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Abstract

Human speech is the most behaviourally important and complex signal that the

human brain is required to process yet it does so with remarkable ease. Speech

is composed of highly complex amplitude modulations over time and these mod-

ulations are known to be crucial for intelligibility. There is evidence for hemi-

spheric asymmetries in processing auditory modulations over different timescales

and multiple models have been proposed to account for these. The procedure

by which the auditory system extracts and processes these modulations is not

fully understood. Psychophysical, neuroimaging and non-invasive neurostimula-

tion techniques can be combined in complementary ways to potentially provide

unique insights into this problem. Functional magnetic resonance imaging (fMRI)

and transcranial magnetic stimulation (TMS) are relatively novel methods that

have not been previously applied in combination to investigate amplitude mod-

ulation processing. Three psychophysical and fMRI-guided TMS studies were

conducted in order to address the following research questions. Firstly, is fMRI-

guided TMS an effective method for modulating AM processing? Secondly, are

different TMS protocols more or less effective at modulating AM processing?

Finally, is fMRI-guided TMS an effective method for further understanding the

functional asymmetry of speech processing? Online dual pulse TMS to right

auditory cortex was shown to be effective at modulating 4 Hz AM detection ac-

curacy. State-dependent TMS to left auditory cortex was shown to be effective

at modulating 40 Hz AM detection accuracy, but the effects were complex. Con-

tinuous theta burst stimulation was not shown to be effective at modulating AM

depth discrimination ability. It was thus found that fMRI-guided TMS can be an

effective tool for modulating AM processing, however, efficacy differs depending

on the specific TMS protocol used. Further, fMRI-guided TMS can be used to

investigate functional asymmetry of speech processing, however some important

caveats apply.
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Chapter 1

Introduction

1.1 Overview

The human ability to communicate using speech is of vital importance. The fact

that information can be encoded in minute vibrations of the air and that these

vibrations can be decoded with such little conscious effort from the listener is

remarkable. This ability is yet more remarkable when the complexity of encoded

information, the transmission speed and the fine motor skill required to produce

speech is considered. Processing natural speech is a hugely complex process and

disorders of auditory processing often lead to profound communication difficulties

that significantly affect quality of life. Despite the importance and ubiquity of

speech, mechanisms underlying the processing of its components are still not fully

understood.

The acoustic speech signal is comprised of complex, continuous and concurrent

modulations of amplitude and frequency. The processing of these low-level aspects

of speech is of particular interest as all higher-order linguistic complexity must be

represented by these, relatively few, parameters of interest. In isolation, neither

temporal nor spectral modulations can form an intelligible speech percept (e.g.

Shannon et al. 1995), but determining the relative contribution of these features

is an important goal.

Amplitude modulations (AM) of the speech envelope have been shown to be

15



crucial for speech intelligibility (Drullman et al. 1994a,b). Processing of AM

in the subcortical stages of the auditory system is well-characterised (e.g. Frisina

2001) however multiple accounts have been proposed to explain how this low-level

aspect of speech is processed by the brain. Theories of cortical AM processing

must account for the observed structural and functional asymmetries in audit-

ory cortical regions during auditory processing. The application of non-invasive

neuroimaging and neurostimulation techniques, such as functional magnetic res-

onance imaging (fMRI) and transcranial magnetic stimulation (TMS) to invest-

igate behaviour is a relatively recent development and it is not currently known

how effective these techniques are for modulating sensitivity to amplitude modu-

lation. Using non-invasive brain imaging and stimulation methods to investigate

amplitude modulation processing could therefore provide unique and novel in-

sights. The work presented here aims to further investigate the processing of

amplitude modulation through the combination of behavioural, neuroimaging

and brain stimulation techniques.

This investigation was designed to address a set of three overarching research

questions.

� Firstly, is fMRI-guided TMS an effective method for modulating AM pro-

cessing?

� Secondly, does the effectiveness of TMS for modulating AM processing differ

based on the TMS protocol used?

� Finally, is fMRI-guided TMS an effective method for further understanding

the functional asymmetry of speech processing?

1.2 The Acoustic Speech Signal

Speech is a highly complex signal comprising of continuous and concurrent mod-

ulations of amplitude and frequency.

The lower section of Figure 1.1 shows how the frequency and amplitude of a

16



Figure 1.1: Upper: waveform representation of speech with amplitude on the Y

axis. Lower: spectrogram representation of speech with frequency on the Y axis.

Time is on the shared X axis. The wave file for this sentence was sourced from

the Open Speech Repository.

speech signal changes over time, with time and frequency components visible as

bands of pulsing colour (in horizontal and vertical directions, respectively). The

upper section of Figure 1.1 shows how the amplitude of the speech signal changes

over time. The rate of signal fluctuations in this time domain has been used to

categorise temporal aspects of speech (Rosen 1992). The speech signal has been

dissociated into envelope, periodicity, and temporal fine structure components.

The envelope is the lowest frequency component and refers to overall fluctuations

in amplitude at ∼2 – 50 Hz. The envelope contains a substantial amount of

useful speech information, for example, prosodic and manner of articulation cues.

Specific prosodic information relating to stress and intonation is contained in the

periodicity information. This component is subdivided again into periodic and

aperiodic stimulation. Periodic sounds fluctuate at frequencies between ∼50 and

500 Hz whereas aperiodic sounds have a less well defined frequency range, from
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a few kHz upwards. Temporal fine structure contains fluctuations in the range

∼600 Hz – 10 kHz and is responsible for place of articulation information, vowel

quality and segmental cues to voicing and manner. These subdivisions are useful

when discussing aspects of temporal modulations in speech but it is important to

make a distinction between the low frequency information extracted analytically

and the low frequency envelope of speech. An analytic extraction (e.g. with a

Hilbert transform) will typically combine envelope and periodicity information,

so many accounts disregard periodicity as a separate component (e.g. Joris et

al. 2004; Moon and Hong 2014). Figure 1.2 shows a full speech signal and its

envelope and fine structure components.

Figure 1.2: Hilbert extraction of envelope (B) and temporal fine structure (C)

from a speech signal (A). The sentence is the same as seen in Fig 1.1.

In order to investigate the relative role of these features and how they con-

tribute to intelligibility, one informative behavioural approach involves isolating

parameters of interest and then systematically modifying them and measuring

subsequent intelligibility. By measuring the marginal contribution of these para-

meters, it is possible to ascertain which are most critical to intelligibility and

therefore transmit the most useful information. In order to investigate the relat-
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ive importance of amplitude and frequency information, intelligibility has been

measured while the spectral content of speech was severely degraded. Using band-

pass filters to limit the amount of spectral information, and low-pass filters to

extract the low-frequency information from these bands, it was found that des-

pite a reduction in spectral content to just 3 bands, 90% intelligibility could be

retained, provided the full speech envelope from each band was reimposed on it

before recombination (Shannon et al. 1995). Other estimates for the number of

bands required for intelligible speech are similar, e.g., asymptotic performance at

5 – 8 bands, depending on stimulus difficulty (Dorman et al. 1997); 90% intelli-

gibility with 5 channels, asymptotic performance at 8 bands (Loizou et al. 1999).

A similar approach involved measuring the speech reception threshold for speech

signals low- and high-pass filtered at different cut-off frequencies. AM rates be-

low 16 Hz were found to be the most crucial for intelligibility (Drullman et al.

1994a,b). Elliott and Theunissen (2009) found that AM at 1 – 7 Hz was most

critical for speech intelligibility and it has since been shown that cross-channel

AM sweeps may also be important (Prendergast and Green 2012). While AM

of limited frequency content may be sufficient for intelligibility in quiet, the ad-

ditional frequency information may be required or utilised more for challenging

tasks such as speaker gender identification or speech recognition in background

noise (Elliott and Theunissen 2009; Moon and Hong 2014).

To summarise, amplitude modulations are present in speech at a wide range

of rates, but not all rates are of equal importance for the intelligibility of a speech

signal. These behavioural studies allude to the large amount of redundancy in

the speech signal but primarily demonstrate that low frequency AM of the speech

envelope is crucial for speech intelligibility.

1.3 Controlled Auditory Stimuli

An alternative to using natural or filtered speech stimuli is using controlled aud-

itory signals. This approach allows the isolation of key parameters of interest
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and these controlled stimuli, such as amplitude and frequency modulated sig-

nals, serve as useful intermediates for developing models of speech processing.

Using this approach, individual low-level aspects of speech can be isolated and

systematically varied in studies, in order to investigate the marginal effect of that

single parameter on a behavioural or physiological measure. The signals can be

adjusted to approximate specific perceptual properties of speech and they can be

studied in isolation or combination, e.g. to model concurrent spectro-temporal

processing (Chi et al. 1999; Luo et al. 2006; Hsieh and Saberi 2010; Edwards and

Chang 2013). An amplitude modulated signal is described by Equation (1.1).

signal = A0 ∗ (1 +mod) ∗ carrier (1.1)

A0 is a scaling factor that controls the amplitude of the signal. mod is the

modulator signal, which determines the overall envelope of the amplitude modu-

lation. carrier is the carrier signal, which determines the signal to be modulated.

Sinusoidal amplitude modulation (SAM) is commonly used to experimentally

model amplitude modulations in speech (Joris et al. 2004). The use of SAM is

physiologically supported as the modulations present in the speech spectrogram

are characterised by near-sinusoidal patterns (Singh and Theunissen 2003; Elli-

ott and Theunissen 2009). A further rationale for using this signal is that the

response of linear systems to complex input can be inferred by measuring the

system response to one SAM stimulus and then progressively adding more. This

rationale is somewhat limited by non-linear processing stages of the auditory

system. For example, evidence for non-linear neural encoding of concurrent amp-

litude and frequency modulation has been found, and computational modelling

results suggest this may reflect a tradeoff between encoding these features (Luo

et al. 2006; Santoro et al. 2014). However, when patterns of linear processing

are found, such as AM processing as reflected by the auditory steady state re-
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sponse (e.g. Prendergast et al. 2010), theis approach can be effective. Sinusoidal

amplitude modulation (SAM) is described by Formula Group (1.2).

carrier(t) = sin(2πtfc) (1.2a)

mod(t) = sin(2πtfm) (1.2b)

signal = A0 ∗ (1 +mod) ∗ carrier (1.2c)

x(t) = A0(1 +mod ∗ sin(2πtfm)) ∗ sin(2πtfc) (1.2d)

The carrier signal determines the fine structure of the resulting output signal;

the carrier type in Formula Group (1.2) is sinusoidal, resulting in a SAM tone

with a centre frequency of fc. Modulation rate refers to the frequency of the AM.

Suprathreshold SAM at frequencies <∼10 Hz is perceived as a slow fluctuation

in amplitude, whereas SAM ∼10 – ∼50 Hz has a perceptual ‘unevenness’ or

‘roughness’ quality and SAM >∼50 – 100 Hz is perceived as tonal with an increase

in pitch with further rate increments (Zwicker 1952). Edwards and Chang (2013)

thoroughly review the literature describing how AM perception changes as rate

(and carrier frequency) increases.

The depth of amplitude modulation can be quantified as the modulation index

m. Modulation index m is described by Equation (1.3).

m =
(peakAm)

(peakAc)
(1.3)

peakAm is the peak amplitude of the modulator signal and peakAc is the peak

amplitude of the carrier signal. Figure 1.3 shows three SAM noise carriers mod-

ulated at different depths. Modulation depth is often reported in units of 20logm
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dB. For convenience, some converted values are given here: -30dB = 0.032m;

-20dB = 0.1m; -10dB = 0.316m; and 0dB = 1m. As the depth of amplitude

modulation decreases, it becomes more difficult to detect. The modulation depth

of an AM signal can be systematically varied in order to assess sensitivity to AM.

Figure 1.3: Noise carriers sinusoidally amplitude modulated at 4 Hz, with differ-

ent m values. Upper: m = 0. Middle: m = 0.5. Lower: m = 1.

To summarise, controlled auditory stimuli are often used to model low-level

aspects of speech. This approach allows fine experimental control over variables of

interest. SAM is most commonly used to approximate the amplitude modulations

present in speech. The modulation index is a key parameter which represents the

depth of modulation, with lower depths more difficult to detect. Systematically

modifying this parameter allows researchers to measure sensitivity to AM.
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1.4 Behavioural Investigations into the Detec-

tion of Amplitude Modulation

The earliest studies that investigated AM of the temporal envelope used the

phenomenon of perceptual ‘beats’ to create the modulations. This is where two

concurrent sinusoidal tones that differ in frequency are perceived as a singular

tone that fluctuates in amplitude. The rate of the perceived AM is equal to the

frequency difference between the tones. For example, if a 495 Hz and 505 Hz tone

are played concurrently, a 500 Hz tone would be perceived, with an amplitude

fluctuation at a rate of 10 Hz (Licklider et al. 1950).

Riesz (1928) used this phenomenon to investigate the sensitivity of the aud-

itory system and found that it was most sensitive to AM changes at a rate of

∼ 3Hz. However, this method is disadvantaged by a limited carrier frequency

bandwidth and at modulation rates greater than 30 Hz, two distinct tones are

perceived, limiting the AM rates at which the technique can be used (Licklider et

al. 1950). Technological advances allowed later researchers to directly modulate

more complex signals, as described in Equation (1.1). Another early study used

this technique to measure the lowest level of SAM that could be detected by the

auditory system and found a similar peak sensitivity at 4 Hz (Zwicker 1952). This

account is the most complete single study of AM detection thresholds to date,

with a wide range of AM rates (1 – 6000 Hz) and three carrier frequencies (0.25,

1, and 4 kHz). These findings provided early indications of the importance of low

frequency modulations in the auditory domain.

The temporal modulation transfer function (TMTF), describes the relation-

ship between AM detection threshold and AM rate (Rodenburg 1977; Viemeister

1979). TMTFs have been measured using both tone (e.g. Kohlrausch et al. 2000)

and noise carriers (e.g. Viemeister 1979) and both measures have benefits for

understanding the processes involved in speech perception. Briefly, sinusoidal

carriers allow investigation of the effect of carrier frequency, which may elicit in-

formation about secondary filtering processes, however, it is difficult to control

23



which cues participants use to detect the modulation (e.g., at high modulation

frequencies where the sidebands are resolved on the cochlear membrane and the

perception of modulation is diminished). Noise carriers do not suffer from this

problem however, the intrinsic random fluctuations of these signals complicates

interpretation, particularly with narrowband noise signals. This distinction al-

lows researchers to specifically explore the relative role of internal and external

limitations (arising from the stochastic nature of the noise signals) on the pro-

cessing of AM (Ewert and Dau 2004). In order to fully understand the perception

of amplitude modulation by the auditory system, it is necessary for studies with

both tone and noise carriers to be performed (Kohlrausch et al. 2000; Joris et al.

2004).

1.4.1 TMTFs measured with noise carriers

Rodenburg (1977) measured the TMTF using noise carriers with AM rates from

∼ 3 – 1000 Hz and noted that sensitivity was high and constant below 10 Hz

but slowly decreased above that rate. He concluded that the TMTF was low-

pass in shape with a cutoff at ∼ 50 Hz. A later study also measured the TMTF

using a wideband noise carrier and modulation rates from 2 – 4000 Hz and found

evidence to support this account (Viemeister 1979). This study also suggested the

TMTF was low-pass in nature (though a subtle decline in sensitivity was shown

for rates below 4 Hz), with a -3dB cutoff at ∼ 60 Hz. These studies also found

that overall intensity had no effect on the response. A later study measured AM

detection for octave-wide noise bands at fm values from 1 – 64 Hz and found a

similar characteristic in the TMTF, with peak sensitivity at 1 – 4 Hz (Ozimek

and Sek 1988). Gutschalk et al. (2008) measured AM detection of broadband

noise modulated at rates from 50 – 500 Hz and provided further support for the

low-pass account, although the sensitivity to low rates (speech envelope rates and

below) were not measured. Figure 1.4 shows TMTFs estimated with broadband

noise carriers. Overall, these studies show a peak sensitivity to low rates of AM

(<∼10 Hz) and sensitivity to AM attenuates as modulation rate increases.
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Figure 1.4: Temporal modulation transfer functions measured with noise carriers.

Modulation rate in Hz is represented on the X axis. Modulation depth in 20logm

dB is represented on the Y axis. Reproduced with permission from Viemeister

(1979). Copyright 1979, Acoustical Society of America.

1.4.2 TMTFs measured with tone carriers

A comprehensive study of AM detection measured the TMTF with sinusoidal

carriers from 1 – 10 kHz and AM rates from 10 – 1600 Hz (Kohlrausch et al.

2000). This study measured a relatively flat threshold for AM rates up to ∼130

Hz, followed by a steady (approximately 6dB/octave) increase in threshold up

to ∼800 Hz. However, when each carrier reached its critical frequency (Schorer

1986; Sek and Moore 1994), participants could detect the spectral sidebands and

sensitivity increased again. This critical modulation frequency differed for each

carrier frequency; see Figure 1.5. In contrast to TMTFs measured with noise
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carriers, they also found that thresholds decreased with increasing carrier sound

level (from 20 – 75 dB SPL). Moore and Glasberg (2001) measured AM detec-

tion thresholds using sinusoidal carriers in healthy participants using two carrier

levels (30 and 80 dB SPL) and three carrier frequencies (1000, 2000 and 5000

Hz). Their TMTFs resembled those found in earlier studies with relatively flat

thresholds until the sidebands were resolved and that sensitivity was greatest in

the 80 dB SPL condition. They conducted the same experiment with hearing im-

paired (HI) listeners and found that HI participants had similar thresholds at 80

dB SPL but actually showed finer sensitivity than healthy controls in the quieter

condition. Their results suggest that HI listeners may not be able to perceive

the spectral sidebands as well as normal controls at higher AM rates, but over-

all temporal resolution abilities between HI and normal hearing participants are

similar. This somewhat paradoxical finding was also shown more recently when

the variability of AM detection within a clinically normal hearing population was

investigated. AM sensitivity was shown to vary in a noise-exposed group that

had near-normal hearing thresholds, and this group showed consistently lower

AM detection thresholds (Stone and Moore 2014). Even within the normal hear-

ing population, variation in temporal processing skills exists and can be linked to

life experiences such as occupational noise exposure (Stone et al. 2008; Kumar et

al. 2012). Understanding this ‘hidden hearing loss,’ is the topic of much current

research as it has implications for real-world auditory perception (e.g. speech pro-

cessing in noise) that standard audiometric measures do not adequately capture

(Guest et al. 2018; Dewey et al. 2018).

1.4.3 Current views on TMTFs

Interest has largely shifted away from studies directly characterising the TMTF,

however, it has been recently revisited due to renewed interest in the interaction

of AM sensitivity and syllabic speech rates (Edwards and Chang 2013). Prop-

erties of the AM detection TMTF are generally accounted for and this low-pass

(i.e. leaky integrator in the time domain) view is commonly held. The low-pass
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Figure 1.5: Temporal modulation transfer functions for different tone carrier fre-

quencies. The sharp increase in sensitivity represents the critical frequency at

that carrier frequency. The y-axis units are dB: -30 dB = 0.032 m. Reproduced

with permission from Kohlrausch et al. (2000). Copyright 2000, Acoustical Soci-

ety of America.

account generally persists despite the findings of a recent review that also found

a high-pass component for very low frequencies; forming a band-pass filter with a

bandwidth from ∼ 2 – 5 Hz (Edwards and Chang 2013). This band-pass proposal

does not contradict the early work, as few studies examined these very low AM

rates, so the function largely showed a low-pass characteristic by these measures.

The 2 – 5 Hz pass band is notable as it corresponds to the syllabic rate of speech

(e.g. Houtgast and Steeneken 1985; Krause and Braida 2004), which is remark-

ably consistent across languages (Ding et al. 2017), suggesting the existence of an

underlying universal principle for the optimisation of information transfer with

speech.

To summarise, AM detection tasks aim to measure the smallest AM depth of

a tone or noise stimulus that can be detected. When applied across multiple AM
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rates, it is possible to measure the TMTF, with peak sensitivity at roughly 4 Hz,

corresponding closely to the syllabic rate of speech (Krause and Braida 2004). It

is generally accepted that the TMTF is low-pass in shape, however this may be

due to a lack of data for very low rates where a decrease in sensitivity has been

found, suggesting a band-pass characterisation may be more accurate. Hearing

impairment affects temporal processing non-linearly and individuals with clinic-

ally normal hearing thresholds can show temporal processing deficits as measured

by AM detection tasks.

1.5 Behavioural Investigations into the Discrim-

ination of Amplitude Modulation Depth

The ability to discriminate between AM depths provides a lower bound at which

information can be decoded from the speech signal (Wakefield and Viemeister

1990). The AM discrimination threshold reflects the smallest change in modula-

tion depth that can be detected between two AM signals (i.e., the just-noticeable-

difference). In contrast, the AM detection threshold only provides information

on the detection of the presence of amplitude modulations; it does not provide

any detail on how much useful information can be extracted. Wakefield and

Viemeister (1990) give an example where AM detection is successful but no in-

formation about the depth is preserved. In this case, information transfer is

poor and (e.g., syllabic) discrimination errors may be made. Thus, the ability

to discriminate AM depth limits the successful transfer of auditory information,

such as when humans communicate using speech. In AM depth discrimination

studies, periods of AM sounds are compared, e.g. in 2- or 3-alternative forced

choice designs (e.g. Grantham and Bacon 1988). One period contains AM at a

standard depth and the AM depth of the other period varies. The task is to

determine which of the periods contains modulation at a greater depth (i.e. has a

larger modulation index, m). The standard depth remains constant within each

task and AM depth discrimination thresholds can be plotted as a function of
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standard depth. This provides a measure of how sensitive the auditory system

is to differences in AM depth across the range of detectable depths. This can

inform researchers about the relative importance of different rates of AM to the

auditory system and can lead to new models and theories that further collective

understanding of speech processing.

The caveats surrounding choice of carrier type apply equally to AM depth dis-

crimination tasks and studies have used sinusoidal, narrowband noise and broad-

band noise carriers. Fleischer (1980) used sinusoidal tone carriers and obtained an

AM depth discrimination function for standard depths from -14 – 0 dB 20logm. A

comprehensive study used octave wide noise carriers (centre fc 250 – 8000 Hz) and

obtained a function from -12 – 0 dB for fm values of 1 – 64 Hz (Ozimek and Sek

1988). Using broadband noise carriers (0 – 8000 Hz) another function was meas-

ured using fm values of 25, 50 and 400 Hz (Wakefield and Viemeister 1990). In a

similar range of standard depths as the earlier studies, comparable results were

found. The results for these three studies can be seen in Figure 1.6; a decrease

in threshold with a decrease in standard depth. Lee and Bacon (1997) varied

the stimulus lengths and at comparable lengths to those used in previous work, a

similar function shape was obtained. A more recent study sought to consolidate

this evidence using sinusoidal and noise carriers and examine the relative effect

of internal and external limitations on AM processing (Ewert and Dau 2004). In

their first experiment, AM depth discrimination thresholds were obtained using

standard depths from -28 – -3 dB. Their findings supported the established AM

depth discrimination functions and highlighted the subtle differences between sine

and noise carriers as the standard depth approached detection threshold. In sum-

mary, for both sinusoidal and noise carriers, a decrease in threshold was observed

as the standard depth decreased. This decrease was a constant fraction of the

AM depth down to -18 dB and -8 dB for the sine and noise carrier respectively,

following the Weber fraction. However, past this point, a fixed increase in AM

depth was required that was independent of the standard depth. Various mod-

els have been proposed to account for this pattern, such as the leaky-integrator
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model, the envelope spectrum model and the performance model (Wakefield and

Viemeister 1990; Ewert and Dau 2004).

To summarise, AM depth discrimination tasks aim to quantify the smallest

discernible difference in AM depth. When repeated across a range of standard

depths, a modulation transfer function can be measured. The findings from

AM depth discrimination studies concur with AM detection studies and provide

further support for the auditory system’s particular sensitivity to low rates of

AM.

Figure 1.6: AM depth discrimination thresholds as function of standard depth.

Circles: Wakefield and Viemeister (1990), fm = 25 Hz, spectrum level of 25

dB. Squares: Fleischer (1980), fc = 1000 Hz sinusoid. Triangles: Ozimek and

Sek (1988), average of four carrier frequencies. Reproduced with permission from

Wakefield and Viemeister (1990). Copyright 1990, Acoustical Society of America.

30



1.6 Effects of Selective Adaptation on the Per-

ception of Amplitude Modulation

Studies have shown that previous exposure to a stimulus reduces the ability to

detect the same stimulus on subsequent trials, known as selective adaptation

(Hood 1972). This technique, described as the “psychophysicist’s microelec-

trode,” (Frisby 1979), allows researchers to systematically probe neural systems

using purely behavioural measures. By comparing the adaptation effect of a stim-

ulus to that of a stimulus that varies systematically from the adaptor, for example,

comparing AM with frequency modulation (Kay and Matthews 1972; Regan and

Tansley 1979) or with AM at a different rate (Wojtczak and Viemeister 2003),

it is possible to dissociate neural systems (Hood 1972; Grill-Spector et al. 2006).

This method has been used to show that previous exposure to AM tones leads

to subsequent decreases in AM sensitivity. This decrease equates to a threefold

increase in threshold from baseline for rates from 3 – 30 Hz, provided that the

adapter and test stimulus were modulated at the same rate (Kay and Matthews

1972). The rates of the test stimuli were modified and the effect attenuated as

the difference between the adapter and test stimulus modulation rate increased.

Subsequent research has supported this account, but has shown that the time

needed to reach maximum adaptation is much longer; 600 – 1200 seconds, com-

pared to 12 seconds (Regan and Tansley 1979). The effect has been examined in

more detail and was shown to be most prominent at 16 Hz and no effect of carrier

level was found using 30, 50 and 80 dB SPL (Tansley and Suffield 1983). More

evidence has been found for a modulation rate sensitivity in a study that ex-

amined the effect of adaptation on suprathreshold AM (Wojtczak and Viemeister

2003). More detailed parameters such as the time course of adaptation release,

the specificity of rate selectivity and the effect of combined AM are now well

characterised (Wojtczak and Viemeister 2005). It has also been found that the

effect can be modulated by attention, suggesting the involvement of a top-down

component (Kawashima 2009). Adaptation to AM was also found to be induced
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by pulse trains and this was shown to have an adverse effect on AM detection

thresholds at a high modulation rate of 100 Hz. Unlike the low frequency (<∼30

Hz) adaptation to AM described previously (e.g. Tansley and Suffield 1983) this

effect did not transfer interaurally, suggesting the involvement of a distinct mech-

anism from a different stage of auditory processing (Gutschalk et al. 2008). The

mechanisms underlying the behavioural effect of adaptation to AM are still not

fully understood (Kleinschmidt and Jaeger 2016) however, this approach appears

to support the existence of channels that are selective for processing specific rates

of modulation. This modulation rate sensitivity led to the proposition of a mod-

ulation filterbank stage in models of amplitude modulation processing (Dau et

al. 1997a; Ewert and Dau 2000).

To summarise, the phenomenon of selective adaptation can be exploited to

investigate neural systems with purely behavioural experiments. This method

has been successfully applied to investigate AM processing and there is evidence

for specific channels tuned to AM rate in the auditory system.

1.7 Subcortical Processing of Amplitude Mod-

ulation

A detailed understanding of how sound is represented in the peripheral and sub-

cortical auditory system, and how AM modifies this representation, is useful as

the information the auditory system preserves informs researchers about the rel-

ative importance of disparate aspects of the acoustic speech signal. Further, the

output from early peripheral stages serves as input to later cortical stages so ro-

bust models allow researchers to develop ever finer investigations into the stage

of interest.
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1.7.1 Peripheral Auditory System

The peripheral auditory system begins at the eardrum and ends at the auditory

nerve. In brief, the auditory periphery is responsible for the mechanotransduction

of the vibrations that constitute the speech signal into a series of electrical pulses

(Young 2008; Verhulst et al. 2018). This early representation is largely faithful

to the input signal by directly representing complex modulations (Wang et al.

2003). The cochlea analyses sounds in the frequency domain and initiates a

tonotopic organisation that persists throughout the auditory system (Saenz and

Langers 2014). Within the cochlea, high frequencies resonate at the base and

progressively lower frequencies resonate towards the apex (Gold and Pumphrey

1948). Analytically, signals can be represented in the frequency domain through

a Fourier transform, which calculates the power and frequency of each sinusoidal

component. This analytical transformation is an adequate model of the cochlea

for understanding how sound and AM is initially coded, although more complex

models have been developed (Jepsen et al. 2008; Verhulst et al. 2018). In the

frequency domain, a pure tone manifests as a single peak at the carrier frequency,

fc, because all of the energy in the signal is found at this frequency. Figure 1.7

shows the frequency spectrum of three SAM pure tone signals; each signal is

clearly the sum of three distinct frequency components. The spectrum takes the

form of one dominant peak at the carrier centre frequency, fc, and two spectral

sidebands with less power. The lower sideband manifests at a frequency of fc−fm

and the upper sideband manifests at a frequency of fc + fm. For example, a 500

Hz sinusoidal carrier with SAM at 10 Hz would have a main peak at 500 Hz and

two sidebands at 490 Hz and 510 Hz. The power of the sidebands are equal, and

their power relative to the fc peak is determined by the modulation depth. At

an m of 1 (fully modulated), the power of each sideband is half that of the fc

component. Figure 1.7 shows the waveforms and spectra of some example signals

for comparison. At higher non-envelope AM rates (>∼50 Hz), the sidebands are

resolved on the basilar membrane and pitched tones are perceived (Viemeister

1979; Kohlrausch et al. 2000).
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Figure 1.7: Upper: waveform representation of 3 sinusoidally amplitude modu-

lated tone carriers. Lower: spectrum representation of 3 sinusoidally amplitude

modulated tone carriers. Red: fc = 950 Hz, fm = 5 Hz, m = 1. Green: fc =

1000 Hz, fm = 10 Hz, m = 1. Blue: fc = 1050 Hz, fm = 10 Hz, m = 0.5.

1.7.2 Subcortical Central Auditory System

The central auditory pathway begins at the auditory nerve at ends at the auditory

cortex. In the central auditory pathway, the electrical pulses generated at the

auditory nerve are transformed by successive stages of specialised nuclei (Frisina

2001; Behler and Uppenkamp 2016). The anatomical basis of the subcortical

central auditory pathway is well characterised. The afferent signals from the

initial mechanotransduction by the organ of corti pass through the ascending

structures of the cochlear nuclei, the superior olivary nuclei, the inferior colliculi

(IC) and the medial geniculate bodies (MGB) of the thalamus (Grothe et al.

