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Abstract 

During wakefulness, synapses are strengthened to enable memory formation. Whereas, during 

sleep, weaker connections are ‘pruned’ to help consolidate memories. These synaptic 

alterations are related to cortical oscillations, which are generally faster during wakefulness (30-

80Hz, gamma), and slower during deep sleep (1-4Hz, delta). Synaptic strength is thought to 

decrease during delta rhythms (compared to gamma rhythms). Neuroinflammation can disturb 

these brain rhythms and lead to a decline in cognitive function, which may result from 

aberrations in synaptic plasticity. 

 

To test the laminar and cellular changes in synaptic plasticity during sleep- and wake-related 

oscillations, in vitro electrophysiology and immunofluorescence were employed using acute rat 

neocortical slices. To examine the effect of neuroinflammation on these brain states, systemic 

infection was induced using synthetic analogues of pathogenic bacterial and viral material, and 

a biological parasitic disease model.  

 

The expression of an immediate early gene (IEG) marker of neuronal plasticity (Arc) was higher 

during delta oscillations compared to gamma oscillations and was concentrated to mid-apical 

dendrite bundles from layer V intrinsically bursting cells. These bundles represented cortical 

microcolumns which are known to exhibit synchronous activity, allowing parallel processing of 

information. Increased Arc expression in these columns during delta oscillations may promote 

synaptic rescaling and highlights the role of cortical microcolumns in memory consolidation. 

 

A balance of pro- and anti-inflammatory cytokines was found after short term systemic infection 

which gave way to a predominately pro-inflammatory state when the infection was longer term. 

The oscillatory activity also changed, with a continued decline in gamma power. However, delta 

power increased short term but decreased with a longer infection. The systemic infection had 

no effect on cortical plasticity. These results were corroborated in a mouse model of 

Leishmaniasis and show that systemic infection alters neuronal communication by changes to 

oscillatory activity, but does not change synaptic plasticity levels.  
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Aims and Objectives 

In general, this thesis uses in vitro oscillations generated in neocortical slice preparations of rat 

brain. Using this model system the overarching objectives are to assess the changes in synaptic 

plasticity that occur between different classifications of pharmacologically induced brain 

rhythms and to investigate the effect of neuroinflammation on that interaction. With this in 

mind this thesis outlines experiments that were carried out: 

 

 To generate sleep and wake-related oscillations in neocortical slice preparations and 

assess the effects of those oscillations on neuronal activity and plasticity through 

changes to immediate early gene expression. 

 To localise oscillation related immediate early gene changes across neocortical laminae 

and different cell types. 

 To monitor sleep and wake related oscillations in brain slice preparations after bath 

application of inflammatory agents that mimic bacterial and viral sequences 

(lipopolysaccharide and polyinosinic:cytidylic acid respectively). 

 To raise a systemic immune response using those inflammatory agents that mimic 

bacterial and viral sequences recognised by the peripheral immune system and analyse 

the resulting inflammation in the brain. 

 To compare the effect of the time scale of a mimicked systemic infection on sleep and 

wake-related oscillations generated in brain slice preparations. 

 To evaluate the effect of a real-life systemic infection on sleep and wake related 

oscillations generated in brain slice preparations, and investigate changes to plasticity 

across these oscillations. 
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1.1 The Neocortex 

This thesis focusses on markers of plasticity associated with different patterns of electrical 

activity in the neocortex. The neocortex in humans is the largest part of the cerebral cortex and 

is the most developed in terms of its organisation. It is arranged into six layers (designated by 

Roman numerals I-VI) each with a unique neuronal subtype composition (see Figure 1.1). Twenty 

percent of the neurons of the neocortex are inhibitory interneurons and use y-aminobutyric acid 

(GABA) as their main neurotransmitter. They synapse with proximal pyramidal cells and other 

interneurons to provide the inhibitory balance essential for neuronal oscillations within their 

local neuronal networks (see section 1.2 below) (Dupret et al., 2008; Middleton et al., 2008). 

The majority of the neurons (80%) within the neocortex are excitatory and as such exert a 

depolarising influence on other neurons conferred by the excitatory neurotransmitter glutamate 

(Han and Sestan 2013). Pyramidal cells make up most of the neocortical excitatory cells and can 

span several layers and project between regions allowing long-range connectivity. Thus, they 

are ideally designed to transfer information both within laminae and also between different 

brain areas. Spiny stellate cells are also excitatory but are less widespread, with cell bodies 

primarily restricted to layer IV of primary sensory areas (Costa and Muller, 2014). 

 

 

file:///C:/Users/miles/Desktop/miles/Iain/Iain%20thesis/(Han%20and%20Sestan%202013)
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Whilst communication across the cortex is important, the arrangement of neurons throughout 

the layers suggests that the predominant flow of information is vertically between layers within 

a columnar arrangement. This has been confirmed functionally in the somatosensory cortex 

(Mountcastle et al., 1957), and primary visual cortex (Hubel and Wiesel, 1962). Although not 

necessarily representative of these ‘functional’ columns, a columnar organisation is conserved 

throughout the neocortex and across many species with surprising uniformity in cell number 

and density (Rockel et al., 1980; Carlo and Stevens, 2013). 

 

1.1.1 Intracortical transfer of information through the neocortex 

Sensory inputs, relayed mostly by specific thalamic nuclei, enter cortical columns first at layer IV 

(Bode-Greuel et al., 1987). They are conveyed mainly by parvalbumin immune reactive neurones 

(PIR neurones), however, calbindin immune reactive neurones (CIR) also exist which have 

dispersed projections to superficial layers of the cortex I-III (Jones, 2002). The targets for these 

dispersed projections are presumed to be the apical dendrite of layer V pyramidal cells (Rubio-

Garrido et al., 2009; Bonjean et al., 2012) 

 

The first stage of information processing in the cortex involves the initial receipt of an input from 

the thalamus and its subsequent intracortical projection for the next phase of processing. The 

cells of layer IV (also called ‘first order cells’) receive the majority of the thalamic inputs and are 

known to deal with information from small receptive fields (Hubel and Wiesel, 1962) (Chapin, 

1986). These cells have been shown to predominantly project terminals into layer II/III (also 

known as the supra-granular layer) (Gilbert and Wiesel, 1979) although the axons also descend 

into the white matter with arborisation into layer V/VI.  

 

These projections to layer II/III mostly synapse onto the basal dendrites of layer III pyramidal 

cells (Watts and Thomson, 2005) which are responsible for the second level of neocortical 

processing. It is at the transfer between the first and second levels that sensory information is 

strongly gated so that weaker stimuli cause less firing in layer II/III neurons than the presynaptic 

layer IV cells (Brumberg et al., 1999), whereas firing levels in response to stronger stimuli are 

preserved (Zhu and Connors, 1999). These cells also only respond to more complex stimuli such 

as those including motion or to expanded receptive fields (possibly from the integration of 

several smaller receptive fields from converging layer IV neurons) (Simons, 1978). The layer III 

pyramidal cells’ axons descend all the way through the cortex to layer VI, but only connect to 
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pyramidal cells in layers II/III and V. These cells rarely target layer V regular spiking cells but 

connect much more abundantly with layer V bursting cells (Thomson et al., 2002).  

 

The involvement of layer V bursting cells in the third level of processing, along with their ability 

to receive higher order feedback from their layer I projecting apical dendrites (Rockland and 

Drash, 1996), highlight their importance as a major processing unit in the neocortex. They also 

provide a major output pathway from the cortex, with corticothalamic projections as well as 

projections to other subcortical structures such as the pons (Gao and Zheng, 2004). 

 

The aforementioned studies on the interlaminar network of neurones within the cortical column 

looked at the anatomical projections and arborisation of cells but did not consider the strength 

of the connections between layers (Figure 1.1A). Interlaminar connections can be measured in 

vitro by stimulating a particular layer of the cortex and recording the amplitude of EPSPs in the 

target layer. The prominence of certain interlaminar connections can be estimated finding the 

product of the EPSP amplitude and the probability of locating a synaptic connection between 

cells of the stimulated and target layers. This gives a measure that takes into account the 

strength and the relative number of synaptic connections between layers. Using this method it 

has been shown that intra-laminar connections are particularly strong in layers II, III and IV 

(Lefort et al., 2009). This study also corroborated the evidence (highlighted by anatomical 

investigations) that suggested that the main routes of information flow are between layer IV 

and layer II/III and between layer II/III and layer V cells (Figure 1.1B). This further highlights the 

importance of layer V neurons as an information processing unit in the cortex.  

 

1.1.2 Oscillatory activity in neocortical columns 
The cells of the neocortex are arranged into ca. 0.5mm diameter vertically oriented columns 

with adjacent cells having very similar receptive fields – these are called macro columns. As 

mentioned above, this was originally described by Mountcastle (1957) in the cat somatosensory 

cortex and was found to be conserved in ocular dominance columns of the striate (primary 

visual) cortex (Hubel and Wiesel, 1962). Responses to particular elements of a visual stimulus 

are also dealt with in columns of the inferotemporal cortex, known as ‘feature columns’ 

(Tsunoda et al., 2001). 
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Oscillatory activity occurs in these columns after stimulation with sensory input via the 

thalamus. Experiments on cat visual cortex have shown that oscillatory activity occurs at 40Hz 

after the presentation of a stimulus and the amplitude of the oscillation correlates with the 

closeness in orientation selection of that column (Gray and Singer, 1989). Single cells of the 

target network are also more likely to fire in the negative phase of the oscillation. The 

synchronisation of the activity of cells in dispersed areas of the cortex may allow for the 

coherence of the different features of a stimulus into a single sensory object (Gray et al., 1989). 
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Neurons within certain columns can synchronise their activity with disparate columns, in the 

same and other cortical areas. Long range pyramidal cell projections may be the functional unit 

that allows this to occur. These horizontal axonal arbours were first discovered when tracing 

degeneration of fibres and are important for the visual cortex to code for the relationship 

between spatially distinct, but connected patterns within the visual field (Gray and Singer, 1989). 

 

Evoked potentials in these columns have also been used to understand more about their 

function. It is known that the amplitude of auditory evoked potentials are brain state-specific, 

with the highest amplitudes recorded during deep sleep (Weitzman and Kremen, 1965). 

Differences of this kind are not consistent across the brain and are even altered between cortical 

columns. This means that cortical columns may fluctuate between wake and sleep-like states in 

a manner that is partly independent of the mean, whole brain state - although more columns 

exist in a sleep-like state during whole-brain sleep and vice versa (Rector et al., 2005). This is a 

use-dependent process, with the duration of the sleep-like state (defined by higher amplitude 

evoked potentials) correlating with the duration of the preceding wake-like state within the 

column (Rector et al., 2005). 

 

1.1.3 Intercolumnar communication in the neocortex 

Much of what is known about horizontal connections in the neocortex, has been uncovered by 

lesion studies. These have shown that pyramidal cells in middle layers can extend axons 

horizontally or obliquely between 0.5 – 3mm in distance, up into layer I and II or down into layers 

V and VI (Creutzfeldt et al., 1977). These pyramidal cell axons spread in ‘clumps’ and mostly 

synapse with other pyramidal cells (Kisvarday et al 1986) in the same and other layers (Gilbert 

and Wiesel, 1983). However, the pattern of these horizontal connections varies considerably 

depending on neocortical region and whether the connection is to a higher hierarchical area 

(e.g. primary sensory to association cortex) or a lower one (e.g. frontal cortex to association 

cortex). Regional details are briefly considered below, that focus on the brain regions explored 

in this thesis. These regions were chosen due to their importance in processing sensory 

information which affords high levels of plasticity as well as the existence of optimised protocols 

to model oscillations within these regions in vitro. 
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1.1.4 Primary somatosensory cortex 

The primary somatosensory cortex (S1) is in the post-central gyrus of the human brain. It was 

once considered a single area, but current understanding has it segregated into four functional 

maps related to Brodmann areas 1, 2, 3a and 3b. Excitatory inputs relayed by thalamic nuclei 

(located predominantly in ventrobasal areas) enter S1 mostly at layer VI and trigger the activity 

of cells of this layer, though there are also modulatory inputs to layer II/III (Viaene et al., 2011). 

Inputs are arranged in a topographic map within cortical regions, but the four regions deal with 

different sorts of somatosensory inputs. Area 3b is the primary recipient of touch information 

and projects to Areas 1 and 2 (Kaas et al., 1983) which process with texture and size/shape 

information respectively (Purves et al., 2008). Area 1 and 3b are also known to primarily deal 

with cutaneous information whereas Areas 2 and 3a processing muscle receptor inputs. All of 

these areas further project to other regions of the cortex such as the motor cortex for sensory 

guidance of motor actions and the secondary somatosensory cortex for further sensorimotor 

and polymodal processing (Kaas, 1993). They also project to non-neocortical areas like the 

amygdala and hippocampus to facilitate tactile memory formation (Mishkin, 1979)  

 

1.1.5 Secondary somatosensory cortex 

The secondary somatosensory cortex (S2) includes parts of Brodmann areas 40 and 43. It 

receives input from S1 (above) and less specifically from matrix thalamic nuclei. In response to 

nociceptive stimuli, parallel activity in both S1 and S2 occurs, however the secondary 

somatosensory cortex unlike its primary counterpart, responds to stimuli bilaterally (Ploner et 

al., 1999). It is thought that S2 has a role in higher order processing of tactile information, 

particularly with relevance for working memory and attention. Higher fMRI activation of S2 than 

S1 was seen when human subjects focussed attention on a stimulated area (Hämäläinen et al., 

2002). This finding is corroborated by increasing cell firing (Hsiao et al., 1993) and the amount 

of synchronous activity (Steinmetz et al., 2000) in S2 also related to attention.  

 

Despite its importance in somatosensory processing, different sub-regions of S2 have been 

shown to respond to multisensory inputs (Brett-Green et al., 2004). This has been suggested to 

involve polymodal transition zones between S2 and adjacent regions responsible for the 

processing of other modalities of uni-sensory information (Wallace et al., 2004), (Menzel and 

Barth, 2005). This further suggests that S2 may have as much a role in sensory integration as it 

does in the processing of somatosensory information from S1. 
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1.1.6 Primary auditory cortex 

The primary auditory cortex (Brodmann areas 41 and 42) exists in Heschl’s gyrus of the temporal 

lobe. It deals with the conscious perception of sound. This is evident when lesions of this area 

result in people stating they are deaf while still retaining reflexive responses to sound. These 

reflexive responses originate in brainstem and midbrain areas (Cavinato et al., 2012). Auditory 

information from the cochlea is transferred to the primary auditory cortex, first through the 

inferior colliculus and then through the medial geniculate nucleus in the thalamus. The primary 

auditory cortex is organised into a tonotopic map based on the cochlear response. The cochlea 

separates an auditory stimulus by frequency in its own tonotopic map, that organisation of 

frequency information is conserved in the primary auditory cortex (Lauter et al., 1985; 

Humphries et al., 2010). As well as processing tonal information, it binds elements of complex 

sounds together, so they are perceived as a single entity. The auditory cortex also processes 

more abstract elements of the auditory landscape such as echoes and background noise 

(Chechik and Nelken, 2012).  

 

1.2 Neural Oscillations 

1.2.1 Recording the electrical activity of the human brain 

The electrical activity of large populations of millions of neurons often organises into oscillations, 

particularly in receipt of sensory information (1.1.2 above). These oscillations can occur in local 

sites in the brain or involve long distant synchronisation in the timing of electrical activity across 

dispersed brain areas. The oscillatory activity results from the recruitment of networks of 

neurons of different types whose firing temporally summates to form rhythmic fluctuations in 

the potential difference between different locations in the extracellular environment. This 

electrical activity was first recorded using a technique called electroencephalography (EEG), 

developed initially by William Caton (1875) and first used in human subjects by Hans Berger 

(1929). EEG uses electrodes placed on the scalp to remotely monitor neuronal population-

generated voltage fluctuations through the scalp and skull. This technique readily demonstrates 

oscillations, or rhythms, as perhaps the most obvious feature of brain electrical activity. 

 

The first rhythm observed in humans by Berger is now known as the alpha oscillation. It defines 

electrical oscillations of a frequency between 8-12 Hz, and Berger noticed how it dominated the 

visual cortex EEG recordings when the patient’s eyes were closed. This was replaced by the beta 

rhythm (12 – 30Hz) when the patient opened their eyes – a process he called ‘alpha blockade’ 

(Berger, 1929). 
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Since then, further connections between EEG oscillations and the subjects’ sensory, cognitive, 

and behavioural state have been widely studied. In general, the electrical oscillations are slowest 

during sleep and increase in frequency with the state of arousal (see Figure 1.2). The slowest, 

'delta' waves (1-4Hz) are apparent during deep sleep. This stage is also called non-rapid eye 

movement sleep (NREM sleep) or slow wave sleep (SWS). Theta frequency oscillations (4-8Hz) 

are prevalent during the stage known as rapid eye movement (REM) or paradoxical sleep. Two 

types of electrophysiological events also occur during sleep. Large very slow events called k-

complexes occur during NREM sleep in response to external stimuli and are thought to aid in 

suppressing cortical arousal (Cash et al., 2009), and are also thought to play a role in memory 

consolidation and synaptic plasticity (Tononi and Cirelli, 2006). Similar arousal suppression 

(particularly auditory) has been shown to be a function of fast transient bursting events called 

sleep spindles (Dang-Vu et al., 2010). They have also been correlated with memory performance 

(Holz et al., 2012).  

 

The theta and delta oscillations that occur during sleep have low metabolic demand (Madsen 

and Vorstrup, 1991; Maquet, 1997) compared to the faster oscillations associated with 

wakefulness (such as gamma, 30-80Hz) (Nishida et al., 2008), and are even suggested to be 

restorative to neurons and their connections (Eugene and Masiak, 2015). This highlights the 

payoff between the ability to transfer information and process sensory input quickly (as occurs 

during wakefulness using higher frequency oscillations), with the ability for the brain to keep its 

metabolic demand satisfied (Tononi and Cirelli, 2006). 

 

Although the initial discovery of neuronal oscillations involved the EEG technique, there are 

many other techniques by which these phenomena can be studied. Electrocorticography (ECoG) 

is an invasive version of EEG, which involves recording from the pial surface of the brain itself 

and is therefore only usually carried out during neurosurgical operations (Khodagholy et al., 

2016). Magnetoencephalography (MEG) is similar to EEG in that recordings are made non-

invasively, but it measures changes in the magnetic field caused by the activity of neurons rather 

than the voltage changes constituting the electric field (Baillet, 2017). Both ECoG and MEG offer 

recordings with better spatial localisation than EEG, but at the cost of their invasiveness and 

expense respectively. These techniques, in conjunction with the subject’s performance during 

specific cognitive tasks, have allowed the discovery of the processes and brain structures 

involved in many areas of cognition and sensory processing. This thesis concerns itself only with 
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the gamma/beta and delta EEG oscillations as markers of wakefulness and NREM sleep 

respectively, but many far more detailed correlations between oscillations and brain function 

have arisen in the last 20-30 years, including sensory perception and binding, attention and sleep 

(Singer, 1993; Kahana, 2006; Wang, 2010; Jutras and Buffalo, 2014). 
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1.2.2 Recording oscillatory activity in vivo 

To understand the mechanisms involved in generating and maintaining cortical oscillations, 

animals have often been used. In vivo recordings from mammalian brains (mostly rats, mice 

monkeys and cats) have been useful in this respect. In general, electrodes are placed within 

specific brain structures by stereotaxic surgery on living animals and can record the local 

population, single cellular and even subcellular (e.g. dendritic) activity. Through this method, 

activity can be measured during different brain states and can be related to the functional 

behaviours seen in the animal. This can also be applied to observe changes in disease models to 

increase the understanding of the mechanisms behind the pathology and the effect of 

pharmacological manipulations to recover normal function. Whilst in vivo studies have been 

very useful, they also have their disadvantages. Accurate electrode placement is challenging and 

once placed the electrode can shift due to the general movement of the animal, blood flow, or 

breathing - however, the technology in this regard is improving rapidly. There is also limited 

scope in the ability to manipulate the activity of the networks of cells involved. For these 

reasons, the electrophysiological studies in this thesis employed recordings from brain tissue in 

vitro. 

 

1.2.3 Recording oscillations in vitro 

In vitro electrophysiology eliminates many of the above shortfalls of in vivo studies by allowing 

the isolation of neuronal networks, whilst maintaining them in a viable electrically active state 

in slices of neural tissue. This is achieved at the expense of being able to interrogate relationships 

between electrical brain activity and behaviour. However, specific regions of the brain can be 

isolated, and sections can be made from them that can be maintained for many hours. This 

isolation allows absolute certainty regarding the regional origin of any activity seen and 

facilitates a controlled manipulation of electrical excitability and overall neuromodulatory state 

without complexity from unknown variables such as spontaneous activity from multiple afferent 

connections e.g. from sensory stimuli, brainstem and even ‘top-down’ influences from other 

brain areas. 

 

It also allows for more precise electrode placement and makes intracellular recording 

experiments much more technically manageable. However, without afferents and efferent 

connections, there is no sensory input or communication with brain regions that are absent from 

the slice and therefore little to drive spontaneous electrical activity. Therefore, electrical 

stimulation or pharmacological manipulation of the isolated networks, maintained within the 
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slice, must be carried out to mimic the input those networks would normally receive. 

Furthermore, the ionic composition of the artificial cerebrospinal fluid (ACSF) used to maintain 

the slice can be changed to further investigate a role for cellular and synaptic mechanisms 

underlying certain electrical activities. This then provides a basis by which to probe the 

mechanisms behind the oscillatory activity of the brain and study its changes in health and 

disease. What is already known about these mechanisms, and how they may relate to brain 

plasticity is introduced below. 

 

1.2.4 Gamma Oscillations 

The work in this thesis uses a model of gamma oscillations as an experimental model 

representation of cortical dynamics associated with sensory perception during wakefulness. 

Gamma oscillations were one of the first oscillatory conditions to be modelled in vitro. They are 

fairly ubiquitous in most behavioural states, from wakefulness to deep sleep, but are particularly 

prevalent during primary sensory processing during wakefulness (Gray and Singer, 1989). The 

synchronous activity of presynaptic neurons at gamma frequency increases post-synaptic 

responses (especially on convergent targets) and allows for more efficient propagation of 

sensory information. This process also aids in attentional processing (Magazzini and Singh, 

2018), working memory (Lundqvist et al., 2016) and contributes to de novo memory formation 

in the hippocampus (Axmacher et al., 2006; Sederberg et al., 2007; van Vugt et al., 2010).  

 

The importance of gamma oscillations has been highlighted by studies which have shown that 

there is a correlation between the firing rate of cortical neurons and the amplitude of gamma 

band activity in the local field (Ray et al., 2008). In fact, the timing of cell firing during gamma 

oscillations is critical as it allows the segregation of cells that carry information of the salient 

stimuli (and thus fire in time with the gamma oscillation) from cells that carry other information 

(Engel and Singer, 2001). From this, it is apparent that the relationship between gamma-band 

synchrony between regions and the timing of neuronal firing contributes to the processing of 

sensory information and also forms the basis of short-term memory (Engel et al., 2001; Kaiser 

and Lutzenberger, 2005).  

 

It is not surprising then that gamma oscillations have also been shown to be important in visual 

processing (Henrie and Shapley, 2005), auditory processing (Haenschel et al., 2000), olfaction 

(Adrian, 1942), somatosensory perception (Rossiter et al., 2013)  and nociception (Gross, 2007).  

Gamma oscillations are not just critical for processing sensory information from a single source 
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but also for perceptual binding (Tallon-Baudry and Bertrand, 1999). To make sense of the world 

we need to be able to combine individual sensory items into a unified neural representation of 

the sensory object as a whole. Perceptual binding (particularly visual perception) allows us to 

take different features - such as the lines, faces, angles, and depth required to perceive a table 

– and combine them into a single sensory object. This is also important across senses 

(particularly between seeing and hearing) for example in the combination of the visual 

movement of a speakers face with the auditory processing of their speech (Stevenson et al., 

2014; Lin et al., 2015).  

 

1.2.4.1 Mechanisms of gamma – ING 

There are several mechanisms describing how gamma oscillations are generated (see Figure 

1.3). The most basic (in terms of network simplicity) of these mechanisms is interneuron 

network gamma (ING).  

 

ING describes a mechanism of gamma band network activity in which interconnected 

interneurons alone are capable of generating the population rhythm. This was originally shown 

by eliciting 40Hz oscillations in the cornu ammonis area 1 (CA1) region of the hippocampus with 

trains of electrical stimulation that activate metabotropic glutamate receptors (mGluR) or 

through direct mGluR activation by an agonist (Whittington et al., 1995). This mGluR activation 

increases interneuron depolarisation by reducing K+ currents through secondary messenger 

signal activity on K+ channels (Miles and Poncer, 1993). This was shown to be independent of 

pyramidal excitation as the 40Hz rhythms were conserved the after the blockage of glutamate 

receptors (NMDAr, AMPAr and kainate receptors) (Whittington et al., 1995).  

 

Depolarisation of one interneuron generates a train of action potentials whose frequency is 

dictated by the amount of depolarisation and the duration of the after-hyperpolarisation 

potential (or refractory period). However, with interconnected interneurons, the action 

potentials from the first interneuron generate IPSPs in the second, which silences that 

interneurons activity until the IPSP is over. This means that the second interneuron is most likely 

to fire in tandem with the first. It also means that the oscillation is possible due to the 

interneurons’ ability to recover from inhibition with enough tonic depolarisation (by mGluR 

activation) to fire again. Through this mechanism, each interneuron entrains others nearby and 

interneuron network gamma oscillations are generated (Whittington et al., 2000). 
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ING is only possible due to the short range of projections from the interneurons involved (like 

those in CA1). However, it unlikely to be a conserved mechanism in the cortex due to the long-

distance synchronisation of gamma oscillations readily observed in many conditions. 

Furthermore, the physiological relevance of ING is dubious due to the need to isolate networks 

of interneurons from excitatory cell influence and is only possible experimentally through the 

blockage of NMDA and AMPA activity (Whittington et al., 1995). It is unlikely that excitatory cells 

play no part in gamma oscillations due to their dense connectivity with interneurons and the 

fact that hippocampal and neocortical afferents activate both excitatory and inhibitory cells 

during in vivo gamma oscillations (Burchell et al., 1998). 

 

1.2.4.2 Mechanism of gamma – PING 

To be more relevant to the conditions of the brain in vivo, the reciprocal influence of excitatory 

neurons need to be included in with the interneuron network activity. Pyramidal-interneuron 

network gamma (PING) describes this interplay (Traub et al., 1997). Metabotropic receptor 

activation (mGluR and mAChR) recruits pyramidal cells (as well as other interneurons) to the 

network (Whittington et al., 1997) and because pyramidal cells recover from inhibition before 

interneurons, they provide phasic excitation and cause the interneurons to fire again 

(Whittington et al., 2000).  

 

Therefore, as the pyramidal cells fire, their EPSPs cause the activation of fast spiking (FS) 

interneurons (primarily by glutamatergic neurotransmission and action via AMPA receptors). 

The interneuron output then causes the inhibition of other interneurons (the ING mechanism 

above) as well as the reciprocal inhibition of the locally connected pyramidal neurons. This 

process has a decay, which then allows the pyramidal neurons to fire again and thus generates 

rhythmic oscillations at gamma frequency (Whittington et al., 2011). Each interneuron may have 

reciprocal innervation with nearly 1000 different pyramidal cells (Halasy et al., 1996), 

convergence and divergence that highlights the importance of interneurons in the generation 

of the gamma rhythm and the synchronisation of pyramidal cells in the network (Whittington et 

al., 2000). 
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1.2.4.3 Mechanisms of gamma oscillations - Persistent gamma oscillations 

Although the PING model provides the basis for how a gamma rhythm may work in the cortex, 

experimentally it only exists for brief periods of time following glutamate pressure injection 

(Whittington et al., 1998), tetanic stimulation (Whittington et al., 1997) and potassium 

concentration increases (LeBeau et al., 2002). Though PING may be related to certain in vivo 

states, the persistent gamma oscillations seen in vivo and in vitro require an adaptation of the 

model to explain their mechanism. The fundamental conceptual problem with the PING model 

is that it involves the somatic spiking of pyramidal cells, which has only been seen to occur at 1-

4Hz during persistent gamma (Fisahn et al., 1998; Chapman and Lacaille, 1999; Gillies et al., 

2002). Spiking at this frequency range is, at least experimentally, insufficient alone to provide 

the excitatory drive for a persistent rhythm (Whittington and Traub, 2003), even with the huge 

convergence of pyramidal cells onto single interneurons (Gulyas et al., 1999). It would seem, 

that for persistent gamma oscillations to occur another form of input is needed. This comes from 

fast rhythmic bursting (FRB) neurons which spike multiple times per wave of the gamma 

oscillation and require the gap junctions that exist between these and other pyramidal neurons 

to broadcast this additional spiking throughout an electrically connected network of axons 

(Cunningham et al., 2004). 

 

Stable persistent gamma oscillations can be generated in acute slices of rat brain by the bath 

application of carbachol (CCH), an agonist of both muscarinic and nicotinic acetylcholine 

receptors (Fisahn et al., 1998). Whilst carbachol has been shown to generate robust 

hippocampal gamma oscillations, it’s the induction of cortical gamma oscillations is less 

successful (Dickson and Alonso, 1997; Gloveli et al., 1999). Kainic acid (kainic acid, KA), an 

exogenous ligand for the glutamate-sensitive excitatory kainate receptors is even more reliable 

as a manipulation to induce persistent gamma oscillations. This has led to well characterised in 

vitro oscillation models - believed to reliably represent the in vivo oscillation - in the 

hippocampus (Traub et al., 1996), entorhinal cortex (Cunningham et al., 2003), primary auditory 

cortex (Ainsworth et al., 2011) and secondary somatosensory cortex, S2 (Roopun et al., 2008). 

This thesis, therefore, used kainate application to brain slices containing auditory and secondary 

somatosensory cortex to generate gamma oscillations as an in vitro model of an active, awake 

cortex. 
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1.2.4.4 Features of auditory gamma in vitro. 

In the primary auditory cortex (Au1) the gamma rhythm can be generated by bath application 

of 400nM kainate, where the power of the oscillation is highest in layer III (Cunningham et al., 

2004). There is also a kainate concentration-dependent frequency split in the auditory gamma 

oscillation with bath concentrations over 600nM. The faster gamma oscillation (known as γ2) at 

50-80Hz originates from layer IV whereas the slower gamma (γ1) is generated from layers II/III 

(Ainsworth et al., 2011).  Layer V synchronises with layer II/III in low gamma and with layer IV at 

the kainate concentration at which the layers frequencies split. This suggests that differences by 

subject and task of the in vivo rhythm in this area may be related to the strength of the auditory 

input to the cortex, which is mimicked in vitro by the kainate concentration. As we wished to 

model background gamma rhythms we used lower concentrations of kainite, where only the 

slower rhythm was seen. 

 

1.2.4.5 Features of S2 gamma oscillations in vitro 

In the secondary somatosensory cortex (S2) a different frequency split is seen similar to that of 

the auditory cortex. In superficial layers II/III a gamma rhythm exists at around 40Hz whereas in 

layer V the oscillation is in the β2 range (20-30 Hz). These oscillations are maintained after a cut 

is made in layer IV to separate superficial and deeper layers (Roopun et al., 2006). Additionally, 

the power of both oscillations increases after the cut and could be due to destructive 

interference between the two rhythms in the intact slice. The beta rhythm may recruit cells in 

the gamma generators’ layer (and vice versa) and thus the number of cells contributing to each 

rhythm in their respective layers is decreased, which has a detrimental effect on oscillation 

power. 

