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ABSTRACT 

The white potato cyst nematode, Globodera pallida, is an important pest of potato in all 

potato-growing regions of the world and is of particular importance to UK agriculture, 

found in 48-64 % of UK potato fields and incurring costs related to management and 

yield losses. Biofumigation is a pest management practice that seeks to exploit the 

production of bioactive compounds, isothiocyanates, from disrupted brassica tissues 

incorporated into soil. Aspects of biofumigation as they relate to control of G. pallida 

were investigated. 

The xenobiotic metabolism of G. pallida juveniles in response to contact with 

isothiocyanates was investigated through RNAseq analysis of nematodes exposed to 

Dazomet, an isothiocyanate generator. The roles of genes implicated in this response 

were investigated and their up-regulation confirmed, identifying several genes directly 

implicated in detoxification of xenobiotic compounds, presenting targets for 

development of future controls. 

A screening system for evaluation of novel biofumigant crops was developed, utilising 

Caenorhabditis elegans reporter lines that indicated the presence of isothiocyanates 

through induced expression of green fluorescent protein (GFP). Attempts to generate 

novel C. elegans reporters for G. pallida genes were unsuccessful, but progress was 

made towards generation of transgenic root-knot nematodes, a step towards a plant-

parasitic nematode model system. 

The volatile emissions given off by brassicas as they grow were measured and a number 

of bioactive compounds were identified. New estimates of the contributions of brassicas 

to atmospheric methyl bromide concentrations were generated. A system was 

developed to test the toxicity of volatile compounds as given off by the above- and 

belowground biomass of brassicas, and toxicity was observed in C. elegans adults and 

G. pallida juveniles and encysted eggs.  

The approaches taken to investigate biofumigation are novel and support expansion of 

the scope of future biofumigation research in line with the findings presented.  
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Chapter 1  Introduction 

1.1 The potato 

The potato, Solanum tuberosum, is a tuberous vegetable of the family Solanaceae, 

originating in the Andes and now a staple foodstuff around the world. It is the 4th highest 

produced food crop and 5th most produced crop globally, following sugarcane (grown 

principally for processing and industrial usage), maize, wheat and rice (FAOSTAT, 2017). 

Genomic analysis of cultivated and wild potato relatives have found evidence for a single 

origin for cultivated potato in the southern regions of Peru, some time before the 

expansion of European cultures into South America (Spooner et al., 2005). In Europe, 

potatoes are an important cash crop supporting an international industry based around 

ware potatoes for eating and processing, and seed potatoes for tuber production: over 

56 million tonnes of potatoes were produced in the EU in 2016 (FAOSTAT, 2017), for a 

production value of around EUR 12.7 billion (Eurostat, 2017). Total potato production in 

the UK was worth GBP 747 million in 2016 (Eurostat, 2017). 

One of the major associated costs for UK potato production is the application of 

pesticides. The major pathogens associated with potato in the UK are late blight, caused 

by the oomycete Phyophthora infestans, and the potato cyst nematodes, 

Globodera pallida and G. rostochiensis. Management of late blight requires repeated 

prophylactic application of costly fungicides (Liljeroth et al., 2016). Nematode 

management includes use of soil fumigants, which may account for 17% of the total 

production cost of a crop (Kerry et al., 2003). As well as monetary costs, pesticides 

contribute to the carbon emissions of potato production, accounting for up to 14 % of 

the emitted CO2 associated with a potato crop (Haverkort and Hillier, 2011). For growers, 

it is important to be able to manage the impact of pathogens and pests in order to 

protect their crops, while governments are concerned both with the reduction of CO2 

emissions in order to limit the impacts of climate change (in accordance with the Paris 

agreement (UNFCC, 2016)), and with regulating the use of crop treatments with other 

negative environmental effects (e.g. ozone depletion, according to the Montreal 

Protocol (UNEP, 2012)). Much research is therefore focused on generating methods of 

pest control that are both cost-effective and environmentally sound.  
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1.2 Plant-parasitic nematodes 

Plant-parasitic nematodes are agricultural pests of great economic importance, with 

global annual crop losses estimates running from 80 billion USD (Nicol et al., 2011) to as 

high as 157 billion USD (Abad et al., 2008). It is suggested that such losses may be 

underestimated (De Waele and Elsen, 2007), due to under-reporting of nematode 

damage by growers – particularly in developing nations – due to a lack of knowledge 

leading to incorrect diagnosis. Plant parasitism has evolved independently a number of 

times in the phylum Nematoda (Kikuchi et al., 2017, van Megen et al., 2009), and a 

number of plant-parasitic feeding strategies are therefore represented among 

nematodes; the most economically important of these is sedentary endoparasitism. 

Sedentary endoparasites are those nematodes of the family Heteroderidae that adopt 

a fixed feeding site in the roots of the host plant, and are represented by the root-knot 

nematodes and the cyst nematodes, considered the two most important plant-parasitic 

nematodes in plant pathology, respectively (Jones et al., 2013a).  

1.2.1 Cyst nematodes 

Cyst nematodes comprise 8 genera and 114 described species, the most important of 

which fall into the genera Globodera (12 species) and Heterodera (82 species) (Turner 

and Subbotin, 2013). Species of the genus Meloidogyne, the root-knot nematodes, also 

belong to the Heteroderidae but are not classified as cyst nematodes as they do not 

form cysts, as do the adult females that typify the group. Cyst nematodes are found in 

most crop-growing regions of the world, although they are typically restricted to 

temperate climates (Turner and Subbotin, 2013); there are, however, reports of cyst 

nematodes in tropical regions, such as Globodera rostochiensis found on potato in East 

Java, Indonesia (Indarti et al., 2004), and Heterodera avenae found on cereal crops in 

northern and central India (Rao et al., 2013).  

The host ranges of cyst nematodes are typically narrow, especially with respect to the 

broad host ranges exhibited by parthenogenetic Meloidogyne species (Trudgill, 1997). 

The cyst nematode species of greatest economic importance are those that affect those 

crop species that are grown most widely. Soybean cyst nematodes (Heterodera glycines) 

cause up to 1.5 billion USD in crop losses in the US each year and were responsible for 

yield losses of 9 million metric tons worldwide in 1998 (Wrather et al., 2001). Cereal cyst 
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nematodes (H. avenae and H. filipjevi) affect cereal grains such as wheat and barley and 

can cause yield losses of up to 90 % in affected fields (Nicol et al., 2011). The potato cyst 

nematodes (Globodera pallida and G. rostochiensis) affect crops of the family 

Solanaceae and are found in most potato-growing regions of the world (Turner and 

Subbotin, 2013). The sugarbeet nematode (H. schachtii) is atypical among cyst 

nematodes in that is has a relatively broad host range, able to parasitise plants of the 

Brassicaceae (mustards) including Arabidopsis thaliana, as well as sugar beet (Nielsen et 

al., 2003, Sijmons et al., 1991); losses to European sugar beet production in 1999 due to 

H. schachtii were estimated at 90 million EUR (Müller, 1999). Other cyst nematodes of 

note are the rice cyst nematode, Heterodera oryzae (ref), and the corn cyst nematode, 

H. zeae, which parasitises the grains grown in greatest quantity around the world: maize, 

wheat, and rice (IGC, 2017). 

1.2.3 Potato cyst nematodes 

Potato cyst nematodes belong to the genus Globodera: as important pests of potato, 

they are quarantine pathogens in most temperate potato-growing regions of the world 

(Nicol et al., 2011, Turner and Subbotin, 2013). Globodera spp. have a narrow host 

range, limited to plants of the family Solanaceae, but cause crop losses totalling ~9 % of 

all global potato production (Turner and Subbotin, 2013). Assessed almost 20 years ago, 

potato cyst nematodes were present in 64% of English and Welsh potato fields, 

represented by Globodera pallida and G. rostochiensis, found in 92 % and 33 % of 

contaminated fields respectively (Minnis et al., 2002). A more recent investigation into 

potato fields in England and Wales found that PCN were present in 48 % of the 491 

tested sites; of these, mixed populations made up 5 %, while G. pallida and 

G. rostochiensis were detected in isolation in 89 % and 6 %, respectively (Lima-Dybal, 

2016, unpublished). The decline of G. rostochiensis incidence relative to G. pallida can 

be largely attributed to the wide availability of G. rostochiensis-resistant potato cultivars 

(Minnis et al., 2002). A survey of potato fields in Scotland found G. pallida in 76 % of 687 

tested (Eves‐van den Akker et al., 2015). These two species are the most economically 

significant species of potato cyst nematodes globally (Bohlmann and Sobczak, 2014, 

Jones et al., 2013a), costing UK agriculture an estimated 50 million GBP per annum 

(Jones et al., 2017b). Other PCN species of note include G. ellingtonae, a potato cyst 
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nematode identified in US potato fields in 2008 (Handoo et al., 2012, Skantar et al., 

2011), and G. tabacum, the tobacco cyst nematode, a pest of tobacco production in both 

North America and mainland Europe (Bardou-Valette et al., 2016, Mota and Eisenback, 

1993). 

The origin of potato cyst nematodes can be traced to the Andes, in the regions broadly 

around the Peru-Bolivia border (Grenier et al., 2010, Mai, 1977). Evolution is thought to 

have occurred concurrently with the wild potato for 15-21 million years, highlighting the 

intimate relationship between parasite and host (Jones et al., 2018a). Populations of the 

two species are separated by latitude and altitude, with G. pallida occurring in the cooler 

regions north of Lake Titicaca, with G. rostochiensis found in the lower southern regions 

(Grenier et al., 2010). This geographical separation is thought to have been a factor in 

their differentiation, and has impacts on their respective heat tolerances: G. pallida, 

being adapted to cooler climates, is more sensitive to heat stress than G. rostochiensis, 

with implications for their future survivability in the face of rising global temperatures 

(Jones et al., 2017b). European populations of Globodera pallida have been traced back 

to a single contamination event from a southern Peruvian population, imported on 

infested potato, from which it has spread across the continent (Plantard et al., 2008). 

Contamination of North America has occurred on at least two occasions: microsatellite 

analysis of 15 geographically distinct G. rostochiensis populations suggested that it was 

brought to Europe around the same time as G. pallida, and was then introduced to 

Canada and the US from at least two distinct European populations (Boucher et al., 

2013). Suggested mechanisms for these contamination events include contaminated soil 

brought over on flower bulbs (Rott et al., 2010) and on returning military equipment in 

the aftermath of World War II (Boucher et al., 2013).  

On a regional scale, potato cyst nematodes are spread largely through agricultural 

activity – the movement of infested plant material and of farm equipment carrying 

infested soil – giving a dispersal rate of 5.3 km per year from any given field, based on 

modelling of historical dispersal data (Banks et al., 2012). Detection of low density field 

populations can be incredibly difficult (Banks et al., 2012), even in fields that have 

previously tested positive for Globodera infestation (Eves‐van den Akker et al., 2015). 

While low density populations may be difficult to detect, they may lead to devastating 
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impacts on a crop due to the potential for populations to increase 60-fold over the 

course of one cropping season (Moxnes and Hausken, 2007). 

Both Globodera pallida and G. rostochiensis are quarantine pests in the EU. As such, 

there are directives in place to monitor populations and limit or prevent the spread of 

Globodera species from known sites of infection to uncontaminated fields. The 

European Union’s Regulation (EU) 2016/2031 sets out requirements for the testing of 

fields for the presence of potato cyst nematodes and bans the growing of seed potatoes, 

or other plants grown for planting, on fields in which cyst nematodes are detected. This 

aims to limit the spread of cyst nematodes beyond fields where they are already present. 

Efforts to control potato cyst nematodes are discussed further in a later section 

(Chapter 1.3) 

1.2.4 The life cycle of potato cyst nematodes 

All cyst nematodes follow a similar life cycle, with some variation in timings and 

population dynamics. Encysted eggs hatch principally when induced by signals indicating 

the presence of a potential host plant, and at a lower rate at random. Second-stage 

juveniles (J2s) emerge from eggs within the cyst, then migrate towards and infiltrate 

host roots. When a suitable feeding site is found, the nematode forms a fixed feeding 

site and from there progresses through J3 and J4 stages to adulthood. Adult males leave 

the feeding site to find sedentary adult females with which to mate. After production of 

viable eggs, the female dies and encysts around the eggs – the nematodes within 

develop into first-stage juveniles and moult to the J2 stage before they are ready to 

hatch. Details specific to potato cyst nematode follow; a schematic diagram is given in 

Figure 1.1. 

Among cyst nematodes, Globodera species are classed as having a low random hatch 

rate (Perry, 2002) – population decline within cysts in fallow fields may be as low as 10% 

per year, meaning that viable eggs can persist in a field for over 20 years (Turner, 1996). 

Soil conditions, including pH, moisture content and ambient temperatures, influence the 

rate of population decline, with higher temperatures in particular leading to a greater 

falloff over time (Perry, 2002). Hatching is strongly induced by root exudate from a 

suitable host, such as potato (Solanum tuberosum) or tomato (S. lycopersicum), though 

only after a period of diapause typically lasting approximately 6 months (Palomares-Rius 
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et al., 2013): this means that the next generation of nematodes remains viable until the 

next host crop is planted, and that non-host cropping and periods of fallow do little to 

reduce population numbers in an affected field (Turner and Subbotin, 2013). Potato cyst 

nematode eggs undergo two forms of dormancy before hatching. The first, diapause, 

requires a period of cold soil temperatures to pass (Palomares-Rius et al., 2013). The 

length of diapause is dependent on the growth conditions in which the eggs were 

produced (Salazar and Ritter, 1993).  Upon completing diapause, the eggs enter the 

second dormant phase: quiescence, a reversible state of dormancy that is broken by the 

presence of suitable host root exudates (Perry and Moens, 2011). An advantage of the 

longevity of encysted eggs and the specificity of hatching induction is that infested soil 

samples can be stored for research purposes over long periods, and hatching can 

therefore be intentionally induced to obtain live J2s for experimentation (Heungens et 

al., 1996).  

After induction of hatching in the field, the infective second-stage juveniles will move 

towards the source of the hatching stimulus. Individual nematodes move towards plant 

roots based on concentration gradients of a number of factors associated with the 

rhizosphere, likely to include CO2 and sugar concentrations, and pH, and possibly also 

involving host species-specific cues (Lilley et al., 2005, Perry, 1997). On finding the host 

plant, the J2 will pierce the root with its stylet and migrate destructively through the 

root cortex to the vascular cylinder (Kyndt et al., 2013). Here it will penetrate cells with 

its stylet until a cell suitable for the formation of a feeding site is formed (Jones et al., 

2013a, Kyndt et al., 2013). The formation and maintenance of the syncytium is a complex 

process, and integral to the success of an individual nematode; this is discussed in 

greater detail in the following section (1.2.5). 

Potato cyst nematodes reproduce sexually, and sex determination occurs at the end of 

the J2 stage. Third-stage (J3) juveniles are superficially similar, but can be sex 

differentiated through inspection of their genital primordia (Lilley et al., 2005). Where 

past studies have suggested that sex is genetically determined, evidence points toward 

determination based on environmental conditions (Lilley et al., 2005). The proportions 

of males and females in the adult population is determined by nutrient availability: 

greater nutrition leads to a greater proportion of females, while lower nutrients and 



7 
 

 

higher levels of intraspecific competition lead to a greater adult population of males 

(Lilley et al., 2005, Sobczak and Golinowski, 2011). When tested in vitro, higher sucrose 

content in plant growth medium led to a greater proportion of applied J2s of 

Heterodera schachtii developing into females (Grundler et al., 1991).  

The feeding site for the nematode is fixed until the J4 stage, after which adult males will 

leave the root while adult females remain sedentary until the end of their life cycle (Lilley 

et al., 2005, Sobczak and Golinowski, 2011). Adult males are short-lived and non-feeding 

(Turner and Subbotin, 2013). Males migrate through the soil towards females, attracted 

by chemical cues that likely include sex pheromones (Turner and Subbotin, 2013). 

Vanillic acid has been identified as a cyst nematode sex pheromone, released by 

Heterodera glycines females and acting to attract males (Jaffe et al., 1989). Pheromone 

specificity has been observed: vanillic acid did not act as an attractant to males of 

H. schachtii (Auma and Hashem, 1993), G. rostochiensis or G. pallida (Perry, 1996). 

Analysis of mitochondrial DNA from eggs within single cysts has confirmed that cyst 

nematodes are polyandrous, with each cyst potentially containing progeny from 

multiple mating events (Eves‐van den Akker et al., 2015).  

The defining characteristic of cyst nematodes is that of cyst formation by the adult 

female. Following mating, the fertile eggs then develop through embryogenesis and 

through the first moult to the J2 stage (Turner and Subbotin, 2013). The female then 

dies and encysts around them, forming a protective casing that can persist in the soil for 

upwards of 20 years (Turner, 1996). The cyst forms through the action of polyphenol 

oxidase on the wall of the adult female’s body (Ellenby, 1946) and acts to protect the 

eggs within, principally shielding them from desiccation, as the outer wall becomes less 

permeable to water as it dries (Ellenby, 1968). Development time differs between plant-

parasitic nematode species (Jones et al., 1998, Turner and Subbotin, 2013). The link 

between temperature and development at all stages has been established since the 

1930s: development progresses only above a base temperature, which varies by species, 

and above which the rate of development will increase up to a thermal optimum (Tyler, 

1933), for potato cyst nematodes, this optimum is 16 °C for G. pallida and 20 °C for 

G. rostochiensis (Turner and Subbotin, 2013). A recent assessment found that female 

fecundity for G. pallida was significantly reduced when temperatures were increased 
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from 15  °C to 25 °C, while G. rostochiensis fecundity increased from 15 °C up to 22.5 °C, 

but declined at 25 °C (Jones et al., 2017b). The difference in thermotolerance between 

the two species, ascribed to their adaptations to their native ranges, has been attributed 

at least partially to the presence of hsp-110, a thermoregulatory element that is 

activated under heat stress in G. rostochiensis but not in G. pallida, and correlates with 

the greater ability of G. rostochiensis juveniles to recover from heat stress (Jones et al., 

2018a). Predicted increases in global temperatures may influence the survivability of 

each of these species in the UK: one study modelled soil temperatures in near-future 

medium and high-emission scenarios and found that populations of G. pallida would 

likely decline, particularly in the south of England (Jones et al., 2017b). The authors 

suggest that increased temperatures combined with the exploitation of widely available 

G. rostochiensis-resistant cultivars could lead to an overall decline in PCN populations in 

the UK (Jones et al., 2017b). A second group combined in planta experimentation, with 

three distinct PCN populations grown on potato roots in different soil temperatures, 

with low- and high-emission future temperature models to similarly predict that 

conditions could become more favourable for G. rostochiensis relative to G. pallida 

(Skelsey et al., 2018). However, the authors found that the shift in growing season and 

available potato growing area resulting from increased temperatures would effectively 

negate the potential increased risk of PCN proliferation (Skelsey et al., 2018).  

 



 
 

 

Figure 1.1 Simplified life cycle of a cyst nematode. A, after hatching, the infective second-stage juvenile (J2) migrates towards the root of a host 
plant, penetrates the dermis and moves destructively through the cortex towards the vascular cylinder. B, having found a suitable site, the J2 
selects the initial syncytial cell (ISC) that will form the beginnings of the syncytium; the sex of the nematode is determined before moulting to 
the J3 stage. C, at the J3 stage, males and females continue to feed from the growing syncytium; they are superficially similar but can be 
differentiated by observation of their genital primordia. D, at the J4 stage, female nematodes continue to feed and develop, while males cease 
feeding and begin development of the adult vermiform body within the J4 outer cuticle. E, adult males leave the root to find sedentary adult 
females with which to mate. F, following mating and the development of the eggs, the adult female dies and the cuticle encysts around the eggs 
within. G, after death of the adult female, the eggs remain in the soil protected by the cyst; hatching will only begin after a period of diapause, 
generally in response to external stimuli such as host root exudate. Following this, nematodes hatch as J2s and migrate through the soil, 
beginning the cycle again. 
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On reaching the unhatched J2 stage, the nematode enters a state of diapause – 

dormancy that requires a set period of time as well as other cues before it will come to 

an end – and after diapause enters quiescence – a second period of dormancy that ends 

in response to hatching stimulus, i.e. host root exudate (Palomares-Rius et al., 2016). 

The requirements of the diapause phase are dependent upon the growing conditions of 

the host plant during formation of the cyst: increased day length led to a shorter 

diapause period in eggs of both G. pallida and G. rostochiensis (Salazar and Ritter, 1993). 

Once diapause is complete, the life cycle begins again: G. pallida typically requires a full 

potato-growing season to produce a single generation of progeny, which complete 

diapause in the following spring (Lilley et al., 2005); there is some evidence of 

G. rostochiensis, being better adapted to warmer climates, producing two generations 

over the course of a warmer growing period (Jones et al., 2017b).  

1.2.5 The syncytium 

Formation and maintenance of a potato cyst nematode’s feeding site is intrinsic to its 

parasitic life stages. The cell first chosen by the J2 nematode is termed the initial 

syncytial cell (ISC). The nematode injects secretions known as effectors into the ISC, 

inducing metabolic changes that lead to the development of the syncytium. Effectors 

mediate the parasite’s interactions with the host plant, suppressing host defences, and 

developing and maintaining the feeding cell environment (Kyndt et al., 2013). The profile 

of effectors introduced into the cell changes throughout the different life stages of the 

nematode (Palomares-Rius et al., 2012), as the demands of the parasite on the host 

change over time. The effectors secreted into the cell stimulate the expansion of the 

plasmodesmata between the ISC and the surrounding cells and induce production of 

cell-wall degrading enzymes (Grundler et al., 1998), leading to the amalgamation of 

neighbouring cells into a single, multinucleate whole. Observation of parallel changes in 

the surrounding cells suggests communication between them (Thorpe et al., 2014). 

Expansion of the syncytium continues such that a single syncytium may comprise more 

than a hundred cells fused together in this way (Bohlmann and Sobczak, 2014). The 

syncytium is the sole source of nutrition for the nematode, acting as a nutrient sink, 

diverting nutrients from the host plant (Kyndt et al., 2013) – cytoplasmic concentrations 

of sucrose and amino acids in syncytia are elevated relative to surrounding cells 
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(Hofmann et al., 2010). It is this diversion of nutrients from the host plant that leads to 

the disease symptoms associated with cyst nematode infection. 

Effectors are the subject of a great deal of recent research, in an effort to better 

understand the interactions between parasite and host. In potato cyst nematodes, 

effectors are produced in the subventral and dorsal gland cells and injected into the 

syncytium via the stylet (Thorpe et al., 2014). Identification of effectors implicated in 

processes such as: cell wall degradation (Smant et al., 1998); suppression of host 

defences (Jaouannet et al., 2013, Postma et al., 2012); and in formation of the feeding 

site through manipulation of native cell signalling pathways – through mimicry of 

proteins involved in cell division and differentiation (Clark et al., 1995, Wang et al., 2005) 

or auxin signalling (Lee et al., 2011); demonstrate the significance of effectors to 

establishment of the feeding site.  

Research into effectors has employed a number of techniques aiming to identify and 

characterise the broad array of molecules that may act as effectors, including proteomic 

analysis of induced stylet secretions (Bellafiore et al., 2008) and transcriptomics 

performed on gland cell RNA (Maier et al., 2013). The publication of genomes for the 

two major potato cyst nematodes (Cotton et al., 2014, Eves-van den Akker et al., 2016) 

has provided powerful tools for the discovery of novel effectors in the two species, 

resulting in the identification of a family of SPRY-domain proteins in G. pallida, of which 

a subset are confirmed as effectors (Mei et al., 2015), and of a regulatory element in the 

genome of G. rostochiensis that is implicated in the regulation and tissue-specific 

expression of dorsal gland effectors, termed the DOG Box (Eves-van den Akker et al., 

2016). 

1.2.6 Potato cyst nematode genomics 

As significant pests of a globally important cash crop, both Globodera pallida and 

G. rostochiensis are well-studied organisms (Jones et al., 2013a) for which genomes have 

been published (Cotton et al., 2014, Eves-van den Akker et al., 2016). The genomes for 

each of these Globodera species are fragmented and somewhat incomplete. The G. 

pallida assembly consists of 6873 scaffolds (covering 124.6 megabases) while for G. 

rostochiensis there are 4377 scaffolds (95.9 Mb), each corresponding to genomes of 9 

chromosomes (2n=18); this contrasts with the genome assembly available for 
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Caenorhabditis elegans, for which there are 7 scaffolds, corresponding to 6 

chromosomes (2n=12) and the mitochondrial genome (Spieth et al., 2014). Based on 

representation of 458 conserved eukaryotic genes, used as a proxy for total genome 

completeness (Parra et al., 2009), the G. pallida genome is rated as 81 % complete 

(Cotton et al., 2014) and the G. rostochiensis genome as 94 % complete (Eves-van den 

Akker et al., 2016). The number of genes predicted for each species are 16,466 and 

14,309, respectively, with the larger number of genes predicted for G. pallida 

corresponding to the larger genome assembly (Cotton et al., 2014, Eves-van den Akker 

et al., 2016). Using the presence or absence of start and stop codons as a measure of 

predicted protein completeness, 88.8 % of G. pallida and 91.4 % of G. rostochiensis 

predicted proteins were complete (Eves-van den Akker et al., 2016). 

Comparison of the locations of G. pallida genes relative to one another with the 

clustering of genes on C. elegans chromosomes suggests that there is little conservation 

of gene order: orthologous genes found on a single scaffold (representing a portion of a 

single chromosome) from the potato cyst nematode genome are not clustered in the 

same way as in the C. elegans genome, but may be found spread across several 

chromosomes (Cotton et al., 2014). Comparison of the two potato cyst nematode 

genomes, however, found greater synteny between the two, with gene clusters found 

in similar regions (Eves-van den Akker et al., 2016). This is congruent with the degree of 

evolutionary divergence between the three species: where the two potato cyst 

nematodes (of nematode clade IV) are estimated to have diverged approximately 

18 million years ago (Plantard et al., 2008), they are each much more distantly related 

to C. elegans (clade V) (Blaxter, 2011). The timings of ancient nematode divergences are 

not often given estimates, owing to inconsistent conservation among different gene 

families and to the lack of a reliable molecular clock for nematodes (Kiontke and Fitch, 

2005). 

Alongside sequencing of each of the potato cyst nematode genomes, transcriptomic 

analysis was performed on nematodes of different life stages. RNA-seq was performed 

on Globodera pallida to determine changes in gene expression across eight lifecycle 

stages: J2s within unhatched eggs, hatched J2s, adult males, and parasitic females at 7, 

14, 21, 28, and 35 days post infection (dpi) (Cotton et al., 2014). Based on the observed 
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changes in expression from this analysis, G. rostochiensis gene expression was analysed 

in dehydrated cysts, hydrated eggs, hatched J2s and in 14 dpi sedentary females (Eves-

van den Akker et al., 2016).  

The 16419 predicted proteins encoded by the G. pallida genome were analysed and 

their roles inferred from similarity to known proteins: predicted proteins could be placed 

into 6174 known gene families, 3890 genes did not fit into any family, and 825 gene 

families unique to G. pallida were identified (Cotton et al., 2014). Proteins with no 

functional annotation were enriched among the genes unique to G. pallida, and a unique 

expansion of the glutathione synthetase gene family was found: a complement of 52 

glutathione synethetases, dwarfing the usual number of 1 to 4 typically found in 

nematodes, were also found to be up-regulated in the early stages of parasitism, 

suggesting a novel function for the enzymes (Cotton et al., 2014). Globodera pallida has 

a reduced complement of genes involved in xenobiotic metabolism when compared 

with C. elegans (Cotton et al., 2014), a trait often observed in endoparasites, including 

among nematodes (Barrett, 2009), perhaps due to the risk of encountering various 

toxins (aside from host defences) being reduced in a sedentary endoparasitic lifestyle. 

The genome also features an expansion of proteins with SPRY domains, 299 genes 

compared with 8 in C. elegans and 27 in Meloidogyne incognita (Cotton et al., 2014). 

Among these are the SPRYSECs, SPRY proteins that are secreted and have been 

implicated as effectors: subcellular localisation assays with Nicotiana benthamiana 

leaves found that two SPRYSEC proteins localised to the nucleus and nucleolus, 

suggesting a role in manipulation of gene regulation in the host (Jones et al., 2009). 

Further studies have confirmed that some SPRYSECs suppress host defences, but 

suggested that less than 10 % of the SPRY domain gene family are expected to function 

as effectors (Mei et al., 2015). 

The mitochondrial genomes of potato cyst nematodes are unique among higher animals 

in their organisation. Where metazoan mitochondria typically contain 2-10 copies of a 

single genome (Wiesner et al., 1992), G. pallida mitochondria were found to have 

several smaller subgenomes (Armstrong et al., 2000) with evidence of frequent 

recombination events such that many of these subgenomes were mosaics featuring 

genes with deleterious alterations (Gibson et al., 2007b). Broadly similar organisation of 
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mtDNA was observed in G. rostochiensis, though while there was conservation between 

the subgenomes of the two species, there were subgenomes unique to each species 

(Gibson et al., 2007a). Organisation and recombination of mtDNA in this way in atypical 

in animals, but bears some similarity to that found in plants and fungi (Armstrong et al., 

2000). 

Potato cyst nematodes have been classified into a number of pathotypes based on their 

relative virulence towards seven different Solanum accessions (Kort et al., 1977), giving 

three pathotypes for G. pallida (Pa1, Pa2, and Pa3) and five for G. rostochiensis (Ro1 

through Ro5), though the boundaries between these are not always clear (Phillips and 

Trudgill, 1998). In the UK, G. pallida populations are typically classified into pathotype 

Pa1 or Pa2/3 (a Pa2/3 population provided the material for generation of the genome 

assembly (Cotton et al., 2014)), and G. rostochiensis populations are typically identified 

as pathotype Ro1 (Eves-van den Akker et al., 2016). These classifications are difficult to 

separate from one another, and efforts have been made to identify genetic markers for 

the various pathotypes, with a region of mitochondrial DNA encoding cytochrome B 

identified as a useful proxy marker for the three G. pallida pathotypes found in the UK 

(Eves‐van den Akker et al., 2015) – it is noted, however, that there is likely no causal 

relationship between these mitotypes and the pathotypes with which they were 

associated. The variations in virulence between species and pathotypes complicate the 

use of resistant cultivars for management of potato cyst nematodes – planting of the 

popular and G. rostochiensis-resistant potato cultivar ‘Maris Piper’ has inadvertently led 

to selection of G. pallida in fields in the UK (Minnis et al., 2002, Whitehead et al., 1984).  
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1.3 Control of potato cyst nematodes 

Control of plant-parasitic nematodes in generally achieved through combination of a 

variety of available practices, including crop rotations, intercropping, resistant or 

tolerant cultivars, chemical pesticides, and alternative strategies such as green mulching 

or biofumigation, the focus of Chapter 1.4.  

Crop rotation, a technique employed in the management of most plant pathogens 

including root-knot nematodes (Meloidogyne spp.) (McSorley, 2011), is considered 

limited in efficacy for control of potato cyst nematodes, due to the low rate of 

population decline between cropping seasons (Turner, 1996). Ware potatoes grown on 

fields in which Globodera spp. have been detected are typically not planted with potato 

again for 5 – 8 years (McSorley, 2011). EU legislation prevents the planting of seed 

potatoes or any other crop that is to be replanted on soil that has not been certified 

PCN-free in the past 4 years (Regulation (EU) 2016/2031). 

1.3.1 Resistant potato cultivars 

Where potatoes are to be grown in fields with a history of PCN-infestation, resistant or 

tolerant cultivars are employed, if possible, to limit population growth and protect 

yields. Resistance genes for potato cyst nematodes are available but are not 

comprehensive. Of planted potato cultivars in the year 2000, 43 % were resistant to 

Globodera rostochiensis while 6 % had resistance to G. pallida (Evans and Haydock, 

2000). The top 10 planted cultivars in British fields in 2018 are still dominated by H1 

carrying cultivars such as Maris Piper, Markies, and Melody, but show increased planting 

of G. pallida-resistant varieties such as Innovator (AHDB, 2018). Online tools are 

available to select potato cultivars based on resistance to a range of pests, including 

potato cyst nematodes, such as that provided by the Agriculture and Horticulture 

Development Board in the UK (AHDB, 2018). However, cultivars that are resistant to one 

potato cyst nematode are rarely resistant to others. The H1 gene is a resistance (R) gene 

identified in an Andean subspecies of potato (Solanum tuberosum ssp. andigena) that 

conveys resistance to Globodera rostochiensis but only partial resistance to G. pallida 

and has been successfully crossed into the Maris Piper potato cultivar (Finkers-Tomczak 

et al., 2010). The prevalence of G. pallida in British potato fields is in part ascribed to the 

widespread use of potato cultivars containing the H1 gene – growing G. rostochiensis-
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resistant varieties in fields with mixed populations selects for G. pallida population 

growth (Minnis et al., 2002, Whitehead et al., 1984). Partial resistance to PCN, as found 

in Maris Piper, can refer either to limited resistance of the crop to infection, resulting in 

smaller increases in PCN population over the growth period, or tolerance to infection, 

in which varieties may still produce good crop yields in moderately-infested fields 

(Pylypenko, 2002). Partially resistant potato varieties may limit increases in population 

size when the initial population density is low, but are not suitable for growth in heavily-

infested fields, where even tolerant varieties will suffer significant yield losses (Phillips 

& Trudgill, 1998). 

Transgenic potatoes have been developed that carry resistance-enhancing genes. Root-

specific expression of a cystatin from rice (previously shown to provide resistance in 

transgenic hairy roots (Urwin et al., 1995)) was found to up-regulate at the site of 

nematode feeding and result in increased resistance (Lilley et al., 2004). Secretion of 

nematode neuropeptides from plants has been explored as an avenue of control, with 

transgenic potatoes that secreted a peptide inhibiting chemoreception in cyst 

nematodes provided up to 75% resistance (Green et al., 2012); this technology was later 

investigated outside of the plant, with transgenic soil microbes secreting neuropeptide-

like proteins reducing infection levels in tomato roots by up to 90% (Warnock et al., 

2017). 

However, UK markets cannot benefit from transgenic potato cultivars as genetically 

modified (GM) crops are not approved for commercial growth in the UK, and GM foods 

are limited to imports of oilseed rape, soybean, cotton-seed oil, maize, and sugar beet 

(Gov.uk, 2018). 

1.3.2 Chemical control of nematode pests of potato 

Chemical control of plant-parasitic nematodes has historically been achieved through 

application of nematicidal chemicals, typically classified as either fumigant (Lembright, 

1990) or non-fumigant (Apt and Caswell, 1988), which differ in their methods of 

application. Chemicals may be further described as: nematicidal, those that directly kill 

nematodes; nematistatic, chemicals that impede the infective stages of a nematode for 

long enough to protect most of the value of a crop; and multi-purpose, chemicals that 
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are rarely applied solely for nematode control due to high costs but may have broad-

spectrum activity.  

Soil fumigants are volatile compounds that are injected into the soil, either in solution 

or as a liquid under pressure, and rapidly volatilise, spreading through the soil via the 

gas phase and either dissolving in water films on soil surfaces or adsorbing into organic 

matter within the soil (Lembright, 1990). Many soil fumigants, such as methyl bromide 

(bromomethane), DBCP (1,2-dibromo-3-chloropropane), and ethylene bromide (1,2-

dibromoethane), have been phased out due to their detrimental effects on non-target 

organisms and the environment (Qin et al., 2004). Methyl bromide has frequently been 

used for research purposes as a benchmark against which to test novel control methods 

(McSorley, 2011), but has been withdrawn from agricultural use (as per the Montreal 

Protocol on Substances that Deplete the Ozone Layer, 1987) as it breaks down to form 

elemental bromine, a potent ozone depletion agent (Noling and Becker, 1994). 

However, dependence on methyl bromide persists such that it can still be applied to 

fields when critical use exemptions are granted, which continue through 2018 and 2019 

(UNEP, 2017).  The need for adequate replacements for methyl bromide has been 

recognised for as long as the need to regulate its use (Noling, 2002, Noling and Becker, 

1994).  

Non-fumigants are applied in liquid or granular form, and may act through the 

proliferation of volatile breakdown products, or otherwise require contact with 

nematodes to be effective (Apt and Caswell, 1988). Two principal classes of compounds 

make up the non-fumigant nematicides: carbamates and organophophates, each acting 

through inhibition of acetylcholinesterase (Gupta et al., 2018). The carbamate aldicarb 

(previously sold as Temik™ by Bayer CropScience) has been withdrawn from use in the 

EU due to non-target toxicity, despite its low potential for bioaccumulation (European 

Commission, 2003). However, evidence of unlawful applications of aldicarb suggest it 

has not yet been removed from markets (Ruiz-Suárez et al., 2015). Fosthiazate ((RS)-[S-

(RS)-sec-butyl O-ethyl 2-oco-1,3-thiazolidin-3ylphospho-nothioate]), marketed as 

Nemathorin, is an organophosphate treatment that effective at much lower doses in 

nematodes than in other animals, but is  hampered by its potential for leaching into 

waters around places of application (Karpouzas et al., 2007), and its relatively quick 
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degradation by microbes present in the soil: leaching was increased in acidic soils, while 

persistence increased in soils with high organic matter content (Qin et al., 2004). 

Fenamiphos ((RS)-(ethyl 4-methylthio-m-tolyl isopropylphosphoramidate)) is an 

organophosphate used for control of nematodes (Oka et al., 2009) but is limited in 

effectiveness against nematodes other than Meloidogyne species (Oka, 2014). As non-

fumigant nematicides may persist in the soil, they run the risk of exposing target 

nematodes to sublethal concentrations at which they may only have a nematostatic 

effect. Fluopyram (N-[2-[3-Chloro-5-(trifluoro-methyl)-2-pyridinyl]ethyl]-2-(trifluoro-

methyl) benzamide, marketed as Velum One™ by Bayer CropScience) is a non-fumigant 

pesticide first developed as a fungicide but now marketed as a multipurpose chemical 

with nematicidal effects. It was found to be effective against Meloidogyne incognita on 

lima bean (Jones et al., 2017a) but no published data exists on its efficacy for cyst 

nematode control, and it has been suggested that it acts as an effective nematistat 

rather than a nematicide (Faske and Hurd, 2015). Oxamyl (methyl 2-(dimethyl amino)-

N-[(methylcarbamoyl)oxy]-2-oxoethanimidothioate), is a carbamate, marketed as 

Vydate, that is more effective at controlling G. rostochiensis than G. pallida (Whitehead 

et al., 1984). It is broadly effective against nematodes (Jones et al., 2017a), resulting in 

off-target effects and the risk of bioaccumulation in treated foodstuffs (Osman et al., 

2009). The granular form of oxamyl is banned and use of the liquid form is heavily 

regulated to limit potential for bioaccumulation (UNEP, 2005). Fluensulfone (5-chloro-

2-(3,4,4-trifluorobut-3-enylsulfonyl)-1,3-thiazole) is a non-fumigant that has been 

shown to act specifically on nematodes, resulting in irreversible detrimental impacts on 

development at all stages of life (Kearn et al., 2014). However, it has also been found 

only to affect certain genera of plant-parasitic nematodes, effective against root-knot 

nematodes, but ineffective against the pine wood nematode, Bursaphelenchus xylophili 

(Oka, 2014). Fluensulfone compared poorly with other available non-fumigants when 

trialled on Globodera spp., including oxamyl and fosthiazate (Norshie et al., 2016).  

Dazomet (3,5-dimethyl-1,3,5-thiadiazinane-2-thione) is a multipurpose chemical that 

has largely replaced use of methyl bromide – it is less effective but also carries lower risk 

to wildlife and the environment (Lewis et al., 2016). Dazomet is applied in granular form 

but degrades in the soil generating methyl isothiocyanate (MITC), a bioactive, 
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sulphurous volatile to which the pesticidal activity of dazomet is ascribed (Mao et al., 

2014). When applied to root-knot nematode-infested cucumber fields in combination 

with dimethyl disulphide (DMDS) or 1,3-dichloropropene, dazomet was found to have 

nematicidal activity comparable to methyl bromide, while dazomet alone was less 

effective but performed better than untreated controls (Mao et al., 2014, Mao et al., 

2012). Metam sodium is a dithiocarbamate that also acts to generate MITC, and was the 

third most commonly applied pesticide in the US in 2000 (Pruett et al., 2001). 

The number of available chemical controls and the degrees to which these can be 

employed have become limited by regulations over the past few decades (Starr et al., 

2007). The development of novel synthetic nematicides, however, is a long and 

expensive process, made difficult by the protective cuticle of nematodes and their 

unpredictable dispersal throughout the soil, as well as their protected environment in 

the plant root (Chitwood, 2002). Regulatory barriers also limit the development of novel 

nematicides, as ideally any new chemical will be target specific, will not persist in the 

soil, will not endanger local ecosystem, and will not negatively impact the environment. 

The Montreal Protocol restricts application of any chemical that acts to deplete the 

ozone layer (UNEP, 2002). Further EU regulations limit the application of potentially 

harmful nematicides, operating under the precautionary principle: any treatment 

cannot be applied if the potential for harm cannot be ruled out (Erbach, 2012, European 

Union, 1957). Many growers therefore implement integrated pest management (IPM) 

strategies, utilising chemical control alongside other methods (Starr et al., 2007).  

  



20 
 

 

1.4 Biofumigation 

Due to both the difficulties associated with potato cyst nematode management and the 

regulation of the more effective chemical treatments once used for their control, 

growers frequently look to alternative pest management strategies, in order to increase 

yields and reduce costs and losses associated with the crop. One such strategy that has 

received attention in recent years is that of biofumigation – the exploitation of bioactive 

compounds generated from disrupted brassicaceous plant tissues to control pests. This 

typically focuses on generating isothiocyanates: sulphurous, bioactive compounds 

produced from the breakdown of glucosinolates. 

1.4.1 Glucosinolates and the production of isothiocyanates 

Glucosinolates are sulphurous secondary metabolites found in plants of the order 

Brassicales, including the family Brassicaceae which features crops such as Indian 

mustard, Brassica juncea; cabbage, Brassica oleracea; oilseed rape, Brassica napus; 

radish, Raphanus sativus; as well as the important model plant Arabidopsis thaliana. 

Over 120 distinct glucosinolates have been identified among the Brassicales, with each 

species producing a specific subset of these (Fahey et al., 2001). Arabidopsis is known to 

produce at least 34 different glucosinolates (Kliebenstein et al., 2001). Many of the 

pathways of glucosinolate biosynthesis have been elucidated through work with 

arabidopsis, with over 20 biosynthesis genes discovered, such that glucosinolates are 

regarded by some as “model secondary metabolites” (Sønderby et al., 2010).  

The structure of a glucosinolate comprises three moieties (Figure 1.2 A): a β-thioglucose 

linked via sulphur to a sulfonated oxime moiety, in turn linked via carbon to a variable 

(R group) side chain derived from an α-amino acid (Ishida et al., 2014). The R group 

distinguishes different glucosinolates from one another, is used to classify them into 

three groups (aliphatic, aromatic or indolic), and determines the chemistry of their 

breakdown products (Fahey et al., 2001). Glucosinolate biosynthesis begins with an 

amino acid: aliphatic glucosinolates being derived from alanine, leucine, isoleucine, 

valine and methionine; aromatic from phenylalanine or tyrosine; and indolic 

glucosinolates from tryptophan. The amino acid may be chain-elongated (methionine 

and phenylalanine only) before formation of the glucosinolate structure and subsequent 



21 
 

 

modification of the R group (Sønderby et al., 2010); it is this side chain modification that 

gives rise to the great diversity of known glucosinolates (Fahey et al., 2001).  

In the host plant, glucosinolates are found in the vacuoles of most cells (Kelly et al., 

1998), though the distribution of different glucosinolates and their respective 

abundances may differ from organ to organ and within an organ (Shroff et al., 2008). 

These abundances may change in response to external stimuli, such as increased 

concentrations following herbivore attack, or temporally, with senescent leaves having 

greatly reduced glucosinolate content (Brown et al., 2003). The primary function of 

glucosinolates within the host is in the glucosinolate-myrosinase defence system. As 

whole molecules, glucosinolates are relatively chemically inert. When plant tissues are 

disrupted, local glucosinolates are allowed to come into contact with native myrosinase 

enzymes. Hydrolysis catalysed by myrosinase (also termed β-thioglucoside 

glucohydrolase) leads to the liberation of a glucose molecule and production of an 

unstable thiohydroximate (Figure 1.2 B), which then degrades to form one of a range of 

active compounds (Figure 1.2 C) in a pH and enzyme dependent manner (Bones and 

Rossiter, 2006). These active compounds then act to harm or deter the pathogen or 

herbivore that has attacked the plant. The principal products generated from the 

degradation of glucosinolates are isothiocyanates, followed by nitriles and thiocyanates 

(Figure 1.2 C i., iii., and iv.).  

The principal glucosinolates found in brassicas of commercial value are: sinigrin, which 

gives allyl isothiocyanate, found in most brassicas and the principal GSL identified in 

Brassica spp.; glucoraphanin, found abundantly in radishes; and glucoerucin, identified 

in rocket (Kirkegaard and Sarwar, 1998). The majority of field trials focus on the use of 

Brassica juncea cultivars with high sinigrin content (discussed in Chapter 1.4.3). 
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Figure 1.2 The general structure of glucosinolates and their breakdown products. A, general 
structure of a glucosinolate, highlighting the β-thioglucoside (1) and sulfonated oxime (2) 
moieties and the R side chain (3). B, hydrolysis by myrosinase, liberating a glucose molecule and 
an unstable thiohydroximate. C, subsequent degradation products under different conditions: i, 
isothiocyanate; ii, epithionitrile; iii, nitrile; iv, thiocyanate; and v, goitrin. Adapted from: (Bones 
and Rossiter, 2006, Ishida et al., 2014, Shapiro et al., 2001) 
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Isothiocyanates form naturally from the spontaneous degradation of the unstable 

thiohydroximate residue left after hydrolysis of the glucose moiety (figure 1.2 B); this 

occurs through a process termed a Lossen rearrangement (Ettlinger et al., 1961, 

Ettlinger and Lundeen, 1957), wherein the bond between the R-group and the central 

carbon shifts to the nitrogen, the sulphate anion is released and the hydrogen bound to 

sulphur is liberated, forming a double bond between sulphur and carbon (Bones and 

Rossiter, 2006).  

Myrosinases (EC 3.2.1.147) are a class of enzymes in the β-glycosidase family, forming a 

distinct phylogenetic subgroup amongst glycoside hydrolase family 1 enzymes (Xu et al., 

2004). Compared to O-glycosidase enzymes found widely in nature, myrosinases are the 

only known S-glycosidases (Burmeister et al., 2000). As all studied members of the 

Brassicaceae produce glucosinolates, they also express myrosinase, with each species 

expressing several distinct myrosinase enzymes, classified into three subfamilies, MA, 

MB, and MC, which may have different functions (Xue et al., 1992, Eriksson et al., 2002). 

Recombinant myrosinase enzymes from the roots and shoots of A. thaliana were found 

to have slightly differing catalytic activities with regards to pH and ascorbic acid 

concentrations, but were all found to catalyse the hydrolysis of sinigrin across a range 

of conditions (Andersson et al., 2009). An analysis of the myrosinases found in a range 

of brassicas found that all those analysed had classic myrosinase activity, converting 

sinigrin to allyl isothiocyanate and glucotropaeolin to benzyl isothiocyanate (Piekarska 

et al., 2013). Structurally, MA-type myrosinases typically occur as a homodimer, while 

MB and MC myrosinases are often found in complex with myrosinase-binding proteins 

that may affect the final breakdown product of glucosinolate hydrolysis (Eriksson et al., 

2002, Rask et al., 2000). Natively expressed myrosinase has been found to be heavily 

glycosylated, which may aid in protein stability (Halkier and Gershenzon, 2006) or in 

cellular localisation (Bones and Rossiter, 1996) – the activity of recombinant 

myrosinases without glycosylation suggests that it is not necessary for the function of 

the enzyme. 

