that 

RE7 (and VFI) is of negligible consequence in the Aý1713n state of 10, prior to the emission of 
fluorescence, due to its short predissociative lifetime (this assuinption is discussed in greater 

detail in section 3.5.3). Although this value is relatively large and consistent with typical 

electronically excited state quenching rate coefficients, because the fluorescence lifetime of 10 
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could not be observed directly, the quenching experiment was repeated under different 

experimental conditions in order to investigate any systematic dependencies of the quenching 

rate coefficient on the experimental conditions. All quenching rate coefficients obtained are 

presented in Table 3.5-1, along with the pertinent experimental conditions. 

Band [N21 [RII [N201 P,,, Pp,, kqt(kr + kp) kq 

(2,0) 1.3-22.7 7.8" 9.2 21 157 4.5 ± 0.7 5.8 ± 0.8 

(2,0) 1.3-22.7 7.8" 9.2 112 157 12.5 ±0.2 16.0 ± 0.2 

(2,0) 1.3-22.7 1.7' 9.2 112 157 5.5 ± 0.4 7.1 ± 0.5 

(2,0) 2.3-19.4 5.6ft 2.0 103 340 6.5 ± 1.9 8.4 ± 2.4 

(2,0) 2.3-19.4 5.6' 2.0 103 82 5.5 ± 0.4 7.1 ± 0.5 

(2,0) 2.3-19.4 10.9b 18.4 37 340 6.4±0.6 8.2 ± 0.8 

(2,0) 0.3-16.2 7.4b 3.6 12 76 4.2 ± 1.3 5.3 ± 1.7 

(2,1) 0.3-16.2 7.4b 3.4 12 Ill 6.7 ± 1.8 8.5 ± 2.3 

(2,0) 0.3-14.6 Te 16.0 14 194 8.6± 3.4 11.0 ± 4.4 
(2,0) 0.3-16.2 3. lb 4.6 16 53 10.7 ± 0.2 13.7 ± 1.8 
(2,0) 0.3-16.2 3. lb 13.5 14 53 10.0 ± 0.1 12.8 ± 0.8 

Table 3.5-1 - Summary of all quenching experiments performed on initial population of 
JI = 3.5 - 5.5 in the A 211 

M (Vý = 2) state of 10. From left to right, the columns represent: 
the vibrational band of the electronic transition used to excite 10 (A(2, o) = 444.89 nm; 
, 
A(2,1) = 458.74 mn); the experimental pressure range of N2 (1018 molecule CM-3); the 
experimental concentration of RI (1014 molecule cnO9 a= CH319, ,b= CF31); the 
experimental concentration of N20 (1014 molecule cm73); the excimer laser power at 
193 nm (mj pulse"'); the probe laser power (ILJ pulse'); the gradient of the normalised 
Stern-Volmer plot (10-20 cn? molecuk"lsý'); and the absolute quenching rate coefficient 
(107" cn? molecule's"). 

From the data in Table 3.5-1 it can be seen that, although there is a large range in the 
determined values of ký, no systematic dependence on any of the experimental variables is 

apparent. Although this is indicative that the apparent quenching of 10 fluorescence by 
N2 is a genuine result, the large uncertainty in the average value of kq is of concern 
[kg = (9.5 t 6.9) x 10-11 cmýmolecule-ls-', where the error is the 2astandard deviation of all 
independent determinations]. 

In order to investigate the possibility of the observed quenching being due to a decrease 
in the concentration of 10 with increasing pressure, a quenching experiment was conducted 
where excitation was at the R, bandhead of the (0,0) band of the Aý17IM4-- X2 rI3n transition of 
10. The lifetime of the (vl = 0) state of 10 is 17.6 pslo, and independent of J'. Thus for the rate 

99 



of quenching, at 296 K and 760 Torr, to be equal to the rate of predissociation. the quenching 

rate coefficient would have to be, kq = 2.3 x 10-9 crnýmolceulels-' - approximately an order of 

magnitude higher than the gas kinetic rate coefficient. Clearly, therefore, quenching of the 

A2f13/2 W= 0) state of 10 should not be apparent over the pressure range studied in this work- 

Fig. 3.5-5 displays kinetic traces of 10, from the (0,0) quenching experiment, recorded at total 

pressures of 10 and 500 Torr N2. 
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Fig. 3.5-5 - Kinetic traces of 10 recorded at total pressures of 10 Torr (black) and 500 
Torr (red) N2. where LIF excitation is at the R, bandhead of the (0,0) band of the 
A2 M/2 4--- X2 n3/2 electronic transition of 10. The solid lines are fits of E. 3.5-9 to the 
experimental data. From the fits: [101.. 0.21 ± 0.02 (black) and 0.19 ± 0.02 (red); 
kgmwth (S'l) = 3300 ± 660 (black) and 3730 850 (red); ki. (s-) = 280 ± 40 (black) and 
300 ± 40 (red). All errors are the 2ostandard error returned from the fitting procedure. 
Experimental conditions: T= 2% K; [CF311 = 8.2 x 1014 molecule cm -3; [N201 = 3.2 x 101`q 

molecule cm -3 ; [N21 = balance; A, = 193 nm; P,,, = 17 nij pulse-'; Pp, = 340 pj pulse"; 
AP, = 465.64 nm. 

From the kinetic traces it can clearly be seen that the LIF signal from 10 has effectively no 

pressure dependence between 10 and 500 Torr N2- Similarly to the (2,0) band experiments, the 

temporal evolution of 10 does not display a pressure dependence, further substantiating that the 

experimental conditions are well defined and that the concentration of 10 is relatively constant 

with total pressure. Fig. 3.5-6 displays the resultant Stern-Volmer plot from the (0,0) band 

quenching experiment. From the slope of the linear fit to the data, it can be seen that quenching 

of fluorescence from the A2 1713,2 (V'ý = 0) state of 10 is negligible over the pressure range of the 

experiment, in agreement with the above discussion. (However, it is interesting that if the slope 

of the Stern-Volmer plot is converted into a quenching rate coefficient, a value of, k, = (9.7 ± 
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18.9) x 10-11 cmýmolecule-ls-' is obtained - in excellent agreement with the results of the (2,0) 

experiments, albeit with a very large uncertainty). 

2.0 

1.0 

0 

0.0+ 
0.0 S-OX10,9 1-OX10,9 l. 5x1o, 9 2. OX10'9 2. SxIO19 

[NJ / molecule CM-3 

2M 
2 (V9 Fig. 3.5-6 - Stern-Volmer plot for quenching of the Am=0, P=3.5 - 5.5) state of 10 

by N2. Excitation is at the R, (0,0) bandhead of the A 2rl3a #__ X2 113a electronic transition. 
The experimental conditions are identical to those given in the caption to Fig. 3.5-5. From 
the linear fit, kqt(kt + kp) = (1.7 ± 3-3) x 101 crr? mleculels". 

Thus, the negative result of the (0,0) quenching experiment is incontrovertible evidence that 

fluorescence quenching of the A2113a (vl = 2) state does indeed occur. In light of this, a 

reasone 
,d 

argument must be drawn to explain the large range of kq values determined in the (2,0) 

experiments. The most likely explanation is due to the fact that the bandhead of the (2,0) (and 

(2,1)) LIF excitations of 10 are a blend of rotational transitions, 'resulting in the initial 

population of three different rotational levels in the excited state, possessing different excited 

state lifetimes due to the J-dependent predissociation mechanism. This' means that the 

observed quenching rate coefficient is likely to depend on the precise wavelength of the 

excitation laser (due to changes in the overlap of the energy distribution of the laser pulse and 

the groundstate rotational population as the laser wavelength is subtly altered). The quenching 

rate coefficient is also likely to have some form of J-dependence, further exaggerating this 

effect. In addition, if significant pressure broadening of the rotational transitions occurs, the 

peak height of the bandhead will decrease with increasing pressure, altering the observed 

quenching rate coefficient as the precise wavelength of the excitation laser is altered. Some 

dependence of the quenching rate coefficient on laser line width may also be expected, 
therefore. In summary, the range of Aý values obtained in this study is predominantly attributed 
to slight changes (fractions of a wavenumber) in excitation wavelength between the independent 

quenching experiments. 
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As a final investigation in this section, quenching experirnents; were performed in Ar 

and He bath gases. LIF from 10 was induced by excitation at the R, bandhead of the (2,0) band 

As quenching of 0 (113) is significantly less efficient in He and Ar (than N2), approximately 7 

Toff of N2 was added to the reaction system, for each pressure studied, to ensure the rapid 

quenching of 0 ('D) to 0 (3p). For this reason, quenching was only investigated over the 100 - 

700 Toff pressure range, so that N2 was always a minor constituent of the reaction mixture. Fig. 

3.5-7 displays the resulting Stern-Volmer plots, obtained in the noble-gas quenching 

experiments. 
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Fig. 3.5-7 - Stern-Volmer plots for quenching of the A2 nV2 (v' = 2) state of 10 in 

2rj X2R Ar (black) and He (red). Excitation is at the R, (2,0) bandhead of the AM *-- V2 
electronic transition. Experimental conditions: T= 2% K; [CF31] = 5.8 x 1014 

molecule Cnf3; [N201 = 1.4 x 1015 molecule cm--3; [N21 = 2.3 x 1017 nriolecule CM-3; 
[M] = balance; 193 nm; P,,, = 25 mj pulse-; P,, 110 0 pulse-'; AP, = 444.89 nm. 
From the linear fits, kq/(kf + kp) = (6.7 ± 1.1) X 10 29 crtf molecule' s" (Ar) and (2.1 ± 1.3) x 
10720 crWmolecule-1s" (He). 

If the relative rate coefficients, returned from the slopes of the Stern-Volmer plots, are 

converted into absolute quenching rate coefficients then we obtain, kq (Ar) = (8.6 ± 1-4) x 10-11 

cm 3 molecule- I s- 1, and, kq (He) = (2-7 ± 1.7) x 10-11 cm 3 molecule-is-1. This result is somewhat 

surprising, in that fluorescence quenching of the A21-13/2 W= 2) state of 10 is of comparable 

efficiency in N2 and Ar, and, more significantly, unexpectedly efficient in He. Although the 2 or 

standard uncertainty of the He quenching rate coefficient is relatively large. the absolute 

quenching rate coefficient is statistically greater than, kq =1 .0x 10-11 crnýrnoleculels-', which is 

uncharacteristically high for collisional quenching rate coefficients of excited states by He. This 

result may be indicative that RET is involved in the quenching mechanism (as RET is a much 

more efficient process in He, with respect to other types of energy transfer). '17he involvernent 
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of RET in the quenching inechanism is discussed at greater length in the next section of this 

chapter. 

3.5.3 Mechanism and F-dependent quenching of the A 2r62 (v 2) state of 10 

In order to probe the mechanism of fluorescence quenching in the A21-62 (v' = 2) state 

of 10, the quenching rate coefficient was determined for a number of values of J'. Experiments 

were conducted in an identical fashion to that described in the previous sections, with the 

exception that the probe laser was tuned to excitation wavelengths corresponding to different 

rotational transitions in the P, branch of the AýIl3a (vI = 2) - X2rl3n (vI = 0) transition of 10. 

Fig. 3.5-8 displays some selected Stern-Volmer plots obtained from the experiments where 

excitation was in the PI(2), PI(6) and PI(l 8) transitions (corresponding to J' = 1.5,5.5 and 17.5) 

respectively. From the slopes of the Stern-Volmer plots, and substitution of the excited state 

lifetime into E. 3.5-6, quenching rate coefficients of, kqj, (10-11 cri? molecule"s-1) = (0.83 ± 

0.43), (8.3 ± 1.4) and (16.7 ± 1.5) are obtained for the JI = 1.5,5.5 and 17.5 rotational levels 

respectively. It should be noted that all rotational transitions, excited in the Jý-dependent 

quenching experiments, result in the population of only one rotational level in the exited state, 

and the quenching rate coefficients obtained are therefore more state specific than was the case 
for the (2,0) bandhead. However, the relatively good agreement between the quenching rate 

coefficient for J' = 5.5 [kq = (8.3 ± 1.4) x 10-11 cnimoiecuie's-11, obtained in this study, with 
the average quenching rate coefficient obtained at the (2,0) bandhead [Tr. vc = 4.5, 

kqj,. v,. r = (9.5 ± 6.9) 10-11 ci2molecule-s-11 suggests that the method of data analysis for the 

bandhead experiments was justified, and that the relatively high degree of experimental scatter 

was largely due to the blend of excited state rotational levels and subtle changes in the 

excitation wavelength. Table 3.5-2 displays all quenching rate, coefficients determined in the 
J'-dependent quenching experiments, along with the average value (for JI = 4.5) determined 

from the (2,0) bandhead experiments. In Fig. 3.5-9, the quenching rate coefficients are plotted 

against F. From the data obtained, it would appear that the quenching rate coefficient of the 

Aý113t2 (v' = 2) state of 10 increases with J' - initially very rapidly, before exhibiting a weaker 
dependence at high JI. The observed trend is somewhat surprising. A quenching mechanism 
that could explain a positive Jý-dependence to the quenching rate coefficient could be 

collisional. predissociation (where the rate of predissociation increases with J', as the energy 

separation between the curve crossing point and rotational energy level becomes smaller). 
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Fig. 3.5-8 - Stern-Volmer plots for quenching of various rotational levels in the A2113r_ (vI = 2) 

state of 10: T=1.5 (black), 5.5 (red) and 17.5 (green). From the linear fits, kl(kf + kp) 
(10-20 criemolecule-s-1) = (1.0 ± 0.6) (black), (5.5 ± 1.0)(red), and (2.2 ± 0.2) (green). The errors are 
the 2astandard error from the linear fits. Experimental conditions: T= 2% K; [C113II = 1.2 x 1014 

molecule ciTO; [NzOl = 8.4 x 10" molecule cm-3; [Nz] = balance; A,, = 193 nm; P. = 4-5 m3 pulse-'. 
Ppr = 1510 pulse"; Ap, (nm) = 444.95 (black), 445.02 (red) and 445.53 (green). 

4, Rot. Transition J, kql(kf + kp) kq 

4". 95 PI(2) 1.5 1.0 ± 0.5 0.83 ± 0.43 

444.89 Bandhead 3.5-5.5 7.4 ± 5.4 9.5 ± 6.9 

445.02 P1(6) 5.5 5.5 ± 0.9 8.3 ± 1.4 

445.04 PI(7) 6.5 7.0 ± 1.5 12.5 ± 2.7 

445.14 PJ(10) 9.5 4.5 ± 0.5 13.1 ± 1.5 

445.22 PI(12) 11.5 4.2 ± 1.1 16.1 ± 4.2 

445.31 PI(14) 13.5 2.6 ± 0.6 12.6 ± 2.9 

445.41 PI(16) 15.5 2.9 ± 2.6 17.9 ± 15.9 

445.53 PI(18) 17.5 2.2 ± 0.2 16.7 ± 1.5 

445.60 pl(19, ) 18.5 2.5 ± 2.3 20.8 ± 19.0 

Table 3.5-2 - T-dependent quenching rate coefficients for the A2rl3n (v' = 2) state of 10. From left 
to right, the column heading% represent: the excitation wavelength of the quenching experiment 
(nm); the corresponding rotational transition; the excited state rotational level(s) initially populated 
by the laser radiation; the slope of the Stern-Volmer plot: % from the experimental data 
(10-20 ctWn-iolecule-'s-1); the quenching rate coefficients (10-11 ciWniolecule"s"), determined from the 
slope of the Stern-Volmer plots and equations 3.5-6 - 3.5-8. Note that, with the exception of 
excitation energy, the experimental conditions for all experiments were essentially identical. 
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Fig. 3.5-9 - J-dependent quenching rate coefficients for the A211M (v' = 2) state of 10. Note that 
error bars are not shown for F= 15.5 and 18.5, as the. magnitude of error (see Table 3.5-2) would 
detract from the scale of the graph. 

In an attempt to obtain a more complete description of the F-dependent quenching rate 

coefficients, LIF spectra of the (2,0) band were recorded at total pressures of 10 Torr and 700 

Torr N2, and under identical experimental conditions (with the exception of total pressure). The 

spectra are displayed in Fig. 3.5-10 and illustrate the dramatic effect of pressure on the apparent 

rotational distribution. At low T, the fluorescence intensity of the rotational transitions is 

substantially reduced at higher pressure due to collisional quenching of the Aýma state of 10, 

and at high J' the effects of quenching become less apparent as competition with 

predissociation becomes less efficient. In order to investigate the T-dependence of quenching, 
Stem-Volmer plots (albeit with only two data points) were constructed for every (resolved) 

rotational transition of the spectr a. 7he slopes of the Stem-Volmer plots were then converted 
into quenching rate coefficients from the appropriate excited state lifetimes. Fig. 3.5-11 

displays the results. Although there is a large degree of scatter in the data (as to be expected 
from a two-point Stern-VolEner analysis), the determined quenching rate coefficients are of a 

sinilar magnitude to those obtained in the more complete kinetic analyses displayed in Fig. 

3.5-9. Further, the quenching rate coefficient is similarly observed to increase with JI (before 

apparently decreasing somewhere beyond the J' = 12.5 - 16.5 region). 
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Fig. 3.5-10 - LIF spectra of the (2,0) band of the A 211 
V2 4.. _ X2 n. v2 transition of 10 recorded 

at 10 Torr total pressure (black) and 700 Torr total pressure (red) N2. The experimental 
conditions were identical to those given in the figure caption of Fig. 3.5-8, with the 

exception that the delay time between photolysis; and probe lasers, At, was fixed at a 
constant value, where the LIF signal from 10 was observed to be maximum (700 jis). 
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Fig. 3.5-11 - F-dependent quenching rate coefficients for the A2 1713,2 W= 2) state of 10, 
obtained from a two-point Stern-Volmer analysis of the LIF spectra displayed in Fig. 
3.5-10. The black data points correspond to LIF transitions of the P, branch, and the red 
data points the R, branch. 
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It must be commented that too much confidence should not be placed in the j1- 

dependence displayed in either Fig. 3.5-9 or Fig. 3.5-11 for two main reasons. The first is that, 

particularly for the high J' experiments, only a very small change in fluorescence signal is 

observed over the pressure range studied (see Fig. 3.5-8), which introduces a significant error 

into the determined quenching rate coefficients as a result of unavoidable experimental scatter. 

71be second, and more significant reason, is a result of the method of determining the quenching 

rate coefficients. As discussed previously, the quenching rate coefficients are determined 

assuming no RET in the excited state, and that (kf + 4) can be calculated from equations 3.5-7 

and 3.5-8. However, if RET is not negligible, then the calculated lifetimes of the excited state 

will be erroneous, and especially so for low J1. The rate of RET would be expected to decrease 

with increasing F, as the spacing between successive rotational levels becomes greater, and also 

the extent of REr would be expected to decrease with increasing J', as the lifetime decreases 

due to the Jý-dependent predissociation mechanism. If REr proceeds at the gas kinetic rate at 

296 K, the rate of RET would be equal to the rate of predissociation for the J' = 1.5 level at a 

pressure of - 100 Torr, and would thus be the dominant process at higher pressures. It is, 

therefore, very likely that the assumption that RET is negligible in the Aý1-13a (vl = 2) state of 10 

is incorrect and that the calculated lifetimes of the excited state are significantly overestimated 

at low J', resulting in the underestimation of the quenching rate coefficients. Infactonewould 

expect the effect of RET to result in a decrease in the quenching rate coefficient with increasing 

J' for two reasons. First, that the rate of RE7 will decrease with increasing J1, and secondly 

that the influence of RET will decrease with increasing J', due to the shorter lifetime of the 

rotational levels. This reasoning could explain why the quenching rate coefficient appears to 

decrease at higher J' in Fig. 3.5-11, which therefore may be a genuine result. As, at higher P, 

the rotational level initially populated by the laser radiation is nearer to the thermal equilibrium 
U"nwx, 296 K= 19.5), and the effects of RET will be less, the calculated lifetime (used for the 

determination of the quenching rate coefficient) is likely to be nearer to the true value than at 
low T. 

In order to investigate this hypothesis, a dispersed fluorescence experiment was 
performeA If the LIF excitation of 10 is in the (2,0) R, bandhead, then the J' = 3.5 - 5.5 

rotational levels are initially populated in the excited state. If we assume that REr is negligible 
then fluorescence will only occur at wavelengths corresponding to the absorption transitions: 
R1(3), RI(4), R1(5), PI(4), Pi(5) and Pi(6) (as these are the only rotational transitions allowed by 

the spectroscopic selection rules for a diatomic molecule characterised by Hund's case a, with a 
Q branch of negligible intensity), but in distinct bands corresponding to different groundstate 
vibrational levels. If we consider the (2,1) vibratio , nal band, the wavelength range of the 
allowed transitions will fall in the 458.93 - 459.10 nm region (a spread of 0.17 nin). 
Conversely, if RET is not negligible fluorescence will occur over a nmch wider wavelength 

107 



range, as the number of populated rotational levels in the excited state, and hence the number of 

allowed transitions to the groundstate, is increased. 'Ilius information with regards to the 

influence of RET in the A21-13/2 W= 2) state of 10 can be obtained by recording the dispersed 

fluorescence spectrum of a particular vibrational en-fission band at high resolution. 

To perform this experiment, the dispersed fluorescence spectrum of the (2.1) band of 

the A2 rl 3/2 X2rj 1/2 transition of 10 was recorded at a monochromator resolution of 0.3 rim. 

To record the spectrum, At is fixed at a constant value where the fluorescence signal from 10 is 

maximum, and the excitation laser is tuned to the peak of the (2.0) bandhead. The 

monochromator grating is then scanned from 458 - 462 rim at a scan speed of I nmIrnin. and 

the wavelength-resolved dispersed fluorescence intensity. as observed by the monochromator 

PMT, is recorded. The experiment was repeated at total pressures of 10 Torr and 600 Torr N2. 

under otherwise identical conditions. The results are displayed in Fig. 3.5-12. 
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Fig. 3.5-12 - Dispersed fluorescence spectrum of the (2,1) band of the A2n. V2 --+ X2 RV2 
transition of 10, recorded as a function of N2 pressure: 10 Torr (black) and 600 Torr (red). 
Excitation is at the III bandhead of the (2,0) transition. Experimental conditions: T= 296 
K; [CHAI = 5.6 x 1014 molecule CM-3 ; [N201 = 3.4 x 101" molecule CM-3 [N21 = balance; 
At 200 gs; Ap, = 444.890 nm; Pp, = 145 0 pulse-'; A,,, = 193 nm, P,, 43 MJ pulse", 
Mr 1200 grooves/mm; Mr = 030 nm; M,, =I nm/min. 

The results of the dispersed fluorescence experiment are striking in that fluorescence is 

observed to extend over a2-3 nm window -a much greater range than expected in the 

scenario of negligible RET (10.17 nm), and from the monochromator resolution (0-3 run), 

unambiguously illustrating the influence of RET in the A2113/2 W= 2) state of 10. 'Me 

fluorescence is observed to extend up to the 461 - 461.5 nrn wavelength range, corresponding to 

transitions originating from F levels of the order of 34.5 - 37.5, suggesting that RET is 

108 

458 459 460 461 462 



extremely efficient and is competitive with predissociation at pressures as low as 10 Torr N2. 

The second notable feature of the dispersed fluorescence spectra is that the low jI component of 

the fluorescence is significantly weaker at 600 Torr than 10 Torr, indicating that fluorescence 

quenching of the excited state is indeed occurring, and that this is likely to be attributable, at 

least partially, to RET. 'Me fact that the fluorescence intensity exhibits less pressure 

dependence at high T is in accord with the excited state lifetime being predominantly governed 

by predissociation at high il. 

The results of the dispersed fluorescence experiment imply that all quenching rate 

coefficients, detemined. in this study by Stem-Volimr analysis, are erroneous due to the 

incorrect assumption that the influence of RET is negligible in the excited state, and that the 

excited state lifetime could be accurately defined by the lifetirm of the rotational state initially 

populated by the laser radiation. 

3.5.3. i Boltzmann Analysis of LIF Spectra 

In light of the above findings, a different approach was adopted to gain a more 

representative understanding of the true J-dependence and absolute rate coefficient for 

collisional quenching in the AýfI3/2 (vI = 2) state of 10, which utilises Boltzrmnn analysis of 

LIF excitation spectra. T'he intensity of an absorption line, Ib,, is given by E. 3.5-1W 

Iabs -": 
IoNhVBifg 

exp(-hccj- I kBT) E. 3.5-10 
QT 

where, 10 is the intensity of the excitation radiation; Bif is the Einstein coefficient of absorption 

of the spectroscopic transition; N is the total population of the groundstate, QT is the total 

partition function for the groundstate; V is the transition frequency (cnf 1);, g is the average 
degeneracy of the ground and excited states (F + J" + 1); and ej,, is the energy of the 

groundstate rotational level (cuf 1). As Io (providing the excitation energy is constant), N, h and 
QT are all constants (for'a given temperature), if we wish to compare the relative intensity of 

rotational transitions in an electronic absorption spectrum, E. 3.5-10 can be simplified to E. 3.5- 

11 

Iabx' ý'ýBjf gexp(-hcei- I kBT) E. 3.5-11 
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where I,, b, ' = 
IbQT 

, and manipulated to give the rotational temperature, T, from a Boltzmann 
IONh 

plot of ln[Ib, . I(Mif g)] against F-j,,, yielding a straight line with negative gradient hcJI; BT. 

Providing that no Jý-dependent processes affect the fluorescence quantum yield of the 

excited state, the rotational temperature of an LIF excitation spectrum can also be obtained by 

the Boltzmann analysis, as the fluorescence spectrum will effectively miffor that of absorption. 

For example, Fig. 3.5-13 displays a Boltzmann plot for the LIF spectrum of the (0,0) band of 10 

(displayed in Fig. 3.4-8) measured at 296 K (note that predissociation is not Jý-dependent in the 

Aýn3a (v' = 0) state of 1010, and that the fluorescence lifetime (17.2 ps) is too short for 

collisional quenching, which may be J ý-dependent to have any significant effect). 
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Fig. 3.5-13 - Boltzmann plot for the R, branch of the (0,0) band of the A2 I-IY2 #. _ X2 1-13a 
transition of 10. From the linear fit, hcIkBT = 0.005 :t0.0005, yielding a rotational 
temperature of (290 ± 30) K. The experimental conditions are identical to those given in 
the caption to Fig. 3.4-8. 

From the slope of the Boltzmann plot of the (0,0) band, the rotational tenTerature is found to be 

(290 ± 30) Y., in excellent agreement with the experimental temperature of 296 K 

Conversely, any deviation in the determined rotational temperature (from that at which 

the experiment was perforn-ied) by the Boltzmann analysis of a ro-vibrational band that 

exhibits a F-dependent process will yield information with respect to that process. 
Fig. 3.5-14 displays a LIF spectrum of the (2,0) band of 10, recorded over a wide range of 

rotational transitions. The spectrum is normalised for the variation of probe laser power with 

wavelength. 
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Fig. 3.5-14 - LIF spectrum of the (2,0) band of the A 211 
3/2 4__ X 2r1m transition of 10. 

Experimental conditions: P= 30 Torr; T= 296 K; [CH2121 = 7.4 x 1613 molecule Cnf3; 
[021 = 1.2 x 1016 molecule cm73; [N2] = balance; A,., = 248 nm; P,,, = 50 mj pulse"; Pp,. = 500 

pi pulse'; At = 2000 ps. NB. In this experiment 10 was generated from the reaction, 
0+ CH21 - PRODUCTS. For more information with regards to the mechanism of this 
reaction, see Chapter Four. 

Fig. 3.5-15 displays Boltzmann plots of the PI branch of the above LIF spectrum. The black 

data points represent a Boltzmann analysis of the uncorrected experimental line intensities, and 
the red data points correspond to a Boltzmann plot in which the experimental data have been 

normalised to account for the F-dependent predissociation of the A2rl3/2 (v9 = 2) state. The 

rotational temperatures returned from the different Boltzmann analyses are (107 ± 6) K for the 

uncorrected data and (266 ± 30) K for the data corrected for predissociation. The uncorrected 
data return a significantly lower rotational temperature (than the experimental temperature) 
because the fluorescence quantum yield decreases with increasing J'. Therefore, the intensity 

of spectral lines (with respect to an absorption spectrum) also decreases with increasing J, 

lowering the effective rotational temperature (essentially because the rotational population is 

underestimated at high J). Although the discrepancy in rotational temperatures is much less 

when predissociation is considered, the Boltzmann analysis exhibits a systematic deviation from 

linearity. This deviation is most likely due to two factors. First, in correcting the data for 

predissociation we are assuming that RET is negligible in the excited state of 10 and that the 

reduction of signal intensity at high T is directly proportional to the predissociation rate of the 
J' state initially populated by the laser radiation. However, if RET is not negligible then this 

assumption will be incorrect because predissociation is F-dependent (note that for a jl- 
independent predissociation mechanism, such as that in the A2r13/2 W= 0) state of 10, the 

ill 

446.0 445.5 446.0 446.5 



influence of RET will not effect the Boltzmann analysis as the fluorescence lifetime of all F 

states is equal and the LIF spectrum will map the Boltzmann population of the groundstate). 

Secondly, if the A211312 W= 2) state of 10 undergoes some sort of conventional quenching 

mechanism, which exhibits a J'-dependence. then this process will also effect the relative 

intensity of spectral lines. 'I'lius any deviations from linearity (where the slope corresponds to 

the experimental temperature of 296 K) in the Boltzmann plot will provide information with 

regards to the relative rates of RET and J'-dependent collisional quenching in the A2FIV2 W= 

2) state of 10. 
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Fig. 3.5-15 - Boltzmann plots for the P, branch of the (2,0) band of the A 211V. 
2 +_ X2rj. 

transition of 10. The experimental conditions are identical to those given in the caption to 
Fig. 3.5-14. The black data points represent a Boltzmann analysis of the uncorrected 
experimental line intensities: from the linear fit; he/k, T = 0.0135 ± 0.0007, yielding a 
rotational temperature of (107 ± 6) K. The red data points represent a Boltzmann analysis 
for which the experimental line intensities have been corrected for the J'-dependent 

predissociation of the A 2rl. (Vq = 2) state of 10: from the linear fit; bc/6T = 0.0054 
0.0006, yielding a rotational temperature of (266 ± 30) K. 

2 To explore these effects, a 296 K absorption spectrum of the (2.0) band of the A rl; /2 ý__ X2 RV2 

system of 10 was simulated in PGOPHER22, a spectral simulation program. As well as 

simulating spectra, PGOPHER returns the relative intensity of the individual rotational 

transitions. allowing the construction of a Boltzmann plot. Fig. 3.5-16 displays the simulated 

spectrum and the generated Boltzmann plot from its output. which was found to be linear and 

returns a rotational temperature of (296 t 1) K- in perfect agreement with the simulated 

temperature. Information regarding the J'-dependent effects of collisional quenching and RET 

(at 30 Torr - the experimental pressure of the LIF spectrum displayed Fig. 3.5-14) can therefore 

be directly obtained from the ratio of the intensity of the simulated and experimental spectral 
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lines . (once the experimental line intensities have been normalised for the Jý-dependent 

predissociation). 
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Fig. 3.5-16 - Simulated spectrum of the (2,0) band of the A2 113n (__ X2 r62 transition of 10 

at 296 K and for a laser line width of 0.1 cm7l (top right) and a Boltzmann plot generated 
from the returned line intensities of the P, branch (main panel). The spectrum Is 

simulated over the J" = 1.5 - 50.5 range. From the linear fit, hc1kBT = 0.00486 :t0.00002, 
yielding a rotational temperature of (296 -± 1) K. 

Fig. 3.5-17 displays the relative quenching rate coefficients (which can be considered to be 

composite of both RET and conventional quenching processes) determined by this procedure, 

and the resulting Boltzmann plot of the experimental LIF spectrum displayed in Fig. 3.5-14, 

once corrected for both predissociation and quenching. As can be seen from Fig. 3.5-17, the 

Boltzmann plot is linear'and yields the correct experimental temperature. However, the 

apparent Jý-dependence of the quenching rate, required for the correct transformation of the 

experimental data, is unexpected- It should be emphasised that this relationship is only 

representative of the relative effects of RET and some other quenching process in the A2fI3/2 (vl 

= 2) state of 10 in 30 Torr N2, and does not reflect the true F-dependent relative rate 

coefficients of any one quenching mechanism (Note that VET could also represent a 

quenching mechanism as the excited state lifetimes of vI =I and v' =0 are shorter than that of 

v' = 2. However, the rate of VET is generally less than that of RET and collisional quenching 
in electronically excited states, and no evidence for fluorescence originating from vI =I and/or 

vI =0 was evident in dispersed fluorescence spectra where excitation was in the (2,0) band, 

even at the highest pressure studied of 600 Torr N2. ) To investigate the apparent trend more 
thoroughly, an identical analysis was performed on LIF spectra recorded at 10,200 and 700 
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Torr total pressure N2. The returned relative quenching rate coefficients are plotted as a 

function of J' and total pressure in Fig. 3.5-18. 
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Fig. 3.5-17 - Relative F-dependent quenching rate coefficients, k, "4, for the AFI-v,. W= 2) state of 
10 (bottom panel), and a Boltzmann plot of the (2,0) LIF spectrum displayed in Fig. 3.5-14 (top 

panel), once corrected for J'-dependent predissociation and J'-dependent quenching in 10 A211", 
(v' = 2). Note that the quenching rate coefficients are relative to the value for the J' 3.5 state, 
which is assigned a value of unity. From the linear fit to the Boltzmann plot, hc/kBT 0.00489 
O. OW05, yielding a rotational temperature of (294 ± 3) K. 
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Fig. 3.5-18 - J'-dependent quenching rate coefficients required to transform LIF spectra recorded 
at 10 (black), 30 (red), 200 (green) and 700 Torr (blue) total pressure N2 into a 2% K absorption 
spectrum, where the intensity of spectral lines is predominantly determined by the groundstate 
Boltzmann population. The LIF spectra recorded at 10 and 700 Torr are displayed in Fig. 3.5-10, 
and the 30'rorr spectrum is presented in Fig. 3.5-14. The 200'rorr LIF spectrum is not presented 
in this work but was recorded under identical experimental conditions to those in Fig. 3-5-10, with 
the exception of total pressure. In the data analysis, all spectra were nornialised for the variation of 
excitation laser power with wavelength. 
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Interestingly, the apparent J'-dependence of quenching becomes more pronounced with 

increasing pressure, with a significant negative dependence on J'. This effect must be 

attributable to RET, as quenching by a conventional J'-dependent mechanism will display the 

same relative J'-dependence at any pressure. Thus, some conclusions can be drawn with 

respect to the quenching mechanism of the A2FI-, /2 (v' = 2) state of 10. If we assume that, lit a 

total pressure of 700 Torr N2, RET in the A2n3/2 state of 10 is effectively complete (i. e. 

complete rotational thermalisation of the excited state occurs, no matter the initial J' state 

populated by the laser radiation) then the fluorescence lifetime of the excited state will be 

independent of the rotational transition of the electronic excitation, and hence the 700 Torr LIF 

spectrum does not need to be corrected for effects of J'-dependent predissociation. Therefore, 

any deviations from the 296 K absorption spectrum, observed in the Boltzmann analysis ofthe 

700 Torr LIF spectrum, must be attributable to genuine quenching of the A2 r13/2 (v' = 2) state of 

10. Fig. 3.5-19 displays the relative J'-dependent collisional quenching rate coefficients 

obtained by this reasoning 
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Fig. 3-5-19 - Relative F-dependent collisional quenching rate coefficients (black) determined from 

a 7W Torr LIF spectrum or the (2,0) A2av, , X211y, transition or io (Fig. 3.5-10), assuming that 
RET is much more efficient than predissociation in the Vav, (v' = 2) state, resulting in complete 
rotational thermalisation. The rate coeflicients are relative to that of P=3.5, which is assigned a 
value or unity. The red data points represent the relative rate coefficients or predissociation'O in the 
A 21-JýV, W= 2) state or 10, which are also relative to that or j, = 3.5, which is assigned a value or 
unity. 

The data presented in Fig. 3.5-19 show that, assuming rotational thermalisation in the excited 

state, there is a quenching process occurring in the A2 113/2 W= 2) state of 10, which has a linear 

positive dependence on J'. Quenching rate coefficients of electronically excited states usually 

exhibit negative J' dependencies, which may suggest the presence of collisional predissociation 
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in the Aý1713n state of 10, albeit with a much weaker T-dependence than that of the intrinsic 

predissociation mechanisni. It should again be emphasised that this argument relies on the 

implicit assumption that RET is rapid with respect to predissociation in 700 Torr N2. However, 

there is reasonably good evidence to support this assumption. 'Me maximum J' state initially 

populated in the 700 Torr LIF spectrum (in the P, branch) is J'= 26.5. From the predissociation 

data2o, the lifetime of this state is - 61.5 ps. For equal rates of RET and predissociation at 296 

K and 700 Torr, an RET rate coefficient of - 7.2 x 1910 cmýmoleculd-ls-' is required, which is 

not anomalously high. Further, in the dispersed fluorescence experiment (Fig. 3.5-12) it was 

shown that the influence of RE17 must be significant at pressures as low as 10 Torr N2, where an 

extremely high RET rate coefficient of -4 xIO-9 cn? moleculd-'s-1 is required for equal rates of 

RE7 and predissociation (at J' = 4.5; the average excited state rotational level populated by the 

laser). At 600 Toff N2, the dispersed fluorescence spectrum of the (2,1) band was not observed 

to extend to significantly higher wavelengths than that at 10 Torr (indicating that the excited 

state rotational levels may have been thermalised at the lower pressure). The conclusion is, 

therefore, that the rate of RE7 is extremely rapid (at least an order of magnitude higher than the 

gas kinetic collision rate) in the Aý113/2 (v' = 2) state of 10, and that complete rotational 

thermalisation is achieved in 700 Torr N2- 

If there is a genuine quenching process in the Aý1`13a (v' = 2) state of 10, the evaluation 

of its absolute rate is problematic because the relative contribution of RET towards the slopes of 

the Stern-Volmer plots is unknown. However, taking into account the inferences of the 

dispersed fluorescence experiment and assuming rotational thermalisation in the excited state at 

pressures as low as 10 Torr, the absolute quenching rate cocfficicnt at the (2,0) bandhead may 
be estimated by substituting an average fluorescence lifetime of the excited state into F- 3.5-6. 

The average rate of radiative decay of the excited state, <kp>, can be calculated from F- 3.5-12, 

which takes into account predissociation and the Boltzmann population distribution. 

(kp)= 
1 kp, j. 

(2J'+1)exp[- hcBJ'(J'+1) 1 kBT] 
F- 3.5-12 

q, « 

where, 4j, is the predissociation rate of rotational level, F; B is the rotational constant of the 

Aý1762 W= 2) state of 10 (0.269 cnf )10; and q,,, t is the rotational partition function at 

temperature, T (qrt, 296 K= 1526). From E. 3.5-12 we obtain, <kp> = 8.5 x IW s-1 for the 

thermalised Aým,, (v9 = 2) state of 10, corresponding to a lifetime of - 118 ps. Substituting 

this value in to E. 3.5-6, along with the average quenching rate coefficient determined at the 

(2,0) bandhead by Stern-Volmer analysis, yields a quenching rate coefficient of, kq(b.. dh,. d) = 
(6.3 -+- 4.6) x 1910 cin7moleculd"s-1. Rate coefficients for collisional. quenching of the Aý1713/2 (vI 
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= 2) state of 10 by N2 may therefore be estimated for F=3.5 - 26.5, by applying the relative 

JI-dependent quenching rates determined from the 700 Toff LIF spectrum (Fig. 3.5-19). Table 

3.5-3 lists the quenching rate coeflicients determined by this procedure. 

ip kqj. ilp kqj, J, kqj, 

3.5 5.8 11.5 13.0 19.5 16.5 

4.5 6.3 12.5 12.8 20.5 16.1 

5.5 7.3 13.5 11.4 21.5 15.6 

6.5 7.7 14.5 12.4 22.5 16.4 
7.5 8.6 15.5 14.4 23.5 19.1 
8.5 11.3 16.5 15.7 24.5 23.3 

9.5 11.2 17.5 14.4 25.5 25.2 

10.5 11.3 18.5 14.7 26.5 19.3 

Table 3.5-3 - Jý-dependent rate coefficients (10'10 cn? molecule"s") for collisional 
quenching of the A 2rl 

3a (Vt = 2) state of 10 by N2 at 296 K. All values are derived with the 
assumption that RET in > 10 Torr N2 is rapid with respect to predissociation. 

Although the rate coefficients reported in Table 3.5-3 are highly speculative due to a lack of 
information regarding RET in the excited state of 10, clearly quenching of the A7ri3a (v' = 2) 

state of 10 is highly efficient (as is RET). As a result of the findings of this work, future 

experimental and theoretical work should be carried out in order to obtain greater insight into 

fundamental energy transfer processes in the Aýflm (vI = 2) state of 10, and to determine their 

absolute rate coefficients. 

3.5.4 Discussion 

This work represents the first detailed investigation into fluorescence quenching of the 
Aý171312 (V = 2) excited state of 10. The only previous investigation was carried out by Dillon 

and reported in his PhD thesis23. In that work, the ratio of rates of quenching and 

predissociation, k, 14, in the Aý113n (v' = 2) state of 10 was determined in N2 at 294 K in an 

analogous experiment to that of the Stern-Volmer analysis reported in section 3.5.2. After 

exciting 10 at the R, (2,0) bandhead of the Aý1713a - X21-13j2 electronic transition, Dillon found 

the ratio of rate coefficients, k. 14 = (9.0. t: 2.3) x 10-20 cmýmolecule-ls-l. 
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In this work the experiment of Dillon was repeated over a more extensive range of 

conditions and an average kq/4 value of (7.4 ± 5.6) x 107 20 cm 3 moleculd"s7l was determined, 

slightly smaller but in reasonable agreement with that of Dillon. The influence of collisional 

quenching in the AýrIy2 (v' = 2) state of 10 was confirmed by performing quenching 

experiments after excitation in the (0,0) band of the Aý113A +- Xý113n system where essentially 

no decrease in 10 LIF signal was observed with increasing pressure, due to inefficient 

quenching as a result of the short excited state lifetime. Quenching of vI =2 was also observed 
in Ar (which was of a comparable rate to that by N2) and in He (which was less efficient by a 
factor of approximately four). Experiments were also performed in N2 for other initially 

populated rotational levels in the AýrIy2 (vI = 2) state and kjkp was found to decrease with 
increasing J' due to the rapid predissociation. However, once the ratio of rate coefficients were 

corrected for the predissociation rate of the excited rotational level (importantly assuming no 
REJ) the quenching rate coefficient was found to increase with increasing jý 

LIF excitation spectra of the (2,0) band of the Aýrl3a +- Xý[IN2 transition of 10 were 
observed to display a marked pressure dependence, increasing in rotational temperature with 

increasing pressure, indicating the influence of both RE7 and collisioml quenching in the 

Aýn312 (v' = 2) state. To investigate the effects of RET in more detail, 'dispersed fluorescence 

spectra of the (2,1) band of the Aýrl3a - Xý1-13a transition of 10 were recorded at relatively 

high resolution (0.3 nin) after exciting 10 at the R, bandhead of the (2,0) band. At pressures as 

low as 10 Torr N2 the fluorescence was observed to extend over a wide range of wavelengths, 

indicating extremely rapid RET in the excited state with a rate coefficient of the order of 

4x W9 cn? moleculd-s-1. The small rotational constant of the Aý113a state (B = 0.27 caf )10 and 

the partial ionic character of 10 may allow for very efficient rotational energy transfer. 

Fluorescence quenching is to be an expected result of RE7 in the Aýrl3a (v' = 2) state of 10 

(when relatively low J' states are initially populated by the LIF excitation) as the maximum 

rotational population is found in T= 19.5 where the fluorescence lifetime (and hence 

fluorescence quantum yield) are significantly smaller than at low Jý However, it is unknown 

whether RET alone can explain the experimental results and it is considered that an additional 

quenching process is occurring. 

To investigate these possibilities further, a more rigorous exarnination of the pressure 
dependent LIF scans was performed. When the rotational lines of the LIF spectra were 
corrected for predissociation. (assuming no RE7 in the excited state) it was found that the 
relative J'-dependence of the quenching rate coefficients, required to convert the observed 
rotational temperature to the correct value, displayed a marked pressure dependence - indicating 
the influence of REM Assuming that RFr results in complete thermalisation of the excited 
state in 700 Torr N2 (regardless of the JI state initially populated by the excitation laser, up to jI 
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= 26.5) a positive F-dependence was observed for a collisional quenching process in the excited 

state of 10, which displayed a linear dependence on F and is considered to be a collisional 

predissociation mechanism Assuming that rotational thermalisation of the excited state is 

complete in 10 Torr of N2, the absolute collisional quenching rate coefficient of this process is 

estimated as, kq = (6.3 t 4.6) x 10-10 cm3molecule-'s-1 for J' = 4.5, and -2x 10-9 CM3 molecule- 
is-' for J' = 26.5. Although the effects of RET and collisional quenching could not be 

completely decoupled in this study, both processes must occur at extremely rapid rates 

(significantly faster than the gas kinetic collision frequency) and require further experimental 

and theoretical research. 

Determining the absolute state-to-state rate coefficients of RET in the Aýrl3a (v' = 2) 

state of 10 is non-trivial. They could potentially be determined by recording the time 

dependent, rotationally resolved, dispersed fluorescence spectrum originating from the AýI-13/2 

(v' = 2) state, after the initial population of a single rotational level. However, as the excited 

state lifetime of 10 is so short (< I ns) this experiment could not be achieved with a typical 

commercial laser as the laser pulse width would be significantly longer than the lifetime of the 

excited state. In principle, the experiment could be performed with a ps laser, although a 

fluorescence detector with a greater temporal resolution than a conventional PMT would also be 

required. Further, the line width of aI ps laser is at least 5.3 cnf 1 (due to the Heisenberg 

uncertainty principle) and multiple J' levels in the A21-13a (v' = 2) state would be populated by 

the laser radiation (note that 5 cmý' overlaps the first 12 rotational transitions of the R, branch of 

the Aý1`13/2 (v' = 2) *. _ X2rI312 (V9 = 0) transition of 10). A quantitative study of RET could not 

be successfully studied by analysis of pressure dependent dispersed fluorescence spectra (even 

at a full rotational resolution) as RET could not be completely decoupled from a Jý-dependent 

collisional quenching process. In summary, a quantitative investigation of RET in the An3a 

(vl = 2) state of 10 cannot be achieved by conventional laboratory techniques. 

Information regarding RET in 2113a states of 10 could be obtained by investigating 

rotational energy transfer in the X2 113a groundstate of 10. To achieve this, an IR pump laser 

could be used to excite groundstate 10 to an excited vibrational level (e. g. v" =2 or v" = 3), 

which could subsequently be excited to the A2fl3,7 state of 10, inducing fluorescence, by a 

second, UV probe laser. By recording LIF excitation spectra as a function of delay time 

between pump and probe lasers, the evolution of the rotational distribution in the groundstate 

could be monitored, allowing the determination of the absolute state-to-state rate coefficients of 

RET in the X2173/2 state of 10. Further, as the (0,2) and (0,3) bands of the AýfI3/2 +- X211312 

transition of 10 have relatively large FCF's (see section 3.4.3) excitation of the groundstate 

population to v' =0 would minimise interference to the data analysis from predissociation and 
RET in the A2[13,7 state of 10 (as predissociation in v' =0 is not J'-dependent). An 
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experimental apparatus designed for studying the rate of reactions of vibrationally excited small 
free-radicals will soon be developed in our laboratory and could be used for the suggested study 

of RET in the Xý1-13a state of 10. 

In conclusion this study has provided important insight into energy transfer processes in the 

AýrI3/2 (v' = 2) state of 10 and, despite only being informative at a semi-quantitative level, lays 

the foundation for future experimental and theoretical research. 

3.6 LIF Instrument for the Detection of 10 Radicals in the Atmosphere 

Fig. 3.6-1 shows a diagram of the core components of the fluorescence cell that has been 

designed, and built, for the detection of 10 in the atmosphere by LIF. As the initial testing and 

adaptation of the instrument is the focus of ongoing research, a detailed description of the 
instrument will be given in future work, and only the most fundamental details are discussed 
herein. The fluorescence cell is constructed from a 100 x 100 x 100 nun cube of alurninium, 
and is anodised in a matt black finish to minimise the scatter of laser and solar radiation. 
Ambient -air is entrained into the fluorescence cell through a cone-shaped turret of 2" base 
diameter, which has a 1.5 mm diameter nozzle (see Fig. 3.6-3). Ile turret is situated on the top 
face of the fluorescence cell (as depicted in Fig. 3.6-1) and is held in place by the vacuum of the 
cell by means of an o-ring seal. The turret nozzle is raised - 10 mm above the fluorescence cell 
surface. The fluorescence cell is evacuated by a rotary vane pump that is attached to the cell via 
flexible steel bellows connected to a flange with a KF 25 fitting, which is fixed to the bottom 
face of the fluorescence cell CFig- 3.6-1) and sealed with an o-ring. The fluorescence cell has 
four external connection points (ECP) that can be connected to 1/4" swagelock fittings and the 
cell pressure is measured by a0- 1000 Torr capacitance manometer (connected to one of the 
ECP, 's). When all cell axes and ECP's are sealed (a blank is in place of the turreted nozzle) the 
base pressure of the reaction cell is < 10 mTorr. When the unrestricted pump draws ambient air 
through the 1.5 nun diameter nozzle, the reaction cell pressure stabilises at - 80 Torr. 
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Fig. 3.6-1 - Basic diagram of the LIF cell built for the detection of 10 in the atmosphere. 
The crossed arrows at the top left-hand-side of the figure represent the pumping (PA), 
lasing (LA), and fluorescence collection (FCA) axes of the fluorescence cell (FC). The 
additional structural components that are labelled are a cell arm (CA) and an external 
connection point (ECP). 

Laser light is introduced into the fluorescence cell through an anodised aluminium arm 

of 200 nun length. The end of the arm connecting to the fluorescence cell has a plug with 1" 

external diameter'that forms a seal with the socket of the fluorescence cell via an o-ring seal. 

The cell vacuum is maintained by a i" diameter plano'convex glass lens that is sealed by an o- 

ring at the opposite end of the cell arm. The planoconvex lens has a nominal focal length of 400 

mm, sOftly focusing the laser radiation at the LIF excitation region and reducing the amount'Of 
laser scatter within the fluorescence cell. The cell arms contain a series of baffles, constructed 

Erom matt black plastic, that are spaced at equal distances along the length of the arm and 

restrict the' amount of scattered laser radiation entering the cell. A fibre optic is used to 

transport light from laser to cell arm and a fibre optic coupler, connected to the end of the cell 

arm via an anodised aluminium flange, collimates the laser radiation exiting the fibre optic into 

a beam of -8 mm diameter. As defined by the focal length of the planoconvex lens, the laser 

beam diameter at the LIF excitation region (the centre of the fluorescence cell) is -2 mm A 

small o-ring, situated between fibre optic coupler and flange, allows the adjustment of the laser 

beam alignment through the fluorescence cell via the pressure exerted onto the o-ring from three 

small screws connecting the coupler to the flange. 
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Fluorescence from 10 is collected on the horizontal cell axis, orthogonal to the laser 

beam The optical arrangement for fluorescence collection is schematically represented in Fig. 

3.6-2. Fluorescence passes through a 3" diameter glass window, forming the seal to the 

fluorescence cell vacuum, and into the fluorescence collection housing (FCFD. Within the FCH, 

fluorescence from 10 is collimated by two glass planoconvex lenses situated in series (and at the 

optimum distance from LIF excitation region) and each of 127 nun nominal focal length. 'Me 

collimated fluorescence is then passed through a cut-on and a cut-off interference filter, before 

being refocused by two more identical planoconvex lenses onto the photocathode of the CPM 

(channel photomultiplier). The cut-on interference filter removes the fundamental 445 nin laser 

radiation and the cut-off interference filter removes any undoubled 890 nni IR laser radiation 

residing in the laser beam (see below). All optics within the FCH are fixed by a combination of 

interchangeable, variable thickness, anodised aluminium and rnatt black plastic spacers, 

allowing the relative position of the optics to be alteredL 'Me CPM is situated in a tight-fitting 

mount, and held in place by several tie wraps, at its optimum distance from the second set of 

planoconvex lenses. The opposite end of the fluorescence collection axis (to the FCM is sealed 

by a second 3" diameter glass window, behind which is a spherically concave laser mirror (or 

backreflector), located at its optimum distance from LIF excitation region. The backreflector 

refocuses fluorescence to its source thus increasing the amount of fluorescence detected by the 

CPM by a factor of two. Further, as the backreflector is coated with a substrate that only 

reflects radiation between 495 - 605 nni, the S/N of the LIF instrument is enhanced as only 

fluorescence from 10 (and not laser radiation) is reflected into the FCH. The CPM is powered 

by a high voltage power supply and operated at a voltage of 3M The signal output from the 

CPM is sent to an oscilloscope and a computer controlled photon counter. The analogue CPM 

signal observed on the oscilloscope is used to set the gate width of the photon counter to 

temporally overlap with the laser pulse (in which all fluorescence from 10 occurs). The 

fluorescence signal recorded by the photon counter is stored on the control PC for analysis at a 

later date. 