2010). Figure 1.8 shows a representation of these early auditory pathways. Due

to the electrophysiological nature of the central nervous system, many parallels
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can be drawn between auditory processing and signal processing in the digital

domain. Technological advances in computing and digital signal processing have

allowed researchers to develop quantitative models of auditory function that can

then be tested with physiological and psychophysical data (Lorenzi et al. 1995;

Verhulst et al. 2018). A qualitative change in the way AM is encoded has been

directly recorded in the central auditory pathway of non-human primates and

other animals (Frisina 2001; Gao et al. 2016; Wang 2018). Further, it is proposed

that separate subpopulations of neurons are responsible for each coding type.

At lower levels of the pathway up to the auditory thalamus, the predominant

coding type is an explicit temporal-based coding. This neuronal subpopulation

show synchronised firing activity phase-locked to the temporal modulation of

the auditory signal. At higher levels of the auditory pathway, activity from an

unsynchronised neuronal subpopulation is predominant, and average firing rate

is directly linked to the temporal structure of the input (Wang et al. 2003).

The mechanisms for this transformation from synchronised temporal coding to

unsynchronised firing rate coding are largely unknown but this is an active topic

of research (Gao et al. 2016; Carbajal and Malmierca 2018).

Current models of human AM processing include a gammatone filterbank

that models the cochlea and initial mechanotransduction (Patterson et al. 1987;

Lyon et al. 2010). The output from this stage is then nonlinearly processed,

typically modelled by half-wave rectification (or Hilbert transform) (Hudspeth

2008; Ainsworth et al. 2012). The signal is then passed to a modulation filterbank

and a detector mechanism (Dau et al. 1997a; Joris et al. 2004; Xiang et al. 2013).

To summarise, the physiological architecture of much of the auditory pathway

has been well-characterised. Robust anatomically-informed computational mod-

els of subcortical auditory processing have been developed. A progressive change

in AM encoding type from explicit temporal coding to implicit rate coding can

be measured in the central auditory pathway. Current theories of AM processing

hold that a modulation filterbank best accounts for the observed physiological

and psychophysical data, however, it is currently not known how or where such
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Figure 1.8: Simplified diagram of the ascending auditory pathway. Reproduced

with permission from Grothe et al. (2010). Copyright 2010, American Physiolo-

gical Society.

a system may be implemented.

1.8 Cortical Processing of Amplitude Modula-

tion

Auditory signals are passed from the thalamus to auditory cortical regions such

as Heschl’s gyrus (HG), the location of primary auditory cortex (Abdul-Kareem

and Sluming 2008) and peri-Sylvian regions such as the superior temporal gyrus

(STG) (Grothe et al. 2010). Human auditory cortex is located on the supratem-

poral plane, within the Sylvian fissure, and comprises two thirds of the STG. It

can be divided into three parts; the planum polare (PP), HG and the planum

temporale (PT) (Moerel et al. 2014); see Figure 1.9. However, from two to six

distinct cytoarchitectonic areas have also been described in secondary auditory

36



cortex, reflecting the uncertainty surrounding the exact boundaries of these aud-

itory areas (Cammoun et al. 2015). Haemodynamic activation to AM stimuli has

been found within auditory cortex, specifically lateral HG, STG and PT (Giraud

et al. 2000); see Figure 1.10 for fMRI clusters resulting from a contrast of 4 and

40 Hz AM noise over unmodulated noise. Further, fMRI activation in these re-

gions has been shown to increase more to AM variation that to FM variation,

suggesting a functional specialism of the neuronal ensembles (Hart et al. 2003).

Figure 1.9: Location of human auditory cortex. Red: PT. Blue: HG. Purple:

PP.

A change in encoding type as AM rate increases was first found using invas-

ive single-neuron investigations in non-human primates (Lu et al. 2001; Wang
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Figure 1.10: Clusters of activation in bilateral pSTG/PT in response to 4 and

40 Hz sinusoidally amplitude modulated broadband noise conditions (combined)

over unmodulated noise.

et al. 2003) but evidence has also been found for this change in human cortex

(Harms and Melcher 2002; Tang et al. 2016). Non-invasive human neuroimaging

techniques measure the summed activity of a great number of neural popula-

tions, or indirectly index this through the BOLD signal, so it is notable that this

organisation remains represented at this level. Harms and Melcher (2002) meas-

ured the BOLD response waveshape and amplitude while trains of noise bursts

were presented with repetition rates from 1 – 35 Hz. In HG, response amplitude

increased sightly with increasing rate, but the main effect was a change in wave-

shape from sustained to phasic; two distinct peaks in activity at train onset and

38



offset. This encoding at the cortical level may reflect the perceptual change from

many distinct noise bursts to one continuous noise period. This effect was absent

in the inferior colliculus and started to emerge at the MGB, showing a systematic

progression over these contiguous stages of the auditory system. In the IC, the re-

sponse amplitude increased with increasing rate, but the waveshape remained the

same; a sustained response for the length of the train (Harms and Melcher 2002).

In the STG the observed effect changed in a subtle way, with responses to all rates

showing an increasingly phasic pattern, though the distinction between high and

low rates was still clear (Harms and Melcher 2002). Further work examined the

effect of manipulating other sound features and found that the temporal envelope

was most influential over fMRI activation waveshape and that sound level and

bandwidth had no effect (Harms et al. 2005). This finding further emphasises the

importance of the temporal envelope of the stimulus when processing AM sound.

It is well established that tonotopic organisation exists in the auditory system

that persists from the cochlea throughout the auditory pathway up to the cortex.

This direct representation of frequency information results in adjacent neuronal

populations encoding adjacent frequencies across auditory cortex (Humphries et

al. 2010; Saenz and Langers 2014; Moerel et al. 2014; Dick et al. 2017).

Figure 1.11 illustrates this tonotopic organisation. Direct topographic rep-

resentation of stimulus features appears to be an underlying principle of sensory

neural organisation and evidence has been found for periodicity (AM rate) on the

orthogonal dimension to tonotopy in auditory cortex (Barton et al. 2012). The

fMRI response was measured as broadband (0 – 8000 Hz) SAM noise was presen-

ted at different AM rates (from 2 – 256 Hz). Clear gradients were found and 11

auditory field maps were delineated, replicating the findings from animal studies.

Similar spatial representations for AM rates that are approximately orthogonal

to tonotopic maps have also been reported by Herdener et al. (2013). This has

been supported by recent evidence from magnetoencephalography (MEG); a more

direct measure of neural activity (Weisz and Lithari 2017). Group level results

for tonotopic and modulotopic organisation can be seen in Figure 1.12. Further
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Figure 1.11: Tonotopic organisation throughout the auditory system. Repro-

duced with permission from Saenz and Langers (2014). Copyright 2013, Elsevier.

evidence for modulotopic organisation comes from an invasive electrophysiolo-

gical study that found that sensitivity to AM rate changed along the length of

the STG. They found that the anterior section activated more to high frequency

fluctuations (with a relatively constant spectrum) whereas the posterior section

activated more to slower fluctuations (with more spectral variation) (Hullett et al.

2016). Research investigating the representation of concurrent spectro-temporal

modulations has suggested that these tono- and modulotopic maps may represent

a tradeoff between spectral and temporal processing (Santoro et al. 2014).

To summarise, AM is clearly represented in auditory cortex, primarily mani-

40



Figure 1.12: Tonotopic (C) and modulotopic (D) organisation in the cortex. Re-

produced with permission from Herdener et al. (2013). Copyright 2013, Elsevier..

festing in the secondary auditory cortical regions STG and PT. The coding of

AM rate appears to show a qualitative change at progressive stages of the central

auditory pathway, and as AM rate increases, consistent with subcortical invest-

igations. Tonotopic organisation is a key principle of the auditory system and

some evidence has been found for an orthogonal modulotopic representation.

1.9 Cortical Asymmetries in Auditory Processing

It has been known for decades that a general specialism of the left hemisphere

for speech processing and production exists (Berker et al. 1986). Since these

initial findings, much progress has been made in modelling the systems underly-

ing speech and language (Hickok and Poeppel 2007; Hickok 2012). Technological

developments in structural and functional brain imaging have enabled detailed
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studies of the brain and gross structural hemispheric asymmetries have been found

to exist in human cortex (Kong et al. 2018; Chiarello et al. 2016). Auditory and

language areas have been specifically examined and these too show structural

asymmetries (Abdul-Kareem and Sluming 2008; Moerel et al. 2014; Meyer et

al. 2014; Galuske et al. 2000). In fact, auditory area PT has been described as

the most asymmetrical cerebral structure in the whole brain (Prete et al. 2016).

Investigations measuring structural connectivity have found that the arcuate fas-

ciculus (the white matter bundle connecting Wernicke’s and Broca’s areas; key

nodes in the language network) is more developed in the left than the right hemi-

sphere, and this was related to behavioural differences (Catani et al. 2005, 2007).

Another asymmetry of structural connectivity has recently been found where

right auditory cortex was generally more integrated into the wider connectome

than the left, particularly with respect to interhemispheric connectivity (Mǐsić et

al. 2018). This result is consistent with functional network connectivity invest-

igations and provides evidence that this structural asymmetry is associated with

function (Andoh et al. 2015). Functional asymmetries of auditory areas have also

been found, such as an asymmetry of sensitivity to temporal structure, with slow

temporal modulations preferentially driving the right hemisphere (Boemio et al.

2005). Conversely, evidence has been found for preferential activation of the left

hemisphere by rapid temporal modulations, such as those found in speech (Zaehle

et al. 2004; Abrams et al. 2008). Multiple behavioural and imaging studies have

provided evidence for functional asymmetries (Millman et al. 2011; Saoud et al.

2012; Liem et al. 2014; Han and Dimitrijevic 2015; Hugdahl 2011; Hugdahl and

Westerhausen 2016; Schremm et al. 2018). Several theories have been developed

to explain these asymmetries and concurrently account for the empirical findings.

One prominent theory holds that the left hemisphere is specialised for processing

temporal aspects and the right hemisphere is specialised for processing spectral

aspects of sound (Zatorre and Belin 2001). In this study metabolic activity in

the brain (measured with positron emission tomography) was compared when

stimuli that differed in either spectral or temporal content were presented. The
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responses showed that activation to rapid temporal changes was weighted towards

the left hemisphere while activation to spectral changes was weighted towards the

right hemisphere. This theory was later extended to explain music processing as

primarily governed by the right hemisphere (Zatorre et al. 2002).

Alternatively, the Asymmetric Sampling in Time (AST) hypothesis proposes

that structural asymmetry of auditory cortical regions is due to functional special-

isms. It proposes that auditory cortex in each hemisphere preferentially processes

aspects of a speech signal based on sampling windows of different lengths. As

the brain has limited computational power, it must sample the continuous ana-

logue sound signals received by the ear as part of the encoding process. The AST

hypothesis accounts for the asymmetry by proposing that the right hemisphere

samples and integrates information over 200–250 ms time windows, corresponding

to ∼4 Hz and the left hemisphere samples and integrates information on much

shorter timescales, ∼25 ms, corresponding to ∼40 Hz. Figure 1.13 shows how

sampling windows at these lengths roughly correspond to a speech signal (Poep-

pel 2003) This is a simplistic representation, however, as there is evidence for

more optimised sampling where the timing of these sampling windows is adjus-

ted based on acoustic properties of the signal (Doelling et al. 2014). The AST

hypothesis was informed by observed oscillatory patterns in the theta (4–8 Hz)

and low gamma (∼40 Hz) ranges during speech perception and there is mounting

evidence for the role of this activity (Poeppel 2003; Giraud et al. 2007; Peelle

and Davis 2012; Giraud and Poeppel 2012; Obleser et al. 2012; Luo and Poep-

pel 2012). This temporal sampling account may reflect a more general principle

underlying speech processing as suboptimal temporal sampling is thought to un-

derpin language deficits in some disorders, such as dyslexia (Goswami and Leong

2013; Cutini et al. 2016) and autism spectrum disorder (O’Connor 2012). It is

widely accepted that speech is processed asymmetrically and that extraction and

tracking of the speech amplitude envelope is a key component of this mechanism

(Kubanek et al. 2013; Ghitza et al. 2013).

Despite the allure of these left-right dichotomies, it is likely that these ac-
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Figure 1.13: Upper: representative sampling windows of 25 ms (40 Hz). Lower:

representative sampling windows of 250 ms (4 Hz). The speech sample is the

same as in Figure 1.1.

counts are too reductionist; reflecting the general trend in neuroscientific theory

(Krakauer et al. 2017). Though their parsimony is compelling, it has been ar-

gued that they may not fully account for known properties of the speech signal

(McGettigan and Scott 2012). An alternative account suggests that, on closer

inspection, there may be a specialism of the right hemisphere for sounds that

are longer or change more slowly but there may be no temporal specialism of

the left hemisphere (Scott and McGettigan 2013). Further, there is contrasting

evidence for speech segmentation using ∼40 Hz sampling windows, as shown by

time-reversion studies and the presence of phonetic components longer than the

proposed window (Saberi and Perrott 1999; Ueda et al. 2017; McGettigan and

Scott 2012).

To summarise, there is substantial evidence for hemispheric asymmetries of
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the auditory cortical regions. These asymmetries are both structural and func-

tional, and interhemispheric connectivity may be a crucial underlying component.

Multiple accounts have been proposed to explain these asymmetries but there is

no current consensus on the exact role they play in speech processing.

1.10 Thesis Aims and Plan

Behavioural and neuroimaging research has revealed much about how AM and

speech are processed by the auditory system, however, there are still unanswered

questions. Advances in understanding are often made through the use of novel

experimental techniques. There is a paucity of research combining non-invasive

neuroimaging and neurostimulation methods to investigate these questions. Spe-

cifically, understanding AM processing is a promising, novel application for fMRI-

guided TMS. Currently, it is not known if it possible to modulate human AM

processing ability using fMRI-guided TMS. Further, a wide range of TMS proto-

cols has been developed and widely different responses have been elicited. This

proliferation of pulse protocols has resulted in TMS becoming a very versatile

tool, but much further research is required to fully understand the effects of each

protocol and the extent to which they transfer across sensory modalities. It is

not currently known how effective different TMS protocols are at modulating

AM processing. Finally, fMRI-guided TMS has the potential to inform us about

speech processing more broadly. Some contrasting perspectives on the functional

asymmetry of speech processing in the brain have been presented. The combina-

tion of fMRI and TMS allows precise targeting of neural disruption, which can be

systematically applied to each cortical hemisphere in order to investigate these

proposed asymmetries. However, the effectiveness of fMRI-guided TMS for this

higher order task has also not previously been explored.

This investigation was designed to address a set of overarching research ques-

tions.

� Firstly, is fMRI-guided TMS an effective method for modulating AM pro-
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cessing?

� Secondly, does the effectiveness of TMS for modulating AM processing differ

based on the TMS protocol used?

� Finally, is fMRI-guided TMS an effective method for further understanding

the functional asymmetry of speech processing?

Three combined psychophysical, neuroimaging and neurostimulation exper-

iments were designed and conducted to address these research questions. This

introduction is followed by a methods chapter which briefly introduces the diverse

range of experimental methods. This takes the form of a general introduction to

the methods and then addresses specific challenges that auditory neuroimaging

and neurostimulation research presents. The core of the thesis is three exper-

imental chapters in the form of research articles. Each experimental chapter

thoroughly describes a novel empirical study conducted to address aspects un-

derlying these research questions. The first experimental chapter (Chapter 3)

describes a study that combined a behavioural measure of AM detection with

fMRI-guided online TMS. The second experimental chapter (Chapter 4) describes

a study that combined a behavioural measure of AM detection with fMRI-guided

TMS applied while the underlying state of the cortex was manipulated using

behavioural selective adaptation to AM noise. The third experimental chapter

(Chapter 5) describes a study that combined a behavioural measure of AM depth

discrimination with an fMRI-guided offline TMS protocol; continuous theta-burst

stimulation. The experimental chapters are followed by a general discussion of

the core findings, how these relate to previous research, and how they can be used

to inform future investigations.
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Chapter 2

Methods

This chapter provides a brief outline of the three primary experimental meth-

ods used in this thesis. The three methods; psychophysics, functional magnetic

resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have

all been previously applied to investigate auditory processes, however this often

raises methodological challenges. Methodological developments have ameliorated

the effects of these challenges, however, there are still some limitations on the

investigation of auditory function. Fully understanding the strengths and limit-

ations of each method allows researchers to apply them in complementary ways

and gain truly unique insights into how the brain processes sound and speech.

More detailed technical information regarding the techniques as applied in this

thesis are provided in the relevant experimental chapters.

2.1 Psychophysics

Psychophysical techniques measure the relationship between the level of a stim-

ulus feature and perceptual experience of the stimulus. They are behavioural

techniques that are commonly used to make inferences about the internal pro-

cesses underlying perception. It is possible to separate and assess the contribution

of different processes by systematically modifying stimuli in a single dimension

and measuring the effect on perception. In its simplest experimental form, par-
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ticipants are told to respond when they detect a stimulus (e.g. hear a tone) and

the researcher systematically adjusts the intensity to find the point where the

participant can just detect it. Although more complex automated procedures are

now common, this general technique has remained remarkably constant since it

was established in the 19th century (Read 2015). This simple, powerful technique

has made substantial contributions to our understanding of sensory perception

and the neural circuits underpinning behaviour and continues to do so.

Parsimonious models of the data-generating process underlying the relation-

ship between stimulus intensity and perception have been developed. A mono-

tonic, non-linear relationship is often used to model many sensory processes and

this can be represented by the psychometric function (Wichmann and Hill 2001).

The psychometric function describes the probability of a correct response as a

function of stimulus intensity and can be used to estimate summary statistics

such as the threshold or slope. Equation 2.1 describes the basic form of the

2-parameter psychometric function.

Pa(x) = Ψα(a),β(a)(x) (2.1)

Ψ describes the kernel type of the function. The exact form of the psychomet-

ric function can be altered by changing this parameter and Gaussian or Weibull

cumulative distribution functions are often used (Wichmann and Hill 2001; May

and Solomon 2013). Psychometric functions with these kernels have a sigmoid

shape with a constant slope about the point of subjective equality (PSE: 50%

threshold for 2-alternative forced choice tasks). This sigmoidal relationship is

similar across many sensory modalities, suggesting a general principle under-

lying sensory representation. α and β are free parameters that represent the

threshold and slope values when a Gaussian kernel is used. The threshold is the

response probability that corresponds to a given stimulus value. For example,
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the 50% threshold is the value of x that corresponds to the PSE (for a 2-AFC

task), however, any threshold value can be estimated. Estimating thresholds is

useful in behavioural studies where you expect an experimental manipulation to

affect detection of a stimulus. The threshold can be determined and then the

task can be performed at threshold; a deviation from performance at the chosen

threshold percentage can indicate an experimental effect. Alternatively, psycho-

physical data can be collected and a threshold estimated, then an experimental

manipulation can occur, followed by another psychophysical task and threshold

estimate. This method requires a direct comparison of estimated thresholds to

determine the presence of an experimental effect. The slope parameter determines

the steepness of the linear part of the psychometric function and represents the

change in y units for each change in x. More advanced models can also account

for the guess rate and lapse rate, represented by γ and λ parameters respectively.

γ describes the likelihood of a correct response if no stimulus is presented; this

baseline chance level varies based on the choice of psychophysical task and can

be calculated as the reciprocal of the number of alternatives; i.e. 1/n for an

n-AFC task. λ describes the expected proportion of trials where the participant

has an attentional lapse and makes a guess response (Wichmann and Hill 2001;

Prins 2012). These two parameters constrain the psychometric function in the x

direction so that the lower asymptote is equal to γ and the upper asymptote is

equal to 1 − λ. Equation 2.2 describes the 4-parameter psychometric function.

Ψ(x;α, β, γ, λ) = γ + (1 − γ − λ)F (x;α, β) (2.2)

An example of a 3-parameter psychometric function with a γ parameter of

0.5 and cumulative Gaussian kernel can be seen in Figure 2.1.

Although psychometric functions are commonly estimated using a paramet-

ric model and (constrained) maximum likelihood, alternative approaches include
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Figure 2.1: An example 3-parameter psychometric function (green line) for a

2AFC AM detection task. The size of the blue points indicate the number of

trials at that modulation depth. Estimated thresholds are given for 60%, 70%

and 90% thresholds. The red dashed line indicates 70% accuracy.

Bayesian optimisation (Schütt et al. 2016; Watson 2017) and model-free variants

(Zchaluk and Foster 2009). An example of a Bayesian psychometric function and

posterior distributions for three parameters, estimated with Hamiltonian Monte

Carlo sampling can be seen in Figure 2.2.

2.1.1 Auditory Psychophysics

There is a long history of applying psychophysical techniques in the auditory

domain. The most common auditory psychophysical procedure is the pure tone

audiogram, which is routinely used to assess audiometric hearing thresholds in

clinical practice (and in the experiments performed as part of this thesis). This

procedure measures the smallest intensity required for a listener to hear a sinus-
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Figure 2.2: (A) Bayesian psychometric function. (B) Posterior distributions for

three parameters representing α, β and λ.

oidal pure tone by decreasing the intensity until the tone is no longer perceived.

The point at which the tone is just audible is considered the threshold of hearing

for that frequency. This procedure can then be repeated at many audio frequen-

cies to map the response for the full frequency range of the auditory system. An

example of a pure tone audiogram can be seen in Figure 2.3. In the case of the

pure tone audiogram, the parameter of interest is sound level (as a function of

tone frequency), however this general procedure can be modified and applied to

investigate many aspects of auditory processing.

For example, by altering the AM depth of controlled noise stimuli and meas-
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Figure 2.3: An example pure tone audiogram. The blue points are measured

from the left ear and the red points are measured from the right ear. The thin

black line indicates normal hearing thresholds and the thick black line indicates

the cutoff for minor hearing loss.

uring how detection changes, it is possible to probe the sensitivity of the auditory

system to this specific aspect. This is how the temporal modulation transfer func-

tions (TMTFs) described in the introduction chapter were measured. To recap,

the TMTF is a measure of the relationship between AM rate and AM detection

threshold (Rodenburg 1977; Viemeister 1979). In these studies, 2-AFC behavi-

oural tasks and an adaptive staircase tracking procedure were used to identify the

70.7% detection threshold for AM at rates from 2 – 4000 Hz. This task contained

two periods of 500ms broadband noise, one of which was amplitude modulated.

The participant had to identify which period was modulated and the depth of

modulation was varied from trial to trial based on an adaptive (1-up, 2-down)

rule (Levitt 1971). This simple adaptive procedure results in the task becoming

more difficult (AM depth decreases), when participants respond correctly on two

consecutive trials and the task becoming easier (AM depth increases) when par-

ticipants respond incorrectly on a single trial. The specific sequence of step sizes
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was chosen to hone in on the 70.7% threshold value. AM depth discrimination

tasks such as those conducted by Wakefield and Viemeister (1990), have a similar

structure. In these 2AFC tasks, both intervals have been amplitude modulated,

however one period has a greater modulation depth. A central period was added

that was always unmodulated to provide a reference for the listener. The parti-

cipant had to identify which interval contained amplitude modulation at a greater

depth. Figures showing examples of AM detection and AM depth discrimination

TMTFs can be found in the previous chapter.

2.2 Non-invasive Neuroimaging & Neurostimu-

lation

Non-invasive neuroimaging and neurostimulation methods are invaluable tools for

investigating how brain structures and networks are linked to behaviour. These

overarching terms describe a number of relatively recently developed methods

that are remarkably distinct in the variety of biological signals they measure (or

initiate through stimulation) and how these signals are acquired. This leads to

techniques with varying properties, such as temporal and spatial resolution, that

can often be combined in complementary ways. Although many of these tech-

niques have desirable properties for investigating the AM processing of sounds,

this section is focussed on the methods used in this thesis.

2.2.1 Functional Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is commonly used to produce high resolution

visualisations of the brain. These structural images are used in clinical contexts,

for example, to assess the presence of lesions or in an experimental context to

investigate how the brain is structured. This method exploits the phenomenon

of magnetic resonance combined with targeted radio frequency (RF) energy to

non-invasively acquire images with high spatial resolution without the use of ion-
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ising radiation (Plewes and Kucharczyk 2012). When protons (hydrogen atoms

in water or fat within the brain) are exposed to a strong magnetic field (B0),

their spins align with it; there is however, a slight mismatch between the num-

ber of protons aligned in phase and anti-phase (spin, in this context, refers to

the physical property analogous to spinning on an axis). This results in a small

net alignment with B0 and this mismatch is proportional to the field strength of

B0 (leading to higher signal to noise ratios in the resulting images). Magnetic

gradients are applied to modify B0 strength across the two planes orthogonal to

B0, which alters the resonance frequencies of protons based on their location by

the gyromagnetic ratio. By applying RF energy at specific resonance frequencies,

it is possible to ‘tip’ the axis of selected slices of protons away from B0. When

RF energy transmission ceases, these protons then ‘relax’ back into alignment

with B0 and the energy that this process releases is measured. It is possible to

acquire images with different contrasts by exploiting the different timing prop-

erties of protons in different molecules, for example longitudinal relaxation time

(T1-weighted) or transverse relaxation time (T2-weighted).

This is the basis of how structural MR images are acquired, however, mag-

netic resonance is a versatile phenomenon that can also be exploited to investigate

the functional relevance of different brain regions and networks. This functional

magnetic resonance imaging (fMRI) allows researchers to measure which brain

regions or networks are active during specific behaviours. Blood-oxygenation

level-dependent (BOLD) fMRI exploits the different magnetic properties of oxy-

genated and deoxygenated blood to detect and localise changes in blood flow to

brain regions (Kwong et al. 1992; Logothetis et al. 2001). When a brain region is

active, the local neurons require more oxygen and a surge in blood flow to that

area is experienced. By measuring and contrasting the BOLD signal in brain

regions or networks during behaviour, researchers can infer what brain regions

or systems are active during specific behaviours. This response is an indirect

measure of neuronal activity (Logothetis et al. 2001). This haemodynamic re-

sponse can be sampled using fMRI and the data analysed to locate the voxels of
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origin. Through a combination of structural and functional imaging, researchers

are able to localise and investigate auditory functions in novel ways. Despite the

unique insights that MRI can provide, investigating auditory function with MRI

presents with a set of methodological challenges (Peelle 2014). Most importantly,

the scanner environment is very loud (∼127 dB SPL, for a typical sequence). This

scanner noise can mask auditory stimuli and lead to significantly lower measures

of activation (Elliott et al. 1999). It can also affect non-auditory processes and

the psychological effects can confound measures of brain activity (Andoh et al.

2017). This problem led to the development of sparse imaging sequences that

aim to minimise the impact of the scanner noise on data quality (Hall et al.

1999; Müller et al. 2003; Zaehle et al. 2004; Talavage and Hall 2012). One such

sequence, interleaved silent steady-state (ISSS), exploits the sluggishness of the

haemodynamic response so that the auditory stimuli can be presented during

a ‘silent’ period followed by a regular acquisition period when the response is

sampled (Schwarzbauer et al. 2006). A graphical representation of an ISSS se-

quence can be seen in Figure 2.4. ISSS imaging significantly alleviates the noise

masking problem and allows auditory experiments to be conducted with minimal

adverse effects on data quality. Another problem that auditory researchers face is

the large amount of anatomical variability in auditory areas between participants

and hemispheres (Abdul-Kareem and Sluming 2008). Due to this variability, re-

gions of interest (ROI) defined on a standard brain map are rarely adequate for

comparative analyses across participants and auditory researchers must typically

define each ROI on a per-participant basis.

2.2.2 Transcranial Magnetic Stimulation (TMS)

TMS is a non-invasive neurostimulation technique used to systematically modu-

late ongoing neural activity. A time-varying magnetic field is induced through a

coil placed on the scalp and re-induces electrical current in the underlying neural

tissue (Barker et al. 1985). A simulation of the induced current from a TMS pulse

can be seen in Figure 2.5. It was initially applied in human motor physiology to
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Figure 2.4: A representation of the ISSS sequence. Time is represented from

left to right. Each box represents a volume and the blue envelope represents

the auditory stimulus. In this example, three ‘silent’ non-acquisition volumes

are followed by four acquisition volumes. The red dashed line represents the

haemodynamic response.

probe cortico-spinal pathway functioning but has since been successfully applied

in many psychological contexts (Klomjai et al. 2015). Causal inferences about the

relationship between brain regions and behaviour can be made as neural activity

is being directly manipulated. In its simplest form, single pulses of TMS can be

delivered in order to temporarily disrupt cortical processing. This online protocol

has been conceptualised as creating ‘virtual lesions’, akin to natural lesions found

in neurological disorders such as stroke. However, the safe and temporary nature

of these ‘virtual lesions’ allow investigations of brain function in neurotypical in-

dividuals. With this protocol, TMS is applied to areas of the cortex ostensibly

involved in a behavioural task and performance is measured and compared to

a baseline score. The cortical region is assumed to be critical for the task if

performance is modulated by TMS (Pascual-Leone et al. 2000). Experimental

manipulations such as altering the timepoint of stimulation allows researchers to

probe the functional role of cortical regions in novel ways.

In addition to single pulse protocols, more complex TMS protocols have been

developed and TMS has been shown to be a versatile technique. For example, a
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subthreshold conditioning pulse has been shown to affect the motor response to a

suprathreshold pulse when the interstimulus interval is short (1 – 6 ms) (Kujirai

et al. 1993). This short interval intracortical inhibition is just one of the many

paired-pulse protocols developed to investigate human neurophysiology. In other

studies, a train of multiple TMS pulses have been applied and the direction

of effects have been shown to differ based on the specific frequency of pulse

delivery (Klomjai et al. 2015). Low frequency (<1 Hz) stimulation typically

shows inhibitory effects whereas high frequency stimulation (>5 Hz) typically

shows excitatory effects. The effects of these repetitive TMS (rTMS) protocols

can often outlast the period of stimulation, a property desirable for their use in

clinical investigations. A commonly used complex rTMS protocols is continuous

theta-burst stimulation (Huang et al. 2005). This protocol involves delivering

bursts of 3 pulses at 50 Hz rate, each separated by continuously in a 20 or 40

second train (producing a total of 300 or 600 pulses). The efficiency of this

protocol makes it preferable to some other rTMS protocols using lower frequencies

of stimulation. A graphical representation of cTBS can be seen in Figure 2.6. This

protocol is designed to imitate the effects of long-term depression at the neural

level and has shown decreased M1 excitability after-effects lasting up to one hour

post-TMS (Huang et al. 2005).

TMS can be applied to investigate auditory processes, however there are some

unique methodological challenges. A loud click is emitted during TMS pulse de-

livery and this auditory artefact can lead to masking of auditory stimuli. As a

consequence of this, offline rTMS protocols are particularly well-suited for invest-

igating auditory processing. rTMS can be delivered and then auditory tasks can

be completed in the subsequent (silent) aftereffect period. Thus, offline protocols

like cTBS allow TMS effects to be measured when there is no concurrent artefact

and auditory stimuli can be presented without interference.

Combining non-invasive neuroimaging and neurostimulation techniques is a

useful way of gaining novel insights into many aspects of brain function. It is

possible to apply the techniques in complementary ways by utilising the strengths
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Figure 2.5: A visualisation of simulated current flow induced from a TMS pulse

to the superior temporal gyrus using a 70mm figure of 8 coil.

