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Abstract

When considering global optimisation of magnetic crystal structures, it is

important to consider both the atomic and spin degrees of freedom. This thesis

presents a novel genetic algorithm for simultaneously optimising the magnetic

and crystal structures of materials. The algorithm was first tested on a new

magnetic interatomic potential presented in the thesis, and was shown to be

capable of finding the correct atomic and magnetic structure. The algorithm

was then used to study mixing the NiO(111)/MgO(111) interface, where the

process behind the mixing was unknown. Results from this study suggest that

mixing is driven by energetics of the system, rather than kinetic processes.

Finally, the interface between the Heusler alloy CFAS and n-doped Ge, where

experimental observations suggested an unknown interface phase, was studied.

This work proposed the half Heusler structure for this phase, and predicted

this to have unfavourable electronic properties.
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Chapter 1

Introduction

For thousands of years, humankind has relied on its ability to discover new materials

and use them for ever more advanced technologies. Indeed many eras, such as the

Iron and Bronze Ages, are defined by the materials they developed. Even in the

modern day, discovery and subsequent development of semiconducting and magnetic

materials have allowed computers to grow ever more powerful, changing the world

dramatically over the past few decades.

Society’s ability to develop new materials has come from a combination of repeated

experimentation and a growth of knowledge of how materials are likely to behave. By

noticing patterns in behaviour between experiments, theories can be developed about

what is going on, and subsequently used to suggest directions for future experimen-

tation. These theories can be anything from crude, qualitative approximations based

on a small number of experiments, right up to rigorous mathematical descriptions

based on many years of testing. As should be expected, the latter tend to be more

accurate than the former, but take longer to develop. In the right amounts, this

range of theories can prove invaluable to aid the discovery of new materials.

These days there are a range of theories on how materials behave, spanning classical

and quantum physics and over a range of length and time scales [5]. Some methods,

such as Quantum Monte Carlo, Hartree Fock, and Density Functional Theory, aim

to find approximate solutions to Schrödinger’s equation for the electrons in materials,

allowing accurate calculation of their electronic properties. Others, such as Lennard
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Jones[6] or EAM [7, 8] , classically model the interaction between atoms, including

the electrons only implicitly. Similarly, course grained models such as the OxDNA

model for DNA [9], the interaction between base units consisting of multiple atoms.

These methods are able to simulate a larger number of atoms than atomistic methods,

assuming they remain in the configuration defined by the course graining. Finally,

continuum methods simulate materials such as concrete [10] as a continuous medium,

with defined physical properties. This allows macro-scale simulations to be performed.

Using computers to model real-world systems using these theories, it is possible to

predict, with remarkable accuracy, the behaviour of new materials without having

to go through the trouble of fabricating them experimentally. In addition to this,

knowledge gained from the details of a simulation can provide important insights,

allowing improved fabrication and use of these materials [11].

1.1 Magnetic materials

One class of material of particular interest is that of magnetic materials. This

includes conventional ferromagnets along with more exotic structures, such as an-

tiferromagnets, ferrimagnets and spin glasses. These materials have been at the

heart of many important technologies over the past century and continue to play an

important role in current and developing technologies.

A widely used type of magnetic material is the ferromagnet. For many centuries,

people have been using the ferromagnetic properties of iron and its compounds for

navigation [12]. More recently, ferromagnets have provided a mechanism to convert

electrical signals into mechanical movement and vice versa. In particular, motors

and generators are widely used for providing and harnessing rotary motion, and

loudspeakers and microphones use magnets to convert between oscillatory sound waves

and electrical signals. Developments of new more powerful or robust ferromagnets

are likely to benefit industries which rely on these technologies. In addition, many

of the strong permanent magnets in use today rely on rare-earth elements [13] and

there is concern over the sustainability of these elements’ availability [14]. Therefore,
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developing ferromagnets made from more readily available materials is desirable.

Computing has also benefited greatly from magnetic materials. For much of the

history of computers, magnetic media such as tapes, hard and floppy disks have used

magnetic effects to store digital data without the need for a power source [15]. Even

now, there is a good deal of research into novel materials such as for magnetic storage

devices such as ferroelectrics for magnetic RAM devices [16] and FePt based materials

for heat assisted magnetic recording (HAMR)[17]. In addition, the developing field

of spintronics relies heavily on magnetic materials [18, 19]. For example, spin valves

are typically made of two ferromagnetic layers such as Heusler alloys with a thin

non-magnetic layer in between [19].

Given the prevalence of applications for magnetic materials in the modern world,

it is very likely that the development of such materials will be of benefit. Using

theoretical models to aid in the development of these materials can enable such

materials to be developed faster and more cost effectively, as well as providing a

deeper insight into how they work.

1.2 Thesis overview

This thesis outlines the development of an algorithm for prediction a materials crystal

and magnetic structure, given only the constituent atoms. Chapters 2 to 4 outline the

underlying theory and existing work involved in structure prediction. In particular

chapter 4 describes a genetic algorithm (GA) originally designed by Abraham and

Probert, that provides a starting point for the work outlined in the rest of the

thesis, along with some improvements made over the course of this work. Chapter 5

describes the extension of the GA to optimise magnetic structures concurrently with

the crystal structures.

Chapters 6 to 8 demonstrate the application of this algorithm on a range of systems.

Firstly, chapter 6 describes and investigation into an idealised potential based on

the Lennard-Jones model. Chapter 7 then uses the algorithm to investigate the

origins of disorder nickel oxide/magnesium oxide interfaces. Finally, chapter 8 uses

16



the algorithm to investigate the structure and effects of structures observed growing

at the interface between Heusler alloys and germanium.

Chapter 9 concludes the thesis, along with suggesting possible extensions and im-

provements that could be made to the algorithm in the future.
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Chapter 2

Materials simulation

2.1 Introduction

In the context of materials simulation, there are a number of different levels of theory

that can be chosen. These range from continuum models, capable of simulating

macroscopic sized objects [10], right down to quantum mechanical simulations,

capable of simulating a few individual particles [20, 21], as demonstrated in figure 2.1.

This chapter reviews some of the commonly used methods for simulating materials,

including ab initio and atomistic simulations used in the rest of this work.

2.2 Potential energy surfaces

When simulating materials at the atomic level, a natural description is that of the

positions of the atomic nuclei. For a system of N atoms with positions R1 . . .RN , a

3N dimensional PES (Potential Energy Surface) can be defined:

E = E(R1,R2, . . . ,RN) (2.1)

Ignoring thermal effects, the global minimum of the PES corresponds to the stable

configuration of these atoms, and other local minima correspond to metastable
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Figure 2.1: The range of length and time scales for materials simulations. From left
to right: Quantum many-body, ab initio, atomistic, course grained and continuum
simulations.

configurations. Typically, the stable configurations are the ones that will likely be

found in nature; however if the local minima are in sufficiently deep wells, they can

be considered thermodynamically stable. Figure 2.2 shows the slice of the PES for

the H2O molecule, where all dimensions are fixed except for the x-position of the

oxygen atom. In this diagram, local and global minima can be seen when the oxygen

is near the hydrogen atoms.

2.3 Periodic systems

Since many properties of a material are determined by the bulk of the material and

not its surface, it would be useful to model this. However, it can take several thousand

atoms or more to reproduce this behaviour. For crystals, this can be avoided by

modelling a small repeating unit with PBCs (Periodic Boundary Conditions), as

shown in figure 2.3.
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Figure 2.2: A 1-D Slice of the PES for H2O from DFT simulations, showing: (a) The
oxygen atom disassociated from the two hydrogen atoms, (b) A Maximum, where
the hydrogen and oxygen atoms are at their closest, (c) The global minimum: a
water molecule, and (d) A local minimum, with a hydrogen atom and a OH dimer

a1

a2

Figure 2.3: A 2D repeating system of 2 atoms forming a hexagonal lattice structure.
The atoms (dark red circles), lattice vectors (blue and green lines) and unit cell
(black solid lines) are shown, along with a number of periodic images (light red circles
and grey dashed lines).
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A crystal can be defined in terms of some unit cell vectors a1, a2, a3 and the atoms

within that cell, {RI}, I = 1 . . . N . Since this unit cell repeats indefinitely in all

directions, the energy is invariant to translations of multiples of the lattice vectors

and the PES has the restriction:

E(R1, . . . ,RI , . . . ,RN) = E(R1, . . . ,RI + (l1a1 + l2a2 + l3a3), . . . ,RN) (2.2)

Where l1, l2 and l3 are integers.

More generally, systems can be defined as being periodic in any number of directions,

for example, a graphene sheet would only repeat in 2 dimensions.

2.4 Density functional theory

Primarily, the crystal structure of a material is defined by the charge of the atomic

nuclei and the nature of the electron density [22]. To demonstrate this, consider the

Schrödinger equation for a set of atoms:

EΨ(R1...N , r1...n) =
−∑

I

~2

2MI

∇2
I −

∑
i

~2

2me

∇2
i + 1

2
∑
I 6=J

e2

4πε0

ZIZJ
|RI −RJ |

(2.3)

+1
2
∑
i 6=j

e2

4πε0

1
|ri − rj|

−
∑
I,i

e2

4πε0

ZI
|RI − ri|

Ψ (R1...N , r1...n)

Here,MI andmi denote the masses of the Ith nucleus and the ith electron respectively.

ri denotes the position of the ith electron, and ∇I and ∇i are the gradient operators

applied to the Ith nucleus and the ith electron respectively. Ψ represents the

total wave function of the system, ~ is the reduced Planck’s constant and ε0 is the

permittivity of free space.

Due to the fact that the nuclei are much heavier than the electrons, (even for
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the lightest of atoms, MH ≈ 2000me), the nuclear and electronic wave functions

can be decoupled, allowing the electrons to be considered independently to the

nuclei. In addition, the nuclei are extremely localised compared to the electrons,

and can therefore be assumed to be classical point charges. Together, this set of

approximations are commonly known as the Born-Oppenheimer approximation [22,

23].

As a result of this approximation, the first and third term in equation 2.3 can be

considered constant, and can therefore be ignored. This only leaves the kinetic energy

of the electrons and their interaction with each other and the stationary nuclei. This

leaves the electronic Schrodinger equation:

EΨ(r1...n) =
−∑

i

~2

2me

∇2
i + 1

2
∑
i 6=j

e2

4πε0

1
|ri − rj|

−
∑
I,i

e2

4πε0

ZI
|RI − ri|

Ψ (r1...n)

(2.4)

In principle, the energy of any configuration of atoms can be calculated. In practice

however, this is not tractable. To see this, consider the wave function for a single

electron, Ψ(r1). Since, in general, this will not have an analytic form, it has to be

represented on, for example, a grid of points. Assuming a grid of 10 points in the

x direction, 10 points in the y and 10 in the z, this results in 1000 numbers to be

computed. If a second electron were to be added to the system, the resulting wave

function Ψ′(r1, r2) will need an additional 1000 points for each point in Ψ, resulting

in 1,000,000 numbers to compute. Similarly, 3 electrons would need 109 numbers, 4

electrons 1012 numbers, etc. This trend will continue to scale exponentially with the

number of electrons and, for the 24 electrons in a diamond unit cell, a total of 1072

numbers need to be computed, requiring around 6× 1058TB of storage. Given that,

in 2007, all of humankind was only able to store 2.9 × 108TB [24], this is clearly

infeasible.