An all solid-state, Nd: YAG-puriTed, titanium sapphire laser is used for the generation 

of the 444.89 nm. radiation required for excitation of 10 at the R, (2,0) bandhead of the Aý113n 

<-- X2113/2 electronic transition. The Nd: YAG laser is a diode-pumped, Q-switched, intra-cavity 

frequency doubled Nd: YAG laser which produces - 10 W of 532 nm radiation with a 25 ns 

pulse width, and I nun beam diameter, when operating at a PRF of 5 kHz. 'Me 532 nm YAG 

laser radiation is used to pump a titanium sapphire crystal, generating a useful wavelength range 

of - 690 - 1000 nn-L For the generation of 445 nin radiation, an IR wavelength of 890 nm is 

selected by the diffraction grating, and frequency doubled by a cerium lithium borate (CLBO) 

crystal. For an IR laser power of -IW at 890 nm, approximately 150 mW of 445 run 
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excitation radiation can be generated. In a previous work" the laser line width of the 445 nm 

radiation was estimated as 0.065 cmýl by comparison of experimental LIF excitation spectra 

with simulated spectra in PGOPHER22. For a more detailed description of the laser system see 
Bloss et. aLl. 

os 

BRF 

FC 

BR 

FS 
SPF 

Fig. 3.6-2 - Schematic diagram of the fluorescence collection arrangement in the 10 fluorescence 
cell. Note that the diagram is not to scale and only depicts the most essential features of tile 
fluorescence detection. BR = back reflector, BRIF = back reflector flange, 'CPM = channel 
photomultiplier, FC = fluorescence cell, FCII = fluorescence collection housing, FS = fixing screw, 
EF interference filter, OS = o-ring seal, PCL = planoconvex lens, SPF = short pass filter, 
W window. 

3.6.1 Theoretical Sensitivity 

As discussed in section 3.2, the theoretical sensitivity of an LIF field instrument is 

given by equation, E. 3.2-3. This section deals with evaluating the various parameters of the 

sensitivity equation for the 10 LIF instrument described above, using the spectroscopic data 

obtained in this work, and comparing the determined sensitivity with the value previously 
estimated by Bloss et. al.. 

The Einstein coefficient of absorption and fractional population of the 

groundstate, B,, 
N(v", j") 

N 

As three rotational transitions are excited in the RI bandhead of the A2113a W =2) 
X2I`13/2 (V99 = 0) transition of 10, it is appropriate to evaluate Aif and N(v,, j,, )IN as a product. 
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(In the work of Bloss et. aLl, the fluorescence quantum yield, 0, was also considered in this 

term, although for reasons discussed in section 3.6.1. vii below, this treatment will not be 

extended to this work. ) At the (2,0) bandhead the product of B,, 
N( 

N 
J-) wiH be equal to* the 

sum of the values of the individual rotational transitions, as given by E 3.6-1 

Bif 
N(výj-) 

= B(p 
N(Y"-OJ--23) 

+B(jý(3)) 
N(,, 

-O. J'-3.5) 
(J; (4)) 

N(,,. Oj--4.5) 
-1 (2)) +B 

N 
F- 3.6 

For the RI(2), R1(3) and RI(4) rotational transitions, the Einstein coefficients of absorption are: 

4.16 x1023; 4.36 xle and 4.44 XIOý3 Cn? j-1s-2 respectivelyil. The rotational populations of the 

groundstate levels are given by E. 3.6-2. 

N(,., j. ) (2J"+I)exp[-hcBJ"(J"+I)IkB71 
E. 3.6-2 

N Qla 

where Q,. t is the total partition function (q,. q,,, ) of the Xý1`13a (vI = 0) state of 10 and is equal to 

1263 at 296 K (where sunumtion is over all A-doublets, which are excited by the laser 

radiation). From E 3.6-2, the fractional populations of the J-'I = 2.5,3.5 and 4.5 rotational levels 

in the groundstate of 10 are evaluated to be 0.0047,0.0062 and 0.0076 at 296 K respectively. 

Thus, substituting the appropriate values into F- 3.6-1, Bl, 
N( 

N 
J2 is calculated to be equal to 8 

x 1021 cnýFls-2fbr the R, (2,0) bandhead of the Aýn,,, +- Xý113a system of 10 at 296 Y, 

3.6.1. ii - Laser power, P 

Although the laser system is capable of generating up to - 150 mW of 445 nrn 

radiation, a value of I mW is used in the theoretical calculation as it is more meaningful to 

compare sensitivities in the absence of experimental variables (Le. the sensitivity is expressed 

per mW of laser power). 

3.6.1. iii - The laser, CVL v and 10 transition, AVD 9 line widths 

As previously stated, the laser line width of the 445 mn radiation generated by the 
Nd: YAG pumped titanium sapphire laser is estimated as 0.065 crrf'. The natural line width of a 

spectroscopic transition corresponding to absorption in the UV-visible region of the 
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electromagnetic spectrum is predominantly determined by Doppler broadening and is 

essentially due to the range of translational energies that a molecule possesses. The Doppler 

width of a spectral line is given by E. 3.6-3 

2v ( 2kBT In 2)112 

M 
AV = 

(ý" 2 
E. 3.6-3 

cm 

For a frequency corresponding to the R, (2,0) bandhead of the Aý1713n 4-- X2 1713a transition of 10 

(6.74 x 1014S-1), the Doppler width is calculated to be - 700 MHz, or 0.023 cmý'. However, as 

the bandhead consists of three rotational transitions, which have an energy distribution of - 
0.082 cnf 1, the natural line width of the 10 transition is taken as 0.105 cnf '. 

3.6-1. iv - Length of the laser beam overlapping the ambient sample, I 

Although the laser beam is overlapping with the ambient air sample across the entire 
length of the fluorescence cell, only fluorescence originating from near to the centre of the cell 

will be efficiently focused onto the CPM. Therefore the active length of the laser beam can be 

approximated by the beam diameter, which is 2 mm at the centre of the fluorescence cell. Thus, 

I=0.2 cniL 

3.6.1-v - Collection efficiency of the optics, c 

The collection efficiency of the optics is defined by the fraction of fluorescence detected by the 

CPM, with respect to the total solid angle of fluorescence (4 7c). The solid angle of fluorescence 

detected by the CPM, 0 is given by E. 3.6-4 

()= 2A E. 3.6-4 
f2 

where, A is the area defined by the radius of the clear aperture of the fluorescence cell windows 
(31.6 mm) andf is the nominal focal length of the planoconvex lenses (63.5 mm). Note that the 
factor of 2, in E. 3.6-4, accounts for the increased fraction of fluorescence collected as a result 

of the back reflector. Thus, for the fluorescence cell, c=0.124. 
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3.6.1. vi - Fluorescence transmission eMciency, T, and quantum efficiency of the CPI%I, 11 - 

For the interference filters incorporated in the fluoresccncc collection housing, - 10 

fluorescence from the (2,5) - (2,10) vibrational bands of the Aýn_', -Xý113a system is 

efficiently detected by the CPM. However, as the quantum efficiency of the CPM is 

wavelength dependent, as is the transmission of the colour glass cut-on filter in the 515 - 545 

nin range, it is useful to evaluate the product of these parameters as a fimction of vibrational 

band, also taking into account the relative band strengths. Note that the short-pass filter has an 

approximately constant transmission of 60 % in the 500 - 630 nin region and all windows and 

lenses are anti-reflected coated in the 425 - 675 nin region, yielding a transmission of > 99.5 %. 

Ibus, the term rIT can be evaluated from F- 3.6-5 

V-10 
IT = 0.62: (2, v1'1(2. vý)T(2. vý) 

F- 3.6-5 

where: 1(2,,,, ) is the fractional fluorescence intensity of vibrational band (2, v"), Le 

FCF(2, v,. ýFCFTcrrAL (as determined from the experirnental data reported in section 3.4); TA2,, e-) is 

the CPM quantum efficiency at the wavelength corresponding to the - vibrational band (2, v"); 

and T(2,,,, ) is the percentage transmission (expressed as a fraction) of the cut-on colour glass 
filter at the wavelength corresponding to vibrational band (2, v"). Note that the factor of 0.6 

accounts for the wavelength independent transmission efficiency of the short-pass interference 

filter. Table 3.6-1 lists the appropriate values of 1, j7 and T for the (2,5) - (2,10) vibrational 
bands. 

Band A 1(2, v") 17(2, v") 
T(2. 

v") 
Q IM2, v" 

(2,5) 521.0 0.145 0.72 0.098 0.0103 

(2,6) 538.7 0.049 0.96 0.088 0.0041 

(2,7) 557.3 0.011 0.99 0.078 0.0008 

(2,8) 576.9 0.098 0.99 0.067 0.0065 

(2,9) 597.6 0.106 0.99 0.057 0.0059 

(2,10) 619.5 0.066 0.99 0.046 0.0030 

Table 3.6-1 - Wavelength dependence of the CPN1 quantum efficiency, rh the colour glass 
filter transn-dssion efficiency, T, and the relative band strength, 1, of the various (2, v-) 
vibrational transitions. NB. j7 and T are evaluated by the manufacturer's specifications 
and I Is evaluated using the dispersed fluorescence data obtained In section 3.4. 
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Substituting the appropriate values into 13.3.6-5,, 27T is calculated to be 0.018. 

3.6.1-vii - Fluorescence quantum yield, 

The fluorescence quantum yield, is evaluated from E. 3.5-1. In the work of Bloss et. 

aLl, 0 was evaluated in conjunction with Bif and N(,,, j,, )IN as it was assumed that RET is 

insignificant in the A21713a (v' = 2) state of 10 and that the excited state lifetime could be 

calculated from the predissociation rate of the rotational level initially populated by the laser 

radiation. However, in consideration of the work discussed in section 3.5, it is likely that the 

excited state population has undergone significant rotational redistribution as a consequence of 

RET in 80 Torr N2, and probably to the extent of complete rotational thermalisation. Thus the 

predissociation rate of the excited state can be evaluated from E. 3.5-12 and is calculated as, kp 

= 8.5 x 109 s-1 at 296 K The natural radiative lifetime of the A2rl3n state of 10 is unknown, 

although Bekooy et. aL7 estimated it as 10 - 100 ns by extrapolation of the corresponding 

electronic transition moment of CIO. Taking the mid-estimate value, we obtain, kf = 1.82 x 167 

s-1. Using the estimated quenching rate coefficient obtained in section 3.5.3 for quenching of 

the R, (2,0) bandhead by N2 (kq = 6.3 x 10-10 cm3molecule-'s-1), kq[Q] is thus evaluated as 1.64 x 

109 s-1 in 80 Torr air (assuming that the quenching rate coefficient is comparable in air and N2). 

Thus the fluorescence quantum yield at 296 K and 80 Torr air is calculated to be 0.0018 for 

excitation of 10 in the RI (2,0) bandhead of the A21713a 4-- X2rl3n electronic transition. 

3.6.1. viii - The ratio of densities inside and outside the fluorescence cell, pijpt 

Assuming that the rotational temperatures are equal inside and outside of the fluorescence cell, 

p. tp. w is given by the ratio of fluorescence cell and ambient pressures. Hence, for a typical 

ground-level ambient pressure of 760 Torr, and a fluorescence cell pressure of 80 Torr, p. 1p,, A 
0.105 at 296 K 

3.6.1. ix - The fractional reduction in [10] due to heterogeneous loss processes between the 

fluorescence cell nozzle and LIF excitation region, y1o 

As the extent of heterogeneous 10 loss processes in the fluorescence cell are unknown, y1o is 

assumed to be unity (Le. no losses occur)., This assumption is very likely to be incorrect and is 

one reason why an absolute experimental calibration of the LIF instrument is paramount in 

order to determine its true sensitivity. 
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3.6.1. x - Evaluation of the theoretical calibration constant, CKh and detection li"t, LODK), 

of the 10 LIF field instrument 

Substituting all values into F- 3.2-3, the theoretical calibration constant for the 10 LIF 

instrument is calculated to be, Clo = 5.7 x 1W cts cir? Molecule" s-1 mNV". For a laser power of 

50 mW; a total averaging time of 60 s (m =n=1, t= 30 s); a SIN of 1; and estiimted laser, ýsolar 

and dark background count rates of 200,100 and 5 cts ý-' respectively, the detection limit of the 

instrument is found to be, LOLhO = 1.6 x IW molecule Cnf3 (or 0.7 ppt at ground-level). 

Although the theoretical LOD is sensitive enough to detect 10 in the hIBL (assuming the 

DOAS-reported mixing ratios), it is almost three orders of magnitude smaller than that reported 

by Bloss et. al. l. Table 3.6-2 fists the values of all variable parameters in F- 3.2-3 determined in 

this work, and in the work of Bloss et. aLl. 

Parameter (Units) Bloss d. aLl, 2003 This work, 2006 

Bi4N(Yllil, )IN (cli*_IS) 2.5 x 1020 1.44 x 1019 

p 0.001 0.001 

[ jý 4[A 
L2 

2 
L +A~VD + A~VD (CM) 14.3 8.1 

1 (CM) 0.35 02 

c 0.125 0.124 

IT 0.0375 0.018 

A/Aln 0-53 0.105 

cio (cts criý nioleculä" s-, MW") 3.3 x le 5.7 x 10 

LODio [rWICCUIC C1d3 (ppt)1 23 x 104 (0-001) 1.6 x1 Cý (0.7) 

Table 3.6-2 - Theoretical parameters of E. 3.2-3, theoretical calibration constants, and 
theoretical detection lWflts for an 10 LIF field Instrument as determined In this work and 
in that of Bloss d. aLl. Note that for the LODjo calculation In the work of Bloss d. W, the 
following values were used: SIN = 1, P= 50 mW, m=n=1, t= 30 s, So, = 10M ctssý", 
S. b = 500 cts s*1 and Sdb =0 cts s". In this work the same values were used with the 
exceptions: Sib = 200 cts s", Sib = 100 cts s" and Sdb =5 cts s". Note that although 
BifN(, e, j-IN and ý were evaluated separately In this work, their product Is given In this 
table for comparison with the work of Bloss d. aLý Conversely, 17 and T were evaluated 
separately in the work of Bloss d. W but are expressed as their product herein for ease of 
comparison to this work (from Bloss d. W, q=0.15 and T=0.25). 

The largest discrepancy found between any one parameter in this work and the work of 
Bloss et. aLl is a factor of approximately 20 in Bi4N(, -j-IN. As the same values for the 
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groundstate populations and-Einstein coefficients of absorption, were used in both works, the 

discrepancy is solely attributable to differences in the fluorescence quantum yield, 

highlighting the importance of considering RET and fluorescence quenching in the A2 1713, (V9 

2) state of 10, which were ignored in the work of Bloss et. aLl but experimentally investigated 

in this work. The second largest discrepancy in the theoretical sensitivities, a factor of - 5, is 

found in plp". The magnitude of this parameter is governed by the pressure of the 

fluorescence cell at which the experiment is performed. Discerning the optimum pressure for 

the field experiment is non-trivial, requiring future experimental research, and is discussed 

ftirther in section 3.6.3. The sensitivity of the LIF instrument evaluated in this work is reduced 
by a factor of -2 by the parameters, j7T, because the relative intensities of the vibrational bands 

of the (2 --+ v'9) progression were previously unknown and had to be estimated. The dispersed 

fluorescence data determined in section 3.4 have thus facilitated the accurate evaluation of these 

parameters. The other parameters resulting in a reduced theoretical sensitivity of the LIF 

-T -1 [. JTA 2+ --729] 
instrument are L AVD and I- In the work of Bloss et. aL 1, the range of frequencies 

of the rotational transitions constituting the R, (2,0) bandhead were not considered and I was 

estimated in accordance with the appropriate value for the Leeds HO,, FAGE instrument (which 
is not comparable to the 10 LIF cell described above). 

This work has shown that evaluating the theoretical sensitivity of an LIF instrument in 

the absence of information regarding spectroscopic and energy transfer processes in excited 
states should be treated with caution. However, even with the significantly reduced sensitivity 
determined herein it would appear that LIF is a viable technique for the detection of 10 in the 
MBL. 

3.6.2 Absolute Calibration of the 10 LIF instrument 

The large discrepancy between the calculated theoretical sensitivity of the 10 LIF field 
instrument reported in this work and that of Bloss et. al. ' empbasises the uncertainty involved 

with such an evaluation. Although the theoretical sensitivity determined in this work should be 

regarded as preferable due to a more comprehensive understanding of the physical properties of 
the A2rl3a (v' = 2) state of 10, the sensitivity analysis still requires estimating some parameters 

of E. 3.2-3, such as yjo, I and kf (which is essential for an accurate evaluation of ý) and it would 
be unwise to base the absolute sensitivity of the instrument at the theoretical limit. The absolute 
experimental calibration of the instrument is therefore of fundamental importance. However, as 
10 is a reactive radical species that cannot be purchased commercially, absolute calibration of 
the instrument requires in situ generation of a quantifiable source of 10, which is non-trivial, 
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particular as relatively low concentrations of 10 (> 1011 molecule cnf 3) will rapidly diminish 

due to self-reaction. 
Fig. 3.6-3 shows a schematic diagram of the calibration cell designed for the 

experimental determination of the absolute sensitivity of the 10 LIF instrument. In the 

calibration experiment, a mixture of CF3I/N20/N2 is flowed at a total flow rate of - 20 s1re 

(atmospheric pressure) through a Pyrex flow tube (PFT) of - 25 nun internal diameter. At a 

region near the bottom of the PFF, a circular hole of - 10 nun diameter is drilled through the 

calibration cell, allowing the irradiation of the gas in the photolysis region (PR) of the PFr with 

light from an unfiltered Hg Pen-Ray lamp. light from an Hg atomic emission line at 184.9 nin 

photolyses N20 in the gas mixture generating 0 (1D) atoms, which are quickly quenched to the 

groundstate (0 3P) configuration by the large excess of N2. The 0 (3P) atoms react with CF31 in 

the PFr generating 10 with a yield of > 80 %25. Gas from the calibration cell is drawn into the 

fluorescence cell under vacuum where 10 is excited at the LIF excitation region, and the 

ensuing fluorescence detected by the CPM. T'he calibration cell has four 1/4 " excess gas ports 

(EGP's), which allow any excess gas not entering the fluorescence cell to escape. By attaching 

a static cell to the EGP's it is found that a total flow rate of - 15 slm is required to balance the 

flow rate in the fluorescence cell. Evaluating the concentration of 10 excited at the LIF 

excitation region fundamentally requires knowledge of the 0 atom concentration generated by 

the photolysis of N20- The lamp flux at 184.9 inn is determined in a separate experiment by 

flowing air (at an equal flow rate) through the PFr, generating 03- The excess gas from the 

calibration cell is sent. to a commercial 03 analyser, which yields the concentration of 03 (and 

hence 0 atorns) generated under the experimental conditions. Thus from knowledge of the 

concentration Of 02 in the PFr, the total flow rate in the PF1r (allowing the evaluation of the 

residence time of the gas mixture in the PR) and the absorption cross section Of 02 at 184.9 MA 

the 184.9 run. lamp flux can be evaluated and is found to be, F(184.9 jun) 'ýý 3x 1014 photons Cm72 
for the Hg lamp operating at full power (20 mA DC). 
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Fig. 3.6-3 - Calibration cell for the 10 LIF field instrument. Note that the turreted nozzle 
(TN) forms the vacuum with the fluorescence cell (FC) via an o-ring seal and that the 
calibration cell (CC) is fixed onto the fluorescence cell via a flange with screws. EGP = 
excess gas port, HgL = low pressure Hg Pen-Ray lamp, PFT = Pyrex flow tube, PR = 
photolysis region. 

The flux of 0 atonts generated by the photolysis of N20 can thus be calculated from the 

concentration of N20 in the PF7, the absorption cross-section of N20 at 184.9 nm, the lamp flux 

at 184.9 nm. and the residence time, tpR, of the gas rrýixture in the PR of the flow tube. For the 

conditions of a typical calibration experiment: T= 296 K, P= 700 Torr, [N201 =4x 1017 

- 3, JCFJJ =2x 1015 molecule C -3, JN21 = balance, flow rate = 20 SIM IPR = 15 m. molecule cm m S, 

F194.9 ntriý =3x 1014 photons CM-2 . approximately 2.6 x 10" molecule CnI-3 of 0 atoms are 

generated by the photolysis of N20- Once the concentration of 0 atonis is known, the 

concentration of 10 at the LIF excitation region can then be estimated by the time taken for the 

gas mixture to travel from the PR to the LIF excitation region, assuming that in that time 10 is 

only removed by sell'-reaction. However, estimating the time for the gas mixture to reach the 
LIF excitation region is not straight-forward. In the PFT, a cross-section with I cm 3 depth is 

cleared in - 15 nis (i. e. the flow velocity is - 70 cm s-1 ). As the bottom of the PFr is -5 cm 
above the fluorescence cell nozzle. the gas rnixture will therefore reach the nozzle after - 75 nvs, 
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assuming that the central portion of gas travels at a constant speed throughout the calibration 

cell. If it is assurned that the effective flow rate and pressure at the TN is equal to that of the 

fluorescence cell (15 slm and 80 Torr) then the absolute flow rate at the nozzle is equal to 2375 

scceý If the gas eDtering the fluorescence cell is considered to travel to the LIF excitation 

region in a gas colunin of 1.5 nun diameter (the diameter of the TN) then its vertical flow 

velocity will be - 1.3 x IW cnisý' and the gas will take - 40 lis to travel from the nozzle to LIF 

excitation region -a negligible time in comparison to the residence time- of the gas spent in the 

calibration cell. Thus the minimum time for 10 to travel from PR to the LIF excitation region 

rmy be considered to be 75 ms. 
Conversely, if we consider that the gas is well nixed in the calibration cell below the 

PFr, the flow velocity of gas in this region (- 17 cm s-1) will be significantly different to that in 

the PFr and take significantly longer to travel from PR to TN (- 300 ms). If it is also assumed 

that the gas in the fluorescence cell is well mixed, Le the central portion of gas travelling 

through the nozzle does not travel vertically downwards (which is almost certainly the case) and 

that there is an equilibrated flow rate through the fluorescence cell, then the reaction cell will be 

completely flushed with new gas in - 0.17 s (fluorescence cell volume = 400 cri?, cell flow rate 

- 2375 sccs). As the LIF excitation region is at the centre of the fluorescence cell, gas entering 

the nozzle will thus take - 85 ms to reach the LIF excitation region. Hence, the longest time for 

10 to travel from PR to the LIF excitation region is estimated as - 395 ms. 

After 75 ms, an initial 10 concentration of 2.6 x 1011 molecule crrj3 (assuzring a unity 

branching ratio for the reaction, 0+ CF3I - 10 + CF3) will be diminished to - 5.4 x 10'0 

molecule Cm&3 by self-reaction, and for a residence time of 385 ins this value will be reduced to 

- 1.4 x 1010 molecule Cnf3. 'Mus there is almost a factor of five uncertainty in the calibration 

procedure and it should be emphasised that the outlined calibration methodology does not 

consider additional losses of 10 such as wall losses, photolysis; in the PR of the PFr, or reaction 

with impurities/photochernical species present in the calibration cell. In order to accurately 
define the transit time of 10 from generation to detection, the flow rate and pressure gradients in 

the calibration and fluorescence cells should be investigated. However, as an initial evaluation 

of the experimental sensitivity of the 10 LIF instrument (and its comparison to the theoretical 

sensitivity) the calibration experiment outlined above is sufficient. 
Fig. 3.6-4 displays the results of a calibration experiment. Ile experimental procedure 

is performed in the following manner. Ile gas rnixture of CF3LIN20/Nz is flowed past the 184.9 

nm radiation from the Hg lamp, resulting in a constant flux of 10 at the IJF excitation region. 
The wavelength of the excitation laser is then scanned under cornputer control in steps of 0.001 

nm over the first two rotational lines of the (2,0) band [the bandhead and a second line 

(corresponding to the RI(l) and RI(5) rotational transitions)j. Once the scan is complete, the 
diffraction grating of the laser is instructed to return the laser to the wavelength where 
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maximum fluorescence signal was observed (the peak of the bandhead), and an on-line 

measurement cycle (m) ensues. Once the on-line measurements are complete, the laser 

wavelength is tuned to an off-line position (444.70 nm) where no 10 absorption occurs and the 

off-line measurement cycle (n) is performed, obtaining the laser background. 
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Fig. 3.64 - Calibration experiment for detern-dning the absolute sensitivity of the 10 LIF 
instrument. Note that the laser scans over the (2,0) bandhead (followed by a, second 
spectral line) in order to observe the peak 10 LIF signal. The laser wavelength is then 
retuned to the peak signal (A. = 444.889 nm) and the on-line (m) LIF signal is averaged 
over a user-defined range (t). When the on-line cycle is complete the laser wavelength is 
tuned to an off-resonant wavelength (A. = 444.70 nm) where no 10 absorption occurs and 
the background signal is recorded in the off-line regime (n). Experimental conditions: 
P]pFr = 760 Torr; PFc = 80 Torr; T= 296 K; flow ratePFT = 20, slm; [N201PFT =4x 1017 
molecule cm73; [CF31]pFT =2x 101-5 molecule cmý; [N2]pFT = balance; F(1&4.9 Rm) =3x 1014 
photons Cmw2; 'L = 444.889 nm; A. = 444.700 nm; P= 15 mW; m= 30; n= 10; t= 30 s. 
From the experimental data: m. V9 = (1382 ± 190) cts sý', and n. vg = (200 :t 25) cts sý'. Hence 
the 10 fluorescence signal, Sio = (1182 :t 192) cts s". The above calibration experiment 
was performed by Dr. Lisa Whalley and Kate Furneaux. 

From the calibration experiment, the number of counts attributable to 10 LIF is found to 
be 1182 cts s-1. Thus for the estimated range of 10 concentrations, the calibration factor is 
determined as, CIO = (1.5 - 5.6) x 10-9 cts cm3'molecule-1 s-1 mW-1, in remarkably good 
agreement with the theoretical evaluation (5.7 x 10-9 cts cm3 molecule-1 s-1 mW-1). Assuming 

that the transit time for 10 to reach the LIF excitation region of the fluorescence cell is 

somewhere between the best and worst case scenarios, a mid-estimate value of CIO = 3.6 x 10-9 

cts cmý molecule-' s-1 mW-1 may therefore be most representative of the true experimental 
sensitivity of the 10 LIF instrument. Thus for a SIN of 1; a total integration time of 60 s (m =n 
= 1,1 = 30 s); a laser power of 50 mW; and background counts of, Sib = 667 cts s-1 (taking the 
value of 200 cts s-1 for a laser power of 15 mW and assuming that laser scatter scales linearly 
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with laser power), Sb = 70 cts sý' (nrmrcd independently), and S& =5 ass"' (rmnufacturffs 

specifications); the absolute detection limit of the apparatus is calculated to be, LOAo = 3.9 x 

W molecule CIIf3 (or 1.6 ppt). Note that this sensitivity is sufficient for the detection of 10 in 

the MBL and is representative of the 10 LIF instrument in its infancy. 'Me sensitivity could be 

enhanced, with no instrumental modifications, by increasing the averaging time of the 

cxpcrin-rnt. With further development of the LIF instninrnt (see section 3.6-3) it is expected 

that the detection limit of the instrument could be improved by at least a factor of three. 

3.6.3 Discussion 

After reassessing the theoretical detection limit of an LIF instrument for the detection of 

10 in the atmosphere, it is found that the projected theoretical sensitivity is 2-3 orders of 

magnitude less sensitive than previously estirnated. 11he decrease in sensitivity is 

predominantly associated with the decreased fluorescence quantum yield of the Aýrly2 (v' = 2) 

state of 10 as a result of rotational energy transfer and fluorescence quenching in the excited 

state, which have been experimentally investigated for the first time in the course of this worL 

The theoretical sensitivity is also decreased as a result of the simller fraction of the total 

'fluorescence detected by the instrument, which has been evaluated accurately in this study by 

consideration of the relative band strengths of the AýIljw (v' = 2) - X211y2 (v") vibrational 

progression that has been quantified for the first time by a dispersed fluorescence experiment. 

Under realistic experimental conditions, the theoretical detection linit of the instrurnent 

has been calculated to be 1.6 x IW molecule cff3 (0.7 ppt) for a total integration time of one 

minute - sufficient for the measurement of 10 in the MBL From an initial calibration 

experiment the absolute detection limit of the instrunwrit is determined to be - 3.9 x IW 

molecule CHf3 (_ 1.6 ppt), in good agreement with the theoretical evaluation suggesting that the 

fluorescence quantum yield of the Aýn3a (vI = 2) state of 10 is fairly well characterised by the 

results obtained in this work. The determined sensitivity of the LIF instruarnt implies that LIF 

will be an important diagnostic tool for the measurement of local 10 concentrations in the 

atmosphere, improving our quantitative understanding of iodine chernistry in the MBL and 

providing a meaningful comparison with the average 10 concentrations reported by the WAS 

technique. However, it should be cmphasised that the calibration method is susceptible to 

considerable uncertainties and nust be developed more rigorously in order for 10 LIF signals 

obtained in the field to be converted into absolute 10 concentrations. 
It is envisaged that the detection limit of the LIF instrument could be significantly 

enhanced, with respect to the preliminary estimates, by future research and development. For 
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example, Fig. 3.6-5 displays the pressure dependence to the theoretical sensitivity as determined 

by the evaluation of the pressure dependent parameters in E. 3.2-3 

8X, 0,4 

6xl 

0 
-k 4xl Cc' 
-6- 

2xl 

P/ Torr 

Fig. 3.6-5 - Pressure dependence of the theoretical sensitivity of an 10 LIF field 
instrument determined by consideration of the pressure dependent parameters in 
E. 3.2-3, ý and pJAt. Note that Ajpt is evaluated from the ratio of fluorescence cell and 
ambient pressures and ý is evaluated from E. 3.5-1 (kf = 1.82 x 167 ý ", kp = 8.5 x 109 s*', 
kq = 6.3 x 10-10 cn? moleculelsý') assuming that RET results in the complete rotational 
thermalisation of the A 211 

3a (v 9= 2) state of 10 at pressures of 80 Torr and above after 
LIF excitation in the R, (2,0) bandhead. 

As can be seen, the theoretical sensitivity increases with pressure as the reduction in 

fluorescence quantum yield is overcompensated by the increase in number density at higher 

pressures. Hence, the theoretical sensitivity at atmospheric pressure is approximately four times 

greater than that at 80 Torr. However, the adopted pressure of the field experiment is dependent 

on several other factors. First, as the excitation laser operates at a PRF of 5 kHz, a laser pulse is 

produced every 200 gs. In order to prevent potential photolytic interferences (such as the 

production and excitation of 10 from the photolysis of ION02 within the same laser pulse for 

example) a fresh gas parcel must therefore travel a vertical distance of >2 min (i. e. the diameter 

of the laser beam at the LIF excitation region) in 200 gs. As discussed in section 3.6-2, the flow 

rate inside the fluorescence cell at 80 Torr is 2365 sccs. For the worst case scenario, where the 

vertical flow velocity in the fluorescence cell is equal at all positions, the gas will take - 3.4 ins 
to travel through the LIF excitation region. However, for the best case scenario, where the gas 
travels through the cell in a collimated jet of 1.5 min diameter (corresponding to the nozzle 
diameter) the LIF excitation region will be replenished with fresh gas in 0.6 gs. Clearly, some 

sort of intermediate value will be representative of the true flow rate. In order to increase the 
fluorescence cell pressure, the pumping rate would have to be reduced thus decreasing the flow 
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rate through the cell, ultimately leading to longer residence times. in summary, efficient 

flushing of the LIF excitation region with fresh gas is uncertain even at low pressures and 

extreme caution should be taken if higher reaction cell pressures are adopted. However, the 

same, total flow rate through the fluorescence cell could be maintained at higher pressures via a 

combination of reducing the fluorescence cell nozzle diameter and reducing the total pumping 

rate. Clearly, the gas flow within the fluorescence cell requires experimental. or theoretical, 

characterisation. In deciding the optimum fluorescence cell operating pressure, the pressure 

dependence of the scatter of laser and solar radiation also needs to be consideredL Both of these 

relationships should be characterised and quantified in order to asses the true pressure 

dependence of the theoretical sensitivity of the 10 LIF instrument. 

Further improvements to the sensitivity of the 10 LIF instrument could be achieved by 

reducing the scatter of laser and solar radiation. Presently, the fluorescence collection system 

incorporates a filter system allowing a wide range of wavelengths to be detected by the PNIT 

(500 <X< 650 nm). Although the wide fluorescence window ensures maximum collection of 

10 fluorescence, the fluorescence from 10 only occurs in discrete bands according to the 

vibrational transitions, whereas scatter from solar radiation and red-shifter laser scatter (note 

that some laser scatter may also be attributed to red-shifted LIF from the colour glass filter) may 

occur at all wavelengths. Thus, the background may be improved by employing a narrow band- 

pass filter, specifically designed to capture fluorescence from only one vibrational band of the 

AýIIM --l' Xýrbn transition of 10. For example, a narrow band-pass filter with central 

wavelength of 521.0 nm, peak transmission of - 50 %, and FWIlM of 2-3 nin would 

essentially collect all fluorescence from the (2,5) vibrational band while successfully 

discriminating the vast majority of solar (and laser) scattered radiation. If such a filter were 

employed, the parameter j7T (see Table 3.6-2) would be reduced from it current value of 0.018 

toavalueofO. 0071. However, this reduction in sensitivity is likely tobe overcompensated for 

by the reduction in background. The laser background could also be reduced ftirther by more 

efficient baffling in the fluorescence cell arms. Assuming the incorporation of such a narrow- 

band interference filter, more efficient discrimination of the laser scatter, and an operating 

pressure of 300 Toff, the detection limit of the 10 LIF instrumcnt is calculated to be 6.7 x 106 

molecule Cnf3 (0.27 ppt) for a S17V = 1, m=n=1, t= 30 s, P= 50 mW, So. = 50 cts s-1, S'b =7 

cts : 0, Sdh, =0 cts s-1. 'Me magnitude of the background count rates are considered to be upper 

limits, once the appropriate adaptations have been made, and the calculated detection limit is 

considered to be a conservative estimate for the optimised 10 LIF instrunient. 

A previously umnentioned factor, that could affect the sensitivity of the 10 LIF field 

instrurrr, nt, is the contribution to the background sigml from N02 fluorescence. Nitrogen 

dioxide absorbs relatively strongly at 445 nm and fluoresces over the entire fluorescence 
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window of the AýI-I3n ___). X2rl3a transition of 10. To address this potential interference, an 

absolute calibration of the LIF instrument should be performed with respect to N02 detection. 

As N02 is a stable molecule, its in situ generation is not required and the calibration experiment 

would be very straight-forward. However, N02 fluorescence is not considered to be a major 

potential interference to the 10 field measurements due to the low concentrations found in the 

remote MBL (- I- 100 ppt) and the fact that N02 fluorescence is rapidly quenched by N2 at the 

envisaged operating pressures of the field experiment (P > 80 Torr). Further, the incorporation 

of a narrow-band interference filter would help to minimise interference from N02 fluorescence 

as the majority of its fluorescence will be discriminated. If the LIF cell is found to be 

particularly sensitive for N02 detection, it is conceivable that the instrument could be used to 

determine the concentration of N02 in the MBL. There are surprisingly few direct detection 

methods for the measurement of N02 at low concentration and, in principle therefore, the 10 

LIF instrument could prove a useful tool for its detection in the clean marine atmosphere. 

The 10 LIF instrument described in section 3.6 was designed and constructed as part of 
this PhD and is currently making point measurements of 10 in the MBL at a coastal site in 

Brittany (France), as part of the RHaMBLE (Reactive Halogens in the Marine Boundary Layer 

Experiment) field campaign. The preliminary results suggest that 10 concentrations in excess 

of 20 ppt have been detected - higher than any other measurement of 10 in the atmosphere to 
date. 
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Chapter Four: A Multidimensional Study of, the Reaction CH21 + 02: 

Products and Atmospheric Implications 

4.1 Introduction 

As discussed in Chapter One, the radiative balance and climate of the Earth's atmosphere 

are partially influenced by cloud formation and therefore the presence of aerosol particles that 
lead to the formation of cloud condensation nuclei (CCN). It is now well established that iodine 

1-5 
oxide chemistry leads to the formation of new particles in the marine boundary layer (MBL) 

Iodine monoxide (10) is the precursor to higher iodine oxides (such as 010 and 1202) in the 
MBL, and the processes leading to its formation are thus relevant to the production of new 

particles. Although molecular iodine (12) is now thought to be the main precursor to 10 and 
particle formation at Mace Head, Ireland", diiodomethane (CH212) has recently been observed 

at high concentration at a separate coastal location, where 12 was not detected9. In the 

troposphere CH212 is rapidly photolysed (rz 5 minutes)10 to CH2I and 111. The iodine atoms 

react With 03, forming 10, and the CH21 radicals will rapidly be consumed by reaction with 02 

CH212 + hv - CH2I +I (P4-1) 

I+ 03 --ý' 10 + 02 

CH21 + 02 PrOdUCtS (R4-2) 

A recent study 12 reported that 10 is formed directly in reaction R4-2 with a unity yield, 
which could therefore influence particle production in the MBL under localised conditions. The 

main aim of the work reported in this chapter was to determine the mechanism by which 10 is 
formed after the photolysis of CH212 in the presence Of 02, and whether or not this process could 
be of atmospheric significance. 

4.2 Previous Investigations of the CH21 + 02 Reaction 

There are few studies of the CH21 + 02 reaction reported in the literature. An indirect study 
of reaction R4-2 by Sehested et. aL 13 reported the absorption spectrum of CH2102 over a 
wavelength range of 220 - 400 nm. and estimated the reaction kinetics of its self-reaction. In 
that study 13 CH2I radicals were generated by reaction of fluorine atoms with methyl iodide in I 
bar of SF6 at 295 IC Absorption profiles of the reaction mixture were recorded in the absence 
and presence of 40 mbar 02 at various wavelengths, and the observed differences (in absorption 
intensity and temporal evolution) were attributed to the presence of peroxy species (CH2102, 
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CH302 and F02). After making several assumptions regarding the chemistry occurring within 

the systcni, the rate cocfficicnt of the C112102 sclf-reaction was estimated as 9x 10711 

cm 3 molecul6-1s". Once corrected for absorption by CIIA and F02, the absorption spectrum of 

CH2102 was obtained and found to have a broad, -unusual peroxy spectrure. In the work of 

Sehested et. aL 13 
, the absorption spectrum and self-rcaction kinetics of the C1121 radical were 

also reported. The absorption spectrum of CH21 was found to have two predominant peaks; at 

280 nrn and 337.5 nni Ile peak at 280 nm was of greatest intensity with an absorption cross- 

section of 8.5 x W's cmýrnolecuWl. The rate coefficient for the self-rcaction Of 0121 %%-JS 

esti=ted as 4x 10-11 m2molemle"s-1. 
Ile first direct study of the C1121 + 02 reaction to appear in the literature was that of 

Masaki el. al. 14 
. The authors nrasured rate coefficicnis for the reaction of several substituted 

methyl radicals with 02 at 299 K, and the reaction of CIIII +% was investigated between total 

pressures of 2- 15 Torr (N2) by following the temporal evolution of CIIzI in an excess of (h by 

mass spectronrtry (MS). CH21 radicals were generated by the Excimer laser photolysis; of 

CH21CI at 193 nin The authors found a pressure independent rate coefficient of (1.6 :t0.2) x 

10712 Cn? nIoleCUld-IS-1, suggesting that the reaction rnay proceed via a birmlecular process, such 

as CH21 + 02 --l' CH20 + 10, although this hypothesis is clearly in dis3greenrnt with the 
13 findings of Selicsted el. aL 

A study by Cotter el. aL1-5, designed to investigate the fate of oxidation products of alkyl 
iodides in the atmosphere, monitored the products of the chlorine initiated oxidation of C1131 by 

FrIR spectroscopy. The reaction sequence was initiated by the photolysis of a C121CII31/air 

mixture at atmospheric pressure and temperature by a continuous 360 nm light source. Under 

their experimental conditions the reaction of CI + C113I predominantly produces IICI + C1121 

(see Chapter Five) and the chemically generated C1121 radicals subsequently react with 02. The 

observed reaction products were C1130, IICI, C1120 and CO. Hydrochloric acid (IICI) and 

methyl chloride (CH3CI) are primary and secondary products of the Cl + C1131 reaction (see 

Chapter Five) and formaldehyde (CII20) and carbon monoxide (CO) were attributed to end 

products of the reaction of CH21 + 02. In analogy to the known chemistry of bromine peroxy 
(CH2BrO2) 16 and bromine alkoxy (CII2BrO) 17 species, the authors suggested that their 

experimental results could be explained by the following chemical mechanism 

Cl + CH31 HCI + C1121 (R4-3) 
CH21+02+M C1121()2+M (R4-2a) 

CH2102 + CH2102 C11210 + C11210 + 02 (R4-4a) 
CH210 CH20 +1 (R4-5) 

CH20 + cl In + llco (R4-6) 
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HCO + 02 
--+ 

H02 + CO 
, (R4-7) 

Cotter et. aL 15 conclude that (assuming all CH21 is converted to CH2IO) effectively all of the 

iodine alkoxy radical decomposes to CH20 +I with a yield of 0.88 :t0.14. 

- An experimental investigation by Enami et. A 12 employing CRDS detection of 10, 

reported the direct formation of 10 in the reaction of CH21 + 02-' In their experiment, CH21 was 

generated by the 266 nm pbotodissociation of CH212 using an Nd: YAG laser, and reacted with 

an excess Of 02 in a N2 buffer between total pressures of 5- 80 Torr and over a temperature 

range of 278 - 313 K. By following the temporal evolution of 10, the authors reported a 

pressure and temperature independent rate coefficient for the reaction of CH21 + 02 of (4.0 ± 

0.4) x 10-13 cmýmolecule-ls-', suggesting a biniolecular reaction mechanism in agreement with 

the hypothesis of Masald el. A 14 but in quantitative disagreement over the rate coefficient. In 

the study of Enami et. aL 12 
, the yield of 10 from reaction R4-2 was estimated as unity by 

comparing the concentration of 10 generated from the reactions of 0+ CH3I and 0+ CF31. The 

reaction of 0+ CF31 is known to produce 10 in high yield (83 ± 9) Wa, whereas the reaction of 

0+ CH3I has several product channels 18 

0+ CH3I - CH3 + 10 (R4-Sa = 44 %) 

--+ CH21 + OH (R4-8b = 16 %) 

H -ý 1+ CH20 (R4-8e =7 %) 

I+ CH30 (R4-8d <3 %) 

HI + CH20 (R4-8e <5 %) 

Enami et. aL 12 compared the concentration of 10 from reacting equal amounts of 0 atoms with 

excesses of CH31 and CF31 in the presence Of 02, which were observed to be approximately 

equal. The authors conclude that the yield of CH21 + OH (from reaction R4-8b) must be 

significantly larger than previously reported (51 ± 20) %- cf. above - and that "it is safe to say" 
that the yield of 10 from the reaction of CH2I + 02 is unity. As a further test to the formation of 
10 in reaction R4-2, the detection of 10 was sought and found in mixtures of C12/CH31102/N2 

post photolysis at 355 nm thus proving that CH212 is not required for the formation of 10 Und 

that CH21 is a direct precursor to its formation. Note that these observations are not necessarily 
in disagreement with those of Cotter et. a115 as the co-product to 10 in the reaction of CH21 + 02 

is, by definition, CH20- 

A very recent study by Eskola et. aL'9, investigated, the temperature and pressure 
dependencies of the reaction kinetics of the CH213r and CH21 reactions with 02 by 

photoionisation MS. For the reaction of CH2I + 02, no dependence in the rate coefficient was 
observed between total pressures of 0.6 - 46 Torr He at 298 K, with an average value of (1.37 ± 
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0.32) x 10-12 cn? rmlecule-s-1. in good agreement with the findings of Slasaki rL aLlý. Reaction 

R4-2 was found to have a negative temperature dependence over the 220 - 450 K Mrkgc. 

described by Anbenius parameters of, k(7) = (I -39: t 0.0 1) xIG 12 (TI300i IM I CL06 cdrnoleculd- 
I: SýI. 'Me reaction kinetics were determined by following the ten4)oml profile of CRZI. 

generated by the 193 wn photolysis of CIIIICI or the 248 nin photolysis of Cllilz. in an ex 

Of 02. Eskola et. aL19 observed the formation of I atoms and 10 on the same timescale as CH21 

removal and found an average I atom yield of 0.91 it- 034. A weak signal from III was also 

observed but no definitive formaldehyde signal was apparent in their experiment. 'With respect 

to the reaction of CH2Br + 02, the reaction kinetics were found to be pressure dependent and 

display a negative temperature dependence in accordance with an association reaction 

mechanism, forming C112BrOz. The high pressure limit for the reaction of C112Br + Oz N%-as, 

estimated as, L=4.9 x l(y12 cn? molecule*'s" by extrapolation of the data obtainc%L -, To 

explain the difference in reactivity between C1111 and CIIjBr (and to satisfy the results of the 

previous studies) the authors proposed the following mechanism for reaction R4-2 

C1121 + 02 --* CIIIIOO* 

C112100* +M- CIIIIOO + N' 

C112100S - ClIZ00+1 

--lb CIIZO+10 

---o Cillo + Oll 

where, CH2100* represents an excited peroxy species that can undergo collisional stabilisation 

at higher pressures (accounting for the observation of C111102 in the work of Schcsted eL aLlý 

or decompose to several different products. Small amounts of III detected in the reaction 

systemof Eskola et. aL19are attributed to the decon4)osition of C1110. 

Clearly, there are large discrepancies between tile studies of the reaction of CIIII + 01 

with regards to the reaction kinetics, reaction mechanism and reaction products. Coupled %ith 

the incomplete knowledge of the gas-phase chemistry of iodine species in the atmosphere and, 
the importance of iodine chemistry in the formation of new particles in the NIBL.. possibly 
involving the photolysis Of C11212, the reaction of C1111 + Oý warrants further experimental and 
theoretical investigation. In this study the reaction products of the reaction of C1121 + 02 have 
been investigated by absorption spectroscopy, laser induced fluorescence (UF) and NIS. 
Analysis of the kinetic behaviour of 10, C1120, I and an unknown species, possibly C141%. 

provide important information regarding the reaction mechanism and potential influence of the 
reaction of CH2.1 + 02 in the Trorine atmosphere. 
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4.3 Investigation of the Products of the CH21 + 02 Reaction by Absorption Spectroscopy 

The principal aim of the work reported in this section was to investigate whether 10 is 

formed directly from the reaction of CH21 + 02 as suggested by Enami et. aL 12 (and Eskola et. 

al. 1) or by secondary chemistry within the reaction system. The experimental apparatus. was a 

typical pulsed laser photolysis single-pass absorption (PLP-SPA) system, similar to that 

described in section 2.5. Briefly, collimated UV-visible light from a Xe arc lamp was passed 

through a cylindrical Pyrex reaction cell (of 110 cm length and 25 mm internal diameter), with 

sealed silica windows at each end. A photolysis laser beam, generated by an Excimer laser 

(operating at 248 or 193 nm), was passed counter propagated to the analysis light through the 

reaction cell. The two beams were allgned to result in their complete overlap along the entire 
light path through the Pyrex vessel and the analysis light exiting the reaction cell was steered 
into a monochromator using an appropriate optical arrangement. All reagent mixtures were 

prepared on a gas handling line and introduced into the reaction cell via calibrated MFC's and 

through 1/4" PTFE tubing. The Excimer laser was triggered at a constant pulsed repetition 

frequency (PRF) by a delay generator, producing radical species within the reaction cell. The 

diffraction grating and entrance and exit slit width of the monochromator were adjusted to allow 

analysis light of an appropriate frequency and band width to be detected by the monochromator 
PNIT. The analogue PMT signal was digitised on an oscilloscope, which was also triggered by 

the delay generator, and stored on a control PC for analysis at a later date. The exhaust of the 

reaction cell consisted of 1/2" PTFE tubing leading to a fume cupboard. Experiments were 

generally performed at atmospheric pressure and temperature although some experiments were 

executed at low pressure (- 4 Toff) by connecting a rotary pump to the exhaust of the reaction 

cell. 

4.3.1 Generation and Detection of 10 

A reference reaction was initially required to generate 10 radicals in order to optimise 
the sensitivity of the apparatus and select the correct wavelength at which to monitor the 

analysis light. The reaction of 0+ 12 --* 10 +I was chosen. Oxygen atoms were generated by 

the 248 nm photolysis Of 03, which was produced by flowing a small flow of 02 over a Hg Pen- 

Ray lamp prior to the reaction cell inlet. Molecular iodine was introduced to the Pyrex cell by 

passing a small flow of N2 over a few crystals Of 12 suspended in a sealed vessel containing glass 

wool. 10 was produced by the following sequence of reactions: 
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03 + 248 nm .. 0('D)+Oz (R4-9) 

" ('D) + Nz 0 (ýP) + Nz (R4-10) 

" ep) + 1,10+1 (R4-11) 

The experimental conditions were arranged so that electronically excited 0 (1 ) atoms were 

rapidly quenched to the groundstate, 0 (ýP), which were primarily consumed by li. 

lt is well known that the absorption maxima of the A2113a - Xý1`13a electronic 

transition of 10 occurs at - 427.2 mrL the peak of the (4, G) vibrational band (see Fig. 3-3-2)- 

Fig. 4.3-1 shows an absorption trace recorded at 4272 nin after the 248 mn photolysis of an 

I2/03102IN2 mixture. As can be seen, the peak 10 absorption signal is rapidly reached (as the 0 

atoms are consumed) before it is observed to diminish as the self-reaction of 10 (and other loss 

processes) dominate. Note that as 10 is formed the light intensity detected by the MIT is 

reduced (as the PMT operates on a negative voltage, a larger negative signal corresponds to a 

greater intensity of light) as absorption of the analysis light by 10 oxurs. 

-6.7 

-6.9- 

E 

M 
(0) 

1 

CL -6.34 

-6.6 11 
-2m 0 260 4ýO 660 lsýo 

At / JAS 

Fig. 43-1 - Absorption trace or 10 recorded In a 248 nm photolysis n"ture of li/0.03102- 
Experimental conditions: P= 760 Torr, T= 296 K; III] = 2.9 x 101" molecule cue; [031=1 
2x 1614 molecule crW3; [021 = 5.0 x 10" molecule cnf3; [Nil = balance; F=1.2 x 10" 
photons Cmw2; A. = 427.2 nm; 51,, = 1200 gfmm; At, = 1.6 nm. The 10 signal Is an average 
of 50 laser shots. Note that the abbreviations In all figure captions In this thesis are 
defined in the Glossary or Terms (p. xxvil). 

The species responsible for the absorption sigml observed in Fig. 43-1 could be 

confirnwd as 10 by obtaining an absorption spectrum of the reaction nixture. %hich uras 

measured by recording absorption traces whilst scanning the diffraction grating of the 

monochrornator in 0.3 run steps from 414.6 - 441.6 nrn, the nxist intense region of 10 

absorption. Ile rmnochromator resolution was enhanced to 0.3 nm to reduce the possibility of 
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overlapping absorption from different vibrational bands in the electronic transition of 10 and the 

absorption intensity, Ib., was calculated from the Beer-Lambert law (E. 2.5-1), Inbe ý-_ In(Ioll), 

where 10 is the average intensity of analysis light before the Excimer laser is triggered, and I is 

the intensity of analysis light at a later time, At, when 10 is absorbing, which is averaged over a 

small range of reaction times where the 10 signal was found to be of greatest intensity (At = 20 

- 50 lis). Fig. 4.3-2 displays the resulting absorption spectrum of 10. 
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Fig. 4.3-2 - Absorption spectrum of 10 between 414.6 - 441.6 nm obtained by the 
procedure outlined in the text. The vibrational transitions (vl, v") of the electronic 
transition are assigned. The experimental conditions are the same as previously given 
with the exception of an enhanced monochromator resolution of 0.3 nm FWHM. Note 
that the 10 absorption, I" has been-converted to an absolute absorption cross-section, 
ojo, by normalisation of the peak absorption signal at 427.2 nm to a value of 3.6 x 10-17 
cnemolecule"'. The absorption cross-sections are tabulated in Appendix IL 

In Fig. 4.3-2, the 10 absorption, I. b,, has been converted to an absolute absorption cross- 
section, vio, by scaling the peak absorption at 427.2 EM to a value of, oio(427.2n. ) = 3.6 x 10-17 

cmýmolecule-', which is well defined in the literature2o-22. The absorption spectrum obtained 

can unambiguously be assigned to 10 (see Fig. '3.3-2) and, in agreement with the most recent 

studies 21=' verifies that the absorption cross-section of 10, tends to zero between subsequent 

vibrational transitions over the (5,0) - (2,0) range. The reagent mixture of I2/03/N2/02 is a 
relatively clean system to measure the absorption spectrum of 10 due to the lack of other 
chemical species which absorb in the same spectral window as 10 (over the wavelength range 
investigated in this work). 

