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Background Pulmonary arterial hypertension (PAH) is an obliterative vasculopathy 

characterized by endothelial and smooth muscle cell proliferation affecting small arterioles 

resulting in progressive elevation of pressure within the lungs. This poses significant load on 

the right heart which can lead to heart failure. It is a devastating and life threatening disease as 

patients are frequently diagnosed at an advanced stage.  

Existing drug therapies augmenting pulmonary vasodilatation have significantly 

improved patient morbidity but insufficiently modify vascular remodeling and consequently 

have modestly improved survival. Halting or reversing vascular remodeling could revolutionise 

human therapy but has yet to come to fruition. To improve disease prognosis, identifying key 

disease pathways is a priority for developing newer therapies.  

A role for Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in 

regulating endothelial cell and smooth muscle cell physiology has been reported in the 

systemic vasculature but hitherto unexplored in the pulmonary circulation. I hypothesised that 

TRAIL is an essential mediator in the pathogenesis of PAH.   

 

Methods: Expression of TRAIL in human and rodent PAH and the mitogenic effects of TRAIL on 

pulmonary artery smooth muscle cells (PASMCs) were characterised. The pathogenic role of 

TRAIL in three independent rodent models of disease was determined and the efficacy of 

inhibiting TRAIL in halting or regressing established disease was tested. Phenotyping included 

cardiac catheterisation, echocardiography, and pulmonary vascular immunohistochemistry. 

 

Findings Gene and protein expression of TRAIL ligand and receptors were upregulated in 

PASMCs from patients with PAH. In-vitro TRAIL was a mitogen for PASMCs. TRAIL-deficient 

mice were protected from both hypoxia and diet-induced PAH. Antibody blockade prevented 

rats from developing MCT induced PAH. Bone marrow transplantation in chimeric mice 

supported a role for tissue derived TRAIL. In mice and rats with established disease, an anti-

TRAIL antibody improved pulmonary haemodynamics, reversed pulmonary vascular 

remodeling, reduced proliferation and increased apoptosis in vascular lesions and significantly 

improved survival. 

 

Conclusion: My preclinical studies are the first to determine the importance of TRAIL in the 

pathogenesis of experimental pulmonary arterial hypertension and highlight its potential as a 

novel therapeutic target for directing future therapies.  

 

ABSTRACT 
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1.1 Overview of PAH  

 

Early descriptions suggestive of a primary pulmonary vasculopathy (interestingly first 

described in a middle age man) were published in the mid-late 19th century (Klob 1865; 

Romberg 1891; Mönckeberg 1907) in case reports from single individuals. The bedside finding 

of a heart murmur related to high pulmonary pressure had also been appreciated (Steell 1888; 

Bramwell 1942). Subsequent case studies in the American (Sanders 1909; Brenner 1935; Seely 

1938) and British (De Navasquez, Forbes et al. 1940; East 1940; Gilmour and Evans 1946) 

literature featured similar findings.  

 

These reports described the clinical presentation, including features of right heart failure and 

subsequent postmortem findings. Histopathology revealed intimal and medial hyperplasia of 

small pulmonary arterioles (initially referred to as “arteriolar sclerosis”) and right ventricular 

hypertrophy in the absence of clinical or pathological evidence of disease of the lungs (Cor 

pulmonale), pericardium or left heart (typically rheumatic mitral valve disease). In the absence 

of recognized causes of PH (Steell 1888) these authors postulated a new, albeit rarer disease of 

primary pulmonary hypertension (Gilmour and Evans 1946). Indeed reading the accounts from 

these reports was fascinating as they elegantly highlighted the clinical features of the disease 

that remain evident today. Sadly however, these descriptions of hypertensive pulmonary 

vascular disease prior to the advent of currently available therapies also demonstrated the 

rather fatal and rapid natural history of disease, which remained largely the case until the early 

1990s. 

 

Following the introduction of cardiac catheterisation in man (Cournand and Ranges 1941) 

investigators were able to measure pulmonary artery pressure and correlate haemodynamics 

with the observed clinical and pathological findings (Dresdale, Schultz et al. 1951; Heath and 

Whitaker 1956; Brown, Heath et al. 1957; Wood 1958). This dawned a new age in the study of 

pulmonary hypertension leading to seminal works characterising and classifying the pathology 

of hypertensive pulmonary vascular diseases encountered in mitral stenosis, congenital heart 

disease and idiopathic PAH (what was then known as Primary pulmonary hypertension) 

(Harrison 1958; Wood 1958; Heath and Edwards 1960) which slowly progressed over following 

decades (Wagenvoort and Wagenvoort 1970; Smith and Heath 1979; Heath, Smith et al. 1987; 

Wagenvoort 1988; Palevsky, Schloo et al. 1989; Cool, Stewart et al. 1999).  

CHAPTER 1 INTRODUCTION 
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In the late 1990s inflammation became an increasingly appreciated phenomenon of vascular 

lesions (Palevsky, Schloo et al. 1989; Tuder, Groves et al. 1994; Lee, Shroyer et al. 1998; Tuder 

and Voelkel 2002; Pietra, Capron et al. 2004). These features have been confirmed in 

contemporary histopathology studies from patients undergoing lung transplantation in the era 

of intravenous prostacyclin therapy , however surprisingly reveal persistent neointimal fibrosis 

and advanced plexiform lesions  (Pogoriler, Rich et al. 2012; Stacher, Graham et al. 2012; 

Tuder, Archer et al. 2013) indicating progressive pathology and supporting the notion that 

these lesions are either partially or incompletely treatable.   

 

Figure 1.1 Currently approved pulmonary vasodilators in human PAH. Schematic illustration 

highlighting three principal pathways targeted by current drugs licensed for use in PAH.  

Redisplayed with permission from (Humbert, Lau et al. 2014). 
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During the 1980s and 1990s the vasoconstrictor hypothesis of PH burgeoned following the 

identification of the potent vasoconstrictor Endothelin, (Giaid , Yanagisawa  et al. 1993) and 

vasodilators nitric oxide (Giaid  and Saleh 1995) and prostacyclin (Higenbottam, Wheeldon et 

al. 1984; Barst, Rubin et al. 1994). These seminal works paved the way for several successes 

over next two decades leading to multiple clinical trials of drugs (Fig. 1.1) therapeutically 

exploiting this imbalance between pulmonary vasoconstriction and vasodilatation (Galiè, 

Humbert et al. 2016; Lau, Giannoulatou et al. 2017). Several members of the endothelin 

receptor antagonists (ERA), phosphodiesterase 5 inhibitors and prostacyclin analogues are in 

routine clinical use for patients with PAH (group 1 PH). These therapies have provided 

significant symptomatic benefit to patients and there is evidence, at least certainly for 

prostacyclin analogues that they can prolong survival (Galie, Manes et al. 2009).  

 

At the turn of the millennium, the next chapter in the pulmonary hypertension saga opened 

following the identification of mutations within BMPR2 in PAH (Deng, Morse et al. 2000; Lane, 

Machado et al. 2000; Machado, Pauciulo et al. 2000; Thomson, Machado et al. 2000). This led 

to an evolution and refinement in the understanding of the molecular and cellular pathology of 

PAH (Archer, Weir et al. 2010; Rabinovitch 2012).  Perturbations within genetic  and epigenetic 

regulation (Austin, West et al. 2017; Chun, Bonnet et al. 2017; Ma and Chung 2017), 

mitochondrial physiology (Ryan, Dasgupta et al. 2015; Ryan and Archer 2015; Archer 2017), 

inflammation (Rabinovitch, Guignabert et al. 2014), growth factors (Hassoun, Mouthon et al. 

2009), phenotypic heterogeneity of vascular cells (Stenmark, Frid et al. 2016; Stenmark, Frid et 

al. 2018) and right ventricular adaption (Ryan and Archer 2014) were increasingly recognized 

as novel  contributors to the growing signature of PAH biology. The value and limitations of 

animal models have been well rehearsed (Stenmark, Meyrick et al. 2009; Gomez-Arroyo, 

Saleem et al. 2012) with greater emphasis on angioproliferative rodent models (Abe, Toba et 

al. 2010; Al Husseini, Bogaard et al. 2012; Voelkel and Gomez-Arroyo 2014). 

 

Thus we have arrived at a crossroad where PAH is positioned as a complex and biologically 

heterogeneous disease, albeit with an established haemodynamic phenotype. However 

several disappointments in translating bench science is focusing the research community 

(Lythgoe, Rhodes et al. 2016). Whilst still in its infancy, systems biology and personalized 

medicine are now entering a new strategic phase in PAH research (Fig. 1.2)  (Austin, West et al. 

2017; Ghataorhe, Rhodes et al. 2017; Hemnes, Beck et al. 2017; Newman, Rich et al. 2017; 

Rhodes, Ghataorhe et al. 2017). The intended result of such endeavors is to ultimately improve 

patient care and convert PAH into a curable disease (Gurtu and Michelakis 2016; Bonnet, 
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Provencher et al. 2017; Michelakis 2017). However these endeavors will bring their own 

challenges as “big data” will require appropriate analysis and interpretation. It is likely many 

new molecular signatures and putative drug targets will come to light; however selecting the 

most appropriate targets for development may not be straightforward. The heterogeneous 

nature of PAH, cost of clinical trials and relatively limited number of PAH patients will require 

investigators to think carefully about drug development and design of clinical trials (Wilkins 

2013; Ryan, Rich et al. 2015). 

 

 

 

 

 

 

 

Figure 1.2: Era of Omics research in PH. Schematic highlighting the PVDOMICS program which 

aims to refine the molecular and clinical classification of pulmonary hypertension and provide 

a powerful platform for drug development. Redisplayed with permission from (Hemnes, Beck 

et al. 2017). 
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1.2 Physiology of the human pulmonary circulation   

 

 

The human heart propels blood (approx. 5L/min at rest) in a pulsatile manner through two 

circulations (systemic and pulmonary) connected in series. The left ventricle pumps 

oxygenated blood (returning from the lungs) into the aorta and thence to the whole body to 

nourish every organ and tissue. Therein at the capillary-tissue interface, oxygen, metabolic and 

synthetic nutrients are extracted, whilst excretory (lactate, CO2) and secretory (e.g. hormones, 

cytokines) products are released into the circulation.  This blood is returned via a converging 

system of veins into the vena cava draining into the right atrium and finally filling the right 

ventricle. The latter propels this deoxygenated blood to the lungs through the pulmonary 

arterial tree which sequentially gets smaller as it branches into small arterioles (<100um) 

which closely follow alveolar sacs. Due to the very thin capillary alveolar membrane, the area 

for gas exchange area is immense (between 50-100m2) and permits rapid replenishment of 

blood oxygen whilst also permitting removal of CO2 through simple diffusion (West and Luks 

2016). This oxygenated blood returns through a network of pulmonary venules which drain 

through at least 4 pulmonary veins into the left atrium to repeat the aforementioned cardiac 

cycle.  

 

Remarkably the resting healthy adult heart will contract (and relax) approximately 100,000 

times and propel over 7000L of blood in a single day.  When put into context of a lifetime the 

numbers are truly astonishing and when combined with the large surface area of alveoli for 

gas exchange makes the cardiopulmonary unit a remarkable and elegant physiological system. 

Furthermore the heart and circulatory systems can regulate flow depending on physiological 

states such as exercise, pregnancy or hypoxia.  

 

The lungs are the only organ exposed to full flow (cardiac output) at all times. The pulmonary 

circulation is a low pressure, low resistance circuit that can accommodate high flow rates due 

to its distensible properties. In health, for the same resting cardiac output, the pulmonary 

circulation operates at much lower arterial pressure (six times lower) compared to the 

systemic circulation (mean arterial pressure 15mmHg vs 90mmHg) with a corresponding 

tenfold lower vascular resistance. This is due to the highly distensible (compliant) nature of the 

pulmonary vasculature.  
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As a result pulmonary blood flow (cardiac output) can increase significantly (up to 20L/min) 

with little increases in pressure and resistance. Thereafter PA pressure rises slightly. This 

homeostatic regulation appears to be partly blunted with increasing age. For example, healthy 

older people (age>50 years) have been shown to have a exaggerated response to exercise in a 

one series (Kovacs, Olschewski et al. 2012) but not in a more recent study (Oliveira, Agarwal et 

al. 2016) The growing literature on normative ranges for pulmonary haemodynamics during 

exercise has recently led to some welcomed consensus on the subject (Kovacs, Herve et al. 

2017).  
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1.3 Definition and clinical classification of pulmonary hypertension    

 

 

 

 

 

 

Figure 1.3 Clinical classification of pulmonary hypertension. Groups 1, 3 and 4 are primarily 

precapillary disease whilst Groups 2 is postcapillary and group 5 a mixture. Redisplayed with 

permission from (Kiely, Elliot et al. 2013). 

 

Pulmonary hypertension (PH) refers to a pathophysiological state whereby the pressure within 

the pulmonary circulation is elevated. It is clinically heterogeneous with respect to clinical 

presentation, developmental origins, genetics, pathogenesis, histopathology, adaptation of the 

right ventricle and the potential for reversibility of the vasculopathy. It is suffice to say that 

contemporary view underscores it is a complex syndrome, even within the various clinical 

subtypes (Kulik and Austin 2017). 

 

PH is specifically defined by a mean pulmonary arterial (PA) pressure that is ≥25mmHg. The 

elevated pressure can develop in one or more sites within the pulmonary circulation leading to 

arterial hypertension (pre capillary disease) or venous hypertension (post capillary disease). 

Less commonly it can arise due to disease within either the post capillary venules or capillary 

bed however this clinically manifests as a precapillary haemodynamic phenotype and can be 
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diagnostically difficult to distinguish from idiopathic PAH. It is not uncommon for systemic 

heart and vascular disease to affect both venous and arterial circuits and in fact PH related to 

left heart disease is the commonest form of PH. The clinical classification of PH, although 

imperfect has slowly evolved and the latest (5th) classification (Simonneau, Gatzoulis et al. 

2013)  is highlighted in Fig. 1.3. 

 

PAH is a subtype of PH. At the 5th World symposium on Pulmonary hypertension in 2013, the 

haemodynamic criteria of PAH remained unchanged and were defined (by cardiac 

catheterisation) by a mean PA pressure ≥25mmHg, a normal venous pressure (PA wedge 

pressure <15mmHg) and increased pulmonary vascular resistance (>3 Wood Units) in the 

absence of diseases affecting the lung, left heart or caused by pulmonary thromboembolism  

(Hoeper, Bogaard et al. 2013). PAH is pathologically characterised by obliterative arteriolar 

disease with a range of histopathological lesions. Several subtypes exist relating to the 

underlying cause. Chiefly it can be idiopathic or heritable (due to one of several identified 

genetic mutations) that have almost identical pathological feature or associated to a number 

of well recognised conditions as listed in Fig. 1.3. The focus of my investigations presented in 

this thesis will focus on PAH and in particular the idiopathic form. 
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1.4 Epidemiology of PAH  

 

 

 

Figure 1.4: Evolving phenotype of PAH in the modern era: Spectrum of PAH ranging from 

“Typical” PAH towards “atypical” PAH and then to a subset of group 2 PH related to heart 

failure with preserved ejection fraction. Redisplayed from (Opitz, Hoeper et al. 2016) with no 

permissions required as open access article with a Creative Commons Attribution Non 

Commercial (CC BY-NC 4.0) license. http://creativecommons.org/licenses/by-nc/4.0/  

 

 

Idiopathic and heritable PAH are both uncommon diseases. Exact figures on incidence and 

prevalence are unknown but registries report them between 1- 10 cases/million and 5-

50/million (Humbert, Sitbon et al. 2006; Peacock, Murphy et al. 2007; Frost, Badesch et al. 

2011; Ling, Johnson et al. 2012; McGoon, Benza et al. 2013). Idiopathic and heritable PAH 

account for between 30-50%, PAH-CTD approx 30% (of which half are due to systemic 

sclerosis) and PH-CHD about 20% (Lau, Giannoulatou et al. 2017).  

 

It has long been recognised that young females have accounted for over two-thirds of the 

cases of idiopathic PAH and females have higher (42%) disease penetrance of BMPR2 

mutations compared to males (14%) (Aldred and Morrell 2012; Larkin, Newman et al. 2012). 

Whilst likely related to differences in sex hormones the precise mechanisms are still 

http://creativecommons.org/licenses/by-nc/4.0/
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incompletely understood (Mair, Johansen et al. 2014; Ventetuolo, Praestgaard et al. 2014; 

Singla and Machado 2015).  

National registry data (Table 1.1 p.29) highlight that the mean age at diagnosis of idiopathic 

PAH has increased, particularly in developed nations and consequently patients have a greater 

prevalence of cardiovascular co-morbidities (Hoeper, Huscher et al. 2012). Several reasons 

have been cited to account for this apparent change in PAH demographics including: a change 

in disease biology, heterogeneity in natural history, improved non-invasive detection and 

increased use of pulmonary vasodilators. It is likely that a combination of these factors 

accounts for the demographic changes (Lau, Giannoulatou et al. 2017). This increasing profile 

in contemporary western IPAH patients has led to the term “atypical IPAH” when compared to 

younger “typical IPAH” female patients. The former phenotypes overlaps with PH due to left 

heart disease (Fig. 1.4) which as a result of misclassification could partly account for the 

aforementioned “age drift” (Opitz, Hoeper et al. 2016). This recognition is an important 

consideration when planning and interpreting results from clinical studies.  
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1.5 Natural history of PAH 

 

 

 

Figure 1.5: Schematic illustration of the natural history of PAH. Modified from figure 4 in 

(Haddad, Couture et al. 2009) with permission. C.O Cardiac output, mPAP; mean PA pressure 

PVR; pulmonary vascular resistance. 

 

Unfortunately many patients with PAH are diagnosed at a late stage of disease due to low 

disease incidence, non specific symptoms and the insidious nature of PAH all compounded by 

delayed diagnosis. Indeed the original NIH registry (Rich, Dantzker et al. 1987) and modern 

registries such as REVEAL (Brown, Chen et al. 2011) highlight a mean of 2 years in delay for 

many patients. Symptoms of early PAH (breathlessness, fatigue) are nonspecific whilst in 

advanced stages (chest pain, dizziness and collapse) signs of right heart failure may also be 

present (ankle swelling, abdominal swelling, symptoms at rest) supporting why over 70% of 

patients are in NYHA class III-IV at diagnosis.  

 

Given that the pulmonary circulation has a large physiological reserve, significant loss 

(estimated at >70%) in compliance can occur before PA pressure and vascular resistance rise 

(Fig. 1.5). At this stage patients usually notice symptoms that can be quite alarming and 

progressive. Cardiac output is usually adequate at rest but is inadequate during exercise 

leading to breathlessness. As the disease progresses cardiac reserve falls further. Additionally 
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marked ventilatory inefficiency and reduced peripheral muscle oxygen uptake contribute to 

dyspnoea In PAH (Dumitrescu, Sitbon et al. 2017)). In advanced PAH aggressive medical 

therapy, atrial septostomy and lung transplantation remain the principal treatment options. 

Within the illustrated schema there is heterogeneity between and within PAH subtypes in 

disease progression and response to therapy as illustrated in the next section.  
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1.6 Survival in PAH 

 

Registry Time 
period 

Mean 
age 

(years) 

Women 
(%) 

NYHA 
functional 
class III–IV 

(%) 

6MWD 
(m) 

Estimated 
survival at 1 

year (%) 

Estimated 
survival 

at 3 years 
(%) 

NIH
12

 1981–
1985 

36 ± 15 63 75 NA 68 48 

PHC
16

 1982–
2004 

46 ± 14 76 80 NA 91 75 

Japanese
23

 1992–
2012 

33 ± 14 74 87 267 ± 
154 

98 92 

Scottish
29

 2002–
2009 

49 ± 11 62 NA NA NA NA 

French
14

 2002–
2003 

52 ± 15 62 81 328 ± 
112 

83 58 

UK and 
Ireland

10
 

2001–
2009 

50 ± 17 70 84 292 ± 
123 

93 73 

REVEAL
18

 2006–
2009 

53 ± 15 83 55 374 ± 
129 

91 74 

COMPERA
22

 2007–
2011 

65 ± 15 60 91 293 ± 
126 

92 74 

Spanish
19

 2007–
2008 

46 ± 18 73 70 382 ± 
117 

89 77 

New 
Chinese

20
 

2008–
2011 

33 ± 15 70 52 394 ± 
114 

92 75 

Korean
24

 2008–
2011 

45 ± 16 73 63 398 ± 
116 

NA NA 

 

Table 1.1: Demographics and survival in idiopathic PAH from national registries. Adapted 

from (Lau, Giannoulatou et al. 2017) with permission. Hyperlinks to individual studies are 

preserved.  

 

Natural history studies from the early and mid 20th century cited above highlighted the poor 

prognosis of patients with PAH but cases numbers were small. The first study to formally 

characterise the natural history of idiopathic PAH was led by the NIH in the 1980s (Rich, 

Dantzker et al. 1987). 187 patients from 32 centres were prospectively followed up, prior to 

the era of modern pulmonary vasodilator therapies. These were mostly young females with a 

typical idiopathic PAH phenotype. The rather poor outlook was subsequently confirmed by 1, 3 

and 5 year survival rates of 68%, 48% and 34% respectively.  Estimated median survival was 2.8 

years (D'Alonzo, Barst et al. 1991).  

 

Data from more recent French, American REVEAL and UK registries of PAH reported median 

survival is now at least 5 years with 1, 3 and 5 year survival approximately 83-93%, 58-74% and 

57-60% respectively which coincide with increased availability of pulmonary vasodilator drugs. 

https://www.nature.com/articles/nrcardio.2017.84#ref12
https://www.nature.com/articles/nrcardio.2017.84#ref16
https://www.nature.com/articles/nrcardio.2017.84#ref23
https://www.nature.com/articles/nrcardio.2017.84#ref29
https://www.nature.com/articles/nrcardio.2017.84#ref14
https://www.nature.com/articles/nrcardio.2017.84#ref10
https://www.nature.com/articles/nrcardio.2017.84#ref18
https://www.nature.com/articles/nrcardio.2017.84#ref22
https://www.nature.com/articles/nrcardio.2017.84#ref19
https://www.nature.com/articles/nrcardio.2017.84#ref20
https://www.nature.com/articles/nrcardio.2017.84#ref24
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These and other national registries (in PAH cohorts with both incident +/- prevalent cases) 

have shown improvements in symptoms, haemodynamics and improved overall survival. 

However they continue to highlight older age, advanced disease on presentation (NYHA class 

III-IV), greater preponderance of women, and a worse prognosis in older age groups and 

incident cases (summarised in Table 1.1) (McGoon, Benza et al. 2013; Lau, Giannoulatou et al. 

2017).  Latest audit figures (2017) from the United Kingdom’s large national PH database 

reported a median survival of just under 4 years in 4100 patients with PAH from a cohort of 

8500 PH patients during the period 2009-2017 (Fig. 1.6) and confirm prior similar trends with 

respect to age, sex and functional class on presentation (NHS-Digital 2017). 

 

 

Figure 1.6: Survival of adult PH patients in the U.K from first diagnosis in the 8th National 

Audit of PH for Great Britain 2009-2017, published 31st Oct. 2017. Reproduced under the terms 

of the Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-government-

licence/version/3/) 

 

 

It is important to highlight that prognosis within the 5 groups of PH (Fig. 1.3) is heterogeneous 

and even with Group 1 (PAH), where it varies between subtypes; generally patients with 

Congenital HD-PAH do the best, whilst idiopathic PAH is much better compared with CTD-PAH. 

Group 3 PH (PH related to lung diseases) tend to fare the worst (Fig. 1.6). Recent large PH 

registries such as the Sheffield ASPIRE study (2001-2010) have confirmed these observations. 

Specifically within the PAH group, 3 year survival in idiopathic PAH was 62%, 52% in PAH-CTD 

and 82% in Eisenmenger-PAH (Hurdman, Condliffe et al. 2012; Hurdman, Condliffe et al. 2013). 

Similar patterns were recently reported from a large German cohort (Gall, Felix et al. 2017). 

file:///C:/Users/UOS/BHF%20Fellowship%20Activities/THESIS%202011%20Write%20up/Draft%201%20chapters/Chapter%201%20Introduction/(http:/www.nationalarchives.gov.uk/doc/open-government-licence/version/3/)
file:///C:/Users/UOS/BHF%20Fellowship%20Activities/THESIS%202011%20Write%20up/Draft%201%20chapters/Chapter%201%20Introduction/(http:/www.nationalarchives.gov.uk/doc/open-government-licence/version/3/)
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1.7 Pathology of pulmonary arterial hypertension 

 

 

Figure 1.7 Histopathological lesions in PAH. Representative lung sections demonstrating the 

morphology of concentric and plexiform lesions in IPAH. SMA staining in brown reveals 

increased smooth muscle density within the medial vessel layer. Endothelial staining with 

CD31 demarcates a tiny residual lumen and with underlying neointimal proliferation. Plexiform 

lesion shows a more disorganized vascular architecture with multiple endothelial lined 

channels. H&E Haemotoxylin and Eosin, SMA alpha smooth muscle actin, CD31; endothelial 

marker. Images courtesy of Dr Allan Lawrie, University of Sheffield. 

 

PAH is characterized by a range of histopathological changes that appear qualitatively quite 

similar irrespective of the underlying aetiology which likely represents a common response of 

the pulmonary vasculature in response to a variety of stimuli  (Pietra, Capron et al. 2004). PAH 

has a predilection for the distal pulmonary vasculature, usually in small order arterioles 

(<150µm) that are usually devoid of smooth muscle but become characteristically 

muscularised and constrictive in PAH. This is due to one or more of medial hypertrophy, 

neointimal proliferation and adventitial thickening and associated vasoconstriction (Fig.1.7).   

 

This consequentially leads to significant reductions in the lumen diameter, altered vasomotor 

tone leading to increased pulmonary vascular resistance, raised PAP and invariably to death 

from right heart failure. In situ thrombosis is also a recognized phenomenon. Advanced lesions 

in PAH include concentric laminar fibrosis, eccentric fibrosis, plexiform lesions and occlusive 
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vasculopathy. It is still unclear whether plexiform lesions are the precursor for subsequent 

vessel occlusion (Tuder 2017). 

 

The plexiform lesion has long intrigued pathologists and clinicians alike and is most often, 

although not exclusively associated with IPAH. It is classified as a complex lesion often seen in 

advanced disease and defined by focal proliferation of endothelial channels with disruption of 

the normal architecture of the surrounding vessel and often contains thrombi (Lee, Shroyer et 

al. 1998; Pietra, Capron et al. 2004) (Fig.1.7). 

 

A plethora of molecular and cellular mechanisms initiate, maintain and perpetuate the 

observed vascular remodelling. However there is a growing appreciation of cross talk between 

pathways (Sutendra and Michelakis 2014). 
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1.8 Genetic, cellular and molecular pathogenesis of PAH 

 

 

 

Figure 1.8: Key aspects in the cellular and molecular pathogenesis of PAH. Redisplayed with 

permission from (Thompson and Lawrie 2017). 

 

It is reasonable to assert that the pathophysiology of PAH is increasingly viewed as complex 

and a complete story is lacking. Key molecular and cellular abnormalities are highlighted 

schematically in (Fig. 1.8). Perturbation in genetics, inflammation, immunity, mitochondria, cell 

metabolism, ion channels, vasomotor tone, fluid mechanics and hypoxia are key features that 

lead to dysfunctional cell growth and repair in this pulmonary vasculopathy (Hemnes and 

Humbert 2017). The end result is obliterative arterioles as illustrated in (Figs. 1.7-1.8). Several 

unifying theories of PAH are emerging focusing on altered metabolism and inflammation 

linking seemingly diverse abnormalities. I shall begin by summarising the genetics of PAH as 

subsequent research has tried to integrate defects to upstream dysfunctional BMPR2 signaling.  
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1.9 Genetics of PAH 

 

 

Figure 1.9: Historical overview of genetic discovery in PAH. Redisplayed with permission from 

(Girerd, Weatherald et al. 2017) Reproduced with permission of the © ERS 2018.  European 

Respiratory Review Sep 2017, 26 (145) 170037; DOI: 10.1183/16000617.0037-2017 

 

The observation that PAH could occur in first degree relatives in an autosomal dominant 

fashion had been recognised decades ago (Dresdale, Michtom et al. 1954; Kingdon, Cohen et 

al. 1966; Parry and Verel 1966; Thompson and McRae 1970). The phenomenon of incomplete 

gene penetrance  was subsequently reported  (Loyd, Primm et al. 1984). Linkage analysis led to 

localisation of a putative gene at locus on the long arm of chromosome 2 (Morse, Jones et al. 

1997; Nichols, Koller et al. 1997) paving the way for subsequent identification of heterozygous 

mutations within the bone morphogenetic protein receptor II (BMPR2) gene (Deng, Morse et 

al. 2000; Lane, Machado et al. 2000). Mutations in BMPR2 were also detected in apparent 
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cases of sporadic idiopathic PAH (Thomson, Machado et al. 2000; Newman, Wheeler et al. 

2001) and patients with  drug induced (Fenfluramine) PAH (Humbert, Deng et al. 2002). 

Mutations in other TGF-β receptors (ALK1, ENG) and BMPR2 signalling related genes (SMAD 

1,5,8) have also been identified further underscoring this pathway (Figs. 1.9 and 1.10). More 

recently through whole exome sequencing, mutations in caveolin 1 (Austin, Ma et al. 2012) 

and a potassium channel KCNK3 (Ma, Roman-Campos et al. 2013) have been identified in small 

numbers of hereditary PAH. The precise pathophysiological mechanisms for these newer 

mutations are still work in progress. 

 

 

Figure 1.10 Mutations in BMPR2 related and non related genes in PAH. Schematic illustration 

highlighting where mutations* in PAH have been detected and in particular within the BMPR2 

SMAD axis. Redisplayed with permission from (Machado, Southgate et al. 2015). 

 

Heterozygous mutations in BMPR2 account for approximately 70-80% of familial PAH and 20% 

IPAH (Machado, Eickelberg et al. 2009; Morrell 2010) making it the most causally associated 

gene in PAH. Nearly 670 mutations have been identified in the BMPR2 gene of which the 

majority are pathogenic (Machado, Southgate et al. 2015). Pathogenic mutations lead to loss 

of function and approximately 70% of them are due to frame shift, missense or nonsense 

mutations (Machado, Southgate et al. 2015; Ma and Chung 2017). A recently published large 

individual patient meta-analysis reported patients with a BMPR2 mutation to present at a 
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younger age, have worse haemodynamics and survival compared to non-carriers (Evans, 

Girerd et al. 2016). Furthermore patients with BMPR2 mutations have worse right ventricular 

function (van der Bruggen, Happé et al. 2016) which could be related to defects in RV energy 

metabolism (Hemnes, Brittain et al. 2013; Talati, Brittain et al. 2016). 