In an attempt to get past this, the system can be approximated as one of n fictional

non-interacting electrons. The question is then what potential do these fictional

electrons experience?
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2.4.1 Hartree theory

One idea, first proposed by Hartree [25], is to have each electron feel the mean

electrostatic repulsion of all the electrons.:

εiψi(r) =
[
− ~2

2me

∇2 + Vext(r) + VHartree(r)
]
ψi(r) (2.5)

where

Vext(r) = −
∑
I

e2

4πε0

ZI
|RI − r|

(2.6)

is the electron’s interaction with the external potential from the nuclei, and

VHartree(r) = e2

4πε0

∫
Vol

ρ(r′)
|r− r′|

dr′ (2.7)

is the electron’s interaction with the density ρ of all the electrons in the system:

ρ(r) =
∑
i

ψ∗iψi (2.8)

.

This model has some serious drawbacks. First of all, quantum many-body effects such

as electron exchange, the repulsive force between electrons caused by the requirement

for Ψ to be antisymmetric for exchanging electrons, have been ignored. Secondly,

since ρ(r) includes the electron i, it will interact with itself. This is known as

self-interaction.

2.4.2 Kohn-Sham DFT

To fix this, an additional potential can be added to correct for these effects. However,

it not obvious that this potential does not rely on all the electronic wave functions
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ψ1 . . . ψn.

Fortunately, Hohenberg and Kohn [26] proved that the ground-state energy of a

system of electrons in an external potential is uniquely determined by the electron

density:

E[ρ] =
∫

Vol
Vext(r)ρ(r)dr + F [ρ] (2.9)

While they gave no indication as to what the functional F would be, Kohn and

Sham [21] later showed that F [ρ] could be written as:

F [ρ] = TKS[ρ] + EHartree[ρ] + Exc[ρ] (2.10)

where

EHartree[ρ] =
∫

Vol
VHartree(r)ρ(r)dr (2.11)

is the Hartree energy and TKS[ρ] is the kinetic energy of a set of fictional non-

interacting electrons ψi who’s density exactly matches the density of the fully

interacting electron system.

The exchange correlation energy

Exc[ρ] =
∫

Vol
Vxc(r)ρ(r)dr (2.12)

contains all the effects neglected from the other terms. These include the electron

exchange effects mentioned earlier as well as effects caused by the correlation of

individual electrons due to the many-body nature of electron-electron interactions.

Exc also has the effect of correcting TKS[ρ], since the fictional non-interacting electrons

will not have the same kinetic energy as the real interacting electrons.

The eigen-energies and wave functions of these non-interacting electrons can be
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calculated by solving the single-particle Schrödinger equation for each state:

εiψi(r) =
[
− ~2

2me

∇2 + Vext(r) + VHartree(r) + Vxc(r)
]
ψi(r) (2.13)

Once the ψi have been computed, the kinetic energy

TKS(ψ1...n) = − ~2

2me

∑
i

〈ψ∗i |∇2|ψi〉 (2.14)

can be evaluated.

2.4.3 The exchange-correlation energy

All that is unknown now is the exact form of Exc. To do this, Kohn and Sham

suggested that, for a smooth enough density, it would be sufficient to consider the

density to be approximately uniform in space and, at each point in space, use the

local energy density for a homogeneous electron gas of that density. This turns out

to work fairly well, and is known as the Local Density Approximation (LDA)[21].

ELDA
xc [ρ] =

∫
vol
εHEG(ρ (r)) ρ(r)dr (2.15)

Here, εHEG
xc is the exchange-correlation energy density of the homogeneous electron

gas with density ρ(r). This can be calculated using higher order levels of theory for

a range of densities and analytic forms can be parameterised to these[27, 28].

In an attempt to improve on this, it is possible to consider not only the local density

at each point in space, but also its gradient. This is known as the generalised gradient

approximation (GGA).

EGGA
xc [ρ] =

∫
vol
εHEG(ρ (r),∇ρ(r)) ρ(r)dr (2.16)

One common GGA is the PBE functional [29].
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GGAs often have the effect of softening the atomic bonds, and tend to give more

accurate total energies and structural energy differences than LDA. They can however

over correct for this, giving them a tendency to under-bind atoms [29]. There is also

small additional cost to using a GGA over an LDA. Due to the implicit locality in

local and semilocal functions such as the LDA and GGA, non-local effects such as

the Van der Waals interaction are not included. As a result, a number of schemes

have been proposed to include such effects [30, 31].

2.4.4 Spin density functional theory

When considering magnetic systems, it is essential to calculate the effects of spin in

the model. This is done by separating the electronic states of opposing spins:

{ψi} =
{
{ψ↑i }, {ψ

↓
i },

}
(2.17)

and subsequently the densities:

ρσ(r) =
∑
i

ψσ ∗i ψσi ; σ = {↑, ↓} (2.18)

From this, the total density ρ and spin density σ can be calculated

ρ(r) = ρ↑ + ρ↓ (2.19)

σ(r) = ρ↑ − ρ↓ (2.20)

As a result of this, a different Exc is required for the different spins [32]. Similar to

before, Exc can be calculated to a higher level of theory for a homogeneous electron

gas, both polarised and non-polarised, and interpolated between them based on the

value of σ(r)
ρ(r) [27, 28]. This results in two sets of independent fictional electrons:
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εσi ψ
σ
i (r) =

[
− ~2

2me

∇2 + Vext(r) + VHartree(r) + V σ
xc(r)

]
ψσi (r) (2.21)

2.4.5 DFT+U

While LDA and GGA functionals correctly remove self-interaction effects for the

homogeneous electron gas, they can still fail significantly where the electronic states

are highly localised. This occurs frequently in atomic d-like or f -like electronic states,

where there is a significant contribution from the Coulomb energy due to the charge

density of electrons occupying those states. DFT+U [33, 34] attempts to correct for

this by adding an energy term associated with the occupation of those states:

EDFT+U = EDFT + U

2
∑
I

∑
m,σ

{
nIσmm −

∑
m′
nIσmm′nIσm′m

}
(2.22)

where

nIσmm′ =
∑
i

〈ψσi |P I
mm′ |ψσi 〉 (2.23)

is the overlap between the single particle wave functions and P I
mm′ , the generalised

projection operators of the localised states m and m′ on atom I, and U is a parameter

describing the on-site Coulomb exchange interaction [35]. Using EDFT+U has the effect

of increasing the energy of partially occupied states to counteract the underestimation

of these states in EHartree.

2.5 Plane waves and periodic lattices

Now that the problem has been described mathematically, the question of how to

represent this computationally arises. Since the systems are periodic, a natural

description would be a Fourier basis. In this description, every function is described

as a sum of plane waves:
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f(r) =
∑
i

cie
iqi·r (2.24)

If the function f is periodic with the unit cell, then {q} should be chosen such that:

q · ai = 2πn, ∀n ∈ {0 . . .∞} (2.25)

These special q vectors are usually given the symbol G.

While it is true that all observable functions behave like this by definition, this is not

the case in general. In particular, Bloch’s theorem states that the wave functions

need only have a |Ψ|2 which is periodic [22, 36]. This allows them to take the form:

ψk = u(r)eik·r (2.26)

where u(r) is periodic with the unit cell and k is a vector in reciprocal space.

When considering an infinite crystal, each component of k can be considered continu-

ous in the range −π to π, since ψk = ψk+2π. Since there is no preferred k, observables

such as the total energy E or the density ρ are calculated by integrating over all

allowed k in the Brillouin zone.

Computationally, this can be done as a finite sum over evenly spaced points in the

allowed range [37]. It is important to make sure that the Brillouin zone is adequately

sampled to achieve accurate results.

2.6 Interatomic potentials

Despite the improved efficiency of DFT verses full many-body QM, typical imple-

mentations scale cubically with the number of atoms and can only scale up to a few

thousand atoms on today’s largest computers. Methods exist which scale linearly

with the number of atoms [38] which are able to simulate tens of thousands of atoms,
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however to extend beyond this, more approximations need to be made. One common

approximation is to ignore the electrons entirely, and instead treat the atoms as point

particles, interacting in some empirically derived potential. This is often described

in terms of the number of atoms needed to calculate each term:

V =
∑
I

V 1−body
I + 1

2!
∑
I,J

V 2−body
IJ + 1

3!
∑
I,J,K

V 3−body
IJK + . . . (2.27)

In the absence of an external field, the 1-body term is usually constant for each atom,

and is often ignored in fixed-N calculations.

2.6.1 2-Body potentials

For many systems, most notably these that are chemically inert, a good approximation

is to assume that a 2-body potential exists between atoms. This is usually constructed

with a long-range interaction describing the Van der Waals attractive force between

the atoms, and a long-range repulsion. The Van der Waals interaction manifests as a

1/|rIJ |6 potential. The repulsive term is intrinsically more complicated, but is often

assumed to be a higher-order polynomial or exponential function. Two common

examples of 2-body potentials are the Lennard-Jones potential [6]:

For many systems, most notably these that are chemically inert, a good approximation

is to assume that a 2-body potential exists between atoms. This is usually constructed

with a long-range attraction mimicking the dipole-dipole interaction ,and a short-

range repulsion between the atoms. Physically, the dipole-dipole term manifests as

a 1/|rIJ |6 interaction. The repulsive term is intrinsically more complicated, but is

often assumed to be a higher-order polynomial or exponential function. Two common

examples of 2-body potentials are the Lennard-Jones potential [6]:

V LJ
IJ = 4εLJ

( σLJ

|RIJ |

)12

−
(
σLJ

|RIJ |

)6
 (2.28)

and the Buckingham potential[39]:
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V Buck
IJ = Ae−B|RIJ | − C

|RIJ |6
(2.29)

where σLJ, εLJ, A, B and C can be chosen to fit to either experimental data or higher

order levels of theory.

In order to compare these potentials, they can be rewritten in the form:

V LJ
IJ = D

[(
Rmin

RIJ

)−12
− 2

(
Rmin

RIJ

)−6]
(2.30)

V Buck
IJ = D

[(
6

ζ − 6

)
exp

(
ζ
(

1− RIJ

Rmin

))
−
(

ζ

ζ − 6

)(
Rmin

RIJ

)6]
(2.31)

Choosing ζ = 13.776 leads to the two potentials having the same description near

Rmin [40].
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Figure 2.4: Comparison of the Lennard-Jones and Buckingham potentials in reduced
units.

Figure 2.4 demonstrates that, near the minimum, both potentials have similar

behaviour. However, V Buck becomes unphysical near |RIJ | = 0 as the dominant

−C/|RIJ |6 term goes to −∞.
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2.7 Other potentials

For many materials, pair potentials do not provide a sufficiently accurate description

of the system. Depending on the system in question, there are a number of ways in

which to approach the problem.

For covalently bonded systems, it is often useful to include higher order terms of

equation 2.27 explicitly, describing interactions between 3 or more bodies. Examples

of this can be found in the BKS potential for Quartz [41] and Stillinger Weber

potential for silicon [42]. These potentials are often parameterised to a particular

system, and can behave unphysically beyond this. For example, Stillinger Webber

is very good at describing bulk silicon but falls short when considering silicon

surfaces [43]. As a result, they typically behave poorly for systems far from their

parametrisations.

For metallic systems, a significant contribution to the energy comes from atomic

interactions with delocalised electrons. For these systems, methods such as Finnis-

Sinclair [44] and EAM [7, 8] include an interaction with some idealised electron

density in addition to pair-wise interactions between the atoms.

In recent years, significant progress has been made in machine learning approaches to

atomic potentials. In particular, Gaussian processes [45] and neural networks [46, 47]

have both been used to describe the energetics of systems of atoms, demonstrating

near-DFT accuracy, but on much larger systems of atoms, or on a much longer

timescale.

These methods usually involve running many small-scale calculations with a higher

accuracy method such as DFT, and fitting some generalised model system to them.