 

The dual rhythms seen in these cortices (Au1 and S2) are consistent with the idea that the 

sensory information entering the cortex at layer IV can be transferred to both superficial and 

deep layers (Thomson and Bannister, 2003). As superficial layers are known to have strong 

intralaminar connections with other regions (Gilbert and Wiesel, 1979; Lefort et al., 2009), this 

pathway may allow for perceptual binding (discussed above) to create a neural representation 

of the somatosensory perception of an object (combining size, shape and texture). Deeper layers 

project to subcortical regions, such as the thalamus, which controls the response to the stimulus, 

which is especially important in the feedback to control motor actions (Kaas, 1993).  
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1.2.4.6 Multimodal nature of auditory cortex and secondary somatosensory cortex. 

The auditory cortex and somatosensory cortex were both thought to be involved with the 

processing of unimodal sensory information, however studies have since suggested not only 

synchronous activity between these two areas of the neocortex but also that they may encode 

multimodal sensations rather than just dealing with discretely different modes of sensory input 

(some of this with respect to S2 is introduced above). 

 

This has been shown in human fMRI with certain areas of the auditory cortex responding to 

somatosensory input as well as auditory input and subsequently integrating these two inputs 

(Foxe et al., 2002). Also, the responses to joint inputs have been seen to sum to more than 

oscillations resulting from single sensory cues (Ro et al., 2013). 

 

Structurally the auditory cortex has also been found to have connections to the secondary 

somatosensory cortex in humans. These ipsilateral white matter tracts allow the interaction 

between somatosensory and auditory sensory inputs in which sounds can elicit or increase 

tactile perception (Ro et al., 2009). Abnormalities in these connections are known to be present 

in auditory-tactile synaesthesia (Beauchamp and Ro, 2008). 

 

1.2.4.7 Gamma oscillations and plasticity. 

Several lines of evidence link the generation of gamma rhythms to neuronal network plasticity. 

The synchrony of activity between areas of the cortex, mediated by gamma-band frequencies, 

have been linked to memory, with rhinal-hippocampal gamma synchrony underlying successful 

(but not failed) memory formation tasks in humans (Fell et al., 2001). Synchrony has also been 

shown in the rat brain to be generated via fast gamma oscillations between the entorhinal cortex 

and CA1 which underlies the mnemonic encoding of position in space, and in slow gamma 

between CA1 and CA3 for information storage (Colgin et al., 2009b). A reason for the 

prominence of gamma oscillations in the communication between regions, encoding of 

information and memory, could be because the timing of excitatory postsynaptic spikes required 

for synaptic plasticity lies within the gamma range (Bi and Poo, 1998). Plasticity afforded by 

synchronous gamma rhythms has been shown to potentiate excitatory synaptic connections 

between principal cells, leading to changes in the neuronal activity of the hippocampus 

(Whittington et al., 1997) and neocortex (Roopun et al., 2008).  
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The above studies on synchrony between regions in the cortex and the transfer of information 

strongly suggest that synaptic plasticity may be a consequence of the generation of gamma 

rhythms. But what relation do gamma rhythms have to such synaptic plasticity? 

 

Gamma oscillations in neuronal membrane potentials have been suggested to be the 

mechanism by which plasticity can be modulated. One finding that supports this mechanism is 

that layer II/III pyramidal cells undergo LTP or LTD (in the form of changes in EPSP amplitude) 

depending on the phase of the EPSP in relation to the membrane potential oscillation (Wespatat 

et al., 2004). If these cells are part of the network that creates gamma oscillations in the local 

field, they may link gamma rhythms and plasticity via control of neuronal output timings. 

Moreover, repeated stimulation of layer 4 (causing ascending cortical activation to more 

superficial layers) with the specific application of glutamate 1 hour apart can cause plasticity 

which alters gamma oscillation dynamics. After repeated stimulation, there was an increase in 

the power of the oscillation, as well as superficial enhancement and deeper layer suppression 

of spike firing frequencies and their timing to the field oscillation (Ainsworth et al., 2016). These 

processes are thought to be important for attentional modulation and short-term memory. 

Another way of answering the question is to look at gamma rhythms related to memory - an 

outcome of plasticity. This approach has shown that the spectral power of gamma-band 

oscillations in the auditory cortex appears to be predictive of the formation of an associative 

(auditory fear conditioning) long-term memory (Headley and Weinberger, 2011). 

 

From the above evidence, it appears that gamma rhythms play a role in the formation of new 

memories. However, this alone is usually not enough to generate life-long memories. The 

formation of new memories needs to be ‘consolidated’ somehow. Current theories suggest this 

is done during sleep, so we next consider sleep-related cortical dynamics.  
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1.2.5 Delta Oscillations 

This thesis uses an in vitro model of delta rhythms to represent the cortical dynamic state during 

sleep. During deep sleep (NREM stages 3 and 4) the brain exhibits slow wave activity (SWA), 

which is dominated by delta oscillations (1-4Hz) in the EEG. Oscillations in this band are believed 

to play a role in synaptic homeostasis and memory consolidation vital for long-term learning in 

humans (Huber et al., 2004; Walker, 2009) and have been shown to be amplified during sleep in 

rats in specific brain regions related to a learning task during prior wakefulness (Hanlon et al., 

2009).  

 

Delta waves were once believed to be only physiologically relevant to sleep, and their presence 

during wakefulness was considered a response to brain injury or pathology (see section 1.4 

below). However, there has also been emerging evidence for the impact of wake state delta 

rhythms on normal attentional processing, and the inhibition of sensory input that would 

interfere with the concentration required to carry out a task (Harmony et al., 1996). It is possible 

this is a similar mechanism involved in the functional separation of the whole brain from sensory 

input during sleep (Alper et al., 2006). Contrasting this idea, experiments have shown that whilst 

there is a positive correlation between delta rhythms and metabolism during wakefulness, the 

relationship is negative during sleep  (Maquet, 1997). This disparity may suggest a functional 

difference between physiological waking delta oscillations and those seen during sleep that is 

beyond the scope of this thesis. 

 

1.2.5.1 Mechanisms of delta oscillations 

Delta oscillations are believed to have at least two components to their generation – one 

neocortical, one thalamic. In the thalamus, delta rhythms are generated after neuromodulatory 

afferent changes from brain stem nuclei (McCormick, 1992; Varela and Sherman, 2009). These 

brainstem nuclei are responsible for cholinergic and aminergic signalling (dopamine, histamine, 

noradrenaline and serotonin) in the brain and make up the reticular activating system (RAS) 

which controls arousal and sleep. Cholinergic neurons within the RAS promote cortical activation 

via the thalamus, whereas as the activity of brainstem aminergic nuclei is relayed through the 

hypothalamus. During sleep, neurons in the reticular activating system have a lower firing rate 

(due to inhibition by GABAergic neurons of the preoptic area). This leads to a reduction in 

neuronal activity propagated to thalamocortical neurons.  
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Hyperpolarisation of thalamocortical cells by the reticular activating system generates low 

threshold spiking (LTS) at 1-2Hz. The delay between periods of this activity occurs due to the 

time courses of intrinsic conductances expressed by thalamocortical (TC) neurons. This includes 

the activation and inactivation of the hyperpolarisation-activated (Ih) current and its interaction 

with the low threshold calcium (IT) current which occurs after LTS (Soltesz et al., 1991; Brown et 

al., 2012) as well as the delayed rectifier current (IK) (Emri et al., 2000). In fact, the ablation of 

the Ih current (by ZD7288 application abolished TC delta activity) and an increase in Ih also 

increases this oscillatory activity (Hughes et al., 1998). Furthermore, this thalamic activity can 

be synchronised by the inhibitory activity of reticular (RE) cells that hyperpolarises TC cells at a 

membrane potential at which delta frequency LTS occur (Steriade et al., 1991).  

 

However, the importance of the thalamus for conferring and organising oscillations within the 

cortex is debated. The sheer extent of the thalamocortical projections could allow for the 

cortical delta rhythm to merely be the propagation of the thalamic oscillation. However, in vivo 

experiments using surgical procedures to isolate the cortex have still shown the presence of 0.1-
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4 Hz oscillations, even without thalamic inputs (Kellaway et al., 1966; Timofeev et al., 2000).  

Indeed, some cortical forms of delta rhythm have been shown to be reliant intrinsic properties 

of cortical neurons and are reflected in thalamocortical neurons, rather than the other way 

around (Amzica and Steriade, 1998; Fell et al., 2002). It has also been suggested that during sleep 

different cortical areas locally generate delta rhythms in a use-dependent manner (Vassalli and 

Dijk, 2009), a feature that has also been in awake animals. (Vyazovskiy et al., 2011). The 

association areas of frontal cortex and parietal cortex are the predominant proposed delta 

rhythm generators in human cortex during sleep (Ioannides et al., 2009), and each cortical 

region may have its own local delta rhythm generator (Mormann et al., 2008) interacting with 

the thalamic generators (described above). This occurs through excitatory glutamatergic 

corticothalamic projections to thalamocortical neurons or reticular neurons. The inhibitory relay 

through GABAergic reticular neurons to thalamocortical neurons overcomes the direct 

excitatory feedback (Steriade, 2003). 

 

1.2.5.2 In vitro Delta Oscillations 

In vitro preparations have also shown the ability of the isolated neocortex to generate delta 

oscillations. This requires using a combination of very low levels of the cholinergic agonist 

Carbachol (10% that used for in vitro gamma oscillations) and a dopaminergic (D1R) antagonist 

SCH23990 to mimic the low dopaminergic tone seen during sleep (Watson et al., 2010) to 

generate a burst firing pattern from intrinsically bursting (IB) cells in an NMDAR dependent 

manner (Traub et al., 2017)  . The periodicity of the delta rhythms is determined by the duration 

of the after-hyperpolarisation potentials (AHP) of IB cells. The AHPs reflect the inhibitory GABAB 

currents which occur in IB cells and are caused by GABA signalling from neurogliaform cells.  

They cause a refractory period in which the IB cells are hyperpolarised, preventing their firing 

until the AHP event is over. Layer V regular spiking (RS) neurons are also involved; spiking only 

a few times per delta period causing (Carracedo et al., 2013). This sparse spiking correlates with 

EPSPs (~2 per delta period) in layer 2/3 which are thought to converge to facilitate the excitation 

of burst firing of layer V IBs (Kampa et al., 2006).  

 

Much of what is known about the mechanism of the delta rhythms was studied in the secondary 

somatosensory cortex as it is known to generate strong delta rhythms in rodents – where it 

forms part of the parietal cortex -  (Carracedo et al., 2013) and in humans (Ioannides et al., 2009). 
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1.2.5.3 Delta activity and memory consolidation  

One of the putative functions of delta oscillations is the consolidation of memories. 

Consolidation is the process whereby a memory trace, which is the neuronal representation of 

a recently encoded memory, is stabilised and reinforced. It is a two-part process, with both roles 

requiring different cortical dynamics. Synaptic consolidation, which occurs during REM sleep 

(Diekelmann and Born, 2010) (and is thus associated with the theta rhythms) is the process 

whereby the circuit in which the memory trace exists is strengthened, through molecular 

mechanisms to increase synaptic efficacy. To transfer the memory held in short term circuits to 

long-term memory, the process of ‘systems consolidation’ occurs (Dudai and Eisenberg, 2004). 

Systems consolidation is thought to consist of many waves of synaptic consolidation that 

reorganise the representation of a long term memory to dispersed neuronal networks and can 

occur over a period of months (Dudai et al., 2015). This process happens during SWS when 

acetylcholine levels are at their lowest (Gais and Born, 2004).  

 

During wakefulness, high levels of acetylcholine have been shown to decrease EPSPs in the 

feedback pathway from CA3 to CA1 and entorhinal cortex (Rovira et al., 1983; Herreras et al., 

1988). This process is known as excitatory feedback suppression and is mediated by high levels 

of acetylcholine. This limits the spread of information to hippocampal circuits and prevents their 

interference with memory traces in the cortex. Oppositely, reduced levels of acetylcholine 

during sleep prevents feedback suppression to allow the transfer of information through the 

hippocampus to the entorhinal cortex and association cortex to allows the consolidation of 

memory (Hasselmo, 1999). Although delta oscillations are prevalent during SWS and are known 

to be associated with low cholinergic tone, little is known about their contribution to this 

mechanism of memory consolidation.  

 

1.2.5.4 Delta activity and plasticity  

Delta band activity is known to increase during sleep with the amount of time spent awake; 

particularly in areas related to the sensory modality of experience during prior wakefulness 

(Kattler et al., 1994; Huber et al., 2004; Miyamoto and Murayama, 2016). Some theorise that 

this is a restorative response to the neuronal fatigue built up by greater firing rates during 

wakefulness, (Rechtschaffen, 1998; Vyazovskiy and Harris, 2013). To test this theory 

optogenetics have been used. This uses the delivery of a viral vector to allow local populations 

of neurons to be stimulated to fire after the delivery of a light pulse. Rodriguez et al. (2016)   

compared mice that displayed wake-like tonic firing in the frontal cortex when optogenetically 
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stimulated (during each NREM cycle occurring in the previous 6 hours), with mice that had been 

sleep deprived for 6 hours by the placement of a novel object in their cage whenever they 

appeared to be inactive. After treatment conditions, mice were allowed to sleep and their SWA 

was monitored. It was shown that an increase in the amplitude of SWA only occurs during sleep 

deprivation and the frequency of ‘off’ periods of the oscillation increased in correlation with 

neuronal activity during prior wakefulness. No such changes were seen in the optogenetic 

stimulated mice. This suggests that the response in SWA is to increases in synaptic strength 

during wakefulness rather than just a blanket increase in neuronal activity. It may, therefore, 

follow that SWA is required for the renormalisation of synaptic strength accrued during 

wakefulness to relieve the metabolic demand. 

 

This is the proposed process at the core of the synaptic homeostasis hypothesis (SHY). This 

theory suggests that during the wake state there is a net strengthening of synapses in the brain, 

as a result of the sensory processing and learning that occurs. This leads to a cellular need for 

space in which to build additional synaptic connections and more energy to strengthen them 

and maintain them, however, both of these demands are limited. It is suggested that sleep is 

required to generally normalise these synaptic connections, by globally decreasing synaptic 

strength so that the process of synaptic strengthening can continue again the following day 

(Tononi and Cirelli, 2014).  

 

The idea that there is a general decrease in synaptic strength during sleep is corroborated by 

structural, molecular and electrophysiological evidence.  There has been shown to a net loss in 

number and size of synaptic spines during sleep in Drosophila (Bushey et al., 2011) and mice 

(Maret et al., 2011). The number of excitatory AMPA receptors is known to be increased during 

wakefulness and decreased in sleep (molecular markers of synaptic strength) (Vyazovskiy et al., 

2008; Lante et al., 2011). Furthermore, sleep also leads to decreased cortical firing rates 

(Vyazovskiy et al., 2009). 

 

An expansion on the theory also exists suggesting that the decrease in synaptic strength does 

not affect all synapses, but those which are stronger (with larger spines) are unaffected which 

improves the increase signal to noise ratio of those synaptic connections. Looking at the physical 

connections between dendritic spines and axon terminals - called the axon spine interface (ASI) 

- by electron microscopy has shown that there is a shrinkage of 18% in the area of contact at the 

ASI during sleep (de Vivo et al., 2017). This also correlated to the size of the dendritic spines, 
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with the largest 20% of spines being spared. There has also been shown to be a net loss of 

synaptic spines during sleep (Maret et al., 2011), although it is not clear as to whether it is the 

smaller spines that are lost.  

 

Further to these structural changes, electrical changes at the synapse and at the neuronal level 

occur during sleep. In general, the firing rates of neurones are decreased during sleep in the 

cortex (Vyazovskiy et al., 2009; Watson et al., 2016) and hippocampus (Miyawaki and Diba, 

2016). Additionally, the general efficacy of cortico-cortical synapses has been shown to be 

decreased after sleep (Vyazovskiy et al., 2008). However looking at individual neurons, it was 

found that their firing rates during sleep are equalised from initially higher or lower rates 

(Watson et al., 2016). These changes - along with the divergent changes in synaptic size and 

contact highlighted by de Vivo et al. (2017) suggest that homeostatic rescaling during sleep is 

more complex than the global downscaling of synapses. It appears that different processes occur 

at synapses depending on their strength, to increase the ‘signal-to-noise’ ratio (rather than 

maintain it as suggested in the general downscaling hypothesis). 

 

Molecular changes at the synapse have been implicated in this synaptic scaling during sleep. 

Along with the decrease in spines size, the internalisation and dephosphorylation of 

glutamatergic AMPA receptors in specific synapses occurs during sleep (Diering et al., 2017). The 

decrease in postsynaptic AMPA receptor number reduces the number of cations entering 

through the associated ion channels after glutamate binding, and thus decreases the size of 

EPSPs propagated across the synapse as the postsynaptic membrane (Luscher et al., 1999). The 

ability of spines to regulate their synaptic homeostasis in response to local activity (through this 

AMPA receptor endocytosis) requires the activity of the immediate early gene Arc (Béïque et al., 

2011), which is discussed further below and is a focus of this thesis.   

 

A further link between AMPA receptor internalisation and sleep is through adenosine signalling.   

Adenosine receptor activation is known to cause the internalisation of AMPA receptors (Chen et 

al., 2016). Furthermore, the accumulation of adenosine during wakefulness is known to lead to 

the inhibition of the aminergic systems of the reticular activating system (see Chapter 1.2.4.1 

and Figure 1.4) otherwise promote wakefulness and activate the cortex after conscious 

disconnection during sleep. Adenosine accumulation causes the disinhibition of GABAergic 

neurones of the ventrolateral preoptic area which in turn causes the inhibition of aminergic and 

cholinergic nuclei of the reticular activating system to promote sleep (Pace-Schott and Hobson, 
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2002). Adenosine also directly facilitates SWA in thalamocortical neurons (Pape, 1992). It is likely 

that synaptic plasticity through NMDAR activation would lead to an increase in adenosine 

concentrations in thalamocortical circuits and thus subsequently increases SWA (Bjorness and 

Greene, 2009), as NMDAR activation is known to increase adenosine concentrations in 

brainstem cholinergic nuclei (Brambilla et al., 2005).  

 

The cholinergic system plays an important role in the presence of SWA. Increased cholinergic 

tone to levels associated with wakefulness inhibits SWA in cortical neurons (Marrosu et al., 

1995), and is managed by adenosine-1 receptor (A1Rs) activation which inhibits acetylcholine 

release from tegmental nuclei and the nucleus basalis of Meynert to decrease arousal (Porkka-

Heiskanen et al., 1997).  

 

Dopamine is also crucial in controlling the sleep-wake cycle, with dopaminergic cells in the 

ventral tegmental areas responsible for controlling arousal (Monti and Jantos, 2008). Stimulants 

that increase dopamine signalling either through the KO of the dopamine transporter (Wisor et 

al., 2001) or through the exogenous activation of dopamine receptors (Isaac and Berridge, 2003) 

all serve to promote wakefulness. Whereas the antagonism of the receptors has the opposite 

effect (Monti et al., 1990). Antagonism of hippocampal D1 receptors has also been shown to 

have a negative effect on the persistence of fear memory (Rossato et al., 2009), which may point 

at a role of low dopamine in the processed of depotentiation needed for synaptic rescaling.  

 

1.3 Immediate early genes (IEGs) 

To quantify activity and plasticity levels associated with wake and sleep rhythms this thesis uses 

immediate early genes as markers. Immediate early genes (IEGs) are the first genetic response 

to cellular signals and their transcription is rapidly induced (in as little as 15 minutes) in response 

to a wide variety of stimuli (Hu et al., 1994). Many IEGs are transcription factors and as such are 

involved in triggering a cascade of activation that leads to the downstream expression of further 

genes and cellular effects. These effects relate to the classes to which the IEG belongs, with 

some (regulatory transcription factors) exerting a wide cellular effect through the genes they 

activate, whereas others have a more focussed role in specific cellular processes (Guzowski et 

al., 2001). The experiments performed here used 2 IEGs as activity/plasticity markers: c-fos and 

Arc. 
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1.3.1 C-fos - Finkel–Biskis–Jinkins osteogenic sarcoma homologue 

C-fos is a member of the Fos family of transcription factors. It was originally discovered as a 

proto-oncogene and is the mammalian homolog of the Finkel-Biskis-Jinkins osteogenic sarcoma 

virus gene that was found in mouse tumours (Finkel et al., 1966). It is now known to be an 

immediate early gene due to its rapid transcriptional induction and has been used as a marker 

for recent neuronal activation (Morgan and Curran, 1989; Hoffman et al., 1993).  

 

The c-fos protein contains a region common to many transcription factors, known as the leucine 

zipper. It is so called as every seventh amino acid in its sequence is a leucine residue. This zipper 

allows the heterodimerisation of c-Fos protein with Jun family proteins such as c-Jun – a product 

of another immediate early gene (Gentz et al., 1989; Turner and Tjian, 1989). This heterodimer 

forms the protein complex known as AP-1 (Activator Protein 1) that acts as a transcription factor 

involved in many cellular processes. The c-Jun protein can also homodimerize in the absence of 

c-Fos, but in this form, its binding affinity for DNA is 25 times less that of the AP-1 complex 

(Halazonetis et al., 1988). 

 

1.3.1.1 C-fos as a marker of neuronal activation 

The low expression of c-fos in basal conditions allows its transcription and translation to be 

accurately monitored. As c-fos is an immediate early gene, the time-scale of its upregulation is 

relatively fast, with c-fos mRNA levels peaking after 30 minutes and protein expression being 

elevated from 60 minutes after the induction stimulus (Morgan et al., 1987).  

 

Early studies that examined the activity-dependent expression of c-fos did not look at single 

neurons but at changes in expression in neuronal populations in response to a wide variety of 

stimuli. These studies showed c-fos expression could be induced in certain brain areas in 

response to: noxious sensory stimulation (Hunt et al., 1987; Coggeshall, 2005) sciatic nerve 

stimulation (Bojovic et al., 2015), dehydration (Carter and Murphy, 1990) myocardial  infarction 

(Ahn et al., 2015), seizure (Morgan et al., 1987), (Smeyne et al., 1992), instrumental learning 

(Svarnik et al., 2005), novel environment exposure (VanElzakker et al., 2008) and various 

stressors  (Chowdhury et al., 2000; Ubeda-Contreras et al., 2018). 

 

To understand the mechanism behind c-fos induction, it is important to see how c-fos 

upregulation occurs in single cells. It is now known that c-fos expression can be induced in 

neurons by membrane depolarisation, as well as brain-derived neurotrophic factor (BDNF) 
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signalling and Forskolin application (i.e. increased cAMP levels) (Joo et al., 2016). These stimuli 

induce c-fos gene expression through the activation of the transcription factors CREB and SRF 

by protein kinases, such as Ca2+/calmodulin-dependent protein kinases, MAP kinases and protein 

kinase A (West and Greenberg, 2011).  Furthermore, from experiments using Channelrhodopsin-

2 transfected pyramidal hippocampal cells, trains of action potentials were stimulated, firing 

spikes in response to light pulses. Stimulation in this way increased in the expression of c-Fos 

protein in single neurons in an NMDA and AMPA receptor-independent manner; though it 

required the activity of the sodium channels (Schoenenberger et al., 2009).  This suggests that 

neuronal output (action potentials) alone are sufficient to upregulate c-fos expression. 

 

The situation becomes a little more complex when it is considered that generation of antidromic 

action potentials causes an insignificant increase in c-fos mRNA levels in magnocellular neurons 

of the hypothalamus, compared to muscarinic acetylcholine activation by carbachol (Luckman 

et al., 1994). Whether this discrepancy is due to the cell types involved, or different stimulation 

regimes, is uncertain. It does suggest however that c-fos expression may be specific to 

orthodromic action potentials alone, a factor that may influence its use as a marker for activity 

during persistent gamma rhythms (see above). 

 

Further evidence also suggests that the mechanism of neuronal c-fos induction is more 

complicated than a straightforward orthodromic action potential leading to c-fos transcription 

relationship. At least in terms of the amount of expression, it has been shown that under seizure 

stimulation the number of action potentials is not correlated with the magnitude of c-fos 

induction (Labiner et al., 1993). There is also no direct correlation between the percentage of c-

Fos-positive neurons and percentage of active neurons (Svarnik et al., 2005). This is emphasised 

by Kovacs (2008) who points out that if depolarisation alone were sufficient to induce the 

expression of c-fos, then under basal conditions there would be robust staining in millions of 

cells throughout the brain, which is not the case. 

 

In addition, c-fos expression has been shown to exhibit a high degree of region-specificity. For 

example, in an appetitive reaching task, the motor cortex showed no induction of c-Fos protein, 

whereas the retro-splenial cortex (involved in ‘learning’ the task) showed a significant increase 

(Svarnik et al., 2005). During different stress conditions, different patterns of up and 

downregulation of c-Fos expression are seen within different regions of the brain related to the 
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intensity of the stress and also qualitative aspects of the stressor (Chowdhury et al., 2000; 

Ubeda-Contreras et al., 2018).  

 

Therefore, it seems that c-fos is induced not by the simple firing of action potentials in existing 

patterns, but to changed patterns of neuronal activity (Svarnik et al., 2013). This may explain 

why stimulation of unusual brain activity (e.g. evoked seizures) and behavioural tasks that 

involve the activation of new circuits induce c-fos expression.  

 

This is particularly true for a novel experience (VanElzakker et al., 2008), visual stimulation 

(Rosen et al., 1992)  and learning (Anokhin et al., 1991; Kleim et al., 1996) where the induction 

of c-fos expression was seen to be specifically increased in cortical areas related to the task. This 

increase was not seen in control animals or those repeating already learned behaviour.  

 

1.3.1.2 C-fos and memory 

The above evidence suggests that c-fos expression may be related to the formation of memory 

and its persistence. This has also been more directly tested, with evidence showing that delayed 

expression of c-fos mRNA is necessary for the persistence of a long-term memory trace that 

would have otherwise have decayed (Katche et al., 2010).  

 

Looking more in depth at the mechanism to link learning and memory to c-fos expression, it has 

been shown that using chemical and electrical methods that induce synaptic plasticity - through 

long-term potentiation (LTP) - cause increases in c-Fos protein (Abraham et al., 1991). However, 

the amount of LTP evoked by this method does not correlate with the extent of c-fos induction 

(Dragunow et al., 1989). This suggests that either there is a non-linear relationship between LTP 

induction and c-fos expression, or it may be neuronal activation and not the potentiation of the 

synapse that causes the c-fos upregulation. Brain-specific c-fos knockout mice have been used 

to directly interrogate the role of c-fos in plasticity and memory. Using the Cre/LoxP system to 

ablate c-fos expression in nestin-expressing cells, Fleischmann et al. (2003) showed that 

knockout of c-fos from the CNS led to impaired spatial memory and a concurrent decrease in 

LTP between CA1 and CA3 regions of the hippocampus. 

 

Although these studies all link changes in the levels of c-Fos directly and indirectly to synaptic 

plasticity, they do not suggest the mechanism of molecular involvement of c-Fos in this process. 

C-Fos likely acts through AP-1 in the process of synaptic plasticity. AP-1 regulates the expression 
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of plasticity-associated genes (Eagle et al., 2016) including BDNF (Tuvikene et al., 2016) and cyclic 

AMP response-element-binding protein (Sanyal et al., 2002). AS induced BDNF and CREB can 

further activate transcription to regulate synaptic strength and number, AP-1 mediated gene 

expression appears to act via positive feedback loops to influence synaptic plasticity. 

 

1.3.2 Arc - Activity-related cytoskeleton-associated protein  

Another immediate early gene, with a more direct link to synaptic plasticity, is the activity-

regulated cytoskeleton-associated protein, Arc (also known as Arg3.1). Most immediate early 

gene products are translated in the cell body where they remain to mediate their cellular actions 

(Wallace et al., 1998). Arc is a neuron-specific IEG and its expression is regulated at the level of 

transcription, mRNA trafficking and protein translation. Synaptic activity not only induces Arc 

mRNA but also triggers the trafficking of Arc mRNA to dendrites where it is subsequently locally 

translated (Steward et al., 1998). Its increased expression has been related directly to learning 

and memory and has been shown to participate in several different forms of synaptic plasticity.  

 

1.3.2.1 Arc and long-term potentiation 

Early studies on Arc induction showed that Arc mRNA and Arc protein were seen to be increased 

for up to 4hrs by high-frequency stimulation (400Hz); known to induce LTP (Lyford et al., 1995). 

This increase was blocked by pre-treatment with the NMDA receptor antagonist MK801, which 

suggested that NMDA receptor-dependent signalling cascades are, at least in part, responsible 

for the increase in Arc mRNA (Link et al., 1995). The role of Arc in LTP was found to be related to 

its involvement in the stabilisation and growth of filamentous actin in the synaptic cytoskeleton 

(Guzowski et al., 2000; Messaoudi et al., 2007).  

 

Arc expression can also be induced chemically (with BDNF, bicuculline or glutamate) rather than 

with electrical stimulation, in an NMDAR dependent manner. Whilst NMDA receptor activation 

induces Arc expression the activation of AMPA receptors have been shown to inhibit Arc 

expression. Rao et al. (2006) showed that the inhibition of AMPA receptors with NBQX and GYKI 

52466 had the opposite effect, increasing both basal and BDNF-induced Arc expression. This 

suggests that Arc expression is balanced by NMDAR and AMPAR activation. 

 

The knockout of Arc impairs spatial learning (Managò et al., 2016), fear conditioning (Gouty-

Colomer et al., 2016) and taste aversion (Plath et al., 2006), due to impaired long-term memory 

related to late-phase LTP. This occurs despite intact short-term memory and increased early 
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phase LTP (Plath et al., 2006). Using antisense oligonucleotides to inhibit Arc protein expression 

leads to impaired maintenance of LTP but does not affect its induction (Guzowski et al., 2000; 

Messaoudi et al., 2007). It also appears that inhibition of such maintenance of LTP impairs 

memory consolidation (Guzowski et al., 2000; Bramham et al., 2010).  

 

1.3.2.2 Arc and Long-Term Depression 

Although the process of memory consolidation requires the strengthening of more important 

memories, forgetting things that are trivial or unimportant is also crucial. This would require the 

weakening of synaptic strength which occurs in by a process called long-term depression (LTD) 

(Tononi and Cirelli, 2014). In this process, metabotropic glutamate receptors (mGluR) can reduce 

synaptic strength between neurons through mGluR dependent-LTD (Lüscher and Huber, 2010). 

One of the key mechanisms that underpin this, which Arc plays a role in, is the rapid endocytosis 

of AMPA receptors from the post-synaptic membrane (Wall and Correa, 2018). This, in turn, 

reduces the post-synaptic response to glutamate release. This is likely to be an important factor 

in the process of memory consolidation during sleep, since AMPA receptors in synapto-

neurosomes (isolated synaptic vesicles and terminals from brain homogenate) have been shown 

to be decreased in rat brains at the end of the rest phase (when 75% of the previous dark phase 

was spent awake) compared to the active phase (when 75% of the light phase was spent asleep)  

(Vyazovskiy et al., 2008). 

 

Arc enables AMPAR endocytosis through its interaction with two endocytic proteins endophilin 

and dynamin that bring AMPA receptors into endosomes where they are recycled, lysed or 

trafficked to the nucleus (Chowdhury et al., 2006; Rial Verde et al., 2006; Shepherd et al., 2006). 

This process is crucial in the rescaling of synapses during sleep (Diering et al., 2017) and is crucial 

for the maintenance of synaptic homeostasis and memory consolidation. This mGluR-LTD can 

be induced electrically with low-frequency stimulation (LFS) or pharmacologically using 

dihydroxyphenyl-glycine (DHPG) as an exogenous agonist for the mGluR-1 and 5 (Waung et al., 

2008). Blocking Arc gene expression inhibits the induction of LTD by either method (Park et al., 

2008). 