Figure 2.6: A schematic representation of the continuous theta-burst stimulation

protocol. Each vertical line represents a single TMS pulse.
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of each technique. This multimodal approach can improve existing methods or

provide novel evidence about brain function from multiple sources. A common

way of using MRI data to improve TMS praxis is through the use of MRI or

fMRI neuronavigation (Sack et al. 2008). Neuronavigation utilises the high spatial

resolution of MRI to improve the accuracy of TMS delivery. Structural MRI data

can be used to ensure accurate targeting of cortical regions with TMS. This can

be acquired for each study participant to minimise targeting variability due to

anatomical differences and the exact location and trajectory of each pulse can

be recorded to increase methodological rigour. Functional MRI data can also be

incorporated to enable the accurate targeting of novel TMS sites. fMRI data

acquired while an individual is performing the task of interest can be used to find

peak locations of activation for that specific task. These locations can then be

used as targets in a TMS study investigating this behaviour. Though technically

challenging, it is also possible to apply TMS and MRI concurrently and these

investigations provide the opportunity for unique insights into the haemodynamic

effects of TMS during and directly following stimulation (Bestmann et al. 2005;

Ruff et al. 2006, 2009).

To summarise, it is possible to investigate auditory processing using multiple

behavioural, neuroimaging and stimulation methods. Auditory research poses

some unique methodological challenges, primarily because many neuroimaging

and stimulation methods are relatively loud. Methodological developments have

allowed researchers to overcome the limitations of standard neuroimaging and

stimulation techniques and apply these powerful methods to investigate auditory

processes in novel ways. Many of these developments are relatively novel and

there is still much scope for unique insights about the auditory system from their

application.
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Chapter 3

fMRI-guided Online Transcranial

Magnetic Stimulation can

Disrupt Detection of Low

Frequency Amplitude

Modulation

3.1 Abstract

Speech perception is a complex process and concurrent processing at multiple

temporal scales is a key component. Amplitude modulations (AM) of the speech

envelope are crucial for intelligibility but how they are processed is not fully

understood. There is growing evidence for the functional role of hemispheric

asymmetries of auditory cortical regions. To explain these functional asymmet-

ries, auditory cortical areas in left and right hemispheres have been proposed to

use temporal sampling windows of different lengths. Online transcranial magnetic

stimulation (TMS) may be an effective and novel tool for investigating this. An

at-threshold AM detection task with a broadband noise carrier was used to meas-

ure the influence of TMS and interleaved silent steady state functional magnetic
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resonance imaging was used to target the TMS. AM detection was measured for

rates of 4 and 40 Hz with TMS to the left hemisphere, right hemisphere or a

sham control. It was found that online TMS can be an effective tool for mod-

ulating sensitivity to AM. The detection of slow (4 Hz) amplitude modulations

was impaired by TMS to auditory cortex in the right hemisphere only. This

study provides causal support for the role of right posterior superior temporal

gyrus/planum temporale in processing slow amplitude modulations. Interpret-

ation of the 40 Hz results is more complex due to psychophysical thresholding

concerns. These results are discussed and recommendations are made for future

investigations.

3.2 Introduction

Amplitude modulations (AM) are an integral part of most natural sounds (Joris et

al. 2004). The ability to detect amplitude modulation is vital for human speech

communication as these fluctuations often provide linguistic information. The

slowest amplitude modulations of speech, ranging from about 2 – 50 Hz, are cat-

egorised as the speech envelope (Rosen 1992) and low frequency (<16 Hz) AMs

are particularly crucial for speech intelligibility (Drullman et al. 1994a,b; Green-

berg 2004). Further, speech that has been severely degraded in the frequency

domain can be understood with high accuracy provided that envelope informa-

tion within a number of frequency bands is adequately preserved (Shannon et al.

1995). The human auditory system is also particularly sensitive to AM in this

range; with peak sensitivity at ∼4 Hz, further suggesting behavioural significance

(Viemeister 1979; Rees et al. 1986; Kohlrausch et al. 2000). The sensitivity of

the auditory system to temporal modulations has been characterised as low-pass

in shape, with sensitivity decreasing as rate increases above ∼4 Hz (Viemeister

1979). However, a reexamination of the literature has suggested that it may in

fact be band-pass in shape, with a pass band of ∼2 – 5 Hz (Edwards and Chang

2013).
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The full mechanism by which the central auditory system extracts amplitude

modulation from an auditory signal is currently unknown. A key step in under-

standing this mechanism is elucidating the brain regions involved. Neuroimaging

methods such as functional magnetic resonance imaging (fMRI) have proved par-

ticularly useful for this task (e.g Giraud et al. 2000). fMRI studies have shown

that activation to AM is found throughout the auditory pathway, from the in-

ferior colliculus, through the MGB of the thalamus, up to the cortex, however

the response type qualitatively changes (Harms and Melcher 2002). Ascending

stages of the auditory pathway show preferential responses to lower rates of AM

and the shape of the response changes from phasic to sustained as the AM rate

decreases (Harms et al. 2005). This account is supported by both invasive and

non-invasive electrophysiological evidence (Nourski 2017; Teng et al. 2017). Such

a graded response profile is consistent with a mechanism where the incoming sig-

nal is filtered and amplitude information is extracted by specialised brain areas

at progressively lower rates, such as a cascading bank of modulation filters (Dau

et al. 1997a; Giraud et al. 2000; Jepsen et al. 2008). It is commonly accepted

that AM is extracted by a bank of filters, however it is not clear where this may

be instantiated in the auditory system, although neurophysiological evidence has

suggested it may be at the cortical stage (Xiang et al. 2013).

Whilst neuroimaging methods have allowed researchers to gain a better un-

derstanding of the brain regions involved in processing amplitude modulation

throughout the auditory system, in order to go beyond correlational neuroima-

ging evidence and make causal links between brain and behaviour, methods that

directly modulate neural systems are required. Transcranial magnetic stimula-

tion (TMS) is a non-invasive brain stimulation technique that uses a time-varying

magnetic field to induce an electrical current in targeted cortical tissue (Barker

et al. 1985). This suprathreshold current discharges affected neurons and tem-

porarily interferes with ongoing cortical activity (Klomjai et al. 2015). When

combined with behavioural cognitive tasks, TMS can be a useful, reversible and

safe method to probe the function of specifically targeted brain regions or net-
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works (Hartwigsen 2015).

It has long been known that left and right auditory areas are structurally

asymmetrical (Geschwind and Levitsky 1968). Abdul-Kareem and Sluming (2008)

reviewed the evidence for structural variation of Heschl’s gyrus (HG) and its in-

cluded primary auditory cortex (PAC), and found large variability between in-

dividuals and hemispheres. Most studies reported evidence for a leftward bias

for increased HG volume, surface area and length and this hemispheric struc-

tural asymmetry was further linked to increased language learning abilities. This

leftward structural asymmetry is also found in the planum temporale (PT), a

secondary auditory area known to be involved in AM processing at low rates

(Giraud et al. 2000; Hutsler 2003). The structural connectivity of auditory areas

has also been shown to be asymmetrical (Mǐsić et al. 2018). The right hemi-

sphere has been shown to be more widely connected to multiple brain regions,

despite the average path length being the same in the left and right hemispheres.

The primary driver of this measured connectivity asymmetry is the abundance

of interhemispheric connections from the right auditory areas.

Evidence for functional asymmetries has been reported from studies using

neuroimaging and neurostimulation methods (Morillon et al. 2010; Bueti et al.

2008) but the precise nature of these asymmetries and their functional relevance

to speech processing remains controversial. One of the most prominent hypo-

theses arising from these studies is that left hemisphere areas are specialised for

processing temporal structure whilst right hemisphere areas are more sensitive to

spectral cues (Zatorre and Belin 2001; Zatorre et al. 2002). A separate account,

the Asymmetric Sampling in Time hypothesis (Poeppel 2003), proposes that left

hemisphere auditory areas integrate over shorter temporal windows (∼25 ms)

whereas right hemisphere auditory areas integrate over longer temporal windows

(∼250 ms). The length of these integration windows align with the syllabic (∼4

Hz) and phonemic (∼40 Hz) rates of speech and closely correspond to key oscillat-

ory frequency bands (theta and low gamma, respectively), suggesting functional

importance. Boemio et al. (2005) provided support for this account when they
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reported fMRI responses to auditory stimuli that were parametrically varied in

temporal content and found evidence for two distinct timescales of processing.

These two models are not mutually exclusive and some aspects are interrelated,

for example, a longer integration window (or lower sampling rate) would en-

able right hemisphere auditory areas to process spectral information in speech

that usually occurs over a longer timescale (e.g. prosodic cues). In contrast, a

higher sampling rate would allow better sensitivity to temporal information in

the left hemisphere. There is mounting neurophysiological evidence for an over-

arching system specialised for processing speech at multiple timescales, (Giraud

and Poeppel 2012; Poeppel 2014; Ding et al. 2016) likely involving distinct fre-

quencies of oscillatory activity in the theta and low-gamma ranges (Ghitza 2011;

Gross et al. 2013), with tracking of the acoustic speech envelope (Kubanek et al.

2013) and oscillatory phase resetting driven by sharp transients likely playing a

role in synchronisation (Doelling et al. 2014).

The existence of asymmetric temporal sampling remains contentious and there

is no current consensus about why these hemispheric asymmetries exist. While

the asymmetric models of auditory processing may provide a useful framework

and can account for some aspects of auditory processing, these simplified dicho-

tomies have been criticised, primarily for mischaracterising the true nature of the

speech signal (McGettigan and Scott 2012). Indeed, the appealing simplicity of

these domain general models may have led to a true asymmetry being overlooked

with right hemisphere auditory areas consistently showing a preference for slowly

changing or longer sounds and the left hemisphere homologue not consistently

showing specialisms for rapid temporal content (Scott and McGettigan 2013).

Testing these asymmetric models using novel tools is one way to gain a more

detailed understanding of how the auditory system processes amplitude modula-

tion. Combining online TMS with AM detection is a promising approach as TMS

has been shown to be effective at modulating many auditory and language-related

abilities (Hartwigsen 2015), including similar low-level aspects such as duration

discrimination (Bueti et al. 2008). Further, the areas involved in processing AM
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can be reliably located using fMRI and these can be used as TMS targets to

ensure an area responsible for AM processing is targeted in each participant.

The current study used online double-pulse TMS to further investigate how

AM is detected by the human auditory system. Behavioural AM detection tasks

were first completed to identify the detection threshold for each participant. Cor-

tical areas that are involved in processing AM were then located using a sparse

fMRI paradigm. TMS was delivered to these left or right auditory cortex targets

while participants performed an AM detection task at a modulation rate of 4

or 40 Hz. This online ‘virtual lesion’ TMS approach is a common and reliable

technique which allows researchers to temporarily simulate naturally occurring

lesions (such as those found in stroke) in neurotypical participants. AM rates

of 4 and 40 Hz were chosen to align with the syllabic and phonemic rates of

speech, while a broadband noise carrier was used in order to remove higher order

aspects of speech, such as semantic content, while retaining a similar frequency

bandwidth.

This study was designed to answer two specific research questions:

� i) Can low-level auditory processing (AM detection) ability be affected by

online TMS to left and/or right auditory cortex?

� ii) If so, do these effects differ between the left and right auditory areas as

implied by lateralised accounts of auditory processing.

Two pre-registered hypotheses were formulated to address these research ques-

tions (Partridge 2017):

� i) It was predicted that AM detection performance would differ between

conditions where participants received real TMS and sham TMS.

� ii) It was predicted that these effects would show an interaction with the

hemisphere of stimulation such that left hemisphere stimulation will have a

greater effect on 40 Hz AM performance and right hemisphere stimulation

will have a greater effect on 4Hz AM performance.
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3.3 Materials and Methods

3.3.1 Subjects

Ten subjects (7 male; mean age = 21.1 years, SD = 3.76) participated in the

experiment. Subjects responded to an advert and were paid or reimbursed in

course credit for participation except for one participant who was a member

of the research team. All subjects were TMS and MRI eligible, right-handed,

native English speaking and had self-reported normal hearing. The project was

approved by the Research Governance Committee, York Neuroimaging Centre,

University of York and conformed to the guidelines of the Declaration of Helsinki.

All participants gave written informed consent. One participant withdrew from

the experiment, leaving a total of 9 participants.

3.3.2 Experimental Design

Audiogram

Subjects underwent an air conductance pure tone audiogram to determine that

hearing thresholds were above eligibility requirements. Audiograms were con-

ducted using an Interacoustics AD226 audiometer (Interacoustics, Middelfart,

Denmark) and Telephonics TDH-39P earphones (Telephonics, NY, USA). Sub-

jects were excluded from further testing if they did not meet the threshold criteria

of ≤20 dB HL at octave frequencies from 250 – 8000 Hz in both ears.

Psychophysical Testing

A double-walled, sound-attenuated booth was used for psychophysical testing.

Auditory stimuli were presented diotically via magnetically shielded Etymotic

ER-2 headphones (Etymotic Research Inc., IL, USA). A modified version of the

two-alternative forced choice (2AFC) task used by Viemeister (1979) was used

to determine psychophysical thresholds for AM detection. Each stimulus con-

sisted of five continuous 500 ms periods of broadband noise (low-pass filtered
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at 8 kHz). In each trial, either the second or fourth period was chosen at ran-

dom to be sinusoidally amplitude modulated. The first, third (centre), and fifth

500ms period were always unmodulated. This stimulus forms one continuous

2.5 s percept. LEDs were used to indicate the two test intervals and feedback

was given after each trial. Participants indicated which interval (either interval

two or four) contained modulation by means of a key press. Participants were

tested separately at AM rates of 4 and 40 Hz with 20 practice trials delivered at

each rate before testing began. The starting phase of the modulation was chosen

randomly from a uniform distribution ranging from 0 to 2 π and the standard

and comparison interval power were normalised to match the RMS of the centre

period. The AM depth of the modulated interval was systematically modified

between trials using an adaptive staircase procedure (Levitt 1971). Two inter-

leaved staircases were used (1-up, 2-down; 1-up, 3-down). Before each trial, a

random choice was made between the remaining staircases and this continued

until each staircase had reached 14 reversals. A step size in modulation depth

of 1 dB was used for the first 4 reversals of each staircase, which decreased to

0.5 dB for the next 4 reversals and to 0.25 dB for the final 6 reversals. Parti-

cipants completed three runs (six staircases in total) at each modulation rate.

For 4 and 40 Hz separately, an estimate of the 70% threshold from each run

was calculated from the respective psychometric function on a per-subject basis.

The largest of the three modulation depth thresholds was discarded and the

mean of the other two was used as the threshold depth for that subject in the

TMS experiment. All stimuli were generated at a sample rate of 44.1 kHz using

Python and presented using PsychoPy (Peirce 2007) and the PyAudio module

( https://people.csail.mit.edu/hubert/pyaudio/) through an EMU 0204

24-bit DAC (Creative Technology Ltd, Singapore). Stimuli were presented at 70

dB SPL as calibrated using an artificial ear (Bruel & Kjaer, Naerum, Denmark;

4153) and a sound level meter (Bruel & Kjaer, Naerum, Denmark; 2260).
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fMRI Acquisition and Analysis

Subjects wore earplugs underneath the sound-attenuating headphones from the

fMRI-compatible auditory stimulus delivery system (MR Confon, MR Confon

GmBH). fMRI data were acquired using an ISSS fMRI sequence (Schwarzbauer

et al. 2006). The sound level of the scanner noise, not accounting for attenuation

provided by earplugs and ear defenders, was 81 dB SPL during the quiet period

and 98 dB SPL during the acquisition period. During the acquisition periods,

whole head fMRI data (GE-EPI, TR = 2 s, TE = minimum full, FA = 90°)

were collected using a GE Signa HDx 3T system (General Electric, WI, USA). A

128×128 pixel matrix with a field of view of 25.6 cm was used, giving an in-plane

resolution of 2 × 2 mm. 24 interleaved slices were collected with a slice thickness

of 2 mm. Slices were oriented parallel with the Sylvian fissure while ensuring

bilateral coverage of Heschl’s gyrus and planum temporale.

Stimulus conditions were silence, noise, 4 Hz AM noise, and 40 Hz AM noise.

All noise carriers were broadband (low-pass filtered at 8 kHz) and the AM stimuli

were fully modulated (m = 1). Stimuli were presented for 6 seconds followed

by an acquisition period of 8 seconds. Each stimulus was presented 6 times in

each fMRI run and three runs were performed for each subject, each run lasting

approximately 6 minutes.

Data were analysed using Feat 5.98, part of FSL-4.1 (Smith et al. 2004) along

with custom scripts which implemented filtering of the temporally non-contiguous

data. Full details of the analysis procedures can be found in Hymers et al. (2015),

with the exception that in this study, spatial smoothing was performed using a

kernel with a FWHM of 2 mm. Data from the multiple fMRI runs for each

subject were combined using a fixed-effects analysis. A contrast of 4Hz and

40Hz AM noise combined over unmodulated noise was performed. The results

were corrected for multiple comparisons using a cluster thresholding procedure

(Z >2.3, p = 0.05) (Worsley 2001). TMS targets were defined individually for

each subject using a superficial maxima voxel in a significant cluster on posterior

superior temporal gyrus (pSTG) / planum temporale (PT) for each hemisphere.
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Sagittal whole head structural T1-weighted data (3D FSPGR, TR = 7.8 ms,

TE = minimum full, FA = 20°, Matrix 256 × 256, FOV = 29.0 cm, 176 slices,

Slice thickness = 1 mm) were collected in the same scanning session as the fMRI

data for participants who did not already have an available structural MRI.

TMS

A 2x3 repeated measures design was used during the main TMS experiment. Ex-

perimental factors were AM rate (2 levels; 4 Hz, 40 Hz) and TMS (3 levels; sham,

left, right). The dependent variable was AM detection accuracy. All subjects

completed six TMS sessions in total; one for each permutation of AM rate and

TMS condition. The order of sessions was approximately counterbalanced across

subjects using a latin square design. TMS sessions were separated by at least

24 hours. A Brainsight frameless stereotaxic system (Rogue Research, Montreal,

Canada) with chin rest and forehead support was used to monitor coil place-

ment and ensure accurate TMS delivery. A Magstim Super Rapid2 stimulator

(Magstim, Whitland, UK) and three identical 80mm figure-of-eight TMS coils

(Magstim, Whitland, UK; 80mm diameter of each coil wing) were used for pulse

delivery. TMS coils were always oriented with the handle pointing horizontally

in an anterior direction, parallel with the midline. Stimulation consisted of a

double-pulse protocol with pulses separated by 50 ms. The first TMS pulse in

each pair was delivered 35ms post interval onset and the second pulse in the pair

was delivered at 85ms post stimulus onset. TMS pulse intensity was set to 70% of

the maximum stimulator output (maximum = 2.6 T). This intensity was chosen

as compromise between the increasing effectiveness of stimulation and decreasing

tolerability of TMS at higher intensities. Before the first experimental TMS ses-

sion, test pulses were delivered to ensure that subjects could tolerate this TMS

protocol. One TMS target in the left hemisphere and one in the right hemisphere

were obtained using the fMRI data as previously described. Sham TMS was per-

formed by placing the coil at the vertex and rotating by 90°to reduce any magnetic

stimulation to a negligible level but, crucially, retain peripheral factors such as
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the auditory artefact and pressure placed on the head due to the coil (Lisanby et

al. 2001). Audio was delivered during the experiment using the same Etymotic

ER-2 headphones and earpieces as were used during psychophysical testing.

Figure 3.1: An example trial from the main task run. During the main task runs,

the AM depth of the target interval remained constant (set per participant at

their 70% threshold value). The AM rate (4 or 40 Hz) and TMS target (left,

right or sham) did not differ within a session.

The design of the 2AFC task was identical to that used during baseline psy-

chophysical testing, apart from the AM depth of the target interval was fixed

(at 70% threshold), the TMS was delivered and participant feedback was re-

moved. This threshold percentage was chosen to allow increases and decreases

in AM detection ability to be measured. Two double-pulse TMS bursts were de-

livered within each trial. One double-pulse burst was always delivered at 35 ms

post-onset of the second noise period and another double-pulse burst was always

delivered 35 ms post-onset of the fourth noise period. Three blocks of 50 trials
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were performed, with short breaks between each block when the TMS coil was

replaced to prevent overheating. A total of 600 TMS pulses were delivered in

each session, at frequencies within the established safety guidelines (Rossi et al.

2009).

Statistical Analysis

A generalised linear mixed-effects model (GLMM) was fit to the AM detection

accuracy data. This technique accounts for interdependence of the data arising

from repeated measurements from the same participants; it also allows adjust-

ments for non-normal distributions (Baayen et al. 2008; Dixon 2008; Jaeger 2008).

A logit link function was used to account for the binomial distribution of the raw

data. The model included fixed effects of TMS condition and AM rate and a

TMS condition by AM rate interaction term. Participant was included as a ran-

dom effect. Random intercepts and slopes for TMS condition and AM rate were

estimated for each participant. The random effects structure was the maximal

justified by the design (Barr et al. 2013); the model with maximal random effect

structure was fit then systematically reduced until convergence. Treatment cod-

ing was used to measure the difference from the baseline condition of sham TMS

with 4Hz AM to the other conditions. Finally, parametric bootstrapping was con-

ducted on the model parameters to obtain 95% confidence intervals. This model

design was chosen as it is sufficient to test the experimental hypotheses without

including excess parameters that increase the risk of overfitting. All modelling

was conducted using the lme4 package (Bates et al. 2015) in R software (R Core

Team 2017). Parametric bootstrapping was conducted using the pbkrtest package

(Halekoh and Hojsgaard 2014).
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3.4 Results

3.4.1 Psychophysics

The modulation depth at which 70% accuracy was achieved was calculated in-

dividually for each participant, for each AM rate (4 and 40 Hz). The mean

threshold modulation depth across participants for the 4 Hz condition was -23.3

dB and for the 40 Hz condition was -21.5 dB. These values correspond to 0.069

m and 0.085 m respectively and are consistent with previously reported TMTFs

(Viemeister 1979). A paired t-test showed a statistically significant difference

between thresholds for 4 Hz and 40 Hz AM detection (t(8) = −4.17, p = 0.003).

This suggests that participants had consistently higher thresholds for detecting

40 Hz than for detecting 4 Hz and their threshold values.

Table 5.1 shows the 70% threshold values obtained from the behavioural runs

for the AM detection task at 4 and 40 Hz for each participant. These depth

values were used for each trial in the TMS sessions.

Participant 4 Hz threshold (dB) 40 Hz threshold (dB)

P1 -21.7 -20.7
P2 -24.5 -23.6
P3 -23.9 -21.9
P4 -22.4 -22.3
P5 -23.3 -20.5
P6 -26.0 -21.8
P7 -21.9 -20.4
P8 -21.9 -19.4
P9 -24.0 -23.4

Table 3.1: AM detection 70% threshold values in dB for each participant. These

values were used in the target interval in the TMS runs. dB values are computed

as 20 log(m).

3.4.2 fMRI derivation of TMS Targets

TMS targets in MNI-152 co-ordinate space for all participants can be found in

Table 3.2.
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Participant Left hemisphere target Right hemisphere target

1 -58, -14, 0 52, -20, 4
2 -60, -26, 10 52, -20, 4
3 -48, -26, 4 66, -14, 10
4 -56, -16, 4 56, -20, 6
5 -44, -32, 10 64, -26, 16
6 -58, -38, 10 62, -14, 6
7 -66, -30, 10 64, -26, 14
8 -60, -16, 8 60, -32, 18
9 -64, -40, 14 62, -24, 12

Mean -57.1, -26.4, 7.8 59.8, -21.8, 10

Table 3.2: MNI-152 co-ordinates for TMS targets in left and right hemispheres

for all participants. The average co-ordinate across all participants is also given.

Figure 5.2 shows targets in both hemispheres for an example participant.

TMS target distance measurements were recorded for each TMS pulse. This

is a measure of the distance from the centre of the TMS coil to the fMRI-defined

target. One session lacked these measurements due to a technical issue. A linear

mixed effects model was fit to this data, with a fixed effect of TMS hemisphere

and a random effect of participant. Parametric bootstrapping was conducted on

the model parameters to obtain 95% confidence intervals. There was a negligible

mean difference in target distance of -0.228 mm, 95% CI [-6.99, 6.59] between

left and right hemisphere conditions. There was no overall correlation between

the AM detection accuracy scores and the target distance measurements (r =

-0.065, p = 0.949). This was calculated by correlating the average distance in

each session with the average accuracy in that session.

TMS positioning error measurements were also recorded for each TMS pulse.

This is a measure of the distance between the fMRI-defined target and the es-

timated pulse trajectory. One session lacked these measurements due to a tech-

nical issue. A linear mixed effects model was fit to this data, with a fixed effect

of TMS hemisphere and a random effect of participant. Parametric bootstrap-

ping was conducted on the model parameters to obtain 95% confidence intervals.

There was a negligible mean difference in positioning error of 0.019 mm, 95%
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Figure 3.2: fMRI TMS target localisation data from an example participant.

Overlay shows clusters of activation (Z >2.3; p <0.05) in bilateral pSTG/PT

in response to a combination of 4 and 40 Hz sinusoidally amplitude modulated

broadband noise conditions (combined) over unmodulated noise. TMS targets

are indicated by the crosshairs. Clusters are shown overlaid on MNI-152 data -

targets are back transformed into individual co-ordinates. Target locations for

this participant in MNI-152 space are: Left: −66,−30, 10 and Right: 64,−26, 14
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CI [-0.038, 0.078] between left hemisphere and right hemisphere conditions. The

overall mean error was 0.273 mm, 95% CI [0.202, 0.324].

3.4.3 TMS Behavioural Analysis

AM Rate (Hz) Sham TMS Left TMS Right TMS

4 69.0 65.8 63.6
40 55.1 54.4 55.3

Table 3.3: Mean AM detection accuracy for all conditions.

The mean AM detection accuracy for each condition can be found in Table

3.3. These results show that on average, accuracy in all 40 Hz conditions was

much lower than in 4 Hz conditions. The effects of extraneous factors related

to TMS delivery, such as the auditory artefact and behavioural arousal effects

were assessed using the sham TMS conditions. As these factors were present in

both real and sham TMS conditions, using sham TMS scores as baselines for

comparison incorporates this control. As AM depth in the main sessions was

calibrated to the 70% threshold AM depth value for each participant, it was

expected that the average accuracy in the sham condition would approximate

this. The mean accuracy of 69.0% in the 4 Hz AM detection task with sham

TMS suggests that the AM depth calibration performed well in this condition,

however the mean accuracy of 55.1% in the 40 Hz AM detection task with sham

TMS is near chance level (50% for a 2AFC task). This has a large impact on

the results for all 40 Hz conditions as there is little scope for TMS to decrease

accuracy due to a floor effect.

Accounting for sham performance for each participant, the main results can

be seen in Figure 5.4.

75



Figure 3.3: Differences in AM detection accuracy (percentage correct) between

the sham TMS condition and left or right TMS conditions for each AM rate;

calculated as the mean of within-subject differences for each participant. Error

bars show the 95% confidence interval.
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Main GLMM Analysis

Dependent variable:

Accuracy 95% CI

Baseline 0.834 0.525 1.137
Left Hemisphere TMS −0.157 −0.421 0.112
Right Hemisphere TMS −0.241 −0.510 0.026
AM Rate −0.627 −0.930 −0.321
Left Hemisphere TMS x AM Rate 0.128 −0.101 0.348
Right Hemisphere TMS x AM Rate 0.249 0.021 0.474

Table 3.4: Main GLMM analysis results. Accuracy parameters and 95% CIs are

in logit units. ‘Baseline’ represents the baseline condition of sham TMS with 4

Hz AM. All other coefficients represent the difference from this baseline.

Factors included in the final model were TMS condition (3 levels: sham, left

hemisphere and right hemisphere) and AM rate (2 levels: 4 Hz and 40 Hz). Model

fit values were as follows: AIC = 439.2, BIC = 471.0. The 4 Hz AM rate with

sham TMS condition was selected as the baseline condition so all coefficients

represent the change from this condition. The coefficient for the baseline con-

dition represents the overall mean intercept and the other coefficients represent

the (population-level) difference from this baseline for each condition. This type

of treatment contrast allows the sham control to be taken into account for every

comparison. The coefficients are presented in logits as this preserves the mag-

nitude (effect size) and direction of the effect. Further, this aids interpretation

of significance as confidence intervals are symmetrical about the point estimate.

Conventional measures of significance like p-values are not possible to calculate

with GLMMs as the required denominator degrees of freedom value is unknown

(which is required to calculate the F-statistic). However, parametric bootstrap-

ping can be used to calculate confidence intervals which can indicate approximate

significance. 95% confidence intervals have been calculated here, so if 0 is not

included between the lower and upper limits of the confidence interval, that para-

meter is approximately significant at the 0.05 alpha level.

There was a clear overall difference in accuracy dependent on AM rate, as
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shown by the negative AM Rate coefficient. However, the positive Right Hemi-

sphere TMS x AM Rate coefficient shows that there is an interaction between

hemisphere of stimulation and AM rate such that TMS to the right hemisphere

affected 4 Hz AM detection accuracy to a greater degree than it affected 40 Hz

AM detection (accounting for sham).

To explore these effects further, the raw data was plotted for each individual.

This can be seen in Figure 3.4. It is notable that two clear response patterns

are visible and this may represent separate subgroups of responders and non-

responders. Generally, in the 4 Hz condition, if a participant shows a disruption

in performance with left hemisphere stimulation, they also show a disruption

with right hemisphere stimulation and vice versa (apart from two participants

who show the opposite effect for left and right hemisphere stimulation. In the

40 Hz condition, a similar pattern can be seen, although less pronounced due to

the smaller range of scores. High variability in the direction of brain stimulation

effects is often found and this type of response distribution is common (López-

Alonso et al. 2014).

3.5 Discussion and Conclusions

This study was designed to investigate whether online TMS to human auditory

cortex could modulate the processing of amplitude modulation. The study also

aimed to further investigate the lateralisation of AM processing by comparison

with existing asymmetric models of auditory function. Two pre-registered hypo-

theses were tested (Partridge 2017).

The first hypothesis predicted that active TMS to left or right auditory areas

would affect AM detection accuracy when compared to sham TMS. A decrease

in 4 Hz AM detection accuracy was shown only when TMS was delivered to

the right hemisphere. This novel causal evidence shows that the right posterior

superior temporal gyrus (pSTG) region is crucial for processing 4 Hz AM. This

finding also demonstrates the utility of TMS for modulating AM processing and
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Figure 3.4: Raw accuracy scores for each participant and each condition. Colour

is used to represent data from each different participant. The black horizontal

line represents chance performance. Connecting lines are used to help visually

identify which scores are from which participant.
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for further investigating the processing of low-level speech-relevant stimuli.