A clever choice of model system allows the learnt systems to perform calculations

infeasible for the original level of accuracy. For example, by approximating an atom’s

contribution to the energy based on its local neighbourhood, many more similar

atoms could be modelled, each with energy contributions approximated from their

neighbourhood, as shown in figure 2.5.

While machine learning approaches can provide large speed increases over higher
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LearnedDFT

DFT

DFT

Figure 2.5: An illustration of high-accuracy training simulations of local environments
(left) emerging in a larger learned system (right). The energy contribution of
neighbouring atoms around a central atom is calculated for a range of possible
configurations using DFT, and atomic energy contributions are approximated from
these results in the larger system.

accuracy methods, they can only be relied upon simulating systems similar to those

they were trained on. As a result, it can turn out to be more expensive to train the

models sufficiently than it would have been to simply use a higher accuracy method

to begin with.

2.8 Simulating magnetic effects

While quantum-based approaches can naturally include magnetic effects, they are

often too complex to include explicitly in atomic potentials, and their effects included

through the mechanical and thermal properties used to parameterise them [48].

There are some potentials however that try to explicitly include magnetic effects [48,

49, 50] and some machine learning models have been trained to deal with magnetic

systems [51].

Another approach is to assume that the atoms are fixed on a lattice. In this case,
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the distance-dependence of the energy can be considered constant and only the

spin-dependence considered. When considering the spin-dependence of a system

of atoms with atomic spins SI , there are 4 main terms which contribute to the

energetics of the system [52]:

VIJ(SI ,SJ) = V ex + V di + V ani + V Ze (2.32)

where

V ex
IJ = −2JIJSI · SJ (+ higher order terms) (2.33)

is the Heisenberg exchange interaction,

V di
IJ = 1

2
µ2
Bµ0

4πR3
IJ

[
SI · SJ −

3
|RIJ |2

(SI ·RIJ)(SJ ·RIJ)
]

(2.34)

is the magnetic dipole interaction,

V Ze
I = −µBHapp · Si (2.35)

is the Zeeman energy, describing interactions with an external field H, and V ani
IJ

is some anisotropic interaction depending on the crystal environment of the atom,

usually through the effect of spin-orbit coupling.

As in atomic potentials, the parameters for magnetic simulations can be determined

from a combination of ab initio simulation and experiments.
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Chapter 3

Local & global optimisation

3.1 Introduction

Physically useful systems tend to represent minima in the energy landscape. In order

to determine these structures, a range of optimisation algorithms can be used. This

chapter reviews a number of optimisation algorithms used in the field of computational

materials simulation, both to find locally and globally stable structures.

3.2 Minima and Maxima

Given a mathematical description of a system of atoms, the question arises of which

systems are physical and useful, and which are unphysical or unstable. As was eluded

to earlier, physical systems tend to lie at the minima of their energy landscapes.

This can be explained simply by looking at what would happen if this were not the

case, demonstrated in figure 3.1.

Knowing this then, it would be very useful to be able to calculate the location of

these minima, i.e. the locally stable atomic configurations of the system. This is

where the idea of function optimisation comes in. The field of function optimisation

aims to find the extrema (maxima and minima) of functions. This work will focus

on minimisation since interesting structures lie at energy minima. However it should
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Figure 3.1: Dynamics of an atom on a PES at: A: Zero force, but will lower energy
if any force applied, B: Nonzero force towards the minimum, C: Zero force, with
restoring force if any external force applied.

be noted that the methods described below apply to other optimisation problems as

well.

3.3 Local verses global optimisation

When considering function optimisation, there are 2 main classes of problems,

local and global optimisation. Local optimisation aims to find minima nearby to

some starting point, often the minimum of the well containing that point. Global

optimisation on the other hand aims to find the lowest overall minimum across the

entire search space. This is demonstrated in figure 3.2.

In the case of structure optimisation, local optimisation is useful when there is some

idea of the structure of interest, but need to calculate positions to a higher level

of precision. Global optimisation is more useful when either there is little or no

information about the structure of interest interest. Global optimisation is also
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Figure 3.2: An example of global (A) and local (B, C) minima, with their basins of
attractions highlighted. Note: point (1) is closer in x to B, but is in A’s basin of
attraction

useful when there are a range of structures of interest, since these algorithms tend to

sample a large portion of the search space.

3.4 Local optimisation algorithms

3.4.1 Steepest descent methods

Local minimisation algorithms start off with some input vector x, and aim to find

some improved vector xopt near x such that the objective function f(xopt) is a

minimum. There are a number of approaches to this problem, but a popular class

of solution involves the idea of gradient descent [53]. This involves taking the

information about the gradients g, where

gi(x) = ∂f(x)
∂xi

(3.1)
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in order to modify x in such as way as to reduce the value of f . This process is

repeated until the gradient is zero in all directions, at which point a minimum has

been reached.

The simplest example of a gradient descent algorithm is that of steepest descent. In

this method, x is improved by adding a small vector directly opposite the gradient

each iteration since, for an infinitesimally small change, this direction will most

significantly reduce f(x). The value of x at iteration i+ 1 can be calculated as:

xi+1 = xi − λgi (3.2)

where λ is either some small constant, or an optimisable parameter. In this case, a

1D optimisation of λ is performed, known as a line search. The value of λ used for

each iteration is the value which minimises f at xi+1.

Even with a sufficiently small λ, the steepest descent algorithm is guaranteed to

converge for continuous functions and can take many iterations to get near the

minimum [54]. On the other hand if a line search is performed, each step is guaranteed

to be orthogonal to the previous step, which can again result in many steps being

needed to the minimum. This is a particular problem if f(x) is highly anisotropic,

as can be seen in figure 3.3.

3.4.2 Quasi-Newton methods

In order to improve the steepest descent algorithm, information from more higher

order derivatives can be used. Newton’s method calculates the updated positions x

as:

xi+1 = xi −H−1f i (3.3)

where Hij = ∂2f
∂xi∂xj

is the matrix of second derivatives known as the Hessian.

In order to compute the full Hessian matrix for a vector of n elements, O(n2) second
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Steepest descent

Quasi-Newton

Figure 3.3: Illustration of steepest descent vs. a quasi-Newton method for the 2D
anisotropic harmonic well.

order derivatives need to be computed, which can get very expensive. As a result,

a number of quasi-Newton methods have been developed. These methods either

use information from multiple previous iterations to implicitly include second order

effects, or explicitly calculate an approximate Hessian matrix.

One algorithm which does the former is the two point steepest descent (TPSD)

algorithm [55]. TPSD aims to use information of the positions and gradients from

the previous iteration in order to predict an improved step size for the current

iteration:

xi+1 = xi − αigi (3.4)

where

αi = ∆x ·∆g
∆g ·∆g

, (3.5)
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and

∆x = xi − xi−1, (3.6)

∆g = gi − gi−1 (3.7)

Another quasi-Newton method is the BFGS method [53], named after Broyden [56],

Fletcher [57], Goldfarb [58] and Shanno [59], who independently discovered it. This

method explicitly stores and updates an approximate Hessian B each iteration.

BFGS is updated to x is:

xi+1 = xi − λ
(
B−1

)i
f i (3.8)

and B is updated as:

Bi+1 = Bi + (∆f i)(∆f i)>
(∆f i)>(∆x)i −

Bi(∆xi)(∆xi)>(Bi)>
(∆xi)>Bi(∆xi) (3.9)

To improve computational efficiency, B−1 is often stored and updated rather than B.

This way, the matrix does not need to be inverted every iteration.

For the first iteration, B is usually chosen to be the identity I, or some initial guess

for the Hessian, if one exists.

While BFGS performs very well in the quadratic region (i.e. where the function

is approximately parabolic), its explicit reliance on the approximate Hessian mean

that, if the curvature at the starting point and near the minimum are significantly

different, the algorithm can struggle to converge. This is particularly noticeable

in crystal structure optimisation where, near convergence, the energy landscape is

approximately quadratic. However, far from any minima this is not the case, and

methods such as TPSD perform better.
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3.4.3 Preconditioning

The rate of convergence of both steepest descent and quasi-Newton methods are

affected by how isotropic the search space is. This is because all dimensions are

considered equivalently when calculating step sizes. This is not always the case, for

example a variable cell geometry optimisation may be be simultaneously optimising

the lattice vectors and the atomic positions within the lattice, which will behave

differently.

If some knowledge of the system is known in advance, each dimension in the search

space can be scaled such that they are all approximately equal. For example, methods

exist for geometry optimisation [60], as well as wave function minimisation [61] and

density mixing [62] in density functional theory calculations.

3.4.4 Other local minimisers

In the field of crystal structure optimisation, another well known local energy

minimisation algorithm is damped molecular dynamics (DMD) [63, 64]. This involves

evolving the dynamics of a system of atoms with some additional force included to

damp the dynamics close to the minima. This can be viewed as a quasi-Newton

algorithm using the first derivatives of the positions, rather than the second [63].

xi+1 = xi + vi∆t , (3.10)

vi+1 = vi +
(

1
1 + γ

)(
ai∆t
2m − γvi

)
(3.11)

where γ is some damping parameter. Careful choice of γ will result in critical

damping of the system [63], whereas choosing γ = 0 results in standard NVE MD

using Euler’s integration scheme. Damped MD can similarly be applied to higher

order MD integration schemes, such as Verlet integration.

While these techniques are generally less efficient than second order quasi-Newton
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methods, they can be useful if, for example, computing the second derivatives is too

costly.

3.5 Global optimisation algorithms

Unlike local minimisation algorithms which only search for a minimum in the region

of their initial starting state, global minimisation algorithms search for the vector

xopt, or the set of vectors {x}opt where the function has its lowest value. In other

words,

xi ∈ {x}opt iff f(xi) ≤ f(x′)∀x′ (3.12)

Often, by symmetry or coincidence, there are multiple global minima for a given

function. Depending on the use-case, a global minimiser’s task can be to find a single

global minimum, the set of global minima, or the set of all minima, including the

global minima.

It can be shown that, for the general global optimisation problem, no single global

optimisation algorithm is superior. This is known as the no free lunch (NFL)

theorem [65]. However, with some domain-specific knowledge of the optimisation

problem, different optimisation algorithms can be shown to have advantages [66].

3.6 Metaheuristic algorithms

Due to the nature of global optimisation, metaheuristic algorithms are often used.

These algorithms use more general algorithmic frameworks than exact mathematical

methods, and their designs are often inspired by natural processes.
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3.6.1 Simulated annealing

A good starting point for finding the crystal structures of materials is to look at

how it is done experimentally. The idea of annealing has been around for centuries

as a mechanism for reducing stresses, and removing dislocations and defects from

materials. The process involves heating the material to around the temperature at

which recrystallisation can occur and letting it slowly cool, allowing the constituent

atoms to fall into more energetically favourable configurations [67].

Simulated annealing involves a similar principle [68], by which the dynamics of a

system are propagated through time. While doing this, the simulation temperature

is controlled in order to allow the system to explore a wide search space (high T),

while exploring the minima of potential wells (low T). When run for a sufficiently

long time, and with appropriate control over the temperature, many approximate

global minima can be found.

While simulated annealing has been used for structure optimisation [69], it has the

disadvantage that only local steps can be taken in the configuration space, so if the

system gets stuck in a deep local minimum, it can become difficult to escape.

3.6.2 Basin hopping

Basin hopping resolves this pitfall by performing larger random jumps in the space of

possible configurations using a Monte Carlo algorithm, then using locally optimising

the resultant structure to find the minimum of that particular basin [70].

