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Abstract 
Central to DNA origami is the need to have oligomeric DNA bind adjacent DNA helices, 

whose spacing is dependent on the spatial offset between the helices. In square-based 

origami, this spacing must be an odd-number of half-turns, requiring a non-integer 

number as B-form DNA has a helical pitch of 10.50 bp. The inability to have non-integer 

spacings creates a phasing mismatch, leading to curvature of origami. This work 

explores how cationic concentration and species affect this curvature. 

Asymmetric single-sheet DNA origami with varying crossover spacings, said to be 

overwound, planar and underwound, were imaged under bulk aqueous solution with 

AFM, where the adsorption orientation served as a metric to infer the magnitude and 

direction of curvature. The combination of these three designs demonstrated how the 

effective Mg2+ concentration affects both DNA helicity as well as the electrostatic 

repulsion between the tightly packed helices. Low Mg2+ concentrations caused helix 

destabilisation; leading to flatter origami, whilst elevated Mg2+ concentrations appeared 

to shield electrostatic repulsions, causing a decrease in curvature. These results 

highlight the importance of Mg2+ concentration and its effect on origami curvature. 

Exposure to UV radiation induced unwinding of DNA through the formation of 

photoproducts, causing the overwound origami to experience a decrease in adsorption 

bias whereas the planar and underwound origami experienced an increase in bias. 

These results aid the idea that the direction of curvature is independent of crossover 

spacing. The combination of tiles in varying Mg2+ and those exposed to UV radiation 

served as a baseline to determine the effects that Ba2+ has on the DNA helix. Ba2+ 

appeared to induce over-winding of the DNA helix, whilst remaining in an overall 

destabilised state, compared to that of Mg2+. This caused the underwound origami to 

exhibit more curvature compared to those of the overwound and planar origami.  
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1 Introduction 
The applications of DNA nanotechnology are far reaching, having been implemented into 

a wide range of research areas. One area of particular interest is structural DNA 

nanotechnology, where the specific Watson-Crick base pairing and predictability of DNA 

secondary structure has been used to create DNA-based nanostructures. The field was 

started by Nadrian Seeman, who was able to rationally design immobile junctions [1], 

[2]. Seemans original vision was to create structures for immobilising proteins into 

periodic motifs, for the purpose of performing X-ray crystallography on proteins [1]. The 

difficulty in determining the structure of proteins still remains a problem today due to their 

instability in ex vivo environments as well as complex structure. Seeman then went on 

to develop robust structural motifs, known as DX tiles, through a process of reciprocal 

strand exchange. This led to the creation of programmable 2D arrays, demonstrating 

how DNA could be used to create new nanomaterials. The field of DNA nanotechnology 

was changed forever in 2006 when Rothemund demonstrated his DNA origami method, 

whereby a long ssDNA strand is folded into shape with shorter ssDNA strands 

complementing the folding pattern [3]. Rothemund was able to demonstrate the 

versatility of his technique by creating arbitrary 2D shapes, functionalised origami 

surfaces and even the ability to join origami tiles together. Since then, the number of 

applications has grown significantly, infiltrating a wide range of research areas. This 

includes solution-based applications such as drug delivery methods, platforms for DNA 

walkers and dynamic structures [4]. An important application that is of particular interest, 

are the surface-supported applications such as functionalised arrays for sensing 

applications, whose efficacy is dependent on the ability to access functional groups 

attached to origami, which single-sheet are positioned to solve.  

One of the challenges for structural DNA nanotechnology is to be able to create 

macroscale arrays with full addressability. In the early days of Seeman, this was 

achieved through sticky-end interactions between DX motifs. Although sticky-ends offer 

the specificity required, errors in binding still occur due to the prevalence on non-specific 



2 
 

interactions. Origami alleviated this to an extent by increasing the size of the tile subunit, 

but has yet to create fully-addressable microscale arrays. Creating anisotropic arrays 

from DNA origami is similar to the design and creation of a jigsaw puzzle. A jigsaw puzzle 

contains hundreds of pieces, each with a unique position and part of the image. The 

position of a jigsaw piece is determined by how it interlinks with its surrounding pieces. 