While isothiocyanates are the principal breakdown product of glucosinolate hydrolysis, 

formation of alternative breakdown products can occur either at low pH (pH<5 for 

formation of nitriles (Bones and Rossiter, 2006)) or in the presence of specifier proteins. 
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Epithiospecifier protein (ESP), first isolated in crambe, Crambe abyssinica, was found to 

interact with the enzymatic hydrolysis of glucosinolates and generate epithionitriles 

alongside isothiocyanate production (Tookey, 1973), and was later found in other 

members of the Brassicales (Brassica napus and B. campestris), with Fe2+ identified as a 

non-essential promoter of the reaction (MacLeod and Rossiter, 1985). When 

epithiospecifier proteins interact with the hydrolysis of either non-alkenyl or indolic 

glucosinolates, a nitrile is formed rather than an epithionitrile (Wittstock and Burow, 

2007). Thiocyanates are formed in the presence of thiocyanate-forming protein (TFP), 

theorised for some time before the identification of a TFP in cress, Lepidium sativum 

(Burow et al., 2007). Thiocyanate-forming proteins have been found to produce 

thiocyanates only from certain glucosinolates, such as allylglucosinolate (sinigrin) and 

benzylglucosinolate, with other substrates resulting in the production of simple nitriles 

(Kuchernig et al., 2011). A third class of enzymes, nitrile-specifier proteins (NSPs), alter 

glucosinolate breakdown to preferentially generate nitriles. Three Fe2+-dependent NSPs 

have been characterised in arabidopsis, with a further two identified based on sequence 

information (Kong et al., 2012). Interestingly, an NSP is produced by larvae of the 

cabbage white moth, Pieris rapae, which feeds on brassicas – the larvae are vulnerable 

to isothiocyanates but are not harmed by nitriles, suggesting that the NSP acts to 

undermine the defence system (Wittstock et al., 2004). The crystal structures of 

Arabidopsis thaliana ESP (AtESP) (Zhang et al., 2016), A. thaliana NSP1 (AtNSP1) (Zhang 

et al., 2017), and Thlaspi arvense TFP (TaTFP) (Gumz et al., 2015) have been resolved. 

Resolved structures for ESP and TFP are broadly similar, though TaTFP dimerises 

differently to AtESP and has a smaller active site, while AtNSP1 is more structurally 

distinct (Gumz et al., 2015, Zhang et al., 2016, Zhang et al., 2017). Goitrin (Figure 1.2 C 

v.) is formed only from the hydrolysis of the glucosinolate progoitrin, being the end 

result of hydrolysis instead of an isothiocyanate (van Doorn et al., 1998). The biological 

functions of these alternative end products are less well understood than those of the 

isothiocyanates, due to lower toxicity (Wittstock and Burow, 2007). 

1.4.2 The glucosinolate-myrosinase defence system 

Glucosinolates are typically posited as being involved in defence against herbivory and 

pathogen attack, in a defence scheme termed the glucosinolate-myrosinase system or 
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the mustard oil bomb (Matile, 1980). Studies intended to determine whether or not 

glucosinolates were utilised as a sulphur-storage system have found that  glucosinolate 

content is dependent on sulphur provision and that sulphur-deficient conditions reduce 

glucosinolate content (Falk et al., 2007). However, glucosinolates were not used as a 

storage sink when brassicas were exposed to excess sulphur (Aghajanzadeh et al., 2014), 

suggesting a limited role in sulphur-storage.  

As glucosinolates become highly reactive upon hydrolysis by myrosinase, it is necessary 

for brassicas to keep these elements separate from one another until they are needed. 

Glucosinolates are found within cells throughout the tissues of a plant (Shroff et al., 

2008), so this is achieved through compartmentalising myrosinase in specialised 

idioblasts (cells that are distinct from their surrounding tissue) termed myrosinoblasts 

or myrosin cells (Andreasson et al., 2001). This physical separation is broken when the 

tissues of a brassica are disrupted, for instance when under herbivore attack; the release 

of myrosinase from the myrosin cells allows the enzymatic degradation of the plant’s 

glucosinolates into the bioactive compounds described above. This phenomenon has 

been shown to aid in defence against a number of herbivores and pathogens. Herbivory 

by cabbage moth larvae (Mamestra brassicae) was increased when two transcription 

factors associated with the biosynthesis of aliphatic glucosinolates (MYB28 and MYB29) 

were knocked down in arabidopsis (Beekwilder et al., 2008). Studies with various 

arabidopsis mutants found that growth of a brassica-specific fungal pathogen, 

Alternaria brassicicola, was inhibited by aliphatic and aromatic isothiocyanates, while a 

generalist fungus, Botrytis cinerea, was sensitive to various breakdown products 

dependent on their source glucosinolate (Buxdorf et al., 2013). It has been suggested 

that the glucosinolate-myrosinase system is also used to influence larger herbivores. 

Ochradenus baccatus manipulates rodents that feed on its fruits by compartmentalising 

glucosinolates in the flesh and myrosinase in the seeds – this encourages herbivores to 

eat the flesh and spit out the seeds in order to avoid the production of isothiocyanates, 

thereby aiding in seed dispersal (Samuni-Blank et al., 2012).  

1.4.3 Biofumigation in agricultural practice 

The ability of disrupted brassica tissues to generate bioactive compounds has been 

exploited in agricultural settings for the management of pests. This is termed 
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biofumigation, and the typical methodology employed is to grow the biofumigant crop 

or crop mix in the field to be treated until an optimal time point is reached, after which 

the crop is macerated and incorporated into the soil (McSorley, 2011). This is performed 

before planting of a cash crop, in order to reduce or control the populations of soilborne 

pests, thereby limiting their effects on the yield and value of the crop. Other 

biofumigation methodologies include application of a brassicaceous green mulch, or 

growing brassicas between the primary crop as a living mulch (Marahatta et al., 2010) 

and the sowing of brassica seed meal into the soil (Zasada et al., 2009). Brassicas may 

also be grown as “catch crops”: in theory, nematodes may invade the roots and fail to 

reproduce due to the production of low-volatility isothiocyanates that persist in the 

damaged root environment (Lazzeri et al., 2013). Among the potential benefits of 

biofumigation are its potential low environmental impact, and its regulatory simplicity – 

crop species employed for their biofumigant effects are already grown for other 

purposes around the world. While it might be assumed that biofumigation could be a 

relatively cheap management choice, the cost per hectare can include £40-100 in seeds, 

£200-300 in planting and maintenance of the crop, and may incur the cost of hiring 

machinery for incorporation of the crop (Lord et al., 2011). A typical granular nematicide 

costs around £300 per hectare, e.g. Dazomet. Further, a brassica crop grown for 

biofumigation may provide a habitat for pests and pathogens that later affect the cash 

crop (Lu et al., 2010), and could impact a grower’s profits by occupying land that could 

be used for growth of a cash crop. The case for biofumigation must be strong enough, 

therefore, to justify any extra costs. 

The effectiveness of biofumigation for control of nematodes is the subject of a great 

deal of sometimes contradictory research: a recent meta-analysis of field trials refutes 

the efficacy of brassicas when compared with fallow treatments (McSorley, 2011), while 

a number of studies suggest that biofumigation may form an important role in future 

management of nematodes (Chan and Close, 1987, Kirkegaard and Sarwar, 1998, 

Mojtahedi et al., 1993). 

Pure isothiocyanates are certainly toxic to nematodes and other plant pathogens in 

vitro, but consistently translating this toxicity into a biofumigation scheme applied in the 

field can prove challenging (Morra and Kirkegaard, 2002). Presented in the context of 
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biofumigation, there have been numerous studies into the toxicity of isothiocyanates to 

plant-parasitic nematodes. Meloidogyne incognita J2s incubated with glucosinolates 

were unaffected, but when incubated with those same glucosinolates with added 

myrosinase, all tested glucosinolates resulted in immobilisation and mortality (Lazzeri et 

al., 2004). Allyl isothiocyanate was shown to be toxic to hatched Globodera pallida J2s 

and to suppress induced hatching from cysts in vitro (Wood et al., 2017). Recovery of 

G. pallida J2s from sand columns was reduced by up to 100% after 24 h exposure to 

aqueous leaf extracts, relative to a water control treatment (Lord et al., 2011). It is 

notable that the greatest level of control was not achieved with leaf extract from the 

plants with highest glucosinolate leaf content, and a degree of control was also observed 

with non-brassicaceous leaf extracts (Lord et al., 2011).  

Isothiocyanates are not equally bioactive: in a number of in vitro assays allyl 

isothiocyanate, the breakdown product of one of the more prevalent glucosinolates, 

sinigrin, has been shown to be highly toxic to both M. incognita and M. javanica, 

alongside other effective ITCs such as 2-phenylethyl ITC and methyl ITC (MITC) (Aissani 

et al., 2013, Lazzeri et al., 2004, Wu et al., 2011, Zasada and Ferris, 2003); phenyl ITC 

was found to have low toxicity to both species (Aissani et al., 2013, Wu et al., 2011); 

while a number of compounds were differentially toxic, with butenyl ITC and 4-

methylthiobutyl ITC having high bioactivity against M. incognita (Lazzeri et al., 2004) but 

lower bioactivity with M. javanica (Wu et al., 2011). This discrepancy between closely 

related nematode species indicates that results from studies on one plant-parasitic 

nematode may not apply to others, suggesting that achieving a “one size fits all” 

biofumigation protocol may not be a plausible goal. 

Attempts to translate effective in vitro trials with biofumigation into efficacy in planta 

have seen some success. Pot trials with three B. juncea cultivars incorporated into soil 

containing G. pallida cysts found that egg viability was reduced by 70-85 % in uncovered 

pots and by up to 95 % when the soil was covered with polyethylene – other brassica 

species reduced viability to lesser extents while a wheat treatment also reduced levels 

relative to a mock treated control (Lord et al., 2011). Incorporated green tissues of 

Brassica rapa (turnip), B. oleracea (kale, cauliflower, broccoli and Portuguese cabbage), 

and Nasturtium officinalis (watercress) significantly reduced cyst-formation in potatoes 
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grown in G. rostochiensis-infested pots, to less than 7% of the untreated control in the 

case of the watercress amendment (Aires et al., 2009). Reduction in hatching was 

observed in G. pallida cysts exposed to allyl isothiocyanate in vitro, but this could not 

then be replicated in pot trials using infested field soil (Brolsma et al., 2014). Tissue 

extracts from three Brassica oleracea varieties, B. rapa (turnip) and Nasturtium 

officinale (watercress) were added to pots in which G. rostochiensis were growing on 

susceptible potato; population growth was significantly reduced relative to a control 

treatment (Aires et al., 2009). However, extracts were made by freeze-drying and 

grinding the green tissues of the plants before addition to the pots in which juveniles 

had already hatched from cysts, conditions that do not represent a standard 

biofumigation protocol, and the biomasses required of each tested cultivar in a given 

field would require addition of green tissues grown separately to the field to be tested 

(Aires et al., 2009).  

Direct applications of isothiocyanates to infested fields have demonstrated the toxicity 

of these compounds in an agricultural context. Application of allyl and acryloyl 

isothiocyanates to M. javanica-infested cucumber plots resulted in reduced galling to 

near zero at higher concentrations (≥1 kg ha-1), comparing favourably with metam 

sodium (Wu et al., 2011), though no comparison was made between the concentrations 

of ITCs added to the plots and the potential output from incorporation of a biofumigant 

crop. Biofumigation by incorporation of yellow mustard, Brassica juncea cv. Zlata, 

significantly reduced G. rostochiensis population levels in two fields in Belgium 

compared with growing but not incorporating the mustard and with fallow – combining 

mustard incorporation with plastic mulching further reduced the viable nematode 

populations (Valdes et al., 2012). Application of B. juncea seed meal to 

Meloidogyne incognita-infested soil reduced viable J2 populations to near zero, without 

negatively impacting the growth of pepper (Capsicum annuum) seedlings transplanted 

into the soil later on (Meyer et al., 2011). Field trials performed in Shropshire, UK, found 

that summer-grown B. juncea cv. Caliente 99 and Raphanus sativus cv. Bento reduced 

G. pallida egg viability, and that total glucosinolate content in the plants correlated with 

reduction in viability (Ngala et al., 2014). Analysis of host status and effects of green 

manure incorporation of a number of crops in M. chitwoodi-infested potato fields found 
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that R. sativus cvs. Melodie and Trez were both poor hosts for the root-knot nematode 

and that green tissue incorporation resulted in nematode populations falling by 65-79% 

and reduced galling in the following crop (Al-Rehiayani and Hafez, 1998). As well as 

acting to control nematode populations, brassicaceous green tissue amendments have 

been demonstrated to reduce the impact of soil-borne fungal disease on subsequent 

potato crops (Larkin and Griffin, 2007).  

Conversely, a number of studies have demonstrated “biofumigant” effects separate 

from glucosinolate content or isothiocyanate production, or the simple absence of any 

nematode-controlling effect, attributing suppressive effects or improvements to crop 

yield to the benefits of a green tissue incorporation more generally. Green manures are 

thought to benefit subsequent crops by providing greater available nutrients and to 

boost soil microbial communities, potentially increasing the abundance of organisms 

that help fight plant pathogens (dos Santos Marques et al., 2017). Analysis of a number 

of studies on various non-brassica rotation crops found that nematode numbers were 

suppressed at a rate similar to application of aldicarb and to a season of clean fallow, 

but performed poorly compared to fumigation with methyl bromide (McSorley, 2011). 

A reduction in G. rostochiensis populations was observed when brown mustard was 

grown in rotation for 3 consecutive years in infested fields in Canada, but this effect was 

mirrored by corn and millet rotations, and a greater population reduction was observed 

in plots in which resistant potato cultivars were planted (Bélair et al., 2016). An 

experimental field in Germany that was host to several  plant-parasitic nematode genera 

(Meloidogyne, Heterodera, Trichodorus, Tylenchorynchus, and Pratylenchus) was 

separately treated with amendments of four B. juncea cultivars as well as with wheat 

with and without added allyl isothiocyanate, as positive and negative controls; no 

significant impact on population densities of the monitored plant-parasitic nematode 

genera was recorded following incorporation of brassicas or of wheat with added 

isothiocyanates (Vervoort et al., 2014). However, owing to the low initial densities of 

Meloidogyne, Heterodera, and Pratylenchus found in the field, only the ectoparasitic 

Trichodorus and Tylenchorynchus genera were assessed post-incorporation, so impacts 

on sedentary and migratory endoparasites cannot be inferred from the results (Vervoort 

et al., 2014). Rapeseed was found to be a poor host for both M. incognita and 
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M. javanica but population growth on the following squash crop was unaffected by 

incorporation of the brassica green manure (Johnson et al., 1992). In a number of field 

trials performed in Georgia, USA, growth of M. incognita populations on a number of 

biofumigants counteracted the reduction observed after incorporation of green tissues, 

such that the cash crop was exposed to higher nematode populations than before the 

trials began (Monfort et al., 2007). Realisation of any potential biofumigant effect from 

a crop depends on translating glucosinolate concentrations in the plant into 

isothiocyanate concentrations in the soil. A study performed on two commercial 

biofumigant crops found that tissue disruption and incorporation using a rotary hoe 

resulted in only 1.0 ± 0.08 % of the potential isothiocyanate release detected in soils 

after 24 hours (Morra and Kirkegaard, 2002). The concentrations of isothiocyanates in 

the soil were found to be highest immediately after incorporation of high-glucosinolate 

Brassica juncea, reaching a maximum of 56% ITC release efficiency, but concentrations 

tailed off thereafter, though some isothiocyanates were detected at low levels up to 12 

days after incorporation (Gimsing and Kirkegaard, 2006). 

A potential issue with the application of biofumigation to control some nematode 

species is that, regardless of any population-controlling effect of green tissue 

incorporation, polyphagous nematode species may increase in numbers over the growth 

period of the biofumigant crop by utilising the biofumigant as a host. An assessment of 

the host status of 31 brassica cultivars across 8 species for Meloidogyne incognita, 

M. hapla, and M. javanica found that the majority of the plants tested had significant 

root galling (Edwards and Ploeg, 2014), according to an established root galling index 

(Bridge and Page, 1980). Glasshouse experiments with M. javanica grown on B. juncea, 

B. napus, and a commercial biofumigant mix of B. napus and B. campestris found that, 

though population increases were only 3-23% of those found on a susceptible tomato 

cultivar, they were enough that the authors recommended against summer growing of 

these plants for biofumigation in subtropical climates, as any positive effects would be 

undone by the increase in nematode numbers (Stirling and Stirling, 2003). However, this 

should not be an issue for control of host-specific cyst nematodes such as Globodera.  

A further issue is that of target specificity, though this also applies to chemical 

nematicides. Entomopathogenic nematodes are thought to help protect crops from 
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insect pests and are sometimes intentionally applied to fields as a biocontrol measure – 

infection of Galleria mellonella larvae by native entomopathogenic nematodes was 

reduced in potato fields that had had biofumigant amendments, and glasshouse trials 

showed that entomopathogenic nematode activity was more affected by brassica 

amendments with higher glucosinolate content (Ramirez et al., 2009). Conversely, a 

mixed system containing Colorado potato beetle (Leptinotarsa decemlineata), 

Steinernema spp. entomopathogenic nematodes, and Meloidogyne chitwoodi, grown 

on potato in pots, found that biofumigation interrupted the effectiveness of 

entomopathogenic nematode-based insect control, but ultimately led to greater potato 

yields as root-knot nematode populations were decreased and Colorado potato beetles 

were discouraged from egg-laying (Henderson et al., 2009). 

A review of the literature suggests that the science of biofumigation is far from settled. 

While the toxicity of isothiocyanates and the generation of isothiocyanates from 

disrupted brassica tissues are both well documented, the question of how to translate 

this into an effective and consistent nematode management technique remains 

unanswered. 
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1.5 Aims 

A great deal of research has focused on the potential for biofumigation as a method of 

pest control, but the number of conflicting reports and the lack of a full understanding 

of the mechanisms of the technique leave several questions unanswered. The effects of 

exposure to isothiocyanates on plant-parasitic worms were investigated to better 

understand variations in susceptibility to biofumigation and to isothiocyanates, and to 

provide a basis upon which further research can be built. To increase the number of 

tools available to crop growers, a method for screening plant species for potential 

biofumigant effects was developed. As glucosinolate content is not always linked to 

biofumigant efficacy, the volatile emissions of a number of brassicas were investigated 

to determine if brassicas offer a source of nematode control separate to the 

glucosinolate-myrosinase system.  
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Chapter 2  General Materials & Methods 

2.1  Biological Materials 

Plants: 

• Potato – Solanum tuberosum cv. Désirée 

• Yellow mustard – Brassica juncea cv. ISCI99 

• Radish – Raphanus sativus cv. WeedCheck, Diablo 

• Rocket – Eruca sativa cv. Nemat 

• Tomato – Solanum lycopersicum cv. Ailsa Craig 

Nematodes: 

• White potato cyst nematode – Globodera pallida LINDLEY (Pa2/3) 

• Caenorhabditis elegans 

▪ N2 (wild-type) 

▪ unc119 

▪ gst-31::gfp reporter strain (Jones et al., 2013b) 

Bacteria: 

• Escherichia coli 

▪ Ultra-competent DH5α (Inoue et al., 1990) 

▪ HT115(DE3) 

2.2 Cultivation of nematodes 

2.2.1 Cultivation of cyst nematode populations 

Cysts of Globodera pallida were stored long-term in soil at 4 °C. Cyst populations were 

replenished by growing susceptible potato cultivars in 50:50 sand/loam soil containing 

cysts to give approximately 50 eggs g-1 soil. Tubers of the potato cultivar Désirée were 

allowed to chit by incubating in an open tray at room temperature. Tuber cuttings 

containing one chit were taken and planted in 15 cm pots. These were watered every 

other day for approximately 12 weeks when the foliar parts of the plants were clipped 
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and the soil was left to dry. After drying, egg counts were performed on 100 g soil 

samples (section 2.1.4) and the soil was stored at 4 °C. 

2.2.2 Extraction of cysts from soil 

Cysts were extracted from soil using the Fenwick can method (Fenwick, 1940). Soil 

samples infested with cysts were washed through an 800 µm steel mesh sieve into the 

Fenwick can, removing larger pieces of detritus, where the buoyant cysts are separated 

from heavier soil particles by flotation. The effluent from the can was then sieved 

through a 500 µm mesh and collected in a 150 µm mesh sieve, removing particles larger 

and smaller than the cysts. The contents of the sieve were then rinsed into a medium 

flow filter paper (GE Whatman, UK) in a sealed funnel. The contents of the filter paper 

were allowed to settle before slowly draining, leaving the cysts in the outer ring of 

sediment collected on the paper. Cysts were then collected from filter papers using fine 

forceps under a dissecting microscope. Cysts were stored in sterile distilled water at 4 °C 

before use. 

2.2.3 Performing egg counts 

Egg counts were performed by extracting all cysts from 100 g infested soil samples 

(section 2.2.2) before crushing the cysts and resuspending the eggs in water. 

Subsamples from each egg suspension could then be counted using a counting chamber 

slide and from there the number of eggs per gram of soil calculated. 

2.2.4 Hatching Globodera pallida cysts 

In order to sterilise the cysts and induce hatching of second stage juveniles (J2s), cysts 

of Globodera pallida were first washed in absolute ethanol for 30 seconds, then with 1% 

sodium hypochlorite solution for up to 20 minutes, frequently inverting to ensure good 

mixing, until the cysts lost their brown colouration (Heungens et al., 1996). This causes 

the walls of the cysts to rupture, releasing eggs and encouraging hatching. Cysts were 

then washed thoroughly with sterilised tap water, to ensure no bleach remained. After 

washing, cysts were placed in a hatching jar consisting of a small, thick-walled glass jar 

covered with tinfoil to block light and containing a plastic ring holding a 30 µm nylon 

mesh, all autoclaved before use, onto which the cysts were placed. The mesh keeps eggs 

and cysts within the plastic ring but allows hatched juveniles through, to collect in the 

glass jar. Potato root diffusate was added to each jar to further encourage hatching, and 
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the jar was stored at 20 °C in the dark. After an initial 4 day incubation, juveniles were 

collected from the jar and the removed potato root diffusate was replaced each day for 

a period of 2 weeks. Any juveniles not immediately used were stored in non-stick 15 ml 

centrifuge tubes at 10 °C. 

2.2.5 Plate cultivation of Caenorhabditis elegans 

Caenorhabditis elegans cultures were maintained on 50 mm petri dishes with Nematode 

Growth Medium Lite (NGM Lite) + tetracycline, seeded with a lawn of Escherichia coli 

strain HT115, sealed with Parafilm M paraffin film (Bemis NA, Wisconsin, USA). Plates 

were incubated at 20 °C to encourage population growth or at 10 °C for longer term 

storage. When the bacterial lawn of plates was depleted, nematodes were transferred 

to new plates using a WormStuff worm pick with a flattened platinum tip (GeneSee 

Scientific, California, USA). When plates were contaminated with foreign bacteria or 

fungi, cultures could be axenised (Stiernagle, 1999). Gravid hermaphrodites were first 

rinsed from contaminated plates with sterile distilled water and collected in a 3.5 ml 

total volume in a 15 ml centrifuge tube. A mixture of 0.5 ml 5 M NaOH and 1 ml 

household bleach was then made up and added to the nematode suspension, which was 

vortexed for a few seconds every 2 minutes for a period of 10 minutes. This breaks down 

the bodies of the adults and sterilises the surfaces of released eggs. The tube was then 

centrifuged at 1500 rcf for 30 seconds to collect released eggs, and the supernatant 

removed and replaced with sterile distilled water. The centrifugation was repeated, the 

supernatant removed, and the remaining concentrated volume of eggs added to a fresh 

NGM Lite plate seeded with E. coli HT115. 

2.2.6 Caenorhabditis elegans liquid cultures 

In order to grow larger populations, C. elegans was grown in liquid culture. To start a 

liquid culture from a plate, nematodes of all stages were rinsed from the surface of the 

media using sterile M9 buffer. The nematode suspension was then added to a 250 ml 

conical flask containing 50 ml sterile M9 buffer, 300 µl 0.5 M CaCl2, 150 µl 1.0 M MgSO4, 

50 µl 8 mg/ml cholesterol in ethanol, 500 µl antibiotic mix (penicillin, streptomycin, and 

neomycin, at 10 mg/ml, 10 mg/ml, and 5 mg/ml respectively), and 50 µl 10 mg/ml 

nystatin. To this was added 3 ml of a condensed E. coli HT115 food source. Cultures were 
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checked periodically for population status and food availability, adding more HT115 as 

necessary. 

2.3 Bacterial cultivation 

2.3.1 Preparation of E. coli HT115 as a food source for C. elegans liquid culture 

An overnight culture of E. coli HT115 in 5 ml LB media (10 g tryptone, 10 g NaCl, and 5 g 

yeast extract per litre, autoclaved) was added to 1.4 l superbroth media (15.68 g 

K2HPO4, 2.89 g KH2PO4, 15 g tryptone, 30 g yeast extract, 1.4 l distilled water, with 

10 ml 50 % glycerol added after autoclaving) in a 2 l conical flask. The flask was incubated 

at 37 °C, 150 rpm for 24 hours. After incubation, the culture was split between six 250 ml 

centrifuge bottles and pelleted by centrifugation at 8000 rcf, 4 °C for 15 min. The 

supernatant was discarded and each pellet re-suspended by addition of 12 ml M9 buffer 

followed by shaking on ice at 200 rpm for 20 min, or until the pellets were fully re-

suspended. The suspension was then aliquoted into 15 ml sterile tubes before freezing 

at -20 °C. This suspension could then be defrosted as necessary for feeding C. elegans 

liquid cultures. 

2.3.2 Preparation of ultra-competent E. coli DH5α 

Cell cultures were generated from existing frozen aliquots of E. coli DH5α cells, using a 

modified method based on Inuoue et al., 1990. Cells were streaked on 90mm LB-agar 

plates (10 g tryptone, 10 g NaCl, 5 g yeast extract, and 15 g bacteriological agar per litre, 

autoclaved) and incubated overnight at 37 °C to achieve single colonies. Three liquid 

cultures were set up, staggered at 6 hour intervals, in 1 l conical flasks containing 250 ml 

SOB media (Super-optimal broth: 5 g yeast extract, 20 g tryptone, 0.584 g NaCl, 0.188 g 

KCl, 2.032 g MgCl2, 2.464 g MgSO4 per litre, autoclaved) by picking 10 individual colonies 

and adding them to each flask. These were incubated at 19 °C and 250 rpm for at least 

24 hours, after which samples were taken to assess absorbance at λ600 nm (A600), using 

sterile SOB media as a blank. When the A600 came into the 0.5-0.6 range, the flask was 

taken out of the incubator and placed on ice for ten minutes – preparation of three 

staggered cultures was done so that if the first culture reached A600>0.6, the second or 

third could still be used. The liquid culture was then centrifuged at 4000 rpm, 4 °C for 

10 min and the supernatant removed. The cell pellet was then re-suspended in 80 ml TB 

(Transformation buffer: 10 mM PIPES, 15 mM CaCl2, 250 mM KCl, adjusted to pH 6.7 
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with KOH and HCl, before adding 55 mM MnCl2•4H2O and sterilising by filtration through 

a 0.45 µm syringe filter, to be stored at 4 °C). After re-suspension, the cells were stored 

on ice for a further 10 min before repeating centrifugation as above. The supernatant 

was removed and the cells gently re-suspended, on ice, in a solution of 1.4 ml ice cold 

DMSO and 18.4 ml TB. Cells were then dispensed in 100 µl aliquots into pre-chilled, 

sterile microcentrifuge tubes and snap frozen in liquid nitrogen. Tubes containing ultra-

competent DH5α cells could then be stored at -80 °C indefinitely.  

2.4 Molecular Biological Techniques 

2.4.1 Transformation of ultra-competent cells 

After defrosting ultra-competent E. coli DH5α cells (prepared according to methods 

section 2.1.9), plasmid DNA was pipetted into the tube containing the cells. After 

incubating on ice for 5 minutes, cells could then be plated on LB-Agar plates. To select 

for positive transformants when the added plasmid contained antibiotic resistance 

genes, the relevant antibiotics were added into the LB-Agar solution before pouring into 

the plates. The transformation efficiency of the cells could be tested by adding a known 

mass of purified plasmid DNA to an aliquot of cells, preparing a dilution series from that 

aliquot and then plating the different dilutions (on antibiotic-selective LB-Agar) and 

growing overnight at 37 °C. Transformation efficiency, expressed as colonies/µg DNA, 

could be calculated by dividing the number of colonies counted on a plate, divided by 

the mass of DNA added to the original cell aliquot and then divided again by the dilution 

factor relevant to the plate counted.  

2.4.2 Extraction of plasmid DNA from bacterial cultures 

Depending on the application for which the plasmid DNA was intended, two separate 

methods of plasmid extraction were routinely performed. When checking a number of 

colonies for the presence of a plasmid with insert for which there was no trivial selection 

criteria (e.g. blue-white screening), an alkaline lysis minipreparation was performed as 

follows: colonies were picked and transferred to Universal containers with 5 ml LB media 

and the relevant antibiotic for selection; these were then incubated overnight at 37 °C, 

200 rpm. From each liquid culture, a 1.5 ml aliquot was pipetted into a microcentrifuge 

tube and centrifuged at 14,100 rpm for 15 s – the supernatant was then discarded and 

a second 1.5 ml aliquot added to the same tube and centrifuged again under the same 
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conditions. Each pellet was then re-suspended in 100 µl miniprep solution 1 (50 mM 

Tris-HCl, 10 mM EDTA, pH 8.0, with 100 µg/ml RNase A added after autoclaving) and 

vortexed to break up any clumps. To each tube was then added 200 µl solution 2 (1% 

SDS, 0.2M NaOH), followed by mixing without vortexing, to avoid shearing of genomic 

DNA. This was then incubated on ice for 5 minutes, after which 150 µl solution 3 (3.0 M 

potassium acetate, pH 5.5, ice cold) was added, followed again by gentle mixing and 

incubation on ice for 5 minutes. To remove the white precipitate that forms, the tubes 

are centrifuged at 14,100 rpm for 5 minutes and the supernatant pipetted into sterile 

microcentrifuge tubes. One volume of isopropanol was then added and the tubes are 

mixed vigorously before letting stand for 2 minutes at room temperature and 

centrifuging at 14,100 rpm for 5 minutes. The supernatant was then discarded, taking 

care not to disturb the pellet, and 200 µl absolute ethanol was added. The tubes are 

then mixed by inversion and centrifuged once again at 14,100 rpm for 3 minutes. The 

ethanol was then discarded and any remnants allowed to evaporate, before re-

suspending the pellet in 30 µl TE buffer (10 mM Tris-HCl, 1mM EDTA, pH 8.0).  

After identifying colonies of interest either through selection criteria like blue-white 

screening, or through analysis of the crude plasmid DNA from the above method, 

purified plasmid DNA could be obtained by growing an overnight culture, as above, and 

performing a miniprep using a QIAprep Spin Miniprep Kit (QIAGEN, 27106). Crude 

miniprep plasmids could also be purified by using a modified method provided in the 

QIAprep Spin Miniprep Kit. 

2.4.3 Extraction of nematode genomic DNA 

Extraction of Globodera pallida genomic DNA was performed according to a protocol for 

C. elegans total DNA extraction (Johnstone, 1999). Briefly, clean cysts were crushed to 

obtain eggs as in method 2.2.3, or J2s were collected from hatching jars, as in method 

2.2.4. These were pelleted and the supernatant removed. The juveniles or eggs were 

then re-suspended in 10 volumes of extraction buffer (0.1 M NaCl, 10 mM Tris-HCl, 

pH 8.0, 10 mM EDTA, 1 % SDS, autoclaved, to which 1% β-mercaptoethanol and 

100 µg/ml proteinase K are added before use, preheated to 60 °C). This was then 

incubated at 60 °C for 1-3 hours with occasional mixing by gentle inversion. Degradation 

was checked by viewing 5 µl aliquots of the mixture under magnification. Once worms 
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were visibly degraded, leaving only remnants of cuticle, the DNA was separated from 

proteins, etc., by phenol-chloroform extraction (method 2.4.4), performing this twice 

with phenol:chloroform:IAA and then once with chloroform only. The resulting DNA 

solution could then be cleaned and concentrated by ethanol precipitation.  

2.4.4 Phenol-chloroform extraction of nucleic acids 

Phenol-chloroform extraction was performed in order to purify nucleic acids extracted 

from whole organisms, removing cellular debris. To a given volume of DNA to be 

purified, an equal volume of phenol:chloroform:isoamyl alcohol (in a 25:24:1 ratio) was 

added. This was then vortexed until an emulsion was formed then centrifuged in a 

microcentrifuge at maximum speed for 5 minutes. The aqueous phase was then pipetted 

into a new tube, taking care not to take up any of the interphase or the lower phenol 

phase. The extraction could then be repeated on the aqueous phase by adding another 

volume of phenol:chloroform:isoamyl alcohol. Chloroform could then be used alone for 

a further extraction, following the same protocol. Ethanol precipitation of the DNA could 

then be performed by addition of 0.7 volumes of isopropanol and 0.1 volumes of sodium 

acetate.  

2.4.5 Ethanol precipitation of nucleic acids 

In order to clean and concentrate DNA, ethanol precipitation was performed as follows: 

0.1 volumes 3 M sodium acetate, pH 5.5, and 0.7 volumes isopropanol were added, the 

tube mixed by inversion, then incubated at room temperature for 5 minutes. DNA was 

then pelleted by centrifugation at maximum speed for 5 minutes, and the supernatant 

was removed. The pellet was then washed with filter-sterilised 70 % ethanol, by adding 

a 200 µl aliquot, pipetting to float the pellet from the bottom of the tube, and 

centrifuging at max speed for 3 minutes. After this, the ethanol was pipetted off and the 

pellet was allowed to air dry for 3 minutes. The pellet was then rehydrated by addition 

of 80 µl TE buffer and resting for 1 hour at room temperature and then overnight at 4 °C 

before being re-suspended by gently mixing. If required, 1 µl 10 mg/ml RNase A could 

then be added to the DNA solution. 

2.4.6 Polymerase chain reaction 

The polymerase chain reaction was used extensively throughout the project. Where the 

purpose of the PCR was to identify the presence or absence of a specific sequence, 
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standard PCR was performed using MyTaq™ Red Mix (Bio-Line, BIO-25044). Reaction 

mixtures were set up according to the following scheme: 

20.0 μl  Total reaction volume 

10.0 μl MyTaq™ Red 2X Mix 

0.5 μl Forward primer 

0.5 μl Reverse primer 

x μl DNA 

(9.0 - x) μl  ddH2O 

Where x is the variable concentration of the DNA source to be amplified. PCR was then 

performed on a Bio-Rad T100 Thermal Cycler (Bio-Rad, 186-1096). The annealing 

temperature (TA) used was typically set at 5 °C below the lower melting temperature 

(Tm) of the primer pair. The protocol used was as follows: 

Cycles Temp (°C) Time (min:s) 

1x 95 0:30 

 95 0:15 

35x       (Tm-5)* 0:15 

 72 0:30 per kb** 

1x 72 3:00 

* annealing temp based on primer Tm; 

** extension time based on fragment 

length, kilobases 
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High-fidelity PCR was performed when high quality amplification was desired, such as 

when a DNA fragment was to be amplified for later sequencing. For this purpose, 

Phusion High-Fidelity DNA Polymerase (New England BioLabs, M0530) was used, with 

each reaction mixture set up as follows: 

25.0 μl  Total reaction volume 

5.0 μl 5X Phusion HF or GC buffer 

0.5 μl 10mM dNTP mix 

0.25 μl HiFi Platinum Taq (5U/μl) 

x μl  Template DNA (<250ng) 

1.25 μl Forward primer, 10 µM 

1.25 μl Reverse primer, 10 µM 

(17.75-x) μl ddH2O 

  

The reaction was then cycled according to the following protocol, using the same Bio-

Rad T100 Thermal Cycler: 

 

Cycles Temp (°C) Time (min:s) 

1x 98 0:30 

 98 0:10 

35x       (Tm+3)* 0:10 – 0:30 

 72 0:30 per kb** 

1x 72 3:00 

* annealing temp based on primer Tm; 

** extension time based on fragment 

length, kilobases 

Where amplification of a fragment was expected but was not achieved, optimisation of 

the PCR reaction could be performed for both standard and high-fidelity reactions. In 

some cases, addition of 5% DMSO to the reaction mixture (with an associated reduction 

in the volume of added ddH2O) helped improve amplification. Optimisation of annealing 

temperature was performed by making up replicates of individual reactions and cycling 

the reactions through identical schemes with only the annealing temperature altered. 

Analysis of the products on an agarose gel (Method 2.4.8) would then allow selection of 

the optimal annealing temperature for future reactions. 
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2.4.7 Colony PCR 

In order to test for the presence of the desired transgene in transformed bacterial 

cultures before growth of overnight cultures, colony PCR was performed. If the DNA 

fragment of interest was expected to fall between conserved regions of a plasmid, 

generic primers could be used; otherwise, transgene sequence-specific primers were 

used. Individual colonies from a plate of transformants were picked using a sterile yellow 

pipette tip and transferred to a 50 µl aliquot of autoclaved, distilled water. This could 

then be used in place of the DNA template when setting up the PCR reaction. Colony 

PCR reactions were set up as follows: 

10.0 μl  Total reaction volume 

5.0 μl MyTaq™ Red 2X Mix 

0.5 μl Forward primer 

0.5 μl Reverse primer 

2 μl Bacterial cell suspension 

3 μl  ddH2O 

Reactions were then cycled similarly to standard PCR conditions, with an extended initial 

denaturing step at 95 °C in order to breakdown bacteria and release the plasmid DNA: 

Cycles Temp (°C) Time (min) 

1x 95 10:00 

 95 0:15 

35x 55 0:15 

 72 0:30 per kb* 

1x 72 10:00 

*extension time based on fragment 

length, kilobases 

Reaction mixtures could then be analysed by agarose gel electrophoresis (Method 

2.4.8). Where the PCR of a colony generated an amplicon of the desired size, the 

remainder of the cell suspension could be added to 5 ml LB media (with relevant 

antibiotic for selection) in a 30 ml Universal container, then incubated overnight at 

37 °C, 200 rpm, to generate sufficient quantities of plasmid DNA for downstream 

applications.  
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2.4.8 Agarose gel electrophoresis 

In order to analyse the products of PCR reactions, restriction digests, and other 

techniques that generate linear DNA, agarose gel electrophoresis of the DNA was 

performed. Typically, 1.0 % w/v agarose (molecular biology reagent grade) was added 

to a volume of TAE buffer (40 mM Tris-acetate, 1 mM EDTA) and dissolved by heating in 

an 800W microwave at full power for 60 seconds; the volume required was determined 

based on the number of gels desired and the size of the gel trays to be used. The heated 

solution was then allowed to cool to approximately 60 °C before adding 

1/20,000 volume of GelRed Nucleic Acid Stain (Biotium, 41003). The gel was then gently 

poured into gel trays that had been sealed at each end, ensuring that no bubbles are 

formed while pouring. A well comb with a number of teeth appropriate to the number 

of samples to be analysed was then added, before leaving the gel to cool and set. Once 

cooled, autoclave tape was removed, gels were placed into the electrophoresis tank and 

the combs carefully removed, and the gel could be loaded with samples. If necessary, 

loading buffer was added to DNA samples before pipetting into wells, alongside wells 

dedicated to a DNA marker, typically 1.5 µl 1 Kb Plus DNA Ladder (Invitrogen, 10787018), 

spaced appropriately among sample wells to allow for visualisation after 

electrophoresis. Electrophoresis was then performed in Bio-Rad horizontal gel 

electrophoresis tanks, using the Bio-Rad PowerPac 300 power system (Bio-Rad, 31453), 

typically performed at 70 V for 45 minutes. Where higher resolution gel images were 

required, a higher percentage of agarose was added to the gel, while a lower agarose 

percentage was used to achieve greater separation of bands at the cost of resolution. 

Gels were imaged and photographed under UV illumination using a Syngene U:Genius 3 

gel imager. 
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Chapter 3  Globodera pallida xenobiotic metabolism in 

the context of biofumigation 

3.1 Introduction 

The cellular mechanisms by which organisms detoxify foreign compounds (xenobiotics) 

are collectively termed the xenobiotic metabolism. Xenobiotic metabolism and the 

enzymes associated with it (XMEs) are classified into three phases: modification, 

conjugation, and excretion. Phase I – modification typically involves recruitment of 

cytochrome P450 (CYP) enzymes, resulting in oxidation, reduction, or hydrolysis of 

xenobiotic compounds, priming them for the next phase (Omiecinski et al., 2011); over 

21,000 CYPs have been described across all domains of life (Nelson, 2009). Phase II 

metabolism is the conjugation of charged species to the products of phase I metabolism. 

Enzymes such as glutathione S-transferases (GSTs, which conjugate reduced 

glutathione, GSH), UDP-glucuronosyltransferases (UGTs), and methyltransferases 

produce conjugated compounds that are higher in molecular weight and have reduced 

reactivity and toxicity (Jancova et al., 2010). The distinction between the first two phases 

of xenobiotic metabolism was first made in the 1950s, though conjugation as a method 

of detoxification had been observed in decades prior (Williams, 1959). Phase III 

encompasses a broader range of enzymes that recognise, and may modify further, the 

products of phase II before transporting them from the cell into the extracellular matrix, 

via ATP-binding cassette transporters (ABCs), where they undergo further modification 

and eventual degradation (Omiecinski et al., 2011). The modes of action of some drugs, 

including drugs designed to treat nematode parasites in mammals, depend on activation 

by the xenobiotic metabolism of the target: the drug as administered may not be 

bioactive until it has been altered through interaction with XMEs (Matoušková et al., 

2016). Xenobiotic metabolism also plays an important part in the development of 

resistance to drugs: C. elegans lines that were selected for resistance to ivermectin and 

moxidectin constitutively over-expressed XMEs and transporters compared to 

susceptible lines (Menez et al., 2016). The processes that manage toxic compounds 

generated during the normal function of the cell are considered distinct from the 

xenobiotic metabolism, and comprise the glyoxalase system (part of the metabolic 
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pathway that generates GSH (Thornalley, 2003)) and the various systems of antioxidant 

metabolism (Sies, 1997). 

Investigation of the xenobiotic metabolism of an organism has the potential to provide 

targets for control. Endoparasites are protected from many foreign compounds by the 

body of their host, reflected by reduced complements of XMEs observed in a number of 

parasitic nematode species (Abad et al., 2008, Cotton et al., 2014, Ghedin et al., 2007). 

However, they must combat the defences of the host for the duration of parasitism. 

Inhibition of a parasite’s ability to avoid host defences should therefore have a 

detrimental effect on continued parasitism. The xenobiotic metabolisms of animal-

parasitic nematodes have long been investigated as potential drug targets (Brophy and 

Barrett, 1990). Drugs that inhibit GSTs have been trialled against filarial nematodes 

(Ahmad and Srivastava, 2008), while cattle were protected against infection by 

Fasciola hepatica by immunisation with GST (Morrison et al., 1996). Plant-parasitism 

presents similar challenges for the parasite: following infection by M. incognita, tomato 

cells produced increased levels of nitric oxide, reactive oxygen species, and other 

defence compounds (Melillo et al., 2011), that are implicated both in direct toxicity to 

the invading organism, and in activation of further defence mechanisms including 

generation of toxic secondary metabolites (Torres et al., 2006). Transcription factors 

conserved with animal-parasitic nematodes and associated with xenobiotic metabolism 

have been implicated in successful maintenance of plant-parasitism (Gillet et al., 2017). 

Modulation of transcription factors involved in arabidopsis stress responses was 

observed in cases of Heterodera schachtii infection (Ali et al., 2014) and study of root-

knot nematode effectors has identified manipulation of host defences as a major role 

(Quentin et al., 2013).  

Of relevance to biofumigation are the xenobiotic metabolic elements involved in 

detoxification of isothiocyanates. The enzymes most closely associated with 

detoxification of isothiocyanates are glutathione S-transferases: numerous studies have 

demonstrated that isothiocyanates are sequestered in mammalian cells by conjugation 

with glutathione (Jiao et al., 1996, Kolm et al., 1995, Zhang, 2000). This mode of 

detoxification is conserved across diverse phyla: arabidopsis with reduced glutathione 

levels were more sensitive to allyl isothiocyanate, exposure to which induced up-
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regulation of GSTs in both mutants and wild type (Øverby et al., 2015); exposure to 

Dazomet induced the specific up-regulation of a C. elegans glutathione S-transferase, 

GST-31 (Jones et al., 2013b). The Globodera pallida genome publication highlighted the 

limited repertoire of genes involved in xenobiotic metabolism (Cotton et al., 2014), a 

feature commonly observed in endoparasitic animals due to the protective nature of 

living within another organism. GSTs in parasitic nematodes have been shown to have 

roles in detoxifying endogenous cytotoxins as well as xenobiotic compounds (Ahmad 

and Srivastava, 2008), therefore contributing to normal cell function in the absence of 

xenobiotics. This is in-line with the trend among parasitic animals towards reduction and 

compaction of the genome (Poulin and Randhawa, 2015). This reduced complement of 

XME genes could result in each gene having a greater number of roles, such that 

knocking out expression of a single gene could have important effects.  

The silencing of genes by RNA interference (RNAi) was developed in C. elegans (Fire et 

al., 1998) and has been subsequently demonstrated in a number of plant-parasitic 

nematodes including Globodera pallida (Lilley et al., 2012). The classical RNAi pathway 

occurs when exogenous dsRNA is recognised by the target organism and processed by 

the Dicer complex into small interfering RNAs (siRNA) (Grishok, 2005). The RNA-induced 

silencing complex (RISC) is then guided by these siRNAs to homologous mRNAs, which 

are then cleaved by an Argonaute protein, a class of ribonucleases integral to the 

function of the RISC (Sontheimer, 2005). Study of the genome of G. pallida has revealed 

that many of the components of the RNAi machinery described in C. elegans are 

conserved, though genes involved in the spreading of dsRNA between cells, enabling 

systemic RNAi, are missing (Cotton et al., 2014). The fixed feeding site induced by 

sedentary endoparasitic plant parasitic nematodes is ideal for the targeted delivery of 

silencing dsRNA (Lilley et al., 2012); as the interface between host and parasite, the 

feeding site is also the frontier at which the nematode faces host defences. Transgenes 

under control of root-specific promoters that are up-regulated in the giant cells of 

Meloidogyne spp. and the syncytia induced by Globodera spp. have been previously 

used to deliver an anti-feeding cystatin in potato roots (Lilley et al., 2004). Resistance to 

multiple Meloidogyne spp. was achieved in arabidopsis expressing dsRNA homologous 

to a parasitism gene, 16D10 (Huang et al., 2006). Tomato plants expressing dsRNA 
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targeting M. incognita cuticle collagen genes reduced the numbers of females per plant 

by up to 38 % and the number of eggs in each egg mass by as much as 82 % (Banerjee 

et al., 2017). RNAi targeting plant-parasitic nematodes has been most effective when 

the target is essential to normal cellular function in the target (Lilley et al., 2012). 

