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Abstract

This thesis explores the homogeneity of coefficient functions in nonlinear

models with functional coefficients, and identifies the semiparametric mod-

elling structure. With initial kernel estimate of each coefficient function, we

combine the classic hierarchical clustering method and a generalised version

of the information criterion to estimate the number of clusters each of which

has the common functional coefficient and determine the indices within each

cluster. To specify the semi-varying coefficient modelling framework, we

further introduce a penalised local least squares method to determine zero

coefficient, non-zero constant coefficients and functional coefficients varying

with the index variable. Through the nonparametric kernel-based cluster

analysis and the penalised approach, the number of unknown parametric

and nonparametric components in the models can be substantially reduced

and the aim of dimension reduction can be achieved. Under some regularity

conditions, we establish the asymptotic properties for the proposed methods
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such as consistency of the homogeneity pursuit and sparsity. Some numerical

studies including simulation and two empirical applications are given to

examine the finite-sample performance of our methods.
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Chapter 1

Introduction

Regression modelling is one of the most important topics in statistical data

analysis and has wide applications in various disciplines such as economics,

finance and genetics. It is well know that the parametric linear model defined

by

Yt = X
ᵀ

tβ0 + εt, t = 1, · · · , n, (1.1)

has played a dominant role in regression analysis. Here Yt is a response

variable, Xt = (Xt1, · · · , Xtp)
ᵀ

is a p-dimensional vector of random covariates,

β0 =
[
β0

1 , · · · , β0
p

]ᵀ
is a p-dimensional vector of coefficients and εt is an

independent and identically distributed (i.i.d.) error term. From (1.1),

the linear regression relationship between Yt and Xt is determined by the

parameter vector β0 The unknown parameter vector β0 can be consistently
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estimated by some commonly-used methods such as ordinary least squares

and maximum likelihood. However, the parametric linear model assumption

is often too restrictive and may be rejected by some model specification

test in real data analysis. The parametric estimation based on misspecified

models would provide inaccurate regression relationship of the variables

which we are interested.

Comparing with the traditional parametric linear models, nonparametric

models are more flexible in capturing the regression relationship and they

can avoid some restrictive pre-specified parametric assumptions. When the

number of covariates is large, direct nonparametric estimation would have

the “curse of dimensionality” problem which is first introduced by Bellman

(1957). Due to the curse of dimensionality, the convergence of nonparametric

estimation to the true smooth function becomes quite slow even when the

dimension is only larger than three. Therefore, how to avoid the curse of

dimensionality is an important research topic in nonparametric regression

estimation (Hastie and Tibshirani 1993; Fan, Yao and Cai 2003).

The main focus of this thesis is the so-called functional-coefficient model,

which is an important member of nonparametric regression family and

avoids the curse of dimensionality. The functional-coefficient model is a

natural extension of the classic linear regression model (1.1) by allowing
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the regression coefficients to vary with certain index variable, and can thus

capture flexible dynamic relationship between the response and covariates.

The functional-coefficient model is defined by

Yt = X
ᵀ

tβ0(Ut) + εt, t = 1, · · · , n, (1.2)

where Yt, Xt and εt are defined as those in model (1.1), β0(·) =
[
β0

1(·), · · · , β0
p(·)
]ᵀ

is a p-dimensional vector of functional coefficients and Ut is a univariate index

variable. In recent years, there have been extensive studies on estimation

and model selection for the functional-coefficient model (1.2) and its various

generalised versions, see, for example, Chen and Tsay (1993); Hastie and

Tibshirani (1993); Fan and Zhang (1999; 2008), Cai, Fan and Yao (2000),

Xia, Zhang and Tong (2004), Wang and Xia (2009), Kai, Li and Zou (2011),

Park et al. (2015) and the references therein.

However, when the number of functional coefficients is large or moder-

ately large, it is well-known that a direct nonparametric estimation of the

potentially p different coefficient functions in model (1.2) would be very

unstable. To address this problem, there have been some extensive studies in

the literature on either selecting significant variables in functional-coefficient

models (Fan, Ma and Dai 2014; Liu, Li and Wu, 2014), or exploring certain

rank-reduced structure in functional coefficients (Jiang et al. 2013; Chen,
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Li and Xia 2018), both of which aims to reduce the dimension of unknown

functional coefficients and improve model estimation efficiency.

In this thesis, we consider a different approach and impose a homogeneity

structure on model (1.2), i.e., the individual functional coefficients can

be grouped into a number of clusters and the coefficients have the same

functional pattern within each cluster. We allow that the dimension p may

depend on the sample size n and can be divergent with n, but the number of

unknown clusters is assumed to be fixed and much smaller than p. It is easy

to see that the dimension reduction through homogeneity pursuit is more

general than the commonly-used sparsity assumption in high-dimensional

functional-coefficient models (c.f., Fan, Ma and Dai, 2014; Liu, Li and Wu

2014; Li, Ke and Zhang 2015) as the latter can be seen as a special case

of the former with a very large group of zero coefficient. Specifically, we

assume the following homogeneity structure on model (1.2): there exists a

partition of {1, 2, · · · , p} denoted as C0 =
{
C0

1 , · · · , C0
K0

}
such that

β0
j (·) = α0

k(·) for j ∈ C0
k , C0

k1
∩ C0

k2
= ∅ for 1 ≤ k1 6= k2 ≤ K0, (1.3)

where the Lebesgue measure of
{
u ∈ U : α0

k1
(u)− α0

k2
(u) 6= 0

}
is positive

and bounded away from zero for 1 ≤ k1 6= k2 ≤ K0, and U is a compact

support of the index variable Ut. Furthermore, some of the functional
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coefficients α0
k(·) are allowed to have constant values including the value of

zero, indicating that model (1.2) is semi-parametric with a combination of

constant and functional coefficients. Our main interests are

• explore the homogeneity structure (1.3) by estimating the unknown

clusters C0
1 , · · · , C0

K0
and the unknown number of clusters;

• identify the clusters of constant coefficients and those of coefficients

varying with the index variable Ut and estimate the unknown compo-

nents in each cluster.

The topic investigated in this thesis has two close relatives in the exist-

ing literature. On one hand, the functional-coefficient regression with the

homogeneity structure is a natural extension of the linear regression with

the homogeneity structure and the latter has received increasing attention

in recent years. For example, Tibshirani et al.(2005) introduce the so-called

fused LASSO method to study the slope homogeneity; Bondell and Reich

(2008) propose the OSCAR penalised method for grouping pursuit; Shen

and Huang (2010) use a truncated L1 penalised method to extract the

latent grouping structure; and Ke, Fan and Wu (2015) propose the CARDS

method to identify the homogeneity structure and estimate the parameters

simultaneously. On the other hand, our topic is also relevant to some recent

literature on longitudinal/panel data model classification. For example, Ke,
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Li and Zhang (2016) and Su, Shi and Phillips (2016) consider identifying

the latent group structure for linear longitudinal data models by using the

binary segmentation and shrinkage method, respectively; Su, Wang and

Jin (2017) propose a penalised sieve estimation method to identify latent

grouping structure for time-varying coefficient longitudinal data models and

Vogt and Linton (2017) introduce a kernel-based classification of univari-

ate nonparametric regression functions in longitudinal data models. The

methodology of nonparametric homogeneity pursuit developed in this thesis

will be substantially different from those in the aforementioned literature.

In this thesis, we first estimate each functional coefficient in model (1.2) by

using the kernel smoothing method and ignoring the homogeneity structure

(1.3), and calculate the L1-distance matrix between the estimated functional

coefficients. Then, we combine the classic hierarchical clustering method and

a generalised version of the information criterion to explore the homogeneity

structure (1.3), i.e., estimate K0 and the members of C0
k , k = 1, · · · , K0.

Under some mild conditions, we show that the developed estimators for

the number K0 and the index sets C0
k , k = 1, · · · , K0, are consistent. After

estimating the structure (1.3), we further specify the semi-varying coefficient

modelling framework by determining the zero coefficient, non-zero constant

coefficients and functional coefficients varying with the index variable. This
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is done by using a penalised local least squares method, where the penalty

function is the weighted LASSO with the weights defined via the derivative

of the well-known SCAD penalty introduced by Fan and Li (2001). With

the nonparametric cluster analysis and the penalised approach, we may find

that the number of the unknown components in model (1.2) can be reduced

from p to K0−1 (if the zero constant exists in the model). Consequently, we

achieve the aim of dimension reduction in the functional-coefficient model.

In addition, the choice of the tuning parameters in the proposed esti-

mation approach is discussed and the relevant computational algorithm is

introduced. The simulation studies show that the proposed methods have

reliable finite-sample numerical performance. We finally apply the model

and methodology to analyse the Boston house price data as well as the

plasma beta-carotene level data, and find that the original nonparametric

functional-coefficient models can be simplified and the number of unknown

components involved can be substantially reduced. In particular, the out-

sample mean squared prediction errors using our approach are usually much

smaller than those using the naive kernel method which ignores the latent

homogeneity structure. The rest of the thesis is organised as follows.

• Chapter 2: We briefly review the existing models and methods which

are relevant to the proposed method. They include kernel-based
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nonparametric estimation, functional-coefficient models and their ex-

tensions high-dimensional variable selection methods.

• Chapter 3: We introduce the kernel-based hierarchical clustering

method and a generalised information criterion to estimate the homo-

geneity structure specified in (1.3). Furthermore, a penalised method

is proposed to determine zero-coefficient, non-zero constant-coefficients

and functional-coefficients in the model. The computational algorithm

is to implement the proposed methods and the choice of the tuning

parameters are also given in this chapter.

• Chapter 4: We report two Monte-Carlo simulation studies and two

real data applications (Boston house data and plasma beta-carotene

level data separately) to evaluate the finite-sample performance of the

proposed methodology.

• Chapter 5: We establish the asymptotic theory for the proposed

clustering and estimation methods. The detailed proofs of the main

asymptotic theorems are shown as well.

• Chapter 6: We conclude the thesis and discuss some possible extensions.
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Chapter 2

Literature Review

In this chapter, we first review the univariate nonparametric modelling

framework and local polynomial estimation approach which are fundamental

tools of our research in this thesis. In Section 2.2, the varying-coefficient

model and its nonparametric estimation methods are introduced. Section 2.3

gives some extensions of the conventional varying-coefficient model. Section

2.4 contains a brief review of the variable selection for both the linear

models and varying-coefficient models. Different penalised methods including

LASSO, SCAD, KLASSO are discussed in Section 2.4. Homogeneity pursuit

in linear regression models will be briefly reviewed in this section as well.
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2.1 Univariate Nonparametric Modelling

2.1 Univariate Nonparametric Modelling

As introduced in Chapter 1, the parametric linear and nonlinear model

need some pre-specified parametric assumptions before developing feasible

estimation. For example, the collected data are often assumed to follow

some distribution with parameters to be estimated. However, in practical

applications, the parametric model assumptions are often rejected by real

data, leading to rapid development of distribution free models and data-

driven nonparametric methods in recent decades. The latter neither requires

the data set to follow a specific distribution nor assumes a parametric form

on regression functions. It allows data to “speak for themselves” when

determining the functional form. The nonparametric modelling methods

have been applied in a wide range of disciplines including biology, economics

and public health. In this section, we review the nonparametric regression

model with univariate regressor (to avoid the curse of dimensionality) and

introduce the kernel-based local polynomial estimation method which is

systematically studied by Fan and Gijbels (1996).

Consider an independent and identically distributed bivariate data sample

(X1, Y1) · · · (Xn, Yn) collected from the population (X, Y ). The nonpara-
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2.1 Univariate Nonparametric Modelling

metric regression model is defined by

Y = m(X) + σ(X)ε, (2.1)

where X and ε are assumed to be independent for simplicity, E(ε) = 0,

Var(ε) = 1, m(·) is the mean regression function and σ2(X) is the variance

function. In particular, the regression function m(·) can be written as the

conditional expectation of Y with X given, i.e., m(·) = E(Y |X = x0). Our

aim is to estimate the unknown mean regression function m(x0) and its

derivatives m(j)(x0), j = 1, . . . , p, where p is a finite positive integer.

Assume that m(·) has continuous derivative up to the (p+ 1)th order of

derivative exists. We apply the Taylor expansion for the unknown mean

regression function m(x) in its neighbourhood of x0, and approximate it by

a local p-order polynomial as

m(x) ≈ m(x0)+m(1)(x0)(x−x0)+
m(2)(x0)

2!
(x−x0)2+· · ·+m(p)(x0)

p!
(x−x0)p.

(2.2)

We may treat m(x0),m
(1)(x0),m

(2)(x0), · · · ,m(p)(x0) as unknown “local

parameters” to be estimated and let βj =m(j)(x0)
j!

, j = 0, 1, · · · , p. Then we

11



2.1 Univariate Nonparametric Modelling

can rewrite the local polynomial approximation (2.2) as

m(x) ≈
p∑
j=0

βj(Xi − x0)j. (2.3)

We denote β̂0, β̂1, β̂2, · · · , β̂p as estimators of β0, β1, β2, · · · , βp, which are

obtained by minimising following weighted least squares objective function,

n∑
i=1

{
Yi −

p∑
j=0

βj(Xi − x0)j

}2

Kh(Xi − x0), (2.4)

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a bandwidth.

which is used to allocate weights to each data point. The weight in (2.4) are

determined by K(·) and h. We will discuss choice of the kernel function and

bandwidth later in this section.

Denote

X =


1 (X1 − x0) . . . (X1 − x0)p

...
...

. . .
...

...

1 (Xn − x0) . . . (Xn − x0)p


,
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2.1 Univariate Nonparametric Modelling

Y =


Y1

...

Yn


,β =


β1

...

βp


,

andW is an n×n diagonal matrix with diagonal elements being Kh(Xi−X0),

W = diag(Kh(X1 − x0), · · · , Kh(Xn − x0)).

With the above notation, we can rewrite the weighted least squares problem

(2.4) in a matrix form

min
β

(Y −Xβ)TW (Y −Xβ),

and its solution is given by

β̂ = (XTWX)−1XTWY , (2.5)

with β̂ = (β̂0, · · · , β̂p)ᵀ.

Commonly-used kernel functions include: Gaussian kernel, Epanechnikov

kernel and Uniform kernel, which are defined as follows.