The second hypothesis predicted that left hemisphere stimulation would have

a greater effect on 40 Hz AM performance and right hemisphere stimulation would

have a greater effect on 4Hz AM performance. These asymmetric predictions were

in line with the Asymmetric Sampling in Time hypothesis (Poeppel 2003). The

disruptive effect of TMS to the right, but not left hemisphere and specifically

affecting 4 Hz AM detection, is in accordance with a specialisation of the right

auditory areas for temporal processing on longer timescales. No significant dif-

ferences were found in the 40 Hz AM rate condition, however the sham TMS

condition provides evidence that this is due to a floor effect. This outcome leads

to a conclusion that the data collected from the 40 Hz AM conditions provides

no support for or against asymmetric processing of this AM rate.

3.5.1 Effect of TMS on 4 Hz AM Detection

The main result from this study was a significant decrease in 4 Hz AM detection

accuracy when TMS was delivered to the right auditory cortex during present-

ation of AM noise. This effect demonstrates that there is a causal link between

right pSTG/PT and AM detection. Whilst the exact mechanism underlying on-

line TMS effects is still unknown, it is suspected that behavioural effects may

specifically result from an early suppression of neural firing by suprathreshold

TMS (Moliadze et al. 2003; Silvanto and Cattaneo 2017). As the TMS targets

were located on an individual basis, it is important to note that this effect may

not generalise to all locations on the pSTG or PT, but just to the areas located

using this specific functional localiser and contrast within each individual. It

is known that PT is a computational hub that is involved in the extraction of

complex modulation (Griffiths and Warren 2002) and this finding suggests that

pSTG/PT may be the neural locus of (at least part) of the proposed modula-

tion filterbank system (Dau et al. 1997a; Jepsen et al. 2008). Whilst the simple

‘virtual lesion’ disruptive explanation accounts for the TMS effect observed here,

it is important to consider what similar investigations have found while concur-
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rently measuring the neural signals, typically with electroencephalograpy (EEG).

Related investigations have shown that auditory areas entrain to rhythmic sens-

ory stimulation and this entrainment is likely to play a functional role (Zoefel

et al. 2018). TMS delivered during neural oscillatory activity has been shown

to reset the phase of these oscillations, so it is possible that TMS has disrupted

this entrainment process and subsequently, AM detection has been affected (Van

Der Werf and Paus 2006). However, it is unclear if entrained oscillatory activ-

ity would emerge with the short periods of AM used here, particularly as TMS

was delivered early (35ms) in the AM interval. Further, rhythmic TMS has been

shown to actively induce oscillations both at specific TMS burst frequencies (e.g.

5-pulse burst at alpha frequency: Thut et al. 2011), or at the intrinsic resonance

frequencies of specific networks with a single TMS pulse (Rosanova et al. 2009).

As no direct measures of neural activity were made in this study, it is not possible

to demonstrate the existence of entrainment or any effect TMS may have had on

intrinsic or induced oscillations. So, while this is an interesting novel result which

future studies can expand on, the explanation for TMS effects that this behavi-

oural measure affords is perhaps unsatisfying. Combining direct neural measures

with TMS would be required to understand this effect at the neural level and this

is a promising future direction, based on successfully applied information-based

approaches (Romei et al. 2016). In particular, using EEG to measure the effects

of single pulse TMS or rhythmic TMS at specific frequencies would be interesting

to explore further and would help to elucidate the neural basis of this effect.

There was no significant effect of TMS to the left auditory cortex on 4 Hz AM

detection accuracy. In combination, these findings provide support for a right

hemisphere specialisation for processing over longer timescales, but they are not

sufficient to fully support asymmetric accounts, where claims are made for both

hemispheres, such as the Asymmetric Sampling in Time hypothesis (Poeppel

2003). This finding aligns with the observations of McGettigan and Scott (2012),

that the right hemisphere may be specialised whereas the left may not, but care

must be taken when this dissociation across hemispheres may be due to method-
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ological factors. fMRI studies have consistently shown that both left and right

pSTG/PT areas are activated by low frequency AM, suggesting some involve-

ment of the left hemisphere (Giraud et al. 2000; Harms et al. 2005), but this

study provides initial evidence that the left pSTG/PT may not be crucial for

processing 4 Hz AM. However, this conclusion is tentative and is accompanied

by some important caveats. Generally, interpreting the lack of an effect when it

is not part of a clear dissociation is difficult as it could be the result of a number

of factors. Further, a small (non-significant) decrease in 4 Hz AM detection ac-

curacy was also found with TMS to the left hemisphere, so it could be that the

current study lacks the statistical power to detect this smaller effect suggested

by the fMRI evidence. Also, there is variability in the effects of different TMS

protocols and this effect of this specific protocol does not necessarily generalise to

other TMS protocols. It is possible that the targeted area in the left hemisphere

is less susceptible to disruption by this specific TMS protocol compared to the

right hemisphere homologue.

One promising explanation for this asymmetrical effect of TMS arises from the

asymmetrical connectivity profiles of these areas. It is known that auditory areas

in the left and right hemisphere are structurally and functionally asymmetrical

(Mǐsić et al. 2018; Boemio et al. 2005). This asymmetry is also reflected in the

connectivity profiles of these areas; the right hemisphere is more widely connec-

ted, particularly with regards to interhemispheric connections (Mǐsić et al. 2018).

Further, the effects of TMS have been shown to be asymmetrical, with right

hemisphere stimulation increasing neural activity in the contralateral left hemi-

sphere auditory regions whereas no contralateral activation was found when the

left hemisphere was directly stimulated (Andoh and Zatorre 2013). It has since

been shown that this asymmetrical TMS effect could be related to asymmetrical

functional connectivity (Andoh et al. 2015). These studies used a repetitive TMS

protocol that differs from the protocol used here, however, it may explain the

hemispheric dissociation seen in the 4 Hz AM detection results. Clearly, the

simple assumption of a direct mapping of location to behavioural effects is not
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as straightforward in auditory areas as may be expected in motor areas, where

most TMS methods are initially developed. Further exploration of the functional

connectivity of these auditory areas is required and investigations with different

TMS protocols are necessary to conclude that the hemispheric dissociation found

here is due to differences in connectivity.

3.5.2 No Effect of TMS on 40 Hz AM Detection

No significant effect on 40 Hz AM detection sensitivity was measured with TMS

delivered to either hemisphere. This is likely due to the average performance be-

ing too close to chance level, leading to a floor effect for decreases in accuracy due

to TMS. Although interpretation is difficult, a recently proposed framework that

accounts for both ‘virtual lesion’ and state-dependent TMS effect may be applied

in order to use this condition to inform future studies (Silvanto and Cattaneo

2017; Silvanto et al. 2018). Following the framework posited by Silvanto and

Cattaneo (2017), if left hemisphere neural populations are tuned to 40 Hz AM, a

suprathreshold pulse in their suppressive range would inhibit performance. This

aligns with the prediction made for 40 Hz neurons with left hemisphere stimula-

tion and cannot be observed in these data due to the floor effect. However, the

framework posits that neurons not tuned to the stimulus could be in a facilitatory

or inhibitory range, depending on the intensity of the stimulation and this results

in clear testable predictions for future studies. It predicts that, if these neurons

are not tuned to 40 Hz AM, then as stimulation intensity decreases, a point will

be reached where a behavioural facilitation is observed in this condition. As this

facilitation would manifest as an increase in accuracy, this could be observed

even in the case of near-chance baseline accuracy. At this point, it is predicted

that neurons tuned to 40 Hz would be in their inhibitory range, whereas neurons

not tuned to 40 Hz (e.g. tuned to 4 Hz), would be in their facilitatory range.

If there are overlapping populations within the same hemisphere responsible for

processing 4 and 40 Hz AM, this would result in a behavioural dissociation where

40 Hz AM detection is disrupted, but 4 Hz AM detection is facilitated. Show-
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ing this dissociation within the same target and with the same intensity of TMS

would be a powerful demonstration and would more strongly support the lack of

specialism in the left hemisphere for particular AM rates. As a suprathreshold

TMS intensity was used here and no facilitation of performance was observed,

it can be assumed that neurons were in their inhibitory range, so future invest-

igations could use this intensity as a starting point and decrease it from there.

Further, the framework would also predict that as intensity decreased even fur-

ther, it would reach a point where no effect was observed on neurons not tuned

to 40 Hz AM (e.g. tuned to 4 Hz AM), but a facilitatory effect was observed on

neurons tuned to 40 Hz AM. However, this framework was primarily developed

using the results of visual studies and the extent that it holds for auditory areas

is not clear, particularly when the aforementioned asymmetry of connectivity is

considered.

Another key aspect to consider for future studies is the target selection method.

In order to avoid biasing the fMRI-defined TMS targets to populations respons-

ible for processing either rate, they were chosen based on a contrast of 4 and 40

Hz AM noise combined over unmodulated noise. Indeed, when the depth of these

targets were analysed, they were found to not differ significantly. However, previ-

ous research has found that areas involved in processing lower rates of AM tend to

be located more laterally (Herdener et al. 2013; Harms and Melcher 2002; Harms

et al. 2005). As the magnetic field generated by TMS originates laterally from

outside the skull (and the field strength drops off dramatically with increased

distance from the coil), TMS is more likely to affect cortical areas that are lat-

eral to the target, as opposed to medial. This could result in lateral areas that

are specialised for processing 4 Hz being inadvertently stimulated moreso than

medial areas that are specialised for processing 40 Hz. When targeting a deeper

target, on PT for example, the induced stimulation current may be more likely

to affect 4 Hz selective populations than 40 Hz selective populations. It is yet to

be shown if TMS can affect 40 Hz AM detection, so this is a key consideration

for future studies. It is difficult to make conclusions about the true asymmetry
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of AM processing as less weight can be given to conclusions regarding the 40

Hz data, due to near-chance accuracy. However, these data can still be used to

inform future research and highlight important considerations, particularly with

regards to similar psychoacoustic paradigms.

3.5.3 Accuracy Discrepancy in the 40 Hz AM Conditions

Mean AM detection accuracy in the 40 Hz condition with sham TMS was close

to chance level at 55.1%. This suggests that the AM depth calibration method

did not consistently estimate participants’ 70% threshold in practice. This dis-

crepancy could be due to caveats related to the task or the threshold estimation

procedure.

Task Caveats

During the behavioural sessions, interleaved adaptive staircases were used to es-

timate the threshold. This technique starts at an AM depth where participants

can easily complete the task and becomes progressively more difficult. In con-

trast, during the TMS sessions, the task began at the threshold depth and this

difference may have led to a discrepancy in performance. This staircase procedure

may have led to lower estimated thresholds than would be expected if the task

was to immediately start at the same estimated threshold depth. The initial trials

may have acted as practice trials or provided a recent reference for the auditory

system, improving AM sensitivity. Further, no feedback was given during the

TMS sessions, potentially increasing the difficulty of the task as the participant

had no opportunity to self-correct, should they lose track of the specific aspect

they had to detect. The combination of the different presentation method and

the lack of feedback may have contributed to the discrepancy between threshold

estimates obtained in the behavioural sessions and accuracy in the sham TMS

sessions. However, the task procedure was identical for both AM rates and this

discrepancy was only observed in the 40Hz conditions. This suggests that some-

thing may be inherently different in the function fitting and threshold estimation
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procedure between the two AM rates.

Threshold Estimation

The slope parameter is an intuitive candidate as a steeper slope in the 40 Hz

condition would cause a minor underestimate of the threshold to result in a large

difference in accuracy at that fixed depth. Another possible candidate is the

function fit itself. In this study, the full psychometric function was fit and the

threshold depth estimated from it. 3 separate runs were completed at each rate

and the two lowest threshold values were averaged to get the AM depth for the

main task. The function with the highest threshold value was removed to re-

duce the influence of any functions that were skewed by early mistakes and to

somewhat factor out practice effects. However, the lowest threshold does not

necessarily indicate the best function fit. To address this, goodness-of-fit met-

rics could be used to decide which thresholds to keep. Another consideration

for future research is the choice of step size. The sequence of step sizes can be

fixed and specifically chosen so that the average of n last reversals approximates

targeted threshold percentages (Levitt 1971). This method would circumnavig-

ate the psychometric function fitting thus avoiding biases that may arise from

it. Alternatively, advanced adaptive methods (Treutwein 1995), such as updated

maximum likelihood (Shen and Richards 2012; Shen et al. 2015) could be imple-

mented to more efficiently estimate the psychometric function. These methods

use variable step sizes as they adaptively select the next depth value in a track to

maximise the information gain. A benefit of these more efficient method is that

participants would be less likely to be fatigued due to long runs and threshold

estimates may be less variable. It is also possible to modify the experiment so

that TMS is delivered during adaptive staircase runs and the resulting threshold

is then used as the dependent variable. This option would not feasible with the

current staircasing method but a more efficient alternative such as these may

allow it. However, it is still to be determined whether the discrepancy would be

observed using these methods, as it may arise due to the task caveats rather than
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the function fitting. A final, simpler, alternative is to use a larger threshold per-

centage in the main TMS runs to allow for some underestimation of the threshold

depth in the 40 Hz condition. These alternative methods may be more accurate

and the estimated threshold AM depths may be less prone to this discrepancy.

3.5.4 Future Directions

There is increasing evidence for the importance of oscillatory activity (Haegens

and Zion Golumbic 2018) and new neurostimulation techniques can be used to

interface with this in increasingly nuanced ways (Romei et al. 2016; Herring et al.

2015). As auditory processing generally, and AM processing specifically, is inher-

ently linked with oscillatory activity, this is an interesting area that would benefit

from future research. It is likely that TMS in this study was affecting ongoing os-

cillations, however pulse timing is key. It may be possible to shift the TMS pulse

timing in or out phase in order to entrain oscillations or disrupt existing rhythms.

The auditory steady state response (ASSR) is a non-invasive electrophysiological

measure that characterises how the auditory system responds to continuous peri-

ods of modulated sound, with peak ASSR amplitudes found at around 40 Hz

modulation rates (Ross et al. 2000). However this method involves presenting

long periods of auditory stimulation and it is less well known how the audit-

ory system responds to short periods of AM, like those presented in this study.

There are many interesting questions surrounding what influence the TMS timing

would have on processing short periods of AM, and whether rate or hemispheric

differences would affect this. Finally, high interindividual variability is common

in brain stimulation studies and finding sources of this variance is important for

reducing it in future studies (López-Alonso et al. 2014). Further investigating

the possible responder/non-responder pattern seen in the per-participant data

and identifying factors underlying this differential susceptibility to TMS would

be valuable for future investigations.

87



3.5.5 Conclusions

This study used online dual pulse TMS to investigate the role of left and right

auditory cortex in processing 4 and 40 Hz amplitude modulations. A disruption

of 4 Hz AM detection was found when TMS was delivered to the right hemisphere

only, compared with sham TMS. This is novel causal evidence for the role of the

right auditory cortex in processing 4 Hz AM. It was thus demonstrated that

TMS can be a useful and specific technique for modulating low-level auditory

processing. Results for the 40 Hz AM condition were affected by behavioural

thresholding issues so conclusions about asymmetrical processing are difficult to

support. With respect to this, important considerations for future psychoacoustic

and fMRI-guided TMS studies were discussed.
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Chapter 4

Amplitude Modulation Detection

Ability can be Differentially

Affected using State-Dependent

Transcranial Magnetic

Stimulation

4.1 Abstract

Temporal changes in the speech envelope are crucial for intelligibility, and hu-

mans are particularly sensitive to amplitude modulations (AM) at frequencies

commensurate with the syllabic rate (4Hz). Some asymmetric models of auditory

processing have attempted to explain observed functional asymmetries between

left and right auditory cortices in terms of temporal integration windows of differ-

ing lengths. In this paper we use an fMRI-localised, state-dependent, dual-pulse

TMS paradigm to investigate auditory processing as exemplified by detection of

sinusoidal amplitude-modulation of a broadband noise carrier. The effect of left

and right hemisphere TMS on accuracy levels for detection of such modulations at

rates of 4 and 40Hz under conditions of behavioural adaptation were examined.

89



Effects of TMS on AM detection were found only in the 40Hz detection task

when TMS was applied to the left hemisphere. Further, this effect showed a

dissociation based on the modulation used during behavioural adaptation, with

a facilitation shown when participants were behaviourally adapted to 4Hz AM

whereas a disruption was shown when participants were behaviourally adapted

to 40Hz AM, contrary to initial predictions based on state-dependent TMS the-

ory. These results show for the first time that it is possible to differentially affect

AM detection ability using TMS and further emphasise the importance of subtle

timing factors in TMS studies. The novel use of this technique in the auditory

domain has implications for further elucidating auditory processing mechanisms

in health and disease.

4.2 Introduction

The structure of human speech is highly dynamic, consisting of continuous changes

in both amplitude and frequency content. Slow temporal amplitude modulations

(Rosen 1992), are known to be crucial to speech intelligibility (Drullman et al.

1994a,b). Indeed, intelligibility remains high even under conditions of severely

degraded spectral content, provided that these amplitude modulations are pre-

served (Shannon et al. 1995).

Psychophysical work has shown that humans are particularly sensitive to de-

tecting AM at rates commensurate with the speech envelope and that AM de-

tection can be characterised as a low-pass (Viemeister 1979; Rees et al. 1986;

Kohlrausch et al. 2000) or band-pass process (Edwards and Chang 2013). It has

been proposed that AM is extracted by a bank of filters, each tuned to different

modulation rates (Dau et al. 1997a,b; Jepsen et al. 2008; Simpson et al. 2013;

Xiang et al. 2013). The exact anatomical locus of such a modulation filterbank

is currently unclear, although it is known that progressively higher areas of the

auditory pathway show peak responsivity for lower AM rates (Harms and Melcher

2002; Harms et al. 2005), behaviour which has been compared to a cascade of
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modulation filters (Giraud et al. 2000).

In addition to differential sensitivity from lower to higher auditory areas,

several hypotheses have been proposed to account for observed asymmetries in

auditory processing. One hypothesis holds that the left hemisphere preferen-

tially processes temporal structure whilst the right hemisphere is more sensitive

to spectral cues (Zatorre and Belin 2001; Zatorre et al. 2002) whilst an altern-

ative (‘Asymmetric Sampling in Time’; Poeppel 2003) proposes that the right

hemisphere integrates over longer timescales (∼250ms) than the left hemisphere

(∼25ms). The longer of these timescales (∼250ms) corresponds closely with the

syllabic rate of speech (∼4Hz). The shorter timescale (∼25ms) corresponds to a

frequency of 40Hz, which is around the phonemic rate of speech. These two ac-

counts are not mutually exclusive, for example, frequency modulations in speech

(such as prosody) tend to occur over longer timescales, therefore a preference for

longer slower modulations would overlap with a preference for spectral compon-

ents generally. Dichotomous accounts of asymmetric processing have, however,

been challenged - both due to a of lack of empirical support for left hemisphere

temporal selectivity as well as the fact that such a division does not account for

the true structure of the speech signal (McGettigan and Scott 2012).

In the current study, TMS was used to further investigate the behavioural

detection of sinusoidal amplitude modulation of broadband noise. The study was

designed with specific reference to asymmetric models of auditory processing.

A state-dependent, dual-pulse, TMS method was used to perturb judgements

in a sinusoidal AM detection task at modulation rates of 4Hz and 40Hz. When

TMS is delivered to neuronal populations in different activation states, state-

dependent differential effects have been observed (Silvanto et al. 2007; Silvanto

and Pascual-Leone 2008; Cattaneo and Silvanto 2008). In this context, state-

dependent TMS essentially refers to the fact that the impact on behaviour caused

by the TMS pulse is altered by the nature of the processing being performed by the

neuronal population at the time at which the pulse is administered. These effects

include behavioural facilitations for detection of adapted stimuli, suggesting that
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the common conceptualisation of TMS as a purely disruptive tool is inadequate

(Romei et al. 2016). An overarching framework has recently been proposed that

can explain classic ‘virtual lesion’ inhibitory effects of TMS and state-dependent

effects (Silvanto and Cattaneo 2017). Combining state-dependent TMS with be-

havioural adaptation is a promising method for investigating AM detection for

three principal reasons. Firstly, the perceptual effects of selective adaptation

to amplitude and frequency modulated sounds are well characterised (Kay and

Matthews 1972; Regan and Tansley 1979; Tansley and Suffield 1983; Bacon and

Grantham 1989; Houtgast 1989; Wojtczak and Viemeister 2005; Kleinschmidt and

Jaeger 2016). Secondly, state-dependent TMS potentially allows the dissociation

of cortical functioning in brain areas with overlapping populations responsible for

processing different rates of AM, as may be expected based on previous localisa-

tion studies (Barton et al. 2012; Herdener et al. 2013). Finally, as stimulation is

delivered immediately prior to the auditory test stimulus in the state-dependent

TMS paradigm, potential auditory masking due to the TMS click artefact is

avoided. These three principal reasons provided the rationale for using the state-

dependent TMS paradigm. Whilst different forms of neurostimulation has been

used to modulate aspects of auditory perception such as temporal discrimination

(Bueti et al. 2008; Heimrath et al. 2014), melody discrimination (Andoh and Zat-

orre 2011), phoneme categorisation (Rufener et al. 2016), and tinnitus (Weisz et

al. 2012), to our knowledge, TMS has not previously been used to investigate AM

processing.

We proposed three research questions.

� Can AM detection ability be affected by TMS?

� Do these effects show state-dependency?

� Do these effects show hemispheric differences consistent with lateralised

accounts of auditory processing?

Three pre-registered hypotheses were formulated (Partridge 2016).
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� It was predicted that AM detection performance would differ between real

and sham TMS conditions.

� Secondly, it was predicted that TMS effects would show state-dependency;

i.e. performance would only be improved by TMS when the modulation

rates of the adaptor and test stimuli were congruent.

� Finally, it was predicted that effects would show an interaction with hemi-

sphere of stimulation such that left hemisphere stimulation would have a

greater effect on 40Hz AM detection performance and right hemisphere

stimulation would have a greater effect on 4Hz AM detection performance.

4.3 Material and Methods

4.3.1 Subjects

Ten subjects (4 female; M = 23.1, SD = 5.14) participated in the experiment.

Subjects responded to an advert and were paid or reimbursed in course credit

for participation except for one participant who was a member of the research

team. All subjects were TMS and MRI eligible, right-handed, native English

speaking and had self-reported normal hearing. The project was approved by the

Research Governance Committee, York Neuroimaging Centre, University of York

and conformed to the guidelines of the Declaration of Helsinki. All participants

gave written informed consent. One participant withdrew from the experiment

and data from one participant had to be discarded due to acoustic noise caused

by building work during the testing sessions, leaving a total of 8 participants. All

data collection was undertaken after the pre-registration document (Partridge

2016) was made publicly available.
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4.3.2 Experimental Design

Audiogram

Subjects underwent an air conductance pure tone audiogram to determine that

hearing thresholds were above eligibility requirements. Audiograms were con-

ducted using an Interacoustics AD226 audiometer (Interacoustics, Middelfart,

Denmark) and Telephonics TDH-39P earphones (Telephonics, NY, USA). Sub-

jects were excluded from further testing if they did not meet the threshold criteria

of ≤20 dB HL at octave frequencies from 250 – 8000Hz in both ears.

Psychophysical Testing

A double-walled, sound-attenuated booth was used for psychophysical testing.

Auditory stimuli were presented diotically via Etymotic ER-2 headphones (Ety-

motic Research Inc., IL, USA). Following the design of Viemeister (1979), a

2-alternative forced choice (2AFC) task was used to determine psychophysical

thresholds for AM detection. Each stimulus consisted of three continuous 500

ms periods of broadband noise (low-pass filtered at 8 kHz). In each trial, the

first or third period was randomly chosen to be sinusoidally amplitude mod-

ulated. The second (centre) 500ms period was a reference period and always

consisted of unmodulated broadband noise. Participants indicated which interval

they thought contained modulation by means of a key press. Participants were

tested separately at AM rates of 4 and 40Hz with 20 practice trials delivered at

each rate before testing began. LEDs were used to indicate the two test intervals

and feedback was given after each trial. The starting phase of the modulation

was drawn randomly from a uniform distribution ranging from 0 to 2 π and the

standard and comparison interval power were normalised to match the RMS of

the centre period. Stimuli were generated at a sample rate of 44.1 kHz using

Python and presented using PsychoPy (Peirce 2007) and the PyAudio module

( https://people.csail.mit.edu/hubert/pyaudio/) through an EMU 0204

24-bit DAC (Creative Technology Ltd, Singapore). Stimuli were presented at
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70 dB SPL as calibrated using an artificial ear (B&K 4153) and a sound level

meter (B&K 2260). The AM depth of the comparison interval was systematically

modified using an adaptive staircase procedure (Levitt 1971). Two interleaved

staircases were used (1-up, 2-down; 1-up, 3-down). Before each trial, a random

choice was made between the remaining staircases and this continued until each

staircase had reached 14 reversals. A step size in modulation depth of 1 dB was

used for the first 4 reversals of each staircase, which decreased to 0.5 dB for the

next 4 reversals and to 0.25 dB for the final 6 reversals. Participants completed

three runs (six staircases in total) at each of the 4 and 40Hz modulation rates.

For 4 and 40Hz separately, an estimate of the 85% threshold from each run was

calculated from the respective psychometric function (a cumulative gaussian) on

a per-subject basis. The largest of the three modulation depth thresholds was

discarded and the mean of the other two was used as the threshold depth for that

subject in the TMS experiment.

fMRI Acquisition and Analysis

Subjects wore earplugs underneath the sound-attenuating headphones from the

fMRI-compatible auditory stimulus delivery system (MR Confon, MR Confon

GmBH). fMRI data were acquired using an Interleaved Silent Steady-State fMRI

sequence (Schwarzbauer et al. 2006). The sound level of the scanner noise, not

accounting for attenuation provided by earplugs and ear defenders, was 81 dB SPL

during the quiet period and 98 dB SPL during the acquisition period. During the

acquisition periods, whole head fMRI data (GE-EPI, TR = 2 s, TE = minimum

full, FA = 90°) were collected using a GE Signa HDx 3T system (General Electric,

WI, USA). A 128 × 128 pixel matrix with a field of view of 25.6 cm was used,

giving an in-plane resolution of 2×2 mm. 24 interleaved slices were collected with

a slice thickness of 2mm. Slices were oriented parallel with the Sylvian fissure

while ensuring bilateral coverage of Heschl’s gyrus and planum temporale.

Stimulus conditions were silence, noise, 4Hz AM noise, and 40Hz AM noise.

All noise carriers were broadband (0 - 8000Hz) and the AM stimuli were fully
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modulated (m = 1). Stimuli were presented for 6 seconds followed by an acquisi-

tion period of 8s. Each stimulus was presented 6 times in each fMRI run and three

runs were performed for each subject, each run lasting approximately 6 minutes.

Data were analysed using Feat 5.98, part of FSL-4.1 (Smith et al. 2004), along

with custom scripts which implemented filtering of the temporally non-contiguous

data. Full details of this analysis procedure can be found in Hymers et al. (2015),

with the exception that in this study spatial smoothing was performed using a

kernel with a FWHM of 2mm.

Data from the multiple fMRI runs for each subject were combined using a

fixed-effects analysis. A contrast of 4Hz and 40Hz AM noise combined over

unmodulated noise was performed. The results were corrected for multiple com-

parisons using a cluster thresholding procedure (Z >2.3, p = 0.05; Worsley 2001).

TMS targets were defined individually for each subject using a superficial max-

ima voxel in a significant cluster on posterior superior temporal gyrus / planum

temporale for each hemisphere.

Sagittal whole head structural T1-weighted data (3D FSPGR, TR = 7.8 ms,

TE = minimum full, FA = 20°, Matrix 256 × 256, FOV = 29.0 cm, 176 slices,

Slice thickness = 1 mm) were collected in the same scanning session as the fMRI

data for participants who did not already have a structural MRI scan available.

TMS

A 2x2x3 repeated measures design was used during the main TMS experiment.

Experimental factors were adaptation AM rate (2 levels; 4Hz, 40Hz), test AM

rate (2 levels; 4Hz, 40Hz) and TMS (3 levels; sham, left, right). The dependent

variable was accuracy on the AM detection task. Test AM rate was randomised

within each session, so all subjects completed six TMS sessions, one for each ad-

aptation AM rate by TMS combination. The order of sessions was approximately

counterbalanced across subjects using a latin square design. Each TMS session

was separated by at least 24 hours. A Brainsight frameless stereotaxic system

(Rogue Research, Montreal, Canada) with chin rest and forehead support was
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used to monitor coil placement and ensure accurate TMS delivery. A Magstim

Super Rapid2 (Magstim, Whitland, UK) stimulator and a 80mm (external dia-

meter of each ring) figure-of-eight coil (Magstim, Whitland, UK) was used for

pulse delivery. The TMS coil was always oriented with the handle pointing hori-

zontally in an anterior direction, parallel with the midline. Stimulation consisted

of a double-pulse protocol with pulses separated by 50 ms. TMS pulse intensity

was set to 65% of the maximum stimulator output (maximum = 2.6 T) based on

previous state-dependent TMS studies (Cattaneo and Silvanto 2008; Cattaneo et

al. 2008). This combination of TMS parameters is in line with published safety

guidelines (Rossi et al. 2009). Before the first experimental TMS session, test

pulses were delivered to ensure that subjects could tolerate this TMS protocol.

The left and right TMS targets were obtained using the fMRI data as previ-

ously described. Sham TMS was performed by placing the coil at the vertex and

rotating by 90°to remove any physiological effect of TMS but, crucially, retain

peripheral factors such as the auditory artefact (Lisanby et al. 2001). Stimuli

were delivered during the experiment using the same Etymotic ER-2 headphones

and earpieces as were used during psychophysical testing.

A graphical outline of the TMS session can be seen in Figure 5.1. Every TMS

session began with a period of auditory adaptation during which 10 minutes of

broadband noise which had been fully amplitude modulated at a rate of either 4Hz

or 40Hz was presented depending on the condition being tested. This period was

to ensure participants were maximally adapted (Wojtczak and Viemeister 2005).

All further behavioural adaptation within the session was at the same AM rate.