Targeted silencing of particular G. pallida genes could therefore elucidate the 

importance of xenobiotic metabolism to maintenance of sedentary endoparasitism, and 

potentially provide a new method of control. The ability to generate sequence-specific 

silencing induced only at nematode feeding sites should allow for generation of biosafe 

transgenic plants (Roberts et al., 2015). 
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3.2 Aims 

1. Investigate genes potentially involved in Globodera pallida xenobiotic 

metabolism in response to the ITC-generator Dazomet 

2. Substantiate gene models present in the G. pallida genome assembly and 

analyse sequences to identify potential roles 

3. Confirm the up-regulation of identified genes of interest in order to identify 

candidates for targeting by RNA interference 
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3.3 Materials & methods 

3.3.1 RNAseq analysis of Globodera pallida xenobiotic metabolism 

RNAseq analysis was performed on triplicate treatments of 5000 second-stage juveniles, 

exposed to 0.12 mM Dazomet for 24 h and incubated with 0.5 % DMSO for 24 h as a 

solvent control, at the Wellcome Trust Sanger Institute (Wellcome Trust Genome 

Campus, Cambridgeshire, UK). Using an Illumina HiSeq instrument, 100 bp paired-end 

reads were generated from RNA extracted from treated nematodes, and were mapped 

to 16403 genes from the G. pallida genome assembly (hosted by the James Hutton 

Institute, UK http://ppcollab.hutton.ac.uk/cgi-bin/gb2/gbrowse/Gp_ass_2012_04/ 

(Cotton et al., 2014)). Genes for which there were no reads from either Dazomet or 

mock-treated RNA extractions were excluded from further analysis. Normalised 

expression values were analysed using the DESeq2 package (Love et al., 2014) for R (R 

Core Team, 2018)  to give fold-changes in expression of genes between DMSO-treated 

and Dazomet-treated nematodes that were differentially regulated, based on a 

confidence value of P < 0.01. Genes of interest from among this subset were selected by 

limiting the confidence level to P < 0.005 for genes up-regulated under Dazomet 

exposure, with a 10-fold lower limit for change in expression. A heatmap was generated 

using the pheatmap package (Kolde, 2018) and principal components analysis was 

plotted using the Bioconductor package (Huber et al., 2015). 

3.3.2 Confirming gene models and cloning promoter regions 

Primers for sequencing genes were designed based on the gene models present on the 

Globodera pallida genome assembly, checking the melt temperature and potential for 

primer dimers using the Multiple Primer Analyzer from ThermoFisher Scientific (with Tm 

estimation based on a modified nearest neighbour method (Breslauer et al., 1986)). 

Sequencing primers are given in Table 3.1. 

Primers were first checked using standard PCR, to ensure amplification of an amplicon 

from the G. pallida genome. High-fidelity PCR (Method 2.4.6) was then performed on 

cDNA extracted from Dazomet-exposed G. pallida J2s (Method 3.3.4).  



50 
 

 

3.3.3 Bioinformatic analysis of genes 

Gene sequences were analysed to identify potential roles in G. pallida xenobiotic 

metabolism or gene regulation. BLAST alignments (Altschul et al., 1990, Madden et al., 

1996, States and Gish, 1994) were combined with InterPro homology analysis (Finn et 

al., 2017), SignalP signal peptide predictions (Petersen et al., 2011) and Phobius 

transmembrane topology prediction (Kall et al., 2004) to inform assignment of putative 

roles for the enzymes encoded by the sequenced genes. 

3.3.4 RNA extraction and reverse transcription 

To confirm the changes in gene expression identified through RNAseq, qPCR was 

performed. Globodera pallida J2s were collected from hatching jars (Method 2.2.4), over 

a period not exceeding 7 days. The nematodes were collected in a single 15 ml maximum 

recovery centrifuge tube, and cleaned by allowing them to settle, removing the potato 

diffusate and re-suspending in sterile tap water. This was repeated three times. 

Nematodes were then re-suspended in water to give approximately 5000 individuals per 

1 ml. Three experimental tubes were set up with 120 µM Dazomet (final concentration, 

applied in 0.25 µl DMSO) and controls with 0.25 µl DMSO added were also set up, after 

which each was incubated at room temperature at 14 rpm on a rotating mixer for 24 h. 

Following incubation, the nematodes were pelleted at 3000 rpm for 3 minutes. The 

supernatant was pipetted off from each tube, and the nematodes were frozen by 

immersing the tubes in liquid nitrogen. RNA was extracted using the difficult tissue 

samples protocol for the EZNA Plant RNA kit (Omega Bio-tek, Georgia, USA). 

RNA concentrations were measured on a NanoDrop ND-1000 (Thermo Fisher Scientific, 

Massachusetts, USA). Reverse transcription reactions were performed using equivalent 

amounts of RNA, using the Tetro cDNA synthesis kit (Bioline, London, UK).  
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3.3.5 Quantitative PCR 

Primer pairs for qPCR were designed using the Primer3Plus. qPCR was performed on a 

CFX Connect™ Real-Time PCR Detection System (Bio-Rad, California, USA), with each 

reaction mixture made up using the SsoAdvanced™ Universal SYBR® Green Supermix as 

follows:  

15.0 µl Total reaction volume 

7.5 µl SsoAdvanced ™ Supermix 

 0.6 µl Primer mix (final concentration 300 nM) 

3.9 µl Nuclease-free water 

3.0 µl cDNA template 

 

Primer pairs were mixed to give 7.5 uM of each prior to adding to Master mixes for each 

primer pair were prepared without addition of cDNA before pipetting into each well.  

Calibration curves for each primer were produced using pooled cDNA from the 

Dazomet-treated nematodes, with a ten-fold dilution series from 5x to 50000x. Primer 

pairs were rejected if their efficiency was outside the 90-110 % range. A complete list of 

primers used for qPCR is given in Table 3.2.  
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Table 3.1 Primers for sequencing of G. pallida genes 

Primer Sequence 5'-3' 
Target accession 

number 

GP01278F ATGGACAGCGAGAAAGAG 
GPLIN_000127800 

GP01278R ATTCGATCACTTCGGCCTCAT 

GP02040F CGACCAATGGGACATGAATCA 
GPLIN_000204000 

GP02040R GTTGCATCATTCGTCTCGACT 

GP02405F AAATGGTCCAATACAAATTGT 
GPLIN_000240500 

GP02405R CTCCATCGTTCAGCGGTCCTG 

GP03693F CATTATGGCACCAAAATTG 
GPLIN_000369300 

GP03693R GGGAAGTTCCTTGGTAAAGCC 

GP04700F ATGATTGGTCATTTACGACAC 
GPLIN_000470000 

GP04700R TCACCGCCACCAATTCCA 

GP04723F ATGTGCTTTCACAACTTGGTGG 
GPLIN_000472300 

GP04723R TCAGAGGTCTGCGAGGTTACAAT 

GP04777F TTTTAAATAGAATATGTTGGAACAT 
GPLIN_000477700 

GP04777R TTTCTACCAAATAACTCGAAGG 

GP07079F ATGTTGTGCCAAGTCAAATTTCG 
GPLIN_000707900 

GP07079R CAATTAAAATGGGCATCGTTTGG 

GP08126F ATGAATGCACAAAAGACAATAATTG 
GPLIN_000812600 

GP08126R TCATTTTGAACCAGCAGCTGTG 

GP08879F ATGGGCAATGTGAGGCCAAA 
GPLIN_000887900 

GP08879R TCAGCGGTCCCTCCCTTTTG 

GP09707F ATGCTAAATGCAAATGCAGACC 
GPLIN_000970700 

GP09707R TTAAAATCCTCCCATTAATAATTG 

GP10083F ATGAACGCATCAAACAACCAAT 
GPLIN_001008300 

GP10083R GTCAACTACAGCTCGTCTCT 

GP10467F ATGTTGTTGCGGATACAGCTT 
GPLIN_001046700 

GP10467R TTAGGTGCAGAATCCGCATG 

GP10686F GATATAAATAAATGTTGC 
GPLIN_001068600 

GP10686R CTTCTTCAGCATCTGGTCCATG 

GP11840F GGCAAACATGCTGAAATCTTA 
GPLIN_001184000 

GP11840R CTTTGTCAAGTAATCGCTGATC 

GP11984F CGCTAAAATATTATTAAATGCC 
GPLIN_001198400 

GP11984R CTCCATCGTTCAGCGGTCC 

GP12030F ATGTTTCTTCTTCGCCGTCCAAC 
GPLIN_001203000 

GP12030R CTAATGCTTAGGCTTCTTTCCG 
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Table 3.2 qPCR primers 

Primer Primer sequence 5'-3' % Efficiency Target 

q01278L1 TGCGGTTGGAATGCAAACTG 
98.0 GPLIN_000127800 

q01278R1 TTCAAGGGCATGCGAACAAC 

q02040L1 AAAAACAGGCGACCGGAATG 
97.1 GPLIN_000204000 

q02040R1 TCGGCCAAAGTGAAAAGCTC 

q02405L1 ATTTGCATTGGCCGGGAAAG 
99.9 GPLIN_000240500 

q02405R1 TTTCTCTGTCGCCCAGTTTG 

q03693L1 ACGCCAAATTGTTGCCCTTC 
93.8 GPLIN_000369300 

q03693R1 TTCGTCCAACGCGTAATTGC 

q04700L1 AATGGACACTTTGGCAACGC 
96.1 GPLIN_000470000 

q04700R1 TCTCTCAGCTTTTCGTGCAG 

q04723L1 AATGTGCCGGCCTGAAAAAC 
97.8 GPLIN_000472300 

q04723R1 TGAAACCCGCCGATTTGAAG 

q04777L1 TGCACTGTCCAACTCATTGC 
126.2 GPLIN_000477700 

q04777R1 TGTTGATTCCGCTGCGTTTG 

q07079L1 TGACCACGAGCAAATTTCGC 
100.6 GPLIN_000707900 

q07079R1 TTCGGCTCTCCAACTCCATTC 

q08126L1 AATAATTGTCGCCGCGTTGG 
104.3 GPLIN_000812600 

q08126R1 AGGCAATTGTCACAGCAACC 

q08879L1 AATGTGAGGCCAAAGGGAAC 
113.9 GPLIN_000887900 

q08879R1 AGTTTTGCGAAGACGATGCG 

q09707L1 TCAAAATGCCATGCGAGTCG 
128.9 GPLIN_000970700 

q09707R1 TGTCGTTTTAAGCGCGTTGG 

q10083L1 AACGCGTTGGAGTGCATTTC 
96.3 GPLIN_001008300 

q10083R1 ACAATGGCGTTGAACAGTGC 

q10467L1 TCAATTTGTCACCGCACTGC 
102.1 GPLIN_001046700 

q10467R1 TCGCAACACTTGGAACTTGC 

q10686L1 ATCATGCTTGGCCCAATGTG 
110.4 GPLIN_001068600 

q10686R1 AAACGCACAAACTCGTCCAC 

q11840L1 AATCATTGCTGGCCAGAAGC 
96.8 GPLIN_001184000 

q11840R1 TTTTTCGTGCCATCCGCTTC 

q11984L1 TTGCCCCGTACATTTTTGCC 
98.8 GPLIN_001198400 

q11984R1 AACGGGAAAATGCGCTTGAC 

q12030L1 ACTTCGGCCAACTGCAAATG 
102.0 GPLIN_001203000 

q12030R1 ACGCCCACACGTAATTCTTG 

qEFT-1L1 ATCGAAAAACGGCCAAACGC 
91.0 GPLIN_000541000 

qEFT-1R1 TTGCAAGCGACGATGAGTTG 
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3.4 Results 

3.4.1 RNAseq analysis 

The normalised RNAseq data presented 163 up-regulated and 28 down-regulated genes 

following Dazomet exposure (P < 0.01). In total, 3192 genes with no detectable reading 

in either condition were excluded. At the higher confidence threshold for genes with a 

10-fold increase in exposure under Dazomet exposure, 18 genes of interest were 

identified (P < 0.005, Figure 3.1). A heatmap was produced and principal components 

analysis was performed, confirming a pattern of differential expression in Dazomet-

exposed nematodes (Figure 3.2). 

3.4.2 Confirmation of gene models and bioinformatics 

3.4.2.1  GP01278 

The assembly of 8 pair-wise sequencing runs, corresponding to 4 copies of the GP01278 

amplicon, resulted in two consensus sequences that differed from the predicted CDS in 

a number of single nucleotide substitutions that resulted in one of the translated ORFs 

differing from that of the predicted gene by a single amino acid, E144D (Figure 3.3). The 

resultant protein of 501 amino acids was orthologous to C. elegans tyrosine 

aminotransferase, confirmed by BLAST homology and InterPro protein analysis. 

3.4.2.2  GP02040 

Attempted cloning of GP02040 resulted in a sequence that was shorter than the 

predicted CDS (1173 bp cf. 1719 bp). The translated sequence was shorter than the 

predicted, at 390 amino acids (cf. 572 predicted a.a.s). Analysis of the sequence 

suggested a pyroxidal phosphate-dependent transferase enzyme with a role in 

cysteine/methionine metabolism. BLAST analysis highlighted strong homology with 

cystathionine gamma-lyase genes in a number of nematode species. Sequence 

repetition identified towards the N-terminus of the predicted amino acid sequence was 

absent in that cloned from cDNA, but the repeated sequence was present (Figure 3.4). 

BLAST analysis matched each repetition to a single region of several cystathionine 

gamma-lyase genes, in which no such repetition was observed. InterPro analysis of this 

region alone identifies it as the major domain of pyroxidal phosphate-dependent 

transferases.  
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Figure 3.1 Fold changes of genes of interest identified from RNAseq analysis. Fold 

changes in expression are based on the output of RNAseq analysis of G. pallida J2s 

exposed to 0.12 mM Dazomet, contrasted with expression values from nematodes 

incubated with 0.5 % DMSO. Each treatment was carried out in triplicate, n = 5000 J2s. 

Data labels give the P-value for the change in expression.  
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Figure 3.2 Heatmap and principal components analysis showing clustering of gene 

regulation in Dazomet-exposed G. pallida.A, heatmap of gene expression 

demonstrates broadly differential expression in nematodes incubated with and without 

0.12 mM Dazomet. Each horizontal row represents a single gene and each column 

representing a sample, with the three dazomet treatments grouped on the left and the 

three DMSO control treatments on the right. The scale represents log2 fold change, with 

maximum values capped at ± 2 for clarity; the range of values ran from -5.32 to 9.13. B, 

principal components analysis further demonstrates differential clustering of gene 

expression: PC1 gives the variance between the two treatments; PC2 gives the variance 

between samples within the treatments.. 
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GP01278seqcDNA1       MVVTSPPIALAQHSPRRQQRALPKASALENRCYSAMAAPIKTPKKAKMHLNAPKRHQINE 60 

GP01278seqcDNA2       MVVTSPPIALAQHSPRRQQRALPKASALENRCYSAMAAPIKTPKKAKMHLNAPKRHQINE 60 

GP01278predicted      MVVTSPPIALAQHSPRRQQRALPKASALENRCYSAMAAPIKTPKKAKMHLNAPKRHQINE 60 

                      ************************************************************ 

 

GP01278seqcDNA1       HSEWTTLRSSKHSRDTVNPIRRVTDSLSVAPNPDKRPIQLNLGDPTLTGCLPPSESVVAA 120 

GP01278seqcDNA2       HSEWTTLRSSKHSRDTVNPIRRVTDSLSVAPNPDKRPIQLNLGDPTLTGCLPPSESVVAA 120 

GP01278predicted      HSEWTTLRSSKHSRDTVNPIRRVTDSLSVAPNPDKRPIQLNLGDPTLTGCLPPSESVVAA 120 

                      ************************************************************ 

 

GP01278seqcDNA1       LRDAIDSHRFDGYGPAVGMQTARDAVAEFFSSREAPISADDVVLASGCSHALEMAIVAIA 180 

GP01278seqcDNA2       LRDAIDSHRFDGYGPAVGMQTAREAVAEFFSSREAPISADDVVLASGCSHALEMAIVAIA 180 

GP01278predicted      LRDAIDSHRFDGYGPAVGMQTAREAVAEFFSSREAPISADDVVLASGCSHALEMAIVAIA 180 

                      ***********************:************************************ 

 

GP01278seqcDNA1       DPGQNVLVPCPGFPLYSTLCQPNGIKTRQYRLKMEEDGLIDLQHLESLIDDQTRAIIVNN 240 

GP01278seqcDNA2       DPGQNVLVPCPGFPLYSTLCQPNGIKTRQYRLKMEEDGLIDLQHLESLIDDQTRAIIVNN 240 

GP01278predicted      DPGQNVLVPCPGFPLYSTLCQPNGIKTRQYRLKMEEDGLIDLQHLESLIDDQTRAIIVNN 240 

                      ************************************************************ 

 

GP01278seqcDNA1       PSNPTGVVFPREHLEQILRLAQKYKLPIIADEIYGDLTYAEGAKFHALATLSPRVPIITC 300 

GP01278seqcDNA2       PSNPTGVVFPREHLEQILRLAQKYKLPIIADEIYGDLTYAEGAKFHALATLSPRVPIITC 300 

GP01278predicted      PSNPTGVVFPREHLEQILRLAQKYKLPIIADEIYGDLTYAEGAKFHALATLSPRVPIITC 300 

                      ************************************************************ 

 

GP01278seqcDNA1       DGIGKRYLVPGWRLGWLIVHNRFGVLSDVKAGIVSLSQKIVGPCALIQGALPRILRDTPQ 360 

GP01278seqcDNA2       DGIGKRYLVPGWRLGWLIVHNRFGVLSDVKAGIVSLSQKIVGPCALIQGALPRILRDTPQ 360 

GP01278predicted      DGIGKRYLVPGWRLGWLIVHNRFGVLSDVKAGIVSLSQKIVGPCALIQGALPRILRDTPQ 360 

                      ************************************************************ 

 

GP01278seqcDNA1       SFFDNIKNLLSQNAQIVYDILARVPGLKPLRPQGAMYMMVGFDPELYGDETSFVQSLISE 420 

GP01278seqcDNA2       SFFDNIKNLLSQNAQIVYDILARVPGLKPLRPQGAMYMMVGFDPELYGDETSFVQSLISE 420 

GP01278predicted      SFFDNIKNLLSQNAQIVYDILARVPGLKPLRPQGAMYMMVGFDPELYGDETSFVQSLISE 420 

                      ************************************************************ 

 

GP01278seqcDNA1       ESVYCLPGSAFSLPNWFRLVLAFPEETTREACERISAFCTRRLRPCRKQLALWGSVPDEE 480 

GP01278seqcDNA2       ESVYCLPGSAFSLPNWFRLVLAFPEETTREACERISAFCTRRLRPCRKQLALWGSVPDEE 480 

GP01278predicted      ESVYCLPGSAFSLPNWFRLVLAFPEETTREACERISAFCTRRLRPCRKQLALWGSVPDEE 480 

                      ************************************************************ 

 

GP01278seqcDNA1       DGGGSEGAERTAESTSDEDET 501 

GP01278seqcDNA2       DGGGSEGAERTAESTSDEDET 501 

GP01278predicted      DGGGSEGAERTAESTSDEDET 501 

 

                      ********************* 

 

Figure 3.3 Amino acid sequence alignment for GP01278. One of the cloned genes was 

identical with the predicted sequence, with a variant that resulted in a single amino acid 

substitution, E144D. The tyrosine aminotransferase domain is highlighted in yellow, 

while the residues that form the pyridoxal 5’-phosphate binding site are highlighted in 

red, with the lysine (K305) residue that binds to pyridoxal phosphate underlined.  
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GP02040predicted      MGHESGRRCLVFMESLATSSIPNARAGRATNFVVSTTYKQFKPEELKGHDYSRAGNPTRD 60 

GP02040seqcDNA        ------------------------------------------------------------ 0 

                                                                                   

GP02040predicted      ELQENIASLEGARFSRVFSSGLGATAAMANWLRAGDHFLMADDGYGGTQRYFRCMVWFES 120 

GP02040seqcDNA        ------------------------------------------------------------ 0 

                                                                                   

GP02040predicted      PSNPLLKVIDIEAVSKLVKAHSSESIVVVDNTFMSPFFQNPLALGADVVLHSLTKYINGH 180 

GP02040seqcDNA        -----------------------------------------------------------M 1 

                                                                                   

GP02040predicted      SDVVMGCLVTNSEQLDAHFLFQQLGRATNFVVSTTYKPEELKGHDYSRAGNPTRDELQEN 240 

GP02040seqcDNA        LPAAMAAAGIRFDQWDMNQVVPPISL---STTYKQSKPGEPKGHDYSRAGNPTRDVLQEN 58 

                        ..*..   . :* * : :.  :.     .. .  ** * ************** **** 

GP02040predicted      IASLEGARFSRVFSSGLGATAAMANWLRAGDHLIMADDGYGGTQRYFRDVSVAHHGVQLS 300 

GP02040seqcDNA        IASLEGARFSRVFSSGLGATAAMANWLHAGDHLIMADDGYGGTQRYFRDVSVAHHGVQLS 118 

                      ***************************:******************************** 

GP02040predicted      FVDMTKLDDLRAALRPNTKMVWFESPSNPLLKVIDIEAVSKAVKAHNPESIVVVDNTFMS 360 

GP02040seqcDNA        FVDMTKLDDLRAALRPNTKMVWFESPSNPLLKVIDIEAVSKAVKAHNPESIVVVDNTFMS 178 

                      ************************************************************ 

GP02040predicted      PFFQNPLALGADVVLHSLTKYINGHSDVVMGSLVTNSERLDAHFLFQQLAVGSVPSSFDV 420 

GP02040seqcDNA        PFFQNPLALGADVVLHSLTKYINGHSDVVMGSLVTNSERLDAHFLFQQLAVGSVPSSFDV 238 

                      ************************************************************ 

GP02040predicted      YLVLRGIKTLHLRMGQHQTNATAVARWLKTDPRVEKVLYPALKCHPQHEVHKKQATGMSG 480 

GP02040seqcDNA        YLVLRGIKTLHLRMGQHQTNATAVARWLETDPRVEKVLYPELESHPQHKVHKKQATGMSG 298 

                      ****************************:*********** *:.****:*********** 

GP02040predicted      MISFYLRTDLEGSQKFLANLELFTLAESLGGYESLAELPALMTHASVPSEIHQKLGIGNN 540 

GP02040seqcDNA        MISFYLRTDLEGSQKFLANLQVFTLAESLGGYESLAELPALMTHASVPQEIRLKLGISNN 358 

                      ********************::**************************.**: ****.** 

GP02040predicted      LIRLSVGCEYIRDLIRDLDIAMNVATGRSRDE 572 

GP02040seqcDNA        LIRLSVGCEDRLDLIRDLDIAMEVATGRSRDE 390 

                      *********   **********:********* 

 

>1st predicted repetition 

GRATNFVVSTTYKQFKPEELKGHDYSRAGNPTRDELQENIASLEGARFSRVFSSGLGATAAMANWLRAGDHFL-MADDGYGGTQRYFR 

>2nd predicted repetition 

GRATNFVVSTTYK---PEELKGHDYSRAGNPTRDELQENIASLEGARFSRVFSSGLGATAAMANWLRAGDH-LIMADDGYGGTQRYFR 

>translated cDNA sequence 

--------STTYKQSKPGEPKGHDYSRAGNPTRDVLQENIASLEGARFSRVFSSGLGATAAMANWLHAGDH-LIMADDGYGGTQRYFR 

 

Figure 3.4 Comparison of cloned and predicted amino acid sequences for GP02040. 

Repetition of a region present in the predicted protein is not repeated in the cloned 

sequence, with a similar sequence appearing only once. The first repetition is 

highlighted in yellow and the second in green on the predicted sequence, while the 

corresponding residues in the N-terminal end of the cloned sequence are highlighted in 

purple. Alignment of the repeated region is replicated below the main alignment. 
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3.4.2.3  GP02405 

Sequencing of GP02405 resulted in a sequence identical to the predicted gene model 

from the genome assembly. The sequence has strong homology to sigma-class 

glutathione S-transferase genes from nematodes and broader clades, with strongest 

homology to Meloidogyne incognita gst-1 (Figure 3.5). This was supported by InterPro 

protein domain analysis. 

3.4.2.4  GP02984 

Attempted amplification of GP02984 from G. pallida cDNA was unsuccessful, though 

amplification from gDNA resulted in a sequence similar to the region of the gene model 

in the genome assembly. Alignment of either the predicted CDS or the sequenced 

genomic region gave no homology to known genes. 

3.4.2.5  GP03693 

The cDNA sequence cloned here was translated to identify the most likely ORF and this 

was then compared with that of the predicted gene model, minor divergence from the 

gene model was observed, e.g. E42dup, but did not affect the putative active site 

(residues 233-248) (Figure 3.6). GP03693 was orthologous to carboxylic esterase 

sequences from a number of nematode species, based on its ParaSite entry, and these 

associations were confirmed through amino acid sequence homology and InterPro 

analysis. 
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GP02405seqcDNA      MVQYKLYYFDLRGIGEPIRLLLHYVGQQFEDVRFGMEEWPTKYKSKFFYGKAPVLEVDGK 60 

MincGST1            MVQYKLHYFDLPGRAEAIRMLFYYKGQPFEDYRIKKEDWPTI-KSNYIFGQVPVLEVDGK 59 

                    ******:**** * .* **:*::* ** *** *:  *:***  **::::*:.******** 

 

GP02405seqcDNA      QLGQSSVILRFLAEKFALAGKDEWEKAKADEIINFQKDANTELAPYLYTKLG----DREK 116 

MincGST1            QLAQAGVILQFLGKRFDLAGKNEWEEAKAMEIIFLNDEFGVAVGPYIGAKFGFREGNVEQ 119 

                    **.*:.***:**.::* ****:***:*** *** ::.: .. :.**: :*:*    : *: 

 

GP02405seqcDNA      LRTEVLEPGVKRIFPLFEALLKESGSDYMLPSGLSMVDFQVGNFLYTFTKLEPDMIKAYP 176 

MincGST1            LRKDVFLPAIERYFPFYEKRLEESNSGFILPSGLSFVDFSVAHFTGMMIEMEKDIMAKYP 179 

                    **.:*: *.::* **::*  *:**.*.::******:***.*.:*   : ::* *::  ** 

 

GP02405seqcDNA      ELVKYVERVHALPQLQKYLQQRPQDR 202 

MincGST1            KLVDFSNRFYSLPQLKEYLSKKKC-- 203 

                    :**.: :*.::****::**.::     

 

 

 

Figure 3.5 GP02405 sequence homology with M. incognita GST-1. The residues that 

make up the GSH-binding site are highlighted in yellow in each sequence. The substrate 

binding site of GP02405 is highlighted in blue, and the M. incognita gst-1 substrate 

binding site is highlighted in green. 
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Figure 3.6 Amino acid sequence alignment for GP03693. Comparing data from the 

genome assembly with sequenced cDNA.  
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3.4.2.6  GP04700 

Two distinct consensus sequences were generated from attempts to clone GP04700, 

with each containing the predicted CDS. The two sequences were broadly similar apart 

from a 159 bp break in the second sequence. Translation of the DNA sequences resulted 

in ORFs containing the predicted protein (Figure 3.7), which appears to feature an S-

adenosylmethionine synthetase domain. 

3.4.2.7  GP04723 

Sequencing of GP04723 resulted in a consensus sequence that produced an amino acid 

sequence which was broadly homologous to the translation of the predicted protein, 

with the N and C termini being identical (Figure 3.8). Neither sequence was found to 

have homology to known protein domains, based on InterPro analysis. A BLAST search 

identified poor homology to unidentified and hypothetical proteins in other nematode 

species. 

3.4.2.8  GP04777 

The WormBase ParaSite entry for GP04777 indicated homology with C. elegans lpr-3, a 

lipocalin related protein. Sequencing of the GP04777 region resulted in two disparate 

consensus sequences, with homologous regions at either end but little homology 

elsewhere. InterPro analysis of the predicted sequence suggested homology with the 

calycin superfamily, which include lipocalin and lipocalin related proteins. Of the largest 

complete ORFs from each of the cloned sequence consensuses, one was predicted to 

belong to the phosphoenolpyruvate synthase family, and contained a PEP/pyruvate-

binding domain typical of the family; the other translated sequence had no identifiable 

domains and a BLAST search identified only poor homology to unidentified proteins. 

3.4.2.9  GP07079 

The consensus sequence from cloning of GP07079 gave a longer ORF than the predicted 

gene model (Figure 3.9). Where the predicted 78-a.a. protein had no domain homology 

and aligned poorly to predicted proteins from Heterodera spp. and 

Globodera rostochiensis, the longer ORF had a carbohydrate-binding domain and a 

signal peptide, as well as homology to Heterodera avenae predicted effectors. The signal 

peptide prediction was further reinforced by SignalP 4.1 analysis (Petersen et al., 2011) 

(Figure 3.9). 
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3.4.2.10 GP08126 

The largest translated ORF from the cloned GP08126 sequence matched that of the 

predicted protein, a short (86 a.a.) protein with poor homology to known enzymes and 

domains, but with a predicted signal peptide in the 28 N-terminal residues (Figure 3.10). 

3.4.2.11 GP08879 

Sequences cloned for GP08879 matched the 5’ region of the predicted CDS, but were 

otherwise mismatched. Two distinct consensus sequences were generated, which 

translated to give short ORFs that matched the start codon of the predicted gene; the 

longest ORFs generated from each cloned cDNA sequence bore little homology to the 

predicted sequence or one another (Figure 3.11). The seqeunce designated as 

GP08879contig1 returned no homologous domains. GP08879contig2 contained 

domains with homology to acyltransferase family proteins, and BLAST aligned the 

sequence to bacterial acyltransferase proteins with high sequence conservation. 
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GP04700Contig1       MHPTRWELSHMVDLQAAANSLVIMVTHFGSSPINERDLLQIIESNFDLRPGAIIKQLGLT 60 

GP04700Contig2       MHPTRWELSHMVDLQAAANSLVIMVTHFGSSPINERDLLQIIESNFDLRPGAIIKQLGLT 60 

GP04700predicted     -----------------------MVTHFGSSPINERDLLQIIESNFDLRPGAIIKQLGLT 37 

                                            ************************************* 

 

GP04700Contig1       RPIYQRTAENGHFGNAEFPWERPKTLILPKNLHEKLRDVQVG 102 

GP04700Contig2       RPIYQRTAENGHFGNAEFPWERPKTLILPKNLHEKLRDVQVG 102 

GP04700predicted     RPIYQRTAENGHFGNAEFPWERPKTLILPKNLHEKLRDVQVG 79 

                     ****************************************** 

 

 

 

 

 

 

 

Figure 3.7 GP04700 predicted ORFs. The longest predicted reading frames from the 

consensus sequences for GP04700 are aligned with the predicted protein. A predicted 

S-adenosylmethionine synthetase domain is highlighted in yellow. 
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GP04723seqcDNA        MCFHNLVEMDAKHMRQMEEDRMRGMDREHPQSMDMRGMDMKHSRSMDIEHMRGMDMKQQS 60 

GP04723predicted      MCFHNLVEMDAKHMRQMEEDRMRGMGIEHPQGMDMRSMDMKHSRSMDMEHMHGMDMKQQS 60 

                      *************************. ****.****.**********:***:******** 

 

GP04723seqcDNA        MDMKHSR-IDMELLQGMDMRDMDMKHSRSMDMK----------------HMRGMDMKHSR 103 

GP04723predicted      MDMKHSRSMDMELLQRMDMRGMDMKHSRSMDMEHMRGMDMKHSRSMDMEHMRGMDMKHSR 120 

                      ******* :****** ****.***********:                *********** 

 

GP04723seqcDNA        SMDMEHMRGMNDDEMRAWKTRSNLLRVDAKGKGSPVKQSSKSNETKSGEIKEAQQPGTMQ 163 

GP04723predicted      SMDMEHMRGMNDDEMRAWKARSNLLRVDAKGKGSPVKQSSKSNETESNEIKAPSSPGQC- 179 

                      *******************:*************************:*.***  ..**    

 

GP04723seqcDNA        GEGGKHGDKQAEQKPKKCKLNAECYSNAQCGKRSTCEPVSFADKKKKVGTCDCGICGXKI 223 

GP04723predicted      --------------RAKCKLNAECYSNAQCGKRSTCEPVGFADKKKKVGTCDCGICGMKI 225 

                                      ***********************.***************** ** 

 

GP04723seqcDNA        PLTMFCNLNKGPIAFKPKIAIRQCAGLKNACRKDSLFTALETRKCNCEEGFKSAGFKNLE 283 

GP04723predicted      PLTMFCNFNKGPIALKPKIAIRQCAGLKNACRKDSLFTALETRKCNCEEGFKSAGFKNLE 285 

                      *******:******:********************************************* 

 

GP04723seqcDNA        DGQKKKLCDEQQCDGEKDTCHGMKCTAGKCNCNLADL 320 

GP04723predicted      DGQK-KLCNEQQCDGEKDTCHGMKCTAGKCNCNLADL 321 

                      **** ***:**************************** 

 

 

 

 

Figure 3.8 Comparison of predicted and sequenced protein models for GP04723. The 

proteins are of similar length and are highly homogenous, possibly indicating splice 

variants. Poor homology with known proteins prevents prediction of gene function. 
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GP07079seqcDNA        MKTFVWLNLFVVCVQQICCAPIQNPSSKSQVEVTVELAKSTGPTNTYTLEFTNLSYKMLC 60 

GP07079predicted      ---------------------------------------------------------MLC 3 

                                                                               *** 

 

GP07079seqcDNA        QVKFRVELPETATLVKYWNLSPVSGTTDHFTLPDHEQISPGQAFAYAGIKVNGVGEPKIT 120 

GP07079predicted      QVKFRVELPETATLVKYWNLSPVSGTTDHFTLPDHEQISPGQAFAYAGIKVNGVGEPKIT 63 

                      ************************************************************ 

 

GP07079seqcDNA        ILDTVKVLSTKRCPF 135 

GP07079predicted      ILDTVKVLSTKRCPF 78 

                      *************** 

 

# Measure  Position  Value   Cutoff   signal peptide? 

  max. C    20       0.627 

  max. Y    20       0.750 

  max. S    12       0.955 

  mean S     1-19    0.894 

       D     1-19    0.828    0.450    YES 

 

Cleavage site between pos. 19 and 20: ICC-AP D=0.828 D-cutoff=0.450 

 

 

Figure 3.9 GP07079 amino acid sequence alignment. The predicted signal peptide is 

highlighted in yellow in the alignment, and the SignalP 4.1 output is given below. 

  



67 
 

 

 

 

 

 

 

GP08126  MNAQKTIIVAALVIAVAMLSMEVPSVDAQCCVPNGAGVCESRGCCDNCLPLGSGCTCING 60 

 

 

GP08126  ANKTPNARNAVEAAAAAADGTAAGSK      86 

 

 

 

# Measure  Position  Value    Cutoff   signal peptide? 

  max. C    29       0.824 

  max. Y    29       0.832 

  max. S    15       0.977 

  mean S     1-28    0.855 

       D     1-28    0.845   0.450   YES 

Cleavage site between pos. 28 and 29: VDA-QC D=0.845 D-cutoff=0.450  

 

 

Figure 3.10 Signal peptide identified in the GP08126 sequence. The 28-a.a. signal 

peptide in the sequence is highlighted in yellow, and the SignalP 4.1 readout is given 

below (Petersen et al., 2011). 
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A 

GP08879pred MGNVRPKGTIYMAAQKGKKGQKLSTSSASSSQNSQIKQELKRRTKLANKKNKKAPAAMGM 60 

GP08879contig1 MGNVRPRPYVREHVGSTPGCHCPKCPREPAPFALV------------------------- 35 

GP08879contig2 MGNVRPNPKYATTEGVQKFDALGSRLRHRDSLRGFRPAH--------------------- 39 

  ****** * 

 

GP08879pred SGNGREKRKETKGRDR 76 

GP08879contig1 ---------------- 35 

GP08879contig2 ---------------- 39 

 

 

B 

GP08879c1ORF MSPLQPLQTRPPSKFGYRAGILTIELWFAPNHLSSAPHTTANCSSSMPPHNSIHTPPRSH 60 

 

GP08879c1ORF TISPSEQTVNQVNHGVFGSALLRIFSPLVQLVKLLLSGFPGSMAQSLKLLTAQSRNAPAA 120 

 

GP08879c1ORF VRNTHKKDEITENNENEADYFSACSDTSYIEELERSSSGESVSTADAIGFKLLHYQAALE 180 

 

GP08879c1ORF VVNEILKQNSKPDANISLEEFSSLIDRAASALREKQSQNISFDNTSIKQGIGGKHKRSKI 240 

 

GP08879c1ORF TDVFRQFKREQTALVHAGTWGSGIPESTRHVHVRTALASHCP    282 

 

 

C 

GP08879c2ORF MTLCILCPGQGSQTVDMLPRLLGEPLIAPHLEPLLDAMPFDAMAVSQNSELCFVNAHAQP 60 

BetaproMDC-E MTLCILCPGQGSQTVDMLPRLLGEPLIAQHLEPLLDAMPFDAMAVSQNSELCFVNAHAQP 60 

  **************************** ******************************* 

 

GP08879c2ORF LIVAAGAAVAQALKAHGIHADLSAGYSIGELTAHTVAGSLQALDGVGLAVKRAQCMDQAA 120 

BetaproMDC-E LIVAAGAAVAQALKAHGIHADLSAGYSIGELTAHTVAGSLQALDGVGLAVKRAQCMDQAA 120 

  ************************************************************ 

 

GP08879c2ORF PAAHGMMAVKGVRIDRLGAIAQEHGLAVAIVNDEQHAVLAGPTAVMKSICKGMERELGAH 180 

BetaproMDC-E PAAHGMMAVKGVRIDRLGAIAQEHGLAVAIVNDEQHAVLAGPTAVMKSICKGMERELGAH 180 

  ************************************************************ 

 

GP08879c2ORF VVHLNVQVPSHTVWLIEASVQFKNALEAASWRGFDCPVLSALDGSPVENRDGAIDCLARQ 240 

BetaproMDC-E VVHLNVQVPSHTVWLSEASVQFKNALDAASWRGFDCPVLSALDGSPVENRDGAIDCLARQ 240 

  *************** **********+********************************* 

 

GP08879c2ORF ISEPLQWSRTLDLASHCP------------------------------------------ 258 

BetaproMDC-E ISEPLQWSRTLDLASEMGATVYFEVGPGNTLTRMVRERFPAAQARSLSEFQTLEGALNWL 300 

  *************** 

 

GP08879c2ORF - 258 

BetaproMDC-E N 301 

 

Figure 3.11 GP08879 sequence alignments. A, alignments of the short peptide ORFs 

from the two cloned GP08879 sequences with the predicted protein, showing poor 

homology. B, the largest ORF translated from GP08879 consensus sequence one, the 

sequence had poor homology to known proteins. C, GP08879 consensus sequence 2 

largest ORF, aligned with a malonate carboxylase protein from 

Betaproteobacteria bacterium, an acyltransferase domain-containing protein. 
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3.4.2.12 GP09707 

The predicted gene sequence for GP09707 is listed as orthologous to 

phosphoethanolamine methyl transferase (PMT) genes described in Caenorhabditis spp. 

on WormBase ParaSite. The cloned cDNA has a sequence that was homologous to the 

predicted CDS, with an extra 75 bp region near the middle of the sequence. Translating 

the sequence gave a complete open reading frame that matched the predicted protein, 

with a corresponding extra 25-a.a. insertion at residue 257 of the predicted sequence. 

The cloned gene had strong homology to methyltransferase proteins, including 

C. elegans pmt-1. InterPro analysis identified domain homology for S-adenosyl-L-

methionine-dependent methyltransferases, with an S-adenosylmethionine binding site 

highlighted (Figure 3.12). 

3.4.2.13 GP10083 

The cloned sequence for GP10083 was nearly identical to the predicted sequence, with 

11 single nucleotide mismatches. Mismatched nucleotides largely maintained the amino 

acid sequence, with only one corresponding residue substitution, R58K (Figure 3.13). 

WormBase suggested orthology with sodium/nucleoside co-transporters in a number of 

species, which was confirmed by BLAST alignment and InterPro analysis of the cloned 

sequence. The gene encodes a likely membrane protein, with Phobius analysis  

predicting 13 transmembrane domains (Kall et al., 2004).  

3.4.2.14 GP10467 

Cloning of GP10467 confirmed the gene model, and identified strong homology with a 

G. rostochiensis predicted gene, Gros_g4372, and a C. elegans carboxypeptidase gene, 

ZC434.9. InterPro analysis of the sequence confirmed homology to carboxypeptidase 

domains, identifying a metallocarboxypeptidase binding site and a nematode six-

cysteine domain (SXC, associated with secreted toxins in Toxocara canis), and SignalP 

4.1 suggested a probable 23 residue signal peptide (Petersen et al., 2011). The identified 

domains, except for the signal peptide of GP10467, were conserved across the G. pallida 

and G. rostochiensis (Figure 3.14).  
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GP09707seqcDNA      MLNANADQIEALDRANILALLPPVNGKFVVDIGAGIGRFTTVFAQSEASKVVATDFVHSF 60 

GP09707pred         MLNANADQIEALDRANILALLPPVNGKFVVDIGAGIGRFTTVFAQSEASKVVATDFVHSF 60 

                    ************************************************************ 

 

GP09707seqcDNA      VEKNRERNSEYANVEWRVGDATGLQFDEGSVDLVFTNWLLMYMSDEETVQFVANALQWLR 120 

GP09707pred         VEKNRERNSEYANVEWRVGDATGLQFDEGSVDLVFTNWLLMYMSDEETVQFVANALQWLR 120 

                    ************************************************************ 

 

GP09707seqcDNA      PDGYLHLRESCSEPSTKKSVDNNSSSSSSLHNKSQPNPTRYRFSSAYIQLLRNIRHIEDE 180 

GP09707pred         PDGYLHLRESCSEPSTKKSVDNNSSSSSSLHNKSQPNPTRYRFSSAYIQLLRNIRHIEDE 180 

                    ************************************************************ 

 

GP09707seqcDNA      SGKIWRFDVQWACSVGVYIERQLNWRQVHWLARKVPATDNNAISIPKSVETLAKQFADQW 240 

GP09707pred         SGKIWRFDVQWACSVGVYIERQLNWRQVHWLARKVPATDNNAISIPKSVETLAKQFADQW 240 

                    ************************************************************ 

 

GP09707seqcDNA      PAEQREFDHRMDVQKPGWMQKAFDRCLDEMEFNGDGIMFGFSGRKIFTEFGVDAEALAQR 300 

GP09707pred         PAEQREFDHRMDVQKPG-------------------------GRKIFTEFGVDAEALAQR 275 

                    *****************                         ****************** 

 

GP09707seqcDNA      VGRRIWAVETDPFAYRNALTRANQCGDRRVRLAWHFNLESALDFWGNAGQSMPMFEAVVG 360 

GP09707pred         VGRRIWAVETDPFAYRNALTRANQCGDRRVRLAWHFNLESALDFWGNAGQSMPMFEAVVG 335 

                    ************************************************************ 

 

GP09707seqcDNA      TEMLAQLQDERIVNKFARMLAGGAQFASVELVKPGKDQSDKFRANLKLLRSRFIVNEEIE 420 

GP09707pred         TEMLAQLQDERIVNKFARMLAGGAQFASVELVKPGKDQSDKFRANLKLLRSRFIVNEEIE 395 

                    ************************************************************ 

 

GP09707seqcDNA      VDQLENGYKILIVMAKLRSTKDFWDGDENNQTRQLLMGGF 460 

GP09707pred         VDQLENGYKILIVMAKLRSTKDFWDGDENNQTRQLLMGGF 435 

                    **************************************** 

 

 

Figure 3.12 GP09707 sequence alignment. The cloned sequence is aligned with the 

predicted sequence, resulting in a 25-aa insertion from residue 257 of the predicted 

sequence. The S-adenosylmethionine binding site is highlighted in yellow. 
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GP10083seqcDNA      MNASNNQYANENGVIELRQKQQPVKRNDDANSRRSWDLMEWVEQAQQSLLQIFDENQRLI 60 

GP10083pred         MNASNNQYANENGVIELRQKQQPVKRNDDANSRRSWDLMEWVEQAQQSLLQIFDENQKLI 60 

                    *********************************************************:** 

 

GP10083seqcDNA      NAFILLIILFLYHALIGFALFHNFNKAATLFTITVFGWLYVIYQQLLSPFLKRQKLVGQI 120 

GP10083pred         NAFILLIILFLYHALIGFALFHNFNKAATLFTITVFGWLYVIYQQLLSPFLKRQKLVGQI 120 

                    ************************************************************ 

 

GP10083seqcDNA      KMQLLEHWTQLKANAIMTRLFYGFAAGLPILFVVWDTRHNLERLSGLFGLIVFLIVMCLI 180 

GP10083pred         KMQLLEHWTQLKANAIMTRLFYGFAAGLPILFVVWDTRHNLERLSGLFGLIVFLIVMCLI 180 

                    ************************************************************ 

 

GP10083seqcDNA      SHKPTKVNWRPVLWGFLLQFIFGIMVLRWEYGARKFVDLSNMAILFLDFTKNGTDFTYGF 240 

GP10083pred         SHKPTKVNWRPVLWGFLLQFIFGIMVLRWEYGARKFVDLSNMAILFLDFTKNGTDFTYGF 240 

                    ************************************************************ 

 

GP10083seqcDNA      LSAPPNICGMEPVLAFQTIQVIIYVGAIVSVLYFYGIVQAVLKRMAMLMQLTLGTTATES 300 

GP10083pred         LSAPPNICGMEPVLAFQTIQVIIYVGAIVSVLYFYGIVQAVLKRMAMLMQLTLGTTATES 300 

                    ************************************************************ 

 

GP10083seqcDNA      LNACACVLLGNAESPLLIRPYIEKMTASELHAVMTTGFSCIAGAVFAAYISFGACPRYLL 360 

GP10083pred         LNACACVLLGNAESPLLIRPYIEKMTASELHAVMTTGFSCIAGAVFAAYISFGACPRYLL 360 

                    ************************************************************ 

 

GP10083seqcDNA      SAAVMSAPGSLACSKLLYPETEKSSVKNVKDLELPPSKESNALECISNGSLMSVHLITAV 420 

GP10083pred         SAAVMSAPGSLACSKLLYPETEKSSVKNVKDLELPPSKESNALECISNGSLMSVHLITAV 420 

                    ************************************************************ 

 

GP10083seqcDNA      CANLVSFMAIMALFNAIVGYVGTLIGYTDWSLELFLGYTFFPVAYMIGVTENAEQTFLVA 480 

GP10083pred         CANLVSFMAIMALFNAIVGYVGTLIGYTDWSLELFLGYTFFPVAYMIGVTENAEQTFLVA 480 

                    ************************************************************ 

 

GP10083seqcDNA      RLLGVKIVINDFMAYQRLGVMLKQNLLTPRSAMISTYALCSFSDFIAAGIQLAVLSEMAP 540 

GP10083pred         RLLGVKIVINDFMAYQRLGVMLKQNLLTPRSAMISTYALCSFSDFIAAGIQLAVLSEMAP 540 

                    ************************************************************ 

 

GP10083seqcDNA      TRRTLIARLVLRALLAGCISCFMSAAIAGILIEVPVACKPSGGDGGAKCFDLSVHQRFME 600 

GP10083pred         TRRTLIARLVLRALLAGCISCFMSAAIAGILIEVPVACKPSGGDGGAKCFDLSVHQRFME 600 

                    ************************************************************ 

 

GP10083seqcDNA      DVLNSTSMVNLRDEL 615 

GP10083pred         DVLNSTSMVNLRDEL 615 

                    *************** 

 

 

Figure 3.13 Cloned GP10083 sequence aligns well with the predicted sequence, post-

translation. The gene encodes a 615-a.a. protein with 13 transmembrane domains, 

marked in grey. The N-terminal region is cytoplasmic and the C-terminus is extracellular, 

according to Phobius prediction (Kall et al., 2004). 
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GP10467seqcDNA      -----------------------------MLLRIQLQLVVLFLSYQIQFVTALLKADEEA 31 

Gros_g04732         MFGIVRGANVPAGAKSIPKGLSRMLLKTTMLLRIQLQLVVLFLSYQIQFVTALLKADEEA 60 

                                                 ******************************* 

 

GP10467seqcDNA      ATAGKFQVLRIVPQKQDELALLRTLYKVAQEFELDFWKAPTDIGAFVDVMVPPEFVNTFS 91 

Gros_g04732         ATAGKFQVLRIVPQRQDELALLRTLYKVAQEFELDFWKAPTDIGAFVDVMVPPEFVNTFS 120 

                    **************:********************************************* 

 

GP10467seqcDNA      DLLNKQRIQYNTIIEDVQSMIVQREKATGGRNHHAHKGNLSESVLLNQFKLFGKRMRDDA 151 

Gros_g04732         DLLNKQHIQYNTIIEDVQNMIVQREKAAGGRHQHAHKGNLSESVLLNQFKLFGKRMRDDA 180 

                    ******:***********.********:***::*************************** 

 

GP10467seqcDNA      SSTGTRNKAVFGFGDYHSYDEIVRWLEDVERFYPQMAQTFTIGTTYEGRSIRGIKIGSPI 211 

Gros_g04732         SSTSSRNKAIFGFGDYHSYDEIVRWLEDVERFYPQMAQTFTIGTTYEGRSIRGIKIGSPI 240 

                    ***.:****:************************************************** 

 

GP10467seqcDNA      SDTTKRIVWVDGGMHAREWASVHTALWFIEQLIVQYGVDPQITSYMDTLNFYFVPVANPD 271 

Gros_g04732         SDTGKRIVWVDGGMHAREWASVHTALWFIEQLIVQYGVDPQITAYVDTLNFYFVPVANPD 300 

                    *** ***************************************:*:************** 

 

GP10467seqcDNA      GFEYSRSDVNPQTRFWRKNRGAQVCKKDRWRRERCCGGVDLNRNFDFHWGETGSSSDMCS 331 

Gros_g04732         GFEYSRSDVNPQTRFWRKNRGAQVCKKDRWRRERCCGGVDLNRNFDFHWGETGSSSDMCS 360 

                    ************************************************************ 

 

GP10467seqcDNA      DIYQGAYAFSEPESRAIRDKMLSPELFGKVDAFLTLHTYSQMWIHPFNHERKSFPNDIED 391 

Gros_g04732         DIYQGAYAFSEPESRAIRDKMLSPELFGKVDAFLTLHTYSQMWIHPFNHERKSFPNDIED 420 

                    ************************************************************ 

 

GP10467seqcDNA      LQEVGRRGVRALEQVYGTRYRFGTGADILYPSAGGSDDWAKSKAGVKYVYLLELRPGEEE 451 

Gros_g04732         LQEVGRRGVRALEQVYGTRYRFGTGADILYPSAGGSDDWAKSKAGVKYVYLLELRPGEEE 480 

                    ************************************************************ 

 

GP10467seqcDNA      WDGFLLDRRQLIPTGRETWEGVKVVIDAVMKRAKELQPWRVPVAVATTTAVAPLPQRPPP 511 

Gros_g04732         WDGFLLDRRQLIPTGRETWEGVKVVIDAVMKRAKELQPWRVPVA-TTTTAAAPLPQRPPP 539 

                    ******************************************** :****.********* 

 

GP10467seqcDNA      AVAVTPPASPPRAVLPDVPVQTVPATARLQNFVPSPSEFQQKSRRVDSSTDNSQQASTLR 571 

Gros_g04732         AVAVTPPASPPRAVLPDVPVQTLPATAARLNFVPSPSEFQQKSRRVDSSADNSQQASTLR 599 

                    **********************:****   *******************:********** 

 

GP10467seqcDNA      QALHMRLARLRQSQLEAKREFERNMQMKTNAAPQQQSSSPCFDRSPWCSGWIQSSPLICR 631 

Gros_g04732         QALHMRLARLRQSQLEAKREFERNMQAKTNAASQ-QSSSSCFDRSPWCSGWIQSSPLICR 658 

                    ************************** ***** * **** ******************** 

 

GP10467seqcDNA      TSSIYMRQDCAKSCGFCT 649 

Gros_g04732         TSSIYMRQDCSKSCGFCT 676 

       **********:******* 

 

 

Figure 3.14 GP10467 compared with G. rostochiensis g04732. The predicted signal 

peptide of GP10467 is highlighted in blue. A carboxypeptidase activation site is 

highlighted in green, while the residues of the metallocarboxypeptidase inhibitor-

binding interface are marked in yellow, and the six-cysteine site is highlighted in 

magenta. 
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3.4.2.15 GP10686 

The cloned sequence for GP10686 was nearly identical to the predicted sequence, with 

14 nucleotide mismatches that resulted in no changes to amino acid composition (Figure 

3.15). The predicted protein has homology with a number of glycoside hydrolase family 

genes in other nematode species, with the strongest homology and InterPro analysis 

suggesting a role in either galactose or maltase metabolism.  