13



2.1 Univariate Nonparametric Modelling

1. Gaussian kernel:

K(x) =
1√
2π

exp(−x2/2)

2. Epanechnikov kernel:

K(x) =


3
4
(1− x2), |x| ≤ 1

0, |x| > 1

3. Uniform kernel:

K(x) =


1
2
, |x| ≤ 1

0, |x| > 1

Note that when the Epanechnikov or Uniform kernel is used, to estimate

the regression function at the point of x, we discard the sample data whose X

observations are either larger than x+ h or smaller than x− h. Throughout

the numerical studies in this thesis, the Epanechnikov kernel is used due to

to its desirable statistical properties, see Fan (1992) for details.

The bandwidth selection is crucial to the local polynomial estimation as

it determines the nonparametric model complexity. In numerical studies,

the choice of an appropriate bandwidth plays a more important role in

kernel-based estimation than the choice of kernel function. When the

bandwidth value is too small, it would lead to overfitted model and result

14



2.1 Univariate Nonparametric Modelling

in undersmoothed functional estimation. On the other hand, when the

bandwidth value is too large, it would lead to oversmoothed nonparametric

estimation, affecting approximation accuracy. Various bandwidth selection

methods are available in the literature, see, for example, Ruppert, Sheather

and Wang (1995), Fan and Gijbels (1996). Among them the leave-one-out

cross validation (CV) method is probably the most frequently-used one

(Stone, 1974). Recall objective function (2.1), the CV bandwidth selection

criterion is described as follows.

CV(h) =
n∑
i=1

{Yi − m̂−i(Xi)}2w(Xi), (2.6)

where w(Xi) is a weighting function, m̂−i(Xi) is the estimation of unknown

regression function in model (2.1) and the i-th observation is removed from

the sample in the estimation. There are different methods to estimate

m̂−i(Xi), eg. Nadaraya-Watson estimator, Gasser-Müller estimator. Then

the optimal bandwidth can be obtained by minimizing the CV function in

(2.6).
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2.2 Varying-Coefficient Models

2.2 Varying-Coefficient Models

Varying coefficient models are very useful and important models, capturing

flexible dynamic relationship between the covariates and response. They

are a natural extension of classic linear regression models by allowing its

regression coefficients to vary with certain important index variable. The

varying-coefficient models have been widely used in nonlinear time series

analysis and longitudinal data modelling see, for example, Chen and Tsay

(1993), Hastie and Tibshirani (1993), Cai, Fan and Yao (2000). The varying-

coefficient model is defined by

Y =

p∑
j=1

βj(U)Xj + ε (2.7)

with

E(ε|U,X1, · · · , Xp) = 0 a.s.,

and

V ar(ε|U,X1, · · · , Xp) = σ2(U) a.s.,

where Y is a response variable, X = (X1, · · · , Xp)
ᵀ is a p-dimensional vector

of random covariates and βj(·) =
[
β0

1(·), · · · , β0
p(·)
]ᵀ

is a p-dimensional vector

of unknown functional coefficients, U is a univariate index variable and ε is
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2.2 Varying-Coefficient Models

an independent and identically distributed (i.i.d.) error term. By setting

the first random covariate to one (X1 ≡ 1), the intercept function can be

included in the model (2.7).

To estimate the functional coefficient βj(·) in model (2.7), the local linear

method (Fan 1993 ; Fan and Gijbels 1996) can be applied directly. We start

with the so-called one-step estimation method. Assume that the coefficient

functions have continuous derivatives up to the second order. Then, we

approximate the coefficient function locally at each point u0 by using the

Taylor expansion

βj(u) ≈ βj + β̇j(u− u0), (2.8)

where u is in a small neighbourhood of u0. Then we can obtain β̂(u0) by

using local least square method to minimize

n∑
i=1

{
Yi −

p∑
j=1

{
βj + β̇j(Ui − u0)

}
Xij

}2

Kh(Ui − u0), (2.9)

This idea was proposed by Cleveland et al.(1991) but it require the degrees

of smoothness are same for functions βj(u0). To estimate the same degree

smoothness of functional coefficients of a varying-coefficient model, above

simple local regression can be used. However, the optimal estimation cannot

be obtained by using one-step method if different coefficient functions have

17



2.2 Varying-Coefficient Models

different smoothness. Therefore, Fan and Zhang (1999) proposed a new

two-step method, which may repair the weakness of the one-step method

and obtain the optimal rate of estimation.

The main development of two-step method is that we can estimate

coefficient functions more accurately even if different coefficient functions

have different degree of smoothness (without assumption of same degree

smoothness) and optimal rates of convergence can be achieved. To show

the nice properties of two-step method, we make comparation between

traditional one-step method and developed two-step method.

We assume βp(·) is smoother than any βj(·), j = 1, · · · , p − 1 (same

smooth degree) and has fourth derivative, where p is dimension of covariates

X in the model. For one-step method, similar to model (2.7), we re-define

the varying-coefficient model basd on different smoothness of functional

coefficients

Y =

p−1∑
j=1

βj(U)Xj + βp(U)Xp + ε. (2.10)

For each given u0, we approximate the function βp(·) locally by following

cubic function

βp(u) ≈ βp + β(1)
p (u− u0) + β(2)

p(u− u0)2 + β(3)
p(u− u0)3. (2.11)
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2.2 Varying-Coefficient Models

Then the one-step estimator β̂p
OS

(u0) can be estimated by minimizing

n∑
i=1

{
Yi −

p−1∑
j=1

{
βj + β̇j(Ui − u0)

}
Xij−

{
βp + β(1)

p (Ui − u0) + β(2)
p(Ui − u0)2 + β(3)

p(Ui − u0)3
}
Xip

}2 ×Kh1(Ui − u0).

(2.12)

For two-step method, in first step, we first obtain the preliminary estima-

tor. Let β̂1,0(u0), · · · , β̂p,0(u0) denote the initial estimate of β1(u0), · · · , βp(u0).

Given initial smaller bandwidth h0, a preliminary estimate can be obtained

by minimizing

n∑
i=1

{
Yi −

p∑
j=1

{
βj + β̇j(Ui − u0)

}
Xij

}2

Kh0(Ui − u0). (2.13)

In the second step, we substitute the preliminary estimates β̂1,0(·), · · · , β̂p−1,0(·)

and estimate βp(u0) by minimizing

n∑
i=1

{
Yi −

p−1∑
j=1

β̂j,0(Ui)Xij−

{
βp + β(1)

p (Ui − u0) + β(2)
p(Ui − u0)2 + β(3)

p(Ui − u0)3
}
Xip

}2 ×Kh2(Ui − u0),

(2.14)

where h2 is the bandwidth in this second step of two-step method. Through

the above method, two-step estimator β̂p
TS

(u0) can be obtained. Note that

the initial bandwidth h0 is small enough to reduce the bias, therefore, the
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2.3 Extentions of Varying-Coefficient Model

choice of h2 is not too sensitive to the two-step estimation. As the problem

in the second step is a univariate smoothing problem, the bandwidth h2

for the second step can be selected through existing bandwidth selection

procedures which we introduced in previous section. Above is the basic

procedure and comparation of one-step and two-step method.

2.3 Extentions of Varying-Coefficient Model

Apart from the varying-coefficient model we reviewed, researchers may have

interests in resolving the problem of semi-varying coefficient model (Cai,

Fan and Li 2000; Xia, Zhang and Tong 2004; Fan and Huang 2005). That is

when some of the coefficients of the varying-coefficient model are not really

varying. For instance, there might be a situation that some coefficients are

constant. In this section, we will brief review the semi-varying coefficient

model. We define a semi-varying coefficient regression model

Y = X
ᵀ
β(U) +Z

ᵀ
β? + ε, (2.15)

where Y is the response variable and {U,X,Z} are covariates of Y , β(·) =

[β1(·), · · · , βp(·)]
ᵀ

is a p-dimensional vector of functional coefficients and

β? =
[
β?1 , · · · , β?q

]ᵀ
is a q-dimensional vector of constant coefficients , U is a
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2.3 Extentions of Varying-Coefficient Model

univariate index variable, and ε is an independent and identically distributed

(i.i.d.) error term. Although people may say that if we set β? = 0, and

the above model becomes a standard varying-coefficient, but we should not

regard it as a special case of varying-coefficient. If we do so, as a result, the

variance of the estimator might be higher and that is not desirable.

One method to estimate unknown parameters is called profile least

squares estimation which was introduced by Fan and Huang (2005). The

above semi-varying coefficient model (2.15) can be redefined as

Yi =

p∑
j=1

βj(Ui)Xij +

q∑
j2=1

β?j2Zij2 + εi, i = 1, · · · , n, (2.16)

and

Y ∗i =

p∑
j=1

βj(Ui)Xij + εi, i = 1, · · · , n, (2.17)

where Y ∗i = Yi −
∑q

j=1 β
?
j2
Zij2 . The above steps transform the semi-varying

coefficient model into the standard varying coefficient model. Then, the

local linear estimation approach can be applied to estimate the coefficient

function βj(·), j = 1, · · · , p. Here u is still the neighbourhood of u0 as we

defined in previous varying coefficient model. Recall the local linear function
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2.3 Extentions of Varying-Coefficient Model

to approximate βi(u)

βj(u) ≈ βj(u0) + β̇j(u0)(u− u0), j = 1, · · · , p. (2.18)

Weighted local least square estimation can be applied to minimize

n∑
i=1

[
Y ∗i −

p∑
j=1

{
βj + β̇j(Ui − u0)

}
Xij

]2

Kh(Ui − u0). (2.19)

Then we can obtain the estimator by following matrix form

(β̂1(u0), · · · , β̂p(u0), ˆ̇β1(u0), · · · , ˆ̇βp(u0))ᵀ = {DᵀWD}−1DᵀW (Y −Zβ?),

(2.20)

where

D =


Xᵀ

1 (U1 − u0)Xᵀ
1

...
...

Xᵀ
n (Un − u0)Xᵀ

n


.

Moreover, we denote

M =


X

ᵀ

1β(U1)

...

X
ᵀ

nβ(Un)


,
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2.3 Extentions of Varying-Coefficient Model

and

H =


(Xᵀ

1 0) {D1
ᵀW 1D1}−1D1

ᵀW 1

...

(Xᵀ
n 0) {Dn

ᵀW nDn}−1Dn
ᵀW n.


.

Model (2.17) can be write into matrix form

Y − Zβ? = M + ε. (2.21)

Then we obtain

M̂ = H(Y −Zβ?). (2.22)

By substituting M̂ into (2.21), we may obtain

Y −HY = (Z −HZ)β? + ε. (2.23)

Applying least squares method, the estimator β̂
?

can be obtained

β̂? = {Zᵀ(I −H)ᵀ(I −H)Z}−1 Zᵀ(I −H)ᵀ(I −H)Y . (2.24)

Apart from semi-varying coefficient model, generalized varying coefficient

model is also popular to use in statistics. First of all, recall generalized linear
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2.3 Extentions of Varying-Coefficient Model

model (Cai, Fan and Li 2000), then we may have

f(y|u,x) = exp

{
θ(u,x)y − b[θ(u,x)]

a(φ)
+ c(y, φ)

}
. (2.25)

Based on a random sample {Ui,Xi, Yi} where i = 1, · · · , n and a(·), b(·), c(·, ·)

are given functions (McCullagh and Nelder 1989; Fan and Gijbels 1996).

Define the conditional log-likelihood function

` {m(u,x), y} = θ(u,x)y − b[θ(u,x)]. (2.26)

Parameter φ has been omitted as only the mean function is what we are

interested in. By comparison with the above linear case, the generalized vary-

ing coefficient model allows coefficients to vary with covariates. Therefore,

we have

g {m(u, x)} =

p∑
j=1

βj(u)xj, (2.27)

where g(·) is link function, x is a p-dimensional covariate and m(u, x) is

the mean regression function of the response variable Y , u is a covariate

index variable. Local likelihood estimation method will be used to estimate

varying coefficient β(·) and we locally approximate function βj(u) by the
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2.3 Extentions of Varying-Coefficient Model

function of βj(u) ≈ βj + β̇j(u− u0) and denote

`(β, β̇) =
1

n

n∑
i=1

`

[
g−1

{
p∑
j=1

(βj + β̇j(Ui − u0))Xij

}
, Yi

]
Kh(Ui−u0), (2.28)

where K(·) is a kernel function and Kh(·) = K(·/h)/h. β = (β1, · · · , βp)ᵀ

and β̇ = (β̇1, · · · , β̇p)ᵀ. Estimator β̂(u0) will be obtained when we maxi-

mize the local likelihood function `(β, β̇), where β̂(u0) is the estimate of

β1(u0), · · · , βp(u0) and ˆ̇β(u0) is the estimate of β̇1(u0), · · · , β̇p(u0). In order

to simplify notations, we denote B(u0) = (β1, · · · , βp, β̇1, · · · , β̇p)ᵀ. If we use

local maximum likelihood estimation to get β̂j(·), it would be quite compu-

tation consuming since we need to maximize `(β, β̇) for too many distinct

values of u0 by using iterative method. In order to reduce computation cost,

we may use one-step local maximum likelihood estimation method. The idea

is by given an initial estimator B̂0(u0) = (β̂(u0)ᵀ, ˆ̇β(u0)ᵀ), followed by using

the one-step Newton-Raphson algorithm to find an updated estimator

B̂OS(u0) = B̂0(u0)−
{
`
′′
(B̂0(u0))

}−1

`
′
(B̂0(u0)), (2.29)

where `
′
(B) and `

′′
(B) are gradient and Hessian matrix of local likelihood

`(B).

Now, we can know the estimated number of group. In next Section, we

25



2.4 Variable Selection Methods

will review some existing variable selection methods.

2.4 Variable Selection Methods

As we all know, the set of variables of a well-established statistical model

should be fixed and small. Redundant predictors should be removed from the

model, especially for high-dimensional data. In last a few decades, penalised

least squares method plays a significant role in variable selection method.

Comparing with traditional model selection approaches (eg. stepwise regres-

sion), it is less computationally time consuming and quite popular to use in

recent years.

The key idea of penalized least squares method is by applying a penalty

function, we shrinkage some small value of coefficients to zero automatically

and delete those zero coefficients in the end. Thus, we can simplify the

original model. One of the most popular method for linear regression is so-

called least absolute shrinkage and selection operator (LASSO) (Tibshirani

1996). To further resolve the inconsistency issue of LASSO, Zou (2006)

proposed adaptive LASSO and extension from LASSO to group LASSO was

developed by Yuan and Lin (2006). Then, Fan and Li (2001) proposed the

smoothly clipped absolute deviation (SCAD) penalty and proofed its nice

properties of continuity, sparsity and unbiasedness.
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2.4 Variable Selection Methods

Consider the linear regression model. The LASSO resolves the L1-

penalised regression problem of estimating the β̂j to minimize

n∑
i=1

(Yi −
p∑
j=1

X
ᵀ

ijβj)
2 + λ

p∑
j=1

|βj|. (2.30)

The L1-penalty form in model (2.30) is the reason why LASSO can do

shrinkage and variable selection. As we mentioned above, the weakness of

LASSO is lack of continuity property. Therefore, Fan and Li (2001) proposed

SCAD method and proofed its Oracle properties. In this case, the estimated

estimator can be estimated as good as oracle estimator by applying SCAD

penalty. We define the SCAD penalty via its derivative as

p′λ(z) = λ

[
I(z ≤ λ) +

(a∗λ− z)+

(a∗ − 1)λ
I(z > λ)

]
, a∗ = 3.7.