 

 

BMPR2 is one of three type II receptors belonging to the TGF-β receptor super family. It is a 

serine/threonine receptor kinase. Upstream of the receptors are at least 20 ligands and 

combined with 10 receptors that interact as hetromeric complexes to activate a number of 

canonical (SMAD dependant) and non-canonical (non SMAD e.g ERK, MAPK) downstream 

signalling cascades leading to nuclear events. In addition there are a number of co-receptors 

and decoy receptors. Unsurprisingly as a result of this diversity combined with spatiotemporal 

expression and context dependant signalling, a variety of functions for BMP ligands in 

mammalian physiology have been described (Yadin, Knaus et al. 2016).  Mutations in these 

receptors can lead to a seemingly diverse array of conditions including cancer and range of 

cardiovascular diseases (including PAH).  

 

BMPR2 deficiency primarily leads to endothelial cell dysfunction, apoptosis and loss of vascular 

integrity.  Functional reduction (non genetic) in lung expression of BMPR2 has been identified 

in human PAH (Atkinson, Stewart et al. 2002; Dewachter, Adnot et al. 2009), monocrotaline 

rats (Morty, Nejman et al. 2007) and in mice exposed to hypoxia (Brock, Samillan et al. 2012) , 

Sugen-Hypoxia (Ciuclan, Bonneau et al. 2011) and high fat fed ApoE-/-  mice  (Lawrie, Hameed et 

al. 2011).  

 

However mutations within BMPR2 do not fully account for the disease as evidenced by 

incomplete gene penetrance (approximately 20%) and thus the majority of individuals 

harboring mutations do not go on to develop disease. Additionally what has also been unclear 

and frustrating is why despite germ-line mutations in BMPR2 there is  a predilection for the  

disease within the pulmonary vasculature (White and Morrell 2012). This has led to the notion 

that “multiple hits” are required and that BMPR2 mutations are required but alone are 

insufficient for disease (Yuan and Rubin 2005; Austin, West et al. 2017). This has led to a huge 

body of work trying to elucidate the mechanisms in dysfunctional BMPR2 signaling and 

integration into emerging mechanisms of disease pathogenesis as described below. 
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1.10 Endothelial and vascular smooth cells in PAH 

 

 

 

 

 

Figure 1.11: Endothelial dysfunction and PAH pathogenesis. Schematic illustration of 

upstream factors of that can induce endothelial dysfunction and the subsequent effects on 

endothelial and PASMC biology. Redisplayed with permission from (Budhiraja, Tuder et al. 

2004). 

 

Pulmonary vascular endothelium has an important role in maintaining vascular homeostasis by 

regulating vascular tone, vascular barrier, permitting active and passive transport of molecules 

into underlying tissue as well as maintaining flow and preventing thrombosis. Several lines of 

evidence demonstrating endothelial cell dysfunction, apoptosis and hyperproliferation induced 

by inflammation, oxidative and shear stress, genetics, epigenetics and mitochondrial 

dysfunction (Fig. 1.11). This has been derived from human studies (serum biomarkers, patient 

derived cells, lung immunohistochemistry) and rodent models of disease (Budhiraja, Tuder et 

al. 2004; Hiress, Tu et al. 2015; Bonnet and Provencher 2016; Benoît, Lloyd et al. 2017). 
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Figure 1.12: Proliferative and degenerative hypotheses of PAH. Redisplayed with permission 

from (Chaudhary, Taha et al. 2017). 

 

Although the field remains complex, it is believed that endothelial cell injury induced by a 

number of factors leads to early endothelial cell dysfunction/apoptosis and loss of vascular 

integrity followed by activation of endothelial repair mechanisms and proinflammatory 

signalling stimulating medial and adventitial remodelling (Sakao, Taraseviciene-Stewart et al. 

2005; Sakao, Tatsumi et al. 2009) . Normal BMPR2 signalling appears be a protective regulatory 

factor in this regard (Teichert-Kuliszewska, Kutryk et al. 2006; Song, Coleman et al. 2008; 
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Alastalo, Li et al. 2011; Tamosiuniene, Tian et al. 2011) and prevents PASMCs from switching to 

a proliferative and contractile phenotype (Nasim, Ogo et al. 2012; Maruyama, Dewachter et al. 

2015).  

 

However initial endothelial cell apoptosis is believed to lead to the selective and clonal 

expansion of hyperproliferative apoptotic resistant endothelial cells (Sakao, Tatsumi et al. 

2010; Voelkel, Gomez-Arroyo et al. 2012; Goldthorpe, Jiang et al. 2015). These cells are 

regarded by some to represent an aberrant angiogenic response to injury but resulting in 

concentric intimal fibrosis and plexiform lesion formation. This  “angioproliferative” hypothesis 

of PAH has principally  been derived from studies in the Sugen-Hypoxia rat model of PAH 

(Taraseviciene-Stewart, Kasahara et al. 2001; Abe, Toba et al. 2010; Lavoie, Ormiston et al. 

2014; Toba, Alzoubi et al. 2014).   

 

An alternative hypothesis is the “degenerative” model (Fig. 1.12) which regards the primary 

defect within endothelial cell loss resulting in vascular degeneration and loss of arteriolar 

architecture. This hypothesis proposes that augmenting lung vascular regeneration would be a 

more suitable therapeutic strategy (Chaudhary, Taha et al. 2017). In this regard either 

endothelial progenitor cells (Jurasz, Courtman et al. 2010; Gurtu and Michelakis 2015)  or 

restoring functional BMPR2 signalling (Spiekerkoetter, Tian et al. 2013; Long, Ormiston et al. 

2015; Ormiston, Upton et al. 2015; Spiekerkoetter, Sung et al. 2015) are potential therapeutic 

strategies to try restore endothelial integrity and function. 

 

PASMCs are regarded as the main cell driving medial hypertrophy in response to a number of 

growth factors and dysfunctional BMPR2 signalling. Aberrant growth properties of PASMCs 

have been noted in patients (Morrell, Yang et al. 2001; Yang, Long et al. 2005; Dewachter, 

Adnot et al. 2009; Zabini, Granton et al. 2018) and rodent models (Thomas, Docx et al. 2009). 

PASMCs display heterogeneity within different compartments of the lung vasculature and 

there is growing recognition that other cells (endothelial, pericytes, fibroblasts and  

myofibroblasts) may migrate and differentiate into SMC like cells through processes such as 

endothelial to mesenchymal transition (Stevens, Phan et al. 2008; Ranchoux, Antigny et al. 

2015; Stenmark, Frid et al. 2018).  
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1.11 Inflammation and immunity in PAH 

 

 

Figure 1.13 Immune and inflammatory involvement in PAH.  Histopathology of a vascular 

lesion from human PAH demonstrating neointimal proliferation, medial hypertrophy and 

marked inflammatory cell accumulation in the periadventitia. The lower schematic illustrates 

the types of immune cells and inflammatory mediators reported in human and animal PAH. 

Redisplayed from (Rabinovitch, Guignabert et al. 2014) with permission. 
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There are several lines of evidence indicating a role for inflammation in human and 

experimental PAH (Hassoun, Mouthon et al. 2009; Price, Wort et al. 2012; Rabinovitch, 

Guignabert et al. 2014). Elevated blood levels of cytokines have been demonstrated from 

relatively small numbers of patients with PAH and rodent models. A range of inflammatory and 

immune cells have been observed in histopathological lesions from patients.  Transgenic mice 

have highlighted a pathogenic role for some cytokines and anecdotal reports of improvement 

in PAH with the use of biological therapies.  

Elevated serum levels of interleukins 1 and 6 (Dorfmuller, Perros et al. 2003; Cracowski, 

Chabot et al. 2014) and TNFα have been detected in patients with PAH and predict survival 

(Soon, Holmes et al. 2010; Heresi, Aytekin et al. 2014). Several chemokines (Dorfmuller, Zarka 

et al. 2002; Perros, Dorfmuller et al. 2007) have also been reported in IPAH.  

 

In animal models IL-6 over-expression in PASMCs drives pulmonary hypertension in hypoxic 

mice (Savale, Tu et al. 2009; Steiner, Syrkina et al. 2009). IL-6 and FGF2 have been shown to 

stimulate pericyte growth in human and experimental PAH (Ricard, Tu et al. 2014). IL-1 

signaling is also dysregulated in human and experimental PAH (Lawrie, Hameed et al. 2011; 

Parpaleix, Amsellem et al. 2016; Pickworth, Rothman et al. 2017). These are exciting 

observations because biological drugs targeting IL-1 and IL-6 are licensed for clinical use in 

certain inflammatory diseases and thus provide potential for repurposing in PAH (Gomez-

Arroyo, Abbate et al. 2016). Interestingly case reports have reported marked clinical benefit 

with the anti-IL6 antibody Tocilizumab in patients with PAH in the context of adult onset Still’s 

disease (Kadavath, Zapantis et al. 2014) or an uncommon lymphoproliferative disorder, 

Castleman’s disease (Arita, Sakata et al. 2010; Furuya, Satoh et al. 2010). 

 

Histopathological studies have noted inflammatory cells around vascular lesions in PAH 

prompting the significance of this observation (Savai, Pullamsetti et al. 2012; Stacher, Graham 

et al. 2012; Tuder, Archer et al. 2013). Regulatory T cells limit  experimental PH (Tamosiuniene, 

Tian et al. 2011) whilst altered natural killer and dendritic cell responses have been observed in 

human and rodent PH models (Perros, Dorfmuller et al. 2007; Ormiston, Chang et al. 2012). 

Macrophage recruitment and release of leukotriene B4 has been therapeutically explored in 

PAH (Tian, Jiang et al. 2013). 

 

BMPR2 mutant cells from patients exhibit proinflammatory responses (Helbing, Rothweiler et 

al. 2011; Davies, Holmes et al. 2012) whilst cytokines and growth factors can repress BMPR2  

signaling in-vitro and in rodent models  (Hagen, Fagan et al. 2007; Kim, Song et al. 2013; 
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Sawada, Saito et al. 2014; Vengethasamy, Hautefort et al. 2016; Pickworth, Rothman et al. 

2017).  The archetypal proinflammatory cytokine TNFα (Sutendra, Dromparis et al. 2011; 

Sawada, Saito et al. 2014) via NFκB signaling (Wang, Prakash et al. 2012; Hosokawa, Haraguchi 

et al. 2013; Li, Kim et al. 2017) has been linked altered metabolism and miRNA dysfunction in 

PAH. 

 

Although still not definitive, there is a persuasive body of evidence supporting a role for 

deranged immune and inflammatory responses being causal in initiating and perpetuating 

disease pathogenesis (Fig. 1.13).  However apart from mechanistic/therapeutic  studies in 

experimental rodents, the clinical evidence base is small and restricted to patients with a 

immune/inflammatory diseases linked to PAH such as mixed connective tissue disease or SLE 

(Hassoun 2014).  Given the growing evidence for a pathogenic role for IL-1 and IL-6 in PAH and 

the availability of licensed drugs for their targeting there is the possibility of a quick “win”. A 

small phase II proof of concept trial (TRANSFORM-UK) is underway testing the safety and 

haemodynamic efficacy of blocking IL-6 with Tocilizumab in idiopathic PAH (Hernández-

Sánchez, Harlow et al. 2018). Trials therapeutically targeting other aspects of immunity and 

inflammation in early phase are summarized in (Fig. 1.14). 

 

Figure 1.14. ongoing early phase clinical trials in PAH. Redisplayed with permission from 

(Ghataorhe, Rhodes et al. 2017). 
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1.12 Metabolic Hypothesis of PAH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 Mitochondrial dysfunction in PAH. Schematic illustration summarising how 

mitochondrial suppression (manifested primarily as reduced calcium levels and membrane 

potential) in a  pulmonary endothelial and smooth muscle cells may lead a hyperproliferative, 

apoptosis resistant and pro-inflammatory phenotype. Upstream a variety of triggers can inhibit 

the enzyme PDH and two principal downstream transcription factors (NFAT and HIF1 α) can 

drive the three features of this phenotype. Potential sites for therapeutic exploitation are 

numbered. Redisplayed with permission from (Paulin and Michelakis 2014).  

There has been a growing body of literature in recent years highlighting a role for 

mitochondrial dysfunction as a central feature in the pathogenesis of PAH (Dromparis, Paulin 

et al. 2013; Paulin and Michelakis 2014; Sutendra and Michelakis 2014). These authors argue 

that mitochondrial dysfunction is a potentially unifying theory of PAH to amalgamate many of 
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the diverse defects described in the pathogenesis. Mitochondria are the “power houses” of a 

cell and maintain life through generation of ATP. In addition they are important in mediating 

apoptosis through the extrinsic pathway (described in a subsequent section on TRAIL). There 

are two key features of mitochondrial dysfunction; hyperpolarized membranes and decreased 

mitochondrial calcium levels. Mitochondrial membrane hyperpolarisation has been observed 

in pulmonary vascular endothelial, smooth muscle and fibroblast cells by several groups 

(Bonnet, Michelakis et al. 2006; Archer, Gomberg-Maitland et al. 2008; Archer, Marsboom et 

al. 2010; Xu and Erzurum 2010; Hemnes, Wittmann et al. 2012; Goveia, Stapor et al. 2014).  

 

In essence mitochondrial suppression due to a variety of upstream triggers already 

appreciated in PAH (Fig. 1.15), leads to hyperpolarized mitochondrial cell membranes in 

PASMC and PAECs with a resultant metabolic fuel switch towards glycolysis (and shut down of 

the more energetically efficient process of generating ATP by oxidative  phosphorylation). This 

leads to a “Warburg” effect akin to that first described and widely appreciated in tumour cells 

(Archer 2017) and explains the basis for via FDG-PET imaging is used to detect rapidly dividing 

cells in cancer (and lung and RV in human PAH). This leads to inhibition of cell apoptosis, 

activation of two key transcription factors NFAT (Nuclear Factor of Activated T cells) and HIF1α 

(hypoxia inducible factor 1 α) which stimulate cell proliferation, further inhibit apoptotic 

mechanisms and activate inflammatory pathways that feedback to drive the aforementioned 

cell phenotype.  

 

A key upstream mitochondrial enzyme inactivated in PAH is PDH (Pyruvate dehydrogenase) 

which is inhibited by PDK (PDH kinase- labeled 6 in Fig.1.15 above). PDH promotes oxidative 

phosphorylation and maintains normal mitochondrial metabolism and function. A body of 

preclinical and translational science over a decade has tried to therapeutically exploit PDK 

inhibition using a clinically available drug called DCA (Dichlorate Acetate). DCA inhibits PDK and 

releases PDH to restore oxidative phosphorylation and normal membrane potential. Recently 

this endeavor resulted in the first multicentre human trial of DCA in 20 patients with IPAH 

(Michelakis, Gurtu et al. 2017). Significant clinically meaningful improvements in 

haemodynamics and exercise capacity were observed in well treated (mostly on dual oral 

therapy) IPAH patients. However a group of non responders to DCA were observed in whom it 

was subsequently determined that they harbored a genetic modifier in two proteins 

permitting mitochondrial suppression independent of PDK.   
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1.13 MicroRNAs in PAH 

 

 

Figure 1.16: MicroRNA networks in Pulmonary Hypertension. Schematic illustration 

summarising how existing pathophysiological mechanisms interact with novel and emerging 

miRNA networks in key pulmonary vascular cells. Redisplayed from (Kim, Lee et al. 2015). No 

permission was required as this is an open access publication. 

 

Micro RNAs (miRNA) belong to a group of at least 10 different classes of non-coding RNA. They 

are short (19-24 nucleotides long) non coding RNA molecules that repress the translation of 

multiple genes (up to 60% of all protein encoding genes) and thus afford a physiologically 

important epigenetic mechanism for diversity and regulation of several cellular and molecular 

processes. They have been well described in cancer biology (Esteller 2011).  At least 5000 

miRNAs have been reported some of which can regulate hundreds of genes.  

 

There is a growing list of miRNAs (Fig. 1.16) implicated in PAH, modulating inflammatory and 

metabolic pathways to drive a hyperproliferative anti-apoptotic phenotype in PAECs and 

PASMCs (Zhou, Chen et al. 2015; Gamen, Seeger et al. 2016; Chun, Bonnet et al. 2017). For 

example IL-6 activates the miR 17/92 cluster to repress BMPR2 protein expression in PAECs 

(Brock, Trenkmann et al. 2009) activate HIF1α (Chen, Zhou et al. 2016) and induce  

experimental disease in vivo (Chen, Zhou et al. 2015). Our group recently identified another 
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novel mechanism of reduced BMPR2 signaling through ubuiquination, controlled by miR 140 

(Rothman, Arnold et al. 2016). Collectively these findings could account for the functionally 

reduced BMPR2 signaling described earlier and could be permissive factors for the 

development of PAH in non genetic disease. 

The use of a systems biology approach has begun elucidating a hierarchy of key miRNAs in PAH 

(Parikh, Jin et al. 2012; Bertero, Lu et al. 2014; Chun, Bonnet et al. 2017) and permitted 

integration with  defects such as altered cell metabolism (Caruso, Dunmore et al. 2017; Zhang, 

Wang et al. 2017). By adopting this approach key miRNAs can be identified that drive multiple 

disease pathways, however the therapeutic safety and clinical efficacy of this approach 

remains unproven (Negi and Chan 2017). 

Another potentially valuable role for miRNAs relevant to disease is their utility as biomarkers in 

human PAH. There is a significant unmet clinical and research need for good biomarkers. 

Recent data could fill this gap as they supported a role for miRNA 150 as independent 

predictor of survival in PAH (Rhodes, Wharton et al. 2013). Further studies employing this 

approach are emerging, and data from the PVDOMICs program will be eagerly awaited 

(Hemnes, Beck et al. 2017).  

 

 

1.14 Summary of potential translational targets for drug therapy in PAH  

 

From the discussion so far it can be appreciated that a complex array of molecular and cellular 

defects is expanding our current understanding of the pathophysiology of PAH. Most have 

been studied mechanistically in rodent and cell culture models supported by some evidence in 

human PAH. A few are being therapeutically exploited in early phase clinical trials but most 

remain experimental (Fig. 1.17). The progressive nature of pulmonary vascular disease results 

in an unmet clinical need for developing more effective therapies to improve prognosis.   
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Figure 1.17.  Emerging pathophysiological defects and potential targets for therapy in PAH. 

Specific mediators or defects (yellow), pathophysiological consequences (orange) and 

potential therapies studied or underway (red). Redisplayed with permission  from (Humbert, 

Lau et al. 2014). 
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1.15 Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) 

 

 

1.15.1 Brief overview of TRAIL 

 

 

 

 

Figure 1.18 Diversity in TRAIL physiology. TRAIL can be induced in response to DNA damage, 

ER stress and by miRNAs whilst also regulating cell growth, survival, apoptosis with  links to 

inflammation and mitochondrial function, that have been noted in PAH. 

 

TRAIL is a multi functional cytokine (Fig. 1.18) part of the TNF superfamily. Following its 

discovery over two decades ago, huge hopes were placed on it after inducing apoptosis of 

xenograft tumors in mice (Ashkenazi, Pai et al. 1999; Walczak, Miller et al. 1999). Studies in 

TRAIL deficient mice revealed a propensity for greater tumor growth and metastases. TRAIL 

mediated apoptosis through two “death” receptors (TRAIL R1 and R2) led to the clinical 

development of recombinant forms of TRAIL and agonistic antibodies. Over the past decade 

these have demonstrated safety but no significant efficacy in several human cancers 

(Ashkenazi 2015; von Karstedt, Montinaro et al. 2017). As with many disappointments in 

TRAIL 

Apoptosis, 
Necroptosis 

and 
Autophagy 

proliferation/ 
survival  

Immunity 
inflammation 

micro RNAs 

ER stress & 
mitochondrial 

dysfunction 

DNA damage 



49 
 

cancer drug discovery and not surprisingly, most human cancers were found to be TRAIL 

resistant.  Work from other areas started elucidating a role for TRAIL in regulating 

inflammation, cell survival, immune cell function in the context of systemic vascular biology, 

erythropoiesis, infection resolution and auto-immune and inflammatory diseases. These 

studies also suggested roles for the non apoptotic TRAIL receptors and a body of data has 

emerged supporting non-canonical TRAIL signaling to explain the diverse effects of TRAIL 

which appear context and disease dependent (Azijli, Weyhenmeyer et al. 2013). In particular a 

role for TRAIL in systemic vascular biology emerged (Zauli and Secchiero 2006; Kavurma and 

Bennett 2008) but the effects of TRAIL had not been explored in pulmonary vascular disease. 

 

 

 

1.15.2 TRAIL structure and tissue expression 

 

TRAIL was identified by two independent teams over two decades ago (Wiley, Schooley et al. 

1995; Pitti, Marsters et al. 1996) after noting that it was able to induce apoptosis in 

transformed cell lines but not normal cells. It displayed sequence homology (20-30% in the C-

terminal domain) to other members of the TNF superfamily (Ware 2008), particularly FAS 

Ligand. TRAIL is a type II transmembrane protein consisting of 281 amino acids (291 in mice) 

with a molecular weight of approximately 35 kDa. TRAIL can be cleaved by cysteine proteases 

(the precise protease(s) has not been identified) within the cell membrane to release a soluble 

form that is reported to retain biological activity (Zauli and Secchiero 2006).  TRAIL is widely 

expressed in several tissues including lung, thymus, spleen, and prostate (Daniels, Turley et al. 

2005; Zauli and Secchiero 2006). Furthermore TRAIL is expressed by vascular endothelial and  

smooth muscle cells (discussed later) as well as cells from the innate and adaptive immune 

system; T lymphocytes (Ehrlich, Infante-Duarte et al. 2003), mast cells (Berent-Maoz, Salemi et 

al. 2010), platelets (Crist, Elzey et al. 2004) neutrophils (Cassatella, Huber et al. 2006) , 

monocytes (Griffith, Wiley et al. 1999)  macrophages (Ho, Chen et al. 2011) dendritic cells 

(Fanger, Maliszewski et al. 1999) and NK cells. 
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1.15.3 Function of TRAIL 

 

The initial reports of TRAIL having the ability to induce apoptosis in tumor cell lines and regress 

tumors in mice  with little effect on normal cells in-vitro was an exciting discovery (Ashkenazi, 

Pai et al. 1999). It stimulated an intense effort into studying TRAIL signaling as a pathway for 

targeting cancer (Johnstone, Frew et al. 2008; Corazza, Kassahn et al. 2009; Newsom-Davis, 

Prieske et al. 2009). However after over a decade of multiple clinical trials using either 

recombinant TRAIL or agonistic death receptor it became apparent that most human tumors 

were resistant to the apoptotic effects of TRAIL. Several mechanisms of acquired resistance 

have been described (Trivedi and Mishra 2015). Furthermore the fact that TRAIL receptors are 

ubiquitously expressed on cells throughout the body (Daniels, Turley et al. 2005) supports the 

role for non-apoptotic functions of TRAIL. TRAIL has been shown to regulate processes linked 

to haematopoesis (Zauli and Secchiero 2006; Secchiero and Zauli 2008), inflammation (Adam, 

Paul et al. 2009; Tang, Wang et al. 2009), immune surveillance (Falschlehner, Schaefer et al. 

2009) and vascular biology (Secchiero, Candido et al. 2006; Zauli and Secchiero 2006; 

Vaccarezza, Delbello et al. 2007). These diverse functions of TRAIL that have become apparent 

appear to be related to the complexity within the receptor signaling and subcellular assembly 

of scaffolding proteins.  
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1.15.4 Regulation of the human TRAIL gene  

 

 

 

Figure 1.19 Structure of human TRAIL gene and splice variants.  Green indicates exons and 

Yellow novel sequences in splice variants. Exon 1 codes for transmembrane and cytoplasmic 

domains, Exons 4 and 5 code for the extracellular domain and receptor binding whilst Exon 5 

also codes for the C-terminal domain. Redisplayed from (Allen and El-Deiry 2012) with no 

permissions required as open access publication.  

 

The gene for TRAIL is on chromosome 3q26 in humans and mice (Ware 2008). It consists of 5 

exons and 4 introns (Gong and Almasan 2000). 8 splice variants (Fig. 1.19) have been reported. 

TRAIL β, TRAILγ and TRAILδ were shown to not induce apoptosis but hypothesised to 

neutralize full length TRAIL. Additional variants described in 2011 were shown to induce NFκB 

signaling and stimulate inflammatory cytokine and chemokine release but not apoptosis (Krieg, 

Krieg et al. 2003; Wang, Lu et al. 2011). Patterns of expression and effects of splice variants 

have not been characterized in diseased tissues.  
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Figure 1.20: Transcription regulation of TRAIL gene. Schematic illustration of key transcription 

factors regulating TRAIL gene expression, most of which have already been implicated in PAH 

(Pullamsetti, Perros et al. 2016). Redisplayed from (Allen and El-Deiry 2012) with no permission 

required (open access article). 

 

Several growth and transcription factors can regulate TRAIL (Fig. 1.20) (Allen and El-Deiry 

2012; Azahri and Kavurma 2013). Several of these have already been implicated in PAH and 

examples of positive regulation (many from vascular biology) include  FGF2 (Chan, Prado-

Lourenco et al. 2010), PDGF (Azahri, Di Bartolo et al. 2012) NFκB (Kavurma, Schoppet et al. 

2008; Chan, Prado-Lourenco et al. 2010) PPARγ (Ho, Chen et al. 2011) and TNFα (Secchiero, 

Zerbinati et al. 2004; Nguyen, Olesen et al. 2007; Corallini, Secchiero et al. 2010).  Further 

discussion on putative links between existing pathways in PAH and TRAIL are covered in 

chapter 3. 

 

 In the context of neoplasia, TRAIL expression/function has been reported to be regulated by; 

microRNAs (Ovcharenko, Kelnar et al. 2007; Jeon, Middleton et al. 2015; Joshi, Jeon et al. 

2015), altered mitochondrial metabolism (MacFarlane, Robinson et al. 2012; Robinson, 

Dinsdale et al. 2012) and endoplasmic reticulum stress (Akita, Suzuki-Karasaki et al. 2014; 

Huang, Wang et al. 2015; Iurlaro and Muñoz-Pinedo 2016; Jiang, Chen et al. 2017) concepts 

which as discussed earlier have emerged in PAH research and share similarity with some of the 

hallmarks described in cancer (Hanahan and Weinberg 2011). 
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1.15.5 TRAIL receptors  

 

 

Figure 1.21 Structure of TRAIL receptors in humans and mice. TAPE (threonine, alanine, 

proline and glutamine) domain. DD death domain. GPI glycosylphosphatidylinositol , MPD;  

membrane-proximal domain. Redisplayed with permission from (von Karstedt, Montinaro et 

al. 2017). 

 

 

Like other members of the TNF superfamily, TRAIL forms a homotrimer before binding to its 

cognate receptors. Five receptors have been described for TRAIL (Fig. 1.21). TRAIL R1 and R2 

contain intracellular death domains and were initially shown to trigger apoptosis by the 

extrinsic and intrinsic pathways (Kimberley and Screaton 2004; Falschlehner, Emmerich et al. 

2007; Guicciardi and Gores 2009)). In addition two further cell surface receptors (R3 and R4) 

that lack functional death domains have been described, and were proposed to merely act as 

decoy receptors (Marsters, Sheridan et al. 1997; Sheridan, Marsters et al. 1997). However 

precise functional details on R3 and R4 remain to be fully defined. Osteoprotegrin (OPG) was 

identified as the fifth receptor for TRAIL and has been shown to prevent TRAIL induced 

apoptosis in vitro (Emery, McDonnell et al. 1998; Vitovski, Phillips et al. 2007).  OPG has an 

important role in bone remodeling and also is a soluble receptor for RANK Ligand.  

 

A major driver for focusing on TRAIL apoptotic signaling was due to the potential for 

commercial and therapeutic exploitation in oncology. As a result most of our mechanistic 

understanding about TRAIL receptor signaling relates to TRAIL death receptors (R1 and R2).  

Data on the mechanisms of signaling via TRAIL R3 and R4 are still relatively limited.  
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1.15.6 Canonical (apoptotic) TRAIL signaling 

 

 

Figure 1.22. Apoptotic TRAIL receptor signaling via caspases. Schematic illustration of 

canonical TRAIL signaling. After ligand-receptor hetrotrimerisation of DISC (death inducing 

signal complex) is assembled which sequentially activates caspase 3. This initiates apoptosis via 

the intrinsic pathway. In type II cells apoptosis is triggered via the extrinsic (mitochondrial) 

pathway. Inhibitors and regulators of this pathway are marked and highlight mechanisms for 

how both transformed and non transformed cells can be resistant to TRAIL induced apoptosis. 

Redisplayed with permission from (von Karstedt, Montinaro et al. 2017). 

 

 

The initial apoptotic effects of TRAIL on tumor cells led to studies focusing on the mechanisms 

of apoptosis signaling. Upon binding of TRAIL to a death receptor, the intracellular death 

domains of the receptors bind to a FAS associated death domain (FADD) adaptor protein to 

form a DISC assembly. This leads to sequential activation of caspases triggering apoptosis 

directly or via mitochondria (Fig. 1.22). Although many normal tissues and cell types express 

TRAIL and its receptors, due to inbuilt mechanisms most cells do not undergo apoptosis after 

TRAIL ligation. It is also apparent however that many cancer cells have acquired resistance to 

the apoptotic effects of TRAIL (von Karstedt, Montinaro et al. 2017).  
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1.15.7 Non-canonical TRAIL signaling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.23 Noncanonical TRAIL signaling. TRAIL signaling via death receptors can form a 

secondary cytosolic complex consisting of additional adaptor proteins that subsequently 

activates several kinases known to induce survival and inflammatory gene activation.  

Redisplayed with permission from (Azahri and Kavurma 2013). 

 

Given the diverse functions for TRAIL (Fig. 1.18) in non transformed cells such as promoting 

survival and inflammation as well as the observation that paradoxically TRAIL can promote 

survival and invasion in some cancers has fuelled intense research that has started elucidating 

additional TRAIL signaling pathways (Fig. 1.23) (Azijli, Weyhenmeyer et al. 2013; Fulda 2013; 

Siegmund, Lang et al. 2017; von Karstedt, Montinaro et al. 2017) explaining prior work 

highlighting a role for NFκB induced inflammation with TRAIL  (Plantivaux, Szegezdi et al. 

2009). Recent studies are shedding further light on the dynamics and complexities of TRAIL 

signaling with respect to TRAIL R1 and R2 (Jiang, Chen et al. 2017; Kearney and Martin 2017; 

Lafont, Kantari-Mimoun et al. 2017; Lafont, Hartwig et al. 2018). 
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1.16 A role for TRAIL in systemic vascular biology and cardiovascular disease 

 

TRAIL was first detected in the aorta and pulmonary artery of rodents (Gochuico, Zhang et al. 