3.4.2.16 GP11840 

Sequencing of GP11840 produced two consensus sequences that were broadly identical, 

with a number of mismatched single nucleotides and 3 corresponding mismatched 

residues. The sequenced genes were also largely homologous with the predicted gene 

apart from a mismatched region including a gap, corresponding to residues 154-240 of 

the cloned and translated sequence, and for an extension of the sequence in the C-

terminus, resulting in 82 extra C-terminal residues in the cloned sequence (Figure 3.16). 

InterPro analysis suggested a role as a serine/threonine protein kinase, which was 

affirmed by BLAST homology to described serine/threonine kinases in other nematode 

species.  

3.4.2.17 GP11984 

The predicted sequence for GP11984 matched with that of GP02405, at both the DNA 

and amino acid sequence level. PCR primers specific to the slight variation in the 3’ end 

of the GP11984 sequence resulted in amplification of the GP02405 sequence. 

Translating the predicted sequence results in a similar protein to GP02405, with an 

insertion of 4 amino acids as well as a number of substitutions (Figure 3.17); GP11984 

therefore had similar homology, aligning well with M. incognita GST-1 and likely being a 

sigma-class GST. 

3.4.2.18 GP12030 

Cloning the GP12030 CDS resulted in an amplicon that gave the predicted amino acid 

sequence when translated. The short sequence had poor homology to known proteins 

other than putative gland proteins and effectors predicted in Heterodera glycines and 

M. incognita. Potential as a secreted protein was supported by SignalP 4.1 analysis 

(Figure 3.18). 
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GP10686  MLLLFLLLCGSIIFCHAIVDPSQRVDCLPNPHEISKSACLETGCIWDGNYDQYNPSVPMC 60 

 

GP10686  YYPPTEGYTIQSSVPGNVQLKWTSKTLQNPYSRPNLDVQVQHQKMGDGIYVRIGREDRWL 120 

 

GP10686  PPLNELRNPTNFQKIISSNSLHFELGNMDGTFSFAIKRNDTNKANIWDTSIGGFVFGDQF 180 

 

GP10686  IQIATFLASDRLYGLGENMHHELKHDFTRYTTWGAFSRDQQNEYYVPGPYNGYGVHPFYV 240 

 

GP10686  GLEPSGKAHGVLILNSNAQEYITGPGPHFVYRTVGGQLELFFFPGPTPEEVIRQYQQIIG 300 

 

GP10686  TPYLPAYWAFGFRLCRWGYRSAEDAKNTVQRVRDAKIPFDVQYADIDYMERYKDFTYDSE 360 

 

GP10686  KWAGLPEFAEQLHSWDMKLVLIWDPPVQANYSSFQRAIEKGVSFIEWPNESMVQKEINDL 420 

 

GP10686  YPLTRNTNIMLGPMWPDHHCGFPDFLDPLPNTTDWWVDEFVRFHDKVNFDGIWIDMNEPS 480 

 

GP10686  VFGTNEQQPWYFDPAAFGKKPPIAPLMCPKPNNNLDYPPYRTWNSYQWDWDKSTKSLNDK 540 

 

GP10686  TLCMIGKSGRRKLSMYDTHSLYGWSEMIATQKALRASTGKRGSITSRSTFPSSGHYGGHW 600 

 

GP10686  LGDNHSRWPDLRLSIIGVMEFNMFGIPQIGADVCGFIGDTTEELCLRWQQLGAFHSYYRN 660 

 

GP10686  HNDVNSHMDQDPAQWKSVATATRVANLFRYQHLPYLYSLHFRASLYGGTVIRPLFFEFPL 720 

 

GP10686  DTNTHSLSFQFMWGSAMVVVPVISPNVDSVHAYLPVNETWYSMSDAHEYGTRITPGYSTF 780 

 

GP10686  NAPRNTPLPTFLRGGYIIPRQEPDMTTVASRKKPFQLLAGLKPLSCPCTMVATGELFWDD 840 

 

GP10686  GETIVDDFAAHPYYHIQFSVKATHSATTIVANRTHSSSKEPLPSLEQIVILGHHFTPKLG 900 

 

GP10686  TATLNGIPVTLDPALSEFVPEKGALTVQCADLIKLDDLAHDVWTLSWHNEGKHGPDAEEE 960 

 

GP10686  K         961 

 

 

 

 

 

 

Figure 3.15 GP10686 structural features. The glycoside hydrolase family domain is 

underlined with the active site highlighted in yellow. A P-type trefoil sequence is 

highlighted in blue and an N-terminal barrel associated with galactose-metabolising 

proteins is highlighted in green. 
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GP11840pred         MLKSYKISSTSTPTLTSSTSTSDDSGEIERQQFQQQSDDIKRVNGEMKSQRNASYGDKSL 60 

GP11840contig1      MLKSYKISSTSTPTLTSSTSTSDDSGEIERQQFQQQSDDIKRVNGEMKSQRNASYGDKSL 60 

GP11840contig2      MLKSYKISSTSTPTLTSSTSTSDDSGEIERQQFQQQSDDIKRVNGEMKSQRNASYGDKSL 60 

                    ************************************************************ 

 

GP11840pred         LARSEQGSVWKSIATEADGTKKCVTIKLLRAPFHSPGTAKYALREVALLSALNHPNLIAL 120 

GP11840contig1      LARSKQGSVWKSIATEADGTKKCVTIKLLRAPFHSPGTAKYALREVALLSALNHPNLIAL 120 

GP11840contig2      LARSEQGSVWKSIATEADGTKKCVTIKLLRAPFHSPGTAKYALREVALLSALNHPNLIAL 120 

                    ****:******************************************************* 

 

GP11840pred         YDVRLPSKVKPLKKFDDLHLVTEYFGKNLRERINCHTVS-------------FKFYVASI 167 

GP11840contig1      YDVRLPSKVKPLKKFDDLHLVTEYFGKNLRERIVEKLKNCTLWTHQELSYCIIQILCGVN 180 

GP11840contig2      YDVRLPSKVKPLKKFDDLHLVTEYFGKNLRERIVEKLKNCTLWTHQELSYCIIQILCGVN 180 

                    *********************************  :  .             :::  .   

 

GP11840pred         FLHASGIVHRDLKPTNIVMSDRGNVKILDYGIARDIVPENLTTEAGTPIYRAPEIYLGID 227 

GP11840contig1      FLHASGIVHRDLKPTNIVMSDRGNVKILDYGIARDIVPENLTTEAGTPIYRAPEIYLGID 240 

GP11840contig2      YLHASGIVHRDLKPTNIVMSDRGNVKILDYGIARDIVPENLTTEAGTPIYRAPEIYLGID 240 

                    :*********************************************************** 

 

GP11840pred         SYDKKVDLWSVGCIFAELILARILFHGTTLATQWKLFNEVLGTPDLKFLDSLGVKETNKQ 287 

GP11840contig1      SYDKKVDLWSVGCIFAELILARILFHGTTLATQWKLFNEVLGTPDLKFLDSLGVKETNKQ 300 

GP11840contig2      SYDKKVDLWSVGCIFAELILARILFHGTTLATQWKLFNEVLGTPDLKFLDSLGVKETNKQ 300 

                    ************************************************************ 

 

GP11840pred         IVMDMPKRESADWTQMIADNAVPKLISDYLTK---------------------------- 319 

GP11840contig1      IVMEMPKRESADWTQMIADNAVPKLISDYLTIENVRALLSSMLVLDPAQRTSAEQALKNA 360 

GP11840contig2      IVMDMPKRESADWTQMIADNAVPKLISDYLTIENVRALLSSMLVLDPAQRTSAEQALKNA 360 

                    ***:***************************                              

 

GP11840pred         ----------------------------------------------------- 319 

GP11840contig1      YFDIYRGYLSANLLATPQKVYCTEEFKQLMKDNNIDHFKEKILEQIATFKTKL 413 

GP11840contig2      YFDIYRGYLSANLLATPQKVYCTEEFKQLMKDNNIDHFKEKILEQIATFKTKL 413 

 

 

                                                                          

 

 

 

Figure 3.16 GP11840 sequence alignments. The amino acid sequences corresponding 

to the cloned genes were largely similar to the predicted protein sequence, with a 

mismatched region in the centre and an additional 83 amino acids at the C-terminus. 

The serine/threonine-protein kinase active site is highlighted in yellow. 
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GP11984pred MVQYKLYYFDLRGIGEPIRLLLHYVGQQFEDVRFGKEEWPTKYKSKFFYGKAPVLEVDGK 60 

GP02405seq MVQYKLYYFDLRGIGEPIRLLLHYVGQQFEDVRFGMEEWPTKYKSKFFYGKAPVLEVDGK 60 

           *********************************** ************************ 

 

GP11984pred QLGQSTTILRFLAEKFALAGKDEWEKAKADEIINFQKDANTEFAPYIFAKLGFREGDLDK 120 

GP02405seq QLGQSSVILRFLAEKFALAGKDEWEKAKADEIINFQKDANTELAPYLYTKLG----DREK 116 

              *****:.***********************************:***:::***    * :* 

 

GP11984pred  LRTEVLEPGVKRIFPLFEALLKESGSDYMLPSGLSMVDFQVGNFLYTFTKLEPDTIKAYP 180 

GP02405seq  LRTEVLEPGVKRIFPLFEALLKESGSDYMLPSGLSMVDFQVGNFLYTFTKLEPDMIKAYP 176 

              ****************************************************** ***** 

 

GP11984pred ELVKYVERVHALPQLQKYLQQRPQDR 206 

GP02405seq ELVKYVERVHALPQLQKYLQQRPQDR 202 

              ************************** 

 

 

 

Figure 3.17 Predicted GP11984 amino acid sequence compared with the cloned 

GP02405 sequence. The two sequences are similar enough that attempted amplification 

of the GP11984 cDNA resulted in amplification of GP02405. 
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GP12030seq MFLLRRPTILIAALTAEAEAEAVRVKRDWPWEWIGKQACKTSANCKCSDGKNWAKCVKSE 60 

GP12030seq GYAASNCCDKNYVWACCGKKPKH 83 

 

 

# Measure  Position  Value    Cutoff   signal peptide? 

  max. C    23       0.425 

  max. Y    23       0.518 

  max. S    10       0.771 

  mean S     1-22    0.631 

       D     1-22    0.579   0.450   YES 

Cleavage site between pos. 22 and 23: AEA-VR D=0.579 D-cutoff=0.450  

 
 

Figure 3.18 GP12030 sequence and signal peptide prediction. A 23-a.a. likely signal 

peptide was identified with SignalP4.1 software (Petersen et al., 2011). 
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3.4.5 Quantification of expression in Dazomet-treated second-stage juveniles 

17 genes of interest were investigated by qPCR, to confirm their up-regulation and 

evaluate the fold-change values given by the RNAseq analysis – GP02984 was excluded 

from the analysis as no satisfactory CDS sequence could be confirmed. 12 out of 17 

genes were confirmed to be significantly up-regulated in Dazomet-exposed G. pallida 

J2s (Figure 3.19). The difference between fold-change values given by RNAseq and qPCR 

were inconsistent across genes: RNAseq analysis overestimated up-regulation response 

to Dazomet exposure in most cases (Table 3.3).   
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Figure 3.19 Fold change in gene expression in G. pallida second-stage juveniles 

following exposure to Dazomet.Differential gene expression was measured by qPCR 

comparing J2s exposed to 0.12 uM Dazomet for 24 h with J2s incubated only with 0.5 % 

DMSO. The blue bars represent a fold change of 1, no change in expression. Error bars 

give the standard error. Significance levels are indicated by data labels above each bar: 

*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. 
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Table 3.3 Comparison of the fold changes reported by RNAseq and qPCR. Of 
the 17 genes measured with both techniques, RNAseq overestimated the fold-
changes in expression of 14 of the genes and underestimated the fold-change 
of two. There was no correlation between the magnitude of the fold-change 
reported by RNAseq and the discrepancy between the expression changes 
reported by the two techniques. 

Gene RNAseq qPCR 
Ratio 

qPCR:RNAseq 

GP01278 14.07654 18.16045 1.290122 
GP02040 9.543149 1.07682 0.112837 
GP02405 17.59692 21.07513 1.19766 
GP03693 5.518074 4.192492 0.759774 
GP04700 12.78629 9.281929 0.725928 
GP04723 14.11655 3.52291 0.249559 
GP04777 8.529677 1.063041 0.124629 
GP07079 9.336028 3.495806 0.374443 
GP08126 90.01018 4.49 0.049928 
GP08879 11.7083 0.941272 0.080394 
GP09707 96.10079 11.29 0.117441 
GP10083 32.04867 6.27 0.19576 
GP10467 12.88022 7.842178 0.608854 
GP10686 10.1236 2.616015 0.258408 
GP11840 27.63534 33.0807 1.197043 
GP11984 62.01283 10.97279 0.176944 
GP12030 16.6988 1.818418 0.108895 
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3.5 Discussion 

3.5.1 Genes implicated in Globodera pallida xenobiotic metabolism 

A number of genes likely involved in the detoxification of methyl isothiocyanate (as the 

bioactive breakdown product of Dazomet) were identified.  

The principal candidates for identification as phase II xenobiotic metabolism enzymes 

are GP02405 and GP11984. GP2405 had strong homology to the M. incognita gst-1 

gene, which was further supported by InterPro analysis identifying the protein as 

belonging to the sigma class of GSTs; this coupled with its strong up-regulation in 

response to Dazomet suggest that GP02405 is a glutathione S-transferase, congruent 

with the idea that GSTs are the principal breakdown route of ITCs (Jiao et al., 1996, Jones 

et al., 2013b, Kolm et al., 1995, Øverby et al., 2015, Zhang, 2000). GP11984 was strongly 

homologous to GP02405, such that amplification of the CDS proved difficult, suggesting 

the possibility of errant duplication of GP02405 in the genome assembly. However, qPCR 

primers designed for GP11984 resulted in a differential fold change in expression in 

response to Dazomet, indicating that it may exist as a paralogue of GP2405 with a similar 

role. 

Identification of GP09707 as a methyltransferase could imply a role in xenobiotic 

metabolism, however the presence of an S-adenosylmethionine binding site and its 

homology to C. elegans phosphoethanolamine methyltransferase 2 (PMT-2) indicate 

that it is more likely involved in phosphocholine biosynthesis (Palavalli et al., 2006). 

C. elegans with PMT-2 production suppressed by RNAi are unviable, due to the essential 

role the enzyme plays in phospholipid membrane maintenance (Palavalli et al., 2006). A 

host defence-suppressive role for PMT was identified in filarial nematodes, in which 

phosphocholine was conjugated to proteins to be secreted into the host (Lovell et al., 

2007). As phosphocholine biosynthesis is essential to proper cell function and division, 

PMTs have been investigated as potential drug targets for control of nematodes, though 

the targeting of plant-parasitic nematode PMTs has not been studied directly 

(Bobenchik et al., 2011). Any future development of PMTs as a control target in PPN 

would depend on sufficient divergence of the pmt genes of target nematodes with other 

soil organisms and humans, to ensure biosafety. As a putative S-adenosylmethionine 

synthetase, GP04700 is likely involved in producing the substrate for PMTs (Markham 
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and Pajares, 2009); it is logical that up-regulation of an S-adenosylmethionine-

dependent methyltranferase would be accompanied by a similar up-regulation of an S-

adenosylmethionin synthetase, as well as other enzymes involved in the 

phosphocholine synthase pathway. The up-regulation of PMT in response to cytotoxic 

isothiocyanates could be related to the roles of PMTs in signalling or modulation of gene 

expression (Bobenchik et al., 2011), or simply as a mechanism for repairing damaged 

phospholipid membranes. 

GP03693, identified as a carboxylesterase, could play a role in phase I xenobiotic 

metabolism. Carboxylesterases have a range of catalytic activities, principally cleavage 

of carboxyesters (RCOOR’) into their constituent carboxylic acids and alcohols (RCOOH 

and R’OH) but also including esterification and hydrolysis reactions with a wide substrate 

range (Aranda et al., 2014). The potential role of carboxylesterases in xenobiotic 

metabolism is considered overlooked in comparison to CYPs (Laizure et al., 2013). 

Identification of GP01278 as a putative tyrosine aminotransferase (TAT) does not 

suggest a role in xenobiotic metabolism, as TATs form part of the breakdown pathway 

for tyrosine (Mehere et al., 2010). However, studies on C. elegans TAT identified a role 

for tyrosine and tyrosine breakdown products in cell-signalling (Ferguson et al., 2013), 

such that indicators of cell damage could be communicated to neighbouring cells via 

metabolism of TAT.  

The proteins likely encoded by GP07079, GP08126 and GP12030 were identified as 

potential effectors, based on sequence homology and presence of signal peptides. While 

poor sequence homology prevents identification of putative roles for the genes, 

production of effectors in response to what could be host defence compounds is 

congruent with the role of many effectors in suppression of host defence (Quentin et 

al., 2013). The cellular stress caused by Dazomet-exposure could be interpreted by 

G. pallida as the stress induced by contact with the host’s defences. Similarly, in 

response to general stress, GP10686 encodes a protein involved in sugar metabolism. If 

stress is associated with entry into the host tissues, up-regulation of genes GP10686 

could aid in energy metabolism and prepare the parasite for contact with the food 

source. GP11840, encoding a serine/threonine kinase, could have multiple roles in 

response both to biotic stress and to contact with a host plant. Serine/threonine kinases 
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are implicated in a number of signal transduction pathways (Motley and Lory, 1999). 

Further investigation of GP11840 could elucidate a role in signalling and activation of 

xenobiotic metabolism, especially given its high up-regulatory response to Dazomet. 

GP10083 is a putative sodium/nucleoside transporter, implied by sequence homology 

and prediction of several transmembrane domains. These are concentrative co-

transporters that import nucleosides in an energy dependent manner, and are 

implicated in facilitation of intracellular signalling, as nucleosides are recruited as 

important signal molecules (Parkinson et al., 2011). 

Metallocarboxypeptidases, as encoded by GP10467, are typically involved in protein 

processing within the cell, cleaving specific C-terminal residues from nascent proteins to 

allow proper folding and functionality (Gomis-Ruth, 2008). The increase in expression of 

GP10467 could therefore indicate a role in post-translational modification of proteins 

involved either in xenobiotic metabolism or in repairing cellular damage. 

Of the examined genes, three were found to have no change in expression when 

measure with qPCR: GP02040, GP04777 and GP08879. Cysteine/methionine 

metabolism-related pyridoxal transferases, as encoded by GP02040, are involved in the 

biosynthesis of cysteine from methionine, and as such contribute to amino acid and 

protein turnover in the cell (Noji and Saito, 2003). Lipocalin and lipocalin-related 

proteins (GP04777) are extracellular enzymes typically involved in intracellular signalling 

(Flower, 1996). GP08879 appears to be a malonate decarboxylase enzyme subunit, 

which forms part of a complex that catalyses the turnover of malonate to acetate 

(Chohnan et al., 1998); interestingly, the sequence has strongest homology to genes of 

bacterial origin, possibly indicating incorporation into the nematode genome though 

horizontal transfer, as identified for a number of genes present in the genomes of 

Globodera and Heterodera species (Danchin et al., 2016, Danchin et al., 2010, Noon and 

Baum, 2016). The likely roles of these proteins and their apparent lack of up-regulation 

when checked with qPCR indicated that they are unlikely to be directly involved in 

xenobiotic metabolism. 

3.5.2 Identification of genes through exposure to known xenobiotics 

The approach taken in this chapter has been to expose a plant-parasitic nematode to a 

known toxin that mimics the activity of biofumigation, in an effort to identify genes 
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involved in defence against that toxin. Elucidation of the mechanisms by which G. pallida 

detoxifies isothiocyanates is important towards fully understanding how biofumigation 

affects nematodes in the soil. Additionally, by subjecting nematodes to a specific 

stressor, genes involved in important biological processes, that may be crucial to survival 

of the parasite in the host environment, can be identified and designated as potential 

targets for control. 

Further study of the genes identified in this chapter could focus on knockdown of the 

genes by RNAi, to assess what impact this has on viability and parasitism. Investigation 

of the regulation of these genes through a system such as a yeast 1-hybrid assay (ref) 

could elucidate the transcription factors associated with the activation of xenobiotic 

metabolism in G. pallida, which could then be investigated as potential targets for 

control. 

3.5.3 Potential for RNAi-based control of G. pallida 

As discussed in the introduction to this chapter, RNAi has good potential for providing 

target-specific control localised to the point of contact that the parasite has with the 

plant host. Of the genes analysed here, those with the greatest potential for control of 

G. pallida as delivered by plant roots are the putative GSTs GP02405 and GP11984, due 

to their role in detoxification, the PMT GP09707, due to its essential role in cell 

maintenance, and the putative effectors, GP07079, GP08126, and GP12030. By 

disrupting either the defences of the parasite, its basic cellular processes, or the 

methods by which it communicates with and manipulates its host, the maintenance of 

the host-parasite interaction could be detrimentally perturbed. 

3.5.4 Differences in fold-change observed from RNAseq and qPCR data 

The fold changes observed in genes when analysed by qPCR differed greatly from those 

identified by RNAseq, with most of the observed genes having a reduced up-regulatory 

response relative to the RNAseq data. This could be due to differences in sensitivity and 

specificity between the two protocols (ref), and highlights the need to validate 

observations gleaned from one method before biological significance can be conferred 

to the result. 
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3.5.5 Conclusions 

Analysis of gene regulation in response to exposure to xenobiotic compounds has been 

identified as a method for investigating the xenobiotic metabolism response of plant-

parasitic nematodes to known stressors. A number of genes elucidated in this study 

were predicted to have important roles, in direct detoxification of the applied 

xenobiotics, to essential cellular processes, and also in more general response to biotic 

stress. Investigation of gene expression modulation in response to xenobiotic 

compounds is therefore posited as a potential tool for the identification of novel control 

targets for important agricultural pests. This framework can be applied to other plant 

and animal parasites. 
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3.6 Summary 

 

 

  

• A number of genes implicated in G. pallida were identified by RNAseq analysis 

and analysis of sequence data. 

• Strong candidates for glutathione S-transferases involved in detoxification of 

isothiocyanates in G. pallida were identified, GP02405 and GP11984. 

• Investigation of changes in gene regulation in response to biotic stress is 

revealed as a useful tool for the elucidation of genes involved in xenobiotic 

metabolism. 

• Future work targeting the regulation of genes identified here could provide 

novel methods of control of potato cyst nematodes. 
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4  Utilising C. elegans reporter lines to identify 

xenobiotic activity in plants 

4.1 Introduction 

Biofumigation as an agricultural practice is associated with the use of brassicas, and 

frequently centres on the use of a small subset of plants of the brassicaceae, typically 

cultivars of those already used in agriculture such as Brassica juncea, B. oleracea or 

Sinapis alba (Aires et al., 2009, McSorley, 2011, Meyer et al., 2011). The effectiveness of 

each tested cultivar varies, however, as demonstrated by the great variation in 

biofumigation efficacy observed in the literature (see Chapter 1.3.5 for review). Among 

the Brassicaceae, the glucosinolate profile and leaf concentration may vary considerably 

between species and cultivars (Fahey et al., 2001). Outside of the brassicas, a number of 

plant species are purported to have nematicidal effects, including marigolds, 

Tagetes spp. (Ploeg, 2002), and lupins, Lupinus spp. (Yildiz, 2011). Given the time, effort, 

and cost associated with testing the ability of green manures to suppress plant-parasitic 

nematodes, development of a simple method to assess the potential of a plant to act as 

a biofumigant would allow for the rapid screening of various plant accessions for their 

biofumigation potential. A quick, affordable assessment of biofumigation potential 

could hasten and reduce wastage in the process of trialling crop species for 

biofumigation. 

Caenorhabditis elegans is a nematode model organism for which a broad range of 

research techniques is available, and was the first multicellular organism to have a full 

genome published (The C. elegans Sequencing Consortium, 1998). Study of C. elegans 

as a model organism for metazoan development and neurobiology has continued since 

it first began in the 1960s (Ankeny, 2001), and a number of techniques developed 

through this process have had far-reaching outcomes for biological research, such as the 

use of green fluorescent protein (GFP) as a marker for biological processes in animal 

models (Chalfie et al., 1994). The up-regulation of genes implicated in specific stress 

responses can be used as an indicator of particular stimuli: by generating transgenic 

nematodes with markers, such as GFP, under the control of promoters associated with 

such responses, their activation can be quickly visualised. This has been used to indicate 
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toxic levels of heavy metals for monitoring of environmental hazards (Wah Chu and 

Chow, 2002), and combined with RNAi to investigate the regulatory processes 

associated with activation of genes implicated in xenobiotic metabolism (Jones et al., 

2013b). 

Reporter organisms that respond to stimuli associated with biofumigation, such as the 

presence of bioactive isothiocyanates, can be used as a marker for biofumigant activity. 

A number of reporter lines generated previously in the lab have the potential to be used 

in this manner, in particular a gfp::gst-31 line that produces GFP when induced by 

Dazomet, a methyl isothiocyanate liberator (Jones et al., 2013b). Gst-31 encodes a 

glutathione S-transferase (GST) enzyme – as discussed in Chapter 3, GSTs are the 

principal route by which isothiocyanates are detoxified in a eukaryotic cell (Shapiro et 

al., 2001). The response of ITC-specific reporter lines to exposure to a given plant extract 

can therefore be used as an indicator of the presence or absence of ITCs in that extract. 

However, given the differential response of different nematode species both to 

biofumigants and to specific isothiocyanates (see Chapter 1.3.5), the inferences that can 

be drawn from C. elegans reporters to other species are limited. Methodologies that 

incorporate both the test species and C. elegans have been demonstrated in the past, 

with the roles of Globodera spp. heat shock proteins investigated alongside their 

equivalents in C. elegans (Jones et al., 2018b). Where an experiment requires a tractable 

model organism such as C. elegans, efforts must be made to bridge the gap between the 

model and the species of interest. 

With transgenic model organisms, it is possible to incorporate genes and their regulatory 

elements from a test species into a model system for which there are more techniques 

available for investigation of their functions. Transcription factor binding for 

homologous genes is frequently conserved across distantly related species, such that 

the expression profile of a gene in one species can be inferred from expression of a 

homologous gene in another (Hemberg and Kreiman, 2011). Transgenic C. elegans 

carrying reporter genes under control of promoters for genes implicated in G. pallida 

xenobiotic metabolism may therefore act as reporters for potato cyst nematode-specific 

responses to stresses. Development of such a tool would also allow for investigation of 
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the regulatory apparatus associated with those genes, as demonstrated with RNAi 

performed on reporters for C. elegans xenobiotic metabolism (Jones et al., 2013b).  

Further to generating C. elegans lines carrying genetic material from species such as 

G. pallida, it would be preferable to develop tools for direct study of plant-parasitic 

nematodes. Model organisms are studied in place of species of interest due to 

experimental tractability and the availability of forward- and reverse-genetic techniques 

(Ankeny and Leonelli, 2011). Caenorhabditis elegans is a convenient model system, well-

suited to in vitro study, and has been studied at the forefront of both research into 

nematodes and into animal life more broadly (Ankeny, 2001). However, there are 

drawbacks to focusing on model organism research: C. elegans is a specialised organism 

and is therefore divergent in many ways from the organisms it is used to study (Ankeny 

and Leonelli, 2011). It has been suggested that many model organisms may become 

obsolete within 30 years, as the sophistication of molecular biological techniques 

advances (Hunter, 2008); therefore, the organism of interest should be studied directly 

whenever possible. Attempts to generate transgenic plant-parasitic nematodes have 

been so far unsuccessful. One advantage of C. elegans is that the majority of its 

reproduction is through hermaphroditic self-fertilisation – stable transgenic lines can 

therefore be established from a single transgenic individual. Globodera spp. are ill-

suited to transgenesis as they reproduce sexually and have a lengthy life cycle requiring 

both a suitable host and a long period of dormancy (see Chapter 1.2.4). The related 

Southern root-knot nematode Meloidogyne incognita, may prove to be a better 

candidate for transformation: M. incognita reproduces through apomictic 

parthenogenesis, resulting in clonal offspring (Trudgill and Blok, 2001) – any successfully 

transformed individual should then also have the potential to produce a clonal 

transgenic line. The broad host range of M. incognita (Trudgill, 1997) would also be of 

benefit, as transgenic individuals could be used to infect transgenic host plants, allowing 

for investigation of specific interactions between parasite and host. It could therefore 

be of merit to attempt to generate transgenic Meloidogyne incognita to advance the 

study of plant-parasitic nematodes. 
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4.2 Aims 

1. Investigate the use of transgenic Caenorhabditis elegans reporter lines as indicators 

of potential biofumigant activity. 

2. Develop transformation vectors and attempt to generate transgenic C. elegans lines 

expressing fluorescent proteins under control of promoters implicated in 

Globodera pallida xenobiotic metabolism. 

3. Attempt to transform Meloidogyne incognita, potentially leading to the development 

of a new model system. 
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4.3 Materials & methods 

4.3.1 Source of reporter lines 

The C. elegans reporter line gst-31::gfp was obtained from Dr Laura M Jones (Jones et 

al., 2013b). Nematodes were maintained according to the methods set out in Chapter 

2.2.    

4.3.2 Toxicity of isothiocyanates to C. elegans 

To determine the range of isothiocyanate concentrations at which up-regulation of GFP 

would occur in reporter lines, toxicity tests were performed. For each concentration, 

wells in a 96-well plate were set up in triplicate each containing 50-100 adult C. elegans 

N2 in 200 µl sterile M9 buffer. Nematodes were exposed to concentrations of 500 µM, 

100 µM, 50 µM and 10 µM of a number of isothiocyanates and Dazomet in DMSO over 

a 16h time period, and the number of active nematodes counted to give a percentage 

viability score; DMSO-only and non-treatment controls were performed alongside 

chemical exposures. The concentrations chosen were based on the concentration of 

Dazomet that elicited an up-regulatory response in gst-31::gfp reporters (Jones et al., 

2013b). Table 4.1 gives the isothiocyanates used in chemical exposures throughout this 

chapter, with their chemical structures and respective sources. 

4.3.3 Reporter line chemical exposures 

Reporter nematodes (gst-31::gfp reporters and those transformed lines generated as in 

method 4.3.10) were exposed to 10 µM allyl isothiocyanate and 10 µM Dazomet as 

above, and fluorescence measured after 1 h, 2 h, 4 h, 8 h and 16 h. Subsequent 

exposures were performed with a full range of isothiocyanates (Table 4.1) over 16 h, 

after which nematodes were imaged and fluorescence intensity calculated. To compare 

the fluorescence induced by methyl isothiocyanate and Dazomet, reporters exposed to 

a 10-fold dilution series (from 0.1 µM to 1 mM, based on observed toxicities) over 16 h 

were imaged and fluorescence quantified. 

4.3.4 Imaging fluorescent nematodes 

Nematodes were mounted on glass microscope slides with an agar pad. A 5% agar 

solution was autoclaved, to which sodium azide was added to give a final concentration 

of 10 mM. A drop of this solution was pipetted onto a clean glass slide and pressed down 
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with a second glass slide to give an agar pad approximately 0.4 mm thick. These pads 

were used soon after being made, to prevent drying. Nematodes to be imaged were 

removed from the 96-well plate into 0.6 ml maximum recovery microcentrifuge tubes 

and placed on ice for 5 minutes to settle. A 10 µl aliquot was then pipetted from the 

bottom of the tube onto an agar pad, and a glass coverslip was placed over this. Slides 

were viewed on a Leica DMRB microscope (Leica, Germany) illuminated by a mercury 

vapour bulb and images were captured using a QImaging QICAM Fast 1394 CCD and 

QCapture software. 

4.3.5 Quantification of GFP response 

Images were analysed using FIJI, an ImageJ package (Schindelin et al., 2012, Schneider 

et al., 2012). To quantify GFP response, the body of an individual nematode was isolated 

using the ‘Freehand selections’ tool and the pixel intensity measured. The average pixel 

intensity for the nematode was used as a measure of the level of fluorescence due to 

GFP, and the value from a number of nematodes from each treatment was averaged to 

give a representative figure. 

4.3.6 Generating leaf extracts 

Leaf extracts were generated according to a method used previously in the lab (Lord et 

al., 2011). Tomato (Solanum lycopersicum), cotton (Gossypium hisutum), wheat 

(Triticum aestivum), Indian mustard (Brassica juncea), white mustard (Sinapis alba), dog 

mustard (Erucastrum gallicum), and shield mustard (Biscutella didyma) were grown for 

6-8 weeks in compost, in 20 °C green houses with watering three times per week, before 

sampling. From each plant, 3-5 leaves were taken and immediately snap-frozen in liquid 

nitrogen. Samples were kept at -80 °C before being freeze-dried in a vacuum chamber. 

Each sample was then ground with a mortar and pestle to a fine powder. To produce 

the extract, 30 mg of tissue powder was then transferred to a 15 ml centrifuge tube 

containing 15 ml sterile tap water, which was then incubated at 37 °C and 200 rpm on a 

rotary incubator for 200 min. Extracts were then sterilised by filtration through a 

0.22 µm syringe filter to remove insoluble tissue debris. This resulted in a 2 mg/ml leaf 

tissue extract that could then be stored at -20 °C for later use. 
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4.3.7 Plant tissue extract exposures 

Reporter nematodes were exposed to plant tissue extracts over a period of 16 h. 50-100 

adult C. elegans gst-31::gfp reporters were added to wells of a 96-well plate in 20 µl M9 

buffer, to which was added 180 µl of plant tissue extract. After incubation for 16 h in the 

dark at 20 °C, nematodes were mounted on slides and imaged as above. 

4.3.8 Generation of transformation vectors for nematode bombardment 

For transformation of C. elegans unc-119 mutants, the pJM119 vector backbone 

(Figure 4.1) was used. This had been developed by Dr Jess Marvin from the pPD95_75 

vector (Figure 4.2) by insertion of a C. briggsae unc-119 sequence that acts as a rescue 

gene (pPD95_75 was a gift from Andrew Fire (Addgene plasmid # 1494)). The rescue 

gene acts to restore mutant nematodes to wild-type phenotype. Vector maps were 

generated using ApE (A plasmid Editor, M. Wayne Davis, 2018). The unc-119 gene from 

C. briggsae completely rescues unc-119 phenotype C. elegans (Maduro and Pilgrim, 

1996), and is used preferentially to the native gene in transformation vectors as it is 

more compact (Maduro, 2015). Promoter regions from G. pallida genes of interest 

identified in Chapter 3 were cloned using primers designed to amplify the region 1-3 kb 

upstream of each gene’s predicted start codon. Primers were designed to fit the criteria 

of being at least 18 nt in length, having Tm 60 ± 4 °C and GC content ≥35 %, after which 

appropriate restriction sites were added to the 5’ end of each primer with 4 random 

bases upstream of this (Table 4.1). Where possible, the reverse complement primer was 

designed with an MscI restriction site rather than a KpnI site, to preserve the artificial 

intron present upstream of the GFP sequence. Primers were checked with BLAST to 

ensure specificity to the desired region. Following amplification of the target region, 

double restriction digests were set up of both the insert and the pJM119 vector, 

digesting a molar ratio of at least 3:1 insert:vector. Digests were performed in a 50 µl 

reaction volume, using restriction enzymes from New England BioLabs, as follows: 
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50.0 μl Total reaction volume 

5.0 μl CutSmart® buffer 

x µl 5’ restriction enzyme (to give 20 U) 

y µl 3’ restriction enzyme (20 U) 

z μl  DNA > 1 mg 

(45-x-y-z) µl Sterile water 

 

Following the restriction digest, agarose gel electrophoresis was performed with the 

digested vector, in order to separate the backbone from the fragment to be replaced by 

the insert, and to separate the DNA from restriction enzymes. After electrophoresis, the 

fragment of gel containing the band for the backbone was excised and gel extraction 

was performed using the EZNA® MicroElute Gel Extraction kit (Omega Bio-Tek, D6294). 

The insert DNA reaction volume was heated to 95 °C for 30 min to heat inactivate the 

restriction enzymes.  

Ligation reactions were performed with T4 DNA ligase (New England BioLabs, M0202): 

10.0 μl Total reaction volume 

1.0 μl CutSmart® buffer 

x µl Vector DNA (>100 ng) 

y µl Insert DNA (≥3x molar mass of vector) 

0.5 μl  T4 DNA ligase 

(8.5-x-y) µl Sterile water 

 

The reaction volume was incubated at 16 °C overnight to allow complete ligation. An 

aliquot of 5 µl of the ligation mixture was added to 50 µl ultra-competent E. coli DH5α 

(Method 2.4.1) and the cells were spread on LB-Agar plates with 100 µg/ml carbenicillin. 

After overnight incubation at 37 °C, colony PCR was performed to identify colonies that 

carried the vector with the desired insert (Method 2.4.7), using an insert-specific 

forward primer and the GFP frame check reverse primer (Table 4.1).  
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Inserting fragments into the pPDmCh vector was performed in the same manner, 

utilising appropriate restriction site (Figure 4.2) and the mCherry frame check reverse 

primer for colony PCR. 

Promoter regions were amplified using Phusion High-Fidelity DNA Polymerase (New 

England BioLabs, M0530) as per Method 2.4.6.  

Restriction digests were performed simultaneously, using the enzymes appropriate to 

the primer pair and the desired insertion site in the vector.  

The vector pPDmCh was generated by cloning the mCherry sequence from pBCN22 (a 

gift from Ben Lehner (Addgene plasmid # 26302) (Semple et al., 2010)) with added 

restriction sites and inserting the fragment into the pPD95_75 (Fire, 1995) backbone 

with the GFP sequence removed 

4.3.9 Preparation of vector for transformation of nematodes 

Gold beads were first prepared for the binding of DNA by suspending 30 mg 0.3-3.0 µm 

gold particles (Chempur, Karlsuhe, Germany) in 1 ml sterile 70 % ethanol in a sterile 

1.6 ml microcentrifuge tube, then mixing at 1800 rpm for 5 min in an Eppendorf 

MixMate vortex mixer. The particles were then left to settle for 15 min, centrifuged 

briefly to pellet, and the supernatant removed by pipette. The pellet was then re-

suspended in 1 ml 70 % ethanol, vortexed at 1800 rpm for 1 min, settled for 1 min, then 

centrifuged briefly to pellet. The supernatant was then removed and the process 

repeated a further two times. After the final removal of the supernatant, the particles 

were re-suspended in 500 µl sterile 50 % glycerol. Gold particles prepared in this way 

could be stored at 4 °C for up to 2 months. 

The transformation plasmid was linearised before binding to the gold particles. A 35 µl 

restriction digest was prepared, with 2.5 µl restriction enzyme (appropriate to the 

plasmid to be linearised), 3.5 µl 10X digest buffer (appropriate to the enzyme), x µl 

plasmid DNA (where x is a volume that give ~ 7 µg total plasmid DNA) and 

(29 – x) µl ddH2O; this was incubated at 37 °C for 2 h. Before binding, the gold particles 

were re-suspended by vortexing at 1800 rpm for 20 min. For each bombardment, 70 µl 

gold particles in glycerol were added to a 1.6 ml maximum recovery microcentrifuge 

tube, kept on the vortex mixer to prevent settling.  30 µl of the digested plasmid was 
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added to the gold suspension after which two separate aliquots of 150 µl 2.5 M CaCl2 

and an aliquot of 112 µl spermidine were added, drop-wise, to each tube. Each tube was 

vortexed at 1800 rpm for 5 min to ensure even coating of the gold beads, then briefly 

centrifuged to form a pellet. The supernatant was removed and the gold re-suspended 

in 800 µl 70 % ethanol, then pelleted once more, and re-suspended in 70 µl absolute 

ethanol. The gold was then kept in suspension on the vortex mixer. 

4.3.10 Bombardment protocol 

C. elegans were grown in 50 ml liquid culture (according to Method 2.2) until they 

reached a population density of approximately 1000 young adult nematodes per 

millilitre. For transformation with a rescue plasmid, unc-119 mutant nematodes were 

grown.  Each culture was poured into a sterile 50 ml centrifuge tube and set in a rack, 

allowing the nematodes to settle for 10 min at room temperature.  The juvenile 

nematodes remain in suspension while the young adults settle out. The supernatant was 

then poured into a second 50 ml centrifuge tube and placed on ice; after settling for 20 

min the settled worms could be used to seed a new liquid culture.  

The system used for bombardment was the PDS-1000/HE Biolistic® Particle Delivery 

System (Bio-Rad) with Hepta™ Adaptor (Bio-Rad). The procedure was performed in a 

laminar flow hood, and all equipment was sterilised with 70 % ethanol where not 

otherwise specified. For each bombardment, approximately half of the total volume of 

settled young adult C. elegans from a single 50 ml culture was distributed evenly 

between seven target regions on a 9 cm NGM-lite plate, seeded with E. coli HT115.  

DNA-coated gold beads were applied evenly between seven macrocarrier discs (Bio-

Rad), which had been cleaned by immersion in isopropanol and allowed to dry 

beforehand. After the gold had dried, the macrocarrier discs were inserted into the 

macrocarrier holder with the stopping screen and this was placed in the microcarrier 

launch assembly. A rupture disc (1350 psi, Bio-Rad) was briefly immersed in isopropanol 

and inserted into the retaining cap of the Hepta™ Adaptor, which was then screwed into 

place in the bombardment chamber. The microcarrier launch assembly was then put 

into place, and rotated so that the openings in the holder aligned with the openings in 

the Hepta™ Adaptor. The plate with C. elegans young adults was then placed in the 

chamber on the target shelf, aligning the seven patches of C. elegans with the 
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macrocarrier discs and the adaptor. The lid of the C. elegans plate was then removed. 

The chamber was sealed and evacuated to 27 inHg, and the bombardment was fired. 

Plates were checked for evidence of the delivery of the gold beads and 1 ml sterile M9 

buffer was added, to rehydrate the nematodes. After resting for 30 min, 4 ml M9 buffer 

was added to each plate, and the resulting suspension of nematodes distributed across 

8 seeded 9 cm NGM-lite plates. 

4.3.11 Selection of positive transformants 

In the case of unc-119 mutants, transformants were selected based on the rescue of the 

unc-119 phenotype. This could either be performed by identifying rescued individuals 

and picking them individually onto fresh, seeded NGM-lite plates, or by allowing plates 

to starve for 4-5 weeks following bombardment, after which rescued worms will enter 

into the dauer stage, and placing a chunk of NGM-lite taken from a separate seeded 

plate onto the starved plate. Rescued nematodes will exit dauer arrest and move onto 

the chunk of seeded media, from which they can be picked individually onto fresh 

seeded plates. These plates were then monitored for the presence of nematodes that 

reverted to the unc-119 mutant phenotype, as this indicates that the line of 

transformants is not stable. Stable transformants were kept and non-stable 

transformants discarded. 

4.3.12 Double plasmid bombardment protocol 

A protocol was developed for transformation of wild-type C. elegans, and for selection 

of transformants in the absence of an obvious differential phenotype. For this, a pair of 

transformation plasmids were used in each bombardment. A plasmid expressing red 

fluorescent protein (RFP) under the control of promoter of the constitutively expressed 

myo-2 gene was developed and named pPDmCh, designed to act as a marker for 

selection of transformed nematodes.  