The known completed design of the puzzle itself, and the partial-design on the piece 

itself, can be used to help locate its position. For DNA origami to create a jigsaw puzzle, 

careful selection of the sticky ends is required to ensure error-free binding. Unlike jigsaw 

puzzles, the internal design of origami can’t be used as an aid for correct placement, and 

is strictly dependent on DNA binding along the edges of the tiles. Additionally, the tiles 

are unable to re-orientate themselves once adsorbed onto the surface, such that they 

could be upside down. Tikhomirov et al. recently demonstrated the creation of micron-

scale origami through a multistage process, leading to an 8x8 “jigsaw” puzzle [5]. This 

used a combination of sticky-end and blunt-ends to program the interactions between 

pieces, but only resulted in a ~2% yield of the final design. An alternative method to 

create arrays has been to employ blunt-end stacking between helices of origami, whilst 

keeping the tiles mobile [6], [7]. 

 Project aims 

The aim of this project was to understand how the internal crossover spacing affects 

curvature of single-sheet origami through analysis of adsorption orientation of 

asymmetric DNA origami tiles. This was extended into methods for controlling curvature 

of origami, to understand how changes in the helical properties of DNA affects the 

mismatch inherent to square-based single-sheet origami. This was achieved by having 

three origami designs of the same shape and size with differing crossover compositions 

and investigating how helix stabilisation as well as buffer conditions affect the crossover 

mismatch. 

The importance of controlling the solution structure of origami, and understanding what 

factors affect it as well as what the effects are, will allow for better design of both isotropic 
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and anisotropic DNA-based arrays. This is also important for dynamic origami, whose 

structure is dependent on solution conditions, which can also act as a means to control 

conformations. 

 Synopsis 

Using high resolution and high throughput imaging by atomic force microscopy (AFM) 

this thesis details the effect that buffer conditions have on the structure and stability of 

the DNA helix, and what effect this has on the solution curvature of origami tiles by 

measuring their adsorption orientation under aqueous conditions. 

Chapter 1 introduces the work contained in this thesis, introducing the general field of 

DNA-based technologies along with the core aims of the work. An overview of each 

chapter is given outlining the main points. Chapter 2 introduces the chemical nature and 

structure of nucleic acids with focus on the variety of factors that affect DNA stability. The 

various forms of DNA are given along with alternative structural elements that are 

observed. A summary of DNA in biology is given due to its prominence as the carrier of 

genetic information. Chapter 3 begins with an overview of DNA nanotechnology and how 

rational design have led to the development of novel materials and devices. A history on 

the developmental process and tools are given, highlighting the specific rules which 

govern DNA origami. Applications of DNA origami are given demonstrating its potential 

as a disruptive technology in a variety of areas. 

The main tool used for analysing DNA origami structure was AFM, whose operation is 

discussed in chapter 4. This chapter explores the basic modes of AFM for imaging under 

aqueous conditions, which are suited for DNA-based studies. An overview of literature 

concerning the study of DNA materials is given, detailing drawbacks that are present 

with AFM and how the scope of this work hopes to aid some of the misunderstandings. 

Chapter 5 contains the general methods use in this thesis, detailing the folding recipes 

and sample preparation methods used for imaging origami under aqueous conditions. 

Details on the analysis methods can be found in the appendix, along with example AFM 

images. 
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The three origami tiles are deemed to be underwound, planar or overwound, based on 

the composition of crossovers contained within. Chapter 6 explores the notion of what is 

meant by under/over-wound origami, based on the terminology of supercoiled DNA, 

noting that curvature of origami arises due to the DNA double helices between cross-

overs maintaining a B-form structure. With the aid of computer-generated models, the 

orientation and magnitude of the curvature for the three origami tiles were assessed 

under a range of Mg2+ concentrations. The results from AFM experiments indicated that 

the underwound and overwound tiles showed the same bias to the mica surface, 

suggesting that the curvature of the tiles were in the same direction. This was in 

contradiction to CanDo models; a finite element modelling software tool, which is used 

widely to attempt predictions of origami curvature, mechanics and structure. By contrast, 

OxDNA models (provided by Prof. J. Doye of the University of Oxford and Dr. John S. 