Minima hopping [71, 72, 73] improves upon this idea by accepting or rejecting each

hop based upon the energy difference it creates. These jumps can either be performed

in regular Cartesian coordinates, or in a more chemically motivated coordinate system,

as done by Panosetti et al. [73].
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3.6.3 Metadynamics

Metadynamics provides an alternative solution to the drawbacks of simulated anneal-

ing [74]. As the simulation evolves, repulsive Gaussians are added to the function

at points in the configuration space as they are being explored. This results in

basins of attraction that have been searched slowly filling, directing the search into

other minima. This allows the system to locate new minima as is done in simulated

annealing, without getting stuck in regions of configuration space which have already

been explored.

This technique has the advantage that the free energy surface can be recovered, and

the stability of finite temperature structures can be investigated [75]. However like

simulated annealing, movement through the configuration space can only be done

locally, having to explore each minimum it finds. This means that if the search does

not start near the global minimum, it can take a long time to reach it. In addition,

the performance of metadynamics is highly dependent on the shape of the Gaussians

used to fill the wells, with performance slowed significantly if the applied Gaussians

are too narrow or too wide.

3.6.4 Population based methods

While methods like SA and metadynamics will explore all of configuration space if

given enough time, they are limited early on to regions near their starting position.

This is because, at each iteration, they can only make local movements. One popular

solution to this is to use a number of multiple starting positions. Each can then

independently be explored in an attempt to find local minima. Members of this

population can then be updated in order to explore other regions of the configuration

space. Due to the independent nature of these members, population based methods

often have more scope for parallelism than other methods.
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3.6.4.1 Random search

The simplest population based method is the random search, where a large population

of independent members is used to sample the configuration space. While this will

eventually find the global solution, there is no information built up about the space,

therefore configurations of interest are as likely to be found by the first member

as the last. A variation on this technique has been to great effect by Pickard and

Needs [76], who choose populations of ’random sensible structures’. This choice

can be based on physical augments such as ensuring bond lengths are in physically

sensible ranges or imposing symmetry on the system, or on chemical intuition such

as building structures out of molecular base units.

3.6.4.2 Evolutionary algorithms

Another popular class of population based methods for structure prediction is that of

evolutionary algorithms [77, 78, 79, 80]. In these algorithms, the ‘fitness’ of members

of a population is evaluated in some way, in an attempt to decide which of them are

most likely to find solutions of interest. The population is then updated in some way,

based on information learned from these members, and the process is repeated.

Most common amongst evolutionary algorithms are the genetic algorithms (GA). GAs

perform this population update by selecting favourable members of the population,

and generating new population members from combinations of these members.

Depending on the problem at hand, a variety of methods exist for the fitness

evaluation, member recombination and selection stages. This work focusses on a GA

designed for crystal structure prediction, which will be detailed in the next chapter.

When considering how to represent an optimisation problem for a genetic algorithm,

a choice needs to be made about how the search vector is to be represented for

these operations. A simple GA may treat the input vector simply as a 1-D array of

real numbers or as a bit string representing that vector as illustrated in figure 3.4.

However, it is often the case that a more physically meaningful representation of the

search vector can improve the convergence characteristics of the algorithm.
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Figure 3.4: Demonstration of binary encodings being shared during crossover of two
members represented as bit-strings.

In addition to pure GAs, a number of hybrid GAs exist, incorporating ideas from other

algorithms. For example, memetic algorithms allow each member of the population

to perform local searches [81, 82]. Additionally, ideas such as metadynamics or tabu

searches can be applied to these local searches.

3.6.5 Tabu search

In addition to the optimisation algorithms above, a number of algorithms exist to

dissuade a calculation from exploring regions which have already been explored.

These methods are known as tabu search methods [83]. The main idea of these

methods is to somehow keep a memory of which regions of configuration space have

already been explored, and guide the search away from these.

There are three kinds of memory which can be utilised in a tabu search:

• Short-term: A list of states which have been recently visited

• Intermediate-term: Intensification rules to focus the search on some region of

45



interest, and

• Long-term: Diversification rules which drive the search into new regions.

Any or all of the above memories can be used to improve the performance of other

optimisation algorithms.
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Chapter 4

A Realspace genetic algorithm for

structure prediction

4.1 Introduction

This chapter reviews the GA for crystal structure prediction first developed by

Abraham and Probert [78, 84]. Ideas specific to the domain of structure prediction

are discussed, such as how the crystal is represented in the GA and how the various

GA operations are interpreted in this context. In addition updates to the GA which

have been developed over the course of this work are discussed. These include the

use of niching for structural diversity and a corrected structure factor fingerprint.

4.2 Overview of the GA

The work presented in this thesis is based upon a GA for crystal structure prediction

written by Abraham and Probert [78, 84] as part of the CASTEP code [85], known

from hereon in as castep_GA. CASTEP is a materials modelling program written in

Fortran, primarily for DFT simulations of periodic systems. The castep_GA program

provides a GA for structure prediction based on the energies and forces calculated

by CASTEP, and utilises a number of CASTEP features, such as energy evaluation
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and local geometry optimisation.

In castep_GA, each member is represented by a unit cell described by its cell vectors,

and a list of atoms described by their positions relative to the unit cell. It takes as

an input an example unit cell, along with a list of calculation parameters, both for

the GA and for the underlying energy calculations. The process for optimising the

crystal structure of the material is performed as follows:

1) First, castep_GA reads in a CASTEP-style cell and parameter file, and creating

a population of initially mutated structures based on this cell.

2) The geometry of these members of the population are optimised locally using

CASTEP’s internal methods.

3) The fitness of the converged members is evaluated.

4) Members are selected for crossover based on their fitness, and new members

are generated.

5) Members of the population are mutated.

6) Any members in the population who are new or who have been modified are

then geometry optimised, as performed in step 2).

7) The fitness of these members is re-evaluated.

8) Members are selected for the next generation based on their fitness.

9) Steps 4-8 are then repeated until the calculation has converged.

In order to explain how castep_GA works, it is important to look at the GA operations

in the context of atomic structure prediction.

4.3 Crossover

In the crossover step, two members, commonly known as the parents, are combined

in some way to produce some number of new members, known as children. Since the

members are represented by atomic positions in some unit cell, it makes sense to

choose some atoms from one parent and some from another to produce a child.

One simple way of doing this is to take analogous planar cuts through the unit cells
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Figure 4.1: Program flow of castep_GA
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of each parent. One child can then be formed by taking all the atoms from one side

of the cut from one parent and all the atoms from the other side from the other.

A second child can then be formed from the remaining atoms. In fact, has been

shown [78] that instead of using planar cuts, using a plane-wave shaped cut performs

significantly better. This is because discontinuities caused by planar cuts produce

extra work for the local optimiser.

Figure 4.2: Real-space crossover of 2 6-atom cells in 2 dimensions using the periodic
cuts. Atoms from the two parents (left) are chosen based on whether they are within
the cut or not, and copied into the appropriate children (right).

When performing crossover, it is possible that the two parents will have different

lattice vectors. In this case, a choice needs to be made between performing the

crossover in absolute or fractional coordinates. Performing the crossover in fractional

coordinates will preserve the periodic nature of structures, but absolute distances

and angles between atoms is not guaranteed to be conserved. Performing crossover

in absolute coordinates will preserve local distances between atoms, but may not be

commensurate with the resultant unit cell, losing the periodic nature of the structure.

For these reasons, the crossover in castep_GA is performed in fractional coordinates.
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4.4 Mutation

As mentioned in the previous chapter, it is useful to mutate the members in order

to more rapidly cover the search space. In castep_GA, there are three mutation

operations that can be performed:

• Cell vector perturbation, where the unit cell vectors are modified from their

current values,

• Atomic perturbation, where a chosen atom is moved from its current position,

and

• Atomic permutation, where two atoms of different species are swapped with

each other.

Figure 4.3: Example of mutation operations on a unit cell in 2 dimensions. The
original cell (top left) can be mutated by cell vector permutation (top right), atomic
perturbation (bottom left) or atomic permutation (bottom right).

For a pure GA, mutations are essential to cover the entire search space, since there

is no other mechanism for component values to change from their original value from

the first generation. However since castep_GA uses a local optimiser, the role of the

mutation step is different. Mutations allow a member to move into different basins of
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attraction, allowing the local optimiser to explore them. As a result, cell and atomic

perturbation mutations need to be sufficiently large such that the local optimiser

will fall into a different minimum.
f(
x
)

x

Figure 4.4: The Effect of local optimisation on the apparent landscape of the GA.
Since the local optimiser returns the local minimum if (black line) for all points in
that minimum’s basin of attraction, the GA is effectively optimising x with respect
to the red line. This transformation has also been discussed by Wales[1].

4.5 Selection

At a number of points in the GA, a subset of members need to be selected from

the population. In particular, this is done when selecting parents for crossover and

selecting members to advance to the next generation. Naively, one might assume

that simply selecting the fittest members will allow the algorithm to converge most

rapidly. However this can lead to a phenomenon known as stagnation, where all

members of a population represent the same solution. A better way of selecting

members is by taking a weighted random sample of the population, where the weight

of each member being selected is related to its fitness. This is commonly known as

roulette selection.
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4.6 Fitness evaluation

In order to compare members of the population, each member is assigned with a

value, between 0 and 1, saying how likely that member is to improve the search

chances in future generations. The most important factor in this is the energy

associated with that structure. However it is also useful to include a contribution

relating to how diverse that member is with respect to the rest of the population. In

order to do this, pairs of members need to be compared in in order to find out how

similar they are. This is where the idea of structure fingerprinting comes in useful.

4.6.1 Structural fingerprinting

Defining a comparison between two physical structures is not a simple problem.

Naively, one might be tempted to take the atoms from one structure and the atoms

from another and simply sum the displacements made by each individual atom.

However, there are many situations where this method will give nonzero values for

physically identical structures. One obvious example of this would be if all the

atoms were rigidly shifted by 1 Å. The structures would be calculated to be N Å

for an N atom system, but the physics of that system would be the same. Another

issue is that of permutations. For a system where any number of atoms can be

considered indistinguishable from each other, for example two carbon atoms in a

diamond structure, any permutation of these atoms would result in a physically

identical structure, but a nonzero comparison.

To solve this, the idea of structural fingerprinting is used. A fingerprint is some math-

ematical description of the atomic structure, which is unchanged by such translations

or permutations of the individual atoms. There are a number of options which fit

these parameters, such as the radial distribution function or the crystallographic

structure factor [84], as well as other heuristics based on bond orderings or more

abstract interpretations [86, 87].

In the case of castep_GA, the spherically averaged structure factor Λ(k) is used as a

structural fingerprint. Physically, this describes the amplitude and phase of a wave
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with wave number k diffracted from the crystal lattice, averaged over all incident

directions. This is calculated for a range of values of k for each structure.

In the original version of castep_GA had an incorrectly derived form of this[84, 88].

Originally the form of Λ(k) used was:

Λ(k) = N
N∑
I=1

ρ2
I + 2

N∑
I=1

N∑
J>I

ρ2
Iρ

2
J × J0

(√
3πk|RIJ |

)
(4.1)

Where ρI is the charge density of the nucleus of atom I, defined to be the charge of

the nucleus ZI at the position of the nucleus RI , and zero everywhere else. J0 is a

Bessel function.

This work re-derived and implemented the correct form:

Λ(k) =
N∑
I=1

ρ2
I + 2

N∑
I=1

N∑
J>I

ρIρJ × j0 (k|RIJ |) (4.2)

where j0 is the Bessel function of the first kind. The derivation of this is presented

in appendix A.