In order to accurately investigate the reaction kinetics of 10 in absorption experiments 
with relatively high concentrations, pio must be accurately known at'the studied wavelength and 

'145 

415 420 425 430 435 440 



monochromator resolution in order to convert the 10 absorption irito an absolute concentratiOn. 

via the Beer-Lambert law, so that the second-order. self-rtaction kinetics of 10 can be treated in 

the correct manner (as described in section 2-2). As the absorption spectrum of 10 is higWY 

structured, the measured absorption cross-section will depend on monochrormtor resolution and 

it is therefore useful to quantify this relationship. To obtain this information. absorption traces 

of 10 were recorded at 427.2 nin as a function of momxhromator slit %idth (and hence: 

resolution - see Fig. 3.4-3). The results are shown in Fig. 4-3-3. Note that the 10 absorptions 

were converted to absorption cross-sections by scaling the value obtained at a monochrotnator 

resolution of 0.3 run to the well defined literature value of 3.6 xI U"' cdmolectiWIM. 
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Fig. 4-3-3 ý- Absorption cross-sections of 10 (at 427.2 nm and 298 K) as a runction of 
monochromator resolution. All exptrinwntal conditions were Identical to those previously 
statedL In order of Increasing rmnochromator FUHNI the nwnochro=tor slit widths 
were set at 50,100,150,200,300 and 500 jLm respectively. 

Using the data obtained, the peak concentration of 10 for the absorption trace displayed 

in Fig. 4.3-1 is evaluated as -9x 1013 molecule crif ý in sensible accord with the experimental 

conditions. The absorption trace was modelled in FACSIMILIL once converted to an absolute 
10 concentration, to return a rate coefficient of (9.4: t 0.3) xI (Y" cm7moIcculd'Y 1 for the self- 

reaction of 10, in good agreement with the recommended literature value of 9.9 x 10"" 

CM3rMleCUl6-Ig-1(23). 

4.3.2 The Production orio rrom Photolysis of Cillb/OiN, Re2gent Mixturts at 24M93 

nm 

After characterising the experinrntal systern. it was attenV(cd to dctcct 10 after the 

photolysis of a reagent nixture of C11212/021N, at 248 nm Modomethane was introduced to 
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the reaction cell by passing a small flow of N2 through a glass vessel containing the purified 

liquid. The room temperature vapour pressure of CH212 (- 1.1 Torr) is sufficient to allow ample 

transfer of reagent into the reaction cell (typically 1014 _ 1015 molecule CM-3). Upon the 

photolysis of the reaction mixture the production of 10 was readily observed. As stated in 

section 4.2. the previous two studies 12.19 that have detected 10 in similar reaction systems have 

reported 10 as a direct product from the reaction of CH21 + 02. To investigate this claim, 

absorption traces of 10 were recorded for a range of initial CH212 (and hence CH21) 

concentrations in a very large excess Of 02. Fig. 4.3-4 displays the results. 
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Fig. 4.3-4 - Absorption traces of 10 recorded as a function of [CH2121. 
'; 

Experimental 
conditions: P= 760 Torr; T= 296 K; [CH2121 (molecule cm") = 1.35 x 101- (black), 1.07 x 
1015(red), 7.76 x 1014(green), 4.73 x 1014 (blue), 1.84 x 1014 (cyan); [021 = 2.04 x 10'8 
molecule cm'3; [N21 = balance; F=1.2 x 1017 photons CrW2; A, = 427.2 nm; Mr = 1200 
g/MM; Mr = 1.6 nm. The absorption traces are an average of 50 laser shots. Note that all 
CH212 concentrations were determined absolutely by absorption spectroscopy (by 
recording the intensity of analysis light at 290 nm in the presence and absence of CH212) 
and were always found to be within 15 % of the calculated values from the mass flow rates 
and vaPOur pressure of CH212. The 10 absorptions have been converted to absolute 10 
concentrations using the correct absorption cross-section of 10 for the monochromator 
resolution as previously determined. The solid lines are fits of E. 4.3-1 to the experimental 
data. 

Two striking features are apparent from the absorption traces. First, that the peak 10 

concentration is directly proportional to the initial concentration of* CH212- This is indicative 

that 10 is generated from a photolysis product of CH212, as all other variables were constant 

throughout the experiment. From the laser fluence and the absorption cross-section of CH212 at 

248 nm ((T= 1.57 x 10-18 CM2 molecule-')" it can be calculated that - 19 % of the initial CH212 

concentration is photolysed by the photolysis pulse. By comparing the peak 10 concentrations 

with the corresponding calculated initial CH21 concentrations it is found that, assuming 10 is 
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generated from the reaction of C1111 + 01, the yield of 10 is - 30 - 40 %. Mlis is in 

disagreement with the findings of EnarTi et. aL 12 who report a unity yield. Tbe second 

important inference to be drawn from Fig. 434 is that the rate of fortnation of 10 is strongly 

dependent on the concentration of ClIzIl. Ilds fact is strongly indicative that 10 is not 

generated directly from the reaction Of Cl 121 + Oý, as the concentration of 01 is in such excess to 

CH21 (at least by a factor of 17000) that first-order reaction conditions are present. The fits to 

the 10 absorption traces are of the form 

1101, =q 
V&--, nE 4-3-1 (kjo kk. 

where PI is a term relating to the peak of the biexponenti-21. kio' is the pseudo-first-order rate 

coefficient for the formation of 10. ki.. is the pseudo-rirst-order rate cocfficierl for the remov3I 

of 10, and P4 is a baseline term allowing for any offset from the pre-Excimer laser background 

signal. Although 10 removal should be predominantly socond-order (governed by the 10 self- 

reaction) it can be seen that the biexponenti3l function fits the data surprisingly well and is 

sufficient for an initial quantitative analysis of the results, particularly as the mechanism to 10 

formation is unclear. 
Fig. 4.3-5 displays a plot of k16' against jC111111. From the linear fit to the data, the 

effective bimolecular rate coefficient for a reaction of CI 121, + an unknown species to form 10 

is, k= (3.7 ± 0.5) x Iff" cri? molecule"s-1. Note that this does not necessarily imply that 10 is 

forrned from a reaction involving C1121z. Ile non-zero intercept to the bin-Occular plotý 

c= (7800 ± 3600)sý', probably indicates that additional loss processes to the 10 precursor am 

occurring. As stated above, the significant dependence of the rate of forrnation of 10 on the 
CH212 concentration is effectively incontrovertible evidence that 10 is not formed directly from 

the reaction Of C1121 + 02. Although the potential of interference from secondary chemistry is 

great -a large fraction Of CIIZ12 is photolysed by the Excirner laser and. for the highest C1114 

concentration, - 20 % of the Excimer laser radiation will be absorbed along the length of the 

reaction cell (resulting in a high and non-uniform radical concentration distribution) it is still 
highly unlikely that 10 is a direct reaction product of the Cl III + 01 reaction. 

148 



60000 

50000 

40000 

cn 30000 

0 
20000 

10000 

0.0 3. Oxl 014 6. OX, 014 9. OX, 014 1.2x1015 i. sxi 0"' 

[CHPIý / molecule cm 

Fig. 4.3-5 - Plot of the pseudo-first-order rate of formation of 10 as a function of 
[CH2121 in reactive n-dxtures of CH212/02IN2/248 mn. Error bars are 2a standard 
error as returned from the fits of E. 4.3-1 to the experimental data. From the linear fit, 

m= (3.7 :t0.5) x 10'11 crWmoleculelsý', c= (7800 :t 3600) s". Note that the CH212 

concentrations are corrected for photolysis by the excimer laser pulse. 

If the largest value of k1o' (- 52000 s-1) is divided by the experimental 02 concentration 

2x 1018 molecule cnfý a bimolecular rate coefficient of 2.6 x 10-14 cm3molecule-'s-' is 

obtained, approximately 15 times smaller than that determined by Enami et. aL 12 and almost 60 

times smaller than the MS determinations of Masaki et. A 14 and Eskola et. aL19 for the reaction 

of CH2I + 02. If 10 is produced directly from reaction R4-2 then very efficient recycling of 10 

would have to occur to explain this observation. It is interesting that the rate coefficient 
determined by Enami et. aL 12 (which was determined by following the temporal behaviour of 

10) is a factor of -4 smaller than that determined by the MS studies of reaction R4-2. Further, 

in contrast to the results obtained herein, Enami et. aL 12 found that the rate of formation of 10 

was independent of CH212 concentration, when varied by a factor of three. A notable difference 

between the experimental conditions of this study and that of Enami et. aL12 wasthe much 
lower concentrations Of 02 used in their work. This fact is explored in section 4.4.1. 

Similarly to its rate of formation, the rate of removal of 10, ki., was found to be 

directly proportional to the concentration of CH212. This observation is consistent with the peak 

concentration of 10 (and therefore its loss rate due to self-reaction) being proportional to the 

initial concentration of CH212. Although other 10 losses were probably occurring (as the 10 

decays were not observed to be strictly second-order) the removal of 10 from the chemical 

system is beyond the scope of the present study and was not investigated further. 
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4.3.2.1 Absorption Spectrum of the CHA31CYNY'M nm System 

As the results discussed in section 4.3.2 indwMed that 10 is not formed directlY f"Im 

the reaction of CH21 + Oý. a tinie dependent absorption spectrum of the rewbon mixture w2s 

recorded to search for additional species: products of the CH., I + Oý reaction aniYor POW13621 

precursors of the 10 radical. Absorption traces of the reachon nixture were recorded iD 10 nm 

intervals between 297 - 597 nrrL Fig. 4,3-6 djsplaý% the imr dcpcndC1V ibsorption spectra 

obtained. 

0 

0 

0 

WavelergM / nm 

Fig. 4.3-6 - Time dependent absorption spectra of a CH2lj/0JN. 'P2M nm reaction mixture- 
The absorption spectra were recorded by the same procedure outlined in section 4.3.1: 1* 

was taken as the pre-Excimer laser background Iwith the exception of the 297 - 347 nrn 
region - see caption to Fig. 4.. V7) and I was averaged over a range or reactions times after 
the Excimer laser was triggered (black = 2.5 - 12.5 j&%, red = 40.5 - 90.5 Wr*. green = 100.5 - 
150.5 ps, blue = 700.5 - 800.5 Iks). The experimental conditions were identical for all 
wavelengths and the same as those given for the 10 absorption trace recorded at 
maximum [CH2121 in Fig, 4.3-4, with the exception of an enhanced monochromator 
resolution of 0.4 nm. Analysis wavelengths were selected in a random nuinner to minimise 
systematic uncertainty. 

At very early reaction times (2.5 - 12.5 ps) the absorption spectrum was observed to be 

dominated by a species absorbing in the 300 - 400 nin range. At intermediate reaction times 

('40.5 - 150.5 gs) the maximum absorption intensity was found to shift to the 400 - 4.50 run 

region, and at long reaction times (700 - 800 lAs) absorption was only observed in the 500 - 600 

nin window. 'Me absorption traces recorded at analysis wavelengths of 337 nm 427 nm and 

517 nm are displayed in Fig. 4.3-7. 
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Fig. 4.3-7 - Absorption traces for the reaction n-tixture of CH212/02/N2/248 nm recorded at 
337 nm (black), 427 nm (red) and 517 nm (green). The experimental conditions were are 

as previously stated. The solid lines are fits of E. 4.3-1 to the experimental data. From the 

fits: k1o' (or rather, k. 34 X106 (337 nm), 4.8 x 104 (427 nm) and 9.2 x1 03 (517 
, ro,, th) (s*') = 2.2 

nm); kj,,, (s") = 2.3 X 104 (337 nm), 5.3 x 1W (427 nm) and -620 (517 nm). Note that at a 
wavelength of 337 nm CH212 absorbs analysis light and the post-excimer laser background 
is negative due to CH212 photolysis by the Excimer laser. For this reason, 10 was taken as 
the long-time post-excimer baseline (At = 600 - 800 ms) for all data points between 297 - 

-147 nm as displayed in Fig. 4.3-6, and explains why the pre-Excimer baseline is positive 
for the 337 nm absorption trace displayed above. 

It can be seen that there would appear to be some correlation between the decay of the absorber 

at 337 nm (black) and the growth of the absorbing species at 427 nm (red), and the decay of the 

absorber at 427 nm and the growth of the species absorbing at 517 nm. The absorbing species 

at 427 nm has already been identified as 10 and the species responsible for absorption at 517 nm 

is most likely 12 or 010, as inferred from the approximate shape of the absorption spectrum over 

the 500 - 600 nm region (see Fig. 4.3-6) and the fact that they are both products ofthe 10 self- 

reaction. For further confirmation of this hypothesis an absorption trace was recorded at 549.1 

nni. a peak in the absorption spectrum of 010 24 
, which is displayed in Fig. 4.3-8. The temporal 

profile ofthe absorption trace recorded at 549.1 nm is very different to that recorded at 517 nm, 

exhibiting a rapid growth and decay, and is therefore attributed predominantly to 010. The 

absorption at 517 nm is thus attributed mainly to the production of 12. It is perhaps surprising 

that strong 12 absorption is witnessed on a timescale comparable to 10, chemistry within the 

system as the production Of 12 from the 10 self-reaction is well known to be only a minor 

product channel (< 5 14). Further, despite the large I atom concentration and the relatively high 

pressure, recombination ofl atoms to form 12 should occur on a much slower timescale than that 

observed (and may partially account for the slow, secondary 12 growth observed in the 517 nm 

151 

-200 0 200 400 600 800 



absorption trace, kj. =- 620 s-'). Molecular iodine cannot be produced from reactions Of CH21 

(as its concentration is reduced to negligible amounts in -I ps by reaction with 02) and it must 

therefore be concluded that the observed 12 originates from reactions of 10 and 010, i. e. by self- 

or cross-reaction or reaction with other I containing species within the system iI or CH, [, ). It 

should be noted that similarly spurious 12 signal has been observed in similar reaction systems 25 

and have been attributed to reactions of 010 (such as 010 + 1). The intricacies of the 1, 

formation observed herein are outside the scope of this work. and the absorption observed over 

the 500 - 600 nm range is attributed to products of the reactions of 10 and 010. Neither topic 

will be investigated further. However, these experimental observations warrant future 

experimental research, particularly in light of the incomplete knowledge and importance of 10., 

chemistry in the atmosphere (re. particle formation). 
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Fig. 4.3-8 - Absorption traces recorded at 427 nm (red) and 549.1 nm (black). The 
experimental conditions are as previously stated. The solid blue line is a fit of E. 43-1 to 
the 549.1 nm absorption trace. From the fit, krm-lh =1-6 x 104 s" and kk- = 1.5 x ]Or' s". 

With respect to the current research, a more interesting feature of the absorption 
spectrum displayed in Fig. 4.3-6 is the absorption of an unknown species (subsequently referred 
to as species 'A". ) in the 300 - 400 nm region. In the work of Sehested et. al. ' 4 the absorption 
spectrum of CH2102 was reported to exhibit continuous absorption over the 220 - 400 nm 
wavelength range. From the fit of E. 4.3-1 to the 337 nm absorption trace (see Fig. 4.3-7) the 

pseudo-first-order rate coefficient for the formation of species X is. kvr,, -Ih -`ý (2.34 t 1.13) xI Gý 

s Dividing this value by the experimental 02 concentration yields a biniolecular rate 
coefficient of, k= (1.1 t 0.6) x 10-12 cm'molecule-s ', in reasonably good agreement with the 
determination of the rate coefficient for the reaction of CH21 + 02 by the NIS studies""9, 

perhaps suggesting that X is formed directly from reaction 114-2 and is indeed the CHAO, 
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peroxy radical. To investigate whether the kinetics of species X had any dependence on the 

concentration of CH712. absorption traces were recorded as a function of ICH2121 at an analysis 

wavelength of 350 nm. Fig. 4.3-9 displays some of the absorption traces obtained 
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Fig. 4.3-9 - Absorption traces of species X recorded as a function of [CH2121- 
Experimental conditions are the same as previously stated with the exception: [CH2121 
(molecule cm'3) = 1.35 x 1015 (green), 7.76 x 1014 (red) and 1.84 x 1014 (black); M, = 0.4 nm; 
A 

.. = 350 nm. The solid lines are fits of E. 4.3-1 to the experimental data. From the fits: 
krro, ̂Ih (s") = 5.0 x 105 (green), 3.2 x 10 '; (red) and 1.1 x 10-r' (black); ki. (s") = 1.8 x 104 
(green), 1.2 x 104 (red) and 6.0 x 103 (black) s". 

Similarly to 10, the peak concentration of X was found to be directly proportional to the 

concentration of diiodomethane, as was its rate of formation. Bimolecular plots for the 

pseudo-t-irst-order formation and loss rates of species X are displayed in Fig. 4.3-10. It is 

interesting that both the formation and loss rates of X exhibit such a strong dependence on 

CH212 concentration, and would initially suggest that species X cannot be CH2102 (or any direct 

product of the reaction of CH21 + 02)- If the largest pseudo-17irst-order rate coefficient, kgowth, 

obtained in the experiment (- 50000 s-1) is divided by the experimental 02 concentration (- 2x 

10" molecule cm -3) ,a 
bimolecular rate coefficient of, k= (2.5 ± 0.3) x 10-13 CM3 molecule-Is-' is 

obtained, significantly smaller than that of the reaction of CH21 + 02, and in direct contrast to 

the value determined previously for the 337 nm absorption trace. Upon analysing the kinetic 

traces recorded between 297 - 347 nm (in the absorption spectrum experiment) it is found that 

both the rates of formation and loss of species X systematically decrease in moving to longer 

wavelengths. This finding can be explained by the presence of multiple absorption. 
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Fig. 4-3-10 - Bimolecular plots for the formation (bottom panel) and k)ss of specks X as a 
function of diiodomethane concentration. Error bars are the 2cr staMard uncrrtaintv 
returned from the fitting procedure. From the linear fits. k- (3-79 ýt 0-1-1) x 10-1* 
crr? moleculels" (formation) and, k= (1.17 :t0.11) x UY" cn? molecule'Y' (1k)ss). The 
Intercepts (s") are (3750 :t 900) and (40000 :t 27000) ror the loss awl grovdh plots 
respectively. 

At wavelengths greater than - 340 nm, 10 begins to absorb the analysis Ught and any obsm-cd 

absorption will thus be the sum of that due to species X and 10 (and any other species that may 

absorb at that wavelength). As 10 is formed at a lesser r3tc (see rig. 43-7) the apparent mte of 
formation of X will therefore be undcrestimatedL Conversely. as the analysis light is changed to 

shorter wavelengths, the CIIzI radical will begin to absorb. In fact, the absorption spectrum of 
CH21 is known to have maxima at 337.5 run and 280 nrn! ). As CIIII is a photol)lic species in 

the reaction system (it is formed in the Excimer laser pulse), the presence of CIIII at cady 
reaction times will have the effect of increasing the apparent rate of fonm6on of species I-L 
Unhelpfully, the unknown species cannot be studied in the absence of either 10 or CI III as they 

arc both intrinsic species in the reaction system Furdier. absorption from CIIII cannot be 
deconvoluted from that of species X by recording absorption traces in the absence and presence 
of 02 (and therefore the mystery absorber) as this would result in altefing the tempoml profile of 
CH21. In sunumry, it is not possible at this stage to conclude %hcthcr or not species X is a 
direct product of the C1121 + 02 rCaCtiOII- This topic is retumed to in section 4313. 

With respect to the hypothesis that absorb" X is the precursor to 10 in the re3ction 
system, it can be seen from the bimolecular plot in Fig. 4-340 that the rate of ren-aval of X has 

a CH212 dependence of ,k= (1.17: ± 0.11) x lOr" cn? molecule"s7' (at an analysis %-jvclcngth of 
350 nm). In section 4.3.2, the rate of fonnation of 10 was found to have a dcpcndence on the 
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concentration Of CH212 that was approximately three times greater (k = (3.7 ± 0.5) x 10-11 

cm3molecul6"s-1). However, it should be noted that the formation rate of 010 (kgowth = 1.6 x 

104 s-1, see Fig. 4.3-8) was approximately three times greater than the decay rate of its precursor, 

10 (ki. = 5.3 x 103 S-1, see Fig. 4.3-7), highlighting the problems associated with analysing 

second-order processes with exponential equations. Further, interference from multiple 

absorption may have resulted in the overestimation of the rate of formation of 10 (and the 

underestimation of the rate of formation of X). Thus it may be considered fairly likely that 

species X is a direct precursor to the 10 radical. Indeed, it would be far more difficult to link 

the decay of species X to the formation of 10 if the rate of removal of X was greater than the 

rate of formation of 10. The presence of a kinetic link between the two species is examined in 

greater detail in subsequent sections. 

43.12 Potential Sources of 10 in Photolysis Mixtures of CH212/02/N2 

The results of the previous two sections clearly indicate that 10 is not a direct product of 

the CH21 + 02 reaction, R4-2. The possibility that 10 is generated from sources other than 

chemistry initiated by reaction R4-2 was therefore investigated. 

The photolysis of CH212 at 248 mn is known to generate a variety of chemical species in 

both multi-photon and single-photon processes. For example, the multi-photon dissociation of 
CH212 produces CH2 + 12 in a concerted elimination process at photolysis wavelengths as long as 
310nniý6. At shorter wavelengths (A< 200 nin) CH2 + 12 can be produced by the single-photon 
dissociation of CH21227- Although these processes often require high intensity radiation a study 
by Baughcum and Leone27 found that unfocused Excimer laser radiation can result in the 
formation of CH2 radicals, and other ionised products, from the photolysis of diiodomethane at 
248 nm_ Thus it is entirely possible, and indeed likely, that some multipboton dissociation of 
CH212 will occur in our experimental system, generating CH2 radicals. In the presence of a large 

excess Of 02P CH2 radicals are rapidly consumed generating CH20 +0 (amongst other 

products)28. The subsequent production of 10 from the reaction, 0+ CH212 - 10 + CH21 (R4- 

12) is therefore a possibility, and could explain the observed dependence of the rate of 
formation of 10 on the concentration of CH212. The rate coefficient for R4-12 has only been 

reported by one experimental investigation". In that study, the rate coefficients for a number of 
0+ RI reactions were determined by following the temporal profile of 0 atoms, in an excess 
concentration of alkyl iodide, by resonance fluorescence. Reaction R4-12 was found to be 

independent of total pressure and temperature with a bimolecular rate coefficient of, k=7.4 x 
10-11 cm3molecule-'s-1. Although 10 has not been reported as a product of reaction R4-12, the 

relatively high yields of 10 from the reactions of 0+ CH3I (R4-8a) and 0+ CF3I indicate that 
10 would be expected in significant yield from the reaction, 0+ CH212 --* products. Further, 
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the rate coefficient for reaction R4-12. determined by Tereul et. al. 29 
. 

is only a factor of two 

greater than the rate coefficient inferred from the CH212 dependence of the rate of formation of 

10 in the CH212/02/N2/248 nm reaction system determined in section 4.3.2. 

In order to investigate the potential production of 0 atoms in our system an experiment 

was performed to infer their presence. An excess of Br2 was added to a reaction mixture of 

CH212/02/N2/248 nrn by passing a small flow of N2 through a glass vessel containing liquid 

bron-fine. Any 0 atoms would thus rapidly be converted to BrO by the reaction 0t 3P ý+ Bi-2 - 

BrO + Br3o. The detection of BrO was attempted at an analysis wavelength of 338.9 nin - the 

peak of the (9,0) vibrational band of the A 2FIJ/2 4__ X2yl. 4/2 electronic transition 2.4 
. 

Fig. 4.3-11 

displays the absorption trace obtained. along with a second trace recorded under identical 

conditions but at an analysis wavelength of 427.2 mn. 
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Fig. 4.3-11 - Absorption traces of BrO (red) and 10 (black) in a CH2[2/Br2/O2/N2,1248 nm 
reaction mixture recorded at 3. M. 9 nm and 427.2 nm respectively. Experimental 
conditions: P= 760 Torr; T= 2% K; [CH2121 = 1-11 X 1015 Molecule CM*3; [Br2l = 1.83 x 
1016 molecule CM-3 [021 = 2.74 x 1018 molecule cm-3; [N21 = balance; F=1.25 x1 017 
photons CM-2; M, 0.3 nm, M. = 1200 g/min. Note that the Br2 concentration was 
determined absolutely by absorption spectroscopy. The absorption signals of BrO and 10 
were converted into absolute concentrations using the appropriate absorption cross- 
sections. The solid lines are fits of E. 4.3-1 to the experimental data. From the fits, k,,,, Ah 
(s-') = (5.8 ± 1.7) x IW (BrO) and (4.4 ± 0.8) x 104 (10). 

The absorption traces clearly show the presence of both BrO and 10 after photolysis of the 

reaction mixture. The absorption at 338.9 nin could be assigned to BrO by recording an -off- 
line" absorption trace at 337.7 nrn (a wavelength where BrO does not absorb). which is 

displayed in Fig. 4.3-12. 
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Fig. 4.3-12 - Absorption trace recorded at 337.7 nm in a CH212/Br2/02N7. /248 nm reaction 
n-dxture. The experimental conditions are the same as given in the previous figure 
caption. 

In the off-line absorption trace, the strong absorption previously observed - and attributed to 
BrO - is clearly absent. However, absorption structure is still evident in the off-line trace. The 

negative absorption, observed at longer reaction times, can be attributed to the photolysis of 
CH212 and Br2 by the Excimer laser, which is masked at earlier reaction times by the weak 

absorption of other trace species (such as CH2I and species X, which are rapidly consumed - see 
previous section). Although the off-line absorption signal will also have contaminated the 

absorption trace recorded at 338.9 nm, it should be noted that the absorption signal, Ib. = IOU, 

giving rise to the BrO signal displayed in Fig. 4.3-11 was of much greater intensity (I. b. (max) 

0.05), and that this contamination was therefore negligible. 
The presence of BrO may therefore be thought to infer the presence of 0 atoms within 

the reaction system. However, a more carefid analysis of the absorption traces displayed in Fig. 
4.3-11 suggests that this is not the case. First, if BrO and 10 are produced by the reaction of 0 

atoms with Br2 and CH212 respectively, the ratio of their peak concentrations should be 

approximately equal to 

[Bro],,.,, 
= 

k(OB, )[Br2l 

TIO-T. - 
2 

-12 _ 42 
k (O'CH2101CH2 2 

which is more than a factor of two greater than observed. Secondly, and more informatively, 
BrO and 10 are not observed to form on a timescale consistent with the consumption of 0 atoms 
by Br2 and CH212- If 10 and BrO are formed from 0 atoms then their rates of formation should 
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be equivocal and equal to the total rate of consumption of 0 

(ktot'ý k(O, B, 2) 
[Br2 I+ k(o, c 106S-1). Although the observed rates of formation of 

ýH, IJCH212 
1ý 

BrO and 10 are comparable (see caption to Fig. 4.3-11). suggesting that both species are formed 

by the same reaction mechanisn-L they are much too small to infer the reaction of 0 atoms with 

Bi-2 and CH212- Thus, it would appear that 0 atoms are not present (at significant concentration) 

in the reaction systen-L 

To further investigate the hypothesis of 0 atom formation in reaction n-fixtures of 
CH212102/N2/hv. experiments were performed at a photolysis wavelength of 193 rim Initially. 

the yield of 10 from the reaction of 0+ CH212 (R4-12) was determined. To achieve this. N20 

was photolysed in the presence of an excess of 02 and N2- The experimental conditions were 

such that all 0 ('D) atoms (initially produced by the 193 rim photolysis of N20) were rapidly 

quenched to 0 (3p), which were subsequently converted to 0, by the reaction. 0+ 02 + M- 

03-+ M. Ile absolute concentration of 0-4 was then measured by absorption spectroscopy at an 

analysis wavelength of 255 rim (o(03) = 1.17 x 10-17 cmýrnolecule-1)11. In back-to-back 

experiments, 02 was replaced with CF-41 or CIM2, which consumed the 0 atoms. generating 10. 

Thus by comparison of the peak 10 concentrations to [0.; ], the branching ratios for the 

formation of 10 from the reactions of 0+ CF31 and 0+ CH212 are determined. The results of 

tMs experiment are displayed in Fig. 4.3-13. 
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Fig. 4.3-13 - Absorption traces of 0-i (black) and 10 for various mixtures of 0+ Rl. 
Experimental conditions: [N201 = 2.75 x 1017 molecule cm'3 (all); [021 = 4.36 x 1017 
molecule Cnf3 (black); [CF-3I] = 2.61 X 1017 molecule cm'3 (red and blue); [CH2121 = 6. % x 1014 molecule CM-3 (blue and green); [N21 = balance; F=5.8 x 1016 photons em'2. All other 
conditions are as previously stated. Note that as the various reactions proceed at different 
rates the absorption traces were collected over different time spans and the x-axis is 
therefore displayed as arbitrary data point, rather than reaction time. 
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After converting the absorption signals into absolute concentrations, the branching ratio 

for 10 production from the reaction of 0+ CF31 was determined as (87 ± 15) %, in good 

agreement with the literature valuels, and the branching ratio for 10 formation from the reaction 

of 0+ CH212 was determined as (22 ± 4) %. This is somewhat of a surprising result. As stated 

previously, the branching ratio for 10 formation from the reaction, 0+ CH31 --* products is 

known to be - 40 %18. One would intuitively expect the branching ratio for 10 formation from 

the reaction of 0+ CH212 to be greater, as two sites are available for I atom transfer. A possible 

reason for this apparently anomalous result is the absorption of photolysis radiation by CH212- 

To investigate this hypothesis, an 10 absorption trace was recorded where both CF31 and CH212 

were present in the reaction mixture (represented by the blue absorption trace in Fig. 4.3-13). 

Under the experimental conditions - 96 % of the 0 atoms (generated by the photolysis of N20) 

should be consumed by CF31. Therefore, the peak 10 concentration should be approximately 

equal to that where only CF31 was present in the reaction mixture. However, it was found that 

the peak 10 signal observed when both iodides were present was only - 73 % of that when only 

CF31 was in the reaction system. Under the experimental conditions - 20 % of the photolysis 

light will be absorbed by CH212, reducing the initial 0 atom concentration produced from N20 

photolysis. It is thus more appropriate to determine the branching ratio for 10 formation from 

reaction R4-12 by comparing the peak 10 concentration from the absorption trace where only 

CH212 was present to that where both CF31 and CH212 were present (rather than to the 03 

absorption trace, where absorption of the photolysis radiation by CH212 was not occurring). In 

this manner, the branching ratio for 10 formation from reaction R4-12 is determined as (30 ± 5) 

% (where the branching ratio of 10 formation from the reaction 0+ CF31 --- ), products has been 

accounted for). The corrected value is still somewhat smaller than may be expected, probably 

because pbotolysis products of CH212 (such as CH21) are reacting with 0 atoms to generate 

species other than 10 (note that when C173I is present, almost all 0 atoms are consumed by 

reaction with the trifluoromethyliodide, which does not significantly absorb at 193 nin due to its 

small absorption cross-section)". The branching ratio of 30 % should therefore be regarded as a 

lower limit in absolute terms. 

In a subsequent experiment an absorption trace of 10 was recorded in a mixture of 
CH212102IN2/193 nin, and in a back-to-back experiment a large excess of C173I was added to the 

reaction mixture. According to the results obtained above, if 10 is predominantly produced 
from 0 atoms within the system, the peak 10 concentration should increase by a factor of 

approximately three (i. e. the ratio of the branching ratios for 10 formation from the reactions of 
0+ CF3I and 0+ CH212) upon the addition of a large excess of CF3I. Additionally, 10 would 
be expected to form at a much enhanced rate due to the high concentration of CF3I and rapid 
consumption of 0 atoms. An absorption trace was also recorded where only CF31/02/N2/193 
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nm were present in the reaction mixture. to quantify the extent of 0 atom production from the 

193 nrn photolysis of 02. The results are shown in Fig. 4.3-14. 
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Fig. 4.3-14 - Absorption traces of 10, recorded at 427.2 nnu in a reaction mixture of 
CH212/CFýJ/02/N2/193 nnL Experiniental conditions: [021' 1- X 101 MO'eCU'e CM 1); 05 8 -3 (al 

[CH21121 = 5.45 x 101.4 molecule cnf -1 (black and green); [CF311 = 2.53 x 1017 mlecule cm -3 

(red and black); [N21 = balance. All other experinwntal conditions are as previously 
stated. 

From the results it can be seen that the peak 10 concentration is only rnarginally increased when 

CF31 was added to the reaction mixture (black vs. green absorption traces in Fig. 4.3-14). 'nie 

rate of formation of 10 is enhanced upon the addition of CF-Al. although this is most likely due to 

the rapid consumption of a small amount of 0 atoms generated by the 193 nm photolysis of 02 

(red absorption trace) by CFIL 

The unequivocal conclusion of the results presented in this section is that oxygen atoms 
are not the predorninant precursor of 10 in photolytic reaction rnixtures Of CH212102/N2- 

4.3.2.3 Low Pressure Investigation of the CH212/02IN2/hv Reaction System 

As a final part of the investigation by absorption spectroscopy, the possibility of any 

pressure dependence to the most pertinent previous findings was investigated. A rotary pump 

was connected to the exhaust of the reaction cell and an appropriate flow of 02 was passed 

through a MFC to allow the total reaction cell pressure to stabilise at a few Toff. A small flow 

of N2 was passed through a glass vessel containing purified CH212 and entrained into the bulk 02 

flow. The glass vessel was separated from the vacuum of the reaction cell by a needle valve, 

allowing variable amounts of the iodide into the reaction system. The CH212 concentration was 
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determined absolutely by absorption spectroscopy. The total pressure of the reaction cell was 

maintained at -4 Torr. and measured with a0- 10 Torr capacitance manometer. 

The absorption spectrum of a reaction mixture of CH212/02/N2/193 nm was recorded (by 

the same procedure outlined in section 4.3.2.1) at -4 Torr total pressure to investigate whether 

10 and the unknown absorber. species X, exhibit any pressure dependence in the reaction 

system. Absorption traces were recorded in 10 nm intervals, at a monochromator resolution of' 

0.3 nm. between 247.2 - 457.2 nm. Similarly to the atmospheric pressure system, strong 

absorption from both 10 and species X was observed. Fig. 4.3-15 displays the absorption traces 

recorded at analysis wavelengths of 337.2 and 427.2 nm- 
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Fig. 4.3-15 - Absorption traces of 10 (red) and species X (black) recorded at analysis 
wavelengths of 427.2 nm and 337.2 nm respectively in a CH212/02/N21193 nm reaction 
mixture at low pressure. Experimental conditions: P=4.1 Torr; T= 2% K; [CH2121 = 8.19 
xlO'4 molecule CM, 3 ; [021 = 1.06 X1017 Molecule CM-3; [N21 = balance; F=5.8 x 1016 photons 
cm"; The solid lines are fits of E. 4.3-1 to the experimental data. From the fits: k1o' = (3.4 
t 0.3) x 104 s" and kx' = (1.1 t 0.1) x IW s"; kl. (10) = (4.3 ± 0.6) x 103 s-' and kjo, ý(X) = (1.2 
± 0.1) X 104 S-1. 

As observed at atniospheric pressure. there appears to be some correlation between the decay of 

species X and the formation of 10, suggesting that the temporal profiles of the two species are 

connected. I fthe pseudo- first -order rate coefficient for the formation of species X (1.13 x 105 s- 
') is divided by the experimental 02 concentration (1.06 x 1017 molecule cm-3) , an effective 

biniolecular rate coefficient of, k=1.1 X 10-12 CMA molecule-s-1 is obtained. This value is in 

exact agreenicnt with that obtained at atmospheric pressure (for the absorption trace recorded at 
337 nm). It' the pseudo-first-order rate coefficient for the formation of X is divided by the 

experimental CHA, concentration (8.19 x 1014 molecule CM-3 ) an effective bimolecular rate 

coefficient of'. k=1.4 x 10 10 cm3molecule-'s-1 is obtained. This value is somewhat smaller, 

although of the same order of magnitude. of that obtained at atmospheric pressure (3.8 x 10-10 
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crr? rnoleculd-ls"). These- observations would tend to suggest that the reaction kinetics of 

species X have a greater dependence on the experimental 02 concentration than ICH2121, and are 
largely independent of pressure. 

From the absorption trace recorded at 427.2 nm, the pseudo-first-order rate of formation 

of 10 is found to be (3.4 : t- 0.3) x 104 s", yielding a bimolecular rate coefficient of, k=3.8 x 
10-11 ci2nioleculd"s-1, once divided by the experimental CH212 concentration, again in excellent 

agreement with the previous findings. If divided by the experimental 02 concentration, the rate 

of formation of 10 yields an effective biniolecular rate coefficient of, k=3.2 x 10713 

cn? rnoleculd"s-1, significantly greater than that obtained at atmospheric pressure, but still much 

smaller than the MS determinations of the rate coefficient for the reaction of CH21 + 02- Ile 

above findings suggest that the rate of forrnation of 10 is governed predominantly by the initial 

CH212 concentration, and is independent of pressure. 
With respect to a mechanistic rink between species X and 10, as was found at 

atmospheric pressure, the pseudo-first-order decay rate of species X (1.2 x 104 s-1) is a factor of 

-3 smaller than the pseudo-first-order rate of formation of 10. As previously stated, this may 
be indicative that the two species are linked by second-order kinetics, or that their apparent 

absorption profiles are contaminated by multiple absorption. Similarly to at atmospheric 

pressure, the pseudo-first-order rates of formation and loss of the absorption traces were found 

to systernatically decrease towards longer analysis wavelengths. This phenomenon is displayed 
in Fig. 4.3-16. 
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Fig. 43-16 - Plot of the pseudo-first-order rates of formation (bottom panel) and loss (top panel) of 
the absorption traces as a function of analysis wavelengtIL All rate coefficients were determined 
from fits of E. 4-3-1 to the experimental data and the error bars are the 2astandard error returned 
from the ritting procedure. The experimental conditions were identical for all absorption traces 
(with the exception of analysis wavelength) and as stated in the caption to the previous figure. 
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Fig. 4.3-16 clearly indicates the effect of multiple absorption on determining the reaction 

kinetics of the system. In the absence of distinct spectral features, the presence of multiple 

absorption from different chemical species means that the true rate of formation of any one 

absorber cannot be uniquely determined. It is therefore difficult to ascertain whether species X 

is a direct product of the CH21 + 02 reaction, or is formed from secondary chemistry within the 

systeni. For example, the absorption cross-section of the CH2I radical, reported by Sehested et. 

aL 13, is of comparable magnitude at wavelengths of 320 nin (1.11 x 10-18 cm2molecule-1) and 

360 nm (1.05 x 10-18 cmýmolecu]6-1) but the pseudo-first-order formation rates of the 

absorption traces (as displayed in Fig. 4.3-16) are different by a factor of nearly three. If the 

effective bimolecular rate coefficient (with respect to 02) is determined for the 317.2 nm 

absorption trace, a value of, k=1.7 x 10-12 cm 3 molecule-'s-1 is obtained, comparable to the mass 

spectrometric determinations of the rate coefficient for the reaction of CH21 + 02. At 357.2 nm, 

however, this value is reduced to, k=6.6 x 10-13 cmýmolecule-ls-'. Although 10 absorbs weakly 

at 357.2 nm, it is unlikely that such a difference to the determined kinetics could be solely 

attributable to 10, and as the absorption cross-section of the CH2I radical is approximately equal 

at both wavelengths, this is highly indicative that additional absorbing species are also present 

in the reaction system. 
Considering the complexity of the reaction system and the fact that. the formation rate of 

species X is roughly consistent (to within a factor of two or three) with the expected decay of 

CH21 by reaction with 02, we tentatively assign the mystery absorption to a direct product of the 

CH2I + 02 reaction. In consideration of the preceding literature, we consider species X to be 

either CH2102 or CH202 (the co-product to I atoms, as reported in near-unity yield by Eskola el. 

aL 19). 

Fig. 4.3-17 displays the absorption spectrum of the reaction mixture, averaged over a 

reaction time of 17 - 34 gs, the temporal window where maximum absorption from species X 

was observed- To calculate the absorption signal, I. b,, the initial light intensity, 10, was taken as 

the pre-Excimer laser baseline for absorption traces recorded at wavelengths of 357.5 Mn and 

above, and the average of the long-reaction time baseline (500 - 600 gs) for the absorption 

traces recorded at 347.5 nm and below (due to the absorption of analysis light by CH212). 

Contamination of the uncorrected absorption spectrum from 10 absorption at 427.2 nm is 

evident, despite the early reaction times over which the spectrum is averaged. No other distinct 

spectral features due to 10 absorption are present as all other absorption traces were recorded 

off the peak of 10 transitions. 
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Fig. 4.3-17 - Absorption spectrum of the CI-1212/021Ný193 nm reaction mixture averard 
between 17 - 34 ; Ls after the photolysis pulse. The top panel shows the uncorrected 
absorption signal (black) and the absorption spectrum of species X Ired). once corrected 
for absorption by 10 and CH21 (as described in the text). The bottom panel displays the 

absorption spectrum of species X (red) scaled to the reported absorption spectrum of the 
CH2102 radiCaI13 (blue) so that the peak signals are equal at 310 nm. Experinriental 

conditions are as previously stated. 

In order to correct the absorption spectrum for contamination from 10. an absorption spectrum 

was averaged over the 500 - 600 gs temporal window (where the concentration of species X is 

zero) between 357.5 - 457.5 nim (10 absorbs only weakly below 360 nin). It was then assunrd 

that the true absorption intensity, I. h.. of species X was 0.01 at 427.2 ran in the absorption 

spectrum shown in Fig. 4.3-17 (black), and that all additional absorption was due to 10. The 

long-time absorption spectrum was then scaled to this value at 427.2 nm and subtracted from 

the uncorrected spectrurn. 

A second peak in the uncorrected absorption spectrum is apparent at a wavelength of 

277.5 nn-L consistent with the absorption maximum of the CH21 radical. I'he entire absorption 

spectrum (up to 400 nm) was therefore corrected for CH21 absorption using the absorption 

cross-sections reported by Sehested et. al. 13 
, and assuming that the true absorption intensity of 

the species X was 0.02 at 277.5 nni. The corrected absorption spectrum of species X (red) 

displays broad, unstructured absorption between 250 - 450 nm with a peak at - 330 nn-L 

In the bottom panel of Fig. 4.3-17. the corrected absorption spectrum of species X is 

scaled to the reported spectrum of CH2102 13. Between 310 - 400 nin the scaled spectra arc in 

good agreement, particularly as the absorption spectrum of Seticsted et. al. 13 was not corrected 

for absorption by 10 (which will have been present in their reaction system). Indeed, over the 

310 - 400 nm range the absorption spectrum of Sehested et. al. " is essentially in perfect 
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agreement with our uncorrected spectrum. It is concluded therefore that the same species is 

responsible for the observed absorption between 310 - 400 nni in both studies. At wavelengths 

below 310 nm, however, the spectra become strongly divergent, which cannot be explained by 

the presence of the CH21 radical. A noticeable difference in the work of Sehested et. al. 13 was 

their method of CH2I generation (F + CH3I --). HF + CH21). It is well known that halogen atoms 

form stable adducts with the alkyl iodides 31,32, and the CH31-Cl adduct has been shown (see 

Chapter Five) to absorb strongly over the 345 - 375 nm region. It is reasonable to expect the 

absorption spectrum of CHJ-F to be significantly blue shifted to that of CH31-Cl, and we 

suspect that the "CH210j' absorption spectrum of Seliested et. al. 13 is contaminated by CH3I-F 

absorption between 220 - 310 nm- Indeed, in their paper, Seliested et. al. 13 comment that their 

CH2102 absorption spectrum is "an unusual peroxy spectrum7'. 

Fig. 4.3-18 displays an absorption trace recorded in this experiment at 290 nm, the peak 

of the CH212 absorption spectrum". The absorption signal has been converted into a CH212 

concentration using the absorption cross-section of CH212 at 290 nm (or = 3.8 X Iff" 

cmýmolecule-ls-1)11 and the negative signal indicates the extent of CH212 photolysis by the 

Excimer laser. 
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Fig. 4-3-18 - Absorption trace recorded at 290 mn. All experimental conditions are as 
previously stated. Note that the negative concentration corresponds to the amount of 
CH212 photolysed by the Excimer laser. The negative signal is not instantaneous due to 
absorption of the analysis light by CH21 and species X at early reaction times. 

Averaging the CH212. concentration over a reaction time of 400 - 800 9s (where it is assumed 

that no other species are absorbing at 290 nm) it is calculated that (3.48 ± 0.61) x 1014 molecule 

cmý 3 of the initial CH212 concentration is photolysed by the Excimer laser (corresponding to - 30 

%). If it is assumed that species X is produced in a 100 % yield from the reaction of CH2I + 02 
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(whether directly or not). a lower limit to its absorption cross-section at 327.2 nm can therefore 

be assigned as. 0F327.2nrru: _- 1.7 x 10-18 cm2molecule '. This value is consistent with the reported 

absorption cross-section of CH2102 at 330 nm (rr= 2.57 x 10 " cm2molecule Y'. (Note that the 

extent Of CH212 PhOtOlYSIS places a lower firnit to the yield of 10. originating from CHA. of -4 

%, much less than that suggested by Enami et. al. 12 and estimated in section 4.3.2). Fig. 4.3-19 

displays the absorption spectrum of species X determined in this study, along with the known 

absorption spectra of the CH 2C10233 and CHzBrO2'6 peroxy species. 

8 

04 

Wavelength / nm 

I 

Fig. 4.3-19 - Ultraviolet absorption spectra of the CH2ClO2 kII (green) and CH2BrO., 16 (red) 
peroxy species, and species X (black) as determined in this study. Note that the absorption 
intensity of species X has been converted to an absorption cross-section bv nornialisation 
to the lower limit estirnated at 327.2 nm (1.7 x 10-13 CM2MOlecUle, l). The estimated 
absorption cross-sections of species X are tabulated in Appendix Ill. 

Ile absorption spectrum of species X determined in this work is of similar spectral structure to 

those of the CH2CIO2 and CH2BrO2 peroxy radicals. Further. the peak of the absorption 

spectrum is significantly red-shifted. consistent with the presence of a large. elcctron-rich. 
iodine atom (note that the absorption maxirna of CH2BrO2 is similarly red-shifted to that of 
CH2002). It is considered unlikely that the absorption spectrum detertnined in this work 
belongs to any isourieric form Of CH202- Ilic electronic absorption spectrum of fornic acid 
(HCOOH) does not extend beyond - 260 nm"4. Further. HCOOH is a stable molecule and 
highly active in the infra-red. Formic acid was not reported in the FrIR study of Cotter et. aL5 

or in the NIS investigation of Eskola et. al. 19. Mer isomeric forms of CH, O,, include 

formaldehyde carbonyl oxide (H2COO) and dioxirane (HzCO2). in which the C and 0 atoms 
form a three- me nibered ring. Formaldehyde carbonyl oxide is highly unstable and largely 

5 isomerises to dioxirane' . In turn, dioxiranc is also unstabic at room teniperaturel'6 and 
decomposes to formic acid, HCO, OH, C02. H2- CO and H20". No decomposition products of 
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dioxirane were reported in the studies of Cotter et. aL15 or Eskola et.. al. 19. However, it is worth 

mentioning that the theoretical study of Aplincourt et. al . 
35 predicted an electronic transition for 

formaldehyde carbonyl oxide at a wavelength of either 334 mn or 435 nm (depending on the 

level of theory used). 
In conclusion, we consider it very likely that the absorption spectrum of species X is 

attributable to the CH2102 peroxy species. However, the reaction kinetics of species X were 

found to be inconsistent with those expected for a product formed (Erectly in the reaction, 

CH2,1 + 02 --+ products. The observed discrepancies are attributed to second-order chemistry 

and interference from the absorption of multiple species within the reaction system. Species X 

is also considered to be a direct precursor to 10 formation in the reaction system. These ideas 

are explored further in subsequent sections of this chapter. 

4.3.2.4 Discussion 

The photolysis of CH212 in the presence Of 02 has been investigated at 248 nin and 193 

nm by absorption spectroscopy, revealing important information with regards to the reaction 
CH21 + 02 - products. First, and foremost, that 10 is not formed as a direct reaction product, 
in direct contrast to the findings of two recent studies'2"9. This conclusion could be drawn from 

the significant [CH2121 dependence to the rate of formation of 10 (k = (3.7 :t0.5) x 10-11 

cm3molecuWls-) in a large excess Of 02- It has also been definitively proved that 10 is not 
formed by the reaction 0+ CH212 (initiated by the multi-photon dissociation of CH212) in the 

reaction mixture. However, a lower limit of 0.3 for the branching ratio of 10formation in the 

reaction 0+ CH212 --"' products has been determined. In disagreement with the findings of 
Enami el. aL 12 the yield of 10 produced from CH21 (generated by photolysis) was found to be 

much less than unity and in the range of 4- 40 %. The yield of 10 may be pressure dependent, 

although its reaction kinetics are not. Upon the addition of Br2 to the reaction system, the 

production of BrO was observed with a similar temporal profile to 10 - indicative that both 

species are formed from a common precursor, and by similar reaction mechanisms. 
The second significant finding of this study was the broad absorption of an unknown 

species, "X", between 250 - 450 nm in the reaction mixture. The absorption maximum of X 

occurred at 327.2 nm, for which a lower limit to its absorption cross-section, a= 1.7 x 10-18 

cm2molecul6" has been determinedL By comparison of the absorption spectrum obtained (once 

corrected for absorption by 10 and CH2I) with the known spectra of CH2002 and CH2BrO2, it is 

considered that species X is most probably the CH2102 peroxy radical. The reaction kinetics of 
absorber X were found to be independent of pressure but complicated by absorption by CH21 

and 10 (and possibly other species) and probably second-order processes (that were not 
considered in the data analysis). Consequently, species X cannot unambiguously be identified 

167 



as CH2102. As a result of the anti-correlation between the temporal profiles of species X and 

10, it is considered that X is the direct precursor to 10 in the reaction systern. 
It rnust be emphasised that the results presented in this study of C11212/02/N2/bv reaction 

inixtures by absorption spectroscopy should be interpreted at a serni-quantitative level only, for 

several important reasons. First, that the extent of CH212 photolysis; was very large (20 - 30 %) 

resulting in high and non-unifonn radical concentrations. Secondly, that the data was 

contaminated from the absorption of multiple species; and thirdly that the chemical reactions 

occurring within the reaction system are not well defined and probably involve a mixture of 
first- and second-order processes that may have resulted in recycling of the monitored species. 

4.4 Laser Induced Fluorescence Study of CH2121O)hv Reaction Mixtures 

In order to gain a more quantitative understanding of processes occurring within the 

CH212/OAV reaction system an LIF investigation was performecL As shown in Chapter Three, 

LIF is a sensitive detection method for 10 and is therefore a useful tool for studying its reaction 
kinetics under conditions where effects from radical-radical chemistry and interference from the 
10 self-reaction are negligible. In addition, LIF is more specific than absorption spectroscopy 
as many absorbing species will not fluoresce. Although many LIF experifnents were performed 
in the course of this work, only the most pertinent and relevant findings are reported in order to 

prevent this chapter becoming too exhaustive to read. 

4.4.1 LIF Study of the 10 Radical 

In this study, the LIF detection of 10 was achieved with a sirnilar apparatus used for the 
quenching experiments described in Chapter Three. Diiodornethane was purified on a gas 
handling line and diluted and stored in a glass bulb, which was blackened to prevent the 
photolysis of CH212 by room light. All concentrations within the reaction cell were calculated 
from the calibrated mass flow rates of the reagents and the total reaction cell pressure. 
Fig. 3.5-14 shows a LIF spectrum of the (2,0) band of the AýFly2 4-- XýIlm2 system of 10 

obtained in a photolysis mixture of CH212/02/N2. Fig. 4.4-1 displays "on-line" and "off-line" 

kinetic traces recorded in a CH212/02/N2C48 run reaction mixture, confirming the presence of 
10. 
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Fig. 4.4-1 - Kinetic traces recorded in a CH212/02/N2/248 nm reaction mixture by LIF. 

confirming the presence of 10. Experimental conditions: P= 30 Torr; T= 2% K; [CH2121 

= 1.63 x 1014 n-iolecule cm-3; [021 = 6.15 x 1014 molecule Cm=3; [N21 = balance; Ap, = 444.89 

nm (black) and 444.70 nm (red); Ppr = 0.8 mJ pulse"; P,, = 20 mj pulse"; PRF =2 H7_ 
The black data points represent the temporal profile of 10, excited at the peak of (2,0) 
bandhead, and the red data points are an off-line kinetic trace recorded at an excitation 
wavelength (444.70 nm) where 10 does not absorb. The solid blue line is a fit of E. 4.3-1 to 
the on-line trace. From the fit, k1o' = (800 ± 52) s" and kj.., is fixed to a value of 10 s-1, 
determined independently from a kinetic trace extending to larger values of At. 

Kinetic traces were only recorded over a range of values of At where the production of' 

10 was observed as the aim of this study was to deduce its mechanism of formation in the 

reaction system. However. from kinetic traces extending to longer reaction times, the removal 

rate of 10 was found to be very small (typically 10 - 30 s-1) and consistent with a low 

concentration of 10 (<< 1012 molecule CM-3 ). Interference from the self-reaction of 10 to the 

analysis of the kinetic traces will therefore have been negligible. In the off-line kinetic trace 

displayed in Fig. 4.4- 1. a very large PMT signal is observed at At =0 (note that this was also the 

case for the on-line trace) and the post-Excimer laser signal does not fully recover to the pre- 

Excimer laser background. It is well known that 12 exhibits intense fluorescence, which extends 

over a wide range of the visible part of the spectrum, after Excimer laser excitation at 193 nm. 
In fact, this fluorescence is so intense that it can be observed as a blue/green flash by the naked 

eye (illustrating the non-negligible timescale of fluorescence). In these experiments, a red flash 

was observed by eye when the reaction cell was irradiated with a pulse of 248 nm Excimer laser 

radiation. CH212 has many excited states 27, and transitions arising from their population will be 

numerous and complex. The spurious off-line signal is therefore attributed to fluorescence from 

CH212 (and possibly 12) induced by the absorption of 248 nm Excimer laser radiation. However, 

as this background signal was always much weaker than fluorescence from 10, off-line traces 
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were not recorded under all experimental conditions and the first few points of the 10 kinetic 

traces (where interference from the background signal was greatest) were discarded pnor to 

their analysis. 
As an initial experiment, the rate of formation of 10 in a CH212/02/N2/248 nrn reaction 

mixture was measured as a function of [CH2121 for a constant concentration of 02. However. in 

a notable difference to the absorption study, the experinient was repeated for two different 02 

concentrations. The results are shown in Fig. 4.4-2. 