4.3.13 Data analysis 

One-way ANOVA with post-hoc Student-Newman-Keuls analyses were used to 

determine the significance of groupings in Figures 4.4 and 4.7, based on a confidence 

level of P<0.05.  
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Figure 4.1 Annotated schematic of the pJM119 vector backbone with restriction sites 

in the multiple cloning site highlighted. The vector conveys resistance to ampicillin and 

carbenicillin, allowing for growth of transformed bacteria on selective media. The 

Cbr-unc-119 gene rescues C. elegans unc-119 mutants, allowing for phenotypic selection 

of transgenic animals. The multiple cloning site contains an artificial intron that 

enhances expression of GFP. The GFP sequence carries the S65C alteration, enhancing 

brightness relative to wild-type GFP (Reichel et al., 1996). 
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Figure 4.2 pPD95_75 vector backbone with restriction sites highlighted. The basic 

structure is identical to that of pJM119 without the Cbr-unc-119 gene and with 

different availability of restriction sites in the multiple cloning site.   
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Figure 4.3 Structure of plasmid pBCN22. The plasmid carries an mCherry sequence 

under control of a promoter construct consisting of 8 repeats of the C183 pharynx-

specific promoter enhancer upstream of a minimal myo-2 promoter region, to drive 

high, pharynx-specific expression (Semple et al., 2010, Thatcher et al., 1999). The 

plasmid is designed for use in Gateway cloning, and the ccdB region acts as a negative 

selection element for bacterial cells transformed with the plasmid without the desired 

insert. The ccdB region encodes a toxin that kills cells by interacting with DNA gyrase to 

induce double-strand DNA breaks (Bernard, 1996, Bernard and Couturier, 1992). The 

plasmid was used as a source of the mCherry sequence and the myo-2 promoter region. 
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Table 4.1 Isothiocyanates used in ITC-screens with C. elegans reporter lines 

Isothiocyanate 

(Abbreviation) 

IUPAC name Molar 

mass 

(g mol-1) 

Structure 

Methyl  

(MITC) 

Methylisothiocyanate 73.12 

 

Allyl  

(AITC) 

3-isothiocyanato-1-

propene 
99.15 

 

Benzyl  

(BITC) 

Isothiocyanatomethyl-

benzene 
149.21 

 

Phenethyl 

(PhITC) 

(2-isothiocyanatoethyl)-

benzene 
163.24 

 

Propyl  

(PrITC) 
1-isothiocyanatopropane 101.17 

 

2-methylbutyl 

(2MBITC) 

1-isothiocyanato-2-

methylbutane 
129.23 

 

3-(methylthio) 

propyl 

(3(MT)PITC) 

1-isothiocyanato-3-

(methylthio)propane 
147.26 

 

4-(methylthio) 

phenyl 

(4(MT)PITC) 

1-isothiocyanato-4-

(methylsulfanyl)benzene 
181.28 

 

Sources: a, Sigma-Aldrich, MO, USA; b, Alfa Aesar MA, USA; c, Fluorochem, UK. 
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Table 4.2 Primers used for generating and checking promoter constructs 

Primer Sequence 5'-3' 

mCherryframechkR TCGCCCTTGCTCACCAT 

GFPframechkR GAAAAGTTCTTCTCCTTTACTCAT 

GP02405promoterF TCTCAAAATCTCATATCCGCG 

GP02405promoterR GACCATTTTGGATATTGATTG 

GP03693promoterF CGAGCATATCGTCCGTTG 

GP03693promoterR CAATTTTGGTGCCATAATGAA 

GP09707promoterF CAGTCTCAGTACCGGATAGCTC 

GP09707promoterR CCGAGTTGTCTGCTCGTC 

GP11840promoterF CGATAAAGTGTTTATTGAGGAGG 

GP11840promoterR AGGCAAAATCCGTAGTTAATCC 

GP11984promoterF CAACTCGTTTGCGCCTCC 

GP11984promoterR TGTTGCAATAAAGCAACTCG 

GpGAPDHpromoterF AACTCGGAAGTCGGAATTACC 

GpGAPDHpromoterR TTTTGCTATGTTTAGCAGGAAAAT 

CeminPmyo-2BamHiF ATATGGATCCGATATCGAATTCCTGCAGGC 

CeminPmyo-2HindIIIR ATATAAGCTTGGTCGAGGGTTAAAATGAAAAGT 

CeGST31promoterF ATTAGTTGATTGGAAGAAG 

CeGST31promoterR AGTGGTTTCACTGAAACTATAA 

Where necessary to facilitate restriction digests and ligations, appropriate restriction 

sites were added to the 5’ end of each primer 
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4.4 Results 

4.4.1 Toxicity of isothiocyanates to C. elegans N2 adults 

Differential toxicity of a number of isothiocyanates was observed. The isothiocyanates 

with the highest activity were allyl ITC, benzyl ITC, 4-(methylthio)-phenyl ITC and methyl 

ITC (MITC), while all tested isothiocyanates were found to have greater bioactivity than 

Dazomet at concentrations ≥ 50 µM (Figure 4.4). 

4.4.2 gst-31::gfp reporter lines  

4.4.2.1 GFP induction from exposure to Dazomet and isothiocyanates 

Reporter lines for gst-31 exposed to Dazomet and AITC showed greatest fluorescence at 

16 h exposure, after which fluorescence declined (Figure 4.5). Exposures were 

performed over 16 h thereafter. Dose-dependent induction of GFP was also observed, 

though sufficiently high MITC concentration resulted in no fluorescence, as nematodes 

were killed before a response could be induced (Figure 4.6). When exposed to a range 

of ITCs of the same concentration, differential induction of GFP was observed (Figure 

4.7). 

4.4.2.2 Up-regulation of gst-31 in response to plant leaf extracts 

Having confirmed the response of the reporter line to pure isothiocyanates, nematodes 

were exposed to plant tissue extracts of a range of plant leaf extracts. Response was 

specific to brassicaceous leaf extracts, with tomato, cotton and wheat extracts inducing 

no up-regulation of gst-31 (Figure 4.8). Induction of GFP was dose-dependent, indicating 

that the intensity of fluorescence observed may be indicative of the isothiocyanate 

concentration of the extract and therefore glucosinolate content of the extract (Figure 

4.9). Differential responses to leaf extracts of the same concentration from different 

brassicas could therefore be indicative of the total glucosinolate content of the leaves 

of tested plants.  
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Figure 4.4 Viability of C. elegans N2 adults after 16h exposure to isothiocyanates. 

Isothiocyanates in DMSO were added to N2 adults in M9 buffer and viability was 

assessed after 16h at room temperature, 150 rpm. Dazomet was included for 

comparison, and two control conditions of DMSO-treated and non-treated nematodes 

were included. No loss of viability was observed in the no-treatment control. Wells were 

made up in triplicate, n = 54 ± 8, error bars = ± 1 SD. Letters above bars indicate groups 

that were not significantly different from one another; groups are based on a Student-

Newman-Keuls analysis, P ≤ 0.05 
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Figure 4.5 Quantification of GFP response in allyl isothiocyanate and Dazomet-

exposed gst-31::gfp reporters over time.C. elegans gst-31::gfp reporters exposed to 

10 µM allyl isothiocyanate and 10 µM Dazomet. Greatest GFP induction was observed 

in 16h exposures. Exposures were performed in triplicate. For each time point, 5 

individual nematodes were analysed and mean pixel intensity calculated. Polynomial 

trendlines are plotted. Error bars = ±SD reporters exposed to 10 µM allyl isothiocyanate 

and 10 µM Dazomet. Greatest GFP induction was observed in 16h exposures. Exposures 

were performed in triplicate. For each time point, 5 individual nematodes were analysed 

and mean pixel intensity calculated. Polynomial trendlines are plotted. Error bars = ±SD 

  

R² = 0.9647

R² = 0.9719

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0 4 8 12 16 20 24

A
ve

ra
ge

 p
ix

el
 in

te
n

si
ty

Exposure time /h

AITC

DZM

Poly. (AITC)

Poly. (DZM)



106 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 (continues on next page) Dose-dependent response of C. elegans gst-

31::gfp reporters to methyl isothiocyanate and Dazomet.  A, Chemical exposures 

induced dose-dependent responses in reporter worms after 16 h – no fluorescence 

was observed at 1000 µM methyl isothiocyanate as all trialled individuals were killed, 

error bars = ± SEM.   
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Figure 4.6 (continued) Dose-dependent response of C. elegans gst-31::gfp reporters to 

methyl isothiocyanate and Dazomet. B, Representative images of MITC and Dazomet-

exposed reporters, scale bar = 150 µm. Exposures were performed in triplicate. For each 

concentration, 5 representative individuals were imaged and mean pixel intensity was 

calculated.   
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Figure 4.7 (continues on next page) Differential sensitivity of gst-31::gfp reporters to 

isothiocyanates. Reporters exposed to the 10 µM of a range of isothiocyanates and 

Dazomet for 16h demonstrated a differential up-regulation of gst-31. Letters indicate 

values that do not differ significantly from one another, based on a Student-Newman-

Keuls analysis, P ≤ 0.05.  
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Figure 4.7 (continued) Differential sensitivity of gst-31::gfp reporters to 

isothiocyanates. False colour fluorescence images of representative individuals: A, 

Dazomet; B, methyl ITC; C, allyl ITC; D, benzyl ITC; E, phenethyl ITC; F, propyl ITC; G, 2-

methylbutyl ITC; H, 3-(methylthio)propyl ITC; I, 4-(methylthio)phenyl ITC; and J, DMSO. 

Scale bars = 150 µm. 
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Figure 4.8 Non-brassicaceous leaf extracts induced no up-regulation of gst-31. Leaf 

extracts of A, tomato (Solanum lycopersicum); B, wheat (Triticum aestivum); and C, 

cotton (Gossypium hirsutum) induced no production of GFP in gst-31::gfp reporters 

when exposed to 1.8 mg/ml leaf extract over 16h. Scale bars = 150 µm.  



111 
 

 

 

 

Figure 4.9 (continues on next page) Brassicaceous leaf extracts induce a dose-

dependent up-regulation of gst-31. A, The intensity of GFP-induction correlated with 

the concentration of brassicaceous leaf extract that C. elegans gst-31::gfp reporters 

were exposed to after 16h incubation. Exposures were performed in triplicate and at 

least 5 representative images from each repeat were measured for pixel intensity. B, 

gst-31::gfp reporters responded to exposure to a number of brassicaceous tissue 

extracts at 1.8 mg/ml. 
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Figure 4.9 (continued) Brassicaceous leaf extracts induce a dose-dependent up-

regulation of gst-31. B, gst-31::gfp reporters responded to exposure to a number of 

brassicaceous tissue extracts at 1.8 mg/ml. Scale bars = 150 µm. 
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4.4.3 Transforming C. elegans with GFP under control of exogenous promoters 

4.4.3.1 Transformation vectors 

A modified pPD95_75 vector, with mCherry in place of GFP, was generated (Figure 4.10). 

Transformation vectors were generated with GFP and RFP under control of a number of 

G. pallida promoters (Table 4.3). The presence of the correct insert in each plasmid was 

confirmed by sequencing. 

4.4.3.2 Results of bombardments 

Nematodes that had been successfully transformed with vectors carrying GFP under 

control of G. pallida promoters were identified by rescue from the unc-119 mutant 

phenotype. When exposed to 10 mM Dazomet or 10 mM MITC, no induction of GFP was 

observed in any of the transgenic lines. 

4.4.4 Transforming C. elegans by microparticle bombardment with two vectors 

Double bombardments were performed with three pairings of transformation vectors, 

and any resulting transgenic animals were recorded (Table 4.4), each bombardment 

consisted of approximately 50,000 adult C. elegans. For bombardments with the 

pJM119-Gp02405 plasmid and pPDmCh-Ce-myo-2, unc-119 mutants were bombarded, 

and rescue of the phenotype taken to indicate successful incorporation of the pJM119 

plasmid while observed red fluorescence indicated incorporation of the pPDmCh 

plasmid. An example of a doubly transformed juvenile is given in Figure 4. . pBCN22 x 

pPD95_75-Ce-myo-2 bombardment was similarly scored on fluorescence, with 

successful pBCN22 incorporation resulting in red fluorescence and pPD95_75-ce-myo-2 

incorporation resulting in green fluorescence. Fluorescence was observed shortly after 

bombardment in juvenile nematodes; later observation and attempts to isolate 

fluorescent individuals revealed that transgenic animals had seemingly died, as no 

fluorescence was observed. 
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Table 4.3 Transformation vectors generated for each vector backbone 

pJM119 pPDmCh pPD95_75 

Gp-02405 Gp-02405 Ce-gst-31 

Gp-03693 Gp-03693 Gp-GAPDH 

Gp-09707 Gp-09707  

Gp-11840 Ce-minPmyo-2*  

Gp-11984   

Ce-gst-31   

The inserts successfully ligated into each plasmid backbone are listed. 

* cloned from the pBCN22 vector 
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Figure 4.10 Schematic diagram of the generation of pPDmCh. A, the GFP sequence is 

removed from pPD95_75 by restriction digest. B, mCherry is amplified with added 

restriction sites and digested. C, the mCherry amplicon is ligated into the empty 

pPD95_75 backbone, forming  pPDmCh.  
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Figure 4.11 C. elegans unc-119 mutants bombarded simultaneously with pPDmCh-

myo-2 and pPD95_75-Ce-myo-2 showed red and green fluorescence in the pharynx. 

GFP and mCherry expressed under control of the myo-2 promoter were visible under 

fluorescence microscopy in double-bombarded nematodes. Green autofluorescence is 

observed in the bacteria on the plate. 
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Table 4.4 Rates of transformation and of inheritance in subsequent generations 

following double bombardment. 

Vector pair Attempts Single 

transformants 

Double 

transformants 

Stable lines 

pPDmCh-

Ce-myo-2 

x 

pPDJM119-

Gp02405 

3 0 8 0 

pBCN22 

x 

pPD95_75-

Ce-myo-2 

2 2 0 0 

pPDmCh- 

Ce-myo-2 

x 

pPD95_75-

Ce-gst-31 

2 0 0 0 

pPDmCh- 

Ce-myo-2 

x 

pPD95_75-

Ce-myo-2 

2 0 1 0 
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4.4.5 Attempts to transform Globodera pallida and Meloidogyne incognita  

Fluorescence was not observed following attempted bombardment of G. pallida 

juveniles. In one instance, with M. incognita eggs bombarded with pPD95_75-

GpGAPDH1, a single fluorescent egg was observed (Figure 4.12). The egg was observed 

daily over the course of a week: no change in fluorescence was observed, though it 

initially appeared that the cells in the transgenic egg were active and that embryogenesis 

was progressing. Isolation of the single fluorescent egg from the total bombarded 

population proved difficult. A week after bombardment, no fluorescence was observed 

in any egg in the bombarded population. 
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Figure 4.12 Transgenic Meloidogyne incognita egg with GFP under control of a 

G. pallida GAPDH1 promoter. Bright field and false-colour fluorescent images are given, 

followed by a composite. Scale bar = 100 µm  
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4.5 Discussion 

4.5.1 C. elegans reporter lines as reporters of biofumigant activity 

Transgenic nematodes expressing marker proteins under control of reporters for 

xenobiotic metabolism has been demonstrated to allow detection of indicative 

bioactivity in plant tissue extracts. Quantification of fluorescence intensity has 

previously been used to indirectly count cells (Wilson et al., 2018) and to measure gene 

expression in transgenic C. elegans (Mendenhall et al., 2015), as fluorescence is 

proportional to protein copy number, therefore acting as a proxy measurement of gene 

expression (Soboleski et al., 2005). Therefore, though the accurate quantification of the 

constituents of a given solution is not trivial using C. elegans reporters, they can be used 

to differentiate between leaf extracts or chemical solutions of varying strengths.  

Reporter lines responded to isothiocyanates in a dose-dependent manner (figure 4.7), 

indicating a dose-dependent regulatory response of C. elegans to contact with 

isothiocyanates. Up-regulation of a glutathione S-transferase in response to 

isothiocyanate exposure is in line with previous studies that suggest that GSTs are the 

principal route of ITC detoxification (Shapiro et al., 2001). The differential effect 

between isothiocyanates observed, both in compound toxicity and in the up-regulation 

of gst-31 (figure 4.6 and 4.7), did not correlate: where Dazomet was the least bioactive 

of the compounds trialled, it generated strong GFP expression; conversely, 4-

(methylthio)phenyl isothiocyanate and phenethyl isothiocyanate demonstrated high 

toxicity to C. elegans adults at 10 uM but did not cause a strong up-regulation of gst-31 

relative to the other compounds tested. This may indicate a level of specificity of 

response that cannot be represented by gst-31::gfp reporters alone: different 

isothiocyanates may induce specific up-regulatory responses including any number of 

genes. 

The dose-dependent, brassica-specific response of gst-31::gfp reporters to leaf extracts 

suggest that reporter nematodes can be employed as a screen for biofumigation 

potential. The differential response of reporters to B. juncea and S. alba leaf extracts 

(figure 4.9) correlates with the higher toxicity to G. pallida J2s previously observed with 

extracts generated with the same method (Lord et al., 2011). Owing to the response of 

the reporter line to all tested isothiocyanates, and the differential response to various 
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compounds, the glucosinolate profile of a plant cannot be inferred from up-regulation 

of gst-31. However, given the broad-spectrum toxicity of isothiocyanates (see Chapter 

1.3.5), the potential for bioactivity from a given brassica should roughly correlate with 

the response of reporter lines to leaf extracts from that plant. Reporters for genes that 

respond to other stimuli (such as thiabendazole, imidacloprid and chloroquine (Jones et 

al., 2013b)) could prove useful for screening of plant tissue extracts for various 

xenobiotic modes of action. Expanding the toolset of available reporters may therefore 

allow for the screening of myriad plant extracts for a broad range of end uses, limited 

only by the scope of stimuli for which C. elegans demonstrates an inducible response. 

4.5.2 Generation of C. elegans reporters for G. pallida xenobiotic metabolism 

No induction of GFP was observed in worms that were successfully transformed with 

GFP under control of G. pallida promoters. Transgenic C. elegans expressing GFP under 

control of M. hapla promoters for orthologous genes have been generated by 

microinjection (Gordon et al., 2015). The promoters drove expression of GFP, but not 

according to the expected pattern based on the function of the orthologous gene. The 

authors posit that high divergence in promoter regions over time may have resulted in 

“resurfacing” of regulatory elements through turnover, resulting in the apparent 

mismatch in gene expression patterns – they also suggest that a mismatch of cis-

regulatory elements (promoters and enhancers in the genome) with non-native trans-

regulatory elements (genes encoding transcription factors) could result in unexpected 

gene expression in transgenic animals (Gordon et al., 2015). The evolutionary 

divergence between C. elegans and G. pallida, both of regulatory elements and of genes 

involved in xenobiotic metabolism, could therefore explain the lack of gene expression 

observed in the transgenic animals generated in this study. The promoters used drove 

expression of proteins with conserved sequences and functions (Gordon et al., 2015), 

which cannot be said for the G. pallida genes that were investigated here (see Chapter 

3).  

4.5.3 Double bombardment of C. elegans 

The two major methods for transformation of C. elegans, before the recent 

development of CRISPR-Cas9 (Dickinson and Goldstein, 2016), were microinjection 

(Mello et al., 1991) and microparticle bombardment (Praitis et al., 2001). Microinjection 
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involves the direct injection of DNA into the cytoplasm of the distal arm of the gonad – 

the transgene is then incorporated into newly formed embryos, usually in the form of 

high copy-number extrachromosomal arrays, though integration can be encouraged by 

irradiating transformed animals with UV or gamma radiation (Evans, 2006). Advantages 

of microinjection are quick turnaround and the high success rate, with the majority of 

injections generating transgenic animals within 10 days of microinjection (Evans, 2006, 

Mello et al., 1991). The potential disadvantages of the technique are low integration 

rate, germline silencing of extrachromosomal arrays and the high copy-number of 

transgenes possibly confusing interpretation of fluorescence (Praitis et al., 2001, Gordon 

et al., 2015). Bombardment occurs as described in the Materials & Methods section of 

this chapter, usually involving transformation of unc-119 mutants with a plasmid 

carrying a rescue gene (Schweinsberg and Grant, 2013). The major advantages of 

bombardment are that many thousands of individuals can be subjected to 

transformation and that successful transformation frequently results in low-copy 

integration of the transgene, but the efficiency of transformation is poor (Schweinsberg 

and Grant, 2013). It is this poor efficiency that encourages the use of selection markers 

such as unc-119 rescue (Praitis, 2006). Drug-based selection using puromycin resistance 

genes have been developed recently, in order to simplify the process of selection 

following bombardment (Semple et al., 2010).  

Co-injection of transformation vectors is frequently used when micro-injecting 

C. elegans, as this enables simple combination of transgenes of interest with marker 

genes, without having to incorporate several elements into a single plasmid; injections 

can consist of different forms of DNA, including plasmids and PCR products (Evans, 

2006). An extensive search of the literature reveals no published articles in which 

transformation of C. elegans by bombardment with more than one transformation 

construct has been attempted. As negative data is rarely published (Weintraub, 2016), 

the lack of published data on the subject represents a gap in knowledge when it comes 

to transgenesis of nematodes. The generation of co-transformed animals was 

demonstrated here, though stable integration was not observed. The low recovery of 

transgenic animals and the absence of stable transgenic lines is consistent with poor 

transformation efficiency previously observed – a principal methods paper generated 
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58 transgenic lines from a total of 110 bombardments, of which 27 were stable lines, a 

ratio of 0.25 stable lines per bombardment, with efficiency varying between different 

constructs (Praitis et al., 2001). As co-bombardment with two constructs was only 

attempted 3 times, future work should look to develop the technique further – the 

identification of co-transformation in all transgenic animals is encouraging. The ability 

of the technique to potentially generate stable transgenic lines carrying independent 

reporters for two genes, or incorporating gene fusions that take advantage of 

techniques such as fluorescence complementation (Shyu and Hu, 2008, Zhang et al., 

2004), could prove to be a useful method for C. elegans research. 

4.5.4 Transgenesis of plant-parasitic nematodes 

Where no fluorescence was observed in C. elegans transformed with G. pallida 

promoters, transgenic M. incognita eggs expressed fluorescent proteins under control 

of a promoter from G. pallida. Both M. incognita and G. pallida are sedentary 

endoparasites belonging to the superfamily Tylenchida, more closely related to one 

another than to C. elegans (Decraemer and Hunt, 2013). This may account for the ability 

of a G. pallida promoter to drive expression in M. incognita cells. GAPDH is considered 

a “housekeeping gene,” required for fundamental cellular processes and therefore 

assumed to be constitutively expressed (Barber et al., 2005). As such, it might be 

assumed that regulatory elements controlling expression of orthologous genes in 

related species are conserved, or that expression of housekeeping genes might not 

depend on specificity of promoter regions. The latter assumption is supported by 

reduced sequence conservation observed in housekeeping genes that drive expression 

throughout the body of an animal, attributed to a simpler mechanism of gene regulation 

(Farré et al., 2007). A lack of specificity in regulation of G. pallida GAPDH expression 

could therefore lend itself to expression in related species.  

4.5.5 Conclusions 

Caenorhabditis elegans reporter lines expressing GFP under control of native promoters 

are well-documented. Here, their potential to be employed practically has been 

demonstrated, echoing previous use of reporters to detect toxins in wastewater (Wah 

Chu and Chow, 2002). The novel development shown here is the use of reporter lines 

for screening of plant tissue extracts, which could be further developed, incorporating a 
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broad range of xenobiotic metabolism reporters for various chemical stimuli, to create 

a screening pipeline to assess suitability of plant tissues for further study as biofumigants 

across a range of activities beyond the production of isothiocyanates. 

Generation of C. elegans reporters for G. pallida genes proved unsuccessful. Whether 

this was due to inherent incompatibility between cis- and trans-regulatory elements 

across the two species or to some fault in the transformation procedure is unclear. 

Transgenic C. elegans expressing GFP under control of M. hapla promoters suggest that 

generation of reporters for G. pallida genes could be possible, but doubts about 

correctly representing gene expression patterns across distant phyla (Gordon et al., 

2015) could suggest that such reporters would be poor models for G. pallida xenobiotic 

metabolism. 

Development of double bombardment as a technique for transforming C. elegans could 

boost the available tools for study of intracellular processes in nematodes, but more 

work is needed to determine how useful the technique could be. 

A more promising development for study of plant-parasitic nematodes would be the 

successful generation of stable transgenic M. incognita lines. As discussed in the 

introduction to this chapter, M. incognita has many traits suited to use as a “model 

organism,” and expression of GFP under a non-native promoter has been demonstrated 

here. Further work on transgenesis of Meloidogyne spp. could form the basis of a future 

project with scope to greatly influence the study of plant-parasitic nematodes. 

  



125 
 

 

4.6 Summary 

 

  

• Reporters for C. elegans xenobiotic metabolism were shown to be useful in 

detecting biofumigant activity of plant tissues extracts. 

• Generation of C. elegans reporters with GFP under control of G. pallida 

promoters was unsuccessful. 

• Double bombardment has potential for use in generating transgenic 

C. elegans that express multiple reporter genes. 

• Future work with Meloidogyne incognita could lead to the stable 

development of transgenic lines, providing a powerful tool for research into 

plant-parasitic nematodes. 
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Chapter 5  Investigating the volatile emissions of 

brassicas as a source of pest management 

5.1 Introduction 

Emission of volatile compounds by plants is a well-documented phenomenon, and the 

role of volatile compounds in plant defence has been the subject of a number of studies. 

Plants have been shown to actively release volatiles in response to biotic stress in a dose-

dependent manner or to stresses such as insect herbivory or pathogenic fungi 

(Niinemets et al., 2013). Damage caused by leaf herbivores can induce systemic volatile-

release responses (Rostás and Eggert, 2008); these have been observed to deter 

herbivore egg-laying, as well as acting as attractants for predators of leaf-feeding 

herbivores such as predatory insects (Kessler and Baldwin, 2001) or entomopathogenic 

nematodes (Rasmann et al., 2005). Systemic responses have also been observed in root 

systems that have been attacked by herbivorous beetle larvae, resulting in systemic 

release of (E)-β-caryophyllene (Hiltpold et al., 2011), an attractant for 

entomopathogenic nematodes such as Heterorhabditis megidis (Turlings et al., 2012). 

Herbivory-induced defences may also lead to release of defence elicitors into the soil, 

causing neighbouring plants to release their own defensive volatiles (Dicke and Dijkman, 

2001). The direct impact of plant volatile emissions on soilborne pathogens and 

herbivores is less well understood, however (Pierik et al., 2014).  

Plants of the Brassicaceae have been previously observed to emit methyl bromide, a 

potent ozone depleting agent that has previously been used as a soil fumigant for 

nematode-infested fields. It has been estimated that global production of oilseed rape, 

Brassica napus, accounts for a notable proportion of methyl bromide sources in the 

atmosphere: a 1998 analysis suggested that 6.6 ± 1.6 Gg/yr of methyl bromide comes 

from oilseed, with 0.4 ± 0.2 Gg/yr coming from cabbage growth (Gan et al., 1998); 

analysis of trends from 1961-2003 found that 5.12 ± 0.85 Gg/yr methyl bromide was 

produced by oilseed in 2003, and predicted that this would only increase year on year, 

as production of oilseed also increases (Mead et al., 2008). The latter analysis highlights 

a potential issue with the monitoring of atmospheric methyl bromide, as the global 

budget isn’t balanced: known sinks of methyl bromide outweigh known sources, both 
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anthropogenic and biogenic, leading to uncertainty about where methyl bromide is 

coming from, and hindering efforts to monitor compliance with the Montreal Protocol 

(Mead et al., 2008). Under the Montreal Protocol on Substances that Deplete the Ozone 

Layer, ozone-depleting compounds such as methyl bromide are restricted in use, and 

their atmospheric concentrations must be monitored in order to ensure compliance 

(UNEP, 2002). A recent example of this comes from a reported 13 ± 5 Gg/yr increase in 

atmospheric CFC-11 since 2012, coming from somewhere in east Asia (Montzka et al., 

2018), despite there being no reported production since 2006 (UNEP, 2012), pointing to 

un-regulated production of CFC-11. This increase was detected as the global budget of 

CFC-11 is accounted for, with no biogenic sources; such an increase in methyl bromide 

emissions may not be readily detected, and whether or not its source is anthropogenic 

may not be easily determined. It is therefore important to identify and quantify sources 

of methyl bromide emissions. As growth of brassicas increases both as a cash crop and 

for purposes such as biofumigation, it will therefore be necessary to consider what 

impact these increases will have on global halide budgets. 

Previous analyses of the volatile emissions from brassicas are based on production of 

methyl bromide over 24 h from whole young plants in soil (Gan et al., 1998, Mead et al., 

2008). Measurements from rice paddies throughout a growing season have shown that 

emissions of methyl bromide and methyl iodide differ according to growth stage 

(Redeker et al., 2000). Methyl iodide has been investigated as a possible replacement 

for methyl bromide in soil fumigation, due to its similar broad spectrum toxicity without 

the environmental impacts associated with methyl bromide (Pelley, 2009). Other 

bioactive compounds known to be released from land plants include methyl chloride 

(Yokouchi et al., 2000), which is recognised as a potential ozone-depleting agent but is 

not monitored as it is largely biogenic in origin (UNEP, 2012); methane thiol (Saini et al., 

1995); and dimethyl sulphide (Bentley and Chasteen, 2004). The production of the 

methyl halides and methane thiol by plants has been suggested as a way to eliminate 

halide and HS- ions from cells (Saini et al., 1995). Atmospheric dimethyl sulphide flux 

comes principally (> 90 %) from the oceans, and is thought to contribute to global 

climate cooling (Stefels et al., 2007).  
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Where the impacts of these compounds on the atmosphere have been calculated on 

regional and global scales, no such analysis has been made on the effects of such plant-

emitted volatile compounds on a local scale. As a result of restrictions on pesticide use, 

particularly of soil fumigants, natural sources of nematode control have been the subject 

of much recent research (see Chapter 1.3 for review). An analysis into the gaseous 

emissions of three brassica species was made over the course of growth from vegetative 

growth to senescence, and the toxicity of these emissions to soilborne nematodes was 

assessed. 
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5.2 Aims 

1. Determine the quantities of bioactive compounds released by brassicas into the soil 

and atmosphere. 

2. Examine the potential of these compounds for control of soilborne nematodes, such 

as Globodera pallida. 

3. Estimate the atmospheric impacts of brassicaceous volatile emissions. 
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5.3 Materials & methods 

5.3.1 Growth of plants for volatile sampling 

A number of commonly used biofumigant plant species were grown for sampling of 

volatiles, including: yellow mustard (Brassica juncea cv. ISCI99); radish 

(Raphanus sativus cvs. WeedCheck and Diablo); and rocket (Eruca sativa cv. Nemat). 

Seeds were surface sterilised with 1 % sodium hypochlorite and then germinated in 

sterile 90 mm petri dishes on filter paper moistened with autoclaved tap water. After 

germination, 8-12 seedlings were transferred to a pot. Plants were allowed to grow for 

7 days, watering every other day with ½-strength Hoagland’s No. 2 solution, before 

transferring individually to 15 cm Ø, 1 litre pots. In order to facilitate removal of soil from 

the root systems of the plants when sampling, the plants were grown in a 9:1 

sand:compost mix throughout their lifecycle. Plants were watered three times a week 

with a modified Hoagland’s No.2 Solution (6.5 mM potassium nitrate, 4.0 mM calcium 

nitrate, 2.0 mM ammonium dihydrogen phosphate, 2.0 mM magnesium sulphate, 

4.6 µM boric acid, 0.5 µM manganese chloride, 0.2 µM zinc sulphate, 0.1 µM 

ammonium heptamolybdate, 0.2 µM copper sulphate, and 45 µM iron(III) chloride; 

supplemented with 50 mM sodium chloride, 0.5 mM sodium bromide, and 0.05 mM 

potassium iodide). The addition of chloride, bromide, and iodide salts was intended to 

prevent depletion of the halides from the soil in the pots. 

5.3.2 Sampling plant volatiles 

In order to sample the airspaces of the above and below-ground parts of each plant, a 

two-chambered sampling box was used (Figure 5.1). The lower chamber was formed of 

an opaque PVC base with a clear acrylic lid, with a total volume of 10.01 L; the clear 

acrylic upper chamber gave a sampling volume of 27.25 L. Plants were checked for 

physical damage or visible signs of disease or malnourishment, and only those plants 

that were outwardly healthy were sampled. Plants were carefully removed from pots 

and the roots were washed of soil, taking care not to damage root tissue. The roots were 

then patted dry and the fresh weight of each plant was recorded.  

Plants were first placed into the root sampling chamber, with the roots kept in a pot of 

water to prevent wilting. A silicone septum was placed around the root-shoot junction 

and silicone vacuum grease was used to create an airtight seal. The temperature within 
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the chamber was recorded, using a probe inserted through a hole in the lid of the 

chamber. Samples were taken 2 minutes, 11 minutes, and 20 minutes after placing the 

plant into the root chamber by affixing a canister to the glass-coated, stainless steel 

sampling line, via a length of sampling line filled with Ascarite, and turning the valve to 

open the canister, allowing air within the chamber to be drawn by pressure differential. 

The Ascarite trap was constructed using a short length of glass-lined steel tubing filled 

with Ascarite II Adsorbent, 20-30 mesh sodium hydroxide-coated silica granules (Sigma-

Aldrich, 223921), with a piece of coiled silver wire blocking each end, and served to 

remove moisture and carbon dioxide from the sampled gas as it was drawn into the 

sampling canister. 

The upper chamber was then placed on top of the root chamber, enclosing the 

aboveground biomass of the plant within. The glass-coated sampling line and Ascarite 

trap were once more affixed to the sampling port and a temperature probe was inserted 

through a separate hole on the top of the chamber. Sampling followed the same 

procedure as with the root chamber, with the chamber temperature recorded at the 

time of each sampling. The ambient temperature was also noted throughout sampling. 

After sampling, the plants were dried and the root and aboveground biomass 

components were separated and placed in paper bags in a 65 °C incubator to dry. After 

4 days in the incubator, plant roots and shoots were separately weighed and returned 

to the incubator. Samples were weighed again after 24 hours, and if the mass had not 

changed through subsequent drying, this was recorded as the dry biomass of that 

sample. 
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Figure 5.1 Plant volatile sampling chamber. The sampling chamber is depicted in use: 

A, the assembled sampling chamber set up to sample volatiles from the aboveground 

biomass of the plant; B, sampling volatiles from the belowground biomass, with the 

canister and Ascarite trap in place. The hole through which the roots of the plant are 

separated from the aboveground biomass is covered with a silicon pad and sealed with 

silicone vacuum grease, to ensure separation of sampling.   

Ascarite trap 



133 
 

 

5.3.3 Analysis of volatile samples and calculation of flux 

The concentrations of gases in the canisters were analysed on an HP GC/MSD fitted with 

a PoraPlot Q column (25 m, 0.32 ID, 5 µm thickness; Restek, Bellefonte, PA), as used in 

previous studies measuring plant methyl halide emissions (Redeker and Cicerone, 2004, 

Redeker et al., 2000).  

Once the peaks of each compound of interest had been integrated, these could be used 

to calculate the concentration of the compound in a sample. The amount of CFC-11 

(trichlorofluoromethane) in the sample was used as an internal standard, due to its well-

mixed, nearly constant concentration in the atmosphere. This allowed samples to be 

compared directly and for more precise calculation of the concentration of each 

compound in each sample. The reading for CFC-11 was set at 240 ppt (parts per trillion), 

as this represents the global tropospheric average (Hoffmann et al., 2014).  Changes in 

compound concentration over time are then used to calculate the flux according to the 

equation: 𝐹𝑙𝑢𝑥𝑋  =  
∆[𝑋]

∆𝑡
, where ∆[X] gives the change in concentration of a given 

compound X over the time period ∆t. This provides a calculated flux in grams of 

compound per gram dry biomass (above- and belowground) per day (g/g biomass/day). 

5.3.4 Estimating contributions of brassicas to global methyl bromide budgets 

The global reported yield values for mustard seed for the year 2016 was taken from the 

Food and Agricultural Organisation Statistical Database (FAOSTAT, 2017), converted into 

total dry biomass based on the average proportion taken from a study on mustard 

responses to different fertiliser treatments (Banerjee et al., 2012). Yield of radishes was 

given as 7 Mt/yr (Dixon, 2006); this was converted to dry mass by according to the 

percentage dry mass:fresh mass taken from plants sampled at flowering stage. These 

dry masses were then divided into above and belowground biomass balues based on 

the proportions observed in sampled plants. Assuming constant output of methyl 

bromide over an 8 week growing season and consistent growth of the each plant from 

seed to harvest, an estimate was then produced. 

No harvest data specific to Eruca sativa was available. 



134 
 

 

5.3.5 Volatile toxicity assays 

Toxicity assays were performed with methyl iodide, dimethyl sulphide and chloroform. 

The remaining compounds were gaseous at room temperature so were considered 

unsuited to the assay. 

The toxicity of compounds to nematodes in a closed environment was assayed using a 

nested dish system (Figure 5.2). Initial experiments with C. elegans N2 adults assessed 

the difference in toxicity of methyl iodide applied directly in solution with the 

nematodes to that of methyl iodide pipetted into the surrounding dish, so that only 

volatilised compound would come into contact with the nematodes. Subsequent assays 

applied compounds only to the outer dish. Compounds were pipetted into the dish in 

3 µl aliquots, diluted where necessary with absolute ethanol, and with control 

treatments of 3 µl absolute ethanol and with no addition of any compound. Where two 

compounds were applied to one dish, this was applied as two 3 µl aliquots, diluted as 

above, with a 6 µl absolute ethanol control treatment.  

Before application of compounds, both the total number of nematodes in each dish and 

the number of those nematodes that were dead or inactive was counted in triplicate. 

Following application of the compounds, the number of inactive or dead nematodes was 

counted at set timepoints. From these numbers, the percentage lethality or inactivity 

was calculated for each dish. 

A further nested-plate assay was conducted with cysts. The values from the single 

cultivar that had the highest methyl iodide and dimethyl sulphide flux from the 

belowground biomass were used, and applied at 1x, 7x and 49x doses from the 

equivalent of 1 g dry biomass, to give values for 1 day, 7 days, and 7 weeks exposure. 

After 24 h incubation, cysts were crushed and the eggs were collected and stained with 

0.001 % Meldola’s blue dye: eggs were incubated for 4 h at room temperature, then 

washed by centrifugation, removal of the supernatant and resuspension in sterile 

distilled water, repeated 3 times. Egg suspensions were then made up to 10 ml volume 

and subsampled (as in Chapter 2.2.3). The total number of nematodes per counting slide 

was counted as well as the number of stained individuals. 
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Figure 5.2 The nested dish system used to assay toxicity of volatile compounds. The 

lower half of a 35 mm petri dish is sealed to the inside of the lid of a 90 mm petri dish 

using vacuum grease and a hole (A) is burned into the upper section of the larger, outer 

dish. A known quantity of nematodes is pipetted into the smaller, central dish in a 2 ml 

aliquot of sterile water, and the larger dish is closed and sealed with vacuum grease. The 

compound to be tested is pipetted through the hole (A), which is quickly sealed with 

vacuum grease. 

  

A 
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Table 5.1 Compounds investigated in this chapter 

Compound IUPAC name Abbreviation Formula Molar 

mass (g 

mol-1) 

Methyl 

chloride 

Chloromethane MeCl CH3Cl 50.49 

Methane thiol  Methanethiol MeSH CH3SH 48.11 

Methyl 

bromide 

Bromomethane MeBr CH3Br 94.94 

Methyl iodide Iodomethane MeI CH3I 141.94 

Dimethyl 

sulphide 

(Methylsulfanyl)methane DMS (CH3)2S 62.13 

Chloroform Trichloromethane CHCl3 CHCl3 119.37 

Abbreviations used in the text are given 
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5.3.6 Statistical analyses 

Data was analysed for statistical significance using IBM SPSS Statistics 24. Analysis of 

variance (ANOVA) was performed with post-hoc Student-Newman-Keuls multiple 

pairwise comparison to identify groups of variables that significantly differed from one 

another.  
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5.4 Results 

5.4.1 Gaseous compounds emitted by brassicas in a closed environment 

The gases produced by the above and below-ground parts of four brassica cultivars were 

examined for their potential to contribute to pest control. The tested brassicas were 

found to produce methyl chloride, methyl bromide and methyl iodide, as well as 

dimethyl sulphide, and chloroform. The growth stage of each plant at the time of 

sampling was found to have an effect on both the flux of compound per gram of dry 

biomass, and therefore on the total flux of compound per plant. A one way-ANOVA 

found significant interaction (P<0.005) between growth stage and the flux of compound 

across all cultivars for methyl bromide (P=0.001) and methyl iodide (P=0.003) 

(Table 5.3), while a further analysis found a significant effect (P<0.05) of cultivar on the 

total output of compound per plant (flux*biomass), again for methyl bromide (P=0.049) 

and methyl iodide (P=0.029) (Table 5.4). 
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Table 5.2 One-way ANOVA of compound fluxes against growth stages (vegetative, 
flowering and senescent) across all cultivars.  

 
Sum of 
Squares df Mean Square F Sig. 

MeCl Between Groups .000 2 .000 .384 .683 

Within Groups .000 75 .000   

Total .000 77    

MeSH Between Groups .000 2 .000 1.929 .154 

Within Groups .000 60 .000   

Total .000 62    

MeBr Between Groups .000 2 .000 7.670 .001** 

Within Groups .000 75 .000   

Total .000 77    

MeI Between Groups .000 2 .000 6.356 .003** 

Within Groups .000 75 .000   

Total .000 77    

DMS Between Groups .000 2 .000 2.510 .088 

Within Groups .000 75 .000   

Total .000 77    

CHCl3 Between Groups .000 2 .000 3.494 .036* 

Within Groups .000 73 .000   

Total .000 75    

*P<0.05 ; **P<0.005; n = 3 in all cases except flowering stage WeedCheck, where n = 5 
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Table 5.3 One-way ANOVA comparing flux of compounds against cultivar (ISCI99, 

WeedCheck, Nemat, Diablo) across all growth stages.  

 
Sum of 
Squares df Mean Square F Sig. 

MeCl Between Groups .000 2 .000 .611 .545 

Within Groups .000 75 .000   

Total .000 77    

MeSH Between Groups .000 2 .000 1.979 .147 

Within Groups .000 60 .000   

Total .000 62    

MeBr Between Groups .000 2 .000 3.130 .049* 

Within Groups .000 75 .000   

Total .000 77    

MeI Between Groups .000 2 .000 3.724 .029* 

Within Groups .000 75 .000   

Total .000 77    

DMS Between Groups .000 2 .000 .231 .794 

Within Groups .000 75 .000   

Total .000 77    

CHCl3 Between Groups .000 2 .000 .574 .566 

Within Groups .000 73 .000   

Total .000 75    

*P<0.05; n = 3 in all cases except flowering WeedCheck, where n = 5 
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5.4.1.1 Brassica juncea cultivar ‘ISCI99’ 

The average dry mass of plants sampled varied according to growth stage, with root 

mass increasing from vegetative (0.15 ± 0.02 g) to flowering (0.96 ± 0.06 g) stage and 

then decreasing from flowering stage to senescence (0.76 ± 0.05 g); ANOVA gave a 

between groups significance of P < 0.001, with Tukey’s test finding the same level of 

significance except in the pairwise comparison of flowering and senescent stage roots, 

where P = 0.047. Shoot masses increased with each growth stage: vegetative (0.85 ± 

0.11 g) to flowering (3.42 ± 0.43 g, P=0.0021) and flowering to senescent (8.15 ± 1.73 g, 

P=0.028); ANOVA gave P = 0.007 for between groups significance, with Tukey’s test 

finding significant differences in pairwise comparisons with senescent aboveground 

biomass (P = 0.257).  

The profile of gases emitted by the Indian mustard cultivar ‘ISCI99’ was found to change 

with the growth stage of the plant (figure 5.3). The flux of methyl chloride from the roots 

decreased over successive growth stages, while from the aboveground biomass it went 

from a negative flux during vegetative growth to a positive flux during flowering, then 

returned to a negative flux in senescence (figure 5.3A). Methane thiol fluxes varied from 

sample to sample but were generally positive, and increased from the roots in senescent 

plants (figure 5.3B). The output of methyl bromide was generally positive, decreasing 

over successive growth stages from the roots, and peaking in production from the 

aboveground biomass in the flowering stage, at 0.51 ± 0.02 µg/g dry biomass/day (figure 

5.3). Methyl iodide (figure 5.3D) production from the roots fell after the vegetative stage 

from 2.63 ± 0.82 µg/g biomass/day to 71.61 ± 0.37 ng/g biomass/day in flowering and 

154.67 ± 69.31 ng/g biomass/day in senescence; flux from the aboveground biomass 

was highest in the vegetative stage (12.48 ± 0.68 µg/g biomass/day), falling to less than 

half that value when flowering (5.73 ± 0.45 µg/g biomass/day), and then reducing 

further in senescence (79.42 ± 28.3 ng/g biomass/day). Dimethyl sulphide fluxes (figure 

5.3E) were negative in the vegetative plant stage, showed high variation in flowering 

plants, and became positive in senescent roots but with high variability (1.06 ± 0.76 µg/g 

biomass/day). Output of chloroform (figure 5.3F) appeared high from vegetative stage 

roots, but with high variation (39.40 ± 74.15 µg/g biomass/day), falling and stabilising in 
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flowering (8.09 ± 4.20 µg/g biomass/day) and senescent roots (11.89 ± 2.04 µg/g 

biomass/day).  
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Figure 5.3 Gas fluxes from Brassica juncea cv. ‘ISCI99’ roots and aboveground biomass 

over 3 growth stages. The change in concentration of gases over a 20 minute period was 

extrapolated to give a value of micrograms flux per gram plant dry biomass per day 

Horizontal axis markers indicate growth stage (1 = vegetative growth, 6 weeks; 2 = 

flowering, 12 weeks; 3 = senescence, 18 weeks) and section of plant (R = roots; ABG = 

aboveground biomass). Error bars give ± 1 standard error.  
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5.4.1.2 Raphanus sativus cultivar ‘WeedCheck’ 

Biomass values for ‘WeedCheck’ radish increased with growth stage. Root biomass 

increased from 0.23 ± 0.037 g in vegetative plants to 7.14 ± 1.38 g in flowering and 

7.78 ± 2.86 g in senescence: differences between growth stages were significant 

(ANOVA, P = 0.037), though Tukey’s test separately grouped vegetative and flowering 

root biomasses and flowering and senescent root biomasses. Shoot biomass also 

increased with growth stage (vegetative: 1.45 ± 0.20 g; flowering: 16.03 ± 1.48 g; 

senescent: 17.90 ± 3.07 g). ANOVA suggested a significant difference between groups 

(P = 0.001), with pairwise comparison grouping flowering and senescent biomasses 

together. 

Figure 5.4 gives the fluxes of tested compounds recorded from R. sativus cv. 

‘WeedCheck’. Production of methyl chloride by WeedCheck was variable in the roots of 

vegetative stage plants (0.31 ± 0.64 µg/g dry biomass/day) but stable in the 

aboveground biomass. Methane thiol emissions were on the nanogram scale in all 

samples apart from vegetative stage roots, where there was high variation. Methyl 

bromide production in the aboveground biomass peaked in flowering plants 

(0.49 ± 0.04 µg/g dry biomass/day); root production peaked in senescence (0.08 ± 

0.07 µg/g dry biomass/day). Methyl iodide production was highest per gram biomass in 

the vegetative stage and declined thereafter. A similar trend was observed in the 

production of DMS from roots, whereas a negative flux observed in the aboveground 

biomass of vegetative plants became positive in later stages. Production of chloroform 

was principally observed in the roots of vegetative plants (59.87 ± 14.05 µg/g dry 

biomass/day).  
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Figure 5.4 Gas fluxes from Raphanus sativus cv. ‘WeedCheck’ roots and aboveground 

biomass over 3 growth stages. The change in concentration of gases over a 20 minute 

period was extrapolated to give a value of micrograms flux per gram plant dry biomass 

per day. Horizontal axis markers indicate growth stage (1 = vegetative growth; 2 = 

flowering; 3 = senescent) and section of plant (R = roots; ABG = aboveground biomass). 