To compare two structures, denoted x and x′, the Pendry R-factor (reliability

factor) [89] can be used. The R-factor can be calculated as:

Rxx′ =
∑
kr
|Λx(kr)− Λx′(kr)|∑

kr
Λx(kr)

(4.3)

Once the value of Rxx′ between all pairs of structures in a generation are known,

structures which are too similar can have their fitness adjusted to dissuade all of

them from being selected. There are a number of ways in which this can be done.

Originally, castep_GA used a hybrid fitness, where each structure was compared

against the best structure in the generation. The modified fitness was then calculated

as a linear combination of the energetic fitness and the fingerprint fitness:

f ′(x) = αf(x) + (1− α)Rxxbest (4.4)
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Figure 4.5: R-factor between perturbed structures in the Si8 unit cell. For a given
random perturbation on the atomic positions (black and red) and optionally the cell
vectors (red), this graph shows the R-factor between that structure and the original
structure.

While this improved the algorithm, there were some flaws with it. Firstly, the

technique would only penalise structures similar to the best member. It could be

that a number of other members all represent the same structure, but none of them

are the lowest energy. This would allow all of them to be selected as if they were

unique. Secondly, the value α has no obvious physical analogue, so the value of this

can only be calculated from experimentation with the algorithm and may not be

transferable.

An alternative method, implemented as part of this work, is to use the concept

of niches [90, 91]. This idea is inspired by ecological niches, where members of a

population adapt based on the environment they are in. In the GA, each member’s

fitness is adjusted based on the similarity of all other members in the population, to

mimic the concept of competition for resources. This is done by adjusting the fitness

function to:
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f ′(x) = f(x)∑
x′ s(Rxx′) (4.5)

where s(R) is known as the sharing function, and is defined as

s(R) =
(

1− R

Rscale

)
, R < Rscale; 0 otherwise. (4.6)
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Figure 4.6: Example of the sharing function

The effect of this is that if two structures are identical, then s(R) = 1, and the fitness

of each structure is maximally penalised. However if the two structures have a high

s(R), then neither will be penalised. Two similar structures, i.e. two structures with

0 < R < Rscale will be somewhat penalised, though not as much as if they were

identical.

The question naturally arises of what Rscale should be. Since there is an approximate

mapping between the size of R and the amount a structure has been perturbed

from its original position, physical arguments can be made to choose an Rscale which

corresponds to perturbations of a structure significant enough as to force it out of
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its basin of attraction. For this work, the value of Rscale was chosen to be 0.03, as

this corresponds to around 0.25 Å, as is shown in figure 4.5.
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Figure 4.7: Lowest energy structures found at each generation of GA runs on a
high-pressure Si8 system, averaged over 10 runs.

The effects of niching algorithm can be seen in figures 4.7 and 4.8 for GA calculations

of a high-pressure Si8 cell. Each algorithm was run 10 times and the results averaged

to remove errors. Figure 4.7 shows the accelleration that fingerprinting provides using

both the original hybrid fitness algorithm and the new niching algorihtm. Both of

these algorithms find the ground state structure in around 10 generations, compared

to the 25 generations taken by the run without fingerprinting.

Figure 4.8 shows the diversity of structures found in the final generation of each

GA. It can be seen that the runs without fingerprinting and, to a lesser extent, the

runs with the original hybrid fitness algorithm both find the ground state structure

multiple times. The new niching algorthm however is able to explore a wider range

of higher energy minima due to the increased diversity.
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Chapter 5

Extending the GA to magnetic

structures

5.1 Introduction

This chapter discusses the development of the GA to handle magnetic degrees of

freedom as well as simply structural. Concepts introduced in the previous chapter

are extended where necessary to handle magnetic state optimisation. Finally, a

new magnetic structure fingerprint is introduced, inspired by spin polarised neutron

scattering theory, as a natural extension to the structure factor fingerprint discussed

before.

5.2 Problems with a traditional GA for structure

prediction

When considering magnetic systems, the energy depends not only on the atmoic

positions, but also the spin of the system. In the atomic basis, this term can be

approximated as the local spin density around each atom, i.e. an atomic spin. This

can be described as a scalar value aligned along some axis (collinear spins) or as

a 3D vector (non-collinear spins). This raises the complexity of the system from
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3N degrees of freedom for non-magnetic systems to 4N for collinear systems, or 6N

degrees of freedom for non-collinear systems.

Since the original castep_GA has no knowledge of the atomic spins and is only aware

of the atomic positions, the energy landscape becomes multivalued. In other words,

a single crystal structure can produce two or more physical systems with different

energies. In the case of DFT calculations, the system which is actually found by

castep_GA is left entirely up to CASTEP’s internal electronic minimiser. Since this

only locally minimises the electronic wave functions from random values, there is

no guarantee that the energy calculated for that structure is the physically correct

one. This will hinder the efficiency of castep_GA since information about the spin

configurations of previous members is lost.

One example of a system which can suffer from this is bulk iron. As can be seen in

figure 5-1, iron’s crystal structure, BCC, is only the lowest energy structure when

the magnetic structure is ferromagnetic. If, over the course of a GA calculation,

castep_GA finds antiferromagnetic iron or nonmagnetic iron, both of which are

unphysical systems, it will falsely decide that BCC iron is an unfavourable structure.

In addition to this, efforts to dissuade similar crystal structures will mean that struc-

tures with similar crystal structures but significantly different magnetic structures

will be dissuaded from being selected for future generations. This has the effect of

hiding the true solutions from the GA.

5.3 Addition of spin to the GA

In order to negate these effects, spin degrees of freedom were included in castep_GA.

In order to do this, a number of operations had to be extended to be spin-aware.

5.3.0.1 Spin propagation

Since castep_GA already represents the system as a set of atoms along with a unit

cell, extending this to include spins is relatively simple. One need simply extend the
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Figure 5.1: Comparison of FCC and BCC energies for different magnetic configura-
tions of Fe unit cells [2].

description of an atom to include its spin along with its species and position.

In order for castep_GA to use and manipulate these atomic spins, there needs to be

some mechanism for passing these to the individual CASTEP calculations. Passing an

initial atomic spin configuration into CASTEP can be specified by an initial magnetic

moment as either a scalar or a vector in the .cell file. This allows CASTEP to

initialise the electronic wave function in such a way as to localise electronic spins

around atoms. This encourages local wave function minimisation to start near a

converged state with the magnetic properties which are desired.

At the end of the calculation, CASTEP has information about the spin of the system

in the electron density. In order to project this onto an atomic basis, a number of

options are available, such as a Wannier basis, or using Mulliken or Hirshfeld analysis

to assign regions of the election density to specific atoms. For this work, Hirshfeld

analysis [92] was chosen since this associates the entire charge and spin density to

the atoms, rather than just that around the atoms as is the case in Mulliken analysis.

This process involves allocating a fraction of the densities at each point to nearby
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atoms, based upon the ratio of the density of equivalent free-atom densities for those

atoms. Information about the atomic spins on the atoms can then be passed back to

castep_GA, allowing spins to be locally minimised by CASTEP in a similar manner

to the positions.

5.3.0.2 Spin mutations

In order for castep_GA to efficiently optimise the spins, mutation operations need to

be defined. This work defines two such mutations: perturbation and permutation,

similar to the atomic positions.

In the case of perturbations, a distinction needs to be made between collinear and

non-collinear spin systems. For collinear spins systems, there is only one scalar value

per atom to optimise. Since CASTEP only takes in an atomic spin to initialise the

electron density, it effectively acts as a local optimiser for the atomic spin. The

perturbation therefore takes the same role as the atomic position perturbations,

where the role of the perturbation is to move the system from one basin of attraction

to another. Since there is a maximum value these spins can take, i.e. the total

number of electrons associated with the atom, issues arise trying to add an additional

perturbation to an existing spin. For example, an atom with saturated spin given a

positive perturbation will become unphysical. As a result, the spin perturbation is

evaluated as a uniform random number between -spin_max and spin_max, where

spin_max is a user parameter, set to the maximum spin value expected on any atom.

For example, for Fe2O3, spin_max should be set to around 5~/2, since an ionised

iron atom is capable of having a spin of 5~/2. This perturbation allows atomic spins

to spontaneously magnetise, demagnetise or flip, irrespective of the initial value.

In the case of non-collinear spins, a similar procedure is performed. In this case,

the atomic spin is set to a random vector within the sphere of radius spin_max.

Again, this allows any spin state to be found by the perturbation within the range

specified, without the risk of being stuck in a state based on the structure’s history.

As with the collinear spin situation, local optimisation of the spins is performed

within CASTEP in order to find the spin minima.
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For permutations, the situation is analogous to swapping the atomic positions of

different species. However, since atomic spin is closely related to the atomic structure,

it only makes sense to swap atomic spins of atoms of the same species. For example,

swapping the spin of a nickel and oxygen atom in NiO makes no physical sense, since

all the spin exists on the Ni atoms, and the O atoms generally have zero spin.

5.3.0.3 Magnetic fingerprinting

As mentioned before, the original fingerprint will be unable to distinguish different

magnetic structures for materials with similar atomic structures. As a result, the

niching algorithm described in the previous chapter will incorrectly penalise distinct

magnetic structures.

To overcome this, the original fingerprint has been modified to include a magnetic

term. Since the original fingerprint is based on scattering amplitudes, it makes sense

to look to spin-sensitive scattering experiments. For magnetic neutron scattering [93],

the scattering intensity can be calculated as

F 2
neutron = F 2

nucl + q2F 2
magn (5.1)

Here,

F 2
nucl =

∣∣∣∣∣ ∑
N atoms

bN exp(2πik · r)
∣∣∣∣∣
2

e−2W (5.2)

is the non-magnetic scattering intensity, where bN is the nuclear scattering intensity

for atom N ;

F 2
magn =

∣∣∣∣∣ ∑
N atoms

pN exp(2πik · r)
∣∣∣∣∣
2

e−2W (5.3)

is the magnetic contribution to the scattering, where p ∝ SN ; and

q2 = sin2 α (5.4)

63



where α is the angle between the scattering and magnetisation vectors.

By analogy, the structure factor fingerprint can be extended to differentiate magnetic

structures

Λ = Λorig + q2Λmagn (5.5)

where

Λmagn(kr) =
N∑
n=1

S2
n + 2

N∑
n=1

N∑
m>n

SnSmj0 (kr|rn − rm|) (5.6)

and q is some scaling parameter, allowing differences in magnetic structure to be

more or less sensitive with respect to crystal structure.

Figure 5.2 demonstrates how the modified fingerprinting function behaves for struc-

tures as the magnetic structure of a crystal changes.

For this work, a value of q2 = 5.0 was chosen in equation 5.5. This was done so that

structures which vary by 1 ~/2 per atom or more appear distinct to the GA, as can

be seen in figure 5.2.

5.4 Summary

Using a traditional GA on magnetic structures can lead to poor performance, and can

be steered away from finding the global spin state by higher energy spin structures..

Redefining crossover, mutation and permutation operations to make them spin-

aware enables both the magnetic and crystal structure of materials to be searched

concurrently. In addition, the extension of the structure factor fingerprint allows

the GA to distinguish between identical crystal structures with distinct magnetic

structures.
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Chapter 6

LJ+S: A magnetic pair-potential

6.1 Introduction

In this chapter, a new magnetic pair potential is proposed for the use of testing the

GA’s performance on magnetic structures. The potential is first parameterised to

the FM iron dimer, and then to an AFM analogue. The GA is used to search for the

lowest energy configurations of these two new potentials.

6.2 The magnetic Lennard-Jones model

As discussed in chapter 2, magnetic effects can be calculated from first principles

methods such as DFT. However, since a significant portion of these effects are

intrinsically quantum mechanical or many-body in nature, it is difficult to capture all

of these effects in empirical potentials without limiting them to some specific regime.