U) 

0 

0.0 4.0x10" 8,0x10" 1.2x10'4 1.6x10,4 2.0x10'4 

[CH 2 ij / moiecule cm-' 

Fig. 4.4-2 - Bimolecular plots displaying the rate of formation of 10 as a function of 
[CH2121 in a CH212/0-2/N2/248 nm reaction mixture for different experimental 02 
concentrations. Experimental conditions: P= 30 Torr (black and red) and 100 Torr 
(black); T 296 K; [02] = 2.5 xIOlf' molecule CM (black) and 6.2 x1014 molecule crff3 
(red); [N21 balance. All other experimental conditions are as previously stated. The 
green data points are model simulations of the experiment performed with the lower 02 
concentration, as described in the text. Error bars are 2arstandard error returned from 
fits of E. 4.3-1 to the experimental data. From the linear fits, k (cm i molecule"s") = (1.46 
0.17) x 10-11 (black), (1.47 ±1.36) x 10-12 (red) and (2.28 ± 0.35) x 10-12 (green). 

In the experiment containing the higher 02 concentration ([021 = 2.5 x 1016 molecule cm- 'A ). the 

rate of formation of 10 was found to be strongly dependent on [CH2121 in agreement with the 
findings of the absorption experiment (note that the smaller value of, k= (1.46 ± 0.17) x Iff" 

cnýmolecule-ls-' determined by LIF is of n-finor significance and is discussed further in section 
4.4.2). The experiment was repeated at total pressures of 30 and 100 Torr and no apparent 

change to the [CH2121 dependence of the rate of formation of 10 was observed. All data points 

obtained are displayed in the same bimolecular plot in Fig. 4.4-2 (black data points). 
When the 02 concentration was reduced. however, an interesting result was observed: 

the [CH212] dependence to the rate of formation of 10 was greatly reduced. T'his finding 

becomes more significant when the results of Enami et. al. 12 are considered. In their experiment 
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the rate of' formation of* 10 was not observed to depend on [CH2121, when the concentration of' 

CH212 was varied by a factor of three (although the 02 concentration is not stated). The range of 
[021 studied by Enarni et. al. 

12 (_ IX 1014 3x 1015 molecule CM-3) was of the same order of' 

magnitude as that used in this study (1021 6.2 x 1014 molecule CM-3) 
. To investigate these 

observations more thoroughly, the rate of formation of 10 was measured as a function of[ 021 at 

a constant concentration of CH212. The experiment was executed over two distinct ranges of' 
1021: i) -2x 10"' -3x 101ý molecule CM-3 (a similar range to that of Enami et. al. 

12) 
; and ii) -I 

X 1016 _IX 
1017 molecule Cm-3 (more representative of the absorption experiments). The 

results are displayed in Fig. 4.4-3. 
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Fig. 4.4-3 - Dependence of the rate of formation of 10 on [021 in CH212/02/N2/248 nm 
reaction mixtures. Experimental conditions: P= 30 Torr; T= 296 K; [CH2121 =6x10 '3 

molecule cm'3. All other experimental conditions are as previously stated. The top panel 
displays the experimental data and the bottom panel displays model simulations described 
in the text. From the linear fits to the data, k (cmýmolecule'ls-) = (1.0 ± 0.3) x 10-13 (black, 
experiment) and (1.4 ± 0.2) x 10-13 (black, model); and (2.2 ± 1.8) x 10-1-; (red, experiment) 
and (3.7 ± 5.5) x 10'16 (red, model). 

For the experiment conducted at higher [021, very little dependence of the rate offormation of 

10 is observed, k= (2.2 ± 1.8) x 10-15 CM3 molecule-'s-1. However, in the experiment employing 

lower concentrations of 02, a much enhanced dependence to the rate of formation oflO on [021 

was found (k = (1.0 ± 0.3) x 10-13 CM3 molecule-'s-1). approaching that determined by Enami et. 

al. 12 (k = (4.0 ± 0.4) x 10-13 CM3 molecule-'s-1). The intuitive inference is that a product ofthe 

reaction ofCH21 + 02 is reacting with another species within the system (that is in someway 

related to the concentration of CH212), generating 10: 

8 OX1016 1.2xlO" 
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CH21+ 02 ---* X (R4-2) 

X+ CH212 --* 10 (R4-13) 

Tbus at low [021, reaction R4-2 is rate determining, whereas R4-13 determines the overall 

reaction kinetics of 10 at higher concentrations of 02. Note that reaction R4-13 does not 

necessarily involve diiodomethane directly (but some species whose concentration is directly 

proportional to that of CH212)- In an attempt to explain the experimental results via this 

mechanism, a simple model was created in FACSIMILE. The model consists of reactions R4-2 

and R4-13 and initial conditions of [CH21210, ICH2I]o and 1021o. The initial concentrations of 

CH212 and 02 are set to the experimental values, and [CH2110 is set as 4 %' Of ICH21210 (the 

approximate amount photolysed by the Excimer laser). Reaction R4-2 is assigned a rate 

coefficient of 1.5 x 10-12 crrOmolecule-s-1 (the mean NIS determination of Eskola et. al. 19 and 

Masaki el. al. 141) and the rate coefficient for R4-13 is set at, k=1.46 x 10-11 CM3 molecule-'s-1 (the 

effective CH212 dependence to the 10 formation rate determined in an excess Of 02 - see Fig. 

4.4-2). E. 4.3-1 is then fit to the modelled kinetic traces of 10 (simulated for the same 

conditions and over the same temporal range as the experimental kinetic traces) to return 
pseudo-first-order rate coefficients for the formation of 10. One such example is given in Fig. 
4.4-4. 

2.4xl 012 

1.8xlO" 

1.2X, 012 

0 6. OxlO" 

0.0 

At/ 4 

Fig. 4.4-4 - Simulated kinetic trace of 10 by the FACSIMME model described in the text (black 
ee CM, 

3) squares). The initial parameters, 102109 IC1121210 
and [C re mol cul 5 -112110 We ( 1.17 x 101 

5.81 x 1013 and 2.32 x 1012 respectively. The solid red line is a fit of E. 4.3-1 to the modelled kinetic 
trace. From the fit, kjol = (543 ± 24) s-1. The data point generated from this simulation is 
represented by the arrow in Fig. 4.4-3. Note that the simulated kinetic trace is not exponential in 
nature. The experimental traces did not display a deviation from exponential form as pronounced 
as that shown here (see Fig. 4.4-1) although the interference from the spurious signal, tentatively 
assigned to C1121z fluorescence, meant that the true temporal behaviour of 10 could not be 
observed at early reaction times. 
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From Fig. 4.4-3 it can be seen that the experimental and model results are in reasonably good 

agreement, particularly as the model only consists of two reactive processes and the chemistry 

occurring in the experimental system will be far more complex. The same model was used to 

generate pseudo-first-order formation rates of 10 for the experiment displayed in Fig. 4.4-2, 

where [CH2121 was varied at a relatively low, constant concentration Of 02. Again, the model 

results (k = (2.3 ± 0.4) x 10-12 cm3molecul&"s-1) are in reasonable agreement with experiment (k 

= (1.5 ± 1.4) x 10-12 cm3molecul6-ls-1), illustrating the reduced dependence to the rate of 
formation of 10 on [CH2I2j at low 02 concentrations. Therefore, it would appear that we have 

arrived at a mechanism which can largely explain the results of Enami et. aL 12 and the work 

reported in this chapter thus far. 

The focus of research now turns to two questions: i) what is the predominant product of 

reaction R4-2, species X; and ii) what species, which is connected to the concentration of CH212, 

reacts with X to produce 10? In relation to the first question, a review of the previous literature, 

and the results obtained in this work so far, indicate that the products of the reaction CH21 + 02 

--). products are either CH202 + I, or CH2102 (note that CH2IO2 is considered more likely due its 

possible detection in the absorption study). With respect to the second question, three species 
within the reaction system are a function of [CH2121 (with the obvious exception of itself): CH21, 

I and X. It can readily be concluded that 10 is not generated from a reaction involving CH21, as 
this radical was rapidly consumed by 02 in all but a few of the experiments performed in this 

study. Thus, the fbUowing reactions may occur in the reaction system 

CH202 + CH202 2 CH20 + 02 (R4-14) 

CH202 + CH212 10 + CH20 + CH21 (R4-15) 

CH202+1 10+CH20 (R4-16) 

CH2102 + CH2102 2 CH210 + 02 (R4-4a) 
CH2102 + CH212 10 + CH210 + CH2I (R4-17) 

CH2102+1 IO+CH210 (R4-18) 

CH210 CH20 +I (R4-5) 

Of the reactions identified above, only the processes involving CH212 or I may be expected to 

generate 10. It is - considered unlikely, that, the reactions involving CH212 will be 

thermodynamically favourable, due to the relatively high enthalpy of formation of CH2I (- 230 
U mol-1p, and it is therefore concluded that 10 is probably produced by reaction R4-16 or R4- 
18. To investigate this hypothesis the dependence of the rate of formation of 10 on photolysis 
energy should be determineAL As I is a photolytic product of CH212. the concentration of I will 
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increase, with photolysis energy (for a constant concentration of CH212) as would the rate of 

formation of 10, if the suggested reactions are responsible for its formation. Note that, 

assuming 100 % conversion of CH21 to CH202 or CH2102, the postulated reactions are second- 

order processes. It was attempted to determine the rate of formation of 10 as a function of 

Excimer laser power, which could only be varied by a factor of two. Although the rate of 

formation of 10 was observed -to increase with photolysis photon flux, suggesting the 

involvement of I atoms in its formation, an insufficient number of data points were collected 

over the narrow Excimer power range studied to allow a quantitative interpretation of the 

results. 

As both of the postulated mechanisms to 10 formation involve the concomitant 
formation of CH20 (note that CH210 is expected to decompose to CH20 + 1, R4-5) our attention 

was directed towards an LIF study of formaldehyde. 

4.4.2 LIF study of CH20 

As the results presented in this section represent the first experimental investigation of 
formaldehyde in this thesis, pertinent details of the experimental apparatus are discussed here. 
Formaldehyde has a structured UV absorption spectrum in the 250 - 360 nin spectral window 

originating from vibronic transitions of the A'A7-. k'Aj band system, an n --+ Ir* electronic 

transition in the C-0 bond38. As the pure electronic transition is forbidden by electric dipole 

selection rules, a concomitant vibrational transition must occur to allow sufficient intensity. 

The 41 vibrational band of this system, centred at - 353 nin, is well known to exhibit intense 0 
fluorescence and has been extensively exploited as a diagnostic tool for CH20 in combustion 

chemistrY39. The vibrational transition of theXA -1 1 2-X A40 band corresponds to aI +- 0 

excitation of the out-of-plane bending mode, v4. Fluorescence from this transition extends to a 
wavelength of - 600 nne and has a natural radiative lifetime of the order of 70 ns4l. In this 

study, CH20 was detected by LIF of the A'A2-21A41 band at an excitation wavelength of - 0 
353.16 nm, near the band origin. 

Excitation radiation was generated by an Excimer pumped Dye laser system. 
Approximately 50 mJ pulse-I of 308 nin radiation (generated by a XeCI Excimer laser) was 
directed into a Dye laser operating on DMQ dye. The emission range of DMQ dye is - 340 - 
375 nin and at 353.16 nm, approximately 3 ml pulse-1 of excitation energy could be generated. 
The lasing wavelength of the Dye laser was manually selected at the laser control panel and 
could be scanned at constant speed over a programined wavelength range. Radiation from the 
Dye laser was aligned through the reaction cell via a series of alurninium laser mirrors and 
terminated at a beam dump located at the rear cell window. A photolysis laser pulse of 248 nni, 
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generated by a KrF Excirner laser, was passed through the reaction cell, orthogonal to the 

excitation laser bearn, and terminated at a beam dump. An iris, situated at the front cell window 

was used to shape the Excinier laser beam to a circular profile of --7 mm diameter. The 

Excimer laser power was measured intermittently with a power meter, which was interchanged 

with the beam dump at the rear cell window. At full power, approximately 60 MJ pulse" of 248 

rim. radiation was measured at the rear cell window. The photolysis radiation could be 

attenuated to powers as low as 3 mJ puls&-1 via a combination of reducing the operating voltage 

of the Excitner laser and by placing a series of fine mesh metal gauzes over the Excimer laser 

output. The reaction cell was a stainless steel vessel consisting of a six-way cross of cylindrical 

arms and - 500 cmý in volume. The main bulk of the reaction cell was encased in an insulated 

steel cube, which could be filled with a cooling agent, allowing experiments to be conducted 
below room temperature. The two horizontal cell axes were used as the laser axes, and 
fluorescence from CH20 was detected at the top port of the vertical cell axis by a PMT 

surrounded by black cloth in order to minimise the detection of room light. All ports on the 

horizontal cell axes, and the fluorescence detection port, were covered with 50 mm diameter 

silica windows and sealed by o-rings. A Perspex interference filter (- 3 cm thick) was placed 

prior to the PMT, in order to discriminate laser light from CH20 fluorescence. The analogue 

signal from the PMT was sent to an oscilloscope and gated integrator and boxcar averager, 
before being digitised and stored on a control PC. The bottom port on the. vertical cell axis was 

connected to a pumping system and the cell pressure (measured by a0- 1000 Torr capacitance 

manometer) was regulated by means of the total gas flow rate through the reaction vessel and 
throttling of the pumping system. Reagent gas mixtures were prepared on a gas handling line 

and introduced into the reaction cell via 1/4 " stainless steel swagelock tubing. All reagent 

concentrations were calculated from the gas flow rates, dilution factors and total reaction cell 

pressure and tenTerature. The KrF and XeCI Excimer lasers were triggered by a delay 

generator operating under computer control, allowing the time interval between photolysis and 

probe lasers, At, to be varied to obtain kinetic data. The oscilloscope and boxcar averager were 

also triggered by the delay generator, at the same time as the XeCI (probe) laser. 

As a reference, CH20 was generated from the reaction of CI atoms with methanol 

(MeOH or CH30H) in the presence Of 02. Chlorine atoms were produced by the 248 nni 

photolysis of thionyl chloride (Cl2SO). The reaction sequence is given below, and a LIF 

excitation spectrum of the most intense region of the A'A2_21A41 system of CH20 is 0 

displayed in Fig. 4.4-5. 
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C12SO + 248 om - Cl + CISO (R4-19) 

Cl + CH30H - HCI + CH20H (R4-20) 

CH20H + 02 --* CH20 + H02 (R4-21) 
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-1 -1 1 Fig. 4A-5-LIF spectrum of part of the AA 2-X A40 system of C1110. Experimental conditions: 
P= 100 Torr; T= 296 K; [Cl2SO] =1x IOP molecule cae; [NTcO 11] = 1.2 x 1014 molecule cm73; 1%] 

= 1.6 x 1016 molecule crrO; [N21 = balance; F=6.1 x 1W6 photons crd2; At = 500 ps; PRF = 10 Hz. 
Note that the rotational line at 353.16 nm, indicated by the arrow, was used for all kinetic 

measurements of CII20 reported in this section and corresponds to a blend of rotational 
transitions, predominantly in the "Q3 sub-band of the systemu. 

It was found that the Perspex interference filter did not completely discrimimte 

detection of probe laser radiation by the PMT, but as fluorescence from C1110 was generally 

more intense and of longer lifetime than the laser pulse, the LIF detection of C1120 was 

relatively unhindered. The fluorescence collection gate, set by the boxcar averager, was thus 

placed over the entire temporal span of the laser pulse and C1120 fluorescence. Taking into 

account the significant probe laser background, the detection limit of the apparatus was 

estimated as Ix 1011 molecule Cnf3 (CH20) for no averaging of the fluorescence signal. Fig. 

4.4-6 displays the signal output from the PNIT, as recorded by the oscilloscope, in the presence 

and absence of Excirner laser radiation (and therefore CH20). 
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Fig. 4.4-6 - PMT signal in the presence (black) and absence (red) of Excinwr laser radiation (and 
hence CII, O) recorded by the oscilloscope. Experimental conditions arc the sarne- as given in the 
previous figure caption and the signal was averaged over 10 laser shots. 

To investigate whether CH20 is formed by the photolysis of diiodomethane in the 

presence 01' 02, a reagent mixture of CH212/02/N2 was introduced into the reaction cell and 

photolysed at 248 nm. LIF from CH20 was readily observed and a kinetic trace displaying the 

t'ormation of* formaldehyde is displayed in Fig. 4.4-7. 
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Fig. 4.4-7 - Kinetic trace showing the formation of formaldehyde in a C11212/0, JNj248 nm reaction 
mixture. Experimental conditiorL s: P 100 Torr; T= 296 K; IC112121 = 3.88 x IOL molecule cm 
[0,1 = 2.84 x 14116 molecule cm-1; [N, j balance; Ap, = 353.16 nm; Pp, = 2.7 nd pulse-; P, = 60 mj 
pulse-1, PRF = 0.5 liz. The solid red line is a fit of E. 4.1-1 to the experimental data. From the fit, 
V= (647 ± 68) s-1. The removal of Cl1_, O from the sYstem was found to be negligible (in sonx- 
experiments a small secondary CII., O growth was observed at long reaction times) and 
const4juently ki-, and P4 are set to zero in the fitting procedure. 
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At a laser PRF of 2 Hz it was found that the pre-Excimer laser background systematically 
increased between consecutive kinetic traces. As CH20 is long-lived in the reaction system 
incomplete flushing of the reaction cell with fresh gas between laser shots results in its 

accumulation. To overcome this problem the PRF was reduced to 0.5 Hz, in which time the 

entire reaction cell has been replenished with a fresh reagent nixture between laser shots. At 

this PRIF the pre-Excirner background was always constant and interference to the reaction 
kinetics was avoided. 

As initial experiments, the rate of fonnation of CH20 was investigated as a function of 

[CH2121 and [021 (where [021 >> [CH212]). The results are displayed in Fig. 4.4-8. 
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Fig. 4.4-8 - Bimolecular plots for the formation of CH20 as a function Of [CII2121 (top 
pane 

' 
1) and [02] in a CH212/02/Ny"M nm reaction mixture. All experimental conditions 

are as given in the previously figure caption with the exceptions: [02] = 2.84 x 1016 
molecule Cmw3 (top panel); [CH2,12] = 4.32 x IOP molecule cm73 (bottom panel). Error bars 
are 2astandard uncertainty returned from fits of E. 4.3-1 to the experimental data. From 
the linear fits, k(CH212) = (1.6 ± 0.2) x 10"" cn? molecule's" and k(02) = (3.6 ± 5.6) x 10'15 
cdmolecuk"s". 

From the linear fits to the experimental data, it can be seen that the [CH2121 and [021 
dependencies to the rate of formation of CH20 are strikingly similar to that of 10 (cf. Figs. 4.4-2 

and 4.4-3) under similar experimental conditions. The results indicate that, although CH20 and 
10 are probably formed by the same (or very similar) reaction mechanisms, CH20 is not a direct 

product of the CH21 + 02 reaction, R4-2 (in disagreement with Enami el. aL12). As discussed in 

section 4.4.1, it is expected that CH20 is generated in the reaction system by either self-reaction 
of peroxy species (produced from reaction R4-2) or from reaction of the peroxy species with I 

atoms (or CH212). As the power of the Excimer laser employed in this study could be varied by 

a factor of - 20, an experiment was performed in order to investigate this hypothesis. The rate 
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of formation of CH20 was measured for five different CH212 concentrations (in an excess Of 02) 

at a fixed Excimer laser power. In a back-to-back experiment, the rate of formation of CH20 

was measured for four different Excimer laser powers at a fixed CH212 concentration. In Fig. 

4.4-9 the pseudo-first-order rate of formation of CH20 observed in both scenarios is plotted 

against Y, the concentration of I (and CH21) generated by the photolysis of diiodomethane. 
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Fig. 4.4-9 - Bimolecular plots for the rate of formation of CH20 as a function of Y, the 
radical concentration generated from CH212 photolysis. The top panel displays the data 
obtained when [CH2121 was varied at a fixed Excimer laser power, and the bottom panel 
displays the data obtained when the Excimer laser power was varied for a fixed [012121. 
The concentration of Y was evaluated from E. 2.3-1 (using a photolysis quantum yield of 
1) and the Excimer laser power was measured at the rear cell window. Experimental 
conditions were the same as previously indicated with the exceptions: [021 = 1.17 x 1016 

molecule cm73 (all); F (photons crff2) = 6.35 x 1016 (top panel) and 5.83 x 1015,1.87 x 10'6, 
3.23 x 1W6 and 635 x 1016 (bottom panel); [CH212] (molecule cm7) = 1.16 x 1614 (bottom 
panel) and 1.67 x 10P. 4.18 x 10", 6.67 x 1013,9.17 X 1013 and 1.16 x 1014 (top panel). 
Error bars are 2astandard uncertainty returned from fits of E. 4.3-1 to the experimental 
data. From the linear fits, k= (9.2 

-t 
3.1) x 10711 cn? molecule"s"' (top panel) and k= (9.2 t 

0.7) x 10"' ca? moleculels" (bottom panel). 

The dependence of the rate of formation of CH20 on the concentration of Y was found to be 

exactly the same for both experimental scenarios. Several important conclusions can be drawn 

from this result. First, that the production of CH20 (and presumably 10) does not involve CH212 

directly, rather a photolysis product of CH212- Secondly, the fact that the rate of formation of 
CH20 is directly proportional to the concentration of Y (as was the peak CH20 LIF signal) 
demonstrates that this photolysis product is formed in a single photon process, and must either 
be I or the product of the CH21 + 02 reaction. It is interesting that the rate coefficient obtained 
from the bimolecular plots (k = 9.2 x 10-11 cm7molecule-'s") is similar to the estimated rate 
coefficient of the self-reaction of CH2102 (k =9x 10-11 cmýmolecule-ls-) as reported by 
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If it is assumed that CH2102 is the only product of the C1121 + 02 reaction, 

then CH20 must be formed from reaction R4-4a or R4-18 (or both). The self-reaction of 

CH2102 (R4-4a) is not expected to produce 10 radicals, and we mint therefore conclude that the 

reaction I+ CH2102 (R4-18) must be occurring within the reaction systerm In fact, it is known 

that CIO is produced from the reaction of Cl atoms with the CH302 peroxy species, and that this 

reactions proceeds at a rapid rates43. Indeed, if CH2102 were also to react with Br atoms, 

producing BrO, then the observation of BrO in the absorption experiment could be accounted 

for. However, we now arrive at an anomaly in that the yield of 10 produced from CH21 

(generated by the photolysis of CH212) was estimated to be in the 4- 40 % range in the 

absorption study. To explore this result, an experiment was performed in order to quantify the 

yield of CH20 (produced from CH21) in the experimental systern 

As stated previously, CH20 was generated as a reference by the reaction of CI atoms 

with MeOH in the presence of 02. Under the experimental conditions, this process should result 

in the quantitative conversion of Cl atoms into CH20. The reaction of Cl atoms with CH31 is 

known to produce CH21 radicals in high yield (- 80 %)" at room temperature. Ibus an 

experiment was performed where equal amounts of Cl atoms were reacted with either CH30H 

or CH31 (in a large excess of 02) and the peak CH20 LIF signals were comparedL Assurnin., 

the removal of CH20 to be negligible in both reaction systems (which was observed to be the 

case) the yield of CH20, (D(CH20), produced from CH21 is given by 

Pczf, i F- 4.4-1 
0-SXPCFI, OH 

where, (DcH. 0 is the branching ratio for CH20 formation from the initial C1121 concentration, 

PCH, ý and Pcq, OH ý are the peak CH20 LIF signals observed in the CH31 and CH30H 

experiments respectively, and 0.8 is a factor accounting for the non-unity yield of CH21 

produced from the reaction of CI + CH31. 

When CI atoms. were reacted with CH31, extremely intense fluorescence, that could not 
be attributable to CH20, was observed at early reaction tirms, which decayed to a non-zero 

baseline at larger values of At. Fluorescence from this unknown species was independent of the 

presence Of 02 and was observed to form with the correct kinetics for a product of the reaction 
Cl + CH31 - products. When the excitation wavelength of the probe laser was altered to 355 

mn (a wavelength where CH20 absorbs weakly in comparison to 353.16 nM) the intense 

fluorescence was still observed, although the PMT signal returned to the pre-Excinier laser 

background at longer reaction times. It was inferred that the species responsible for this 

unexpected fluorescence was the CH31-Cl adduct, recently observed in a CRDS absorption 
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experiment 31 
.A spectroscopic and kinetic investigation of this species is the subject ofChapter 

Five of this thesis. As fluorescence from CH31-Cl was found to be relatively independent of' 

excitation wavelength, subtraction of the 355 nm kinetic trace from that obtained at 353.16 nrn 

was found to yield the temporal evolution of CH20 in the reaction system. The results are 

displayed in Fig. 4.4-10. 
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Fig. 4.4-10 - Kinetic traces recorded in a C12SO/CHA/02/N2/248 nm reaction mixture. The 
top panel displays the traces obtained at 353.16 nm (black) and 355 nm (red) showing 
fluorescence from the CH3I-Cl adduct, and the bottom panel displays the residual CH20 
kinetic trace obtained by subtracting the 355 nm trace from the 353.16 nm trace. 
Experimental conditions: P= 100 Torr; T= 2% K; [C12SOI = 2.23 x 1013 molecule cm-3; 
[CH31] = 8.8 x 1014 molecule CM-3; [021 = 2.43 x 1016 molecule CM-3; [N21 = balance; F=6.0 
X 1016 CM-2; i photons PRF = 0.5 Hz; Pp, = 2.6 mJ pulse". The solid red line is a fit of E. 4-3- 
1 to the residual CH20 trace. From the fit, PI = (2990 ± 200), kgrowth = (920 ± 160) s". 

BefOre the yield of CH20 is discussed, an interesting result from the residual CH20 

kinetic trace must be mentioned. In the CH212/02/N2/248 nm experiments, information as to tile 

relative extent of reactions R4-4a and R4-18 cannot be obtained as the concentration of I and 
CH2102 are expected to be equal (as they are both produced by the photolysis of* CH212). 

However, in the Cl + CHI (+ 02) system we have a chemical source of CH21, and a photolytic 

source of I (from the 248 nm photolysis of CH. J), which are of unequal concentration. The 

pseudo-first -order rate of formation of* CH20, determined from the fit to the trace displayed in 

the bottom panel ot'Fig. 4.4-10 is. k(CH20)' = (920 ± 160) s-1. If this value is divided by the 

experimental CH21 concentration (0.8 x [CI]o = 7.5 x 1012 molecule cm -3 ) an effective 

bimolecular rate coelt-icient of, k= (1.2 ± 0.2) x 10-10 CM3 molecule-'s-1 is obtained tor the sell'- 

reaction ot'CH2102 (R4-4a). This is comparable to the Y-dependence to the rate offormation of* 
10-11 Cm3moleUle-IS-1). CH20 determined previously (k = 9.2 x When the rate of'formation of' 
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CH20 is divided by the I atom concentration ([110 = 4.6 x 1013 molecule CrIf3 ). however, a 

significantly smaller effective bimolecular rate coefficient of, k= (2.0 ± 0.3) x 10- 

crn'molecule-'s-' is obtained for R4-18. T'hus we can conclude that, although the reaction of I+ 

CH2,102 must occur (to explain the formation of 10), the self-reaction of peroxy radicals is 

predominant in the reaction system. This finding is discussed in greater detail at the end of this 

section. Note also that the presence Of CH20 in this experiment is unambiguous proof that 

CH212 is not required for its formation. 

With regards to the yield of CH20, the top panel of Fig. 4.4-11 displays the CH20 

kinetic trace recorded in the Cl + CH30H systern. 
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Fig. 4.4-11 - Kinetic traces showing the formation of CH20 in a C12SO/CH30H/0,2/N2/248 
nm reaction mixture (top panel) and a CH31/02IN2/248 nm reaction mixture (bottom 
panel). Note that the experimental conditions were identical to those given in the previous 
figure caption, with the exceptions that CHA was replaced with 2.08 x 1014 molecule cm -3 
of CH-; OH (top panel) and no C12SO was present in the experiment conducted with CHAI 
(bottom panel). The solid red lines are fits of E. 4.3-1 to the experimental data. From the 
fits: PI = (314M ± 3100) and kg,.. th = (11WO ± 14M) s-1 (top panel); PI = (26M ± 4M), 
kgrowlh = (1440 ± 240) s" (bottom panel). 

Substituting the appropriate values for P (P = Pl/kgrowth) into E. 4.4-1, a CH20 yield of (150 ± 
70) % is obtained. Thus the yield of CH20 is significantly greater than that of 10, which is in 

agreement with the above conclusion that the CH2102 self-reaction must have a larger rate 

coefficient than that of I+ CH2102- However, although within statistical uncertainty, it is 

surprising that the determined yield of CH20 is significantly greater than unity. To explore this 

result, the CH31 experiment was repeated in the absence of thionyl chloride (the chlorine atom 

precursor). Although fluorescence from CH31-Cl was not observed, LIF from CH20 was 
detected and surprisingly at approximately half the intensity to that when Cl atorns were present. 
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The CH20 kinetic trace, recorded in the CH31/02/N2/248 nm reaction mixture, is displayed in 

the bottom panel of Fig. 4.4-11. After correcting the peak CH20 LIF signal (observed in the Cl 

+ CH3I experiment) for that observed in the absence of CI atoms, the CH20 yield from CH21 is 

thus revised to (70 :L 80) %, where the large error reflects the extended propagation of errors. 

Nevertheless, the yield of CH20 is almost certainly larger than that of 10. 

Although detracting from the aims of the current research, the presence Of C1120 in 

photolysis mixtures of CH31/02IN2/248 nm is puzzling (note that no CH20 was observed in the 

CH30H system in the absence of CI atoms). If a yield analysis is performed, it is found that (14 

± 7) % of the CH31 initially photolysed by the Excimer laser is converted to CH20. At 248 nm, 

CH31 is photolysed to CH3 +I with a unity yield7 thus the observed CH20 cannot result from 

the photolysis of CH31 to CH21 + H. The inference is therefore that CH20 is produced by 

peroxy radical chemistry. In the CH31102/N2/248 nm system, CH3 radicals (produced by 

photolysis of CH3I) will self-react (forming C21-16) or react with 02 (forming C11302 radicals). 

CH302 can then undergo a variety of reactions, some of which forming CH20. In an attempt to 

simulate the CH20 formation a mýdel was created in FACSIMILE. Initial parameters of 

[CH31o and [02]0 were entered, along with the following reactions, which were assigned their 

appropriate literature rate coefficients under the experimental conditions 45 
. 

CH3 + CH3 +M C2H6 +M (R4-22) 

CH3 + 02 +M CH302 +M (R4-23) 
CH302 + CH3 2 CH30 (R4-24) 

CH302 + CH30 CH20 + CH300H (R4-25a) 

--+ other products (R4-25b) 
CH302 + CH302 

---), 2 CH30 + 02 (R4-26a) 

" CH20 + CH30H + 02 (R4-26b) 

The model was instructed to simulate CH20 production for the same conditions, and over the 

same temporal range, as the experiment. The CH20 formation observed in experiment could 

not be reproduced by the FACSIMILE model, possibly indicating the presence of iodine 

chemistry. A study by Shah et. aL46 determined the room temperature rate coefficient for the 

reaction of I+ CH30 (probably forming HI and CH20) as, k=8.5 x 10-11 cmýmolecule'ls-' at 
298 K This reaction was thus entered into the model (as was the initial parameter [1]0) and the 

CH20 formation was re-simulated. The results are displayed in Fig. 4.4-12. 
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Fig. 4.4-12 - Experimental and modelled CH20 production in a CH-11/02IN2/248 nm 
reaction mixture. The model outputs are shown by the red (including I+ CH, 40 --+ HI + 
CH20) and green (no iodine chen-dstry) data points. Pertinent experimental conditions: 
[CH310 ý [Ijo = 4.59 x 1013 molecule CRf3; [021 = 2.43 x 1016 molecule CM-3 . Note that the 
experimental CH20 LIF signal was converted to an absolute concentration by calibrating 
the signal to that observed in the CI/CH30H/02/N2/248 nm system, where quantitative 
conversion of ICI]o (calculated from the experimental conditions) to CH20 was assumed. 

The agreement between experimental and modelled CH20 production is remarkable (for the 

model simulation including the iodine reaction) in terms of both absolute yield and temporal 

evolution, especially considering that the peroxy and alkoxy chen-fistry of the reaction system is 

likely to be more complex than considered by the model. Ile results are indicative that the 

reaction of I+ CH30 does indeed produce HI + CH20 (as suggested by Shah et. al. 46) and that 

no additional (unknown chemistry) needs to be evoked to explain the CH20 formation observed 

in the CH31/02/N2/248 run reaction system. 

4.4.3 Estimated Rate Coefficients for the Reactions CH2102 + CH2102 
--* 2 CH210 + 02 

and I+ CH2102 
-+ 10 + CH210 at 2% K 

Let us assume that reactions R4-4a and R4-18 are responsible for the observed 

production of CH20 (from the unimolecular dissociation of CH210) and 10 in CH212/02/N2/hV 

reaction mixtures. It was previously concluded that the rate coefficient of R4-4a is greater than 

that of R4-1 8 for two main reasons: i) that the yield of CH20 is apparently greater than that of 

10; and ii) that in a C12SO/CH31/02/N2/248 nm reaction tnixture, the rate of formation of CH20 

is probably more dependent on the concentration of CH21 (chernically generated) than I 

(photolytically generated). The relative rates of R4-4a and R4-18 cannot be investigated from 
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the CH20 data obtained in CH212/02IN21248 nm reaction mixtures because CH2102 (produced 

from CH21) and I are present at equal concentration. Although it is incorrect to assume that 
CH20 is produced only from these reactions in mixtures Of C12SO/CH31/02/N2/248 nm (as it has 

been shown that CH20 is also formed from reactions involving CH302, produced as a result of 
CH3I photolysis), in want of more informative results with respect to the question at hand, we 

will start with the assumption that other reactions forming CH20 in this reaction system are of 

negligible consequence to its overall reaction kinetics. 

In order to try and assign rate coefficients to the CH2102 + CH2102 and I+ CH2102 

reactions, a model was created in FACSIMILE. Initial parameters of [CH2110v [11o and [021o are 

entered into the model, along with the following reactions: 

CH21+ 02 CH2102 (R4-2) 
CH2102 + CH2102 2 CH20 +21+ 02 (R4-4a) 

I+ CH2102 10 + CH20 +1 (R4-18) 

Note that in this reaction scheme it is assumed that any CH210 will spontaneously decompose to 
CH20 + I. The rate coefficient for R4-2 was fixed at, k=1.5 x 10-12 CM3 molecule-is'l (the . mean 
MS determination of Masald et. A 14 and Eskola et. al. 19), and the rate coefficients for R4-4a 

and R4-18 were assigned initial values of 1.2 x 10-10 cmýmolecule-ls-' and 2.0 x 10-11 

cm3molecule-'s-1 iespectively. 

The model was then used to simulate a CH20 kinetic trace for the same initial 

conditions as the experiment displayed in the bottom panel of Fig. 4.4-10 and E. 4.3-1 was fit to 
the output, returning a pseudo-first-order rate coefficient for the formation of CH20. Initiallyp 

the formation rate of CH20 was significantly overestimated by the model (with respect to the 

experimental value of 920 s-) and the initial values for the bimolecular rate coefficients of R4- 
4a and R4-18 were therefore adjusted in a trial and error procedure until a reasonable agreement 
between experimental and modelled formation rates was found (and where the ratio of rate 
coefficients was sufficient for CH20 to be formed in significantly higher yield than 10). In this 

manner it was found that rate coefficients for R44a and R4-18 of 6x 10-11 cm. 3 molecule"s" and 
Ix 10-11 cm3molecule-'s-1 respectively, satisfied the experimental observations reasonably well. 
The simulated profile of CH20 (and 10) is displayed in the top panel of Fig. 4.4-13. 
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Fig. 4.4-13 - Top panel: simulated kinetic traces of CH20 (black squares) and 10 (red 
circles) in a CI/CH31/02/N2/248 mn reaction mixture using the FACSIMILE model 
described in the text, and employing rate coefficients of 6x 10"' c[Wmolecule"ls" and Ix 
10"' crri3molecule-'s" for the reactions of CH2102 + CH2102 and I+ CH2102 respectively. 
Experimental conditions: [CH211O = 7.49 x 1012 molecule CM-3, [I]o = 4.59 x 1013 molecule 
Cm=3 and [0210 = 2.43 x 1016 molecule Cnf3 The solid red line is a fit of E. 4.3-1 to the 
simulated CH20. From the fit, k(CH20)' (948 ± 18) s". Bottom panel: model fitting 
(black) of the experimental data obtained in the CH212/O2/N2/248 nm Excimer power 
dependence experiments (see p. 41), performed at the highest (blue) and lowest (red) 
Excimer laser powers. Experimental conditions: [CH211 = [11 = 1.16 x 101-1 molecule Cmm3 
(blue) and 1.06 x 1012 molecule Cnf3 (red); [021 = 1.17 x 1016 molecule caf 3 (both). From 
the model output: k(CH2102 + CH2102) = (7.7 ± 1.5) x 10'11 crWinolecule"'s" (high power) 
and (6.8 ± 3.1) x 10-11 cFWniolecule"s" (low power). Note that the experimental kinetic 
traces illustrate the magnitude of the Excimer power dependence on both the rate of 
formation and peak concentration of CH20- 

As a test of the estimated rate coefficients the FACSIMILE model was used to fit the 

experimental data obtained in the Excirner laser power dependence study of the 

CH212/02/N2/248 nm reaction system (see pages 179 - 180). In this modelling study the 

experimental kinetic traces were converted from LIF signal into estimated [CH201 by 

normalising the data so that the peak CH20 signal was equal to the calculated concentration of 
CH21 radicals generated by the Excimer laser. Ile experimental data was then entered into the 

FACSIMILE model, which was instructed to return a rate coefficient for the self-reaction of 
CH2102 (the rate coefficient for R4-18, I+ CH2102 was fixed to Ix 10-11 crrOmoleculels-') after 

the appropriate experimental conditions had been assigned. The model fits to the experimental 
data, obtained for the highest and lowest Excimer laser power experiments, are displayed in the 

bottom panel of Fig. 4.4-13. For the four different Excimer laser powers studied rate 

coefficients for R4-4a of, k (10-11 cmýmoleculels-') = (7.7 ± 1.5), (5.1 ± 0.9), (4.7 ± 1.8), and 

(6.8 ± 3.1) x 10-11 cmýmoleculels-' were obtained, essentially in very good agreement with that 
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estimated from the C12SO/CH3I/02/N2t248 nin data. However, it must be emphasised that the 

estimated rate coefficients are highly speculative and their accuracy is dependent upon many 

assumptions. As the potential for chemical recycling of formaldehyde is great in chemical 

systems containing peroxy radicals, we prefer to quote the rate coefficients as lower limits. 
Although it was stated that the kinetic data obtained in the absorption experiments 

should only be treated at a semi-quantitative level, in a final modelling investigation it was 

attempted to link the temporal profiles of species X (considered to be the CH2102 peroxy 

radical) and 10. Initially, the decay of species X was investigated. The absorption profiles of 

species X recorded at 350 nin (some of which are displayed in Fig. 4.3-9) were converted into 

absolute CH2102 concentrations using the appropriate absorption cross-section determined in 

section 4.3.2.3 (cF35%. = 1.4 x 10-18 cm2molecule-1). The experimental data were entered into 

the FACSIMILE model, which was instructed to simulate the CH2102 growth and decay and 

return a rate coefficient for the self-reaction of CH2102, R4-4a. The initial concentrations of 

CH2I and I were set at equal values and allowed to float, and the initial concentration of 02 was 

fixed to the experimental value. In the absorption study it was found that species X did. not 

form with the correct reaction kinetics for a product of the CH21 + 02 reaction (possibly because 

of multiple absorption), thus the rate coefficient for R4-2 was allowed to float in'the model 

simulation. The rate coefficient for the reaction of I+ CH2102 was fixed at 1x 10-" 

cm7molecul6"s-1. After repeating this procedure for all five absorption traces', self-reaction rate 

coefficients of, k (10-11 cm3molecule'ls-) = (4.8 :t0.1), (9.4 ± 0.3), (11.4 ± 0.4), (9.3 ± 0.5) and 

(10.8 ± 0.8) were returned- With the exception of the smallest value, the rate coefficients are in 

excellent agreement and have an average value of, k= (10.2 ± 2.1) x 10-11 cm7molecule-s-1, 

which is in reasonable agreement with the lower limit estimated by the CH20 LIF data. Fig. 

4.4-14 displays the model fit to one of the absorption traces. It should again be emphasised that 

the results obtained in this modelling exercise are speculative, primarily because there is no 

definitive evidence that species X is CH2102. Having investigated the removal of species X, its 

possible link to the formation of 10 was sought. For this purpose, the 10 absorption trace 

obtained under identical experimental conditions to those given in the caption of Fig. 4.4-14 

was entered into the FACSIMILE model. The initial CH2I and I concentrations were fixed to 

the value returned from the previous modelling exercise ([CH2110 '= [11o = 1.7 x 1014 molecule 

cmý), as were the rate coefficients for reactions R4-2 and R4-4a (6.9 x 10-14 cin3molecule-'s"l 

and 11.4 x 10-11 cm3molecu]6"s-1 respectively). The model was then instructed to simulate the 

10 absorption trace, returning a value for the rate coefficient of the I+ CH2102 reaction. The 

only pertinent alteration to the model was the addition of the 10 self-reaction, which was 

assigned the literature rate coefficient of, k=9.9 X 10-11 cm3molecule-'s-1. The model fit to the 

experimental data is displayed in Fig. 4.4-15. 
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Fig. 4.4-14 - Model fit to the absorption profile of species X, speculated to be CH2102, bY 

the FACSIMILE model described in the text. Experimental conditions: P= 760 Torr; T= 

296 K; [CH2121 = 7.76 x 1014 molecule CM-3; [021 = 2.04 x 1018 molecule CM-3 ; [N21 = 
balance; F=1.2 x 1o17 photons cm -2 . 

From the model output: [C H21 10 =I 110 = (1.7 ± 0.1) x 
1014 molecule Cm=3 ; k(CH21 + 02) = (6.9 ± 0.5) x 10-14 cm3molecule"s"; k(CH2102 + CH2102) 

= (11.4 ± 0.4) x 107" edmolecule"s-1. Note that the model determi nations of k(CH21 + 02) 

ranged from (6.9 ± 0-5) x 10'14 cdmolecule'ls-l to (7.7 ± 0.8) x 10*13 cmý molecule" s" over 
the five absorption traces studied. 

From Fig. 4.4-15 it can be seen that the rnodel fit to the 10 absorption trace is not particularly 

good. This may indicate that the temporal profiles of species X and 10 are not linked (as 

described by the mechanism entered into the FACSIMILE rnodel). However, the absorption 

experiments were prone to considerable interferences. such as the very high and non-uniform 

radical concentrations present, and the results obtained should be treated with caution. Further. 

the model simulation was allowed very little flexibility as k(I + CH2102) was the only floated 

parameter. The rate coefficient for the reaction I+ CH2102 --" 10 + CH210 returned by the 

model was. k= (5.7 ± 0.1) x 10-11 cm3niolecule-s-1, significantly larger than that estiniated from 

the CH20 LIF data. However, the accumulation Of 12 in the absorption cell may have provided 

an additional I atom source (to the photolysis of CH212) and the modelled rate coefficient for 

reaction R4-18 could therefore be sigriificantly overestimated. Any mecharustic link between 

the temporal profiles of species X and 10 was not investigated further. 
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Fig. 4.4-15 - Model fit (red circles) to an 10 absorption trace recorded under identical 
experimental conditions to that of species X shown in the previous figure. From the model 
output; k(I + CH2102) = (5.7 ± 0.1) x 10-11 crnmolecule-'s-'. 

In line with the upper and lower limits deterni-ined in this modelling exercise, we choose 

to quote a range of values for the room temperature rate coefficient of the self-reaction of 

CH2102 of, k= (6 - 12) x 10-11 CM3 molecule-'s-'. For the reaction I+ CH2102 --* 10 + CH210 

the room temperature rate coefficient is of the order of, k= (I - 6) x 10-11 CM3MoIeCUIe-1 s- 1. 

4.4.4 Discussion 

The results obtained in this LIF study have provided important information with regards 

to the products and mechanism of the CHI + 0, ) reaction, R4-2. It has been definitively proved 

that 10 and CH20 are not formed as direct products of the CH21 + 02 reaction, in disagreement 

with the findings ofEnam-i et. al. 12 (and with regards to 10, Eskola el. al. 19). In a large excess of' 
02 (1021 ý' 101(' Molecule CM-3 ), the formation rates of 10 and CH20 have very little dependence 

on the experimental 02 concentration but significant dependencies on ICH211 and Ill. At 

relatively low concentrations ot'02, however, the [02] dependence to the rate offOrmation ol'10 

was observed to significantly increase and the [CH212] dependence (in a CH212/02/248 litil 

reaction mixturosignificantly decrease, providing an explanation for the experimental results of' 
Enami et. al. '2 who conducted their study under low [021 conditions. A primary conclusion, 

therefore, is that the rate coefficient ofthe CH21 + 02 reaction determined in the NIS studies' 4.19 

should be used for purposes ofatmospheric modelling and we would suggest the mean value of' 
the two literature deter mi nations. k=1.5 x 10-12 Cn13MoleCUIe-1S-1. 
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From an Excimer power dependence study conducted in a CH212/02/248 nm reaction 

mixture it was found that the rate of formation (and peak concentration) of CH20 had a linear 

dependence on Excimer power, and hence photolysis products of CH212 derived from a single 

photon process. By comparing the results to an experiment performed in a C12SO/CH31/02/248 

nm reaction mixture it is considered that the rate of formation of CH20 is more dependent on 

[CH211 than [1]. The rapid formation of CH20 was also observed in photolysis mixtures of 

CH3I/02 and a modeling exercise demonstrated that the reaction, I+ CH30 - CH20 + HI (in 

conjunction withý additional peroxy and alkoxy chemistry) could adequately describe the 

observed formation of CH20, supporting the work of Shah et. aOý It would appear that the 

presence of CH20 in a reaction system containing alkyl radicals, halogen atoms and 02 is a 

marker of peroxy radical chemistry. 
In consideration of the previous studies of the CH21 + 02 reaction, the known chemistry 

of CH2002 and CH2BrO2, and the speculative detection of CH2102 in the absorption 

experiment reported in this work, it is hypothesised that CH20 is formed in the experimental 

system by the self-reaction of CH21% (R4-4a) and that 10 is produced by the reaction of I+ 

CH2102 (R4-18), which also produces CH20.7he yield of CH20 (deriving from CH2102) was 

estimated at (70 :t 80) %, significantly greater than that of 10 (4 - 40 %), suggesting that 

reaction R4-4a has a larger rate coefficient than R4-18. A modelling exercise found that rate 

coefficients of, k(CH2102 + CH2102) =6x 10-11 cdmoleculd"s", and k(I + CH2102) =1x 10711 

cr2moleculd"s" could adequately describe the observations of the CH20 LIF study. However, 

the chemical recycling of CH20 (which was ignored by the model) is likely to have occurred 

and these rate coefficients should be regarded as lower limits. Although not aforementioned, 

the 10 formation observed in the LIF study was unsatisfactorily reproduced by the same model, 

where the [11 dependence to the rate of formation of 10 was overestinxited by around an order of 

magnitude. However, the 10 LIF study was perfonried at a laser pulsed repetition fi-equency of 

2 Rz. Although any 10 would have been completely removed from the reaction system 

between consecutive laser shots, the reaction cell was not completely replenished with a fi-esh 

reagent mixture and the accurnulation of 12 in the reaction cell is considered likely. It is 

probable, therefore, that an ill-defined I atom concentration was present in the 10 LIF study, and 

the CH20 investigation (performed at a lower laser PRF) should be considered more reliable. In 

a final modelling investigation, the rate coefficient for the self-reaction of the absorbing species 

speculated to be CH2102 was determined to be of the order of Ix 10-10 cr2molexile's-1, in 

reasonable agreement with the lower limit set from the CH20 LIF experiments, and of that 

reported by Seliested et. al. 13. An attempt to model 10 production from CH2102 chem istry, 

using data obtained in the absorption experiment, was inconclusive and yielded a rate 

coefficient for R4-18 of, k(I + CH2102) = 5.7 x 10711 cn? n-iolecule"s-1. significantly greater 
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than that estimated Erom the CH20 LIF data. However, the accumulation Of 12 in the absorption 

cell is also likely to have occurred. 
Before ending this discussion several further points should be made. First, that it is 

difficult to deconvolute a reaction mechanism containing more than one reaction involving the 

same chemical species. Not enough information has been obtained to suggest that 10 

definitively derives from the reaction, I+ CH2102. Although it is considered unlikely, it is 

possible that 10 could be generated directly from the self-reaction of CH2102. In order to 

deduce the mechanism of 10 formation, further experimental work is required. An Excimer 

laser power dependence study of the rate of formation of 10 in CH212/02/248 nm reaction 

mixtures should be performed (under conditions where the build-up Of 12 cannot occur) in order 

to determine the true [11 (or [CH21]) dependence to the rate of formation of 10, and confirm that 

10 originates from the single-photon dissociation of CH212- Clearly, investigating the rate of 
formation of 10 in reaction systems containing different initial concentrations of CH21 and I 

would be informative. The second point to highlight is that, in the mechanism postulated for the 

formation of CH20 in this work, it is assumed that CH210 spontaneously decomposes to C1120 

+I (in analogy to the CH2BrO alkoxy species)17. If CH210 were to have a non-negligible 

lifetime (> 100 gs) CH20 could be produced in higher yield but at a slower rate than 10, 

potentially accounting for some of the observed discrepancies in this work. Finally, in the 

course of this work, intense LIF from OH was observed after the 248 nm photolysis Of C11212 in 

the presence Of 02. The source of OH is unknown but may imply the presence of dioxirane (see 

p. 166) and/or CH2102 (see p. 142). Unhelpfully, unforeseen problems with the laser system 

meant that the reaction kinetics of OH could not be determined. However, this work represents 

the first report of the detection of OH in the CH21 + 02 system and opens a further avenue for 

research in this complex reaction system. 
In section 4.4.1 it was suggested that 10 and CH20 may be formed by the reaction 

CH202 +I ---* CH20 + 10 (R4-16). The reason why this reaction has not been discussed further 

is stated in the following section. 

4.5 Mass Spectroscopic Investigation of the Products of the CH21 + 02 Reaction 

In a final attempt to deduce the products of the CH21 + 02 reaction a mass spectrometric 
investigation was performedL It should be noted that we consider the reaction kinetics of the 

title reaction to be well characterised by the MS studies of Masaki et. aL 14 and Eskola et. aL19. 
CH21 was generated by the 248 nm photolysis of CH212 in the presence Of 02. All experiments 
were performed in a He bath gas at a total pressure of -1 Torr. The experimental apparatus was 
very similar to that described in Chapter Two, and is only briefly discussed here. The reagent 
mixture, prepared on a gas handling line, was introduced into the reaction flow tube via 
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calibrated MFC's and through 1/4" copper tubing. A KrF Excimer laser irradiated the reaction 

mixture (along the entire length of the reaction tube) with a 50 mJ pulse of 248 run radiation. 

The reaction mixture eff-uses through the flow tube pinhole, into the vacuum chamber where the 

gas sample is photoionised by a VUV laser pulse, generated by frequency tripling the output of 

a Nd: YAG pumped Dye laser in Xe. Approximately 200 - 400 nj pulsd" of photoionisation 

radiation was generated, over a tuneable wavelength range of 113.6 - 120 nrn. Eff-usion through 

the pinhole is rapid (- 10000 s-) in relation to the chemical reaction (typically 100 - 1000 s-) 

and the concentration of species was approximately equal at the photoionisation region and in 

the reaction flow tube at any particular time, At. Ions, generated by the VUV radiation are 

introduced into the mass spectrometer by a series of electric fields and detected by an ion 

detector, which is interfaced to an ion counting card on the control PC. Ile maximum reaction 

time over which the chemical system can be studied is - 15 Ms and is governed by the flow 

velocity in the reaction cell (- 25 ms-1). 'I'lie photolysis (Excimer) and probe (Nd: YAG) lasers 

are triggered by a delay generator, which also triggers the ion counting card and an oscilloscope 

that monitors the analogue signal from the ion detector, allowing a discriminator level to be set 
for the detection of ions by the card on the PC. The time of flight (TOF) of an ion within the 

mass spectrometer is related to its mass by E. 4.5-1 

TOF =IE. 4.5-1 f2TE 
v -M 

where I is the length of the flight chamber and E is the electric field strength of the mass 

spectrorneter, and m is the rnass of the ion. 