2000) and culture of VSMC from these vascular beds expressed TRAIL. TRAIL was also detected 

in atherosclerotic plaques (Schoppet, Al-Fakhri et al. 2004; Michowitz, Goldstein et al. 2005; 

Kavurma and Bennett 2008; Kavurma, Schoppet et al. 2008) where it was  shown to increase 

both VSMC migration (Secchiero, Candido et al. 2006; Kavurma, Schoppet et al. 2008) and 

VSMC apoptosis (Sato, Niessner et al. 2006) thus promoting both plaque stabilization and 

instability. 

 

 In-vitro TRAIL has been consistently shown to stimulate the migration, proliferation and 

survival of VSMCs (Secchiero, Zerbinati et al. 2004; Kavurma, Schoppet et al. 2008; Chan, 

Prado-Lourenco et al. 2010). TRAIL has been detected in stenosed vein grafts in areas of 

increased VSMC proliferation (as detected by PCNA-proliferating cell nuclear antigen staining). 

Interestingly no changes in apoptosis levels were observed supporting a pro-proliferative role 

for TRAIL in vascular remodeling. Further evidence to support this phenomenon was confirmed 

in-vivo. TRAIL was demonstrated to be an essential mediator in the neointimal proliferation 

observed after arterial injury in a murine model. Specifically TRAIL-/- mice had a 2-3 fold 

reduction in VSMC proliferation, with no differences in detectable apoptosis (Chan, Prado-

Lourenco et al. 2010). 

 

Data suggest that non transformed cells such as VSMC have several redundant mechanisms for 

being intrinsically resistant to apoptosis beyond the expression profile  of TRAIL receptors (van 

Dijk, Halpin-McCormick et al. 2013).  Further discussion on TRAIL signaling in systemic VSMCs is 

covered in chapter 3. 

 

There has been a slowly growing body of literature on the role of TRAIL in endothelial cell 

biology (Zauli and Secchiero 2006) that is derived predominantly from in-vitro cell culture 

work.  TRAIL has been shown to promote survival and proliferation of ECs although some 

studies have also observed apoptosis. This could reflect differences in the type of EC studied 

(dermal, umbilical vein, aortic and microvascular origin) and contextual biology of TRAIL 

signaling. 

 

For example TRAIL has been shown to induce some apoptosis (30%) in HUVEC and human 

dermal ECs whereas in surviving cells it induced inflammatory gene expression (NFκB),  and 
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upregulation of adhesion molecules promoting leucocyte adhesion (Li, Kirkiles-Smith et al. 

2003). Additionally OPG was shown to bind TRAIL to prevent endothelial cell apoptosis 

(Pritzker, Scatena et al. 2004). The proliferative effects of TRAIL in VSMC are mediated via AKT 

and ERK signaling (Secchiero, Zerbinati et al. 2004) and a similar effect has been shown in 

human umbilical vein and aortic ECs (Secchiero, Gonelli et al. 2003). 

 

In addition to effects on endothelial cell growth,  there are links between TRAIL and other 

important vascular endothelial responses such as oxidative stress (D'Auria, Centurione et al. 

2015), inflammation (Viemann, Goebeler et al. 2006) microparticle release (Mackman 2009; 

Simoncini, Njock et al. 2009), nitric oxide production (Zauli, Pandolfi et al. 2003) and cell 

permeability (Stagg, Bowen et al. 2013). Studies in TRAIL-/- mice reveal a role for TRAIL in 

promoting angiogenesis (Hubert, Davies et al. 2009; Di Bartolo, Cartland et al. 2015) 

supporting prior in-vitro findings (Secchiero, Gonelli et al. 2004).  

 

Collectively these data support a role for TRAIL in vascular endothelial cell homeostasis. Given 

that endothelial dysfunction and EC apoptosis are regarded as early features of PAH with a 

hyperproliferative EC phenotype later in disease; these data suggest that TRAIL could mediate 

pathologically relevant effects in PAH. Although not studied in this thesis, the role of TRAIL in 

pulmonary endothelial cell biology merits further attention and further discussion on this 

provided in chapter 8. 

 

Several clinical studies have consistently highlighted inverse relationships between serum 

TRAIL and adverse outcome (including mortality) in atherosclerotic vascular disease 

(Michowitz, Goldstein et al. 2005; Schoppet, Sattler et al. 2006; S, S et al. 2010; Shaker, El-

Shehaby et al. 2010), instent restenosis (Deftereos, Giannopoulos et al. 2011; Deftereos, 

Giannopoulos et al. 2012)  acute myocardial infarction (Secchiero, Corallini et al. 2009; 

Secchiero, Corallini et al. 2010; Secchiero, Gonelli et al. 2010) and ventricular dysfunction 

(Schoppet, Ruppert et al. 2005; Lula, Rocha et al. 2009; Niessner, Hohensinner et al. 2009; 

Hage, Michaelsson et al. 2017). In a large population study low serum TRAIL levels 

independently predicted worse survival in older aged individuals with cardiovascular risk 

factors (Volpato, Ferrucci et al. 2011). 

 

Finally several studies in mice investigating TRAIL have consistently supported  a protective 

role for TRAIL in atherosclerosis (Secchiero, Candido et al. 2006; Di Bartolo, Chan et al. 2011; 

Watt, Chamberlain et al. 2011; Di Bartolo, Cartland et al. 2013; Liu, Xiang et al. 2014; Cartland, 
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Murphy et al. 2016) whilst there is also a growing literature on the protective role of TRAIL in 

diabetes and obesity (Harith, Morris et al. 2013) collectively suggesting TRAIL may be 

protective in systemic cardiovascular diseases. Further discussion on this subject is covered in 

chapter 4.  
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1.17 Evidence for a possible role of TRAIL in Pulmonary Arterial Hypertension 

 

 

Figure 1.24: Evidence supporting a role for TRAIL in PAH.  

The function of TRAIL has evolved from one predominantly describing apoptosis (in oncology) 

towards proliferation in systemic vascular biology. TRAIL is a proliferative and migratory 

stimulus for VSMC (vascular  smooth muscle cells) and EC (endothelial cells) in-vitro and in-

vivo. TRAIL has been detected using immunohistochemistry in advanced pulmonary lesions 

from patients with idiopathic PAH (lower histology slides). 

 

Given the body of emerging literature supporting a role for TRAIL in vascular biology, our group 

observed expression of TRAIL in pulmonary vascular lesions of patients with IPAH (Lawrie, 

Waterman et al. 2008). TRAIL was found to be diffusely present throughout areas of medial 

hypertrophy as well as luminal and peri-adventitial sites in both concentric and plexiform 

lesions (Fig.1.24). Excess VSMC proliferation leading to medial hypertrophy of previously 

unmuscularised pulmonary arterioles represents a key component of the abnormal vascular 

remodeling observed in PAH. Whether this is in response to endothelial injury or dysfunction 

induced by inflammation, toxins or shear stress is still not clear.  
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Although not studied in the context of PH, some of the BMP ligands BMP2 and BMP7 

decreased, whereas TNFα increased gene expression of TRAIL in aortic vascular smooth muscle 

cells (Nguyen, Olesen et al. 2007) further implicating a possible role for TRAIL in vascular 

pathology such as PAH.  Collectively these observations lend support to the hypothesis that 

TRAIL could play an important role in the pulmonary vasculopathy encountered in PAH.  
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1.18 THESIS HYPOTHESIS AND OBJECTIVES  

 

 

 
Hypothesis 
 
TRAIL is an important mediator in the pathogenesis of PAH and could potentially provide a 

novel and rationale target for future drug development. 

 
Study objectives 
 
To determine  

 The pattern of TRAIL ligand and receptor expression on patient cells (PASMCs). 

 The mitogenic effects of TRAIL on PASMCs in-vitro. 

 The pathogenic role of TRAIL in three preclinical rodent models of disease (hypoxia, 

high fat diet and monocrotaline). 

 The contribution of bone marrow versus tissue derived TRAIL in experimental disease.  

 Whether targeting TRAIL could reverse or halt disease in rodent models of 

experimental PAH.  
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2.1 Rodents 

 

2.1.1 Rats and Monocrotaline 

Outbred male, albino Sprague Dawley rats (Charles River or Harlan, U.K) (starting weight 

approx. 200g) were used in the described experiments.  A single subcutaneous injection of 

monocrotaline (MCT) (see below) into the left thigh was used to induce pulmonary arterial 

hypertension. We used an established dose of 60mg/kg which leads to the development 

severe PAH and which is invariably fatal within 4-6 weeks.  

200mg of Monocrotaline (MCT) (#C2041-500, Sigma Aldrich, UK) was first fully dissolved in 

0.6ml of 1M Hydrochloric Acid and vortexed for 40min. Sterile water was added to make the 

volume to 5ml and the pH adjusted to 7.0 with sterile NaOH. Sterile water was added to 

achieve a final volume of 10ml (concentration 20mg/ml). 

 

2.1.2 Mice 

All inbred mice were on a C57BL/6 background and were homoyzygous deficient for either the 

Apolipoprotein-E (ApoE-/-), TRAIL (TRAIL-/-) or both genes (ApoE-/-/TRAIL-/-). Mice were available 

from in house colonies at the University of Sheffield.  ApoE-/- (Jax 2052) mice were originally 

sourced from Jackson laboratories (Bar Habor, ME, USA). TRAIL-/- deficient mice were supplied 

by way of a prior material transfer agreement from Amgen (having been originally developed 

at the Peter Mcallum Cancer Institute, Melbourne, Australia (Cretney, Takeda et al. 2002).  

They were crossed with ApoE-/- mice to generate ApoE-/-/TRAIL-/- double deficient colonies here 

in Sheffield. Male mice aged between 8-14 weeks were used for all in vivo experiments.  

 

2.1.3 Diets and husbandry 

All rodents were fed standard laboratory chow (4.3% fat, 0.02% cholesterol, and 0.28% 

sodium, Harlan, UK). Where indicated experimental mice were fed a high fat atherogenic diet 

(referred to as the Paigen diet from here on) which consisted of 18.5% fat, 0.9% cholesterol, 

0.5% cholate, and 0.259% sodium for either 8 or 12 weeks (#829110, Special Diet services, UK). 

The Paigen diet was supplied as a solid block. It was prepared for use by first breaking it into 

powder form and then sterile water was added to create a thick paste consistency. It was then 

placed on baking trays, lined with greaseproof paper, loosely covered with aluminium baking 

foil before being placed in a drying chamber set to 400C for 48 hours. Following dehydration it 

CHAPTER 2: MATERIALS AND METHODS 
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became firm yet retained a chewy texture. It was then frozen at -200C until use, prior to which 

it was thawed at room temperature. 

 

All animals had access to drinking water and fed ad-libitum. They were housed in dedicated 

laboratories with controlled temperature, humidity and a 12h day-night cycle. Animal care and 

investigation conformed to the Universitys ethical policy statement and the UK Home office 

guidance in the operation of Animal Scientific Procedures Act 1986. I was in a receipt of a U.K 

home office personal license (PIL 40/9332) and worked with procedures detailed in a H.O 

project license held by my principal supervisor Dr A. Lawrie (PPL 40/2952).  

 

2.2 Antibodies for Intervention studies 

Where stated recombinant mouse TRAIL-rmTRAIL (Peprotech, Cambridge, UK), polyclonal goat 

anti-mouse TRAIL (Anti-TRAIL) or goat anti-mouse (as control) IgG isotype antibodies (R&D 

systems, UK) where delivered to rodents through subcutaneously implanted osmotic pumps 

(Durect Corp., CA, USA). Interventions were delivered via an Alzet® 1004 micro pump (100µl 

reservoir, 0.1µl/hour for 4 weeks) in mice and via an Alzet® 2002 mini-pump (200µl reservoir, 

0.5µl/hr for 2 weeks) in rats.   Cost primarily governed the maximum concentration of antibody 

we could reconstitute in the osmotic pumps. 

 

2.2.1 Pump Implantation protocol 

 

Manufacturer’s recommendations were followed for filling pumps with solutions. Each pump 

was filled with the appropriate intervention under sterile conditions in a class II laminar flow 

hood and placed in sterile 0.9% saline at 37oC for 24 hours prior to implantation. Under 

isoflurane gas anaesthesia (2-3%, IsoFlo® 100% w/w inhalation vapour liquid, Abbot 

laboratories Ltd, Kent, UK) through 100% oxygen (flow rate 1.5L/min) overlying fur was 

clipped, the skin cleaned and sterilised prior to making a 1-1.5cm cutaneous incision over the 

left posterolateral thoracic wall, inferior to the lower costal margin in rats.  Under sterile 

surgical conditions, pre-filled pumps were implanted into a subcutaneous pocket created with 

blunt dissection. The wound was subsequently cleaned and closed using interrupted 2-0 Vicryl 

absorbable sutures (B-Braun, Sheffield, UK). Implantation for mice was identical except pumps 

were primed for 48 hours, implanted posterior to the cervical spine (scruff line) and wounds 

closed with interrupted non absorbable silk sutures (Silkam®, B-Braun Sheffield, UK).   
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2.3 Experimental Protocol  

 

2.3.1 Mice 

ApoE-/-, TRAIL-/- and ApoE-/-/TRAIL-/- knockout mice (aged between 8-16 weeks old, n as per 

relevant chapter) where fed either chow or Paigen for 8 weeks before disease phenotyping 

(see below).  

 

In separate experiments ApoE-/-/TRAIL-/- mice (8-12 weeks of age, n=4-6/group) were treated 

with either rmTRAIL (10ng/hr) or placebo (PBS) by osmotic micro-pump for 4 weeks that 

coincided with the onset of feeding Paigen diet. 

 

To determine the efficacy of inhibiting TRAIL in mice with established disease, ApoE-/- mice (8-

10 weeks of age, n=6-7/group) were fed a Paigen diet for 8 weeks and then received an anti-

TRAIL antibody (20ng/hr) or isotype control with phenotyping performed at week 12.  

 

2.3.2 Rats 

In time course experiments rats (200-260g, n=7/group/time-point) underwent haemodynamic 

study and sacrifice either 2,7,14,21 or 28 days after injection with MCT (60mg/kg) or saline 

control.  

 

To investigate if TRAIL was required for the development of disease (Prevention study) rats 

(200-240g, n=4/group) were treated with an anti-TRAIL antibody (84ng/hr) or isotype control 

delivered for 2 weeks by osmotic pumps, commencing at baseline with MCT injection. Disease 

phenotyping was undertaken one week later, i.e.: 21 days after MCT injection. 

 

To determine the efficacy of inhibiting TRAIL in established disease (Survival study), rats (200-

240g, n=6/group) with MCT induced PAH (day 21 after MCT) received an anti-TRAIL antibody 

(84ng/hr) or isotype control for 2 weeks. We compared survival in the two groups and rats 

were sacrificed at day 35 post MCT (1-14 days following intervention) or sooner if they 

displayed morbidity and evidence of right heart failure. The latter were defined by outward 

illness (breathlessness, lethargy, ruffled fur) and significant weight loss (defined as >5% weight 

loss in 24 hours or a total of 10% over 48 hours). At all times echocardiographic and 

haemodynamic studies were performed immediately prior to sacrifice.  
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2.4 Disease phenotyping  

 

Each rodent underwent echocardiography (where indicated) before cardiac catherterisation 

and was then euthanized whilst still under anaesthesia. Blood was collected by cardiac 

puncture for blood (for subsequent isolation of serum and RNA where indicated). The 

abdominal aorta was cut and lungs were perfused with PBS, using a 5ml syringe and orange 

needle in the right ventricle to expel blood until such that the lungs became visibly white. The 

heart and lungs were removed en-bloc. The right lung was quickly separated by tying sutures 

at the hilum, before immediately being snap frozen in liquid nitrogen for subsequent 

biochemical analyses. The left lung was perfusion fixed, via the trachea with 10% (v/v) formalin 

at an inflation pressure of 20cm H20 and then placed with the heart in 10% formalin overnight 

at 40C.  The left lung was used for all subsequent histological and immunohistochemical 

analyses. 

 

2.5 Rodent Echocardiography 

 

Transthoracic echocardiography was performed with a preclinical high frequency ultrasound 

imaging system (Vevo 770®, Visual Sonics, Toronto, Canada) using either a RMV707B (mouse 

central frequency 35MHz) or RMV710B (rat, central frequency 25MHz) scan heads. Standard 

frame rates were 100FPS but this could be increased by reducing sector width. Rodents were 

anaesthetised with isoflurane via oxygen before being placed supine on a heated platform and 

covered to minimise heat loss. Maintenance Isoflurane (0.5-1.5%) with oxygen was delivered 

via a nose cone and adjusted to achieve maximal heart rate (approx. 500bpm for mice and 

350bpm for rats) that was continuously recorded along with respiration rate and rectal 

temperature. The chest of the mouse was depilated and preheated ultrasound gel was applied 

(Aquasonics 100 Gel, Parker Labs Inc. New Jersey, U.S) for subsequent image acquisition. 

 

2.5.1 Left Ventricle Study echocardiography Protocol 

 

Standard parameters of the left ventricle were measured in the short axis view at the mid-

papillary muscle level. Manual tracing of the LV end diastolic and systolic areas were made to 

derive the fractional area change (FAC) as the primary index of contractility. M-Mode 

measurements were made for the LV wall and cavity dimensions (LVIDd), from which the 

ejection fraction (EF%), fractional shortening (FS%) and corrected LV mass were determined by 

standard automated analysis. Pulse wave tissue Doppler (TDI) velocities were manually 
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recorded from the endocardial aspect of the posterior wall of the left ventricle and 

represented another independent index of contractility. Stroke volume was derived from 

measuring the Velocity Timed integral (VTi) of flow and diameter at the level of aortic valve 

annulus and multiplied by heart rate to obtain the cardiac output.  

 

2.5.2 Right Ventricle/Pulmonary Artery Echocardiography study protocol 

 

From the right parasternal long axis view, right ventricle free wall measurements were 

recorded with M-Mode function. From the short axis view, Doppler flow was recorded from 

the proximal pulmonary artery (just after the pulmonary valve). From the spectral Doppler 

tracing the time from onset of flow to peak velocity (PA acceleration time; PAAT), the duration 

of ejection (PA ejection time; PAET) and stroke distance (PA VTI) were measured.  

 

Analysis was performed offline using the accompanying software (Vevo 770, V3.0). 

Measurements were taken during the relevant phase of the cardiac cycle that did not coincide 

with inspiration artefact. To minimise inter-observer variability all image acquisition and 

analyses were performed by a single, experienced operator (AGH) blind to the status 

experimental subjects. 
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2.6 Cardiac Catheterisation and invasive haemodynamics 

 

Following echocardiography, right and left (where indicated) ventricular catheterisation was 

performed using a closed chest method via the right external jugular vein and right internal 

carotid artery. Data were acquired with high fidelity micromanometer catheters (Millar 

instruments, Houston, Texas, USA). In mice, a 1Fr SPR-1000 for pressure or a 1Fr PVR-1045 

pressure volume catheter was used. Corresponding catheters used in rats were a 2Fr SPR-320 

pressure or a SPR-838 pressure volume catheter. All catheters were presoaked in normal saline 

at room temperature for 30 minutes and volumes calibrated as per the manufacturer’s 

instructions. The catheters were connected to a Millar MPVS 300 and a PowerLab 8/30 data 

acquisition system (AD Instruments, Oxfordshire, UK) and recorded using Chart v7 software 

(AD Instruments).  

 

Pressure tracings were recorded when tracings had stabilised and reached a steady state. An 

average of between 15-20 heartbeats (pressure waveforms) was used to record the pressure 

from the relevant cardiac chamber. Right Ventricular End Systolic Pressure (RVSP) was used to 

define pulmonary hypertension as it is equivalent to the Pulmonary Artery Systolic Pressure 

(PASP) in the absence of an obstruction between the right ventricle and pulmonary artery. The 

latter was routinely evaluated with echocardiography as described above. Where indicated 

pressure volume analysis was performed using PVAN v2.3 to determine the Cardiac output 

(µl/min) which was indexed to body weight to derive the Cardiac index (µl/min/g). 

 

As mean PA pressure (mPAP) could not be measured directly with the closed chest method it 

was estimated;  (EmPAP) from the RVSP (which is equivalent to the PASP) by adapting the 

equation published by (Chemla, Castelain et al. 2004) [eMPAP=(0.61xRVSP) +2mmHg]. This has 

been validated more recently (Chemla, Humbert et al. 2015).  EmPAP was then substituted for 

mPAP in the standard textbook equation used to determine Pulmonary vascular resistance 

(PVRi)=[ 80*(mPAP-Left Ventricular End Diastolic Pressure/cardiac index) to give an estimated 

PVRI (ePVRi). The ePVRi in this thesis has been expressed using the units mmHg/ml/min/g 

however is more often expressed as dynes-sec-cm-5. 
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2.6.1 Protocol for vascular access surgery 

 

Animals were anaesthetised with 3-5% Isoflurane using an anaesthetic vaporiser and induction 

chamber (Harvard Apparatus, UK) through 100% medical oxygen (flow rate 2l/min). Mouse and 

rat surgery protocols followed a published protocol (Pacher, Nagayama et al. 2008). 

The first step in the haemodynamic phenotyping required isolation of the right external jugular 

vein (for antegrade catheterisation of right heart chambers) and right internal carotid artery 

(for retrograde aortic and left ventricular catheterisation) where necessary and both were 

isolated, before insertion of catheters as described below. 

 

2.6.2 Measurement of right heart pressures 

 

Animals were placed on a heated pad (#TR200 Fine Science Tools Inc). Once the pedal reflex 

had been abolished a small incision in the neck was made to the right of the midline. With the 

use of a dissecting microscope and lateral blunt dissection the right external jugular vein (RJV) 

was identified. Curved forceps were used to free the vein with blunt dissection. The distal RJV 

was tightly tied off with 5-0 non-absorbable silk suture (Silkam®, B-Braun, Sheffield, UK) to halt 

venous return to the heart. Proximal to the insertion point of right subclavian vein a loose silk 

suture attached to a mosquito clip with traction was applied to the RJV. This left approx a 1cm 

length of vein in which to insert our catheter. Under direct microscopic visualisation the vein 

was cleaned of any fatty tissues to enable successful cannulation of the true lumen of the vein. 

Using a 25G 5/8” orange needle with tip bent at 900 and the bevel pointing downwards the 

vein was punctured and the superior wall of the vein was immediately but gently lifted 

upwards to allow simultaneous insertion and advancement of the catheter. Catheters had 

been pre-soaked in saline for at least 30min. 

 

The appropriate catheter was advanced forwards and the proximal sling was tightened to 

prevent bleeding. Real time visualisation of pressure recording helped us to identify 

characteristic tracings for the right atrial and ventricular chambers. Once the catheter was 

stable within each chamber recordings were taken for subsequent analysis. A recording of at 

least 15-20 heart beats was used to average the pressure measurements.  
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Right ventricular systolic pressure (RVSP), maximum and minimum derivatives of pressure 

(max and min dp/dt) were specifically recorded. RVSP served as a surrogate of pulmonary 

artery pressure as recordings of the latter were not possible with these straight tipped 

catheters. RVSP is identical to PASP in the absence of any obstruction at the level of the 

pulmonary valve. Once the catheter was removed the proximal RJV was tightly secured with a 

suture. 

 

 

2.6.3 Measurement of left heart pressures 

 

Following completion of RVSP measurements the right internal carotid artery was identified, 

deep and lateral to the trachea. The artery had been isolated and prepared in tandem with the 

jugular vein as described. It was freed similar to the vein using curved forceps. A tight distal, 

loose mid and proximal segment ties (5-0 silk Suture) were applied. The latter was attached to 

a mosquito clip and traction applied. Using a similar technique for the vein, an arteriotomy was 

created and the catheter advanced into the aorta and left ventricle. Once pressure and volume 

tracings were stable and clear, the recordings were taken. An aortic pressure tracing by 

catheter pullback from the LV was recorded prior to removal of catheter. A recording of at 

least 15-20 heart beats was used to average the pressure measurements.  
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2.7 Harvesting and processing of tissue 

 

2.7.1 Blood 

Blood collected in clinical specimen tubes was allowed to coagulate on the bench and 

subsequently centrifuged at 1200rpm for 15min. The serum was collected, aliquoted, labeled 

and frozen at -80oC until subsequent analyses. Tubes containing whole blood for RNA 

(PAXgene®, Qiagen/BD U.K or Tempus®, Applied Biosystems, UK) were frozen at -20oC until 

subsequent isolation of RNA. 

 

2.7.2 Lung tissue protocol 

 

After cardiac puncture the rodent was overdosed with gas anaesthetic followed by cervical 

dislocation. An incision in the upper abdominal wall was made to expose the liver. Whilst 

applying upward traction on the xiphoid process of the sternum, the diaphragm was carefully 

cut with fine scissors. The sternum and chest wall were resected away. The abdominal aorta 

was identified and cut to permit exsanguination. Using a 25G orange needle and 5ml syringe, 

the right ventricle was identified and flushed with PBS to drain out as much blood from the 

lungs (until they became visibly pale).  The trachea was identified and freed between the 

medial clavicular borders. Whilst applying firm upward traction on the trachea, the heart and 

lungs were removed en-bloc from the posterior wall of thoracic cavity. Great care was taken to 

avoid inadvertent lung puncture.  

 

The right lung was secured tightly at the hilum using 5-0 silk sutures, was separated and cut 

into three sections before being snap frozen in liquid nitrogen for subsequent isolation and 

determination of whole lung protein and RNA expression.  

 

Polyethylene tubing was inserted into the trachea and secured tightly with a suture, to prevent 

leaks. The left lung was gently inflated manually with a syringe containing 10% phosphate 

buffered formalin (0.4% w/v NaH2PO4
.2(H2O), 0.65% w/v Na2HPO4

.2(H2O) and 4% v/v 

formaldehyde in water) and then both heart and left lung were fixed in formalin for 24hours 

before transfer into PBS. From the rat prevention study onwards lungs were inflated using 

20cm H20 clamp set up to standardise inflation. The left lung was separated from the heart for 

subsequent histology.  
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2.7.3 Estimation of right ventricle hypertrophy (RVH)  

 

RVH was simply defined as the weight of the Right ventricle (RV) divided by the weight of the 

left ventricle/septum (RV/LV+S) as first described (Fulton, Hutchinson et al. 1952)  

 

Right ventricle dissection:  Using a small pair of fine scissors surrounding fat, tissue and great 

vessels were removed from around the heart. The atria were excised, cleared of any thrombus 

and weighed. The right ventricle was separated from the left ventricle and septum by the use 

of anatomical landmarks.  

 

Starting from the right ventricular outflow tract (RVOT) the septal margin of the RV was 

dissected away to ensure no ridges of tissue were left. An incision was also made from the 

RVOT adjacent to and encircling the aortic root towards the medial tricuspid valve annulus to 

separate the base of the RV. From the lateral tricuspid annulus the RV free wall was cut away 

ensuring again no ridges of RV tissue remained. The incision continued towards the apex and 

back up towards the RVOT. Thus the RV was dissected off whole so as to obtain a structure 

that resembled a crescent.  

 

Finally the left ventricle was cut, longitudinally and any clot removed from it before all 

chambers were padded dry and weighed. 
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2.8 Lung histology  

 

2.8.1 Tissue processing and histology 

 

The left lung was divided into 2-3 segments in the longitudinal (sagital) plane in rats or 

transverse plane in mice. Lungs were processed by first dehydrating them in graded alcohols 

(50% up to 100%). They were then placed in Xylene before being embedded in molten paraffin 

wax.  5µm thick paraffin embedded sections were cut with a microtome (Leica RM 2135) and 

mounted onto slides for subsequent histology, immunohistochemical staining and 

morphometric analyses. 

 

All slides were initially dewaxed by placing in Xylene for 10mins and then repeating for 2mins. 

Slides were then rehydrated in graded alcohols (1min in each of 100%, 100%, 90%, 70%, 50% 

and then finally water). Following any staining as a final common step, all slides were 

dehydrated in an identical but reverse order and mounted in DPX (Dibutyl Phthalate Xylene) 

and allowed to dry overnight. Slides were then coded, placed in designated storage racks and 

stored at room temperature. 

 

2.8.2 Alcian Blue Elastic Van Gieson (ABEVG) 

 

Dewaxed and rehydrated slides were oxidised in 0.25% potassium permanganate for 3min and 

then rinsed in distilled water before being bleached with 1% Oxalic acid for 3min. Following 

rinsing, slides were stained with Carazzi’s Haematoxylin for 2min and differentiated in acid 

alcohol (1% v/v HCl in 70% IMS) for a few seconds prior to being submerged in hot running tap 

water for 5min. Slides were then stained with Alcian Blue (1% w/v in 3% aqueous acetic acid, 

pH2.5) for 5 min. Slides were rinsed again with water and soaked rapidly in 95% IMS before 

being dipped into Millers elastin stain for 30min. Slides were then rinsed, placed in 95% IMS 

for a few seconds and rinsed in water again. They were then stained with Curtis modified Van 

Gieson reagent for 6min. Slides were then dehydrated in identical but reverse order to those 

for rehydration above before mounting in DPX. 
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2.9 Lung immunohistochemistry 

 

Paraffin embedded 5µm lung sections underwent immunohistochemical staining with Smooth 

Muscle Actin alpha (α-SMA) to identify vascular smooth muscle cells, von Willebrand Factor 

(vWF) for endothelial cells and PCNA (proliferating cell nuclear antigen) for cells undergoing 

proliferation.  Immunostaining for TRAIL was performed to identify any expression within 

pulmonary vascular lesions. Levels of apoptosis were determined with a colorimetric assay to 

detect DNA fragmentation (FRAGEL®, Calbiochem, UK) as specified by the manufacturer’s 

instructions. A positive control was generated with DNAse treatment of a control slide. 

 

2.9.1 Protocol for immunostaining for SMA,vWF and TRAIL 

 

Following dewaxing and rehydration of slides, endogenous tissue peroxidases were blocked by 

incubating slides in 3% (v/v) hydrogen peroxide for 10mins before being rinsed in tap water. 

Antigen retrieval (Slide permeabilisation) was done by incubating slides in either: 

 

a) citrate buffer, pH 6.0 preheated to 95oC for 20min. before cooling for 20min at RT. 

Tissue was then permeabilised by incubation in 0.5% (v/v) tritonX100 for 10mins at RT 

(IHC for TRAIL). 

b) 0.1% (w/v) Trypsin/TBS, pH7.8, preheated to 37C for 10minutes before stopping 

reaction by immersing in water (IHC for vWF). 

c) For SMA staining an antigen retrieval step was not performed. 