One example of this is the Heisenberg model, where atoms are placed on a lattice,

and only the magnetic effects are considered. In addition to this, magnetic moments

on isolated atoms tend to arise from partially filled electronic states, as dictated

by Hund’s rules. As a result, atoms with nonzero magnetic moments tend to be

either metallic or chemically active, causing an additional challenge to empirical pair

potentials.
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Given all this, attempting to describe real materials using a pair-potential is beyond

the scope of this work. However, it is possible to combine the spatial dependence on

the energy from non-magnetic empirical potentials with the magnetic dependence

on the energy from lattice-based methods like the Heisenberg model to create a

potential which behaves somewhat like a magnetic material. This work defines a

magnetic Lennard-Jones potential:

V LJ+S
ij = V LJ

ij − ASi · Sjf(Rij) + B

|Rij|3

[
Si · Sj −

3
|R2

ij|
(Si ·Rij)(Sj ·Rij)

]
(6.1)

This potential is made up of three terms:

• The unmodified Lennard-Jones potential,

• An exchange-like term, and

• A magnetic dipole interaction term

The Lennard-Jones, dipole and anisotropy term are included as stated in chapter 2.

However the Heisenberg exchange term is usually defined on a lattice, only including

pairs of atoms with discrete relative lattice positions. As a result, no spatial depen-

dence for this term exists. For this work, an exponential decay term was used to

mimic the short term nature of Pauli repulsion:

f(Rij) = e−α|Rij | (6.2)

However, other effects such as the RKKY interaction could be included here.

By tuning the values of A, B and α, a range of magnetic effects can be described.
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6.3 Parameterisation of the magnetic Lennard-

Jones potential

For real-world magnetic materials, it is often the exchange term which dominates the

magnetic interaction [94]. Because of this, the work presented in this chapter will

use a simplified version of the LJ+S potential, ignoring the dipole and anisotropy

terms (i.e. choosing B = 0).

In this case, only 2 parameters need to be chosen, A and α. As a result of this,

the effect of the magnetic modifications to the Lennard-Jones potential are to raise

and/or lower the height of aligned and anti-aligned spins, depending on the sign of A.

If A is positive, pairs of aligned spins will act to lower the energy and anti-aligned

spins will raise it. In this case, ferromagnetic magnetic structures are expected to

have the lowest energy, since aligned spins would act to decrease the total energy of

the system. If A is negative, pairs of anti-aligned spins will lower the energy and

pairs of aligned spins will raise it. In this case, antiferromagnetic structures are

expected to have the lowest energy, since aligned spins would act to increase the

total energy of the system.

In order to get physically sensible values for these, they can be parameterised in a

number of ways. The way which has been chosen here is to parameterise the values

to the equilibrium distance Rmin of an atomic dimer, along with the difference in

energy at Rmin and 2Rmin between aligned and anti-aligned dimers, as demonstrated

in figure 6.1.
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6.4 A ferromagnetic parameterisation

Parameter Value

εLJ+S 1.75 eV

σLJ+S 1.87 Å

A -2.82 eV

α 0.83 Å−1

Table 6.1: Table listing the parameters for the FM pa-

rameterisation of the LJ+S potential.

For a ferromagnetic parameterisation of the LJ+S potential, DFT calculations of

Fe dimers were performed. Figure 6.2 shows the DFT energies, along with the

parameterised LJ+S for a range of spin orientations. It can be seen that, although

the width of the well has not been captured accurately, the equilibrium distance

and bond energy are fairly close to the values for the iron dimer. In addition, the

difference in energy between aligned and anti-aligned spins is similar, and that

difference decays at a similar rate. The LJ+S function was fitted to the DFT data

in the range 1.8Å to 4.5Å. This is because below 1.8Å, the Fe pseudopotential cores

overlap to produce unphysical results. This can be seen by the discontinuities in the

gradients at this point.

6.4.1 Performance of the GA

The GA was run on a 6-atom system of the LJ+S atoms with the FM parameterisation,

optimising the atomic positions, spins and lattice parameters. The GA was run with

a population size of 24, and ran for a total of 50 generations.

Using the local geometry optimisation algorithms built into CASTEP, each member

was locally optimised using the TPSD algorithm for 50 generations to get into the

quadratic region, then finished off with the BFGS algorithm. The structures were

converged to a tolerance of 1meV. Since the atomic spins were specified explicitly
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and were not a result of DFT densities, there was no mechanism to locally optimise

the spins within CASTEP. In order to account for this, the spin mutation operation

was modified to be a normally distributed rotation around the surface of the unit

sphere, centring on the spin’s previous position.

A mutation amplitude of 2 Å was used for the ions, at a rate of 0.03 mutations per

atom. This was chosen to allow on average one atom every member to mutate, but

for each jump to be significant enough to hop lattice sites. The spin mutation rate

was 0.06 per atom, since the mutations in the spin would be less dramatic.
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Figure 6.3: The range of enthalpies found per generation for the FM-parameterised
LJ+S model.

Figure 6.3 shows the range of enthalpies found per generation. The GA significantly

reduces the average enthalpy of the generations in the first 10 generations, before

settling off. Figure 6.4 suggests that this is because the difference in energy between

different spin structures is more significant than that of different crystal structures.

As a result, the GA is able to rapidly identify the magnetic structure as FM early on

in the calculation, while the atomic positions continue to be optimised further into

the calculation.
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Figure 6.4: The range of spins found per generation for the FM-parameterised LJ+S
model. It can be seen that the GA favours searching in the high spin region, where
the lowest enthalpy structures are found.

6.4.2 Final structure

The final lowest enthalpy structure is shown in figure 6.5. Common neighbour

analysis by the software visualisation package Ovito reveals this structure to be FCC.

6.5 An antiferromagnetic parameterisation

By reversing the sign of A in the magnetic Lennard-Jones potential, an AFM

parameterisation can be formed. This was done, and the GA was run on it to search

for the ground-state magnetic and crystal structure. The same parameters were used

as in the FM parameterisation, and it was left to run for 80 generations.
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Figure 6.5: Lowest enthalpy structure found by the GA showing the spins aligned
(left) and the associated FCC primitive cell (right). The arrows represent the unit
spin vectors on each atom.
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Figure 6.7: The range of spins found per generation for the AFM-parameterised
LJ+S model. It can be seen that the GA favours searching in the low spin region,
where the lowest enthalpy structures are found.

6.5.1 Final structure

The final lowest enthalpy structure is shown in figure 6.8. Common neighbour

analysis by the software visualisation package Ovito reveals this structure to be BCC,

with opposite spins on the (0,0,0) and (1
2 ,

1
2 ,

1
2) sites of the conventional BCC unit

cell.

6.6 Summary

A new model potential was proposed as a way of testing the performance of the

magnetic GA. The potential was based upon the Lennard-Jones potential for noble

gasses and the Heisenberg model for lattice spins. This potential was parameterised

to the aligned and anti-aligned iron dimers, and the ground state structures explored

by the GA.
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Figure 6.8: 2x2x1 unit cells of the lowest enthalpy structure found by the GA for
the AFM parameterised LJ+S potential. Common neighbour analysis reveals this
structure to be BCC.

The GA was able to successfully focus it search in the right portion of the spin

state, favouring FM structures for the FM parameterisation and AFM structures

for the AFM parameterisation. The FM parameterisation was found in the lowest

configuration in an FCC lattice, with all spins aligned. The AFM parameterisation

however was found in a BCC structure, with spins anti-aligned between the two

conventional BCC atomic sites.
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Chapter 7

Polar oxide interfaces

7.1 Introduction

In this chapter, the GA is used to investigate disorder at the NiO(111)/MgO(111)

interface, where incremental interface mixing of nickel and magnesium is observed.

The GA predicts that gradual mixing of nickel and magnesium as seen in experiment

is energetically favourable. In addition, the nickel atoms retain the AFM ordering of

the bulk, although both magnetic and atomic disorders are both discovered within

thermal energy of the lowest enthalpy predicted structure.

7.2 Polar oxide interfaces

In recent years, polar oxides have been widely studied due to the wide variety of

properties which they can exhibit. In particular, MgO has been studied for its

high tunnelling magnetoresistance [95] making it a good candidate for magnetic

tunnel junctions and NiO has attracted interest as an antiferromagnetic insulator.

In addition to their interesting bulk properties, polar oxide interfaces can also

exhibit interesting electronic surface properties. It is thought that the building up of

electrostatic potential in thin film perovskite polar oxide interfaces leads to a 2D

electron gas [96].
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Traditional models of polar oxide interfaces predict that, due to this building up of

electrostatic potential, atomic mixing was needed to stabilise the interface. However

more recent research shows that effects such as electronic reconstructions or screening

of the interface polarity can allow clean stable interfaces to form [97]. It is expected

that oxides with strong ionic bonding such as NiO and MgO will experience the most

significant effects of the polar discontinuity [3].

7.3 The NiO/MgO interface

Work by Lazarov et al. looked at the effects of growing NiO both on atomi-

cally clean MgO(100) and MgO(111) substrates [3]. In the case of both the polar

NiO(111)/MgO(111) and the non-polar NiO(100)/MgO(100) interface, interfacial

mixing occurred over around 8 cation planes, with nickel content increasing in ap-

proximately linear increments until the full NiO phase was formed, as seen in figures

(7.1) and (7.2). In the case of the NiO(100)/MgO(100) interface, HAADF imaging

reveals a zigzag structure at the interface, suggesting that nickel diffuses along the

{111} planes, as seen in figure (7.1).

Figure 7.1: Experimental structure of the NiO(100)/MgO(100) interface. HAADF
imaging (a) show the formation of zigzags along the {111} planes (white dashed
lines). (b) shows the intensity profile across the interface. Pictures from [3]

While it is known from cluster-expansion calculations that NiO and MgO will mix in

the bulk [98], it is not known why this particular type of mixing at the (111) interface

is observed in these experiments. Similar mixing in the (100) interface suggests

that the mixing is not due to the polar nature, however it is not known whether
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Figure 7.2: Experimental structure of the NiO(111)/MgO(111) interface. Intensity
profile (b) shows incremental increase in nickel content across approximately 8 Ni/Mg
layers. Pictures from [3]

it is driven by the energetics of the interface or by the dynamics of the growth

method. In addition, it is not known if the NiO retains its AFM spin structure at

the interface, or if any magnetic reordering occurs. For these reasons, the structure

of the NiO(111)/MgO(111) interface was investigated using the magnetic GA.

7.4 Interface structure search with the GA

The calculation was performed on a 2x2x3 supercell of MgO on top of a 2x2x3

supercell of MgO. The clean interface is shown in figure 7.3. In order to preserve

coupling to the bulk, the top 4 atomic layers of MgO and the bottom 4 atomic layers

of NiO were fixed to the bulk structure, and not optimised by the GA.

Since both the pure MgO and NiO structures and the experimental interface grow

in a rock salt structure, the atoms were restricted to these lattice sites in the GA.

In order to achieve this, the mutation rate and amplitude were chosen to be 0. In

addition, permutations were only performed on the Ni/Mg sub-lattice sites since

there is no evidence of mixing between the two sites experimentally. The permutation

rate was chosen to be 0.05 per atom was used for the first 20 generations, reducing

this to 0.02 per atom afterwards. This was chosen to promote mixing early on with

an average of 1-2 swaps per member, the reducing this down to ~0.5 swaps per

member once the population was sufficiently diverse.
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Figure 7.3: Structure of the clean MgO/NiO interface showing the oxygen (white),
magnesium (green) and nickel (red=spin up, blue=spin down) atoms. Smaller atoms
at the top and bottom represent atoms who’s position and spin were constrained in
the geometry optimisation.