Fig. 4.5-1 displays the mass spectrum of a CH212/02/Het248 run reaction mixture 
obtained in this study. Initially, a photoionisation wavelength of 113.67 nm was employed 

(corresponding to a fundamental dye laser wavelength of 682.00 nm) in order to confirm the 

production Of CH20. Formaldehyde has an ionisation potential of 10.88 eV47 and cannot be 

detected by ionisation wavelengths longer than 114.11 nin therefore. At a fixed value of At, ion 

signals were detected at TOF's attributed to CH2", CH2W, r, CH2r, 12' and CH212*. A weak 

ion signal was also detected at a TOF of - 11.8 gs, corresponding to CH3COCH3+. A trace 

amount of acetone is always detected in the instrument due to contamination from leak testing 

and cleaning of the experimental apparatus. The spectrum displayed in Fig. 4.5-1 was used to 

calibrate the MS instrument, as given in Fig. 4.5-2. 
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Fig. 4.5-1 - Mass spectrum of a CH212102tHe/248 nm reaction ndxture. Experimental 
conditions: P=1.1 Torr; T= 296 K; [CH2121 = 1.2 x 1012 molecule cni -3 ; [02,1 = 7.6 x 1014 

molecule cnO; [He] = balance; P.. = 50 mj pulse"; A. = 113.67 nm; Pi =5 mJ puls6*1; At = 
750 jis. Note that the largest peaks correspond to I*, CH21" and C11212+ in order of 
increasing TOF respectively. Some of the smaller peaks are labelled on the'niass 
spectrum. 
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Fig. 4.5-2 - Calibration graph for the MS instrument. A simplified form of E. 4.5-1 is fit to 
the data: mass = (TOF/a)2 +b, where a is an experimental constant and b Is an offset term 
allowing for a non-zero intercept. From the fit, a=1.529. t 0.003 and b= -(1.19± 0.72) gs. 
The instrument was calibrated to the TOF of ions corresponding to CH2, C1120, 
CH3COCH3, I, C1121,12 and CH2I2. The calibration graph is non-lineAr as the TOF of an 
ion is proportional to the square-root of its mass. 
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Experiments conducted for a photolonisation wavelength of 113.67 nm were subject to 

considerable interference from the photofragmentation of CH212 by the ionisation laser pulse. 

and informative kinetic experiments could not be performed. At wavelengths below 113.67 nrn. 

CH2+, CH21+ and V are produced directly by the photofragmentation of CH212 and a large pre- 

Excimer laser background was observed for these species. However, the CH20 ion signal was 

observed to increase after the photolysis pulse, as can be seen in Fig. 4.5-6. indicating that 

CH20 is generated in the reaction systern Eskola et. al. 19 did not report the definitive 

assignment of CH20 in their NIS investigation, although a signal observed at in/Z = 30 allowed 

an upper limit for the yield of CH20 (originating from the CH21 + 02) reaction to be set at 33 %. 

In this work (in addition to the species indicated in Fig. 4.5-1) small ion signals were observed 

at the notable masses of 46 (CH202+), 128 (Hl'), and 143 (10+). In order to investigate the 

temporal profile of these species, the ionisation wavelength was increased to 118.33 nrn 

(corresponding to a fundamental dye laser wavelength of 7 10 nin), where photofragmentation of 

CH212 was less significant. At this ionisation wavelength the resulting mass spectrum was again 

dorninated by signals attributed to 1, CH21 and CH212- To investigate the reaction kinetics of 

CH21 and 1, experiments were performed where At (the delay between photolysis and ionisation 

lasers) was varied under identical experimental conditions, with the exception of 1021. A kinetic 

trace, observed at m/z = 141 is displayed in Fig. 4.5-3, showing the removal Of CH21 from the 

systern 

500 
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ca 200 
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0 
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Fig. 4.5-3 - Kinetic trace recorded at m1z = 141 showing the removal of CH21 in the 
reaction system. Note that a CH21+ pre-Excimer laser background was observed (due to 
photofragmentation of CH2112 by the ionisation laser) but has been subtracted from the 
kinetic trace in this figure. The solid red line is a fit of E. 4.3-1 to the kinetic trace, where 
kg,,,, Ih is fixed to a value of 10000 s-1 (accounting for effusion through the pinhole). From 
the fit: kj.. = (316 ± 84) s-1. Experimental conditions: P=1.1 Torr; T= 2% K; [CH2121 = 
1.19 X 1012 molecule CM-3 ; [021 = 8.66 x 1013 molecule Cnj3; [He] = balance; A. = 118.33 nm. 
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The pseudo-first-order rate of removal of CH21, ki., is displayed as a function of [021 in 

the bottom panel of Fig. 4.5-4. From the linear fit, k= (2.4 :t2.7) x 10-12 cm3molecul6"s", 

significantly larger but within statistical uncertainty of the previous MS14.19 investigations. As 

stated, determining the rate coefficient for the reaction CH2I + 02 was not a principle aim of this 

study. In agreement with the findings of Eskola et. aL'9, the ion signal corresponding to a mass 

of 127 (1*) was observed to increase at longer reaction times, over that initially generated by the 

Excimer laser. Kinetic traces showing the temporal profile of I atoms are displayed in Fig. 4.5- 

5 and the pseudo-first-order rates of formation determined from their kinetic analysis are given 

in the top panel of Fig. 4.5-4. 
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Fig. 4.54 - Bimolecular plots displaying the pseudo-first-order rates of formation of I (top 
panel) and removal of CH21 as a function of [021 in a CH212/02/He/248 nm reaction 
mixture. Error bars are the 2a standard errors returned from fits to the appropriate 
exponential functions. No systematic relationship could be inferred between the rate of 
formation of I and concentration of 02, largely because of the relatively high degree of 
experimental scatter (see Fig. 4.5.5). From the linear fit to the CH21 data, k(C1121 + 02) ý 
(2.4 :t2.7) x 10-12 cdmoleculels". The experimental conditions are as previously 
indicatedL 

From the data presented in Fig 4.5-4, it can be seen that the I atom data are inconclusive. The 

pseudo-first-order rate of formation of I is of similar magnitude for all concentrations Of [021 

and it cannot be determined if I atoms are formed directly from the reaction CH21 + 02 (as 

suggested by Eskola et. aLl) or from secondary chemistry within the system. However, a yield 

analysis of the peak I atom signal (in comparison to that generated by the Excimer laser, which 

will be equal to the initial concentration of CH21) shows that the conversion of CH2I to I is high. 

Using values obtained from the fitting procedure, the average I atom yield was found to be (0-71 

± 0.47), in reasonable agreement with that determined by Eskola et. aL'9 (0-91 ± 0.34). 
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Fig. 4.5-5 - Kinetic traces displaying the photolytic, and secondary, formation of I atonis 
in the CH212/02/248 nm reaction system. The experimental data are fitted to a modified 
form of E. 5.3.2.1, allowing for the instant I atom signal generated by the photolysis of 
CH212. Note that the values returned from this fitting procedure allow the evaluation of 
the I atom yield. From the fittings, kgrowth --: (710 ± 252) s" (top panel) and (844 ± 1270) s" 
(bottom panel). Experimental conditions are the same as previously indicated with the 
exception, [021 = 3.08 x 10'4 molecule Cm 3 (top panel) and 4.20 x 1014 molecule CM-3 
(bottom panel). 

In fact, it is this observation that leads us to the conclusion that the reaction I+ CH202--4IO+ 

CH20 does not occur in the reaction system. If the reaction of CH21 + 02 were to generate I+ 

CH202, which subsequently react to form 10 + CH20, no I atom growth would be observed. 
Further, no co-product to I was observed in the experiment of Eskola et, al. 19 and we therefore 

conclude that I must be formed in a secondary process, involving CH2102. Note that the 

formation of 10 almost certainly involves an I atom and that the reaction I+ CH2102 ' 10 + 

CH210 does not result in the removal of I atoms (as they are catalytically regenerated by the 

dissociation of CH210). Thus reactions of CH2102 can explain the formation of both I atoms 

and 10, without contradicting the experimental results of any of the CH21 + 02 studies. 

Although Eskola et. al. '9 reported the formation of I atoms on the same tirnescale as CH21 

removal in their system, this finding was based on the results of a single kinetic trace, which is 

not enough information to define a reaction mechanism. Further. 10 was reported to appear on 

the same tiniescale as CH21 removal and it has been definitively proved in this study that this is 

not the case. The formation of I atoms in the CH21 + 02 reaction system needs to be 

investigated more rigorously. 

In addition to the detection of CH21, I and CH212 in the kinetic experiments. weak ion 

signals were also observed at m/z = 14,46,128,143 and 254, probably corresponding to CH2. 
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CH202, HI, 10 and 12 respectively. The signal from the species assumed to be HI, 10 and 12 

were non-photolytic, increasing over the timescale of the experiment. No CH20 was observed, 

consistent with an insufficient ionisation wavelength (118.33 nm) for its photoionisation. No 

signal was observed at n9z = 173, corresponding to the CH2102 peroxy radical. Fig. 4.5-6 

displays the temporal evolution of the indicated species. Note that the kinetic traces displayed 

in the figure do not all correspond to the same kinetic experiment and it should not be attempted 
to correlate the temporal profiles of the species involved. 
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Fig. 4.5-6 - Kinetic traces obtained at mIz = 14,30,46,128,143 and 254. Note that the 
CH20 kinetic trace was obtained at an ionisation wavelength of 113.67 nm. The 
concentration of CH212 was equal for all experiments, although [02] was variable. No 
comparison between the temporal profiles of the different species should be drawn. 

The first point to note about the kinetic traces displayed in Fig. 4.5-6 is that (with the exception 
of 12) the peak signal of all species is very weak in comparison to that of CH21 and I, crudely 
indicating that the concentration of these species are small. Analyses of the kinetic traces were 
not performed due to the small signals and high degree of scatter in the experimental data. 
However, the fact that the signal of all species is observed to increase after the Excimer laser 

pulse (Al = 0) is indicative that they are all formed in the reaction system to some extent, and 

not by photofragmentation processes induced by the ionisation laser. The photolytic signal of 
CH7 shows that, at 248 nin, a small fraction of CH212 undergoes multiphoton dissociation to CH2 

+ 12. The fact that CH2, is present in the reaction system means that some CH20 and 10 
formation can be expected from the reactions, CH2 + 02 --"" CH20 +0 and 0+ CH212 --+ 
10 + CH21. However, it must be emphasised that the concentration of CH2 will be very small 
and the concentrations of CH20 and 10 will be significantly smaller still (due to the appropriate 
branching ratios of the above reactions). The presence of a very weak signal at ndz = 46, 
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indicates that some isomeric form of CH202 is present in the reaction systern. 7be signal is only 

present at very early reaction tinrs and would appear to be photolytic in origin. The reason for 

this observation is unclear. Eskola el. aL'9 did not detect any isonwric form Of CH202 in their 

experimental study. The presence of III may indicate the presence of CHIO, potentially formed 

in a minor channel of the self-reaction of CH2102 (R4-4b), which can undergo unimolecular 
dissociation to CO + 1114'. Eskola et. aL'9 also observed the formation of III in their 

experiment but could not determine its kinetic formation. In the MS study of Masaki et. aL 14 
, 

HI was the only species (other than CH21 and 1) reported to be present in their reaction system. 
Although of very weak intensity, the presence of CH20 and 10 are not unexpected. The 

relatively intense 12 signal is more difficult to explain. Ile formation rate of 12 could not be 

determined as the asymptote of its exponential growth lies well outside the In 

experimental reaction time. However, assuming the 12 Signal cannot exceed half of the peak I 

signal, a lower firnit to its pseudo-first-order rate of formation of 5 s-1 can be determined. 

Although small, this rate coefficient is orders of magnitude greater than that expected from the 

recombination of I atoms (or the reaction I+ CH212 --i- CH21 + 12) under the experimental 

conditions. Eskola et. aL19 do not report the formation of 12 in their study. I'lle origin of 12 is 

thus unclear, although it may be a marker of 10, chemistry as speculated in the absorption 

experiment and discussed in section 4.3.2.1. In this study, no evidence of the CH2102 peroXY 
species at nilz = 173 was found. This may be because its ionisation potential is too high (note 

that H02 is not ionised beyond wavelengths of 109.4 nnif or that it was completely 

photofragmented by the ionisation laser (CH302 may ionise at wavelengths as long as 168.7 

nrný9, which may be considered more likely. 

4.5.1 Discussion 

This results of this MS investigation are largely inconclusive. In fact, the only species 
forming in significant yield with respect to CH2I in the reaction system was I atoms, with a yield 
of (71 :t 47) %. This result is in agreement with the findings of Eskola et. al. 19. Although the 
appearance of I atoms approximately coincided with the removal of CH21, it could not be 
ascertained whether they are produced directly from the reaction CH21 + 02, or from secondary 
chemistry within the system, Only very weak signal was observed at nilz = 46, corresponding to 
CH202 --ý the presumable co-product of I atoms, and the temporal profile of this species did not 
coincide with that of I. In addition, CH20,111,10 and 12 were observed to form in the reaction 
system No evidence for the CH2102 peroxy species was found. It is speculated that I atoms are 
most likely fortned by secondary chemistry within the reaction system. 
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4.6 Reaction Products of CI-121 + 02: Conclusions 
.1 

This work represents the most comprehensive study to date of the reaction products of the 

CH21 + 02 reaction- By investigating multiple species by a variety of experimental techniques, 

a wealth of information has been obtained, providing insight into anomalies between the 

previous experimental studies. The most definitive conclusion found is that 10 (and CH20) are 

not formed directly from the reaction of CH21 + 02, in contrast to the reports of two recent 

investigations12,19. However, 10 and CH20 display similar temporal behaviour in the reaction 

system and it is considered very likely that the two species are formed by the same (or closely 

related) reaction mechanisms. Specifically, after photolysing CH212 in the presence of a large 

excess of 02 at 248 nim, the rate of formation of both species is found to be dependent upon the 

concentration of CH212 but only very weakly dependent on the concentration Of 02. When the 

concentration Of 02 is reduced, however, the rate of formation of 10 is found to be more 
dependent on the experimental 02 concentration. The rate of formation, and concentration, of 

CH20 was found to be directly proportional to the concentration of photolysis products of 
CH212, indicating that I atoms, or the reaction products of the CH21 + 02 reaction, are involved 

in its formation- In observing the formation of CH20 in reaction mixtures , of 
C12SO/CH31/02/248 nra, the rate of formation of CH20 is considered to have a greater 
dependence on the concentration of CH21, than that of I atoms. 

It has been definitively proved that 10 is not produced by the reaction. of 0 atoms 
(produced by the multi-photon dissociation of CH212) with CH212 in the reaction systenL 'This 
finding was confirmed by adding large excesses of Br2 and CF3I to the reaction system, which 
had little effect on the observed 10 (and BrO) production. Upon addition of Br2 to the reaction 

system, the formation of BrO is observed in addition to that of 10, and it is considered that both 

species are formed by similar reaction mechanisms. No apparent pressure dependencies to the 

reaction kinetics of any species studied in this work were found. 
In consideration of the previous literature, the reaction mechanisms of, the CH21 + 02 

reaction, previously postulated by Enami et. al. 12 and Eskola et. al. 19 can be discounted. Enami 

et. al. 12 reported that 10 and CH20 are formed directly in a bimolecular reaction mechanism by 

CH21 + 02. From the experimental findings of this work, this is clearly not the case. Eskola et. 

al 19 conclude that CHzI and 02 react to produce a short lived CH2IO0 * intermediate, which can 
decompose to several reaction products, predominantly I+ CH202 (but also 10 + CH20) in a 

unimolecular process, or be stabilised at high pressures forming the CH2102 peroxy radical. 
This mechanism can be discounted as, in such a system, - the rates of formation of 10 and CH20 

will be independent of the concentration of CH212 under pseudo-first-order conditions U021 >> 
CH212A 
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The observation that I atoms are produced in the reaction system at high yield (- 70 %) 

leads us to the conclusion that the CH21 + 02 reaction proceeds Wa one of two mechanisms: 

CH21+ 02 - CH2102 

CH21 + 02 -I+ CH202 

(R4-2a) 

(R4-2b) 

and that 10, CH20 and I atoms can potentially be produced by the following reactions 

CH2102 + CH21% 2 CH210 + 02 (R4-4a) 

CH210 CH20 +1 (R4-5) 

I+ CH2102 CH210 + 10 (R4-18) 

1+ CH202 10 + CH20 (R4-16) 

Although we have no definitive evidence to suggest that the reaction of C1121 + Oz proceeds Wa 

either channel R4-2a or channel R4-2b, several pieces of infonmtion lead us to the conclusion 

that CH2102 formation is most likely, and that 10 and CH20 are therefore formed through 

reactions R4-4a, R4-5 and R4-1 8. (Note that an analogous reaction to R4-1 8 could also explain 

the formation of BrO, upon the addition of bromine to the reaction system). In the mass 

spectrometric investigation the formation of CH202 was not observedL Although the rates of 

formation of CH20 and 10 would display a dependence on the concentration of CH212 if 

produced by reaction R4-16, the net production of I atoms would Dot occur. Although CH2102 

was not detected in the mass spectroscopic study (possibly due to its entire photofragmentation), 

the absorption spectrum of an unknown species in the 250 - 450 mn wavelength range obtained 
in this work is considered to be compatible with the known spectra of the C112CI% and 

CH2BrO2 peroxy species, and was in good agreement (between 310 - 400 nm) with the 

previously reported CH2102 absorption spectrum! ý 7be forrmtion of this species was 

apparently independent of total pressure in the 4- 760 Torr range. An atternpt to verify the 

absorbing species as a direct product of the CH21 + 02 reaction was unsuccessful, although 
interference from multiple absorption and secondary chemistry may have been problematic. 

The only other species that this absorption could tentatively be assigned to are CH210 or CH202, 

neither of which are considered likely. 

In an attempt to model the most important findings of this study, a complete 

quantitative consistency between the kinetic behaviour of 10, C1120 and the species believed to 

be the CH2102 peroxy radical could not be achieved by a mechanism consisting of reactions R4- 

2a, R4-4a, R4-5 and R4-18, the largest discrepancy being found with regards to 10. By the 

confines of the experimental data we were able to set a limit range to the room temperature rate 

coefficient for reaction R4-4a of ,k= (6 - 12) x 10711 crAnoleculd'Y', and a limit range of k= 
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(I - 6) x 10-11 cm 3 molecul&"ls-1 for the room tenaperature rate coefficient for R4-18. Therange 

of values for R44a are in good agreement with the estimated value of, k=9x 10"' 

cM3molecule-'s-', reported by Sehested el. aL 13 
. 

To confirm the predictions of this work, further experimental research should be carried 

out. First, a detailed spectroscopic and kinetic investigation of the absorbing species, speculated 

to be CH2102, should be performed- Secondly, the kinetics of 10 in the CH21 + 02 reaction 

system should be investigated as a function of [CH21] and [1]. If the reaction of CH21 + 02 does 

produce CH2102. it is interesting that the reaction is observed to be independent of pressure 

(although the reaction was found to have a negative activation energy by ýEskola el. aL'9, 

supporting an association reaction mechanism). The presence of a heavy, electron rich I atom 

may provide a mechanism by which excess energy can be dissipated in the internal modes of 

CH2102, although we do not know whether this could explain the observed difference in the 

pressure dependencies of the CH21 + 02 and CH2Br + 02 reactions'9. Future theoretical research 

could perhaps help resolve this discrepancy. In addition to the above findings, the formation of 

both OH and 12 were observed after photolysing CH212 in the, presence Of 02 at 248 nm, and the 

kinetic behaviour of these two chemical species within the reaction system should receive future 

experimental attention. 

A final comment to make is that the chemistry occurring after the 193/248 nm 

photolytically initiated reaction of CH2I + 02 is clearly complex. Extrapolation of the findings 

of experimental investigations of reaction systems with high radical concentrations, and short 

photolysis wavelengths, to the chemistry of the atmosphere should be treated with caution. It is 

interesting that in the particle studies involving the photolysis of CH212 in the presence of 03 (at 

wavelengths more appropriate to the troposphere), particle formation was only observed in the 

presence of both light and 03- Particle formation involving iodine chemistry is thought to be 

initiated by the self-reaction of 010, which in turn is controlled by the self-reaction of 10 

radicals. The fact that particle formation was only observed in the presence Of 03 essentially 

proves that 10 is not formed directly from the reaction of CH21 + 02, and also that reactions R4- 

16 and R4-18 were not occurring at a significant enough extent to produce 10 concentrations 

high enough to initiate particle formation. This observation supports our hypothesis that 

CH2102 is the major product of the CH21 + 02 reaction, and that CH2102 radicals are 

predominantly removed by self-reaction, producing CH20 and I (and not 10). 

4.7 Products of the CH21 + 02 Reaction: Atmospheric Implications 

In considering the atmospheric implications of this work, the key question over the 

potential influence to particle formation in the MBL is whether CH21 + 02 reacts to form I+ 

CH202, or CH2102- If I atoms are produced directly from the reaction, then the immediate 
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release of active iodine will result in enhanced formation of 10,010 and particle production. 

Conversely, if CH2102 is formed, the release of active I into the atmosphere will be delayed and 

governed by the photolysis and reactions of CH2102- Particle formation, initiated by the 010 

self-reaction, will therefore be less substantial if CH21()2 is the reaction product of CH21 + 02- 

In order to demonstrate this effect, a simple mDdel was FACSIMILE in created. The following 

processes are entered into the model and assigned the rate coefficients given in parentheses 

CH212 + hv - CH21 +I 

1+03 --- )' 10 + 02 

CH21+ 02 - CH2102 

- CH202 +1 

CH2102+CH2IO2 
--* 2CH20+21+02 

CH2102 + hV --* I+ products 

(J = 4.24 x 10 ý-) 

(k = 1.2 x 10712 crnýmoleculd'ls-'ýs 

(k = 1.5 x 10-12 CMý=IeCU164S-) 

(k = 1.5 X 10712 cn? nioleculd-ls-1) 

(k =9x 10711 cr2molecule-'s-1) 

(J = 2.1 x 10-2 ý") 

10+10 - 010+I 
--)' 1202 

010 + 010 --* 1204 

(k = 3.5 x 1911 cmýmleculd-ls-'ý 
(k = 6.5 x-1911 cdmleculd'ls"ý 
(k =5xI ff" m2moleculd'ls-'ý 

The model was then run for two scenarios: that the reaction of CH21 + 02, produces either, i) 

CH2102 (in which case the, I+ CH202 product channel is switched off) or, ii) I+ CH202 (where 

the CH2102 product channel is turned off). All reactions were assigned the appropriate literature 

rate coefficients and photolysis rates were calculated using typical actinic flux data for the Mace 

Head site at 12.00 noon on 2V June. Note that the rate coefficient of the CH21 + 02 reaction is 

assigned the mean value of the MS deterninations14-19 (k = 1.5 x 10712 cm3nioleculd"s-1) and 
the CH2102 self-reaction is assigned a rate coefficient of 9x 10711 cn? =Ieculd-1s" (the mid- 

estimate value obtained in this study). Initial concentrations of 30 ppb and 20 ppe for 03 and 
CH212 respectively were entered into the model. At time zero, CH212 photolysis is initiated, and 
the resulting chernistry of 10 and 010 is allowed to evolve as the gas mixture ages. The 

temporal profiles of 10 and 010, sirmlated for each scenario, are displayed in Fig. 4.7-1. 
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Fig. 4.7-1 - Atmospheric model simulations for the production of 10 (solid lines) and 010 
(broken lines) for the scenarios: 0 CH21 + 02 --ý' 

CH2102 (red), and ii) CH21 + 02 --+ I+ 

CH202 (black). Note that for scenario (i) the model was also ran with the reaction I+ 
CH2102 ' 10 + CH20 +I (k =3x 10"' cmýmolecule'ls-) included, which had no effect on 
the observed 10 or 010 production as any I atoms within the system are rapidly 
consumed by 03 (and not CH2102)- 

From the model output it can clearly be seen that the rates of production of' 10 and 010 are 

reduced, as are their peak concentrations, when CH2102 is defined as the product ol'the reaction 
CH21 + 02- Although the effects are relatively small, if the photolysis of CH2102 (or its 

reactions with other species. such as CH302 and NO) do not result in the immediate release of I 

aton-Ls in the atmosphere, then the influence of this chemistry will be further exaggerated. This 

modelling exercise was not intended to quantify the effects of the CH21 + 02 reaction on the 

atmospheric chemistry of 10, merely to illustrate that including the formation, and subsequent 

chemistry, of CH2102 in atmospheric models (which is not currently the case) will have a 

noticeable effect on the production of 10,010, and particle production in the MBL under 

conditions where CH212 is the most important source of active iodine. 

From the results obtained in this work we consider it almost certainly to be the case 

that the reaction ofCH21 + 02 produces CH2102 in high (if not unity) yield. Future experiniental 

research, as suggested throughout the course of this chapter, is required to substantiate this 

conclusion and better quantify the atmospheric significance of the CH2102 peroxy radical. 
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Chapter Five: A Spectrokinetic Study of the CH31-Cl and ICH21-Cl Adducts 

5.1 Introduction 

Since chlorine atoms were highlighted as a potential oxidant in the marine boundary layer 

(MBL)l there have been numerous studies on their reaction with organic molecules2-9. The 

removal of saturated hydrocarbons from the troposphere is governed almost entirely by reaction 

with OH (and Cl) due to their relatively long photolysis lifetimes. The removal of alkyl iodides 

from the atmosphere, however, is thought to largely proceed via C-1 bond cleavage initiated by 

solar radiation. The photolysis lifetime of the alkyl iodides ranges from a few minutes (C11212) 

to a few days (CH31)10. This photolysis is important due to the release of active iodine atoms 
into the MBL which can initiate catalytic 03 depleting cycles (see Chapter One). Estimates of 
CI atom concentrations in the atmosphere range from 102- 105 molecule Cm=3 (11-13). For a mid- 

estimate [CI] value, the removal of CH31 from the atmosphere by reaction with CI is 

approximately an order of magnitude less efficient than that by reaction with OH, which itself 

only accounts for about 5% of the total CH3I removaI14 . This implies that towards'the upper 

end of the [CI] range, removal of CH31 by reaction with CI can be as important as that by 

reaction with OH, with a combined reactive loss of about 10 %. It has also been shown that 

reaction with CI can become the predominant loss rate (more important than photolysis) for 

higher chain alkyl iodides, such as I-C31-17I, in the atmosphere if the upper Cl atom 
concentration is assumed, due to the higher rate coefficients of these reactions 14 

. In addition to 
knowledge of the atmospheric concentrations, two other factors are required in order to assess 
the atmospheric significance of the reaction of CI atoms with the alkyl iodides, namely i) the 

rate coefficient of reaction under atmospherically relevant conditions, and ii) the mechanism 

and products of reaction. 
The first kinetic study of the reaction of chlorine atoms with methyl iodide to appear in the 

literature was that by Kambanis et. aL 15 
. The authors employed the very low pressure reactor 

(VLPR) technique with mass spectrometric detection of both reactants and products to 
determine the reaction kinetics. The reaction was studied over the temperature range 273 - 363 

K at a total pressure of -2 mTorr. A positive activation energy was found, yielding an 
Arrhenius relationship of k(7) = (1.33 -t 0.49) x 10-11 exp [-(690: t 120)/71 cm3molecule"s". A 

quantitative conversion of CI to HCI was observed suggesting that the reaction proceeds 

exclusively via a hydrogen atom transfer mechanism. The small, temperature-independent, 
kinetic isotope effect observed in the experiment (kEjkD = 1.09 ± 0.04) was interpreted as 
evidence for the reaction proceeding via the formation of a CH31-Cl intermediate, which 
undergoes unimolecular dissociation at low pressure to yield HCI and CH21. A subsequent 
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theoretical paper from the same research group explored the formation of adducts in the reaction 

of CI with III, CH31 and CH30CH21 16 
. The paper predicts the formation of weakly bound 

adducts in all cases with standard enthalpies of adduct formation reactions at 298 K of -31.056, 

-52.409 and -51.337 U mol-1 respectively. All adducts involve two-centre three-electron 
interactions originating from charge transfer of electron density from non-bonding orbitals of 
iodine to bonding orbitals of the I-CI bond, resulting in "a bond of significant covalent 

character". For all adducts, the I-CI bond length is around 2.8 A (- 0.5 A longer than in ICI), 

the R-I-Cl bond angle is found to be close to 80* and little distortion of the CH31 molecule is 

observed. The authors note that spectroscopic studies of the adducts are required in order to 
determine their structures and verify the theoretical predictions. 

The next significant study of CH3I + Cl was that of Ayhens et. aL'7. In that work, the 

reaction was studied by resonance fluorescence detection of Cl atoms over an extensive range of 
temperature (218 - 694 K) and pressure (5 - 500 Torr N2). Between 363 <T< 694 K the 

reaction was found to be pressure independent with a positive temperature dependence 

(k(T) = 5.44 x 10711 exp [-1250/71 cnýmolecuWls-) and a significant kinetic isotope effect was 

observed (kjjkD = 4.3 and 3.6 at 373 and 419 K respectively). nese results are strongly 
indicative that the reaction proceeds via a bimolecular H atom transfer mechanism, not 
involving the formation of an adduct, between 363 and 694 K Over the 263 <T< 309 K range, 
Cl atom regeneration was observed via a secondary process and was interpreted as evidence for 

the reversible formation of an adduct, which was further confirmed by the lack of a kinetic 
isotope effect on the overall reaction kinetics at room temperature. At temperatures below 250 
K the reaction was observed to be pressure dependent, and proceed predominantly via adduct 
formation. At 218 K and 500 Torr > 99.4 % of the reactivity is attributed to adduct formation. 
According to Ayhens et. aL 17 the reaction mechanism can largely be described by the following 

reaction scheme 

kbi 

CH21 + HCI 4 CH31 + Cl 
k[M] 

(CH31-Cl)* CH31-Cl 

S5-1 

where, kbi is the bimolecular rate coefficient for the formation of CH21 + HCI, k. is the rate 
coefficient for adduct formation, k. is the rate of adduct decomposition back to reactants, and k, 
is the pressure dependent rate coefficient of adduct stabilisation. The equilibrium constant for 
the process of adduct formation is given by Kp = kj(kA7) = exp[(AS/R)-(AH/R7)], where AS 

208 



and All are the entropy and enthalpy of adduct formation respectively. ý Ayhens et aL 17 

0 '6 ± 3.4) U mol" and AS2098K determine the thermochemical parameters as A11298K = (-53. 

88 -t 11) J mol-1 IC'. The authors include a theoretical study of the CH31-Cl aidduct and 

generally find very similar results to the study of Lazarou et al. 16. Under typical 'MBL 

conditions of temperature and pressure, Ayhens et al. 17 concludes the toial'rate'of reaction of 
CH31 + Cl to be - 2.5 x 10-11 cm. 3molecule-'s-'. 

Goliff and Rowland's performed a product study of the methyl iodide + chlorine 

reaction by radiogas chromatography. In their study, CH3I was reacted with 38CI (produced by 

the thermal neutron irradiation of gaseous CCIF3) and the products were monitored by gas 

chromatography. Although the quantification of inorganic products (HCI) could not be 

determined due to wall and exchange reactions, CH3 38CI was deiected with yields rahging from 

-3% at 343 K to - 10 % at 273 Y- At 295 K no change in the CH3 38CI yield was observed 

with increasing total pressure from 760 to 4000 Torr. The authors concluded that methyl 

chloride formation proceeds via either i) the direct substitution of CI for 'I atoms Or'ii) the 

intramolecular rearrangement of a short-lived CH31-Cl intermediate. 

The next chronological study of the CH31 + Cl reaction, by Bilde and Wallington 19 

involved FTIR detection of reactants and products at I and 700 Torr in'a smog chamber. The 

reaction was observed to have a large kinetic isotope effect at 1 Torr and 295 K (kiJkD = 6) with 

a kH rate coefficient of (9.0 :t1.8) x 10-13 cm3molecule-1s". In addition, the lack of any 

significant CH3CI production (< 4 %) and the effective 100 % conversion'of CH31 to C11202 

(CH3I + Cl - CH21 + HCI, CH21 + C12 --"' CH21CI + Cl, CH21CI + Cl CH2CI + ICI, CH2CI + 
C12 --"' CH2C12 + Cl) were concluded by the authors to imply that at I Torr, the reaction Of C1131 

+ Cl proceeds exclusively via a bimolecular H atom abstraction mechanism (note that C12 Was 

used as the Cl atom source in their experiment). At 700 Toff total pressure the rate coefficient 

was observed to increase to (1.3 t 0.4) x 10-12 cm3molecule-'s-1 and found to be independent of 
bath gas (N2/02). In the study of Bilde and Wallington 19 

, the reaction kinetics is determined via 

monitoring the decomposition of CH31, in the constant presence of Cl atoms, over a timescale of 

minutes. Therefore, the much smaller rate coefficient obtained than in the study of Ayhens et. 

al. 17 is attributed to adduct formation, followed by a small fraction of unimolecular 
decomposition (- 2 %) to products other than CH3I + Cl. At 700 Torr the major products were 

observed to be CH3CI and CO, both of which displayed a complex dependence on [CH311. The 

authors conclude that CH3CI is produced by two processes: i) the intramolecular rearrangement 

of the CH31-Cl adduct and ii) reaction of the CH31-Cl adduct with C113I. Under'atmospherically 

relevant conditions an upper limit of 20 % is quoted for the CH3CI yield from the reaction of 
methyl iodide with chlorine atoms. The CO product is assumed to originate from oxidation of 
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forrmldehyde by Cl (CH31 + Cl - HCI + CH21, CH21 + Oz - CH21()2,2(CH21()2) --* CH210 

CH21000, CH210 - CH20 + It Cl + CH20 + 02 
---, HCI + H02 + CO). 

Cotter et. aL 14 investigated the reaction of Cl atoms with a number of alkyl iodides, 

including CH3I, by the fast-flow discharge flow technique coupled to resonance fluorescence 

detection of Cl atoms. The reaction of CH31 + Cl was studied at 298 K and between total 

pressures of 1.5 - 12 Torr (He). The authors found a pressure independent rate coefficient of, k 

= (1.51 :t0.15) x 10712 cn? moleculd"s-1 and concluded that the reaction proceeds via either 
direct hydrogen atom abstraction or the formation of a CH31-Cl adduct that is not stabilised. to 

any significant extent over the range of experimental pressures (or that the reaction has already 

reached the high-pressure limit by 1.5 Toff). 

Finally, two recent studies by Enan-i et. aL20,2' reported the direct observation of a 

number of RI-Cl (R = CH3, CH3CH2. CH20, CH2Br, CH21, n-C3H7, n-C4H9, CYCIO-CXII, C6H5v 

C6F5 and p-CH3C6114) adducts by CRDS. No adduct formation was observed for the reaction of 
CI atoms with CF3I, CH3Br or C6H5Br. The absorption cross-section of some of the adducts 

were reported at four wavelengths between 405 - 532 nm For the CH31-Cl and ICH21-Cl 

adducts the absorption maxima were found to be at 405 nm with absorption cross-sections of 
2.1 x 10-17 cn? moleculd" and 4.7 x 10-18 cmýmoleculd" respectively. The reaction kinetics of 

the CH31 + Cl reaction were investigated at 250 K between total pressures (N2) of 25 - 125 Torr 

and reasonable agreement was found with the results of Ayhens el. al. 17 
. On addition of 5- 10 

Torr 02, no additional removal of the adduct was observed, indicative of no reaction between 

the CH31-Cl adduct and molecular oxygen. Theoretical calculations on the CH31-Cl adduCt were 
in accord with the previous theoretical studies'6.17 , and the observed absorption was assigned to 
the red end of the 32A' +- 12A' and 42A' - 12A' electronic transitions originating at 339.32 and 
307.06 nin respectively. The two electronic transitions are assigned to cr-o* and ci*-cr* 
transitions in the I-Cl bond. Very recently, the CH31-Cl adduct has received experimental 
investigation by Wine et. aL22 although the results are unpublished at the time of writing. 

Although there have been no kinetic investigations of the reaction of chlorine atoms 
with diiodomethane (probably due to its atmospheric insignificance as a result of the short 
photolysis lifetime of CH212) there have been two notable studies on the reaction of Cl atoms 
with chloroiodonrthane (CH21CI). Bilde et. aL23 studied the reaction by two experimental 
techniques: i) laser flash photolysis coupled with resonance fluorescence detection of Cl atoms, 
and ii) FrIR detection of reactants and products in a continuous photolysis sn-wg chamber. Both 
techniques found the rate coefficient to be (largely) independent of total pressure (5 - 700 Torr 
N2/02) with a room temperature rate coefficient of 8.5 x 10-11 cnhnoleculcýls". Employing the 
former technique, the reaction was observed to have a negative temperature dependence over 
the range 206 - 432 K with an Arrhenius expression k(7) = 4.4 x 10-11 exp(195fD ci2moleculd- 
is-'. 'Me FFIR-smog chamber study included a product analysis, which determined an effective 
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100 % yield Of CH202. This result implied that the mechanism of reaction was either direct 

halogen substitution or iodine atom transfer to form ICI + CH20 (which will react with C12 to 

form CH202). By adding varying amounts Of 02 to the system the authors showed that the 

yield of CH202 was directly proportional to the ratio [CI21/[021, indicating that the mechanism 

proceeds via I atom transfer (as CH2CI reacts with 02 to form CH2002, rather than with C12 to 

form CH202). An upper limit of 8% was attributed to the direct halogen substitution reaction, 

with the remainder being attributable to ICI + CH20 formation. The experimental findings 

were rationalised. by the formation of a CH2ClI-CI adduct (to explain the high rate coefficient) 

whose fate is decomposition to ICI + CH20, rather than back to reactants (or IICI + CHICI) on 

energetic grounds. The ICI forming channel is not energetically feasible for the reaction of 

other alkyl iodides with Cl, perhaps with the exception of CH21224 - see section 5.5. With 

regards to atmospheric relevance, the authors conclude that for the higher end of reported Cl 

atom concentrations, the loss of CH2ICI by reaction with CI can compete with photolysis. 

The second study of the reaction of chloroiodomethane with CI was a combined 

experimental and theoretical investigation2s. Experimentally the reaction was studied by the 

VLPR technique coupled to mass spectrometric analysis of reactants and products. The reaction 

was found to be independent of temperature (273 - 363 K) with a rate coefficient of (3.13 :t 
0.27) x 10-11 cm, 3 moloecule-'s-1 at total pressures of 0.6 - 1.5 mTorr (He). The rate of formation 

of ICI was found to be equal to the rate of loss of Cl, indicating that it is formed directly by the 

reaction mechanism and no CH2C12 was observed suggesting that the reaction does not proceed 

via halogen atom substitution. The theoretical investigation derived findings largely in accord 

with other RI-Cl adducts: an I-Cl bond length of 2.738 A and a C-I-Cl bond angle of 76.21% 

The adduct RI-Cl bond enthalpy was calculated as 54.8 U mol-1 and the 298 K entlialpy of 

adduct formation was calculated to be 79.1 U mor'. The authors conclude that for the reaction 

of CH21CI with Cl atoms, the ICI + CH20 reaction pathway becomes energetically accessible 

and that dissociation of the CH2CII-Cl adduct to ICI + CH20, rather than HCI + CIIICI, is 

favoured on entropic grounds. Reaction scheme, S5-2 sumniarises the conclusions. The 

scheme can explain the discrepancy between the rate coefficients obtained in the two studies of 
the CH21CI + Cl reaction (due to the higher pressures employed in the study of Bilde et. aL 23) 

and also the lack of agreement with the temperature dependencies, as the internal energy 
distribution of the CH2CII-Cl adduct may have been non-thermal in the VLPR study (due to the 
low pressure of the experiment) resulting in a reduced temperature dependence to its rate of 
dissociation. 
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kf 
CH201 + Cl (CH2CH-Cl)* No CHJO + ICI 

MMI 

CH20I-0 

SS-2 

In summary, there is enough disagreement within the literature over the reaction 

kinetics of the reaction of atomic chlorine with me-thyl iodide; particularly with respect to ihe 

reaction products and fate of the CH31-Cl adduct, to warrant further experimental investigatiom 

As there have been no kinetic studies of the reaction of chlorine atoms with diiodoniethane, 

there is clearly scope to investigate the reaction kineticsý mechanism and products of this 

reaction (despite the lack of atmospheric signiflicance) to further elucidate the reaction routes by 

which the alkyl iodides can react with atomic chlorine. In this study, we report the direct 

detection of the CH31-Cl and ICH21-Cl adducts for the first time by laser induced fluorescence 

(LIF). The reaction kinetics of the reactions of CH31 and C11212 with Cl have been determined at 

- 206 K and 296 K, providing further insight into the mechanism of Cl + RI reactions. LIF 

excitation spectra, dispersed fluorescence spectra and fluorescence lifetime and quenching 

measurements of the two adducts are reported, providing useful information to further probe the 

internal energy distributions and electronic states of these interesting molecules. A detailed 

comparison to the existing literature is given. 

5.2 Experimental 

As described in the previous chapter, fluorescence from the chloro-iodomethane adduct was 

observed in an experimental system arranged for the detection of C1120 by LIF. The 

experimental apparatus employed in the work discussed in this chapter is therefore essentially 

the same as previously outlined. For all experiments, chlorine atoms were generated via the 

248 run photolysis of thionyl chloride (Cl2SO). At 248 nm, the rmjor photolysis channel of 

thionyl chloride yields CI atoms and CISO radicals (96.5 %), although a minor channel also 

produces SO radicals and molecular chlorine2ý It is believed that a small fraction of the 

internally excited CISO radicals may further dissociate to Cl and SO27. As the photolysis 

wavelength is near the absorption maxima of CH3I (G(M. 4 nm) = 8.64 x 10719 cm2molecule-1)29 
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and CH212 (a(24.4 nm) ý 1.57 X 10-18 cm2molecul6_)28 a low photolysis power of -2 mJ pulse" 

was employed for kinetic experiments, ensuring minimum generation of radical species from 

the photolysis of methyl iodide (< 0.5 %) and diiodomethane (< I %). For spectroscopic 

experiments, where the chemistry occurring is of less significance, the photolysis energy was 

typically 50 mJ pulse". 

Although LIF from the adducts was observed over the entire useful wavelength range of the 

probe laser dye (- 345 - 375 nni), an excitation wavelength of - 360 nm was chosen for the 

majority of experiments (and - 365 nm for the ICH21-Cl adduct) as the probe laser energy (and 

adduct fluorescence) was most intense and contamination of the LIF signal from CH20 Was 

avoided (for experiments containing 02). Similarly to LIF detection of CH20, the probe laser 

pulse was not completely removed by the Perspex filter and remained a background 

interference, decreasing the instrumental sensitivity. As the fluorescence lifetimes of the 

adducts were found not to be significantly longer than the pulse-width of the probe laser (see 

section 5.4.3), the fluorescence collection gate on the oscilloscope was placed over the entire 

probe laser pulse, where most of the adduct fluorescence was occurring. However, fluorescence 

from the adducts (particularly the CH31-Cl adduct) was extremely intense and generally much 

more so than the probe laser background. In fact, the observed fluorescence was so intense that 

the PMT had to be operated at relatively modest voltages (1100 - 1300 V) to avoid electronic 

saturation. Fig. 5.2-1 displays a typical Idnetic trace of the CH31-Cl adduct. 

C,, 
4- 
C 

C 

U) 
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I 

Fig. 5.2-1 - Kinetic trace of the CH31-Cl adduct. Experimental conditions: T= 202 K, P 
70.8 Torr; [Cl2SO1 = 6.8 x 1012 molecule cnO; [CH311 = 8.01 X 1013 molecule cne; [N2] 
balance; 4. = 360.57 mn, F=2.61 x 101-5 photons cafý 
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The SIN ratio of the apparatus was detemined by dividing the peak fluorescence signal 
from ten randomly selected kinetic traces (similar to that displayed in Fig. 5.2-1) by the 2er 

standard deviation of the pre-Excimer laser background. Dividing the calculated initial CI atom 

concentration (derived from the product of laser fluence, F, concentration and absorption cross- 

section Of C12SO [cr(24g. 4 .. n) = 7.02 x IUIS CM2 moleculd"f) by the experimental SIN ratio gives 

the detection limit of the apparatus for the CH31-Cl adduct of (3.7 ýt 2.0) xW molecule cnf 3 for 

an average of fifteen laser shots (assurning 100 % of Cl atoms are converted into the adduct). In 

itself, this represents a very sensitive detection limit but considering that the detection efficiency 

could be significantly enhanced by more effective filtering of the probe-laser background4 
increased probe laser power and a more sophisticated optical arrangement for fluorescence 

collection, it is entirely'feasible that this detection Unit could be improved by two orders of 

magnitude or more. 
Fluorescence from the ICH21-Cl adduct was considerably weaker than that from its 

rnethyl iodide analogue (Fig. 5.2-2), consistent with the di-substituted alkyl iodide adduct 
having a weaker absorption cross section2o. Me detection linit of the apparatus with respect to 
ICH21-Cl was estirnated at (4.7 : L- 3.3) x 1010 molecule Cfff3 for an average of 25 laser shots. -- 
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Fig. 5.2-2 - Kinetic trace of the ICH21-Cl adduct. Experimental conditions: T= 202 K; P 
100.5 Torr; ICI2SO1 = 1.66 x 1013 molecule cm73; [C112121 = 6.29 x 1013 molecule cm73; [N21 
balance; Ap, = 365.57 nm; F=4.17 x 1615 photons cnf ý 

'Me adduct reaction kinetics were observed to be independent of laser pulsed repetition 
frequency (PRF) and experiments were typically conducted at 5 Hz. Each recorded kinetic trace 
was the average of several individual traces repeated in a cycle. The ten4)oral range over which 
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a kinetic trace is recorded can be selected according to what. information is desired (growth or 
decay kinetics). 

The spectroscopic experiments were generally performed at a PRF of , 
10 Hz. - To record 

a LIF spectrum the dye laser was manually programmed to scan Oyer a selected wavelength 

range at a constant scan speed (typically 0.03 nm s-1) and the LIF signal was recorded at a fixed 

delay time, At, between photolysis and probe lasers. All experimental conditions remained 

constant, with the exception of excitation energy. - The probe laser. power was monitored as a 
function of wavelength so that the LIF signal could be normalised for laser power. Background 

LIF spectra (in the absence of iodide, chloride or excimer laser) were also obtained to ensure 
that the observed fluorescence was solely attributable to that of the adduct. , Adduct dispersed 

fluorescence spectra were obtained with the incorporation of a monochromator (Applied 

Photophysics, f/3.4) to the experimental apparatus, which was situated on the cell LIF detection 

port, prior to the PMT. The monochromator grating could not be electronically controlled and 
had to be manually scanned by hand. To record a dispersed fluorescence spectrum, the adduct 

was excited at a particular wavelength and At and the fluorescence intensity was monitored as a 
function of wavelength, by altering the position of the monochromator grating. - The PMT 

voltage was increased to compensate for the loss of photons inside the monochromator. Tile 

monochromator wavelength was calibrated relative to the probe laser radiation, assuming linear 

wavelength dependence. Fluorescence lifetime and quenching data were collected by recording 
the temporal profile of adduct fluorescence on the oscilloscope as a function of total reaction 

cell pressure. The temporal profile of the. probe laser pulse was also recorded for its 
deconvolution from adduct fluorescence. 

Thionyl chloride (Aldrich, 99+ %), methyl iodide (Aldrich, 99'%) and diiodomethane 

(Aldrich, 99 %) were purified by several freeze-pump-thaw cycles at 77 K prior to preparing the 

appropriate gas mixtures in 5 litre glass bulbs. The bulbs were completely covered in black tape 

to avoid photolytic degradation of the precursors and, with the exception Of C12SO, reagent 
mixtures were prepared daily. Nitrogen (Air Products, Premier grade) and He (130C, CP grade) 
were administered directly Erom. their gas cylinders without purification. All concentrations 

were evaluated by means of the individual gas flow rates, through calibrated MFC's, and total 

reaction cell pressure and temperature. Although photolysis of the iodide precursors was 
nimal in the majority of experiments, all concentrations were corrected for photolysis prior to 

kinetic analyses. The low temperature experiments were performed by enclosing the reaction 
cell core in an insulated jacket filled with a cardice/propan-2-ol slurry. Temperature 

measurements were made with a K-type thermocouple located near to the centre of the reaction 
cell which was calibrated both at room temperature (relative to a standard Hg thermometer) and 
at 195 K by directly immersing the thermocouple probe in a cardicelpropan-2-ol slurry. 
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5.3 Reaction Kinetics of CH31 + Cl 

As briefly discussed in Chapter Four, the intense fluorescence observed from irradiating 

CHýl + CI mixtures in the 350 - 360 nrn region could almost certainly be inferred to originate 

from the CH3I-CI adduct. However, in order to definitively assign the observed LIF to adduct 

formation a kinetic investigation was required. Studying the reaction of methyl iodide and 

chlorine atoms via direct observation of the CH31-0 adduct provides complementary data to the 

existing literature. If agreement is found between the results of the reaction kinetics determined 

by following the temporal profile of 0 atoms or CH31-Cl for cxaniple then the mechanism of 

reaction can be substantiated. In this study we have chosen to study the reaction kinetics of the 

CH31 + Cl reaction at two temperatures: i) - 206 K, where irreversible adduct formation should 

occur and ii) 296 K, where reversible adduct formation should be observed. For the kinetic 

analysis of the experimental data outlined below, it is assumed that the CH31 + CI reaction 

proceeds via the mechanism proposed by Ayhens et. al. 17 (S5-1), due to the extensive range of 

conditions investigated (and quality of data obtained) in that study. Further, reaction scheme, 
S5-1 is consistent with the bulk of the existing literature on the CH31 + Cl reaction. 

5.3.1 Kinetic Treatment of the Experimental Data 

At 206 Y., the kinetic system of CH31 + CI is relatively simple as the bimolecular 

reaction (kbj) and adduct dissociation (Q are negligible in comparison to the association 

reaction, k.. Extrapolation of the Arrhenius parameters obtained in the study of Ayhens et. al.. 17 

yields a bimolecular rate coefficient of kbi(206 K) = 1.26 x 1U13 Ca? moleculd-Is-1. At 5 Torr total 

pressure (N2) this corresponds to <4% of the association reaction rate coefficient (Table 5.3-1) 

and at 500 Torr < 0.5 % of the total reactivity can be ascribed to the bimolecular reaction. 
Calculation of the dissociation rate coefficient, using the equilibrium data provided by Ayhens 

et. aL'7, shows that dissociation of the CH31-Cl adduct back to reactants is also negligible at low 

temperature (k, (2o6 10 = 0.8 - 7.2 sý' over the range of 5- 500 Toff). Therefore, in the kinetic 

analysis of the CH31-Cl adduct at 206 K the following processes need only be considered 

CH31 + Cl +M --* 

Cl --+ 
CH3I-Cl 

--+ 

CH3I-Cl +M Aý. 

loss ka 

loss kk. 

where, k. is the bimolecular rate coefficient for the reaction of C1131 + Cl at a given pressure 
[M], kc, is the first order rate coefficient for loss of Cl atorns due to diffusion and reaction with 
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trace constituents in the reaction mixture (other than CH31) and kj.. is the, first order rate 

coefficient for loss of the CH3I-CI adduct due to diffusion and reaction with species within the 

system. A kinetic analysis of the above reaction scheme for [CH31-CI]t (the concentration of 

adduct at reaction time, t yields the following expression 

k,, [CIL -+ka) -k [Cly 
- cil = (ka + k(: 7 

(e4k. 
-e... It) E. 5.3-1 

where k. ' is the pseudo-first-order rate coefficient for the association reaction (k. ' = QC11311) 

and [ClIo is the concentration of Cl atoms at At =0 (the concentrationof Cl atoms generated in 

the photolysis pulse). (NB. It should be noted that in this analysis k. is really the sum of k. and 
k[M] as given in reaction scheme, S5-1). Thus E. 5.3-1 can be fit to a CH31-Cl kinetic trace 

obtained for a particular [CHýlj in the form of a generic biexponential equation 

LIF 
PI 

-(e-p-"-e-p2j)+P4 E. 5-3: -2' (P2 T3) 

where, LIF is the time-dependent laser-induced fluorescence signal (proportional to the 

concentration of CH31-CI), PI = k. 'V[CI]o (where 0 is the calibration constant of the LIF 

instrument), P2 = ki., P3 = k. ' + kci, and P4 is an additional parameter allowing for slight 
baseline deviations from the pre-Excimer laser background signal at large At. Fig. 5.3-1 

displays some kinetic traces of CH31-Cl obtained at - 216 K with fits of E. 5.3-2 to the 

experimental data. 

To obtain the rate coefficient, k., at a given pressure, the pseudo-first-order rate 

coefficient was measured as a function of [CH3IJ. A plot of k. ' against [CH311 yields a straight 
line with slope k. and intercept ka (assuming kc, does not vary with the concentration of methyl 
iodide). For each determination of k. kinetic traces were recorded for seven different methyl 
iodide concentrations over a range of approximately one order of magnitude (Table 5.3-1). For 

every concentration of methyl iodide two kinetic traces were recorded back-to-back: one over 
long reaction time capturing several lifetimes of adduct decay, and one at short At to accurately 
determine the adduct growth (Fig. 5.3-1). In fitting the small At data, kl,,,. was fixed to the 

accurate value obtained from the longer timescale experiment. All data points were 
incorporated for determinations of k.. 
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Fig 5.3-1 - Experimental CH31-Cl kinetic traces (black squares) with fits of E. 53-2 to the 

experimental data (solid red lines). The residuals of the fits to the data are given by the 

solid green lines. Experimental conditions: T= 215.9 K; P= 494.0 Torr; IC12SO) = 1.43 x 
1013 molecule CM-3 ; [CH311 = 3.71 x 1014 molecule cm-3; [N21 = balance; F=2.4 x 1015 

photons CM-2; 4, = 360.57 nrn. 