Figure 2.1 shows the L1 penalty and SCAD penalty functions separately

based on the values of β. Here we design the values of β as a sequence from

-5 to 5 with interval 0.1.

Apart from the above variable selection methods for linear models, Wang

and Xia (2009) proposed the idea of extending the LASSO to varying

coefficient models with local constant kernel estimation. The proposed

method can identify the true model consistently by using the local constant
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2.4 Variable Selection Methods

Figure 2.1: Penalty functions for L1 (Black line)and SCAD (Red line)

estimator and the adaptive LASSO penalty. Because the method is based

on the combination of kernel smoothing and LASSO, it is therefore named

as Kernel LASSO (KLASSO). Followed by model (2.7), we first obtain the

initial estimator β̂j,0(·) by locally weighted least squares function

n∑
i=1

(Yi −X
ᵀ

i β(Ui))
2Kh(Ui − u0). (2.31)

Then, we apply the shrinkage technique to do variable selection and propose
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2.4 Variable Selection Methods

the following penalised estimate

n∑
i=1

(Yi −X
ᵀ

i β(Ui))
2Kh(Ui − u0) +

p∑
j=1

λj ‖ β̂j,0 ‖ . (2.32)

Denote the minimized resulting estimator by β̂λ,j(·). Where ‖ · ‖ stands for

Euclidean norm and λ = (λ1, · · · , λp)
ᵀ ∈ Rp is the tuning parameter. Local

Quadratic Approximation will be used here and β̂j,0(·) is the initial estimator

of the iterative algorithm. We do mth iteration of KLASSO method and

define the mth iterative penalised estimate

n∑
t=1

n∑
i=1

(Yi −X
ᵀ

i β(Ut))
2Kh(Ui − u) +

d∑
j=1

λj
‖ β̂j,0 ‖
‖ β̂(m)

λ,j ‖
. (2.33)

Then we may obtain

β̂
(m+1)
λ (u0) = [

n∑
i=1

XiX
ᵀ

iKh(Ui − u0) +D(m)]−1 × [
n∑
i=1

XiX
ᵀ

iKh(Ui − u0)],

(2.34)

where D(m) is the jthdiagonal component (d× d) of
λj

‖β̂(m)
λ,j ‖

, j = 1, · · · , p.

So far, we have reviewed several variable selection methods without

homogeneity pursuit. It should be noticed that the concept of homogeneity

has received increasing attention in recent years, for example, Tibshiranie et

al.(2005); Friedman et al.(2007). Now, I will briefly review a few homogeneity
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structure based methods. To start with a linear case, Ke, Fan and Wu (2015)

developed a method which is called Clustering Algorithm in Regression via

Data-driven Segmentation (CARDS). Define a matrix form of a linear model

Y = Xβ + ε, (2.35)

where Y=(y1, · · · , yn)
ᵀ
, X = (X1, · · · , Xp) is a n × p dimensional matrix,

the parameter β = (β1, · · · , βp)
ᵀ

and ε is an i.i.d. error term. Note that

there are two methods are introduced, which are Basic version of CARDS

(bCARDS) and Advanced version of CARDS (aCARDS) separately.

For bCARDS, denote β̂ be a preliminary estimator. The main idea for

generating a homogeneity structure is

(i) Rearrange the coefficients β̂ in ascending order.

(ii) Group the adjacent indices whose coefficients in β̂ are close each

other (penalised least squares method can be applied to extract the grouping

structure).

(iii) In each estimated group, we force those indices to share a common

coefficient and then we refit the model.

There are two steps to shrink coefficients of adjacent indices toward

homogeneity structure:
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2.4 Variable Selection Methods

Firstly, we rank the preliminary estimator in ascending order, i.e.,

β̂(1) ≤ β̂(2) ≤ · · · ≤ β̂(p). (2.36)

Secondly, with SCAD penalty function Pλ(·) and parameter λ, β̃ can be

estimated by minimizing

1

2n
||Y −Xβ||2 +

p−1∑
j=1

pλ(|β(j+1) − β(j)|). (2.37)

For aCARDS, less information from β̃ will be used but two penalty terms

are needed. Similar with aCARDS, given a preliminary estimator β̂ and get

preliminary ranking β̂(1) ≤ β̂(2) ≤ · · · ≤ β̂(p). For a tuning parameter δ > 0,

construct an ordered segmentation Υ where β̂(j) − β̂(j−1) > δ. This is the

main difference between aCARDS and bCARDS. In fact, the bCARDS is

just a special case when δ = 0. In the end, we compute the solution β̂ which

minimizes

1

2n
||Y −Xβ||2 + PΥ,λ1,λ2(β), (2.38)

where λ1 and λ2 are tuning parameters and PΥ,λ1,λ2(β) is a hybrid pairwise
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penalty which is defined by

PΥ,λ1,λ2(β) =
L−1∑
l=1

∑
i∈Bl,j∈Bl+1

pλ1(|βi − βj|) +
L−1∑
l=1

∑
i,j∈Bl

pλ2(|βi − βj|), (2.39)

where B1, · · · , Bl is the order of segments. The first part penalty is called

between-segment penalty. It penalise the pairs of indices from two adjacent

segments. While the second part penalty is named within-segment penalty.

Which is not rely on the ordering within the segment as it penalise all pairs

of indices in each single segment.

Apart from the above methodology for homogeneity pursuit, Vogt and

Linton (2017) develop a clustering method for nonparametric model with

heterogeneous regression functions. Here I will briefly review the proposed

classification method. The designed model is similar with the model (2.1)

but here we construct a panel data model and replace ε by u. Specifically,

we define uit = αi + γt + εit, where i = 1, · · · , n denotes the ith individual,

t = 1, · · · , T denotes the time point of observation, αi is an unobserved

individual, γt is time specific error terms which may be correlated with

the regressors in an arbitrary way and εit is an independent and identically

distributed error term. Let g1,· · · , gk0 be functions associated with these
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sets. We suppose that

mi = gk, i ∈ C0
k , 1 ≤ k ≤ K0. (2.40)

In order to estimate function mi, Nadaraya-Watson, local linear or local

polynomial estimator can be applied directly. Here we omit the detail of

specific estimation method and focus on the proposed classification method.

Assuming the true number of group is K0, we define

∆ij = ∆(mi,mj) =

∫
(mi(u)−mj(u))2fU(u)du, (2.41)

where fU(u) is some weight function. The classification structure can be

obtained by following algorithm

Step 1: Order the distances by ∆i(1) ≤, · · · ,≤ ∆i(ns), where i ∈ S is the

index and ∆ij denote the weighted squared L2-distance.

Step 2: The position of the largest jump jmax can be determined by ,

max
2≤j≤ns

|∆1(j) −∆1(j−1)|.

Step 3: Partition original S into two subgroups, S< and S> separately.
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Where

S< = {(1), · · · , (jmax − 1)} and S> = {(jmax), · · · , (ns)} .

The first three steps can be regard as the segmentation method. Then, we

iterate above algorithm:

(i) Apply Step 1 to Step 3 (from above algorithm) and set S = {1, · · · , n}

and split it up into two subgroups S1 = S< and S2 = S>

(ii) Design {S1, · · · , Sr} as the partition of {1, · · · , n} from the above

iteration steps. Select some group Sl∗ from this partition for which can max

δig > 0. Then we apply step 1 to step 3 and further split Sl∗ into another

subgroup Sl∗,< and Sl∗,>.

Iterate above algorithm (K0 - 1) times until all indices segment into K0

groups. Thus, we finish classification of nonparametric regression functions.

In next Chapter, we will introduce our developed methods which are not

covered by the reviewed literature.
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Chapter 3

Homogeneity Pursuit and

Algorithm

In this Chapter, we first introduce a clustering method for kernel estimated

functional coefficients, followed by a generalised information criterion to

determine the number of clusters in Section 3.1, and finally propose a pe-

nalised local linear estimation approach to specify the semi-varying coefficient

modelling structure in Section 3.2.

3.1 Kernel-Based Cluster Method

Assuming that the coefficient functions have continuous second-order deriva-

tives, we can use the kernel smoothing method (Wand and Jones 1994) to
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3.1 Kernel-Based Cluster Method

obtain the preliminary estimation of β0
j (·), j = 1, · · · , p, and denote the re-

sulting estimation by β̃j(·). Let Yn = (Y1, · · · , Yn)
ᵀ
, Xn = (X1, · · · ,Xn)

ᵀ
and

Wn(u) = diag {Kh(U1, u), · · · , Kh(Un, u)} with Kh(Ut, u) = K ((Ut − u)/h),

where K(·) is a kernel function and h is a bandwidth which tends to zero as

the sample size n diverges to infinity. Then the kernel estimation β̃(u0) can

be expressed as follows

β̃(u0) =
[
β̃1(u0), · · · , β̃p(u0)

]ᵀ
=

[
n∑
t=1

XtX
ᵀ

tKh(Ut, u0)

]−1 [ n∑
t=1

XtYtKh(Ut, u0)

]
=

[
Xᵀ

nWn(u0)Xn

]−1 [Xᵀ

nWn(u0)Yn

]
, (3.1)

where u0 is on the support of the index variable. Note that other commonly-

used nonparametric estimation methods such as the local polynomial method

(Fan and Gijbels 1996) and B-spline method (Green and Silverman 1994)

are also applicable to obtain the preliminary estimates. Without loss of

generality, we let U = [0, 1] be the compact support of the index variable Ut.

Define

∆̃ij =
1

n

n∑
t=1

∣∣∣β̃i(Ut)− β̃j(Ut)∣∣∣ I(Ut ∈ Uh), (3.2)

where I(·) is the indicator function and Uh = [h, 1−h]. The aim of truncating

the observations outside Uh is to overcome the so-called boundary effect in
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the kernel estimation. Noting that h → 0, the set Uh can be sufficiently

close to U , and thus the information loss is negligible. In fact, ∆̃ij can be

viewed as a natural estimate of

∆0
ij =

∫
Uh

∣∣β0
i (u)− β0

j (u)
∣∣ fU(u)du, (3.3)

where fU (·) is the density function of Ut. Under some smoothness conditions

on β0
i (·) and fU(·), we may show that

∆0
ij →

∫
U

∣∣β0
i (u)− β0

j (u)
∣∣ fU(u)du, n→∞.

From (1.2) and (3.3), we have ∆0
ij = 0 for i, j ∈ C0

k , and ∆0
ij 6= 0 for i ∈ C0

k1

and j ∈ C0
k2

with k1 6= k2. Then we define a distance matrix among the

functional coefficients by ∆0 with the (i, j)-entry being ∆0
ij, and obtain the

corresponding estimated distance matrix by ∆̃n with the (i, j)-entry being

∆̃ij defined in (3.2). It is obvious that both ∆0 and ∆̃n are p× p symmetric

matrices with the main diagonal elements being zeros.

We next use the well-known agglomerative hierarchical clustering method

to explore the homogeneity among the functional coefficients. This clustering

method starts with p clusters corresponding to the p functional coefficients.

In each stage, a functional coefficient or a cluster of some common functional
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coefficient is merged into another cluster. Then the number of clusters shrinks

and we end with only one cluster. Such a clustering approach has been

widely studied in the literature on cluster analysis (c.f., Everitt el al.2011;

Rencher and Christensen 2012). However, to the best of our knowledge,

there is virtually no work combining the agglomerative hierarchical clustering

method with the kernel smoothing of functional coefficients in nonparametric

homogeneity pursuit. This thesis fills in this gap. Specifically, the algorithm

is described as follows, where the number of clusters K0 is assumed to

be known. Section 3.2 below will introduce an information criterion to

determine the number K0.

1. Start with p clusters each of which contains one functional coefficient

and search for the smallest distance among the off-diagonal elements

of ∆̃n.

2. Merge the two clusters with the smallest distance, and then re-calculate

the distance between clusters and update the distance matrix. Here

the distance between two clusters A and B is defined as the minimum

distance between a point in A and a point in B, which is called a single

linkage (or nearest neighbour) method.

3. Repeat steps 1 and 2 until the number of clusters reaches K0.
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Let C̃1, · · · , C̃K0 be the estimated clusters obtained via the above algo-

rithm when the true number of clusters is known a priori. More generally, if

the number of clusters is assumed to be K with 1 ≤ K ≤ p, we stop the above

algorithm when the number of clusters reaches K, and let C̃1|K , · · · , C̃K|K

be the estimated clusters.

3.2 Penalised Local Linear Estimation

In practice, the true number of clusters is usually unknown and needs to be

determined. When the number of clusters is assumed to be K, we define

the kernel estimation for the functional coefficients:

α̃K(u0) =
[
α̃1|K(u0), · · · , α̃K|K(u0)

]ᵀ
=

[
n∑
t=1

X̃t,KX̃
ᵀ

t,KKh(Ut, u0)

]−1 [ n∑
t=1

X̃t,KYtKh(Ut, u0)

]
,(3.4)

where

X̃t,K =
(
X̃t,1|K , · · · , X̃t,K|K

)ᵀ

with X̃t,k|K =
∑
j∈C̃k|K

Xtj,

C̃k|K is defined as in Section 3.1. When the number K is larger than K0, α̃K(·)

is still a uniformly consistent kernel estimate of the functional coefficients
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(c.f., the proof of Theorem 2 in Section 5.1); but when K is smaller than K0,

the clustering approach in Section 3.1 results in a misspecified functional-

coefficient model and α̃K(·) can be viewed as the kernel estimate of the

“quasi“ functional coefficients which will be defined in (5.3) below.

We define the following objective function:

IC(K) = log
[
σ̃2
n(K)

]
+K ·

[
log(nh)

nh

]ρ
(3.5)

with 0 < ρ < 1,

σ̃2
n(K) =

1

nh

n∑
t=1

[
Yt − X̃

ᵀ

t,Kα̃K(Ut)
]2

I(Ut ∈ Uh) and nh =
n∑
t=1

I(Ut ∈ Uh),

and determine the number of clusters through

K̃ = arg min
1≤K≤K̄

IC(K), (3.6)

where K̄ is a pre-specified finite positive integer which is larger than K0.