 

1.3.3 General IEG changes during different brain states 

The expression of IEGs in the brain been compared between sleep and wakefulness by cDNA 

microarray. C-fos (Cirelli and Tononi, 1999) and Arc (Cirelli and Tononi, 2000b) mRNA levels were 

increased in all layers of the cortex after 3 hours of spontaneous wakefulness (SW – where the 
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animals spent >75% of the last 3 hours awake) compared to spontaneous sleep (SS – animals 

spent >75% of the last 3 hours asleep). There was no significant difference between 3 hours SW 

and 3 hours sleep deprivation (SD – by stroking with a paintbrush once animals appeared 

drowsy), and after 24 hours SD the IEG expression was lower still (Cirelli et al., 1995). These 

comparison studies were carried out on wide regions of the brain rather than specific areas, so 

the increases are general during the awake state compared to sleep, which would point to a 

general decrease in synaptic strength during sleep. This contrasts with other studies looking at 

regional changes to immediate early gene levels during post-learning sleep.  

 

1.3.4 Regional IEG changes across brains states  

Regional differences in IEG expression have been related to synaptic plasticity and IEG 

expression is increased in certain areas of the brain as a result of learning tasks in rats and mice. 

During REM sleep, animals recently exposed to a visually enriched environment showed a 

significant increase in the expression of the plasticity-related gene IEG zif268 in the cortex and 

hippocampus during subsequent REM sleep (Ribeiro et al., 1999). Further to this, there is a 

positive correlation between the amplitude of spindle firing events (which exist in the transition 

between REM and SWS) and the level of IEGs such as Arc (Ribeiro et al., 2007). Other studies 

have shown a link between zif268 and consolidation of fear conditioning memories in the 

hippocampus (Lee et al., 2004), which seems to point at a role of sleep and the long-term 

preservation of memories. These studies suggest a relationship between certain brain states and 

synaptic plasticity. Since neural oscillations vary during different brain states too, it is thought 

that they may have a part to play in this memory formation and plasticity.  

 

This is reinforced by findings that link the expression of c-Fos (an IEG marker for ‘new’ patterns 

of cellular activation, see above) and Arc (an IEG core to mechanisms of neural plasticity) with 

task-related sleep slow wave activity (SWA). In mice performing a unilateral reaching task, there 

was an increase in SWA in the learned hemisphere. This was seen in conjunction with an increase 

in Arc and c-Fos protein levels (Hanlon et al., 2009). The relationship between REM sleep and 

memory consolidation has also been investigated as REM is the sleep stage that is classically 

associated with theta frequency oscillations. These theta oscillations are thought to induce 

synaptic memory in the form of late LTP in the hippocampal CA1 region (Huang and Kandel, 

2005). 
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1.4 Neuroinflammation 

Neuroinflammation is the normal response of the immune system of the CNS to the presence of 

foreign material and damaged endogenous cells that may prove harmful to the surrounding 

nervous tissue. Associations have been discovered between neuroinflammation and altered 

sleep patterns (Mullington et al., 2010). The cause and effect of these associations appear to go 

both ways, with sleep loss in humans inducing increases in proinflammatory markers in the 

blood inflammatory (Vgontzas et al., 2004; Irwin et al., 2008) and infusion of proinflammatory 

cytokines promoting sleep in animals (Krueger et al., 1984). Furthermore, the immune challenge 

in humans prior to sleep reduces the duration of REM sleep, but increase the time spent in NREM 

sleep with no effect of oscillatory amplitude (Pollmacher et al., 1993). However if the 

inflammatory challenge occurs during sleep there is no alteration in the duration of any sleep 

stage but increases in delta and theta power during NREM sleep are seen (Haack et al., 2001).  

 

There have also been many studies to look at the relationship between inflammation and 

cognitive function. Neuroinflammation had been associated with deficits in attention (Holden 

et al., 2008), working memory (Buchanan et al., 2008),  contextual fear memory (Barrientos et 

al., 2009a)  episodic and spatial memory (d’Avila et al., 2018) and  object recognition memory 

(Hirshler et al., 2010) in animals. Similar associations have been seen in humans with increases 

in inflammatory markers associated with mild cognitive impairment (Magaki et al., 2007), 

decline in verbal and non-verbal memory (Reichenberg et al., 2001) as well as specific cognitive 

tests after stroke (Rothenburg et al., 2010) and normal ageing (Dik et al., 2005; Simen et al., 

2011). Therefore neuroinflammation is considered in this thesis as a potential means to perturb 

the pattern of cortical dynamics and subsequently change IEG markers. These are quantified in 

the early sections of this thesis.  

 

The inflammatory environment can be triggered in the brain after a physical, pathogenic, toxic, 

or autoimmune insult. Whilst most disease-relevant cases relate to chronic neuroinflammation, 

it can also occur acutely, most commonly related to a physical brain injury sustained during 

contact sports. Neuroinflammation may also manifest aberrantly, where the response to the 

above insults is excessive. In these cases, the normal, healthy aspects of neuroinflammation can 

become part of primary pathology. Whilst the peripheral immune system is responsible for 

initiating an inflammatory response to fight infection and remove foreign agents, under normal 

conditions peripheral immune cells are restricted from entering CNS tissues by the blood-brain 

barrier (BBB). However, in the case of brain trauma or disease conditions infiltration may occur. 
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Thus, any study of neuroinflammation secondary to systemic infection (or model thereof) needs 

to consider the BBB. 

 

1.4.1 The blood-brain barrier 

The blood-brain barrier (BBB) is a unique feature of the microvasculature of the CNS. It prevents 

the passage of larger objects and molecules (such as bacteria) from the circulation into the CSF 

whilst allowing the movement of smaller homeostatic molecules necessary for the maintenance 

of the CNS tissue. The BBB is mainly formed by specialised endothelial cells (ECs) that are 39% 

thinner than ECs in other tissues. This allows faster diffusion of water, gases and lipid-soluble 

molecules to provide nutrients more easily for the highly metabolically active CNS tissue 

(Coomber and Stewart, 1985). The ECs of the CNS are uniquely held together by tight junctions 

that limit the paracellular flow of solutes between the blood and the extracellular environment 

of the CNS (Brightman and Reese, 1969).  

 

Transcellular movement across the BBB ECs occurs through several systems. Gases (O2 and CO2) 

and smaller polar molecules can diffuse across easily across the BBB. The passive movement of 

ions and smaller molecules occurs through channels, whilst active transport of molecules also 

occurs across the BBB, which expresses high levels of the glucose transporter (GLUT1) (Boado et 

al., 1994) and amino acid transporter (LAT1) (Boado et al., 1999). Larger molecules are carried 

across the blood-brain barrier in vesicles and it is this transcytosis that is also of high importance 

for the delivery route of drugs across the BBB (Andreone et al., 2017).  

 

Other cells and structures support the BBB. Astrocytes ensheath blood vessels and neurons and 

provide communication between neurons and contractile pericytes (PCs) to allow changes in 

blood flow (through alterations in vascular diameter). This allows the provision of a nutrient 

supply to be tailored to the tissue's requirement, often in accordance with neuronal activity 

(Gordon et al., 2011).  A basement membrane is also provided by PCs and ECs to provide 

structural integrity to the neurovascular system. 

 

Although the blood-brain barrier is designed to isolate the brain from the inflammatory 

environment of the body, a systemic infection can still affect the CNS. This can occur through 

several means: using the BBBs para- or transcellular mechanisms for the transport of 

inflammatory signalling molecules or through immune cells; entry by the disruption of the blood-
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brain barrier or through the circumventricular organs; or through the peripheral activation of 

the autonomic nervous system sending signals to the brains (Varatharaj and Galea, 2017).  

 

1.4.2 Microglia 

The blood-brain barrier keeps the CNS isolated from pathogens that may be present in the 

peripheral circulatory system, however, this also means that it is separated from the peripheral 

immune system. Therefore, the CNS has specialised resident immune cells called microglia, 

which are responsible for the coordination of the brain’s immune response. Infections in the 

CNS occur infrequently however and recently studies have found microglia have a wide range of 

other roles in neuroprotection (Vinet et al., 2012) and in the pruning of neuronal processes and 

synapses (Paolicelli et al., 2011).  

 

Microglia are derived from myeloid progenitor cells in the embryonic yolk sac during 

development (Ginhoux et al., 2010). The maintenance of the microglia population post-

development primarily involves self-replication in the CNS rather than replenishment from the 

circulation (Ajami et al., 2007) as is the case with other tissue-resident macrophages such as 

Kupffer cells in the liver (Hashimoto et al., 2013). 

 

Microglia exhibit two main functional morphological states in the brain. In the healthy brain, 

they are found in a ‘resting state’ - these microglia have a ramified morphology with small cell 

bodies and many-branched processes. Despite being ‘at rest’, ramified microglia are in fact very 

active as their projections survey their microenvironment for damage or pathogenic signals 

(Nimmerjahn et al., 2005). 

 

Microglia can be activated by TLRs (Toll-like receptors), which are pattern recognition receptors 

that detect certain sequences in pathogens, known as pathogen-associated molecular patterns 

(PAMPs) types. There are 9 subtypes of TLRs found in the human brain (Bsibsi et al., 2002) which 

recognise and initiate immune responses to different pathogens. They also respond to the 

presence of pro-inflammatory cytokines (Hanisch, 2002), apoptotic and necrosis signals 

(Burguillos et al., 2011), lipopolysaccharides (Chen et al., 2012) and viral RNA (Zhu et al., 2016). 

Microglia are also very sensitive to increases in extracellular potassium  (Gehrmann et al., 1995) 

which occurs after the rupture of neurons.  
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Upon activation, microglia begin proliferation (Gómez-Nicola et al., 2013) and begin to change 

morphology. This involves the retraction of the branches used to detect the pathogenic signals 

and an increase in motility, migrating to the site of injury where they can phagocytose the 

foreign material. They also begin feedforward signalling mechanisms whereby they release 

proinflammatory cytokines to activate more microglia, perpetuating the innate immune 

response.  

 

1.4.3 Cytokines and chemokines 

Cytokines are very important signalling molecules between cells and differ from hormones in 

that their circulating concentrations are more variable and are released and used by a large 

range of cell types. These include macrophages, microglia, B cells, T cells, mast cells, neutrophils, 

basophils and eosinophils. Different cytokines can be released by different cell types and can 

also act on cell types, often with multiple cytokine subtypes have similar functions (Zhang and 

An, 2007).   Neuroinflammation is induced and propagated by a subset of these cytokines known 

to be pro-inflammatory. They play roles in recruiting microglia to limit the damaging effect of 

pathogens and necrotic/apoptotic cellular material (Kim et al., 2016). As well as cytokines that 

perpetuate the inflammatory response, there are also anti-inflammatory cytokines that 

modulate the response. This anti-inflammatory, negative feedback helps reinstate the 

homeostasis of the brain (Opal and DePalo, 2000).  Chemokines are also at work during 

inflammation to act as chemo-attractants for immune cells like microglia (Ransohoff et al., 

2007). They are a critical component of the neuroinflammatory response so are considered 

separately below. 

 

1.4.3.1 Tumor Necrosis Factor Alpha (TNFα) 
TNFα has emerged as one of the most important proinflammatory cytokines in mediating a 

suitable and sufficient inflammatory response to pathogen or damage. TNFα has been shown to 

be produced by many cells including neurones and other immune cells such as neutrophils, 

eosinophils, CD4+ T cells and natural killer cells (Gahring et al., 1996). In the CNS, microglia are 

the predominant producers of TNFα (Gregersen et al., 2000) and therefore are likely to work in 

an autocrine (self-stimulating) positive feedback loop (Kuno et al., 2005). They are also driven 

by its release to begin phagocytosing material, particularly neurons (Neniskyte et al., 2014). 

TNFα is in part responsible for the chronic pathological activation of microglia that is common 

in neurodegenerative disorders such as Alzheimer’s (Combs et al., 2001) and Parkinson’s disease 

(Barcia et al., 2011) 
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Cultured TNFα null microglia that are activated by lipopolysaccharide treatment have been 

shown to secrete lower levels of several other cytokines (IL- 1β, IL-6, IL-10 and IL-12) suggesting 

that TNFα is also important in propagating the inflammatory cascade (Harms et al., 2012). It is 

also known that a deficiency in TNFα causes a decrease in the activation of microglia (Sriram et 

al., 2006).  

 

One of the signalling pathways through which TNFα is released is through metabotropic 

glutamate receptors present on microglia. mGluR2 activation induces neurotoxicity through the 

enhanced release of TNFα and downstream activation of the apoptotic pathway protein caspase 

3 (Taylor et al., 2005). Interestingly activation of microglia is decreased after activation of 

mGluR3, which thus has an opposite, neuroprotective effect compared to mGluR2  (Taylor et al., 

2003).  

 

1.4.3.2 Interleukins 

Interleukins are also important signalling cytokines in the inflammatory response, and there are 

pro- and anti-inflammatory subtypes meaning they are involved in the initiation and regulation 

of the immune response. The main proinflammatory interleukins are IL-6, IL-1α and IL-1β. The 

latter two are the two most studied of the 11 cytokines in the IL-1 subfamily and they possess 

the strongest proinflammatory effect (Dinarello, 2011). They bind to IL-1R1 (the IL-1 Receptor 

type 1) which causes the activation of the myeloid differentiation primary response 88 (MYD88) 

pathway (Weber et al., 2010).  This can also activate other key proinflammatory cytokines TNFα 

and IL-6 (Oppenheim et al., 1989).  

 

It is assumed that IL-1α and β have redundant effects as they can both bind to the same receptor 

however it has been shown they more often act in important independent roles. IL-1α can signal 

to the innate immune system through its action as a damage-associated molecular pattern 

signalling molecule. This highlights its importance in the stimulation of an inflammatory 

response in conditions devoid of infection such as brain injury or stroke (Luheshi et al., 2011). 

IL-1β release can then be stimulated by IL-1a. This then allows the perpetuation of the immune 

response through the activation of microglia (Monif et al., 2016). 

 

IL-6 is another proinflammatory interleukin, which has been shown to be expressed by microglia 

and astrocytes (Frei et al., 1989). It can also be expressed by neurons, an induction that is 

stimulated by IL-1β and TNFα (Ringheim et al., 1995), or even the depolarisation of neurons 
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(Sallmann et al., 2000).  These cytokine signalling molecules may transfer systemic inflammation 

to the CNS due to their ability to cross the BBB (Banks et al., 1995). 

 

Of the anti-inflammatory interleukins, IL-13 and IL-4 are particularly important as they work 

together to exert their neuroprotective effects. The genes encoding for IL-13 and IL-4  are at 

similar loci on chromosome 5 and their receptors exist in a complex through which they exert 

their anti-inflammatory effects (Rael and Lockey, 2011).  Once the receptor complex is activated 

it causes the activation (through phosphorylation of the transcription factor STAT6) of anti-

apoptotic genes (Ohmori and Hamilton, 1998). IL-4 and 13 signalling also cause the inhibition of 

inflammatory cytokine production (Minty et al., 1993). This is through a change to the microglial 

expression of other cytokines: decreasing TNF and increasing insulin-like growth factor 1 (IGF-1) 

(Butovsky et al., 2005). IL-4 also acts on astrocytes inhibiting their activation and reactive oxygen 

species production and inducing NGF to release all of which are immunosuppressive effects 

(Brodie et al., 1998).  

 

1.4.3.3 Chemokines 

Chemokines are a family of chemotactic peptides involved in the inflammatory response. They 

are divided into four main classes (CXC, CC, CX3C and XC), which are linked to the nomenclature 

describing the chemical structure of their receptors (CC chemokines bind to CC receptors). The 

chemokines themselves are named I  recognition of the amino acid chain of the N-terminus of 

their structure, be it with two adjacent cysteine residues (CC) or with up to three amino acids 

between these cysteine residues (CX3C) (Lata and Raghava, 2009). There are 48 chemokines 

across these groups but only 19 receptors (Zlotnik and Yoshie, 2012), suggesting a complex 

ligand-receptor relationship. Indeed some chemokine-receptor relationships are exclusive, 

whereas other receptors have up to 10 ligands (Ransohoff, 2009).  

 

Chemokines exert their effects through these G-protein coupled receptors (Murphy, 1994) 

whose binding leads to the release of calcium from intracellular stores which activates MAP 

kinases. One of the major effects this mechanism plays a role in is the mediation of chemotactic 

effects (Murdoch and Finn, 2000). This chemotaxis is caused by the chemoattractant nature of 

chemokines which cause cells to follow increased concentrations of the chemokine to its source. 

It has been shown that in response to even a small chemoattractant gradient, neutrophil cells 

can amplify the asymmetry by upregulating the polymerisation of actin preferentially at the 

leading edge of the cell (Weiner et al., 1999). This occurs through the increased signalling of 
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receptors and downstream protein kinase upregulation (Servant et al., 2000) as receptors have 

been shown to be evenly distributed throughout the membrane of neutrophils (Servant et al., 

1999).  

 

Functionally chemokines are split into two groups. Homeostatic chemokines are constitutively 

expressed in certain tissues or cells to exert roles in cell migration (particularly leukocytes) for 

the development and maintenance of cells and tissues. Inflammatory chemokines are only seen 

in meaningful concentrations during infection or injury to attract leukocytes and other immune 

cells to the site of damage. There appears to be much more cross-talk between inflammatory 

chemokines and as such some of their receptors and ligands have been labelled as redundant, 

however, this is controversial (Schall and Proudfoot, 2011). 

 

Some chemokines are also involved in the chemotaxis of microglia to the site of inflammation. 

Such chemokines like Fractalkine (CX3CL1) are mainly expressed by neurones and act as chemo-

attractants for microglia (Harrison et al., 1998), which exclusively house the receptor CX3CR1). 

In fact, this is an example of the importance of chemokine signalling in neuronal-microglia 

interactions (Paolicelli et al., 2014; Eyo et al., 2016). 

 

This also points towards a neuroinflammatory role of chemokines, as dysregulation has been 

shown to play a role in pathologic, chronic inflammation in the brain, just as with cytokines 

(Ransohoff et al., 2007; Ramesh et al., 2013; Thuc et al., 2015).   

 

1.4.4 Neuroinflammation in disease 

Although inflammation is a by-product of the clearance and/or repair of damaging material, 

sometimes the inflammatory condition becomes protracted and the protective mechanism it 

serves becomes damaging. This is a known feature of many neurodegenerative disorders and 

may be the function of an exaggerated reactive state of microglia in the healthy brain, causing 

an augmented pro-inflammatory response (Godbout et al., 2005). Chronic neuroinflammation 

of this kind is a common pathology in many neurodegenerative disorders such as Alzheimer’s 

and Parkinson’s diseases.  

 

Alzheimer’s disease is a typical disease in which neurodegeneration is becoming increasingly 

related to an uncontrolled or exacerbated neuroinflammatory response (Heneka et al., 2015). 

The presence of plaques of aggregated insoluble β-amyloid, created from the improper cleavage 
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of amyloid precursor protein (APP), is a hallmark of the disease. Other features include tangles 

of the hyperphosphorylated tau protein, neuroinflammation and neurodegeneration 

(Duyckaerts et al., 2009). Amyloid plaques are associated with a pro-inflammatory response 

through activated microglia and astrocytes. TLR 2 and 4 are the pattern recognition receptors 

for β-amyloid, and their blockage (Udan et al., 2008) or knockout (Reed-Geaghan et al., 2009) 

causes a reduced inflammatory response in microglia to β-amyloid. 

 

1.4.4.1 Peripheral infiltration of immune cells 

Despite the existence of the blood-brain barrier, it is still possible for microglia to be activated 

without any physical changes to the BBB. This is triggered through direct TLR ligand or cytokine 

signalling from a peripheral immune response at regions of the brain that lack the protection of 

the tight vasculature. These areas are known as circumventricular organs and are areas where 

pro-inflammatory agents can pass more easily from the bloodstream to the parenchyma  

 

Furthermore, although microglia are the resident macrophages in the CNS, peripheral immune 

cells can be often seen in the CNS during severe peripheral infections. This infiltration is due to 

the pathological breakdown of the blood-brain barrier and is usually associated with the 

breakdown of the tight paracellular junctions than an increase in transcellular permeability 

(Stamatovic et al., 2008). Microglia are even known to increase the permeability of the BBB to 

peripheral immune cells through the release of cytokines (Prat et al., 2001). It is also possible 

that peripheral immune cells such as macrophages and T cells can interact with the healthy BBB 

themselves to enter the CNS (Daneman and Prat, 2015). 

 

1.4.4.2 Peripheral infections and neurodegeneration 

The idea that peripheral infections have some association with neurodegenerative diseases is 

well known and many studies support some sort of link, however, the cause and effect of these 

is unclear. In fact, there have been many examples linking specific pathogens with 

neurodegenerative disorders (McManus and Heneka, 2017). 

 

In patients with dementia, there are many studies reporting correlations between underlying 

illnesses and the progression of dementia. In a study of patients living with various dementias, 

patients with underlying conditions had significantly decreased cognition and general function 

scores (Hodgson et al., 2011).  
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Illnesses, and in particular viral infections have been shown to contribute to cognitive decline in 

dementia patients (Strandberg et al., 2004). Severe infections leading to sepsis are also known 

to cause a permanent cognitive disturbance in the elderly (Widmann and Heneka, 2014). These 

infections can lead to delirium, and it has been shown that whilst patients may improve upon 

treatment of the infection, long-term the incidence and progression of dementia progression is 

far worse than in control subjects (Davis et al., 2012) 

 

This is particularly prominent when the infection causes delirium in Alzheimer’s disease patients. 

In this case, the rate of cognitive decline nearly doubles (Fong et al., 2009). To make matters 

worse, infectious diseases are more common in patients with dementia than in healthy aged-

matched controls (Natalwala et al., 2008). The related potentiation of neurodegeneration has 

been seen in to be mediated by a long-term upregulation of pro-inflammatory cytokines such as 

IL-1β and TNFα, even after the systemic infection is over (Holmes et al., 2003; Holmes et al., 

2009). 

 

Other non-dementia type neurodegenerative disorders have shown links between peripheral 

infections and their progression. The bacteria Clostridium perfringens was first seen in humans 

in the gut biota of a patient with multiple sclerosis. This bacterium releases a toxin (epsilon toxin) 

which has a 10-fold incidence in multiple sclerosis CSF samples, compared to those from healthy 

subjects (Rumah et al., 2013). Also, in mouse models of Parkinson’s disease, α-synuclein 

deposition increases in transgenic mice that are administered samples of PD patients’ gut 

bacteria. This has been shown to increase their motor deficits (Sampson et al., 2016). This 

highlights the importance of peripheral viral and bacterial infections on the brain, particularly in 

patients with genetic risk factors for neurodegenerative disorders. 

 

1.4.4.3 Investigating peripheral infection effects on brain oscillations and plasticity 

Studies investigating the effects of peripheral inflammation often use synthetic analogues of 

ligands for TLR receptors to induce an inflammatory response. This allows immune challenges 

(such as bacterial or viral infections) to be mimicked, which elicits a particular response that is 

mediated through the TLR that is targeted. It also allows the control of the strength of the 

infection through the dose of the infectious agent, and the time scale to compare acute to 

chronic or repeated infections. In this thesis, 2 models of peripheral infection are used: 

lipopolysaccharide and Poly Inosinic: Cytidylic acid administration. 
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Lipopolysaccharide (LPS) is a large molecule on the extracellular membrane of gram-negative 

bacteria that is recognised by the immune system causing the mobilisation of a response to the 

pathogenic bacteria. Isolated preparations of LPS can be used to mimic a bacterial infection. The 

recognition of LPS is through its structure as a ligand that specifically activates TLR4 receptors, 

and it is widely used to study the effects of systemic infection on the brain. It is thought that LPS 

in the blood activates TLR4 receptors in the circumventricular organs, which leads to the 

production of tumour necrosis factor (TNF). TNF then induces the expression of NF-kB that is a 

pro-inflammatory gene transcription signaller thus perpetuating the spread of the pro-

inflammatory response throughout the brain (Nadeau and Rivest, 2000).  

 

Poly Inosinic: Cytidylic Acid (Poly IC) is another agent that is used to activate an immune 

response. It is a synthetic copy of double-stranded RNA, found in some virus structures, and as 

such can mimic the action of viral infection through the binding to TLR3 receptors.  

 

It has been shown that peripheral immune challenge with LPS causes an exaggerated pro-

inflammatory response in prion disease models compared to controls (Combrinck et al., 2002) 

as well as mouse models of Alzheimer’s disease (Sly et al., 2001; Lee et al., 2002). Also, LPS and 

β-amyloid induce a pro-inflammatory response through class-II major histocompatibility 

proteins (MHC-II) which causes cytotoxicity (Butovsky et al., 2005). For this reason, the injection 

of LPS and Poly IC are widely used to study systemic infections, as well as their knock-on effect 

on the brain. 

 

1.5 Leishmaniasis 

The peripheral models described above are quite simple versions of infectious agents. To 

validate the findings from these models this thesis also uses a ‘natural’ infectious agent related 

to the disease Leishmaniasis. Leishmaniasis is caused by a group of protozoan parasites of the 

genus Leishmania. There are 20 different species of Leishmania parasites that cause the various 

forms of the disease. Parasites are transmitted through the bite of an infected female 

phlebotomine sandfly (females blood feed only when they are producing eggs). This means that 

the global spread of Leishmaniasis centres on areas where sand-flies are common – mostly 

tropical and subtropical areas.  

 

During the initial infection stage, parasites are in their promastigote phase. The parasites in this 

phase possess long flagella which means they are highly motile. They exist as promastigotes in 
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sandfly proboscis and when injected during blood feeding they travel around the new host’s 

blood stream. The parasites are phagocytosed by host macrophages where they transform to 

their amastigote phase. In this phase, the flagellum contracts and the parasites focus on 

multiplication. Parasites build up in the macrophage before it ruptures, spreading the parasite 

in the bloodstream to be taken up by other macrophages.  

 

The disease takes three main forms: cutaneous (CL), mucocutaneous (MCL), and visceral 

(VL/kala-azar). A fourth form also exists, known as post kala-azar dermal leishmaniasis (PKDL), 

which occurs as a cutaneous presentation of VL years after treatment. Cutaneous leishmaniasis 

is the most common form, but also least severe as it only affects the skin – usually around the 

bite sites. However, CL still produces open sores and skin lesions that resemble those in leprosy. 

Visceral leishmaniasis (VL) is less common but is more dangerous than CL as it is typically fatal if 

left untreated. 

  

1.5.1 Visceral Leishmaniasis 

Although there are accounts, throughout history, of diseases that resemble what is now known 

to be CL (Steverding, 2017), the visceral form of Leishmaniasis didn’t appear until 1824 in Bengal, 

India (Gibson, 1983). At the time it was referred to as Kala-azar (or ‘black disease’) due to the 

skin discolouration it caused. Patients showed symptoms of fever, enlarged spleens and livers, 

and anaemia (Steverding, 2017).  It wasn’t until the early 20th century that the unnamed bodies 

(then thought to be trypanosomes) were discovered in patients with kala-azar (Donovan, 1994; 

Leishman, 2006). These parasites were recognised as a novel protozoan organism and found to 

cause the kala-azar disease (Ross, 1903b) and named Leishmania donovani after their initial 

discoverers (Ross, 1903a).  There are now two species of Leishmania known to cause VL, and 

their infections are geographically localised with L. infantum (aka. L. chagasi) prevalent in North 

Africa, Europe and Latin America, and L. donovani infections occurring in the remainder of Africa, 

and India and surrounding countries (Chappuis et al., 2007). It is the visceral leishmaniasis 

caused by L. donovani that is studied in this thesis. 

 

VL is the second most deadly parasitic disease in the world (after malaria) and is considered to 

be nearly always fatal in left untreated  (Desjeux, 2001). Over 90% of the occurrence of new 

cases of VL are restricted to 6 countries: Bangladesh,  Brazil, Ethiopia, India, South Sudan and 

Sudan (Alvar et al., 2012). This is due to the climatological conditions in which the sand-flies 
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thrive, although there are also socioeconomic factors that are correlated to infection such as 

malnutrition, poor living conditions and lack of medical resources (Georgiadou et al., 2015). 

 

1.5.2 Leishmaniasis and peripheral neuropathy 

The list of signs and symptoms that are associated with leishmaniasis do not classically include 

neurological effects, however, emerging evidence is uncovering changes to the nervous system 

during leishmaniasis infections. It is more common for neurological effects to be present in the 

peripheral nervous system than the CNS, however, both have been recorded. 

 

Cutaneous leishmaniasis classically is only thought to affect the skin. A study of patients infected 

with the Leishmaniasis major showed that in 5% of cases, patients with cutaneous leishmaniasis 

presented with increase inflammatory cells around peripheral nerves, neuritis and even neural 

infiltration of amastigotes (Kubba et al., 1987).   

 

Peripheral neurological disturbances have also been seen in cases studies of 13 visceral 

leishmaniasis infected patients in Sudan who presented with varying neurological symptoms 

mostly affecting the lower limbs such as hyperaesthesia, impaired vibration, pain and touch, 

cranial nerve palsies and foot drop. However, malnutrition could not be ruled out as a factor in 

these symptoms (Mustafa, 1965). Further characterisation of the neurological effects of VL used 

nerve conduction studies to highlight evidence of neuronal demyelination and axonal 

degeneration in 15 patients. The recovery of neuropathy after treating the Leishmaniasis 

infection, along with tests confirming no vitamin deficiency suggest that these infections caused 

neurological problems for these patients (Hashim et al., 1995). 

 

 There have also been cases of Guillain-Barre syndrome diagnoses secondary to leishmaniasis 

infection (Prasad and Sen, 1996). Guillain-Barre syndrome occurs when the immune system 

attacks the peripheral nerves leading to muscle weakness and changes in sensation such as 

tingling and pain (Fasanaro et al., 1991; Attarian et al., 2003). It may be that a Leishmania 

infection recruits the host's immune system to attack the peripheral nerves, especially 

considering there is evidence of immune cell invasion of nerves (Kubba et al., 1987). 

 

1.5.3 Leishmaniasis in the CNS 

Although visceral leishmaniasis classically infects the spleen, liver and bone marrow, 

Leishmaniasis donovani parasites (responsible for VL) have been shown to infiltrate the brain as 



 

 59 

little as 3 days after infection by intraperitoneal injection in mice (Melo et al., 2017). This is in 

tandem with increased leukocyte and macrophage presence in the brain tissue. These cell types 

could provide the route by which the intracellular parasite infiltrates the CNS. Amastigote stage 

Leishmania donovani parasites have also been found in the CSF of a human patient. The patient 

presented with pyrexia and headaches leading to a diagnosis of “leishmanial meningitis”. This 

was unresponsive to older anti-leishmaniasis drugs pentamidine isethionate and sodium 

antimony gluconate, which fail to cross the blood-brain barrier, therefore amphotericin B was 

finally able to cure the patient. It is possible infiltration to the CNS was a response to a previous 

removal of the spleen the year before (Prasad and Sen, 1996). 

 

Further case studies have found likely CNS problems in patients with visceral leishmanias. One 

patient in Kenya presented with a tremor of the torso and limbs (Chunge et al., 1985). Often 

symptoms of this nature are related to malnutrition however this was unlikely as the 

malnutrition was reversed before any improvement in symptoms. Only after treatment with the 

anti-leishmaniasis drug, sodium stibogluconate, was there any improvement and eventual 

reversal of the tremor in correlation with the parasite load being neutralised. Despite this, it is 

not clear as to the neurological cause of the tremor (Chunge et al., 1985). Another patient in 

Brazil presented with similar tremor further to VL which was alleviated with sodium 

stibogluconate treatment. Again, vitamin deficiency was possible, yet other characteristics of 

this were not seen and the patient's symptoms were reversed without any treatment with 

vitamin supplements (Diniz et al., 2010). Although by no means definitive proof of CNS effects 

of VL, several patients have also presented with mental changes or depression-like symptoms 

(Carswell, 1953; Maru, 1979). 