A positive, long-time, baseline signal was observed above the pre-Excimer laser 

background under all conditions. This baseline discrepancy was independent of total pressure. 

[C12SO1, [CH311,1021, laser PRF or Excimer fluence. and was observed to vary from (0.3 tI X) 

- (8.1 t 1.6) % of the peak adduct LIF signal. Unfortunately, the origin of the background 

signal could not be investigated due to the continuous LIF spectrum of the CH-J-CI adduct (see 

section 5.4.1) meaning that an off-line kinetic trace could not be recorded. In fitting E. 5.3-2 

to the data it was essentially assumed that a species, generated by the Excimer laser, fluoresced 

weakly with a constant intensity over the timescale of the experiment. However, it is possible 

that the baseline deviation was due to the accumLilation of fluorescing species generated by 

secondary chemistry within the reaction system, or recycling of the CHAI-Cl adduct at large At 

by secondary processes. These possibilities are explored in greater detail in section 4.3.2 and 

were found to be of negligible consequence to the determined reaction kinetics. 

At room temperature the kinetic analysis is complicated by dissociation of the adduct 
back to reactants and the higher rate of the birnolecular reaction channel of the CHA + CI 

reaction (kbi(296 K) = 7.97 x 10-13 crnýrnoleculels-' )17. Ilie following processes must therefore be 

considered: 
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CH3I + Cl - HCI + CH21 k6- 

CH31 + Cl +M- CH3I-Cl +M k. 

Cl loss ka 

CH31-Cl +M C113I + Cl +M k-. 

CH31-Cl loss kl,,.. 

and kinetic analysis of the above reaction scheme yields the following solution to [CH31-CI)t 

[CII, l - cil E. 5.3-3 
(x+ -x-) 

where X:, is given by E. 5.3-4: 

(k. + kbi + kcl + k, + kl,,.,, ) ± 4(k. 
+ kbi + kc, + k-, + kl,,, )2 - 4[(k. + kbi + kC7 Xk, + kl,,. k. k, 

2 

Thus, similarly to the low temperature analysis, the room temperature kinetic data can be fit 

with a generic function of the form 

LJF = 
PI 

7 
(ep2' 

- ep3')+ P4 E. 5.3-5 TjT- P-3 

where PI = k'P[Cllo, P2 = X, and P3 =k 

Fig. 5.3-2 displays two kinetic traces of the CHJ-CI adduct obtained at room temperature, with 
fits of E. 5.3-5 to the experimental data. Note the increase in adduct yield with increasing 

[CH3I]. It is generically true that the temporal profile of a chemical species (that is determined 

by f irst-order processes) can be described by the sum of the individual exponential terms of the 

processes involved. From the above definition of X, it can be seen that the sum of X. and k is 

equal to the negative sum of all first-order rate coefficients defined in the room temperature 

reaction mechanism. Therefore, a plot of (k., +k) against [CH31] should yield a negative straight 
line, with a slope equal to the negative sum of all rate coefficients which depend on [CII31] and 

an intercept equal to the negative sum of all rate coefficients that do not depend on [CH311. 
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Fig. 5.3-2 - Experimental CH31-Cl kinetic traces (scattered points) with fits of E. 53-5 to 

the data (solid lines). Experimental conditions: Black; T= 2% K, P= 100.0 Torr, [Cl2SO1 

= 2.09 x 1013 molecule Cni3 , [CH311 = 1.94 x 1013 molecule cm*3, [N21 = balance. Red: T= 

2% K, P 102.0 Torr, IC12SO] = 2.05 x 1013 molecule cm-3, [CH311 = 1.14 x 1014 molecule 

Cnf3, [N21 balance. Both: F=2.34 x 1015 photons CM-2, Aw = 360.57 nm. 

5.3.2 Reaction Kinetics of the CH-jl + Cl Reaction at - 206 K 

A. Adduct Formation 

Fig. 5.3-3 displays some bimolecular plots for the CH-41 + Cl reaction as a function of 

pressure at low temperature. Table 5.3-1 lists all low temperature determinations of k. obtained 

in this work along with selected data from other studies. The intercepts of all bimolecular plots 

were of similar magnitude and no systematic relationship to the experimental conditions was 

evident. The average intercept value was (229 ± 285) s-1, where the error represents 2or 

uncertainty. Thus it can be concluded that diffusion of Cl atoms and their reaction with species 

other than CH31 were of slight but negligible consequence. It should be noted that the rate 

coefficients determined in this study are really the sum of k. and kN but as the statistical error 

associated with each determination of k. is significantly larger than the extrapolated bimolecular 

rate coefficient at 206 K (1.26 x 10713 cnýmolecule-ls") the bimolecular process can be regarded 

as negligible with respect to the overall reaction kinetics (k. >> kN). It was mentioned in section 

5.3.1 that a positive baseline deviation was observed in the kinetic traces at large At and was 

taken into account in the kinetic analyses. However, the excellent agreement between the rate 

coefficients determined in this study and those obtained in the study of Ayhens et. al .17 suggests 

that this interference had little effect on the kinetics being deterniined. The close agreement 
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between the two studies may be taken as incontrovertible evidence that the fluorescing species 

observed in this study is indeed a product of the CH31 + Cl reaction, and therefore the CH31-Cl 

adduct. 

Cl) 

[CH 3 
1) / molecule CM-3 

Fig. 5.3-3 - Bimolecular plots for the reaction CH31 + Cl. Black: T= 200 K, P= 10.2 Torr. 
Red: T= 202 K, P= 71.3 Torr. Green: T= 216 K, P= 251.0 Torr. Additional experimental 
conditions are given in Table 5.3-1. The blue data points are model simulations for the 
250 Torr experiment as described in the text. 

However, it was considered prudent to investigate interference from the baseline discrepancy. 

The data from the 500 Torr experiment were reanalysed with a modified version of E 5.3-2, 

allowing for the exponential growth of a species other than CH31-Cl, which also fluoresces at 

the excitation wavelength 

IIF = 
PI (e-p3' 

-e -P21 + P4(1 - e-p5') E. 5.3-6 (P2 
- P3) 

where P4 is related to the fluorescence signal from the unknown species at infinite reaction time 

(assuming no loss of this species) and P5 is the pseudo-first-order rate coefficient for its 

formation. When the large At data were reanalysed with E. 5.3-6 a unique solution was only 

obtained once from the seven data points due to the obvious difficulty of' generating unique 

solutions to multi-parameter functions. In the other six analyses P5 was returned with a value 

equal to that of P3 (or ki. ). It will be shown that the adduct removal is predominantly 

governed by reaction with radicals within the system (even for the very low concentrat ions 

present) and the above findings may therefore be indicative that the adduct is reacting with 
species within the reaction system that generate products which fluoresce at the excitation 
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wavelength, although with much weaker intensity than the adduct itself Possible candidates 

may be considered to be ICI or CH30. Fluorescence by Pa may be considered particularly 

likely as it is considered that electronic transitions within this bond are responsible for the 

adduct fluorescence. Analysing the data by this procedure returned a k. value <2% greater 

than that when the data were analysed using equation 5.3-2, showing that interference from such 

a mechanism was of minor influence to the determined kinetics. 

T p Precursors, M 4. cis C1131 k. Ref. 

200.0 10.2 CH31/02SO, N2 248 0.11 113 5.59: t 1.20 a 

200.4 40.0 0.13 154 10.5 ± 1.6 a 

201.9 71.3 0.12 160 15.4 ±1.2 a 

203.8 100.2 0.13 169 18.3 ±1.7 a 

203.8 100.0 0.12 181 19.3: t 1.9 a 

216.2 251.0 0.12 189 28.8 ±2.3 a 

215.9 497.4 0.24 371 35.1 t 3.5 a 

, 218 5.1 CHYC129 N2 355 0.11 1140 3.31 :t0.52 17 

218 10 0.11 982 5.04: t 0.26 17 

218 30 0.10 1160 10.2: t 0.7 17 

218 100 0.14 983 19.8 ±1.9 17 

218 250 0.16-0.33 722 25.0 ±1.3 17 

218 500 0.36 662 29.7 t 2.6 17 

250 10 0.19 990 3.25 :t0.21 17 

250 100 0.10 830 14.3 t 0.7 17 

250 500 0.30 356 24.5 ±1.9 17 

250 25 1-10 9000 4.0± 1.0 20 

250 125 1-10 9000 20.0: t 3.0 13 

Table 5.3-1 - Kinetic data obtained in this work! and other selected studies of the C113I + 
Cl reaction for T: 5 250 K. The provided experimental conditions Include: T (K), P (Torr), 
nature of the chlorine precursor and bath gas, photolysis wavelength (nm), estimated 
initial C1 atom concentration and range of CII31 concentrations employed (1012 molecule 
cnf3), and association rate coefficients k, (10717 crr? moIecule7's*1). Note that this study and 
that of Enami et. aL20 employed spectroscopic detection of the C1131-Cl adduct, and 
Ayhens et. aL 17 employed resonance fluorescence detection of C1 atoms. 

Another possible explanation for the observed baseline deviation is that secondary chemistry 

not involving the adduct was responsible. For the one data point where a unique solution to 
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E. 5.3-6 was obtained, the formation rate of the unknown fluorescing species (P5 = (317 :t 
2603) s-1) was approximately 30 %-smaller than that of adduct removal (P3). The 500 Torr data 

were therefore reanalysed with a fixed -value for P5 of 317 s-1 (assuming no dependence on 
[CH31]). Similarly, the returned k. rate coefficient was <2% greater than that where the 

baseline deviation was ignored- Ultimately, whatever the mechanism responsible for its 

occurrence, it can be concluded that the observed baseline deviation had no appreciable effect 

on the reaction kinetics being determined in this study. 
The largest source of uncertainty encountered in this study, and therefore the largest 

interference to the reaction kinetics, was that of reaction cell temperature. KUnetic experiments 

could not be performed simultaneously to temperature measurements, as a reaction cell port on 
the Excimer laser axis was required to couple the thermocouple to the experimental apparatus. 
Consequently the kinetic experiments were performed prior to the determination of the reaction 

cell temperature. Although the thermocouple was found to be accurate to ±1K over the 

temperature range of 195 - 296 K, the internal temperature of the reaction cell was not observed 

to equal that of the cardicetpropan-2-ol slurry (195 K). Between reaction cell pressures of 10 - 
100 Torr the cell temperature was in the region of 200 - 204 K but at pressures of 250 and 500 

Torr, the reaction cell temperature was found to be - 216 K. The most likely explanation for 

this observation is that the relatively small heat capacity of N2 did not allow the thermalisation 

of gas from room temperature to 195 K within its residence time in the reaction cell. The 

inconsistent temperature measurements raise two potential sources of error to the determined 

rate coefficients. As the number density of a gas is inversely proportional to its temperature at a 
fixed volume, determining concentrations from gas flow rates and pressures requires accurate 
knowledge of the temperature. In this work, [CH3I] is required in order to evaluate k. and so 

uncertainty with regards to temperature ultimately leads to uncertainty in k.. Further, the 

pressure dependence of an association reaction should be investigated at a constant temperature 

as the reaction kinetics will also vary with T (cf. 218 and 250 K data in Table 5.3-1). As the 

absolute calibration of the thermocouple was accurate, however, the first interference is 

considered unlikely. 
The pressure dependence of an association reaction is commonly expressed by E. 5.3-7, 

which describes how the effective bimolecular rate coefficient varies with pressure for a 
specified temperature and bath gas 

kaMIT)= 
kok-[MJFýx 

E. 5.3-7 (k- + ko [MF 

where X=ý+[Iog(ko[MJIQPý' 
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Here ko is the third-order rate coefficient of the association reaction. L is the higb pressure timit 

(the biniolecular rate coefficient at infinite pressure). and F, is a bnmwiening panunctcr which 

allows for changes in the internal energy distribution of the association complex with PrcssuIr- 

Fig. 5.3-4 displays all low temperature determinations of k from this study and the data Of 

Ayhens et. al. 17 at 218 K. Due to the imprecise reaction cell temperature in this study. E 3.5-7 is 

fit to all data in Fig. 5.3-4 and the parameters obtained from the fit are quoted for the 11r-an 

experimental temperature of (212 ± 16) K. 
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Fig. 5.3-4 - Pressure dependence of the CH: J + Cl reaction at - 212 K. The black data 
points represent the k. determinations from this work and the red data points are the 218 
K data taken from Ayhens et. al. ". The solid black line is a fit of E. 5. X7 to all data 
presented. 

From the fit of E. 5.3-7 to the data in Fig. 5.3-4, the kinetic paranrtm- obtained are: 

ko (1.64 0.92) x 10 2" 
cemoleculc 2s 

k- (3.79 0.33) x 10 " cmrnolecule 's 

Fe = 0.64 ± 0.27 

where all errors are 2(TuncertairAy. 'Me results are in good agreement with those reported in the 
17 

work of Ayhens et. al. of 2.0 x 10-29 cni6niolecule*2s', 4.0 x 10': cm'niolecule's' and 0.63 

for ko, L, and F, respectively. 
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B. Adduct Removal 

An interesting observation from the kinetic analysis was that the adduct loss rate (H or 

k, .. ) increased with ICH-J] at a given total pressure. Fig. 5.3-5 displays a plot oI'kj .., against 

[CH-All for the 250 Torr data. Note that only one experimental data point for each methyl iodide 

concentration is included (as the small At kinetic traces did not extend to a reaction time where 

the adduct decay is observed). 
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Fig. 5.3-5 - Top panel: bimolecular plot for ki. at 216 K and 251 Torr. From the slopes: 
k, ff (cm3molecule"s") = (8.12 t 1.64) X 10-13 (black) and 8.37 x 10-13 (blue). Bottom panel: 
kinetic trace for [CH311 = 8.5 x 1013 molecule Cmw3 . Black squares represent experimental 
data and blue circles indicate model simulations (explained in the text). 

The [CHAI dependence oi'kl,,,,, was found to be independent of total pressure with an average 

effective bimolecular rate coefficient, kff = (6.93 ± 1.89) x 10-13 Cn13 niolecule-'s-1. This 

phenomenon could be explained by one of two mechanisms. First, that the adduct reacts with 

methyl iodide, as proposed by Bilde and Wallington'9. In that work the authors reported in 

effective rate coefficient for adduct formation of (4.6 ± 1.4) X 10-13 CM3 molecule-s-1, derived 

from the increased reactivity ofthe system in moving from I- 700 Torr total pressure. As the 

reaction kinetics in the experiment of Bilde and Wallington 19 were determined by monitoring 

the loss of CHJ on a timescale of minutes in a continuous photolysis smog chamber, this 

effective rate coefficient can be interpreted as the sum of adduct loss processes that do not 

regenerate the reactants. Bilde and Wallington19 observed the yield of CH3Cl to display a 

complex dependence on [CH311 in their experiment (, y(CH31) = 20 - 80 %). Ifthe reaction of' 
CH31-Cl + CH-41 exclusively produces CH30 (+ products) then the yield of CHCl should be 

equal to k, tAkfr+kN) z 37 %, and independent of CH31. Thus the results of' Bilde and 
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Waflington'9 are not consistent with this mechanism and indicate the presence Of comPl" 

secondary chemistry. The alternative explanation, to the observed dcpcndcwc of ki. on 

[CH311, is that the adduct is reacting with photolysis products of CHA (methyl radicals or iodinc 

atoms). If it is assumed that the adduct reacts with only one of these species. the biniolcCular 

rate coefficient of the reaction can be evaluated from equation 5.3-8. 

kcll, ll ýk eff E. 5.3-8 
4) 

Here, k(CHA) is the biniolecular rate coefficient for the reaction of either CH, or I radicals with 

the adduct, kff is the effective birriolecular rate coefficient for reaction of the adduct with CH-AL 

and (1) is a photolysis factor (4) = nF. the fraction of CHl that is photolysed by the Excimer 

laser). Applying this equation to all deteminations of kff yields an average rate coefficient of. 

k(CHA) = (3.0 ± 0.9) x 10-'0 ctn-'rnolecule-'s-1. 

The intercepts of the bimolecular plots of ki. against JCHlj were observed to 

systematically increase with pressure from (47 t 35) s-1 at I OToff to (238 t 71) s' at 50OTorr. 

To investigate whether this observation was partially attributable to reaction of the adduct with 

CISO (CISO is the only major photolysis product of thionyl chloride at 248 nm) the decay rate 

of the adduct was measured as a function Of IC12SOJ under otherwise constant conditions. Fig. 

5.3-6 shows the resulting kinetic traces. 
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Fig. 5.3-6 - Kinetic traces of the ('1131-Cl adduct recorded as a function of IC12SO]. Experimental 
conditions: T= 204 K; P= 100 Torr; [C711311 = 1.17 x 1014 molecule cm""; (nmAecule cm--")= 
7.04 x 1012 (black), 1.76 x 1013 (red) and 2.81 x 1013 (green); [N21 = balance; F= 2.40 x 1015 photons 
crlfz ; Apr = 360.57 mrn. The scattered points represent the experimental data and the solid blue 
circles represent the model fit to the data (explained in the text). 
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From the results of this experiment it can be seen that the peak adduct LIF signal increases 
-with 

C12SO (and hence Cl) concentration, as expected. The adduct decay rate is also observed to 

increase with [Cl2SO1- This fact primarily indicates that the CH31-Cl adduct reacts with CISO to 

some extent (NB. see section Q. Assuming that dissociation of the adduct back to reactants (or 

any other products) at 204 K is negligible (this is almost certainly the case due to the linearity, 

and small intercepts, of the bimolecular plots of k' and ki. against [CH3I]) the rate coefficient 

for the reaction of the adduct with CISO radicals, kaso cannot be obtained from a plot of k-I.,, 

against [CH311 as the reaction is effectively a second order process (ICISO1 ýý [CII 2ý [C1131' 

C11). A model was therefore constructed in FACSIMILE for the determination of kmso. As the 

adduct was monitored by LIF, we have no knowledge of its absolute concentration, only a 
fluorescence signal that is directly proportional to it. A preliminary model, consisting of the 

various processes listed below, was therefore created in order to convert the LIF signal into an 

absolute concentration 

CH31 + Cl +M 

cl 

CH31-0 + CH3I - 

CH31-Cl + CISO - 

CH3I-Cl - 

CH3I-Cl +M 
loss kca 

products kff 

products kciso 

loss kd 

where k-d is the first order rate coefficient for adduct removal by diffusion. In the model k., ka, 

, ff, 
kciso and kd are given the values 1.88 x 10 k, -" cm3molecule-'s-1 (the average 100 Torr 

determination), 229 s" (the average intercept value to the growth bimolecular plots), 6.93 x 10- 
13 cm7moIecu16"s-' (determined above), 5x 10-10 cm3molecul6"s-1 (obtained from a plot of kl,,.. 

against [CIS01 for the kinetic traces displayed in Fig. 5.3.6) and 20 s-1 (a realistic estimation of 
diffusive losses) respectively. The initial Cl, CISO and CH31 concentrations for a particular 
kinetic experiment are entered into the model which simulates the temporal profile of the adduct 

over the same timescale as the experiment. By examining the model output file, the peak adduct 

concentration is determined (which is naturally less than the initial CI atom concentration due to 
loss of CI by processes other than reaction with CH31, and loss of the adduct by the various 
mechanisms illustrated above). The adduct LIF signal can therefore be converted into an 
(estimated) absolute concentration by normalising the peak fluorescence signal to the peak 

concentration value returned from the model output file. 

The model was then used to fit the normalised experimental data and return a value for kaso. In 
the model fitting, two parameters are set as variable to allow the model calculation sufficient 
flexibility. The floated parameters are either kaso and [Cljo, or kaso and kci. Both versions of 
the model were fit to the kinetic traces, retuning a total of six values for kaso. The average kaso 
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value obtained was (9.0 ± 0.3) x 10-10 cm3moleculd"s", where the error is the 2 cr standard 

deviation. The excellent precision (> 96 clo) of the detcrniined rate coefficient is definitive proof 

of the reaction of the CH3I-CI adduct with CISO radicals within the system When the variable 

parameter in the model (other than kaso) was the initial CI atom concentration, the returned 

value for [010 was always within 99 % of the calculated value. When ka was the second 

floated parameter, an average ka value of (253 : t-16) s-1 was returned, in excellent agreement 

with the experimental detennination of (229 :t 289) s-1. The model fit to the experimental data 

is shown in Fig. 5.3-6. 

Despite the high precision of kaso returned by the model, the accuracy of the rate 

coefficient determination is subject to considerable uncertainty. The absorption cross section of 

thionyl chloride at 248 nm is required in order to evaluate the initial concentrations of both CI 

atoms and CISO. As the temperature dependence of the C12SO absorption cross section has not 
been reported, it is therefore assumed that the absorption cross section does not change 

significantly between 296 and 204 K An additional uncertainty associated with estimating the 

initial concentrations of Cl and CISO arises from the, relatively minor, disagreement over the 

photolysis product yields of the 248 nin laser dissociation of thionyl chloridcýý. For 

calculating the concentrations of Cl and CISO we use the yields reported by Baum et. aL2ý A 

final source of uncertainty over the radical concentrations is that of laser flucnce. The excinier 
laser power was measured at the rear cell window and reflective losses of laser radiation from 

the window inay, therefore, underestirmte the true photon density at the photolysis/LIF axis of 
the reaction cell. It is also possible that significant concentrations of SO could be present (- 10 

% of [CISO]) and account for some of the observed adduct reactivity. We choose to quote an 
accuracy of -1- 50 % in kaso, to account for all possible uncertainties, thus giving a value of (9.0 

± 4.5) x 1910 cr2molecule71s" at 204 K It should also be noted that this rate coefficient rmy 
reflect the reaction of the adduct with non-theriml CISO, due to a high degree of internal 

excitation from the excimer laser (although at 204 K and 100 Torr N2, any internally excited 
CISO should be rapidly therrmlised). Despite the large error, the determined rate coefficient for 
the reaction of CHýI-Cl with CISO is extremely high and significantly greater than the gas 
kinetic bimolecular rate coefficient at 204 K (- 2x 10-10 cm3niolecule-'s-1). This may be 
indicative of the presence of long-range attractive forces on the reaction potential energy 
surface. To our knowledge, this is the first reported rate coefficient for a reaction involving the 
CISO radical. 'Me modeling exercise has demonstrated that the adduct can react extremely 
rapidly with radical species. It is therefore considered most likely that the observed increase in 
kl,,, with [CH311 is attributable to reaction of the CH31-0 adduct with photolysis products of 
methyl iodide (indeed, in the next section, it will be shown definitively that this is the case). 
Further, if it is assumed that the most likely candidate is I atoms, then a mechanism is provided 
whereby the generation of ICI at long reaction time could perhaps explain the positive baseline 
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deviation encountered in the experiments. At 298 K,, the reaction enthalpies for the reactions of 
CH3 + CH31CI --- i. CH30 + CH3I and I+ CH3I-CI - ICI + CH31 are calculated to be -296.5 U 

mol-1 and -157.4 U morl respectively. 
In the low temperature experiments, for each bimolecular determination of k. at.. a 

specific pressure, all conditions were maintained at constant, values except [CH31],, Therefore, 

as the concentration of CH31 increases so does the ratio of (CH3 or 1)/Cl. - This means that the 

reaction of the adduct with photolysis products of methyl iodide may not be strictly pseudo- 
first-order over a bimolecular data set and may result in curvature to the bimolecular plots of 
ki. against CH31, thus underestimating kff (and hence k(CH3 or 1)). To investigate this effect, 

model simulations were ran for the 250 Torr kinetic experiment, the results . of which. are 
displayed in Fig. 5.3-5. To generate the model data points, kinetic traces are, simulated in 

FACSIMILE (using the model outlined above) for the exact experimental conditions of each of 
the seven experiments with different methyl iodide concentrations. , The model output, is then 
fitted to E. 5.3-2 to generate values for ki. (and k, '). From Fig. 5.3-5 it can be seen that no 

curvature in the linear fit of the model output data is evident (similarly to the experimental 

observations) and the determined value of k,, ff is -3% greater than that of the experimental 
determination. This result indicates that second-order chemistry is not predominant and does 

not significantly effect the determination of kff (and k(CH311)). Also displayed in Fig. 5.3-5 is a 

model output kinetic trace generated for a particular concentration of methyl iodide, along with 
its corresponding experimental trace (normalised to the peak concentration of the model output). 
It can be seen that the agreement between experiment and model is remarkably good, especially 

considering that the experimental data are not fitted by the model, rather the model is simply a 
simulation of the experimental conditions. The y-axis offset between the model and 

experimental bimolecular plots (and the greater deviation between experimental and model data 

points at long reaction time in the kinetic traces) can be explained by the fact that the model 
does not account for the experimental baseline deviation. The pseudo-first-order adduct decay 

rate is therefore slightly underestimated by the model -for a, particular methyl iodide 

concentration. However, the fact that the slopes are in excellent agreement further substantiates 
the fact that the baseline deviation has little effect on the determined reaction kinetics. In Fig. 
5.3-1 the model k. ' values for the 250 Torr experiment are plotted alongside the experimental 
data. From the slope, k. = (2.96 t 0.07) x 10-11 cm3molecule-'s-1, <3% greater than the 

experimentally determined (and model input) value of (2-88 : L- 0.23) x 10-l'- cmýmolecule'ls-'. 
This reiterates the fact that the baseline deviation had little effect on the experimental 
determinations of k.; neither did the reaction of the adduct with the low concentration of radicals 
within the systern. 

A final test of the chemistry occurring within the system and the reaction mechanism of 
methyl iodide and chlorine at - 206 K can be made from comparing the adduct yield as a 

229 



function of [CH311. As [Cl2SOJ, and hence ICII. is maintained at a constant value across a 

bimolecular data set, the peak adduct LIF signal in a kinetic trace should remain constant with 

ICH311 if the adduct does not undergo unin-iolecular dissociation ias assumed in the kinetic 

analysis of the data). However, in reality the yield will change with ICHAI due to loss of CI 

atoms by processes other than reaction with CH-AL and reaction of the adduct with radicals 

within the system, Fig. 5.3-7 displays the peak experimental adduct LIF signal for each miethyl 

iodide concentration (relative to that at the highest concentration) for the 100.2 Torr experiment. 

The peak LIF signal is determined by taking the average of 10 - 20 data points at the peak of 

the kinetic traces recorded for small At. Also included in the figure are the peak adduct 

concentrations (also relative to the value returned for the highest n-ethyl iodide concentration). 

obtained from the model output files of the FACSIMILE simulation described previously 

(adapted to the 100 Torr conditions). represented by the blue data points. The red data points 

are also mdel calculations. but with the adduct-radical reactions switched off. 
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Fig. 5.3-7 - CH-31-Cl yield plot for the reaction of CH. 41 with Cl at 100 Torr and 204 K. 
The black squares represent the experimental data points (with 2er uncertainty). The 
model calculations are represented by the blue circles (full model) and red circles (model 
without adduct-radical reactions). 

The excellent agreement between the experimental data and the full model output is thus 

strongly indicative of the reaction mechanism being correctly Identified (i. e. unimolecular 
dissociation of the adduct at 204 K is negligible) and the full chemistry of the system being 

understood, particularly as omitting the adduct-radical chemistry significantly overestimates the 

adduct yield at low methyl iodide concentrations. 

As a final investigation at low temperature. the adduct removal rate was measured as a 
function Of 1021 to discern whetber any significant reaction between CH-Al-Cl and 02 occurs. 
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Experiments were performed at 100 Torr total pressure and 204 K The decay of the adduct ' was 

monitored in the absence and presence of up to -5x 1016 molecule cm7 3 Of 02 and no 

significant change in the adduct decay rate was observed. Fig. ý 5.3-8. displays the measured 

adduct decay, ki., as a function Of [021- 
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Fig. 5.3-8 - CH31-Cl decay rate as a function Of [021. Experimental conditions: T= 204 K, 
P= 100.2 Torr, [CH311 = 1.24 x 1014 molecule cnO, [Cl2S01 = 7.09 x 1012 molecule cm%3 
1021 = as indicated, [N2] = balance, F=2.4 x 1015 photons Cmn2' Ap,, = 360.57 nm. 

C. Note in Proof 

In this investigation the rate of CH3I-CI decay was found to increases with the 

experimental concentration of [Cl2SO], which was assumed to imply that the CH31-Cl adduct 

reacts with CISO radicals. Since this work was executed and written-up it has come to our 
attention that a subsequent kinetic and spectroscopic investigation of the CH31-Cl adduct by 

absorption spectroscopy22 has reported a rate coefficient for: the' self-reaction of CH31-CI'Of 
k= (3.5 :t0.3) x 10-10 cmýmolecule-ls-l at 250'K and'300 Torr ' N2. As'the c6ýcentratioi of Cl 

atoms, and therefore the adduct, are also dependent on the initial concentration of [Cl2SO], self- 
reaction of CH31-Cl will also have accounted for some of the observed adduct reactivity in this 

work. It should be emphasised that this result will have ýery little effect 6n the rate coeffiýients 
reported in this chapter (as the self-reaction is accounted for by the rate coefficient "assigned to 
the CH31-Cl + CISO reaction). Initial revision of the results suggests that the correct rate 
coefficient for the CH31-Cl + CISO reaction is also of the order oi k=3. '5 x 10'10 cm3molecule* 
is-' at - 206 K Note that the ICH21-Cl adduct is also likely to self-reaci at a rapid rate. 
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5.3.3 Reaction Kinetics of the CH31 + Cl Reaction at 2% K 

As discussed is section 5.3.1, at room temperature. reversible adduct formation means 

that the experimental data must be fitted to E. 5.3-5. where the sum of the exponential terms is 

equal to the negative sum of all rate coefficients for all processes occurring within the reaction 

systen-L Therefore, a plot of (A, +A-) against [CH-Al I should yield a straight line where the slope 

is equal to -(k,, +kbj+kff) and the intercept is equal to -(k-. +kn, +k(i . In order to evaluate the 
, so+kd) 

rate coefficients governing reversible adduct formation, k. and k, prior knowledge of the other 

rate coefficients is therefore required. Experiments were therefore performed in order to 

'S -9 displays two plots of (A++A-) against evaluate kff (i. e. k(CHA)) and kn, o at 296 K. Fig. 5.3 

[CH311 for two experiments conducted under identical conditions other than excimer laser 

power, which was varied by more than an order of magnitude. 

U) 

+ 
+ 

3 [CH, I] / molecule cm 
Fig. 5.3-9 - Bimolecular plots for CH31 + Cl at 2% K. Experimental conditions: P= 100 
Torr, [C12SOI = 7.21 X 1012 molecule CM-3, [N21 = balance, Ap,, = 360-57 nm. F=4.64 x 1015 
photons CrW2 (black) and 5.21 X 1016 photons CM-2 (red). From the linear flits: m= -(1.03 ± 
0.15) x 10'11 ctWniolecule"s", c= 42756 ± 83) s-1 (black) and m= -(2-61 ± 0.59) x 10-11 
cn? molecule-'s-', c= -(3605 ± 306) s-' (red). 

From Fig. 5.3-9 it can clearly be seen that both intercept and slope increase significantly with 

excirrier laser fluence. This is conclusive evidence that the adduct reacts with photolysis 

products of both CH31 and C12SO- AýLS [Cl2SOj is maintained at a constant value across the range 

of CH31 concentrations it follows that the enhanced slope from the expeniment utilising the 

higher excimer laser fluence is solely attributable to reaction of the adduct with photolysis 

products of n-ye-thyl iodide. Thus simple modification of E. 5.3-8 gives 
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Ain . 1! .1ý. ý.. ; ý. - ".. 11 k(CH, /1) E. 5.3-9 

where, Am is the difference of the slopes from the plots of ýý+, Lýagainst [CH311, and A0 is the 

difference in photolysis factors from the two experiments. Thus we derive the value, k(C113 / I) 

(3.82. t 1.48) x 10-10 cni3molecul&-ls-1. This value is in good agreement with that determined 

10 3 from the low temperature study of (3.0. t 0.9) x 10- cm molecule- s" providing evidence that 

the increasing adduct loss rate with [CH31] observed at low temperature was solely attributable 

to this process (and not reaction of the adduct with CH31). The fact, that k(CHfi) was found to 

be independent of pressure at low temperature indicates that the reaction is a bimolecular 

process. Therefore, although the values of k(CHfi) at 296 and 216 K are within statistical 

uncertainty of each other, the slightly higher room temperature determination may be a genuine 

result and attributable to a weak barrier to reaction. 
The difference in the intercepts of the slopes displayed in Fig. 5.3-9 is (848 :t 317) s". 

As at the y-intercept, [CH311 = 0, this increase in reactivity of the adduct must be ascribed to 

reaction with CISO. If we assume that kciso = Ac/A[CISO] (where A[CISO] is the calculated 
difference in CISO concentration between the high and low excimer laser power experiments), 

then we obtain kaso (296 K) = (3.66 ± 1.37) x 10-10 cm7molecule-ls-l. Note that determining 

kciso in this manner is assuming the reaction of CH3I-Cl + CISO to be occurring under pseudo- 

first-order reaction conditions. At low temperature, the reaction of CISO radicals with tile 

CH3I-Cl adduct had to be treated essentially as a second order reaction as ICISOI 2: ý [C1131-Cll- 

However at 296 K, loss of the adduct via unimolecular dissociation is significantly high (k.. 

2500 s-1 at 100 Torr) that its concentration is always substantially lower than the initial Cl atom 

concentration (and hence [CISOJ). A simple modeling exercise, the details of which are not 

pertinent here, demonstrated that determining kaso in the procedure described above 

underestimates the true rate coefficient by <5%. Thus, to a good approximation, the reaction 

of adduct with CISO at 296 K can be treated as a pseudo-first-ordeu, process -under. the 

experimental conditions of this study. The finding that kciso (296 K) is substantially lower than 

that at 204 K (kaso = (9.0 : L- 4.5) x 10-10 cm3molecule-'s-1) is* in agreement with. the reaction 
involving long-range attractive forces. Treating the kaso determinations to an Arrhenius 

analysis (albeit only with two data points) yields' a temperature dependence that can be 
described by the expression, kaso(7) = 4.94 x 10-11 exp(590/7). - - 

Thus, for any plot of (A. +X) against [CH3I] w6have a method for the evaluation of k. 

and k.: i ý', 1. ýII 

k. = -(m-kbi-kff) E. 5.3-10 

k.. = -(c-ka-kaso'-Q E. 5.3-11 
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where, kbi (296 K) = 7.97 x 10-13 ci2niolecule-'s-1 (taken from Ayhens et. all), kff is calculated 
for the experirnental conditions (kff = (Ak(CH3A)')/A[CH31j), kc, is assumed to be independent 

of temperature and given the average value obtained from the low temperature experiments of 
229 s-1, kciso' is calculated for the experimental conditions (kas(; = kaso[CISOI), and kd is given 

the nominal value of 20 s-1 for consistency with previous treatment of the data. Fig. 5.3-10 

displays a plot of (A, +X) against [CH31] at 500 Torr. 
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Fig. 5.3-10 - Bimolecular plot for CH31 + CI at 500 Torr and 296 K. Experimental 
conditions: A[CH31] = 2.34 x 1614 molecule cm73 (A[CH3/Ij = 5.19 x 1611 molecule Cn, 73), 
[Cl2SO] = 2.09 x 1013 molecule cnO ([CISO] = 3.62 x 1011 molecule cm73), [N2] = balance, F 

- 2.55 x 101's photons CM-2, A it to the data, m= -(1.79 -. t pr = 360.57 nnL From the linear fi 
0.42) x 10'11 cn? moleculels*l and c= -(7100 t 727) sý. 

Ilerefore, 

k. (296 Y., 500 Torr) = -[(-1.79 x 19")-(7.97 x 10-1ý-(8.47 x 10-1ý1 

= (1.63 ± 0.38) x 10-11 cdmoleculd`ý-' 

k. (296 K, 500 Toff) = +7100-229-132-20] 

= (6720 ± 690) s`. 

The equilibrium constant, Kp is thus calculated to be (58.3 ± 14. g) x 103 atnf 1. Table 5.3-2 lists 
all determinations of k., k-. and Kp obtained at 296 K in this study 
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P [CI2S0] A[CH311 F --m -c. kff kcso'. * - k. - k.. ý - Kp., 
, 

21.5 3.10 439 24.5 12.6 37.7 8.31 18.8 3.53 16.4 - 52.0 ±41.7 
101.1 3.16 248 3.13 10.3 37.1 1.04. 2.45 8.41 32.2 63.1 ± 36.5 

101.6 0.72 7.26 4.64 10.3 27.6 1.54 0.83 7.97 24.2, 79.4 ± 12.0, 

101.8 0.72 7.26 52.1 26.1 36.0 17.3 9.32 7.97' 24.2 79.4 ± 19.3 

100.4 2.06 11.5 2.55 10.8 24.7 0.85 1.30 9.11 24.7 89.0 ± 25.4 

501.4 2.09 23.4 2.55 17.9 71.0 0.85 1.32 16.2 67.2 58.3 ± 14.8 

101.0, 2.20 81.9 24.5 12.1 26.3 8.31 13.3 ý A. 00 10.5 69.0 ± 27.3 

Table 5-3-2 - Experimental conditions and determinations of k., k.. and Kp for C1131 + Cl 
*- CH31-Cl at 296 K. All experiments were conducted in N2 with the exception of aq In 
which the bath gaswas He. Units: le molecule Cfff3 ;F= 1015 photons cm72; (m, k. ff, 
k 10712 = 102 g-1; K= 103 tnfl. crr? molecule"s"; (e, kciso9, k.. ) Pa 

From the data in Table 5.3-2 it can be seen that at 296 K, Kp is independent of pressure and bath 

gas (as expected) within the error limits, with an average value of, (70.2 ± 29.0) x 103 attif', in 

excellent agreement with the value of 72.6 x 103 atnil calculated from the thermochemical data 

of Ayhens el. al. 17. Considering the wide range of conditions employed in the 296 K kinetic 

experiments, this result is thus strongly indicative that the mechanism used to interpret the 
kinetic data is correct and that the rate coefficients for the adduct-radical reactions are well 
defined- It was noted in section 5.2 that the peak LIF adduct signal at 296 K, was strongly 
dependent on [CH311. This observation can be interpretedin terms of the, adduct loss rate being 

comparable, and thus competitive, to adduct formation (under the experimental conditions). 
Thus modeling the variation of the adduct yield as a function of [CH311 is a further test of the 

chemical system and the reaction mechanism. Fig. 5.3-11 displays the experimental peak 

adduct LIF signal as a function of methyl iodide concentration for the 101.1 Torr kinetic 

experiment. Also displayed in Fig. 5.3-11 are model calculations of the peak C1131, Cl 

concentration as a fimction of [CHý1]. The experimental yields were analysed in the same way 
as described in section 5.3.2.13 and the model used to calculate the theoretical yields was 
essentially the same as that described previously but with the addition of the bimolecular, kw, 

and adduct dissociation, k, rate coefficients. The model input parameters are set to the exact 
experimental conditions of each methyl iodide concentration and all rate coefficients are 
adjusted to their appropriate value at 100 Torr and 296 K. 
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Fig. 5.3-11 - CHA-Cl yield plot for the reaction of CH31 with Cl at 100 Torr and 2% K. 
The black squares represent the experimental data points (with 2or uncertainty). The 
model calculations are represented by the red circles. 

The exceptional agreement between experimental and rnodel yields is highly indicative of the 

chemistry of the system being fully understood. It should be noted. however, that despite the 

fact that the rates of all processes determining the formation and removal of the adduct are well 

defined, the mechanism of adduct dissociation cannot be ascertained from this study. The CH3I- 

Cl yield changes appreciably with [CH31 I at 296 K as a result of the relatively high degree of 

unimolecular adduct dissociation. Whether this dissociation is back to reactants, or to products 

such as HCI + CH21 or ICI + CH3, will have very little effect on the overall adduct yield. In 

summary. the adduct yield is governed by the extent of adduct dissociation. and not by its 

mechanisn-L Despite this limitation of the current study, there is very good reason why the room 

temperature dissociation of CH31-Cl can be assumed to, almost exclusively, regenerate CH31 + 

Cl. 'Me study of Ayhens. el. al. 17 employed resonance fluorescence detection of chlorine atoms. 

At room temperature, regeneration of Cl was observed, thus indicating that the adduct must. at 

least partially, dissociate back to reactants. As previously stated, in the study of Bilde and 

Wallington19, the reaction kinetics of the CH31 + Cl reaction were deterinined by monitoring the 

removal Of CH31 on a timescale of minutes in a continual photolysis smog chamber. The fact 

that the apparent rate coefficient for the reaction of methyl iodide with chlorine only increased 

by a small amount in moving from I- 700 Torr total pressure (4.6 x 10-13 CM3 molecule-'s-1) 

indicates that the vast majority of the adduct decomposes back to reactants under atmospheric 

conditions. From the 296 K results obtained in this study (along with the results of Ayhens et. 

, 11.17). the total rate coefficient for the reaction of CH31 + Cl can be estimated as. k=2.1 x 10-11 
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cmýmolecuWls-' under typical atmospheric conditions. If it is assumed that the entire effective 

rate coefficient for adduct formation observed in the study of Bilde and Wallington 19 is 

attributable to unimolecular adduct dissociation to products other than CH31 + CI (which is 

unlikely), an upper limit of (0.046/2.1) = 2-2 % can be placed on adduct dissociation channels 

that do not regenerate methyl iodide and chlorine. .II, ý' 
In agreement with the low temperature Idnetic study, the CH3I-Cl adduct was not 

observed to react with 02 at 296 K 

53.4 Discussion 

The results obtained in this study of the C143I + CI reaction are essentially in perfect 

agreement with the findings of Ayhens et. aLIT Primarily, this provides conclusive evidence 

that the observed fluorescence from C113I + CI mixtures following 360-57 nm laser excitation is 

attributable to the CH31-Cl adduct, which has not previouslybeen reported to fluoresce (or 

experimentally absorb below 405 nm). At - 206 K the reaction of methyl iodide with'atomic 
., "- "A. ,", .1ý 

chlorine proceeds via irreversible adduct formation, as inferred from, the linearity and small 

intercepts of the bimolecular plots, and the adduct yield as a function of [CH311- Typical of an 

association complex reaction mechanism, the reaction kinetics of CH31 + CI display a marked 

pressure dependence. The adduct removal from the chemical system has been shown to be 

predominantly governed by reaction with radicals within the system. This observation suggests 

that the CH31-Cl adduct does not react with CH3I, contrary to prior beliee9. '. An interesting 

implication of the extremely rapid bimolecular reactions of the CH3I-CI adduct with radicals is 

that the CH31 component of the adduct may act as an intramolecular third body in reactions 

which may be expected to display a pressure dependence, such as CH3 + Cl: -, -ý CH30 or I+ Cl 

ICI. 

At room temperature, the adduct is observed, to undergo reversible formation, as 

inferred from the large intercepts of the bimolecular plots and the significant dependence: of 

adduct yield on [CH311. Under atmospheric conditions typical of the MBL, the reaction OfC1131 

+ Cl proceeds with a total rate coefficient of - 2.1 x 10-11 cm3molecule-ls"ý. The study of Bilde 

and Wallington 19 places an upper limit on adduct dissociation channels that do not produce 
CH31 + Cl, of 2.2 % at 296 K. If it is assumed that that this dissociation is exclusively to C113CI 

+ 1, then a CH30 yield of - 37 % should be observed at room temperature. The CH30 yield in 

the study of Bilde and Wallington 19 was found to range from - 20 - 80 % and displayed a 

complex dependence on [CH311. It is therefore most likely that the majority of the increased 

reactivity observed in their experiment in moving from I- 700 Torr total pressure is attributable 
to reaction of the CH31-Cl adduct with radicals within the system that generate CH30. In tile 

study of Goliff and Rowland", a CH30 yield of -9% was observed for the reaction of methyl 
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iodide and chlorine at 760 Torr and 298 K. Ile CH3CI yield was observed to decrease with 

increasing temperature, consistent with a decrease in the equilibrium constant, Kp. with 

increasing temperature. The yield was not observed to increase significantly in moving from 

760 - 4000 Torr total pressure, probably because the association rate coefficient, k., has almost 

reached the high pressure limit in one atmosphere of bath gas. If it is assumed that the CH31-Cl 

adduct does not dissociate to any other products than CH3CI + 1, the fate of the adduct at room 

temperature is almost exclusively (> 99.5 9/b) dissociation back to reactants. 

The fact that Cotter el. aL 14 observed no pressure dependence in the reaction of CH31 + 

CI is most likely due to the narrow pressure range employed in a He bath gas in that study. 

Therefore, an apparent increase in the rate coefficient is indistinguishable from the experimental 

noise. However, the rate coefficient reported by Cotter el. aL 14 is significantly larger than the 

more reliable literature values for the birnolecular, HCI + CH2I, forming channel of the reaction 

of CH31 + Cl. This result is therefore indicative of some degree of adduct formation in their 

experiment. 
The one significant discrepancy within the literature, therefore, is the fact that 

Kambanis et. aL'5 observed no significant kinetic isotope effect for the reaction of CH31 + CI - 

HCI + CH21, in contrast to the findings of Ayhens et. aL 17 and Bilde and Wallington'9, and also 

reported a smaller activation energy than Ayhens et. aL 17 
. The notable experimental difference 

in the work of Karribanis et. aL 15 was the very low pressure employed in that study (- 2 mTorr). 

'The authors rationalise the anomalous result as implying that HCI formation arises from 

dissociation of the CH31-CI adduct, which is not thermalised at low pressure, resulting in a 

smaller barrier to reaction. - However, if this were the case then the effective rate coefficient for 

adduct formation reported in the study of Bilde and Wallington19 would be nmch larger due to 

faster adduct formation at higher pressure. The reason for this discrepancy in the literature is 

thus unclear. 
In the course of this study, it was found that the CH31-Cl adduct does not react with 02, in 

agreement with the findings of Bilde and Wallington" and Enami. et. aL2ý Therefore, it can be 

concluded that the reaction of CH31 and Cl is of little atmospheric significance. Even if the 

reported CI atom concentrations in the MBL are towards the upper estimates, the reaction of CI 

with CH31 cannot compete with the photolytic removal of methyl iodide from the atmosphere. 
Further, the atmospheric fate of the adduct will be decomposition back to reactants (with a small 
but insignificant amount of CH3CI +I formation). Although, in this study, the CH31-Cl adduct 
has been shown to react gas kinetically with radical species, there are no radicals present in the 

marine atmosphere at significant enough concentration that could compete with dissociation for 

adduct removal. If NO were to react at the gas kinetic rate with the CH31-Cl adduct, then adduct 

removal via this reaction could only compete with dissociation under conditions of extreme 

pollution. The effective rate coefficient for the reaction of CH3I + CI in the atmosphere is 
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therefore -Ix 10-12 cm7molecuk-s-1 with > 90 % of the product yield being attributable to IICI 

and CH21. 

5.4 Spectroscopic Study of the CH31-Cl Adduct ., - 

5.4.1 LIF Exdtation Spectnun of the CH31-Cl Adduct 

Fig. 5.4-1 displays the LIF excitation spectra of the CH3I-CI adduct recorded at 296 and 
204 K The spectra are normalised for probe laser power and represent the adduct fluorescence 

signal (as a function of excitation wavelength) relative to the background electronic signal of the 

apparatus, which is set to zero. Background LIF spectra of thionyl chloride and methyl iodide 

displayed no fluorescence signal in the presence or absence of excimer laser radiation (for the 

experimental Al value). As can be seen from the spectra, the CH3I-Cl adduct was observed to 

fluoresce strongly over the entire tuneable range of the dye laser., ' No sýgnifiýant difference is 

apparent in the spectra in moving from 296 - 204 K; suggesting that the adduct is thermalised 

rapidly in 100 Torr of nitrogen (< 150 gs) and that the electronic transition, occurring in the LIF 

excitation scheme, originates from the ground state of the'adduct. * As expected, ' the'rine 

structure of the LIF spectrum at 204 K is more apparent, probably indicating the narrower 

rotational and vibrational distribution at low temperature. 'A slight -difference between the 

spectra is that the fluorescence signal is slightly more intense at the extreme ends of the 296 K 

LIF spectrum, relative to that at 204 K- At the "red en&" of the speýtrum this feature may be 

attributable to hot band electronic transitions originating from excited vibrational levels in the 

adduct ground state, which have greater population at the higher temperature. Towards shorter 

wavelengths this observation may be attributable to the red wing of a 'transition originating at 
higher energy (A < 345 nm) than the fundamental absorbance responsible for the majority of the 

observed fluorescence. Indeed, a second, -relatively broýd peak- in'the' CH31-Cl LIF'spe'drurn 

was observed at - 340 nra. However, a reprodýcible spectrum of the structure' of thisleature 

could not be obtained as 340 nm represents the extreme edge of the efficiency of the DMQ dye, 

on which the dye laser was operating. Although fluorescence from'the'CH31-Cl adduct is 

continuous (Le. never returns to the baseline) over the 345 - 375'mn region, considerable 
spectral structure can be observed. Fig. 5.4-2 displays two expanded regions of the'204 K LIF 

spectrum highlighting some of the structural features present. ", 
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Fig. 5.4-1 -'LIF spectra of the CH31-Cl adduct at 2% K (top panel) and 204 K (bottom 
panel). Experimental conditions: P= 100 Torr, [C12SO] = 6.3 x 1013 molecule cm"3, [CH311 
= 4.3 x 1614 molecule cnO, [N21 = balance, At = 150 ps, F=5.21 x 1016 photons Cmw2. 
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Fig. 5.4-2 - Expanded regions of the 204 K CH31-Cl LIF spectrum displayed in Fig. 5.4-1 
displaying considerable structural features. 

From Fig. 5.4-2 it can be seen that there are two regularly spaced structural features. Ile 

average separation between peaks in the spectral region shown in the top panel is - 0.5 run, 
corresponding to an energy spacing of (40 :t 10) cid'. The regular spacing of the structure 
displayed in thebottompanel of -2 nmcorresponds to an energy separation of (150: t 20) cnfl. 
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Energy spacings of this magnitude are consistent with the vibrational frequencies of polyatornic 

molecules. In the theoretical calculations of Lazarou et. aL16 the lowest ground state vibrational 
frequency of the CH31-Cl adduct is calculated to be 141.12 cid'. Ayhens et. A 17 calculate the 

two lowest ground state CH31-Cl vibrational frequencies as. 89 and 171 cm7l. '"Thus the structural 
features present in Fig. 5.4-2 may be attributable to vibrational transitions in the C1131-Cl 

adduct. It would appear that there is a general change in spectral structure at - 370 rim. That is, 

only the 150 crd' spaced structure appears to wavelengths longer than 370 nm, whereas greater 

Spectral structure is present at blue shifted wavelengths. This may be indicative that the origin 

of the electronic transition responsible for the observed adduct fluorescence is - 370 nm. For 

this scenario, structure to the red of the origin is attributable to hot bands of the electronic 
transition, and the more intense structure at shorter wavelengths is most likily attributable to 

electronic transitions terminating in highly excited vibrational levels of the adduct excited state. 
The presence of hot bands would not necessarily be indicative of the adduct having a non- 
thermal vibrational distribution as, for a small vibrational spacing of - 150 cnf significant 

v ibrational population (> I %) will be present for levels up, to v" 6 at 296 K (and V' 4 at 
204 K). The excitation scheme proposed is schematically represented in Fig. 5.4-3. The 

Proposed excitation scheme could thus account for the observed structural features in the C1131- 

CI LIF spectrum and the changes observed at the extreme ends of 
' 
the spectrum at different 

temperature. It should be noted, however, that this excitation scheme is likely to be an 
extremely simplified description of the adduct spectroscopy due to the large density of states of 

a polyatomic molecule such as CH. 3I-Cl. In the CRDS, studies 20,21 
, absorption of the C1131-Cl 

adduct between 405 - 532 nrn was ascribed to the red wing of transitions'originating at 307 and 
339 nniL The difference in wavelength between the two transitions_(- 30 nm) is therefore of 

similar magnitude to the proposed electronic transition origins in Fig. 5.4-3., (although with a- 

30 mn displacement to the red). 
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Fig. 5.4-3 - Possible LIF excitation scheme for the CH31-Cl adduct in the 140 - 370 nm 
spectral window. Transitions originate in the X12AI adduct groundstate and terminate in 
various vibrational levels of unknown electronically excited states of the adduct, Al and 
A2, with symmetry A' or A ". Note that this scheme will be for a particular vibrational 
mode of the adduct. 