Error bars give ± 1 standard error. n = 3 for growth stages 1 and 3; n = 5 for the flowering 

stage. 
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5.4.1.3 Raphanus sativus cultivar ‘Diablo 

Raphanus sativus cv. ‘Diablo’ root biomass increased from vegetative (0.42 ± 0.19 g) to 

flowering (11.01 ± 4.24 g) before decreasing slightly in senescent plants (10.77 ± 3.09 g); 

ANOVA gave a between groups significance figure of 0.08, indicating that the groups 

were not significantly different from another. Post-hoc analyses indicated significant 

differences between vegetative stage root mass and the masses of roots at the later 

stage (P < 0.05). Aboveground biomass followed the same trend (vegetative: 2.53 ± 0.90 

g; flowering: 14.78 ± 2.78 g; senescent: 13.32 ± 0.38 g), with ANOVA producing a 

between groups significance figure of P = 0.004; Tukey’s test found that flowering and 

senescent biomass did not significantly differ. 

The trends observed in R. sativus cv. ‘Diablo’ were similar to those in ‘WeedCheck,’ with 

some notable differences (Figure 5.5). A negative methyl chloride flux was observed in 

vegetative stage roots, while the aboveground biomass reported positive fluxes at all 

stages. Methane thiol levels were low in all stages, with high variability. Methyl bromide 

production peaked in flowering stage plants at nearly double the value observed in 

‘WeedCheck,’ but with high variability (1.16 ± 0.43 µg/g dry biomass/day). Methyl 

iodide release followed a similar trend to methyl bromide, aboveground biomass 

emissions peaking in flowering plants at 30.97 ± 11.14 µg/g dry biomass/day; 

production in the roots was highest per gram biomass in vegetative stage plants 

(1.15 ± 0.69 µg/g dry biomass/day). DMS emissions were negative in vegetative roots 

but positive in all other samples, with high variability. Chloroform production was again 

highest in the roots of vegetative stage plants (53.69 ± 28.31 µg/g dry biomass/day). 
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Figure 5.5 Gas fluxes from Raphanus sativus cv. ‘Diablo’ roots and aboveground 

biomass over 3 growth stages. The change in concentration of gases over a 20 minute 

period was extrapolated to give a value of micrograms flux per gram plant dry biomass 

per day. Horizontal axis markers indicate growth stage (1 = vegetative growth; 2 = 

flowering; 3 = senescent) and section of plant (R = roots; ABG = aboveground biomass). 

Error bars give ± 1 standard error. The value for methanethiol in vegetative stage roots 

is taken from a single value. n = 3 for all growth stages. 
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5.4.1.4 Eruca sativa cultivar ‘Nemat’ 

Rocket cv. ‘Nemat’ continued the trend of increased biomass with subsequent growth 

stages. Root biomass in vegetative plants was 0.16 ± 0.33 g, growing to 1.77 ± 0.38 g in 

flowering and 2.18 ± 0.65 g in senescent plants (ANOVA P = 0.037); pairwise comparison 

of the groups found a significant difference between vegetative and senescent root 

biomasses (P = 0.038). Aboveground biomass increased from 0.88 ± 0.19 g in vegetative 

plants to 6.11 ± 0.49 g in flowering plants, and 7.27 ± 1.76 g in senescence. Between 

groups differences were significant (ANOVA P = 0.003), and post-hoc pairwise 

comparison with Tukey’s test found that vegetative stage aboveground biomass differed 

significantly from the two later growth stages (P < 0.01). 

The emissions profiles from Eruca sativa cv. ‘Nemat’ at different growth stages varied 

from those observed in B. juncea and R. sativus. Methyl chloride flux was highly variable, 

giving error greater than the average value in vegetative and senescent plants, as well 

as in the roots of flowering plants. Methane thiol fluxes were in the nanogram range 

with high error (a single reading is given for vegetative stage above and belowground 

biomass, resulting in no error bars). Methyl bromide production peaked in both roots 

and the aboveground biomass at flowering (roots: 0.019 ± 0.009 µg/g dry biomass/day; 

ABG: 0.29 ± 0.18 µg/g dry biomass/day). Methyl iodide production from the roots was 

the highest in flowering stage plants of the cultivars tested, at 0.24 ± 0.07  µg/g dry 

biomass/day – this value was used to generate Figure 5.10; production in the 

aboveground biomass peaked at flowering (10.02 ± 4.61 µg/g dry biomass/day). DMS 

fluxes were generally positive in the roots, and negative or near zero in the aboveground 

biomass. The FluxDMS from E. sativa cv. ‘Nemat’ flowering stage roots was also used for 

Figure 5.10 (0.66 ± 0.17 µg/g dry biomass/day). Production of chloroform followed a 

similar pattern to that observed in the other tested species: E. sativa vegetative stage 

roots gave the highest flux recorded, at 153.68 ± 84.74 µg/g dry biomass/day. 
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Figure 5.6 Gas fluxes from Eruca sativa cv. ‘Nemat’ roots and aboveground biomass 

over 3 growth stages. The change in concentration of gases over a 20 minute period was 

extrapolated to give a value of grams flux per gram plant dry biomass per day. A, methyl 

chloride; B, methane thiol; C, methyl bromide; D, methyl iodide; E, dimethyl sulphide; 

and F, chloroform. Horizontal axis markers indicate growth stage (1 = vegetative growth, 

6 weeks; 2 = flowering; 3 = senescent) and section of plant (R = roots; S = aboveground 

biomass). Error bars give ± 1 standard error.  
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5.4.1.5 Total outputs from plants at each growth stage 

The fluxes of each compound from the roots and aboveground biomass at each growth 

stage were multiplied by the average dry biomass of those sections, to give an estimate 

of the average per-plant flux (Table 5.4). 

5.4.1.6 Estimating contributions of brassicas to global atmospheric budgets 

Available data on the yields of mustard seed and radishes were used to calculate the dry 

mass of commercially produced mustard and radishes, and from there estimate a value 

for the output of methyl bromide from total commercial production of these crops 

(Table 5.5). The yield data from 2016 was used for estimation of mustard biomass 

(FAOSTAT, 2017); the estimate for radish production was taken from a book and gives 

only the typical global production of radish per annum, accurate at the time of printing 

(Dixon, 2006). 



 

 

1
5

3
 

MeCl ± MeSH ± MeBr ± MeI ± DMS ± CHCl3 ±

BBG 0.147 0.043 0.052 0.001 0.002 0.011 0.005 0.385 0.120 -0.165 0.060 5.778 10.876

ABG 0.847 -1.027 0.869 0.010 0.012 0.077 0.036 10.562 0.580 -0.784 0.339 0.051 0.090

BBG 0.963 0.182 0.117 0.003 0.004 0.017 0.009 0.069 0.004 -0.067 0.116 7.793 4.042

ABG 3.420 1.036 0.519 0.006 0.005 1.742 0.077 19.583 1.547 0.469 0.446 0.742 0.805

BBG 0.763 0.012 0.046 0.016 0.013 0.014 0.002 0.118 0.053 0.783 0.578 9.077 1.556

ABG 8.150 -0.874 1.654 0.022 0.014 0.229 0.091 0.647 0.231 1.856 1.117 0.052 0.335

BBG 0.233 0.072 0.150 0.053 0.038 0.007 0.001 0.314 0.050 0.231 0.124 13.969 3.279

ABG 1.453 0.155 0.098 0.004 0.007 0.274 0.060 15.198 2.078 -0.748 0.081 -0.540 0.112

BBG 7.142 -0.141 0.469 -0.001 0.016 0.044 0.020 0.452 0.098 1.988 1.098 7.926 3.517

ABG 16.034 3.680 1.292 0.010 0.007 7.803 0.721 131.230 20.018 0.615 0.204 13.441 11.719

BBG 7.783 0.057 0.057 -0.018 0.017 0.616 0.544 0.299 0.345 0.923 0.399 4.824 3.422

ABG 17.903 3.241 0.479 -0.003 0.002 6.132 1.745 108.639 27.902 0.556 0.184 1.474 0.280

BBG 0.423 -2.214 1.579 0.002 0.000 -0.076 0.066 0.487 0.291 -0.248 0.150 22.729 11.984

ABG 2.533 2.353 2.434 0.000 0.000 0.618 0.105 22.987 8.106 0.199 0.176 32.614 18.598

BBG 11.013 0.146 0.027 0.013 0.014 0.021 0.031 1.480 0.581 5.318 5.283 16.024 7.304

ABG 14.783 11.018 4.337 -0.014 0.011 17.213 6.430 457.801 164.669 2.531 1.373 -9.513 8.716

BBG 10.773 -0.121 0.065 0.000 0.003 0.052 0.026 0.367 0.058 0.414 0.069 7.048 1.664

ABG 13.317 4.211 1.005 0.000 0.007 6.528 2.291 48.397 6.405 0.460 0.127 1.431 0.982

BBG 0.157 -0.244 0.462 -0.005 0.000 -0.001 0.004 0.220 0.134 0.136 0.200 24.076 13.276

ABG 0.883 -0.621 1.733 -0.001 0.000 0.014 0.049 0.766 3.417 -1.076 1.253 -21.890 18.098

BBG 1.773 0.009 0.102 0.006 0.005 0.033 0.017 0.507 0.116 0.735 0.309 20.741 7.522

ABG 6.110 1.216 0.288 0.001 0.026 1.790 1.115 61.230 28.152 -0.176 1.063 0.664 0.888

BBG 2.180 0.190 0.323 -0.006 0.005 0.003 0.066 0.198 0.227 0.650 0.004 6.966 3.357

ABG 7.273 -0.297 0.897 -0.003 0.004 0.558 0.859 13.248 3.853 0.097 0.168 1.698 0.418

Table 5.4 Total flux per plant, based on average dry biomass

Stage: V = vegetative, F = flowering, S = senescent; Biomass: BBG = belowground biomass (roots), ABG = aboveground biomass. n = 3 for all sampled plants expect 

WeedCheck F stage, where n = 5

Species 
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Table 5.5 Estimates of the global yearly methyl bromide flux due to growth of 

mustard and radish as cash crops 

Crop Yield Root dry mass 

/yr 

 

Aboveground 

dry mass /yr 

MeBr production 

over 8 weeks 

Mustard 

seed 

0.7 Mt/yr1
 475 t/yr 1687 t/yr 0.078 Gg/yr 

Radish 7 Mt/yr2 296 t/yr 663 t/yr 0.012 Gg/yr 

1. (Banerjee et al., 2012, FAOSTAT, 2017) 

2. (Dixon, 2006) 
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5.4.2 Toxicity of emitted compounds to nematodes 

A nested-dish assay was developed to test the toxicity of emitted compounds to 

nematodes when in a volatile form. Initial testing compared the toxicity of compounds 

applied in solution to nematodes suspended in buffer with compounds applied 

separately to the buffer and allowed to volatilise. Following 18h incubation with methyl 

iodide, it was found that both treatments resulted in high C. elegans mortality 

(97.38 ± 1.27 % in solution, 99.38 ± 0.33 % in the outer dish), with no significant 

difference between the two (P>0.05); both treatments were distinct from the untreated 

control (P<0.001) (figure 5.7). The initial volume of methyl iodide was explorative, 

informing subsequent experiments. 

To test toxicity for plant-parasitic nematodes, and to investigate any synergistic effect 

between compounds, G. pallida J2s were incubated with methyl iodide diluted in 

ethanol, with or without an additional aliquot of chloroform (figure 5.8). No statistical 

difference between treatments at the same concentration of methyl iodide was 

observed. Chloroform tested alone appeared to have no impact on nematode viability. 

The toxicity of dimethyl sulphide (DMS) was then assayed with G. pallida J2s (figure 5.9). 

All concentrations of DMS appeared to result in near 100 % mortality for nematodes 

initially, but some nematodes were able to recover after overnight incubation, 

suggesting that some individuals experienced a nematostatic rather than nematicidal 

effect. Volumes of DMS applied to nematodes were made to match those of methyl 

iodide previously trialled. 

The effects of methyl iodide and DMS on encysted eggs was investigated at 

concentrations estimated to be of biological relevance, and mortality was measured by 

staining of dead nematodes with Meldola’s blue dye (Kroese et al., 2011). Using a dosage 

based on the maximum output from 1 g dry belowground biomass, toxicity was 

observed in eggs exposed to 49 times daily flux (11.91 µg of methyl iodide and 32.49 µg 

of dimethyl sulphide, equivalent to 7 weeks cumulative exposure). The effects of DMS 

and methyl iodide were additive, such that combined application of a 7-week flux of 

dimethyl sulphide and methyl iodide resulted in significantly higher mortality in eggs 

than application of dimethyl sulphide alone (Figure 5.10). 
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Figure 5.7 Toxicity of methyl iodide to C. elegans N2 adults in applied solution and in 

a volatile form. An aliquot of 3 µl (6.84 mg) methyl iodide was applied to each of the 

treatments, and the number of dead nematodes counted before and at 0.5, 1, 2, 3 and 

18 hours after application. Methyl iodide appears to act more quickly when applied in 

solution, but this difference disappeared after overnight incubation. N = 226 ± 42; 

groups are based on a Student-Newman-Keuls analysis, P < 0.05. A t-test indicated P < 

0.001 for the treatments at 18h versus the non-treatment control.  
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Figure 5.8 Inactivity in Globodera pallida J2s after 18h incubation with volatile methyl 

iodide, with or without additional chloroform. The x-axis displays the total volume of 

methyl iodide solution in each treatment, applied diluted with absolute ethanol in a 3 µl 

aliquot. No statistical difference due to addition of chloroform was detected. Exposures 

were performed in triplicate, n=151 ± 28. Labels give groups based on Student-

Newman-Keuls analysis.  
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Figure 5.9 Inactivity in Globodera pallida J2s after incubation with volatile dimethyl 

sulphide. DMS was applied diluted in ethanol in 3 µl aliquots. Nematodes initially 

appeared to have been killed outright at all concentrations of applied DMS, but there 

was a dose-dependent recovery of some nematodes after overnight incubation. 

Exposures were performed in triplicate, n=271 ± 8. Groupings are based on a Student-

Newman-Keuls analysis, P < 0.05 
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Figure 5.10 Toxicity of methyl iodide and dimethyl sulphide to Globodera pallida 

encysted eggs. Cysts suspended in 2 ml sterile distilled water were exposed to volatilised 

methyl iodide and dimethyl sulphide, applied in a 14 µl aliquot diluted in ethanol. Doses 

were based on the 24h flux from 1 g dry root biomass from flowering stage R. sativus cv. 

‘Diablo’: 1 = 1 times the daily flux (methyl iodide = 0.243 µg; DMS = 0.663 µg); 7 = 7 times 

the daily flux; and 49 = 49 times the daily flux; M = methyl iodide in ethanol alone; D = 

dimethyl sulphide in ethanol alone; X = combined doses of methyl iodide and dimethyl 

sulphide in ethanol. Data labels give groupings based on a Student-Newman-Keuls 

analysis, P ≤ 0.05. Exposures were set up with 3 cysts per plate in triplicate, n = 433 ± 92 

eggs per exposure.   
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5.5 Discussion 

5.5.1 Brassicas produce bioactive methyl halides and dimethyl sulphide 

It was demonstrated that brassicas emit methyl bromide and methyl iodide reliably, and 

over the course of their life cycle from seed to senescence. This is in line with previous 

studies that have noted the production of methyl bromide from Brassica napus (Gan et 

al., 1998, Mead et al., 2008), and methyl iodide from B. oleracea (Saini et al., 1995). The 

genes involved in production of methyl halides and methane thiol have been identified 

in Arabidopsis thaliana as S-adenosyl-L-methionine (SAM) dependent 

methyltransferases termed HOL (Harmless to Ozone Layer) or HTMT (halide/thiol 

methyltransferase) genes (Nagatoshi and Nakamura, 2009, Rhew et al., 2003, Saini et 

al., 1995, Itoh et al., 2009). Phylogenetic and enzymatic studies have confirmed the 

presence of HTMT activity in plant families including Brassicaceae and Poaceae 

(including the important food crops wheat, Triticum aestivum; rice, Oryza sativa; and 

corn, Zea mays) (Itoh et al., 2009, Rhew et al., 2003) with the highest such activity 

observed in brassicas (Saini et al., 1995). The activity of HTMTs has been suggested as a 

protective measure, eliminating potentially cytotoxic halide ions from cells (Saini et al., 

1995). In brassicas, a role for HTMTs in glucosinolate metabolism has been suggested, 

with AtHOL1 found to be highly reactive with thiocyanate ions (NCS-, a breakdown 

product of glucosinolates, see Chapter 1.3.3) and hol1 mutant seedlings showing 

increased susceptibility to Pseudomonas syringae (Nagatoshi and Nakamura, 2009).  

The profile of emitted gases changed over the growth period of the plant (Figure 5.3, 

5.4, 5.5 and 5.6; Table 5.4). The biomass of plants generally increased with growth 

period. The plants with highest biomass therefore produced the greatest quantity of 

compounds. Raphanus sativus cv. ‘Diablo’ aboveground biomass generated the highest 

total output of methyl chloride, methyl bromide and methyl iodide, while the highest 

output of dimethyl sulphide was reported from the roots of the same plants. The highest 

flux for chloroform was seen in vegetative stage ‘Diablo’ ABG, and in ‘Nemat’ vegetative 

roots. 
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5.5.1.2 Negative flux values 

A number of negative flux values were observed in a number of the samples, often 

accompanied by high error (Figures 5.3, 5.4, 5.5 and 5.6; Table 5.4). Ambient levels of a 

compound present in the sampling chambers may decrease over time after the chamber 

is sealed in the absence of the plant releasing the compound, but this does not 

necessarily imply that the plant is actively taking up the compound. Negative fluxes 

observed in the roots are likely due to dissolution of the compound into the water in 

which the roots are suspended. In the upper sampling chamber, compounds may be 

passively adsorbing onto the plant in the absence of compound emitted from the plant. 

The presence of microbes able to metabolise a given compound may also explain some 

of the negative fluxes: the large negative flux value for chloroform in E. sativa cv. 

‘Nemat’ vegetative aboveground biomass may be related to the high positive flux 

observed in the roots (Table 5.4): the abundance of chloroform generated in the roots 

could lead to an increase in the population of chloroform-metabolising bacteria (Jugder 

et al., 2017), the presence of which on the surface of the aboveground biomass of the 

plant would lead to active intake of chloroform. 

5.5.2 Atmospheric impacts of brassicaceous crops 

Production of methyl bromide has previously been measured in oilseed rape, and the 

contributions of oilseed rape production to global methyl halide budgets has been 

estimated (Gan et al., 1998), with the most recent analysis giving a value of 5.5 Gg/yr 

MeBr from oilseed production, and 0.005 Gg/yr from mustards (Mead et al., 2008). The 

value estimated from commercial mustard production presented here is higher than 

those previously given, and no such estimate has been made for radish production. As 

the tested radish cultivars generated higher fluxes of methyl bromide than mustard, 

both per g dry biomass (Figures 5.3, 5.4, and 5.5) and per plant (Table 5.4), this may have 

important implications for monitoring of tropospheric methyl bromide.  

The calculated values are necessarily inaccurate. Variation of fluxes based on 

temperature and varying soil halide concentrations are not factored into the analysis, 

and the sampled time points likely only give a snapshot of the variation in fluxes over 

the course of the growing period of a crop, and cannot factor in the variations between 

different brassica crops and the many cultivars thereof. The differences in emissions 
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between the two E. sativa cultivars suggest that there is much intraspecific as well as 

interspecific variation. Estimating contributions to atmospheric budgets based on crop 

production requires accurate data on the yields of each crop produced per annum. The 

UN’s Food and Agricultural Organisation Statistical Database is a valuable resource for 

monitoring of crop production, but detail on the varieties of brassicas grown beyond 

separation of mustard seed and “cabbage and other brassicas” is unavailable (FAOSTAT, 

2017). Emissions from rice paddies analysed over the course of a growing season have 

demonstrated variation in output throughout the life of the crop (Redeker et al., 2004). 

A more granular sampling approach could therefore be taken to analysis of biofumigant 

crops in the field, with more frequent sampling to allow for a model of the flux profile 

of a given biofumigant to be generated.  

The impacts of biofumigation on atmospheric methyl bromide are impossible to 

estimate without reporting on the use of biofumigants. Simple reporting of the 

biofumigant crop used and the seeding density should allow for an estimate of the total 

dry biomass to be calculated (Doheny-Adams et al., 2018), from which the potential 

output of methyl bromide can then be determined. No such reporting currently exists, 

meaning that the potential environmental impacts of growing brassicas for 

biofumigation or as cover crops are unknown. Future expansion of biofumigation 

management practices could therefore contribute to uncertainty in monitoring of 

tropospheric methyl bromide, if not considered in environmental analyses. 

5.5.3 Toxicity of volatile compounds emitted by brassicas 

The compounds emitted by the tested brassica cultivars were found to be toxic to 

C. elegans adults and to Globodera pallida juveniles and encysted eggs (Chapter 5.4.2).  

Methyl iodide has been investigated as an alternative fumigant to methyl bromide, 

apparently preferable because of its low environmental impact, but was rejected in the 

USA due to worries about local toxicity (Pelley, 2009). The mechanism of methyl iodide 

toxicity in mammalian cells has been suggested to include depletion of glutathione and 

disruption of cell membranes (Chamberlain et al., 1999), resulting in severe and long-

lasting neurotoxicity following acute exposure (Nair and Chatterjee, 2010) and with less 

severe effects from chronic, low-level exposure (Chamberlain et al., 1999). Methyl 
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bromide toxicity represents similarly in mammals (Hustinx et al., 1993), also with effects 

from chronic exposure (Yang et al., 1995). The mechanisms by which methyl halides 

cause cytotoxicity, namely excess conjugation of glutathione and disruption of cell 

membranes, are likely conserved across diverse animal phyla, including nematodes for 

which conjugation of glutathione is a known response to xenobiotic compounds (see 

Chapter 3). Inhalation of high concentrations of dimethyl sulphide have been shown to 

be toxic to humans and mice, both through inducing reduction of available oxygen, and 

through disruption of the nervous system (Terazawa et al., 1991). Plant-parasitic 

nematodes have been shown to endure anoxic states for up to 14 days, in the case of 

Bursaphelenchus xylophilus (Kitazume et al., 2018), so this is unlikely to be the mode of 

action of DMS.  

Toxicity of the trialled compounds was observed in nematodes exposed to high 

concentrations of the compounds in a closed environment, poorly mimicking the soil 

environment. In soil planted with a given brassica and infested with potato cyst 

nematodes, encysted eggs located near to brassicas roots could be exposed to a 

constant but low flux of all of the investigated compounds for the entire growth period 

of the crop. As the nested-plate assay involved single point applications of compound 

doses and require the plate to be sealed airtight, a better understanding could be gained 

from development of an assay in which nematodes or cysts are exposed to chronic, low 

doses of the compounds emitted by brassicas. Pot and field trials in which G. pallida 

cysts are encapsulated in mesh bags placed into the soil in the vicinity of brassicas could 

identify if release of compounds from brassica roots into the soil environment 

contributes to the control of potato cyst nematodes. 

The intractability of methyl chloride, methane thiol and methyl bromide also contributes 

some uncertainty to the conclusions of the presented work. Though the methyl 

chlorides are known to be broadly bioactive, likely with similar modes of action to 

methyl iodide, a system in which gaseous compounds can easily be delivered to 

nematodes would allow for investigation of any interactions between the compounds 

of interest. 
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5.6 Summary 

 

• Crops grown for biofumigation and as cover crops emit bioactive compounds 

including methyl halides, methane thiol and dimethyl sulphide 

• The release of the ozone-depleting agents methyl bromide and methyl 

chloride may have impacts on the atmosphere, and should be considered 

when expanding growth of brassicas both as cash crops and for biofumigation 

• The compounds emitted from brassicas are toxic to both free-living and plant-

parasitic nematodes in a closed environment. An additive effect was observed 

when nematodes were exposed to both methyl iodide and dimethyl sulphide. 
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Chapter 6  General Discussion 

A review of the published literature on biofumigation reveals that the majority of 

research focuses on the effectiveness of biofumigants as a control method, and on 

maximisation of the delivery of isothiocyanates into the soil (see Chapter 1.3). The work 

presented here addresses some of the gaps in knowledge relating to biofumigation, 

including the effects of isothiocyanates on nematode metabolism and the impact of 

growing biofumigants on the soil and the environment. An effort was also made to 

develop a screening process for biofumigant activity, and to develop transgenic 

reporters with direct relevance to plant-parasitic nematodes. 

6.1 Investigating xenobiotic metabolism of Globodera pallida  

A number of genes were directly implicated in the response of Globodera pallida J2s to 

contact with isothiocyanates. Comparison of sequenced cDNA with the genes predicted 

in the gene assembly (Cotton et al., 2014) found good overall similarity, with 11 of the 

18 investigated genes having strong homology to the predicted sequences; 7 of these 

translated to amino acid sequences that had >99 % similarity to the predicted protein 

(GP01278, GP02405, GP08126, GP10083, GP10467, GP10686, and GP12030). While 

other genes were less well conserved relative to the predicted sequence, only 2 of the 

18 genes investigated had poor homology with the predicted gene (GP02984 and 

GP08879), indicating that the quality of the gene predictions of the genome assembly is 

generally good. 

The amino acid sequences encoded by the investigated genes suggest a range of roles, 

based on homology to known proteins and to specific domains (see Chapter 3.5.1). A 

number of genes are implicated in xenobiotic metabolism. GP02405 and GP11984 were 

identified as glutathione S-transferases, the enzymes most closely associated with 

detoxification of isothiocyanates (Jiao et al., 1996, Kolm et al., 1995, Zhang, 2000). Given 

the strong homology of GP02405 to Mi-gst-1, its identification as a sigma-class GST, and 

its apparent role in G. pallida xenobiotic metabolism, it is suggested that it be named as 

Gp-gst-1, in-line with suggested naming conventions for parasitic nematode genes (Bird 

and Riddle, 1994). Further investigation of GP11984 should confirm its role as a GST. 

GP03693 was identified as a carboxylesterase, implicated in phase I biotransformation 
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of xenobiotic compounds (Laizure et al., 2013). While carboxylesterases principally 

hydrolyse carboxyesters, they have been demonstrated to catalyse hydrolysis of a broad 

range of substrates (Aranda et al., 2014), which could include preparing isothiocyanates 

for conjugation with reduced glutathione, pending further investigation. Studies on 

xenobiotic metabolism of isothiocyanates in the context of cancer prevention have 

identified a modulating effect on a number of phase I and II enzymes, but have largely 

focused on CYPs and GSTs (Abdull Razis et al.). 

Other genes found to be significantly up-regulated in Dazomet-exposed G. pallida J2s 

could have indirect roles in response to contact with isothiocyanates. GP09707 was 

identified as a putative phosphoethanolamine methyltransferase (PMT), homologous to 

C. elegans PMT-1. PMTs are critical in maintenance of cell membranes such that RNAi 

knockdown of C. elegans PMT-2 results in nematodes with arrested growth that are 

unable to reproduce (Brendza et al., 2007). GP04700 was predicted as an S-

adenosylmethionine synthetase, an enzyme that generates the substrate for PMTs 

(Markham and Pajares, 2009). The simultaneous up-regulation of both GP04700 and 

GP09707 suggest that they may be involved in repair of the cell membranes in response 

to toxin-induced damage, due to the role of PMT in membrane biogenesis (Bobenchik 

et al., 2011). Investigation of the role of GP09707 in G. pallida with RNAi J2s could 

determine whether or not it plays a crucial role in maintenance of normal cellular 

function, as in C. elegans PMT-1 (Brendza et al., 2007) and PMT-2 (Palavalli et al., 2006). 

If such a role is identified, GP09707 could provide a valuable target for control of 

G. pallida. PMTs have no homolog in mammals, their equivalent functions being 

performed by unrelated methyltransferase enzymes (Schubert et al., 2003); targeting of 

nematode PMTs should therefore be a biosafe approach.  

Potential roles in signalling were identified in a number of the genes up-regulated in 

response to Dazomet. GP01278, as a putative tyrosine aminotransferase (TAT) likely 

catalyses the breakdown of tyrosine (Mehere et al., 2010, Rettenmeier et al., 1990), the 

breakdown products of which are involved in cellular communication (Ferguson et al., 

2013). GP10083 likely encodes a sodium/nucleoside transporter, facilitators of 

intercellular signalling (Parkinson et al., 2011). Cell signalling in response to contact with 
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a toxin prepares neighbouring cells for contact with the toxin, in principle, though some 

toxins exploit these pathways (Lahiani et al., 2017).  

Roles in response to Dazomet could be less reliably predicted for a number of the genes 

investigated. GP10686 is predicted to be involved in metabolism of sugar, and GP10467 

matches well with metallocarboxypeptidases, involved in protein folding: these could 

have roles in mobilising energy and proteins for xenobiotic metabolism, but no such link 

was suggested in the literature. One of the genes could not be cloned from cDNA, and 3 

of the 17 remaining genes were found not to be up-regulated when analysed by qPCR: 

GP02040, GP04777 and GP08879.  

Genes identified as putative effectors (GP07079, GP08126 and GP12030) could have a 

role in response to host defences, as one of the principal roles ascribed to effectors is 

that of host defence suppression (Quentin et al., 2013). A general response to 

cytotoxicity in plant-parasitic nematodes could be to up-regulate effectors, as the 

nematode could respond to all contact with bioactive compounds as an indicator of 

contact with a host plant. While effectors have been identified through transcriptomic 

analyses of gene regulation at different life stages (Elling et al., 2009), the stimuli that 

induce these regulatory changes are unexplored. As the mechanisms by which 

nematodes recognise that they have reached the host and selected an appropriate 

feeding site are as yet undescribed (Bohlmann and Sobczak, 2014), contact with 

xenobiotic compounds could form part of the likely multifaceted complex of triggers 

that lead to feeding site selection, up-regulation of relevant genes, and induction of the 

factors that lead to growth and subsequent development of the juvenile nematode. 

6.2 Screening plant extracts for biofumigant activity 

The use of C. elegans reporter lines to detect biofumigant activity was demonstrated, 

with activity reported even from dilute plant tissue extracts. The response of reporters 

to several isothiocyanates at low concentrations suggest good sensitivity of the assay, 

but poor specificity; low concentrations of isothiocyanate activity in plant extracts can 

therefore be detected, but no identification of specific constituent compounds can be 

made, and no quantification can be taken from the response. However, relative 

quantification, by comparison of the differential response of reporters to dilute plant 
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extracts, can be inferred: in two plant extracts of the same concentration, greater 

fluorescence observed in the reporters suggests a higher overall concentration of 

isothiocyanates in the extract, and therefore of glucosinolates in the tissues of the 

plants, as observed in B. juncea and S. alba when diluted (Figure 4.9). 

Development of reporter lines for different bioactive compounds could allow for 

screening of various bioactivities among plant extracts, beyond the scope of 

biofumigation. The study from which the gst-31::gfp lines were derived also 

demonstrated reporters that gave a specific up-regulatory response to chloroquine, 

imidacloprid and thiabendazole, compounds with distinct modes of action (Jones et al., 

2013b). Screening plant extracts for the response related to these compounds could 

identify sources of similar compounds or help to identify novel compounds with similar 

activities from plant sources. In the case of chloroquine, an anti-malarial drug for which 

resistant strains of malaria now exist (Krafts et al., 2012), identification of novel 

compounds from plant sources could potentially generate new drugs for treatment of 

malaria, for which no resistance has developed. Novel analogues of thiabendazole and 

imidacloprid could similarly be identified. As imidacloprid is a neonicotinoid, insecticides 

implicated in the decline of bees and other insect pollinators (Tsvetkov et al., 2017, 

Woodcock et al., 2017), there is likely little appetite for development of new compounds 

of similar activity. Reporter lines that respond to other stimuli, such as nematicides that 

have been phased out (see Chapter 1.3.2), could be used to identify plant sources of 

compounds that are known to be active against pest nematodes in the field, which could 

then be applied in the same fashion as a biofumigant, provided that rigorous testing had 

been performed to rule out detrimental effects to the environment. 

Reports on the efficacy of biofumigants have observed population reductions from 

plants with no glucosinolate content and therefore no release of isothiocyanates into 

the soil, such as corn and wheat (Bélair et al., 2016, McSorley, 2011, Vervoort et al., 

2014). The observed effects on population are typically ascribed to mechanical 

disturbance during incorporation or to positive impacts on soil quality from the addition 

of green manure leading to an increase in organisms that predate or outcompete pests. 

Screening of these crops using XME reporters could reveal that there are bioactive 

components in the plant tissues that contribute to nematode control.  
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For expansion of the biofumigant toolkit, plant extracts that are screened and show 

various different bioactivities could provide a far more robust method of control against 

plant-parasitic nematodes and other soilborne pests. Where novel bioactivity is 

discovered in a plant species through the use of XME reporter nematodes, new 

biofumigant seed mixes could be developed that incorporate a range of plant crops. 

These could be designed to deliver a cocktail of bioactive compounds to soilborne pests, 

mirroring the approaches taken to overcome bacterial resistance, where multiple drugs 

are administered either simultaneously or in phases, in order to target all members of a 

population in which resistance to some or all of the drugs exists in separate organisms 

(Kim et al., 2014, Pal et al., 2015).  

Screening of plants for new sources of isothiocyanate-based biofumigation and for 

methods of control based on separate modes of action could prove to be an important 

goal for the development of biofumigation as a management practice. The 

inconsistencies in biofumigation efficacy observed in the field (Chapter 1.3.5) require 

that research continues until methods are developed that can be applied and guarantee 

a given result. Expanding the range of traditional and novel biofumigant crops available 

will provide a greater range of tools that can be used to answer important research 

questions in the field. 

6.3 Developing transgenesis of plant-parasitic nematodes 

Attempts were made both to generate C. elegans reporters for G. pallida genes, and to 

generate transgenic G. pallida and M. incognita, in order to provide tools to more 

directly study cellular processes relating to plant-parasitic nematodes (Chapters 4.4.5 

and 4.5.4). Transgenic C. elegans with reporter genes (GFP or mCherry) under control of 

G. pallida promoters did not result in expression of the reporter genes, despite 

confirmation of the presence of transgenes by PCR. Despite conservation of some gene 

functions, e.g. sequence homology between GP09707 and C. elegans PMT-1, this 

absence of expression could be explained by divergence between trans- and cis-

regulatory elements between the species. Where coding DNA sequences may be 

necessarily conserved across species in order to maintain gene functionality, regulatory 

elements may diverge while maintaining function. Cis-regulatory elements are those 

regions of non-coding DNA that sit near to transcribed genes within the genome and act 
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in some way to regulate expression of those genes, such as promoters and enhancers 

(Wittkopp and Kalay, 2011), while trans-regulatory elements are those that act on the 

cis-regulatory elements to modulate changes in expression, including transcription 

factors and microRNAs (González-Barrios et al., 2015). Over time, divergence in the cis-

regulatory elements surrounding a gene will not affect expression as long as those trans-

regulatory elements that control expression maintain the modulation of the genes. This 

potential for divergence of regulatory elements was suggested as an explanation of the 

unexpected expression patterns observed in C. elegans transformed with GFP under the 

control of promoters from M. hapla: promoters for genes of conserved coding sequence 

resulted in expression patterns inconsistent with the roles of the genes involved 

(Gordon et al., 2015). The evolutionary distance between C. elegans and M. hapla is 

similar to that between C. elegans and G. pallida (Blaxter, 2011, Blaxter and 

Koutsovoulos, 2015). Therefore, an analogous variation in regulatory elements might be 

expected between C. elegans and G. pallida. The expression of genes with specific roles, 

such as in xenobiotic metabolism, is necessarily more specifically regulated than genes 

with constitutive, or “house-keeping,” roles. Transformation of model organisms such 

as C. elegans with reporter genes driven by promoters of plant-parasitic nematode 

housekeeping genes may prove more fruitful, but would have limited power for further 

investigation. 

More reliable driving of gene expression in transgenic animals might be expected when 

transgenes are sourced from more closely related animals, such as potato cyst and root-

knot nematodes (Decraemer and Hunt, 2013). Expression of GFP under control of the 

G. pallida GAPDH1 promoter was observed in a single transformed M. incognita egg 

(Figure 4.12). As discussed in Chapter 4, parthenogenetic Meloidogyne spp. display a 

number of features, some of these in common with C. elegans, which suggest they may 

be ideal candidates for generation of transgenic plant-parasitic nematodes. For instance, 

M. incognita produces clonal offspring (Trudgill, 1997) – which may be an advantage to 

generating stable transgenic lines – and can generate hundreds of viable offspring per 

adult on a broad range of host plant species within a matter of weeks (Trudgill and Blok, 

2001), a longer generation time than C. elegans, but shorter than cyst nematodes 

(Turner and Subbotin, 2013). Generation of transgenic M. incognita expressing genes 



171 
 

 

under control of root-knot or cyst nematode promoters could therefore be used to 

investigate the roles of genes of interest in different life stages of the nematode. As 

M. incognita can utilise arabidopsis as a host, experiments in which transgenic plant-

parasitic nematodes are grown within transgenic hosts could be set up, to investigate 

plant host-parasite relationships both in a biofumigant context (as arabidopsis is a 

brassica) and more generally, for instance utilising bimolecular fluorescence 

complementation (Shyu and Hu, 2008) to query host-parasite protein-protein 

interactions.  

As the results here demonstrate that generation of transgenic M. incognita is both 

possible and observable, though difficult, future work should seek to develop the 

technique in order to generate a tractable system for the study of plant-parasitic 

nematodes and their interactions with their hosts on a level not yet available. 

6.4 Bioactivity of volatile compounds released by plants 

A number of bioactive compounds were identified and quantified as emitted from 

brassicas, including methyl bromide, a regulated soil fumigant that was the principal 

chemical for control of plant-parasitic nematodes before its regulation under the 

Montreal Protocol (UNEP, 2012). Testing of their bioactivity against C. elegans and 

G. pallida revealed that methyl iodide and dimethyl sulphide (DMS) were toxic to all 

tested life stages in both liquid and volatile forms (see Chapter 5.4.2). Despite the broad 

toxicity of chloroform, including to soilborne nematodes (Sarathchandra et al., 1995), 

no bioactivity was detected at any of the tested volumes. Methyl bromide is also known 

to be toxic to nematodes (Noling, 2002, Noling and Becker, 1994); however, due to its 

low boiling point at atmospheric pressure (3.56 °C) and the hazards associated with 

human exposure (Hustinx et al., 1993), it was deemed inappropriate to attempt to 

include it in the investigation. Methyl chloride and methane thiol were produced at 

lower levels and less consistently across the examined cultivars, and were similarly 

unsuited to study in the work presented here, as each is gaseous at room temperature 

(with boiling points of -23.8 °C and 5.95 °C respectively).  

An additive effect was observed when applying methyl iodide and dimethyl sulphide 

concurrently to nematodes in a closed, “nested-plate” system, while combination of 
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either methyl iodide or DMS with chloroform resulted in no effect on activity. It was 

hypothesised that a synergistic effect, in which the bioactivity of paired compounds 

would be greater than the sum of their parts, might be observed when combining 

compounds emitted by brassicas, but no such effect was demonstrated. Compound 

synergy is sought after in treatment of human infection and disease (Foucquier and 

Guedj, 2015, Lewis et al., 2015, Tallarida, 2011), and has been a goal in studies into 

combinations of soil treatments for nematode control (Mao et al., 2014, Mao et al., 

2012). Though synergy for nematode control was not observed between three pairings 

of the compounds emitted by brassicas, the additive effect between methyl iodide and 

DMS suggest that the full profile of gases emitted by brassica root tissues may have an 

effect on soil organisms. Further investigation of more complex combinations could 

elucidate potential interactions between compounds. Development of a system in 

which methyl bromide can be safely assayed for bioactivity would improve 

understanding of the impacts brassicas have on the soil environment. 

The limitations of the nested-plate assay used here to assess toxicity of volatiles is that 

nematodes were exposed to a single point application of each given compound, rather 

than a steady dose over a long period of time, and that the experiments took place in a 

closed environment. These conditions differ to those experienced by nematodes in the 

soil: brassicas are constantly emitting bioactive compounds in a continuous low dose, 

into a relatively open environment. The soil airspace surrounding the roots of a brassica 

are heterogeneous, porous, moist, and populated with organic matter (O’Brien et al., 

2018). The soil microbiome will vary based on soil type, climate, and other abiotic factors 

(Bates et al., 2011), impacting the fate of gaseous compounds in the soil. While the 

potential for brassicas to have a controlling effect on soilborne pests has been 

demonstrated, the validity of these reactions in field conditions have yet to be assessed. 

Assessment of plant volatile toxicity in vitro would be improved by development of a 

method that could reliably deliver gaseous compounds to a closed environment, at a 

constant dose. This would allow for the chronic effects of exposure to low 

concentrations of the compounds to be investigated, while a gas delivery system would 

enable methyl bromide, methyl chloride and methane thiol to be incorporated into the 

experiment. 
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Future work should look to examine the effect of growing brassicas in soil containing 

potato cyst nematode cysts without then incorporating the brassicas as a green manure, 

as well as examining the gases released into and from the surface of the soil with the 

plants in situ. Different soil types and moisture contents should be investigated, to 

assess how these factors affect both the release and the ultimate fate of volatile 

compounds emitted from brassica roots. Experiments in field conditions could be 

performed using cysts contained in mesh bags placed in the soil near to the root systems 

of brassicas, which could be harvested after a period of growth and assessed for egg 

viability.  

The aboveground biomass of brassicas emitted a greater mass of the principal bioactive 

emissions observed from the belowground biomass. This is unlikely to have any impact 

on soilborne pests, but could impact how aboveground pests select targets for 

herbivory. Research into the gaseous emissions of plants largely focus on the release of 

volatile organic compounds (VOCs), particularly in response to herbivory (Fürstenberg-

Hägg et al., 2013, Holopainen and Blande, 2013, Kigathi et al., 2009). Methyl halide 

emissions from rice plants have been suggested as a possible defence against herbivory, 

though this is unverified (Redeker et al., 2004). Further investigation should therefore 

focus on the responses of aboveground herbivores to the gases released by brassicas. 

Members of the Lepidopterae have developed nitrile-specifier proteins (NSPs) that 

manipulate breakdown of glucosinolates by brassicas to favour harmless nitriles instead 

of bioactive isothiocyanates (Wittstock et al., 2004); similar mechanisms of 

detoxification for contact with toxic methyl halides may also have arisen in brassica-

specific herbivores. 

6.5 Environmental impacts of biofumigation 

The levels of methyl bromide emitted from brassicas were calculated to be higher than 

previous estimates for brassicas other than B. napus, which remains the greatest source 

of atmospheric methyl bromide from brassicas (Gan et al., 1998, Mead et al., 2008), due 

to a greater biomass of rapeseed being grown, for a longer growth period, each year 

(FAOSTAT, 2017). The need for monitoring of sources of ozone-depleting agents was 

outlined in the Montreal Protocol on Substances that Deplete the Ozone Layer, the 

treaty that established global monitoring of such compounds and led to the withdrawal 
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of methyl bromide and artificial compounds such as CFCs (UNEP, 2012); among the 

compounds identified as emitted from brassicas, only methyl bromide is monitored. 

Although iodine radicals have strong reactive potential with ozone, iodine compounds 

react readily in the lower atmosphere and so never reach the stratosphere (Pelley, 

2009). Chlorine atoms also react with ozone in the stratosphere, and methyl chloride 

contributes 16% of atmospheric chlorine atoms (WMO, 2014). However, only ~1% of 

methyl chloride is thought to be anthropogenic (WMO, 2014), with the remainder 

coming from natural sources such as oceans and coastal plant-life (Yokouchi et al., 

2000); methyl chloride is therefore not a scheduled substance under the Montreal 

Protocol (UNEP, 2012). Future monitoring of ozone-depleting substances could look to 

factor in crop production as an anthropogenic source of methyl chloride. 

Where crops grown for produce are reported or can be measured based on trade 

outputs (FAOSTAT, 2017). From these reports, the biomass of brassicas grown for 

produce can be estimated, and from there the resultant release of methyl bromide into 

the atmosphere can be calculated (Chapter 5.4.3). However, no such reporting is made 

for growth of cover crops or for biofumigation. Given the need for adequate monitoring 

of ozone-depleting compounds (UNEP, 2012), the sources and sinks of such compounds, 

termed the atmospheric budget, need to be identified (Butler, 2000). The current known 

sinks of methyl bromide outweigh the known sources, meaning the budget is 

unbalanced (Mead et al., 2008). While current trends show that atmospheric methyl 

bromide is decreasing year on year (WMO, 2014), uncertainty of the sources of methyl 

bromide complicate monitoring. An increase in atmospheric CFC-11 was detected in 

2018, and could be located to production in East Asia (Montzka et al., 2018), possible 

due to the wholly anthropogenic nature of CFC-11. An increase in anthropogenic methyl 

bromide may not be detected due to the lack of balance in the atmospheric budget. It is 

recommended therefore that biofumigation practices should be reported to 

governments for the purposes of improved methyl bromide monitoring.   

There remain a number of unanswered questions in the science of biofumigation. The 

method of green tissue incorporation is evidently a factor in efficacy (Valdes et al., 2012). 

The traditional focus on isothiocyanates as the principal factor in suppressing nematode 

populations is undermined by reports on actual isothiocyanate release being far lower 
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than the calculated potential (Morra and Kirkegaard, 2002), and measurement of 

isothiocyanates in the soil peaking immediately after incorporation and dissipating 

thereafter (Dr Kelly Redeker, personal communication). The work presented here has 

identified a number of genes directly implicated in Globodera pallida xenobiotic 

metabolism, as well as a gene involved in crucial cellular maintenance. These can be 

targeted with techniques such as RNAi to enable control of potato cyst nematodes in a 

specific and biosafe manner. A biologically relevant screening process for identification 

of biofumigant activity in plant tissue extracts has been developed, and should allow for 

the expansion of available biofumigant crops, potentially allowing for the identification 

of more effective alternatives to the crops currently employed. The potential for 

transgenesis of plant-parasitic nematodes has been demonstrated; development of the 

technique will greatly expand the tools available for study of plant-parasitic nematodes. 

The gaseous emissions of brassicas have been examined in greater depth than before, 

identifying bioactive compounds with demonstrable toxicity to plant-parasitic 

nematodes released from both the aboveground and belowground biomass of the 

plants. Ozone-depleting agents among these emissions should be considered when 

expanding biofumigation practice in future. The results presented here indicate that 

there is promise in the continued investigation of brassicas for the control of plant-

parasitic nematodes, but indicate that the focus could shift away from isothiocyanates 

to other avenues of study.  

  



176 
 

 

Chapter 7  References 

ABAD, P., GOUZY, J., AURY, J.-M., CASTAGNONE-SERENO, P., DANCHIN, E. G. J., DELEURY, 
E., PERFUS-BARBEOCH, L., ANTHOUARD, V., ARTIGUENAVE, F., BLOK, V. C., 
CAILLAUD, M.-C., COUTINHO, P. M., DASILVA, C., DE LUCA, F., DEAU, F., 
ESQUIBET, M., FLUTRE, T., GOLDSTONE, J. V., HAMAMOUCH, N., HEWEZI, T., 
JAILLON, O., JUBIN, C., LEONETTI, P., MAGLIANO, M., MAIER, T. R., MARKOV, G. 
V., MCVEIGH, P., PESOLE, G., POULAIN, J., ROBINSON-RECHAVI, M., SALLET, E., 
SEGURENS, B., STEINBACH, D., TYTGAT, T., UGARTE, E., VAN GHELDER, C., 
VERONICO, P., BAUM, T. J., BLAXTER, M., BLEVE-ZACHEO, T., DAVIS, E. L., 
EWBANK, J. J., FAVERY, B., GRENIER, E., HENRISSAT, B., JONES, J. T., LAUDET, V., 
MAULE, A. G., QUESNEVILLE, H., ROSSO, M.-N., SCHIEX, T., SMANT, G., 
WEISSENBACH, J. & WINCKER, P. 2008. Genome Sequence of the Metazoan 
Plant-Parasitic Nematode Meloidogyne Incognita. Nat Biotech, 26, 909-915. 

ABDULL RAZIS, A. F., KONSUE, N. & IOANNIDES, C. Isothiocyanates and Xenobiotic 
Detoxification. Molecular Nutrition & Food Research, 0, 1700916. 