A block of 150 trials was then performed. Each trial consisted of 4 seconds of

behavioural adaptation followed by a 2AFC task. A double-pulse TMS burst was

delivered during the adaptation sound, immediately prior to the 2AFC task. This

timing is unusual for conventional TMS studies, but is consistent with previous

state-dependent TMS studies. Each trial perceptually formed one continuous 5.5s

auditory event. Figure 4.2 shows a single trial consisting of 4s of adaptation to

4 Hz noise followed by the 1.5s test period. The design of the 2AFC task was
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Figure 4.1: TMS session and trial layout. Time during the session runs from

top to bottom. A given session used either 4Hz or 40Hz behavioural adaptation

stimuli and one of three TMS targets (sham, left or right). Each session began

with the subject listening to 10 minutes of fully modulated noise at the session

adaptation rate. A block of 150 experimental trials was then performed; 75 test

trials were modulated at 4Hz and the remaining 75 at 40Hz. Each trial consisted

of 4s of adaptation noise (at the rate chosen for the session). Dual-pulse TMS

stimulation was locked to the end of the trial adaptation stimulus. A test trial

immediately followed the TMS pulses and consisted of a 2-AFC task - subjects

were asked to select which of two intervals contained an AM noise. The AM

depth was set based upon the initial psychophysical data for the subject. After

150 trials, subjects listened to four minutes of “top-up” adaptation noise. This

was followed by a second block of 150 experimental trials of identical layout to

the first block. The total number of TMS pulses in each session was 600.
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identical to that used during baseline psychophysical testing, aside from the fixed

(85% threshold) AM depth of the target interval. No feedback was given during

the TMS sessions. During each block the test AM rate was pseudo-randomised;

75 trials were modulated at a rate of 4Hz and the other 75 were modulated at

a rate of 40Hz. At the completion of the first block of trials, 4 minutes of fully

modulated AM noise (top-up adaptation) were presented at the same rate used

at the start of the experiment to ensure that the adaptation effect was consistent.

This period also allowed the participant to have a short break from responding,

during which the TMS coil was switched with an identical replacement to ensure

the coil remained at an operational temperature. A second block of 150 trials

was then completed.

Figure 4.2: An example trial showing the 4s adaptation phase, directly followed

by the 1.5s test phase. The adaptation and test rate in this example trial are

both 4 Hz. The target period of the test phase is period 1. TMS pulse timing is

indicated by the vertical red lines.
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Key Methodological Changes

This section will detail the key similarities and differences between the design used

in the study in Chapter 3 and the design used for this study. An AM detection

task was used as a behavioural measure of AM sensitivity in the experiment

reported in Chapter 3. While the overall task to detect the interval that was

amplitude modulated remained the same in this study, the specific design was

different. The key difference is that the 2-AFC trial in Chapter 3 consisted of

five continuous 0.5 s noise periods, where either period 2 or 4 were modulated,

however, the 2-AFC trial used here consisted of three continuous 0.5 s periods

where either period 1 or 3 was modulated. Three periods were used in this task

for consistency with the main TMS session, where the three period version of the

task was used for efficiency.

The fMRI design used in this study was identical to the fMRI design reported

in Chapter 3.

The key difference in TMS experimental design between the study reported in

Chapter 3 and the study described here is the TMS pulse timing. TMS pulses were

delivered during the 2-AFC trial in the experiment described in Chapter 3, due

to the online TMS paradigm used. However, in the study reported here, the TMS

pulses were delivered just prior to the 2-AFC test phase. This methodological

change was required in order to recreate the conditions in which state-dependent

TMS effects have been demonstrated.

The design of the auditory task within the TMS session also differed, primarily

with the addition of the adaptation phase preceding each 2-AFC test phase. This

adaptation period could consist of either 4 or 40 Hz AM noise and was included

in order to reproduce the conditions required for a controlled state-dependent

TMS adaptation effect. Each trial was longer in the experiment reported here

compared to Chapter 3, due to this additional period of AM noise. Therefore,

using a shorter overall 2-AFC test phase allowed more trials to be conducted in

the same time, leading to increased efficiency.
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Statistical Analysis

Generalised linear mixed-effects models (GLMM) were fit to the TMS accuracy

data. This technique accounts for interdependence of the data arising from re-

peated measurements of the same participants; it also allows adjustments for

non-normal distributions (Baayen et al. 2008; Dixon 2008; Jaeger 2008). A logit

link function was used to account for the binomial distribution of the raw data.

Separate models were fit to the 4Hz and 40Hz test AM rate data. Both models

included fixed effects of TMS condition and behavioural adaptation condition

and an interaction term. Participant was included as a random effect. Random

intercepts and slopes for TMS condition and behavioural adaptation condition

were estimated for each participant. The random effects structure was the max-

imal justified by the design (Barr et al. 2013); the model with maximal random

effect structure was fit then systematically reduced until convergence. Treatment

coding was used to measure the difference from the baseline condition of sham

TMS with 4Hz AM adaptation (the baseline condition choice is arbitrary and

was chosen to make other parameters easier to interpret). Finally, parametric

bootstrapping was conducted on the model parameters to obtain 95% confidence

intervals. All modelling was conducted using the lme4 package (Bates et al. 2015)

in R software (R Core Team 2017). Parametric bootstrapping was conducted us-

ing the pbkrtest package (Halekoh and Hojsgaard 2014).

4.4 Results

4.4.1 Psychophysics

The modulation depth at which 85% accuracy was achieved was calculated indi-

vidually for each participant, for each AM test rate (4 and 40 Hz). The mean

modulation depth across participants for the 4 Hz condition was -20.7 dB and for

the 40 Hz condition was -21.2 dB. A paired t-test showed no significant difference

between thresholds for 4 Hz and 40 Hz AM detection (t(7) = 0.888, p = 0.404).
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4.4.2 fMRI derivation of TMS Targets

TMS targets in MNI-152 co-ordinate space for all participants can be found in

Table 4.1.

Participant Left hemisphere target Right hemisphere target

1 -64, -22, 8 60, -20, 8
2 -52, -28, 6 62, -36, 6
3 -58, -18, 2 42, -18, 2
4 -54, -30, 2 64, -22, 6
5 -54, -30, 14 54, -22, 8
6 -40, -38, 14 66, -8, 2
7 -64, -28, 16 52, -34, 16
8 -38, -32, 14 44, -28, 12

Mean -53.0, -28.3, 9.5 55.5, -23.5, 7.5

Table 4.1: MNI-152 co-ordinates for TMS targets in left and right hemispheres

for all participants. The average co-ordinate across all participants is also given.

Figure 5.2 shows targets in both hemispheres for an example participant.

TMS target distance measurements were recorded for TMS pulses. This is

a measure of the distance from the centre of the TMS coil to the fMRI-defined

target. Four sessions lacked these measurements due to a technical issue. A linear

mixed-effects model was fit to these data, with a fixed effect of TMS hemisphere

and a random effect of participant. Parametric bootstrapping of the model para-

meters was conducted to obtain 95% confidence intervals. There was a negligible

mean difference of -0.558 mm, 95% CI [-10.025, 8.631] between left hemisphere

and right hemisphere conditions. There was no overall correlation between the

AM task accuracy scores and the target distance measurements (r = 0.008, p =

0.954).

TMS positioning error measurements were also recorded. This is a measure of

the difference between the fMRI-defined target and the estimated pulse trajectory.

Four sessions lacked these measurements due to a technical issue. A linear mixed-

effects model was fit to these data, with a fixed effect of TMS hemisphere and a

random effect of participant. Parametric bootstrapping of the model parameters

was conducted to obtain 95% confidence intervals. There was a negligible mean
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Figure 4.3: fMRI TMS target localisation data from an example participant.

Overlay shows statistically significant clusters of activation (Z >2.3; p <0.05) in

bilateral pSTG/PT in response to a contrast of 4 and 40 Hz sinusoidally amplitude

modulated broadband noise conditions (combined) over unmodulated noise. TMS

targets are indicated by the crosshairs. Functional data is shown here on the MNI-

152 template brain - targets were transformed back into individual participant

co-ordinate space. Target locations for this participant in MNI-152 co-ordinate

space are: Left: −64,−22, 8 and Right: 60,−20, 8
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difference of -0.031mm, 95% CI [-0.082, 0.021] between left hemisphere and right

hemisphere conditions. The overall mean error was 0.342mm, 95% CI [0.320,

0.364].

4.4.3 Sham TMS Behavioural Analysis

The effects of adaptation without TMS were assessed using the sham TMS con-

ditions. This ensured that any noise from the TMS coil was incorporated into

the baseline measure. For the 4 Hz test condition, a mean accuracy decrease of

26% was seen when participants were adapted to 4 Hz compared to when they

were adapted to 40Hz. For the 40 Hz test condition, a mean accuracy decrease of

22% was seen when participants were adapted to 40 Hz compared to when they

were adapted to 4 Hz AM noise. A paired t-test showed no significant difference

in level of adaptation in the matched cases; i.e. 4 Hz adaptor followed by 4 Hz

test versus 40 Hz adaptor followed by 40 Hz test (t(7) = 1.222, p = 0.261).

104



Figure 4.4: Difference in raw AM detection scores between sham TMS and left

or right hemisphere TMS conditions are expressed here as percentage changes.

Each bar represents the mean within-subject difference across all participants.

Error bars represent the 95% confidence interval.
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GLMM analyses

The data were divided based on test AM rate and separate generalised linear

mixed effects models with logit link functions (GLMMs) were fit to the two sub-

sets. These models assume that the log-odds of the binomial response variable

varies linearly. Separate models were used for the 4 Hz and 40 Hz results due to

convergence issues when a single model was used. Factors included in both final

models were TMS condition (3 levels: sham, left hemisphere, right hemisphere)

and adaptation condition (2 levels: 4 Hz and 40 Hz). Results are presented in lo-

gits to aid interpretation as confidence intervals are symmetrical about the point

estimate and each coefficient value directly represents the effect size. Using logits

also preserves the effect direction represented by the sign of the coefficients. The

coefficient for the baseline condition represents the overall mean intercept and the

other coefficients represent the (population-level) difference from this baseline for

each condition. For consistency, the baseline condition for both models was sham

TMS with adaptation to 4 Hz AM.

Whilst assessments of statistical significance using conventional metrics such

as p-values are difficult to perform with GLMMs due to the unknown denomin-

ator degrees of freedom required to calculate the F-statistic, confidence intervals

can be computed using parametric bootstrapping (Halekoh and Hojsgaard 2014).

These 95% confidence intervals can be used to approximately assess statistical

significance at the 0.05 alpha level. If a value of 0 is not contained within the

upper and lower bounds of the confidence interval, then the result is approxim-

ately statistically significant using a type-I error rate of 5%. While there are clear

issues surrounding the use and interpretation of dichotomous assessments of stat-

istical significance (McShane et al. 2017), they are conventional and informative

so the (approximately) statistically significant results have been indicated by an

asterisk in the results tables.
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GLMM analysis of 40 Hz test rate data

Results from this model are shown in Table 5.5 with approximately statistically

significant results indicated by an asterisk. Model fit values are as follows: AIC =

376.7, BIC = 406.6 . Behavioural adaptation to 40 Hz AM had a clear negative

effect on the 40 Hz test rate data, as shown by the negative 40Hz Adaptation

coefficient. This result replicates previous psychophysical work on selective ad-

aptation to AM (e.g. Wojtczak and Viemeister 2005). TMS to the left hemisphere

had a net positive effect on 40 Hz AM detection over both adaptation rates, as

shown by the positive Left Hemisphere TMS coefficient. However, these main

effects are confounded by a rate by hemisphere interaction, as seen in Figure 5.4.

The negative Left Hemisphere TMS x 40Hz Adaptation interaction coefficient rep-

resents the differential effect that adaptation to 40 Hz AM had compared to 4 Hz

adaptation, specifically in the left hemisphere TMS condition. As the baseline

condition is 4 Hz AM with sham TMS, this interaction coefficient represents the

net change from sham to left TMS and 4 Hz adaptation to 40 Hz adaptation.

GLMM analysis of 4 Hz test rate data

Results from this model are shown in Table 5.4 with approximately statistically

significant results indicated by an asterisk. Model fit values are as follows: AIC

= 389.1, BIC = 419.0 . Accuracy on the 4 Hz AM detection task was much

lower when participants were behaviourally adapted to 4 Hz AM compared to

when participants were behaviourally adapted to 40 Hz AM. This is shown by

the positive 40Hz Adaptation coefficient; the only coefficient from the 4 Hz test

rate model where the 95% CI did not cross zero, as shown in Table 5.4. This

is consistent with the aforementioned psychophysical work that showed peak ad-

aptation for matched adaptation and test rates (Wojtczak and Viemeister 2005).

The chosen baseline condition explains the difference in direction for the adapta-

tion effect between the two models; a decrease in accuracy is shown in the 40 Hz

GLMM whereas an increase in accuracy is shown in the 4 Hz GLMM. The lack

of a statistically significant TMS or interaction effect suggests TMS was unable
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Dependent variable:

Accuracy 95% CI

Baseline 1.018 0.669 1.378
Left Hemisphere TMS 0.302 0.096 0.519 ∗
Right Hemisphere TMS −0.068 −0.353 0.197
40Hz Adaptation −1.014 −1.371 −0.663 ∗
Left Hemisphere TMS x 40Hz Adaptation −0.446 −0.712 −0.202 ∗
Right Hemisphere TMS x 40Hz Adaptation 0.099 −0.154 0.356

Table 4.2: GLMM results for the 40 Hz AM test conditions. Accuracy values and

95% CIs are in logit units. ‘Baseline’ represents the mean in the baseline condition

of sham TMS with 4 Hz behavioural adaptation. All other coefficients represent

the difference from this baseline, i.e. the effect size. For example, the 40Hz

Adaptation co-efficient shows the effect of 40Hz behavioural adaptation compared

with the baseline of 4Hz behavioural adaptation; in this case (40Hz test trials),

the co-efficient shows the expected negative direction, indicating a decrease in

AM detection accuracy when participants were behaviourally adapted to 40Hz.

An asterisk is used to indicate approximately statistically significant results.
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to affect AM processing in the same way as with 40 Hz processing.

Dependent variable:

Accuracy 95% CI

Baseline 0.438 0.182 0.719
Left Hemisphere TMS 0.068 −0.167 0.298
Right Hemisphere TMS 0.205 −0.036 0.422
40Hz Adaptation 1.437 1.195 1.679 ∗
Left Hemisphere TMS x 40Hz Adaptation 0.023 −0.293 0.310
Right Hemisphere TMS x 40Hz Adaptation −0.137 −0.434 0.147

Table 4.3: GLMM results for the 4 Hz AM test conditions. Accuracy values

and 95% CIs are in logit units. ‘Baseline’ represents the mean in the baseline

condition of sham TMS with 4 Hz behavioural adaptation. All other coefficients

represent the difference from this baseline, i.e. the effect size. For example, the

40Hz Adaptation co-efficient shows the effect of 40Hz behavioural adaptation

compared with the baseline of 4Hz behavioural adaptation; in this case (4Hz

test trials), the co-efficient shows the expected positive direction, indicating an

increase in AM detection accuracy when participants were behaviourally adapted

to 40Hz. An asterisk is used to indicate approximately statistically significant

results.

4.5 Discussion

The present study was designed to investigate whether TMS to auditory areas

could affect AM detection performance and if so, whether the induced behavi-

oural changes showed state-dependency and/or provided support for asymmetric

accounts of auditory processing. Three specific research questions were posed.

The first question asked whether AM detection could be affected by TMS to

auditory cortex. A significant effect of left hemisphere TMS was shown compared

to sham TMS, but only in the 40Hz AM detection condition.

The second question asked whether TMS effects showed state-dependency,

i.e. did behavioural adaptation have an effect on the direction or degree to which
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TMS modulated performance on the task. In the conditions with left hemisphere

TMS and 40Hz AM detection, state-dependent TMS effects were found, though

the change in behavioural performance was not in the predicted direction; a

facilitation of AM detection was predicted in matched adaptation conditions,

however in the matched 40 Hz condition, TMS caused a decrease in AM detection

accuracy.

The final question asked whether any TMS effects were consistent with asym-

metric models of auditory processing, with directional predictions following the

AST hypothesis (Poeppel 2003). Left hemisphere stimulation was predicted to

preferentially modulate 40Hz AM detection whilst right hemisphere stimulation

was predicted to preferentially modulate 4Hz AM detection. Left hemisphere

stimulation was shown to affect the detection of 40Hz AM, whilst no effect of

right hemisphere stimulation was shown on the detection of either 4 or 40Hz AM.

4.5.1 Effect of AM rate

Our results show that whilst TMS to the left hemisphere affected detection of

40Hz AM, neither right nor left hemisphere TMS affected detection of 4Hz AM.

Before considering possible explanations for this difference, some potential con-

founds must be addressed. The number of modulation cycles within the present-

ation period is known to affect AM detection ability (Sheft and Yost 1990). The

500ms period contained 2 cycles of AM in the 4Hz test condition compared to 20

cycles in the 40Hz test condition. To address this possible confound, detection

difficulty was calibrated separately for each AM rate and for each participant.

Several studies have shown that BOLD signal changes are both smaller and

less distributed in response to higher frequency AM compared to lower frequency

AM (Giraud et al. 2000; Harms and Melcher 2002). Therefore, the choice of

TMS target locations could also affect whether, and to what degree, processing of

different modulation rates would be affected by TMS. Cortical TMS targets were

chosen based on fMRI responses to 4Hz and 40Hz AM combined, contrasted over

unmodulated noise to avoid biasing the targets towards areas more specialised
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for processing either rate.

The observation that TMS only affected 40Hz AM detection could be due to

the use of a different and possibly more robust mechanism for coding lower rates

of modulation (such as 4Hz). Evidence from multiple modalities has converged

in support of such an account where low and high frequency AM is coded by

different mechanisms. fMRI studies have found that lower frequency AM elicits

a more sustained response whilst higher frequency AM produces more phasic re-

sponses at onset and offset of the stimulus, possibly representing a single auditory

event (Giraud et al. 2000; Harms et al. 2005). Direct cortical recordings using

invasive intracranial electrodes have also provided strong support for a shift in

coding mechanism as AM rate increases (Brugge et al. 2009; Nourski et al. 2012;

Nourski 2017). Non-invasive electrophysiological evidence suggests that the bal-

ance of phase-locked (PL) and non phase-locked (NPL) activity changes as AM

rate increases; PL activity dominates at lower rates whilst more NPL activity

is observed with increasing AM rate (Tang et al. 2016; Wang 2018). The cutoff

point for this transition from mostly PL to mostly NPL activity is estimated to

be 50Hz (above the rates studied here), but the amount of NPL activity does

differ between 4Hz and 40Hz. Though PL activity still dominates the response

to 40Hz AM, Tang et al. (2016) found a significant increase in NPL activity over

that measured for 4Hz AM. It is possible that this difference in coding mech-

anisms might contribute to the observed results. Any mechanism which relies

on coding the onset and offset of a stimulus could be more susceptible to TMS

than one reliant on sustained responses. If, for example, the single cortical event

coding for the onset of 40Hz AM was disrupted, this may have a significant im-

pact, particularly at short stimulus durations in which there is little time for the

system to recover. In comparison, a sustained system where PL neurons fire in

synchronisation with slower modulations would likely be more robust to a single

disruptive event. Further, it would be biologically useful for the system that pro-

cesses low-frequency AM it to be more robust to disruption due to its importance

for speech intelligibility. This explanation is challenged however, by the classic
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finding that with sustained periods of auditory stimulation, peak PL responses

are shown for 40Hz AM; the 40Hz auditory steady-state response (Galambos et

al. 1981; Ross et al. 2000). Though PL and NPL activity is evident during 40Hz

processing, the role and relative importance of each mechanism is not clear. The

suggestion that TMS may differentially affect disparate neuronal coding mechan-

isms has important implications for the design of future TMS experiments and

warrants further investigation.

4.5.2 Hemispheric differences

Before considering explanations of the changes in behavioural performance caused

by TMS to the left and right hemisphere, we can first rule out several methodo-

logical confounds. Neither the distance to the TMS target, nor the accuracy with

which TMS was delivered differed significantly between the two hemispheres or

between test conditions. In addition, there was no significant correlation across

subjects between task accuracy scores and the distance to target, suggesting that

any distance effects can be discounted.

Previous research using transcranial direct current stimulation (TDCS) to

investigate auditory temporal resolution using a gap detection task has shown

differential susceptibility of the left and right hemispheres to stimulation. A det-

rimental effect on performance was found exclusively when anodal TDCS was

applied to the left hemisphere (Heimrath et al. 2014). It is interesting that the

current results accord with this finding as there is evidence that gap detection

tasks and estimation of the temporal modulation transfer function (TMTF; us-

ing the method employed in this study, though the full TMTF was not estimated

here) are measuring different aspects of auditory temporal acuity (Shen 2014).

Disruptive TMS effects on duration discrimination have been shown exclusively

for the right hemisphere (Bueti et al. 2008). However, these studies differ not only

in both the nature of the behavioural task, but also the nature of the stimulus.

Whilst Bueti et al. (2008) used tonal stimuli, Heimrath et al. (2014) and the cur-

rent study use relatively broadband noise stimuli. A question of interest is there-
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fore whether the spectral nature of the stimulus has an influence on hemispheric

lateralisation of function and how this interacts with the specific behavioural task

under investigation.

4.5.3 State-dependent effects

The initial prediction for this study was that TMS combined with behavioural

adaptation at a modulation rate matched to the test modulation rate would lead

to an improvement in AM detection accuracy. Instead, an unexpected dissoci-

ation was shown between performance on the 40Hz AM detection task in the

matched and un-matched adaptation conditions: a behavioural facilitation was

observed in the unmatched condition (4 Hz adaptation) whilst a reduction in

performance was seen in the matched condition (40 Hz adaptation). An over-

arching framework that accounts for both online and state-dependent effects has

recently been proposed (Silvanto and Cattaneo 2017). It is possible to reconcile

these results within this framework, however not using a purely state-dependent

TMS explanation. This suggests that modifications made to the experimental

design when converting it to investigate auditory function may have affected the

nature of the disruption. The majority of state-dependent TMS experiments have

used visual tasks involving brief simultaneous presentations of multiple stimuli

with TMS pulses delivered on stimulus onset (Silvanto et al. 2007; Cattaneo and

Silvanto 2008; Silvanto and Muggleton 2008b). To account for the necessarily

more temporally extended nature of auditory stimuli, modifications were required

when designing this auditory state-dependent TMS paradigm. In each trial, an

auditory adaptation period immediately preceded a 2-AFC decision, with TMS

delivered just prior to the onset of the 2-AFC task. In matched adaptation trials,

though the stimulation is delivered whilst the participant is adapted, it is actu-

ally delivered during AM processing at the target rate, therefore corresponding

more closely to online TMS. The suprathreshold TMS would then be expected

to impair performance as the neurons tuned to the target rate have been shifted

into their inhibitory range (Silvanto and Cattaneo 2017: fig.1). This key timing
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difference could explain the ‘virtual lesion’ style detrimental TMS effects seen in

the matched 40Hz condition. In unmatched adaptation trials, participants re-

ceived TMS during processing of one rate of AM and were subsequently tested

at the other rate.

Within this same overarching framework, two possible explanations exist that

lead to a facilitation of behavioural performance. At the point at which TMS

was delivered, neural populations responsible for processing the test rate would

be suppressed relative to populations responsible for processing the adaptation

rate. This would lead to test rate populations being in their facilitatory range

when activated by the suprathreshold TMS, leading to behavioural improvements

at detecting 40Hz AM (Silvanto and Cattaneo 2017: fig. 2). Alternatively, It is

also possible that the neural populations that process 40Hz AM may have been

adapted by the 4Hz AM. Maximal adaptation, as measured by decrease in de-

tection ability, occurs when adaptor and test rates are identical, however there

is evidence for a graded decrease in adaptation as the difference between the

two rates increases (Houtgast 1989; Bacon and Grantham 1989; Wojtczak and

Viemeister 2005). Based on the estimated shape of the modulation filter with

centre frequency of 40Hz, it may be expected that populations involved in pro-

cessing 40Hz would be adapted by exposure to 4Hz AM. Further, the estimated

shape of modulation filters with centre frequencies of 4 and 40Hz differs such that

the 4Hz filter is much more narrow (5Hz bandwidth), suggesting an asymmetry

where populations optimised for coding 4Hz would not be adapted by exposure to

40Hz AM, but populations optimised for coding 40Hz may still be adapted some-

what by exposure to 4Hz AM (Dau et al. 1997a). Under this assumption, the

outcome in the unmatched condition would follow state-dependent TMS predic-

tions, where adaptation has suppressed the activity of 40Hz populations, shifting

the inhibitory/facilitatory range of these populations such that suprathreshold

TMS leads to behavioural facilitation. With the current dataset, it is not pos-

sible to dissociate these two mechanisms, both of which would lead to an increase

in performance for 40Hz AM detection.

114



Overall, the timing of TMS delivery is central to this explanation of the ob-

served results. The importance of this parameter has been previously noted

(Silvanto and Pascual-Leone 2008), with differential effects shown when pulses

were delivered before and during task performance across different studies, with

and without adaptation. In online TMS studies, no adaptation is used and supra-

threshold TMS is delivered during the test stimulus, causing a decrease in per-

formance. The current study therefore demonstrates that TMS can cause either

disruptive or facilitatory effects on 40Hz AM detection depending on which AM

rate is perceived during TMS delivery. Further investigating how TMS at differ-

ent timepoints affects AM detection will help to elucidate the mechanisms of this

effect and improve the utility of auditory TMS as an investigative tool.

4.6 Conclusions

This study showed, for the first time, that low-level mechanisms involved in AM

detection, a key component of speech processing, can be affected using TMS.

This important finding demonstrates that TMS can be a useful technique for in-

vestigating low-level auditory processing mechanisms and opens the door to new

research in this area. It was also shown that the TMS effect on AM detection

shows state-dependency, i.e., the underlying state of the AM detection system

when TMS is delivered has a differential effect on the outcome. It was further

demonstrated that systematically modifying this underlying state using behavi-

oural adaptation is an effective way to increase the functional resolution of TMS

and alter the nature of TMS effects on AM detection. The results of this study

provide support for the importance of the left posterior superior temporal gyrus

for processing 40Hz AM. It also suggests that 4Hz AM may be encoded using a

different mechanism that is more robust to interference from TMS. This illustrates

a potential limitation of the method and would benefit from further investigation.

Finally, in addition to the direct implications for auditory processing, methodolo-

gical considerations for the use and interpretation of state-dependent TMS were
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discussed so that important factors such as subtle timing and task manipulations

are accounted for in future work. This study demonstrated the utility of TMS

as a new and potentially valuable tool for furthering understanding of low-level

auditory processing in health and disease.
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Chapter 5

Amplitude Modulation Depth

Discrimination is not Affected by

Continuous Theta Burst

Stimulation to Left or Right

Auditory Cortex

5.1 Abstract

Low frequency amplitude modulations (AM) that comprise the speech envelope

are a critical component for the intelligibility of a speech signal. The differential

contribution of left and right auditory areas to the processing of these low-level

speech-relevant auditory stimuli remains unclear. Multiple plausible models have

been suggested to account for observed hemispheric asymmetries in processing

many auditory stimuli. AM depth discrimination is a crucial aspect of auditory

processing as it determines the smallest level of information that can be decoded

from an amplitude modulated signal such as speech (Wakefield and Viemeister

1990). It is unknown whether sensitivity to AM depth is susceptible to disruption

by non-invasive brain stimulation, however, this could be a novel and effective
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tool to further investigate AM processing. In order to investigate this, a func-

tional magnetic resonance imaging (fMRI)-guided transcranial magnetic stimula-

tion study was conducted. AM depth discrimination thresholds for sinusoidally

amplitude modulated broadband noise (0 – 8 kHz) stimuli were obtained at two

AM rates; 4 and 40 Hz. Cortical locations involved in the processing of AM were

then isolated for each participant using an interleaved silent steady state fMRI

paradigm. An AM depth discrimination task was then completed at threshold

pre- and post- continuous theta-burst stimulation (cTBS). Left auditory cortex,

right auditory cortex and sham TMS conditions were included to investigate

any asymmetrical effects, as may be predicted by asymmetric models and previ-

ous TMS work (Poeppel 2003; Andoh et al. 2015). Multilevel modelling results

showed no evidence of statistically significant differences for any experimental

comparisons. Possible explanations for this are considered and recommendations

for future investigations are made.

5.2 Introduction

The auditory system is able to continuously track ongoing modulations of audit-

ory signals in remarkably high resolution; an ability that is particularly important

for decoding speech. Speech consists of highly complex concurrent modulations

of both amplitude and frequency, yet the human auditory system decodes it with

relative ease. The exact mechanisms underlying speech comprehension are still

unknown, however, the relative contributions of disparate low-level aspects have

been investigated and amplitude modulations (AM) of the speech envelope have

been shown to be particularly important (Greenberg 2004; Joris et al. 2004). In

fact, low frequency AM (<16 Hz) is known to be critical for speech to be intel-

ligible (Rosen 1992; Drullman et al. 1994a,b) and even with severely degraded

spectral information, adequately preserved AM can be sufficient for intelligibility

(Shannon et al. 1995). The ability to detect these modulations varies between

individuals and poor temporal processing is common in disorders that include
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a language processing deficit, such as dyslexia (Lehongre et al. 2013; Cutini et

al. 2016). Understanding the neural mechanisms involved in this process is a key

stage in fully characterising these disorders and developing new treatments. With

this aim, measures of temporal resolution such as gap detection and the temporal

modulation transfer function have been developed (Fitzgibbons and Wightman

1982; Viemeister 1979). While these measures have clinical utility, it is not clear

exactly what aspects of temporal processing they are each tapping into (Kumar

et al. 2012; Shen 2014).

AM depth discrimination is the ability to detect a difference in the AM depth

of two amplitude modulated stimuli. This is a particularly interesting measure

as it reflects the smallest degree of AM required to decode a unit of information

(Wakefield and Viemeister 1990). AM in natural speech is usually suprathreshold,

so this measure more closely replicates the processes involved in speech decod-

ing than basic AM detection. (Schlittenlacher and Moore 2016) While both AM

detection and AM depth discrimination are measures of auditory temporal sensit-

ivity, they are dissociable, for example, it was demonstrated that hearing impaired

participants outperform normal-hearing participants on AM detection (at 30dB

SPL) but perform more poorly than normal-hearing participants at AM depth

discrimination (Schlittenlacher and Moore 2016). This suggests that the neural

mechanisms underlying AM detection and AM depth discrimination are distinct

as they respond differently to peripheral insult. The exact mechanisms underlying

these functions are largely unknown, however the cortical system, at least in part,

has been localised to secondary auditory cortical regions. Functional magnetic

resonance imaging (fMRI) activations to AM are commonly measured in posterior

superior temporal gyrus (pSTG) / planum temporale (PT), suggesting that these

areas are part of the system that processes AM (Giraud et al. 2000; Harms and

Melcher 2002; Griffiths and Warren 2002). Despite this consistent finding, the

macrostructure of auditory areas is generally highly variable inter-individually

and asymmetrical between hemispheres intra-individually (Geschwind and Levit-

sky 1968; Abdul-Kareem and Sluming 2008; Liem et al. 2014: e.g.). In comple-
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ment to the observed macrostructural asymmetries in auditory cortical regions,

behavioural and neuroimaging evidence is also mounting for functional asymmet-

ries (Giraud et al. 2000; Boemio et al. 2005; Luo and Poeppel 2012; Abrams et al.