Since the region of interest was at the NiO/MgO interface, a single periodic cut was

made for crossover through the centre of the interface, with an amplitude of up to 6

atomic layers in the z direction.

The structures were allowed to locally optimise the atomic positions to a tolerance of

1 meV to reduce the effect of atomic displacements from enthalpy differences between

structures. Since these structures grown on significant amounts of MgO, the lattice

vectors were fixed for the calculations. Since there is only a 1% lattice mismatch

between NiO and MgO [99], this is a reasonable approximation.

For each structure, the total energies were computed using DFT simulations in

the CASTEP code. The calculation used a cutoff energy was 700 eV and k-point

sampling on a 6x6x2 Monkhurst Pack grid. The Nickel atoms had a Hubbard U

value of 1.0 eV. This was chosen to allow direct comparison with previous work done

by Hasnip [100].

To confirm that the parameters reproduced the correct physical results, the properties

of bulk NiO were calculated. NiO was calculated to be AFM with a net spin of

0.32× 10−12 ~/2 and a spin of 1.40 ~/2 on each of the nickel atoms. The Kohn Sham
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Figure 7.4: Calculated density of states for NiO using the simulation parameters.

band gap of NiO was calculated to be 0.48 eV, this can be seen in the density of

states in figure 7.4. While this is below the experimental value of around 4 eV, it

correctly captures the insulating nature of NiO. A more accurate band gap could

have been attained with a higher value of U , however this can have the effect of

unphysical flattening of the Ni d states, leading to incorrect results [101].

7.5 Performance of the GA

7.5.1 Convergence

The GA was run for 51 generations, at which point no new best structure had

been found for 17 generations, and the overall lowest enthalpy structure had been

rediscovered in 4 different generations. Figure 7.5 shows the distribution of energies

of the final selected population at each generation and figure 7.6 shows the same

data for the children generated each generation.

As can be seen in figure 7.5, the vast majority of the structures found by the GA
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Figure 7.5: Highest (red), mean (black) and lowest (blue) enthalpies of the population
against generation number for NiO/MgO. The dashed lined represents the enthalpy
of the clean interface.

were significantly lower in energy than the clean interface, suggesting that interfacial

mixing is strongly favoured. In addition, after around generation 20, the average

energy of the structures in a given population was below the lowest enthalpy structure

of the first 3 generations. Throughout the calculation, neither the range or standard

deviation in the enthalpies of the population or the children dropped significantly,

demonstrating that the population was not stagnating.

7.5.2 Population spin distribution

Figure 7.7 shows a plot of the enthalpy of each structure against the total spin of

that structure. It can be seen that all structures found had atoms of nonzero spin,

with the sum of the atomic spin magnitudes ranging from around 35 ~/2 to around

40 ~/2. It can be seen that the lowest enthalpy structures resulted in a total spin of

0, demonstrating that the lowest energy structures found by the GA are all AFM. It

is important to note that the GA preferentially sampled the low (< 5 ~/2) structures
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Figure 7.7: Enthalpy of each structure plotted against the total spin of that structure.
The colour represents the sum of the modulus of the spins.
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since these typically related to lower enthalpy structures. However, the GA also

sampled regions of higher spin, demonstrating its ability to explore a wide variety of

magnetic structures.
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Figure 7.8: Mean z position of the nickel atoms (square) and the magnesium atoms
(circle) for each structure against generation number for NiO/MgO. The colour
represents the enthalpy of the structure.

Figure 7.8 demonstrates the amount of mixing between NiO and MgO layers by

displaying the mean position of nickel and magnesium along the z direction. Initial

mixing occurs up to around generation 7 due to the tendency for random swaps to

disorder the structure. However, after around generation 14, the structures start to

separate slightly, with the lowest enthalpy structures having a separation of mean

atomic positions between the nickel and magnesium atoms of around 2.3 Å. This is

consistent with the observation experimentally that the materials prefer to gradually

mix, rather than either fully mixing or forming clean interfaces.

Figure 7.9 shows just the mean z distribution of just the nickel atoms colored by the

total spin of the structure. There is no clear correlation between the spin polarisation

of the structure and the amount of mixing of nickel atoms into the MgO after

around generation 15. The apparent trend for more FM-like structures closer to the
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Figure 7.9: Mean z position of the nickel atoms for each structure against generation
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clean interface (lower mean z position) in early generations is most likely due to

the structures randomly generated in generation 0 rather than that being the more

favourable configuration.

7.6 Resultant structures

The atomic structure of the lowest enthalpy structure is shown in figure 7.10. As

observed in the experimental data, the number of nickel atoms per cation layer varies

gradually, with (3,3,2,2,1,1,2,2) nickel atoms per layer. Based on this ordering, it is

possible that a (3,3,2,2,1,1) ordering would be more stable, however constraints on

the stoichiometry of the cell make this unreachable by the GA.

In addition to the concentration of the nickel atoms in the cation layers, it is clear

that the AFM magnetic structure is retained from the bulk.

The next two lowest enthalpy distinct structure is shown in figure 7.11. The second

lowest structure is equivalent to the lowest enthalpy structure with the spin of a
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Figure 7.10: 2x1x1 unit cells of the lowest enthalpy MgO/NiO interface structure
found by the GA from the front (left) and from the side (right). The gradual variation
of nickel atoms (red=spin up, blue=spin down) and the AFM ordered layers can be
seen.

Figure 7.11: Structure of the second lowest enthalpy structure with a Ni spin flipped
(left) and third lowest enthalpy structure with reordering of the cation layers.(right)

86



single nickel atom flipped in the 4th unconstrained cation layer up. This structure

is 0.250 eV above the lowest energy structure. Similarly, the third lowest enthalpy

distinct structure is 0.251 eV above the lowest enthalpy structure. This structure is

similar to the lowest enthalpy structure, but with:

a) Reordering of the atomic layers (3,3,2,1,1,2,2,2)

b) The spins of the 6th - 8th cation layers reversed.

Both of these structures may be thermally accessible at the annealing temperatures

of around 375 K, since the enthalpy/atom for them is around 0.005 to 0.0025 eV /

atom, depending on which atoms are considered.

7.7 Summary

This chapter explored the mixing of nickel and magnesium in the NiO(111)/MgO(111)

interface. The GA was able to explore a range of atomic and magnetic structures,

sampling mixed and unmixed interfaces, along with a range of magnetic orderings.

The lowest enthalpy structures appear to gradually mix nickel and magnesium along

the interface, preferring single steps in mixing concentration rather than retaining

entire planes of similar atoms. This is supported by experimental results showing

similar incremental mixing at the interface, although over a length scale beyond

what is currently feasible with the GA. The magnetic ordering of the nickel atoms

appears to favour AFM ordering as is observed in the bulk, with each atomic plane

anti-aligned to the previous plane. Since mixed AFM energies emerge as the lowest

enthalpy structures, this is likely the driving mechanism for the emergence of mixed

regions
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Chapter 8

Heusler alloy interfaces

8.1 Introduction

In this chapter, the GA is used to investigate an unknown phase which forms when

the Co2FeAl0.5Si0.5 (CFAS)/n-Ge interface is annealed. A Half Heusler structure is

proposed as a candidate for this phase. Unlike CFAS, this new phase is not half

metallic, making it undesirable for spintronic devices where CFAS may be used.

8.2 Heusler Alloys

One class of materials which can exhibit half-metallicity are the Heusler alloys.

Heusler alloys are ternary alloys with the stoichiometry X2YZ, where X and Y are

transition metals and Z is a p block element. The structure of Heusler alloys can

be described in terms of 4 interlocking FCC sub-lattices with positions X1=(0,0,0),

X2=(1
2 ,

1
2 ,

1
2) Y=(1

4 ,
1
4 ,

1
4), Z=(3

4 ,
3
4 ,

3
4) [102, 103]. The Heusler structure is shown in

figure 8.1. In addition to full Heusler alloys, there also exists a class of material

known as the half Heusler alloy. This is the same structure as the full Heusler but

with vacancies on the X2 sites.
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Figure 8.1: Heusler alloy structure

8.2.1 Half metallicity

A number of Heusler alloys have been predicted to exhibit half metallic [103]. In

particular, Co2MnSi (CMS) and Co2FeSi (CFS) have been studied as potential device

materials for a number of spintronic applications, such as spin valves and magnetic

tunnel junctions. However while these materials are predicted to be half metallic as

pure crystals, the Fermi energy sits very close to the conduction band for CFS and

very close to the valance band for CMS, as illustrated in figure 8.2. As a result, the

half metallicity is very sensitive to effects such as disorder in the lattice [104].

In order to reduce these effects, the material can be doped in order to move the

Fermi energy closer to the middle of the band gap. One option is to try a hybrid of

CFS and CMS, i.e. Co2FexMn1−xSi (CFMS). While this does successfully move the

band gap, it also disrupts the up-spin bands, reducing their metallic nature. One

other option is to p-dope the silicon site with aluminium in order to reduce the Fermi

energy, resulting in Co2FeAl0.5Si0.5 (CFAS). This turns out to be far less disruptive

to the up spin conduction states.
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Figure 8.2: Illustration of the spin density of states for Heusler alloys. Represented
are situations typical to (a) CMS, (b) CFS, (c) CFMS and (d) CFAS. The effect of
the composition on the Fermi energy EF is demonstrated.
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8.2.2 Heusler/contact interfaces

In order to use these materials for device applications, Heusler alloys need to be

attached to electrical contacts. For a number of spintronic applications of which

Heusler alloys could be used for, both metallic and semiconducting contacts are

required. When considering a material for the contacts, a number of considerations

need to be made, including:

• Lattice match between Heusler and contact material,

• Heusler/contact interface roughness or mixing,

• Electronic effects at the interface.

It is known that the half metallic nature of Heusler alloys at the interface is sensitive to

the exact configuration of the interface atoms, and can affect the device’s effectiveness.

For example, CMS grown on a silver surface changes significantly depending on

whether it terminates with a Co layer or a Mn/Si layer [105].

8.3 The CFAS/Ge interface
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Figure 8.3: Energy Dispersion Spectroscopy (EDS) results across the un-annealed
CFAS/n-Ge interface, showing significant mixing of the atomic species. Data from [4]

For the CFAS/semiconductor interface, germanium provides an extremely good
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Figure 8.4: EDS results across the annealed CFAS/n-Ge interface, showing significant
mixing of the atomic species. Plateaus can be seen around 6.5-9.0 nm in cobalt, iron
and germanium. Data from [4]

lattice match with only a 0.2% mismatch, compared to around 4.5% for CFAS/Si.

However, when CFAS is grown on n-type germanium, significant mixing at the

interface can occur, as is shown in figure 8.3 [4].

In addition, annealing the sample at 575 K forms a plateau in the cobalt intensities

and, to a lesser extent, the iron and germanium intensities. This suggests that a

stable phase is forming at this point. Since this is in the centre of the interface region

and all the EDS energies are about half of their respective bulk values, it is proposed

that this structure contains half the number of atoms in the bulk CFAS and half the

number of atoms in a germanium unit cell. This results in a Ge4Co4Fe2AlSi structure,

containing 12 atoms, although the crystal structure of this interface phase is unknown.

Since the electronic properties of this phase will affect the half metallicity of the

CFAS/n-Ge interface, it would be useful to understand what it is. For this reason,

the phase was investigated using the GA.