As the structure of the CH31-Cl LIF excitation spectrum reported in this work shows no 

significant temperature dependence, and because the adduct decay rate was not observed to 

change with pressure in the kinetic investigation, it is likely that the ground state of the adduct is 

therinalised rapidly in less than 10 Toff of N2 (the lowest pressure studied in the kinetic 

investigation). If it is assumed that the 339 run transition (the lower energy transition). 

calculated by Enatni et. al. 20, is responsible for the observed adduct absorption in the CRDS 

experiments then, for an excitation wavelength of 405 rim, - 5000 cm-' of ground state adduct 

excitation is required to undergo the designated transition. 'Me exothermicity for CH-41-Cl 

formation is calculated to be - 50 U Mol-1 16,17 (- 4200 crif') and so, even if all energy released 
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from adduct formation is transferred into internal excitation of CH31-Cl, an energy deficit is 

present for the assigned electronic transition. At 532 nin, > 10000 cm7' of internal adduct 

excitation is required to satisfy the energetic requirements of the 339 nm transition. The 

Boltzmann population of a state lying 10000 cm7l above the groundstate at 298 K is -Ix 10 -21, 

relative to the groundstate. Further, the potential energy well of the CH3I-Cl adduct is 

calculated to be - 60 U Mol-I 16 (- 5000 cm7l). Therefore, if the adduct possessed 10000 cm7l 

of internal excitation, it would exist only for a very short period of time before dissociating and 

would not be detectable by absorption spectroscopy. Clearly, the electronic transitions assigned 
to the CH3I-Cl absorption reported in the CRDS studies are incorrect. The calculations of 
Enami el. aL20 are wholly inconsistent with their experimental observations, and the observed 

adduct absorption is most likely due to transitions terminating in lower lying electronic states 
than those identified in their study. Very few details to the theoretical calculations of the 
transition frequencies and probabilities are presented in the studies of Enami et. aL20-21 and their 

reliability can therefore not be assumed. Calculating the electronic structure of iodine- 

containing molecules is notoriously difficult due to the high. electrojý density. The theoretical 

calculations are therefore concluded not to be of great enough accuracy for a meaningful 

comparison with the experimental results obtained in this study. Further experimental and 
theoretical studies are required to definitively assign the electronic (and vibrational) transitions 

responsible for the CH3I-Cl LIF spectrum reported in this work 

5.4.2 Dispersed Fluorescence Spectrum of the CH31-Cl Adduct 

To further probe the transitions occurring within the CH31-Cl adduct the dispersed 
fluorescence spectrum was recorded at 296 K. As aforementioned,. the monochromator grating 
could not be operated under computer control and had to be manually scanned by hand. 
Fig. 5.4-4 shows a dispersed fluorescence spectrum of the CH3I-CI adduct, over a 320 - 600 nm 
spectral window, following 360.57 nm excitation. The first peak in the spectrum corresponds to 
the probe laser at - 360 mn. Fluorescence from the adduct consists of a strong peak at - 430 

nm and a second, much weaker, peak at - 480 nm. Beyond - 500 nm, essentially no adduct 
fluorescence was observed. The observed fluorescence could be unambiguously assigned to the 
CH31-Cl adduct as the signal at - 430 nm. was so intense that a kinetic trace could be recorded 
through the monochromator, as displayed in Fig. 5.4-5. Under the experimental conditions, the 
observed adduct reaction kinetics are in very good agreement with calculation using the 
previously determined adduct kinetics at 296 K and 20 Torr (0.89 ± 0.14) X 
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Fig. 5.4-4 - Dispersed fluorescence spectrum of the CH3l-Cl adduct over the 320 - 600 nm 
range at 296 K. Experimental conditions: P= 287 Torr, [Cl2SO1 = 6.0 x 1013 Molecule cm" 

[01.411 = 2.3 x 101 '; molecule cm'3, [N21 = balance, At = 40 Rs, F=3.3 x 1016 photons CM-2, 

, 
ý,, = 360.57 nm. Note that no wavelength scale is given as the monochromator grating had 
to be manually scanned by hand at an approximately constant rate. 
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Fig. 5.4-5 - CH. J-Cl kinetic trace recorded from monitoring adduct fluorescence at - 430 
mn through the monochromator. Experimental conditions: T= 296 K, P= 20.2 Torr, 

3 
Cm , -J] = 5.3 x 1014 molecule CrW3 , [N21 = balance, F IC12SO) 

= 2.6 x 1013 molecule [CH. 
CM-2, M0.57 nm. The solid red line is a fit of E. 5.3-5 to the 3.3 x 10"' photons 4, 

experimental data. From the fit, (A, +,; L),,, j) = -(1. %20 ± 2154) s- . From the experimental 
conditions and the data in Table 5.3-2, (4+,; L),, d, = -12120 s-1. 

The I'act that little fluorescence is observed blue-shifted to the excitation wavelength in 

the dispersed fluorescence spectrum (Fig. 5.4-4) suggests that adduct excitation is not in the red 
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wing ofan electronic transition between ground and excited states of CH31-Cl- If the electronic 

transition. responsible for adduct fluorescence, originated at 307 or 339 nm some blue shifted 

fluorescence relative to the excitation laser pulse at 360.57 nm would be expected. Further, this 

observation suggests that the grounds-tate of the adduct is thermalised prior to excitation. 

The dispersed fluorescence spectrum of the CH31-Cl adduct was determined over the 

375 - 475 nm range by recording the fluorescence signal of the adduct in 5 nm intervals. The 

probe laser background was also recorded (in the absence ofexcimer laser radiation) under the 

same experimental conditions in order for its subtraction from the fluorescence signal. The 

fluorescence signal for each wavelength was averaged for - 500 laser shots. The FWHM 

resolution ofthe monochromator was found to be -5 nm for a3 nun slit width. Fig. 5.4-6 

displays the dispersed fluorescence spectra of CH-41-Cl at 30 and 300 Torr. The fluorescence 

spectrum is observed to have a significant pressure dependence, shifting to longer wavelengths 

with increasing pressure. which is indicative of vibrational energy transfer in the excited state of 

the adduct. Presumably VET is relatively fast, thus a greater fraction of fluorescence originates 

from lower vibrational energy levels in the adduct excited state, and tends towards longer 

wavelengths. The behaviour also suggests that the rate of VET is competitive with that of 

electronic quenching. 
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Fig. 5.4-6 - Dispersed fluorescence spectra of the CH31-Cl adduct at 2% K and M Torr 
(red) and 100 Torr (black). Experimental conditions: [Cl2SO1 = 6.0 x 1013 molecule CM-3, 
[CHAI = 2.3 x 1015 molecule cm-3, [N21 = balance, At = 40 ps, F=3.3 x 10'6 photons CM-2, 
4r = -160-57 mn. Note that the data have been norma-lised so that the peak fluorescence 
signals of the spectra are equal at - 4-30 nm. The fluorescence signal is relative to zero, i. e., 
fluorescence is occurring at all wavelengths. 
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Ilie largest fluorescence peak loses intensity for A> 445 nni This wavelengffi cannot represent 

the origin of the electronic transition as the CH31-Cl absorption spectrum reported by Enami et. 

al. 20 would be expected to display a similar structure to the dispersed fluorescence spectrum 

reported herein, wfiich is not the case. Further, according to the LIF excitation scheme proposed 
in Fig. 5.4-3 (where vo for the Al -X 12A' transition is altered to 445 mn) excitation at - 360 

nm would correspond to extremely high vibrational excitation of the adduct excited state (v' = 
130, assuming a vibrational frequency of 40 cnfl and not allowing for anharnionicity), via a 

transition which may be expected to have a small Franck Condon factor and terminate above the 

dissociation energy of the excited state. Therefore, the dispersed fluorescence spectrum can be 

interpreted in one of two ways. The first scenario is that fluorescence occurs between the same 
two electronic states that are responsible for the adduct absorption, and therefore terminates in 

the ground electronic state Of C1131-Cl- If we assume that the electronic origin of the observed 
transition is - 370 nm, as previously predicted, then fluorescence at - 445 nm. will teriiinate in 

a groundstate vibrational level with - 4500 cm71 of energy (i. e. assuming that fluorescence 

originates from the ground vibrational level of the electronically excited state). This energy is 

of similar magnitude to the predicted binding energy of the adduct and may therefore provide a 
logical explanation as to why no significant fluorescence signal is observed at longer 

wavelengths. The weak fluorescence signal observed beyond 445 nin is perhaps attributable to 
the blue end of an electronic transition originating at - 480 nin, which is probably a transition 
between two electronically excited states of the adduct. This fluorescence scheme is entirely 
compatible with the LIF excitation scheme proposed in Fig. 5.4-3. Ile second scenario is that 
the excited electronic state of the adduct, populated by the laser radiation, is fluorescing to 

another electronically excited state. This is considered unlikely, however, as the lower 

electronically excited state would have to be close in energy to the ground electronic state in 

order to explain why no significant fluorescence intensity is observed beyond - 445 nrn (as 
fluorescence to high vibrational levels of this electronic state would also be expected to occur). 
The first explanation is schematically represented in Fig. 5.4-7. 

In order to investigate whether the dispersed fluorescence spectrum of CH31-Cl was 
dependent on excitation wavelength, the fluorescence intensity was measured over the 405 - 
445 nm range for excitation wavelengths of - 350 rim and - 360 run at 300 Torr. Fig. 5.4-8 
displays the resulting spectra. Note that the data are not corrected for the probe laser 
background, explaining why the fluorescence signal does not tend towards the baseline at 
shortcr wavelength. The close agreement between the two spectra indicates that fluorescence of 
C1131-Cl is essentially independent of excitation wavelength between 350 and 360 nm, 
consistent with the fluorescence scheme postulated in Fig. 5.4-7, and that the same electronic 
transition between ground and excited states is excited at both laser wavelengths. 
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Fig. 5.4-7 - Proposed fluorescence scheme for the CHA-Cl adduct following - MO nm laser 
excitation. 
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Fig. 5.4-8 - Dispersed fluorescence spectra of the CH31-Cl adduct at 300 Torr as a function 

of excitation wavelength. Experimental conditions: [Cl2SOI = 3.2 x 1013 molecule Cnf3 9 
[CHAI = 7.8 x 1014 molecule cnf-4 , JN21 = balance, At = 100 gs, F=3.3 x 1016 photons cm -2, 
4r = 350.57 nm (red) and 360.57 nm (black). 

To probe the electronic transitions of the CH31-Cl adduct more rigorously, an extensive 

dispersed fluorescence investigation should be performed at higher resolution and over a greater 

range of pressure, excitation wavelength, and spectral range (200 <A< 900 nm). 

5.4.3 Zero Pressure Lifetime and Quenching Measurements of the CH31-Cl Adduct 

Excited State 

An investigation into the zero pressure lifetime (, co) and rate of quenching of the 

electronically excited state of the CH31-Cl adduct by N2 was performed at 296 K. Measurement 

of these processes can yield valuable information as to the nature of the potential energy 

surfaces of molecules. To quantify these parameters, the fluorescence lifetime of the CH31-Cl 

adduct was recorded as a function of total pressure (N2) for an excitation wavelength of 360.57 

nrYL The fluorescence lifetime of a species, 'r(s) at a given pressure of gas is given by E. 5.4-1 

.r=IE. 5.4-1 
Af + Ap + AIM 

where, Ar is the inverse natural radiative lifetime (II/To) (s-1), Ap is the predissociation rate (s-1), 

Aq is the bimolecular quenching rate coefficient (crnýmolecule-'s-), and [Q] is the concentration 

of quencher Q (molecule crrf 3 ). Tbus if the fluorescence lifetime of a species is measured as a 
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function of a pressure (IQ]), a plot of 1/-r against IQ] should yield a straight line with slope Aq 

and intercept (Af + Ap). 

The fluorescence lifetime of the CH31-Cl electronically excited state was observed to be 

relatively short, and only significantly extended the temporal profile of the probe laser pulse at 

pressures below - 100 Torr. Therefore, the temporal profile ofthe probe laser pulse was also 

recorded in order to deconvolute the CH31-Cl fluorescence from the temporal profile ofthe laser 

pulse. Fig. 5.4-9 displays the observed temporal profile of CH31-Cl fluorescence at - 10 Torr, 

recorded by the oscilloscope. 
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Fig. 5.4-9 - Temporal profile of the CH31-Cl adduct at - 10 Torr total pressure N2- 
Experimental conditions: P= 10.2 Torr, [Cl2SOI = 4.1 X 1013 molecule cnf3, [CH311 = 5.1 x 
1014 molecule CrIf3 , [N21 = balance, At = 500 ps, F=3.3 x 10"' photons CRf2' Apr = M0.57 
nm. The top panel displays the temporal profile of the CH., I-Cl fluorescence (black 
squares) and the probe laser pulse (red squares), normalised to the peak adduct LIF 
signal. The bottom panel displays the residual of the CH31-Cl fluorescence with a fit to E. 
5.4-2. From the fit kf = (4.14 t 0.17) xW s" (v = (24.2 t 1.0) ns). 

To obtain the fluorescence lifetime of the adduct at a given pressure, the temporal profile ofthe 

probe laser background is subtracted from that of the CH31-CI fluorescence profile (after 

normalising the peak signal ofthe probe laser to that of the adduct fluorescence). From the 

probe laser background, it is found that the FWHM of the dye-laser pulse is - 15 ns. At all 

pressures investigated, the fluorescence ofthe adduct was found to be completely resolved from 

that of the probe laser at a time of 25 ns after the rising edge of the probe laser pulse. The 

residual CH-il-Cl fluorescence profile is then fitted to a single exponential decay, E. 5.4-2, to 

obtain the inverse fluorescence lifetime of the adduct, kf 
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S, = So exp(-kft) F- 5.4-2 

where, S, and So are the fluorescence intensities of CH31-Cl at time, 1, and I=0 respectively- 

The procedure for deterrnining kf as a function of pressure is displayed in Fig. 5.4-9. 

The fluorescence lifetime of the CH31-Cl adduct was observed to decrease significantly 

with increasing pressure and, for all pressures investigated, the temporal profile of the CH31-Cl 

fluorescence was observed to follow monoexponential behaviour. Although, the precursor 

concentrations were not maintained at constant values across the study, their low values 

([CH31]m,, < 20 ruTorr and [Cl2S01. <2 mTorr) means that quenching Of CH31-Cl 

fluorescence rnust be solely attributed to collisional deactivation of the adduct excited state by 

N2. Fig. 5.4-10 displays the generated plot of kf against [N21. The bimolecular quenching rate 

coefficient of the CH31-Cl excited state by N2 at 296 K is thus evaluated to be (1.28 :t0.24) x 
10711 cn? n-ioleculd-ls-1 for an excitation wavelength of 360.57 rum The zero-pressure lifetime of 
the CH31-Cl adduct excited state (i. e. 1/(Af + Ap)), at an energy of 360.57 mn above the ground 
state, is evaluated to be (28 ± 3) ns. This' places a lower limit to the natural radiative lifetime, 

T,. d, of 28 ns. However, the relatively short lifetime of the CH31-Cl adduct excited state at zero 

pressure may be indicative that predissociation is non-negligible. 
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Fig. 5.4-10 - Plot of the inverse fluorescence lifetime of the CH31-Cl adduct, kf, against [N21 
for an excitation wavelength of 360.57 nm. From the linear fit, k(N2,296 K) = (1.28 :t0.24) 
x 10'11 cn? moleculO"9*1 and (Ar + Ap) = (3.61 ± 0.45 )xW s"'. 

As the pressure dependence of the CH31-Cl dispersed fluorescence spectrum may be 
indicative of VEr in the adduct excited state, the mechanism for fluorescence quenching may 
be vibrational relaxation to states which lie close to the potential energy surface of a repulsive 

electronic state (that crosses the potential energy surface of the bound CH31-Cl electronic state 
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at relatively low vibrational levels) and results in the dissociation of the CH31-Cl adduct. This 

hypothesis could be tested by measuring the quenching rate coefficient, and zero pressure 

lifetime, of the CH31-Cl excited state as a function of excitation wavelength (i. e. if the 

postulated mechanism is correct, - the quenching rate coefficient and zero pressure lifetime 

should decrease and increase respectively with increasing excitation energy). - 

5.4.4 Discussion 

The LIF excitation spectrum of the CH31-Cl adduct has been reported for the first time. 

The chloro-iodomethane adduct is observed to fluoresce strongly over the entire investigated 

wavelength range of 345 - 375 nm- The similarity in the LIF spectra at 204 and 296 K indicates 

that the adduct is excited from a thernialised groundstate in 100 Torr of N2 diluent. Two 

regularly spaced structural components of the LIF spectra were identified with energy spacing 

of (40. t 10) cmý' and (150: t 20) cmý' and may correspond to the lowest vibrational frequencies 

of the excited and ground electronic states of the CH31-CI adduct respectively. The origin of the 

electronic transition responsible for the observed fluorescence is tentatively assigned at - 370 

nm. Absorption of the CH3I-CI adduct over the wavelength range investigated in this study has 

not been previously reported and the experimental observations do not agree with recent 

theoretical calculations 20 of the energies of the electronic states of the CH31-Cl adduct, or the 

probability of transitions between them The LIF spectrum recorded in this work requires 

assignment by refined theoretical calculations and further experiment. The adduct is now 
known to absorb over an extensive wavelength range (- 340 - 540 nm) and the LIF spectrum of 
CH31-0 should be recorded over as wider wavelength range as experimentally possible to 

further probe the electronic structure of this molecule. The pressure dependence of the LIF 

spectrum should also be investigated. A high resolution study of the structural components of 

the LIF spectrum at low temperature should be performed in order to more accurately determine 

the spectroscopic constants of the CH3I-Cl adduct. 
The dispersed fluorescence spectrum of CH3I-Cl is also reported. The fluorescence 

intensity increases from the excitation wavelength up to - 430 nm, where an intense 

fluorescence peak is observed- The 430 mn fluorescence peak has a sharp cut off wavelength of 

- 445 nra, beyond which only weak fluorescence is observed- Essentially no. CH3I-CI 

fluorescence is observed at wavelengths longer than - 500 nin. The dispersed fluorescence 

spectrum is pressure dependent with enhanced fluorescence intensity at shorter wavelengths at 

low pressure, possibly indicating the occurrence of vibrational energy transfer in the excited 

state of the adduct. No discernible difference in the dispersed fluorescence spectrum was 

observed in moving from an excitation wavelength of - 360 nm to - 350 nra. The most likely 

mechanism of CHýI-Cl fluorescence is resonant fluorescence, of the electronic transition excited 
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by the laser, to highly excited vibrational levels in the adduct groundstate. The apparent cut off 

wavelength (- 445 nm) of the intense fluorescence peak probably con, ponds to the difference 

in energy between the ground vibrational level of the electronically excited state and the 

dissociation limit of the ground electronic state. To further probe the electronic transitions of 
CH31-Cl, the dispersed fluorescence spectrum should be recorded over a greater spectral region 
for an extensive range of excitation wavelengths and pressures. 'Me dispersed fluorescence of 
CH31-Cl should be recorded under higher resolution than the present study (- 5 Mn FWIlM) to 
identify any structural components of the spectrum. 

Ile birmlecular quenching rate coefficient for the excited state of C1131-Cl by Nz, 

initially populated at - 360 run above the ground state, has been directly measured by 

fluorescence lifetime measurements to be, k= (1.28. t 0.24) x Iff" crAwlecule-'s-1 at 296 Y, 

The zero pressure lifetime of the excited state is relatively short 1(28 ± 3) ns], possibly 
indicating the influence of predissociation. Ile mechanism of excited state quenching probably 
involves vibrational energy transfer, possibly resulting in interaction with repulsive electronic 
states of CHJ-Cl. For a more detailed investigation, quenching rate coefficients and the zero 
pressure lifetime of the CH31-Cl adduct excited state should be studied as a function of 
excitation energy and for a variety of quenchers. 

5.5 Reaction Kinetics of the CH212 + Cl Reaction 

In the introduction it was discussed that the reaction of chloroiodomethane with Cl 

atoms is known to produce ICI and CH21 with an effective 100 % yield. Table 5.5-1 lists the 

standard enthalpies of reaction, A11,019g, for the fomiation of either TICI or ICI (and their co 
products) from the reaction of Cl atoms with CH-31, CH21CI and C1121z. Thus we can see thatý 
while the ICI forming channel is inaccessible for the reaction Of C1131 + C1. this reaction 
pathway becomes energetically accessible for the reaction of chlorine atoms with both 

chloroiodomethane and diiodomethane. Further, there are large errors associated with the 

enthalpies of reaction for the HCl forming channel of the C1121CI and C11212 reactions with CI 
(due to the indirect methods of obtaining the enthalpies of formation of CHICI and C1112). 
Ilerefore, the enthalpies of reaction for the HCl and ICI product channels may be much closer 
to one another than indicated. As ICI is known to be the exclusive reaction product of the Cl + 
CH21CI reaction"'25, a significant ICI yield may therefore be expected for the reaction of 
diiodomethane with atomic chlorine. ICI has been detected as a product of the Cl + C11212 

reaction in a reactive scattering stud?. 
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lodoalkane WIO s(HCI) All 0 
r. " r, 298 

OCD 

CH31 2.3 28.4 
CH21CI 

-8.7 6.4 
CH212 

-7.4 8.3 

Table 5.5-1 - Reaction enthalpies (kJ mor') for the formation'of HCI / ICI from the 
reaction of relevant alkyl iodides with atomic chlorine at 298 K. The enthalpies are 
calculated from the known standard enthalpies of formation, A110,29g, of the various 

products and reactants3e. No experimental determinations of AHO. 298 for CHICI (CH21CI 

+ CI - HCI + CHICI) or CH12 (CH212 + CI ---b, HCI + CH12) are reported in the literature. 
All 0 

.f . 
r. 298 (CHICI) has been theoretically calculated to be 212 kj morl 

2s. AIIO, 298'(CH12) has 

been estimated by extrapolating a plot of A110.298 (CH2X) against A110,298 (CI-IX2) for F, 

CI and Br, yielding a value for AHfo. 298 (CHI2) of (324.2: t 188.2) kj mor'. 

5.5.1 Reaction Kinetics of CH212 + Cl at - 206 K 

Similarly to the CH31 + CI investigation, the reaction Idnetics of the CH212 + CI reaction 

were studied between 10 - 500 Torr total pressure (N2) at - 206 K and by monitoring the 

temporal evolution of the ICH21-Cl adduct by LIF (, ý, = 365.57 nrn). At low temperature the 

data were analysed using equation 5.3-2. Note that whether the reaction mechanism proceeds to 

HCI or ICI products is irrelevant if we assume that both the bimolecular reaction channel and 

adduct dissociation are negligible at low temperature. Fig. 5.5-1 displays some kinetic traces of 

the CH212 adduct recorded over different ranges of At. The biexponential function, E. 5.3-2 was 
found to satisfactorily fit the experimental data and, similarly to the CHýI-Cl adduct LIF signal, 

a small, positive baseline deviation was observed at large At. The rate of formation of the 
ICH21-0 adduct, in the reaction of diiodomethane with Cl, was found to be pressuredependent. 
Fig. 5.5-2 displays bimolecular plots of k. ' against [CH2121. 
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Fig. 5.5-1 Experimental kinetic traces of the ICH21-Cl adduct and their respective fits to 
E. 5.3-2. The residuals of the fits to the data are given by the solid green line. 
Experimental conditions: T= 203.8 K, P= 100.2 Torr, [Cl2SOI = 1.56 x 1013 molecule cm, 3, 

K-112121 = 7.90 x 1013 molecule Cmw3' [N21 = balance, F=4.2 x 1015 photons CM-2, 
A,, = M5.57 nm. 
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Fig. 5.5-2 - Bimolecular plots for the reaction of CI + CH212. Black: T= 200.0 K, 
P= 10.3'1'orr. Red: T= 201.9 K, P= 69.5 Torr. Green: T= 216.2 K, P= 248.3 Torr. Other 
experimental conditions are given in Table 5.5-2. 
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As can be seen in Fig. 5.5-2, all bimolecular plots were observed to be linear. Although the 

experimental scatter was relatively large, no systematic dependence on pressure was observed in 

the bimolecular y-axis intercepts, with an average value of (740 ± 767) s-1. The larger average 
intercept value, relative to the C143I + Cl data, may be indicative that the Cl atom loss is 

dependent on [02SOI (as higher C12SO concentrations were employed in the CH212 study). The 

experimental scatter was greater in this study compared with that of CH31 + Cl, due to the 

weaker fluorescence of the ICH21-Cl adduct and the collection of a fewer number of data points. 

Diiodomethane concentrations had to be kept relatively low as the iodide was observed to 

condense (which could -be seen in the form of liquid deposits on the cell windows) at 

concentrations above -IX 1014 molecule Cmw3 . Table 5.5-2 lists all determinations of k. 

obtained in this study along with pertinent experimental conditions. 

T p Clo CH212 k. 

200.0 ý . 10.3. -0.75 80.5 12.3 ±4.2 
200.2 20.1 0.83 98.7 21.0 ± 11.9 

200.4 39.8 0.44 75.1 29.2 ± 4.6 

201.9 69.5 0.45 73.6 30.9 ± 5.4 

203.8 100.2 0.45 79.3 48.6± 10.7 

216.2 248.3 0.42 75.3 57.6± 7.6 

215.9 496.7 0.85 75.2 60.4 ± 21.9 

Table 5.5-2 - Kinetic data obtained in this study of the CH212 + C1 reaction at low 
temperature. The experimental conditions shown include: T (K), P (Torr), estimated 
Initial CI atom concentrations and range of CH212 concentrations employed (1012 molecule 
cm7), and determined association rate coefficients k. (10-12 cn? molecule"9*1). 

From the data in Table 5.5-2, it can be seen that adduct formation is significantly faster in the 

reaction of CH212 + CI than CH31 + Cl. The different reaction kinetics observed is conclusive 
evidence that we are monitoring the LIF of the ICH21-Cl adduct, rather then the same species 
monitored in the reaction of C1131 + Cl. The higher rate coefficient would seem to be an 
intuitive result, as a diiodomethane molecule presumably has two sites where adduct formation 

can occur (at either I atom) thus reducing the influence of steric factors. At - 206 K, the 
reaction of diiodomethane with atomic chlorine shows a significant pressure dependence. This 

result is in agreement with the reaction kinetics of CH31 + CI but I in disagreement with the 
reaction kinetics of CH2ICI + Cl, where a pressure independent rate coefficient is observed 
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(with a negative'temperature dependence)23 -25. Fig. 5.5-3 shows a plot of k. against total 

pressure. 
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Fig. 5.5-3 - Pressure dependence of the CI-1212 + Cl reaction at - 206 K. The solid black 
line Is a fit of E. 5.3-7 to the data. 

From the fit of E. 3.5-7 to the experimental data the following parameters are obtained: 

ko (3.6 4.1) x1e ciiPnwlculä-2s-1 
L (7.0 1.1) x 10711 cn? molrculä-ls-1 
E, = 0.80 ± 0.57 

Mius the rate cocfficicnt at the high pressure limit is approximately twice as high for the 

reaction Of C11212 + Cl than that for CH31 + Cl. At 206 K and 50 Torr, the rate coefficient for 

the reaction of C1121CI + Cl is reported as (11.4 ± 0.3) x 10-11 cn? moleculd"s-1 23, Le. 

significantly higher than the high pressure limit of either of the other reactions. This could be 

interpreted as evidence for the reaction Of CH212 + Cl proceeding via the same mechanism as 
C1131 + Cl- However, this hypothesis will be disproved in due course, by showing that the 

reaction Of C11212 + Cl would appear to progress via a mechanism which lies somewhere 
between the two different mechanisms of the reactions of CH31 and CH21CI with Cl. 

As was the case for, the reaction kinetics of CH3I-Cl, the'decay rate of the ICH21-Cl 

adduct, kj., was observed to increase with the concentration, of the. iodide.. 
_ 

The ayerage 

effective biniolecular rate coefficient for the reaction of the ICH21-Cl adduct with CH212 was 
found to be, krr = (3.11 t 2.42) x 10-12 crn7molecule-'s-1, and independent of pressure. Applying 

equation 5.3-8 to the kl,. data returns a rate coefficient for reaction of the adduct with CH21 or I 
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radicals of, k(CH21 1 1) --: (4.9 ± 3.9) x 10-10 CM3MOlecule-'s-1. The large error reflects the 

relatively high degree of experimental scatter. Taking the large uncertainty into account, the 

derived value for k(CH21 11) is in reasonable agreement with that of k(CH3 / 1), determined in 

section 5.3.2.13. The theoretical calculations 16,17,20,21,25 of the various RI-Cl adducts show that 

their structure and bond enthalpies are similar and there is no obvious reason, therefore, why the 

ICH21-Cl adduct should react more rapidly with I radicals (or CH21 radicals) than the CH31-Cl 

adduct, consistent with the observations here No systematic pressure dependence was observed 

to the intercepts of the bimolecular plots of kl,,. against [CH2121, with an average value of (3 10 ± 

197) s-1. This larger value obtained than in the CH31 + Cl experiments is likely to reflect the 

higher concentrations Of C12SO employed in the CH212 study. 
Fig. 5.5-4 shows a plot of the experimental peak ICH21-Cl LIF signal as a function of 

[CH2121 (normalised to unity for the highest diiodomethane concentration) at two different total 

pressures. Also included are model reproductions of the peak ICH21-Cl concentrations. The 

model is essentially the same as that described in section 6.3.2. B. In the model, the rate 

coefficient for adduct formation, k, is adjusted to the appropriate value determined in this study, 
kn is altered to 740 s-1 (the average intercept value of the bimolecular plots), and the adduct- 
radical reaction rate coefficients are left unaltered to that of the CH31-Cl values. The model 

assumes no adduct dissociation or bimolecular reaction Of CH212 + Cl- 
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Fig. 5.54 - ICH21-Cl yield plots for the reaction of CH212 with CI at 100 Torr (top panel) 
and 20 Torr at - 206 K. The black squares represent the experimental data points (with 
2cy uncertainty) and the model calculations are represented by the red circles. 

As can be seen from Fig. 5.5-4, there is reasonable agreement between the experimental and 
modelled yields. However, the model values tend to slightly overestimate the loss of ICH2I-Cl, 
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particularly at lower ICH2121. This is indicative that the loss processes are overestimated in the 

model. It is most likely that the relatively high k(-, value of 740 s-1 is responsible for this result. 

'I'lic experimental ICH21-Cl yields, in conjunction with the modeling exercise, demonstrate that 

dissociation of the ICH21-Cl adduct is negligible at low temperature (- 206 K). 

Experiments performed with, and without, up to -2 Torr Of 02 showed that the ICH21- 

CI adduct does not react with molecular oxygen, sirnilarly to the CH31-Cl and other 

chloroalkyliodide adducts 21 
. 

5.5.2 Reaction Kinetics Of CH212 + Cl at 2% K and 100 Torr 

Ilie temporal profile of the lCH2l-Cl adduct was deterynined as a function of 

diiodomelliane concentration at 100 Torr total pressure (N2) and 296 K. The data were analysed 

using E. 5.3-5 and the resulting plot of (A, +11-) against JCH2121 is displayed in Fig. 5.5-5. 
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Fig. 5.5-5 - Plot of against diiodomethane concentration (top panel) for the 
reaction Of C11212 + Cl at 296 K and 100 Torr. From the linear fit: -m = (9.98 3.59) x 10- 
11 cm 3 molecule"s", -c = (15090 ± 2040) s". Experimental conditions: A[CH21121 7.59 x 1013 
Molecule CM, 3 (A[CH21111 = 5.46 x 1012 molecule Cnf3), [C12SO1 = 1.05 x 1013 molecule CM, 3 

([CISO] = 3.03 x 1012 molecule cm-3), [N21 = balance, F=4.27 x 1016 photons CM-2,4-- = 
365.57 nm. The bottom panel shows a plot of A, as a function of [CH21121 along with model 
prediction% (explained below) assuming adduct dissociation to CH212 + C, (blue) or ICI + 
CI 121 (red) 

. 

As no previous kinetic studies of the CH212 + Cl reaction are reported in the existing 

literature. the rate coefficients for the separate processes occurring within the chemical system 

cannot be deconvoltued, as no information can be obtained about the rate of the birnolecular 

reaction at 296 K, producing HCI + CH12 (or I+ CH21CI - see below). However, assurning that 
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the ICH21-Cl adduct reacts- with radicals at the same rate as the CH31-CI adduct, we can 

conclude that the sum of the association and bimolecular reaction rate coefficients at 296 K is 

(7.42. t 2.67) x 10-11 cm3molecul&"s-1 in 100 Torr of N2. - This result implies that the bimolecular 

rate coefficient is the predominant component and that HCI formation is the major reaction 

channel at room temperature. At - 206 K, where we assumed the bimolecular reaction to be of 

negligible importance, the rate coefficient for the association reaction at 100 Torr was found to 

be (4.86 ± 1.07) x 10-11 cm3inolecule-s-1. As the association reaction was found to be pressure 

dependent, the rate coefficient, k,, is also expected to have a negative temperature dependence. 

Hence, the enhanced total rate coefficient for the reaction of CH2I2 + Cl at 296 K must be due to 

a greater extent of bimolecular reaction. If we assume that the ratio of k. at 204 and 296 K in 

100 Torr of N2 for the CH212 + Cl reaction is, the same as that for the CH31 + Cl reaction 
(k. (296 K)/k. (204 K) = 0.44) then we can estimate the rate coefficient for the bimolecular 

reaction as 5.3 x 10-11 cin3molecule-'s-1 at 296 K Enami et. aL 20 predict that the ICH2I-Cl 

adduct is not formed at temperatures beyond (315 ± 12) K due to enhanced biniolecular 

reaction of CH212 + Cl, as inferred from the decrease in ICH21-Cl absorption with increasing 

temperature. However, although ongoing IR diode laser experiments in our laboratory have 

directly detected HCI as a reaction product of the CH212 + Cl reaction at room temperature, 

the yield appears to be small and the products of the bimolecular reaction channel may be 

I+ CH21CI (A11,029g =- 125.4 U mol-1). The above observations could be interpreted as 

indicating that the CH212 + Cl reaction proceeds via a similar mechanism to C1131 + CI at room 
temperature: bimolecular reaction (to form I+ CH21CI via direct halogen atom substitution, 

rather than H-atoin abstraction) and reversible adduct formation. 

The total dissociation rate, A; &., of the ICH21-Cl adduct at 296 K and in 100 Torr N2 can 
be evaluated from the intercept of the linear fit to the data presented in Fig. 5.5-5. After 

correction for reaction of the adduct with CISO (assuming that this reaction proceeds at the 

same rate determined in section 5.3.2.13), loss of CI atoms in the absence of CH212, and diffusion 

of the adduct, we obtain, kS. = (13200 ±'1800) s-1. However, the mechanism'and products of 
dissociation are initially unclear. 'It can be thought unlikely that the adduct decomposes to form 
HCI + CH17. as this dissociation route would not appear to be energetically accessible for 
dissociation of the CH31-0 or CH2CII-CI adducts - rather the biniolecular reaction channel to 
HCI formation is favoured- Therefore, by analogy with the CH3I-Cl and CH2CII-CI adducts, 
there would appear to be two potential dissociation channels: i) back to reactants, CH212 + C11 

or ii) onto products, ICI + CH21. The correct mechanism of adduct dissociation can be 
determined by a simple modeling exercise and individual examination of the parameters, A+ and 
A, returned from the fitting procedure of the experimental data to E. 5.3-5. If dissociation of the 
adduct regenerates reactants, the formation and removal of ICH21-Cl are intrinsically coupled 
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and the experimental data must be analysed using the kinetic scheme represented by E. 5.3-5. 

However, if adduct dissociation generates products of ICI + CH21, Ahen adduct formation and 

removal kinetics can be treated as independent processes - thus the experimental data can 

effectively be fitted to E. 5.3-2. In this case, P2 would. be equal to the sum of the 

(pscudo-)first-order rate coefficients, k., kc, and kbi, and P3 would be equal to the sum of the 

(pseudo-)first-order rate coefficients, Aýn., kciso, kj.. and kd. Tberefore, plotting P2 against 
IC112121 would yield a straight line with slope, k. + kbi and intercept, ka. Plotting T3 against 
1012121 would yield a straight line with intercept, kd,. + kaso + kd and slope, kff (the effective 

rate cocil'icient for the reaction of the adduct with C11212, due to reaction with photolysis 

products). To investigate which mechanism should be employed to analyse the data (and hence 

determine the correct adduct dissociation mechanism), the FACSIMILE model described in 

section 5.3.3 was used to simulate kinetic traces for the ICH21-Cl adduct, under the exact 

experimental conditions of the 296 K investigation, for both scenarios. In the model, adduct 
formation, kf ..... = k, + kw, is given a rate coefficient of 6.0 x 10-11 cm3moleculd-s" (see below), 

ka = 740 s", krf = 2.56 x 1911 crr? ffioleculd"s", kciso = 3.66 x 10-10 cm3molecule"s"' and 
kd = 20 s". Note that krf and kaso are evaluated using the room temperature rate coefficients 
determined for the C1131-Cl adduct-radical reactions determined in section 5.3.3. Adduct 

dissociation, ka., is given the value 13200 s-1 and kinetic traces. are simulated for each 
dissociation channel, i. e. adduct -+ C11212 + Cl, or adduct --I. ICI + CH21. 'Me returned model 

output kinetic traces are then fitted to E. 5.3-5 to return values for A+ and A- for'each set of 

experimental conditions. In the bottom panel of Fig. 5.5-5, the experimental values of A+ are 

plotted against IC112121 along with the returned model values for the two different dissociation 

mechanisms (reactants = blue, products = red). Thus it can be seen that the experimental data fit 

the model output extremely well when adduct dissociation yields ICI + CH21 at 100 %, 

providing conclusive evidence that the fate of the ICH21-Cl adduct at 296 K and 100 Torr N2 is 

predominantly (if not exclusively) dissociation to ICI + C1121 (or any products which are not 
C11212+Cl). In light of the modeling implications, the experimental data were reanalysed using 
E. 5.3-2. Tbe adduct growth, 12, and removal, P3, rates are plotte&against [CH2121 in 
Fig. 5.5-6. From the linear fit of n against [CII212], we obtain: ka = (336 ± 597) s-1, 
(k, + km) = (6.0 ± 1.1) x 10711 cdmolecuk'lel. From the linear fit of P3 against [CH2121: 
k&s = (13600 ± 1800) s" (once corrected for reaction of the adduct with CISO) and 
k, rf = (4.0 ± 3.3) x 10". 1 cdmoiecuiels-'. If we convert kff into k(CH21 / 1) by applying E. 5.3-8 

we obtain a rate cocfficient of (5.9 ± 4.8) x 10"0 ctr? molecul6'1s-'. This value is in good 
agreement with that obtained at low temperature (4.9 ± 3.9) x 10-10 cm3molecuWls". 

Fig. 5.5-7 displays a plot of the experimental IC1121-Cl peak LIF signal as a function of 
[012121 (normalised to unity for the highest C11212 concentration), along with'the normalis ed II 
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peak adduct concentrations returned from the model outlined above. The significant increase in 

adduct yield with increasing diiodomethane concentration is indicative of the relatively large 

degree of adduct dissociation, and the reasonable agreement between experiment and model 

gives confidence that the chemistry occurring within the reaction system is well understood. 
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Fig. 5.5-6 - Bimolecular plots for ICH2I-Cl adduct formation (top panel) and removal at 
2% K and 100 Torr in the CH212 + CI system. From the linear rits: m= (6.01 ± 1.1) (top 
panel) and (3.98 ± 3.25) x 10-11 crWmolecule-s-', c= (336 ± 597) (top panel) and 
(14760 ± 1850) s-1. 

1.2 

10 
U) 

0.8 

.6 co 0.6 

0.4 

0.2 

0ý0 2 Ox1O" 4. OxlO'3 6. Ox 10" 8.0xio" . 
OX, 014 

[CH 2 
ij / molecule cm-' 

Fig. 5.5-7 - ICH21-Cl yield plot for the reaction of CH212 with Cl at 100 Torr and 2% K. 
The black squares represent the experimental data points (with 2or uncertainty). The 
model calculations are represented by the red circles. 
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7be 296 K study of the reaction of CH212 + CI in 100 Torr of N2 haS enabled the 

mechanism of reaction to be qualitatively determinedL The reaction proceeds via two 

independent reaction channels - i) bimolecular reaction (probably forning I+ CH21CI), and 

ii) ICH21-Cl adduct formation. At 296 K and 100 Torr (N2), the sum of the two processes is 

(6.0 :t1.1) x 10711 cx2moleculd"s-1, with the birmlecular channel expected to account for at 

least half of the reactivity. Ile unimolecular rate coefficient for adduct dissociation at 296 K 

and 100 Torr N2 was found to be (13600 :t 1800) s-1, and the products are most likely to be 

ICI + CH2I- 

5.5.3 Discussion 

The kinetics of the reaction of diiodomethane with atomic chlorine have been 

investigated for the first time, by LIF detection of the ICH21-Cl adduct. At - 206 K, the reaction 

is pressure dependent and probably proceeds exclusively via irreversible ICH21-Cl formation, by 

analogy with the CH31 + CI reaction. The ICH21-0 adduct is stabilised at low temperature and 

does not undergo significant dissociation. At - 206 K, the high pressure rate coefficient for 

ICH21-Cl adduct formation is approximately twice as large as that for the formation of C1131-Cl 

in the reaction of methyl iodide with atomic chlorine. 
At room temperature, the CH212 + CI reaction would appear to proceed via two 

competing reaction channels: i) bimolecular reaction (possibly forming I+ C11210), and 

ii) association reaction to form ICH21-Cl. Ile combined rate coefficients of these processes at 

296 K and in 100 Torr N2 is found to be (6.0 t 1.1) x 1911 cn? rmleculd"s-1, and the 

birnolecular reaction channel probably accounts for more than half of the total reactivity. The 

adduct undergoes substantial unimolecular dissociation (- 13600sý' in 100 Torr N2), probably 

yielding ICI + CH21 on therinodynarnic grounds and in analogy to decomposition of the CH2CII- 

Cl adduct. It would appear that ICI production from CH31-Cl dissociation is too cndothermic 

and that dissociation to CH31 + CI is the only energetically allowed pathway at room 

temperature. However, in accord with the reaction mechanism of the CH31 + Cl reaction at 

room temperature, the biniolecular reaction channel of the CH212 + CI reaction is an important 

process in the overall reaction of diiodomethane with chlorine atoms at 296 K. In summary, the 

296 K reaction mechanism for the reaction Of CH212 + Cl would appear to lie somewhere 

between that of the CH31 + CI and CH21CI + Cl reactions - the bimolecular reaction channel 

must be sufficiently exothermic to be competitive to adduct formation. 

Although the reaction of diiodomethane with 0 will be of no atmospheric significance, 

due to the very short photolysis lifetime Of CH212. the information obtained in this study 

provides insight into the reaction mechanisms of the alkyl iodides with atomic chlorine. 

Ongoing infrared diode laser absorption experiments in our laboratory will determine the 
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Arrhenius parameters for the bimolecular reaction of CH212 + CI -+ products and determine the 

HCI yield from the reaction as a function of temperature. The adduct dissociation mechanism 

could be verified via ICI detection in the reaction system. The detection of I atoms would also 

provide useful information. 

5.6 Spectroscopic Investigation of the ICH21-Cl Adduct at 296 K 

5.6.1 LIF Excitation Spectrum 

The LIF excitation spectrm of the ICH21-Cl adduct, recorded at 296 K and 100 Torr 

total pressure N2, is displayed in Fig. 5.6-1. 
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0.4+- 
345 

Fig. 5.6-1 - LIF spectra of the ICH21-Cl adduct aU296 K. Experimental conditions: 
P= 100 Torr, [Cl2SO1 = 2.1 x'10" molecule cne, [CH2121 = 4.2 x '1013 molecule cmý, 
[N21 = balance, At = 150 ps, F=7.61 x 1016 photons Cmw2. 

The spectrum is similar to that of the CH31-Cl adduct, both in its continuous nature and 
structural components. However, the maximum fluorescence intensity of the ICH21-Cl adduct is 

shifted to slightly longer wavelengths than was observed for the CH3I-CI adduct (cf. Figs. 5.6-1 

and 5.4-1). This feature may be consistent with the presence of a second, electron rich, iodine 

atom in the ICH21-0 adduct. As observed for the CH3I-CI adduct, a second peak in the 
ICH21-Cl LIF spectrum was observed at an excitation wavelength of - 340 nni 
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5.6.2 Dispersed Fluorescence of the ICIIII-Cl Adduct 

Fig. 5.6-2 displays the dispersed fluorescence spectrum of the IC1121-Cl adduct at 296 K 

and 100 Torr total pressure N2. T'he spectrum is essentially identical to that of the C1131-Cl 

adduct. In agreement with the LIF spectra, the peak fluorescence intensity from ICIIJI-ýO may 

be slightly red-shifted (< 5 nm) relative to that of the CH31-Cl adduct (cf. fluorescence intensity 

at - 440 run in Figs. 5.6-2 and 5.4-6), although this feature cannot be quantitatively assigned 

under the low resolution of the monochrormtor. 
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Fig. 5.0-2 - Dispersed fluorescence spectra of the IC1121-Cl adduct at 2% K and 100 Torr. 
Experimental conditions: [C12SO1 = 3.2 x 10t3 molecule cre , [CI 12121 = 4.2 x 10t3 molecule 

Cm&2' , cm73 9, [N2] = balance, At = 100 gs, F=7.6 x 10" photons 1W = 365.57 nm. The data 
are corrected for the probe laser background and are relative to an Instrumental signal, In 
the absence of fluorescence, of zero. 

The observed dispersed fluorescence could unambiguously be assigned to originate from the 
ICH21-Cl adduct by recording kinetic traces via the monochromator, and comparing the 

observed temporal profile of the fluorescing species with the reaction kinetics determined in 

section 5.5.2. No change in the frequency of the peak fluorescence intensity of the IC1121-Cl 

adduct was observed in altering the excitation wavelength from 365.57 to 350.57 run 
Presumably the structure of the CH31-Cl and ICH21-Cl adducts is very similar (in agrecment 

with theoretical calculations of a number of chloro-alkyl iodide adducts"""), as are the nature 

of their electronic states, and the energies of the transitions occurring between them. 
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5.63 Zero Pressure Lifetime and Quenching Measurements of the ICH21-Cl Adduct, 

Excited State 

The fluorescence lifetime of the ICH21-Cl adduct was measured as a function of N2 

pressure. The data were analysed in the same procedure described in section 5,43. Fig. 5.6-3 

displays a plot of the ICH21-Cl fluorescence decay rate, kf, as a function of [N2]- 

1.2xle 

1. Oxio, 

8. Oxio, ' 

6. Oxio, Co 

4. OX 1 

2. Oxle 

[N) / molecule cm' 

Fig. 5.6-3 - Plot of the Inverse fluorescence lifetime of the ICH21-Cl adduct, kf, against [N2] 
for an excitation wavelength of 375.57 nm. From the linear fit, k(N2,296 K) = (1.91: t- O-W 
x 1W"crT? moleculels" and (Af +Ap) = (3.45: t-0.71 )x 167s". 

From the linear fit, the bimolecular quenching rate coeff-icient of the ICH21-Cl excited state by 

N2, at 296 K is thus evaluated to be, k= (1.91 t 0.36) x 10-11 cmýmoleculeýls-' for an excitation 

wavelength of 375.57 nnL The zero pressure lifetime of the ICH21-Cl adduct excited state 
(Le- II(Af + Ap)), at an energy of 375.57 mm above the ground sI tate, is evaluated to be (29 4- 6) 

ns. Thus the rate of quenching of ICH21-Cl fluorescence would appear to be more rapid than 

for CH31-Cl. As the electronic structure, and hence excited states, of the two adducts are 

expected to be very similar, the reason for this observation could be due to the difference in 

excitation wavelength employed in the two experiments. In section 5.4.3 it was proposed that 

the mechanism for quenching may be VET to low lying vibrational states where predissociation 
is more predominant. Hence, at longer excitation wavelengths, the population of lower lying 

vibrational levels in the adduct excited state may result in the more efficient VET to 

predissociative states. However, the zero pressure lifetimes of the CH31-Cl and ICH21-cl 

adducts were effectively found to be the same. A more thorough investigation of the excitation 
wavelength dependence (and temperature dependence) of the quenching rate of both adducts is 

required in order to fully determine the mechanism of excited state quenching by N2. 
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5.6.4 Discussion 

As for the CH31-Cl adduct, the LIF spectrum, dispersed fluorescence spectrum and 

measurements of the fluorescence lifetime of the ICH21-0 adduct have been reported for the 

first tinr,. The ICH21-Cl LIF spectrum over the 345 - 375 wn excitation range is generally very 

similar to that of the CH31-Cl adduct, with the exception of a slightly greater amount of 

fluorescence intensity towards the red-end of the spectrum. This observation is perhaps 

consistent with the presence of a second iodine atom in the ICH2.1-ACI adduct, lowering the 

energy of corresponding transitions. 

'Me dispersed fluorescence spectrum of the ICH21-Cl adduct, following the 365.57 nm. 

excitation of the adduct in 100 Torr of N2 at 296 K was also found to be very similar in structure 

to that of the CH31-Cl adduct. Again, the ICH21-Cl dispersed fluorescence spectrum is perhaps 

slightly red-shifted (< 5 nm) to the CH31-Cl spectrum. 'Me similar nature of the spectra of the 

CH31-Cl and ICH21-Cl adducts indicates that the sarne electronic transitions are occurring within 

the molecules after laser excitation in the 345 - 375 nm region, and that the electronic structure 

of the two molecules is very similar. Iligh resolution (Le. as greater resolution as the continuum 

of adduct states will allow) dispersed fluorescence spectra of both adducts should be recorded in 

order to locate the precise origins of transitions occurring within the molecules, and any 
differences between the two. 

Ile fluorescence quenching rate of the ICH21-Cl excited state by N2, was n=sured at 296 

K. The quenching rate for the ICH21-Cl adduct after 375.57 nin laser excitation is - 50 % 

greater than that for the CH31-Cl adduct after 360.57 mn laser excitation. As the electronic 

structure of the two adducts is expected to be very similar, this may be indicative of quenching 

occurring via vibrational energy transfer to states which lie close to the location of a 

predissociative state as postulated in section 5.4.3. Further fluorescence lifetime measurements 

of both adducts are required to verify this hypothesis and to further probe the structure of the 

electronically excited states. 

5.7 Conclusions 

In this work, laser-induced fluorescence of the C1131-Cl and IC1121-Cl adducts has been 

reported for the first time. Fluorescence could be definitively assigned to the CI 131-Cl adduct by 

the close agreement of the reaction kinetics of the reaction of methyl iodide with atomic 

chlorine, determined in this study, with that of the previous literature. At -. 206 K, the reaction 

of CH31 + CI was found to proceed via irreversible adduct fortnation, in a pressure dependent 

association reaction mechanism. At room tcn74)erature, the C1131-Cl adduct is observed to 

undergo substantial dissociation, which can ahmst exclusively be assigned to reforming 
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reactants, CH31 + Cl, by comparison of this work with the previous literature. The CH31-Cl 

adduct has been demonstrated to react gas kinetically (or faster) with radical species. 

-Fluorescence could largely be assigned to the -ICH21-Cl adduct from the different reaction 

kinetics determined for the reaction of CH212 + Cl (to that of CH31 + Cl). No previous studies of 

the reaction of atomic chlorine with diiodomethane are reported in the literature. At - 206 K, 

'the reaction of CH212 + Cl probably proceeds largely via the same mechanism of CH3I + CI - 

Le. irreversible adduct formation in a pressure dependent association reaction. At room 

temperature, ICH21-Cl dissociation becomes important, and probably results in the formation of 

ICI + CH2I (rather than CH212 + Cl) as inferred from the reaction kinetics and, in analogy to 

dissociation of the C112CII-Cl adduct. The larger total rate coefficient for the reaction of CH212 

+ Cl at room temperature (as compared to - 206 K) suggests that the bimolecular reaction of 

diiodomethane with Cl (probably forming I+ CH210) is the major reaction channel at room 

temperature. The results of the kinetic investigation reported in this work show that the reaction 

of the alkyl iodides with atomic chlorine can progress via two independent mechanisms: i) 

bimolecular H-atom abstraction or halogen-atom substitution reactions, and ii) association 

reaction to form chloro-iodoalkane adducts. Neither reaction investigated in this work is 

expected to have any atmospheric relevance due to the relatively low concentrations of Cl in the 

MBL and rapid solar photolysis of the alkyl iodides. 

The CH31-Cl and ICH21-Cl adducts exhibit continuous fluorescence over an excitation 

wavelength range of 345 - 375 mn. The LIF spectra display signs of vibrational structure and it 

is most likely that the electronic transitions occurring are originating in the thermal groundstate 

of the adducts. The LIF spectra reported in this work cannot be rationalised by recent 

theoretical calculations of the excited electronic states of CH3I-CI20. However, absorption of the 

CH31-Cl and ICH21-0 adducts has not previously been reported below 405 run and it has been 

shown in this work that the electronic transitions assigned to adduct absorption above 405 

run20-21 are incorrect. The dispersed fluorescence spectra of the CH3I-CI and ICH21-Cl adducts 

show that fluorescence is considerably red shifted to the excitation wavelength. The observed 

pressure dependence of the dispersed fluorescence spectra indicates that high vibrational levels 

of the adduct excited states are initially populated, which can then be quenched to lower 

i -o v ibrational levels via VET. The relatively sharp cut ff wavelength of adduct fluorescence at - 
445 nm probably corresponds to the difference in energy between the dissociation limit of the 

adduct groundstates and the ground vibrational level of the adduct excited states. 
Measurement of the fluorescence lifetime of the electronically excited adduct states shows 

that fluorescence quenching is rapid, and is probably preceded by VET. The zero pressure 
lifetime of the adducts is relatively short (- 30 ns) and may indicate the presence of 
predissociative states. The quenching rate coefficient may be dependent on the energy of the 
state initially populated by the laser excitation. 
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This work has provided a useful insight in to the reaction kinetics of the reaction of alkyl 
iodides with atomic chlorine and shown that halogen containing adducts can fluoresce with very 
high intensity. Important information has been obtained as to the electronic structure of the 
CH31-Cl and ICH21-Cl adductsl- at least at a qualitative level, providing a basis for future 

research into these interesting molecules at both an experimental and theoretical level. The 

intense fluorescence of the adducts observed in this study may offer a new method by which to 
investigate the reaction of halogen atorns with a number of iodine containing molecules. 
Further, the low detection limit (particularly for the CH31-Cl adduct) achievable by this 

technique could potentially lead to the development of an in silu field instrument for the 
detection of alkyl iodides in the atmosphere with high temporal resolution. 
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Ile temperature and pressure dependence of the rate coefficient for the reaction of iodine monoxide radicals with 
dimethyl sulfide (DMS), 10 + DMS -* I+ DMSO (1), was studied using laser induced fluorescence (LIF) to 
monitor the temporal profile of 10 following 351 nm photolysis of RI/DMS/NOZ/He (RI ý C, 131/CF31) 
mixtures. The study was performed over the range T= 296468 K yielding a positive activation energy and 
k, = (9.6 ± 8.8) x 10-12 expf-(1816 ± 397)/71. No dependence was observed on total pressure between 

4X 10-14CM3 5-300 Torr. The rate coefficient at 296 K was determined as (2.0 ± ((),:; ) molecule-' s-1, more than 
an order of magnitude smaller than a recent study34 but in reasonable agreement with the previous literature. 