 

Slides were then blocked (to prevent non specific binding of secondary antibody) in 1% (w/v) 

skimmed milk/PBS for 30mins at RT.  Milk was tipped off and excess blotted away. The 

relevant primary antibody diluted in PBS was added and incubated as follows: 

 

a) Monoclonal mouse anti-human aSMA 1:150, (#m081, Dako) for 1 hour at RT 

b) Polyclonal rabbit anti-human vWF 1:300 (#A0082, Dako) for 1hour at RT. 

c) Polyclonal rabbit anti-human TRAIL 1:100 (#ab2435, Abcam) overnight at 4C 

 

Slides were washed in PBS three times for 5 mins before adding a species specific biotinylated 

secondary antibody (1:200 dilution in PBS) for 30minutes at RT. Slides were washed again in 

PBS three times for 5mins and an avidin biotinylated enzyme complex added (Vectastain ABC 

Kit, Vector laboratories Inc. CA, US). Following a further PBS washing step, diaminobenzidine 
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(DAB) substrate was added for 5-10min. After optimal development the colour reaction was 

stopped by washing slides in tap water. Slides were then counterstained with Carazzi’s 

haematoxylin for 1 minute before a final wash in water. Slides were dehydrated as described 

and mounted with DPX mountant. Slides were allowed to dry overnight before being examined 

under light microscopy. 

 

 

2.10 Morphometric lung tissue analysis 

The degree of pulmonary vascular remodeling was quantified in arterioles by two methods and 

categorised according to vessel size (20-50µm, 50-100µm and >100µm) (Schermuly, Dony et al. 

2005). Vessels were scored blinded to the experimental status of rodents. 

 

2.10.1 Media to Cross Sectional Area (Media/CSA) ratio 

Cross sectional area was the total area defined by the outer vessel circumference with the 

media defined as the area between the internal and external elastic lamina of the vessel. 

Medial area/CSA represented the proportion of the total vessel area that was taken up by 

the medial layer, as determined from α-SMA stained slides. The ratio was directly proportional 

to the degree of muscularisation (medial hypertrophy) of the vessel. Six vessels of each size 

group were analysed at a 40X objective (18 vessels/section and 1 section/rodent).  

 

2.10.2 Percentage of vessels thickened 

Percentage of vessels thickened was determined using slides stained with ABEVG. For each 

slide 3-4 random fields of view were sampled using a 10x Objective (100x mag). The number of 

vessels that were fully occluded, partly occluded and non-thickened per size group were 

counted and expressed as a percentage of the total number of vessels in each view. 

Slides were viewed with a light microscope (Nikon eclipse E600) connected to a digital camera 

(Nikon digital site DSRi1) and NIS basic elements software (Nikon Inc.). 

 

2.10.3 Quantification of vascular proliferation and apoptosis levels 

To determine the levels of proliferation within remodeled vessels, the number of PCNA 

positive stained nuclei were counted and expressed as a percentage of total nuclei counted 

within the vessel. Nuclei within the adventitia and adjacent perivascular area were also 

counted if they were in direct continuation from the vessel of interest. Six vessels of each size 

were scored from each section (one section/animal) at a 40X objective.  
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In an identical manner the percentage of apoptosis positive nuclei (as determined from a 

colorimetric assay for levels of DNA fragmentation) were quantified for six vessels of each size 

per lung section (one section/animal). 

 

2.11 Studying the expression of gene and protein from tissues 

 

2.11.1 Isolation and purification from Protein and RNA from lung tissue 

 

Lung segments frozen in liquid nitrogen were ground using a pestle and mortar containing 

liquid nitrogen to a fine powder and weighed. Precautions were taken to minimise 

contamination by RNAase. Total protein and RNA were isolated using a commercial 

RNA/Protein purification Kit (Qiagen) according to the protocol supplied by the manufacturer. 

The purification kit employed a spin column chromatography technique and allowed elution of 

proteins and RNA from the same sample within 30 minutes. 

 

Protocol.  

Briefly lysis solution was added to the lung tissue and then ethanol added. This was loaded on 

to a spin-column. After centrifugation at 14000rpm, all nucleic acids within the solution were 

bound by a resin whilst the proteins were removed in the flow through. The bound RNA was 

washed, spun again and then purified RNA was eluted. The concentration of RNA in the elution 

was determined with a spectrophotometer (NanaDrop®, Thermo Scientific) before freezing at  

-80C. Following pH adjustment the protein flow through was reloaded on to the original spin 

column, centrifuged, washed and eluted.  

 

Finally protein concentrations were determined using a commercial assay (DCTM protein assay 

#500-0116, BioRAD Life Sciences, UK) according to the protocol provided by the manufacturer. 

In principle it is a colorimetric assay that utilises a reaction between the protein and an alkaline 

copper tartrate solution. This is followed by a reduction step using Folin reagent. Absorbance 

was read at 750nm. The quantity of protein was determined from absorbance data generated 

from a protein standard curve with Albumin (BSA #23209, Pierce, Thermo Scientific Fisher, UK.) 

Protein samples were stored at -80C. 
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2.12 Western Immunoblotting for lung protein levels. 

 

Proteins were separated by SDS-Polyacrylamide gel electrophoresis using a commercial 

electrophoresis kit (NuPAGE® Kit, Invitrogen). All buffers and reagents were part of the 

NuPAGE range unless otherwise stated. A volume containing 35 µg of protein purified from 

whole lung lysates in sample buffer and a reducing agent made to a final volume of 30 µl (in 

deionised water) was heated to 70oC for 10 min.  Samples and a pre-stained marker ladder 

were then loaded onto 10 well pre-cast SDS polyacrylamide gels (NuPAGE® 4-12% Bis-Tris Mini 

gels, Invitrogen). In addition a sample of mixed experimental lung tissue was also loaded onto 

every gel as an additional control to allow for subsequent quantitative analysis.  

 

Immediately prior to placing the loaded gels into an electrophoresis cell (XCell SureLock® Mini 

cell, Invitrogen) that already contained SDS running buffer, 500 µl of antioxidant was added. 

The Gel was run at 200V for 35 min. 

 

Gels were transferred onto a nitrocellulose membrane (membrane and blotting pads had been 

pre-soaked in the transfer buffer and air bubbles removed) in transfer buffer (containing 

antioxidant and 10% methanol v/v) and ran at 30V for 60min. Ponceau S staining was used to 

confirm adequate transfer. 

 

The membranes were then blocked for 1h in 10ml of PBS with 5% milk (w/v) and 0.1% Tween-

20 (v/v) on a shaking platform. Blots were rinsed in PBS/0.1% tween-20 three times before 

adding the relevant primary antibody in 5% milk/PBS/0.1% Tween-20 on a shaking platform 

overnight at 4oC. (Mouse anti-human TRAIL 1:50, Novo Castro Laboratories, Co Durham, UK 

and anti Mouse Beta Actin 1:2000, #c56 Santa Cruz, CA, USA). 

 

Blots were rinsed three times for 10min before adding an appropriate, species specific 

peroxidise labeled secondary antibody diluted in PBS (polyclonal goat anti-mouse 

immunoglobulin/HRP 1:2000, #p0447, Dako, Ely, UK). 

 

Following a further rinse step as described enhanced chemoluminescence was performed by 

adding 1ml of a commercial assay on to the blots for 5min. in the dark (#34075 West Dura 

Super Signal, Thermo scientific Fisher). Blots were developed in a dark room using 

autoradiography film (#28906836, HyperFilmTM GE Amersham, UK) and developer/fixer 

solutions. 
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Blots were stripped (#2502, Reblot Plus Mild Chemicon solution, Millipore) and reprobed for 

actin as described above.  

 

The developed blots were dried and the ladder marked. The quantity of TRAIL in the bands was 

determined by normalising to actin and control samples using the densitometry function on 

commercial software (Syngene SNAP software, Chemigenius2 bioimaging system, SynGene).   

 

 

2.13 Quantitative real time Polymerase Chain Reaction 

 

 

This step was performed using components provided in a SuperScriptTM III first strand synthesis 

system (#18080-051 and #18080-044, InvitrogenTM Life technologies, UK). A volume containing 

3ug of total RNA isolated from the lungs (and whole blood using PAX-gene tubes) of 

experimental rodents was made to 10µl using molecular grade water. 1µl  of random hexamer 

primers (50ng) and 1µl of a 10mM dNTP were added to this and heated to 65oC for 5 minutes 

as a denature step. Samples were put on ice until 10µl of a cDNA synthesis mix [containing 

10xRT buffer (2µl), 25mM MgCl2 (4µl), 0.1M DTT (2µl), RNaseOUTTM (1µl) and SuperScriptTM III 

reverse transcriptase (1µl)] was added to this solution and mixed.  Samples were heated in a 

thermal cycler (G Storm GS1, GRI Ltd, Essex, UK) with parameters set as follows i) 25oC for 

10min. (annealing step), ii) 50oC for 50min. (cDNA synthesis) and finally iii) 85oC for 5min. 

before being held at 4oC- (to terminate the reaction). 1µl of RNaseH was added to each tube 

before a final incubation step at 370C for 20min.  

 

Alternatively (for all mouse and rat interventions) 2µg of RNA was reverse transcribed using a 

commercial high capacity RNA to cDNA kit (Applied Biosystems) according to enclosed 

protocol. Briefly RNA was added to PCR tubes containing 10µl of 2x RT buffer and 1µl of an RT 

enzyme mix. Samples were heated in a thermal cycler (G Storm GS1, GRI Ltd, Essex, UK) with 

parameters set as follows; i) 37oC for 60min ii) 95oC for 5min and then held at 4oC to terminate 

the reaction. 
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Real Time quantitative PCR 

 

Amplification of the target lung cDNA derived from the RT step above was then next 

performed. A volume containing 50ng of each cDNA was diluted to a volume of 4.5µl using 

sterile water. 5µl of a TaqMan® gene expression master mix-2X (#4369016, Applied 

BiosystemsTM Life Technologies, UK) along with 0.5µl of the relevant target gene primers (10X) 

were added to the cDNA into the relevant well of a 384-well plate. The following target genes 

were tested (all from Applied BiosystemsTM): OPG (#Rn00563499-m1), TRAIL (#Rn00595556-

m1 or (mouse: #Mm01283606-m1), CCL5 (#Rn00579590-m1), BMPR2 (#Rn01437210-m1), 

IL1R1 (#Rn00565482-m1), IL1R2 (#Rn00588589_m1). 18s (#Hs03003631-g1) was selected as an 

endogenous control and had been determined with prior testing. Samples (in duplicate) for 

each gene were loaded on the same plate. The plate was centrifuged at 1000rpm for 1 min and 

the reaction was run on a 7900HT fast real time PCR system (Applied BiosystemsTM).  Relative 

expression for each gene was quantified by comparing the test gene with the housekeeping 

control gene and comparing this ratio between an experimental and control subject (delta, 

delta CT method) for each gene using SDS software (v2.2.1, Applied BiosystemsTM).   
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2.14 Statistical analysis 

 

Data were plotted and analysed using Prism® v6.0 software (Graphpad, USA) software. Data 

are expressed as Mean [standard error of the mean] unless indicated otherwise. Either a 

Mann- Whitney test when comparing two groups, or a Kruskal-Wallis followed by the Dunns 

post-hoc test with a 95% confidence level where used unless indicated otherwise. Statistical 

significance was defined by a p value of ≤0.05. 
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The pathogenesis of PAH remains incompletely understood, yet historical and contemporary 

pathological studies have reported a consistent pattern of changes in the distal pulmonary 

vascular bed that include intimal thickening, fibrosis, medial hypertrophy and plexiform lesion 

formation (Heath and Edwards 1958; Pietra, Capron et al. 2004; Stacher, Graham et al. 2012). 

These findings provide strong support for perturbed cell turnover as a significant feature of the 

disease process. PASMCs are major contributors to pulmonary vascular remodeling. PASMCs 

switch from a quiescent (contractile) to a synthetic (proliferative) phenotype and display 

aberrant growth characteristics (Morrell, Yang et al. 2001; Eddahibi, Guignabert et al. 2006; 

Marsboom and Archer 2008). This phenotypic switch is manifested in PASMCs through 

excessive proliferation and migration which constitutes a central theme in pulmonary vascular 

remodelling. Pulmonary vascular cells harboring a mutation in BMPR2 display aberrant growth 

responses: PASMCs are hyperproliferative and resistant to apoptosis.  

 

Several cytokines and growth factors (Eddahibi, Humbert et al. 2001; Perros, Montani et al. 

2008; Hassoun, Mouthon et al. 2009; Izikki, Guignabert et al. 2009) have been demonstrated 

to induce PASMC hyperplasia however the interplay between these is unclear, whilst none of 

the current therapies licensed for use in PAH is able to directly target them. Therefore a 

continued search for additional pathogenic factors is necessary to improve our comprehension 

of disease pathogenesis and to enable the identification of more efficacious therapies that can 

regress the underlying pathological vascular remodeling. 

 

Over the past decade a role for TRAIL in vascular biology has emerged (Zauli and Secchiero 

2006) however hitherto, this has been limited to the study of cells from the systemic (non-

pulmonary) circulation (mainly aortic and internal mammary artery SMCs or human umbilical 

vein endothelial cells). TRAIL and its receptors are expressed on VSMCs and are detectable in 

both human (normal and diseased) and rodent arteries. TRAIL induces a pro-proliferative and 

migratory effect on systemic aortic VSMCs that is mediated via ERK signaling  (Gochuico, Zhang 

et al. 2000; Kavurma and Khachigian 2003; Secchiero, Zerbinati et al. 2004; Kavurma, Schoppet 

et al. 2008; Chan, Prado-Lourenco et al. 2010; Azahri, Di Bartolo et al. 2012).  

CHAPTER 3 BACKGROUND DATA: TRAIL EXPRESSION AND FUNCTION ON 

HUMAN PASMCS    

3. 1 INTRODUCTION 
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Although TRAIL has previously been localized to the medial layer of normal mouse pulmonary 

artery (Gochuico, Zhang et al. 2000) our group were the first to detect TRAIL within the media 

and adventitia of remodeled pulmonary arterioles from patients with advanced PAH (Lawrie, 

Waterman et al. 2008).  

  

It was appropriate that the relevance of TRAIL to human PAH was established before I 

commenced my series of investigations on TRAIL in experimental PAH. Thus, this chapter 

describes initial data from our group on the expression and function of TRAIL, its receptors and 

downstream signaling in patients with PAH and in human PASMCs in-vitro. These data will 

highlight that the TRAIL pathway is present within PASMCs, a major cell type in PAH and 

produces effects on PASMCs that are relevant to the pathophysiology of this disease. 

 

 

3.2 AIMS  

The specific aims of this work were to determine the: 

 

1. Expression of TRAIL and its receptors on PA-SMCs from patients with PAH. 

2. Effects of TRAIL on the proliferation and migration of normal human PA-SMC in-vitro. 

3. Role of ERK1/2 signaling in mediating the effects of TRAIL. 

4. TRAIL receptor(s) important in pulmonary vascular signaling.  
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3.3 METHODS 

 

The cell culture work reported in this chapter was performed by Dr Allan Lawrie and Dr 

Clauida Paiva. I specifically contributed to performing PASMC proliferation assays and only 

contributed data to Figure 3B. 

 

3.3.1 Isolation and culture of pulmonary artery smooth muscle cells (PA-SMCs) from 

human lung tissue 

 

Ribonucleic acid (RNA) from PASMCs isolated from human lung tissue (with prior ethical 

approval) was provided by Prof. Nick Morrell, University of Cambridge, Cambridge U.K. The 

isolation and culture of PASMCs as well as the subsequent extraction of RNA from these cells 

had been performed by the Morrell group, as previously described (Morrell, Upton et al. 1999; 

Morrell, Yang et al. 2001).  

 

Briefly PASMCs grown in culture had been isolated from the proximal and peripheral 

segmental pulmonary arteries (<1-2mm) of explanted lungs from female patients who had 

undergone lung or heart/lung transplantation for advanced PAH (n=3 with 1 case harboring a 

mutation in BMPR-2) and control patients with emphysema or cancer undergoing lung surgery 

(n=3). The PASMC phenotype was confirmed by immunofluorescence with antibodies to alpha-

smooth muscle actin and smooth muscle myosin (hsm-v). Total RNA was extracted from 

growth arrested PASMCs using Trizol reagent (Invitrogen). 

 

3.3.2 Quantification of TRAIL gene expression in PA-SMCs  

 

Real time PCR was used to determine the gene expression of TRAIL in PASMCs. Briefly, total 

RNA isolated (as above) from PASMCs was reverse transcribed using Superscript III reverse 

transcriptase  as per manufacturer’s instructions (Invitrogen, Paisley, UK). Gene expression was 

performed using Taqman PCR with commercial gene master mix and gene expression assays 

(Applied Biosystems U.K) with primers for TRAIL (Hs00234356_m1), TRAIL-R1 

(Hs00269492_m1), TRAIL-R2 (Hs00366278_m1), TRAIL-R3 (Hs00182570_m1), and TRAIL-R4 

(Hs04187520_m1). Relative gene expression was normalised to the control housekeeping gene 

ribosomal 18s RNA using the comparative delta/delta CT quantification method. 
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3.3.3 Culture of primary human PA-SMCs in-vitro. 

 

Commercially available human pulmonary arterial smooth muscle cells (hPASMCs) (Cascade 

biologics, Invitrogen, UK) were used in proliferation and migration experiments. Each supplied 

vial contained at least 5x105 viable cells that had been cryopreserved after the tertiary stage of 

culture in a medium containing 10% DMSO by the manufacturer. The subsequent storage, 

initiation of culture from cryopreserved cells and subculture were performed according to the 

manufacturer’s instruction). A haemocytometer was used to determine the concentration of 

cells and viability was assessed with Tryptan blue. 

 

Unless indicated otherwise, PASMCs were grown in Media 231 containing smooth muscle 

growth supplement (SMGS) with added gentamicin/amphotericin (all from Cascade 

biologicsTM, InvitrogenTM, UK). hPASMCs were allowed to grow to 70-80% confluence in a 

monolayer before use in all experiments below. Cells were not used beyond passage 10. All 

tissue culture work was performed in class II laminar flow hoods using aseptic precautions. 

Sterile (autoclaved) pipettes, tips and flasks were used. Sterile cell culture media and reagents 

were pre-warmed at 37oC in a water bath that was regularly inspected and cleaned. Cells were 

cultured at 37oC in 5% CO2/95% air in a humidified cell culture incubator that underwent 

regular inspection and cleaning. Unless stated otherwise, wells were washed with sterile PBS 

three times (500µl/well) with aspiration between each wash step.  

 

3.3.4 In vitro assay of human PA-SMC proliferation. 

 

PASMC proliferation experiments were performed in 24 well polystyrene plates (Costar3524, 

Corning, N.Y, U.S). To facilitate cell adhesion, all wells were pre coated with 500µl of 0.2% 

(w/v) gelatin, for 15mins at room temperature. Wells were washed with PBS and hPASMCs 

were seeded at a concentration of 2.5x104/ml (500µl/well) and incubated overnight at 37oC in 

5% CO2/95% air. 

 

Subsequently, cells were washed in PBS and then growth arrested for 48 hours by exchange of 

media to Dulbecco’s Modified Eagle medium (500µl/well; DMEM, Biowhittaker®, Lonza, UK) 

supplemented with 0.2% (v/v) fetal calf serum (FCS) 100IU/ml penicillin, 100µg/ml 

Streptomycin and 0.25µg/ml Actinomycin B (all Gibco, Invitrogen, UK). After quiescence, cells 
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were washed in PBS and were stimulated for 72 hours, before being counted as described 

below. 

 

All recombinant proteins and antibodies (purchased from R&D systems, Abingdon, UK unless 

otherwise indicated; # indicates catalogue number) were reconstituted and stored as indicated 

by the manufacturer. Antibodies, recombinant proteins, inhibitors and controls (unstimulated) 

were all diluted in supplemented DMEM with 0.2% (v/v) FCS as described (250µl/well). 

 

 

PASMCs were stimulated with recombinant human TRAIL (rhTRAIL, #375-TL) at doses between 

of 1-100ng/ml. This preparation of rhTRAIL is an extracellular domain of TRAIL (Thr 95 to Gly 

281) and contains a 6x histidine tag at the amino terminal end. In separate experiments TRAIL 

was cross linked using a monoclonal anti-polyhistidine antibody (#MAB050) and used to assess 

cell proliferation. Recombinant human PDGF (BB isoform, #220-BB) was used as a positive 

control and DMEM containing 0.2% (v/v) supplemented FCS (as above) served as control. 

Where indicated, inhibition of TRAIL receptors by antibodies (all goat IgG) to the extracellular 

domain of human TRAIL-R1 (#AF347), TRAIL-R3 (#AF630) TRAIL-R4 (#AF633) and the MEK 

inhibitor PD98059 (MEK inhibits ERK1/2) were all added 30mins prior to the addition of 

recombinant TRAIL or PDGF-BB.   

 

After 72 hours of stimulation, cell proliferation was assessed by the CoulterTM counting 

method. Wells were washed with PBS before the addition of Trypsin/EDTA (500µl/well) for 

5min. The contents of each well were collected and added to individual small plastic containers 

containing 9.5ml of a diluent (#8448011; Coulter Isoton II, Beckman Coulter, Bromley UK). Each 

container was placed consecutively on a loading tray and cells were counted automatically by 

a Coulter Z1 machine. A numerical result was displayed on the screen and was noted. This 

number was multiplied by twenty to derive the actual cell count given the prior 1:20 dilution 

step. 
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3.3.5 In-vitro assay of human PA-SMC migration. 

 

The method used to assess cell migration in response to TRAIL was performed using the well 

established transwell chamber assay, first described by Boyden when investigating leucocyte 

chemotaxis (Boyden 1962). The principle of this assay is as follows; a chamber divided into two 

compartments is separated by a micro-porous membrane (of varying pore size). Culture media 

containing the cell type to be studied is placed in the top chamber and the chemotactic 

stimulus, is added to the lower chamber. After a period of incubation the membrane 

separating the two chambers is fixed and removed and the numbers of cells on the 

undersurface of the membrane are counted to determine the number of cells that have 

migrated. 

 

As described in section 3.3.3 above, hPASMCs were serum starved for 48 hours in DMEM 

(0.2%FCS). 24 well cell culture inserts with a special membrane (PET track etched, 8µm pore 

size, #353097, BD FalconTM) were presoaked in human fibronectin (#F0895, Sigma Aldrich, 

Poole, UK) for 60min at room temperature so as to coat both inner and outer aspects of the 

well insert. The cell inserts were washed to remove fibronectin and placed in a 24 well plate 

with media containing the relevant stimuli. The latter step was done after a 24 well plate had 

been prepared by adding 750µl/well of starvation media containing, recombinant TRAIL (1-

100ng/ml, #375-TL), PDGF-BB (10ng/ml) or control (DMEM with 0.2%FCS).  hPASMCS were 

seeded at a concentration of 3x10 4 cells/ml, (250µl/well). 
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3.3.6 Time course for ERK1/2 expression and western Immunoblotting  

 

To determine a time course for the expression of ERK1/2 in PASMC, recombinant human TRAIL 

(30ng/ml) was used to stimulate hPASMC for between 0-60minutes in 12-24 well cell culture 

plates. PASMC lysates were then prepared by washing cells in ice cold PBS. Cells were scraped 

and collected in ice cold PBS and centrifuged at 200g for 5min at 40C. The supernatant was 

discarded and the remaining cell pellet was re-suspended in an ice cold lysis buffer and left for 

30min on ice. After lysis the tube was spun in a microcentrifuge for 10min at maximum speed. 

The supernatant containing the lysed cells was collected. The protein concentration was 

quantified using a DC protein assay as described in the methods chapter. Cell lysates were 

frozen at -800C.  

 

Western immunoblotting was used to determine the amount of total and phosphorylated 

levels of p44 and p42 MAP Kinases (ERK1 and 2) in lysates of human PASMC stimulated with 

TRAIL. The principles and details of western blotting are described in the methods chapter. 

Briefly a 20µg sample of each PASMC lysates was loaded on to 4-12% Bis-Tris-Nupage Gel and 

run under reducing conditions in MES running buffer (Invitrogen) before transfer to 

nitrocellulose membrane (Invitrogen). The membranes were blocked for 1h in 5% non-fat milk 

at room temperature. The blots were incubated with a phospo-p44/42 MAPK (ERK1/2; 

Thr202/Tyr204), rabbit monoclonal antibody (1:1000 dilution, #9101, Cell Signalling 

technology®) or p44/42 MAPK (ERK1/2) mouse monoclonal antibody (1:1000 dilution, #9107, 

Cell signaling technology®) for 1h at room temperature. A HRP conjugated and species specific 

antibody was added for 1 hour before performing an enhanced chemoluminescence (ECL, GE 

healthcare) reaction and exposure to autoradiographic film. The autoradiography, 

densitometry and normalization processes were performed as described in the methods 

chapter.  
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3.4 RESULTS 

 

 

3.4.1 TRAIL expression is upregulated on PA-SMCs from patients with PAH. 

 

Prior work from our laboratory has observed TRAIL immunostaining in concentric and 

plexiform lesions from patients with idiopathic PAH (Lawrie, Waterman et al. 2008). Given that 

a major role for PASMCs in the vascular remodeling of PAH is well established and TRAIL 

expression has been demonstrated on systemic VSMCs we first sought to confirm if TRAIL was 

also expressed on PASMCs from patients with PAH. 

 

Using Taqman PCR, there was an approx. three-fold upregulation in TRAIL gene expression in 

PASMCs from patients with PAH was observed compared to controls (Fig. 3A). The PASMCs 

had previously been isolated from explanted lungs of patients, with advanced idiopathic PAH 

who had undergone lung transplantation and grown ex-vivo. Patients undergoing lung surgery 

for either emphysema (COPD) or operable lung cancer served as disease controls. Clinical 

details of the patients from whom PASMCs had been isolated are shown in Table 3.1.  

 

 

Table 3.1 Clinical details for human cells used in experiments outlined in Fig. 3 

 

Sample Diagnosis Gender Age (yr) mPAP (mm Hg) CO (l/min) 

1 IPAH Female 38 56 2.8 

2 IPAH Female 23 70 2.0 

3 hPAH (R491M BMPR2) Female 45 50 2.4 

4 Emphysema Female 58 n/a n/a 

5 Centrilobular Emphysema Male 62 n/a n/a 

6 Squamous cell carcinoma Female 60 n/a  n/a 

IPAH – Idiopathic pulmonary arterial hypertension, hPAH – hereditary pulmonary arterial hypertension, 

mPAP – mean pulmonary artery pressure, CO – cardiac output, n/a – not available. 
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Figure 3. TRAIL induces proliferation and migration of PA-SMCs. (A) TaqMan expression of TRAIL 

in explanted PASMC from patients with IPAH normalised using ΔΔCT with 18S rRNA as the endogenous 
control gene. Human PASMCs were serum starved for 48 hours before stimulation with recombinant 
TRAIL (1-100 ng/ml) or 10 ng/ml PDGF-BB. (B) Proliferation was assessed by cell counting at 72 hours; 
(C) migration was measured at 6 hours using a Boyden Chamber assay and normalized relative to 
unstimulated cells (0.2% FCS). (D) Time course of p42/44 / ERK1/2 phosphorylation in PASMC using 30 
ng/ml of TRAIL. Treatment of PASMC with the ERK1/2 inhibitor PD98059 inhibited TRAIL (30 ng/ml) 
induced proliferation (E) and migration (F). TaqMan expression of TRAIL receptors in explanted PASMC 
from patients with IPAH normalised using ΔΔCT with 18S rRNA as the endogenous control gene (G). 
Human PASMCs stimulated with recombinant TRAIL (30 ng/ml) or 20 ng/ml PDGF-BB with blocking 
antibodies for TRAIL-R1, TRAIL-R3 or an IgG control. Proliferation was assessed by cell counting at 72 
hours (H) Bars represent mean +/- SEM, all experiments were performed in triplicate. For data using 
patient material (A & G) n=3. All remaining figures n=5. *=p<0.05, **=p<0.01, ***=p<0.001 compared 

to 0.2% FCS, control or 0h samples. These experiments were done by staff listed on p82.  
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3.4.2 Receptors for TRAIL are upregulated on PA-SMCs from patients with PAH 

 

All four membrane TRAIL receptors are expressed and upregulated on both human and rat 

aortic VSMCs (Secchiero, Zerbinati et al. 2004; Kavurma, Schoppet et al. 2008; Song, Choi et al. 

2011). Using TaqMan PCR, PASMCs from both disease controls and IPAH expressed all five 

TRAIL receptors, although only the surface receptors TRAIL-R1 (two-fold) and in particular 

TRAIL R3 (six-fold) were both significantly upregulated (Fig. 3G). The soluble decoy receptor 

Osteoprotegerin (OPG:TRAIL-R5, was also upregulated three fold (data not shown).  

 

3.4.3 TRAIL stimulates proliferation & migration of human PA-SMCs in-vitro.   

 

As TRAIL induces the proliferation of aortic vascular smooth cells, we next determined if a 

similar response would occur with pulmonary arterial SMCs. Growth starved hPASMCS were 

stimulated with recombinant human TRAIL (rhTRAIL) for 72 hours and cell counts were 

determined using the CoulterTM cell count method.  Recombinant human TRAIL (rhTRAIL) 

induced the proliferation of normal human PASMCs in cell culture with a significant response 

observed with a concentration of 30ng/ml (performed in duplicate with n=5 experiments) (Fig. 

3B).  

 

TRAIL naturally forms a homo-trimer and experimentally, the effects (apoptotic) of rTRAIL have 

been be shown to be enhanced by oligimerisation with a cross linking antibody. Thus In 

separate experiments we crosslinked TRAIL (using an anti-histidine antibody) and stimulated 

hPASMCs in-vitro for 72 hours (Performed in duplicate, n=6 individual experiments). However 

no significant difference in human PASMC was observed when compared to non linked rhTRAIL 

(data not shown). 

 

To determine if TRAIL displayed chemotactic properties towards PASMCs, a Boyden chamber 

migration assay was performed. rhTRAIL induced the migration of human PASMCs in a dose 

dependant manner, when compared to control (0.2% FCS treated) cells (performed in 

duplicate with n=5 experiments) (Fig. 3C). 
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3.4.4 TRAIL receptors and PA-SMC proliferation in-vitro 

 

There are 4 cell surface receptors for TRAIL and previous work has identified that the 

proliferative effects of TRAIL on aortic VSMCs were mediated via receptors TRAIL-R1 and R3 

(Kavurma, Schoppet et al. 2008). Our data demonstrate a similar upregulation of TRAIL R1 and 

R3 on PA-SMCs in PAH (Fig. 3G). In cultured human PASMCs, antibody blockade of TRAIL-R3, 

but not R1 or R4 significantly, although modestly attenuated the proliferative response to 

TRAIL (Fig. 3H).  We were unable to evaluate the contribution of TRAIL R2 to cell proliferation 

as no commercially available blocking antibody to TRAIL R2 was available at the time of this 

work. 