In practical application, K̄ can be chosen the same as the dimension of

covariates p if the latter is either fixed or moderately large. When ρ is

relatively large, more clusters can be identified. When ρ is exactly 1, the

number of estimated clusters would be the same as the dimension of original
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3.2 Penalised Local Linear Estimation

covariates. Further detail and proof can be seen in Section 5.2. In our

numerical studies, we make the value of ρ = 0.5. The penalty term in

(3.5) can be replaced by logρ−1(nh)/nh when the dimension of covariates

is fixed. If we choose ρ close to 1 and treat nh as the “effective” sample

size, the above criterion would be similar to the classic Bayesian information

criterion introduced by Park et al.1978). The latter has been extended to

the nonparametric framework in recent years (c.f.,Wang and Xia 2009).

We next introduce a penalised approach to further identify the clusters

with non-zero constant coefficients and the cluster with zero coefficient. For

notational simplicity, we let X̃t = X̃t,K̃ and α̃(u0) = [α̃1(u0), · · · , α̃K̃(u0)]
ᵀ

be defined similarly to α̃K(u0) but with K = K̃. It is obvious that identifying

the constant coefficients is equivalent to identifying the functional coefficients

such that either their derivatives are zero or the deviation of the functional

coefficients D0
k = 0 (c.f., Li, Ke and Zhang 2015), where

D0
k =

{
n∑
t=1

[
α0
k(Ut)− ᾱk

]2}1/2

, ᾱk =
1

n

n∑
s=1

α0
k(Us).

In practice, we may construct the estimated deviation of the functional
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3.2 Penalised Local Linear Estimation

coefficients by

D̃k =


n∑
t=1

[
α̃k(Ut)−

1

n

n∑
s=1

α̃k(Us)

]2


1/2

,

for k = 1, · · · , K̃. Let

A =
(
a

ᵀ

1, · · · , a
ᵀ

n

)ᵀ
, at = (at1, · · · , atK̃)

ᵀ
;

B =
(
b

ᵀ

1, · · · ,b
ᵀ

n

)ᵀ
, bt = (bt1, · · · , btK̃)

ᵀ
;

Ak = (a1k, · · · , ank)
ᵀ
, Bk = (b1k, · · · , bnk)

ᵀ
.

We define the penalised objective function as follows:

Qn(A,B) = Ln(A,B) + Pn1(A) + Pn2(B), (3.7)

where

Ln(A,B) =
n∑
s=1

Ln(as,bs) = (3.8)

1

n

n∑
s=1

n∑
t=1

[
Yt − X̃

ᵀ

tas − X̃
ᵀ

tbs(Ut − Us)
]2

Kh(Ut, Us),

Pn1(A) =
K̃∑
k=1

p′λ1
(
‖Ãk‖

)
‖Ak‖, Pn2(B) =

K̃∑
k=1

p′λ2
(
D̃k

)
‖hBk‖,

in which Ãk = [α̃k(U1), · · · , α̃k(Un)]
ᵀ

, ‖ · ‖ denotes the Euclidean norm,
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3.2 Penalised Local Linear Estimation

λ1 and λ2 are two tuning parameters, p′λ(·) is the derivative of the SCAD

penalty function Fan and Li (2001)

p′λ(z) = λ

[
I(z ≤ λ) +

(a∗λ− z)+

(a∗ − 1)λ
I(z > λ)

]
, a∗ = 3.7.

Let

Âk = [α̂k(U1), · · · , α̂k(Un)]
ᵀ

and B̂k = [α̂′k(U1), · · · , α̂′k(Un)]
ᵀ

, k = 1, · · · , K̃,

(3.9)

be the minimiser of the objective function Qn(A,B). Through the penalisa-

tion, we would expect ‖Âk‖ = 0 when C̃k|K̃ is the estimated cluster of zero

coefficient, and ‖B̂k‖ = 0 when C̃k|K̃ is the estimated cluster of non-zero

constant. Hence, if ‖Âk‖ = 0, the corresponding covariates are not signif-

icant and should be removed from the functional-coefficient model (1.2);

and if ‖B̂k‖ = 0, the functional coefficient has a constant value and can be

consistently estimated by

α̂k =
1

n

n∑
t=1

α̂k(Ut).

The following flowchart shows the flow of the proposed estimation process.
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3.2 Penalised Local Linear Estimation

Figure 3.1: Flowchart of the proposed estimation process.
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3.3 Choice of Tuning Parameters

3.3 Choice of Tuning Parameters

The nonparametric kernel-based estimation may be sensitive to the value

of bandwidth h. Therefore, how to choose an appropriate bandwidth is an

important issue when applying our kernel-based clustering and estimation

methods in practice. A commonly-used bandwidth selection method is the

so-called cross-validation criterion. Specifically, the objective function for

the leave-one-out cross-validation criterion is defined by

CV(h) =
1

n

n∑
t=1

[
Yt −X

ᵀ

t β̃−t(Ut|h)
]2

, (3.10)

where β̃−t(·|h) is the preliminary kernel estimator of β0(·) in model (1.2)

when the bandwidth is h and the t-th observation is removed from the

sample in the estimation. Then we determine the optimal bandwidth ĥopt

by minimising CV(h) with respect to h.

For the choice of the tuning parameters λ1 and λ2 in the penalised local

least squares method, we use the generalised information criterion (GIC)

proposed by Fan and Tang (2013), which is briefly described as follows.

Let λ = (λ1, λ2) and use M1(λ) and M2(λ) to denote the index sets of

nonparametric functional coefficients and non-zero constant coefficients,

respectively (after implementing the kernel-based clustering analysis and
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3.4 Computational Algorithm

penalised estimation with the tuning parameter vector λ). As Cheng, Zhang

and Chen (2009) suggest that an unknown functional parameter (varying with

the index variable) would amount to m0h
−1 unknown constant parameters

with m0 = 1.028571 when the Epanechnikov kernel is used, we construct the

following GIC objective function:

GIC(λ) =
n∑
t=1

Yt − ∑
k∈M1(λ)

X̃t,k|K̃α̂k,λ(Ut)−
∑

k∈M2(λ)

X̃t,k|K̃α̂k,λ

2

+2ln[ln(n)]ln(m0h
−1)(|M2(λ)|+ |M1(λ)|m0h

−1), (3.11)

where α̂k,λ(·) and α̂k,λ are defined as the penalised estimation in Section

3.2 using the tuning parameter vector λ, |M| denotes the cardinality of

the set M, and the bandwidth h can be chosen as ĥopt determined by the

leave-one-out cross-validation introduced above. The optimal value of λ can

be found by minimising the objective function GIC(λ) with respect to λ.

3.4 Computational Algorithm

Let X̃t = X̃t,K̃ =
(
X̃t,1|K̃ , · · · , X̃t,K̃|K̃

)ᵀ

and define

Ω̃nk(j) = diag
{

Ω̃nk,1(j), · · · , Ω̃nk,n(j)
}
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3.4 Computational Algorithm

with Ω̃nk,s(j) = 2
n

∑n
t=1 X̃t,k|K̃X̃t,k|K̃ [(Ut − Us)/h]jKh(Ut, Us). It it obtained

by second derivative of loss function Ln(A,B) in equation (3.8). We next

introduce an iterative procedure to compute the penalised local least squares

estimates of the functional coefficients proposed in Section 3.2 see Li et al.

(2015).

1. Find the initial estimates of A0
k and B0

k, and we denote them by

Â
(0)
k =

[
α̂

(0)
k (U1), · · · , α̂(0)

k (Un)
]ᵀ

and B̂
(0)
k =

[
α̂
′(0)
k (U1), · · · , α̂′(0)

k (Un)
]ᵀ
,

respectively. These initial estimates can be obtained by using the

conventional (unpenalised) local linear estimation method.

2. Let Â
(j)
k and B̂

(j)
k be the estimates after the j-th iteration. We next

update the l-th functional coefficient starting from l = 1. Let

α̂
(j)
−l (Us) =

[
α̂

(j+1)
1 (Us), · · · , α̂(j+1)

l−1 (Us), 0, α̂
(j)
l+1(Us), · · · , α̂(j)

K̃
(Us)

]ᵀ
,

α̂′(j)(Us) =
[
α̂
′(j)
1 (Us), · · · , α̂′(j)K̃

(Us)
]ᵀ
,

Ŷ
(j)
t,−l = Yt − X̃tα̂

(j)
−l (Us)− X̃tα̂

′(j)(Us)(Ut − Us),

Ẽnl =
(
Ẽnl,1, · · · , Ẽnl,n

)ᵀ

, Ẽnl,s =
2

nh

n∑
t=1

X̃t,l|K̃ Ŷ
(j)
t,−lKh(Ut, Us).
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3.4 Computational Algorithm

If ‖Ẽnl‖ < p′λ1
(
‖Ãl‖

)
, we update Â

(j+1)
l = 0, otherwise,

Â
(j+1)
l =

[
Ω̃nl(0) + p′λ1

(
‖Ãl‖

)
In/cl

]−1

Ẽnl,

where In is an n × n identity matrix, cl = ‖Â(j)
l ‖ if ‖Â(j)

l ‖ 6= 0, and

cl = maxk 6=l ‖Â(j)
k ‖ if ‖Â(j)

l ‖ = 0.

3. Update the derivative of the l-th functional coefficient starting from

l = 1. Let

α̂(j+1)(Us) =
[
α̂

(j+1)
1 (Us), · · · , α̂(j+1)

K̃
(Us)

]ᵀ
,

α̂
′(j)
−l (Us) =

[
α̂
′(j+1)
1 (Us), · · · , α̂′(j+1)

l−1 (Us), 0, α̂
′(j)
l+1(Us), · · · , α̂′(j)K̃

(Us)
]ᵀ
,

Y̌
(j)
t,−l = Yt − X̃tα̂

(j+1)(Us)− X̃tα̂
′(j)
−l (Us)(Ut − Us),

Ěnl =
(
Ěnl,1, · · · , Ěnl,n

)ᵀ
,

Ěnl,s =
2

nh

n∑
t=1

X̃t,l|K̃ Y̌
(j)
t,−l[(Ut − Us)/h]Kh(Ut, Us).

If ‖Ěnl‖ < p′λ2
(
‖D̃l‖

)
, we update B̂

(j+1)
l = 0, otherwise,

hB̂
(j+1)
l =

[
Ω̃nl(2) + p′λ2

(
‖D̃l‖

)
In/dl

]−1

Ěnl,

where dl = ‖hB̂(j)
l ‖ if ‖B̂(j)

l ‖ 6= 0, and dl = maxk 6=l ‖hB̂(j)
k ‖ if ‖B̂(j)

l ‖ =

0.
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3.4 Computational Algorithm

4. Repeat Steps 2 and 3 until the convergence of the estimates.

Our numerical studies in Section 4.3 and Section 4.4 below show that the

above iterative procedure has a reasonably good finite-sample performance.
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Chapter 4

Numerical Study

In this section, we conduct two Monte-Carlo simulation examples and two

real data analysis to evaluate the finite-sample performance of the proposed

method.

4.1 Simulation Example I

Example I. Consider the following functional-coefficient model:

Yt =

p∑
j=1

βj(Ut)Xtj + σεt, t = 1, · · · , n, (4.1)

where the random covariate vector Xt = (Xt1, · · · , Xtp)
ᵀ

with p = 20 is

independently generated from a multiple normal distribution with zero mean,
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4.1 Simulation Example I

unit variance and correlation % being either 0 or 0.25, the univariate index

variable Ut is independently generated from a uniform distribution U[0, 1],

the random error εt is independently generated from the standard normal

distribution and σ = 0.5. The homogeneity structure on model (4.1) is

defined as follows:

• β4(k−1)+j(·) = αk(·) for k = 1, 2 and j = 1, 2, 3, 4,

• β4(k+1)+j(·) ≡ ck for k = 1, 2, 3 and j = 1, 2, 3, 4,

• α1(u) = sin(2πu),

• α2(u) = (1 + δ) sin(2πu),

• c1 = 0.5,

• c2 = 0.5 + δ,

• c3 = 0,

and δ = 0.4 or 0.8. The sample size n is 200, 500 or 1000, and the replication

number N is 500.

The above homogeneity structure shows that there are five clusters

among the functional and constant coefficients in model (4.1) and the size

of each cluster is the same. We first use the kernel smoothing method to

obtain the preliminary nonparametric estimates of the functional coefficients
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4.1 Simulation Example I

βj(·), j = 1, · · · , 20, where the Epanechnikov kernel K(z) = 3
4
(1−z2)+ is used

and the optimal bandwidth is determined by the cross-validation criterion

in Section 3.3. The homogeneity and semi-varying coefficient structure

in model (4.1) is ignored in this preliminary nonparametric estimation

procedure. A combination of the kernel-based clustering method and the

generalised information criterion in Section 3.1 is then used to estimate

the latent homogeneity structure in the simulation. In order to evaluate

the clustering performance, we consider two commonly-used measurements:

Normalised Mutual Information (NMI) and Purity, both of which can be

used to examine how close are the estimated set of clusters to the true set

of clusters. Letting C1 =
{
C1

1 , · · · , C1
K1

}
and C2 =

{
C2

1 , · · · , C2
K2

}
be two sets

of disjoint clusters of (1, 2, · · · , p), the NMI measure is defined as

NMI(C1, C2) =
I(C1, C2)

(H(C1) +H(C2)/2
,

where I(C1, C2) is mutual information between C1 and C2:

I(C1, C2) =

K1∑
k=1

K2∑
j=1

( |C1
k ∩ C2

j |
p

)
log

(
p|C1

k ∩ C2
j |

|C1
k ||C2

j |

)
,

H(C1) = |C1|
p
× log( |C1|

p
) and H(C2) == |C2|

p
× log( |C2|

p
) are the entropy of C1

and C2, respectively. The NMI measure takes a value between 0 and 1 with
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4.1 Simulation Example I

a larger value indicating that the two sets of clusters are closer. The Purity

measure is defined by

Purity(C1, C2) =
1

p

K1∑
k=1

max
1≤j≤K2

|C1
k ∩ C2

j |. (4.2)

It is easy to find that the Purity measure also takes a value between 0 and

1, and Purity(C1, C2) = 1 means that C1 is exactly the same as C2. Table 4.1

below summarises the estimation of cluster number in 500 replications and

Table 4.2 below gives the means and standard errors (in parentheses) for

the NMI and Purity measurements. From Table 4.1, we can find that the

number of clusters in general can be accurately estimated and it improves

significantly when the sample size increases from 200 to 500. Table 4.2

shows that if there is no correlation among the random covariates, the NMI

and Purity values are close to one even when the sample size is as small

as 200. The increase of the correlation % from 0 to 0.25 has an impact on

small-sample simulation performance of the proposed clustering approach in

particular when the sample size is 200.
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4.1 Simulation Example I

Figure 4.1: The preliminary kernel estimation of Example I (n=200)

The preliminary kernel estimation of the functional coefficients from a typical realisa-
tion of model (4.1) with “HS I” when the sample size n = 200 and δ = 0.8. The solid
lines are true coefficient functions and the dash lines are estimated curves.
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Figure 4.2: The preliminary kernel estimation of Example I (n=500)

The preliminary kernel estimation of the functional coefficients from a typical realisa-
tion of model (4.1) with “HS I” when the sample size n = 500 and δ = 0.8. The solid
lines are true coefficient functions and the dash lines are estimated curves.
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Table 4.1: Result on estimation of cluster number in Example I

δ % n K = 3 K = 4 K = 5 K = 6

0.4 0 200 0 99 401 0
500 0 0 500 0
1000 0 0 500 0

0.4 0.25 200 122 125 253 0
500 0 0 500 0
1000 0 0 500 0

0.8 0 200 0 3 497 0
500 0 0 500 0
1000 0 0 500 0

0.8 0.25 200 8 73 418 1
500 0 0 500 0
1000 0 0 500 0

Table 4.2: Result on the NMI and Purity measurements in Example I

δ = 0.4 δ = 0.8
% n NMI Purity NMI Purity

0 200 0.83 (0.18) 0.87 (0.16) 0.94 (0.13) 0.96 (0.12)
500 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
1000 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

0.25 200 0.46 (0.12) 0.55 (0.09) 0.89 (0.17) 0.90 (0.14)
500 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
1000 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

This table shows the accuracy of estimated classification structure for different sample.
The values in parenthesis report standard error based on 500 replications.