Schrek of Columbia University, NYC) agreed with the AFM data, indicating that CanDo 

has limitations in predicting origami shape and curvature. Further proof on the binding 

orientation of the origami tiles was demonstrated by depositing the tiles under various 

Mg2+ concentrations, which also was corroborated with OxDNA models. These results 

gave a baseline on how the stability of the DNA helix affects curvature of origami, 

questioning how the relative Mg2+ concentration with respect to DNA concentration 

affects the inherent stability of the DNA molecule. 

Chapter 7 details how UV exposure forms cyclobutane pyrimidine dimers (CPDs) along 

the DNA helix, distorting the helix and altering the degree of twist of the underlying 

crossovers. Literature on CPD formation notes that it causes unwinding of the DNA helix. 

UV exposure caused the overwound origami to bind with a decreased bias, whilst the 

planar and underwound tiles experienced an increase in bias to surface binding. This 

demonstrated how the formation of a CPD causes a distortion in the helix, affecting the 

inherent crossover mismatch. It further supports the designation of supercoiling between 

the three origami. It also demonstrates that the direction of curvature is always into the 

same plane, regardless of crossover composition. This chapter also details the effect 
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that Ba2+ ions have on the structure of the DNA helix, and how this affects the origami of 

the curvature. It was noted that regardless of crossover composition or Ba2+ 

concentration, the origami showed the same magnitude and orientation of curvature. 

This was investigated further by imaging the origami in a mixture of both Ba2+ and Mg2+ 

ions, revealing that the two ions have different binding modes to the DNA helix. It was 

noted that at lower ionic strengths than “standard” Mg2+, a mixture of Ba2+ and Mg2+ 

caused the underwound origami to become more curved.  

Chapter 8 details high resolution imaging of origami tiles under aqueous conditions, 

detailing the appearance of an internal diamond lattice that arises from the electrostatic 

repulsions between the tightly packed helices. High-resolution imaging also revealed the 

presence of a major axis, which is comprised of crossover spacings which do not contain 

a nicked strand. This leads to the exploration of how the arrangement of crossovers 

inside the origami affect CanDo models, acting as a potential method for controlling 

structure of origami. This chapter also looks at how altering the spacing between 

crossovers affects the formation of the internal diamond lattice, noting that the sides of 

the diamonds corresponds to the underlying crossover spacing. 

Chapter 9 discusses the main conclusions and outcomes of the research, with 

emphasise on how the phase mismatch causes origami to curve into the same plane 

unlike what has been previously reported in literature. The implications of underwinding 

induced by UV radiation acts a method to explain the observed binding of origami under 

varying Mg2+ concentrations, whose combined results serve as a baseline for the Ba2+ 

work. Future work is discussed, in both the context of this work and how it can be used 

to aid work of those in the field. 

The appendix contains the list of DNA sequences used for folding the origami, such that 

others can reproduce the work. A selection of example AFM images are given. The 

images are by no means exhaustive, but act to serve as an example. Due to the nature 

of the analysis and the origami design involved, AFM images are indistinguishable unless 
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analysis is carried out. An overview on the analysis methods as well as relevance on the 

size of the areas scanned is presented.  
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2 Introduction to nucleic acids 

 Structure of nucleic acids 

 DNA and RNA 

Nucleic acids consist of three structural elements; a sugar ring, a phosphate group and 

a base, which together form a monomer unit known as a nucleotide. There are two 

naturally occurring nucleic acids; RNA and DNA, along with artificially produced nucleic 

acids whose composition and function can vary greatly. The sugar found in RNA is 

ribose, in the form of β-D-Ribose, and in DNA is 2’-deoxyribose, which lacks the oxygen 

atom on the 2’ carbon (Figure 1). The five primary bases found in nucleic acids are 

adenine (A), thymine (T), cytosine (C), guanine (G) and uracil (U) (figure 1). Both RNA 

and DNA contain A, C and G whilst U is found only in RNA and T found only in DNA. 