 

3.4.5 TRAIL induced proliferation of PA-SMCs is mediated through ERK signaling. 

 

MAPK (Mitogen Activate Protein Kinase) signaling via ERK (Extracellular signal Regulated 

Kinase, ERK1/2) is an established downstream signaling pathway in PASMCs. Furthermore the 

pro-survival effects of TRAIL on VSMCs have previously been demonstrated to activate ERK 

signaling (Secchiero, Gonelli et al. 2003; Secchiero, Zerbinati et al. 2004).  A dose of 30ng/ml of 

rhTRAIL induced a rapid and significant upregulation of ERK1/2 signaling as evidence by an 

increase in the ratio of phosporylated P44/42 / total 44/42 levels in hPASMC lysates (Fig. 3D). 

Moreover the pro-proliferative and pro-migratory effects of rhTRAIL were inhibited by the 

MAPKK inhibitor- PD98059 when compared to vehicle (DMSO) treated cells (Figs. 3E and 3F). 

PD98059 inhibits MEK1/2 which sits immediately upstream of ERK1/2 and activates it through 

phosphorylation (Cargnello and Roux 2011).  
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3.5 DISCUSSION 

 

 

The major findings from the investigations detailed in this chapter are: 

 

1. TRAIL Ligand and its membrane receptors, TRAIL R1 and R3 were significantly 

overexpressed on PA-SMCs isolated from the lungs of patients with advanced IPAH. 

2. Recombinant TRAIL stimulated proliferation and migration of human PA-SMC in-vitro.  

3. The mitogenic effects of recombinant TRAIL in-vitro were mediated through the TRAIL-

R3 receptor and required ERK signaling. 

 

 

3.5.1 The role of the PASMC in PAH 

 

PAH is a “proliferative vasculopathy” and although the precise sequence of molecular or 

cellular events that trigger PAH in susceptible individuals remain incomplete, aberrant PASMC 

growth with an imbalance towards excessive proliferation and migration underlies the vascular 

remodeling encountered in PAH (Archer, Weir et al. 2010; Schermuly, Ghofrani et al. 2011; 

Rabinovitch 2012). Several growth factors have been implicated to drive PASMC hyperplasia, 

including FGF-2 (Izikki, Guignabert et al. 2009), Platelet derived growth factor (PDGF) (Barst 

2005; Schermuly, Dony et al. 2005) , Serotonin (Marcos, Fadel et al. 2004), Epidermal growth 

factor (EGF) (Merklinger, Jones et al. 2005) and TGF-B (Morrell, Yang et al. 2001). However the 

precise interplay of these factors are still not fully appreciated, although an adaptor protein, 

p130cas has been shown to be a common downstream factor in mediating the proliferative 

responses of several of the aforementioned mitogens (Tu, De Man et al. 2012). Therefore an 

antiproliferative therapeutic strategy is appealing for the treatment of PAH. Currently available 

therapies principally act through promoting vasodilatation and are unable to significantly 

reduce vascular remodeling, whereas recent efforts to clinically target some of the 

aforementioned growth factors have not been as promising as hoped (Dahal, Cornitescu et al. 

2010; Hoeper, Barst et al. 2013). As a result there remains a need to continue identifying key 

pathways in disease pathogenesis that should permit the development of targeted and 

efficacious therapies. 
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3.5.2 TRAIL and VSMC growth 

 

TRAIL is a member of the TNF ligand superfamily and was originally identified as a cytokine 

that induced apoptosis in malignant cells (Wiley, Schooley et al. 1995; Pitti, Marsters et al. 

1996). It subsequently became apparent that TRAIL displayed non-apoptotic properties such 

as; cell growth, survival and differentiation (Falschlehner, Emmerich et al. 2007; Guicciardi and 

Gores 2009). These divergent, yet relevant effects of TRAIL theoretically suggested a role for 

TRAIL in proliferative vascular disease states such as atherosclerosis, in-stent restenosis and 

pulmonary hypertension, in which the balance between growth, apoptosis and overall cell 

turnover is critical.   

 

A role for TRAIL in vascular biology was first reported over a decade ago, when TRAIL 

expression was detected in normal mouse pulmonary artery and aortic VSMCs from rat and 

human (Gochuico, Zhang et al. 2000). Subsequent studies reported TRAIL induced proliferation 

and migration of aortic VSMCs in-vitro (Secchiero, Zerbinati et al. 2004; Kavurma, Schoppet et 

al. 2008; Bumdelger, Kokubo et al. 2016). Moreover TRAIL expression was associated with 

markers of proliferation, but not apoptosis in stenosed (failed) saphenous vein grafts from 

patients with previous coronary artery bypass surgery (Kavurma, Schoppet et al. 2008). TRAIL 

has been shown to be a chemoattractant for monocytes (Wei, Wang et al. 2010) and aortic 

wall macrophages (Bumdelger, Kokubo et al. 2016). However, hitherto the effects of TRAIL on 

PASMC biology had not been studied. 

 

The data from this chapter extend prior observations that TRAIL is abundantly expressed on 

normal human and rodent aortic and pulmonary arterial SMCs (Gochuico, Zhang et al. 2000; 

Secchiero, Zerbinati et al. 2004; Kavurma, Schoppet et al. 2008). Importantly these data are 

the first to observe increased TRAIL mRNA is expression on PASMCs from patients with PAH. 

We were unable to examine for TRAIL protein expression directly on PASMCs from PAH 

patients due to sample unavailability. However our prior observation of TRAIL immunostaining 

within concentric and plexiform lesions from patients with advanced IPAH (Lawrie, Waterman 

et al. 2008) collectively introduce a role for TRAIL in influencing VSMC behavior in pathology of 

the pulmonary circulation. 
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3.5.3 TRAIL receptor expression profile in PASMCs 

 

These experiments also identified that PASMCs from human lung express all known TRAIL 

receptors, although only the membrane receptors, TRAIL R1 and R3 were significantly over 

expressed on PASMCs from patients with IPAH. Interestingly a significant upregulation of the 

soluble TRAIL-R5 receptor (osteoprotegerin, TNFRSF11B) was observed. Our group has 

described a pathogenic role for OPG in PAH (Lawrie, Waterman et al. 2008; Condliffe, 

Pickworth et al. 2012; Lawrie, Hameed et al. 2012).  The finding that TRAIL-R1 and R3 are 

upregulated on human PASMCs is similar to that reported for aortic VSMCs using qPCR 

(Kavurma, Schoppet et al. 2008). 

 

However not all studies have observed a similar receptor expression. At a protein level only 

TRAIL-R1 and R2, but not R3 or R4 were detectable using flow cytometry (Secchiero, Zerbinati 

et al. 2004). Similarly, selective expression of TRAIL R1 and R2 on aortic VSMCs has been 

reported by others, although the authors did not report if they examined for TRAIL-R3 and R4 

expression in addition to death receptors (Gochuico, Zhang et al. 2000; Keogh, Harris et al. 

2007). Nevertheless, TRAIL R2 was only detectable on normal human PASMC using FACS 

analysis for all receptors (Song, Choi et al. 2011). This would suggest that cell type, level of 

expression (protein or mRNA) as well as the method employed may have influenced the 

expression pattern observed. Preliminary analysis revealed immunostaining for all TRAIL 

receptors and in particular TRAIL-R3 in pathological lesions of IPAH, (personal communication, 

Dr Mark Southwood, University of Cambridge). 

 

3.5.4 Mitogenic Effects of TRAIL on PASMC in-vitro 

 

Despite differences in TRAIL receptor levels our observation that soluble recombinant TRAIL 

induced proliferation of PASMCs support previous  in-vitro findings of the effects of TRAIL (at 

similar concentrations) on systemic VSMCs (Secchiero, Zerbinati et al. 2004; Kavurma, 

Schoppet et al. 2008; Chan, Prado-Lourenco et al. 2010; Song, Choi et al. 2011; Bumdelger, 

Kokubo et al. 2016) and add to the body of literature favoring a mitogenic effect of TRAIL on 

VSMCs. Additionally TRAIL has been shown to promote the survival of vascular endothelial 

cells and promote angiogenesis (Secchiero, Gonelli et al. 2003; Secchiero, Gonelli et al. 2004). 

 

However in contrast, two studies have noted TRAIL directly induced apoptosis of aortic VSMCs, 

which may be have related to the method used to detect apoptosis, the expression pattern of 
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TRAIL receptors or possibly the dose of TRAIL used. For example in two of the three studies 

reporting only expression of TRAIL death receptor (TRAIL R1/2) on aortic SMCs, both were also 

associated with the finding of soluble TRAIL induced apoptosis of VSMCs, an effect blocked by 

antibodies to these specific receptors (Gochuico, Zhang et al. 2000; Keogh, Harris et al. 2007). 

In contrast a third group observed an identical TRAIL R1 and R2 expression yet the aortic 

VSMCs were resistant to TRAIL mediated cytotoxicity at concentrations up to 2000ng/ml, 

whereas 100ng/ml induced apoptosis in the HL60 tumour cell line. Apoptosis was evaluated 

with flow cytometry for PI/annexinV staining and also by confirming intact procaspase levels 

on VSMCs (Secchiero, Melloni et al. 2004). 

 

The concentration with which we have observed TRAIL induced proliferation of PASMCs (30-

100ng/ml) is similar to others reporting a similar effect (Kavurma, Schoppet et al. 2008) but 

also to that inducing apoptosis in aortic VSMCs (100ng/ml) although only modest levels (~10-

15%) of apoptosis were observed after 24hours (Gochuico, Zhang et al. 2000). However, a two-

three fold increase in apoptosis was noted after exposing aortic SMCs to rhTRAIL (10-

1000ng/ml) for 60 hours (Keogh, Harris et al. 2007).  In both aforementioned studies the 

presence of apoptosis was demonstrable by detection of PARP (a peptide cleaved during 

apoptosis) and in the latter study, additionally through use of time lapse microscopy and 

demonstration of a reduction in levels of apoptosis after treatment with a pan-caspase 

inhibitor (zVAD-fmk).  In contrast, similar concentrations of recombinant TRAIL (10-1000ng/ml) 

were unable to elicit significant apoptosis, as measured by DNA fragmentation (Nesterov, 

Ivashchenko et al. 2002). A differential effect of TRAIL on VSMCs growth has been only been 

described by one group; at low doses (0.1-100ng/ml for 24-hours) rhTRAIL induced 

proliferation (with no corresponding increase in apoptosis) whilst at a higher dose (400ng/ml) 

rhTRAIL solely induced apoptosis of aortic VSMCs (Kavurma, Schoppet et al. 2008).  

 

TRAIL is a membrane anchored protein, that can also be cleaved by cysteine proteases to 

release a soluble form that is biologically active (Zauli and Secchiero 2006). Atherosclerotic 

plaque rupture and consequent thrombosis is the underlying pathological substrate for clinical 

syndromes of acute myocardial and cerebral infarction. VSMC apoptosis is one of the major 

cellular events that can promote plaque rupture, and in this context, TRAIL expressed on CD4 

T-cells induced VSMC apoptosis (Sato, Niessner et al. 2006). Furthermore a physiological role 

for TRAIL in the vascular remodeling encountered during pregnancy has been identified. 

Trophoblast derived TRAIL induced VSMC apoptosis and regulated spiral artery adaptation 

during placental development (Keogh et al CR 2007).  Interestingly Fas Ligand, an archetypal 
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apoptosis inducing cytokine of the TNF family and upon which TRAIL was categorised (by virtue 

of sharing ~40% sequence homology) has been shown to induce PASMC apoptosis and 

elevated serum levels in patients with advanced PAH are observed (Zhang, Fantozzi et al. 2003; 

Akagi, Nakamura et al. 2013). 

 

3.5.5 Diverse Effects of TRAIL: Role of Non-Canonical Signaling 

 

Thus the effects of TRAIL in-vitro at least may relate to cell type, surface expression, disease 

context, dose and patterns of receptor expression (Kavurma and Bennett 2008). Albeit, the 

majority of in-vitro mechanistic studies however support a mitogenic role for TRAIL in VSMCs 

and this assertion were strengthened by in-vivo data from mice deficient for TRAIL. TRAIL 

expression in VSMC was upregulated following vascular injury and associated exclusively with 

upregulation in markers of proliferation but not apoptosis. TRAIL-/- mice were significantly 

protected from neointimal hyperplasia following wire induced femoral arterial injury. This was 

shown to be dependent on upstream FGF2 and NFκB signaling, whilst TRAIL also stimulated 

FGF-2 release highlighting positive feedback mechanism (Chan, Prado-Lourenco et al. 2010). 

FGF2 has been shown to have a role in experimental PAH; reduced expression of two 

protective micro RNAs (miR-424 and miR-503) due to reduced endothelial Apelin expression 

stimulated increased FGF2 gene and protein expression on patient derived PAECs. FGF2 

resulted in hyperproliferation of PAEC and stimulated PASMC proliferation in a paracrine 

manner. (Kim, Kang et al. 2013) 

 

Additionally it was reported for the first time that PDGF-BB induced VSMC proliferation and 

migration required TRAIL. This response was significantly attenuated in VSMC from TRAIL-/- 

mice. The authors elegantly identified that the TRAIL dependant mitogenic effects of PDGF-BB 

were regulated at a transcriptional level (Azahri, Di Bartolo et al. 2012).   

 

These reports are very interesting and relevant to TRAIL, because a role for FGF2 (Izikki, 

Guignabert et al. 2009; Tu, Dewachter et al. 2011; Kim, Kang et al. 2013; Ricard, Tu et al. 2014) 

and PDGF (Barst 2005; Perros, Montani et al. 2008) have already been implicated in PAH.  

 

Finally we have observed that mitogenic effects of TRAIL in PASMCS are dependent upon 

ERK1/2 signaling. ERK1/2 signaling has consistently been linked to vascular proliferation in PAH 

(Schermuly, Dony et al. 2005; Hansmann, de Jesus Perez et al. 2008; Yang, Davies et al. 2008; 

Morecroft, Doyle et al. 2011; Kwapiszewska, Markart et al. 2012). 



96 
 

 

ERK1/2 is the archetypal member of the MAPK signaling pathway and plays a central role in 

regulating cell proliferation and differentiation.  It is activated sequentially by upstream 

kinases following receptor stimulation by several growth factors including PDGF and other 

tyrosine kinases. ERK1/2 is rapidly stimulated with subsequent translocation to the nucleus 

where it activates multiple transcription factors (Cargnello and Roux 2011; Roskoski 2012). 

Consistent with reported physiology we observed peak levels of activated ERK1/2 in PASMCs 

(phosphorylated p44/42) within 5 minutes of stimulation with recombinant human TRAIL and 

were able to detect nuclear expression using immunofluorescence (data not shown). 

Moreover inhibiting ERK1/2 (by blocking the upstream Kinase MEK1/2 with PD98059) 

significantly reduced TRAIL induced proliferation and migration of PASMCs. ERK signaling has 

previously been shown to divert TRAIL towards non apoptotic signaling (Tran, Holmstrom et al. 

2001; Söderström, Poukkula et al. 2002) and pro-survival in vascular endothelial cells 

(Secchiero, Gonelli et al. 2003; Secchiero, Gonelli et al. 2004). 

 

Further discussion on putative mechanistic links between existing pathways in PAH and TRAIL 

are covered in Chapter 1 of this thesis. 
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3.6 CHAPTER SUMMARY   

 

The cytokine TRAIL and its surface receptors are upregulated on PASMCs from the lungs of 

patients with advanced PAH. This finding supports our group’s prior observation of TRAIL 

immunostaining in concentric and plexiform lesions from these patients. TRAIL stimulated the 

proliferation and migration of PASMCs in culture. The membrane receptors TRAIL R1 and 

TRAIL-R3 were also upregulated on PASMCs and blocking TRAIL R3, but not R1 attenuated the 

proliferative effects of TRAIL in-vitro. Moreover these findings add to a growing literature on 

the relevance of the ERK1/2 signaling cascade to PAH, as it was necessary for mediating the 

mitogenic and chemotactic effects of TRAIL in culture.  

 

Collectively these data develop and extend a role for TRAIL in modulating VSMC biology and 

importantly are the first to introduce a pathogenic effect for TRAIL in PAH. They support the 

concept that TRAIL is overproduced within the pulmonary vascular wall of patients with PAH 

and promotes pulmonary arterial remodeling, possibly through autocrine and paracrine 

effects. Collectively these findings are clinically relevant and important because they have led 

to the identification of a potentially novel driver of disease that appears to be linked to existing 

disease pathways and hopefully may offer an additional therapeutic avenue for treating PAH.  

Ongoing work in our department is characterising the gene and protein expression profile of 

TRAIL stimulated PASMCs.  
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4.1 INTRODUCTION 

 

In the previous chapter it was shown that TRAIL and its receptors were upregulated on 

PASMCS from patients with severe IPAH and that TRAIL was a pro-proliferative and migratory 

stimulus for normal human PASMCs in-vitro. These findings advanced our prior observation of 

TRAIL immunostaining within concentric and plexiform vascular lesions from these patients. 

Collectively these findings suggested a possible role for TRAIL in disease. However the patients 

from whom the PASMCs had been isolated were suffering from advanced disease and were 

undergoing lung transplantation. Therefore it was unclear if these findings reflected merely an 

epiphenomenon of endstage disease or whether they indicated a pathogenic role for TRAIL. To 

further elucidate this, my next series of investigations were performed utilising rodent models 

of PAH. 

 

Classic and widely used models of PAH in rodents have been induced either with hypoxia 

(hypoxia induced PH-HPH) or the plant derived toxin, monocrotaline (MCT).  Both pre-clinical 

models display several, (but not all) features of the human disease including medial 

hypertrophy, adventitial remodeling, vascular inflammation and in the case of the MCT model, 

severe right heart failure that is invariably fatal (Stenmark, Meyrick et al. 2009; Pak, Janssen et 

al. 2010; Tang, West et al. 2012). 

 

A metabolic model of PAH induced by feeding a high fat western diet to male mice deficient in 

Apolipoprotein-E (ApoE-/-) has been reported (Hansmann, Wagner et al. 2007). Although only a 

modest elevation of RVSP was observed, ApoE-/- mice fed a high fat diet (typically one that 

mimics a “western diet” in composition) have been widely used to study the pathogenesis of 

atherosclerosis (Getz and Reardon 2006; Maeda 2011).  This model is routinely employed in 

our department and of the several diets in use, one in particular (eponymously referred to as a 

“Paigen” diet) is highly atherogenic, compared to a standard western high fat diet 

(Chamberlain, Francis et al. 2009).  We utilised the aggressive nature of the Paigen diet, as an 

adaptation of the model of western diet induced PAH (Hansmann, Wagner et al. 2007) as a 

third preclinical model in which to study PAH. 

 

CHAPTER 4: TRAIL IS NECESSARY AND SUFFICIENT FOR THE 

DEVELOPMENT OF EXPERIMENTAL PULMONARY HYPERTENSION  
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My specific aims in this chapter were to determine: 

 

 The expression of TRAIL in pulmonary arterioles from rodents with MCT induced PAH. 

 If inhibition of TRAIL attenuated MCT induced PAH in rats.  

 If TRAIL deficient mice were protected from hypoxia induced PH. 

 If TRAIL deficiency protected ApoE-/- mice from Paigen diet induced PAH.  

 

Through genetic deletion, pharmacological inhibition and over expression I will demonstrate in 

this chapter that TRAIL plays a direct pathogenic role in all three of these experimental models 

of PAH. 
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4.2 MATERIALS AND METHODS 

 

Experimental protocols for the rodent studies are provided in this section. Detailed methods 

on rodents, diets, interventions and phenotyping are provided in chapter 2 of the thesis.   

 

4.2.1 Monocrotaline time course and disease prevention protocol 

 

Male Sprague Dawley rats (starting weight 200-250g, n=70) received a single subcutaneous 

injection of either monocrotaline (MCT) at 60mg/kg or an equivalent volume of 0.9% saline 

(control) (Section 2.1). They were divided into equal groups (n=7/group/time point) and 

phenotyped after 2, 7, 14, 21 or 28 days. (Fig. 4.1A). 

 

To investigate whether TRAIL was required for the development of disease a prevention study 

was performed. Rats (starting weight 200-240g) were injected with MCT (60mg/kg) and 

randomly assigned (n=4/gp) to implantation of an osmotic pump (Alzet® 2002 mini-pump, 

200µl reservoir, 0.5µl/hr delivery rate for 2 weeks) containing one of the following 

interventions to target TRAIL: a polyclonal goat anti-mouse IgG TRAIL antibody (anti-TRAIL, 

#AF1121), recombinant Fc mouse TRAIL R2 (rmTRAILR2, #729-DR, amino acids 53-177 of the 

extracellular domain) or recombinant mouse Osteoprotegerin, (rmOPG, #MAB459-MO, amino 

acids 22-401). An isotype antibody was used as control (Goat IgG isotype, #AB-108-C, all R&D 

systems, Europe) and all interventions were delivered for 14 days (≈84ng/hr or ≈0.4ng/h/g for 

active treatments and 100ng/hr for control). Disease phenotyping was performed 7 days later 

(21 days after MCT) as described below (Fig 4.2A). 

 

 

4.2.3 Chronic hypoxia experiments 

 

Male TRAIL-/- and wild-type mice (C57BL/6 background, 8-13 weeks old, n=6-7/group) were 

placed in a sealed chamber (Coy Laboratory products Inc., Michigan, US) containing 10% 

oxygen for 2 weeks. The concentration of oxygen was maintained by controlling the inflow rate 

of oxygen and nitrogen using an automated hardware system supplied with the chambers. The 

concentration of Carbon Dioxide (<0.5%) was maintained with Soda lime pellets (#72073, 

Sigma-Aldrich, Dorset, UK) which acted as a CO2 absorber. Concentration of gases was 

displayed electronically by hardware supplied with the chamber apparatus. Gas cylinders were 

purchased through our local hospital pharmacy (Royal Hallamshire Hospital, Sheffield, UK) 
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from BOC Industrial gases (Sheffield, UK). The hypoxia chambers were opened briefly (<5 min)  

and only once during the study period (day 7) for transfer of mice to fresh cages containing 

new bedding, food and water as well as for replenishing Soda lime. Control mice (normoxia 

group) were placed in the same room exposed to ambient room air (FiO2 21%). All mice were 

fed standard chow. After two weeks mice were phenotyped as described.  

 

4.2.4 Paigen diet induced model of PAH 

 

Male ApoE-/-, TRAIL-/- and ApoE-/-/TRAIL-/- knockout mice (8-12 weeks old, n=6-8/group) were 

fed standard chow or a high fat diet containing cholate (Paigen diet) (refer to section 2.3.1 for 

further details).  All mice underwent terminal phenotyping 8 weeks after commencing the diet 

as described. 

 

In subsequent experiments ApoE-/-/TRAIL-/- mice (n=4/group) were implanted with 

subcutaneous osmotic micro-pumps (Alzet® 1004 model, Durect Corp, U.S) delivering either 

recombinant mouse TRAIL  (rmTRAIL, #315-19, PeproTech Inc. NJ, U.S.A) at 10ng/hr 

(~0.4ng/g/h) or placebo (equivalent volume of phosphate buffered Saline-PBS). Mice were 

then fed Paigen and underwent standard phenotyping after 8 weeks. 

 

4.2.5 Phenotyping: Haemodynamics, RVH and morphometric lung analysis. 

 

Details for each component of the phenotypic evaluation of rodents are provided in chapter 2. 

Where indicated Pulmonary artery acceleration time (PAAT), which is inversely related to PA 

pressure, was measured by transthoracic echocardiography prior to invasive haemodynamic 

assessment (section 2.5). Closed chest cardiac catheterisation was performed with the 

appropriate high fidelity micromanometer catheter (pressure volume) to measure right and 

left heart pressures, and to derive cardiac index (section 2.6). Estimation of right ventricular 

hypertrophy (RVH), lung histology (ABEVG) immunohistochemistry (for α-SMA, vWF, TRAIL, 

PCNA and TUNEL) were performed on paraffin embedded lung sections (5µm thick) as 

described (Sections 2.7-2.9). The degree of pulmonary arteriolar remodeling (ratio of media to 

cross sectional area and percentage vessels thickened) and, where indicated levels of vascular 

proliferation and apoptosis were quantified as described (section 2.10). 
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4.3 RESULTS 

 

4.3.1 TRAIL expression in pulmonary arterioles increases with development of PAH in 

the MCT rat model 

 

Given that TRAIL expression was upregulated in endstage human lung removed during 

transplantation, I first sought to determine the temporal and spatial expression of TRAIL during 

disease development and progression. A time course study of disease was initiated in the MCT 

rat model (Fig. 4.1 A). Consistent with extensive prior literature, MCT treated rats developed 

PAH, as defined by significantly elevated right ventricular systolic pressure (RVSP) (Fig. 4.1B) 

and development of right ventricle hypertrophy (RVH) (Fig. 4.1C) from day 21, when compared 

to controls.  

 

Accompanying the MCT induced haemodynamic changes were progressive pulmonary 

arteriolar remodeling from day 14 (Fig. 4.1 D). The percentage of vessels that were 

muscularised (partly or fully) progressively increased from this time point (data not shown). 

Medial hypertrophy (α-SMA immunostaining), adventitial remodeling (ABEVG and vWF 

staining) and reduction in vessel lumen (vWF staining) were visible by day 21 (Fig. 4.1 D).  

 

TRAIL immunoreactivity was observed in epithelial and endothelial cells in saline treated rats 

whereas in MCT treated rats additional immunostaining in medial and perivascular tissue was 

evident from day 21 (Fig. 4.1 D) and this coincided with the aforementioned peak in RVSP, RVH 

and vascular remodeling. 
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Figure 4.1 - TRAIL expression in pulmonary arterioles increases with pulmonary 
vascular remodeling in the monocrotaline rat model.  
 
Schematic diagram of the study protocol (A) Bar graphs show RVSP (B) RVH (C) and 
representative photomicrographs of serial lung sections from saline and monocrotaline 
treated rats 14, 21 and 28 days after injection (D). Sections were stained with Alcian Blue 
Elastic van Gieson (ABEVG) or immunostained for α-smooth muscle actin (α-SMA), von 
Willebrand factor (vWF) or TRAIL. TRAIL expressing cells are present within the media and peri-
vascular regions of remodelled small pulmonary arteries. Error bars represent mean +/- SEM, 
n=7 animals/group/timepoint. *=p<0.05, **=p<0.01, ****=p<0.001 compared to saline 
treated controls. All images are representative of rats at each time point and are presented 
at their original magnification x400. Scale bar represents 50 µm. 
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4.3.2 An anti-TRAIL antibody prevents the development of PAH in the MCT rat model 

 

As TRAIL expression appeared to increase with disease progression in rats, I next sought to 

determine if inhibiting TRAIL could attenuate the development of MCT induced PAH. Rats were 

injected with MCT and immediately assigned to receive an osmotic mini pump delivering either 

an anti-TRAIL antibody or an isotype control (n=4/group) for 14 days (Fig. 4.2 A).  

 

21 days after MCT injection, rats treated with an IgG isotype antibody (control) had developed 

PAH, as defined by an elevated RVSP, right ventricular end-diastolic pressure (RVEDP), reduced 

Pulmonary artery acceleration time (PAAT) and an increased pulmonary vascular resistance 

index (ePVRi) (see Figure 4.2).  

 

In contrast, rats treated with an anti-TRAIL antibody for only two weeks, had a normal RVSP 

(Fig 4.2 B), RVEDP (Fig 4.2C) , PAAT (Fig 4.2F) , higher cardiac index (Fig 4.2G) with lower ePVRi 

(Fig. 4.2H) and RVH (Fig. 4.2I) 21 days after MCT injection. No significant differences in left 

ventricular haemodynamics were observed (Fig. 4.2 D-E). Unlike rats treated with the anti-

TRAIL antibody, those treated with either rmTRAIL-R2 (extracellular) or rmOPG (TRAIL R5) were 

not protected with an RVSP that was not significantly different from controls (data not shown). 

 

Accompanying the favorable haemodynamics noted in anti-TRAIL treated rats, there were 

significant reductions in pulmonary vascular remodeling as measured by the media/cross-

sectional area in arterioles of <50µm and between 50-100µm in size (Fig. 4.2 J). This was 

associated with a corresponding reduction in levels of cellular proliferation (Fig. 4.2K &M). 

There was also an increased level of apoptosis (Fig. 4.2 L & M) in the smallest pulmonary 

arterioles (<50µm). No increase in apoptosis was observed in systemic tissue from these 

animals (spleen and aorta, data not shown).  
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Figure 4.2- Anti-TRAIL antibody treatment prevents the development of PAH at day 
21 in the monocrotaline rat model.  
 
Schematic diagram of the study protocol is shown in (A). Bar graphs show (B) right ventricular 
end-systolic pressure (RVSP) (C) right ventricular end-diastolic pressure (RVEDP), (D) left 
ventricular end-systolic pressure (LVESP) (E) left ventricular end-diastolic pressure (LVEDP), 
measured in mm Hg. (F) Pulmonary artery Acceleration time (PA AT),  (G) cardiac index, (H) 
estimated Pulmonary Vascular Resistance index (ePVRi) and  (I) right ventricular hypertrophy 
(RVH). (J) The degree of medial wall thickness as a ratio of total vessel size (Media/CSA), 
quantification of the percentage of (K) proliferating cells (PCNA positive), and (L) apoptotic 
(TUNEL positive) separated into pulmonary arteries less than 50 µm (<50 µm) in diameter, 
vessels from 51 to 100 µm (51-100 µm) in diameter and vessels larger that 100 µm (>100µm) 
in diameter. (M) Representative photomicrographs of serial lung sections from IgG and anti-
TRAIL treated monocrotaline induced rats 21 days after injection. Sections were stained with 
Alcian Blue Elastic van Gieson (ABEVG) or immunostained for α-smooth muscle actin (α-SMA), 
von Willebrand factor (vWF), proliferating cell nuclear antigen (PCNA) or Terminal 
deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Bars represent mean +/- SEM, 
n=4 animals per group, *=p<0.05, **=p<0.01, ***=p<0.001 compared IgG treated rats. 
Arrows point to PCNA or TUNEL positive cells. All images are presented at their original 
magnification x400, scale bar represents 50 µm. 
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4.3.3 TRAIL-/- mice are protected from hypoxia induced pulmonary hypertension  

 

To determine whether TRAIL was relevant in hypoxia induced PH, I exposed TRAIL-/- mice 

to sustained hypoxia (Fi02 10%) for two weeks (Fig. 4.3 A). Compared to normoxia, wild type 

(C57BL/6) control mice exposed to hypoxia developed a significant PH phenotype as defined 

by; elevated RVSP (38.9mmHg+/- 2.6mmHg; Fig. 4.3B), increased pulmonary vascular 

resistance (ePVRi; (Fig. 4.3 H), development of right ventricular hypertrophy (RVH; Fig.4.3I) 

with a corresponding reduction in PAAT (Fig. 4.3F) and cardiac index (Fig. 4.3G).  These 

haemodynamic changes were linked directly to visibly and quantitatively greater (adverse) 

vascular remodeling within pulmonary arterioles of <50µm diameter (Fig. 4.3 J-L). 