 

1.5.4 Leishmaniasis and neuroinflammation 

Further to showing neurological complications with both cutaneous and visceral leishmaniasis 

and the presence of Leishmania parasites in the brains, infection has also been shown to induce 

neuroinflammation. Increased levels of three cytokines associated with the initiation and 

maintenance of inflammation IL-1β, IFN-γ and TNF-α were found to be upregulated in the brains 

of VL infected dogs. The levels of these cytokines did not correlate with parasite load (Melo et 

al., 2013). 

 

Initially (3 -14 days post-infection) there is an early inflammation response with upregulation of 

certain chemokines (CCL-5, 7 & 12 and CXCL-10), chemokine receptors (CCR-1 & 2 and CXCR-3) 
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and pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ and TNFα). This initial wave of inflammation 

is curtailed by anti-inflammatory cytokines (IL-10, TGF-β). However, 90 days post-infection, 

there is a re-upregulation of the proinflammatory cytokines and chemokines, with no change in 

the anti-inflammatory cytokines (Melo et al., 2017) 

 

It is clear therefore that whilst CNS system effects of leishmaniasis may be uncommon,  

Leishmaniasis may not only affect the CNS, but parasites can also overcome the blood-brain 

barrier. Whether increased neuroinflammation in these brains occurs as a spreading of 

peripheral inflammation, or infection within the brain is also unclear.  
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1.6 Aims and Objectives 

The state of the field as outlined in the chapter above shows that changes occur to synaptic 

plasticity which are related to certain brain states and electrical rhythms, and changes to 

immediate early gene expression across the sleep/wake cycle may also be related.  

 

The initial aims of this thesis are then: 

 To generate sleep and wake-related oscillations in vitro using previously optimised 

pharmacological models in slice preparations of rat neocortex. 

 To assess the effects of oscillations, generated in vitro, on neuronal activity and plasticity 

using immunohistochemistry to monitor immediate early gene expression changes. 

 To localise oscillation related immediate early gene changes across neocortical laminae 

and identify specific cell types involved. 

 

Since inflammation in the brain is a common feature in many disorders that affect normal brain 

function, and peripheral infections are known to induce neuroinflammation even in healthy 

individuals, the further aims of this thesis are:   

 To monitor the direct activity of pathogenic signals on sleep- and wake-related 

oscillations in preparations of rat neocortex by bath application of agents that mimic 

pathogenic bacterial or viral sequences (LPS or Poly I:C respectively).  

 To test the effects of the longevity of a peripheral immune response in a cohort of rats 

through a regime of dosing rats with repeated peripheral injections of LPS and Poly I:C 

for up to 28 days. Then: 

o To compare the effect of the longevity of a mimicked systemic infection on sleep 

and wake-related rhythms by generating oscillations in slice preparations of 

neocortex take from dosed animals. 

o To monitor the resulting inflammation in the brain of dosed rats through a 

multiplex cytokine panel assay to analyse pro- and anti-inflammatory cytokine 

and chemokine expression. 

 Finally, to evaluate the effect of a real-life systemic infection (visceral leishmaniasis) on 

sleep and wake related oscillations generated in slice preparations of mouse neocortex. 

Then, investigate the general effects of those oscillations on plasticity through the use 

of immunohistochemistry and seek to corroborate changes previously seen in 

immediate early gene expression in the initial investigation. 
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Chapter Two – Materials and Methods 
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2.1 Materials 

2.1.1 List of drugs and chemicals used 

The following drugs were used in experiments discussed in this thesis: 

ACSF salts Various 

Biocytin hydrochloride Sigma-Aldrich, UK 

Carbachol Tocris Biosciences, UK 

Ethanol BDH-Merck 

Fluoromount Sigma-Aldrich, UK 

Normal Goat Serum Sigma-Aldrich, UK 

Isoflurane (Vetflurane) Virbac, UK 

Kainic Acid Tocris Biosciences, UK 

LPS Sigma-Aldrich, US 

Ketamine (hydrochloride, Ketavet) Zoetis UK Ltd 

Methanol Fisher Scientific, UK 

Optimum Cutting Temperature Fisher Scientific, UK 

Paraformaldehyde Affymetrics USB, UK 

Phosphate Buffered Saline Gibco, UK 

Poly Inosinic: Cytidylic Acid  Sigma-Aldrich, US 

Potassium Acetate Sigma-Aldrich, UK 

SCH 33920 Tocris Biosciences, UK 

Sucrose Fischer Scientific, UK 

Triton X-100 Sigma-Aldrich, UK 

Xylazine (hydrochloride, Rompun) Bayer, UK 

 

2.1.2 ACSF Formulations 

Normal artificial cerebrospinal fluid (ACSF) was used in the recording chamber and holding 

chamber and consisted of (in mM): 126 NaCl, 3 KCl, 1.25 NaH2PO4, 1 MgSO4, 1.2 CaCl2, 10 glucose, 

24 NaHCO3.  

 

Sucrose artificial cerebrospinal fluid (sACSF) – for perfusion and cutting - was made by 

substituting the sodium chloride in the above composition above with sucrose. This reduced the 

passive influx of sodium ions which leads to cell swelling by osmosis of water into the cell which 

limits cell survival (Ting et al., 2014). Divalent cations were also present in a higher concentration 

in sACSF as they stabilise excitable cell membranes, and raise the threshold for action potentials. 
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This is thought to be because divalent cations adsorb to the negatively charged outer side of the 

membrane and create an electrical field that repels cations away from the membrane surface 

(Frankenhaeuser, 1957; Frankenhaeuser and Hodgkin, 1957). Divalent cations also bind to ion 

channels and limit the passage of ions through them, again minimising excitotoxicity (Brown and 

Ransom, 2002). Interneurons are more susceptible to damage as they are more constitutively 

active than principal cells. As interneurons are critical for oscillation generation the replacement 

of the sodium in the solutions was particularly important. Considering these points, the sACSF 

was made up (in mM) of: 3 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, 10 glucose, 24 NaHCO3 and 252 

Sucrose.  

 

2.1.3 Antibodies used 

 

Primary Antibodies  Manufacturer 

Arc (Rabbit, 156003) Synaptic Systems Gmbh 

C-Fos (Rabbit, SC52) Santa Cruz Biotechnology 

Iba-1 (Rabbit, 019-19741) Wako 

GAD67 (Mouse, MAB5406) Millipore 

NeuN (Guinea Pig, ABN90) Millipore 

 

Secondary Antibodies Manufacturer 

Alexa Fluor 488 Goat Anti-Rabbit IgG (H+L) – A11008 
 

Invitrogen 

Alex Fluor 488 Goat Anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed, A11034  

Invitrogen 

Alexa Fluor 546 Goat Anti-Mouse IgG (H+L) Highly Cross-

Adsorbed, A11030 

Invitrogen 

Alexa Fluor 633 Goat Anti-Guinea Pig IgG (H+L) Highly Cross-

Adsorbed, A21105 

Invitrogen 

Alexa Fluor 568 Streptavidin conjugated, S112265 Invitrogen 
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2.2 Electrophysiology 

2.2.1 Animal provision 

The experiments in this these were carried out in two different institutions. Experiments for 

Chapter 3 and 5 were carried out in the Department of Biology, University of York, UK. 

Experiments for Chapter 4 were carried out at Eisai Inc. Andover Innovative Medicines (AiM) 

Institute, USA.  

 

Adult male Wister rats used for experiments in Chapter 3 and 4 were obtained from either the 

UK or US divisions of Charles River Laboratories Inc. Mice were used for Leishmaniasis 

experiments in Chapter 5 owing to the lack of appropriate Home Office license and existing 

expertise at the University of York regarding the pattern of infection and immune responses 

observed in mouse models (Engwerda and Kaye, 2000; Bunn et al., 2014; Pinto et al., 2017). The 

mice were of C57/Bl6 background strain and were bred at the Biological Services Facility (BSF) 

at the University of York.  

 

All animals were housed in either the Biological Services Facility in the University of York or the 

Life Sciences Facility at the Eisai Inc. AiM Institute. Animals were allowed a constant supply of 

food and water and were subject to a 12-hour light-dark cycle. All animals were taken for slice 

preparation 3-4 hours into the light cycle.  

 

All animal procedures in the UK were carried out under the Animals (Scientific Procedures) Act 

1986 as approved by the Home Office and Animal Welfare and Ethical Review Body at 

the University of York. 

 

All animal procedures in the USA were carried out under the Animal Welfare Act (AWA) and PHS 

Policy on Humane Care and Use of Laboratory Animals USA and were approved by the 

Institutional Animal Care and Use Committee. 

 

2.2.2 Brain slice preparation 

Animal sacrifice was carried out slightly differently between institutions in which work was 

carried out. In particular, rats used in Chapter 4 were terminally anaesthetised without prior 

anaesthesia whereas isoflurane inhalant was used for all other experiments. 
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Rats and mice were terminally anaesthetised with a cocktail of the anaesthetic ketamine (an 

NMDAR antagonist) (Ketavet, Zoetis, 100 mg/ml) and the anaesthetic and muscle relaxant 

xylazine (an agonist for α2 adrenoreceptors) (Rompun, Bayer PLC, 20mg/ml) by either 

intraperitoneal or intramuscular injection. The routes of administration were different due to 

the difference in pre-terminal anaesthesia and efforts to minimise the suffering of the animals 

(as intramuscular injections are more painful). 

 

 

 

 

 

Once the animal no longer showed eye blink and pedal withdrawal reflexes, the abdomen was 

opened, and the rib cage and diaphragm cut, to expose the heart. An incision was made in the 

right atrium and the left ventricle of the heart was punctured with the perfusion needle. 

Perfusion with 20ml (mice) or 50ml (rats) of an ice-cold (~4°C) artificial cerebrospinal fluid 

solution containing sucrose (sACSF) was then carried out to exsanguinate the animal and protect 

the brain during the cutting process. This solution had also been oxygenated with carbogen gas 

(95% O2/5% CO2). Sucrose ACSF is explained in more detail in Chapter 2.1.2 and consists of: 3 

KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, 10 glucose, 24 NaHCO3 and 252 Sucrose.  
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Once the transcranial perfusion was completed, the skull was exposed and the animal 

decapitated. The skull was cut down the midline and the bone removed to expose the brain. The 

brain was then removed and placed into the ice-cold, oxygenated sACSF. The cerebellum was 

removed and discarded, and the remaining brain was then glued onto a metal vibratome plate 

using Loctite Precision Superglue. The brain was oriented either dorsal side (for horizontal slices) 

or caudal side (for coronal slices) down. The brain was supported by a 1x1cm block of agar to 

aid cutting. The plate was attached to a Leica VT-1000S vibratome and submerged in ice-cold 

oxygenated sACSF and horizontal or coronal slices were cut to 450μm thickness. The cutting 

blade oscillated a frequency of 80Hz, with an amplitude of 0.6mm, and advanced through the 

slices at 0.15mm/s.  

 

For experiments investigating the delta rhythm, coronal sections were cut. Whole slices were 

sub-sectioned to keep primary somatosensory and secondary somatosensory cortical areas as 

well as deeper white matter and striatal structures. 

 

For experiments investigating the gamma rhythm, horizontal slices were cut. These were either 

sub-sectioned to retain the hippocampus and caudal cortical regions (to generate and record 

hippocampal oscillations) or cut to preserve the primary auditory and secondary somatosensory 

cortices for cortical gamma oscillations, with some subcortical structures retained for 

orientation (Figure 2.1). 

 

2.2.3 Slice maintenance 

 The first slices were placed on a double thickness of Whatman paper in an interface chamber 

(see Figure 2.2a) between artificial cerebrospinal fluid (ACSF) and a humid carbogen 

environment (95% oxygen, 5% carbon dioxide). Slices were left to acclimatise for 1 hour at room 

temperature and then maintained at 30-32oC thereafter. The ACSF was circulated through the 

chamber at 1.5mls/min. ACSF is explained in more detail in Chapter 2.1.2, and consists of: 126 

NaCl, 3 KCl, 1.25 NaH2PO4, 1 MgSO4, 1.2 CaCl2, 10 glucose, 24 NaHCO3. Subsequent slices were 

placed on tissue paper in a holding chamber (see Figure 2.2b). These slices were maintained at 

an interface between oxygenated ACSF and carbogen gas at room temperature and partially 

sealed with parafilm. 
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2.2.4 Oscillation induction 

Different oscillations were more robustly generated in slices of different orientations, which 

were cut as outlined below (and in Figure 2.3). To maintain slices in a viable state they were 

dissected down to reatin only the necessary areas of observation (and subcortical structures for 

orientation) – this was done as larger slices require more oxygenation. The slices were viewed 

with a light microscope to ensure correct and consistent placement of the electrodes for local 

field potential (LFP) recordings. 

 

To generate delta frequency oscillations in the primary and secondary somatosensory cortices 

of the coronal brain slices, a combination of the acetylcholine agonist, Carbachol (4 µM) and 

dopaminergic antagonist, SCH23990 (10 µM) were simultaneously added to the circulating ACSF. 

Cortical LFP recordings were made from layer 5 of the primary and secondary somatosensory 

cortex in coronal slices as previously described (Carracedo et al., 2013).  

 

To generate gamma frequency oscillations in the primary auditory and secondary 

somatosensory cortices of the horizontal brain slices, kainic acid was used (400nM). Cortical LFP 

recordings were made from layer 3 of the primary auditory and secondary somatosensory 

cortex, in horizontal slices according to the in vitro procedure already characterised (Ainsworth 

et al., 2011). 

 

Kainic acid was also used to generate hippocampal oscillations, though at a lower concentration 

(50nM). Recordings were made from the stratum radiatum of the cornu ammonis 3 (CA3) region 

of the hippocampus (see Figure 2.5 for example oscillations). 

 

2.2.5 Extracellular (LFP) Recordings 

Extracellular electrodes were made from borosilicate glass capillaries and were pulled to form a 

tip with a Model P-1000 Flaming-Brown micropipette puller. Micropipettes were then filled with 

normal ACSF and placed in pipette holders with silver wire used to form a conducting bridge 

between the ACSF and the amplifier electronics. These holders were then attached to head 

stages that could be finely moved by micromanipulators. The electrical signal from slices was 

conducted through the micropipette solution and to the silver wire. The signal was digitised at 

a sampling frequency of 2000 and filtered between 0.1 and 300Hz, before being visualised and 

saved on a computer. The hardware and software used to relay the electrical signal to the 

computer were different between institutions (see Figure 2.4). 
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In all experiments after application of drugs, slices were left for 2 hours to allow them to 

generate oscillations, and recordings were made during this time to assess the build-up of any 

oscillations seen.  

 

In Chapter 3, because IEG protein levels are thought to be at their highest at 2 hours (Morgan et 

al., 1987), final recordings were made then, and oscillating slices were then fixed for IEG 

measurements. Slices were considered to have generated delta oscillations if the peak power 

(between 0.5 and 4Hz) was above 100μV². For gamma oscillating slices the threshold for 

inclusion was a peak power of 10μV².  

 

In Chapter 4 and 5, because the oscillatory ability of slices was compared, oscillations were left 

to stabilise (>2 hours), and once the peak power did not change by more than 10% in 15 minutes. 

The oscillation was considered stable and a final recording was made. The same frequency bands 

were used for all but the chronic dosing hippocampal experiments of Chapter 4. Due to the low 

frequency of the oscillation (discussed in Chapter 4.3.2), a 20 – 50 Hz band was used. 
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2.2.6 Analysis of field potential recordings  

Data was collected through either Spike2 (Cambridge Electronic Design Ltd., UK) or Axograph 

(Axograph, USA). The recordings were filtered between 0.1 and 300Hz and the sampling 

frequency was 2000. The recorded data was exported to MATLAB (MathWorks Inc., Natick, USA) 

where bespoke programs were created to analyse certain features of the data. 

 

The LFP recordings were analysed for oscillatory activity and several characteristics of this 

activity were measured. These measures were made from the computation of an overlapping 

window Discrete Fourier Transform (DFT) using the MATLAB program ‘pwelch’, computed from 

60 seconds of data. This DFT algorithm produces a power spectrum whereby the time domain is 

converted to frequency. This is done by separating the waveform into its frequency components 

(as a mixture of sine waves) and calculating the absolute magnitude squared (power) at each of 

these frequencies.  

 

From the power spectra, measures of the frequency and modal peak power were taken. In 

addition, power was integrated from the lower to the upper boundaries of the frequency bands 

of interest to give an ‘area power’ measurement. Limits of the frequency band were set for 

calculations of power: for gamma oscillations, these were 30-50Hz, and for delta, these were 

0.5-4 Hz (Figure 2.5). These measures could then be averaged within conditions to monitor the 

changes to these properties over different conditions. 

 

Statistical analysis of the data was performed by Sigmaplot 12.3 (Systat Software Inc, Hounslow, 

UK). Data were presented graphically using Microsoft Excel (Microsoft Corp., Redmond, USA) 

 

2.2.7 Intracellular Recordings  

For intracellular experiments, sharp electrodes were made from borosilicate glass capillaries 

using the micropipette puller with a resistance of 70-200 MΩ. Electrodes were filled with a 

solution of potassium acetate (2M) and 2% biocytin hydrochloride. To make intracellular 

recordings, cells were punctured by sharp electrodes using the micromanipulator to track the 

electrode tip through the thickness of a 450µM slice. A constant hyperpolarising holding current 

(-0.2nA) was applied as well as a constant tuning step (-0.2nA at 2Hz) during this process. With 

each increment of the descent through the slice, a slight ‘buzz’ (by immediate increasing of 

capacitance neutralisation of the electrode) was applied to the electrode tip which facilitated 

the piercing of the membrane of the neuron. Once a membrane was penetrated the holding 
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current was hyperpolarised further to stabilise the cell while the membrane formed a seal 

around the penetrating tip of the electrode. This was maintained for ~5 minutes until the 

membrane had formed a seal around the electrode, allowing the cell to stabilise at its resting 

membrane potential (RMP). Cells with an RMP below -50mV with action potential amplitude 

above 60mV were considered suitably impaled for recording.  

 

To record excitatory postsynaptic potentials (EPSPs), cells were hyperpolarised to -70 mV. 

Further to this, depolarisation of the cell to -20mV, by injection of positive current prevented 

the cell from firing and allowed the IPSPs received by the cell being recorded.  

 

To visually highlight single neurons that had been previously characterised by intracellular 

recording, the cell was maintained in a slightly hyperpolarised state whilst a small amount of 

tuning current allowed the biocytin (in the electrode) to fill the cell and its projections. The cell 

was filled for 30 – 60 minutes and when complete the slice was removed and fixed in 4% 

paraformaldehyde (PFA). 

 

2.2.8 Biocytin labelling and imaging 

The fixed 450µM slices containing the biocytin labelled neurons were washed (3x 15 minutes) in 

phosphate buffer (PB) 0.1M to remove the fixative. Slices were then embedded in 10% gelatine 

on ice and then incubated in PFA for 60 minutes to fix the gelatine. A Leica VT1000S Vibratome 

was then used to slice these to 30µM (a thickness penetrable by a secondary antibody).  

 

All sub-sectioned slices were retained and taken through the staining process as the precise 

location of the biocytin labelled cell was not known. After two 15-minute washes with PB, each 

section was incubated in phosphate buffered saline (PBS) containing 0.2% Triton-X 100 (PBS-TX) 

for 10 minutes.  

 

To co-stain for the biocytin labelled cell Arc, the slices were blocked in normal goat serum (NGS) 

for 2 hours and incubated in the primary antibody overnight at 4oC (for details see Chapter 2.4.1 

below). Further to this, slices were incubated for two hours with Alexa Fluor Goat-α-Rabbit 488 

(1:500) and Alexa Fluor 568 Streptavidin conjugate (1:500). The streptavidin binds and 

fluorescently labels any biocytin that has diffused into the cell. On completion of the secondary 

incubation, slices were washed twice with TBS for 15 minutes and mounted on slides.  
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Slides were viewed using a Zeiss LSM 710 motorised confocal microscope to locate any cells or 

cell segments containing the biocytin label. Since slices were cut to 30µM, there was no 

guarantee of one section containing the entirety of the cells structures, therefore all sections 

were collected and images of multiple sections which had segments of the cell were taken. Most 

segments were imaged using an x20 objective. The cell body was imaged at x10 as well, to view 

its location within the cortex. Alex Fluor 488 (to show Arc) and Alexa Fluor 568 (to show biocytin) 

were excited using 488 and 561nm lasers respectively and the light emitted was collected in 

495-548nm and 578-735nm ranges respectively for each stain. Images at x20 had a pixel scale 

of 0.415µm x 0.415µm. Line averaging was used taking 8 passes of each scan line and averaging 

to increase signal: noise by minimising random and background fluorescence. These images 

were also taken as z-stacks with the maximum intensity projection calculated for each image 

presented. 

 

2.3. Infection and inflammation models 

2.3.1 Acute inflammation 

In Chapter 5 two different compounds were used to observe the effect of inflammatory agents 

upon in vitro models of cortical rhythms.  

 

To see whether there was any direct effect upon sleep and wake-related rhythms in acute in 

vitro brains slices, lipopolysaccharide (LPS, Sigma L4130) was used. LPS is a ligand for TLR 4 

receptors which also responds to pathogenic bacterial signals. Gamma and delta rhythms were 

generated and recorded according to the methods outlined in Chapter 2.2.4-6. Once the 

oscillations were considered stable 500ng/ml LPS was added to the bath and recordings were 

made every 15 minutes up to 1hr. The final stable recording was compared with the final 

recording 1 hour after LPS. 

 

2.3.2 Chronic inflammation 

For chronic inflammation experiments, the effect of LPS was compared to that of Polyinosinic: 

Polycytidylic Acid (Poly I:C, Sigma I3036), which is a ligand for TLR 3 receptors that also respond 

to viral infections. 

 

A dosing schedule was set up whereby rats were injected intraperitoneally with either 0.9% 

Saline (a.k.a. vehicle), 250g/kg LPS (in saline) or 6mg/kg Poly I:C. Some animals were dosed 

once, 24 hours prior to sacrifice and brain slice preparation. Others were dosed every three days 
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for 7 or 28 days, with Vehicle, LPS or Poly I:C and all animals survived the dosing regime 

(Tchessalova and Tronson, 2019). Once again, in vitro gamma or delta rhythms were generated 

(as above) and were recorded to track the build-up of the oscillations. Once the oscillations had 

stabilised a final recording was taken, and the slices immediately removed from the recording 

chamber on filter paper (to reduce injury) and put into 4% paraformaldehyde. 

 

2.3.3. Leishmaniasis Infection 

Parasites of the Ethiopian strain of Leishmaniasis donovani (LV9) were incubated in an 

immunosuppressed host male Rag1 -/- mouse, which had suppressed T cell and B cell 

maturation. Amastigotes were extracted from the spleen of the host mouse and C57/BL6 mice 

were then infected by intravenous injection of 3x107 amastigotes through the lateral tail vein. 

These mice were 5-8 weeks old at the time of injection and were then left for 33-37 days until 

sacrifice. 

 

Animals were weighed after sacrifice and brain removal and their spleens and livers were also 

isolated. These tissues were weighed separately and then cut in cross-sections to analyse 

parasite count by impression smear. Cut sections were pressed against a microscope slide which 

is then methanol fixed and stained with Giemsa reagent, which shows up nuclei. 1000 host nuclei 

were then counted along with the number of parasite nuclei in the within the 1000 nuclei. This 

number was also used to calculate the LDU (Leishmania do notani units), which is the number 

of parasite nuclei/1000 host nuclei multiplied by the organ weight in grams. These experiments 

were carried out by Najmeeyah Brown. 

 

2.4. Immunofluorescence 

2.4.1 Immediate early gene and cell marker staining 

Following the completion of the electrophysiological measurements, the 450μm brain slices 

were immediately removed from the recording chamber on filter paper (to reduce injury) and 

put into a fixative solution of 4% paraformaldehyde (PFA) in Phosphate Buffered Saline (PBS). 

Slices were left in the fixative for 24-48 hours and then cryoprotected with sucrose solutions. 

This involved a 2hr incubation in 10% Sucrose in PBS, followed by overnight incubation of 30% 

Sucrose in PBS. After fixation, slices used in experiments from Chapter 5 were stored in PBS with 

0.1% Azide and shipped to the UK where they were processed for immunohistochemistry. 
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Slices were then placed in plastic moulds before being immersed in optimum cutting 

temperature compound (OCT). The moulds and contents were then frozen in Iso-pentane (2-

Methylbutane) in dry ice. They were then re-sectioned to 30μm using a cryostat.  

 

For the immunohistochemistry, the 30μm slices were washed in PBS, and the cells membranes 

were permeabilised with PBS-TX (with 10% Methanol to permeablise the nuclear membrane for 

nuclear stains) for 10 mins. This was followed by a blocking step in 3% normal goat serum (NGS) 

for 2 hours. The serum contains albumin, antibodies and other proteins that bind to non-specific 

sites in the sample to prevent the non-specific binding of the secondary antibody and thus 

reduce background staining. The primary antibody was applied at the stated concentration 

diluted in PBS containing 1% NGS and incubated overnight at 4oC. Primary antibodies used were: 

Millipore ABN90 Anti NeuN (guinea pig, 1:500), Millipore MAB5406 Anti GAD67 (mouse, 1:500), 

Santa Cruz Biotechnology SC52 Anti c-Fos (rabbit, 1:200), Synaptic Systems Gmbh 156003 Anti 

Arc (rabbit, 1:500 rat tissue or 1:100 mouse tissue), and Wako 019-19741 Anti Iba1 (rabbit, 

1:1000). 

 

The secondary antibody incubation lasted 2 hours and was carried out at room temperature in 

PBS with 1% NGS. Secondary antibodies used were: Alexa Fluor Goat-α-Rabbit 488 (1:500), Alexa 

Fluor Goat- α-Mouse 546 (1:500) and Alexa Fluor Goat-α-Guinea Pig 633 (1:500). Slices were 

finally mounted on slides with Fluoromount and protected with coverslips. They were then 

imaged on an AxioScan Z1 machine. Tile scanned images were taken using a 20x lens, with pixel 

scaling at 0.325µm x 0.325µm per pixel. The immediate early gene was imaged as Alexa Fluor 

488 (excitation/emission 493/517), GAD67 was imaged as Alexa Fluor 546 (excitation/emission 

557/572), and NeuN was imaged as Alexa Fluor 633 (excitation/emission 631/647). 

 

Example, raw images for each of these labels are shown in Figure 2.6. Higher resolution images 

of the Arc stain were captured using a 63x lens on a Zeiss LSM 710 microscope, running Zeiss 

Zen software. Images were taken as tile scans from pia to cortical white matter using a 63x 

objective. Alexa Fluor 488 was excited with a 488nm laser and emitted light was collected was 

from 487-600nm. Resulting images had a pixel scale of 0.132µm x 0.132µm. Line averaging was 

used taking 8 passes of each scan line and averaging to collect only real staining. These images 

were also taken as z-stacks with the maximum intensity projection calculated for each image 

presented. 
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2.4.2 Image Analysis for cortical IEG profile measurement 

Images of immunofluorescent slices taken at x20 magnification with the Zeiss Axioscan Z1 slide 

scanner were manipulated in Zen 2 Lite (Blue) software, which uses ‘.czi’ files. Each of the 

intensity scales and upper/lower set limits of immediate early gene images were conserved 

across conditions to retain the original brightness of the staining and allow direct comparison 

between scans. Images were then exported as .tiff files and all subsequent image manipulation 

and analysis executed in MATLAB. The images were then flipped so that the secondary 

somatosensory cortex was on the right for the batch processing of the MATLAB programme, and 

were then converted to grayscale using the ’rgb2gray’ function to allow numeric comparison of 

pixel intensities and further manipulation of the datasets as described below. 

 

To extract the cortical regions required for analysis, the three images (one per fluorescence 

signal channel) were rotated to the same orientation so that the pia was at the very top of the 

image and layer VI of the cortex and cortical white matter were at the bottom. The NeuN image 

was used as a standard to provide the coordinates for the region to be cropped. The auditory 

cortex and secondary somatosensory cortex were identified with reference to an anatomical 

atlas (Paxinos and Watson, 1998) and a rectangular box was manually drawn around them 

(between the pia and cortical white matter) to provide coordinates by which to crop the image 

(Figure 2.7). Since, using the above method, the images from each channel of the triple staining 

all have the same dimensions. This allowed the coordinates of the cropped regions from the 

NeuN image to be then directly translated to the related GAD67 and Arc/c-Fos stained images 

(Figure 2.8).  

 

2.4.2.1 General regional IEG intensities 

Initially, to provide a general interpretation of changes in IEG expression, the c-Fos and Arc 

staining in cropped regions of neocortex were compared between delta oscillating slices and 

gamma oscillating slices. The images were processed to remove nonspecific background staining 

using a rolling kernel of 30 pixels in area.  The measure of the mean intensity of the staining in 

each region and for each condition was then calculated. 

 

2.4.2.2 Identifying neuronal cells 

NeuN is an antigen located in the nucleus and the immediately surrounding cytoplasm of 

neurons and is present in nearly all neuronal subtypes in the CNS  (with the exceptions of Cajal-
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Retzius cells, Purkinje cells, inferior olive neurons) (Gusel'nikova and Korzhevskiy, 2015). 

Antibodies to NeuN have long been used as an immunohistochemical marker of neurons.  

 

To provide a template by which to analyse the presence of Arc or c-Fos in all neurons, the IEG 

image was compared to a binary image of the corresponding NeuN stain. This was created using 

the im2bw function in MATLAB. This function requires the input of a thresholding value which 

was calculated by taking one standard deviation above the mean intensity of all pixels in the 

whole image. The resulting binary image retained all the cells in the foreground of a now ‘zero’ 

background. However, speckles were also present from less brightly stained background cells 

and nonspecific staining. These speckles were removed using the ‘bwareaopen’ function in 

MATLAB, which removed any objects in a binary image by size – in this case, any object smaller 

than 600 pixels (Figure 2.9). Each pixel of images taken on the Axioscan slide scanner is 0.325µm 

x 0.325µm, therefore 600 relates to ~65µm² which is much smaller than the average cell body 

size which ranges from 150-200µm²  

 

2.4.2.3 Identifying Interneurons 

To analyse the presence of Arc or c-Fos in all interneuron cell bodies, the IEG signal was 

compared to a binary image template of the corresponding GAD67 stain. This was created in a 

similar way to the NeuN template above. However, GAD67 antibody stained a large density of 

interneuron synaptic terminals as well as cell bodies, therefore additional steps had to be 

employed to separate cell bodies from the terminal staining for the template.  
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For this reason, the threshold value used with the ‘im2bw’ function used the 95th percentile 

rather than 1 standard deviation above the mean. Speckles smaller than the cells (<600 pixels in 

area) were again removed using ‘bwareaopen’. A further processing step removed the terminal 

staining (yet retained cell body staining) by retaining only the roundest objects in the image. This 

was done by creating a metric from the circumference and the area of each object using the 

formula (4π*area/perimeter²). Objects with a roundness metric of less than 0.25 were removed 

(an object with a roundness metric of 1 is approximately round) (Figure 2.10). 