2008; Morillon et al. 2010; Han and Dimitrijevic 2015). Further, these asymmet-

ries have behavioural relevance, for example, abnormal patterns of asymmetry

have been linked to poor reading skills in individuals without language disorders

(Abrams et al. 2009), however the true underlying nature of these asymmetries

is contentious (Poeppel 2014).

One explanation for the hemispheric asymmetries holds that left hemisphere

auditory areas are specialised for processing rapid temporal changes in the audit-

ory signal whereas the right hemisphere is more specialised for processing spectral

content (Zatorre and Belin 2001; Zatorre et al. 2002). Informed by evidence for

distinct frequencies of cortical oscillatory activity during speech processing, a co-

existing account focusses on the different timescales of processing between the

two hemispheres. The Asymmetric Sampling in Time hypothesis holds that the

left and right auditory cortices integrate the incoming signal using sampling win-

dows of different lengths (Poeppel 2003; Giraud and Poeppel 2012). This results

in a hemispheric asymmetry where left auditory cortex is specialised for pro-

cessing high frequencies and right auditory cortex is specialised for processing

low frequencies. The lengths of these sampling windows (∼ 20 and ∼ 250 ms,

respectively) align with key frequencies in the speech signal; the syllabic (∼ 4 –

8 Hz) and phonemic rate (∼ 40 Hz). This model would predict that AM depth

discrimination at an AM rate of 40 Hz would be preferentially processed by the

left auditory cortex and AM depth discrimination at an AM rate of 4 Hz would

be preferentially processed by the right auditory cortex. However, while dicho-

tomous distinctions like these are appealing, they are often reductionist and may

overlook key aspects, such as the true nature of the speech signal. It has been sug-

gested that the left hemisphere may show a specialisation for speech processing

while the right may not (McGettigan and Scott 2012).

Non-invasive brain stimulation methods are a relatively novel group of tech-
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niques that allow researchers to directly manipulate ongoing brain activity and

can provide causal evidence to link cortical structures with many functions (Wag-

ner et al. 2009). Transcranial magnetic stimulation (TMS) involves inducing a

time-varying magnetic field to temporarily and non-invasively modulate activity

in targeted neural systems (Barker et al. 1985). TMS has been successfully ap-

plied to investigate the neural mechanisms underlying many cognitive functions

relating to speech and language (Hartwigsen 2015), and has also proved useful for

investigating lower level auditory functions such as melody discrimination (An-

doh and Zatorre 2011). Further, while online TMS to auditory areas has been

shown to affect AM detection ability, the feasibility of TMS to perturb AM depth

discrimination has not been investigated.

Continuous theta-burst stimulation (cTBS) is an offline, repetitive TMS pro-

tocol where clustered bursts of low intensity pulses (50 Hz bursts of 3 pulses, sep-

arated by 200 ms) are continuously delivered in a train lasting up to 40 seconds.

The low intensity of stimulation allows for the safe delivery of many more pulses

than standard repetitive TMS protocols in a shorter time frame. cTBS was

designed to mimic the mechanism underlying neural long-term depression has

been shown to produce suppressive aftereffects lasting up to one hour (Huang

et al. 2005). The high efficiency and tolerability of the method has led to its

application with clinical populations including those with disorders with audit-

ory components, such as auditory hallucinations (Ray et al. 2015) and tinnitus

(Weisz et al. 2012). Although cTBS is most commonly applied to modulate mo-

tor cortex excitability (Chung et al. 2016; Suppa et al. 2016), it is also commonly

used as a basic science tool to investigate cognitive processes using behavioural

measures. In the auditory behavioural domain, however, there is a paucity of

previous applications of the method. Most notably, cTBS has been applied in

combination with fMRI to further investigate functional asymmetries and the

temporary changes cTBS causes to the underlying functional connectivity profile

(Andoh and Zatorre 2013; Andoh et al. 2015). These studies found that stimulat-

ing right antero-lateral Heschl’s gyrus led to decreased performance in a melody
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discrimination task, however this was linked to increased contralateral homolog-

ous activity, suggesting interhemispheric compensatory effects may be involved

(Andoh and Zatorre 2013). It was also shown that right hemisphere cTBS causes

more widespread decreases in functional connectivity compared with cTBS to

the left hemisphere (Andoh et al. 2015). Although cTBS is typically considered

a disruptive paradigm (due to suppressed EMG responses when applied to motor

areas), these studies show that auditory networks respond very differently and

cTBS can lead to facilitatory effects on auditory behavioural tasks. This type of

conflicting result is common in TMS studies and the direction of effects can be

difficult to predict (Weisz et al. 2012; López-Alonso et al. 2014). For example,

one study investigating the efficacy of cTBS for treating tinnitus found significant

effects of cTBS for all participants, however, the direction of the effect differed

(Müller et al. 2013). TMS effects can also vary in magnitude or direction based on

the underlying state of the cortex when TMS is delivered (Silvanto and Muggleton

2008a; Cattaneo et al. 2008; Silvanto et al. 2018). Despite this variability, cTBS

is particularly well-suited for studying auditory perception. Primarily, this is

because stimuli can be presented after the stimulation, during the aftereffect

period. In the aftereffect period, there are no auditory TMS artefacts that could

potentially mask the stimuli. Further, the efficiency of cTBS and the potential

to induce longer lasting changes may be beneficial for future low-level auditory

investigations. However, it is not currently known whether cTBS is an effective

methods for modulating AM processing. These three principal reasons provided

the rationale for using cTBS to investigate AM processing. Though cTBS has

been successfully applied to probe motor function and has been shown to have

effects on auditory neural networks, it has not been used to investigate processing

of AM noise.

The current study combined auditory psychophysics and fMRI-guided TMS

to further investigate the neural systems underlying AM depth discrimination.

AM depth discrimination thresholds were measured for sinusoidal AM broadband

noise at rates of 4 and 40 Hz. TMS targets were obtained for each participant
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using peak BOLD fMRI activity to AM at rates of 4 and 40 Hz. AM depth

discrimination ability was then tested following cTBS to left or right auditory

cortex and compared with a pre-TMS baseline. A sham TMS condition was also

included to control for the influence of peripheral effects such as the auditory

TMS click artefact, without any magnetic stimulation effects. It was, however,

unclear if the complex click train produced during cTBS might affect perception

of subsequent AM and the inclusion of this condition allowed the efficacy of this

sham method to be tested.

The following three experimental hypotheses were proposed.

� Firstly, it was predicted that cTBS to both hemispheres would affect AM

depth discrimination ability when compared to a pre-TMS baseline.

� Secondly, it was predicted that cTBS to the right hemisphere would have a

largest disruptive effect on 4 Hz AM depth discrimination.

� Finally, it was predicted that cTBS to the left hemisphere would have a

largest disruptive effect on 40 Hz AM depth discrimination.

5.3 Materials and Methods

5.3.1 Subjects

Ten subjects (5 female; mean age = 22.5 years, SD = 4.65) participated in the

experiment. Subjects responded to an advert and were paid or reimbursed in

course credit for participation except for one participant who was a member

of the research team. All subjects were TMS and MRI eligible, right-handed,

native English speaking and had self-reported normal hearing. The project was

approved by the Research Governance Committee, York Neuroimaging Centre,

University of York and conformed to the guidelines of the Declaration of Helsinki.

All participants gave written informed consent.
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5.3.2 Experimental Design

Audiogram

Subjects underwent an air conductance pure tone audiogram to determine that

hearing thresholds were above eligibility requirements. Audiograms were con-

ducted using an Interacoustics AD226 audiometer (Interacoustics, Middelfart,

Denmark) and Telephonics TDH-39P earphones (Telephonics, NY, USA). Sub-

jects were excluded from further testing if they did not meet the threshold criteria

of ≤20 dB HL at octave frequencies from 250 – 8000Hz in both ears.

Psychophysical Testing

A double-walled, sound-attenuated booth was used for psychophysical testing.

Auditory stimuli were presented diotically via Sennheiser HD650 headphones

(Sennheiser, Wedemark, Germany). The two-alternative forced choice (2AFC)

task used by Wakefield and Viemeister (1990) was used to determine psycho-

physical thresholds for AM depth discrimination. Each stimulus consisted of

three continuous 500 ms periods of broadband noise (low-pass filtered at 8 kHz).

In each trial, both the first and third period were sinusoidally amplitude modu-

lated. The second (centre) 500ms period was always unmodulated. This stimulus

forms one continuous 1.5 s percept. Either the first or third period was always

modulated at a standard depth of 0.36m but the AM depth of the other period

(comparison period) was varied. Participants indicated which interval (either in-

terval one or three) they thought was modulated at a greater depth by pressing

the left or right arrow key on a standard keyboard. Participants were tested

separately at AM rates of 4 and 40Hz with 20 practice trials delivered at each

rate before testing began. The starting phase of the modulation was chosen

randomly from a uniform distribution ranging from 0 to 2 π and the standard

and comparison interval power were normalised to match the RMS of the centre

period.

The AM depth of the comparison interval was systematically modified between
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Figure 5.1: This example trial could be from either the psychophysical testing or

main task run. In the psychophysical testing sessions, the difference in AM depth

between period one and period three varied between trials. During the main task

runs, this depth difference remained constant (set per participant at their 70%

threshold value) but direction from the standard depth differed. The AM rate (4

or 40 Hz) and TMS target (left, right or sham) did not differ within a session.
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trials using an adaptive staircase procedure (Levitt 1971). Four interleaved stair-

cases were used (1-up, 2-down; 1-up, 3-down; 2-up, 1-down, 3-up, 1-down). This

method allowed measures of sensitivity for AM depths both greater and less

than the standard depth (0.36m). Before each trial, a random choice was made

between the remaining staircases and this continued until each staircase had

reached 14 reversals. A step size of 1 dB was used for the first 4 reversals

of each staircase, which decreased to 0.5 dB for the next 4 reversals and to

0.25 dB for the final 6 reversals. Participants completed three runs at each

of the 4 and 40Hz modulation rates. For 4 and 40Hz separately, the modula-

tion depth delta where 70% accuracy was achieved was estimated from each run

from the respective psychometric function on a per-subject basis. The largest

of the three modulation depth delta estimates was discarded and the mean of

the remaining two was used as the threshold depth for that subject in the TMS

sessions. All stimuli were generated at a sample rate of 44.1 kHz using Py-

thon and presented using PsychoPy (Peirce 2007) and the PyAudio module

( https://people.csail.mit.edu/hubert/pyaudio/) through an EMU 0204

24-bit DAC (Creative Technology Ltd, Singapore). Stimuli were presented at 70

dB SPL as calibrated using an artificial ear (B&K 4153) and a sound level meter

(B&K 2260).

fMRI Acquisition and Analysis

Subjects wore earplugs underneath the sound-attenuating headphones from the

fMRI-compatible auditory stimulus delivery system (MR Confon, MR Confon

GmBH). fMRI data were acquired using an Interleaved Silent Steady-State fMRI

sequence (Schwarzbauer et al. 2006). The sound level of the scanner noise, not

accounting for attenuation provided by earplugs and ear defenders, was 81 dB SPL

during the quiet period and 98 dB SPL during the acquisition period. During the

acquisition periods, whole head fMRI data (GE-EPI, TR = 2 s, TE = minimum

full, FA = 90°) were collected using a GE Signa HDx 3T system (General Electric,

WI, USA). A 128 × 128 pixel matrix with a field of view of 25.6 cm was used,
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giving an in-plane resolution of 2 × 2 mm. 24 interleaved slices were collected

with a slice thickness of 2 mm. Slices were oriented parallel with the Sylvian

fissure while ensuring bilateral coverage of Heschl’s gyrus and planum temporale.

Stimulus conditions were silence, noise, 4Hz AM noise, and 40Hz AM noise.

All noise carriers were broadband (0 – 8000Hz) and the AM stimuli were fully

modulated (m = 1). Stimuli were presented for 6 seconds followed by an acquisi-

tion period of 8s. Each stimulus was presented 6 times in each fMRI run and three

runs were performed for each subject, each run lasting approximately 6 minutes.

Data were analysed using Feat 5.98, part of FSL-4.1 (Smith et al. 2004), along

with custom scripts which implemented filtering of the temporally non-contiguous

data. Full details of this analysis procedure can be found in Hymers et al. (2015),

with the exception that in this study spatial smoothing was performed using a

kernel with a FWHM of 2mm.

Data from the multiple fMRI runs for each subject were combined using a

fixed-effects analysis. A contrast of 4Hz and 40Hz AM noise combined over

unmodulated noise was performed. The results were corrected for multiple com-

parisons using a cluster thresholding procedure (Z >2.3, p = 0.05; Worsley 2001).

TMS targets were defined individually for each subject using a superficial max-

ima voxel in a significant cluster on posterior superior temporal gyrus / planum

temporale for each hemisphere.

Sagittal whole head structural T1-weighted data (3D FSPGR, TR = 7.8 ms,

TE = minimum full, FA = 20°, Matrix 256 × 256, FOV = 29.0 cm, 176 slices,

Slice thickness = 1 mm) were collected in the same scanning session as the fMRI

data for participants who did not already have a structural MRI scan available.

TMS

A 2x3x3 repeated measures design was used during the main TMS experiment.

Experimental factors were AM rate (2 levels; 4Hz, 40Hz), TMS (3 levels; sham,

left, right) and timepoint (pre-TMS, post-TMS-1 and post-TMS-2). The depend-

ent variable was accuracy on the AM depth discrimination task. All subjects
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completed six TMS sessions in total; one for each permutation of AM rate and

TMS condition. The order of sessions was approximately counterbalanced across

subjects using a latin square design. At least 24 hours elapsed between each TMS

session. A Brainsight frameless stereotaxic system (Rogue Research, Montreal,

Canada) with chin rest and forehead support was used to monitor coil placement

and ensure accurate TMS delivery. A Magstim Super Rapid2 (Magstim, Whit-

land, UK) stimulator and a 80mm figure-of-eight TMS coil (Magstim, Whitland,

UK; 80mm diameter of each coil wing) was used for pulse delivery. The TMS coil

was always oriented with the handle pointing horizontally in an anterior direc-

tion, parallel with the midline. Stimulation consisted of a continuous theta-burst

protocol; with bursts of 3 pulses separated by 5 ms delivered at a rate of 20 Hz.

The pulse train was 40 seconds long giving a total of 600 pulses, in accordance

with previous studies and the standard safety guidelines for cTBS (Huang et al.

2005; Rossi et al. 2009; Oberman et al. 2011). TMS pulse intensity was set to

40% of the maximum stimulator output (maximum = 2.6 T), which corresponds

to ∼70 – 80 % of active motor threshold (Bestmann et al. 2003) and participants

wore earplugs during cTBS. Before the first experimental TMS session, a short

train of test pulses were delivered to ensure that subjects could tolerate this TMS

protocol. The left and right TMS targets were obtained using the fMRI data as

previously described. Sham TMS was performed by placing the coil at the ver-

tex and rotating by 90°to remove any physiological effect of TMS but, crucially,

retain peripheral factors such as the auditory artefact (Lisanby et al. 2001).

All auditory testing was completed in a double-walled sound attenuating

booth. The design of the 2AFC task was identical to that used during baseline

psychophysical testing, aside from the AM depth of the comparison interval was

fixed (at 70% threshold) and participant feedback was removed. One block of

200 trials was completed immediately prior to the TMS train. Another block of

200 trials was then completed. The final block was completed 20 minutes after

the previous block began.
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Key Methodological Changes

This section will detail the key similarities and differences between the design

previously described in Chapter 4 and the design used for this study. The main

difference in the design of the behavioural task between studies described previ-

ously and the study described here is that an AM discrimination task was used

in this study. In the AM discrimination task, 3 continuous 0.5 s noise periods are

presented and period 1 and 3 are both amplitude modulated, however one AM

period is modulated to a greater depth. This is different from the AM detection

task used in previous chapters where only one noise period was amplitude mod-

ulated. An AM discrimination task was used here as AM discrimination more

closely resembles the processes underlying AM processing during speech than AM

detection.

The fMRI design used in this study was identical to the fMRI design reported

in previous chapters.

The TMS protocol used in this study was continuous theta burst stimulation

(cTBS). This is distinct from the TMS protocols used in previous chapters as

cTBS is an offline, repetitive TMS protocol. Further, many TMS design decisions

in the previous chapter were due to the need to recreate the conditions required to

observe a state-dependent TMS effect. cTBS is a more established TMS protocol

with a commonly used set of parameters, so this study followed these standards.

The main advantage of cTBS compared to other repetitive TMS protocols is that

efficiency is increased due to the large number of TMS pulses delivered in a short

time. A further advantage is that the TMS artefact is not present during auditory

presentation as cTBS is offline - stimulation is delivered then the behavioural task

is completed during the aftereffect period. These reasons motivated the choice to

use cTBS to investigate cortical AM processing.

Statistical Analysis

Generalised linear mixed models were fit to the data to examine statistical sig-

nificance. This method is recommended over repeated measures ANOVAs in
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within-subjects designs as the hierarchical nature of the data generation is taken

into account (i.e., explicitly accounting for multiple measures from the same par-

ticipant leads to more accurate estimates) (Baayen et al. 2008; Dixon 2008; Jaeger

2008). Further, the binomial distribution of the raw data is problematic for stand-

ard linear modelling techniques, but the GLMM allows different link functions to

account for this; a logit link function was used here. The dataset was subsetted

based on AM rate and two separate models were fit due to a lack of convergence

when AM rate and its interaction terms were included as fixed effects. Factors

of TMS site and timepoint were modelled as fixed effects, and participant was

modelled as a random effect. The random effects structure was the maximal jus-

tified by the design (Barr et al. 2013); the model with maximal random effect

structure was fit then systematically reduced until convergence. Treatment cod-

ing was used to examine the difference from the baseline condition of pre-TMS

timepoint (prior to left hemisphere TMS) and the post-TMS timepoints (sep-

arately). Finally, models were parametrically bootstrapped and 95% confidence

intervals for all main-effect and interaction parameters were obtained. All mod-

elling was conducted using the lme4 package (Bates et al. 2015) in R software (R

Core Team 2017). Parametric bootstrapping was conducted using the pbkrtest

package (Halekoh and Hojsgaard 2014).

5.4 Results

5.4.1 Psychophysics

The modulation depth at which 70% accuracy was achieved on the AM depth

discrimination task was calculated individually for each participant, for each AM

test rate (4 and 40 Hz). The mean 70% threshold modulation depth across

participants for the 4 Hz condition was -21.2 dB and for the 40 Hz condition was

-24.4 dB. This is consistent with previous measures of the TMTF for AM depth

discrimination of noise carriers (Wakefield and Viemeister 1990). A paired t-test

showed a statistically significant difference between thresholds for 4 Hz and 40
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Hz AM depth discrimination (t(9) = 2.58, p = 0.03).

Table 5.1 shows the 70% threshold values obtained from the behavioural runs

for the AM depth discrimination task at 4 and 40Hz for each participant. These

depth values were used for each trial in the TMS runs.

Participant 4 Hz threshold (dB) 40 Hz threshold (dB)

P1 -25.0 -28.3
P2 -25.3 -23.5
P3 -21.4 -31.1
P4 -17.4 -17.7
P5 -18.3 -18.8
P6 -23.3 -27.7
P7 -21.7 -21.6
P8 -17.5 -27.3
P9 -19.6 -21.6
P10 -22.0 -26.3

Table 5.1: AM depth discrimination 70% threshold values in dB for each parti-

cipant. These values were used in the main task runs. The standard interval was

always modulated at a depth of 0.36m. dB values are computed as 20 log(m).

5.4.2 fMRI derivation of TMS Targets

TMS targets in MNI-152 co-ordinate space for all participants can be found in

Table 5.2.

Figure 5.2 shows targets in both hemispheres for an example participant.

TMS target distance measurements were recorded for TMS pulses. One parti-

cipant lacked this data due to a technical issue. This is a measure of the distance

from the centre of the TMS coil to the fMRI-defined target. The mean distance

from the TMS coil to the left hemisphere target was 30.8 mm (SD: 6.889). The

mean distance from the TMS coil to the right hemisphere target was 30.6 mm

(SD: 8.449). There was a negligible mean difference of 0.212 mm between left

and right hemisphere conditions.

TMS positioning error measurements were also recorded. One participant

lacked this data due to a technical issue. This is a measure of the lateral distance
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Figure 5.2: fMRI TMS target localisation data from an example participant.

Overlay shows clusters of activation (Z >2.3; p <0.05) in bilateral pSTG/PT

in response to a combination of 4 and 40 Hz sinusoidally amplitude modulated

broadband noise conditions (combined) over unmodulated noise. TMS targets

are indicated by the crosshairs. Targets were computed in individual coordinate

space then transformed into MNI-152 co-ordinate space for the group analysis,

and back transformed to participant co-ordinate space before targeting. Target

locations for this participant in MNI-152 coordinates are: Left: −46,−32, 6 and

Right: 62,−20, 10
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Participant Left hemisphere target Right hemisphere target

1 -64, -22, 8 60, -20, 8
2 -52, -26, 4 54, -28, 10
3 -50, -26, 0 54, -34, 10
4 -50, -36, 4 44, -26, 0
5 -60, -18, 0 62, -20, 10
6 -40, -32, 8 50, -24, 6
7 -58, -38, 14 42, -28, 8
8 -46, -32, 6 62, -20, 10
9 -44, -32, 10 50, -28, 0
10 -60, -34, 16 50, -28, 8

Mean -52.4, -29.6, 7 52.8, -26.4, 6.6

Table 5.2: MNI-152 co-ordinates for TMS targets in left and right hemispheres

for all participants. The average co-ordinate across all participants is also given.

from the fMRI-defined target to the estimated linear pulse trajectory. The overall

mean error was 0.379 mm. The mean error in left hemisphere conditions was 0.381

mm (SD: 0.295) The mean error in right hemisphere conditions was 0.389 mm

(SD: 0.341) There was a negligible mean difference of 0.008 mm between left

hemisphere and right hemisphere conditions.

5.4.3 Behavioural Analysis

TMS Condition AM Rate (Hz) Timepoint

Pre Post –1 Post –2

Sham 4 66.6% 64.1% 65.6%
Left 4 69.0% 69.2% 67.0%

Right 4 69.0% 67.8% 67.8%

Sham 40 70.4% 73.2% 70.3%
Left 40 72.6% 70.5% 72.0%

Right 40 70.0% 69.2% 72.3%

Table 5.3: Mean AM depth discrimination accuracy in % correct, averaged over

all participants.

Mean accuracy was calculated for all conditions and can be found in table 5.3.

A graphical representation of this data can be found in Figure 5.3.
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Figure 5.3: Mean accuracy across all participants for all experimental conditions.

The horizontal line represents 70% accuracy. The upper row of subplots show

data from the 4 Hz task while the lower row shows data from the 40 Hz task. The

first column of subplots shows data from the sham TMS conditions, the centre

column shows data from the left hemisphere TMS conditions and the final column

shows data from the right hemisphere TMS conditions. Error bars show the 95%

confidence interval.
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5.4.4 Sham Summaries

For the sham 4 Hz AM condition, mean AM depth discrimination accuracy across

all timepoints was 65.4%. For the sham 40 Hz AM condition, mean AM depth

discrimination accuracy across all timepoints was 71.3%. For the 4 Hz AM con-

dition, mean pre-TMS AM depth discrimination accuracy was 68.2%. For the 40

Hz AM condition, mean pre-TMS AM depth discrimination accuracy was 71.0%

These summaries for the sham TMS and pre-TMS baseline conditions suggest

that the 70% threshold estimation procedure worked well. It is also notable that

the 4 Hz and 40 Hz scores are consistent across the separate control conditions,

suggesting that sham TMS had little measurable effect on AM depth discrimin-

ation accuracy. While this increases confidence in using sham TMS as a control

condition for the main test scores, the accuracy scores across timepoints within

the sham TMS condition were highly variable; the largest variance of all condi-

tions was found in the 4 Hz AM with sham TMS condition. This inconsistency

means that using the sham TMS conditions as a baseline for statistical compar-

isons may be problematic. It is unclear why this pattern of high variance was

found in the sham TMS conditions.
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Figure 5.4: Changes in AM depth discrimination accuracy between the pre-TMS

condition and left and right TMS conditions calculated as the mean of within-

subject differences for each participant. The left hand graph shows results for

the post-TMS timepoint 1 and the right hand side results for the post-TMS

timepoint2 (20 minutes later). Both represent the difference from the pre-TMS

baseline. Error bars show the 95% confidence interval.
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5.4.5 Main Analysis

GLMM analysis of 4 Hz data

Results from this model are shown in Table 5.4. Factors included in this model are

TMS condition (3 levels: sham, left hemisphere, right hemisphere) and Timepoint

(3 levels: pre-TMS, post-TMS 1, post-TMS 2). Model fit values for this GLMM

are as follows: AIC = 485.4, BIC = 541.9 . No statistically significant effects

of cTBS on AM depth discrimination were found in any of the experimental

conditions.

Dependent variable:

Accuracy 95% CI

Baseline 0.839 (0.558 1.129)
Right Hemisphere TMS −0.009 (−0.198 0.175)
Post-TMS Timepoint 1 0.007 (−0.157 0.173)
Post-TMS Timepoint 2 −0.047 (−0.247 0.159)
Right Hemisphere TMS x Post-TMS Timepoint 1 −0.064 (−0.274 0.146)
Right Hemisphere TMS x Post-TMS Timepoint 2 0.012 (−0.221 0.248)

Table 5.4: GLMM results from the 4 Hz AM conditions. Accuracy parameters

and 95% CIs are in logit units. ‘Baseline’ represents the baseline condition of pre-

TMS timepoint in the left hemisphere. All coefficients represent the difference

from this baseline condition.

GLMM analysis of 40 Hz data

Results from this model are shown in Table 5.5. Factors included in this model are

TMS condition (3 levels: sham, left hemisphere, right hemisphere) and Timepoint

(3 levels: pre-TMS, post-TMS 1, post-TMS 2). Model fit values for this GLMM

are as follows: AIC = 496.1, BIC = 552.7 . No statistically significant effects

of cTBS on AM depth discrimination were found in any of the experimental

conditions.
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Dependent variable:

Accuracy 95% CI

Baseline 1.061 (0.672 1.455)
Right Hemisphere TMS −0.179 (−0.415 0.056)
Post-TMS Timepoint 1 −0.124 (−0.335 0.081)
Post-TMS Timepoint 2 −0.021 (−0.297 0.253)
Right Hemisphere TMS x Post-TMS Timepoint 1 0.100 (−0.148 0.347)
Right Hemisphere TMS x Post-TMS Timepoint 2 0.185 (−0.144 0.507)

Table 5.5: GLMM results from the 40 Hz AM conditions. Accuracy parameters

and 95% CIs are in logit units. ‘Baseline’ represents the baseline condition of pre-

TMS timepoint in the left hemisphere. All coefficients represent the difference

from this baseline condition.

5.5 Discussion and Conclusions

5.5.1 Overview

The current study aimed to investigate the neural mechanisms underlying AM

depth discrimination using offline fMRI-guided continuous theta-burst stimula-

tion. AM depth discrimination ability was measured at rates of 4 and 40 Hz

before theta-burst stimulation and at two timepoints post-stimulation. TMS was

delivered to 3 sites in separate sessions: vertex (sham), left auditory cortex, and

right auditory cortex. The efficacy of sham cTBS for use in auditory experi-

ments was also tested. No evidence supporting any of the three hypotheses was

found as no statistically significant effects were found in any of the experimental

conditions.

5.5.2 Possible Explanations for the Lack of cTBS Effect

Despite previous results showing the effectiveness of TMS for modulating AM

detection sensitivity, the current results showed no effect of cTBS on AM depth

discrimination. Two possible explanations for the lack of observed effects, namely

the differences in stimulation method and AM task between this study and pre-

vious work are discussed here. It is well known that the intensity of the magnetic
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field generated by TMS decreases significantly as the distance from the coil in-

creases. (Stokes et al. 2007). In contrast to the previous study where online dual

pulse TMS was delivered at an intensity of 65%, the cTBS protocol used in this

study was at an intensity of 40%. Further, the relatively deep TMS targets and

low intensity protocol could have combined to result in a low intensity of stimu-

lation induced at the target, possibly contributing to the lack of measured effect.

Another important factor to consider is the different frequency of TMS used by

each study. The previous dual pulse TMS study used a inter-pulse-interval of 50

ms, resulting in two pulses of 20 Hz stimulation. In contrast, cTBS is comprised

of a train of 3-pulse bursts at 50 Hz, each separated by 200 ms. As AM rate is a

key factor in this study and the close alignment between frequencies of oscillatory

brain activity and auditory processing at these rates has been demonstrated, it

is possible that this differential frequency impacted on the result. Although each

stimulation protocol was chosen in a principled way based on previous research,

interactions between stimulation rate and AM rate of the auditory stimuli must

also be considered. The ability of single pulse TMS to entrain oscillations at

particular frequencies has been demonstrated (Thut et al. 2011), however there

is evidence for cTBS having no effect on oscillatory activity (Müller et al. 2013).

This is one avenue of further research as the true importance of oscillatory activity

to auditory and AM processing continues to be elucidated. Either of these meth-

odological differences (or a combination) could have resulted in the differential

TMS effects observed between the two studies.

Further to the methodological differences in the TMS protocols, the studies

also differed in the behavioural task used. Previous work showed that TMS

could affect AM sensitivity as measured by accuracy on a simple AM detection

task. The current work used a higher order AM depth discrimination task where

more subtle judgements were made. This task was chosen as it more closely

represents the process of AM extraction during speech processing (Schlittenlacher

and Moore 2016). There are two primary reasons why this may have affected the

results. Firstly, although TMS targets were calculated from a contrast of AM
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noise over unmodulated noise, it is possible that the extraction of this higher

order information (namely the difference in AM depth between two signals) is

actually conducted in a different brain location, or even spread across multiple

locations in stages, as AM filterbank models may suggest. If this is the case, it

may be that TMS to a single location would not suffice to disrupt this form of AM

processing. Secondly, a key distinction in this study compared to previous studies

investigating motor activation over time is that rather than participants passively

sitting while EMG measurements were taken at specific timepoints, participants

in this study were actively completing the behavioural AM task during much

of the 20 minute period post-cTBS. It is possible that this continual activation

interacted with the cTBS effect and diminished it. Exploring this possibility

further would be an interesting line of enquiry for future research.