In contrast, TRAIL-/- mice exposed to identical hypoxic conditions were protected from the 

haemodynamic and microscopic changes observed in hypertensive control mice (Fig. 4.3 B-L). 

No significant differences in left ventricular haemodynamics were observed across all groups 

(Fig. 4.3 D-E).  
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Figure 4.3 - TRAIL-/- mice are protected from chronic hypoxia induced PH.  

Schematic diagram of the study protocol (A) Bar graphs show (B) right ventricular end-systolic 
pressure (RVSP) (C) right ventricular end-diastolic pressure (RVEDP), (D) left ventricular end-
systolic pressure (LVESP) (E) left ventricular end-diastolic pressure (LVEDP), measured in mm 
Hg. (F) Pulmonary artery Acceleration time (PA AT),  (G) cardiac index, (H) estimated 
Pulmonary Vascular Resistance index (ePVRi) and  (I) right ventricular hypertrophy (RVH). (J) 
The degree of medial wall thickness as a ratio of total vessel size (Media/CSA), and (K) the 
percentage of thickened pulmonary arteries less than 50 µm in diameter. (L) Representative 
photomicrographs of serial lung sections from C57BL/6 and TRAIL-/- mice following either 2 
weeks exposure to room air or hypoxia. Sections were stained with Alcian Blue Elastic van 
Gieson (ABEVG) or immunostained for α-smooth muscle actin (α-SMA). Bars represent mean 
+/- SEM, n=6-7 animals per group, *=p<0.05, **=p<0.01 compared normoxic mice. All images 
are presented at their original magnification x400, scale bar represents 50 µm. 
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4.3.4 TRAIL deficiency protects ApoE-/- mice from Paigen diet induced PAH 

 

Following the initial report of ApoE-/- mice developing mild PAH (mean RVSP ≈29mmHg) after 

feeding on a high fat western diet for 11 weeks (Hansmann, Wagner et al. 2007), we reported 

that feeding of a more aggressive high fat diet (the Paigen diet) for only 8 weeks produced a 

more severe PAH phenotype  in ApoE-/- mice (Lawrie, Hameed et al. 2011). I thus wanted to 

also determine if TRAIL was pathogenic in this model of severe PAH (Fig. 4.4A). 

 

Compared to chow controls, ApoE-/- mice fed Paigen diet for 8 weeks developed severe PAH, as 

defined by; significantly increased RVSP (50 +/- 4 vs 26 +/-2 mmHg; Fig. 4.4B) RVEDP (Fig. 4.4C) 

and ePVRi (Fig.4.4H), reduced PAAT (Fig. 4.4F) and cardiac index (Fig. 4.4G). Significant 

pulmonary vascular remodeling was observed in these mice including heavily muscularised 

arterioles and obliterative neointimal lesions were observed in 5-10% of vessels (Fig. 4.4K) 

characterized by dysregulated elastin and collagen deposition. Interestingly despite 

significantly elevated pulmonary vascular haemodynamics, ApoE-/- mice did not develop any 

significant RVH (Fig. 4.4I). 

 

Remarkably however, ApoE-/- mice that were also deficient for TRAIL (ApoE-/- /TRAIL-/-) were 

protected from the development of PAH when fed a Paigen diet, as evidenced by near normal 

RVSP (27.8+/-3.2 mmHg; Fig. 4.4B) and normal ePVRi (Fig. 4.4H) and other haemodynamic 

indices (Fig. 4.4 C-J). The normal haemodynamic phenotype observed in ApoE-/- /TRAIL-/- - mice 

was directly associated with a lack of any appreciable evidence of vascular remodeling and was 

in fact rather similar to that observed in chow fed animals. This was in stark contrast to severe 

pulmonary arteriolar remodeling encountered in Paigen fed ApoE-/- mice (Fig. 4.4 K). 

 

Finally there was no evidence of a PAH phenotype in TRAIL-/- mice fed either chow or Paigen 

diet (Fig. 4.4B-J).  No significant differences in left ventricular and aortic pressures were 

observed between all groups of mice (Fig. 4.4 D-E). 
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Figure 4.4 – ApoE-/-/TRAIL-/- mice are protected from the development of PAH.  
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Figure 4.4 – ApoE-/-/TRAIL-/- mice are protected from the development of PAH.  

 

Schematic diagram of the study protocol (A) Bar graphs show (B) right ventricular end-systolic 

pressure (RVSP) (C) right ventricular end-diastolic pressure (RVEDP), (D) left ventricular end-

systolic pressure (LVESP) (E) left ventricular end-diastolic pressure (LVEDP), measured in mm 

Hg. Pulmonary artery Acceleration time (PA AT),  (F) cardiac index, (G) estimated Pulmonary 

Vascular Resistance index (ePVRi) and  (H) right ventricular hypertrophy (RVH). (I) The degree 

of medial wall thickness as a ratio of total vessel size (Media/CSA) in pulmonary arteries less 

than 50 µm in diameter. (J) Representative photomicrographs of serial lung sections from 

TRAIL-/-, ApoE-/- and ApoE-/-/TRAIL-/- mice fed on either regular chow or Paigen diet for 8 weeks. 

Sections were stained with Alcian Blue Elastic van Gieson (ABEVG) or immunostained for α-

smooth muscle actin (α-SMA), von Willebrand factor (vWF). Bars represent mean +/- SEM, 

n=4-6 (7 in one group for RVSP) animals per group, *=p<0.05, **=p<0.01, ***=p<0.001 

compared chow fed mice. All images are presented at their original magnification x400, scale 

bar represents 50 µm. 
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4.3.5 Exogenous TRAIL restores a disease phenotype in ApoE-/-/TRAIL-/- mice 

 

As genetic deletion of TRAIL protected ApoE-/- mice from Paigen induced PAH, I hypothesized 

that exogenous TRAIL would revert ApoE-/- /TRAIL-/- mice from their protected phenotype.  

Therefore ApoE-/- / TRAIL-/- (8-14 weeks old) mice were implanted with an osmotic micro pump 

to deliver either recombinant murine TRAIL or an equivalent volume of saline, for four weeks. 

All mice were fed a Paigen diet for 8 weeks before phenotyping (Fig. 4.5A). 

Compared to ApoE-/-/ TRAIL-/- receiving placebo, those that received rmTRAIL for only four 

weeks, developed PAH as defined by a significantly elevated RVSP (mean 47.5+/- 5mmHg vs. 

23+/- 1.3mmHg, Fig. 4.5B), ePVRi (471 +/- 88 mm Hg/ml/min/g, Fig. 4.5H) with levels similar to 

those encountered in ApoE-/- fed Paigen (Fig. 4.4B). Furthermore in rmTRAIL treated mice, 

there was a trend for a reduced PAAT (Fig. 4.5F) and Cardiac index (Fig. 4.5G). Again no 

significant differences in left ventricular/aortic haemodynamics were observed (Fig. 4.5 D-E). 

Consistent with haemodynamics supporting PAH, significant pulmonary vascular remodelling 

was observed in arterioles of <50µm and 50-100µm from mice treated with rmTRAIL (Fig. 4.5 J-

K). These data further support a causative role of TRAIL in the development of PAH in this 

murine model. 
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Figure 4.5 - Addition of recombinant TRAIL to ApoE-/-/TRAIL-/- mice re-established the 
development of PAH.  
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Figure 4.5 - Addition of recombinant TRAIL to ApoE-/-/TRAIL-/- mice re-established the 

development of PAH Schematic diagram of the study protocol (A) Bar graphs show (B) right 

ventricular end-systolic pressure (RVSP) (C) right ventricular end-diastolic pressure (RVEDP), 

(D) left ventricular end-systolic pressure (LVESP) (E) left ventricular end-diastolic pressure 

(LVEDP), measured in mm Hg. (F) Pulmonary artery Acceleration time (PA AT),  (G) cardiac 

index, (H) estimated Pulmonary Vascular Resistance index (ePVRi) and  (I) right ventricular 

hypertrophy (RVH). (J) The degree of medial wall thickness as a ratio of total vessel size 

(Media/CSA) in pulmonary arteries less than 50 µm in diameter. (K) Representative 

photomicrographs of serial lung sections from ApoE-/-/TRAIL-/- mice fed Paigen diet for 8 weeks 

who received either recombinant TRAIL (rTRAIL) or saline (placebo) by osmotic micro-pump for 

4 weeks. Sections were stained with Alcian Blue Elastic van Gieson (ABEVG) or immunostained 

for α-smooth muscle actin (α-SMA). Bars represent mean +/- SEM, n=4-5 animals per group, 

*=p<0.05 , **p=(<0.01) compared placebo treated mice. All images are presented at their 

original magnification x400, scale bar represents 50 µm. 
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4.4 DISCUSSION 

 

The salient novel findings from the investigations I have detailed in this chapter are: 

 

1) TRAIL is expressed within remodeled pulmonary arterioles in rats with MCT induced 

PAH and this temporally coincided with elevation of pulmonary haemodynamics. 

2) Treatment with an anti-TRAIL antibody prevented PAH in the MCT rat model.  

3) TRAIL deficient mice were protected from hypoxia induced PH. 

4) ApoE-/- mice deficient for TRAIL were protected from Paigen diet induced PAH. 

5) Exogenous TRAIL was sufficient to restore a disease phenotype in ApoE-/-/TRAIL-/- mice. 

 

4.4.1 The use animal models to study PAH 

 

Studying human PAH has been challenging for a number of reasons and include; a lack of 

availability of pathological lung tissue in part due to the severity of disease at presentation 

precluding lung biopsy and fewer patients undergoing lung transplantation. In addition the 

disease develops over several years and often is diagnosed at an advanced stage thus limiting 

evaluation during the earlier phases of disease.  

 

The lack of availability of lung tissue from early-stage disease represents a major limiting factor 

for dissecting the initiating mechanisms of human PAH. Similar to many branches of 

translational medicine, animal models have provided valuable tools for improving our 

understanding of the molecular and cellular disease mechanisms as well as providing an 

avenue for preclinical drug discovery (Stenmark, Meyrick et al. 2009). There are several animal 

models available for investigating PH and it is widely acknowledged that no single model 

recapitulates all of the pathological and clinical features of the disease. Thus investigators 

recommend that more than one model be used when characterising new pathways or testing 

new therapies in preclinical studies (Stenmark, Meyrick et al. 2009; Pak, Janssen et al. 2010; 

Ryan, Bloch et al. 2011; Voelkel and Gomez-Arroyo 2011; Sutendra and Michelakis 2013).  
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4.4.2 Defining a role for TRAIL in classical (hypoxia & monocrotaline) models of PAH 

 

In this chapter I have provided the first evidence that TRAIL is both necessary and sufficient for 

the development of disease in three rodent models of pulmonary hypertension.  

 

Firstly in rats with monocrotaline induced PAH, TRAIL expression was evident within the media 

and perivascular regions of remodeled pulmonary arterioles on immunohistochemistry and 

this coincided with the peak in haemodynamics and vascular remodeling. Endothelial injury 

and inflammation are considered to be relevant to both human PAH (Hassoun, Mouthon et al. 

2009; Soon, Holmes et al. 2010; Price, Wort et al. 2012) and the MCT model (Voelkel and Tuder 

1994; Bhargava, Kumar et al. 1999; Kimura, Egashira et al. 2009; Cuttica, Langenickel et al. 

2010; Price, Montani et al. 2011). TRAIL has been shown to modulate the inflammatory 

response (Adam, Paul et al. 2009; Hoffmann, Zipp et al. 2009; Nguyen, Cudrici et al. 2009; Jin, 

Chae et al. 2010; Malyszko, Przybylowski et al. 2011; Rethi and Eidsmo 2012).  Therefore in 

addition to the mitogenic effects of TRAIL on PA-SMCs described in chapter 3, it is plausible 

that TRAIL is promoting local pro-inflammatory effects which contribute to local vascular 

remodelling.  However it is also emerging that TRAIL may exert anti-inflammatory and immune 

modulating properties (Secchiero, Corallini et al. 2005; Jin, Chae et al. 2010; McGrath, Marriott 

et al. 2011; Marcuzzi, Secchiero et al. 2012; McGrath, Lawrie et al. 2012; Steinwede, Henken et 

al. 2012) highlighting that the other cell and disease factors can determine the effects of TRAIL 

(Benedict and Ware 2012).  

 

My next major finding reported in this chapter is that inhibiting TRAIL using an anti-TRAIL 

neutralising antibody (but not recombinant TRAIL receptors R2 and R5) prevented rats from 

developing MCT induced PAH. In addition to normal pulmonary haemodynamics (RVSP, 

Cardiac output and ePVRi) anti-TRAIL treated rats had significantly lower vascular remodeling 

(medial hypertrophy) in the lung. Consistent with TRAILs pro-proliferative effect on PASMCs in-

vitro (chapter 3) it was reassuring to observe that the protected phenotype observed in anti-

TRAIL treated rats was associated with significantly reduced proliferation in pulmonary 

arterioles (Fig. 4.2K). Additionally however I observed small but significantly greater levels of 

apoptosis in these vascular lesions (Fig. 4.2L). Although I have not directly evaluated apoptosis 

of PASMC in-vitro, it is tempting to speculate that phenotypically altered vascular wall cells 

(including α-SMA expressing PASMCS) may undergo apoptosis following withdrawal of the 

trophic factor TRAIL. TRAIL has been reported to display both proliferative and apoptotic 

effects on VSMCs in-vitro depending on the dose, (Kavurma, Schoppet et al. 2008), so it is 



116 
 

possible that antibody neutralization of TRAIL may have altered the levels or bioavailability of 

TRAIL locally which may have induced a direct/indirect apoptotic effect on PASMCs.   

 

4.4.3 TRAIL and hypoxia in PH 

 

Prior to my work, only one study had investigated TRAIL after hypoxia and pulmonary vascular 

inflammation and observed that TRAIL gene expression was reduced (1.62 fold) after 7 days of 

exposure to hypoxia in rats, but not at an earlier (day 1) or later (day 21) timepoint. In addition 

no significant differences were observed after return to normoxia (Burke, Frid et al. 2009).  

Thus a clear role for TRAIL in hypoxia induced pulmonary hypertension had yet to been 

established.   

 

My data are the first to clearly define a role of TRAIL to hypoxia induced PH because I have 

demonstrated that C57BL/6 mice lacking TRAIL (TRAIL-/-) are protected from hypoxia induced 

pulmonary hypertension, as defined by normal haemodynamics and reduced vascular 

remodeling and build on the findings observed in the MCT rat model. 

 

Subsequent to the completion of my studies, independant investigators have reported 

significantly increased (3 fold)  expression of TRAIL in lungs and serum TRAIL protein in wild 

type (C57BL/6) mice exposed to hypoxia (Liu, Yang et al. 2015). Furthermore TRAIL 

gene/protein expression has been shown to be significantly increased in human COPD lungs 

(broncholaveloar lavage and parenchyma) and in an established murine model of COPD 

(induced with cigarette smoke) whilst antibody inhibition of TRAIL reversed experimental 

disease (Haw, Starkey et al. 2016). 

 

4.4.4 TRAIL and pulmonary vascular disease in ApoE-/- mice. 

 

Thus so far, my data support a pathogenic role for TRAIL in the two classical models of disease 

(MCT models PAH whereas hypoxia models PH due to lung disease). The third model I used in 

this study is a modification of the metabolic model of PAH described using ApoE-/- mice which 

develop mild PAH (mean RVSP 28.9+/- 0.6 vs 23.6 +/- 0.6 mmHg in controls) after feeding a 

high fat western diet for 11 weeks (Hansmann, Wagner et al. 2007). The authors demonstrated 

that these mice had reduced adiponectin levels and were insulin resistant. Treatment with the 

PPARγ activator, Rosiglitazone increased adiponectin levels, improved insulin sensitivity and 

reversed PAH. This study took advantage of prior observations noting lung tissue from patients 
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with PAH have reduced mRNA expression of both ApoE (Geraci, Moore et al. 2001) and PPARγ 

(Ameshima, Golpon et al. 2003; Matsuda, Hoshikawa et al. 2005).   

 

Furthermore Insulin resistance, diabetes and other features of the metabolic syndrome are 

increasingly becoming recognized as clinical features of pulmonary hypertension (Movahed, 

Hashemzadeh et al. 2005; Robbins, Newman et al. 2009; Zamanian, Hansmann et al. 2009; 

Heresi, Aytekin et al. 2010; Pugh, Robbins et al. 2011) and subsequently have been explored in 

preclinical rodent models of PAH (Agard, Rolli-Derkinderen et al. 2009; Lopez-Lopez, Moral-

Sanz et al. 2011; Moral-Sanz, Menendez et al. 2011; Moral-Sanz, Lopez-Lopez et al. 2012; 

West, Niswender et al. 2013; Kelley, Baust et al. 2014).  

 

There are several possible mechanisms leading to vascular diseases such as atherosclerosis or 

pulmonary hypertension in ApoE-/- mice. Briefly, these mice display; a marked pro-

inflammatory state due to hyperlipidaemia, cytokine activation which consequently leads to 

oxidative stress, endothelial dysfunction and importantly reduced nitric oxide bioavailability.  

Furthermore in addition to regulating circulating lipid levels, apolipoprotein E possess many 

anti-inflammatory (non-lipid) properties (Davignon 2005) such as reducing oxidative stress, 

improving NO bioavailability whilst also inhibiting endothelial cell activation and VSMC 

proliferation and links to caveolin 1 (Yue, Bian et al. 2012) which is linked to PAH (Austin, Ma et 

al. 2012).  ApoE has been shown inhibit vascular smooth muscle proliferation induced by PDGF 

(Ishigami, Swertfeger et al. 1998; Ishigami, Swertfeger et al. 2000; Zeleny, Swertfeger et al. 

2002). ApoE can bind to the LDL receptor-related protein (LRP) and block the mitogenic effects 

of PDGF (Zhu and Hui 2003) (through receptor endocytosis and degradation).  

 

With reference to pulmonary vasculature, it has been shown that human PASMCs produce 

ApoE which inhibited PDGF-β induced PASMC proliferation. More importantly the authors 

described a novel anti proliferative mechanism for normal BMPR2 signaling that required 

PPAR-γ (Hansmann, de Jesus Perez et al. 2008). Serendipitously it was discovered that only the 

type II BMP receptor, BMPR2 (and not type I) accelerated atherosclerosis in ApoE-/-  mice also 

heterozygous for BMPR2 (ApoE-/- / BMPR2-/+) This was mechanistically linked to heightened 

vascular inflammation and  ROS production (Kim, Song et al. 2013).  Female ApoE-/- mice 

injected with monocrotaline develop severe pulmonary hypertension which was attenuated 

with estrogen therapy (Umar, Partow-Navid et al. 2017). These authors have also highlighted a 

role for oxidised lipids in promoting pulmonary hypertension through a number of 

mechanisms (Ross, Hough et al. 2015; Sharma, Ruffenach et al. 2016). Recently plasma 
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proteomic profiling identified ApoE levels as a valuable independent prognostic biomarker in 

PAH (Rhodes, Ghataorhe et al. 2017).  

 

ApoE-/- mice were originally developed and remain widely used to study the development of 

atherosclerosis. These mice develop atherosclerosis even when fed standard chow, however 

feeding of a high fat diet leads to marked hypercholesterolaemia that markedly enhances the 

development of atheroma (Maeda 2011). Our department has widely used this strain for this 

purpose and often uses a particular variety of diet (Paigen diet) that is more atherogenic 

compared to a western diet (Paigen, Morrow et al. 1987; Getz and Reardon 2006; 

Chamberlain, Francis et al. 2009). The more pronounced atherogenic effect is attributable to 

the cholate (0.5%) within this diet which induces greater levels of hyperlipidaemia (cholate 

facilitates the emulsification and increases absorption of intestinal fat) and consequent 

vascular inflammation. 

 

After feeding ApoE-/- mice a Paigen diet for 8 weeks, they developed severe pulmonary 

hypertension, as defined by elevated RV systolic pressure (Fig. 4.4B), ePVRI (Fig. 4.4H), marked 

vascular remodeling (Figs. 4.4 J-K). Moreover our group has reported that ApoE-/- mice fed 

Paigen mice have increased circulating levels of the pro-inflammatory cytokines IL-1β and IL-6. 

Furthermore we demonstrated increased TRAIL expression in the lung and  in line with 

previous findings in humans and rodent models (hypoxia and MCT) reduced expression of 

BMPR2  (Lawrie, Hameed et al. 2011). 

 

The finding of normal left ventricular haemodynamics (Fig. 4.4 D-E) and echocardiographic 

indices of LV function (stroke volume, fractional shortening  and LV fractional area change- 

data not shown) collectively are in favor of supporting  that this is a valid model of pre-capillary 

PH (i.e. PAH). In addition to the shorter duration of feeding and greater severity of pulmonary 

haemodynamics, the extent of pulmonary vascular remodeling with our Paigen diet model are 

noteworthy when compared to that after a western diet (Hansmann, Wagner et al. 2007). 

 

Remarkably however I observed that ApoE-/- mice with genetic deletion of TRAIL when fed 

Paigen were virtually protected from the development of this severe PAH phenotype. 

Furthermore in this chapter I have shown that this protected phenotype could be reversed 

with administration of a recombinant TRAIL peptide (Fig. 4.5). My data thus support a 

pathological role for TRAIL in the development of PAH in this novel murine model of severe 
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PAH and add to the pathogenic effect of TRAIL in both hypoxia and MCT induced pulmonary 

hypertension. 

 

My findings in this chapter support a pathogenic role for TRAIL in experimental PAH. However 

as discussed in chapter 1 TRAIL appears to have a protective role in the development of 

atherosclerosis in mice fed western type high fat diets. ApoE-/-/ TRAIL-/- mice have reduced  

aortic atheroma burden when fed chow or the milder western diet for 8 weeks but this 

difference was not evident after 12 weeks of diet (Watt, Chamberlain et al. 2011). Importantly 

however when fed an aggressive Paigen diet, these same mice were not protected from 

atherosclerosis (personal communication Prof. Sheila Francis, Dept Cardiovascular Science, 

University of Sheffield, unpublished data). These observations would suggest that in ApoE-/- 

mouse at least, TRAIL has a more pronounced pathogenic effect on pulmonary vascular 

remodeling compared to aortic atherosclerosis.  

 

The Paigen diet is certainly more aggressive in terms of atherosclerosis severity (Chamberlain, 

Francis et al. 2009) and extent of pulmonary vascular disease. Indeed whilst studying PAH, we 

have observed that when younger (age <8weeks) ApoE-/- mice were studied, up to 25% of them 

died often within 4-7 weeks of feeding. These mice display outward signs of illness through 

reduced activity, shivering, and abnormal fur. An explanation for this deterioration is presently 

not clear nor whether these mice have severe PH, heart failure or an alternative cause such as 

infection or sepsis. On the few instances where it was possible to perform echocardiography 

on these sick mice I have noted low cardiac output with globally impaired LV function. The 

right ventricle was not however dilated (which would suggest the absence of RV failure). 

Interestingly mice deficient for ApoE and a scavenger receptor for HDL (SR-BI) fed a Paigen diet 

develop severe hyperlipidaemia, obstructive coronary lesions, myocardial infarction, cardiac 

dysfunction and fibrosis and often die prematurely (Zhang, Picard et al. 2005; Nakagawa-

Toyama, Zhang et al. 2012). 

Several reports have suggested that the ingredient cholate in the Paigen diet formulation is 

responsible for the formation of lung granulomas in ApoE-/- mice thus proposing it as a model 

of sarcoidosis (Samokhin, Bühling et al. 2010; Samokhin, Gauthier et al. 2011). Although we 

observed some early granulomas with low frequency within the lungs of our mice, we detected 

no difference in these across our mouse genotypes (data not shown), suggesting that the two 

lung pathologies are not intrinsically linked, at least at the earlier time points used for this 

study (8 weeks on diet compared with 16 weeks in the studies cited). Our findings from the 
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hypoxia and monocrotaline models provide additional proof to support that the effects of 

TRAIL are pathogenic in PAH irrespective of the stimulus and model used. 

 

Finally given the aforementioned anti-inflammatory properties of ApoE, studies  report 

heightened lung inflammation and pathological features of emphysema in ApoE-/- fed a high fat 

diet (Naura, Hans et al. 2009; Ouyang, Huang et al. 2015; Yao, Gordon et al. 2016). 

Interestingly TRAIL deficiency appears to protect mice (although not studied in ApoE-/- mice) 

from experimental COPD (Haw, Starkey et al. 2016). 

 

 

4.4.5 Links between TRAIL and features of the metabolic syndrome in PAH 

 

High fat feeding of mice induces significant vascular inflammation, glucose intolerance, insulin 

resistance and almost all diets (including the western but not Paigen) lead to obesity. The 

obesity and diabetes pandemics are widely linked to several systemic cardiovascular diseases 

(Reaven 2011)  but are also being appreciated to play a part in pulmonary vascular disease 

(Fouty 2008; Benson, Pugh et al. 2012; Pugh, Newman et al. 2013; Kelley, Baust et al. 2014). 

Subsequent work has expanded the metabolic hypothesis of PAH by demonstrating that 

C57BL/6 mice with BMPR2 mutations (BMPR2R899x) mice develop obesity and a PAH phenotype 

following a high fat diet (West, Niswender et al. 2013; Kelley, Baust et al. 2014). A 

disproportionally higher prevalence of obesity has been observed in patients with IPAH 

(Burger, Foreman et al. 2011). Interestingly however similar to the obesity survival paradox in 

heart failure a similar survival benefit for obese patients has been observed in PAH (Zafrir, Adir 

et al. 2013). 

 

A consistent link between diabetes and development of vascular disease is apparent and a role 

for TRAIL in contributing significantly to the latter is emerging.  However a growing body of 

experimental data suggests that TRAIL may have protective effects on the development of 

obesity and auto-immune type 1 diabetes (Di Bartolo, Chan et al. 2011; Bernardi, Zauli et al. 

2012; Blumer and Steinberg 2012). Published data link TRAIL to protection from cytokine 

induced islet cell apoptosis through up regulation of the decoy TRAIL receptors R3 and R4 (Ou, 

Metzger et al. 2002) and Tissue inhibitor of metalloproteinase 1 (TIMP-1) (Kang, Park et al. 

2010).  Co-incidentally TIMP1 was shown to be up-regulated in human PAH lungs (Lepetit, 

Eddahibi et al. 2005) and to aggravate experimental PAH (Vieillard-Baron, Frisdal et al. 2000). 
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However the relationship of TRAIL with type II diabetes is less clear at present (reviewed in 

(Harith, Morris et al. 2013).  

 

Thus an emerging paradigm linking insulin resistance, obesity and diabetes (spectrum of 

metabolic syndrome) to PAH on the one hand and my observation that TRAIL drives  Paigen 

induced PAH on the other, contrasts with evidence suggesting that TRAIL protects from 

diabetes. It is not entirely clear how to reconcile these discordant experimental findings. 

Although Paigen HFD fed mice are hyperinsulinaemic and have a proinflammatory state they 

do not put on the same weight as western HFD fed counterparts because of the ketogenic 

properties of this diet (Chamberlain, Francis et al. 2009) . It thus may be of some interest to 

see whether ApoE-/- / TRAIL-/- are protected from western diet induced PAH or whether some 

of that protection is offset by TRAILs contribution to diabetes and obesity.  

 

 

4.4.6 Lack of RVH in the Paigen diet model of PAH: Limitation or opportunity for 

further exploration? 

 

The marked reduction in pulmonary hypertension (as judged by RVSP) and vascular remodeling 

observed in rodents with inactivated TRAIL from both hypoxia and MCT prevention studies was 

associated with reduced magnitude of RVH. Surprisingly however despite the greater 

haemodynamics, I could not demonstrate any appreciable RVH (as defined by the 

RV/LV+septum weight ratio) in the ApoE-/- mice fed Paigen. This in contrast to an elevated 

Fulton index (0.41+/-0.03) reported in ApoE-/- mice fed a western diet after developing modest 

PAH (RVSP 28.9+/-0.6mmHg) (Hansmann, Wagner et al. 2007). 

 

Although this may be viewed as limitation of the Paigen model, I believe however that this 

observation, if representing a true biological phenomenon is potentially very important for a 

number of reasons.  Firstly prognosis of patients in PAH (and other forms of PH) is greatly 

determined by right ventricular function (Sutendra and Michelakis 2013). Indices of RV 

performance have been shown to consistently be reliable predictors of adverse outcome even 

despite modern therapies in PAH (Reda E 2011; van de Veerdonk, Kind et al. 2011). Therefore 

identifying key mechanisms that govern favorable RV remodeling is an important step towards 

therapeutically augmenting RV function. 
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It is unlikely that methodological errors in determination of RVH (during specimen dissection 

and weighing) would explain the apparent lack of RVH in Paigen fed ApoE-/- mice because I 

used a standardized approach in our lab with which I have observed RVH in non diet models of 

PH (e.g. c57BL/6 mice exposed to hypoxia). Furthermore given the aforementioned paradox I 

subsequently noted that ApoE-/- mice placed in hypoxia for 2 weeks developed RVH 

(RV/LV+S=0.36, vs 0.25 in normoxia, n=3, data not shown) suggesting that this strain of mouse 

per se does not lack the ability to develop RVH but perhaps that it may be modulated by the 

Paigen diet. This observation has been independently confirmed recently in female ApoE-/- 

mice developing PAH and RVH (RV/LV+S=0.33) following monocrotaline injection. The PAH and 

RVH were severe in older female mice (RVSP 63+/- 10mmHg, RV/LV+S =0.53)  (Umar, Partow-

Navid et al. 2017)  Interestingly studies in isolated cardiomyocytes from hypercholesterolaemic 

ApoE -/- mice (fed a western diet) have shown them to be more resistant to the effects of 

ischaemia reperfusion injury (Dworschak, d'Uscio et al. 2005). Furthermore we reported a 

modest degree of RVH (equivalent to levels seen with hypoxia) in ApoE-/-/IL1R1-/-  mice fed 

Paigen which we have shown to develop a severe PAH phenotype (mean RVSP 75mmHg yet 

RVH ~0.31) compared to ApoE-/- when fed Paigen (Lawrie, Hameed et al. 2011). Additionally we 

noted that this strain along with ApoE-/- mice developed only mild RV dilatation   (as measured 

by echo and MRI) yet had preserved RV contractility (Lawrie, Hameed et al. 2011). Finally 

recent studies from our lab in ApoE-/- mice fed Paigen diet have confirmed similar PH 

haemodynamics  whilst again confirming no apparent RVH (Renshall, Arnold et al. 2018). 

 

Currently I am unable to explain this apparent paradox. However given that RVH is a 

compensatory response by cardiomyocytes in the face of an increased afterload (PVR) to 

preserve/augment ventricular performance, it is tempting to hypothesise that in this model 

the high fat diet (specifically Paigen) may favorably modulate myocardial substrate metabolism 

and energetics such that the need for increasing myocyte size is delayed or even not required. 