 

2.4.2.4 Analysing IEG signals using NeuN and GAD67 Templates 

The NeuN and GAD67 templates were binary images so they were used to separate somatic 

levels of IEG from general background staining and staining in unidentified structures in the 

neuropil. Once the templates were created as described in the above two sections, the 

immediate early gene signal image was transposed onto the template only in areas that are 

positive for the cell-specific marker (NeuN+ve or GAD67+ve). The resulting image of the 

immediate early gene signal in the cell-specific marker template was then further processed by 

intensity. To retain only real cell immediate early gene staining, objects with an average intensity 

of less than the mean of all objects’ intensities, were removed (Figure 2.11). 

 

2.4.2.5 Analysing Arc in Dendrites 

Images of the Arc staining using the above template method contained signal arising only from 

the cell bodies. However, visual inspection of the raw images revealed there was also staining 

evident in dendrites traversing layers 2/3 of the neocortex. This extra-somal signal was excluded 

from the analysis which measured somatic staining using NeuN and GAD67 templates. 

Therefore, to analyse Arc in dendrites the original Arc image only was used, and the dendritic 

staining isolated. This was carried out by initially subtracting the background signal with a rolling 

kernel of 30 pixels in area. A binary image was then created of the background subtracted image 

and the threshold used was 1 standard deviation above the mean. Since the analysis only 

required information about the location of the dendrites and not the intensity of the signal, the 

binary image was then used for the final measurement.  Speckles were removed to the same 

parameters used throughout other analyses (<600 pixels in area). To attain the final dendritic 

images, the cells stained had to be removed, therefore any objects with a roundness measure 

of more than 0.15 were removed). Roundness was calculated using the same formula 

(4π*area/perimeter²) as section 2.3.2.2. (Figure 2.12). 
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2.3.2.5 The distribution of immediate early genes after image processing 

Once the template co-localisations and dendrites were isolated, the number of pixels that 

survived processing for each measurement were quantified across the width of the cortical 

regions of interest to create cortical profiles (from pia to subcortical white matter) for every 

repeat (gamma, delta, and matched controls) which were then normalised for length and width.  

 

To quantify the expression of c-Fos or Arc relative to oscillatory activity, matched slices from the 

same animal were used as a control. These control slices were processed in the same way as 

oscillating slices but were not exposed to the rhythm-generating drugs (Chapter 2.2.4). The 

mean profile of the oscillating condition minus matched controls were then calculated. These 

resulting profiles were also compared with the mean gamma vs. matched control profile being 

subtracted from the mean delta vs. matched control. 

 

Because no significant differences were seen between delta and gamma conditions when 

compared to control, the original raw data was scrutinised more thoroughly, and it was noticed 

that there was large variability in the data set. This was primarily down to a large variation in the 

staining in slices deemed ‘controls’. Therefore, direct comparisons between delta and gamma 

slices were also made to exclude the ‘control’ variability. 

 

To mathematically interrogate the difference between gene expression profiles of each 

condition without controls, the problem of multiple comparisons was encountered. Each profile 

contained 6000 data points from (pia to cortical white matter), meaning that there was a high 

possibility of encountering false detection of significance (Type 1 error). Due to the considerable 

number of comparisons carried out, a Bonferroni correction was deemed unfit as it was too 

conservative and would very likely cause the false exclusion of significant (Type 2 error). 

Therefore, a moderate post hoc test was considered, based on the false detection rate (FDR) 

(Storey and Tibshirani, 2003). Although the most overt changes appeared to be in the dendritic 

Arc signal, this method was also used to assess the direct comparison somatic c-fos and Arc in 

neurons and interneurons. 
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2.4.3 Oscillation and dendritic Arc expression correlations  

Upon creation of the cortical profile for each repeat of the experiment, the related 

electrophysiological data was used to compare with the distribution of Arc in dendrites. The 

cortical profiles were bisected tangentially, so that information regarding superficial and deep 

dendritic Arc signalling could be quantified separately. This was then compared with the area 

power, peak power, and peak frequency of the oscillation present (see Chapter 2.2.6). This was 

carried out for gamma and delta oscillating slices and included slices that were treated 

pharmacologically but did not generate an oscillation (to control, in part, for the presence of the 

drugs used to generate the oscillations).  

 

2.4.4 Tangential and radial arrangement analysis 

2.4.4.1 Radial and section analysis 
To look further at the tangential arrangement of Arc in dendrites, a bespoke MATLAB program 

was written. This took the example image of Arc staining and applied a high pass filter to remove 

any objects within the image that had a patterned separation larger than that of the visual 

dendrite clusters. After this an autocorrelation on each row of the image to visualise the average 

spatial arrangement of the dendrites. 

 

2.4.4.2 Preparation of tangential sections and analysis 
Since radial sections of the Arc stained sections spread out in the cortex, which was curved, to 

obtain tangential sections of these the brain had to be flattened out. This was done with care to 

obtain tangential sections of S2. The subcortical structures were dissected out and the cortex 

was carefully flattened and place on filter paper to hold the flattened conformation. This was 

then fixed in PFA for 24 hours. The flattened brain was then glued to a vibratome plate with the 

subcortical white matter facing downwards before being cut to 30µM on a vibratome. All 

sections were retained and sections from layers II/III were then stained with Arc as in Chapter 

2.4.1. Images were taken with a Zeiss LSM 710 motorised upright microscope with either x20 or 

x63 lens for different image resolutions. Images were taken as z-stacks and then the maximum 

intensity projection image was calculated in Zeiss Zen Software. 

 

The spatial distribution of Arc stained dendrites in the tangential plane were analysed using a 

program written in MATLAB. This involved the thresholding of the image using the MATLAB 

program ’imquantize’ and the calculation of a normalised 2-d rotational autocorrelation of the 

image which is presented as a heat map. 
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2.5 Milliplex Cytokine Panel 

2.5.1 Overview of the cytokine panel kit. 
To analyse the presence of a systemic and neuroinflammatory environment after LPS and Poly 

I:C dosing, we analysed concentrations of cytokines and chemokines in the serum and brain of 

treated rats using a Milliplex MAP Rat Cytokine/Chemokine Magnetic Bead Panel Kit. This allows 

simultaneous quantification of 27 cytokine and chemokine analytes in samples of tissue lysate 

and serum:  EGF, Eotaxin (CCL11), Fractalkine (CXC3L), G-CSF, GM-CSF, GRO/KC, IFN-γ, IL-1α, IL-

1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p70), IL-13, IL-17A, IL-18, IP-10 (CXCL10), Leptin, LIX (CXCL5), 

MCP-1 (CCL2), MIP-1α (CCL3), MIP-2 (CXCL2), RANTES (CCL5), TNF-α, and VEGF 

 

2.5.2 Milliplex sample preparation  
To prepare brain tissue for the assay, remnants of the cerebral cortex that were not used for 

electrophysiology experiments were kept in the -80°C before protein extraction. Tissue was 

defrosted to room temperature and then transferred to a 15ml tube, with 1.5ml of 

homogenisation buffer. 

 

The homogenate was transferred to a milli-tube containing an AFA fibre (Covaris, USA) these 

tubes were transferred to an E220 Focused-ultrasonicator (Covaris, USA) to lyse the tissue 

further by ultrasonication. The homogenate was then centrifuged at 4°C and 12000rcf for 5 

minutes. The supernatant was then removed and again centrifuged for 2 minutes at 2000rcf. 

 

For blood serum, 0.5 – 1ml of blood was taken from the heart immediately prior to transcardial 

perfusion. This blood was left to clot at room temperature for 30 minutes, before being 

centrifuged at 2,000 x g for 10 minutes. The supernatant serum was then collected and kept in 

the fridge for use in a cytokine panel. 

 

2.5.3 Milliplex plate setup  
To begin the assay, quality control samples (provided with the kit) were reconstituted and a 

serial dilution made of the standard solution (also provided) for comparison to allow eventual 

calculation of the concentration of cytokines/chemokines in experimental samples. The plate 

was washed with the assay buffer. Bead solution was added to every well analysed. The 

standard, quality controls and experimental samples were added to appropriate wells on the 

plate. Some wells were also left blank as a negative control. Serum matrix was added to the 

blank, standard, and quality control, and assay buffer (to make up the volume) was added to the 

samples wells and the blank. 
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The plate was then shaken for 2 hours at room temperature, after which the plate was washed 

and detection antibodies (provided with the kit) added into each well. The plate was then shaken 

for another 2 hours before adding Streptavidin-Phycoerythrin (provided with the kit) to each 

well and shaking for another 30 minutes. The plate was then washed, and sheath fluid was added 

to each well and shaken for 5 minutes before plate reading. The plate was then run on a Luminex 

200 System.  

 

2.5.4 Analysis of Milliplex assay results 
Once the samples had been read and concentrations analysed, the data went through several 

quality control steps to extract accurate results. Firstly, the assay analysed how many beads 

were counted per well. Any observed concentrations from wells where <50 beads were counted 

were discounted from analyses. Further to this, the coefficient of variation (CV) was calculated 

for each of the triplicated samples any result with a CV percentage >30% was removed from 

further analyses. The mean was found from the remaining technical replicates, to provide a 

mean concentration for each sample, which was then averaged across biological replicates. 
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Chapter Three – Plasticity related gene changes 

in sleep- and wake-related oscillations 
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3.1 Introduction 

3.1.1 Immediate early genes, plasticity, and brain states 

Immediate early genes (IEGs) are rapidly transcribed in response to certain cellular stimuli and 

can provide information about the nature of the recent cellular activity. The two immediate 

early genes of particular interest in this chapter are c-fos and ARC/Arg3.1. C-fos upregulation 

was once believed to be entirely dependent upon general levels of neuronal activity. However 

more recent evidence suggests that it may be more specifically related to the generation of new 

patterns of activity (Svarnik et al., 2013). Arc, on the other hand, has a direct, activity-dependent 

association with synaptic plasticity involving both AMPA receptor internalisation and synaptic 

stabilisation (Shepherd et al., 2006).  

 

The mRNAs for both these immediate early genes exhibit different expression patterns between 

sleep and wakefulness (Cirelli and Tononi, 2000b). This is not surprising as different networks of 

neurons fire in contrasting patterns in these brain states, and different modes of plasticity are 

dependent upon the timing of spikes that occur subsequent to different network oscillations 

(Markram et al., 2012). Delta oscillations are classically associated with deep (non-rapid eye 

movement, NREM) sleep and have been shown to associate with the consolidation of 

declarative memories, a process that requires synaptic plasticity. Cortical gamma oscillations, 

on the other hand, are associated with the processing of sensory information during 

wakefulness. The relationship between different spike timings during these oscillations and the 

type of synaptic plasticity they induce are not fully understood to date. 

 

What is known is that synaptic interconnections become stronger during novel experiences in 

the wake state – a substrate for memory (Bliss and Collingridge, 1993). This represents Hebbian 

plasticity, whereby neuronal connections are selectively modified in a use-dependent manner 

(Turrigiano and Nelson, 2000). This form of plasticity may account for increases in immediate 

early gene expression seen after learning-dependent tasks (Guzowski et al., 2001; Kelly and 

Deadwyler, 2003; Hanlon et al., 2009). For these memories to be made permanent they need to 

be consolidated during sleep (Dudai et al., 2015). This requires another plastic process which is 

thought to prune away weaker synaptic connections. This process, known as synaptic rescaling, 

has been proven on the anatomical (de Vivo et al., 2017) and molecular level (Diering et al., 

2017).  
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The pruning and depotentiation of weaker synapses, as suggested by the synaptic rescaling 

hypothesis, is not just important in memory consolidation but has also been implicated in a 

process known as synaptic homeostasis. The scaling of synaptic strengths is needed to balance 

the formation of new memories with the metabolic nutrient supply and availability of physical 

space in the neuropil for new connections. 

 

It is likely that processes underlying synaptic scaling occur during sleep as it is a state with less 

propensity for LTP. This is thought to be due to several factors: Firstly, dopamine levels need to 

be low in the brain to facilitate deep (slow-wave/delta) sleep (Dzirasa et al., 2006) and lower 

dopamine levels have a detrimental effect on long term potentiation of synaptic strengths (Li et 

al., 2003). Secondly, there is a strong diminishment (if not complete absence) of long-term 

memory acquisition during deep sleep due to the absence of sensory input (Tononi and Cirelli, 

2001). Furthermore, the amount of SWA during NREM sleep was found to be related to 

increased synaptic strength during prior wakefulness and not simply a response to increasing 

cell firing (Rodriguez et al., 2016). So, whilst NREM sleep may be the target for this synaptic 

rescaling, exactly which connections are altered, between which neuron subtypes, during NREM 

sleep is not known.  

 

3.1.2 Aims of this chapter 

This chapter aims to use immediate early gene expression changes to map the location and 

levels of cortical plasticity during rhythms associated with NREM sleep and cortical activation in 

wakefulness. For this in vitro preparations of brain tissue were used, in which pharmacologically 

induced oscillations (delta oscillations and gamma oscillations respectively) were generated to 

differentiate regional and laminar cortical changes in network dynamics associated with NREM 

sleep and cortical activation. Analyses of IEG signals in these conditions was carried out, with 

respect to specific cell subtypes and sub-compartments that contribute to these rhythms, and 

their patterned organisation. 
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3.2 Results 

3.2.1 Regional difference in overall IEG expression in different brain states  

The presence of IEG protein expression was first analysed in sub-sectioned slices of in vitro 

preparations of rat neocortex in the absence of any templates for co-expressed neuronal 

markers. This expression was compared between slices that had previously generated wake-

state (gamma) or sleep-related (delta) oscillations and those that had been left untreated with 

oscillation-inducing drugs. 

 

The overall expression of c-Fos and Arc were analysed in isolated primary sensory and secondary 

association cortical regions; the same regions were used in more detailed, further analyses using 

neuronal templates. The mean intensity of staining in each region (minus background) was 

analysed and compared between conditions and matched controls.  

 

There was no significant difference in C-fos intensity when comparing each oscillating condition 

to the matched control data (S1. Control vs. Delta, 11.64 ± 1.86 vs. 10.52 ± 0.81, T-test, p = 0. 

530; S2. Control vs. Delta, 10.95 ± 1.41 vs. 10.10 ± 0.89, T-test, p = 0.604; Au1. Control vs. 

Gamma, 9.87 ± 1.52 vs. 6.98 ± 0.94, T-test, p = 0.127; S2. Control vs. Gamma, 10.377 ± 4.95 vs. 

7.01 ± 0.98, T-test, p = 0.098). However, the mean C-fos intensity was lower in gamma oscillating 

slices compared to slices exhibiting a delta rhythm (Figure 3.1A). In the primary sensory cortex, 

the mean intensity of c-Fos staining was more from in gamma oscillating slices than delta 

oscillating slices (gamma: 7.04 ± 1.07; delta: 10.52 ± 0.81, p = 0.013, n=9/8, T-test). In the 

secondary association cortex, the mean intensity of c-Fos staining was also more (gamma: 7.11 

± 1.10; delta: 10.10 ± 0.88 in, p = 0.034, n=9/8, T-test). 

 

There was also no significant difference in Arc intensity when comparing each oscillating 

condition to the matched control data (S1. Control vs. Delta, 8.00 ± 1.64 vs. 5.66 ± 0.56, T-test, 

p = 0.162; S2. Control vs. Delta, 8.38 ± 2.15 vs. 5.68 ± 0.66, T-test, p = 0.208; Au1. Control vs. 

Gamma, 10.70 ± 2.43 vs. 7.85 ± 0.61, T-test, p = 0.320; S2. Control vs. Gamma, 11.22 ± 2.46 vs. 

7.75 ± 0.67, T-test, p = 0.195). However, there was lower overall expression seen in delta 

oscillating slices compared to those exhibiting gamma oscillations (Figure 3.1B). In primary 

sensory cortex, the mean intensity of Arc staining was lower from 7.85 ± 0.61 in gamma 

oscillating slices to 5.66 ± 0.56 in delta oscillating slices to (p = 0.024, n=7/6, T-test). Secondary 

association cortex the mean intensity of c-fos staining was less, from 7.75 ± 0.67 in gamma 

oscillating slices to 5.68 ± 0.66 in delta oscillating slices (p = 0.024, n=7/6, T- test). 
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3.2.2 Laminar, soma-specific IEG during different brain states compared to control  

Looking further into the cytoarchitectural origin of the above differences in immediate early 

gene expression, dual immunostaining was used to look at the localisation of IEG signals in cell 

bodies in certain cell types and cortical layers. C-fos expression was analysed in cells also stained 

with NeuN, a marker for neuronal nuclei and GAD67, a marker for ca. 96% of cortical 

interneurons (Sahara et al., 2012). Primary sensory and secondary association areas were 

analysed separately and the laminar distribution of c-fos in NeuN+ve cells was measured in 

oscillating slices. T-tests were run on every data point from the pia to subcortical white matter.  

 

For any points that were statistically significant a modified q value was calculated using a false 

detection rate (FDR) correction for multiple comparisons. The difference between the oscillating 

condition and untreated controls from the same animal were then compared to display the 

activity change due to the oscillation.  

 

During delta oscillations, the neuronal c-Fos expression did not show any significant differences 

across the cortex (Figure 3.2 Ai and Bi) compared to control in either the primary sensory cortex 

(biggest difference in S1 at 607.8 µm. Control vs. delta, 0.449 ± 0.276 vs. 0.996 ± 0.262, T-test, p 

= 0.2, with FDR, q = 0.9589) or in the secondary association cortex (biggest difference in S2 at 

437.8µm. Control vs. delta, 0.543 ± 0.484 vs. 1.139 ± 0.492, T-test, p = 0.4211, with FDR, q = 

0.890). During gamma oscillations the largest difference was a decrease in the mean c-Fos levels 

compared to control in superficial layers (Figure 3.2 Aii and Bii) but this was not significant in 

either the primary sensory cortex (Au1 at 710.8µm. Control vs. gamma, 1.056 ± 0.449 vs. 0.227 

± 0.071, T-test, p = 0.093, with FDR, q = 0.312) and secondary association cortices (S2 at 

1408.6µm. Control vs. gamma, 0.833 ± 0.236 vs. 0.130 ± 0.038 T-test, p = 0.0123, with FDR, q = 

0.344).  

 

To compare delta and gamma oscillating conditions, the control-subtracted profiles related to 

the gene expression gamma oscillating condition were subtracted from the delta condition 

profile (Figure 3.2 Aiv and Biv). There was an higher mean c-fos levels in NeuN+ve cells during 

delta conditions but this was not significant in primary cortex (681.5µm. Delta - Control vs. 

Gamma – Control: -0.043 ± 0.307 vs. -0.826 ± 0.510, T-test, p = 0.262, with FDR, q = 0.554) or 

secondary association cortex 607.8µm. Delta - Control vs. Gamma – Control: 0.534 ± 452 vs. -

0.427 ± 0.171, T-test, p = 0.040, with FDR, q = 0.478).  
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In line with the lack of change in c-Fos expression in NeuN+ve cells when comparing each 

oscillation, c-Fos expression in GAD67+ve cells also showed no change. Even the largest 

difference from control levels of c-Fos expression was not significant in either region during 

gamma (Figure 3.3 A/B, i&ii) (Au1 at 436.2µm. Control vs. gamma, 0.401 ± 0.238 vs.0.095 ± 

0.055, T test, p = 0.2332, with FDR, q = 0.529; S2 at 113.4µm. Control vs. gamma, 0.348 ± 0.312 

vs. 0.032 ± 0.016, T test, p = 0.331, with FDR, q = 0.712) or delta (S1 at 1279.9µm. Control vs. 

delta, 0.240 ± 0.112 vs. 0.035 ± 0.034, T test, p = 0.130, with FDR, q = 0.997; S2 at 745.2µm. 

Control vs. delta, 0.108 ± 0.071 vs. 0.260 ± 0.120, T test, p = 0.318, with FDR, q = 0.723). Even 

when directly comparing the two rhythms there were no significant differences (Figure 3.3 

A/Biv) (primary cortex, 567.5µm. Delta - Control vs. Gamma – Control: 0.055 ± 0.066 vs. -0.215 

± 0.151, T-test, p = 0.225, with FDR, q = 0.831; or secondary association cortex 113.4µm. Delta - 

Control vs. Gamma – Control: 0.000 ± 0.000 vs. -0.3162 ± 0.309, T-test, p = 0.468, with FDR, q = 

0.853). 

 

Somatic Arc expression was also measured for its presence in neurons (NeuN) and interneurons 

(GAD67). In neurons, during both gamma rhythms (Au1, 1913.0µm. Control vs. Gamma: 0.397 ± 

0.217 vs. 0.913 ± 0.309, T-test, p = 0.197, with FDR, q = 0.713; S2, 637.0µm. Control vs. Gamma: 

0.414 ± 0.175 vs. 0.082 ± 0.038, T-test, p = 0.088, with FDR, q = 0.902) and delta rhythms (S1 

1940.6µm. Control vs. Delta: 0.960 ± 0.626 vs. 0.272 ± 0.122, T-test, p values = 0.302, with FDR 

q= 0.480; S2, 1925.6µm, Control vs. Delta: 0.505 ± 0.241 vs. 0.042 ± 0.021, p value = 0.080, q 

value = 0.420) somatic ARC expression did not show any change from the untreated control 

condition. When comparing delta and gamma oscillation conditions directly, the difference in 

layer VI staining was more noticeable, and appeared only in primary cortical regions but was not 

significant (Figure 3.4 Aiv) (1ry: 1922.4µm, Delta-Control vs Gamma-Control: -0.669 ± 0.467 vs. 

0.279 ± 0.226, T-test, p = 0.092, with FDR q = 0.513). There was also no difference in somatic Arc 

distribution in secondary association regions (Figure 3.4 Biv) (2ry: 1925.3µm, Delta-control vs 

Gamma-Control: -0.459 ± 0.235 vs. 0.075 ± 0.207, T-test, p = 0.245, with FDR q = 0.999). 

  

Much like the expression of c-Fos, there was very little change in the GAD67+ve cell expression 

of Arc compared to control in any condition (Figure 3.5. A/B, i &ii) (Au1, 1163.9µm. Control vs. 

Gamma: 0.0312 ± 0.0149 vs. 0.241 ± 0.020, T-test, p = 0.321, with FDR, q = 0.4351; S2, 1269.1µm. 

Control vs. Gamma: 0.005 ± 0.004 vs. 0.139 ± 0.124, T-test, p = 0.301, with FDR, q = 0.660; S1, 

1297.1µm. Control vs. Delta: 0.147 ± 0.072 vs. 0.020 ± 0.020, T-test, p = 0.117, with FDR, q = 

0.647; S2 1623.0µm, Control vs. Delta: 0.190 ± 0.1826 vs. 0.003 ± 0.003, T-test, p = 0.326, with 
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FDR, q = 0.469). However, there was a decrease in the mean ARC expression in the superficial 

layers of primary cortical regions during delta compared to gamma, however this was not 

significant (Figure 3.5. Aiv) (1ry, 1162.2µm, Delta-Control vs. Gamma-Control: -0.012 ± 0.018 vs. 

0.207 ± 0.208, T-test p = 0.314, with FDR q = 0.388). This difference was very slight and not 

apparent in secondary association regions (Figure 3.5. Biv) (2ry, 1269.5µm, Delta-Control vs. 

Gamma-Control: -0.063 ± 0.082 vs. 0.133 ± 0.126, T-test, p = 0.217, with FDR, q = 0.697). 
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ARC is not only expressed in neuronal cell bodies, but also in dendrites. This was clear under 

visual inspection of oscillating slices in the primary sensory and secondary association cortices. 

Arc staining was visible in radially arranged dendrites/dendrite clusters that projected across 

intermediate and superficial layers. Arc staining was also apparent in some layer VI dendrites 

others of which stretched horizontally (Figure 3.6 A and B).  

 

Whilst this dendritic expression was conserved between delta and gamma, across the regions 

examined, there were large and contrasting patterns during gamma and delta rhythms. The 

largest difference in dendritic Arc staining was in superficial layers which was higher in delta 

conditions compared to gamma (Figure 3.7Ai/ii) however this was not significant (S1, 1327.0µm, 

Control vs. Delta: 27.0 ± 12.4 vs. 7.4 ± 1.5, T-test, p = 0.142, with FDR q = 0.954; S2, 33.1250 µm   

22.8 ± 5.1 vs. 47.7 ± 10.8, T-test, p = 0.0587, with FDR q = 0.486). During gamma oscillations 

dendritic ARC expression there was a mean decrease compared to control in both primary 

sensory and secondary association cortices, though this was not significant (Figure 3.7 A&Bii) 

(Au1, 659.4 µm, Control vs. Gamma: 30.7 ± 10.8 vs. 15.2 ± 3.2, T-test, p = 0.1948, with FDR q = 

0.972: S2, 225.2 µm Control vs. Gamma: 32.4 ± 12.4 vs. 14.7 ± 5.6, T-test, p = 0.2201, with FDR 

q = 0.640). 

 

Comparing between oscillation conditions there seemed to be more superficial dendritic Arc 

signalling in delta oscillations in both regions (Figure 3.7 Aiv/Biv). Only in primary cortical regions 

did there was a mean decrease in deep layers in delta compared to gamma oscillations. But 

these differences were not significant (S1, 683.5 µm Delta-Control vs. Gamma-Control:  15.2 ± 

8.2 vs. -13.2 ± 10.5, T-test, p = 0.054, with FDR q = 0.981: S2, 233.7 µm, Delta-Control vs. Gamma-

Control:  24.6 ± 12.4 vs. -16.9 ± 16.2, T-test, p = 0.0642, with FDR q = 0.129) 

 

Whilst these differences appeared to be noteworthy from visual inspection of the graphs none 

of the differences seen were significant. On examination of the raw data, the main contributory 

factor to the variability of the data set was the ‘control’ values which showed much greater 

variability (Figure 3.8 A) than the oscillatory condition (Figure 3.8 B). This added variability once 

the control data was subtracted from the oscillating profile (Figure 3.8C). This variance was 

measured with the MATLAB programme ‘var’ and the mean variance of the data sets was 

calculated (matched control vs gamma: 187.72 vs. 120.33). With the high variance in the 

matched control, this control data was therefore put aside, and the above analyses were 

repeated with a direct comparison between oscillation states. 
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3.2.3 Direct comparison of laminar IEG expression changes in different brain states  

The direct comparison of c-fos in NeuN+ve cells did not show any differences in the distribution 

of c-fos staining between gamma and delta rhythms, however there was a higher mean 

NeuN+ve cell c-fos expression during delta rhythms (Figure 3.9A), and the mean difference was 

largest in superficial layers of the primary cortex (Figure 3.9Ai). However, these differences were 

not significant (S1, 602.6 µm, Delta vs. Gamma: 0.950 ± 0.290, vs. 0.227 ± 0.090, T-test, p = 

0.0156, with FDR q = 0.2294: S2, 422.2 µm, Delta vs. Gamma: 1.199 ± 0.661 vs. 0.244 ± 0.148, T-

test, p = 0.099, with FDR q = 0.187). 

 

The c-fos expression was unchanged between delta and gamma oscillating slices in GAD67+ve 

cells (Figure 3.9B). (S1, 1740.1µm, Delta vs. Gamma: 0 ± 0 vs. 0.190 ± 0.122, T-test, p = 0.279, 

with FDR q = 0.593: S2, 1158.0µm, Delta vs. Gamma: 0.257 ±0.139 vs. 0.071 ± 0.047, T-test, p = 

0.152, with FDR q = 0.561).  

 

Directly comparing gamma and delta rhythms for somatic Arc also showed no significant 

differences between conditions (Figure 3.10A). (S1, 1912.6µm, Delta vs. Gamma: 0.258 ±0.121 

vs. 0.906 ± 0.298, T-test, p = 0.067, with FDR, q = 0.318, S2 1898.7µm, Delta vs. Gamma: 0.041 

± 0.027 vs. 0.421 ± 0.120, T-test, p = 0.009, with FDR q = 0.396). There was no significant 

difference in Arc distribution in GAD67+ve cells between conditions (Figure 3.10B). S1, 

1162.9µm, Delta vs. Gamma: 0.009 ± 0.006 vs. 0.241 ± 0.202 T-test, p = 0.274, with FDR q = 

0.453; S2 1269.1µm, Delta vs. Gamma: 0.021 ± 0.0179 vs. 0.139 ± 0.124, T-test, p = 0.362, with 

FDR q = 0.635). 
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The direct comparison of staining showed significantly more dendritic Arc in layer II/II in the 

primary sensory cortices during delta rhythms compared to gamma rhythms (Figure 3.11A) (1ry   

616.5µm, Delta vs. Gamma: 50.4 ± 7.0 vs. 11.8 ±   2.2, T-test, p < 0.001, with FDR q = 0.002). 

Despite the apparent visible difference in the secondary association cortex (with no overlapping 

errors), no significance was found in s2 (Figure 3.11B) (S2, 233.7µm, Delta vs. Gamma: 46.2 ± 

15.4 vs. 15.4 ± 6.5, T-test, p = 0.090, with FDR q = 0.3887).  

 

Whilst significant results were found, the false detection rate analysis assumes each point of 

comparison is independent of those surrounding it. This, therefore, is not an entirely valid 

analysis of these data, as it is structural in nature and therefore containing connected objects. 

To overcome this, data was binned into 20 regions (each bin is 97.5µm wide after interpolation) 

from pia to cortical white matter to allow for a lower false detection rate due to multiple 

comparisons. This also meant that a more conventional Holm-Sidak post hoc test could be used 

(Figure 3.12). With this analysis we now found several significant points of higher dendritic Arc 

in primary cortex (p values for bins are: 1 (97.5µm) = 0.048, 6 (585µm) = 0.003, 7 (682.5 µm) < 

0.001, 9 (877.5 µm) = 0.003) and secondary cortex (p-value for bin no. 7 (682.5 µm) was 0.039). 

 

3.2.4 The relationship between dendritic Arc expression and oscillatory properties. 

Considering that the ‘control’ condition slices were abandoned in these analyses owing to the 

variability of their IEG expression levels, it was important to deduce how much of the expression 

of dendritic Arc was down to the presence of either delta or gamma oscillations. Therefore, the 

analysis was carried out to assess the relationship between different features of the oscillatory 

activity generated (as measured from the power spectrum) and the dendritic Arc signal showing 

the significant differences above. Primary sensory cortices and secondary association area 

images were divided in half tangentially to compare the oscillatory characteristics with Arc 

expression with cortical layers in superficial and deeper portions of the cortex.  

 

In gamma oscillating slices dendritic expression of Arc was lower in deeper layers than in 

superficial layers. In the deeper half of the cortex, there were no significant correlations 

between Arc dendritic staining and the area power, the peak power or the peak frequency of 

the gamma oscillation. Superficial layers did display a negative correlation between dendritic 

Arc and the area power of the oscillation in Au1 (R² = 0.51) (Figure 3.13Ai). This significance was 

not conserved in S2 (Figure 3.13Bi).  
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There was also no correlation between the dendritic Arc levels and the power or frequency of 

the highest peak in the power spectrum (Figure 3.13 A&B ii/iii). 

 

In delta oscillating slices the higher expression of Arc during delta (Figure 3.11 and 3.12) was 

conserved under visual comparison with the gamma condition correlation graphs (Figure 3.13 

and 3.14). Again, no correlation was seen between the dendritic expression of Arc in deeper 

layers and any measured of features of the delta oscillations. There was also no relationship 

between area power, peak power, or peak frequency in superficial layers in S1 (Figure 3.14B). 

However, in S2 a negative relationship was visible between Arc dendritic staining and area 

power (R² = 0.612).  