Sn 

2 

1. Introduction 
Dimethyl sulfide (DMS, (CI13)2S) is the most abundant bio- 
genic form of sulfur emitted into the atmosphere. ' The atmos- 
pheric gas phase oxidation of sulfur compounds is thought to 
be an important process in the formation of aerosol particles 
and cloud condensation nuclei (CCN). I 4 DMS therefore ex- 
erts a potential influence over the radiative balance in the 
marine boundary layer QMBL) and the Earth's climate in 
general. In order to fully understand the marine sulfur cycle 
the oxidation pathways of DMS are key and remain an area 
where the current knowledge is lacking. 5,6 

The main gas phase oxidisers of DMS in the MBL are 0117 9 
(day time) and N0310 12 (night time). The recommended 
IUPAC values for the rate coefficients of these reactions at 
298 K are (6.5 ± 0.3) x 10-12 cm 3 molecule-' s-1 and (1.1 ± 
0.15) X 10-12 CM3 molecule-' s-1, respectively. 13 However, 
some studies'4-15 have shown that the removal rate of DMS in 
the marine atmosphere is too rapid to be explained simply by 
these sinks, indicating the presence of further gas phase 
oxidants. Ilie possibility of halogen chemistry as a missing 
sink has received significant attention and a recent modelling 
study has shown the reaction of BrO with DMS to be of 
atmospheric significance and highlighted the reaction between 
10 and DMS (1) as requiring further study: "' 

10 + C113SC113 
-* C113SOC113 +I 

Iodine monoxide is produced in the MBL by the reaction of 
ozone with I atoms, generated by the photolysis of biogenicaUy 
emitted organic iodo-compounds" and 12: 18 

1+ 03 --" 10 + 02 (2) 

Once formed, 10 can be photolysed reproducing I+ 03 (under 
atmospheric conditions), or undergo self-reaction or reaction 
with other trace species (1102, N02) propagating 03 depleting 
cycles. 19 Iodine oxides can also undergo heterogeneous uptake 
to aerosol particles and may be important for particle forma- 
tion in the MBL20 21 As well as affecting DMS oxidation, if 
sufficiently fast, reaction (1) could result in catalytic 03 
destruction via the formation of an I atom. The critical 
parameters required in order to assess the importance of 10 
upon DMS oxidation are the rate coefficient of reaction (1) 
under atmospheric conditions, and the concentration of 10 in 

ýo L, 0 
1A 
rl 
00 

the MBL. Hitherto 10 has exclusively been detected in the 
atmo 

, 
ýphere by differential optical absorption spectroscopy 

(DO S)23,24 with measured concentrations of up to 10 pptv 
(-2-5 x 108 molecule CM-3). '8,25 However, as the DOAS 
measurements are long path experiments, reported concentra- 
tions are typically averaged over km path lengths. Recent 
observations of high 12 concentrations's correlated with tidal 
height suggest that the concentration of 10 in the MBL may be 
much higher, and more localised in nature, than previously 
thought. 

The reaction of 10 with DMS has received significant 
experimental study. Tlie earliest investigations 26,27 found k, 
to be of the order of 10-11 CM3 molecule-' s-1, making 10 an 
important sink for DMS. However, a subsequent stud y28 
found the reaction to be almost three orders of magnitude 
slower (kl < 3.5 x 10-14 CM3 molecule-' s-1) than the 
previous determinations. A modelling study29 found better 
agreement with field data when using the lower value for ki. 
Several later experimental studies confirmed the lower 
value of k, 6,30 33 and the current IUPAC room temperature 
value is (13 ± 0.2) x 10-14 CM3 molecule-' S-1.13 The only 
one of these studies to investigate the pressure dependence 
of k, was that of Daykin and Wine2a who found no change 
in the rate coefficient over a pressure range of 40-300 Torr 
(M = N2/02/air). 'Me earliest high measurements of k, did 
not involve direct detection of 10, and are considered erro- 
neous due to secondary chemistry and heterogeneous reactions 
within the system- 13 It was generally accepted that 10 
and DMS did not react at a significant enough rate to couple 
the sulfur and iodine cycles in the MBL. However, a recent 
study of reaction (1) by cavity ring-down spectroscopy 
(CRDS)34 measured a room temperature rate coefficient, 
k, = (2.5 ± 0.2) x 10-13 CM3 molecule-' s-1, of more 
than an order of magnitude greater than the recommended 
value, and found both a pressure dependence and a 
negative activation energy, suggesting an association complex 
reaction mechanism. A value for k, of this magnitude indicates 
10 as a predominant sink for DMS in the MBL (as important 
as 011). Furthermore, a recent computational stud y35 of 
the reaction of the halogen oxides with DMS found reasonable 
agreement between calculated and experimental rate 
coefficients for CIO and BrO, but obtained a value for k, of 
1.5 X 10-11 cm3 molecule-' s-1, approximately three orders of 
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magnitude greater than the preferred experimental determina- 
tions. 

2. Experimental 
2.1. Apparatus 

Ile experimental arrangement consisted of a typical slow flow, 

pulsed-laser photolysis-laser-induced fluorescence system 
(PLP-LIF), similar to systems described elsewhere. 36,37 Ile 

reaction cell was a stainless steel vessel of -200 CM3 volume 
with a six port configuration; two on the vertical axis and four 

orthogonally arranged on the horizontal axis. All ports, other 
than that on the pumping axis, were covered with fused silica 
50 mm diameter windows and sealed with O-rings. Ile experi- 
ment required two laser systems, a Nd: YAG-pumped dye laser 
(Spectron Laser Systems, SL803 Nd: YAG laser/Sirah, Cobra 
Stretch dye laser) acting as the probe laser, and an excimer 
laser (Lambda Physik, LPX 100) for photolysis of precursors. 
The two horizontal axes of the reaction cell were used as the 

principal laser axes. The excimer beam was unfocused and 
passed directly through the reaction cell to a beam dump. An 
iris of -1 mm diameter aperture was placed over the probe 
beam entrance port, in order to improve the probe laser beam 

shape, and reduce the scatter of laser radiation inside the 

chamber. The reagent gas mixture was introduced into the 

upper vertical axis of the cell through stainless steel tubing 
(1/4" outer diameter), which was connected to a gas handling 
line, consisting of four calibrated mass flow controllers (MFC), 

a mixing manifold, and a rotary/diffusion vacuum pump 
combination (Leybold Vakuum, D8B/EdwaTds High Vacuum, 
E02). The gas handling line allowed preparation and purifica- 
tion of reagents. A second rotary/diffusion pump arrangement 
was attached at the lower vertical axis port of the reaction 
chamber and used to regulate cell pressure (in conjunction with 
the total gas flow rate) and remove reagent deposits on the cell 
walls between experiments. The base reaction cell pressure was 
< 10-5 Torr. The gas flow through the reaction cell was always 
such that the total chamber residence time is <1 s, and the 
photolysis region was replenished with fresh gas several times 
between laser shots. 

Radiation from fluorescing species was detected at the upper 
port of the vertical reaction cell axis. Ile fluorescence was 
imaged onto a photomultipher tube (PMT) (Hamamatsu, 
R928) by means of two plano-convex lenses (CVI Technical 
Optics Ltd., PL)CX-50.8-38.6-2.00), arranged at their optimum 
distance from both the laser excitation region and PMT. An 
appropriate colour glass filter (CVI Ltd., CG-GG495-2.00- 
2.0) was placed after the second lens, and prior to the PMT, to 
remove unwanted probe laser scattered light. The analogue 
signal from the PMT was sent to an oscilloscope (LeCroy, 
Waverunner LT262) and a gated integrator and boxcar aver- 
ager (Stanford Research Systems Inc., SR250). A digital-to- 
analogue converter transferred the boxcar signal to a PC for 
data analysis. Ile oscilloscope, boxcar, excimer laser and 
Nd: YAG laser were triggered at appropriate time intervals 
by a delay generator (SRS Inc., DG535) operating under 
computer control. The dye laser wavelength was controlled 
by PC. The reaction chamber could be electrically heated by 
several cartridge heaters, embedded into the main body of the 
cell, and regulated by a feedback mechanism controlled by a 
thermocouple in the cell. The reaction chamber pressure was 
measured by a 0-1000 Torr capacitance manometer (MKS 
instruments, 626A). 

2.2. Generation and detection of 10 
The title reaction (1) was studied by monitoring the temporal 
profile of 10 using LIF from the R, (2,0) bandhead of the 
A2 113/2 "- Xý113/2 electronic transition. Fig. I displays a typical 
scan of the (2,0) band of the A 2r13/2 4_. X2rj3/2 electronic 
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Fig. 1 Laser-excitation spectrum of the 10 A21713/2 +-- Xý1713,, (2,0) 
band, taken at 50 Torr total pressure and 296 K- The time delay 
between photolysis and probe Lýisers, At, was set at 50 ps. For clarity, 
only a limited assignment of the rotational transitions is given. The F2 
component of the electronic transition is missing, due to the large spiný 
orbit splitting of 10 ý>2000 cm-')! ' and the Q, manifold is of low 
intensity, typical of a 11-ýn transition. The R, bandhead, indicated by 
the arrow, was used for all kinetic measurements in this study. For the 
experimental resolution used, the T= 23,3.5 and 4.5 rotational lines 
are all excited by the laser in the R, bandhead. 

transition of 10. The excitation wavelength, i. e. at the (2,0) 
bandhead, was measured at 445.011 nm (vacuum wavelength, 
22 471.35 cm-1, Coherent WaveMaster) and the probe 
laser line width was estimated as 0.006 rum by comparison to 
a spectral simulation program. 38 The excitation wavelength 
(-5 mJ pulse-) was generated by pumping the dye laser 
(operating on Cournarin 2) with 355 nm radiation from the 
Nd: YAG laser. 10 radicals were generated by reaction of 0 
CP) atoms, produced by the 351 nin photolysis of N02, with 
either methyl iodide (CI 131) or trifluoromethyl iodide (CF31) in 
a lie buffer gas. 

A simplified reaction sequence is given below 

N02 + 351 nm --* NO +0 ep) (3) 

0 CP) + IU - 10 +R (4) 
0 VP) + C113SC113 -+ C113SO + all (5) 

10 + C' 13SCI 13 -+ Cl 13SOCI 13 +1 (1) 

Typical concentrations were IN02] = (1-2) x 1013 molecule 
CM-3, IR 1016 CM-3 '11 = (5-7) x molecule and [He] = balance. 
All concentrations are determined from the reaction chamber 
pressure, total gas flow rate and MFC settings. Based on laser 
fluence measurements (-3.5 x 1016 photons CM-2 pulse-' at 
351 nm), and the concentration and absorption cross-section of 
N02 (0'351 = 43 x 10-19 CM2 molecule- 1), 39 we estimate that 
1101. 

-: 5 10].,, :93.1 x 1011 molecule CM-3 under our 
experimental conditions. From this we derive an 10 detection 
limit for our apparatus, at the peak of the (2,0) bandhead, of 
-Ix 109 molecule CM-3 with no averaging of the fluorescence 
signal (i. e. for one laser shot). The concentration of N02 was 
deliberately kept low so as to avoid reaction between 10 and 
N02 (and impurities). As fluorescence from N02 is much 
longer lived than that from 10 (r <I ns), 40 the N02 contribu- 
tion to the fluorescence signal, following 445 mra excitation, 
could largely be distinguished from that of 10 by manipulation 
of the boxcar gate width, which was set at 50 ns and overlapped 
the probe laser pulse width (ie. where all 10 fluorescence 
occurred). 

With the exceptions of Ile (BOC Gases, 99.999 99%) and 
CF31 (Aldrich, 99%) all reagents were purified. Nitric oxide 
impurities within the N02 (Aldrich, >99.5%) were removed 
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by distillation in a cardice/acetone slurry after initial freezing at 
77 K_ The purified N02 was diluted in He and stored in a51 
glass bulb. Methyl iodide (Aldrich, 99%) was repeatedly 
purified by freeze pump thawing and kept in a glass finger. 
Throughout the experiments, the reaction chamber pressure 
was below the room temperature saturated vapour pressure of 
C1131, and the iodide could be transferred directly from the 
glass finger to the mixing manifold, through a MFC. Trifluoro- 
methyl iodide was flowed from a gas cylinder to the mixing 
manifold via a MFC, Dimethyl sulfide (Aldrich, >99%) was 
purified and admini tered to the reaction vessel in the same 
manner as C113L An advantage of this procedure was that a 
dilution of the DMS did not have to be performed, and, as 
[DMS] is crucial to the determination of kj, and calculated 
from mass flow rates, it was therefore beneficial to avoid 
preparing a bulb where DMS (or CH31) could have condensed 
out of the vapour phase. All reactions were performed under 
pseudo-first-order conditions, such that the concentration of 
DMS was four-to-five orders of magnitude higher than that of 
10, and the 10 concentration was low enough so that the 10 
self-reaction did not interfere with the kinetics being deter- 
mined (see section 3.2)_ 

Upon addition of DMS to the system, 0 atoms are rapidly 
lost via reaction (5). As k., is ca. five times higher than that of 
0+ CH31 and ten times higher than 0+ CF31, the concentra- 
tion of alkyl iodide was always kept in excess of DMS, to 
ensure a satisfactory 10 production yield for subsequent LIF 
detection. The bimolecular rate coefficient for the title reaction 
was determined by measuring the pseudo-first-order rate coef- 
ficient, V, of 10 decay as a function of [DMS], which was 
typically varied between (5-50) x 1015 molecule Cm-3. For 
each [DMS], the temporal decay profile of 10 was monitored 
by varying the time delay (At) between excimer and probe 
lasers over a suitable temporal range. The temporal range was 
set to capture several Ile lifetimes of 10 decay, by which time 
the fluorescence signal had fallen to the pre-trigger excimer 
laser baseline. All experiments were performed at a laser 
pulsed-repetition-frequency (PRF) of 2 Itz, and the 10 signal 
always returned close to the pre-trigger baseline (<5% of the 
peak 10 fluorescence signal--see section 3.2). All 10 decays 
were exponential in nature, confirming that the reaction was 
carried out under pseudo-first-order conditions. 

3. Results and discussion 
3.1. Deterndnation of k, 
The pseudo-first-order rate coefficients (A! ) were determined by 
fitting the temporal 10 decays to a single exponential function: 

[IO]t = [1010 exp(-lel) +b (6) 

where, 

k' = kl[DMS] + kd (7) 

kd is the sum of the first-order losses of 10 due to diffusion and 
reaction with impurities in the system (excluding those in the 
DMS), and b is an experimental offset allowing for slight 
deviations from the pre-trigger baseline (see section 32). It 
should be noted that as the experiment utilises fluorescence, 
[101, and [10]0 are not required, rather a fluorescence signal 
intensity that is proportional to the concentration of 10. Fig. 2 
displays typical 10 decays in the absence and presence of DMS. 

A bimolecular plot of kagainst JDMSJ yields k, as the slope, 
as displayed in Fig. 3. For each determination of kthe reaction 
chamber was evacuated before refilling with the new reagent 
mixture, and the DMS concentrations were varied in both 
random and systematic fashions to obtain bimolecular plots 
under different conditions, We note that the 10 decay rate in 
the absence of DMS (ie. kd, -200 s-1) appears too fast to 
simply be explained by diffusion. We attribute this 10 loss to 
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Fig. 2 10 decays in the absence of DMS top panel) and presence 
(bottom panel) of 2.90 x 1016 molecule cm-ý DMS at 296 K and 300 
Torr . Note the change in x axis scale. For both decays: [NO4. = 1.5 x 
1()13 Moler 1016 , Ule Cm-3; [CF311 = 5.33 x molecule cm- ; [He] 
balance. The scattered data points (+++) are the experimental data 
and the ID are the exponential fits of eqn. (6) to the data. The residuals 
are also displayed (0) and offset by -2 (top panel) and -0.2 units 
(bottom panel) for clarity. 

the combined effect of diffusion, and reaction of 10 with N02, 
impurities (in N02 and RI), and photolysis products. A more 
detailed discussion of possible interferences in our system is 
given in section 3.2. All determinations of k, in this study are 
derived from individual experiments, where an average of ten 
pseudo-first-order 10 decays (each yielding kl) were recorded 
for nine different DMS concentrations and one decay trace in 
the absence of DMS. A minimum of five V values were 
measured for any determination of ki. Table I presents all 
rate coefficient data obtained in this study, along with selected 
rate data from various other investigations of XO + DMS 
reactions (X = 1, Br, Cl). We observe no pressure dependence 
of k, between 5-300 Torr total pressure (M = He). Fig. 4 
displays the results of the pressure dependence studi, along 
with those of Nakano et al . 

34 and Daykin and Wine. a From 
our data, we determine the room temperature ý2! 6 K) rate 
coefficient of reaction (1) as ki = (2.0 ± 0.3) cm molecule-' 
s-1, where the error is ler standard deviation of all room 
temperature rate data acquired. Fig. 5 displays rate coefficients 
obtained between 296-468 K for the title reaction, showing a 
positive activation energy, 

3 
with k, (7) = (9.6 ± 8.8) X 10-12 

exp{-(1816 ± 397)/71 cm molecule-' s-1 obtained from a fit 

I0 

[DMS] / molecules crrO 
Fig. 3 Bimolecular plots for the reaction of 10 + DMS at 296 K and 
50 Torr total pressure, with 10 enerated from 0+ CH31 (A) and 0+ 
CF3I (A). [NO2] = 1.5 x 10'fmolecule CM-3 and [RI) =7x 1016 
molecule cm-3. The error bars represent 2a uncertainty from individual 
fits of eqn. (6) to the exj)erimental data. From the gradient, ki 
(2.25 ± 0.10) X 10- 14 CMA MolecWe- 1 5- 1, 
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Tablel Summary of rate coefficient data obtained in this work (bold font), and room temperature data from other selected studies of XO + DMS 

reactions. All errors are 2. a random errors returned from unweighted least squares fitting to the bimolecular plots of Vversus [DMS] (e. g., as shown 
in Fig. 3) 

X0 Method Precursors, M T/K P/Toff 1014 kj1cm3 moleCUle-1 8-1 Ref. 

10 PLP-1H CF3I/NO,, He' 296 5 1.64 ± 0.20 1 his work 
CH3I 296 5 1.71 ± 0.18 
CH, I 296 10 2.29 ± OAO 
CH, 1 296 15 1.84 ± 0.17 
CH31 296 30 2.39 ± 0.24 
CH31 296 50 2.11 ± 0.13 
CF31 296 50 2.45 ± 0.23 
CH31, low N02b 296 50 1.64 ± 0.16 
CH31, high N02 e 296 50 1.84 ± 0.16 
CH31 296 75 2.08 ± 0.21 
CH3I 296 150 1.79 ± 0.16 
CF31 296 300 2.08 ± 0.15 
CH31 308 50 4.24 ± 031 
CH3I 343 50 4.20 d: OA3 
CHJ 368 50 11.6 ± 1.2 
CH31 393 so 6.11 ± 0.25 
CF31 393 so 6.98 ± 0.33 
M31 418 50 12.8: 1: 1.1 
CH3I 468 so 20.6 ± 3.3 

10 PLP-CRD CF31/03, NZ 298 100 25 ±2 34 
10 PLP-LPA 12/NO2,02IN2/air 298 40-300 < 3-5 28 
10 DF-MS 12/02, He 298 1.82-5.09 0.88 ± 0.21 30 
10 DF-MS 12/02, He 298 1.14A 1.5 ± 0.2 31 
10 DF-MS 12/02, He 298 2.5-2.7 1.6 ± 0.3 32 
10 Computational 298 760 1500 35 
BrO DF-MS Br2/02. He 298 0.35-152 27 ±5 30 
BrO DF-MS Br2/03/02, He 298 0.97-1.03 27 ±2 41 
BrO PLP-UV Br2103, N2 295 60-200 44.0 ± 6.6 42 
BrO PLP-CRD Br2/03, N2/SF6 300 100-200 46 ±6 43 
BrO Computational 298 760 87 35 
C10 DF-MS C12/03, He 298 0.844.76 0.95 ± 0.02 30 
CIO DF-MS C12/03, He 298 0-5-2.0 0.39 ± 0.12 44 
CIO Computational 298 760 0.3 35 

PLP-LIF: pulsed-laser photolysis-laser-induced fluorescence; PLP-CRD: pulsed-laser photolys is-cavity ring down spectroscopy; PLP-LPA: pulsed- 
laser photolysis-long path abso rption: DF-MS: discharge flow-mass spectrometry; PLP-UV: pulsed-laser photolysis ultra violet absorption 
spectroscopy. ' In our study; [He] = balance. [RII = (5_7) X 1016 Molecule Cm73; IDMSI = (5_50) X 1015 molecule =7ý- JNOJ = (1_2) X 1013 
molecule cm-3; b (with exceptions where IN02] =IX 1013 molecule cm7 3; '6x 1013 Molecule cm-3. 

of the relevant data in Table I to the Arrhenius equation. Also 
included are the results of the temperature dependence study 

34 by Nakano el aL, and various other room temperature 
determinations of ki. Table 2 gives all Arrhenius parameters, 
obtained to date, for XO + DMS reactions. This study is the 
first reported investigation of the title reaction by laser flash- 
photolysis/LIF, and the rate coefficient determined at room 
temperature is towards the lower limit achievable by this 
technique, especially given an intercept, kd, of ca. 200 s- 

The results of this study provide evidence that the title 
reaction (1) proceeds via a bimolecular mechanism, and a 
detailed discussion, together with a comparison of previous 
studies of XO + DMS reactions, is given in section 3.3. 

3.2. Potential Interferences from secondary chemistry 
This section discusses in detail the potential of interferences in 
the determination of ki. The reaction system in this study is 
"photolytically clean" with a minimum generation of un- 
wanted photolysis products. The 351 mm. absorption cross- 
sections of CF31 '46,47 

C113j 46,47 and DMS 48 are <2 x 
10-22, <6 x 10-23 and << 10-22 cm2 molecule-', respectively, 
at 298 Y_ Therefore, despite the high concentrations of RI and 
DMS used in this study, for a photolysis laser fluence of 20 mJ 
CM-2 pulse-', the concentration of any photolysis products 
(e-9- C113, CF3, CH3S, 1) is negligible (;: e[0]0) in our system. 
The loss of 10 from reaction with these photolysis products is 

therefore small (even for 10-10 CM3 molecule-' s-1 rate coeffi- 
cients), compared to reaction with DMS. As a check for 
secondary reactions, 10 decay rates were measured in the 
absence of DMS with varying RI concentrations, for a con- 
stant concentration of N02. No significant difference in the 
decay rate (<10%) was observed and no systematic relation- 
ship was seen. However, the concentration of RI was main- 
tained at a constant value across a bimolecular data set to 
minimise potential interference from RI photolysis. The pro- 
duction of 10 from photolytically generated I atoms does not 
occur due to the small degree of RI photolysis and the 
composition of our reagent mixture. '11he only reactions cap- 
able of rapidly producing 10 from I (in an iodine only system), 
are I+ 03 and I+ N03.49 Ile experiments are oxygen-free, 
hence no 03 should be present in our system, and considering 
the high concentrations of RI and DMS (and the relatively low 
pressures studied), the production of N03 from 0+ N02 is not 
viable. 

The absorption cross-sections Of C1131 and CF31 increase 
with temperature, particularly at longer wavelengths, for ex- 
ample 351 nm4' 47 as used in this study. The 10 decay rate in 
the absence of DMS generally increased with temperature, 
indicative of increased photolysis of precursors. However, 
[RIJ was constant for the range of [DMS] used to measure k, 
for a given temperature, and so an increased concentration of 
photolysis products should not affect the determination of ki, 
assuming pseudo-first-order kinetics. Determinations of k, 
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A Tbis work (M - He) Table 2 Summary of experimental Arrhenius parameters for XO + 
0 Nakano at &L* (M - NJ DMS reactions. The temperature dependence of k, is given by: k, Q) = 
s Daykin and Me (M NjOjair) A exp(-E/Rl). The errors given for this study are obtained directly 

from an unweighted fit of the Arrhenius equation to the experimental 
data 

XO Ref. A/cmý molecule-' s-1 (EIR)IK T range/K 
1()43 

12 10 This work (9.6 ± 8.8) x 10- 1816 ± 397 296-468 

-E 
12+4 SX 10- 16 

-2230 ± 460 273-312 10 34 
_,. o 

10-14 BrO 45 9.17 x -343 ± 78 265-338 

BEO 41 (1.5 ± 0.4) X 10-14 -845 ± 175 233-320 
Bro 43 (13 ± 0.1) X 10-14 -1033 ± 265 278-333 

CIO 44 (1.2 ± 0.7) x 10-13 -354 ± 163 259-335 

0-0 2. OxIO'* 4. OxIO'4 6. OX10'8 8. OXIO'8 I. OXIO"' 

MI moiecules crTO 
Fig. 4 Pressure dependence of ki obtained in this study, along with 
the results of Nakano et al. 34 and Daykin and Wine. 28 In the work of 
Daykin and Wine, 23 a pressure independent rate coefficient was 
determined with an upper limit of 3.5 x 10-14 cn2 molecule-' s-1. 
Bimolecular plots of k' versus [DMS] were constructed from the results 
presented in their paper in order to obtain values of ki. Error bars 

presented for this study, and also that of Daykin and Wine, 28 are the 2a 

uncertainties of linear least squares fits to plots of V versus [DMSj for 

example as shown in Fig. 3. Ilie rate coefficient data obtained in this 
study are fitted to the form k, = 0., as s wn by a -- line 

yielding s=9.6 x 10-37 cmý molecu 
? 

ýIli 1 10-14 le- s- and kol = 2.0 x 
ý; l 

molecule-' s-1. The data of Nakano et al. 34 am fitted to a function 
given in rcf. 34, and is shown by a dashed line. 

were performed with both CFA and C1131 at 296 K and 393 K 
(Fable 1). Despite a factor of >2 difference in the absorption 
cross-sections of CH31 and CF31, the measured rate coefficients 
are in good agreement and we conclude that any increased 
photolysis of RI did not interfere with the determination of ki. 
Tle unimolecular thermal dissociation of DMS was negligible 
(k., i < 10-1-5 s-1), -" although we are unable to comment on 
the possibility of heterogeneously catalysed. pyrolysis of DMS 
on the vessel waRs. 

For the entire study, the concentration of N02. was held 
constant in order to fninimi e any interference from the reac- 
tion of 10 with N% (and impurities within it), despite 10 
removal from this channel being small due to the low concen- 
trations of N02. As the DMS concentration is increased, the 
fractional yield of 10 (from 0+ RI) and hence the 10 
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FIg. 5 The temperature dependence of the rate coefficient k, measured 
in this study compared with the results of Nakano et al. 34 and other 
room temperature determinations of ki. Error bars for this work are 
the 2(r uncertainties returned from Enear least squares fits to plots of k' 
versus [DMSL for example, as shown in Fig. 3. No error bars are given 
for the room temperature determination of k, from the study of 
Daykin and Wine' as an upper limit was reported. 

10,15 

concentration, decreases because of competition from 0+ 
DMS. However, as the maximum 10 concentration is :! 0.1 X 

CM-3, - reaction is very small 1011 molecule 10 loss from the self- 
compared to the pseudo-first-order loss for 10 + DMS, and 
bimolecular plots of P with JDMSJ were always linear. To 
investigate further, a simple model in FACSIMILE was con- 
structed to determine the contribution to k' from the 10 self- 
reaction, as a function of 110]. The model included three loss 
processes for 10, namely; (i) pseudo-first-order loss by reaction 
with DMS; (ii) first-order loss by diffusion, reaction with N02 
and impurities; and (iii) the 10 self-reaction. The rate coeffi- 
cients, ki, kii and kiii, are given the values 2.0 x 10-14 CM3 
molecule-' s-1 (our experimentally determined value), 200 s-1 
(our typical 10 decay rate in the absence of DMS) and 9.9 x 
10-11 CM3 molecule-' s-1 (literature value), 51 respectively. 10 
decays were simulated for initial DMS and 10 concentrations, 
and eqn. (6) was fitted to the model output to return a pseudo- 
first-order rate coefficient V (i. e. ki[DMSD. This process is 
repeated over the range of DMS concentrations used in our 
experiment (with the initial 10 concentration adjusted to take 
into account partitioning between 0+ RI and 0+ DMS), to 
generate a bimolecular plot of V versus [DMS]. For an initial 
10 concentration of Ix 1012 molecule CM-3 (i. e. in the absence 
of DMS), the value of k, is reduced by -!., 10% due to the self- 
reaction, whereas for an initial 10 concentration of 5x 1011 
molecule CM-3 (slightly higher than the calculated experimen- 
tal maximum in the absence of DMS), k, is reduced by <5%. 
Therefore, we conclude that the self-reaction does not pose a 
serious interference to our experimental determination of k1, 
particularly in light of the highly exponential nature of the 10 
decays (Fig. 2). 

To experimentally verify the model results, we measured k, 
(296 K, 50 Torr) in back-to-back experiments with JNOJ =Ix 
1013 molecule CM-3 , and 6x 1013 molecule cm-3, respectively. 
Although kd was about twice as large in the latter case 
(increased 10 removal with N02 and impurities therein), the 
slopes of the bimolecular plots are within the statistical un- 
certainties, yielding k, = (1.65 ± 0.16) and (1.84 + 0.16) x 
10-14 CM3 molecule-' s-1, for the low and high [NO2] experi- 
ments, respectively (Table 1). 

As the room temperature rate coefficient, k1, obtained in this 
study is lower than the Most recent determination by Nakano 
et al., 34 we were concerned by the possibility of 10 recycling, 
despite the apparent lack of an 10 regeneration mechanism in 
our system. LIF is a highly selective technique as any absorber 
must also fluoresce, and over a similar timescale to the 
molecule of interest, to pose an interference. Any baseline drift 
in the 10 decays was therefore investigated carefully. The 
probe laser wavelength was tuned below the 10 (2,0) bandhead 
by -0.1 run, a spectral region where no 10 absorption occurs, 
and a kinetic trace was recorded under typical experimental 
conditions. A weak fluorescence signal was observed above the 
pre-trigger baseline, but no apparent temporal evolution (on 
the timescale of an 10 decay trace) of this fluorescing species, 
X, could be determined outside the experimental noise. When 
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the laser PRF was increased to 7 Hz, this "offline" fluorescence 
signal became more pronounced and was seen to slowly 
increase over the time scale of the experiment (0-30 ms). 11iis 
kinetic growth was fitted to eqn. (8) 

[X], = [Xlo (1-CXP-, eý (8) 

where IXIO is the signal due to species X at long times after the 
photolysis pulse and k" is the pseudo-first-order rate constant 
for production of X, determined to be k" = 75 ±4 s-1, being 
independent of JDMS]. A variety of bimolecular data sets for 
10 + DMS were then reanalysed. by fitting to eqn. (9), which 
accounts for the slow growth of species X: 

flo]t + [Xlt = flo]Oexd-, v, ) + IXIO(I - exp-eý (9) 

where k-! is fixed to the previously determined value of 75 s-1. 
Ile result of this analysis was to reduce the determined values 
of V, and hence kl. The worst case deviation to the determina- 
tion of ki was - 15% for a7 Ift laser PRF. It should be noted 
that at a2 Hz PRF the baseline discrepancy was a minor 
interference (<S% of the peak 10 signal) and exhibited no 
detectable temporal evolution on the time scale of 10 decay. It 
must be stressed that the 7 Hz experiment was unrepresentative 
of our experimental conditions, but illustrates the potential 
interference more clearly, as gas replenishment of the photo- 
lysis region is not as efficient at the higher PRF, and renders the 
experiment more susceptible to the build-up of long-lived 
photolysis products (such as 12). Furthermore, although the 
baseline deviation was most commonly positive, negative base- 
line discrepancies were also observed under all experimental 
conditions. Daykin and Wine2s observed a negative baseline 
deviation in their experiment, which increased with [DMS]. 
They attributed this phenomenon to an increased removal of 
N02 by products of the 0+ DMS reaction. However, in their 
experiment, the concentration of N02 was typically two orders 
of magnitude greater than in this work, and we do not expect 
this chemistry to have been a significant interference in our 
study. Although unlikely to effect the kinetics of the title 
reaction, the small-scale photolysis of RI in our experimental 
system (as discussed previously) could lead to the formation of 
low concentrations of species such as 12, INO, IN02, C113NOb 
C113NO and I-DMS (by analogy to that of the Cl-DMS5-5 and 
Br-DMS adducts-first reported by Wine et al. in the book 
cited in ref. 45). It is considered unlikely, however, that INO, 
IN02 or I-DMS would exhibit fluorescence spectra due to the 
continuous nature of their absorption spectra and weak bond 
energies. -54 We feel that 12 is the most likely candidate for 
species YL It should, again, be emphasised that the production 
of low concentrations Of 12 (<5 X loll Molecule CM-3), or 
another such species, will not affect the determination of k, in 
this work. 

The 10 decays shown in Fig. 2 show the temporal decay of 
10 in the absence and presence of DMS. From the concentra- 
tions of RI (5.33 x 1016 molecule CM-3) and DMS (2.90 x 1016 
molecule CM-3ý, and the room temperature values of k4 ((4.25 

0.26) x 10- 2 CM3 MOICCUIC-1 S-1)53 and kj ((4.83 ± 0.46) x 
10-11 cm 3 molecule-' S-1), 52 the peak 10 signal in the presence 
of DMS is calculated to be (13.9 ± 1.6)% of the peak 10 signal 
in the absence of DMS. The observed value is (12.9 ± 0.4)% 
indicating that 10 production is extremely well characterised in 
our system and that contribution to the fluorescence signal 
from other species is negligible. We therefore feel justified in 
analysing the data as described in section 3.1, but acknowledge 
that, ideally, it would have been desirable to have measured 
each 10 decay "on" and "off" the 10 (2,0) bandhead, thus 
obtaining differential fluorescence decay traces, but at the 
expense of considerably longer experiments. To account for a 
possible interference to our determination of ki from the 
baseline discrepancy outlined above, we introduce a -15% 
error to our room temperature rate coefficient (in line with the 

worst case scenario). A +5% error is also introduced, to 

account for any interference from the 10 self-reaction dis- 

cussed previously. Ile room temperature rate coefficient, ki, 

obtained in this work, is thus (2.0 ± 06.46) x 10-14 CM3 
molecule-' s-1. 

3.3. Comparison of k, with previous literature values 

This study represents a comprehensive investigation of the 
10 + DMS reaction over a wide range of temperatures and 
pressures. The room temperature determination of ki in this 
study is in reasonable agreement with the previous investiga- 
tions of Daykin and Wine, 2a Barnes et al., 30 Magnin et al. 31 

and Knight and Crowley, 32 but is in poor agreement with the 
recent study of Nakano et al. 34 (at pressures greater than 
5 Torr--see below) and the computational study of Sayin 

and McKee 35 (Table 1). The study of Daykin and Wine2" 
employed detection of 10 by absorption, and although rela- 
tively high 10 concentrations were present, the upper limit for 
ki given in their work is in accordance with the k, values 
obtained from the "cleaner" discharge-flow mass spectro- 
metric (DF-MS) reaction systems. For the pressure dependence 
of kj, our results are in agreement with those of Daykin and 
Wine, 28 who observed no pressure dependence, but again are in 
disagreement with Nakano et al. 34 (Fig. 4). Although our 
experiment was conducted in Ile, which is less efficient at 
collisional themalisation compared with N2. it is highly un- 
likely that a pressure dependence as marked as that described 
by Nakano et aL34 (reaching the high pressure limit by 100 
Torr N2) would not also be apparent in 300 Torr Ile (the 
highest pressure determination of k, in the current study). 
Further, in the study of Daykin and Wineýý which employed 
similar precursors to this study, the reaction was performed in 
N2102/air over a pressure range of 40-300 Torr. It is interesting 
that Nakano et al. 34 determined a value for k, at 5 Torr and 
298 K ((1.0 ± 0.3) x 10- 14 CM3 molecule-' s-1) that is in good 
agreement with the rest of the literature. The most notable 
experimental differences in the work of Nakano et al. 34 are the 
photolysis wavelength of 266 run, and the choice of 03 as an 
0 atom precursor. Although photolysis of DMS will be 
negligible in their system, due to the small absorption cross 
section (or266 = 1.2 x 10-21 cm2 molecule-1), 48 this wavelength 
is near the UV absorption maximum of CF31 (a2,66 = 6.3 x 
10" cm' molecule-') , 

39 and under their reaction conditions, a 
significant amount of the iodide precursor will be photolysed. 
We estimate that a concentration of up to Ix 1013 molecule 
cm-3 of I atoms and CF3 radicals are generated in the work of 
Nakano et al. 34 Under their experimental conditions, the CF3 
radicals are likely to react with 02, forming CF302- We note 
that the 10 decay rate in the absence of DMS, kd, in the work 
of Nakano et al. ' is fairly high (-700 s-1) and we hypothesise 
that this may be due to reaction of 10 with CF302- 

10 + CF302 - 010 + CF30 (10a) 

-'* I+ 02 + CF30 (10b) 
The exothermicity of reactions (10a) and (10b) are -81 and -51 
U mol-', respectively. -"4 A study by Shah et al. ' estimated the 
rate coefficient for 10 + C1130 as (4 ± 2) x 10-11 CM3 
molecule-' s-1, and the same authors have recently indicated 
that the 10 + C113% and 10 + CF302 (10) reactions proceed 
at similar rate07 Bale et ajý7 have measured the rate coefficient 
for reaction (10) and have found it to be (3.7 ± 0.9) x 
10` cm' molecule-' s-', and have found it to be pressure 
independent. A rate coefficient for reaction (10) of this magni- 
tude may be able to account for the high, "zero DMS-, 10 decay 
in the study of Nakano et al. 34 I lowever, the presence of reaction 
(10) would not interfere with the determination of k, in their 
study, providing [CF311 is maintained at a constant value across 
a bimolecular data get of varying [DMS]. 
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By modelling (using FACSIMILE) the reaction system 
employed in the study of Nakano et al., 34 and using the 
information provided in their paper, we find that generation 
of 10 from reaction (2) is not negligible in their experiment, 
particularly at long time delays between excimer and probe 
lasers. A more insightful conclusion can be drawn from the 10 
decays in the absence and presence of DMS, presented in the 
paper by Nakano el al. ' We predict that the peak 10 
concentration in the presence of DMS should be substantially 
lower (<5%) than that in the absence of DMS. Ile observed 
ratio (>30%) is much greater than the experimental condi- 
tions should permit and is thus indicative of either; (i) an 
additional 10 source in their system; (ii) an overestimation of 
[DMSL (iii) an increased concentration of CF31 at higher 
[DMS]; or (tv) the absorption of laser radiation by a species 
other than 10- 'Me presence of a non-10 absorber, namely the 
I-DMS adduct, is the most likely explanation for this anomaly. 
In the kinetic traces presented in their paper the 10 concentra- 
tions return to (or close to) zero at long time delays, contrary to 
our model predictions. We conclude that there must be a more 
predominant I atom sink than 03 in their system, and we 
consider this species to be DMS. Bromine42,43 and chlorine" 
atoms are known to react rapidly with DMS, forming CI-DMS 
and Br-DMS adducts. We propose that this is also the case for 
I+ DMS. Furthermore, if such an I-DMS adduct were to 
exist, and was analogous to its Br and CI counterparts, it may 
well be expected to exhibit broad, structureless and strong 
absorption, in the same region of the electromagnetic spectrum 
as 10. The Br-DMS adduct has been found to react rapidly 
with Br atoms, forming molecular bromine and DMSý2 Again, 
we see no reason why an iodine analogue to this reaction is 
unfeasible. Ile pressure-dependent formation of a possible 
I-DMS adduct in the work of Nakano et aL34 provides an 
absorbing species whose concentration and temporal evolution 
may be dependent on the concentration of DMS, and could 
account for their experimental results. However, this hypoth- 
esis is highly speculative and we do not feel able to comment 
further on such a mechanism. 

Considering the high precursor concentration in the study of 
Daykin and Wine, 23 it was considered prudent to investigate 
the potential formation of an I-DMS adduct in their experi- 
mental system. Although high 12 concentrations were present, 
the amount of I atoms generated by the photolysis Of 12 was 
less than that in the work of Nakano et al., 34 due to the small 
absorption cross-sectionof 12 at 351 nm58. Furthermore, any I 
atoms produced are likely to have reacted with the high 
concentrations of N02, forming IN02 54 (which can also react 
with I). " We have modelled both the production rate of 10 
and the maximum 10 concentrations for their system, both in 
the presence and absence of DMS, and obtain consistent 
results within <25%. The formation of 10 is thus well 
characterised in their reaction system, and does not suggest 
the presence of a non-10 absorber. Indeed, Daykin and Wine' 
performed a limited number of "off-band" decay traces and 
found that, afler correction, the "on band" 10 decay was 
altered by less than 1%. in the DF_MS30 32 studies, 0 atoms 
were produced by the microwave discharge of 02/lIe mixtures, 
with no photolysis necessary, and hence the formation of 
I-DMS is not applicable. 

In summary, the work of Nakano el al. 34 has the most 
potential for interference from unwanted chemistry. Under- 
estimating the value of k, in our study seems unlikely as there is 
no evidence for 10 recycling and a reasoned mechanism for this 
process cannot be postulated given our reagent mixture. A 
potential explanation that could lead to an underestimation of 
k, is a large overestimation of [DMS]. The affinity of DMS for 
surfaces makes the overestimation of DMS using metered flows 
a possibility, but by an order of magnitude seems extremely 
unlikely. Using a similar reagent mix, no dark reactions were 
observed in the study of Daykin and Wine. 28 Furthermore, the 

ratio of the peak signals for our 10 decay traces (Fig. 2) in the 
absence and presence of DMS is indicative of JRJ] and JDMS] 
being well defined in our experiment. 

3.4. Reactivity trends for XO + DMS, X= (3, Br, I 
The apparent reactivity trend between the halogen oxides and 
DMS is perhaps surprising. The current recommended IUPAC 
rate coefficients for the reactions of 00, and BrO, with DMS 
at 298 K are (9.0 ± 0.5) x 10-15 CM3 molecule-' s-1 and (4.4 ± 
0.3) x 10-13 CM3 MoleCule-1 s-1, respectively. 13 This gives a 
trend for XO + DMS of, 00 ; t; 10, <BrO, which is not 
confirmed by the computational study of Sayin and McKee, 35 

who find k, (X = 1) to be > 1000 times higher than the 
recommended literature value. The poorer agreement between 
theoretical and experimental determinations of kj, compared 
with CIO/BrO + DMS, is not surprising given the difficulty in 
calculating electronic basis sets for heavy atom systems. This 
experimental trend of reactivity is not observed for the bimo- 
lecular reaction XO + NO -# X+ N02, -4 which are all fast and 
consistent with no barrier to reaction. All XO + DMS reactions 
are assumed to predominantly proceed through an oxygen-atom 

X 30 32,42 " transfer mechanism to yield DMSO +C 'Me reaction 
enthalpies for XO + DMS at 298 K are -93.9, -121.4 and 
-122.7 U mol-1 for X= C1, Br and 1, respectively. 13 On the 
basis of thermodynamics, one might therefore expect the reao- 
tivity order to be 10 : tý BrO > ClO, where the primary 
difference iri reaction rate is explained by the strength of the 
XO bond. It is noted that the results of Nakano et a04 are 
consistent with this argument. It is worth mentioning, however, 
that there is sufficient uncertainty in the values of AfIl (298 K) 
10 (116 ±5U mol-')-"4 and *AJI (298 K) BrO (120 ±6U 
mol-')-"4 to reverse the reaction exothermicities of BrO + DMS 
and 10 + DMS by -10 U mol-'. This could help explain a 
lower rate of reaction for 10 + DMS. Another consideration is 
the influence of steric factors, which are probably more severe 
for 10, resulting in a higher frequency of reactive collisions in the 
BrO + DMS reaction. 

The pressure independence and positive temperature depen- 
dence for ki, determined in this study, 'provide evidence of a 
bimolecular reaction mechanism. In contrast, an association 
complex mechanism has been suggested for the BrO + DMS 
reaction: 

BrO + DMS *-b. [BrO-DMS] - Br + DMS (11) 

The evidence for this mechanism is based on the negative 
temperature dependencies reported in the studies of Bedjanian 
et al. 4' and Nakano et al., 43 and also the higher rate coefficients 
determined by Ingham et aL42 and Nakano et al. 43 at higher 
pressures (> 60 Toff N2) than the rate coefficients reported in 
the low pressure flow tube studies. It is worth exploring the 
features of this mechanism further, as it is used by Nakano 
et al. 34 to explain the pressure dependence observed for k, in 
their 10 + DMS system- Extension of the complex mechanism 
(11), via a Lindemann-type scheme, explicitly gives the pressure 
dependence of the system: 

kA 
XO + DMS f- 1, &%.. #--uMS]* X+ DMSO 

kA I 
km[M] 

[XO-DMS] 

(12) 
The pressure dependence in the above scheme is due to 
stabilisation of the [XO-DMSI* adduct. In order for stabilisa- 
tion to occur, the [XO-DMS] adduct is required to be suffi- 
ciently strongly bound. The calculated binding enthalpy of the 
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BrO-DMS adduct is <8 U Mol-1,35 being too small (even 
when allowing for calculation uncertainty) to allow collisional 
stabilisation of the excited adduct. A prediction of scheme (12) 
is that the yield of DMSO decreases with increasing pressure. 

43 I lowever, this is not borne out in the work of Ingham et al. 
where the yield of Br + DMSO is unity at all pressures up to 
200 Torr. Scheme (12) is therefore inconsistent with the 
literature. The factor of ca. two difference in the room tem- 
perature rate coefficients for BrO + DMS measured at low 
pressure in a flow-tube and by pulsed-laser photolysis at high 
pressure is thus not due to pressure stabilisation of a complex 
intermediate. If a complex intermediate is formed, then it must 
be weakly bound, and could explain a pressure independent 
rate coefficient with a small negative activation energy. The 
temperature dependent studies of the BrO + DMS reaction 
were performed over a relatively narrow temperature range, 
and report a small, negative activation barrier (Table 2). 

Nakano et al. 34 observed a pressure dependence for 10 + 
DMS that reached a limit > 10 times the room temperature 
observed here, but these results should be treated with caution, 
as they imply that the 10--DMS intermediate, in scheme (12), is 
strongly bound (> 35 U mol- 1). It seems unlikely that an 10- 
DMS adduct would be more strongly bound than BrO-DMS. 
The ab initio study by Sayin and McKee 35 calculated a binding 
energy for 10-DMS of -6U mol-1, comparable to that of the 
BrO analogue. 

The C10 + DMS reaction has been studied over a limited 
pressure range (0.5-5 Torr), and the only temperature depen- 
dent study (three values in the narrow range 259-335 K) 
reported a very small, negative activation energy. The compu- 
tational investigation 35 only considered the bimolecular reac- 
tion pathway for CIO + DMS, as the binding enthalpy of a 
CIO-DMS adduct could not compensate for the loss of 
entro 

. 
31 associated with its formation. The computational 

study predicts a room temperature rate coefficient of 3x 
10-15 cm 3 molecule-' s-1, in excellent agreement with the 
experimental determination of (3.9 ± 1.2) x 10-15 CM3 
molecule-' s-1 by Diaz-de-Mera et al., 44 but a positive activa- 
tion barrier, in disagreement with the experimental findings. 

Due to the wide temperature range of - 170 K, and the 
absence of interfering chemistry, the current study should yield 
accurate Arrhenius parameters for 10 + DMS. The results 
presented in our study for 10 + DMS suggest that the reaction 
proceeds via a bimolecular reaction mechanism, and that it is 
the barrier to products that is controlling the temperature 
dependence. While the reaction may proceed via a weakly 
bound intermediate, it is the barrier that controls the reaction. 
The rate coefficient for CIO + DMS is even smaller than for 
10 + DMS, and would also appear to be a bimolecular 
reaction controlled by a barrier. Ile rate constant for BrO + 
DMS is at least an order of magnitude higher than for the CIO 
and 10 analogues, and appears to have a negative temperature 
dependence. This suggests that the reaction kinetics are con- 
trolled by the formation of a weakly bound intermediate, with 
no barrier to reaction. 

4. Conclusions 
Of all XO + DMS investigations to date, this study of the 10 + 
DMS reaction covers the widest temperature range and is 
subject to negligible interference from undesirable secondary 
chemistry, and hence should give accurate and reliable Arrhe. 
nius parameters. The results obtained in this study are in poor 
agreement with recent experimental and computational stu- 
dieS34,33 of the 10 + DMS reaction, but are in good agreement 
with the previous literature. 29,30 32 The results are consistent 
with the 10 + DMS reaction proceeding via a bimolecular 
reaction mechanism, although further work is required to 
probe the mechanisms of reactions between halogen oxides 
and DMS. 

For typical 10 concentrations measured in the marine 
boundary layer (MBL), 111,23 25 the room temperature rate 
coefficient determined in this study implies that the 10 + 
DMS reaction is not an important atmospheric sink for 
DMS. However, localised 10 concentrations in the MBL 
may be significantly higher than those measured from the 
shore and averaged across several km of ocean, as evidenced 
by recent observations of high 12 concentrations correlated 
with tidal height. "' An in situ detection method for the 
measurement of 10 in the MBL is therefore highly desirableo 
in order to verify if the 10 + DMS reaction is of atmospheric 
significance under localised conditions. 
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Appendix Ill: Absorption cross-sections of 
the A2 r13/2 *-' Xý113/2 electronic transition 
of 10 at 296 K (Section 4.3.1) 
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A/nm a/10-'*cmmolec-u-17 -A-/nm cr/ 10-'* cnýmolecule` 

414.6 265 428.4 1045 
414.9 279 428.7 732 
415.2 271 429 517 
415.5 241 429.3 419 
415.8 195 429.6 185 
416.1 289 429.9 179 
416.4 207 430.2 96 
416.7 274 430.5 107 
417 208 430.8 50 

417.3 259 431.1 18 
417.6 371 431.4 22 
417.9 385 431.7 -15 
418.2 615 432 88 
418.5 798 432.3 -91 
418.8 1092 432.6 -12 
419.1 1606 432.9 18 
419.4 1932 433.2 -44 
419.7 1888 433.5 -15 
420 1678 433.8 54 

420.3 1354 434.1 -8 
420.6 1084 434.4 -125 
420.9 886 434.7 25 
421.2 701 435 -42 
421.5 519 435.3 -42 
421.8 369 435.6 2637, 
422.1 306 435.9 2838 
422.4 199 436.2 1938 
422.7 157 436.5 1452 
423 16 436.8 1041 

423.3 95 437.1 746 
423.6 60 437.4 512 
423.9 24 437.7 300 
424.2 16 438 242 
424.5 25 438.3 159 
424.8 -44 438.6 129 
425.1 85 438.9 115 
425.4 -5 439.2 33 
425.7 -35 439.5 158 
426 25 439.8 119 

426.3 74 440.1 156 
426.6 203 440.4 70 
426.9 1489 440.7 35 
427.2 3600 441 -52 
427.5 2877 441.3 4 
427.8 2002 441.6 -71 
428.1 1509 

Note that all cross-sections are relative to that at 427.2 am, which Is assigned a value or 
a= 3.6 x 10-17 crr? molecule", and are reported for a spectral resolution of 0.3 nm 
FWHM. 
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Appendix HI: Estimated 
cross-sections of species "X" 
(Section 4.3.2.3)- 

absorption 
at 296 K 
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A/nm 0, /10-20 cniýinolecuk` 

249.7 -8 
259.7 30 
269.7 12 
279.7 55 
289.7 66 
299.7 86 
307.2 132 
317.2 152 
327.2 170 
337.2 146 
347.2 157 
357.2 121 
367.2 103 
377.2 78 
387.2 57 
397.2 51 
407.2 31 
417.2 14 
427.2 27 
437.2 9 
447.2 0 
457.2 5 

Note that all cross-sections are relative to that at 327.2 nm, which is assigned a value of 
a=1.7 x 10'18 cmýmolecule*', and are reported for a spectral resolution of 0.3 nm 
FWIlM. 
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