We finally identify the clusters with zero coefficients and non-zero constant

coefficients by using the penalised method introduced in Section 3.4. The

tuning parameters in the penalty term are chosen by the GIC given in

Section 3.3, where for simplicity we let λ1 = λ2 = λ (which is reasonable

due to Assumption 9). In order to measure the accuracy of the shrinkage
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method, we use the Mean Absolute Estimation Error (MAEE) defined by

MAEE(P ) =
1

nK̃

n∑
t=1

K̃∑
k=1

|α̂λ,k(Ut)− αk(Ut)|,

where αk(·), k = 1, · · · , K̃, are true functional (or constant) coefficients and

α̂λ,k(·) are their penalised estimates. Similarly, for the preliminary kernel

estimation, the corresponding MAEE is defined by

MAEE(K) =
1

np

n∑
t=1

p∑
j=1

|β̃j(Ut)− βj(Ut)|, p = 20,

where β̃j(·), j = 1, · · · , 20, are the preliminary kernel estimates of the true

coefficient functions βj(·). Table 4.8 below reports the median of the MAEE

values over 500 replications for both the preliminary kernel estimation and

the proposed semiparametric shrinkage method. The result in the table

shows that, after identifying the homogeneity and semi-varying coefficient

structure, the MAEE values of the semiparametric penalised estimation

are much smaller than those by directly applying the nonparametric kernel

estimation. In addition, both estimation methods improve their performance

(with decreasing MAEE values) as the sample size increases, and performance

becomes slightly worse when the correlation between the random covariates

increases from 0 to 0.25.
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Table 4.3: Median of MAEE values over 500 replications in Example I

δ = 0.4 δ = 0.8
% n MAEE(P) MAEE(K) MAEE(P) MAEE(K)

0 200 0.063 0.171 0.063 0.243
500 0.029 0.081 0.026 0.091
1000 0.018 0.060 0.018 0.063

0.25 200 0.064 0.241 0.068 0.269
500 0.045 0.119 0.023 0.137
1000 0.023 0.078 0.034 0.087

Apart from above MAEE results, we also apply the out-of-sample pre-

dictive performance between the proposed approach and the preliminary

kernel estimation. Here we randomly split the full sample into the training

set (containing 90 % of observations for model estimation) and the testing

set (containing the remaining 10 % observations for evaluating the model

predictive capacity). The predictive performance is measured by Mean

Squared Prediction Error (MSPE), which is defined by

MSPE =
1

n?

n?∑
i=1

(
Y ?
i − Ŷ ?

i

)2

, (4.3)

where n? = 20, 50, 100 are the testing sample size, Y ?
i is the true value of

response variable in the testing sample, and Ŷ ?
i is the fitted value of Y ?

i

using the model estimation in the training sample. Table 4.4 below reports

the means of the MSPE values over 500 times of random sample splitting,

where MSPE(P) denotes the MSPE using the proposed kernel clustering
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analysis and penalised estimation method in the training set, and MSPE(K)

denotes the MSPE using the preliminary kernel estimation in the training

set. From the Table 4.4, the MSPE(P) values are significantly smaller than

the MSPE(K) values. This comparison result shows that the simplified

functional-coefficient model via the developed kernel-based clustering and

structure identification provides more accurate out-of-sample prediction

result.

Table 4.4: Median of MSPE over 500 replications in Example I

δ = 0.4 δ = 0.8
% n MSPE(P) MSPE(K) MSPE(P) MSPE(K)

0 200 0.203 0.325 0.186 0.263
500 0.142 0.211 0.106 0.201
1000 0.129 0.170 0.096 0.157

0.25 200 0.264 0.361 0.217 0.339
500 0.159 0.219 0.129 0.267
1000 0.123 0.198 0.114 0.187

4.2 Simulation Example II

Example II. We still consider model (4.1) with the following homogeneity

structure:

• β1(·) = α1(·),

• βj(·) = α2(·) for j = 2 and 3,

• βj(·) ≡ c1 for j = 4, · · · , 7,
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• βj(·) ≡ c2 for j = 8, · · · , 13,

• βj(·) ≡ c3 for j = 14, · · · , 20.

• α1(u) = sin(2πu),

• α2(u) = (1 + δ) sin(2πu),

• c1 = 0.5,

• c2 = 0.5 + δ,

• c3 = 0.

The data generating processes for the random covariates Xt, the index

variable Ut and the model error εt are the same as those in Example 4.1.

The definitions of αi(·) and ci are also the same as those in the previous

example.

Tables 4.5 and 4.6 report the simulation result for the estimated latent

homogeneity structure and Table 4.7 and 4.8 report the medians of the

MAEE and MSPE values (for both the preliminary kernel estimation and

penalised local linear estimation) in 500 replications. Although the size of

clusters varies in this example, the simulation results are generally similar

to those obtained in Example I. Details are omitted here to save the space.
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Table 4.5: Result on estimation of cluster number in Example II

δ % n K = 3 K = 4 K = 5 K = 6

0.4 0 200 0 174 326 0
500 0 0 500 0
1000 0 0 500 0

0.4 0.25 200 1 402 97 0
500 0 0 500 0
1000 0 0 500 0

0.8 0 200 0 3 497 0
500 0 0 500 0
1000 0 0 500 0

0.8 0.25 200 0 36 454 10
500 0 0 500 0
1000 0 0 500 0

Table 4.6: Result on the NMI and Purity measurements in Example II

δ = 0.4 δ = 0.8
% n NMI Purity NMI Purity

0 200 0.83 (0.17) 0.84 (0.13) 0.94 (0.13) 0.96 (0.12)
500 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
1000 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

0.25 200 0.49 (0.12) 0.54 (0.09) 0.97 (0.06) 0.99 (0.03)
500 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
1000 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Table 4.7: Median of MAEE values over 500 replications in Example II

δ = 0.4 δ = 0.8
% n MAEE(P) MAEE(K) MAEE(P) MAEE(K)

0 200 0.073 0.163 0.051 0.127
500 0.029 0.068 0.025 0.075
1000 0.019 0.053 0.018 0.056

0.25 200 0.055 0.141 0.057 0.159
500 0.034 0.076 0.026 0.085
1000 0.021 0.065 0.018 0.056
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Table 4.8: Median of MSPE over 500 replications in Example II

δ = 0.4 δ = 0.8
% n MSPE(P) MSPE(K) MSPE(P) MSPE(K)

0 200 0.212 0.329 0.180 0.257
500 0.147 0.225 0.112 0.209
1000 0.133 0.173 0.106 0.164

0.25 200 0.268 0.369 0.225 0.326
500 0.154 0.218 0.132 0.255
1000 0.134 0.206 0.117 0.190

4.3 Real Data Analysis I

In this section, we apply the developed model and methodology to two real

data sets: the Boston house price data and the plasma beta-carotene level

data. These two data sets have been extensively analysed in some exist-

ing studies where the functional-coefficient model is usually recommended.

However, it is not clear whether certain homogeneity structure among the

functional coefficients exists. This motivates us to further examine the

modelling structure via the kernel-based clustering method and penalised

approach introduced in Chapter 3.

Real data I.

We first apply the developed model and methodology to the well-known

Boston house price data. In last two decades, real estate plays a significant

role in the world economy, especially in the United States. Boston is the
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4.3 Real Data Analysis I

largest and one of the oldest cities in the US with a population of over

685,000. Loads of world-famous universities and research institutes are

located in Boston and surrounding areas. As a supreme financial center,

Boston has some of the highest home prices of major cities in the US and

it is quite value to do some research on Boston house price. The data set

we use has been previously analysed in some existing studies (c.f., Fan and

Huang, 2005; Wang and Xia, 2009). The meaning of variables we use as

follows:

• MEDV: the median value of owner-occupied homes in the unit of US$

1000.

• CRIM: the crime rate per capita by town.

• RM: the average number of rooms per dwelling.

• PTRATIO: the ratio of pupil-teacher by town.

• TAX: the full-value property-tax rate per US$ 10000.

• NOX: the nitric oxides concentration per 10 million.

• AGE: the proportion of owner-occupied units built prior to 1940.

• LSTAT: the percentage of lower status of the population.

• INT: Intercept.
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As in the literature, we select MEDV (the median value of owner-occupied

homes in the unit of US$ 1000) as the response variable. The candidate

explanatory variables include CRIM (the crime rate per capita by town), RM

(the average number of rooms per dwelling), PTRATIO (the ratio of pupil-

teacher by town), TAX (the full-value property-tax rate per US$ 10000),

NOX (the nitric oxides concentration per 10 million), AGE (the proportion

of owner-occupied units built prior to 1940) and INT (the intercept). The

LSTAT (the percentage of lower status of the population) variable is chosen

as the index variable U in the functional-coefficient model. The Z-score

method is applied to transform the response and explanatory variables

(except INT). The LSTAT variable is min-max normalization transformed

so that its distribution is U(0, 1), consistent with the assumption made on

the asymptotic theory.

Figure 4.3: The preliminary kernel estimated curves of the functional coeffi-
cients.
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Figure 4.3 plots the preliminary kernel estimated curves for the functional

coefficients corresponding to the intercept and six explanatory variables,

where the bandwidth is hopt = 0.13 determined by the leave-one-out cross-

validation method. From Figure 4.3, we observe that the coefficients for

CRIM, PTRATIO, TAX, NOX and AGE have similar functional pattern

(close to the horizontal line), indicating that they might take constant

values. This is confirmed by using the methodology proposed in Section

3.2. The kernel-based cluster analysis and the generalised information

criterion identifies the following three clusters: the functional coefficients

corresponding to CRIM, PTRATIO, TAX, NOX and AGE are identical

and form one cluster, the functional coefficients corresponding to INT and

RM form two other clusters, respectively. Furthermore, the penalised local

linear estimation with the optimal tuning parameters chosen as λ1 = 6.5 and

λ2 = 3 suggests that the identical coefficient function for CRIM, PTRATIO,

TAX, NOX and AGE has a constant value (−0.023), whereas the coefficient

functions for INT and RM changes with the LSTAT variable. The two

estimated functional coefficients are given in Figure 4.4. The estimated

intercept function is overall decreasing, indicating that the house price would

drop as the LSTAT value increases. The estimated functional coefficient

associated with the RM variable is mostly positive (in particular when
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the LSTAT value is relatively small (relatively high educational status

neighborhood), indicating a positive relationship between the house price

and RM. By applying the methodology proposed in my thesis, there are only

two nonparametric components and one parameter in the final semi-varying

coefficient model, which is much simpler than the pure functional-coefficient

model considered in some existing literature.

Figure 4.4: The estimated functional coefficients of INT and RM.

We next compare the out-of-sample predictive performance between the

proposed approach and the preliminary kernel estimation. We still randomly

split the full sample into the training set (containing 456 observations

for model estimation) and the testing set (containing the remaining 50

observations for evaluating the model predictive capacity). The predictive

performance is measured by Mean Squared Prediction Error (MSPE), which

is defined in model (4.3) where the testing sample size n? = 50, Y ?
i is the

true value of response variable in the testing sample. Table 4.9 below reports
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4.3 Real Data Analysis I

the means of the MSPE values over 200 times of random sample splitting,

where MSPE(P) denotes the MSPE using the proposed kernel clustering

analysis and penalised estimation method in the training set, and MSPE(K)

denotes the MSPE using the preliminary kernel estimation in the training

set. We consider the bandwidth values starting from 0.04 to 0.16 (with equal

distance 0.02), covering hopt = 0.08 which is the optimal bandwidth for the

penalised local linear estimation. From the table, we can see that when the

bandwidth is close to or smaller than the optimal bandwidth hopt = 0.08

(for penalised estimation), the MSPE(P) values are significantly smaller

than the MSPE(K) values. Only when h = 0.12 (close to hopt = 0.13, the

optimal bandwidth for the preliminary kernel estimation), the MSPE(K)

value is smaller than the MSPE(P) value. This comparison result shows that

the simplified functional-coefficient model via the developed kernel-based

clustering and structure identification provides more accurate out-of-sample

prediction result.

Table 4.9: MSPE values over 200 times of random sample splitting in Real
Data I

h = 0.04 h = 0.06 h = 0.08 h = 0.10

MSPE(P) 0.354 0.343 0.324 0.352
MSPE(K) 0.872 0.708 0.575 0.368

h = 0.12 h = 0.14 h = 0.16 h = 0.18

MSPE(P) 0.332 0.334 0.335 0.347
MSPE(K) 0.277 0.673 0.670 0.716
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4.4 Real Data Analysis II

4.4 Real Data Analysis II

Real Data II.