 

3.2.5 Identification of the cells responsible for dendritic Arc expression.  

All the data presented thus far has shown that the expression of Arc in dendrites is mostly 

confined to the superficial layers of the cortex. These dendrites would appear (from visual 

inspection) to originate in cells whose cell bodies lie in deeper layers and that project their apical 

dendrites to superficial layers as far as layer I (Figure 3.6). To identify the specific subtype of the 

cell responsible for this Arc expression intracellular electrophysiological recordings were made 

of single cells, in conjunction with biocytin filling. This allowed for the electrical characterisation 

of the cells, along with the physical characterisation and co-staining with Arc. This meant that 

the cell types contributing to the dendritic Arc signal could be revealed. 

 

These experiments ruled out Layer V regular spiking neurones as candidates as they did not 

show co-expression of Arc in their apical dendrite (Figure 3.15). Layer VI regular spiking cells also 

do not express Arc in their apical dendrite during delta oscillations (Figure 3.16). These 

intracellular experiments did however successfully show co-staining between biocytin labelled 

layer V intrinsically bursting cells and Arc (Figure 3.17).  
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3.2.6 The arrangement of Arc in dendrites in layer II/III of the cortex. 

The Arc staining was localised to the layer II/III portion of the apical dendrites of layer V 

intrinsically bursting cells. However, it was also apparent that these apical dendrites were not 

isolated but appeared to be arranged in clusters (Figure 3.6).  

 

To assess this arrangement, first a 1-dimensional autocorrelation was performed on each 

tangential image scan line from pia to subcortical white matter using the original radial sections 

(e.g. Figure 3.18 Ai). The location of positive pixels of each scan line of the thresholded image 

was compared with a copy of that line. The copy was then shifted along by one pixel and 

compared again until there was no overlap. Where there was a strong spatial pattern, a high 

correlation was revealed. This was done for each line of the image and plotted as a colour map. 

This showed a strong spatially repeating pattern in layers 2/3 with a spatial frequency of ~50 m 

(Figure 3.18 Aii).  

 

A 2-dimensional autocorrelation analysis was used on tangential slices from the secondary 

somatosensory cortex to see if this clustering extended beyond the radial plane captured in the 

original slices. This used a similar principle to the autocorrelation mentioned above but involved 

a rotational comparison. This analysis showed that there was a near-hexagonal structural 

arrangement of Arc-positive dendritic compartments, again with a spatial frequency of ~50µm 

(Figures 3.19 Ai, Bi, Ci). On closer inspection of the images, the dimensions of this spatial 

arrangement appeared to capture the interval between dendritic clusters. However, using 

higher-resolution images the second level of organisation within clusters was apparent (Figure 

3.19 Aii). Further analyses of this tangential arrangement, at the higher resolution, were also 

carried out using 2-D autocorrelations. This allowed the analysis of the relative location of each 

dendrite and dendrite cluster to its neighbours. This revealed the arrangement of dendrites 

within clusters. It showed a smaller-spatial scale (ca. 10 m) version of the hexagonal pattern 

seen between clusters was also present for individual dendrites within each cluster (Figure 3.19 

Aii/Bii). Furthermore, some evidence for the ~50µm hexagonal spatial arrangement between 

clusters was also still apparent using these higher-resolution images (Figures 3.19 Ci, Cii). 
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3.3. Discussion 

3.3.1 Summary 

In this chapter, the effect of certain brain rhythms on regional IEG changes was analysed. In vitro 

models of NREM sleep-related delta rhythm (Carracedo et al., 2013), and the wake-related 

gamma rhythm (Ainsworth et al., 2011) were used to monitor c-fos and Arc changes in response 

to due to specific network activities unconfounded by other electrical activity that would occur 

in vivo. With this technique, molecular changes were analysed within whole regions, as well as 

with laminar and cellular specificity.  

 

The summary of key findings from this investigation are:  

 The total c-Fos protein expression was elevated in slices oscillating at delta frequency 

compared to slices oscillating at gamma frequency in primary and association areas 

equally. 

 C-Fos expression in NeuN and GAD67 immunopositive somata was not affected by the 

nature of brain rhythms in any region/layer studied. 

 Total arc protein expression was diminished in slices oscillating at delta frequency 

compared to slices oscillation at gamma frequency in each area studied. 

 Arc expression in NeuN and GAD67 immunopositive somata was not affected by the 

nature of brain rhythms in any region/layer studied. 

 Arc expression in L5 IB neuronal apical dendrites was elevated in delta rhythms. 

 Dendritic Arc expression was differentially affected by gamma and delta oscillation 

power in primary and secondary neocortex respectively. 

 The spatial pattern of dendritic Arc expression corresponded to the previously described 

architecture of neocortical microcolumns. 

 

3.3.2 c-Fos is higher during sleep-related rhythms regionally but not locally 

C-Fos, a gene expressed in response to ‘new’ firing patterns in neurons (Svarnik et al., 2013), 

showed higher expression in slices oscillating a delta frequency, compared to gamma oscillating 

slices. These findings are at odds with studies into the expression of c-Fos across the sleep-wake 

cycle (Pompeiano et al., 1995; Hanlon et al., 2009). However, most of the previous evidence for 

c-Fos changes are with respect to mRNA data (Cirelli and Tononi, 2000c), and  there is known to 

be a discrepancy with translation across the sleep-wake cycle with an upregulation of protein 

synthesis during sleep (Ramm and Smith, 1990; Nakanishi et al., 1997), especially with plasticity 

dependent genes (Seibt et al., 2012).  
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Many in vivo studies also do not monitor the electrical activity of the brain during sleep, only by 

behaviour. Therefore, they do not make a statement about specific stages of the sleep-wake 

cycle above comparison of ‘wake’ versus ‘sleep’. With the in vitro models used in this thesis, 

specific rhythms related to certain brain function were generated, albeit in a more persistent 

fashion than is usually seen in vivo. It is likely that the changes seen in regional c-Fos levels were 

specific to the presence of gamma and delta rhythms.  

 

As well as neurons, c-Fos is also expressed glia (Dragunow et al., 1990) (Edling et al., 2007). 

Therefore, even with a background subtraction process to remove non-specific staining, 

comparing the gross remaining staining over the whole would also include glial c-Fos staining. 

To take this into account analyses for neuron-specific staining (NeuN co-localisation) was 

undertaken. Additionally, to investigate these regional changes further we analysed the change 

in the distribution of c-Fos throughout the cortical layers and found no difference in neuronal or 

interneuron c-fos staining in any layer of the cortex in these analyses, although the trend 

towards general higher c-fos during delta rhythms was still apparent. The specificity in these 

analyses (both cellular and laminar) is most likely the reason for the lack of significant changes 

recorded. Especially as observing c-Fos in areas of NeuN immunostaining meant that any extra-

somal staining was ignored. This is of particular importance as recently c-fos has been found in 

synaptic boutons (Nakao et al., 2002)  

 

3.3.3 ARC expression is lower regionally but not locally during delta oscillations  

Our initial experiments investigating the changes to Arc (an IEG mediator of plasticity) showed 

a regional decrease in both primary sensory cortex and secondary association cortex during 

delta rhythms compared to gamma activity. This is line with findings by Cirelli and Tononi 

(2000a) that show a global decrease in Arc in the cerebral cortex during sleep compared to 

wakefulness. This decrease in Arc expression has also been shown to occur more specifically in 

brain regions associated with task learning – compared to untrained regions - during 

wakefulness. These changes were abolished after 1 hour of sleep (Hanlon et al., 2009) and were 

related to increased slow wave activity, which suggests that looking at levels during sleep 

compared to SWS, the results are comparable. 

 

Trying to localise these sleep-related decreases, we found that the expression of Arc in neuronal 

cell bodies is similar during delta and gamma rhythms oscillations. This analyses only included 
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the cell bodies and therefore did not include any synaptic or dendritic signal. It is not surprising 

that there is little difference in Arc protein in the cell body as Arc is transcribed in the nucleus 

but is mostly shuttled to dendrites for translation (Steward et al., 1998), so it would be expected 

that the majority of Arc signal would arise from the dendrites, which is indeed the case with 

these experiments. This would also account for the similarity in the pattern of activity ARC in 

GAD67+ve interneurons as the analyses only observed changes within the locale of the soma 

rather than dendrites of interneurons. 

 

3.3.4 Arc expression was elevated in L5 IB neuronal dendrites during delta rhythms 

Contrasting the regional decreases, we found that Arc was highest in dendrites in layer II/III in 

vitro delta oscillations compared to gamma oscillations. This finding was also at odds with 

general changes seen in Arc expression over the sleep-wake cycle, in which Arc mRNA is built up 

during wakefulness and decreased during sleep in the cortex (Cirelli and Tononi, 1999; Cirelli et 

al., 2004) and hippocampus (Thompson et al., 2010). It also contrasted the gross regional 

changes which also saw a decrease in Arc signal. The gross analysis not only included the 

dendritic staining but somatic and extracellular signal. To lead to a net reduction over the whole 

area, the higher level of dendritic Arc must have a contrasting decrease in the rest of the signal.  

 

Since delta rhythms are associated with SWS, our data would suggest that processes occur 

during SWS that generally decrease the expression of Arc, but locally has a higher expression in 

distal dendrites. The mechanism by which this specific increase occurs is unclear, in that whilst 

its transcription occurs in the nucleus, its mRNA is trafficked to the dendrites where it translated 

(Steward et al., 1998). Synaptic activity is known to increase both of these processes (Steward 

and Worley, 2001), so it uncertain whether the increased level of Arc is as a result of de novo 

transcription, or the translation of already synthesised mRNA. Observing the dendritic 

appearance of Arc In the presence of a transcriptional repressor (actinomycin D) or a protein 

synthesis inhibitor (cycloheximide) would help elucidate this mechanism. 

 

Whilst the mechanism by which Arc is increased may be uncertain, the processes in which it is 

involved during delta are clearer. It is known that the landscape of synaptic plasticity during 

wakefulness is weighted towards potentiation (Bramham and Srebro, 1989), whereas synaptic 

depression (LTD) dominates sleep (Tononi and Cirelli, 2003; Shepherd, 2012).  The process of 

rescaling synapses during sleep in this way is important for the maintenance of synaptic 

homeostasis (Tononi and Cirelli, 2014).  
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These results show that Arc is implicated in this process, through its role in LTD by the 

internalisation of AMPA receptors from the postsynaptic membrane (Chowdhury et al., 2006; 

Rial Verde et al., 2006; Shepherd et al., 2006). The role of Arc in synaptic scaling is supported by 

evidence that shows that the KO of Arc prevents this process in the primary visual cortex (Gao 

et al., 2010). This endocytosis (and thus LTD) is known to increase during sleep  (Vyazovskiy et 

al., 2008; Lante et al., 2011; Diering et al., 2017) and is also supported by studies that highlight 

the electrophysiological presence of LTD in sleep too (Vyazovskiy et al., 2008; Liu et al., 2010).  

 

There is also evidence that relates the delta rhythms with LTD, as activity of the delta band 

reduces with sleep time along with the overall strength of synapses (Riedner et al., 2007). The 

influence of certain neurotransmitters during delta rhythms also points toward synaptic 

depression as dopamine (D1) receptors are blocked to enhance delta oscillations in vitro 

(Carracedo et al., 2013) and the activation of these receptors has been shown to impair LTD (Xu 

and Yao, 2010). Thus, it seems that Arc may play a critical role in this synaptic rescaling during 

SWS-related delta rhythms through the de-potentiation of synapses in layer II/III.  

 

Intracellular experiments allowed us to pinpoint the layer II/III Arc increase to the apical 

dendrites of layer V IBs. Structurally, this laminar and cellular localisation corresponds spatially 

with calcium spike initiation zones (Perez-Garci et al., 2013) which are portions of the apical 

dendrite of layer V cells that are highly innervated by inhibitory neurones and as such possess a 

high density of GABAB receptors. The activation of these receptors has been shown to decrease 

excitability by the blockage of voltage-dependent calcium channels (VDCCs) which abolishes 

calcium spikes in these dendrites (Perez-Garci et al., 2006; Breton and Stuart, 2012). 

Additionally, the GABAB mediated inhibition of layer V intrinsically bursting cells is implicated in 

synaptic depression during delta oscillations and is responsible for the separation of each active 

phase of the rhythm (Carracedo et al., 2013).  The burst firing between periods of inhibition seen 

during delta rhythms is suggested to be associated with huge calcium influx, which is ideal for 

the induction of immediate early gene expression (Buzsaki, 1998; Das et al., 2018).  

 

Increased calcium influx (following cellular activation) has been shown to be important in 

synaptic scaling, as it binds to the N-teminus of the postsynaptic density protein-95 (PSD 95) 

preventing it from anchoring AMPA receptors to the postsynaptic membrane and allowing their 

internalisation (Chowdhury et al., 2018). The actual removal of AMPA receptors requires Arc, 
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which binds interacts with endophilin and dynamin to bring AMPA receptors into endosomes 

and thus cause their endocytosis (Chowdhury et al., 2006). It may be that the calcium spike 

initiation zones afford a high degree of synaptic plasticity to apical dendrites in layer II/III and 

help ‘allocate’ synapses in a calcium-dependent manner, and Arc completes the process. 

Additionally, some AMPA receptors are permeable to calcium, and it has been shown that the 

internalisation of all these calcium-permeable AMPA receptors from the membrane of L5 

pyramidal cells occurs during sleep (Lante et al., 2011). This may serve as a negative feedback 

mechanism for synaptic rescaling.  

 

3.3.5 The arrangement of Arc stained of intrinsically bursting cell dendrites  

Not only is the nature and cellular localisation of this synaptic scaling of importance, but also 

the arrangement of cell clusters in which it occurs. We found that there was a tangential spatial 

organisation of clusters of the Arc immunopositive layer V IB apical dendrites, at a spatial 

frequency of ~50uM. This was conserved when looking at these dendrites clusters radially and 

these structures were also found to have quasi-hexagonal arrangement. Additionally, a within-

cluster analysis found this hexagonal-like arrangement to be present between the dendrites of 

each cluster. 

 

Previously, Maruoka et al. (2017) have shown a similar feature in the neocortex of mice, with a 

hexagonal arrangement (with a spatial frequency of about 30µM) in the pattern of sub-cortical 

projection neuron (SCPN) dendrites. The cells that make up these clusters were labelled by the 

injection of a tracer into the pons and were suggested to represent cortical microcolumns. The 

similar pattern of expression seen in this chapter existed in the apical dendrites of LV IB cells, 

which are known to project to the pons (Gao and Zheng, 2004) and thus correspond to the SCPNs 

of cortical microcolumns discovered the aforementioned study.  The spatial frequency disparity 

of the two findings may be a species related difference between rats and mice. Not only are 

layer V pyramidal cells known to be anatomically clustered, but they are also shown show 

correlated c-fos expression (Maruoka et al., 2011), and in many areas of the sensory cortex, they 

fire synchronously with the presentation of stimuli (Maruoka et al., 2017). If the activity of these 

dendrites is so strongly connected, the high synaptic plasticity between them is unsurprising. 

The increased change in synaptic plasticity during delta rhythms, most likely related to 

depression of synapses, occurs in dendrites that form these structures. This suggests that these 

microcolumns may be the main functional units in the neocortex in which synaptic scaling 

occurs, and thus highlights the importance of these functional units in the memory process. 
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It is suggested that whilst in less complex nervous systems single neurons act more 

independently, the neocortical microcolumn shows that neurons act much synergistically as a 

single entity in higher animals (Perin et al., 2011). Furthermore, there is a high degree of synaptic 

plasticity between pyramidal neurons in these circuits. Initially dendrites have indiscriminate 

contact with axons of other pyramidal cells, only defined by their proximity (with 50µm) 

(Kalisman et al., 2005)  This allows for the modification of synaptic weights in these contacts to 

occur due to the timing of action potentials and EPSPS (Markram et al., 1997) a preference for 

the elimination of existing weaker synaptic connections (whilst new ‘weak’ connections were 

retained at a similar rate to the remaining stronger connections)  has also been shown  (Le Bé 

and Markram, 2006). On a more microscopic level, this has also been shown to occur in dendritic 

spines during sleep, in a discriminatory fashion based on the smaller size of the spines (de Vivo 

et al., 2017). 

 

These data in combination with our work point at a system whereby synaptic connection are 

preferentially made and strengthened, as a result of wakeful experiences, in layer V pyramidal 

cells within cortical microcolumns. During SWS, Arc is upregulated, possibly by increase Ca2+ 

entry caused by burst firing of the IB cells (Williams and Stuart, 1999; Yi et al., 2017). This triggers 

the internalisation of AMPA receptors necessary for synaptic scaling required for the 

consolidation of memories the maintenance of synaptic homeostasis. 

 

3.3.6. Experimental Limitations 

One complication to the experiments in this chapter was the ‘control’ slices. These were 

quiescent slices kept in the same conditions as the experimental slices, yet in the absence of an 

oscillation generating drug and were used to represent random background activity. However, 

even when discounting slices that were obviously not truly quiescent – for instance those with 

spontaneous oscillations or epileptiform activity – slice immediate early gene expression was 

variable. This is most likely because their electrical activity was not ‘controlled’ or kept 

consistent in any way. The lower variance in the oscillatory data shows that the generation of 

the oscillation ‘clamps’ the network into a specific response mode that is consistent across slices 

and related to consistent gene expression. Furthermore, the control condition is not 

representative of an in vivo brain state and therefore may not be a reliable comparator.  
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For the analysis of the cellular signal of immediate early genes, the somatic signal of the IEG was 

overlaid to the template of NeuN/GAD67 cells. The mean of each NeuN/GAD67 cells’ average 

IEG intensity was used as a threshold by which to count pixels. This meant that the profiles 

represent counts of positively stained pixels, rather than numbers of cells. This may not be a 

problem, but it does assume ubiquity in neuronal soma size and staining across each soma.  

 

However, the thresholding method used also did not account for differences in staining intensity 

across slices or conditions. This means that the general change in IEG levels across conditions 

was not accounted for and therefore lost from the analysis. For example, even if the mean 

intensity of all the cells in one image was brighter another, the analyses would just include those 

brighter than the mean for each image independently. This means any intensity differences 

between conditions or repeats within the same condition, are lost. Furthermore, thresholding 

in this way meant that although negatively stained cells were rightly removed, also dimly stained 

cells, which may have still been classed as immuno-positive for IEG markers, would have also 

been discounted. However, this means that the analyses using this method did show the 

distribution of the brightly stained cells in each image. 

 

Setting a threshold to be used for all images across conditions, would allow for a fair comparison 

between conditions of the numbers and intensities of immunopositive cells. Furthermore, 

measuring the distribution of cell counts by a lower standard threshold along with separate 

comparisons for intensity may provide a clearer way by which to present the results and even 

highlight differences that were lost using the other method.  
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Chapter Four – The effect of neuroinflammation 

on sleep- and wake-related oscillations 
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4.1 Introduction 

Neuroinflammation is the response in the CNS to a physical, pathogenic, or toxic insult. The 

presence of infectious or pathological material (including dead and dying neurons) leads to the 

production of proinflammatory cytokines and chemokines, which mobilise microglia (amongst 

other immune cells) to the site of damage to neutralise the threat. Neuroinflammation is usually 

transient and is curtailed by anti-inflammatory cytokines which reduce the inflammation to 

baseline levels. Unfortunately as well as offering a defence to the brain from damage, 

neuroinflammation can occur aberrantly. This is often the case with neurodegeneration, where 

there is an unnecessary or augmented pro-inflammatory response in the brain (Godbout et al., 

2005). Neuroinflammation is involved in the pathophysiology of many neurodegenerative 

disorders such as Alzheimer’s disease (Bronzuoli et al., 2016), Parkinson’s disease (Wang et al., 

2015b), motor neuron disease (Komine, 2015)  and multiple sclerosis (Bjelobaba et al., 2017).  

  

As well as triggers within the CNS, neuroinflammation can occur in cases of systemic infection 

that either spread to the brain or induce inflammation that is propagated within the CNS. 

Cytokines can spread from the periphery into the CNS via areas where the blood-brain barrier is 

compromised and even through molecular transport systems in a healthy blood-brain barrier.  

 

There are many examples where peripheral infections can affect the function of the brain and 

one particularly severe condition that highlights this is delirium. It is often seen after traumatic 

brain injury or in serious infection or sepsis (Lemstra et al., 2007; Siami et al., 2008). It is 

particularly prevalent among the elderly (Luz et al., 2003). Many studies have found 

inflammatory changes in the brain related to delirium such as increased microglia and astrocytic 

activity (van Munster et al., 2011) as well as increased pro-inflammatory cytokine signalling (van 

Munster et al., 2008). In conjunction with dementia, even less serious peripheral infections such 

as urinary tract infections have been shown to have serious cognitive effects (O'Keeffe and Ni 

Chonchubhair, 1994; Davis et al., 2012). Some studies also implicate systemic pathogens in the 

aetiology of neurodegenerative disorders (Rumah et al., 2013) 

 

Studies into the effect of systemic inflammation in the CNS often use synthetic analogues of 

ligands for TLR receptors (Lipopolysaccharide (LPS) and Poly I:C) to mimic immune challenges 

(such as bacterial or viral infections) in animal models. Intraperitoneal injections of LPS have 

been shown to change the inflammatory state of the brain in otherwise healthy animals by 

inducing the activation of astrocytes (Gautron et al., 2002), and the proliferation of astrocytes 
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and microglia (Semmler et al., 2005; Nishioku et al., 2009). LPS is also known to increase levels 

of pro-inflammatory cytokines IL1β, TNFα and the chemokine CCL2 (MCP-1) (Thompson et al., 

2008).  

 

In animal models, the peripheral administration of LPS has been shown to cause alterations in 

sleep-related brain rhythms. LPS increases delta frequency oscillation amplitude and duration, 

whilst also decreasing REM sleep (Krueger et al., 1986). The same effects have been shown 

with the administration of viable and heat killed E. coli (Toth and Krueger, 1989). Other changes 

in the brains activity after systemic LPS challenge show spike-wave discharges in the 

hippocampus, (Mamad et al., 2018). These changes may play a role in the cortical dysfunction 

seen during delirium. 

 

Associations between neuroinflammation, altered sleep patterns (Mullington et al., 2010) and 

cognitive function during wakefulness have also been highlighted in humans (Simen et al., 2011; 

Cortese and Burger, 2017; d’Avila et al., 2018). However changes to sleep-related oscillatory 

dynamics have also been suggested and are thought to arise from the activity of the autonomic 

nervous system detecting peripheral infection as opposed to pathological changes due to 

neuroinflammation, especially as excision of the vagal nerved attenuates the SWS increases 

(Opp and Toth, 1998).  

 

Whether neuroinflammation causes more direct changes to network stability in the brain, and 

subsequent modulation of synaptic plasticity markers (Chapter 3) is not known. We therefore 

examined a series of acute and chronic inflammatory challenges in brain slice models of wake 

and sleep rhythms to investigate this. 

 

4.1.2 Aims of this chapter 

This chapter aims to monitor the effect of the application of inflammatory agents 

(Lipopolysaccharide and Polyinosinic:Polycytidylic Acid) on in vitro models of oscillations 

associated with certain states (delta oscillations and gamma oscillations respectively) in acute 

preparations of brain slices. Also to investigate the effect of raising a systemic immune response 

(in rats by the intraperitoneal injection of LPS and Poly I:C) on the ability to generate cortical 

oscillations in vitro. Finally, to assess the inflammatory environment of the brain after systemic 

LPS and Poly I:C injection, by monitoring levels of cytokines and chemokines in the brain. 
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4.2. Results 

4.2.1 Acute application of LPS onto oscillating slices  

To analyse the direct effect of inflammatory agents on cortical oscillation dynamics, 500ng/ml 

LPS was added to the circulating ACSF around stably oscillating in vitro slices of rat brain. 

Oscillations were assessed 1 hour after LPS treatment. KA-induced hippocampal oscillations did 

not change in any characteristics (Figure 4.1) (KA vs KA+LPS, area power 19005 ± 14435 vs. 26977 

± 19925 µV², Paired T-test, p = 0.210; peak power 1846 ± 1496 vs. 2178 ± 1631 µV²/Hz, Paired 

T-test, p = 0.190; peak frequency 26.6 ± 1.7 vs. 26.2 ± 1.4 Hz, Paired T-test, p = 0.244). KA-induced 

cortical gamma oscillations also showed no change in oscillatory characteristics after application 

of LPS (Figure 4.2) (KA vs KA+LPS, area power 422 ± 188 vs. 455 ± 184 µV², Paired T-test, p = 

0.574; peak power 15.25 ± 8.78 µV², vs. 15.82 ± 8.22 µV²/Hz, Paired T-test, p = 0.822; peak 

frequency 31.1 ± 1.5 vs. 30.5 ± 1.8 Hz, Paired T-test, p = 0.838). The delta oscillation, induced by 

SCH23390 and Carbachol (Figure 4.3) did not show changes to area power (SCH+CCH vs. 

SCH+CCH+LPS, 1414.4 ± 522.3 vs. 1363.0 ± 610.6 µV², Paired T-test, p = 0.952) or peak frequency 

(SCH+CCH vs. SCH+CCH+LPS, 1.07 ± 0.08 vs. 1.00 ± 0.04 Hz, One-Way ANOVA, p = 0.413). There 

was a decrease in mean peak power, although this was not significant (SCH+CCH vs. 

SCH+CCH+LPS, 335.9 ± 197.1 vs. 121.3 ± 43.3 µV²/Hz, T-test, p = 0.330). 
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4.2.2 Acute and Chronic systemic infection effects on oscillations 

We investigated the effects of prior systemic infection of the animal on the ability to generate 

oscillations in in vitro brain slices. Infection was induced with 0.9% saline (which was also the 

vehicle), 250ug/ml LPS, 6mg/ml Poly I: C. Animals were dosed either once, 24 hr/1 days prior to 

sacrifice, or every three days for 7, or 28 days. All statistical analysis was carried out using a Two-

Way ANOVA with Holm-Sidak multiple comparisons procedure for significant results. However, 

the low n numbers obtained in the Poly I:C condition prevented the analysis of interactions 

between time course and inflammation in this case so only the LPS data set was analysed. 

 

In hippocampal slices, stable oscillatory activity was measured in CA3 after the bath application 

of 50nM KA. The mean area power of CA3 oscillations was lower after LPS treatment at each 

time point though this was not significant (Figure 4.4) (Area Power, Vehicle vs. LPS, 1 day: 9028.1 

± 927.0 vs. 7192.5 ± 1345.5 µV², Two Way ANOVA, p = 0.455; 7 days: 10215.7 ± 2315.1 vs 5977.4 

± 975.65 µV², Two Way ANOVA, p = 0.062; 28 days: 8604.7 ± 2315.1 vs. 3655.2 ± 2646.95 µV², 

Two Way ANOVA, p = 0.115). The mean area power was also lower in the Poly I:C treated 

condition, but again not significantly so (Area Power, 7 days: 7612.7 ± 1310.2 µV²; 28 days: 

6172.7µV², n=1).  

 

The peak power showed no significant difference between any groups (Peak Power, Vehicle vs. 

LPS, 1 day: 709.0 ± 102.22 vs. 536.0 ± 168.4 µV²/Hz, 7 days 970.0 ± 630.8 vs. 503.7 ± 148.0 

µV²/Hz, 28 days 386.7 ± 94.2 vs. 357.5 ± 301.43 µV²/Hz, Two Way ANOVA, Treatment Time, p = 

0.650, Condition, p = 0.825, Interaction = 0.789). Again, the mean peak power after Poly I:C 

treatment was closer to that of the LPS condition than control (Peak Power, 7 days: 503.7 ± 

148.03 µV²/Hz; 28 days: 438.5 µV²/Hz, n=1). The frequency of the oscillation in CA3 showed a 

bidirectional change, with an apparent increase after 1 day treatment with LPS which was not 

significant (Peak Frequency, Vehicle vs. LPS, 1 day: 23.4 ± 0.28 vs. 26.6 ± 1.2 Hz, Two Way ANOVA 

with Holm-Sidak correction, p = 0.082) but with 7 days dosing, the decrease compared to vehicle 

was significant (Peak Frequency, Vehicle vs. LPS, 7 days: 28.1 ± 1.5 vs. 24.7 ± 0.6 Hz, Two Way 

ANOVA with Holm-Sidak correction, p = 0.033). There was no significant difference between 

treatments after 28 days (Peak Frequency, Vehicle vs. LPS, 28 days: 25.0 ± 1.8 vs. 25.6 ± 0.5 Hz, 

Two Way ANOVA with Holm-Sidak correction, p = 0.751). The data for Poly I:C seemed to match 

that of LPS (Peak Frequency, 7 days: 23.7 ± 1.01 Hz; 28 days: 24.7 Hz, n = 1). Interestingly there 

was also a difference in the comparison for treatment time vehicle data between 1 and 7 days 
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(Figure 4.4C) (Peak Frequency, Vehicle, 1 day vs. 7 days: 23.4 ± 0.28 vs. 28.1 ± 1.54, Two Way 

ANOVA with Holm-Sidak correction, p = 0.030). 

 

For cortical gamma rhythms (Figure 4.5) the mean area power and peak power was higher after 

LPS treatment than in control slices after 7 days, but lower after 28 days of treatment. (Area 

Power, Vehicle vs. LPS, 7 days: 69.4 ± 8.1 vs. 101.9 ± 30.2 µV²; 28 days: 115.6 ± 17.1 vs. 51.7 µV², 

n =1, Two Way ANOVA, Treatment Time, p = 0.953, Condition, p = 0.644, Interaction = 0.185) 

(Peak Power, Vehicle vs. LPS, 7 days: 1.1 ± 0.4 vs. 1.6 ± 0.6 µV²/Hz; 28 days: 1.8 ± 0.8 vs. 1.1 

µV²/Hz, n = 1,   Two Way ANOVA, Treatment Time, p = 0.889, Condition, p = 0.925, Interaction = 

0.442). The mean frequency was lower after LPS treatment compared to control after 7 days, 

but is increased after 28 days, but this difference was not significant ( Peak Frequency, Vehicle 

vs. LPS, 7 days: 37.1 ± 2.5 vs. 33.2 ± 2.9 Hz; 28 days: 33.0 ± 6.6 vs. 38.2 Hz, n = 1,   Two Way 

ANOVA, Treatment Time, p = 0.917, Condition, p = 0.897 , Interaction = 0.343). The differences 

in all oscillatory parameters after Poly I:C treatment compared to control were not significant 

but followed the same pattern as LPS for area power (7 days: 187.11 ± 111.9 µV²; 28 days: 65.8 

± 49.1 µV²) and peak frequency (7 days: 34.7 ± 5.6 Hz; 28 days: 35.8 ± 3.9 Hz). The mean peak 

power after Poly I:C treatment increased similarly to LPS after 7 days but remained similar to 

the vehicle after 28 days (7 days: 187.11 ± 111.9 µV²/Hz; 28 days: 65.8 ± 49.1 µV²/Hz).  

 

Looking at cortical delta oscillations, the area power and peak power of the oscillations in the 

LPS treated condition did not change significantly compared to the control (Figure 4.6) (Area 

Power, Vehicle vs. LPS, 1 day: 361.8 ± 255.1 vs. 425.3 ± 113.6µV², 7 days: 1384.1 ± 449.9 vs. 

2004.6 ± 673.4 µV²; 28 days: 1854.0 ± 508.7 vs. 1169.9 ± 142.07 µV²;Two Way ANOVA, 

Treatment Time, p = 0.113, Condition, p = 0.999, Interaction = 0.535) (Peak Power, Vehicle vs. 

LPS, 1 day: 32.6  ± 18.4 vs. 74.7 ± 33.1 µV²/Hz, 7 days: 284.9 ± 127.0 vs. 632.65 ± 274.0 µV²; 28 

days: 1854.0 ± 508.7 vs. 1169.9 ± 142.0 µV²; Two Way ANOVA, Treatment Time, p = 0.142, 

Condition, p = 0.911, Interaction = 0.298). The mean peak frequency of the delta oscillations 

lower with treatment with inflammatory agents. However, extricating reliable statistical results 

from the peak frequency data was difficult due unequal variances. Therefore, separate 

ANOVA/Kruskal-Wallis tests were performed for the data in each treatment time separately.  