 

Some data would lend support to this because a ketogenic diet (which is essentially what the 

Paigen diet is) has been shown to preserve myocardial fatty acid oxidation (the preferential 

energy substrate in adult mammalian hearts) in mice (Wentz, d'Avignon et al. 2010) whereas a 

western diet has been shown induce abnormal myocardial fatty acid oxidation and contractile 

dysfunction in rats (Wilson, Tran et al. 2007). These findings may explain the higher degree of 

RVH with a lower RVSP in ApoE-/- fed a western diet compared to our Paigen fed model.  There 

is also evidence to support beneficial effects of a high fat diet on attenuating the development 

of left ventricular hypertrophy and dysfunction (Okere, Young et al. 2006; de Wilde, Mohren et 
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al. 2008; Chess, Khairallah et al. 2009; Berthiaume, Bray et al. 2010; Christopher, Huang et al. 

2010).  

 

Deranged  RV myocardial energetics have increasingly being recognised in PAH whereby a 

switch to glycolysis from oxidative phosphorylation has been observed (Piao, Fang et al. 2010; 

Sutendra, Bonnet et al. 2010; Hemnes, Brittain et al. 2013; Ryan, Piao et al. 2013; Sutendra and 

Michelakis 2014).  Finally our findings in the ApoE-/-/IL1R1-/- mice lend further support to the 

idea that a favorable state of myocardial substrate utilization may be occurring in the hearts of 

ApoE-/- mice because cardiac function is preserved with only a small degree of RV hypertrophy 

in the face of a disproportionally higher pressure overload. Interestingly there is evidence of 

impaired RV myocardial fatty acid oxidation and lipotoxicity in PAH (Hemnes, Brittain et al. 

2013; Talati and Hemnes 2015; Brittain, Talati et al. 2016; Talati, Brittain et al. 2016).  

 

 

4.4.7 Diverse effects of TRAIL reflect our incomplete understanding of biology 

 

The incompletely characterized yet diverse functions of TRAIL and in particular its 

immunomodulatory properties along with disease context may partly explain some of the 

variation in the observed findings (Falschlehner, Schaefer et al. 2009; Benedict and Ware 

2012). Furthermore non-canonical TRAIL signaling is slowly being appreciated and may likely 

account for the diverse pathophysiological effects of the TRAIL signaling system (Azijli, 

Weyhenmeyer et al. 2013; Lalaoui and Silke 2017). Finally as discussed in Chapter 1 (p.51) 

splice variants of TRAIL have been described yet the precise function and expression of these is 

still incomplete and their contribution to the apparently diverse effects of TRAIL have not been 

studied.  

 

4.5 CHAPTER SUMMARY 

 

In this chapter I have demonstrated that TRAIL plays a pathogenic role in the development of 

PAH using three rodent models of PAH. The trigger for PAH in these models vary, yet the 

pathophysiological mechanisms, albeit incompletely understood, share in common well 

accepted abnormalities in PAH; endothelial dysfunction, pro-inflammatory response, 

dysfunctional nitric oxide signaling and aberrant cell growth. The next crucial question is 

whether targeting of TRAIL offers any therapeutic potential for halting or reversing disease in 

humans with PAH, in whom disease is often diagnosed at an advanced stage. 
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5.1 INTRODUCTION 

 

In the previous chapter I demonstrated through pharmacological inhibition, genetic deletion 

and over expression, that TRAIL was necessary for the development of disease in three rodent 

models of disease (monocrotaline, hypoxia and the Paigen diet). 

  

I next sought to determine if inhibiting TRAIL would be beneficial in retarding disease 

progression or ideally induce disease regression in rodents with established disease.  The 

importance of this hypothesis is very pertinent to the development of clinical therapies in PAH 

because, as discussed in chapter 1, patients with PAH often continue to have a poor survival 

despite the development of pulmonary vasodilator therapies over the past decade. The 

unfavorable prognosis is due to a number of reasons and include the insidious yet aggressive 

nature of the disease, delayed diagnosis in most patients (and thus presentation at clinically 

and pathologically advanced stages of disease) and finally because currently available 

therapies do not sufficiently alter aberrant cellular growth which continues to occur in patients 

despite treatment with pulmonary vasodilators. Thus there remains an unmet need for “anti-

remodeling “therapy in PAH.  

 

Given the potential contribution of TRAIL to the development of PAH, I hypothesised that 

TRAIL could potentially be a novel therapeutic target for reversing PAH. Thus in my next series 

of investigations I sought to establish whether an anti-TRAIL antibody would 

 

1) Improve survival and slow disease progression in rats with established MCT PAH. 

2) Rescue ApoE-/- mice from severe Paigen diet induced PAH. 

 

 

 

 

 

 

  

CHAPTER 5: REVERSING PAH WITH AN ANTI-TRAIL ANTIBODY  
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5.2 MATERIALS AND METHODS 

 

Experimental protocols for the rodent studies are provided in this section. Detailed methods 

on rodents, diets, interventions and phenotyping are provided in chapter 2 of the thesis.   

 

5.2.1 Monocrotaline disease reversal protocol 

To investigate the effects of blocking TRAIL on halting disease progression and prolonging 

survival a reversal study was performed (Fig 5.1A schematic). Male Sprague Dawley rats (start 

weight 200-240g, n=12) received a single subcutaneous injection of monocrotaline (MCT) at 

60mg/kg (Section 2.1). After 21 days, they were randomly assigned (n=6/gp) to implantation of 

an osmotic pump (Alzet® 2002 mini-pump, 200µl reservoir, 0.5µl/hr delivery rate for 2 weeks) 

containing either a polyclonal goat IgG anti-mouse TRAIL antibody (anti-TRAIL, #AF1121) or an 

isotype antibody as control (Goat IgG isotype, #AB-108-C, both R&D systems, Europe). Both 

interventions were delivered for 14 days (≈84ng/hr or ≈0.4ng/hr/g for active treatments and 

100ng/hr for control). Disease phenotyping was performed when rats displayed outward signs 

of overt right heart failure (RHF) at which point they were euthanised. Overt RHF was defined 

by loss of body weight (either >5%/24h or >10%/48h), lethargy, cyanosis and/or respiratory 

distress as previously described (Merklinger, Jones et al. 2005; de Man, Handoko et al. 2012).   

 

5.2.2 Disease reversal protocol in ApoE-/- fed Paigen diet. 

 

ApoE-/- mice (8-12 weeks old, n=12) were fed a high fat diet containing Cholate (Paigen diet) 

for 8 weeks. After 8 weeks, mice were implanted with subcutaneous osmotic pumps (Alzet® 

1004 micro pump, Durect Corp, U.S) and randomly assigned to treatment with either an anti-

TRAIL antibody (as above) at 20ng/hr (~0.8ng/h/g) or placebo (equivalent volume of phosphate 

buffered Saline-PBS). Mice were fed Paigen diet for a further 4 weeks before undergoing 

standard phenotyping after a total of 12 weeks on diet (see Fig 5.2A for schematic illustration). 

Where indicated mice that displayed outward signs of RHF were euthanized. 
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5.2.3 Phenotyping: Haemodynamics, RVH and morphometric lung analysis. 

 

Details for each component of the phenotypic evaluation of rodents are provided in chapter 2. 

Where indicated Pulmonary artery acceleration time (PAAT), which is inversely related to PA 

pressure, was measured by transthoracic echocardiography prior to invasive haemodynamic 

assessment (section 2.5). Closed chest cardiac catheterisation was performed with the 

appropriate high fidelity micromanometer catheter (pressure volume) to measure right and 

left heart pressures, and to derive cardiac index (section 2.6). Estimation of right ventricular 

hypertrophy (RVH), lung histology (ABEVG) immunohistochemistry (for α-SMA, vWF, TRAIL, 

PCNA and TUNEL) were performed on paraffin embedded lung sections (5µm thick) as 

described (Sections 2.7-2.9). The degree of pulmonary arteriolar remodeling (ratio of media to 

cross sectional area and percentage vessels thickened) and, where indicated levels of vascular 

proliferation and apoptosis were quantified as described (section 2.10). 
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5.3 RESULTS 

 

5.3.1 Treatment with an anti-TRAIL antibody improves survival and partially slows 

disease progression in rats with established MCT induced PAH.  

 

Rats were injected with MCT and allowed to develop PAH. 21 days later they were assigned to 

therapy with either a mouse anti-TRAIL antibody or IgG isotype control antibody (~0.4ng/g/hr). 

Antibodies were delivered for 14days via osmotic mini pumps (Fig. 5.1A). Rats were 

euthanised when they displayed signs of RHF (between days 26-36) as defined in section 5.2.1. 

Compared to controls, rats treated with an anti-TRAIL antibody had a significantly improved 

survival (Fig.5.1B). I did not observe any significant differences in cardiac haemodynamics (Fig. 

5.1 C-G) or right ventricular hypertrophy (Fig. 5.1J) between the two groups, although anti-

TRAIL treated rats displayed a non-significant trend for a lower ePVRI (Fig. 5.1G) and higher 

cardiac index (Fig 5.1H). They did however demonstrate a modest but significant reduction in 

pulmonary vascular remodeling as measured by the media/cross-sectional area in pulmonary 

arterioles (Fig. 5.1K) This was associated with significant quantitative reduction in levels of 

cellular proliferation (Fig. 5.1L) although no significant effect was demonstrable on apoptosis 

as measured by TUNEL (Fig. 5.1M).  
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Figure 5.1- Anti-TRAIL antibody improved survival and pulmonary arteriolar 

remodelling in rats with established MCT induced PAH.  

 

 

 

O 
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Figure 5.1- Anti-TRAIL antibody improves survival and pulmonary arteriolar 

remodelling in rats with established MCT induced PAH.  

 

Schematic diagram of the study protocol is shown in (A). (B) Kaplan-Meier plot of survival in 

IgG and anti-TRAIL–treated rats. (C–E) Bar graphs show RVESP (C), RVEDP (D), LVESP (E), and 

LVEDP (F), measured in mm Hg. (G–I) PA AT (G), cardiac index (H), ePVRi (I), and RVH (J). (K) 

The degree of medial wall thickness as a ratio of total vessel size (Media/CSA). (L and M) 

Quantification of the percentage of proliferating cells (PCNA positive; L), and apoptotic (TUNEL 

positive; M) separated into pulmonary arteries <50 μm in diameter, vessels from 51 to 100 μm 

in diameter, and vessels >100 μm in diameter. (N) Representative photomicrographs of serial 

lung sections from MCT-injected rats treated with either IgG isotype control or an anti-TRAIL 

antibody. Sections were stained with Alcian Blue Elastic Van-Gieson (ABEVG) or 

immunostained for α-SMA, PCNA, or TUNEL. (O) Representative confocal microscopy image 

showing apoptotic cells (green) and SMC (red) with dual-positive cells (yellow) highlighted by 

white arrows. Error bars represent mean ± SEM, n = 6 animals per group. *, P < 0.05; **, P < 

0.01; ***, P < 0.001 compared with IgG-treated MCT-injected rats. Arrows point to TUNEL-

positive cells. Bars, 50 μm. All images are presented at their original magnification x400, 

scale bar represents 50 µm. 
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5.3.2 Treatment with an anti-TRAIL antibody reverses haemodynamics and 

pulmonary arteriolar remodeling in ApoE-/- mice with Paigen diet induced PAH  

 

Data from the rat reversal study suggested that there was partial slowing of disease 

progression, but not reversal with anti-TRAIL treatment. I next examined whether we could 

achieve a greater response and induce disease regression using the ApoE-/- mouse model. This 

approach had two advantages: (1) use of species-specific antibody and (2) implantation of a 

micro-pump allowing delivery of a twofold higher dose (~0.8 vs. 0.4 ng/h/g) of the anti-TRAIL 

antibody for twice the duration (4 wk).  

 

ApoE-/- mice were fed a Paigen diet for 8 weeks and then randomly assigned to therapy with 

either a mouse anti-TRAIL antibody or IgG isotype control antibody (~0.8ng/g/hr). Antibodies 

were delivered for 4 weeks via osmotic micro pumps whilst remaining on the diet (Fig. 5.2A). 

Paigen fed ApoE-/- mice treated with IgG control, now 12 weeks on diet, displayed even higher 

RVESP compared to those after 8 weeks on diet (85+/- 25 vs 50+/-3.5 mmHg, Fig. 5.2B & Fig 

4.4B). Two mice (one from each group) were euthanized before the 12 week period (at week 

10) due to illness, but their data was included in the final analyses as per the assigned group so 

as not bias any effects of treatment. 

 

ApoE-/- mice treated with control IgG isotype developed severe PAH, as defined by increased 

RVESP (85+/-25mmHg, Fig.5.2B), RVEDP (Fig. 5.2C), reduced PAAT (Fig. 5.2D), cardiac index 

(Fig. 5.2E) and increased ePVRi (Fig. 5.2F). Remarkably despite very high RVESP with levels 

similar to systemic (LV) pressures control treated mice again did not develop RVH (Fig. 5.2G-I) 

as discussed in chapter 4 (Section 4.4) 

 

In stark contrast mice treated with anti-TRAIL had no significant evidence of a PAH phenotype 

as judged by significantly reduced RVESP, to near normal levels (30+/-3 mmHg, Fig. 5.2B), 

RVEDP (Fig. 5.2C) and ePVRi (Fig. 5.2F).  A trend for higher cardiac Index was also observed 

(Fig. 5.2E). No significant differences were noted in left ventricular pressures (Fig. 5.2 G-H).  

 

Reversal of right heart haemodynamics observed in anti-TRAIL treated mice was associated 

with a significant reduction in pulmonary vascular remodeling. Anti-TRAIL treatment led to 

significant reduction in medial hypertrophy (Fig. 5.2 J, O) and the proportion of muscularised 

arterioles (Fig. 5.2 K and O) in the smallest pulmonary arterioles (<50µm). Similar to the rat 

MCT reversal study there was also a significant reduction in vessel proliferation as measured 
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by levels of immunostaining for PCNA (Fig. 5.2L and O). However unlike the MCT reversal 

study, anti-TRAIL treatment in was associated with increased levels of apoptotic cells within 

pulmonary arterioles (Fig. 5.2M and O) as was observed in the prevention studies described in 

chapter 4. Confocal microscopy identified that remaining apoptotic cells present within the 

media of the small pulmonary arteries were SMA positive (Fig. 5.2N). 

 

Figure 5.2: Anti-TRAIL antibody treatment of established PAH in the Paigen diet–fed 

ApoE-/- mouse induces disease regression. 

Schematic diagram of the study protocol is shown in (A) Bar graphs show (B) right ventricular 
end-systolic pressure (RVSP) (C) right ventricular end-diastolic pressure (RVEDP), measured in 
mm Hg. (D) Pulmonary artery Acceleration time (PA AT),  (E) cardiac index, (F) estimated 
Pulmonary Vascular Resistance index (ePVRi) and  (G) right ventricular hypertrophy (RVH). (H) 
left ventricular end-systolic pressure (LVESP) (I) left ventricular end-diastolic pressure (LVEDP) 
measured in mmHg, (J) The degree of medial wall thickness as a ratio of total vessel size 
(Media/CSA), (K) relative percentage of muscularised small pulmonary arteries and arterioles 
in <50 µm vessels, quantification of the percentage of (L) proliferating cells (PCNA positive), 
and (M) apoptotic (TUNEL positive) separated into pulmonary arteries less than 50 µm (<50 
µm) in diameter, vessels from 51 to 100 µm (51-100 µm) in diameter and vessels larger that 
100 µm (>100µm) in diameter. (O) Representative photomicrographs of serial lung sections 
from ApoE-/- mice fed on Paigen diet for 12 weeks. Sections were stained with Alcian Blue 
Elastic van Gieson (ABEVG) or immunostained for α-smooth muscle actin (α-SMA), 
proliferating cell nuclear antigen (PCNA) or Terminal deoxynucleotidyl transferase dUTP nick 
end labelling (TUNEL). (N) Representative confocal microscopy image showing apoptotic cells 
(green) and SMC (red) with dual positive cells (yellow) highlighted by white arrows. Bars 
represent mean +/- SEM, n=4-6 animals per group, *=p<0.05, **=p<0.01,  compared IgG 
treated Paigen diet fed mice. Arrows point to TUNEL positive cells. All images are presented 
at their original magnification x400, scale bar represents 50 µm. 
 



132 
 

Figure 5.2: Anti-TRAIL antibody treatment of established PAH in the Paigen diet–fed 

ApoE-/- mouse induces disease regression. 
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5.4 DISCUSSION 

 

In this chapter I have demonstrated that inhibiting TRAIL with a mouse antibody led to: 

 

1) Improved survival, reduced medial hypertrophy and proliferation in small pulmonary 

arterioles in rats with established MCT induced PAH. 

 

2) Rescue of ApoE-/- mice from Paigen diet induced severe PAH as judged by 

normalization of right heart haemodynamics, significantly reduced vessel remodeling 

associated with reduced proliferation and increased apoptosis within small pulmonary 

arterioles. 

 

5.4.1 The Challenge for developing new drugs in PAH 

 

The holy grail of pharmacological therapy in PAH is disease reversal. None of the currently 

available drugs to date have been shown to favorably alter the pathology of this disease 

significantly. In 1996 i.v Prostacyclin was shown to improve survival  in PAH (Barst , Rubin  et al. 

1996). Despite lacking a clear mechanism of action it has been a welcomed addition for 

improving survival for many, but not all patients (Barst 2010). Moreover there is evidence that 

the subsequent generation of targeted oral pulmonary vasodilator therapies improve short 

term prognosis in patients with PAH (approx 2% absolute risk reduction) (Galie, Manes et al. 

2009).  

 

Somewhat surprisingly though, post mortem studies in patients with PAH treated with 

“modern therapies” such as prostacyclin analogues, endothelin and PDE5 receptor antagonists 

reveal progressive pathological changes despite treatment (neointimal proliferation, plexiform 

lesions and perivascular inflammation) (Rich, Pogoriler et al. 2010; Pogoriler, Rich et al. 2012; 

Stacher, Graham et al. 2012). Thus the debate regarding when (rather than if), the stage at 

which this invariably progressive and fatal disease becomes irreversible (pharmacologically at 

least) still continues (Wagenvoort 1988; Sakao, Tatsumi et al. 2010; West 2011; Dorfmüller and 

Humbert 2012). 

 

For many patients the use of combination pulmonary vasodilator therapies, including 

intravenous prostacyclin analogs has allowed patients to either no longer require 

transplantation or “buy” additional time before transplantation. However transplantation 
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remains a destination therapy for a significant number of patients with PAH either because 

they are inadequate clinical responders and/or continue to deteriorate.  Currently double lung 

(+/- heart) transplantation offers the only promise of normalising pulmonary haemodynamics 

and improving RV function. However clinical care before and after transplantation still remains 

complex and challenging in many ways. In addition there remains a shortage of suitable long 

donors, stringent listing criteria, significant mortality whilst on the waiting list and 

transplantation is associated with adverse outcomes in the first year. Even amongst first year 

survivors, 5 year and 10 year survival is approximately 50% and 35% respectively (Gottlieb and 

A. Corris 2012). 

 

Although the role for transplantation is undoubted and active efforts to increase organ 

donation promising, there remains an unmet clinical need to further improve the medical 

management of the disease. Identification of key cellular and molecular targets causally linked 

to pulmonary vascular remodeling should lead to the development of novel classes of therapy 

that can fundamentally alter disease biology and improve clinical outcomes. 

 

5.4.2 Effects of blocking TRAIL in experimental PAH 

 

Building on the evidence provided in earlier chapters of this thesis supporting a pathogenic 

role for TRAIL in human PAH, PASMC proliferation in-vitro and in preclinical models the next 

and probably most challenging task was to determine if inhibiting TRAIL could halt progression 

or reverse disease.  

 

In the MCT rat model I have showed that a goat anti-mouse TRAIL antibody was able to 

improve survival, reduced medial hypertrophy and cellular proliferation but did not 

significantly improve catheter haemodynamics. These data suggested there was partial disease 

slowing.  However in mice the same antibody displayed impressive efficacy.  ApoE-/- mice fed 

Paigen diet for 12 weeks developed severe PAH whilst anti-TRAIL treated mice had near 

normal haemodynamics (mean RVESP≈ 85mmHg vs 29mmHg). This greater efficacy was likely a 

result of a higher dose and use of species specific antibody in the mouse. As highlighted in 

chapter 4 the Paigen model of PAH displays more pathological features of human PAH 

compared to the MCT model. 
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5.5 CHAPTER SUMMARY 

 

The data presented in this chapter provide evidence for disease slowing in the MCT rat and 

disease reversal in the Paigen mouse model and extend the pathogenic role for TRAIL 

identified in earlier chapters and highlight potential for pursuing TRAIL inhibition as a rational 

therapeutic strategy for exploration in human PAH. 
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6.1 INTRODUCTION 

 

Inflammatory and immune mechanisms  are increasingly being recognised in the pathogenesis 

of PAH (Perros, Dorfmuller et al. 2007; Tamosiuniene, Tian et al. 2011; Ormiston, Chang et al. 

2012; Price, Wort et al. 2012; George, Oliver et al. 2014; Rabinovitch, Guignabert et al. 2014). 

TRAIL expression can be upregulated on several immune/inflammatory cells including   

Lymphocytes (Ehrlich, Infante-Duarte et al. 2003) Monocytes (Griffith, Wiley et al. 1999; Wei, 

Wang et al. 2010) dendritic cells (Fanger, Maliszewski et al. 1999) and NK cells (Kayagaki, 

Yamaguchi et al. 1999) particularly after  stimulation by interferon (Kayagaki, Yamaguchi et al. 

1999). Furthermore TRAIL is upregulated on endothelial, vascular smooth muscle and PA 

smooth muscles cells as already described. Given that TRAIL is expressed by a variety of 

circulating inflammatory and vascular cells, both of which have been implicated in PAH it 

would be mechanistically valuable to identify the major source/location of TRAIL which I have 

shown to drive disease pathogenesis.  Such information could aid in refining the development 

of targeted therapies to TRAIL and for example may help govern whether to best deliver them 

systemically or locally (e.g. as nebulised therapy). 

Thus my aim in this final series of investigations was to determine the relative importance of 

tissue expression of TRAIL compared to that from bone marrow derived cells (BMDC) in the 

pathogenesis of PAH. Therefore studies were performed in TRAIL chimeric mice created after 

bone marrow transplantation in the setting of the Paigen fed ApoE-/- model of severe PAH. 

 

  

CHAPTER 6: NON BONE MARROW DERIVED CELL TRAIL DRIVES PAH 

PATHOGENESIS.  
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6.2 MATERIALS AND METHODS 

 

Experimental protocols for the rodent studies are provided in this section. Detailed methods 

on rodents, diets, interventions and phenotyping are provided in chapter 2 of the thesis.   

 

6.2.1 Bone marrow transplantation (BMT) protocol 

 

We used a BMT protocol that has been successfully used in our department (Chamberlain, 

Evans et al. 2006; Evans, Jackman et al. 2009).  Young male ApoE-/- and ApoE-/-/TRAIL-‘- donor 

mice, aged 4-6 weeks were sacrificed and their femurs and tibias were harvested under sterile 

conditions in a class II laminar flow hood. Marrow from the bones was flushed (under sterile 

conditions) with RPMI-1640 media (containing sodium bicarbonate, 10% (V/V) fetal bovine 

serum-FBS, but no phenol red) with a 26G needle and syringe. The cell-media solution was 

passed through a 40 µm cell strainer and then centrifuged at 500G for 5 minutes.  The 

supernatant was removed and the cell pellet re-suspended in Hank’s Buffered Salt Solution 

(HBSS) containing 10% (v/v) FBS and placed on ice until the tail vein injections. Cells were 

counted on a haemocytometer, using 1% (v/v) acetic acid to lyse the red blood cells.  The 

average yield from each preparation produced was approximately 20 x 106 cells/ml.  

 

Recipient male ApoE-/- and ApoE-/-/TRAIL-‘- mice, aged 6-8 weeks, received sub lethal whole 

body irradiation (Cesium 137) totaling 11 Grays (1100 rads) split into two doses, 4 hours  apart. 

Irradiated mice were then injected with 200 µL of bone marrow cells via the tail vein.  All mice 

were housed individually in ventilated cages in rooms dedicated for post BM transplanted 

mice. They were fed standard chow for six weeks and also received neomycin (1mmol/L final 

concentration) and polymyxin B (1000 USP units/mL) in drinking water as antimicrobial  

prophylaxis.  Four groups of chimeric mice were created and are summarised in the table 6.1. 

 

6 weeks later , following bone marrow reconstitution on regular chow, mice were assigned to 

either chow or Paigen diets (8 experimental groups) for a further 8 weeks before undergoing 

standard phenotypic evaluation as described (See Fig. 6. 1 A for schematic illustration). 

  



138 
 

 

BMT 

Group 

Donor 

Genotype 

Recipient 

Genotype 

TRAIL Expression 

Objective BM 

Cells 

Tissue 

(non-BM)   

1 ApoE
-/- 

ApoE
-/- + + Positive control (when fed Paigen) 

2 ApoE
-/- 

ApoE
-/-

/TRAIL
-/- + - 

Is BM derived TRAIL important for 

developing PAH? 

3 ApoE
-/-

/TRAIL
-/-

 ApoE
-/-

 - + 
Is tissue (lung) TRAIL important for 

developing PAH? 

4 ApoE
-/-

/TRAIL
-/-

 ApoE
-/-

/TRAIL
-/-

 - - Negative control 

 

Table 6.1. Bone marrow chimeric mice groups studied 

 

 

 

6.2.2 Phenotyping: Haemodynamics, RVH and morphometric lung analysis. 

 

Details for each component of the phenotypic evaluation of rodents are provided in chapter 2. 

Where indicated Pulmonary artery acceleration time (PAAT), which is inversely related to PA 

pressure, was measured by transthoracic echocardiography prior to invasive haemodynamic 

assessment (section 2.5). Closed chest cardiac catheterisation was performed with the 

appropriate high fidelity micromanometer catheter (pressure volume) to measure right and 

left heart pressures, and to derive cardiac index (section 2.6). Estimation of right ventricular 

hypertrophy (RVH), lung histology (ABEVG) immunohistochemistry (for α-SMA, vWF, TRAIL) 

were performed on paraffin embedded lung sections (5µm thick) as described (Sections 2.7-

2.9). The degree of pulmonary arteriolar remodeling (ratio of media to cross sectional area and 

percentage vessels thickened) was quantified as described (section 2.10). 

 

6.2.3 TRAIL expression (mRNA and protein) 

qPCR was performed for TRAIL gene expression and western Immunoblotting for TRAIL protein 

on whole lung homogenates as described in chapter 2.  
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6.3 RESULTS 

 

6.3.1 TRAIL expression in ApoE-/- and double knockout mice 

 

Taqman PCR was used to measure gene expression on circulating cells isolated from whole 

blood RNA (non-irradiated mice)  and confirmed expression of  TRAIL in ApoE-/- mice and its 

absence in ApoE-/-/TRAIL-/- mice (Fig. 6B).  TRAIL gene expression was increased in non-

irradiated Paigen fed ApoE-/- mice compared to those on chow (Fig. 6B).  Western 

Immunoblotting demonstrated a similar pattern of expression for TRAIL protein in lung tissue 

from recipient ApoE-/- and ApoE-/-/TRAIL-/- mice (Fig. 6C).  

 

6.3.2 Tissue TRAIL (lung) is a major driver of disease pathogenesis in PAH 

 

Four groups of chimeric mice were generated by BM transplantation (BMT). ApoE-/- BM was 

transplanted (BMT) into sub lethally irradiated ApoE-/- /TRAIL-/- mice (ApoE-/- into ApoE-/- 

/TRAIL-/-) to produce chimeras where TRAIL was only expressed within circulating BMDC, and 

into ApoE-/- mice as a positive control for the procedure (ApoE-/- into ApoE-/-). Conversely, 

ApoE-/- /TRAIL-/- BM was transplanted into sublethally irradiated ApoE-/- mice (ApoE-/- /TRAIL-/- 

into ApoE-/-) to generate chimeras where TRAIL was only expressed in non BMDCs and thus 

lung tissue and into ApoE-/- /TRAIL-/- (ApoE-/- /TRAIL-/- into ApoE-/- /TRAIL-/-) mice as a negative 

control. 6 weeks after BM reconstitution, mice were randomly placed on either regular chow 

or Paigen diet. The conversion rate of BMT was 94.9 ± 2.6%.  Chow-fed mice from all BMT 

groups served as a control for the irradiation and transplant procedure and displayed no PH 

phenotype (Fig. 6 D-K).  

 

ApoE-/- into ApoE-/-  mice fed Paigen diet developed PAH as evidenced  by increased RVESP (Fig. 

6D) , ePVRi (Fig. 6I) and an increase in both frequency (Fig. 6K) and the degree (Fig 6. L-M) of 

pulmonary arteriolar thickening. In contrast ApoE-/-/TRAIL-/- into ApoE-/-/TRAIL-/- fed Paigen 

were protected from PAH and collectively these findings recapitulated those I observed in non-

irradiated Paigen fed ApoE-/- and ApoE-/-/TRAIL-/- (Ch 4, Fig. 4.4). They also confirmed that these 

two BMT groups were valid positive and negative controls respectively. 

 

The remaining two groups of chimeric mice with expression of TRAIL limited to either tissue or 

circulating BMDC displayed disease symptoms after feeding of the Paigen diet and were 

sacrificed for analysis at 6 weeks, rather than 8 week time point.  Mice with TRAIL on 
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circulating BMDC, but not in tissue (ApoE into ApoE-/-/TRAIL-/-) displayed a trend for a raised 

RVESP (Fig. 6 D) and ePVRI (Fig. 6I) however this did not reach statistical significance. Although 

these mice did have significant increase in vessel remodeling (Fig. 6K) this was insufficient to 

raise RVESP. Conversely chimeric mice with no TRAIL on circulating BMDCs but TRAIL within 

tissue (ApoE-/-/TRAIL-/- into ApoE-/-) developed a significant increases in RVESP (Fig. 6D) , ePVRI 

(Fig. 6I) with corresponding increases in the number of muscularised arterioles (Fig. 6K) as well 

as  the degree of medial hypertrophy in pulmonary arterioles with diameters of <50µm (Fig. 

6L) and between 50-100µm (Fig. 6M). The vessel remodeling was significantly greater that 

observed in negative control and ApoE-/- into ApoE-/-/TRAIL-/- mice whilst comparable to levels 

observed in the positive control group. A trend for reduced cardiac index was also noted 

similar to the positive control group (Fig.6H) 

 

As noted previously no differences in left ventricular haemodynamics were observed across all 

groups (Fig. 6F-G) and despite developing PAH those mice again did not develop any RVH, 

further suggesting that these mice are (favorably) resistant to the development of RVH (Fig. 

6J). 
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Figure 6- For legend see next page 
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Fig. 6  Non bone marrow (immune) derived cellular TRAIL drives PAH in the Paigen 

diet–fed ApoE-/- mouse. 