We next apply the developed method to analyse the plasma beta-carotene

level data, which have been previously studied by Nierenberg et al.(1989),

Wang and Li (2009) and Kai, Li and Zou (2011). Plasma can transport to

retinol, which becomes one kind of vitamin A alcohol. Beta-carotene is an

antioxidant that converts to vitamin A and plays a crucial role in health.

Therefore, it is meaningful to explore the relationship between dietary factors

and personal characteristics.

Existing studies have suggested that low dietary intake or low plasma

concentrations of retinol, beta-carotene, or other carotenoids might be

associated with high risk of developing certain types of cancer. However, quite

few studies have explored the determinants of plasma concentrations of these

micronutrients. Here, followed by existing literature I have mentioned above,

we intend to investigate the relationship between personal characteristics and

dietary factors, plasma concentrations of retinol, beta-carotene and other

carotenoids. We start the empirical analysis with the functional-coefficient

model with given variables,

• AGE: Age (years).
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• SMOKSTAT: Smoking status (1 = Never, 2 = Former, 3 = Current

Smoker).

• QUETELET: Quetelet (weight/(height2)).

• VITUSE: Vitamin Use ( 1= Yes, fairly often, 2 = Yes, not often, 3 =

No).

• CALORIES: Number of calories consumed per day.

• FAT: Grams of fat consumed per day.

• FIBER: Grams of fiber consumed per day.

• ALCOHOL: Number of alcoholic drinks consumed per week.

• CHOLESTEROL: Cholesterol consumed (mg per day).

• BETADIET: Dietary beta-carotene consumed (mcg per day).

• RETDIET: Dietary retinol consumed (mcg per day)

• BETAPLASMA: Plasma beta-carotene (ng/ml).

• RETPLASMA: Plasma Retinol (ng/ml).

In this analysis, the response variable is chosen as PBCL and the candi-

date explanatory variables include AGE, SMOKSTAT, VITUSE, QUETELET,
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CALORIES, FAT, FIBE, ALCOHO, CHOLESTEROLand INT (the inter-

cept). Followed by Kai and Zou (2011), the Z-score method are used to

transform the response and random explanatory variables and the DBC

variable is min-max normalisation transformed so that its distribution follows

the uniform distribution U(0, 1). The index variable U is chosen as DBC

(dietary beta-carotene consumed per day).

In the preliminary kernel estimation, the Epanechnikov kernel K(z) =

3
4
(1− z2)+ is used and the optimal bandwidth is determined via the cross-

validation method in Chapter 3 with hopt = 0.18. The kernel-based clustering

method and penalised local linear estimation (with the tuning parameters

λ1 = 4 and λ2 = 2 chosen by the GIC method) are combined to explore the

homogeneity structure among the functional coefficients. The following three

clusters are identified: the functional coefficient for INT (i.e., the intercept

function) forms the first cluster, functional coefficients for SMOKSTAT

and QUETELET have the same pattern and form the second cluster, and

the functional coefficients for the remaining seven covariates form the third

cluster (with coefficients being zero). Figure 4.5 plots the estimated curves for

the two significant functional coefficients. The estimated intercept function

is overall increasing, indicating that the plasma beta-carotene level increases

as the index variable DBC increases. The estimated functional coefficient
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associated with the covariates QUETELET and SMOKSTAT are in general

negative, indicating a negative relationship between the plasma beta-carotene

level and the combined covariates QUETELET and SMOKSTAT.

Figure 4.5: The estimated curves of the two significant functional coefficients
corresponding to INT and QUETELET+SMOKSTAT, respectively.

Moreover, we further compare the out-of-sample predictive performance

between the proposed approach and the preliminary kernel estimation. We

randomly divide the full sample (with 273 observations) into the training

set (containing 243 observations) and the testing data (containing 30 ob-

servation), and repeat such a random sample splitting 200 times to avoid

randomness. The MSPE measurement defined in (4.3) is used to evaluate

the predictive performance with the result reported in Table 4.10 below.

From the table, we find that the proposed kernel-based clustering and semi-

parametric shrinkage method usually outperforms the preliminary kernel

estimation method (ignoring the latent homogeneity structure) in terms of

71



4.4 Real Data Analysis II

predictive measurement.

Table 4.10: MSPE values over 200 times of random sample splitting in Real
Data II

h = 0.12 h = 0.15 h = 0.18 h = 0.21 h = 0.24

MSPE(P) 1.207 1.048 1.017 1.027 1.024
MSPE(K) 2.214 2.029 1.583 1.189 0.963
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Chapter 5

Related Asymptotic Theorems

5.1 Asymptotic Theorems

In this section, we give the asymptotic theorems for the proposed clustering

and semiparametric penalised methods. We start with some regularity

conditions, some of which might be weakened at the expense of more lengthy

proofs.

Assumption 1. The kernel function K(·) is a Lipschitz continuous and

symmetric probability density function with a compact support [−1, 1].

Assumption 2(i). The density function of the index variable Ut, fU(·),

has continuous second-order derivative and is bounded away from zero

and infinity on the support.
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5.1 Asymptotic Theorems

(ii). The functional coefficients β0(·) and α0(·) =
[
α0

1(·), · · · , α0
K0

(·)
]ᵀ

have continuous second-order derivatives.

Assumption 3(i). The p × p matrix Σ(u) := E
(
XtX

ᵀ

t |Ut = u
)

is twice

continuously differentiable and positive definite for any u ∈ [0, 1].

Furthermore,

0 < inf
u∈[0,1]

λmin(Σ(u)) ≤ sup
u∈[0,1]

λmax(Σ(u)) <∞,

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues,

respectively.

(ii). Let (Ut,Xt, εt), t = 1, · · · , n, be i.i.d. Furthermore, the error εt is

independent of (Ut,Xt), E[εt] = 0 and 0 < σ2 = E[ε2
t ] <∞, and there

exists 0 < ι1 <∞ such that E (|εt|2+ι1)+max1≤i≤p E
(
|Xti|2(2+ι1)

)
<∞.

Assumption 4(i). Let the bandwidth h and the dimension p satisfy

p(εn + h2) = o(1), n2ι2−1h→∞,

where εn =
√

log h−1/(nh) and ι2 < 1− 1/(2 + ι1).
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(ii). Let

p1/2
(
εn + h2

)
= o(δn), n1/2δn/(log n)1/2 →∞,

where

δn = min
1≤k1 6=k2≤K0

δk1k2 , δk1k2 =

∫
Uh

∣∣α0
k1

(u)− α0
k2

(u)
∣∣ fU(u)du.

Remark 1. Assumptions 1–3 are some commonly-used conditions on the

kernel estimation of the functional-coefficient models. The strong moment

condition on εt and Xt in Assumption 3(ii) is required when applying

the uniform asymptotics of some kernel-based quantities. Assumption 4(i)

restricts the divergence rate of the regressor dimension and the convergence

rate of the bandwidth. In particular, if ι1 is sufficiently large (i.e., the moment

conditions in Assumption 3(ii) becomes stronger), the condition n2ι2−1h→∞

could be close to the conventional condition nh → ∞. Assumption 4(ii)

indicates that the difference between two functional coefficients (in different

clusters) can be convergent to zero with certain polynomial rate. In particular,

when p is fixed, h = chn
−1/5 with 0 < ch < ∞, and δn = n−δ0 with

0 ≤ δ0 < 2/5, Assumption 4(ii) would be automatically satisfied.

Theorem 1. Suppose that Assumptions 1–4 are satisfied and K0 is known
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a priori. Then we have

P
({
C̃k, k = 1, · · · , K0

}
6=
{
C0
k , k = 1, · · · , K0

})
= o(1) (5.1)

when the sample size n is sufficiently large, where C̃k is defined in Section

3.1 and C0
k is defined in (1.2).

Remark 2. The above theorem shows the consistency of the agglomerative

hierarchical clustering method proposed in Section 3.1 when the number

of clusters is known a priori, i.e., with probability approaching one, the

K0 clusters can be correctly specified. It is similar to Theorem 3.1 in

(Vogt and Linton 2017) which gives the consistency of classification of

nonparametric univariate functions in the longitudinal data setting by using

the nonparametric segmentation method.

We next derive the consistency for the information criterion on estimating

the number of clusters which is usually unknown in practice. Some further

notation and assumptions are needed. Define

Xt,K0 =
(
Xt,1|K0 , · · · , Xt,K0|K0

)ᵀ
with Xt,k|K0 =

∑
j∈C0k

Xtj,

and

ΣX|K0(u) = E
[
Xt,K0X

ᵀ

t,K0
|Ut = u

]
, u ∈ [0, 1].
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Similarly, we can define ΣX|K(u) when K > K0 and there are further splits

on at least one of C0
k , k = 1, · · · , K0. Define the event:

Cn(K0) =
{[
C̃k, k = 1, · · · , K0

]
=
[
C0
k , k = 1, · · · , K0

]}
. (5.2)

From (5.1) in Theorem 1, we have P (Cn(K0))→ 1 as n→∞. Conditional

on the event Cn(K0), when the number of clusters K is smaller than K0,

two or more clusters of C0
k , k = 1, · · · , K0, are falsely merged, which results

in K clusters denoted by C1|K , · · · , CK|K , respectively, 1 ≤ K ≤ K0 − 1.

With such a clustering result, the functional coefficients in model (1.2) and

(1.3) cannot be consistently estimated by the kernel smoothing method, as

the model is misspecified. However, we may define the “quasi” functional

coefficients by

αK(u) =
[
α1|K(u), · · · , αK|K(u)

]ᵀ
=
[
ΣX|K(u)

]−1
ΣXY |K(u), (5.3)

where 1 ≤ K ≤ K0 − 1,

ΣX|K(u) = E
[
Xt,KX

ᵀ

t,K |Ut = u
]
, ΣXY |K(u) = E [Xt,KYt|Ut = u] , (5.4)
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and

Xt,K =
(
Xt,1|K , · · · , Xt,K|K

)ᵀ
with Xt,k|K =

∑
j∈Ck|K

Xtj. (5.5)

When K = K0, it is easy to find that the quasi functional coefficients becomes

the “genuine” functional coefficients conditional on the event Cn(K0). Define

εt,K = Yt −X
ᵀ

t,KαK(Ut) and εt1,K = Xt,Kεt,K . By (5.3), it is easy to show

that

E [εt1,K |Ut] = 0 a.s., (5.6)

where 0 is a null vector whose dimension might change from line to line. A

natural nonparametric estimate of αK(·) would be α̃K(·) defined in (3.4)

of Section 3.2, where the order of elements in the latter may have to be

re-arranged if necessary. The fact of (5.6) and some smoothness condition

on α(·|K) may ensure the uniform consistency of the quasi kernel estimation

(see the proof of Theorem 2 in Section 5.2).

Let A(K0) be the set of K0-dimensional twice continuously differentiable

functions α(u) = [α1(u), · · · , αK0(u)]
ᵀ

such that at least two elements of

α(u) are the identical functions over u ∈ [0, 1]. The following additional

assumptions are needed when proving the consistency of the information

criterion proposed in Section 3.2.
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Assumption 5. There exists a positive constant cα such that

inf
α(·)∈A(K0)

∫ 1

0

[α0(u)−α(u)]
ᵀ

ΣX|K0(u) [α0(u)−α(u)] fU(u)du > cα.

(5.7)

Assumption 6 (i). For any 1 ≤ K ≤ K̄, the K ×K matrix ΣX|K(u) is

positive definite for u ∈ [0, 1].

(ii). For any 1 ≤ K ≤ K0, the quasi functional coefficient αK(·) has

continuous second-order derivatives.

Assumption 7. The bandwidth h and the dimension p satisfy ph2 = O(εn),

nh6 = o(1) and p = o
(

min
{
ε

(ρ−1)/2
n , ε

−1/3
n

})
, where ρ is defined in

(3.5).

Remark 3. Assumptions 5 and 6 are mainly used when deriving the asymp-

totic lower bound of σ̃2
n(K) which is involved in the definition of IC(K) when

K is smaller than K0. The restriction (5.7) in Assumption 5 indicates that the

K0 functional elements in α0(·) needs to be “sufficiently” distinct. We may

show that (5.7) is satisfied if inf1≤K≤K0 infu∈[0,1] λmin

(
ΣX|K(u)

)
> c1 > 0 and

the Lebesgue measure of
{
u ∈ U : |α0

k1
(u)− α0

k2
(u)| > c2 > 0

}
is positive for

any k1 6= k2. Assumption 6 is required to prove the uniform consistency of

the kernel estimation for the quasi functional coefficients. Assumption 7
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gives some further restriction on h and p, and indicates that the dimension

of the covariates can diverge to infinity at a slow polynomial rate of the

sample size n. Theorem 2 below shows that the estimated number of clusters

which minimises the IC objective function defined in (3.5) is consistent.

Theorem 2. Suppose that Assumptions 1–7 are satisfied. Then we have

P
(
K̃ = K0

)
→ 1, (5.8)

where K̃ is defined in (3.6).

Define

A0
k =

[
α0
k(U1), · · · , α0

k(Un)
]ᵀ
, B0

k =
[
α0′
k (U1), · · · , α0′

k (Un)
]ᵀ
,

Âk = [α̂k(U1), · · · , α̂k(Un)]
ᵀ

, B̂k = [α̂′k(U1), · · · , α̂′k(Un)]
ᵀ

.

Without loss of generality, conditional on Cn(K0) and K̃ = K0, we assume

that C̃1 = C0
1 , · · · , C̃K0 = C0

K0
, otherwise we only need to re-arrange the order

of the elements in α0(·) =
[
α0

1(·), · · · , α0
K0

(·)
]ᵀ

in the relevant asymptotic

theorems. For notational simplicity, we also assume that α0
K0

(·) ≡ 0 and

α0
k(·) ≡ α0

k for k = K∗, · · · , K0−1 with 1 < K∗ < K0, where α0
k are non-zero

constants (the non-zero constant coefficient does not exist when K∗ = K0

and all of the functional coefficients would be constants when K∗ = 1). For
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simplicity, we next assume that all the observations of the index variable Ut,

t = 1, · · · , n, are in the set of Uh, to avoid the boundary effect of the kernel

estimation, but it can be removed if an appropriate truncation technique

such as those in Section 3.1 and Section 3.2 is applied to the penalised

local linear estimation. Some additional conditions are needed to derive the

sparsity result for the penalised estimation in Section 3.2.

Assumption 8. For any k = 1, · · · , K0−1, there exists a positive constant

cA such that ‖A0
k‖ ≥ cA

√
n with probability approaching one. When

k = 1, · · · , K∗ − 1 (with K∗ ≥ 2), there exists a positive constant cD

such that D0
k ≥ cD

√
n with probability approaching one.