 

There were no significant differences found in treatment conditions that last 1 or 28 days. (Peak 

Frequency, Vehicle vs. LPS, 1 day: 1.30 ± 0.28 vs. 1.15 ± 0.06 Hz, Kruskal-Wallis ANOVA on Ranks, 

Vehicle vs LPS, p = 0.999; Vehicle vs. LPS. Vs. Poly I:C, 28 days: 1.30 ± 0.10 vs. 1.23 ± 0.12 vs. 0.86 
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± 0.269, Kruskal-Wallis ANOVA on Ranks, Vehicle vs LPS, p = 0.400). There was a significant 

decrease in the frequency of the delta rhythm after 7 day treatment of LPS, but not Poly I:C 

(Peak Frequency, Vehicle vs. LPS vs. Poly I:C, 7 days: 1.40 ± 0.08 vs. 1.18 ± 0.02 vs. 1.16 ± 0.05 

Hz, One Way ANOVA with Holm Sidak correction, Vehicle vs LPS, p = 0.47, Vehicle vs. Poly I:C = 

0.058). 
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4.2.3 The effect of chronic systemic infection on neuroinflammatory mediators 

To analyse the inflammatory environment of the brain after systemic infection, surplus tissue 

from the preparation of brains slices was taken and analysed for 27 cytokines and chemokines 

using a multiplex bead-based protein assay. This compared 7 and 28-day dosed animals to 

vehicle dosed controls for the levels of 27 different cytokine and chemokines in the cerebral 

homogenate. 

 

Six cytokines/chemokines were significantly increased after 7 days dosing with LPS (Figure 4.7). 

These were Fractalkine (Vehicle vs. LPS: 842.4 ± 100.7 vs. 1166.0 ± 64.0 pg/ml, One-Way ANOVA 

with post hoc Holm-Sidak, p-value = 0.027), IL-1β (Vehicle vs. LPS: 57.2 ± 1.7 vs. 70.0 ± 2.7 pg/ml, 

One-Way ANOVA with post hoc Holm-Sidak, p-value = 0.004), IL-4 (Vehicle vs. LPS: 80.6 ± 1.9 vs. 

63.0 ± 4.5 pg/ml, One-Way ANOVA with post hoc Holm-Sidak, p-value = 0.007), IL-13 (Vehicle vs. 

LPS: 14.1 ± 2.1 vs. 21.3 ± 0.7 pg/ml, One-Way ANOVA with post hoc Holm-Sidak, p-value = 0.014), 

VEGF (Vehicle vs. LPS: 124.1 ± 11.4 vs. 155.6 ± 6.1 pg/ml, One-Way ANOVA with post hoc Holm-

Sidak, p-value = 0.004) and RANTES (Vehicle vs. LPS: 16.3 ± 1.4 vs. 20.7 ± 0.85 pg/ml, One-Way 

ANOVA with post hoc Holm-Sidak, p-value = 0.043). Only two chemokines were increased after 

7 days Poly I:C dosing, these were IP-10 (Vehicle vs. Poly I:C: 189.4 ± 14.2 vs. 696.0 ± 198.4 pg/ml, 

One-Way ANOVA with post hoc Holm-Sidak, p-value = 0.034) and RANTES (Vehicle vs. Poly I:C: 

16.3 ± 1.4 vs. 24.3 ± 3.0 pg/ml, One-Way ANOVA with post hoc Holm-Sidak, p-value = 0.027). 

 

As for the 28-day dosing regime, only 3 cytokines were significantly changed after LPS dosing 

(Figure 4.8): IFN-γ (Vehicle vs. LPS: 673.2 ± 25.1 vs. 803.8 ± 46.4 pg/ml, One-Way ANOVA with 

post hoc Holm-Sidak, p-value = 0.048), TNF-α (Vehicle vs. LPS: 7.8 ± 0.5 vs. 11.3 ± 1.2 pg/ml, One-

Way ANOVA with post hoc Holm-Sidak, p-value = 0.029) and IL-1α (Vehicle vs. LPS: 104.6  ± 11.6 

vs. 154.0 ± 8.4 pg/ml, One-Way ANOVA with post hoc Holm-Sidak, p-value = 0.014). The only 

cytokine that was increased after 28 days dosing with Poly I:C was IL-5 (Vehicle vs. Poly I:C: 188.4 

± 5.2 vs. 168.0 ± 5.2 pg/ml, One-Way ANOVA with post hoc Holm-Sidak, p-value = 0.033)  
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4.2.4 The effect of chronic systemic infection on microglial morphology 

To further confirm the presence of inflammation in the brain, microglia were analysed. Under 

inflammatory conditions, microglia are known to retract their processes and become ramified 

in structure. The morphology was assessed following a stain for Iba1. This allowed the visual and 

analytical comparison of microglia. The area of each microglia cell was calculated and found to 

be significantly lower after 28 days dosing with LPS or Poly I:C (Figure 4.9) (Area, Vehicle vs. LPS 

vs. Poly I:C, 58.9 ± 6.0 vs. 43.8 ± 4.1 vs. 44.5 ± 3.3 µm², p values from One-Way ANOVA with post-

hoc Tukey’s Multiple comparisons procedure: Vehicle vs LPS = 0.089, Vehicle vs Poly I:C = 0.042). 

Area of a cell does not necessarily show how spread out the projections are, so a bounding box 

was fitted around each cell (the smallest rectangle that would encompass the whole object), the 

area of which gives a better indication of the amount of spread of the projections of the cell. 

This was also significantly lower in the inflammation condition meaning that the spread of the 

projections was smaller (bounding box area, Vehicle vs. LPS vs. Poly I:C, 282.3.9 ± 43.5 vs. 140.3 

± 18.1 vs. 160.0 ± 15.1 µm², p values from One-Way ANOVA with post-hoc Tukey’s Multiple 

comparisons procedure: Vehicle vs LPS, p = 0.002, Vehicle vs Poly I:C, p = 0.003). 
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4.3. Discussion 

4.3.1 Summary 

In this chapter, the effect of inflammation on in vitro models of certain brain rhythms was 

analysed. The effect of the direct application of lipopolysaccharide was monitored along with 

the changes after the systemic dosing of LPS and Poly I:C for up to 28 days. These changes were 

also related to changes to cytokine and chemokine expression as well as microglial 

morphological changes.  

 

The summary of key findings from this investigation are:  

 The direct application of LPS had no significant effect on characteristics of in vitro 

models of cortical gamma and delta oscillations, and hippocampal oscillations.  

 There was a bidirectional change in hippocampal oscillation frequency only, after 

systemic immune challenge, which is related to the longevity of the ‘infection’.  

 The systemic immune challenge did not change the area power, peak power or 

frequency of cortical gamma oscillations or delta oscillations but did reduce the 

frequency of delta oscillations after 7 days but not over 28 days.  

 The landscape of inflammatory cytokines and chemokines was different between 7 days 

immune challenge compared to 28-day immune challenge.  

 Microglia were activated upon systemic immune challenge with LPS and Poly I:C.  

 

4.3.2 A note about hippocampal gamma oscillations and temperature.  

The oscillations recorded from the CA3 region of the hippocampus were found to be between 

25 – 30 Hz. This range normally describes beta oscillations; however, it is known that slice 

preparations often have lower frequencies than in vivo. This is due to the reduction of 

temperature that in vitro slices are maintained at (compared to body temperature) so that the 

correct amount of oxygen may be dissolved. This phenomenon has been recorded in the 

carbachol-induced oscillation in the CA1 region of the hippocampus, showing a 3.3 Hz decrease 

with every 1°C decrease in temperature (Dickinson et al., 2003). This temperature relationship 

is suggested to be driven by elongated GABAergic IPSCs leading to a long latency between IPSPs, 

which set the tempo of the oscillation. It would appear that both hippocampal gamma and beta 

rhythms have a similar GABAA dependent mechanism (Tsintsadze et al., 2015). Previous research 

has accepted in vivo oscillations with a frequency as low as 25Hz as gamma oscillations (Colgin 

et al., 2009a). This, along with the temperature dependent frequency change would suggest that 

the oscillations generated may be gamma oscillations despite having a frequency below 30Hz. 
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4.3.3 The acute application of LPS onto slices  

The first studies in this chapter showed that the addition of LPS to the circulating ACSF had no 

effect on the stable in vitro hippocampal/cortical gamma oscillations. The pattern recognition 

receptor for LPS (TLR4) has been documented in neurons (Leow-Dyke et al., 2012). In cultured 

neurons, TLR4 activation (by LPS) has been shown to produce TNFα, IL-6, CXCL1 And RANTES 

(Aurelian et al., 2016). However, these experiments showed that LPS does not directly affect 

electrical activity. It also has been shown in cultured cells that LPS has no effect on neuronal 

survival in the absence of microglia. Whereas in neuron/microglia co-culture there is almost a 

complete destruction of all cells (Lehnardt et al., 2003). This shows not only that neurons do not 

possess mechanisms to induce their own toxicity after LPS application, but also, in the presence 

of microglia, toxicity occurs on a time scale of many hours to days (Rupalla et al., 1998; Rangroo 

Thrane et al., 2012). Other studies also corroborate the idea that microglia are responsible for 

stimulating neuronal apoptosis (Tseng et al., 2012; Zhang et al., 2013). This is thought to be 

through the upregulation of pro-inflammatory cytokines released by microglia such as TNFα, IL-

1β as well as iNOS. These were shown to be upregulated downstream of IFN-y (Wang et al., 

2015a) after at least 2 hours. 

 

Changes to induced hippocampal gamma oscillations in organotypic slices were seen after 

treatment with LPS, however, the time scale of the LPS treatment was to be 72 hours 

(Papageorgiou et al., 2016). Using a microelectrode array system, enhanced excitability 

generated epileptiform discharges after LPS application, though again after >6 hours (Gullo et 

al., 2014). Only a much more immediate effect has been seen in vivo, with the epi-pial 

application of LPS generating epileptiform activity within an hour of application. Although the 

concentration of LPS used was 40x that used in this thesis (Rodgers et al., 2009)  

 

4.3.4. Changes to in vitro rhythms related to longevity of immune challenge.  

The initial experiments in this chapter showed that LPS had no effect upon the oscillatory activity 

of in vitro brain slices after 1 hour. These findings (along with the studies outlined above) suggest 

that LPS driven changes to neuronal excitability occur at a timescale that is longer than 

reasonable to observe in acute brain slice preparations. Furthermore, the impact of systemic 

infection on the oscillatory activity of the brain is of particular importance, especially with 

growing research into the effects of systemic infection on neurodegenerative disorders (Perry 

et al., 2003).  
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After 24 hours, there were no significant changes to the area power, peak power, or peak 

frequency of any of the oscillations measured. This is in line with in vivo data showing that 

although initial changes to delta and gamma oscillations may occur after intraperitoneal (i.p.) 

LPS injection, these changes stabilise to control condition after 24 hours (Mamad et al., 2018).  

 

We found two significant aberrations in the oscillatory activity across the dosing regimes. 

Reductions were in the frequency of both hippocampal gamma oscillations and cortical delta 

oscillations after 7 days treatment with LPS. Poly I:C broadly followed this trend though ‘n’ 

numbers were too low for inclusion in statistical tests. The slowing of the background EEG is 

related to cerebral dysfunction and often associated with lesions, delirium and dementia 

(Britton et al., 2016). Further findings included an interesting trend in the electrophysiology 

data, with the time scale of the apparent change of the power of delta frequency oscillations 

(Figure 4.10). At one day post-infection the delta power is unchanged compared to control. 

However, after 7 days the mean delta power is increased by ~50%. This increase is reversed after 

28 days when there was an insignificant reduction compared to control. 

 

 

 

 

                           
 
Figure 4.10. The relative area power of generated rhythms compared to control  
The mean area power as a percentage of the mean control reading in LPS rats treated 
with 250ug/kg LPS for 1, 7 and 28 days, red = hippocampal gamma oscillations, Blue = 
cortical delta oscillations. 
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These data would suggest a changed propensity for sleep as SWS levels correlate with sleep 

need (Brunner et al., 1990; Rodriguez et al., 2016). Sleep changes in humans after 

neuroinflammation (especially following traumatic brain injury) are common, with increases in 

sleep need and daytime sleepiness (Imbach et al., 2015),  as well as increases in the power of 

delta rhythms during SWS, (Parsons et al., 1997). This is likely a result of the cytokine 

upregulation as cytokine i.p. IL-1β injection has also been shown to increase delta power during 

slow wave sleep in rats (Hansen and Krueger, 1997). The same is true for the cortical infusion 

and i.p. injection of TNFα (Kubota et al., 2001; Yoshida et al., 2004).  

 

In humans, many conditions related to neuroinflammation have shown an increase in delta 

oscillations, including delirium from a range of causes (Koponen et al., 1989). Increases in delta 

rhythms during wakefulness has also be seen as a result of sports-related concussion (Gosselin 

et al., 2009) and mild traumatic brain injury) (Modarres et al., 2017). Intrusions of this sort have 

also been noted in healthy rats during prolonged wakefulness and termed ‘local sleep’ 

(Vyazovskiy et al., 2011). Inflammatory cytokines may be involved in this process, as sleep 

deprivation is known to increase IL-1β (Frey et al., 2007) and TNFα (Shearer et al., 2001). It could 

follow that the sickness behaviour seen after i.p. injection of LPS (Biesmans et al., 2013) is a 

cognitive behavioural response to the sleep debt highlighted by our studies. 

 

There was also a general decrease in the mean area power of hippocampal gamma oscillations 

upon systemic LPS injection over time, compared to control (Figure 4.10). These oscillations 

were recorded from the CA3 region of the hippocampus which is known to exhibit “slow” 

gamma rhythms (~25 – 50 Hz) (Colgin et al., 2009a) and are in the range of the rhythmic activity 

seen in these experiments.  The synchrony of activity in the frequency band between CA3 and 

CA1 regions for the hippocampus is believed to be important for memory retrieval (Colgin, 

2016). Reductions in slow gamma have been shown in the hippocampus in triple mutant (Psen1, 

APPS and tau) Alzheimer’s mouse models (Mably et al., 2017) and a model of tauopathy (Booth 

et al., 2016) both of which are associated with memory loss (Jahn, 2013) (Van der Jeugd et al., 

2011). The decrease in these oscillations after chronic LPS injections suggest that the induction 

of inflammation in the brain may play a role in aberrations to gamma oscillations. 
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4.3.5 Cytokine/chemokine levels differ with duration of the immune challenge.  

It is likely that the electrophysiological changes seen in slices from animals subjected to a 

systemic immune challenge (in this chapter) were due to neuroinflammation. This was 

confirmed with experiments that showed significant changes to pro- and anti-inflammatory 

cytokines and chemokines in the brain.  

After 7 days dosing with LPS (doses occurred on day 0, 3, and 6) (Tchessalova and Tronson, 

2019) several pro- and anti-inflammatory cytokines and chemokines were found to be 

increased. These were IL-1β, IL-13, VEGF and the chemokines Fractalkine and RANTES. 

Interestingly, three cytokines classically associated with a pro-inflammatory environment 

were not changed after 7 days (TNFα, IL-1α and IFN-γ). 

The increased expression, after the inflammatory challenge, of IL-1β is unsurprising as IL-1 

interleukins are considered the archetypal pro-inflammatory cytokines. The upregulation of 

its expression is likely to be due to its secretion from microglia and astrocytes after 

inflammatory challenge (Rothwell and Luheshi, 2000). Generally, IL-1β is seen to be the more 

important IL-1 cytokine and here it is increased and IL-1α is not significantly different. 

However, this may be due to a possible redundancy mechanism in the cytokine signalling 

system whereby both IL-1α and β exert their effects through the same receptor (IL-1RI) (Sims 

et al., 1988).  

The increase in fractalkine is also indicative of a proinflammatory response as it is released 

by neurones undergoing apoptosis as a chemoattractant signal to microglia and astrocytes 

(Sokolowski et al., 2014) which exclusively house the CX3CR1 receptor – that binds fractalkine 

(Maciejewski-Lenoir et al., 1999). Through this chemotactic mechanism, fractalkine has been 

implicated in the uptake of aggregated alpha-synuclein by microglia in a mouse model of PD 

model (Thome et al., 2015) and knockout of the CX3CR1 receptor causes protracted microglial 

activation after LPS immune stimulation (Corona et al., 2010). This may be due to the lack of 

signalling to attract microglia to sites of exogenous material that requires phagocytosis. In 

our experiments, the presence of fractalkine suggest an induction of neuroinflammatory 

mechanism requiring microglial migration and phagocytosis.  
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Another chemokine showing increased expression after 7 days treatment is RANTES (CCL5). 

RANTES is a pleiotropic chemokine, probably due to its promiscuity in terms of receptor 

binding (Pease, 2006). RANTES is constitutively active in the healthy brain, having roles in 

myelination (Kadi et al., 2006), differentiation of astrocytes (Bakhiet et al., 2001) glucose uptake 

and metabolism (Chou et al., 2016). However during inflammation RANTES is generally 

considered proinflammatory as it has been shown to be expressed by T-cells, and recruits 

various immune cells to sites of inflammation (Maghazachi et al., 1996) and also mobilises 

mononuclear phagocytes and aid their BBB penetration (Sadek et al., 1998). Conversely 

RANTES has also been shown to be neuroprotective, inducing the expression of neurotrophic 

factors (Tokami et al., 2013). 

 

The increase in pro- inflammatory cytokines and chemokines (Il-1β, Fractalkine and RANTES) 

after a 7-day inflammatory challenge occurs in tandem with anti-inflammatory cytokines, 

suggesting that there is a balance immune response occurring, mediated by VEGF and IL-13. IL-

13 is considered an anti-inflammatory inhibiting the expression of other pro-inflammatory 

cytokines in monocytes such as IL-1β, TNFα and GRO in monocytes and IFN-γ (Minty et al., 

1993) In the brain IL-13 is also known to promote an anti-inflammatory phenotype in 

microglia (Chawla et al., 2011)  and contribute to the removal of pro-inflammatory microglia 

(Mori et al., 2016). These effects are seen in tandem with IL-4, which is often linked to IL-13 

due to the overlap of their biological function (Chomarat and Banchereau, 1998) and their 

ability to act through the dimerization of their receptors. (Rael and Lockey, 2011). Unusually 

however, we found that whilst IL-13 was significantly increased after 7-day immune 

challenge, IL-4 was decreased. VEGF is also suggested to be anti-inflammatory and it has been 

shown that exogenous peripheral injection with VEGF leads to decreased levels of pro-

inflammatory cytokines IL-1β and TNF-α (Xu et al., 2017) highlighting its role in the reversal of 

inflammation. 

 

However, the cytokines present in the brains of rats treated for 28 days with LPS (every 3rd day) 

reflect tipping of the balance to a more pro-inflammatory environment. The three main pro-

inflammatory cytokines IL-1a, TNFα and IFN-y are all increased with respect to the vehicle-

treated animals, all of which are known to activate microglia (Gibson et al., 2004; Kuno et al., 

2005; Rock et al., 2005).  
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4.3.6 Microglia are activated upon systemic immune challenge  

The neuroinflammatory environment of the brain, induced after 28-day treatment with LPS and 

Poly I:C was confirmed by assessing the morphology of microglia. Looking at the surface area of 

the microglia gave a good indication of their ramification and thus their status of activation. This 

is due to the fact that activated microglia retract their projections to become more amoeboid 

to facilitate phagocytosis (Dheen et al., 2007). It was not clear whether the activation of 

microglia occurred due to the infiltration of LPS or Poly I:C molecules into the brain, OR 

indirectly. However it has been shown that LPS does not readily cross the blood-brain barrier 

(Singh and Jiang, 2004), suggesting that the activation of microglia in the brain occurs through 

indirect methods either through the activation of TLR4 receptors, or cytokine receptors in 

astrocytes and microglia in the circumventricular organs (Nadeau and Rivest, 1999), or 

peripheral cytokine interacting with endothelial cells to transfer the inflammatory signal across 

the BBB. This is most likely though TNFα signalling as it is the first proinflammatory cytokine to 

be upregulated by intraperitoneal LPS treatment, shortly after IL-1β and IL-6 (Fong et al., 1989). 

All of these cytokines are likely to propagate the peripheral infection to the CNS but targeting 

receptors on the endothelium of brain capillaries, which then causes the diffusion of 

prostaglandins and NOS to the brain parenchyma (Elmquist et al., 1997).  

 

4.3.7 Experimental limitations.  

A major caveat to the results in this chapter is the low number of repeats used for the 

electrophysiology experiments. In some cases, visual trends are apparent due to the difference 

in compared means and separation of the error bars, however, there is no significant difference. 

It is not possible to know without further repeats whether these trends are legitimate. In other 

cases (especially where n numbers are particularly low) large error bars make it difficult to 

discern any trends even visually. Furthermore, it was intended that slices from the 

electrophysiology experiments would be stained for immediate early gene markers to analyse if 

changes in cortical dynamics were related to changes in synaptic plasticity. Unfortunately, the 

tissue was transported from the US to the UK for this purpose and when it was, much of it was 

not useable for immunohistochemistry, and those slices were structurally compromised. The 

example in Figure 11 shows the best example of Arc staining in the US tissue compared to tissue 

collected in the UK. This issue also affected the Iba1 staining of this tissue, which meant 

therefore that only one animal per condition was compared. This meant that whilst we could 

confirm that intraperitoneal injection of LPS and Poly I:C at the doses used was capable of 

activating microglia, it could not be confirmed for all animals tested.  
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Chapter Five – The effect of Leishmaniasis 

donovani sleep- and wake-related oscillations. 
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5.1 Introduction 

The previous chapter dealt with experimental models of systemic infection and, while revealing 

trends in oscillatory characteristics, lack of sufficient ‘n’ numbers and poor quality imported, 

matched tissue meant only suggestions of effects of neuroinflammation were possible. In this 

chapter, we switch to using a genuine pathogen to examine these suggestions further. 

 

 The parasitic disease, Leishmaniasis is a systemic disease, whereby protozoa of the Leishmania 

genus are transmitted to a host through the bite of an infected female phlebotomine sandfly 

(only females blood feed during egg production). The promastigote phase of the parasite has 

highly motility and travels in the host’s bloodstream until engulfed by macrophages. The 

parasites then enter the amastigote phase and duplicate until they rupture the macrophage and 

are engulfed by others. In this way, the infection can spread around the body.  

 

Some specific parasites stay close to the initial bite site and thus damage the cutaneous or 

mucocutaneous tissues causing cutaneous/mucocutaneous leishmaniases. The form of 

Leishmaniasis of interest in this thesis is the visceral form, which spreads around the body 

primarily affecting the liver and spleen but also invading other organs. Although visceral 

leishmaniasis classically presents with parasites infecting the visceral organs and bone marrow, 

viable Leishmania donovani (Melo et al., 2017) and L. infantum (Cardinot et al., 2016; Oliveira et 

al., 2017) parasites (responsible for VL infections) have been shown to infiltrate the brain. This 

is in tandem with increased leukocyte and macrophage presence in the brain tissue (Melo et al., 

2017). These cell types could provide the route by which the intracellular parasite infiltrates the 

CNS, and the disruption of the blood-brain barrier secondary to systemic inflammation may aid 

the infiltration of these cells (Melo et al., 2015). 

 

Visceral leishmaniasis is known to induce proinflammatory responses in the periphery, with 

increasing levels of pro-inflammatory cytokines such as IL-2 (Kaye, 1987) and TNF (Pinto et al., 

2017), which stimulate T cells to release IFNγ and causes macrophage activation (Kaye et al., 

1991) Leishmaniasis infection has also shown to upregulate proinflammatory cytokines in the 

CNS, such as IL-1β, IL-6, IFN- γ and TNFα (Melo et al., 2017). These proinflammatory changes 

engage microglia to phagocytose Leishmania parasites, whose presence is increased in tandem 

with T lymphocytes in ependymal areas of the brain, in correlation with T lymphocyte numbers 

(Melo and Machado, 2011). It has also been shown that microglia are better at dealing with 

Leishmania parasites than macrophages, showing higher levels of phagocytosis, and more 
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cytotoxicity to Leishmania parasites in vitro. This highlights the importance of microglia in the 

protection of the CNS tissues against Leishmania infection (Ramos et al., 2014).  

 

There is evidence that further to the neurological manifestation of Leishmania parasites 

neurological symptoms can develop. These include tremor, delirium, thought delusions (Chunge 

et al., 1985)  and depression-like symptoms (Carswell, 1953; Maru, 1979).  In mice, Leishmania 

infection increased anxiety behaviour and decreased locomotion (Portes et al., 2016). Whilst 

neurological presentations and cognitive symptoms of leishmaniasis are uncommon, 

neuroinflammation is known to affect the oscillatory activity of the brain (Mamad et al., 2018). 

This may also occur secondary to leishmaniasis infection and may even have a knock-on effect 

on the normal plasticity-related mechanisms that occur in a healthy brain (Chapter 3). 

 

5.1.2 Aims and objectives 

This chapter aimed to use a mouse model of the Ethiopian form of visceral leishmaniasis (caused 

by Leishmania donovani.) to assess changes to sleep and wake state related oscillations in acute 

in vitro cortical slice preparations. Further to this, the effect of the real-life systemic infection 

(with potential for CNS infection involvement), on changes to synaptic plasticity across these 

brain rhythms (shown in Chapter 3) was investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 159 

5.2 Results 

5.2.1 Confirmation of parasitic infections 

To investigate the effects of a real-world infection on the ability of brain slices to generate 

cortical oscillation in vitro we used Leishmaniasis infected mice and uninfected control mice.  

To ensure these mice were suitably infected, they were weighed prior to sacrifice. This showed 

that the total body weight of infected mice was significantly lower than that of naïve controls 

(Figure 5.1A) (naïve vs infected, mean total body weight, 31.84 ± 0.66 vs 27.67 ± 1.08 g, T-test, 

p  = 0.009).  

 

Further confirmation of infection came from the weight of the two organs primarily infected in 

leishmaniasis, the spleen and the liver. The weight of the spleen was significantly increased in 

infected mice compared to naïve control mice (Figure 5.1B), naïve vs infected, mean spleen 

weight, 0.08 ± 0.01 vs 0.71 ±0.04 g, T-test, p values < 0.001. The liver weight was similarly 

increased (naïve vs infected, mean liver weight, 2.36 ± 0.09 vs 1.47 ± 0.05 g, T-test, p values < 

0.001). These difference were even more profound when the weight of the spleen or liver was 

taken as a percentage of the entire body weight (BW) (Figure 5.1C) (naïve vs infected, % BW, 

spleen: 2.57 ± 0.18 vs 0.26 ± 0.02 %, T-test, p values < 0.001, liver: 8.57 ± 0.30 vs 4.64 ± 0.20 %, 

T-test, p values < 0.001,). 
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To get a better picture of the infection rates in each mouse, parasite counts were undertaken. 

Again, the liver and spleen were used, and counts of parasites/1000 host nuclei (Figure 5.2) (liver 

vs spleen, parasite count/1000 host nuclei, liver: 568.5 ± 134.5 vs 240 ± 44.9, parasite counts for 

naïve controls were zero). To normalise these count numbers to the size of the organ, the 

parasite count was multiplied by the organ’s weight (liver vs spleen, LDU, liver: 1298.8 ± 281.6 

vs 161.1 ± 21.5, LDUs for naïve controls were zero). 

 

5.2.2 Effect of Leishmaniasis infection on cortical oscillations 

Having confirmed that the mice were indeed infected, in vitro brain slice preparations were 

made and the effect of the Leishmaniasis infection on the ability to generate sleep and wake-

related rhythms in these slices was investigated.  

 

Bath application of 400nM KA was used to generate cortical gamma oscillations. The mean area 

power of the gamma oscillation was lower in animals that were infected with leishmaniasis, 

although this was not significant for Au1 or S2 (Figure 5.3) (Naïve vs. Infected, Au1: 218.8 ± 46.9 

vs. 97.4 ± 29.0 µV², T-test, p-value = 0.052, S2: 223.9 ± 29.4 vs 123.1 ± 39.1 µV², T-test, p-value 

= 0.066). Peak power was similarly lower, but to a significant level in S2 (Naïve vs. Infected, Au1: 

7.4 ± 2.9 vs. 2.6 ± 0.5 µV²/Hz, T-test, p-value = 0.136, S2: 6.5 ± 1.1 vs 2.9 ± 0.9 µV²Hz, T-test, p-

value = 0.026). There was no change to the frequency of the cortical gamma rhythm in infected 

animals in either Au1 or S2 (Naïve vs. Infected, Au1: 35.2 ± 1.5 vs. 36.4 ± 1.7 Hz, S2: 35.8 ± 1.9 vs 

37.1 ± 1.4 Hz). 

 

Delta oscillations generated by the bath application of 4µM CCH 10µM SCH23990 were also 

investigated. The generation of rhythms of delta frequency 0.5– 4 Hz did not change after 

leishmaniasis infection in either S1 or S2 (Figure 5.4) (Naïve vs. Infected, Area Power, S1: 4599.4 

± 2563.0 vs. 2512.7 ± 820.8 µV², S2: 3608.23 ± 1684.9 vs. 2109.9 ± 472.0 µV², Peak Power, S1: 

294.3 ± 157.4 vs. 216.6 ± 86.6 µV²/Hz, S2: 372.0 ± 156.9 vs. 246.8 ± 87.34  µV²/Hz, Peak 

Frequency, S1: 1.01 ± 0.13 vs. 0.94 ± 0.10 Hz, S2: 0.92 ± 0.06 vs. 1.05 ± 0.08Hz). 
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5.2.3 Effect of Leishmaniasis infection and oscillation on Arc in dendrites 

Finally, to assess whether a systemic infection induced by a biological pathogen can cause 

changes to the environment of plasticity in the brain, slices used in the experiments above were 

processed and stained for Arc. The dendritic Arc signal was then analysed. We only analysed Arc 

as this was the one plasticity marker which was shown to significantly change between sleep 

and wake-related rhythms. 

 

The largest mean changes in laminar expression of Arc in dendrites in naïve mice was during 

delta rhythms (compared to gamma rhythms) in primary and secondary cortical regions. Despite 

large differences in the means there was no significant difference (Figure 5.5) (1ry, 254.8µm, 

Naive Delta vs. Gamma: 60.2 ± 12.8 vs. 16.6 ± 4.5, T-test, p = 0.013, with FDR, q = 0.400; 2ry, 

55.8 µm, Naive Delta vs. Gamma: 35.0 ± 17.7 vs. 2.2 ± 1.4, T-test, p =  0.101, with FDR q =  0.193). 

The non-significant increases during delta in superficial layers were conserved in Leishmaniasis 

infected slices however the effect was still not significant even where the difference was the 

largest (1ry, 213.9µm, Infected Delta vs. Gamma: 62.9 ± 17.3 vs. 11.3 ± 5.7, T-test, p = 0.022, 

with FDR, q = 0.358; 2ry, 229.8µm, Naive Delta vs. Gamma: 58.5 ± 14.2 vs. 25.2 ± 8.0, T-test, p =  

0.076, with FDR q =  0.502). 