 

Schematic diagram of the study protocol is shown in (A) TaqMan expression of TRAIL in whole 

blood from ApoE-/- and ApoE-/-/TRAIL-/- mice using ΔΔCT with 18S rRNA as the endogenous 

control gene (B). Four groups of chimeric mice were generated by BMT. ApoE-/- BM was 

transplanted into irradiated ApoE-/-/TRAIL-/- mice (ApoE-/- into ApoE-/-/TRAIL-/-) to produce 

chimeras where TRAIL was only expressed within circulating cells, and into ApoE-/- mice as a 

positive control for the procedure (ApoE-/- into ApoE-/-). Conversely, ApoE-/-/TRAIL-/- BM was 

transplanted into irradiated ApoE-/- mice (ApoE-/-/TRAIL-/- into ApoE-/-) to generate chimeras 

where TRAIL was only expressed within the vessel wall, and into ApoE-/-/TRAIL-/- (ApoE-/-/TRAIL-

/- into ApoE-/-/TRAIL-/-) mice as a negative control. (C) Western immunoblot for TRAIL in whole 

lung lysates from representative chimeric mice. (D–G) Bar graphs show RVESP (D), RVEDP (E), 

LVESP (F), and LVEDP (G), measured in mmHg. (H-J) Cardiac index (H), ePVRi (I), and RVH (J). (K) 

Relative percentage of muscularised small pulmonary arteries pulmonary arteries <50 μm in 

diameter, and the degree of medial wall thickness as a ratio of total vessel size (Media/CSA). 

(L–N) Pulmonary arteries <50 μm in diameter (L), vessels from 51 to 100 μm in diameter (M), 

and vessels >100 μm in diameter (N). Error bars represent mean ± SEM, n = 3–6 animals per 

group. *, P < 0.05; **, P < 0.01; ***, P < 0.001, compared to chow-fed equivalent mice unless 

otherwise stated. 
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6.4 DISCUSSION 

In this chapter I have demonstrated that in chimeric mice with TRAIL restricted to tissue but 

not bone marrow derived cells (BMDCs) developed significant Paigen diet induced PAH, 

suggesting that local tissue derived TRAIL is pathophysiologically the most important.  

 

PAH is a complex disease and numerous cell types and mediators having been implicated in its 

pathogenesis. Generally they can be divided into local tissue resident (lung) and circulating 

cells whilst accepting that communication between these two compartments is likely dynamic 

and fluid. Although there is no doubt that local vascular cells are crucial to the pathology of 

PAH, in recent years there has been growing recognition for bone marrow derived progenitor 

cells as contributors to vascular homeostasis and disease (Sainz and Sata 2006) including 

pulmonary hypertension (Frid, Brunetti et al. 2006; Stevens, Phan et al. 2008; Yeager, Frid et 

al. 2011). However at present the literature contains conflicting reports describing both 

protective and pathogenic roles for such cell types highlighting the complex nature of the 

pathophysiology of PAH. 

 

Although I observed no abnormal phenotype in all groups of chow fed knockout mice, 

interestingly there have been several case reports of patients (mainly in paediatric and young 

adult patients) developing PAH and PVOD after having undergone bone marrow 

transplantation for hematological malignancies (Bentur, Cullinane et al. 1991; Limsuwan, 

Pakakasama et al. 2006; Limsuwan, Pakakasama et al. 2011; Dandoy, Hirsch et al. 2013) 

Furthermore patients with chronic myelofibrosis can develop PAH (Adir and Humbert 2010)  

and a previous report identified abnormalities in myeloid precursors in patients as well as in 

unaffected family members in familial PAH suggesting that there were intrinsic abnormalities 

of the myeloid cell lineage (Farha, Asosingh et al. 2011). 

 

TRAIL can be expressed and produced by a number of vascular cells including vascular smooth 

muscle cells (Secchiero, Zerbinati et al. 2004; Kavurma, Schoppet et al. 2008) endothelial cells 

(Favre, Mancuso et al. 2003; Fu, Zhu et al. 2003; Viemann, Goebeler et al. 2006; O'Brien, 

Richardson et al. 2007) and inflammatory cells including Dendritic cells (Fanger, Maliszewski et 

al. 1999), monoctyes (Griffith, Wiley et al. 1999), T cells, B cells (Ehrlich, Infante-Duarte et al. 

2003),   mast cells (Berent-Maoz, Salemi et al. 2010) and neutrophils (Cassatella 2006) all of 

which have been reported to play some role in PAH. With respect to TRAIL, my findings in this 

chapter would support that non bone marrow derived is the predominant driver of the 

pulmonary arteriolar remodeling and consequent adverse haemodynamics in experimental 
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PAH. My data however do not completely rule out a role for BMDC derived TRAIL because 

mice with TRAIL expressed on BMDCs but not tissue (ApoE/- into ApoE-/-/TRAIL-/-) developed 

some muscularisation of pulmonary arterioles although this did not lead to a significant 

increase in RV haemodynamics (RVESP or ePVRI).  

 

During these analyses, we observed that some lungs displayed signs of alveolar septa 

thickening and mild fibrosis, and subsequently modified Ashcroft scoring (Hubner, Gitter et al. 

2008) was performed to all lung sections in a blinded fashion (kindly by Prof. M Whyte, Dept. 

of Academic Respiratory Medicine, University of Sheffield). Although only mild changes were 

observed (maximum of 2 from an 8-point scale), interestingly mice with only TRAIL on 

circulating cells (ApoE-/- into ApoE-/- /TRAIL-/-) had no fibrosis and all scored 0 on the modified 

Ashcroft score (data not shown). These ancillary findings are noteworthy given that a 

protective role for TRAIL in experimental drug induced lung fibrosis has been reported  

(McGrath, Lawrie et al. 2012). 

 

TRAIL is a type II transmembrane protein that is predominantly surface bound but can also be 

cleaved to produce an active soluble form and exert a paracrine effect (Mariani and Krammer 

1998; Schneider, Holler et al. 1998; Manzo, Nebbioso et al. 2009). Cysteine proteases such as 

Calpain, cathepsisn and papain mediate enzymatic cleavage and are abundant within vascular 

tissue (Chapman, Riese et al. 1997; Cheng, Shi et al. 2012). Calpain in particular has been 

reported to exert pathogenic effects in experimental pulmonary vascular remodeling (Ma, Han 

et al. 2011).  Cleavage of TRAIL by cysteine proteinases such calpain may play an important 

role in allowing paracrine effects of cleaved soluble TRAIL on multiple cells types. This may also 

explain why the systemic delivery of recombinant soluble form of TRAIL, without direct 

presentation by another cell, to Paigen diet–fed ApoE-/- /TRAIL-/- mice (Chapter 4 Fig. 4.5) 

resulted in the development of a PAH phenotype suggesting that soluble/cleaved levels within 

the vessel wall are critically important. Furthermore the ability of TRAIL to be shed may in part 

account for the elevated levels of serum TRAIL observed in both mice with hypoxia induced PH 

and patients with PAH in whom higher levels were associated with more advanced disease 

(Liu, Yang et al. 2015). Ongoing work in our department with mice that have specific 

inactivation of TRAIL in smooth muscle cells will help to further characterise the significance of 

local TRAIL to experimental disease pathogenesis.  
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6.5 CHAPTER SUMMARY 

 

My findings from this chapter support the view that the predominant source of TRAIL driving 

PAH in the ApoE/- murine model of PAH is not bone marrow derived and may be from the lung 

itself. This adds further mechanistic insight into the pathogenic role for TRAIL already 

described in chapters 3-5. In addition these data would suggest that future anti-TRAIL 

therapies could be preferentially be delivered to the lung by nebulised or inhaled preparations.  
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7.1 SUMMARY OF MAJOR FINDINGS 

 

The work presented in this thesis, details for the first time a significant role for TRAIL in 

pulmonary hypertension. The original and novel findings can be summarised as follows: 

 

1. Gene expression of TRAIL and receptors TRAIL R1 and R3 were increased in PA-SMCs 

isolated from patients with PAH. 

2. TRAIL protein expression (by immunohistochemistry) was evident within lesions from 

human PAH and two rodent models of PAH (Paigen diet and MCT). 

3. Recombinant TRAIL was a mitogen (proliferative and migratory) for human PA-SMCs 

in-vitro (through ERK signaling) and attenuated by an anti-TRAIL R3 antibody.   

4. Genetic deletion of TRAIL prevented mice from developing hypoxia induced PH. 

5. Genetic deletion of TRAIL protected ApoE-/- mice from developing diet induced PAH 

whilst recombinant TRAIL restored a disease phenotype in these mice. 

6. Antibody blockade of TRAIL prevented the development of MCT induced PAH in rats.  

This was associated with reduced proliferation and increased apoptosis within 

pulmonary vascular lesions. 

7. An anti-TRAIL antibody reduced pulmonary vascular remodeling and improved survival 

in rats with established MCT induced PAH 

8. In ApoE-/- mice with established PAH, an anti-TRAIL antibody profoundly reversed 

pulmonary vascular haemodynamics and remodeling. Disease reversal was associated 

with significantly reduced levels of proliferation and increased apoptosis within 

vascular lesions. 

9. Bone marrow transplant experiments in chimeric mice supported a role for locally 

derived TRAIL (non bone marrow derived) as the major driver for pulmonary vascular 

remodeling in Paigen diet induced PAH. 

 

 

 

 

 

 

 

CHAPTER 7 GENERAL DISCUSSION  
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7.2 FURTHER EVIDENCE SUPPORTING A ROLE FOR TRAIL IN PAH.  

 

I have provided evidence that supports a pathogenic role for TRAIL in three animal models.  At 

the time of undertaking this work our laboratory was not utilising the Sugen-Hypoxia rat model 

of PAH. This increasingly used model features neointimal proliferation with angio-obliterative 

lesions and is now widely regarded as the most optimal rodent model of human PAH and a 

“benchmark” for study (Ciuclan, Bonneau et al. 2011; Al Husseini, Bogaard et al. 2012; Van 

Hung, Emoto et al. 2014). In truth however there is no perfect single animal model to study 

PAH and the use of several models , each with different disease triggers and pathophysiology is  

recognized  as a valid approach as judged by the growing number of reports adopting this 

strategy. 

 

To further support a role for TRAIL in PAH, our lab has subsequently confirmed my 

observations  in the Sugen-hypoxia mouse model (Dawson, Arnold et al. 2014). They showed 

reduced BMPR2 and increased TRAIL gene expression in lungs from wild type mice. Wild type 

mice developed a severe disease phenotype whereas TRAIL-/- mice were completely protected 

from Sugen-Hypoxia induced PAH  as evidenced by normal haemodynamics (RVSP ≈25mmHg 

vs ≈60mmHg), normal PVR, absence of RVH, significantly reduced pulmonary arteriolar 

remodeling and reduced levels of vascular proliferation (PCNA immunostaining). An advantage 

of the murine sugen-hypoxia model of PAH compared with the rat model is that it permits use 

of knockout mice to characterise the role of candidate genes  (Ciuclan, Bonneau et al. 2011). 

These  additive findings in the Sugen-hypoxia model are noteworthy given that TRAIL has been 

shown to induce endothelial apoptosis and inhibit angiogenesis (Chen and Easton 2010).  

 

An independent group has reported increased soluble levels of TRAIL in serum from patients 

with PH, including PAH and higher levels correlated with markers of worse disease (functional 

class, exercise duration and PA pressure). Additionally serum TRAIL levels were reduced 

following treatment with pulmonary vasodilators in a small subset of patients undergoing 

repeat haemodynamic evaluation. In hypoxic mice, serum TRAIL and lung mRNA levels of TRAIL 

were significantly increased after hypoxia compared to normoxic control mice. Mice treated 

with the prostacyclin analogue, Treprostinil, demonstrated  a reduction in serum TRAIL levels 

after treatment, although the lack of a control group in the mouse intervention study and 

small numbers of patients (n=9) with repeat RHC data precludes firm conclusions on the 

significance of a reduction in serum TRAIL levels after therapy and its utility as a biomarker of 

disease (Liu, Yang et al. 2015).  
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Levels of TRAIL expression have shown to be elevated in lung tissue from patients with COPD 

and an established murine of COPD which was associated with heightened cellular and 

molecular inflammation. These features were significantly reduced in TRAIL-/- mice and also 

after treatment with anti-TRAIL antibody in mice with established COPD highlighting a 

pathogenic role for TRAIL in COPD (Haw, Starkey et al. 2016). An independent study identified 

that MMP12 mediated PASMC proliferation was mediated via TRAIL (Kelly 2015). 

 

7.3 SUMMARY OF TRAIL PATHOPHYSIOLOGY IN PAH 

 

The corpus of my work has defined a pathogenic role for TRAIL in rodent models of disease. I 

have used classical models of disease (hypoxia and monocrotaline) which are regarded as 

single hit models as well as the ApoE-/- mouse model with multiple insults including 

inflammation and deranged metabolism.  I have shown that TRAIL plays a pathogenic role in all 

three models and inhibition of TRAIL can prevent, slow progression and even reverse disease 

in one or more models.  

The main strengths of the approach used in this thesis are that we have used several animal 

models of disease to confirm a pathogenic role for TRAIL. The phenotyping has been 

comprehensive in terms of recording invasive right and left heart haemodynamics (via the 

superior method of a “closed chest technique”). Echocardiography was performed, utilizing a 

dedicated high frequency preclinical imaging system to evaluate disease. RVH was estimated 

using accepted Fulton method, and we performed histological and immunohistochemical 

analysis of pulmonary vascular remodeling. Furthermore levels of proliferation and apoptosis 

were assessed in lung tissue of rodents in the intervention studies.  All 

histological/immunohistochemical analyses were performed in a blinded fashion. Moreover 

studies in rodents were performed after establishing relevance of TRAIL in human disease by 

observing upregulated expression of TRAIL and its receptors R1 and R3 on PASMCs from 

patients with PAH (albeit endstage disease) and the mitogenic effects of TRAIL on human PA-

SMCs in-vitro. This collective approach is commensurate with recent recommendations by 

established  investigators in the field of PAH (Bonnet, Provencher et al. 2017).  

 

When interpreted in the context of prior data describing a mitogenic role for TRAIL in systemic 

vascular biology, potential links between TRAIL and existing PAH disease mechanisms 

(summarized and discussed in detail in chapters 1, 3 and 4) and our recent findings from the 

Sugen Hypoxia mouse model (section 7.2 above) all collectively provide a strong basis for 

regarding TRAIL as a conserved pathophysiological mediator in PAH.   
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Figure 7.1 Proposed mechanism of TRAIL in PAH. Schematic illustration how existing PAH 

pathways can link to TRAIL (based on the literature) and how TRAIL signalling via ERK promotes 

PASMC proliferation. Blocking TRAIL can halt these events and prevent and reverse 

experimental disease. 

 

A proposed schematic illustration regarding the pathophysiology of TRAIL in PAH is 

summarized in Fig. 7.1. TRAIL is produced and released by resident lung cells, (PASMCs, 

endothelial cells and inflammatory cells) and modulated by existing PAH disease pathways. 

TRAIL promotes aberrant PASMC growth through an autocrine and paracrine manner, likely 

mediated via the TRAIL R3 receptor and intracellular ERK signaling. This drives pulmonary 

arteriolar remodeling leading to pulmonary hypertension.  Inhibition of TRAIL signaling 

significantly interrupts this implicit sequence of events and consequently prevented and 

reversed experimental PAH. Reduced proliferation and increased apoptosis levels were 

observed in pulmonary vascular lesions. Although several growth factors and cytokines have 

been shown to play a role in, it is plausible to hypothesise that some growth factors such as 

TRAIL may predominate in the downstream cytokine orchestra promoting a proliferative 

phenotype of PA smooth muscle cells. Thus inhibiting TRAIL signaling as an “anti-remodelling” 

strategy in PAH is conceptually appealing and worthy of further study.  
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7.4 CHASM BETWEEN PRECLINICAL RESEARCH AND SUCCESSFUL HUMAN 

TRANSLATION  

 

“Essentially, all models are wrong, but some are useful.”  George E.P. Box. 

Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, R. L.; 

Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201–236. 

 

Limitations of preclinical models have been increasingly rehearsed and reliance on them as 

spring board for clinical translation, both in PAH and wider afield has been fraught with many 

disappointments. There is growing emphasis on improving the robustness and validity of 

findings from preclinical research. The ARRIVE guidelines advocate robust  study methodology 

including use/reporting of study size/power calculations, blinding and  randomization as well 

as matching for age and sex in rodents, as mandated in human clinical trials (Kilkenny, Browne 

et al. 2010; van der Worp, Howells et al. 2010; Ioannidis 2012; Landis, Amara et al. 2012; 

Peers, South et al. 2014; Begley and Ioannidis 2015). This has been endorsed by the pulmonary 

vascular research community (Lythgoe, Rhodes et al. 2016; Bonnet, Provencher et al. 2017). 

Although my investigations predated the publication of the ARRIVE guidelines, I have fulfilled 

several key criteria. Furthermore a consistent pathogenic role for TRAIL has been observed in 

four animal models.  

 

Lythgoe et al. 2016, illustrate examples and lessons from drug targets, identified primarily in 

bench preclinical research that have failed to reach fruition for humans with PAH. They 

reaffirm the importance of shifting the focus beyond pulmonary vasoconstriction/ 

vasodilatation towards targeting underlying vascular remodeling whilst also acknowledging the 

challenges in successfully attaining this. These lessons are a welcomed reminder and the 

authors provide an important checklist for optimal drug design in experimental human PAH. At 

this stage, the concept of inhibiting of TRAIL in humans as a therapeutic strategy is untested 

and would require investigating/establishing the optimal dose, route of delivery, measures of 

efficacy as well as ensuring acceptable safety and tolerability in humans.  

 

Thus I believe that any excitement about my positive findings should be tempered and rightly 

so given concerns about the low yield of translating such findings into clinically successful 

therapies for use in human disease. This is evidently manifested in the significantly high failure 

rate of modern therapies (50% due to lack of efficacy and 25% for safety) (Arrowsmith and 

Miller 2013; Hwang, Lauffenburger et al. 2016).  

https://en.wikipedia.org/wiki/Academic_Press
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7.5 THERAPEUTIC IMPLICATIONS OF TARGETING TRAIL IN HUMANS 

 

Generally speaking, successful pharmacological therapies must demonstrate clinical efficacy, 

safety and tolerability. At this stage, the concept of inhibiting of TRAIL in humans as a 

therapeutic strategy is untested and will require investigating/establishing the optimal dose, 

route of delivery, measures of efficacy as well as ensuring acceptable safety and tolerability in 

humans. Clues to guide the latter can be drawn from existing literature, particularly as the 

receptors for TRAIL receptors are ubiquitously expressed (spleen, lung, prostate, heart and 

lung) and the broad reported functions of TRAIL.  As highlighted in the introductory chapter, a 

role for TRAIL has been reported in Immune surveillance, inflammation, cell growth, 

differentiation and survival. These have implications for situations such as tumour growth, 

metastases, immune cell function and autoimmunity. These diverse functions of TRAIL reflect 

the complex nature of signaling by TRAIL and the increasing recognition of non-apoptotic (non-

canionical) TRAIL signaling. Thus any strategy targeting TRAIL must factor these aspects when 

evaluating efficacy and safety. However, given the generally poor outlook of many patients 

with PAH, some of these complications may not be evident in the short to medium term but 

are likely to be more important in the longer term. Similar concerns are evident with drugs 

that have been regarded as a “double edged sword” with clear examples being 

immunosuppression in solid organ transplantation and inhibitors of TNFα in chronic 

inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease. 

 

 

. 
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7.6 AREAS MERITING FURTHER STUDY OF TRAIL IN PAH 

 

My data suggest a pathogenic role for TRAIL in PAH and highlight its potential as a novel 

therapeutic target. However additional investigations are necessary before a more definitive 

role for TRAIL can be established and thus permit a successful attempt at therapeutic 

exploitation.  Important unanswered questions include the following; 

 

1) Does genetic/genomic variation in TRAIL alter susceptibility to PAH? 

2) What is the relationship between BMPR2 signaling and TRAIL? 

3) Can circulating TRAIL levels be used as a disease biomarker in PAH? 

4) What is the pattern of TRAIL receptor expression in human PAH lungs? 

5) What effect does TRAIL have on endothelial cell physiology? Does it influence the 

development of neointimal proliferation and plexiform lesions? What is the “cross 

talk” with smooth muscle cells?   

6) What role does TRAIL have on modulating right ventricular structure and function? 

7) What is the optimal strategy to inhibit the TRAIL system in PAH? (Ligand vs receptors) 

8) What effect does TRAIL have on the metabolic state/Warburg phenotype in PAH? 

 

 

7.6.1 Does genetic variation in TRAIL alter susceptibility to PAH? 

 

Genetic variation in TRAIL has been linked with susceptibility to multiple sclerosis (López-

Gómez, Fernández et al. 2011), osteoporotic fractures (Zhang, Liu et al. 2011), Asthma (Isi, Oral 

et al. 2010; Weckmann, Kopp et al. 2010) and fatty liver disease (Yan, Xu et al. 2009). An 

initiative by the Vanderbilt group established a list of 209 genes relevant to human PAH after 

undertaking biological functional and network analyses. (Zhao, Austin et al. 2014) Within this 

list TRAIL (TNFSF10) was identified and ranked 99th using this integrated systems based 

approach.  Unlike Genome wide association studies (GWAS) in common complex diseases such 

as coronary disease when studies include tens of thousands of cases, GWAS in PAH have been 

hampered due small patient numbers as a result of disease rarity. Thus, the power to detect 

genetic variants with small effects is significantly limited especially when disease prevalence is 

low.  It would however be worth taking a candidate gene based approach to determine 

whether variations in TRAIL/receptor gene or promoters are linked to disease.  
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7.6.2 What is the relationship between BMPR2 pathway and TRAIL signaling? 

 

Given the pivotal role of dysfunctional BMPR2 signaling in PAH, it would be of major interest to 

explore the impact TRAIL may have on modulating this. Potentially TRAIL could be an 

additional hit in the permissive setting created by genetic or functional deficient BMPR2 

signaling. Experiments using PA cells (smooth muscle and endothelial cells) from PAH patients 

harboring pathogenic BMPR2 mutations could be stimulated ex-vivo with TRAIL to explore the 

mitogenic properties of TRAIL and its receptors.   

 

7.6.3 What effect does TRAIL have on endothelial cell physiology in PAH?   

 

Our lab has observed TRAIL immunostaining in plexiform lesions from human PAH (Lawrie, 

Waterman et al. 2008) and established that TRAIL knockout mice were protected from Sugen-

Hypoxia induced PAH in mice (Dawson, Arnold et al. 2014) highlighting a potential link 

between TRAIL and angioproliferative disease in PAH. To further support this notion,  TRAIL, 

and its receptors including OPG  are expressed on microvascular ECs from infantile 

haemangiomas and the OPG-TRAIL (and TRAIL R3)  pathway promoted the proliferative anti-

apoptotic phenotype of these cells (Vishvanath, Itinteang et al. 2011). Moreover TRAIL 

expression has also been linked to angiogenesis within the lung (Favre, Mancuso et al. 2003) 

and studies in TRAIL-/- mice have supported its role in ischaemia induced angiogenesis and 

neovascularisation (Hubert, Davies et al. 2009; Di Bartolo, Cartland et al. 2015; Cartland, 

Genner et al. 2016). Clearly it would be of significant value to determine whether anti-TRAIL 

antibodies could be successful in reversing Sugen-Hypoxia induced PAH in rats, a model in 

which disease reversal is regarded as being “difficult”. 

 

Early EC apoptosis is viewed as one of the early events in PAH whilst the development of 

apoptosis resistant and proliferative ECs are key features of advanced lesions. Given that TRAIL 

has been shown to induce both induce endothelial cell apoptosis and survival it is tempting to 

speculate that TRAIL could regulate one or both in PAH which may be dependent on the stage 

of disease.  Cell culture work testing the effects of TRAIL on normal and PAH patient derived 

pulmonary microvascular EC in monoculture and co-culture with PASMCs could be used to 

explore this area further. 
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7.6.4 Can circulating TRAIL levels be used as a disease biomarker in PAH? 

 

As already highlighted in chapter 1, levels of serum TRAIL appear to be inversely linked to a 

variety of cardiovascular disease states. Preliminary data from our group showed a similar 

pattern in idiopathic PAH (Watt, Soon et al. 2009) whereas more recent data suggest TRAIL 

levels are increased in PAH  (Liu, Yang et al. 2015) whilst others observed no difference in the 

PAH related to congenital heart diseases (Brun, Holmstrøm et al. 2009; Brun, Ueland et al. 

2011). Interestingly other members of the TNF superfamily have been linked to PAH with 

reduced serum levels of TWEAK  (Filusch, Zelniker et al. 2011; Jasiewicz, Kowal et al. 2014) and 

increased FAS Ligand (Akagi, Nakamura et al. 2013) being reported.   

 

These studies however involved small patient numbers. Given the ongoing national PAH 

biobank data collected across the UK PAH centers it would be relatively easy to measure 

circulating levels of TRAIL and its receptors in larger cohorts to determine any value as a 

disease biomarker (diagnostic and prognostic). Establishing the utility of this approach would 

also permit disease monitoring should anti-TRAIL therapies be explored.  

 

7.6.5 What effect does TRAIL have on the metabolic /Warburg phenotype in PAH? 

 

Hitherto the relationship between hypoxia and TRAIL has almost exclusively been explored in 

the context of cancer biology with which the pathogenesis PAH shares some resemblance (Rai, 

Cool et al. 2008; Guignabert, Tu et al. 2013; Sutendra and Michelakis 2013).  Given that there 

remains a significant appeal for TRAIL as an anti-tumour agent, a number of studies have 

investigated the effects of the hypoxic tumour microenvironment on the apoptotic effects of 

TRAIL. It is recognized that many solid tumours have upregulated levels of the hypoxia 

sensitive transcription factor HIF-1α (Hypoxia Inducible Factor 1-alpha) (Greijer and van der 

Wall 2004; Zhao, Butler et al. 2013) which is linked to the development of resistance to 

chemotherapeutic agents including TRAIL (Mayes, Campbell et al. 2005; Jeong, Moon et al. 

2010).  

 

Furthermore upregulation of HIF-1α is directly linked to other hallmarks of cancer (Hanahan 

and Weinberg 2011); notably an altered metabolic cellular phenotype favoring glycolysis 

(Warburg effect), altered mitochondrial physiology and ATP production all of which contribute 

to the development of apoptosis resistant hyperproliferative cells .  In recent years these 

features are also now increasingly recognized as important phenotypes in PAH (Archer, 



155 
 

Gomberg-Maitland et al. 2008; Dromparis, Sutendra et al. 2010; Sutendra, Bonnet et al. 2010; 

Sutendra, Dromparis et al. 2011; Dromparis, Paulin et al. 2013; Sutendra and Michelakis 2014).  

 

HIF-1α has been shown to inhibit TRAIL mediated apoptosis of tumour cell lines in-vitro 

through several mechanisms, including upregulation of antiapoptotic factors such as BCL-2/IAP 

(Park, Billiar et al. 2002), preventing the translocation of the pro-apoptotic mediator Bax (Kim, 

Park et al. 2004) or via upregulation of the “decoy death receptor” TRAIL R3 (Pei, Wu et al. 

2010). This latter finding is noteworthy because, I have shown upregulated TRAIL-R3 

expression and it mediating the proliferative effects of TRAIL on human PASMCs.   

 

Interestingly upregulation of BCL-2 has been reported in PAH serum (Akın, Alehan et al. 2015), 

on PAH derived endothelial cells (Benza, Williams et al. 2016) and linked to an irreversible 

disease pattern on lung biopsy from PAH related to congenital heart disease (Levy, Maurey et 

al. 2007). BCL-2 suppression permits TRAIL induced apoptosis of vascular endothelial (Alladina, 

Song et al. 2005) and lung alveolar cells (Morissette, Vachon-Beaudoin et al. 2008; Morissette, 

Parent et al. 2011). Collectively this may help to explain why TRAIL displays a pro-proliferative 

rather than an apoptotic effect on smooth muscle cells in pulmonary vascular disease. 

 

Additionally HIF-1α has intricate links with p53 (Obacz, Pastorekova et al. 2013) which is 

known to regulate TRAIL (Morissette, Vachon-Beaudoin et al. 2008; Zhao, Lu et al. 2012; 

Meijer, Kruyt et al. 2013). Finally both HIF-1α (Lai and Law 2004; Kwapiszewska, Wygrecka et 

al. 2008; Zhang, Wu et al. 2009; Fijalkowska, Xu et al. 2010; Rey and Semenza 2010; Farha, 

Asosingh et al. 2011) and p53 (Mizuno, Bogaard et al. 2011; Mouraret, Marcos et al. 2013) 

have been implicated in pulmonary hypertension. Therefore determining the mechanistic links 

between HIF-1α, p53, BCL-2 and TRAIL in PAH is an area that potentially merits further study. 

This may shed light on why mitochondrial membranes are hyperpolarized in PASMCs and 

PAECs leading to a pro-proliferative and anti-apoptotic vascular cell phenotype in PAH (Paulin 

and Michelakis 2014). Given that TRAIL mediated apoptosis via the intrinsic pathway involves 

mitochondria recent studies are shedding light on its involvement in disturbed mitochondrial 

physiology in  cancer (Akita, Suzuki-Karasaki et al. 2014; Suzuki-Karasaki, Ochiai et al. 2014; 

Suzuki-Karasaki, Fujiwara et al. 2015). 
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7.7 CONCLUDING REMARKS 

 

Following initial observations of TRAIL in human PAH lesions and increased gene expression in 

diseased PASMCs, I have shown a pathogenic role for TRAIL in hypoxia, monocrotaline and 

high fat Paigen diet induced rodent models PAH. This phenotype has been further confirmed 

more recently by our group in the Sugen-Hypoxia model. These consistent results observed 

across multiple models would favor that TRAIL is a conserved pathophysiological driver of 

disease. Intervention studies in mice and rats highlight the potential for TRAIL as a novel target 

for an anti-proliferative strategy in human PAH.  

 

However as has been rather evident elsewhere, this latter observation is not without caution 

as failure to make it to the bedside is an all too common occurrence in several translational 

research initiatives. PAH is no exception given the complex nature of the disease and it would 

not be unconceivable to propose there will be no single “wonder drug” ever likely to treat this 

disease. Rather a strategy utilising multiple therapies targeting key aspects of the pathobiology 

of disease (personalised to each patient) is probably the one most likely to succeed.  

 

Despite improvements in the diagnosis and therapy over the past two decades there remains 

substantial morbidity and mortality associated with PAH.   The work presented in this thesis is 

an original contribution to the ongoing challenge to cure PAH and highlights potential for 

targeting the TRAIL pathway. My findings justify further study with the ultimate goal of 

developing anti-TRAIL based therapies.  
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