Assumption 9. Let p2nh5 = O(1), and the tuning parameter λ1 satisfy

λ1 = o(n1/2), n1/2p2h2 + n1/2pεn + p4h−1/2 = o(λ1). (5.9)

The condition (3.9) is also satisfied when λ1 is replaced by λ2.

Remark 4. Assumption 8 is a key condition to prove that ‖Ãk‖/
√
n and

D̃k/
√
n are bounded away from zero with probability approaching one, which

together with the definition of the SCAD derivative and λ1 + λ2 = o(n1/2)

in Assumption 9, indicates that when the functional coefficients or their

deviations are significant, the influence of the penalty term in (3.7) can be
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asymptotically ignored. For the case when p is fixed and h = chn
−1/5 as

discussed in Remark 1, if we choose λ1 = λ2 = nδ∗ with 0.1 < δ∗ < 0.5, (5.9)

in Assumption 9 would be satisfied.

Theorem 3. Suppose that Assumptions 1–9 are satisfied. Then we have

P
(
‖ÂK0‖ = 0, ‖B̂k‖ = 0, k = K∗, · · · , K0

)
→ 1. (5.10)

The above sparsity result for the penalised local linear estimation shows

that the zero coefficient and non-zero constant coefficients in the model can

be identified asymptotically.

5.2 Proof of Theorems

In this section, I will give the detailed proofs of the main asymptotic results.

Proof of Theorem 1. From the definition of ∆0
ij, we have ∆0

ij = 0 if

i, j ∈ C0
k ; and ∆0

ij = δk1k2 if i ∈ C0
k1

and j ∈ C0
k2

with 1 ≤ k1 6= k2 ≤ K0,

where δk1k2 is defined in Assumption 4(ii). Note that the true number of

clusters, K0, is assumed to be known in this theorem. Therefore, from the

algorithm for the clustering method, to prove (5.1), we only need to prove

that

max
1≤i,j≤p

∣∣∣∆̃ij −∆0
ij

∣∣∣ = oP (δn), δn = min
1≤k1 6=k2≤K0

δk1k2 . (5.11)
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From the definitions of ∆̃ij and ∆0
ij in Section 3.1, it is sufficient to show

max
1≤i≤p

sup
u∈Uh

∣∣∣β̃i(u)− β0
i (u)

∣∣∣ = oP (δn). (5.12)

In fact, if (5.12) holds, by the definition of ∆̃ij and letting

∆ij =
1

n

n∑
t=1

∣∣β0
i (Ut)− β0

j (Ut)
∣∣ I(Ut ∈ Uh),

we have

max
1≤i,j≤p

∣∣∣∆̃ij −∆ij

∣∣∣ ≤ 2 max
1≤i≤p

sup
u∈Uh

∣∣∣β̃i(u)− β0
i (u)

∣∣∣ = oP (δn). (5.13)

For the case of i, j ∈ C0
k , we readily have ∆0

ij = ∆ij = 0, and thus (5.13)

leads to (5.11). On the other hand, uniformly for i ∈ C0
k1

and j ∈ C0
k2

with

1 ≤ k1 6= k2 ≤ K0, as n1/2δn/(log n)1/2 →∞ in Assumption 4(ii), we have

|∆ij − δk1k2| = OP

(√
log n/n

)
= oP (δn), (5.14)

which together with (5.13), implies that (5.11) holds.
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We next prove (5.12). By (1.2) and (3.1), we have

β̃(u)− β0(u) =

[
n∑
t=1

XtX
ᵀ

tKh(Ut, u)

]−1 [ n∑
t=1

XtεtKh(Ut, u)

]
+[

n∑
t=1

XtX
ᵀ

tKh(Ut, u)

]−1 [ n∑
t=1

XtX
ᵀ

tβt(u)Kh(Ut, u)

]
,(5.15)

where βt(u) = β0(Ut)− β0(u). Let

Ωn(u) =
1

nh

n∑
t=1

XtX
ᵀ

tKh(Ut, u), Ω0(u) = fU(u)E
[
XtX

ᵀ

t |Ut = u
]
,

and let ωn,ij(u) and ω0
ij(u) be the (i, j)-entry of Ωn(u) and Ω0(u), respectively.

By Assumptions 1, 2(i), 3 and 4(i), and using the uniform consistency results

for nonparametric kernel-based estimation such as Theorem B in (Mack and

Silverman 1982), we have

max
1≤i,j≤p

sup
u∈Uh

∣∣ωn,ij(u)− ω0
ij(u)

∣∣ = OP

(
h2 + εn

)
, (5.16)

where εn =
√

log h−1/(nh). Then, by (5.16) and Assumption 4(ii), we may

show that

sup
u∈Uh
‖Ωn(u)−Ω0(u)‖F = OP

(
p(εn + h2)

)
= oP (1), (5.17)
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where ‖ · ‖F denotes the Frobenius norm of a matrix. Using (5.17), Assump-

tion 3(i) and Weyl’s inequality, the smallest eigenvalue of Ωn(u) is positive

and bounded away from zero uniformly for u ∈ Uh, i.e.,

inf
u∈Uh

λmin(Ωn(u)) > ζ0, (5.18)

where ζ0 is a positive constant.

On the other hand, using the uniform consistency result again, we have

sup
u∈Uh

∥∥∥∥∥ 1

nh

n∑
t=1

XtεtKh(Ut, u)

∥∥∥∥∥ = OP

(
p1/2εn

)
. (5.19)

By Assumption 2(ii), applying Taylor’s expansion on β0(·) and noting that

the largest eigenvalue of Σ(u) = E
(
XtX

ᵀ

t |Ut = u
)

is bounded uniformly for

u ∈ [0, 1], we also have

sup
u∈Uh

∥∥∥∥∥ 1

nh

n∑
t=1

XtX
ᵀ

tβt(u)Kh(Ut, u)

∥∥∥∥∥ = OP

(
p1/2h2

)
. (5.20)

Combining (5.15) and (5.18)–(5.20), we have

sup
u∈Uh

∥∥∥β̃(u)− β0(u)
∥∥∥ = OP

(
p1/2εn + p1/2h2

)
= oP (δn), (5.21)

which leads to (5.12). Therefore, the proof of Theorem 1 has been completed.
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2

Proof of Theorem 2. Recall that

Cn(K0) =
{[
C̃k, k = 1, · · · , K0

]
=
[
C0
k , k = 1, · · · , K0

]}
,

and let Cc
n(K0) be the complement of Cn(K0). From Theorem 1, we readily

have

P
(
K̃ = K0

)
= P

(
K̃ = K0,Cn(K0)

)
+ P

(
K̃ = K0,C

c
n(K0)

)
= P

(
K̃ = K0,Cn(K0)

)
+ o(1). (5.22)

Noting that

P
(
K̃ = K0,Cn(K0)

)
=

P
(
K̃ = K0|Cn(K0)

)
P (Cn(K0)) = P

(
K̃ = K0|Cn(K0)

)
(1 + o(1)),

to prove (3.8), we only need to show that

P
(
K̃ = K0|Cn(K0)

)
→ 1. (5.23)
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From the definition of K̃, (5.23) can be proved if the following result hold:

P
(
IC(K) > IC(K0), 1 ≤ K 6= K0 ≤ K̄ |Cn(K0)

)
→ 1. (5.24)

We consider (5.24) separately for the two cases: 1 ≤ K ≤ K0 − 1 and

K0 + 1 ≤ K ≤ K̄. If K0 = 1, the first case can be ignored. In fact, (5.25) in

Proposition 1 below indicates that when K0 ≤ K ≤ K̄ and n is sufficiently

large, IC(K) is a strictly increasing function of K, which proves (5.24) for

the second case. On the other hand, for 1 ≤ K ≤ K0 − 1, Proposition 2

shows that IC(K) > log(σ2 + cα)+oP (1) > log(σ2)+oP (1) = IC(K0)+oP (1),

which proves (5.24) for the first case. The proof of Theorem 2 has been

completed. 2

Proposition 1. Suppose that the conditions of Theorem 2 are satisfied. For

K0 ≤ K ≤ K̄, conditional on Cn(K0), when n is sufficiently large,

IC(K) = log(σ2) +K ·
[

log(nh)

nh

]ρ
(1 + oP (1)), (5.25)

where σ2 = E[ε2
t ].

Proof. When K0 +1 ≤ K ≤ K̄, conditional on Cn(K0), the misclassification

issue would not occur although some of C0
k , k = 1, · · · , K0, are further

split into smaller clusters. Hence, the kernel estimation of the functional
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coefficients may be still uniformly consistent, which is to be proved soon. As

in Chapter 3, without loss of generality, conditional on Cn(K0), we assume

that C̃1 = C0
1 , · · · , C̃K0 = C0

K0
; otherwise we only need to arrange the order

of the true functional coefficients. For simplicity of exposition, we next only

consider the case of K = K0 + 1 (other cases can be dealt with similarly),

and, without loss of generality, further assume that C0
K0

is split into C∗K0
and

C∗K0+1, and let

Xt,K0+1 =

∑
j∈C01

Xtj, · · · ,
∑
j∈C∗K0

Xtj,
∑

j∈C∗K0+1

Xtj

ᵀ

.

Define

α∗K0+1(·) =
[
α0

1(·), · · · , α0
K0

(·), α0
K0

(·)
]ᵀ
,

whose corresponding kernel estimation is defined by

α̃K0+1(u0) =

[
n∑
t=1

Xt,K0+1X
ᵀ

t,K0+1Kh(Ut, u0)

]−1 [ n∑
t=1

Xt,K0+1YtKh(Ut, u0)

]

=

[
1

nh

n∑
t=1

Xt,K0+1X
ᵀ

t,K0+1Kh(Ut, u0)

]−1 [
1

nh

n∑
t=1

Xt,K0+1εtKh(Ut, u0)

]
+[

1

nh

n∑
t=1

Xt,K0+1X
ᵀ

t,K0+1Kh(Ut, u0)

]−1

×[
1

nh

n∑
t=1

Xt,K0+1X
ᵀ

t,K0+1α
∗
K0+1(Ut)Kh(Ut, u0)

]
=: Ω−1

n,K0+1(u0)Λn,K0+1,ε(u0) + Ω−1
n,K0+1(u0)Λn,K0+1,α(u0). (5.26)
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Following the arguments relevant to the kernel uniform consistency in the

proof of Theorem 1 above, we may show that the smallest eigenvalue of

Ωn,K0+1(u) is positive uniformly for u ∈ [0, 1] by Assumption 6(i), and

furthermore,

sup
u∈Uh
‖Λn,K0+1,ε(u)‖ = OP (pεn) , sup

u∈Uh

∥∥Λn,K0+1,α(u)−α∗K0+1(u)
∥∥ = OP

(
p2h2

)
,

(5.27)

where εn is defined in the proof of Theorem 1. Then, by (5.26) and (5.27),

we have

sup
u∈Uh

∥∥α̃K0+1(u)−α∗K0+1(u)
∥∥ = OP

(
pεn + p2h2

)
= OP (pεn) (5.28)

as ph2 = O(εn) in Assumption 7.

Letting It = I(Ut ∈ Uh), conditional on Cn(K0) and that C0
K0

is split into

C∗K0
and C∗K0+1, we have

σ̃2
n(K0 + 1) =

1

nh

n∑
t=1

[
Yt −X

ᵀ

t,K0+1α̃K0+1(Ut)
]2
It

=
1

nh

n∑
t=1

[
εt −X

ᵀ

t,K0+1

(
α̃K0+1(Ut)−α∗K0+1(Ut)

)]2
It

=
1

nh

n∑
t=1

ε2
t It +

1

nh

n∑
t=1

$2
t (K0 + 1)It −

2

nh

n∑
t=1

εt$t(K0 + 1)It, (5.29)
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where $t(K0 + 1) = X
ᵀ

t,K0+1

(
α̃K0+1(Ut)−α∗K0+1(Ut)

)
. By some standard

arguments and using (5.28), we may show that

1

nh

n∑
t=1

ε2
t It = σ2 + oP (1), (5.30)

1

nh

n∑
t=1

$2
t (K0 + 1)It = OP

(
p4ε2n

)
, (5.31)

2

nh

n∑
t=1

εt$t(K0 + 1)It = OP

(
p2(nh)−1 + p2n−1h−1/2 + p2n−1/2h2

)
= oP

(
p4ε2n

)
, (5.32)

where the condition nh6 = o(1) in Assumption 7 is used in proving (5.32).

By (5.29)–(5.32), we have

IC(K0 + 1) = log
[
σ̃2
n(K0 + 1)

]
+ (K0 + 1) ·

[
log(nh)

nh

]ρ
= log(σ2) + (K0 + 1) ·

[
log(nh)

nh

]ρ
+OP (p4ε2n)

= log(σ2) + (K0 + 1) ·
[

log(nh)

nh

]ρ
(1 + oP (1)) (5.33)

as p = o
(

[log(nh)/(nh)](ρ−1)/4
)

in Assumption 7. Similarly, for any K0 ≤

K ≤ K̄ and n sufficiently large, we can also prove (5.25). Details are omitted

here to save the space. 2

Proposition 2. Suppose that the conditions of Theorem 2 are satisfied. For
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1 ≤ K ≤ K0 − 1, conditional on Cn(K0), when n is sufficiently large,

IC(K) > log(σ2 + cα) + oP (1) (5.34)

and IC(K0) = log(σ2) + oP (1), where cα is defined in Assumption 5.

Proof. The result of IC(K0) = log(σ2) + oP (1) can proved by using Propo-

sition 1 with K = K0. Hence, we only prove (5.34) for the case of

1 ≤ K ≤ K0 − 1. As discussed in Section 3, in this case, conditional

on Cn(K0), two or more clusters of C0
k , k = 1, · · · , K0, are falsely merged,

which results in K clusters denoted by C1|K , · · · , CK|K , respectively. Define

Xt,K and the quasi functional coefficients αK(u) for the misspecified model

as in (3.5) and (3.3), respectively. For notational simplicity, we next only

consider the case of K = K0 − 1. Other cases can be similarly handled

but with slightly more complicated notation. Without loss of generality,

we assume that the clusters C0
K0−1 and C0

K0
are first (falsely) merged, which

indicates that

Xt,k|K0−1 = Xt,k|K0 1 ≤ k ≤ K0 − 2, Xt,K0−1|K0−1 = Xt,K0−1|K0 +Xt,K0|K0 .