Although no effects reached significance in the GLMMs, is it interesting to

note that a trend observed in the data measured 20 minutes post-TBS does con-

form to predictions based on a combination of previous studies. Andoh and

Zatorre (2013) measured activity increases in contralateral auditory cortical re-

gions after cTBS and found that right hemisphere cTBS resulted in increased

contralateral activity whereas left hemisphere cTBS did not. This was also re-

flected in behavioural measures as reaction times were graded such that a higher

facilitatory effect was accompanied by a larger BOLD response in left antero-

lateral Heschl’s gyrus. Following the predictions of the Asymmetric Sampling

in Time hypothesis (Poeppel 2003), if the left hemisphere is specialised for pro-

cessing signals with higher rates of change, increased activity in left auditory areas

could lead to specific increases in sensitivity to these signals. A subtle increase

in 40 Hz AM sensitivity is shown with right hemisphere stimulation, however a

small decrease of 4 Hz AM sensitivity with left hemisphere cTBS and possibly

also right hemisphere TMS was also shown. This dissociation could be explained

by a combination of the effect previously observed by Andoh and Zatorre (2013)

and predictions following the Asymmetric Sampling in Time hypothesis (Poep-

pel 2003). Further investigations are required before more conclusive statements
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could be made, but this initial study provides a specific timepoint and hemi-

spheric balance of effects for future work to focus on. A further focus for future

work could be on identifying and reducing sources of variance in order to improve

the reliability of cTBS generally and specifically for auditory applications.

5.5.3 High Inter-individual Variance

Particularly high variances were found for AM depth discrimination accuracy in

the sham conditions. This was unexpected and could be improved by increasing

the number or modifying the design of behavioural task runs participants com-

pleted before the main task began. Variability has been shown in other temporal

resolution tasks (Smith et al. 2008: e.g. gap detection:), although this has high

test-retest reliability after 4 sessions. In fact, much of the psychophysical literat-

ure includes many hours of task practice before the study begins (Wakefield and

Viemeister 1990: e.g.) and psychometric functions are assumed to be stationary,

however for multimodal studies, this extensive pre-testing is often unfeasible and

this assumption does not hold. A more feasible solution may be to improve the

psychophysical methodology in order to account for non-stationarity (Doll et al.

2015). The unexpected variance observed in the sham conditions are likely due to

comparatively naive participants and non-stationary observers. This is not fully

addressed in the auditory psychophysics literature but more recent studies have

implicitly accounted for this, for example, Schlittenlacher and Moore (2016) ad-

ded an easily detectable reminder stimulus every five trials. Future work should

account for this aspect more explicitly and recent studies have begun to address

the need for efficient adaptive staircasing and function fitting methods that are

suitable for use with naive or non-stationary participants (Shen 2013; Shen and

Richards 2013; Shen et al. 2015; Rinderknecht et al. 2018).

High inter-individual variability is often observed with non-invasive brain

stimulation methods and this also holds true for cTBS (López-Alonso et al. 2014).

Previous studies investigating TBS effects on auditory function have also found

this (Lorenz et al. 2010; Müller et al. 2013; Andoh et al. 2015). This high vari-
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ability is thought to be caused by many variables including genetic factors, age,

variations in intracortical network activity and functional connectivity (Suppa et

al. 2016). This variability, as with many other methodological factors relating

to cTBS has been more thoroughly measured using motor areas (Vernet et al.

2014), but areas with less well characterised behavioural effects are more difficult

to assess. Perfusion MRI is one possible technique that could be used to meas-

ure this in the future as it has been found that cerebral blood flow is a marker

of inter-individual variability in responses to TBS (Gratton et al. 2014). Spe-

cifically, this study found that changes in functional connectivity were directly

related to changes in cerebral blood flow due to TBS for specifically targeted

brain networks (and not for a control site). Functional connectivity changes were

also measured when TBS was delivered to auditory areas (Andoh et al. 2015),

suggesting a possible measure for indexing this variability in the auditory do-

main. In this case, greater anatomical connectivity measured in the transcallosal

auditory pathway was directly linked to greater TMS induced changes in inter-

hemispheric functional connectivity. Reducing this inter-individual variability is

important for group averaging techniques and high levels of variance make the

generalisability of results beyond the observed sampled increasingly difficult to

support. Future work could ameliorate this issue by more extensively measur-

ing individual difference profiles in small samples, behavioural and connectivity

correlates.

5.5.4 Future Considerations

Key variables to control in order to minimise this variability can be identified

from TBS and behavioural auditory experiments. Accounting for some behavi-

oural factors may help reduce variability. The shape and cutoff point of the tem-

poral modulation transfer function (TMTF) is known to vary inter-individually

(Viemeister 1979). If 4 or 40 Hz AM thresholds differ between participants, it

suggests that the shape of their TMTFs differed. To further investigate the pos-

sible influence of this factor, full TMTFs could be measured and the effect of
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TMS on AM detection at different rates compared across TMTF shapes as a

whole, rather than focussing on specific rates. Efficient methods of estimating

the two TMTF parameters have been recently developed, making this approach

more feasible (Shen et al. 2015). Recreational noise exposure is also known to af-

fect AM sensitivity even when hearing thresholds are within normal limits (Stone

et al. 2008; Kumar et al. 2012). Deficits that do not manifest in the audiogram

results are known as hidden hearing loss and are thought to result from perman-

ent damage to synaptic connections between inner hair cells and auditory nerve

fibres. However, this is not fully understood and paradoxically, damage due to re-

creational noise exposure can lead to an increase in sensitivity to AM (Stone and

Moore 2014). Understanding hidden hearing loss and improving current methods

of measuring it is an active research topic (Dewey et al. 2018; Guest et al. 2018:

e.g.). Using newly developed measures and investigating how they relate to AM

sensitivity would be greatly beneficial to our understanding of AM processing

in normal hearing and hearing impaired individuals. Until such techniques are

developed, taking measures of TMTF shape and recreational noise exposure in

order to control for these factors beyond the audiogram would be a feasible way

of examining and explaining behavioural variance.

In addition to modifying the behavioural task, the aforementioned measures

of structural and functional connectivity could be taken and correlated with TBS

response. The degree of processing laterality could also be an important factor,

especially in studies where auditory hemispheric asymmetry is a key variable.

The laterality of auditory processing is known to vary between individuals and

multiple electrophysiological and functional neuroimaging measures have been

developed to measure it. Measures such as the acoustic change complex (Han

and Dimitrijevic 2015), the right ear advantage (Hugdahl 2011) or simply the

average asymmetry of activation in auditory areas from an fMRI localiser could be

correlated with response to TBS. Further, current modelling tools that integrate

structural connectivity information (Geeter et al. 2016) may be able to model

these asymmetrical effects in future, when the connectivity profile of auditory
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areas is characterised to a greater degree. Fully exploring the influence of these

extra sources of variance would advance our understanding of cTBS effects in

auditory experiments and inform future studies of the critical factors to control

in order to reduce variability.

5.5.5 Conclusions

This study was designed to further investigate whether cTBS to auditory cortical

regions can be used to affect AM processing and if the effects align with asym-

metric accounts of auditory processing. From these data, cTBS was not found to

be an effective method for modulating AM depth discrimination ability. Possible

explanations for this results were discussed, primarily that the intensity of the

standard cTBS protocol may not be high enough to induce significant electrical

activity in the relatively deep targets localised from the fMRI contrast. Further

aspects to be considered include the frequency of magnetic and auditory stimula-

tion, possible asymmetrical network effects and controlling for the many sources

of between-subject variance in auditory behavioural tasks and cTBS. While no

cTBS effects were measured on AM depth discrimination, this is not evidence

for the absence of a true underlying effect or that all TMS protocols are equally

ineffective. Further research is required to determine the effectiveness of cTBS for

modulating AM sensitivity, although methodological changes are recommended.

144



Chapter 6

General Discussion

6.1 Overview

This investigation was designed to address the following three overarching re-

search questions:

� Firstly, is fMRI-guided TMS an effective method for modulating AM pro-

cessing?

� Secondly, are different TMS protocols more or less effective at modulating

AM processing?

� Finally, is fMRI-guided TMS an effective method for further understanding

the functional asymmetry of speech processing?

Three extensive multimodal experiments were conducted and the results demon-

strated the following. Firstly, it was shown that online double-pulse transcranial

magnetic stimulation (TMS) is an effective tool for modulating AM sensitivity.

Before this work, it was not clear whether TMS was able to perturb processing of

this low-level aspect of speech at all. Utilising this fairly novel tool (Barker et al.

1985), new causal evidence was found for the contribution of posterior superior

temporal gyrus (pSTG) / planum temporale (PT) to AM processing. Specific-

ally, it was shown that fMRI-guided online TMS perturbed detection of 4 Hz

AM when delivered to the right hemisphere only. This finding was interpreted
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using contemporary models of asymmetric auditory processing, however, as only

one hemisphere showed an effect, conclusions about asymmetry were difficult to

support or refute.

Secondly, it was shown that double-pulse TMS can also be used to modulate

AM sensitivity in a state-dependent way. Auditory behavioural adaptation was

used to manipulate the underlying state of the cortex when TMS was applied.

TMS to the left hemisphere affected 40 Hz AM sensitivity, however a dissoci-

ation was observed where adaptation to 40 Hz AM led to an disruption of AM

sensitivity, whereas adaptation to 4 Hz AM led to a facilitation.

Finally, it was shown that continuous theta burst stimulation (cTBS), an

offline, repetitive TMS protocol, was ineffective at modulating AM sensitivity.

Accuracy was measured on a higher order AM task that more closely represents

the processes involved in parsing speech. The inability of cTBS to affect this

task may be due to the low stimulation intensity and relatively deep cortical

targets or it might be a result of high inter-individual variability of the chosen

methods. These considerations were discussed in depth and suggestions were

made for how future studies could reduce sources of variance, relating to both

auditory behavioural tasks and cTBS.

A summary of the primary findings from this investigation, directly related

to the initial research questions, are as follows:

� fMRI-guided TMS can be an effective tool for investigating neural pro-

cessing of AM. Building on this initial finding, it is now possible to design

future studies incorporating TMS to further investigate many aspects of

low-level auditory processing.

� Multiple fMRI-guided TMS protocols can be used to modulate AM pro-

cessing, and their effectiveness does vary. Online double-pulse TMS and

a TMS-adaptation paradigm were shown to be effective though an offline

continuous theta-burst paradigm was less effective.

� fMRI-guided TMS can be an effective method for further understanding the
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functional asymmetry of speech processing, however, some caveats must be

accounted for. These studies were developed in order to test asymmet-

ric models of auditory processing, primarily the Asymmetric Sampling in

Time (AST) hypothesis (Poeppel 2003) and where an effect was found, its

relevance to asymmetrical auditory processing frameworks was discussed.

However, as absence of evidence is not equal to evidence of absence, where

an effect was found for only one hemisphere or AM rate, interpreting this

outcome is difficult. This is a key consideration for future studies that

aim to investigate TMS effects on functional asymmetries and is discussed

further.

Recent methodological developments in psychophysics, fMRI and TMS could

be incorporated to substantially improve future research.

6.2 Psychophysics

Designing auditory psychophysical tasks, fitting psychometric functions and ex-

tracting thresholds constituted a significant part of the studies described here.

Estimating a single threshold is a complex procedure that consists of multiple

experimental stages containing many variables that can each affect the final

threshold value. Many of these variables would benefit from further study in

order to fully optimise the procedure. This is true of psychophysical methods

generally but particularly for measures of temporal resolution and sensitivity to

AM. It is known that temporal processing tasks are affected by both sensory and

non-sensory factors, such as memory (Smith et al. 2008), but there is a paucity

of further research into this area.

Task design details such as the number of intervals presented and the tem-

poral order of intervals can have a large impact on resulting parameter estim-

ates. The number of alternative intervals presented in each trial primarily affects

the baseline chance level but is also of particular relevance for temporal designs

where intervals are not presented concurrently. It is not known what additional
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demands these designs have and how this affects interpretation of the results.

The AM detection tasks used in these studies were primarily based on those used

by Viemeister (1979) and the AM discrimination task was based on Wakefield

and Viemeister (1990), however, piloting showed that the reliability of thresholds

could be increased by adding a 500 ms noise period to the start and end of the

trial. The choice of task design can also give rise to biases and dissociating the

perceptual effects from response or decision biases is crucial to determining the

true effect size and psychometric function parameters (Morgan et al. 2013; Garćıa-

Pérez and Alcalá-Quintana 2013). An example of a response bias is the Type B

effect, where participants are more likely to identify the interval presented second

as the target in a temporal 2AFC task (Ulrich and Vorberg 2009; Dyjas and Ul-

rich 2014; Bausenhart et al. 2015). The extent to which AM detection and depth

discrimination tasks are affected by these biases is not fully explored, although

similar tasks have been examined (auditory duration discrimination) (Lapid et

al. 2008; Rammsayer and Ulrich 2012). Fully characterising these effects in aud-

itory AM detection and discrimination studies would minimise response biases

and allow the design of more specific tasks.

Further variability arises due to differences in staircase design and the choice

of optimisation algorithm used. The simplest adaptive method uses up/down

rules and systematically decreasing step sizes to estimate the psychometric func-

tion by honing in on a specific threshold value (Levitt 1971). The method used

here involved fitting the full psychometric function and then extracting the pre-

dicted threshold value. An alternative approach involves using a set of fixed step

sizes and then taking an average of the last reversal values to directly obtain

the threshold value (but no visual representation of the psychometric function).

However, there are more advanced adaptive staircasing methods (Watson and

Pelli 1983; Treutwein 1995) and new approaches are still being developed (Schütt

et al. 2016; Bak and Pillow 2018). These methods improve efficiency by using op-

timisation techniques to adaptively modify the step size in order to maximise the

predictive value of each trial. Of particular note is a recently developed method
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that was specifically designed for efficient psychometric function estimation and

validated with an auditory temporal resolution task (Shen and Richards 2012;

Shen et al. 2015). Implementing this updated maximum likelihood procedure in

future experiments would improve efficiency and enable more accurate threshold

estimates.

As part of the threshold estimation for these studies, multiple task runs were

conducted and separate functions were fit for each run (though multiple inter-

leaved staircases were used in each). The function with the highest threshold

value was discarded in order to remove the influence of poorly fit functions, typ-

ically resulting from early errors which can be difficult for the staircase to recover

from as step sizes are large. An average of the remaining threshold values was

then calculated to provide the final threshold value. Whilst this method of choos-

ing which functions to include is principled and consistent, it is possibly flawed.

The choice could be improved by using goodness of fit metrics, rather than impli-

citly assuming the highest threshold is the poorest fit. Also, combining data from

the remaining runs and fitting a single function may increase accuracy, however

this may underestimate the slope value if thresholds are non-stationary (Wallis

et al. 2013).

The choice of threshold value to target during the threshold estimation stage

is important. Different variances have been measured in the same listeners when

the target threshold is varied and the most accurate psychometric functions are

measured when a ‘sweet point’ on the threshold is targeted. In order to meas-

ure the threshold with minimum expected variance, targeting a higher threshold

than the standard 50% or 70.7% has been recommended (Green 1990). The

design of the adaptive staircase, including the choice of specific step sizes and

reversal rule determines which threshold percentage is targetted. This is further

complicated when lapses of attention are considered. Lapse rate represents the

probability of a correct response when the stimulus was not seen, e.g. 50% for

a 2AFC task. Including a parameter for lapse rate in the psychometric function

is important as it has been shown that other parameter estimates may be biased
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if lapse rate is constrained to 0 (Wichmann and Hill 2001; Prins 2012). The

aforementioned updated maximum likelihood procedure targets the sweet points

of multiple parameters, and has been shown to be effective in the case of a high

lapse rate (Shen and Richards 2012). Ideally, a widely used, well-characterised

‘standard’ psychophysical task would be used, but it is important to remember

that many aspects of study design are constrained by the inclusion of TMS. The

timing of TMS delivery in particular is a major consideration when looking to

combine these two methods. For a more nuanced example, the choice of (fixed)

threshold value used for the main tasks was guided by prior knowledge of TMS

effect variability. Taking this into account, thresholds were chosen in these studies

that were reasonably resistant to ceiling and floor effects in either direction. Now

initial evidence for an online TMS disruption to AM detection has been found,

it would be interesting to systematically exploring this factor. Future research

could measure the full psychometric function post-TMS and quantify the effect

in more detail by investigating which parameters are most affected and how the

deficit manifests.

When these factors are accounted for, a major issue still remains if thresholds

are non-stationary (Schütt et al. 2016). In psychophysical research it is very com-

mon to use practised participants and assume a stationary psychometric function.

However, if the threshold is not stable across or within testing sessions, estim-

ation becomes more complex. In many previous studies, participants have had

multiple hours of practice before data collection begins (Viemeister 1979: e.g.).

As multimodal brain imaging and stimulation studies commonly consisting of

multiple extensive testing sessions, this approach may not be feasible. This issue

has been addressed in the case of young participants (Witton et al. 2017) and

other psychoacoustic tasks (Amitay et al. 2006), but not for AM detection and

depth discrimination thresholds with adult participants. Further understanding

how non-stationarity affect AM detection and depth discrimination thresholds is

important for three reasons. Firstly, fewer behavioural training sessions would

be required. Secondly, better estimates of the underlying variance would lead
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to more accurate determinations of the sample size required to reliably estimate

effects Finally, a broader question exists regarding how generalisable the results

from experienced participants are to the general population. If participants un-

dergo hours of training and their threshold stabilises, it is possible that they are

using a psychological strategy or their auditory system has adjusted in some way

to improve performance. In this case, it is difficult to support that the processes

involved in the task are identical to those used under normal listening conditions.

One possibility is that aspects other than AM are utilised for speech processing

so that AM extraction does not have to be developed to the particularly fine

level reached through hours of behavioural task practice. However, this broad

criticism is not specific to measures of AM sensitivity and could be equally ap-

plied to at-threshold procedures generally. Further understanding the processes

by which participants learn to improve at the task and how their thresholds sta-

bilise would lead to the development more efficient psychophysical methods and

ore generalisable results.

To summarise, many factors are involved in estimating the threshold value

and the effect of many of them are yet to be fully explored for AM tasks. It is not

fully known how the temporal design of the AM tasks affects threshold estimation

or if this introduces any biases. Particular psychophysical aspects that would

benefit from careful consideration include optimal trial design, optimal staircase

design and psychometric function form. Some design constraints are applied when

brain imaging or stimulation is combined with psychophysical behavioural tasks.

For example, task design will depend on stimulation timing and threshold non-

stationarity is more likely to be a concern as intensive task practice may not be

feasible when the behavioural session is just one part of a substantial multimodal

experimental procedure.

151



6.3 TMS methods

The application of non-invasive brain stimulation techniques to investigate human

cognitive function was developed relatively recently and methodological advances

are frequent. Since this work began, significant developments have been made

and similar investigations could be improved by incorporating some of them. Re-

cent progress in the area of non-invasive brain stimulation current flow modelling

have led to improvements of model accuracy and software implementations that

allow the technique to be more widely adopted (Geeter et al. 2016; Thielscher et

al. 2015). When conducting current flow modelling, researchers create anatom-

ically accurate head models from structural MRI scans that include segmented

layers with different conductive properties (Thielscher 2013; Goodwin and Butson

2015). It is then possible to model the expected current flow within a particular

brain area using conductivity profiles calculated from physiological studies and

individual brain topography. These techniques provide an additional source of

evidence for the putative effect of brain stimulation and have been shown to im-

prove accuracy of stimulation compared to simpler models. Future studies could

be improved by the inclusion of current flow modelling to estimate the effective

current density induced at the target location in auditory cortex. This inform-

ation could be used to optimise TMS coil placement or in this case, could have

been used to further investigate the lack of TBS effects. It would be particularly

beneficial to examine the effect of gyrus orientation on induced current at an in-

dividual participant level due to the high inter-individual variability of auditory

areas. Further, this would help inform the feasibility of new TMS investigations

of auditory processing as gyrus orientation on the temporal plane are unlike that

of M1, where most TMS methods are initially developed. Improving the accuracy

of individual models of current flow will increase the validity of the non-invasive

brain stimulation methods and inform future studies.

Whilst incorporating these modelling techniques would provide further in-

sight into the immediate spread of locally induced current, accounting for more
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widespread network effects is more challenging. The assumption that TMS to a

cortical area has an isolated local effect is näıve and the conceptualisation of TMS

as solely creating virtual lesions has been superseded by more nuanced views (Ruff

et al. 2009; Silvanto and Cattaneo 2017). Evidence has been found for widespread

network interactions (Bestmann et al. 2004; Fox et al. 2014; Hallam et al. 2016),

but the mechanisms underlying these effects are not fully understood. Network

effects have also been found with TMS to auditory areas and these effects were

shown to be asymmetrical (Andoh and Zatorre 2013; Andoh et al. 2015). An-

doh et al. (2015) showed that cTBS to the right, but not left, hemisphere led

to widespread decreased functional connectivity in the consequent resting state

period. Whether the decrease in connectivity following cTBS in auditory regions

remains during a behavioural task is an interesting question and the effect of

different TMS protocols is also not known. It has also been shown that network

changes due to TMS do not necessarily manifest as behavioural effects (Hallam

et al. 2016). It is likely that network effects are present, despite no modulation

of AM sensitivity being measured behaviourally, as even subthreshold TMS can

lead to network interactions (Bestmann et al. 2004). Even with ‘simple’ online

TMS effects, such as those shown in chapter 3, the immediate effects of TMS at

the target and wider network interactions are rarely explicitly dissociated. Ac-

counting for these effects is increasingly important as our understanding of the

connectivity profile of the brain expands. For example, the simplistic assumption

of a direct mapping between a targeted anatomical region and a specific function

does not always hold (Margulies and Petrides 2013; Opitz et al. 2016). This is

further complicated by the finding that the frequency of stimulation can lead

to qualitatively different effects on functional connectivity (Eldaief et al. 2011),

even within well-characterised motor networks where a direct mapping is more

often assumed (Rounis et al. 2005). Broad network effects represent a potential

source of variance that could lead to non-linear and unpredictable effects, espe-

cially with cTBS protocols. The existence of complex widespread interactions is

well established, but current explanations of TMS effects are not sufficient to ex-

153



plain them (Silvanto and Cattaneo 2017: e.g.). In addition to the asymmetries in

functional connectivity measured by Andoh et al. (2015), structural connectivity

networks have also been found to be asymmetrical (Mǐsić et al. 2018). Integrat-

ing structural connectivity information into current flow models has been shown

to improve modelling accuracy (Geeter et al. 2016). Further, inter-individual

variation in structural connectivity is likely to account for some of the inter-

individual variance in TMS effects so may utilising this information may lead to

more accurate predictions of TMS effects or go some way to explaining differences

between responders and non-responders. Targeting specific functional networks

is a promising future option As the mechanisms underlying TMS effects remain

largely unknown and further complexity is revealed, it is important that emphasis

is placed on theory-grounded hypotheses and converging sources of evidence for

the putative effects of brain stimulation. These studies show that structural and

functional connectivity are likely to play an important role in mediating the ef-

fects of TMS, particularly in relation to network effects. Further multimodal

studies are required to fully explain these network effects and new TMS studies

should aim to integrate structural and functional connectivity information where

available.

Determining the specificity of TMS effects is crucial and controlling for the

extraneous effects of TMS is a challenging methodological problem (Adank et

al. 2017). TMS pulses cause a loud auditory click and stimulate peripheral

nerves incidentally, causing muscle twitching that varies significantly by stim-

ulation location. Sham stimulation protocols have been developed to control for

these factors, but they can be highly variable between studies. For example, the

one-wing 90°vertex sham from Lisanby et al. (2001) was used here whereas other

studies have used TMS to the shoulder (Herring et al. 2015). An ideal sham con-

dition would recreate the exact sensory experience of active stimulation but this

is only possible for low TMS output intensities and specific locations where no

cutaneous stimulation effects are detectable. A common compromise is to deliver

active stimulation to a location that is ostensibly not involved in the task of in-
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terest, however this is not ideal due to possible remote effects that are difficult to

measure. A new tool allows twitching and participant annoyance to be matched

between sham and active sites, which could improve sham stimulation (Meteyard

and Holmes 2018). However, if multiple sites are of interest, including matched

sham conditions can rapidly become unfeasible in many cases and a control task

may be preferable (Adank et al. 2017).

The studies in this thesis were designed to investigate the existence of double

dissociative effects between hemisphere of stimulation and AM rate. With this

design, if no effect is found for one hemisphere or AM rate condition it can be

difficult to dissociate a failure of TMS to cause an effect from a true inexist-

ence of an underlying effect. In these initial investigations, where no previous

examples of these effects exist, determining this difference is further complic-

ated as conclusions are limited to the specific TMS and behavioural protocols

used, yet researchers might be dissuaded from pursuing this line of investigation

when initial results are inconclusive. However, now this initial evidence has been

found, work can be conducted to determine the key parameters required to elicit

an effect. In future investigations, a positive control task could be included to

support the conclusion that TMS is affecting the target location in the absence

of behavioural effects. Positive controls are dependent measures that are known

to be affected by TMS in a predictable way and serve to demonstrate that TMS

has affected the target region. Including a positive control task would help to

determine whether, for example, deeper cortical regions were affected by TMS.

For this to be feasible, a task that is reliably affected by TMS to the location of

interest would need to be identified. Alternatively, future work could include AM

detection as a positive control task when these auditory areas are being targeted

by TMS. For example, it is known that frequency modulation is processed in

similar auditory regions and may be represented orthogonally to periodicity in

auditory cortex (Barton et al. 2012). Whether TMS can affect frequency mod-

ulation detection is an open question and one that can be addressed now this

foundation work has been completed.
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To summarise, the field of non-invasive brain stimulation is in its infancy and

substantial developments in TMS methodology continue to be made. Future in-

vestigations could be improved by incorporating some of these advances. Current

modelling techniques are particularly promising for targeting TMS and providing

support for putative neural effects. Wider network effects of TMS are undeniably

complex but need to be considered and incorporating structural or functional

connectivity measures may help to explain variance of TMS effects. Appropriate

and feasible sham TMS conditions are required to determine the specificity of any

TMS effects and the inclusion of a positive control task would aid interpretation

of future investigations where a full double dissociation is not found.

6.4 Alternative Approaches

It is important to consider findings from complementary approaches in order to

retain a holistic view of speech processing and to understand how this work is

positioned in the literature. The studies that comprised this project were primar-

ily focussed on the perceptual consequences of brain stimulation, as measured by

AM detection and discrimination tasks. Whilst the AM discrimination task ap-

proximates speech processing more closely than AM detection or gap detection

tasks do, many other relevant cues are necessarily lacking, for example, speech-

like spectral structure and higher level linguistic aspects. Whilst this bottom-up

behavioural approach is valid and informative, a common alternative approach

investigates the effect of magnetic, electrical or auditory stimulation by directly

measuring neuronal activity. Complementary approaches that present the full

speech signal, or a signal reduced in different ways are crucial for understanding

the relative importance of each speech component (Hamilton and Huth 2018).

Fully understanding all aspects of speech processing is beyond the scope of what

any one approach can contribute and by examining the findings from other ap-

proaches, general principles underlying speech processing and knowledge gaps can

be identified.
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6.4.1 Neural Oscillations and Speech Processing

It is well established that speech is processed concurrently on multiple timescales

(Peelle and Davis 2012; Giraud and Poeppel 2012). Evidence for this account

has come from investigations using psychophysical (Chait et al. 2015), invasive

electrophysiological (Lakatos et al. 2005), non-invasive electro- and neurophysiolo-

gical (Gross et al. 2013; Ding et al. 2016; Teng et al. 2017), haemodynamic (Davis

and Johnsrude 2003; Obleser et al. 2007), and computational modelling methodo-

logies (Santoro et al. 2014). Initial accounts focussed on the high correspondence

between repetition rates of key linguistic features and prominent neural oscillat-

ory frequency bands (Giraud and Poeppel 2012). Of particular note are the theta

and low gamma frequency bands as they closely correspond to the syllabic (∼4

Hz) and phonemic (∼40 Hz) rate of speech. It was proposed that this corres-

pondence was a reflection of processing using different length temporal sampling

windows (Poeppel 2003). Further, this processing was proposed to be asymmetric

with each cerebral hemisphere exhibiting a preference for sampling windows of

different lengths.

Since these early accounts, complementary explanations have emerged for the

relevance of neural oscillations to processing of auditory stimuli. It is thought that

these oscillations reflect cyclical phases of low and high excitability within neural

populations and their oscillatory phase aligns with rhythmic input to facilitate

processing (Bishop 1932; Schroeder and Lakatos 2009; Luo and Poeppel 2007).

For example, temporal alignment of oscillatory activity in the theta band to the

syllabic patterns of speech is thought to play a key role in synchronised processing

(Hyafil et al. 2015). At this rate, high complexity syllables are followed by low

complexity periods with an average cycle length of ∼250 ms. This phase entrain-

ment to the speech envelope enables the complex components to be processed

when neural excitability is highest. Oscillatory activity within other frequency

bands have been found to entrain to other speech aspects and nested neural os-

cillations measured during presentation of speech stimuli are a possible substrate

for an hierarchical framework that subserves synchronised linguistic processing
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(Zoefel and VanRullen 2016; Gross et al. 2013; Ghitza 2017; Teng et al. 2017).

Ding et al. (2016) measured the electrocorticographic neural response to quant-

ised Chinese sentences and showed that 4 Hz activity aligned with word-level

information (monosyllabic words in this case), 2 Hz activity aligned with phrase-

level information and 1 Hz activity aligned with sentence-level activity. Crucially,

this was shown to be dissociable from the acoustic content as the peaks at 1 Hz

and 2 Hz were not present when the same stimuli were presented to non-Chinese

speakers. This study reported these findings as evidence for a nested hierarchy

of oscillatory activity, driven by speech linguistic content, however this is contro-

versial as it is possible for a model with access to only lexical-level information

to account for this neural data (Frank and Yang 2018). Further, the artificial

nature of the stimuli confounds interpretation as natural speech is aperiodic and

not perfectly quantised, though these oscillatory bands are still reflected in nat-

ural speech processing. Despite these limitations, this is just one example of

emergent evidence for neuronal oscillations in auditory areas as a functional sub-

strate for the discretisation and multiplexed processing of speech (Meyer 2017;

Zoefel et al. 2018) Amplitude modulations of the speech envelope may have a

crucial role to play in this system. Robust tracking of the speech envelope by

human auditory areas has been found and temporal modulations in critical fre-

quency bands are suspected to play a key role in speech processing (Kubanek

et al. 2013; Ghitza 2011). This envelope tracking may facilitate processing by

enabling phase resets of delta band activity, ensuring entrainment and efficiency

(Doelling et al. 2014).However, slow amplitude modulations are just one piece of

the system, and their well-characterised nature may have led to an overemphasis

of their importance (Obleser et al. 2012). For just one example, evidence for

entrainment to higher level acoustic features of speech suggests oscillations are

not purely driven by low level acoustic features (Zoefel and VanRullen 2016).

It remains controversial whether synchronous entrainment actually plays a

crucial role in speech processing or is purely epiphenomenal (Zoefel et al. 2018).

A train of phase-locked responses evoked to repetitive rhythmic stimuli would be
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largely indistinguishable from intrinsic neural oscillations at the stimulus present-

ation frequency but it has been suggested that endogenous and exogenous oscilla-

tions may be functionally distinct (Meyer et al. 2018). Latest theories posit that

this oscillatory activity measured by local field potentials or M/EEG may actu-

ally be better characterised as synchronised burst events (van Ede et al. 2018).