 

When comparing the profile of dendritic Arc during delta rhythms in slices from naïve and 

infected mice there was no difference (Figure 5.6) (S1, 159.3µm, Delta, Naïve vs. Infected: 18.5 

± 7.1 vs. 50.5 ± 16.6, T-test, p = 0.115, with FDR q = 0.872: S2, 82.6, Delta, Naïve vs. Infected:  

37.0 ± 11.0 vs. 25.9 ± 10.8, T-test, p = 0.49, with FDR, q = 0.912). The leishmaniasis infection also 

had no overall effect on dendritic Arc expression during gamma oscillations, though individual 

significances were found at some cortical depths: Au1, 463.5µm, Gamma, Naïve vs. Infected: 

41.4 ± 5.0 vs. 16.9 ± 5.7, T-test, p = 0.012, with FDR, q = 0.999, S2: 528.15µm, Gamma, Naïve vs. 

Infected: 40.5 ± 5.1 vs. 14.1 ± 4.1, T-test, p = 0.004, with FDR, q = 0.270.  
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5.3 Discussion 

5.3.1 Summary 

In this chapter, the effect of a biological pathogen on in vitro models of certain brain rhythms 

has been investigated. The pathogen used was the parasite Leishmania donovani, which causes 

visceral leishmaniasis and is known to elicit systemic inflammation. The effect of this infection 

on synaptic plasticity in the neocortex of mice was also explored.  

 

The summary of key findings from this investigation are:  

 The injection of Leishmania donovani parasites into the tail vein successfully led to an 

infection in mice that had the characteristics of visceral leishmaniasis and lasted for at 

least 28 days.  

 There was a decrease in the peak power of cortical gamma oscillations in the secondary 

somatosensory cortex in mice infected with L. donovani.  

 There was no significant change to delta oscillation dynamics in L. donovani infected 

mice compared to naïve mice. 

 There was no significant difference in dendritic Arc expression between brain slices in 

naïve mice exhibiting gamma or delta oscillations, or between these oscillations in 

infected mice. 

 The Leishmaniasis infection caused no significant difference in dendritic Arc staining 

during either gamma or delta oscillations, compared to control. 

 

5.3.2. Leishmania donovani. IV injection causes visceral leishmaniasis in mice.  

After the intravenous injection of Leishmania donovani parasites, mice displayed many signs 

that were consistent with visceral leishmaniasis presentation in humans. Firstly, the mice 

exhibited weight loss, a symptom typical of visceral leishmaniasis in humans (Araujo Lima Verde 

et al., 2011). Unusually in humans, this symptom occurs despite no loss of appetite. 

 

The two organs known to be most affected by experimental are the spleen and the liver 

(Berman, 1997; Polley et al., 2005; Melo, 2017). The weights of the spleen and liver were tested 

in infected and naïve mice and both organs were found to be significantly increased in weight 

compared to control. This is consistent with the human disease, with splenomegaly and 

hepatomegaly being common pathologies in the disease (Melchionda et al., 2014). In patients 

with visceral leishmaniasis, parasites are seen in Kupffer cells leading to their hyperplasia, as 

well as the ‘ballooning’ degeneration of hepatocytes. There is also an increase in parasite-
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infected macrophages (el Hag et al., 1994). The hypertrophy of the spleen is known to be due to 

the build-up of histiocytes, macrophages and plasma cells. Parasite counts showed that infection 

in the liver was more pronounced than in the spleen, especially when the weight of the organ 

was taken into consideration when calculating the LDU index. Although the LDU index is 

suggested to be less sensitive than qPCR methods in quantifying parasite load (Moreira et al., 

2012), the presence of the Leishmania parasites in these organs could be reliably confirmed 

compared to uninfected naïve mice. As well as increased parasite load, studies have also shown 

that the inflammatory response to leishmaniasis infection is stronger in the liver than the spleen 

with the upregulation of IL-1β and TNFα in the liver exceeding and preceding enhanced 

expression by the spleen (Melo et al., 2013). Although we did not test serum or tissues for 

inflammatory markers, it is likely that pro-inflammatory cytokines are also upregulated in our 

models as has been shown by previous studies (Melo et al., 2017; Grano et al., 2018). To confirm 

this to be the case, an analysis of cerebral cytokines or microglial activation would show the 

inflammatory environment of the brains of these mice after Leishmaniasis infection. 

 

5.3.3. Leishmaniasis infection impacts only gamma oscillations in the neocortex.  

In assessing changes to the oscillatory activity in brain slices from naïve and L. donovani infected 

animals, the mean peak power of somatosensory gamma rhythms was significantly reduced. 

This change was partially reflected in the primary sensory cortex and decreases in mean area 

power were also seen in both regions, however these changes did not reach significance. The 

presence of oscillatory changes in the brain in these mice is indicative of a central neurological 

element to visceral leishmaniasis. This neurological alteration may have been due to 

neuroinflammation secondary to the peripheral infection (as shown in Chapter 4). This is 

corroborated by previous evidence that shows increases in proinflammatory cytokines in the 

brain (IL-1β, IL-6, IFN- γ, TNFα) in experimental leishmaniasis models (Melo et al., 2017) as well 

as leukocyte infiltration of the BBB (Melo et al., 2009), both of which are classic signs 

neuroinflammation. However, there have been reports of small numbers of parasites invading 

the CNS tissue of naturally and experimentally infected dogs, suggesting that some degree of 

primary activation of neuroinflammatory pathways may also occur (Nieto et al., 1996; Vinuelas 

et al., 2001; Tafuri et al., 2004). The number of CNS infiltrates are very small though, so if it is an 

inflammatory response leading to these oscillatory changes, it is more likely to be due to the 

propagation of the systemic immune response and this mode of cytokine production is a 

common feature of the disease (Pinto et al., 2017) (Kaye et al., 1991).  
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Gamma power decreases have previously been reported in the neocortex under 

neuroinflammatory conditions. The injection of the inflammatory cytokine IL-1β, into the 

striatum of rats, led to a decrease in the power of the stimulus-evoked gamma oscillations in 

the barrel cortex (Bray et al., 2016). Changes to oscillatory activity have also been recognised 

after systemic cytokine administration (Hansen and Krueger, 1997; Kubota et al., 2001; Yoshida 

et al., 2004), though the changes shown in these studies were largely associated with alterations 

in rhythmic activity in the delta frequency range. Unusually, there was no change in delta activity 

when comparing slices from infected and naïve mice in this thesis. This is surprising as changes 

to delta frequency rhythms are more often associated with neuroinflammation (Parsons et al., 

1997; Opp and Toth, 1998; Mamad et al., 2018), and see Chapter 4.  

 

Cytokine-driven changes to the gamma oscillations may occur through the activity of NMDA 

receptors. NMDA has been implicated in controlling the power of gamma oscillations with the 

blockage of the NMDA receptor increasing gamma power (Hakami et al., 2009). IL-1β is known 

to enhance NMDA receptor activity through (Viviani et al., 2003) the action of tyrosine kinases 

to increase intracellular calcium and through this mechanism may decrease the power of gamma 

oscillations (Debray et al., 1997). Interleukin 1β is known to be produced by macrophages and 

monocytes during Leishmaniasis infection (Sani et al., 2014) (Santos et al., 2018). If the systemic 

upregulation of this pro-inflammatory signal reaches the brain it may cause the changes to 

gamma oscillations seen through the activity of IL-1β. To test this theory, the expression of IL-

1β in the brain could be analysed after infection.  

 

5.3.4. No change occurs in dendritic Arc expression by brain rhythm or infection in mice.  

Because only dendritic Arc expression showed any significant difference in rhythm-related 

expression in Chapter 3 of this thesis, only the expression of Arc in dendrites was analysed in the 

L. donovani infected mice. Firstly, to establish whether the phenomenon discovered in rats 

previously in this thesis is conserved in mice, the dendritic Arc expression during delta and 

gamma rhythms was compared to naive mice. Despite a visible increase in dendritic Arc in 

superficial layers in mice and non-overlapping error bars, there was no significant change in the 

dendritic Arc expression between rhythms in healthy mice. The trend of an increase would 

appear to corroborate the results found in Chapter 3 albeit to a non-significant level.  

 

The visible increase in superficial dendritic Arc during delta rhythms is conserved in leishmaniasis 

infected mice, yet this difference was also not significant, despite appearing larger in infected 
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animals – especially in the primary sensory cortex. The lack of significance in the laminar 

expression of Arc is surprising due to the small error bars in the data. Indeed, some significant 

changes were seen in individual sub-laminae. However, the consideration of multiple 

comparisons by calculation of the false detection rate led to the rejection of these changes as 

significant when considering the overall expression profile. The effect of the presence of the 

systemic leishmaniasis infection on rhythm-related Arc expression was also assessed. No 

significant difference was seen in Arc signalling between naive and infected mice in either area 

of the cortex during either rhythm. This suggests that the compromised power of the gamma 

oscillation has no effect on the overall plasticity mechanism in dendrites of these cells.  

 

The lack of change to dendritic Arc signalling in response to oscillatory state or infection 

suggests that the changing landscape of synaptic plasticity is of lower magnitude in the 

neocortex of mice than in rat between wakefulness and SWS. Although there is species 

difference between these studies (this chapter and Chapter 3) the mechanisms for oscillation 

generation are largely conserved (Buzsaki and Wang, 2012; Beltramo et al., 2013). However, a 

decreased propensity for plasticity in layer V neurons has been seen between species, related 

to a decreased ratio of layer V IB cells to RS cells in mice compared to rats (Jacob et al., 2012). 

Since our previous findings have been related to the expression of Arc in these diminished 

number of IB cells this suggests that this disparity between species may account for the non-

significance of the changes.  

 

5.3.5. Experimental limitations  

Due to regulatory restrictions, availability and precedence in the literature, mice (as opposed to 

rats) were used to model visceral leishmaniasis. This added an element of complexity as the in 

vitro models of oscillations used had been established in rats rather than mice (Ainsworth et al., 

2011; Carracedo et al., 2013). Indeed, the concentrations of oscillating generating drugs - 

kainate (400nM) for gamma rhythms and carbachol (4µm) and SCH23390 (10µm) for delta 

rhythms - were optimised in rats only. These concentrations have been optimised for generating 

the most robust oscillation possible in particular regions of rat brains. Whilst the regions chose 

from mice experiments were the same, the optimal drug concentrations to generate the most 

robust oscillations may be different. Whilst these concentrations are indeed successful at 

generating gamma and delta oscillations respectively in mice, to generate the most robust 

oscillation possible in mice would require an additional survey of dose response.  
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This species difference between this chapter and Chapter 3 may account for the lack of change 

in dendritic Arc signalling both between rhythms and as a result of infection. As mentioned 

above, the lower percentage of intrinsically bursting cells in layer V in mice may account for the 

disparity in Arc changes compared to rats.  
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Chapter Six – General Discussion                       

and Future Directions 
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6.1 Overview 

Sleep has been an area of great mystery to neuroscience for centuries. Through decades of 

research, immediate early genes have emerged as an interesting target of research concerning 

their important roles in neuronal activity (c-Fos) and plasticity (Arc). This has led to findings that 

recognise changes to IEG levels across the sleep-wake cycle. Earlier studies into these immediate 

early genes took crude samples of brains of awake and sleeping animals and noticed profound 

changes (Cirelli and Tononi, 1999; Cirelli and Tononi, 2000b). More recently, research has 

involved more regionally specific surveys and relationships between brain states and memory 

(Ribeiro et al., 1999; Hanlon et al., 2009). 

  

Still, many of the studies into gene expression changes during the sleep-wake cycle are in vivo, 

and claims relating them specific brain rhythms have mostly been correlative rather than 

mechanistic. These studies have been informative, though, and it is from them that the synaptic 

homeostasis hypothesis (SHY) was developed. However, the mechanisms through which the 

downscaling of synaptic strength occurs during sleep (as the SHY theorises) are still being 

explored, mainly in attempts to reconcile the seemingly contradictory nature of decreased 

synaptic strength correlating with increased memory performance (consolidation) – something 

that currently stands opposed to the long-standing synaptic weight doctrine for learning and 

recall (Bliss and Collingridge, 1993). One potentially critical factor here may be temporal: 

understanding how specific network activities, distributed over time in the form of brain 

rhythms, might pinpoint causative changes in engrams linked to the observed immediate early 

gene and AMPA receptor number changes.  

 

With this in mind, this thesis attempted to relate changes in c-Fos and Arc to specific sleep- and 

wake-related brain rhythms using previously characterised, pharmacologically induced in vitro 

models. Cortical gamma and delta oscillation models were compared due to their known 

importance in the formation and consolidation of memories respectively. Once gross regional 

changes had been discovered, investigations were carried out to localise the source of the 

changes on a laminar, cellular, and sub-cellular level. These changes could then reciprocally 

inform studies into the changes that occur to these cortical rhythms upon the induction of 

neuroinflammation – an insult known to have profound effects on memory - either by models 

of immune challenge or with a biological pathological infection. 
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6.2.1 Plasticity-related gene changes in cortical oscillation models 

The initial investigation compared regional changes in immediate early gene expression during 

in vitro delta and gamma rhythms. Whilst the general decrease in Arc levels during sleep-related 

rhythms was broadly in line with changes seen in previous studies (Cirelli and Tononi, 2000a), 

the increase in c-Fos opposed previous findings (Pompeiano et al., 1995; Hanlon et al., 2009). 

This opposition may be due to the mismatch between what is defined as sleep and wake, 

compared to specific network activities (gamma and delta rhythms). These in vivo studies could 

not separate SWS from REM sleep whereas the current study looked solely at SWS. In addition, 

the results may also have been complicated by extracellular and non-neuronal staining – a clear 

dichotomy was seen, for example, between gross Arc levels (Figure 3.1) and the specific 

expression in IB neuronal apical dendrites (Figures 3.11, 3.12) (see below). 

  

To hone in further on the cells responsible for these changes, the distribution of c-Fos and Arc 

stained neuron and interneuron somata was analysed. In principal cell and interneuron somata, 

whilst expression of c-Fos and Arc was apparent, there were no changes seen in either IEG in 

response to the two oscillation models. What was observed, however, was an abundance of Arc 

stained dendrites, or sections of dendrites particularly in layer II/III of the cortex. Examination 

of this dendritic staining and comparison between rhythms highlighted a phenomenon whereby 

the generation of delta rhythms in secondary- and particularly primary- sensory cortex increases 

this dendritic Arc staining above that seen during gamma oscillations. As Arc increases are linked 

to changes in many types of synaptic plasticity (both in potentiation and depression), it would 

suggest that the majority of the synaptic alterations in the cortex occur in dendrites, during slow 

wave sleep. This plasticity is likely to be in the weakening of synaptic connections as LTD is 

known to be the dominating mechanism change during sleep (Tononi and Cirelli, 2003; 

Shepherd, 2012). The mechanism through which Arc is known to induce synaptic depression is 

through AMPA receptor internalisation (Chowdhury et al., 2006), which is upregulated during 

SWS and implicated in synaptic scaling (Diering et al., 2017). 

  

Intracellular experiments identified the specific cell type in which this dendritic Arc change 

occurred as the layer V intrinsically bursting cell (IB). The layer II/III localisation of the dendritic 

signal in these IBs corresponds with calcium spike initiation zones, which are important for 

mediating Ca2+ entry to pyramidal cells (Perez-Garci et al., 2013). This Ca2+ influx is increased by 

the burst firing of pyramidal cells during delta oscillations and aids in AMPA receptor 
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internalisation through inhibition of the anchorage of the receptor to the postsynaptic 

membrane (Chowdhury et al., 2018). 

 

Further to localising the major synaptic changes related to synaptic scaling during SWS in the 

cortex, a spatial arrangement in the contributing IB cells was found. This showed that not only 

was synaptic plasticity increased in bundles of IB dendrites, but these dendrites also work as a 

unit with other cells and their arrangement in a hexagonal pattern may facilitate this 

coordination (Maruoka et al., 2017). Thus slow wave sleep appears to associate with an 

enhanced state of excitatory synaptic plasticity in modules of neocortical cells known to be vital 

for both the generation of SWS itself and for linking neocortical activity to multiple subcortical 

structures (Groh et al., 2010; Kim et al., 2015). 

 

6.3.1 The effect of neuroinflammation on cortical oscillations models. 

Following the findings of the relationship between Arc mediated plasticity and cortical oscillation 

mode, further investigations were carried out to determine if perturbation in oscillatory 

dynamics occurred after neuroinflammation and whether this was related to changes in 

impaired or altered plasticity. Studies that investigate biological changes to pathogen-related 

inflammation (in the brain or otherwise) often use LPS to mimic a bacterial infection through its 

activation of TLR4 receptors (Lund et al., 2006). 

 

We first saw no immediate effects of LPS on stable cortical oscillations. There are many 

possibilities for this lack of effect. It is known that whilst peripheral sensory neurons express 

TLR4 receptors (Leow-Dyke et al., 2012), cortical neurons do not (Lehnardt et al., 2003). This 

being the case, it is unlikely that triggering signalling pathways in other (TLR4 +ve) cell types 

would directly affect neuronal excitability at the timescale measured. In fact the timescale for 

induction of inflammatory cytokines known to cause changes to oscillatory dynamics is longer 

than the time tested (Wang et al., 2015a). 

  

Following this and with increasing awareness of the implications of systemic infection for 

neurodegenerative diseases (Perry et al., 2003), a dosing study was set up to assess the effects 

of systemic infection on the inflammatory environment in the brain and monitor the resulting 

oscillatory changes. It was also hoped that dosing with either LPS or poly I:C (an agent that 

mimics viral DNA, and ligand for TLR3 receptors) would allow the comparison of bacterial and 

viral infection changes. The chosen dosing schedule allowed the comparison of acute and 
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chronic inflammatory conditions by the recording of oscillations 24 hours after a single dose of 

LPS or after doses every 3 days for 7 or 28 days. Since the doses used were relatively low, it 

allowed the build-up of chronic inflammation, which meant that no change was seen after 24 

hours. This lack of change may also have been because the conclusion of the first ‘wave’ of 

inflammation occurs less than 24 hours after dosing (Mamad et al., 2018). 

 

The longer timescale of infection was sufficient to induce oscillatory changes, significantly in the 

frequency of hippocampal gamma oscillations and cortical delta rhythms. These changes were 

thought to be related to deficits in cognitive function (Britton et al., 2016) and specifically 

sensory/memory processing  (Jahn, 2013). 

 

Beyond these frequency changes, other differences in the oscillatory activity were apparent, 

however due to low n numbers, these were not found to be significant. The bidirectional trend 

towards changes in delta rhythms suggested changes in sleep-need depending on the nature of 

neuroinflammation present. Shorter-term dosing increases are likely to be related to changes in 

the brain after infection or TBI leading to delirium (Parsons et al., 1997) (Koponen et al., 1989), 

and may also be related to increased sleep need (Vyazovskiy et al., 2011). The trend towards a 

decrease seen over the longer term (28 days here) may be due to more serious changes in the 

cortical networks supporting these rhythms and could even be a result of neuronal cell death 

(Pevzner et al., 2016). This may also underlie the trend in decrease of the hippocampal slow 

gamma rhythms, which is a dysfunction seen in Alzheimer’s disease. These oscillatory changes 

could also be linked to changes in the neuroinflammatory state with mostly just ’classic’ 

proinflammatory cytokines upregulated after 28-day dosing, whereas after 7 days a balance 

between pro- and anti-inflammatory cytokines and chemokines was seen. This was reflected in 

the proven capability of 28 days dosing with inflammatory agents to change microglia 

morphology to their active, pro-inflammatory state. It was hoped that these changes could also 

be related to changes in plasticity mechanism, but due to available tissue integrity problems, 

this analysis was not possible during the time course of this thesis. 

  

6.4 The effect of visceral leishmaniasis on cortical oscillations and plasticity. 

Neuroinflammation is prevalent in many biological diseases, and is a growing area of research, 

particularly in neurodegenerative diseases. A mouse model of visceral leishmaniasis was used 

to assess the effects of neuroinflammation in biological disease. There is only sparse evidence 

of an association between this disease and neurological defects, particularly related to the CNS. 
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However, leishmaniasis is linked with large amounts of systemic inflammation and there is also 

evidence of upregulation of neuroinflammatory cytokines in the brain. The infection was 

incubated for 28 days (similar to the last time point described above) before experiments were 

carried out. 

 

In line with features of the infection in humans and animals, mice showed decreased body 

weight, despite increases in the size of the spleen and the liver. These visceral changes were 

related to increased parasite loads in the liver and the spleen, with the former showing a higher 

parasite load. 

 

Changes in the power of cortical gamma oscillations were observed when the characteristics of 

sleep and wake-related oscillations were compared in infected mice. These changes are likely to 

be related to neuroinflammatory effects because inflammatory cytokines have been shown to 

change cortical oscillation dynamics through interactions the NMDA receptors (Bray et al., 

2016). These changes were not matched with any aberration in delta rhythm activity, which is 

unusual as the delta rhythm is more susceptible to alterations rising from neuroinflammation. 

However, this lack of change may be due to the lack of refinement of the in vitro delta rhythm 

in mice.  

 

Finally, the dendritic distribution of Arc was compared, firstly in different rhythms in control 

mice, and then between control and infected mice. The non-significant change in Arc in 

dendrites in control mice may indicate that the phenomenon evaluated in Chapter 1 can be 

conserved in mice, albeit to a lesser extent. Additionally, it was found that infection, despite 

causing changes to cortical gamma oscillatory dynamics had no effect on the levels of plasticity 

in cortical dendrites. The importance of the delta rhythm in plasticity was highlighted, so the 

fact that the change to oscillatory dynamics in infected mice was to gamma rhythms may show 

that these have a lesser impact on affecting synaptic changes in cortical neurons. 

 

6.5 Overview 

In conclusion, this thesis shows that delta rhythms that occur during SWS induce more plasticity 

compared to wake-related gamma rhythms, through the induction of the IEG Arc. This occurred 

predominantly in layer V intrinsically bursts cells and may lead to the scaling of their synaptic 

connections in order to maintain synaptic homeostasis, consolidate network representations of 

memory and/or simply provide a feedback signal to set the duration of SWS. These changes 

occur in hexagonally organised bundles of dendrites, which are multicellular units that process 
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information together and broadcast it principally to subcortical structures. Inducing systemic 

infection, either by agents mimicking bacterial or viral infection or by infection with a biological 

pathogen, caused subtle changes to the dynamics of the observed cortical oscillations. These 

oscillatory changes are likely to be due to an inflammatory response in the brain, propagated 

from the systemic immune response. Changes to these rhythms, however, do not seem to have 

any overt effect on plasticity-related Arc expression in the neocortex.  

 

6.6 Future directions  

6.6.1 Further investigation of synaptic changes during in vitro slice oscillations 
 
The main finding in the first chapter of this thesis is with regards to the immunofluorescent 

staining of Arc. It is important to note that Arc staining is only representative of changing 

synaptic strength and does not necessarily imply a direction. Indeed Arc has been shown to be 

increased during both synaptic potentiation and depression. Although it is likely that the 

increase in Arc found in the basal dendrites of layer V IB cells synaptic scaling further 

experiments would be necessary to confirm this.  Synaptic scaling involves long term depression 

and therefore intracellular electrophysiological experiments would be require to confirm 

decreased synaptic strength. The underlying mechanism could also be further explored using 

immunohistochemistry. 

 

Intracellular recordings of layer V intrinsically bursting cells before and during the induction of 

delta and gamma oscillations would allow for the comparison of EPSPs and EPSCs in terms of 

amplitude or time course. These recordings could be taken naturally during the oscillations, or 

as part of a stimulus response curves after oscillatory activity. This would be done by recording 

from IB cells and stimulating presynaptic neurons with increasing voltages. Currently changes to 

these parameters have already been shown in layer V cells after evoked bursting activity 

(Czarnecki et al., 2007). These experiments may require recordings to be made from the apical 

dendrite at layer II/III which adds a level of complexity due to the small size compared to the cell 

soma. 

 

Structural investigations of IB cell synapses may also be useful in providing evidence of LTD. 

Since LTD is associated with the internalisation of AMPA receptors, immunohistochemical 

analysis of the relative presence of full AMPA receptors or their subunits (GluA 1-4) could 

provide evidence of this. This would need to be done in conjunction with intracellular 
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experiments to electrophysiologically characterise IB cells, and highlight them with biocytin. It 

may be possible however to use dual immunohistochemical staining to show up layer V cell 

bodies (such as CTIP2) (Brunjes and Osterberg, 2015) as well as dendrites (βIII tubulin). It would 

then be required to distinguish IB cells based on their cell body location and morphology, which 

would add a level of subjectivity avoided by electrophysiological characterisation. However if 

this technique were to successfully highlight IB cells then it would be easier to analyse more cells 

for the presence of AMPA subunits at the layer II/III level of the apical dendrites. This could be 

compared between gamma and delta conditions to see if endocytosis does occur during delta 

rhythms. Much more coarsely, the general AMPA level could be compared across the layer II/III 

level between conditions. 

 

To compare this to the human condition (and perhaps even uncover something more profound 

regarding the function of sleep) in vivo measurements of AMPA receptors in humans would be 

vital. There is current research regarding the development of positron emission tomography 

(PET) tracers that recognise AMPA receptors to enable this to occur (Takahata et al., 2017; Chen 

et al., 2018; Fu et al., 2018). Once valid tracers are available, it would be possible to compare 

the levels of AMPA receptors before and after sleep, however this may not be successful for 

subtle changes. 

 

Monitoring the number and possibly the size of dendritic spines in layer V IB cells, would also 

give an indication of changes in plasticity in these neurones. Several immunohistochemical 

markers, such as PSD95 and drebrin, could be used to monitor changes in dendritic spines. These 

highlight synapses and would allow the number of dendritic spines and possibly also the size of 

those spines to be analysed (though this would require imaging at very high magnification and 

resolution). An alternative way to measure the surface area and contact of dendritic spines 

would be through scanning electron microscopy to reconstruct axon-spine interface (de Vivo et 

al., 2017). 

 

Although it is clear that ARC is upregulated during delta rhythms in this thesis, the mechanism 

by which this occurs is uncertain. ARC mRNA can be translated distally from the cell soma in the 

dendrites (Steward et al., 1998). It is therefore unclear whether the ARC induced by in vitro delta 

rhythms is representative of upregulated translation of the protein, or downstream in the de 

novo synthesis at the level of the mRNA. This could be tested by inducing cortical rhythms, but 

in the presence of a transcriptions blocker (actinomycin D) or a protein synthesis inhibitor 
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(cycloheximide). However this may mean that it is not possible to induce oscillations, or even be 

sure that any effects that are see are related specifically to ARC as opposed to ‘dirty’ off targets 

effects of blocking overall transcription or translation. Another way to answer the question 

however would be to look at the relative expression of RNA and protein during delta and gamma 

conditions. A process similar to immunohistochemistry that allows localisation of specific RNA 

sequence is in situ hybridisation. This could be employed to see if there are also alterations in 

ARC RNA levels in neurons and also indicate their location in the cell. 

  

One feature to note is that in the Arc immuno-stained tissue, there was rarely continuity 

between the dendrite and the soma in terms of the presence of Arc. This meant that it was not 

always possible to match up dendrites to specific soma. Carrying out the immunohistochemistry 

with the presence of a marker to highlight the whole neuronal cell (MAP2) would help show 

whether there is tandem staining in the soma and the dendrites. Dual staining of RNA and 

protein is possible with certain in situ hybridisation techniques (Turkekul et al., 2017) which 

would also allow full observation of the relative abundance of Arc at different stages in its 

synthesis within one neuron. 

 

6.3.2 Further investigation into the effect of neuroinflammation on cortical oscillations 
 
LPS does not cause changes to neuronal network activity changes when applied to acute slices 

of rat brain. To investigate further whether there are any direct effects of neuroinflammation 

on neuronal activity, similar experiments could be carried out using cytokines. This would 

involve the bath application of pro-inflammatory cytokines after the generation of an oscillation. 

Of particular importance are Il-1α and β, IL-6 (Dinarello, 2011) and TNFα (Probert, 2015) which 

are known to have neuronal receptor expression. 

 

To have a better understanding of the effect of in vivo induction of inflammation it would be 

important to repeat the dosing experiments and subsequent recordings in this thesis to increase 

the sample size. This would avoid Type I or Type II errors and increase the statistical power of 

tests employed to analyse the results of the dosing study. Further analyses of these experiments 

could also be carried out to assess the state of neuroinflammation at different time points. Since 

the dose used was subchronic, it may also be interesting to see what effect a higher dose of the 

infections agents had. Monitoring the rats for sickness behaviour may also be useful to better 

relate the level of illness caused by the dosing of LPS and Poly I:C to levels of infection likely to 
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cause neurological changes in humans. Often measures of food and water intake, body 

temperature and activity (Barrientos et al., 2009b) as well as body weight (Kon Kim et al., 2013), 

and anxious and depressive behaviours as shown by maze and open field tests (Sulakhiya et al., 

2016). 

  

Further effects of peripheral infections on neuroinflammatory state of the brain could be done 

by analysis of different populations of cells in the brains. Simple analyses of microglia were 

carried out in this thesis which showed evidence of microglial activation, however these only 

compared LPS and control. Furthermore these only looked at crude measures of microglia 

morphology, where a more involved measurements such as a Scholl analysis to quantify the 

ramification index size would be more sensitive. Also no measurement was taken as to the 

number of microglial cells which is an indication of neuroinflammation. Astrocyte proliferation 

is also a sing of neuroinflammation and can be investigated by the simple immunostaining for 

GFAP. 

  

Another simple immunohistochemistry experiment that could start to link neuroinflammation 

and changes to the electrical activity of the brains would be to stain for NeuN. This is a marker 

of neuronal cells and its use would allow for a comparison of cell numbers in the cortex and 

hippocampus at different dosing time scales, to see if there is significant cell death. Interneurons 

are more sensitive to changes in their local environment and are more susceptible to 

excitotoxicity, so monitoring GABA or GAD+ve cell numbers would show if neuroinflammation 

is more likely to lead to interneuron cell death. The presence or lack of cell death would highlight 

whether changes to electrical activity are driven by reduced populations of cells or failure of 

synaptic communication. The latter could be further investigated in a manner similar to that 

outlined in Chapter 6.6.1. 

 

Indeed, the initial intention of this thesis was to analyse the state of synaptic plasticity in the 

brain after peripheral infection, similarly to the analysis carried out in Chapter 3. However due 

to problems of tissue integrity this was not possible. This would still be very interesting to 

investigate, not least to shed more light on the link between memory deficits and 

neuroinflammation. In fact there have already been some studies linking neuroinflammatory 

factors like TNFα and synaptic plasticity markers like AMPA (He et al., 2012).  

 

6.3.3 Further investigation into the effect of visceral leishmaniasis on cortical oscillations 
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Many of the further experiments suggested in the previous section (6.3.2) would also be 

applicable to the work on Leishmaniasis. Especially including the measurement of: sickness 

behaviour, microglial/astrocyte number and morphology, and neuronal cell death. However 

since these two chapters were carried out of different animal models it would also be interesting 

to compare inflammation induced in the same way between mice and rats. This is particularly 

important as previous studies have shown differences in neuroinflammation between species in 

vitro (Lam et al., 2017) and in vitro (Potter-Baker et al., 2014). 

 

In Chapter 5 no measurement of neuroinflammation (or even peripheral inflammation signals) 

were taken. Despite precedence in the literature (Melo et al., 2017), it is necessary to confirm I 

this is the case in our mouse model. To do this (further to microglia and astrocyte analysis) a 

cytokine panel could be employed (as in Chapter 4), to monitor pro- and anti-inflammatory 

cytokines and chemokines in the brain following the parasitic infection.  

In Chapter 5 only experiments monitoring peripheral populations of parasites were carried out. 

Since there is previous evidence of migration of parasites into CNS tissue, it would be important 

to confirm whether parasites make it into the brain. If this were the case it could bring into 

question whether any neuroinflammation caused was a propagation of the peripheral 

inflammation signalling or due to parasitic presence in the brain. 
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