AGHAJANZADEH, T., HAWKESFORD, M. J. & DE KOK, L. J. 2014. The Significance of 
Glucosinolates for Sulfur Storage in Brassicaceae Seedlings. Front Plant Sci, 5. 

AHDB. 2018. Potato Variety Database [Online]. Agriculture and Horticulture 
Development Board. Available: http://varieties.ahdb.org.uk/ [Accessed 20th 
February 2018]. 

AHMAD, R. & SRIVASTAVA, A. 2008. Inhibition of Filarial Glutathione-S-Transferase by 
Various Classes of Compounds and Their Evaluation as Novel Antifilarial Agents. 
Helminthologia 45, 114. 

AIRES, A., CARVALHO, R., DA CONCEICAO BARBOSA, M. & ROSA, E. 2009. Suppressing 
Potato Cyst Nematode, Globodera rostochiensis, with Extracts of Brassicacea 
Plants. 

AISSANI, N., TEDESCHI, P., MAIETTI, A., BRANDOLINI, V., GARAU, V. L. & CABONI, P. 2013. 
Nematicidal Activity of Allylisothiocyanate from Horseradish (Armoracia 
rusticana) Roots against Meloidogyne Incognita. Journal of Agricultural and Food 
Chemistry, 61, 4723-4727. 

AL-REHIAYANI, S. & HAFEZ, S. 1998. Host Status and Green Manure Effect of Selected 
Crops on Meloidogyne chitwoodi Race 2 and Pratylenchus neglectus. 
Nematropica, 28, 213-230. 

ALI, M. A., WIECZOREK, K., KREIL, D. P. & BOHLMANN, H. 2014. The Beet Cyst Nematode 
Heterodera schachtii Modulates the Expression of WRKY Transcription Factors in 
Syncytia to Favour Its Development in Arabidopsis Roots. PLOS ONE, 9, e102360. 

ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. & LIPMAN, D. J. 1990. Basic Local 
Alignment Search Tool. J Mol Biol, 215, 403-10. 

ANDERSSON, D., CHAKRABARTY, R., BEJAI, S., ZHANG, J., RASK, L. & MEIJER, J. 2009. 
Myrosinases from Root and Leaves of Arabidopsis thaliana Have Different 
Catalytic Properties. Phytochemistry, 70, 1345-1354. 

ANDREASSON, E., JORGENSEN, L. B., HOGLUND, A. S., RASK, L. & MEIJER, J. 2001. 
Different Myrosinase and Idioblast Distribution in Arabidopsis and Brassica 
napus. Plant Physiology, 127, 1750-1763. 

http://varieties.ahdb.org.uk/


177 
 

 

ANKENY, R. A. 2001. The Natural History of Caenorhabditis elegans Research. Nature 
Reviews Genetics, 2, 474. 

ANKENY, R. A. & LEONELLI, S. 2011. What’s So Special About Model Organisms? Studies 
in History and Philosophy of Science Part A, 42, 313-323. 

APT, W. J. & CASWELL, E. P. 1988. Application of Nematicides Via Drip Irrigation. Journal 
of Nematology, 20, 1-10. 

ARANDA, J., CERQUEIRA, N. M. F. S. A., FERNANDES, P. A., ROCA, M., TUÑON, I. & 
RAMOS, M. J. 2014. The Catalytic Mechanism of Carboxylesterases: A 
Computational Study. Biochemistry, 53, 5820-5829. 

ARMSTRONG, M. R., BLOK, V. C. & PHILLIPS, M. S. 2000. A Multipartite Mitochondrial 
Genome in the Potato Cyst Nematode Globodera pallida. Genetics, 154, 181-92. 

AUMA, J. & HASHEM, M. 1993. Studies on Substances with Sex Pheromone Activity 
Produced by Heterodera schachtii Females. Fundam. appl. Nematol, 16, 43-46. 

BANERJEE, A., DATTA, J. K. & MONDAL, N. K. 2012. Changes in Morpho-Physiological 
Traits of Mustard under the Influence of Different Fertilizers and Plant Growth 
Regulator Cycocel. Journal of the Saudi Society of Agricultural Sciences, 11, 89-
97. 

BANERJEE, S., GILL, S. S., GAWADE, B. H., JAIN, P. K., SUBRAMANIAM, K. & SIROHI, A. 
2017. Host Delivered Rnai of Two Cuticle Collagen Genes, Mi-Col-1 and Lemmi-5 
Hampers Structure and Fecundity in Meloidogyne incognita. Front Plant Sci, 8, 
2266. 

BANKS, N. C., HODDA, M., SINGH, S. K. & MATVEEVA, E. M. 2012. Dispersal of Potato 
Cyst Nematodes Measured Using Historical and Spatial Statistical Analyses. 
Phytopathology, 102, 620-626. 

BARBER, R. D., HARMER, D. W., COLEMAN, R. A. & CLARK, B. J. 2005. GAPDH as a 
Housekeeping Gene: Analysis of GAPDH mRNA Expression in a Panel of 72 
Human Tissues. Physiol Genomics, 21, 389-95. 

BARDOU-VALETTE, S., GRENIER, E. & MONTARRY, J. 2016. Occurrence of the Tobacco 
Cyst Nematode Subspecies Globodera tabacum subsp. virginiae in France. 
European Journal of Plant Pathology, 144, 199-203. 

BARRETT, J. 2009. Forty Years of Helminth Biochemistry. Parasitology, 136, 1633-1642. 
BATES, S. T., BERG-LYONS, D., CAPORASO, J. G., WALTERS, W. A., KNIGHT, R. & FIERER, 

N. 2011. Examining the Global Distribution of Dominant Archaeal Populations in 
Soil. ISME J, 5, 908-17. 

BEEKWILDER, J., VAN LEEUWEN, W., VAN DAM, N. M., BERTOSSI, M., GRANDI, V., MIZZI, 
L., SOLOVIEV, M., SZABADOS, L., MOLTHOFF, J. W., SCHIPPER, B., VERBOCHT, H., 
DE VOS, R. C. H., MORANDINI, P., AARTS, M. G. M. & BOVY, A. 2008. The Impact 
of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis. 
PLoS ONE, 3, e2068. 

BÉLAIR, G., DAUPHINAIS, N. & MIMEE, B. 2016. Evaluation of Cultural Methods for the 
Management of the Golden Nematode (Globodera rostochiensis) in Quebec, 
Canada. Canadian Journal of Plant Pathology, 38, 209-217. 

BELLAFIORE, S., SHEN, Z., ROSSO, M.-N., ABAD, P., SHIH, P. & BRIGGS, S. P. 2008. Direct 
Identification of the Meloidogyne incognita Secretome Reveals Proteins with 
Host Cell Reprogramming Potential. PLoS Pathogens, 4, e1000192. 



178 
 

 

BENTLEY, R. & CHASTEEN, T. G. 2004. Environmental VOCs––Formation and Degradation 
of Dimethyl Sulfide, Methanethiol and Related Materials. Chemosphere, 55, 291-
317. 

BERNARD, P. 1996. Positive Selection of Recombinant DNA by ccdB. Biotechniques, 21, 
320-3. 

BERNARD, P. & COUTURIER, M. 1992. Cell Killing by the F Plasmid ccdB Protein Involves 
Poisoning of DNA-Topoisomerase II Complexes. J Mol Biol, 226, 735-45. 

BIRD, D. M. & RIDDLE, D. L. 1994. A Genetic Nomenclature for Parasitic Nematodes. 
Journal of Nematology, 26, 138-143. 

BLAXTER, M. 2011. Nematodes: The Worm and Its Relatives. PLOS Biology, 9, e1001050. 
BLAXTER, M. & KOUTSOVOULOS, G. 2015. The Evolution of Parasitism in Nematoda. 

Parasitology, 142, S26-S39. 
BOBENCHIK, A. M., AUGAGNEUR, Y., HAO, B., HOCH, J. C. & BEN MAMOUN, C. 2011. 

Phosphoethanolamine Methyltransferases in Phosphocholine Biosynthesis: 
Functions and Potential for Antiparasite Therapy. FEMS microbiology reviews, 
35, 609-619. 

BOHLMANN, H. & SOBCZAK, M. 2014. The Plant Cell Wall in the Feeding Sites of Cyst 
Nematodes. Frontiers in Plant Science, 5. 

BONES, A. & ROSSITER, J. 1996. The Myrosinase-Glucosinolate System, Its Organisation 
and Biochemistry. Physiologia Plantarum, 97, 194-208 

BONES, A. M. & ROSSITER, J. T. 2006. The Enzymic and Chemically Induced 
Decomposition of Glucosinolates. Phytochemistry, 67, 1053-1067. 

BOUCHER, A. C., MIMEE, B., MONTARRY, J., BARDOU-VALETTE, S., BÉLAIR, G., MOFFETT, 
P. & GRENIER, E. 2013. Genetic Diversity of the Golden Potato Cyst Nematode 
Globodera rostochiensis and Determination of the Origin of Populations in 
Quebec, Canada. Molecular Phylogenetics and Evolution, 69, 75-82. 

BRENDZA, K. M., HAAKENSON, W., CAHOON, R. E., HICKS, L. M., PALAVALLI, L. H., 
CHIAPELLI, B. J., MCLAIRD, M., MCCARTER, J. P., WILLIAMS, D. J., HRESKO, M. C. 
& JEZ, J. M. 2007. Phosphoethanolamine N-Methyltransferase (PMT-1) Catalyses 
the First Reaction of a New Pathway for Phosphocholine Biosynthesis in 
Caenorhabditis Elegans. Biochem J, 404, 439-48. 

BRESLAUER, K. J., FRANK, R., BLOCKER, H. & MARKY, L. A. 1986. Predicting DNA Duplex 
Stability from the Base Sequence. Proc Natl Acad Sci U S A, 83, 3746-50. 

BRIDGE, J. & PAGE, S. L. J. 1980. Estimation of Root-Knot Nematode Infestation Levels 
on Roots Using a Rating Chart. Tropical Pest Management, 26, 296-298. 

BROLSMA, K. M., VAN DER SALM, R. J., HOFFLAND, E. & DE GOEDE, R. G. M. 2014. 
Hatching of Globodera pallida Is Inhibited by 2-Propenyl Isothiocyanate in Vitro 
but Not by Incorporation of Brassica juncea Tissue in Soil. Applied Soil Ecology, 
84, 6-11. 

BROPHY, P. M. & BARRETT, J. 1990. Glutathione Transferase in Helminths. Parasitology, 
100 Pt 2, 345-9. 

BROWN, P. D., TOKUHISA, J. G., REICHELT, M. & GERSHENZON, J. 2003. Variation of 
Glucosinolate Accumulation among Different Organs and Developmental Stages 
of Arabidopsis thaliana. Phytochemistry, 62, 471-481. 

BURMEISTER, W. P., COTTAZ, S., ROLLIN, P., VASELLA, A. & HENRISSAT, B. 2000. High 
Resolution X-Ray Crystallography Shows That Ascorbate Is a Cofactor for 



179 
 

 

Myrosinase and Substitutes for the Function of the Catalytic Base. Journal of 
Biological Chemistry, 275, 39385-39393. 

BUROW, M., BERGNER, A., GERSHENZON, J. & WITTSTOCK, U. 2007. Glucosinolate 
Hydrolysis in Lepidium sativum––Identification of the Thiocyanate-Forming 
Protein. Plant Molecular Biology, 63, 49-61. 

BUTLER, J. H. 2000. Better Budgets for Methyl Halides? Nature, 403, 260. 
BUXDORF, K., YAFFE, H., BARDA, O. & LEVY, M. 2013. The Effects of Glucosinolates and 

Their Breakdown Products on Necrotrophic Fungi. PLOS ONE, 8, e70771. 
CHALFIE, M., TU, Y., EUSKIRCHEN, G., WARD, W. & PRASHER, D. 1994. Green Fluorescent 

Protein as a Marker for Gene Expression. Science, 263, 802-805. 
CHAMBERLAIN, M. P., STURGESS, N. C., LOCK, E. A. & REED, C. J. 1999. Methyl Iodide 

Toxicity in Rat Cerebellar Granule Cells in Vitro: The Role of Glutathione. 
Toxicology, 139, 27-37. 

CHAN, M. K. Y. & CLOSE, R. C. 1987. Aphanomyces Root Rot of Peas 3. Control by the 
Use of Cruciferous Amendments. New Zealand Journal of Agricultural Research, 
30, 225-233. 

CHITWOOD, D. J. 2002. Phytochemical Based Strategies for Nematode Control. Annu Rev 
Phytopathol, 40, 221-49. 

CHOHNAN, S., FUJIO, T., TAKAKI, T., YONEKURA, M., NISHIHARA, H. & TAKAMURA, Y. 
1998. Malonate Decarboxylase of Pseudomonas Putida Is Composed of Five 
Subunits. FEMS Microbiol Lett, 169, 37-43. 

CLARK, S. E., RUNNING, M. P. & MEYEROWITZ, E. M. 1995. Clavata3 Is a Specific 
Regulator of Shoot and Floral Meristem Development Affecting the Same 
Processes as Clavata1. Development, 121, 2057-2067. 

COTTON, J. A., LILLEY, C. J., JONES, L. M., KIKUCHI, T., REID, A. J., THORPE, P., TSAI, I. J., 
BEASLEY, H., BLOK, V., COCK, P. J., EVES-VAN DEN AKKER, S., HOLROYD, N., HUNT, 
M., MANTELIN, S., NAGHRA, H., PAIN, A., PALOMARES-RIUS, J. E., ZAROWIECKI, 
M., BERRIMAN, M., JONES, J. T. & URWIN, P. E. 2014. The Genome and Life-Stage 
Specific Transcriptomes of Globodera pallida Elucidate Key Aspects of Plant 
Parasitism by a Cyst Nematode. Genome Biology, 15, R43. 

DANCHIN, E. G., GUZEEVA, E. A., MANTELIN, S., BEREPIKI, A. & JONES, J. T. 2016. 
Horizontal Gene Transfer from Bacteria Has Enabled the Plant-Parasitic 
Nematode Globodera pallida to Feed on Host-Derived Sucrose. Mol Biol Evol, 33, 
1571-9. 

DANCHIN, E. G. J., ROSSO, M.-N., VIEIRA, P., DE ALMEIDA-ENGLER, J., COUTINHO, P. M., 
HENRISSAT, B. & ABAD, P. 2010. Multiple Lateral Gene Transfers and 
Duplications Have Promoted Plant Parasitism Ability in Nematodes. Proceedings 
of the National Academy of Sciences, 107, 17651-17656. 

DE WAELE, D. & ELSEN, A. 2007. Challenges in Tropical Plant Nematology. Annual Review 
of Phytopathology, 45, 457-485. 

DECRAEMER, W. & HUNT, D. 2013. Structure and Classification. In: PERRY, R. N. & 
MOENS, M. (eds.) Plant Nematology, 2nd Edition. CAB International. 

DICKE, M. & DIJKMAN, H. 2001. Within-Plant Circulation of Systemic Elicitor of Induced 
Defence and Release from Roots of Elicitor That Affects Neighbouring Plants. 
Biochemical Systematics and Ecology, 29, 1075-1087. 

DICKINSON, D. J. & GOLDSTEIN, B. 2016. CRISPR-Based Methods for Caenorhabditis 
elegans Genome Engineering. Genetics, 202, 885-901. 



180 
 

 

DIXON, G. 2006. Vegetable Brassicas and Related Crucifers, Wallingford, Oxfordshire, 
CABI. 

DOS SANTOS MARQUES, C.T., SILVA GAMA, E.V., DA SILVA, F., TELES, S., CAIAFA, A.N. & 
LUCCHESE, A.M. 2017. Improvement of Biomass and Essential Oil Production of 
Lippia alba (Mill) N.E. Brown with Green Manures in Succession. Industrial Crops 
and Products, 112: 113-118 

DOHENY-ADAMS, T., LILLEY, C. J., BARKER, A., ELLIS, S., WADE, R., ATKINSON, H. J., 
URWIN, P. E., REDEKER, K. & HARTLEY, S. E. 2018. Constant Isothiocyanate-
Release Potentials across Biofumigant Seeding Rates. Journal of Agricultural and 
Food Chemistry, 66, 5108-5116. 

EDWARDS, S. & PLOEG, A. 2014. Evaluation of 31 Potential Biofumigant Brassicaceous 
Plants as Hosts for Three Meloiodogyne Species. Journal of Nematology, 46, 287-
295. 

ELLENBY, C. 1946. Nature of the Cyst Wall of the Potato-Root Eelworm Heterodera 
rostochiensis, Wollenweber and Its Permeability to Water. Nature, 157, 302-303. 

ELLENBY, C. 1968. Desiccation Survival in the Plant Parasitic Nematodes, Heterodera 
rostochiensis Wollenweber and Ditylenchus dipsaci (Kuhn) Filipjev. Proceedings 
of the Royal Society B: Biological Sciences, 169, 203-213. 

ELLING, A. A., MITREVA, M., GAI, X., MARTIN, J., RECKNOR, J., DAVIS, E. L., HUSSEY, R. S., 
NETTLETON, D., MCCARTER, J. P. & BAUM, T. J. 2009. Sequence Mining and 
Transcript Profiling to Explore Cyst Nematode Parasitism. BMC Genomics, 10, 58. 

ERBACH, G. 2012. Pesticide Legislation in the EU. Library Briefing 120291REV1. Library 
of the European Parliament. URL: 
http://www.europarl.europa.eu/RegData/bibliotheque/briefing/2012/120291/
LDM_BRI%282012%29120291_REV1_EN.pdf 

ERIKSSON, S., ANDRÉASSON, E., EKBOM, B., GRANÉR, G., PONTOPPIDAN, B., 
TAIPALENSUU, J., ZHANG, J., RASK, L. & MEIJER, J. 2002. Complex Formation of 
Myrosinase Isoenzymes in Oilseed Rape Seeds Are Dependent on the Presence 
of Myrosinase-Binding Proteins. Plant Physiology, 129, 1592-1599. 

ETTLINGER, M. G., DATEO, G. P., JR., HARRISON, B. W., MABRY, T. J. & THOMPSON, C. P. 
1961. Vitamin C as a Coenzyme: The Hydrolysis of Mustard Oil Glucosides. Proc 
Natl Acad Sci U S A, 47, 1875-80. 

ETTLINGER, M. G. & LUNDEEN, A. J. 1957. First Synthesis of a Mustard Oil Glucoside; the 
Enzymatic Lossen Rearrangement. Journal of the American Chemical Society, 79, 
1764-1765. 

EUROPEAN COMMISSION 2003. Council Decision of 18 March 2003 Concerning the Non-
Inclusion of aldicarb in Annex I to Council Directive 91/414/Eec and the 
Withdrawal of Authorisations for Plant Protection Products Containing This 
Active Substance. In: COMMISSION, E. (ed.). European Commission. 

EUROPEAN UNION 1957. Treaty on the Functioning of the European Union - PART 
THREE: UNION POLICIES AND INTERNAL ACTIONS - TITLE XX: ENVIRONMENT - 
Article 191. Official Journal 115: 0132-0133 URL: https://eur-
lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:12008E191  

EUROSTAT 2017. Economic Accounts for Agriculture - Values at Current Prices 
[Aact_Eaa01]. European Commission, © European Union 1995-2017. 

EVANS, K. & HAYDOCK, P. P. J. 2000. Potato Cyst Nematode Management - Present and 
Future. Aspects of Applied Biology, 91-97. 

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:12008E191
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:12008E191


181 
 

 

EVANS, T. 2006. Transformation and Microinjection. In: COMMUNITY, T. C. E. R. (ed.) 
Wormbook. 

EVES-VAN DEN AKKER, S., LAETSCH, D. R., THORPE, P., LILLEY, C. J., DANCHIN, E. G. J., DA 
ROCHA, M., RANCUREL, C., HOLROYD, N. E., COTTON, J. A., SZITENBERG, A., 
GRENIER, E., MONTARRY, J., MIMEE, B., DUCEPPE, M.-O., BOYES, I., MARVIN, J. 
M. C., JONES, L. M., YUSUP, H. B., LAFOND-LAPALME, J., ESQUIBET, M., SABEH, 
M., ROTT, M., OVERMARS, H., FINKERS-TOMCZAK, A., SMANT, G., 
KOUTSOVOULOS, G., BLOK, V., MANTELIN, S., COCK, P. J. A., PHILLIPS, W., 
HENRISSAT, B., URWIN, P. E., BLAXTER, M. & JONES, J. T. 2016. The Genome of 
the Yellow Potato Cyst Nematode, Globodera rostochiensis, Reveals Insights into 
the Basis of Parasitism and Virulence. Genome Biology, 17, 124. 

EVES‐VAN DEN AKKER, S., LILLEY, C. J., REID, A., PICKUP, J., ANDERSON, E., COCK, P. J. A., 
BLAXTER, M., URWIN, P. E., JONES, J. T. & BLOK, V. C. 2015. A Metagenetic 
Approach to Determine the Diversity and Distribution of Cyst Nematodes at the 
Level of the Country, the Field and the Individual. Molecular Ecology, 24, 5842-
5851. 

FAHEY, J. W., ZALCMANN, A. T. & TALALAY, P. 2001. The Chemical Diversity and 
Distribution of Glucosinolates and Isothiocyanates among Plants. 
Phytochemistry, 56, 5-51. 

FALK, K. L., TOKUHISA, J. G. & GERSHENZON, J. 2007. The Effect of Sulfur Nutrition on 
Plant Glucosinolate Content: Physiology and Molecular Mechanisms. Plant Biol 
(Stuttg), 9, 573-81. 

FAOSTAT 2017. Crops. 15/12/2017 ed.: Food and Agriculture Organisation of the United 
Nations. 

FARRÉ, D., BELLORA, N., MULARONI, L., MESSEGUER, X. & ALBÀ, M. M. 2007. 
Housekeeping Genes Tend to Show Reduced Upstream Sequence Conservation. 
Genome Biology, 8, R140. 

FASKE, T. R. & HURD, K. 2015. Sensitivity of MeloidogyneiIncognita and Rotylenchulus 
reniformis to Fluopyram. Journal of Nematology, 47, 316-321. 

FENWICK, D. W. 1940. Methods for the Recovery and Counting of Cysts of Heterodera 
schachtii from Soil. Journal of Helminthology, 18, 155-172. 

FERGUSON, A. A., ROY, S., KORMANIK, K. N., KIM, Y., DUMAS, K. J., RITOV, V. B., MATERN, 
D., HU, P. J. & FISHER, A. L. 2013. TATN-1 Mutations Reveal a Novel Role for 
Tyrosine as a Metabolic Signal That Influences Developmental Decisions and 
Longevity in Caenorhabditis Elegans. PLoS Genetics, 9, e1004020. 

FINKERS-TOMCZAK, A., BAKKER, E., DE BOER, J., VAN DER VOSSEN, E., ACHENBACH, U., 
GOLAS, T., SURYANINGRAT, S., SMANT, G., BAKKER, J. & GOVERSE, A. 2010. 
Comparative Sequence Analysis of the Potato Cyst Nematode Resistance Locus 
H1 Reveals a Major Lack of Co-Linearity between Three Haplotypes in Potato 
(Solanum tuberosum ssp.). Theoretical and Applied Genetics, 122, 595-608. 

FINN, R. D., ATTWOOD, T. K., BABBITT, P. C., BATEMAN, A., BORK, P., BRIDGE, A. J., 
CHANG, H. Y., DOSZTANYI, Z., EL-GEBALI, S., FRASER, M., GOUGH, J., HAFT, D., 
HOLLIDAY, G. L., HUANG, H., HUANG, X., LETUNIC, I., LOPEZ, R., LU, S., 
MARCHLER-BAUER, A., MI, H., MISTRY, J., NATALE, D. A., NECCI, M., NUKA, G., 
ORENGO, C. A., PARK, Y., PESSEAT, S., PIOVESAN, D., POTTER, S. C., RAWLINGS, 
N. D., REDASCHI, N., RICHARDSON, L., RIVOIRE, C., SANGRADOR-VEGAS, A., 
SIGRIST, C., SILLITOE, I., SMITHERS, B., SQUIZZATO, S., SUTTON, G., THANKI, N., 



182 
 

 

THOMAS, P. D., TOSATTO, S. C., WU, C. H., XENARIOS, I., YEH, L. S., YOUNG, S. Y. 
& MITCHELL, A. L. 2017. Interpro in 2017-Beyond Protein Family and Domain 
Annotations. Nucleic Acids Res, 45, D190-d199. 

FIRE, A., XU, S., MONTGOMERY, M. K., KOSTAS, S. A., DRIVER, S. E. & MELLO, C. C. 1998. 
Potent and Specific Genetic Interference by Double-Stranded RNA in 
Caenorhabditis elegans. Nature, 391, 806. 

FLOWER, D. R. 1996. The Lipocalin Protein Family: Structure and Function. Biochemical 
Journal, 318, 1-14. 

FOUCQUIER, J. & GUEDJ, M. 2015. Analysis of Drug Combinations: Current 
Methodological Landscape. Pharmacology Research & Perspectives, 3, e00149. 

FÜRSTENBERG-HÄGG, J., ZAGROBELNY, M. & BAK, S. 2013. Plant Defense against Insect 
Herbivores. International Journal of Molecular Sciences, 14, 10242-10297. 

GAN, J., YATES, S. R., OHR, H. D. & SIMS, J. J. 1998. Production of Methyl Bromide by 
Terrestrial Higher Plants. Geophysical Research Letters, 25, 3595-3598. 

GHEDIN, E., WANG, S., SPIRO, D., CALER, E., ZHAO, Q., CRABTREE, J., ALLEN, J. E., 
DELCHER, A. L., GUILIANO, D. B., MIRANDA-SAAVEDRA, D., ANGIUOLI, S. V., 
CREASY, T., AMEDEO, P., HAAS, B., EL-SAYED, N. M., WORTMAN, J. R., 
FELDBLYUM, T., TALLON, L., SCHATZ, M., SHUMWAY, M., KOO, H., SALZBERG, S. 
L., SCHOBEL, S., PERTEA, M., POP, M., WHITE, O., BARTON, G. J., CARLOW, C. K., 
CRAWFORD, M. J., DAUB, J., DIMMIC, M. W., ESTES, C. F., FOSTER, J. M., 
GANATRA, M., GREGORY, W. F., JOHNSON, N. M., JIN, J., KOMUNIECKI, R., KORF, 
I., KUMAR, S., LANEY, S., LI, B. W., LI, W., LINDBLOM, T. H., LUSTIGMAN, S., MA, 
D., MAINA, C. V., MARTIN, D. M., MCCARTER, J. P., MCREYNOLDS, L., MITREVA, 
M., NUTMAN, T. B., PARKINSON, J., PEREGRIN-ALVAREZ, J. M., POOLE, C., REN, 
Q., SAUNDERS, L., SLUDER, A. E., SMITH, K., STANKE, M., UNNASCH, T. R., WARE, 
J., WEI, A. D., WEIL, G., WILLIAMS, D. J., ZHANG, Y., WILLIAMS, S. A., FRASER-
LIGGETT, C., SLATKO, B., BLAXTER, M. L. & SCOTT, A. L. 2007. Draft Genome of 
the Filarial Nematode Parasite Brugia malayi. Science, 317, 1756-60. 

GIBSON, T., BLOK, V. C. & DOWTON, M. 2007a. Sequence and Characterization of Six 
Mitochondrial Subgenomes from Globodera rostochiensis: Multipartite 
Structure Is Conserved among Close Nematode Relatives. Journal of Molecular 
Evolution, 65, 308-315. 

GIBSON, T., BLOK, V. C., PHILLIPS, M. S., HONG, G., KUMARASINGHE, D., RILEY, I. T. & 
DOWTON, M. 2007b. The Mitochondrial Subgenomes of the Nematode 
Globodera pallida Are Mosaics: Evidence of Recombination in an Animal 
Mitochondrial Genome. J Mol Evol, 64, 463-71. 

GILLET, F.-X., BOURNAUD, C., ANTONINO DE SOUZA JÚNIOR, J. D. & GROSSI-DE-SA, M. 
F. 2017. Plant-Parasitic Nematodes: Towards Understanding Molecular Players 
in Stress Responses. Annals of Botany, 119, 775-789. 

GIMSING, A. L. & KIRKEGAARD, J. A. 2006. Glucosinolate and Isothiocyanate 
Concentration in Soil Following Incorporation of Brassica Biofumigants. Soil 
Biology and Biochemistry, 38, 2255-2264. 

GOMIS-RUTH, F. X. 2008. Structure and Mechanism of Metallocarboxypeptidases. Crit 
Rev Biochem Mol Biol, 43, 319-45. 

GONZÁLEZ-BARRIOS, M., FIERRO-GONZÁLEZ, J. C., KRPELANOVA, E., MORA-LORCA, J. A., 
PEDRAJAS, J. R., PEÑATE, X., CHAVEZ, S., SWOBODA, P., JANSEN, G. & MIRANDA-



183 
 

 

VIZUETE, A. 2015. Cis- and Trans-Regulatory Mechanisms of Gene Expression in 
the Asj Sensory Neuron of Caenorhabditis elegans. Genetics, 200, 123-134. 

GORDON, K. L., ARTHUR, R. K. & RUVINSKY, I. 2015. Phylum-Level Conservation of 
Regulatory Information in Nematodes Despite Extensive Non-Coding Sequence 
Divergence. PLOS Genetics, 11, e1005268. 

GOV.UK. 2018. Importing Food - 3. Genetically Modified Foods [Online]. Available: 
https://www.gov.uk/food-safety-as-a-food-distributor/genetically-modified-
foods [Accessed 20th February 2018]. 

GREEN, J., WANG, D., LILLEY, C. J., URWIN, P. E. & ATKINSON, H. J. 2012. Transgenic 
Potatoes for Potato Cyst Nematode Control Can Replace Pesticide Use without 
Impact on Soil Quality. PLoS ONE, 7, e30973. 

GRENIER, E., ANTHOINE, G., FOURNET, S. & PETIT, E. 2010. A Cyst Nematode 'Species 
Factory' Called the Andes. Nematology, 12, 163-169. 

GRISHOK, A. 2005. Rnai Mechanisms in Caenorhabditis Elegans. FEBS Lett, 579, 5932-9. 
GRUNDLER, F., BETKA, M. & WYSS, U. 1991. Influence of Changes in the Nurse Cell 

System (Syncytium) on Sex Determination and Development of the Cyst 
Nematode Heterodera-Schachtii - Total Amounts of Proteins and Amino-Acids. 
Phytopathology, 81, 70-74. 

GRUNDLER, F. M. W., SOBCZAK, M. & GOLINOWSKI, W. 1998. Formation of Wall 
Openings in Root Cells of Arabidopsis thaliana Following Infection by the Plant-
Parasitic Nematode Heterodera schachtii. European Journal of Plant Pathology, 
104, 545-551. 

GUMZ, F., KRAUSZE, J., EISENSCHMIDT, D., BACKENKÖHLER, A., BARLEBEN, L., BRANDT, 
W. & WITTSTOCK, U. 2015. The Crystal Structure of the Thiocyanate-Forming 
Protein from Thlaspi arvense, a Kelch Protein Involved in Glucosinolate 
Breakdown. Plant Molecular Biology, 89, 67-81. 

HALKIER, B. A. & GERSHENZON, J. 2006. Biology and Biochemistry of Glucosinolates. 
Annual Review of Plant Biology, 57, 303-333. 

HANDOO, Z. A., CARTA, L. K., SKANTAR, A. M. & CHITWOOD, D. J. 2012. Description of 
Globodera ellingtonae n. sp. (Nematoda: Heteroderidae) from Oregon. J 
Nematol, 44, 40-57. 

HAVERKORT, A. J. & HILLIER, J. G. 2011. Cool Farm Tool – Potato: Model Description and 
Performance of Four Production Systems. Potato Research, 54, 355-369. 

HEMBERG, M. & KREIMAN, G. 2011. Conservation of Transcription Factor Binding Events 
Predicts Gene Expression across Species. Nucleic Acids Research, 39, 7092-7102. 

HENDERSON, D. R., RIGA, E., RAMIREZ, R. A., WILSON, J. & SNYDER, W. E. 2009. Mustard 
Biofumigation Disrupts Biological Control by Steinernema spp. Nematodes in the 
Soil. Biological Control, 48, 316-322. 

HEUNGENS, K., MUGNIERY, D., VANMONTAGU, M., GHEYSEN, G. & NIEBEL, A. 1996. A 
Method to Obtain Disinfected Globodera Infective Juveniles Directly from Cysts. 
Fundamental and Applied Nematology, 19, 91-93. 

HILTPOLD, I., ERB, M., ROBERT, C. A. & TURLINGS, T. C. 2011. Systemic Root Signalling in 
a Belowground, Volatile-Mediated Tritrophic Interaction. Plant Cell Environ, 34, 
1267-75. 

HOFFMANN, L., HOPPE, C. M., MÜLLER, R., DUTTON, G. S., GILLE, J. C., GRIESSBACH, S., 
JONES, A., MEYER, C. I., SPANG, R., VOLK, C. M. & WALKER, K. A. 2014. 

https://www.gov.uk/food-safety-as-a-food-distributor/genetically-modified-foods
https://www.gov.uk/food-safety-as-a-food-distributor/genetically-modified-foods


184 
 

 

Stratospheric Lifetime Ratio of CFC-11 and CFC-12 from Satellite and Model 
Climatologies. Atmos. Chem. Phys., 14, 12479-12497. 

HOFMANN, J., EL ASHRY, A. E. N., ANWAR, S., ERBAN, A., KOPKA, J. & GRUNDLER, F. 
2010. Metabolic Profiling Reveals Local and Systemic Responses of Host Plants 
to Nematode Parasitism. The Plant Journal, 62(6), 1058-1071. 

HOLOPAINEN, J. K. & BLANDE, J. D. 2013. Where Do Herbivore-Induced Plant Volatiles 
Go? Frontiers in Plant Science, 4, 185. 

HUANG, G., ALLEN, R., DAVIS, E. L., BAUM, T. J. & HUSSEY, R. S. 2006. Engineering Broad 
Root-Knot Resistance in Transgenic Plants by RNAi Silencing of a Conserved and 
Essential Root-Knot Nematode Parasitism Gene. Proceedings of the National 
Academy of Sciences of the United States of America, 103, 14302-14306. 

HUBER, W., CAREY, V. J., GENTLEMAN, R., ANDERS, S., CARLSON, M., CARVALHO, B. S., 
BRAVO, H. C., DAVIS, S., GATTO, L., GIRKE, T., GOTTARDO, R., HAHNE, F., 
HANSEN, K. D., IRIZARRY, R. A., LAWRENCE, M., LOVE, M. I., MACDONALD, J., 
OBENCHAIN, V., OLES, A. K., PAGES, H., REYES, A., SHANNON, P., SMYTH, G. K., 
TENENBAUM, D., WALDRON, L. & MORGAN, M. 2015. Orchestrating High-
Throughput Genomic Analysis with Bioconductor. Nat Methods, 12, 115-21. 

HUNTER, P. 2008. The Paradox of Model Organisms. The Use of Model Organisms in 
Research Will Continue Despite Their Shortcomings. EMBO Reports, 9, 717-720. 

HUSTINX, W. N., VAN DE LAAR, R. T., VAN HUFFELEN, A. C., VERWEY, J. C., MEULENBELT, 
J. & SAVELKOUL, T. J. 1993. Systemic Effects of Inhalational Methyl Bromide 
Poisoning: A Study of Nine Cases Occupationally Exposed Due to Inadvertent 
Spread During Fumigation. British Journal of Industrial Medicine, 50, 155-159. 

IGC. 2017. International Grains Council Market Report 23 November 2017.  [Accessed 
11th January 2018]. 

INDARTI, S., RTP, B., MULYADI & TRIMAN, B. 2004. First Record of Potato Cyst Nematode 
Globodera rostochiensis in Indonesia. Australasian Plant Pathology, 33, 325-326. 

INOUE, H., NOJIMA, H. & OKAYAMA, H. 1990. High Efficiency Transformation of 
Escherichia coli with Plasmids. Gene, 96, 23-8. 

ISHIDA, M., HARA, M., FUKINO, N., KAKIZAKI, T. & MORIMITSU, Y. 2014. Glucosinolate 
Metabolism, Functionality and Breeding for the Improvement of Brassicaceae 
Vegetables. Breeding Science, 64, 48-59. 

ITOH, N., TODA, H., MATSUDA, M., NEGISHI, T., TANIGUCHI, T. & OHSAWA, N. 2009. 
Involvement of S-Adenosylmethionine-Dependent Halide/Thiol 
Methyltransferase (HTMT) in Methyl Halide Emissions from Agricultural Plants: 
Isolation and Characterization of an HTMT-Coding Gene from Raphanus Sativus 
(Daikon Radish). BMC Plant Biology, 9, 116-116. 

JAFFE, H., HUETTEL, R. N., DEMILO, A. B., HAYES, D. K. & REBOIS, R. V. 1989. Isolation 
and Identification of a Compound from Soybean Cyst Nematode, Heterodera 
glycines, with Sex Pheromone Activity. J Chem Ecol, 15, 2031-43. 

JANCOVA, P., ANZENBACHER, P. & ANZENBACHEROVA, E. 2010. Phase II Drug 
Metabolizing Enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 
154, 103-16. 

JAOUANNET, M., MAGLIANO, M., ARGUEL, M. J., GOURGUES, M., EVANGELISTI, E., 
ABAD, P. & ROSSO, M. N. 2013. The Root-Knot Nematode Calreticulin Mi-CRT Is 
a Key Effector in Plant Defense Suppression. Mol Plant Microbe Interact, 26, 97-
105. 



185 
 

 

JIAO, D., CONAWAY, C. C., WANG, M. H., YANG, C. S., KOEHL, W. & CHUNG, F. L. 1996. 
Inhibition of N-Nitrosodimethylamine Demethylase in Rat and Human Liver 
Microsomes by Isothiocyanates and Their Glutathione, L-Cysteine, and N-Acetyl-
L-Cysteine Conjugates. Chem Res Toxicol, 9, 932-8. 

JOHNSON, A. W., GOLDEN, A. M., AULD, D. L. & SUMNER, D. R. 1992. Effects of Rapeseed 
and Vetch as Green Manure Crops and Fallow on Nematodes and Soil-Borne 
Pathogens. Journal of Nematology, 24, 117-126. 

JOHNSTONE, I. L. 1999. 10. Molecular Biology. In: HOPE, I. (ed.) C. Elegans: A Practical 
Approach. Oxford University Press. 

JONES, J. G., KLECZEWSKI, N. M., DESAEGER, J., MEYER, S. L. F. & JOHNSON, G. C. 2017a. 
Evaluation of Nematicides for Southern Root-Knot Nematode Management in 
Lima Bean. Crop Protection, 96, 151-157. 

JONES, J. T., HAEGEMAN, A., DANCHIN, E. G. J., GAUR, H. S., HELDER, J., JONES, M. G. K., 
KIKUCHI, T., MANZANILLA-LÓPEZ, R., PALOMARES-RIUS, J. E., WESEMAEL, W. M. 
L. & PERRY, R. N. 2013a. Top 10 Plant-Parasitic Nematodes in Molecular Plant 
Pathology. Molecular Plant Pathology, 14, 946-961. 

JONES, J. T., KUMAR, A., PYLYPENKO, L. A., THIRUGNANASAMBANDAM, A., CASTELLI, L., 
CHAPMAN, S., COCK, P. J., GRENIER, E., LILLEY, C. J., PHILLIPS, M. S. & BLOK, V. C. 
2009. Identification and Functional Characterization of Effectors in Expressed 
Sequence Tags from Various Life Cycle Stages of the Potato Cyst Nematode 
Globodera pallida. Mol Plant Pathol, 10, 815-28. 

JONES, L. M., EVES-VAN DEN AKKER, S., VAN-OOSTEN HAWLE, P., ATKINSON, H. J. & 
URWIN, P. E. 2018a. Duplication of hsp-110 Is Implicated in Differential Success 
of Globodera Species under Climate Change. Molecular Biology and Evolution, 
35(10), 2401-2413. 

JONES, L. M., KOEHLER, A.-K., TRNKA, M., BALEK, J., CHALLINOR, A. J., ATKINSON, H. J. & 
URWIN, P. E. 2017b. Climate Change Is Predicted to Alter the Current Pest Status 
of Globodera pallida and G. rostochiensis in the United Kingdom. Global Change 
Biology, 23, 4497-4507. 

JONES, L. M., RAYSON, S. J., FLEMMING, A. J. & URWIN, P. E. 2013b. Adaptive and 
Specialised Transcriptional Responses to Xenobiotic Stress in Caenorhabditis 
elegans Are Regulated by Nuclear Hormone Receptors. PLoS ONE, 8, e69956. 

JONES, P. W., TYLKA, G. L. & PERRY, R. N. 1998. Hatching. In: PERRY, R. N. & WRIGHT, D. 
J. (eds.) The Physiology and Biochemistry of Free-Living and Plant-Parasitic 
Nematodes. UK: CABI. 

JUGDER, B. E., BOHL, S., LEBHAR, H., HEALEY, R. D., MANEFIELD, M., MARQUIS, C. P. & 
LEE, M. 2017. A Bacterial Chloroform Reductive Dehalogenase: Purification and 
Biochemical Characterization. Microb Biotechnol, 10, 1640-1648. 

KALL, L., KROGH, A. & SONNHAMMER, E. L. 2004. A Combined Transmembrane Topology 
and Signal Peptide Prediction Method. J Mol Biol, 338, 1027-36. 

KEARN, J., LUDLOW, E., DILLON, J., O’CONNOR, V. & HOLDEN-DYE, L. 2014. Fluensulfone is a 
Nematicide with a Mode of Action Distinct from Anticholinesterases and Macrocyclic 
Lactones. Pesticide Biochemistry and Physiology, 109: 44-57 

KELLY, P. J., BONES, A. & ROSSITER, J. T. 1998. Sub-Cellular Immunolocalization of the 
Glucosinolate Sinigrin in Seedlings of Brassica Juncea. Planta, 206, 370-7. 

KERRY, B., BARKER, A. & EVANS, K. 2003. Investigation of Potato Cyst Nematode Control. 
Report HH31111TPO for DEFRA. Rothamstead Research. 



186 
 

 

KESSLER, A. & BALDWIN, I. T. 2001. Defensive Function of Herbivore-Induced Plant 
Volatile Emissions in Nature. Science, 291, 2141-2144. 

KIGATHI, R. N., UNSICKER, S. B., REICHELT, M., KESSELMEIER, J., GERSHENZON, J. & 
WEISSER, W. W. 2009. Emission of Volatile Organic Compounds after Herbivory 
from Trifolium pratense (L.) under Laboratory and Field Conditions. Journal of 
Chemical Ecology, 35, 1335-1348. 

KIKUCHI, T., AKKER, S. E.-V. D. & JONES, J. T. 2017. Genome Evolution of Plant-Parasitic 
Nematodes. Annual Review of Phytopathology, 55, 333-354. 

KIM, S., LIEBERMAN, T. D. & KISHONY, R. 2014. Alternating Antibiotic Treatments 
Constrain Evolutionary Paths to Multidrug Resistance. Proc Natl Acad Sci U S A, 
111, 14494-9. 

KIONTKE, K. & FITCH, D. 2005. The Phylogenetic Relationships of Caenorhabditis and 
Other Rhabditids. In: COMMUNITY, T. C. E. R. (ed.) Wormbook. 

KIRKEGAARD, J. A. & SARWAR, M. 1998. Biofumigation Potential of Brassicas - I. 
Variation in Glucosinolate Profiles of Diverse Field-Grown Brassicas. Plant and 
Soil, 201, 71-89. 

KITAZUME, H., DAYI, M., TANAKA, R. & KIKUCHI, T. 2018. Assessment of the Behaviour 
and Survival of Nematodes under Low Oxygen Concentrations. PLoS ONE, 13, 
e0197122. 

KLIEBENSTEIN, D. J., KROYMANN, J., BROWN, P., FIGUTH, A., PEDERSEN, D., 
GERSHENZON, J. & MITCHELL-OLDS, T. 2001. Genetic Control of Natural Variation 
in Arabidopsis Glucosinolate Accumulation. Plant Physiol, 126, 811-25. 

KOLDE, R. 2018. Pheatmap: Pretty Heatmaps. 
KOLM, R. H., DANIELSON, U. H., ZHANG, Y., TALALAY, P. & MANNERVIK, B. 1995. 

Isothiocyanates as Substrates for Human Glutathione Transferases: Structure-
Activity Studies. Biochem J, 311 ( Pt 2), 453-9. 

KONG, X. Y., KISSEN, R. & BONES, A. M. 2012. Characterization of Recombinant Nitrile-
Specifier Proteins (Nsps) of Arabidopsis thaliana: Dependency on Fe(Ii) Ions and 
the Effect of Glucosinolate Substrate and Reaction Conditions. Phytochemistry, 
84, 7-17. 

KORT, J., ROSS, H., RUMPENHORST, H. J. & STONE, A. R. 1977. An International Scheme 
for Identifying and Classifying Pathotypes of Potato Cyst-Nematodes Globodera 
rostochiensis and G. pallida. Nematologica, 23, 333-339. 

KRAFTS, K., HEMPELMANN, E. & SKÓRSKA-STANIA, A. 2012. From Methylene Blue to 
Chloroquine: A Brief Review of the Development of an Antimalarial Therapy. 
Parasitology Research, 111, 1-6. 

KROESE, D., ZASADA, I. A. & INGHAM, R. E. 2011. Comparison of Meldola’s Blue Staining 
and Hatching Assay with Potato Root Diffusate for Assessment of Globodera sp. 
Egg Viability. Journal of Nematology, 43, 182-186. 

KUCHERNIG, J. C., BACKENKOHLER, A., LUBBECKE, M., BUROW, M. & WITTSTOCK, U. 
2011. A Thiocyanate-Forming Protein Generates Multiple Products Upon 
Allylglucosinolate Breakdown in Thlaspi Arvense. Phytochemistry, 72, 1699-709. 

KYNDT, T., VIEIRA, P., GHEYSEN, G. & DE ALMEIDA-ENGLER, J. 2013. Nematode Feeding 
Sites: Unique Organs in Plant Roots. Planta, 238, 807-818. 

LAHIANI, A., YAVIN, E. & LAZAROVICI, P. 2017. The Molecular Basis of Toxins’ 
Interactions with Intracellular Signaling Via Discrete Portals. Toxins, 9, 107. 



187 
 

 

LAIZURE, S. C., HERRING, V., HU, Z., WITBRODT, K. & PARKER, R. B. 2013. The Role of 
Human Carboxylesterases in Drug Metabolism: Have We Overlooked Their 
Importance? Pharmacotherapy, 33, 210-222. 

LARKIN, R. P. & GRIFFIN, T. S. 2007. Control of Soilborne Potato Diseases Using Brassica 
Green Manures. Crop Protection, 26, 1067-1077. 

LAZZERI, L., CURTO, G., LEONI, O. & DALLAVALLE, E. 2004. Effects of Glucosinolates and 
Their Enzymatic Hydrolysis Products Via Myrosinase on the Root-Knot Nematode 
Meloidogyne incognita (Kofoid Et White) Chitw. J Agric Food Chem, 52, 6703-7. 

LAZZERI, L., MALAGUTI, L., CINTI, S., UGOLINI, L., DE NICOLA, G. R., BAGATTA, M., 
CASADEI, N., D'AVINO, L., MATTEO, R. & PATALANO, G. 2013. The Brassicaceae 
Biofumigation System for Plant Cultivation and Defence. An Italian Twenty-Year 
Experience of Study and Application. Acta Horticulturae, 1005, 375-382. 

LEE, C., CHRONIS, D., KENNING, C., PERET, B., HEWEZI, T., DAVIS, E. L., BAUM, T. J., 
HUSSEY, R., BENNETT, M. & MITCHUM, M. G. 2011. The Novel Cyst Nematode 
Effector Protein 19c07 Interacts with the Arabidopsis Auxin Influx Transporter 
LAX3 to Control Feeding Site Development. Plant Physiol, 155, 866-80. 

LEMBRIGHT, H. W. 1990. Soil Fumigation: Principles and Application Technology. Journal 
of Nematology, 22, 632-644. 