8.4 Interface phase investigation with the GA

The calculation was performed on the 12 atom unit cell: 4 germanium , 4 cobalt, 2

iron, 1 aluminium and 1 silicon. The GA was allowed to fully optimise the atomic
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positions, however the lattice was constrained to that of the full Heusler alloy, since

this closely matches the germanium lattice, and it is not expected that this would

change much over such a short region. The GA was run with a population size of 20.

A mutation amplitude of 3 Å was used for the ions, at a rate of 0.03 mutations per

atom. This was chosen to allow on average one atom every 2 members to mutate,

but significantly enough to hop lattice sites. A slightly higher permutation rate of

0.04 was chosen since, for the bulk Heusler, atomic swaps on the lattice sites can be

comparable in energy to the ground state. If a similar atomic structure is found, it is

likely that exploring this kind of disorder would be a good idea. The spin mutation

rate was 0.06 per atom. This was chosen to be higher than the atomic mutation rate

because not all atoms would be expected to magnetise, meaning that some mutations

would get negated by the local optimisation.

Each member was optimised using the BFGS algorithm to a tolerance of 1 meV. The

energies were computed using CASTEP, with a cutoff energy of 650 eV and k-point

spacing of 0.04 Å−1. The PBE functional was used in conjunction with Hubbard U

values of 2.1 eV on the d orbitals of iron and cobalt, keeping with previous Heusler

work [105]. Figure 8.5 shows the calculated density of states of bulk CFAS using

these parameters, demonstrating that they reproduce the expected half metallicity.

8.4.1 Convergence of the GA

The GA was initially run for 50 generations. However, due to an insufficient niching

distance, the population stagnated. The effects of this can be seen in figure 8.6,

many of the children generated after generation 5 represent the same structure.

While in this case the GA was able to find a lower energy structure, this behavior is

characteristic of stagnation and often results in the calculation being stuck in a local

minimum.

The GA was then re-run with an increased niching distance for 70 generations. This

resulted in a broader range of structures throughout the calculation, as can be seen in

figure 8.7. In addition, each generation had a broader range of structures, providing
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more options for crossover.

Both GA runs found the same lowest enthalpy structure, although due to noise in

geometry convergence, the first GA run found it with an enthalpy around 0.16 meV

lower than the second run.

Figure 8.8 shows the distribution of magnetic structures found, plotted against their

energy. Two clusters of members are found in the energy range which would be

thermally accessible during annealing. The first of these are ferromagnetic, with

a spin of about 8 ~/2 and a modulus spin of about 8.8 ~/2. The second cluster is

antiferromagnetic, with a spin of about 0 ~/2 and a modulus spin of about 6.5 ~/2.

Figure 8.9 shows these regions in more detail. It can be seen that each cluster

contains a number of structures. These are be atomic swaps of the lowest enthalpy

structure in each magnetic state. Candidate structures are labelled A1-A3 for the

AFM structures and F1-F4 for the FM structures.
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8.4.2 Candidate structures

Figure 8.10: 2x2x2 unit cells of the lowest enthalpy structure found by the GA,
showing the positions of the cobalt (pink), aluminium (grey), germanium (turquoise),
silicon (gold) and iron (orange) atoms.

The lowest enthalpy structure F1, shown in figure 8.10 turns out to be a half Heusler

alloy, where the X1 site contains cobalt, the X2 site contains a vacancy, the Y site

contains the iron, silicon and aluminium, and the Z site contains germanium. The

F2 structure is the same structure as F1. The F3 and F4 structures are the same

structures with one germanium atom swapped with the silicon atom from the Y site,

shown in table 8.1. According to the Hirshfeld analysis, in each of these structures

the spin exists on the iron and cobalt, with a spin of around 3 ~/2 on the iron atoms

and 0.5 ~/2 on the cobalt atoms.
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Structure Enthalpy (eV) Total spin (~/2) Disorder

F1 0.0 7.94 None

F2 0.01 7.89 None

F3 0.03 7.84 Ge <-> Si

F4 0.04 7.89 Ge <-> Si

A1 0.13 0.14 2Ge <-> Si,Fe

A2 0.14 0.10 Ge <-> Fe

A3 0.15 0.00 None

Table 8.1: Table showing the energies and spins of the

best structures, together with the lattice permutations in

relation to F1.

Figure 8.11 shows the density of states for the 4 FM structures. Unlike the full

CFAS structure, none of these structures are half metallic, with a significant number

of states around the Fermi energy. It does not appear that the atomic disorder

separating F1-4 has a significant effect on the electronic structure of the structures.

The 3 AFM structures A1, A2 and A3 sit around 0.15 eV above F1, making them

thermally accessible at the annealing temperature of 575 K, with an enthalpy/atom

of around 0.0125 eV. The A3 structure has the same crystal structure as F1 and the

A1 and A2 structures are the same structures with some disorder. In the case of the

AFM structures, this disorder lowers the enthalpy of the AFM structures. According

to Hirshfeld analysis, all the spin exists on the iron, with about 3.1 ~/2 spin on one

iron atom and about -3.1 ~/2 spin on the other.

Figure 8.12 shows the density of states of the 3 AFM structures. Again, none of the

AFM structures are half metallic.
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Figure 8.11: Density of states of the 4 low enthalpy FM structures. None of these
structures are half metallic.
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8.5 Summary

The Heusler alloy CFAS is a good candidate structure for half metals. When

grown on top of n-doped germanium, significant inter-layer mixing occurs. When

annealed, the mixed region stabilises to form an unknown phase at the interface.

The GA was used to predict what this phase could be, finding the Half Heusler

alloy CoFe0.5Al0.25Si0.25Ge to be a promising candidate. This candidate phase turns

out to be fully metallic in both up and down spins, which is undesirable for device

applications. The phase also turns out to be ferrimagnetic. Both structural and

magnetic disorder are thermally accessible. Structural disorder does not appear to

change the electronic structure significantly, although AFM ordering of the Fe atoms

does.
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Chapter 9

Conclusions and future work

9.1 Summary and conclusions

The aim of this work was to investigate the feasibility of, and develop the means for

using the GA for structure prediction of magnetic materials. In chapter 5, issues

with using the GA for predicting magnetic structures were raised and addressed by

defining new operations such as crossover, mutation and permutation operations. In

addition, the idea of structural fingerprinting using the crystallographic structure

factor was extended, based on ideas from magnetic neutron scattering theory, and it

was demonstrated that the new fingerprint could identify both similar and distinct

crystal and magnetic structures.

To test the magnetic extensions to the GA, a new pair potential which included

some magnetic-like effects was defined. While this potential does not accurately

model any particular real life material, it provided a computationally efficient way of

exploring magnetic materials without the cost of fully quantum calculations. Two

parameterisations were given for this potential. The first parameterised off DFT

simulations of iron dimers in both aligned and anti-aligned configurations. Since

the iron dimers preferred to be aligned, it was expected that this parameterisation

would yield a FM structure. This was observed as the lowest energy structure found

by the GA was FM FCC, and there was a clear trend in the energies of all the

structures searched towards FM structures. The second parameterisation mirrored
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the first, but with a reversed sign on the magnetic effects. This was expected to

result in AFM structures, since pairs of aligned spins would raise the energy of the

system. Indeed, the lowest energy structure discovered by the GA was an AFM BCC

structure. In addition, there was a clear trend amongst the other members towards

AFM alignment.

Next, the GA was applied to the problem of mixing at the NiO(111)/MgO(111)

interface. In this case, the process behind experimentally observed mixing was

unknown. The GA was allowed to evolve the Ni/Mg sites near a clean interface

region, resulting in a number of lower energy structures. This suggested that the

mixing was energetically driven rather than kinetically driven. In addition, the lowest

energy structure found remained AFM ordered with the bulk layers, and displayed

the gradual increase in Ni density observed in experimental interfaces. There were

however both structural and magnetic disorders found within thermal energy of the

lowest structure.

Finally, the interface between the Heusler alloy CFAS and n-doped germanium was

investigated. Experimentally, the two materials showed significant mixing and, when

annealed, a new phase formed at the interface. The structure of this phase was

investigated with the GA, and a half-Heusler structure was predicted. This structure,

and low energy disorders around it, show undesirable electronic properties for the

devices in which they would want to be used.

To conclude, work set out to develop a GA for structure prediction capable of

optimising both magnetic and crystal structures. The GA was able to achieve

this, first demonstrating that it could correctly predict the magnetic structure of a

simplified pair potential, and then being able to shed light on interface effects with

magnetic materials, where it was not known before what was going on.
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9.2 Future work

9.2.1 Multiobjective optimisation

One of the more interesting fields in evolutionary computation is that of multiobjective

optimisation. By defining multiple objective functions, for example minimising energy

and maximising some desirable property of a material such as half metallicity, a set

of solutions can be found, whereby no structure can be improved in one objective

without making it worse in another. This set is called a Pareto set. A number of

algorithms exist to do this using the framework of genetic algorithms. Two popular

multiobjective evolutionary algorithms are the NSGA-II algorithm [106] and the

SPEA algorithm [107]. Some preliminary work has been done in this area, however

it is not mature enough for inclusion in this thesis.

9.2.2 Surrogate models for selection

In the broader field of GAs, expensive optimisation problems sometimes use surrogate

models to improve performance [108]. These are cheap models trained to the solutions

the GA has already seen, and are used to approximate the landscape in order to guide

which solutions are chosen in the future for full evaluation. This can be done using

machine learning techniques such as neural networks or Gaussian processes [109], but

could also involve fitting a known approximate function to previously seen solutions.

It is important to note that, unlike the machine learning methods used for molecular

dynamics and structure optimisation like those mentioned in section 2.7, surrogate

models do not need accurate forces for all atoms, but only an approximate energy

for the entire system. This can then be used to bias the population at the selection

stage away from structural motifs which produce high energy structures, such as

unphysical bond lengths or angles.
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Appendix A

Derivation of the Structure factor

fingerprint

In the original paper by Abraham and Probert [84], the equation for the structure

factor fingerprint, based on the x-ray scattering intensity Λ, was incorrectly reported

as:

Λ(k) = N
N∑
I=1

ρ2
I + 2

N∑
I=1

N∑
J>I

ρ2
Iρ

2
J × J0

(√
3πk|RIJ |

)
(A.1)

Where ρI is the charge density of the nucleus of atom I, defined to be the charge of

the nucleus ZI at the position of the nucleus RI , and zero everywhere else. J0 is a

Bessel function. The correct form of this equation is derived below.

The structure factor for distinguishable atoms at positions RI in a crystal[110] is:

F (k) =
∑
I

ρI × eik·RI , (A.2)

Where k = s− s0 is the change in wave vector between incident and scattered waves

through the crystal.

From this, the scattering intensity Λ(k) can be calculated:
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Λ(k) = |F (k)|2

=
∑
I

∑
J

ρIρJ × eik·(RI−RJ )

=
∑
I

∑
J

ρIρJ × eik|RIJ | cos θ,

(A.3)

Here we have defined RIJ = RI −RJ to be the vector between atoms I and J and

θ to be the angle between k and RIJ .

The probability of RIJ being angle θ with k is sin θ
2 dθ. Therefore, the spherically

averaged scattering intensity can be calculated by integrating over all θ:

Λ(k) =
∑
I

∑
J

ρIρJ ×
∫ π

0
exp(ik|RIJ | cos θ)sin θ

2 dθ

=
∑
I

∑
J

ρIρJ × j0(k|RIJ |)
(A.4)

Separating out the diagonal term and making use of the symmetry in I and J , we

get the final form:

Λ(k) =
∑
I

ρ2
I + 2

∑
I

∑
J>I

ρIρJ × j0(k|RIJ |) (A.5)
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