Let

α�K0−1(·) =
[
α1|K0−1(·), · · · , αK0−1|K0−1(·), αK0−1|K0−1(·)

]ᵀ
,
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where αk|K0−1(·) is defined in (3.3). Note that conditional on Cn(K0),

X̃t,K0−1 = Xt,K0−1 and

Yt − X̃
ᵀ

t,K0−1α̃K0−1(Ut)

= εt + X
ᵀ

t,K0

[
α0(Ut)−α�K0−1(Ut)

]
−X

ᵀ

t,K0−1 [α̃K0−1(Ut)−αK0−1(Ut)]

=: εt +$t1(K0 − 1) +$t2(K0 − 1). (5.35)

To further simplify notation, we let $t1 = $t1(K0 − 1), $t2(K0 − 1) = $t2

and It = I(Ut ∈ Uh). From (5.35), we have

n∑
t=1

[
Yt − X̃

ᵀ

t,K0−1α̃K0−1(Ut)
]2

I(Ut ∈ Uh)

=
n∑
t=1

ε2
t It +

n∑
t=1

$2
t1It +

n∑
t=1

$2
t2It +

2
( n∑
t=1

εt$t1It +
n∑
t=1

εt$t2It +
n∑
t=1

$t1$t2It

)
. (5.36)

Using Assumption 5, we may show that

1

nh

n∑
t=1

$2
t1It > cα(1 + oP (1)). (5.37)

By Assumption 6 and following the argument in the proof of Proposition 1,
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we have

n∑
t=1

$2
t2It = OP

(
np4ε2n

)
= oP (n),

n∑
t=1

εt$t2It = oP
(
np4ε2n

)
= oP (n).

(5.38)

Furthermore, we can also prove that

n∑
t=1

εt$t1It = OP

(
pn1/2

)
= oP (n), (5.39)

n∑
t=1

$t1$t2It = OP

(
np3εn

)
= oP (n) (5.40)

as p = o
(
ε
−1/3
n

)
in Assumption 7.

Using (5.30) and (5.36)–(5.53), we readily have

IC(K0 − 1) > log(σ2 + cα) + oP (1). (5.41)

Similarly, we can prove (5.41) for any 1 ≤ K ≤ K0− 2, completing the proof

of the proposition. 2

Before proving Theorem 3, we first give a proposition on the mean

integrated squared error for the penalised local linear estimation defined in
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Section 2.3. Conditional on Cn(K0) and K̃ = K0, we define

Ân =
(
â

ᵀ

1, · · · , â
ᵀ

n

)ᵀ
, ât = [α̂1(Ut), · · · , α̂K0(Ut)]

ᵀ

;

B̂n =
(
b̂

ᵀ

1, · · · , b̂
ᵀ

n

)ᵀ

, b̂t =
[
α̂′1(Ut), · · · , α̂′K0

(Ut)
]ᵀ
.

Let A0 and B0 be defined similarly to Ân and B̂n but with α̂k(·) and α̂′k(·)

replaced by α0
k(·) and α0′

k (·), respectively.

Proposition 3. Suppose that the conditions of Theorem 3 are satisfied.

Then, we have

1

n

∥∥∥Ân −A0

∥∥∥2

= OP

(
p4

nh

)
,

1

n

∥∥∥B̂n −B0

∥∥∥2

= OP

(
p4

nh3

)
(5.42)

conditional on Cn(K0) and K̃ = K0.

Proof. The proof is similar to the arguments used in (Wang and Xia 2009)

and (Li et al., 2015). Let

U1 =
(
u

ᵀ

11, · · · ,u
ᵀ

1n

)ᵀ
, U2 =

(
u

ᵀ

21, · · · ,u
ᵀ

2n

)ᵀ
,

where both u1t = (u1t,1, · · · , u1t,K0)
ᵀ

and u2t = (u2t,1, · · · , u2t,K0)
ᵀ

are K0-
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dimensional column vectors, t = 1, · · · , n. Define

Cn(C) =
{

(U1,U2) : ‖U1‖2 + ‖U2‖2 = nC
}
,

where C is a positive constant which may be sufficiently large. For (U1,U2) ∈

Cn(C), conditional on Cn(K0) and K̃ = K0, we observe that

Qn
(
A0+γnU1,B0+γnU2/h

)
−Qn(A0,B0) = In(1)+In(2)+In(3), (5.43)

where γn =
√
p4/(nh),

In(1) = Ln
(
A0 + γnU1,B0 + γnU2/h

)
− Ln(A0,B0),

In(2) =

K0∑
k=1

p′λ1
(
‖Ãk‖

) (
‖A0

k + γnU1k‖ − ‖A0
k‖
)
,

In(3) =
K̃∑
k=1

p′λ2
(
D̃k

) (
‖hB0

k + γnU2k‖ − ‖hB0
k‖
)
,

A0
k and B0

k are defined in Section 3, U1k = (u11,k, · · · , u1n,k)
ᵀ

and U2k =

(u21,k, · · · , u2n,k)
ᵀ
.

We next study In(i), i = 1, 2, 3, in turn. Conditional on Cn(K0) and

K̃ = K0, we note that X̃t,K0 = Xt,K0 ,

Ln(A0,B0) =
1

nh

n∑
s=1

n∑
t=1

(
εt + X

ᵀ

t,K0
dts
)2
Kh (Ut, Us) ,
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and

Ln(A0 + γnU1,B0 + γnU2/h) =
1

nh

n∑
s=1

n∑
t=1

[
εt + X

ᵀ

t,K0
dts − γnX

ᵀ

t,K0
u1s

−γnX
ᵀ

t,K0
u2s(Ut − Us)/h

]2

Kh (Ut, Us) ,

where dts = α0(Ut)−α0(Us)−α′0(Us)(Ut − Us). For In(1), we then have

In(1) = −2γn
nh

n∑
s=1

n∑
t=1

(
εt + X

ᵀ

t,K0
dts
) [

X
ᵀ

t,K0
u1s + X

ᵀ

t,K0
u2s(Ut − Us)/h

]
Kh (Ut, Us)

+
γ2
n

nh

n∑
s=1

n∑
t=1

[
X

ᵀ

t,K0
u1s + X

ᵀ

t,K0
u2s(Ut − Us)/h

]2
Kh (Ut, Us)

=: In(4) + In(5). (5.44)

Letting

Uts =

 1 (Ut − Us)/h

(Ut − Us)/h (Ut − Us)2/h2


and ⊗ be the Kronecker product, for In(5), we may show that

In(5) =
γ2
n

nh

n∑
s=1

(u
ᵀ

1s,u
ᵀ

2s)

[
n∑
t=1

(
Xt,K0X

ᵀ

t,K0

)
⊗ UtsKh (Ut, Us)

]
(u

ᵀ

1s,u
ᵀ

2s)
ᵀ

= γ2
n

n∑
s=1

(u
ᵀ

1s,u
ᵀ

2s)

[
1

nh

n∑
t=1

(
Xt,K0X

ᵀ

t,K0

)
⊗ UtsKh (Ut, Us)

]
(u

ᵀ

1s,u
ᵀ

2s)
ᵀ

= γ2
n

n∑
s=1

(u
ᵀ

1s,u
ᵀ

2s)
[
fU(Us)ΣX|K0(Us)⊗ΣK +OP

(
p2h2 + p2εn

)]
(u

ᵀ

1s,u
ᵀ

2s)
ᵀ

≥ γ2
n(ζ1 + oP (1))

(
‖U1‖2 + ‖U2‖2

)
, (5.45)
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where εn is defined in the proof of Theorem 1, ζ1 is a positive constant

bounded away from zero, and ΣK = diag(1, µ2) with µj =
∫
ujK(u)du for

j ≥ 1. Observe that

n∑
s=1

n∑
t=1

(
εt + X

ᵀ

t,K0
dts
) [

X
ᵀ

t,K0
u1s + X

ᵀ

t,K0
u2s(Ut − Us)/h

]
Kh (Ut, Us)

=
n∑
s=1

n∑
t=1

εtX
ᵀ

t,K0
u1sKh (Ut, Us) +

n∑
s=1

n∑
t=1

εtX
ᵀ

t,K0
u2s ((Ut − Us)/h)Kh (Ut, Us) +

n∑
s=1

n∑
t=1

X
ᵀ

t,K0
dtsX

ᵀ

t,K0
u1sKh (Ut, Us) + (5.46)

n∑
s=1

n∑
t=1

X
ᵀ

t,K0
dtsX

ᵀ

t,K0
u2s ((Ut − Us)/h)Kh (Ut, Us)

=: In(4, 1) + In(4, 2) + In(4, 3) + In(4, 4).

Noting that the observations are independent as assumed in Assumption

3(ii), we have E [In(4, 1)] = 0, and

E
[
I2
n(4, 1)

]
= E

( n∑
s=1

n∑
t=1

εtX
ᵀ

t,K0
u1sKh (Ut, Us)

)2


≤ n
n∑
s=1

E

( n∑
t=1

εtX
ᵀ

t,K0
u1sKh (Ut, Us)

)2


= O
(
p2n2h

)
· ‖U1‖2. (5.47)

Similarly, we can also show that E [In(4, 2)] = 0

E
[
I2
n(4, 2)

]
= O

(
p2n2h

)
· ‖U2‖2. (5.48)
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By Taylor’s expansion on the functional coefficients, we have

E [|In(4, 3)|] = O
(
p2n3/2h3

)
· ‖U1‖ (5.49)

and

E [|In(4, 4)|] = O
(
p2n3/2h3

)
· ‖U2‖. (5.50)

Following (5.47)–(5.50) and noting that p2nh5 = O(1) in Assumption 9, we

may show that

In(4) = OP

(
γ2
nn

1/2
)
· (‖U1‖+ ‖U2‖) . (5.51)

By choosing the constant C sufficiently large, In(4) would be asymptotically

dominated by In(5). As a result, we have

In(1) ≥ γ2
n(ζ1/2 + oP (1))

(
‖U1‖2 + ‖U2‖2

)
. (5.52)

We next consider In(2). It is easy to see that

In(2) =

K0∑
k=1

p′λ1
(
‖Ãk‖

) (
‖A0

k + γnU1k‖ − ‖A0
k‖
)

≥
K0−1∑
k=1

p′λ1
(
‖Ãk‖

) (
‖A0

k + γnU1k‖ − ‖A0
k‖
)

(5.53)

98



5.2 Proof of Theorems

as ‖A0
K0
‖ = 0. Furthermore, following the argument in the proof of Theorem

2, we may show that

‖Ãk‖ = ‖A0
k‖+OP

(
n1/2p2h2 + n1/2pεn

)
= ‖A0

k‖+ oP (n1/2),

which together with Assumption 8, indicates that

‖Ãk‖ ≥ cA
√
n/2

with probability approaching one. By the definition of the SCAD penalty

derivative and noting that λ1 = o(n1/2) in (3.9), we have In(2) ≥ 0 with

probability approaching one. Analogously, we can also show that In(3) ≥ 0

with probability approaching one. Hence, for any small ε > 0 there exists

sufficiently large C > 0 such that

P
{

inf
(U1,U2)∈Cn(C)

Qn
(
A0 + γnU1,B0 + γnU2/h

)
> Qn(A0,B0)

}
≥ 1− ε

(5.54)

for large n, which leads to (5.42), completing the proof of this proposition.2
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5.2 Proof of Theorems

Proof of Theorem 3. Letting C̃n = Cn(K0) ∩ {K̃ = K0}, observe that

P
(
‖ÂK0‖ = 0

)
= P

(
‖ÂK0‖ = 0|C̃n

)
P
(
C̃n

)
+P
(
‖ÂK0‖ = 0|C̃c

n

)
P
(
C̃c
n

)
,

(5.55)

which together with Theorems 1 and 2, implies that

P
(
‖ÂK0‖ = 0|C̃n

)
→ 1 (5.56)

is sufficient for our proof. Recall that Xt,k|K0 =
∑

j∈C0k
Xtj and define

L′nk,1(A,B) be an n-dimensional vector with the s-th component being

L′nk,1s =
2

n

n∑
t=1

Xt,k|K0

[
Yt −X

ᵀ

t,K0
as −X

ᵀ

t,K0
bs(Ut − Us)

]
Kh(Ut, Us).

When ‖Ak‖ 6= 0, let P ′n1(Ak) be an n-dimensional vector with the s-th

component being

P ′n1,s(Ak) = p′λ1
(
‖Ãk‖

) ask
‖Ak‖

.

Following the arguments in the proof of Theorem 2 above, we may show

that

‖ÃK0‖ = ‖A0
K0
‖+OP

(
n1/2p2h2 + n1/2pεn

)
= OP

(
n1/2p2h2 + n1/2pεn

)
= oP (λ1).

(5.57)
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5.2 Proof of Theorems

From the definition of p′λ1(·) and (5.57), when ‖ÂK0‖ 6= 0, we have

‖P ′n1(AK0)‖ = λ1 (5.58)

with probability approaching one. If ‖ÂK0‖ 6= 0, we must have

L′nk,1(Ân, B̂n) = P ′n1(Âk) (5.59)

for k = K0. However, using Proposition 3, we can prove that

∥∥∥L′nk,1(Ân, B̂n)
∥∥∥ = OP

(
n1/2pεn + p4/h1/2

)
= oP (λ1),

which together with (5.58), indicates that (5.59) cannot hold. Therefore,

conditional on C̃n, ‖ÂK0‖ must be zero with probability approaching one.

Similarly, we can also prove that

P
(
‖B̂k‖ = 0, k = K∗, · · · , K0

)
→ 1. (5.60)

The proof of Theorem 3 has been completed. 2

101



Chapter 6

Conclusions and Future Work

In this thesis, the kernel-based hierarchical clustering method and a gen-

eralised version of information criterion have been developed to uncover

the latent homogeneity structure in the classic functional-coefficient mod-

els. Furthermore, the penalised local linear estimation approach is used

to separate out the zero-constant cluster, the non-zero constant-coefficient

clusters and the functional-coefficient clusters. The asymptotic theory in

Chapter 5 shows that the estimation for the true number of clusters and the

true set of clusters is consistent in the large-sample case. In the simulation

study, we find that the proposed estimation methodology outperforms the

direct nonparametric kernel estimation which ignores the latent structure

in the model. In empirical application to the Boston house price data and

plasma beta-carotene level data, we show that the nonparametric functional-
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coefficient model can be substantially simplified with reduced numbers of

unknown parametric and nonparametric components. As a result, the out-

of-sample mean squared prediction errors using the developed approach are

significantly smaller than those using the naive kernel method which ignores

the latent homogeneity structure among the functional coefficients.

In the future, we may further do some extensions in terms of gener-

alised varying coefficient model and combine it with proposed homogeneity

structure.
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