Neural oscillations constitute a candidate mechanism for synchronised segment-

ation and processing of sensory inputs in multiple domains and are not specific

to speech (Murphy 2015; Haegens and Zion Golumbic 2018; Ronconi et al. 2017).

The notion that temporal sampling windows discretise continuous input is also

not speech-specific and evidence for multiple key rates has also emerged in vis-

ion research(Ronconi et al. 2017; Holcombe 2009). Specifically, higher frequency

gamma oscillations have been linked with finer sensitivity in both vision and au-

dition and this is suggested to be a perceptual consequence of a higher sampling

rate (Baltus and Herrmann 2015). These similarities across multiple modalities

suggest that multiplexed neural coding may be a general underlying principle of

continuous segmentation and integration of sensory information.

To summarise, there is a wealth of evidence linking neural oscillatory activity

and speech processing. There is mounting evidence for a hierarchical processing

architecture that with nested oscillations at key frequency bands. Theta and low

gamma have been closely linked with speech processing, initially due to their close

correspondence to rates of linguistic speech aspects. Auditory cortex is able to

continuously track the amplitude envelope of stimuli and this has been exploited

in studies of neural entrainment. Current theories posit that exogenous and endo-

genous oscillations may be functionally distinct and that some neural oscillations

may be better characterised as synchronised bursting activity. Evidence for a

hierarchical system of cascaded oscillations has been found for multiple sensory

modalities, suggesting a general organisational system.
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6.4.2 Non-Invasive Brain Stimulation and Neural Oscilla-

tions

Non-invasive brain stimulation research has been fundamental in testing these

oscillatory accounts. These techniques have been applied to both disrupt ongo-

ing oscillatory activity and ostensibly entrain oscillations at specific frequencies.

Transcranial current stimulation (tCS) techniques in particular, have desirable

properties for entraining oscillations and have been successfully applied to this

end. This family of techniques includes transcranial direct current stimulation

(Nitsche and Paulus 2000: tDCS:), transcranial alternating current stimulation

(Antal and Paulus 2013: tACS:) and transcranial random noise stimulation (Ter-

ney et al. 2008: tRNS:) and involve passing a small current through the brain via

electrodes placed directly on the scalp. The low intensity current (typically 1 or

2 mA) modulates the resting membrane potential of underlying neural tissue and

has been shown to affect firing rate and timing. Despite their widespread use,

mechanistic understanding of tCS effects has failed to keep pace with their myriad

applications in both cognitive and clinical contexts (Bestmann et al. 2015). An-

other factor that has contributed to the abundance of tCS investigations into the

role of neuronal oscillatory processing during auditory stimulation is their silent

operation (Heimrath et al. 2016; Zoefel and Davis 2017). tCS techniques have

been successfully applied to investigate and improve auditory temporal processing

ability. Anodal tDCS to the left (but not right) auditory cortex was found to af-

fect rapid temporal processing as measured by a gap detection task (Heimrath

et al. 2014). 40 Hz (but not 6 Hz) tACS has been shown to disrupt perceptual

learning in a phoneme categorisation task (Rufener et al. 2016). tRNS has been

used to improve near-threshold gap detection performance (Rufener et al. 2017).

The phase of 4 Hz transcranial alternating current stimulation has been shown to

modulate sensitivity to click train stimuli (Riecke et al. 2015). Most promisingly

for investigations of AM processing, temporal processing ability (measured by

gap detection) has been enhanced using tACS with an AC rate above individual
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gamma frequency (Baltus et al. 2018). Multiple groups have also shown that in-

corporating the speech envelope into the electrical stimulation envelope can lead

to increases in speech intelligibility (Riecke et al. 2017; Wilsch et al. 2018; Zoefel

et al. 2018).

The putative explanation for these behavioural improvements with AC stimu-

lation is active entrainment of neural oscillations at the stimulation frequency. It

is well-supported that these oscillations are present during sensory processing and

pre-stimulus sensory entrainment has been shown to lead to behavioural improve-

ments (Ronconi and Melcher 2017; Haegens and Zion Golumbic 2018; Bosker and

Ghitza 2018), but it is currently difficult to prove the existence of tACS entrain-

ment. The most definitive evidence for active neural entrainment by tACS comes

from direct measurement using concurrent M/EEG. However, this is controversial

as the nonlinear interference created by the electrical stimulation is so destructive

to the M/EEG signal (Noury et al. 2016; Neuling et al. 2017; Noury and Siegel

2018).

Multiple TMS approaches have been used to investigate the role of oscillatory

activity on auditory processing (Pellicciari et al. 2017). TMS pulses have been

shown to reset the phase of ongoing oscillations, with behavioural consequences

that can be manipulated by adjusting the pulse timing (Herring et al. 2015; Thut

et al. 2011). Oscillations can also be entrained by TMS, however, the method of

effect is likely different from tCS (Thut et al. 2011; Albouy et al. 2017). TMS

has some properties that enable investigations into the role of neuronal oscillat-

ory activity in speech processing. In particular, exploiting the ability of TMS to

deliver single pulses at specific timepoints is crucial (Thut et al. 2017). Utilising

this in combination with EEG has allowed specific phases of oscillatory activity

to be targeted (Pellicciari et al. 2017; Farzan et al. 2016). Combining this precise

timing with direct readings of neural activity in a closed-loop, adaptive way is also

a promising future direction (Price et al. 2015; Bergmann et al. 2016). Recent

developments in understanding of the neural systems underlying neuroimaging

and stimulation has allowed TMS to be applied in a more informed way with
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specific targeting of neural oscillatory phases or targeting of specific functional

networks (Romei et al. 2016). Similarly to tCS, a more detailed understand-

ing of the neurophysiological mechanisms underlying TMS effects is still inhib-

iting progress. These explanations would improve its feasibility as more specific

theory-grounded hypotheses regarding the neurobiology of speech and language

processing could be developed and tested. In this thesis, TMS was shown to be

an effective modulator of AM sensitivity, primarily conceptualised as a disruptive

interruption to ongoing processing in auditory cortex. Oscillatory phase reset-

ting could be the mechanism underlying this modulation but further evidence is

required to support this conclusion. The abundance of successful applications of

non-invasive brain stimulation techniques for investigating neuronal oscillations

in auditory processing is promising for future studies of oscillatory activity and

AM sensitivity.

To summarise, non-invasive brain stimulation techniques have many effective

applications relating to neural oscillations in speech and auditory processing.

Indeed, these methods are uniquely positioned for non-invasively providing causal

evidence for the role of oscillatory activity. tCS techniques is amenable to the

goal of influencing or directly entraining oscillations due to their low stimulation

intensity and their ability to modulate timing and neuronal firing rate (while not

directly initiating firing like TMS). TMS shares some desirable properties with

tCS and as the effects of TMS on neural oscillations are further elucidated, their

application is sure to proliferate.

6.4.3 Neural Oscillations and Predictions in Speech

One key aspect underlying the current interest in oscillatory patterns of neuronal

activity is the suggestion that their rhythmic temporal nature serves to optimise

processing (Arnal and Giraud 2012; Morillon and Schroeder 2015; Nobre and van

Ede 2018). Empirical evidence for this has come from studies where stimulus

predictability was modulated while neuronal oscillations were measured. It has

also been shown behaviourally that temporal predictability of low-level visual or

162



auditory stimuli can enhance detection (Rohenkohl et al. 2012; Lawrance et al.

2014). Rhythmic sensory stimuli can be used to actively entrain the frequency

and phase of neuronal oscillations and this has been shown to improve subsequent

perception (Calderone et al. 2014; Hickok et al. 2015). Musical rhythms have been

used to improve subsequent behavioural performance and this increase was asso-

ciated with modulations of the EEG signal (Falk et al. 2017). At a higher level,

it has also been suggested that this predictability improves language processing

and evidence has been presented for pre-activation of semantic and phonological

representations (DeLong et al. 2005). However, this is contentious as a recent

multi-site study failed to replicate this original finding (Nieuwland et al. 2018).

Rhythmic sensory or electrical stimulation facilitates processing of subsequent

low-level stimuli however, the exact mechanism subserving these behavioural im-

provements is not known. Predictive coding accounts have been proposed to

explain this facilitation and there is mounting support for predictive coding in

auditory cortex (Bendixen et al. 2012; Aitchison and Lengyel 2017; Heilbron and

Chait 2017). There are multiple models of predictive coding (Spratling 2017)

but their key tenet is that the brain continuously predicts sensory expectations

and cross-references them with sensory input (Clark 2013). A prediction error

occurs when there is a misalignment between observed sensory input and the

predicted response from an internal generative model. These prediction errors

are surprising in the formal sense, the most informative parts of sensory input,

so physiologically-expensive spiking energy can be used more efficiently if only

these prediction errors are encoded. The internal model is amended in response

to prediction errors and many predictive coding accounts posit Bayesian model

updating as a statistical formulation of this process. This is proposed to have

an hierarchical structure with separate neural populations encoding top-down

feedforward predictions and bottom-up feedback of prediction errors (Wacongne

et al. 2011). These distinct processes are also thought to manifest in different

neural oscillatory bands, with predictions linked to low gamma and prediction

errors linked to beta. Neuroanatomical models have been developed that ac-
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count for extracellular response profiles similar to those measured empirically

(Rao and Ballard 1999). Key to one prominent instantiation of predictive coding

and Bayesian inferential modelling is the simple principle that the brain optim-

ises processing by minimisation of prediction error (Friston 2010). It has recently

been proposed that sensory cortical regions may encode the precision of prediction

errors, and this optimises the model sensitivity to sensory input (by manipulat-

ing its Bayesian prior distribution) (Hesselmann et al. 2010; Friston 2018). This

general theory of brain function parsimoniously explains information processing

across action, perception and learning across traditionally disparate higher-level

psychological processes (Friston 2003; Clark 2013; Haegens and Zion Golumbic

2018). Despite the growing theoretical, neuroimaging and computational model-

ling support, key claims of predictive coding accounts are difficult or impossible

to test without more direct cellular work and more detailed accounts of how it

is neurophysiologically instantiated (Kogo and Trengove 2015). Care must also

be taken to distinguish between predictive coding and attentional processes that

may be reflected in biases (e.g. to specific frequency bands) but do not directly

reflect prediction (Hsu et al. 2014). These aspects are difficult to dissociate and

are often conflated leading to unclear outcomes (Heilbron and Chait 2017). Em-

phasis should be placed on careful experimental design to ensure specificity of

measurement to minimise possible confounding attentional factors. Non-invasive

measures such as indices of surprise (e.g. mismatch negativity) and entrainment

metrics reflect the output of multiple psychological processes and many neural

populations. It is important to consider the possible mismatch between these cod-

ing accounts and the specificity of measurements non-invasive imaging techniques

allow.

Measures of low-level auditory processing have been fundamental in develop-

ing models of predictive coding. The success of these applications to low-level

audition is encouraging for future investigations of AM processing. The rhythmic

and predictable nature of AM of the speech envelope is likely to exploited by the

brain to optimise processing, as has been shown for many low level aspects in
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vision and audition. Further, the strong evidence for the involvement of neural

oscillations in the processing of low frequency envelope information suggests that

it may be fruitful to apply predictive coding concepts and dynamic causal model-

ling in order to further understand AM processing. There is a paucity of research

applying non-invasive brain stimulation methods to specifically test accounts of

predictive coding. This is likely underpinned by a lack of mechanistic understand-

ing and a lack of specificity of non-invasive brain stimulation effects. Predictive

coding is thought to be instantiated between different cortical layers, whereas

brain stimulation techniques are most effective for stimulating broad brain re-

gions or nodes at the macroscopic systems level. For example, the argument that

distinct subpopulations of neurons represent predictions and prediction errors

may be testable using non-invasive brain stimulation in future, but new methods

with increased stimulation specificity are required. Though testing these accounts

may not be possible with non-invasive brain stimulation, previous findings in the

literature can be reinterpreted using predictive coding concepts. For example,

studies demonstrating the state-dependent TMS have used selective behavioural

adaptation combined with TMS pulses to influence behaviour (Cattaneo et al.

2008: e.g). These adaptation effects are commonly thought to be due to fatigue

of neural systems tuned to detect the stimulus, however it may actually be a

reflection of distributional learning (Kleinschmidt and Jaeger 2016).

To summarise, behavioural and EEG studies have shown that rhythmicity in

sensory or electrical stimulation enables the brain to process subsequent stimuli

more accurately. A prominent explanation for this phenomenon is that predictive

coding plays a role in the facilitation by increasing the efficiency of processing.

Minimisation of prediction error is proposed to parsimoniously account for many

brain functions underlying action, perception and learning. The evidence for

predictive coding in auditory cortex is unclear, however many low-level auditory

processes have been used to investigate this. It is promising for future stud-

ies of AM processing that low-level audition is commonly used as a testbed for

developing new models of predictive coding.
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6.4.4 Speech Production and Perception

The neurobiological networks underlying speech perception and production share

many nodes and speech production mechanisms are intrinsically linked to speech

perception. In the general approach to this thesis, auditory processing has been

primarily conceptualised as a spectrotemporal decomposition and analysis of

acoustic input, subserved by auditory cortical regions. This may be sufficient

for low-level controlled stimuli, but explanations of higher order processing must

also address the role of the motor system. As an illustrative example, it has

recently been found that speakers enhance their production of low frequency AM

when speaking in noisy conditions (Bosker and Cooke 2018). This concurs with

arguments for the importance of speech envelope AM for intelligibility but from

the perspective of the speaker enhancing them in order to be understood. Here it

serves to emphasise how intrinsically connected these low-level components are to

the articulatory motor apparatus that produces them. Indeed, the syllabic rate

(∼4 Hz) has been proposed to be the natural oscillating rate of the jaw (Ohala

1975). Although it is difficult to determine the direction of cause and effect with

this observation, the articulatory apparatus clearly poses some limits on this rate

due to physical constraints. Behavioural approaches like this have contributed

a remarkable amount to our understanding of speech processing. Speakers con-

tinuously adapt to their acoustic environment, including their own vocalisations,

and atypicalities within this system have been linked to disorders with speech

processing deficits, such as autism (Lee 1950; Jones and Striemer 2007; Lin et al.

2015; Luo et al. 2018). Systematically manipulating the adverse conditions and

measuring how speech articulation changes can be an informative behavioural

technique for investigating how speech production is altered when intelligibility

is low (e.g. Hazan and Baker 2011).

The neural instantiation of the speech-motor network is fairly well charac-

terised (Hickok 2012). However, it is controversial how much activation of the

motor system underlies the perception of speech. An early integrative theory

posited that listeners understand speech by detecting their intended articulatory
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gestures, rather than directly processing acoustic input (Liberman et al. 1967;

Liberman and Mattingly 1985). This was developed to explain co-articulation;

where a phoneme has different acoustic properties depending on the phonemes

that precede and follow it. Co-articulation is a common part of natural speech

that does not hinder intelligibility, so it was thought that invariant motor rep-

resentations used to produce phonemes were activated in the listener. While a

strong version of this theory has been largely rejected (Möttönen and Watkins

2012; Hickok et al. 2011), it was the first to implicate motor processes in speech

perception and this continues to be near the forefront of speech perception the-

ory (e.g. Wilson and Knoblich 2005; Pickering and Garrod 2013). A dual-stream

model has been proposed to account for speech perception and production and

the nodes that overlap both functions. In the left hemisphere, speech perception

is proposed to be driven primarily via a dorsal stream and speech production

dominated by activity in a ventral stream (Hickok and Poeppel 2007). An asym-

metrical coupling between speech perception and production neural systems was

measured using concurrent fMRI-EEG and it was proposed that this may under-

lie the hemispheric lateralisation of speech (Giraud et al. 2007). This information

has also been incorporated into quantitative computational models of the motor

articulatory system that implicate overlapping speech perception and production

networks (Guenther and Vladusich 2012). A particularly compelling account has

been proposed for the role of the the speech production system in prediction of

speech (Martin et al. 2018). This event-related potential EEG study found that

prediction of subsequent words was only disrupted when the speech production

system was taxed. This aligns with the described role of the motor system in

predicting the state of the vocal tract and of sensory representations from one’s

own speech (Hickok et al. 2011). This results in decreased activations in auditory

areas when speech is self-generated, compared to when a recording of the same

acoustic stimulus is played (Aliu et al. 2008). Although this novel extension to

speech which is not self-generated requires further investigation, it is promising

initial evidence for another possible role of motor areas in speech perception.
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Non-invasive brain stimulation techniques have been crucial in investigat-

ing the basis for a causal role of speech motor regions for speech perception

(Möttönen and Watkins 2012; Murakami et al. 2013; Schomers and Pulvermüller

2016). Measuring motor evoked potentials (MEPs) from the lips has been shown

to be a useful technique for measuring excitability of speech-related motor areas

(Watkins et al. 2003). It was shown that lip MEPs were reduced in conditions

where participants heard speech or viewed speech-related lip movements. Fur-

ther, these excitability changes have been found to be reflected in the BOLD

response (Pulvermüller et al. 2006), although this is not always the case, possibly

due to interindividual differences in the location of speech-related motor areas

(Möttönen and Watkins 2012). ‘Virtual lesion’ TMS protocols have also been ap-

plied to investigate the role of the motor system in speech perception (Möttönen

and Watkins 2009). Meister et al. (2007) showed that rTMS to premotor cortex

impaired phoneme discrimination sensitivity compared to a colour discrimina-

tion control task. They also found a larger decrease in phoneme discrimination

accuracy with TMS to the premotor cortex than with TMS to the superior tem-

poral gyrus. TMS has provided some evidence for the causal role of the motor

cortex in speech perception, however this is controversial. These claims have

been criticised as motor responses (button presses) were required, which is dis-

similar to natural speech processing and may confound the results (Schomers and

Pulvermüller 2016). It is also possible that TMS influences secondary, decision-

making processes as opposed to the direct perception of speech. A particularly

robust finding is that activation in articulatory motor areas is facilitated under

adverse listening conditions (Wilson and Knoblich 2005; Adank and Devlin 2010;

Murakami et al. 2011; Adank et al. 2013; Nuttall et al. 2016, 2017). The current

evidence supports the idea that the motor cortex has a clear modulatory effect on

speech processing, particularly under adverse listening conditions, but may not

be essential for understanding clear speech(Sato et al. 2009; Hickok et al. 2011).

Investigations into the role of articulatory motor areas in speech perception

can help to inform future studies of AM processing. Although there is evidence
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for a causal role of the speech motor system in some speech-related processes,

such as phoneme discrimination (D’Ausilio et al. 2009), it is not clear if an AM

signal that approximates speech would involve changes in motor system activa-

tion. Investigating the effects found in this thesis further with more ecologically

valid stimuli would be an interesting line of future enquiry. For example, changing

the AM shape from sinusoidal to pulsatile bursts that more closely approximate

AM in speech (Prendergast et al. 2010). Further, these modulations could be

parametrically varied from sinusoidal AM to a full speech envelope and the full

response profile characterised with varying AM depths to control how challenging

the listening conditions were. It would be interesting to determine if there is a

key parameter or AM rate that makes a controlled signal sufficiently ‘speech-

like’ as to involve motor processes. TMS could be delivered to jaw motor areas

while EMG is measured from the digastric muscles (Sowman et al. 2009) to see

if similar disruptions found for speech processing and lip M1 are also found for

AM processing and jaw M1. Exploring this with different AM rates would also

be interesting as a somatotopic effect has been shown where lip M1 MEPs were

facilitated more when the noise-distortion was due to lip restriction, rather than

tongue restriction (Nuttall et al. 2016). Following this, it may be predicted that

the band-pass TMTF shape with peak sensitivity at ∼2 – 4 Hz (Edwards and

Chang 2013) would be measured from the excitability of jaw motor areas as AM

rates outside this range are less relevant to the targeted area. It is, however, also

possible that modification to the AM shape alone would not result in changes in

motor excitability, suggesting that more complex speech components (e.g. spec-

trotemporal modulations) may be required for motor cortex involvement. The

contribution of the motor cortex to speech perception increases under more chal-

lenging listening conditions (e.g. Adank and Devlin 2010), so there may be a

non-linear response profile where motor activation is not apparent for sinusoidal

AM noise but increases with speech envelope-AM noise, then decreases again

as more aspects are added and intelligibility improves. This would need to be

carefully controlled as it may be the quantity of noise distortion, rather than the
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quality (speech relevant or non-speech relevant distortions) that predominantly

mediates the involvement of motor regions and different response profiles have

been shown for participants with different hearing ability, even within the limits

of normal hearing (Nuttall et al. 2017). An alternative approach would be to

start with the full speech signal and then progressively remove low-level acous-

tic aspects, to quantify how activation changes and which parts are specific to

speech.

To summarise, speech production and speech perception are highly inter-

linked. Cortical processing of low-level speech aspects primarily involves auditory

cortex, however there is a much wider network involved in speech processing, in-

cluding motor regions. Future studies that aim to expand the TMS effects on AM

processing to speech processing generally must account for this. There is some

evidence for a causal role of articulatory motor areas to speech perception but

this is controversial. Non-invasive brain stimulation techniques have been valu-

able for exploring this further. These studies have shown that the articulatory

motor regions are most active under challenging listening conditions, suggesting

a modulatory role of M1 on speech processing. Applying these techniques to

investigate AM processing might provide some novel insights and clear testable

predictions can be made from this literature.

6.5 Follow-up Work and Future Directions

The work conducted in this thesis was fairly exploratory in nature as before this,

it was not known whether it was possible to affect AM sensitivity with TMS.

While this may have led to some unexpected findings, caveats and difficult in-

terpretations, this initial work will help to inform future investigations aiming to

elucidate the mechanisms underlying AM processing. Indeed, the studies com-

pleted as part of this project have already informed subsequent work within the

research group.

One current arm of research is aiming to improve the adaptive staircasing
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and function fitting through comparison of different psychophysical designs using

näıve participants. The task designs include the two main methods used here

and additional staircase types including simple up/down and Bayesian algorithms

(Levitt 1971; Watson and Pelli 1983; Watson 2017). This work will also explore

the implementation of updated maximum likelihood and the effects of adding

lapse rate and guess rate terms to the psychometric function (Shen and Richards

2013; Shen et al. 2015; Wichmann and Hill 2001).

Another line of research informed by this work is investigating the efficacy

of TMS to dissociate peripheral and cortical deficits in populations with normal

hearing, sensorineural hearing loss, noise-exposure and across different age brack-

ets. As TMS directly affects cortical regions (and is now known to be effective

at modulating AM processing), it is being applied to dissociate deficits due to

central and peripheral factors. If TMS proves effective it could be used alone

or as a complement to other newly developed methods that aim to elucidate

the mechanisms underlying hidden hearing loss (Dewey et al. 2018). This could

be further extended by comparing the functional connectivity profiles of people

with normal hearing and those with different types of hearing impairment or at

different stages of hearing loss.

Finally, the behavioural data collected as part of these studies is also being

used to inform a larger scale cohort study investigating the relationship between

AM detection and discrimination ability and functional or structural connectivity

measured during resting state. It is known that the connectivity of auditory

areas is asymmetric (Mǐsić et al. 2018), however, this has not been linked to AM

detection and discrimination performance. It would be particularly interesting to

explore whether this connectivity plays a role in AM sensitivity in normal hearing

adults and if so, if this is reflected in the connectivity profile. For example, is finer

AM sensitivity associated with a greater degree of interhemispheric connectivity,

and is this pattern the same for sensitivity to 4 and 40 Hz AM?
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6.6 Conclusions

This research was designed to address the following three overarching research

questions:

� Firstly, is fMRI-guided TMS an effective method for modulating AM pro-

cessing?

� Secondly, are different TMS protocols more or less effective at modulating

AM processing?

� Finally, is fMRI-guided TMS an effective method for further understanding

the functional asymmetry of speech processing?

It was shown that TMS can be an effective method for modulating AM sensit-

ivity, an integral part of speech processing. It was also shown that different TMS

protocols vary in effectiveness and possible explanations for this were discussed.

Finally, it was shown that TMS can be an effective tool for further understanding

the functional asymmetry of speech processing, however some caveats must be

accounted for. This work has opened many new avenues for future research to

explore and made key recommendations for similar investigations. Recent devel-

opments in psychophysical, fMRI and TMS methods could all be incorporated to

improve future studies. Overall, the outlook is promising for research investig-

ating AM processing using fMRI-guided TMS. To conclude, there is clearly still

much to learn about how AM is processed cortically, however, this thesis has

shown that fMRI-guided TMS can be an effective method by which to do so.
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Cutini S, Szűcs D, Mead N, Huss M, Goswami U (2016) Atypical right hemi-

sphere response to slow temporal modulations in children with developmental

dyslexia. NeuroImage 143:40–49.

Dau T, Kollmeier B, Kohlrausch A (1997a) Modeling auditory processing of

amplitude modulation. I. Detection and masking with narrow-band carriers.

The Journal of the Acoustical Society of America 102:2892–2905.

Dau T, Kollmeier B, Kohlrausch A (1997b) Modeling auditory processing of

amplitude modulation. II. Spectral and temporal integration. The Journal

of the Acoustical Society of America 102:2906–2919.

D’Ausilio A, Pulvermüller F, Salmas P, Bufalari I, Begliomini C, Fadiga L (2009)

The Motor Somatotopy of Speech Perception. Current Biology 19:381–385.

Davis MH, Johnsrude IS (2003) Hierarchical Processing in Spoken Language

Comprehension. Journal of Neuroscience 23:3423–3431.

DeLong KA, Urbach TP, Kutas M (2005) Probabilistic word pre-activation dur-

ing language comprehension inferred from electrical brain activity. Nature

Neuroscience 8:1117–1121.

Dewey RS, Hall DA, Guest H, Prendergast G, Plack CJ, Francis ST (2018) The

Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a

Functional Neuroimaging Study. JMIR Research Protocols 7:e79.

Dick FK, Lehet MI, Callaghan MF, Keller TA, Sereno MI, Holt LL (2017) Ex-

tensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spec-

179



trally Directed Attention and Systematically Related to Cortical Myeloar-

chitecture. The Journal of Neuroscience 37:12187–12201.

Ding N, Melloni L, Zhang H, Tian X, Poeppel D (2016) Cortical tracking

of hierarchical linguistic structures in connected speech. Nature Neuros-

cience 19:158–164.

Ding N, Patel AD, Chen L, Butler H, Luo C, Poeppel D (2017) Temporal modula-

tions in speech and music. Neuroscience & Biobehavioral Reviews 81:181–187.

Dixon P (2008) Models of accuracy in repeated-measures designs. Journal of

Memory and Language 59:447–456.

Doelling KB, Arnal LH, Ghitza O, Poeppel D (2014) Acoustic landmarks drive

delta–theta oscillations to enable speech comprehension by facilitating per-

ceptual parsing. NeuroImage 85:761–768.

Doll RJ, Veltink PH, Buitenweg JR (2015) Observation of time-dependent psy-

chophysical functions and accounting for threshold drifts. Attention, Percep-

tion, & Psychophysics 77:1440–1447.

Dorman MF, Loizou PC, Rainey D (1997) Speech intelligibility as a function of

the number of channels of stimulation for signal processors using sine-wave

and noise-band outputs. The Journal of the Acoustical Society of Amer-

ica 102:2403–2411.

Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal

modulations on speech reception. The Journal of the Acoustical Society of

America 95:2670–2680.

Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smear-

ing on speech reception. The Journal of the Acoustical Society of Amer-

ica 95:1053–1064.

180



Dyjas O, Ulrich R (2014) Effects of Stimulus Order on Discrimination Processes

in Comparative and Equality Judgements: Data and Models. Quarterly

Journal of Experimental Psychology 67:1121–1150.

Edwards E, Chang EF (2013) Syllabic (∼2–5 Hz) and fluctuation (∼1–10 Hz)

ranges in speech and auditory processing. Hearing Research 305:113–134.

Eldaief MC, Halko MA, Buckner RL, Pascual-Leone A (2011) Transcra-

nial magnetic stimulation modulates the brain’s intrinsic activity in a

frequency-dependent manner. Proceedings of the National Academy of Sci-

ences 108:21229–21234.

Elliott MR, Bowtell RW, Morris PG (1999) The effect of scanner sound in

visual, motor, and auditory functional MRI. Magnetic Resonance in Medi-

cine 41:1230–1235.

Elliott TM, Theunissen FE (2009) The Modulation Transfer Function for Speech

Intelligibility. PLOS Computational Biology 5:e1000302.

Ewert SD, Dau T (2000) Characterizing frequency selectivity for envelope fluc-

tuations. The Journal of the Acoustical Society of America 108:1181–1196.

Ewert SD, Dau T (2004) External and internal limitations in amplitude-

modulation processing. The Journal of the Acoustical Society of Amer-

ica 116:478–490.

Falk S, Lanzilotti C, Schön D (2017) Tuning Neural Phase Entrainment to Speech.

Journal of Cognitive Neuroscience 29:1378–1389.

Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A

(2016) Characterizing and Modulating Brain Circuitry through Transcranial

Magnetic Stimulation Combined with Electroencephalography. Frontiers in

Neural Circuits 10.

181



Fitzgibbons PJ, Wightman FL (1982) Gap detection in normal and hearing-

impaired listeners. The Journal of the Acoustical Society of Amer-

ica 72:761–765.
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Mǐsić B, Betzel RF, Griffa A, Reus D, A M, He Y, Zuo XN, Heuvel VD, P M,

Hagmann P, Sporns O, Zatorre RJ (2018) Network-Based Asymmetry of the

Human Auditory System. Cerebral Cortex 28:2655–2664.

Moerel M, De Martino F, Formisano E (2014) An anatomical and functional

topography of human auditory cortical areas. Frontiers in Neuroscience 8.

Moliadze V, Zhao Y, Eysel U, Funke K (2003) Effect of transcranial magnetic

stimulation on single-unit activity in the cat primary visual cortex. The

Journal of Physiology 553:665–679.

Moon IJ, Hong SH (2014) What Is Temporal Fine Structure and Why Is It

Important? Korean Journal of Audiology 18:1–7.

Moore BCJ, Glasberg BR (2001) Temporal modulation transfer functions ob-

tained using sinusoidal carriers with normally hearing and hearing-impaired

listeners. The Journal of the Acoustical Society of America 110:1067–1073.

Morgan M, Melmoth D, Solomon J (2013) Linking hypotheses underlying Class

A and Class B methods. Visual Neuroscience 30:197–206.

Morillon B, Lehongre K, Frackowiak RSJ, Ducorps A, Kleinschmidt A, Poep-

pel D, Giraud AL (2010) Neurophysiological origin of human brain asym-

metry for speech and language. Proceedings of the National Academy of

Sciences 107:18688–18693.

Morillon B, Schroeder CE (2015) Neuronal oscillations as a mechanistic sub-

strate of auditory temporal prediction. Annals of the New York Academy of

Sciences 1337:26–31.
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