LEWIS, K., TZILIVAKIS, J., WARNER, D. & GREEN, A. 2016. An International Database for 
Pesticide Risk Assessments and Management. Human and Ecological Risk 
Assessment: An International Journal, 22, 1050-1064. 

LEWIS, R., GUHA, R., KORCSMAROS, T. & BENDER, A. 2015. Synergy Maps: Exploring 
Compound Combinations Using Network-Based Visualization. Journal of 
Cheminformatics, 7, 36. 

LILJEROTH, E., LANKINEN, Å., WIIK, L., BURRA, D. D., ALEXANDERSSON, E. & 
ANDREASSON, E. 2016. Potassium Phosphite Combined with Reduced Doses of 
Fungicides Provides Efficient Protection against Potato Late Blight in Large-Scale 
Field Trials. Crop Protection, 86, 42-55. 

LILLEY, C. J., ATKINSON, H. J. & URWIN, P. E. 2005. Molecular Aspects of Cyst Nematodes. 
Molecular Plant Pathology, 6, 577-588. 

LILLEY, C. J., DAVIES, L. J. & URWIN, P. E. 2012. Rna Interference in Plant Parasitic 
Nematodes: A Summary of the Current Status. Parasitology, 139, 630-640. 

LILLEY, C. J., URWIN, P. E., JOHNSTON, K. A. & ATKINSON, H. J. 2004. Preferential 
Expression of a Plant Cystatin at Nematode Feeding Sites Confers Resistance to 
MeloidogyneiIncognita and Globodera pallida. Plant Biotechnol J, 2, 3-12. 

LIMA-DYBAL, K. 2016, Survey of PCN in England and Wales, Unpublished 
LORD, J. S., LAZZERI, L., ATKINSON, H. J. & URWIN, P. E. 2011. Biofumigation for Control 

of Pale Potato Cyst Nematodes: Activity of Brassica Leaf Extracts and Green 
Manures on Globodera pallida in Vitro and in Soil. Journal of Agricultural and 
Food Chemistry, 59, 7882-7890. 

LOVE, M. I., HUBER, W. & ANDERS, S. 2014. Moderated Estimation of Fold Change and 
Dispersion for RNA-seq Data with DESEQ2. Genome Biology, 15, 550. 

LOVELL, T. M., WOODS, R. J., BUTLIN, D. J., BRAYLEY, K. J., MANYONDA, I. T., JARVIS, J., 
HOWELL, S. & LOWRY, P. J. 2007. Identification of a Novel Mammalian Post-
Translational Modification, Phosphocholine, on Placental Secretory 
Polypeptides. Journal of Molecular Endocrinology, 39, 189-198. 



188 
 

 

LU, P., GILARDI, G., GULLINO, M.L. & GARIBALDI, A. 2010. Biofumigation with Brassica 
Plants and its Effect on the Inoculum Potential of Fusarium Yellows of Brassica 
crops. Eur J Plant Pathol 126, 387. 

MACLEOD, A. J. & ROSSITER, J. T. 1985. The Occurrence and Activity of Epithiospecifier 
Protein in Some Cruciferae Seeds. Phytochemistry, 24, 1895-1898. 

MADDEN, T. L., TATUSOV, R. L. & ZHANG, J. 1996. Applications of Network Blast Server. 
Methods Enzymol, 266, 131-41. 

MADURO, M. & PILGRIM, D. 1996. Conservation of Function and Expression of Unc-119 
from Two Caenorhabditis Species Despite Divergence of Non-Coding DNA. Gene, 
183, 77-85. 

MADURO, M. F. 2015. 20 Years of unc-119 as a Transgene Marker. Worm, 4, e1046031. 
MAI, W. F. 1977. Worldwide Distribution of Potato-Cyst Nematodes and Their 

Importance in Crop Production. J Nematol, 9, 30-4. 
MAIER, T. R., HEWEZI, T., PENG, J. & BAUM, T. J. 2013. Isolation of Whole Esophageal 

Gland Cells from Plant-Parasitic Nematodes for Transcriptome Analyses and 
Effector Identification. Mol Plant Microbe Interact, 26, 31-5. 

MAO, L., YAN, D., WANG, Q., LI, Y., OUYANG, C., LIU, P., SHEN, J., GUO, M. & CAO, A. 
2014. Evaluation of the Combination of Dimethyl Disulfide and Dazomet as an 
Efficient Methyl Bromide Alternative for Cucumber Production in China. J Agric 
Food Chem, 62, 4864-9. 

MAO, L. G., WANG, Q. X., YAN, D. D., XIE, H. W., LI, Y., GUO, M. X. & CAO, A. C. 2012. 
Evaluation of the Combination of 1,3-Dichloropropene and Dazomet as an 
Efficient Alternative to Methyl Bromide for Cucumber Production in China. Pest 
Manag Sci, 68, 602-9. 

MARAHATTA, S. P., WANG, K.-H., SIPES, B. S. & HOOKS, C. R. R. 2010. Strip-Tilled Cover 
Cropping for Managing Nematodes, Soil Mesoarthropods, and Weeds in a Bitter 
Melon Agroecosystem. Journal of Nematology, 42, 111-119. 

MARKHAM, G. D. & PAJARES, M. A. 2009. Structure-Function Relationships in 
Methionine Adenosyltransferases. Cellular and molecular life sciences : CMLS, 
66, 636-648. 

MATILE, P. 1980. The Mustard Oil Bomb. Compartmentation of the Myrosinase System. 
Biochem. Physiol. Pflanzen., 1758, 722-731. 

MATOUŠKOVÁ, P., VOKŘÁL, I., LAMKA, J. & SKÁLOVÁ, L. 2016. The Role of Xenobiotic-
Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths. 
Trends in Parasitology, 32, 481-491. 

MCSORLEY, R. 2011. Assessment of Rotation Crops and Cover Crops for Management of 
Root-Knot Nematodes (Meloidogyne spp.) in the Southeastern United States. 
Nematropica, 41, 200-214. 

MEAD, M. I., WHITE, I. R., NICKLESS, G., WANG, K.-Y. & SHALLCROSS, D. E. 2008. An 
Estimation of the Global Emission of Methyl Bromide from Rapeseed (Brassica 
napus) from 1961 to 2003. Atmospheric Environment, 42, 337-345. 

MEHERE, P., HAN, Q., LEMKUL, J. A., VAVRICKA, C. J., ROBINSON, H., BEVAN, D. R. & LI, 
J. 2010. Tyrosine Aminotransferase: Biochemical and Structural Properties and 
Molecular Dynamics Simulations. Protein & Cell, 1, 1023-1032. 

MEI, Y., THORPE, P., GUZHA, A., HAEGEMAN, A., BLOK, V. C., MACKENZIE, K., GHEYSEN, 
G., JONES, J. T. & MANTELIN, S. 2015. Only a Small Subset of the SPRY Domain 



189 
 

 

Gene Family in Is Likely to Encode Effectors, Two of Which Suppress Host 
Defences Induced by the Potato Resistance Gene. Nematology, 17, 409-424. 

MELILLO, M. T., LEONETTI, P., LEONE, A., VERONICO, P. & BLEVE-ZACHEO, T. 2011. ROS 
and NO Production in Compatible and Incompatible Tomato-Meloidogyne 
incognita Interactions. European Journal of Plant Pathology, 130, 489-502. 

MELLO, C. C., KRAMER, J. M., STINCHCOMB, D. & AMBROS, V. 1991. Efficient Gene 
Transfer in C. elegans: Extrachromosomal Maintenance and Integration of 
Transforming Sequences. Embo j, 10, 3959-70. 

MENDENHALL, A. R., TEDESCO, P. M., SANDS, B., JOHNSON, T. E. & BRENT, R. 2015. 
Single Cell Quantification of Reporter Gene Expression in Live Adult 
Caenorhabditis elegans Reveals Reproducible Cell-Specific Expression Patterns 
and Underlying Biological Variation. PLoS ONE, 10, e0124289. 

MENEZ, C., ALBERICH, M., KANSOH, D., BLANCHARD, A. & LESPINE, A. 2016. Acquired 
Tolerance to Ivermectin and Moxidectin after Drug Selection Pressure in the 
Nematode Caenorhabditis elegans. Antimicrobial Agents and Chemotherapy, 60, 
4809-4819. 

MEYER, S. L. F., ZASADA, I. A., ORISAJO, S. B. & MORRA, M. J. 2011. Mustard Seed Meal 
Mixtures: Management of Meloidogyne incognita on Pepper and Potential 
Phytotoxicity. Journal of Nematology, 43, 7-15. 

MINNIS, S. T., HAYDOCK, P. P. J., IBRAHIM, S. K., GROVE, I. G., EVANS, K. & RUSSELL, M. 
D. 2002. Potato Cyst Nematodes in England and Wales - Occurrence and 
Distribution. Annals of Applied Biology, 140, 187-195. 

MOJTAHEDI, H., SANTO, G. S. & INGHAM, R. E. 1993. Suppression of Meloidogyne 
chitwoodi with Sudangrass Cultivars as Green Manure. Journal of Nematology, 
25, 303-311. 

MONFORT, W. S., CSINOS, A. S., DESAEGER, J., SEEBOLD, K., WEBSTER, T. M. & DIAZ-
PEREZ, J. C. 2007. Evaluating Brassica Species as an Alternative Control Measure 
for Root-Knot Nematode (M. incognita) in Georgia Vegetable Plasticulture. Crop 
Protection, 26, 1359-1368. 

MONTZKA, S. A., DUTTON, G. S., YU, P., RAY, E., PORTMANN, R. W., DANIEL, J. S., 
KUIJPERS, L., HALL, B. D., MONDEEL, D., SISO, C., NANCE, J. D., RIGBY, M., 
MANNING, A. J., HU, L., MOORE, F., MILLER, B. R. & ELKINS, J. W. 2018. An 
Unexpected and Persistent Increase in Global Emissions of Ozone-Depleting Cfc-
11. Nature, 557, 413-417. 

MORRA, M. J. & KIRKEGAARD, J. A. 2002. Isothiocyanate Release from Soil-Incorporated 
Brassica Tissues. Soil Biology and Biochemistry, 34, 1683-1690. 

MORRISON, C. A., COLIN, T., SEXTON, J. L., BOWEN, F., WICKER, J., FRIEDEL, T. & SPITHILL, 
T. W. 1996. Protection of Cattle against Fasciola hepatica Infection by 
Vaccination with Glutathione S-Transferase. Vaccine, 14, 1603-12. 

MOTA, M. M. & EISENBACK, J. D. 1993. Morphometrics of Globodera tabacum tabacum, 
G. t. virginiae, and G. t. solanacearum (Nemata: Heteroderinae). Journal of 
Nematology, 25, 148-160. 

MOTLEY, S. T. & LORY, S. 1999. Functional Characterization of a Serine/Threonine 
Protein Kinase of Pseudomonas Aeruginosa. Infection and Immunity, 67, 5386-
5394. 

MOXNES, J. F. & HAUSKEN, K. 2007. The Population Dynamics of Potato Cyst Nematodes. 
Ecological Modelling, 207, 339-348. 



190 
 

 

MÜLLER, J. 1999. The Economic Importance of Heterodera Schachtii in Europe. 
Helminthologia, 36, 205-213. 

NAGATOSHI, Y. & NAKAMURA, T. 2009. Arabidopsis Harmless to Ozone Layer Protein 
Methylates a Glucosinolate Breakdown Product and Functions in Resistance to 
Pseudomonas syringae sv. maculicola. The Journal of Biological Chemistry, 284, 
19301-19309. 

NAIR, J. R. & CHATTERJEE, K. 2010. Methyl Iodide Poisoning Presenting as a Mimic of 
Acute Stroke: A Case Report. Journal of Medical Case Reports, 4, 177. 

NELSON, D. R. 2009. The Cytochrome P450 Homepage. Human Genomics, 4, 59-65. 
NGALA, B. M., HAYDOCK, P. P. J., WOODS, S. & BACK, M. A. 2014. Biofumigation with 

Brassica juncea, Raphanus sativus and Eruca sativa for the Management of Field 
Populations of the Potato Cyst Nematode Globodera Pallida. Pest Management 
Science, 75(5), 759-769. 

NICOL, J. M., TURNER, S. J., COYNE, D. L., NIJS, L. D., HOCKLAND, S. & MAAFI, Z. T. 2011. 
Current Nematode Threats to World Agriculture. In: JONES, J., GHEYSEN, G. & 
FENOLL, C. (eds.) Genomics and Molecular Genetics of Plant-Nematode 
Interactions. Springer Netherlands. 

NIELSEN, E., BALTENSPERGER, D., KERR, E. & RIFE, C. 2003. Host Suitability of Rapeseed 
for Heterodera Schachtii. Journal of Nematology, 35, 35-38. 

NIINEMETS, Ü., KÄNNASTE, A. & COPOLOVICI, L. 2013. Quantitative Patterns between 
Plant Volatile Emissions Induced by Biotic Stresses and the Degree of Damage. 
Frontiers in Plant Science, 4, 262. 

NOJI, M. & SAITO, K. 2003. Sulphur Amino Acids: Biosynthesis of Cysteine and 
Methionine. In: ABROL, Y. P. & AHMAD, A. (eds.) Sulphur in Plants. Dordrecht: 
Springer Netherlands. 

NOLING, J. W. 2002. The Practical Realities of Alternatives to Methyl Bromide: 
Concluding Remarks. Phytopathology, 92, 1373-5. 

NOLING, J. W. & BECKER, J. O. 1994. The Challenge of Research and Extension to Define 
and Implement Alternatives to Methyl Bromide. J Nematol, 26, 573-86. 

NOON, J. B. & BAUM, T. J. 2016. Horizontal Gene Transfer of Acetyltransferases, 
Invertases and Chorismate Mutases from Different Bacteria to Diverse 
Recipients. BMC Evolutionary Biology, 16, 74. 

NORSHIE, P.M., GROVE, I.G., & BACK, M.A. 2016. Field Evaluation of the Nematicide 
Fluensulfone for Control of the Potato Cyst Nematode Globodera pallida. Pest 
Manag Sci. 72(10): 2001-2007 

O’BRIEN, F. J. M., DUMONT, M. G., WEBB, J. S. & POPPY, G. M. 2018. Rhizosphere 
Bacterial Communities Differ According to Fertilizer Regimes and Cabbage 
(Brassica oleracea var. Capitata L.) Harvest Time, but Not Aphid Herbivory. 
Frontiers in Microbiology, 9, 1620. 

OKA, Y. 2014. Nematicidal Activity of Fluensulfone against Some Migratory Nematodes 
under Laboratory Conditions. Pest Management Science, 70, 1850-1858. 

OKA, Y., SHUKER, S. & TKACHI, N. 2009. Nematicidal Efficacy of MCW-2, a New 
Nematicide of the Fluoroalkenyl Group, against the Root-Knot Nematode 
Meloidogyne javanica. Pest Management Science, 65, 1082-1089. 

OMIECINSKI, C. J., VANDEN HEUVEL, J. P., PERDEW, G. H. & PETERS, J. M. 2011. 
Xenobiotic Metabolism, Disposition, and Regulation by Receptors: From 



191 
 

 

Biochemical Phenomenon to Predictors of Major Toxicities. Toxicological 
Sciences, 120, S49-S75. 

OSMAN, KA; Al-Rehiayani, SM; Al-Deghairi, MA; Salama, AK. 2009. Bioremediation of 
Oxamyl in Sandy Soil Using Animal Manures, International Biodeterioration & 
Biodegradation 63(3): 341-346 

ØVERBY, A., STOKLAND, R. A., ÅSBERG, S. E., SPORSHEIM, B. & BONES, A. M. 2015. Allyl 
Isothiocyanate Depletes Glutathione and Upregulates Expression of Glutathione 
S-Transferases in Arabidopsis thaliana. Frontiers in Plant Science, 6, 277. 

PAL, C., PAPP, B. & LAZAR, V. 2015. Collateral Sensitivity of Antibiotic-Resistant 
Microbes. Trends Microbiol, 23, 401-7. 

PALAVALLI, L. H., BRENDZA, K. M., HAAKENSON, W., CAHOON, R. E., MCLAIRD, M., 
HICKS, L. M., MCCARTER, J. P., WILLIAMS, D. J., HRESKO, M. C. & JEZ, J. M. 2006. 
Defining the Role of Phosphomethylethanolamine N-Methyltransferase from 
Caenorhabditis elegans in Phosphocholine Biosynthesis by Biochemical and 
Kinetic Analysis. Biochemistry, 45, 6056-65. 

PALOMARES-RIUS, J. E., HEDLEY, P., COCK, P. J. A., MORRIS, J. A., JONES, J. T. & BLOK, V. 
C. 2016. Gene Expression Changes in Diapause or Quiescent Potato Cyst 
Nematode, Globodera pallida, Eggs after Hydration or Exposure to Tomato Root 
Diffusate. PeerJ, 4, e1654. 

PALOMARES-RIUS, J. E., HEDLEY, P. E., COCK, P. J., MORRIS, J. A., JONES, J. T., VOVLAS, 
N. & BLOK, V. 2012. Comparison of Transcript Profiles in Different Life Stages of 
the Nematode Globodera pallida under Different Host Potato Genotypes. Mol 
Plant Pathol, 13, 1120-34. 

PALOMARES-RIUS, J. E., JONES, J. T., COCK, P. J., CASTILLO, P. & BLOK, V. C. 2013. 
Activation of Hatching in Diapaused and Quiescent Globodera pallida. 
Parasitology, 140, 445-54. 

PARKINSON, F. E., DAMARAJU, V. L., GRAHAM, K., YAO, S. Y., BALDWIN, S. A., CASS, C. E. 
& YOUNG, J. D. 2011. Molecular Biology of Nucleoside Transporters and Their 
Distributions and Functions in the Brain. Curr Top Med Chem, 11, 948-72. 

PARRA, G., BRADNAM, K., NING, Z., KEANE, T. & KORF, I. 2009. Assessing the Gene Space 
in Draft Genomes. Nucleic Acids Research, 37, 289-297. 

PELLEY, J. 2009. Methyl Iodide, a Fumigant under Fire. Environmental Science & 
Technology, 43, 6898-6898. 

PERRY, R. 2002. Hatching. The Biology of Nematodes. CRC Press. 
PERRY, R. N. 1996. Chemoreception in Plant Parasitic Nematodes. Annual Review of 

Phytopathology, 34, 181-199. 
PERRY, R. N. 1997. Plant Signals in Nematode Hatching and Attraction. In: FENOLL, C., 

GRUNDLER, F. M. W. & OHL, S. A. (eds.) Cellular and Molecular Aspects of Plant-
Nematode Interactions. Dordrecht: Springer Netherlands. 

PETERSEN, T. N., BRUNAK, S., VON HEIJNE, G. & NIELSEN, H. 2011. SIGNALP 4.0: 
Discriminating Signal Peptides from Transmembrane Regions. Nature Methods, 
8, 785. 

PHILLIPS, M. S. & TRUDGILL, D. L. 1998. Variation of Virulence, in Terms of Quantitative 
Reproduction of Globodera pallida Populations, from Europe and South America, 
in Relation to Resistance from Solanum vernei and S. tuberosum ssp. andigena 
CPC 2802. Nematologica, 44, 409-423. 



192 
 

 

PIEKARSKA, A., KUSZNIEREWICZ, B., MELLER, M., DZIEDZIUL, K., NAMIEŚNIK, J. & 
BARTOSZEK, A. 2013. Myrosinase Activity in Different Plant Samples; 
Optimisation of Measurement Conditions for Spectrophotometric and PH-STAT 
Methods. Industrial Crops and Products, 50, 58-67. 

PIERIK, R., BALLARE, C. L. & DICKE, M. 2014. Ecology of Plant Volatiles: Taking a Plant 
Community Perspective. Plant Cell Environ, 37, 1845-53. 

PLANTARD, O., PICARD, D., VALETTE, S., SCURRAH, M., GRENIER, E. & MUGNIÉRY, D. 
2008. Origin and Genetic Diversity of Western European Populations of the 
Potato Cyst Nematode (Globodera pallida) Inferred from Mitochondrial 
Sequences and Microsatellite Loci. Molecular Ecology, 17, 2208-2218. 

PLOEG, A. T. 2002. Effects of Selected Marigold Varieties on Root-Knot Nematodes and 
Tomato and Melon Yields. Plant Disease, 86, 505-508. 

POSTMA, W. J., SLOOTWEG, E. J., REHMAN, S., FINKERS-TOMCZAK, A., TYTGAT, T. O., 
VAN GELDEREN, K., LOZANO-TORRES, J. L., ROOSIEN, J., POMP, R., VAN SCHAIK, 
C., BAKKER, J., GOVERSE, A. & SMANT, G. 2012. The Effector SPRYSEC-19 of 
Globodera rostochiensis Suppresses CC-NB-LRR-Mediated Disease Resistance in 
Plants. Plant Physiol, 160, 944-54. 

POULIN, R. & RANDHAWA, H. S. 2015. Evolution of Parasitism Along Convergent Lines: 
From Ecology to Genomics. Parasitology, 142, S6-S15. 

PRAITIS, V. 2006. Creation of Transgenic Lines Using Microparticle Bombardment 
Methods. In: STRANGE, K. (ed.) C. Elegans: Methods and Applications. Totowa, 
NJ: Humana Press. 

PRAITIS, V., CASEY, E., COLLAR, D. & AUSTIN, J. 2001. Creation of Low-Copy Integrated 
Transgenic Lines in Caenorhabditis elegans. Genetics, 157, 1217-26. 

PRUETT, S. B., MYERS, L. P. & KEIL, D. E. 2001. Toxicology of Metam Sodium. J Toxicol 
Environ Health B Crit Rev, 4, 207-22. 

PYLYPENKO, LA. 2002. Resistance and Tolerance to Potato Cyst Nematodes among 
Ukrainian Potato Cultivars and Breeding Materials. Plant Protec. Sci. 38 (Special 
Issue 1): 189-194 

QIN, S. J., GAN, J. Y., LIU, W. P. & BECKER, J. O. 2004. Degradation and Adsorption of 
Fosthiazate in Soil. Journal of Agricultural and Food Chemistry, 52, 6239-6242. 

QUENTIN, M., ABAD, P. & FAVERY, B. 2013. Plant Parasitic Nematode Effectors Target 
Host Defense and Nuclear Functions to Establish Feeding Cells. Frontiers in Plant 
Science, 4, 53. 

R CORE TEAM 2018. R: A Language and Environment for Statistical Computing. Vienna, 
Austria: R Foundation for Statistical Computing. 

RAMIREZ, R. A. I., HENDERSON, D. R., RIGA, E., LACEY, L. A. & SNYDER, W. E. 2009. 
Harmful Effects of Mustard Bio-Fumigants on Entomopathogenic Nematodes. 
Biological Control, 48, 147-154. 

RAO, U., SHARMA, A., TYAGI, N., BANAKAR, P. & KUMAR, M. 2013. Characterization of 
Genetic Homogeneity of an Indian Population of Cereal Cyst Nematode, 
Heterodera avenae Using Sequencing and PCR-RFLP of Ribosomal DNA. 
Bioinformation, 9, 67-71. 

RASK, L., ANDRÉASSON, E., EKBOM, B., ERIKSSON, S., PONTOPPIDAN, B. & MEIJER, J. 
2000. Myrosinase: Gene Family Evolution and Herbivore Defense in 
Brassicaceae. Plant Molecular Biology, 42, 93-114. 



193 
 

 

RASMANN, S., KÖLLNER, T. G., DEGENHARDT, J., HILTPOLD, I., TOEPFER, S., KUHLMANN, 
U., GERSHENZON, J. & TURLINGS, T. C. J. 2005. Recruitment of 
Entomopathogenic Nematodes by Insect-Damaged Maize Roots. Nature, 434, 
732. 

REDEKER, K. R. & CICERONE, R. J. 2004. Environmental Controls over Methyl Halide 
Emissions from Rice Paddies. Global Biogeochemical Cycles, 18. 

REDEKER, K. R., MANLEY, S. L., WALSER, M. & CICERONE, R. J. 2004. Physiological and 
Biochemical Controls over Methyl Halide Emissions from Rice Plants. Global 
Biogeochemical Cycles, 18. 

REDEKER, K. R., WANG, N.-Y., LOW, J. C., MCMILLAN, A., TYLER, S. C. & CICERONE, R. J. 
2000. Emissions of Methyl Halides and Methane from Rice Paddies. Science, 290, 
966-969. 

REICHEL, C., MATHUR, J., ECKES, P., LANGENKEMPER, K., KONCZ, C., SCHELL, J., REISS, B. 
& MAAS, C. 1996. Enhanced Green Fluorescence by the Expression of an 
Aequorea Victoria Green Fluorescent Protein Mutant in Mono- and 
Dicotyledonous Plant Cells. Proceedings of the National Academy of Sciences of 
the United States of America, 93, 5888-5893. 

RETTENMEIER, R., NATT, E., ZENTGRAF, H. & SCHERER, G. 1990. Isolation and 
Characterization of the Human Tyrosine Aminotransferase Gene. Nucleic Acids 
Research, 18, 3853-3861. 

RHEW, R. C., OSTERGAARD, L., SALTZMAN, E. S. & YANOFSKY, M. F. 2003. Genetic 
Control of Methyl Halide Production in Arabidopsis. Curr Biol, 13, 1809-13. 

ROBERTS, A. F., DEVOS, Y., LEMGO, G. N. Y. & ZHOU, X. 2015. Biosafety Research for 
Non-Target Organism Risk Assessment of RNAi-Based Ge Plants. Frontiers in 
Plant Science, 6, 958. 

ROSTÁS, M. & EGGERT, K. 2008. Ontogenetic and Spatio-Temporal Patterns of Induced 
Volatiles in Glycine Max in the Light of the Optimal Defence Hypothesis. 
Chemoecology, 18, 29-38. 

ROTT, M., LAWRENCE, T., BELTON, M., SUN, F. & KYLE, D. 2010. Occurrence and 
Detection of Globodera rostochiensis on Vancouver Island, British Columbia: An 
Update. Plant Disease, 94, 1367-1371. 

RUIZ-SUÁREZ, N., BOADA, L. D., HENRÍQUEZ-HERNÁNDEZ, L. A., GONZÁLEZ-MOREO, F., 
SUÁREZ-PÉREZ, A., CAMACHO, M., ZUMBADO, M., ALMEIDA-GONZÁLEZ, M., DEL 
MAR TRAVIESO-AJA, M. & LUZARDO, O. P. 2015. Continued Implication of the 
Banned Pesticides Carbofuran and Aldicarb in the Poisoning of Domestic and 
Wild Animals of the Canary Islands (Spain). Science of The Total Environment, 
505, 1093-1099. 

SAINI, H. S., ATTIEH, J. M. & HANSON, A. D. 1995. Biosynthesis of Halomethanes and 
Methanethiol by Higher Plants Via a Novel Methyltransferase Reaction. Plant, 
Cell & Environment, 18, 1027-1033. 

SALAZAR, A. & RITTER, E. 1993. Effects of Daylight During Cyst Formation, Storage Time 
and Temperature of Cysts on the in Vitro Hatching of Globodera rostochiensis 
and G. pallida. Fundamental and Applied Nematology, 16, 567-572. 

SAMUNI-BLANK, M., IZHAKI, I., DEARING, M. D., GERCHMAN, Y., TRABELCY, B., LOTAN, 
A., KARASOV, WILLIAM H. & ARAD, Z. 2012. Intraspecific Directed Deterrence by 
the Mustard Oil Bomb in a Desert Plant. Current Biology, 22, 1218-1220. 



194 
 

 

SARATHCHANDRA, S. U., DI MENNA, M. E., BURCH, G., BROWN, J. A., WATSON, R. N., 
BELL, N. L. & COX, N. R. 1995. Effects of Plant-Parasitic Nematodes and 
Rhizosphere Microorganisms on the Growth of White Clover (Trifolium repens L.) 
and Perennial Ryegrass (Lolium perenne L.). Soil Biology and Biochemistry, 27, 9-
16. 

SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR, M., PIETZSCH, 
T., PREIBISCH, S., RUEDEN, C., SAALFELD, S. & SCHMID, B. 2012. Fiji: An Open-
Source Platform for Biological-Image Analysis. Nature methods, 9, 676. 

SCHNEIDER, C. A., RASBAND, W. S. & ELICEIRI, K. W. 2012. NIH Image to Imagej: 25 Years 
of Image Analysis. Nature Methods, 9, 671-675. 

SCHUBERT, H. L., BLUMENTHAL, R. M. & CHENG, X. 2003. Many Paths to Methyltransfer: 
A Chronicle of Convergence. Trends Biochem Sci, 28, 329-35. 

SCHWEINSBERG, P. & GRANT, B. 2013. C. Elegans Gene Transformation by Microparticle 
Bombardment. In: COMMUNITY, T. C. E. R. (ed.) Wormbook. 

SEMPLE, J. I., GARCIA-VERDUGO, R. & LEHNER, B. 2010. Rapid Selection of Transgenic C. 
Elegans Using Antibiotic Resistance. Nat Methods, 7, 725-7. 

SHAPIRO, T. A., FAHEY, J. W., WADE, K. L., STEPHENSON, K. K. & TALALAY, P. 2001. 
Chemoprotective Glucosinolates and Isothiocyanates of Broccoli Sprouts. 
Metabolism and Excretion in Humans, 10, 501-508. 

SHROFF, R., VERGARA, F., MUCK, A., SVATOŠ, A. & GERSHENZON, J. 2008. Nonuniform 
Distribution of Glucosinolates in Arabidopsis Thaliana Leaves Has Important 
Consequences for Plant Defense. Proceedings of the National Academy of 
Sciences of the United States of America, 105, 6196-6201. 

SHYU, Y. J. & HU, C.-D. 2008. Fluorescence Complementation: An Emerging Tool for 
Biological Research. Trends in Biotechnology, 26, 622-630. 

SIES, H. 1997. Oxidative Stress: Oxidants and Antioxidants. Experimental Physiology, 82, 
291-295. 

SIJMONS, P. C., GRUNDLER, F. M. W., MENDE, N., BURROWS, P. R. & WYSS, U. 1991. 
Arabidopsis thaliana as a New Model Host for Plant-Parasitic Nematodes. The 
Plant Journal, 1, 245-254. 

SKANTAR, A. M., HANDOO, Z. A., ZASADA, I. A., INGHAM, R. E., CARTA, L. K. & 
CHITWOOD, D. J. 2011. Morphological and Molecular Characterization of 
Globodera Populations from Oregon and Idaho. Phytopathology, 101, 480-91. 

SKELSEY, P; KETTLE, H; MACKENZIE, K; & BLOK, V. 2018. Potential Impacts of Climate 
Change on the Threat of Potato Cyst Nematode Species in Great Britain. Plant 
Pathology 67, 909-919 

SMANT, G., STOKKERMANS, J. P., YAN, Y., DE BOER, J. M., BAUM, T. J., WANG, X., 
HUSSEY, R. S., GOMMERS, F. J., HENRISSAT, B., DAVIS, E. L., HELDER, J., SCHOTS, 
A. & BAKKER, J. 1998. Endogenous Cellulases in Animals: Isolation of Beta-1, 4-
Endoglucanase Genes from Two Species of Plant-Parasitic Cyst Nematodes. Proc 
Natl Acad Sci U S A, 95, 4906-11. 

SOBCZAK, M. & GOLINOWSKI, W. 2011. Cyst Nematodes and Syncytia. Genomics and 
Molecular Genetics of Plant-Nematode Interactions. Springer Netherlands. 

SOBOLESKI, M. R., OAKS, J. & HALFORD, W. P. 2005. Green Fluorescent Protein Is a 
Quantitative Reporter of Gene Expression in Individual Eukaryotic Cells. The 
FASEB journal : official publication of the Federation of American Societies for 
Experimental Biology, 19, 440-442. 



195 
 

 

SØNDERBY, I. E., GEU-FLORES, F. & HALKIER, B. A. 2010. Biosynthesis of Glucosinolates 
– Gene Discovery and Beyond. Trends in Plant Science, 15, 283-290. 

SONTHEIMER, E. J. 2005. Assembly and Function of Rna Silencing Complexes. Nat Rev 
Mol Cell Biol, 6, 127-38. 

SPIETH, J., LAWSON, D., DAVIS, P., WILLIAMS, G. & HOWE, K. 2014. Overview of Gene 
Structure in C. Elegans. In: COMMUNITY, T. C. E. R. (ed.) Wormbook. 

SPOONER, D. M., MCLEAN, K., RAMSAY, G., WAUGH, R. & BRYAN, G. J. 2005. A Single 
Domestication for Potato Based on Multilocus Amplified Fragment Length 
Polymorphism Genotyping. Proceedings of the National Academy of Sciences of 
the United States of America, 102, 14694-14699. 

STARR, J. L., KOENNING, S. R., KIRKPATRICK, T. L., ROBINSON, A. F., ROBERTS, P. A. & 
NICHOLS, R. L. 2007. The Future of Nematode Management in Cotton. Journal of 
Nematology, 39, 283-294. 

STATES, D. J. & GISH, W. 1994. Combined Use of Sequence Similarity and Codon Bias for 
Coding Region Identification. J Comput Biol, 1, 39-50. 

STEFELS, J., STEINKE, M., TURNER, S., MALIN, G. & BELVISO, S. 2007. Environmental 
Constraints on the Production and Removal of the Climatically Active Gas 
Dimethylsulphide (DMS) and Implications for Ecosystem Modelling. 
Biogeochemistry, 83, 245-275. 

STIERNAGLE, T. 1999. 4. Maintenance of C. elegans. In: HOPE, I. (ed.) C. Elegans: A 
Practical Approach. Oxford University Press. 

STIRLING, G. R. & STIRLING, A. M. 2003. The Potential of Brassica Green Manure Crops 
for Controlling Root-Knot Nematode (Meloidogyne javanica) on Horticultural 
Crops in a Subtropical Environment. Australian Journal of Experimental 
Agriculture, 43, 623-630. 

TALLARIDA, R. J. 2011. Quantitative Methods for Assessing Drug Synergism. Genes & 
Cancer, 2, 1003-1008. 

TERAZAWA, K., MIZUKAMI, K., WU, B. & TAKATORI, T. 1991. Fatality Due to Inhalation 
of Dimethyl Sulfide in a Confined Space: A Case Report and Animal Experiments. 
International Journal of Legal Medicine, 104, 141-144. 

THATCHER, J. D., HAUN, C. & OKKEMA, P. G. 1999. The daf-3 SMAD Binds DNA and 
Represses Gene Expression in the Caenorhabditis Elegans Pharynx. 
Development, 126, 97-107. 

THE C. ELEGANS SEQUENCING CONSORTIUM 1998. Genome Sequence of the Nematode 
C. Elegans: A Platform for Investigating Biology. Science, 282, 2012-2018. 

THORNALLEY, P. J. 2003. Glyoxalase I – Structure, Function and a Critical Role in the 
Enzymatic Defence against Glycation. Biochemical Society Transactions, 31, 
1343-1348. 

THORPE, P., MANTELIN, S., COCK, P. J., BLOK, V. C., COKE, M. C., EVES-VAN DEN AKKER, 
S., GUZEEVA, E., LILLEY, C. J., SMANT, G., REID, A. J., WRIGHT, K. M., URWIN, P. E. 
& JONES, J. T. 2014. Genomic Characterisation of the Effector Complement of 
the Potato Cyst Nematode Globodera pallida. BMC Genomics, 15, 923. 

TOOKEY, H. L. 1973. Crambe Thioglucoside Glucohydrolase (EC 3.2.3.1): Separation of a 
Protein Required for Epithiobutane Formation. Can J Biochem, 51, 1654-60. 

TORRES, M. A., JONES, J. D. G. & DANGL, J. L. 2006. Reactive Oxygen Species Signaling in 
Response to Pathogens. Plant Physiology, 141, 373-378. 



196 
 

 

TRUDGILL, D. L. 1997. Parthenogenetic Root-Knot Nematodes (Meloidogyne spp.); How 
Can These Biotrophic Endoparasites Have Such an Enormous Host Range? Plant 
Pathology, 46, 26-32. 

TRUDGILL, D. L. & BLOK, V. C. 2001. Apomictic, Polyphagous Root-Knot Nematodes: 
Exceptionally Successful and Damaging Biotrophic Root Pathogens. Annual 
Review of Phytopathology, 39, 53-77. 

TSVETKOV, N., SAMSON-ROBERT, O., SOOD, K., PATEL, H. S., MALENA, D. A., GAJIWALA, 
P. H., MACIUKIEWICZ, P., FOURNIER, V. & ZAYED, A. 2017. Chronic Exposure to 
Neonicotinoids Reduces Honey Bee Health near Corn Crops. Science, 356, 1395-
1397. 

TURLINGS, T. C. J., HILTPOLD, I. & RASMANN, S. 2012. The Importance of Root-Produced 
Volatiles as Foraging Cues for Entomopathogenic Nematodes. Plant and Soil, 
358, 51-60. 

TURNER, S. J. 1996. Population Decline of Potato Cyst Nematodes (Globodera 
rostochiensis, G. pallida) in Field Soils in Northern Ireland. Annals of Applied 
Biology, 129, 315-322. 

TURNER, S. J. & SUBBOTIN, S. A. 2013. Cyst Nematodes. In: PERRY, R. N. & MOENS, M. 
(eds.) Plant Nematology, 2nd Edition. CABI. 

TYLER, J. 1933. Development of the Root-Knot Nematode as Affected by Temperature. 
Hilgardia, 7, 389-415. 

UNEP 2002. United Nations Environment Programme, Fourteenth Meeting of the Parties 
to the Montreal Protocol on Substances That Deplete the Ozone Layer. In: UNEP 
(ed.) Pro14/3. 

UNEP 2005. Effects of trade liberalization on agriculture in Lebanon: with special focus 
on products where methyl bromide is used. 1st ed. United Nations Environmental 
Programme. 

UNEP 2012. Handbook for the Montreal Protocol on Substances That Deplete the Ozone 
Layer. In: SECRETARIAT, O. (ed.) 9 ed. 

UNEP. 2017. Critical-Use Exemptions for Methyl Bromide for 2018 and 2019.  Twenty-
Ninth Meeting of the Parties to the Montreal Protocol on Substances that 
Deplete the Ozone Layer, 2017 Montreal, Canada. United Nations Environment 
Programme. 

UNFCC 2016. The Paris Agreement, C.N.92.2016.Treaties-Xxvii.7.D. In: UNTS (ed.). New 
York: United Nations. 

URWIN, P. E., ATKINSON, H. J., WALLER, D. A. & MCPHERSON, M. J. 1995. Engineered 
Oryzacystatin-I Expressed in Transgenic Hairy Roots Confers Resistance to 
Globodera Pallida. Plant J, 8, 121-31. 

VALDES, Y., VIAENE, N. & MOENS, M. 2012. Effects of Yellow Mustard Amendments on 
the Soil Nematode Community in a Potato Field with Focus on Globodera 
Rostochiensis. Applied Soil Ecology, 59, 39-47. 

VAN DOORN, H. E., VAN DER KRUK, G. C., VAN HOLST, G.-J., RAAIJMAKERS-RUIJS, N. C. 
M. E., POSTMA, E., GROENEWEG, B. & JONGEN, W. H. F. 1998. The Glucosinolates 
Sinigrin and Progoitrin Are Important Determinants for Taste Preference and 
Bitterness of Brussels Sprouts. Journal of the Science of Food and Agriculture, 78, 
30-38. 

VAN MEGEN, H., HOLOVACHOV, O., BONGERS, T., BAKKER, J., HELDER, J., VAN DEN 
ELSEN, S., HOLTERMAN, M., KARSSEN, G. & MOOYMAN, P. 2009. A Phylogenetic 



197 
 

 

Tree of Nematodes Based on About 1200 Full-Length Small Subunit Ribosomal 
DNA Sequences. Nematology, 11, 927-950. 

VERVOORT, M. T. W., VONK, J. A., BROLSMA, K. M., SCHÜTZE, W., QUIST, C. W., DE 
GOEDE, R. G. M., HOFFLAND, E., BAKKER, J., MULDER, C., HALLMANN, J. & 
HELDER, J. 2014. Release of Isothiocyanates Does Not Explain the Effects of 
Biofumigation with Indian Mustard Cultivars on Nematode Assemblages. Soil 
Biology and Biochemistry, 68, 200-207. 

WAH CHU, K. & CHOW, K. L. 2002. Synergistic Toxicity of Multiple Heavy Metals Is 
Revealed by a Biological Assay Using a Nematode and Its Transgenic Derivative. 
Aquatic Toxicology, 61, 53-64. 

WANG, X., MITCHUM, M. G., GAO, B., LI, C., DIAB, H., BAUM, T. J., HUSSEY, R. S. & DAVIS, 
E. L. 2005. A Parasitism Gene from a Plant-Parasitic Nematode with Function 
Similar to CLAVATA3/ESR (Cle) of Arabidopsis Thaliana. Mol Plant Pathol, 6, 187-
91. 

WARNOCK, N. D., WILSON, L., PATTEN, C., FLEMING, C. C., MAULE, A. G. & DALZELL, J. J. 
2017. Nematode Neuropeptides as Transgenic Nematicides. PLoS Pathogens, 13, 
e1006237. 

WEINTRAUB, P. G. 2016. The Importance of Publishing Negative Results. Journal of Insect 
Science, 16, 109. 

WHITEHEAD, A. G., TITE, D. J., FRASER, J. E. & NICHOLS, A. J. F. 1984. Differential Control 
of Potato Cyst-Nematodes, Globodera rostochiensis and G. pallida by Oxamyl 
and the Yields of Resistant and Susceptible Potatoes in Treated and Untreated 
Soils. Annals of Applied Biology, 105, 231-244. 

WIESNER, R. J., RÜEGG, J. C. & MORANO, I. 1992. Counting Target Molecules by 
Exponential Polymerase Chain Reaction: Copy Number of Mitochondrial DNA in 
Rat Tissues. Biochemical and Biophysical Research Communications, 183, 553-
559. 

WILLIAMS, R. T. 1959. Deoxication Mechanisms: The Metabolism and Detoxication of 
Drugs, Toxic Substances and Other Organic Compounds, Chapman and Hall. 

WILSON, E., OKUOM, M., KYES, N., MAYFIELD, D., WILSON, C., SABATKA, D., SANDOVAL, 
J., FOOTE, J., KANGAS, M., HOLMES, A. & SUTLIEF, A. 2018. Using Fluorescence 
Intensity of Enhanced Green Fluorescent Protein to Quantify Pseudomonas 
Aeruginosa. Chemosensors, 6, 21. 

WITTKOPP, P. J. & KALAY, G. 2011. Cis-Regulatory Elements: Molecular Mechanisms and 
Evolutionary Processes Underlying Divergence. Nat Rev Genet, 13, 59-69. 

WITTSTOCK, U., AGERBIRK, N., STAUBER, E. J., OLSEN, C. E., HIPPLER, M., MITCHELL-
OLDS, T., GERSHENZON, J. & VOGEL, H. 2004. Successful Herbivore Attack Due to 
Metabolic Diversion of a Plant Chemical Defense. Proc Natl Acad Sci U S A, 101, 
4859-64. 

WITTSTOCK, U. & BUROW, M. 2007. Tipping the Scales - specifier Proteins in 
Glucosinolate Hydrolysis. IUBMB Life, 59, 744-751. 

WMO, W. M. O. 2014. Assessment for Decision-Makers: Scientific Assessment of Ozone 
Depletion: 2014. Global Ozone Research and Monitoring Project. Geneva, 
Switzerland. 

WOOD, C., KENYON, D. M. & COOPER, J. M. 2017. Allyl Isothiocyanate Shows Promise as 
a Naturally Produced Suppressant of the Potato Cyst Nematode In Biofumigation 
Systems. Nematology, 19, 389-402. 



198 
 

 

WOODCOCK, B. A., BULLOCK, J. M., SHORE, R. F., HEARD, M. S., PEREIRA, M. G., 
REDHEAD, J., RIDDING, L., DEAN, H., SLEEP, D., HENRYS, P., PEYTON, J., HULMES, 
S., HULMES, L., SÁROSPATAKI, M., SAURE, C., EDWARDS, M., GENERSCH, E., 
KNÄBE, S. & PYWELL, R. F. 2017. Country-Specific Effects of Neonicotinoid 
Pesticides on Honey Bees and Wild Bees. Science, 356, 1393-1395. 

WRATHER, J. A., ANDERSON, T. R., ARSYAD, D. M., TAN, Y., PLOPER, L. D., PORTA-PUGLIA, 
A., RAM, H. H. & YORINORI, J. T. 2001. Soybean Disease Loss Estimates for the 
Top Ten Soybean-Producing Counries in 1998. Canadian Journal of Plant 
Pathology, 23, 115-121. 

WU, H., WANG, C.-J., BIAN, X.-W., ZENG, S.-Y., LIN, K.-C., WU, B., ZHANG, G.-A. & ZHANG, 
X. 2011. Nematicidal Efficacy of Isothiocyanates against Root-Knot Nematode 
Meloidogyne javanica in Cucumber. Crop Protection, 30, 33-37. 

XU, Z. W., ESCAMILLA-TREVINO, L. L., ZENG, L. H., LALGONDAR, M., BEVAN, D. R., 
WINKEL, B. S. J., MOHAMED, A., CHENG, C. L., SHIH, M. C., POULTON, J. E. & ESEN, 
A. 2004. Functional Genomic Analysis of Arabidopsis thaliana Glycoside 
Hydrolase Family 1. Plant Molecular Biology, 55, 343-367. 

XUE, J., LENMAN, M., FALK, A. & RASK, L. 1992. The Glucosinolate-Degrading Enzyme 
Myrosinase in Brassicaceae Is Encoded by a Gene Family. Plant Molecular 
Biology, 18, 387-398. 

YANG, R. S., WITT, K. L., ALDEN, C. J. & COCKERHAM, L. G. 1995. Toxicology of Methyl 
Bromide. Rev Environ Contam Toxicol, 142, 65-85. 

YILDIZ, S. 2011. Rotational and Nematicidal Effect of Lupine (Lupinus Albus L.: 
Leguminosae). 

YOKOUCHI, Y., NOIJIRI, Y., BARRIE, L. A., TOOM-SAUNTRY, D., MACHIDA, T., INUZUKA, 
Y., AKIMOTO, H., LI, H. J., FUJINUMA, Y. & AOKI, S. 2000. A Strong Source of 
Methyl Chloride to the Atmosphere from Tropical Coastal Land. Nature, 403, 
295. 

ZASADA, I. A. & FERRIS, H. 2003. Sensitivity of Meloidogyne javanica and Tylenchulus 
semipenetrans to Isothiocyanates in Laboratory Assays. Phytopathology, 93, 
747-750. 

ZASADA, I. A., MEYER, S. L. F. & MORRA, M. J. 2009. Brassicaceous Seed Meals as Soil 
Amendments to Suppress the Plant-Parasitic Nematodes Pratylenchus penetrans 
and Meloidogyne incognita. Journal of Nematology, 41, 221-227. 

ZHANG, S., MA, C. & CHALFIE, M. 2004. Combinatorial Marking of Cells and Organelles 
with Reconstituted Fluorescent Proteins. Cell, 119, 137-144. 

ZHANG, W., WANG, W., LIU, Z., XIE, Y., WANG, H., MU, Y., HUANG, Y. & FENG, Y. 2016. 
Crystal Structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana 
Provides Insights into Its Product Specificity. Biochemical and Biophysical 
Research Communications, 478, 746-751. 

ZHANG, W., ZHOU, Y., WANG, K., DONG, Y., WANG, W. & FENG, Y. 2017. Crystal 
Structure of the Nitrile-Specifier Protein NSP1 from Arabidopsis thaliana. 
Biochemical and Biophysical Research Communications, 488, 147-152. 

ZHANG, Y. 2000. Role of Glutathione in the Accumulation of Anticarcinogenic 
Isothiocyanates and Their Glutathione Conjugates by Murine Hepatoma Cells. 
Carcinogenesis, 21, 1175-82. 

 