These are grouped as being either purines (A, G) or pyrimidines (T, C, U). Nucleosides 

contain one base and one sugar and are formed when the N9 of the purines or the N1 

of the pyrimidines bond to the 1’ carbon of the sugar. A nucleotide consists of a 

nucleoside with either 1, 2 or 3 phosphate groups (labelled as α, β, and γ respectively) 

attached to the 5’ carbon of the sugar. The naming of nucleotides is given as the 

Figure 1: Sugar units and nucleic acid bases that occur in DNA 
and RNA. The DNA sugar ring lacks the OH group on the carbon 

2’ atom. Uracil lacks the methyl group present in Thymine. 
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nucleoside followed by the number of phosphate groups, e.g. adenosine diphosphate 

(ADP). A more general form uses N in place of a specific nucleoside along with M, D or 

T to represent mono-, di- or tri-phosphates. Monomer units can then be joined together 

via the formation of a phosphodiester bond between the α-phosphate group on the 5’ 

carbon of one nucleotide and the 3’ carbon of another nucleotide, forming nucleic acid 

chains (Figure 2B). This leads to a directionality of the nucleic acid chain, whereby one 

end is terminated by the phosphate group on the 5’ carbon (5’-end) and the other 

terminated by the hydroxyl group on the 3’ carbon (3’-end). This binding between the 

different carbon group is what adds direction as well as chirality to the ssDNA molecule. 

This chain of nucleotides is more commonly referred to as single-stranded, which can be 

either DNA or RNA.  

 DNA double helix 

The complementary pairing of two ssDNA molecules forms double-stranded DNA 

(dsDNA), whose structure was first proposed by Watson and Crick following the X-ray 

fibre diffraction work conducted by Franklin [8], [9].  In the structure proposed by Watson 

and Crick, the DNA adopts a right-handed helix with the sugar-phosphate groups on the 

exterior of the strand, known as the sugar-phosphate backbone, and the bases 

orientated perpendicularly to the backbone whilst being situated on the interior of the 

strand [8]. This organisation of the bases means that the interior of the helix is 

hydrophobic whereas the backbone is hydrophilic. 

The two ssDNA strands naturally bind together in an antiparallel fashion such that one 

runs in the 5’ to 3’ direction with the other running 3’ to 5’. The bases in each strand are 

complementary to each other such that A binds T and G binds C (Figure 2A). This binding 

of bases is highly specific and mediated by hydrogen bonds; with two hydrogens 

between A and T and three hydrogen bonds between G and C. This binding is known as 

Watson-Crick base pairing, with alternative binding possible under special 

circumstances. The additional hydrogen bond between G and C results in a higher 

energy required to disrupt the bond, meaning that DNA strands with a higher GC content 
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require more energy to denature [10]. This highly specific binding also means that in any 

DNA strand there is an equal amount of G bases as there are C bases, and T bases as 

there are A bases, which is known as Chargaff’s rule [11]. The helical structure of DNA 

also contains two grooves; the major and the minor groove, as seen in figure 2C, due to 

the bases not pairing across the centre of the helical axis. The grooves play an important 

role for the binding of proteins, enzymes and drugs [12]. 

 Stabilising factors 

 Base stacking 

The hydrogen bonding between the bases of the two anti-parallel ssDNA strands is not 

enough to form a stable right-handed helix. Bonding between the bases leads to an 

aromatic geometry, allowing π-π interactions between adjacent base pairs, which are 

both attractive and noncovalent [13]. Rotations in the sugar-phosphate backbone allow 

base-pairs to lie in the same plane, increasing the strength of π-π interactions and hence 

DNA stability. The exact strength of the stacking interaction is dependent on the DNA 

Figure 2: Watson crick strucuture of B-form DNA. A) Watson-Crick base pairing 
showing hydrogen bonds between A:T and G:C. B) Phosphodiester linkage 

between adjacent sugar rings of B-form DNA. C) Shematic of the B-form 
strucutre of DNA, highlighting the helical repeat as well as helical diameter. 
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sequence, as well as salt concentration, which gives DNA the ability to adopt alternative 

forms [14]. 

 Charge neutralisation 

The sugar-phosphate backbone of the DNA contributes to destabilisation of the DNA 

helix due to mutual electrostatic repulsions of the negatively charged phosphate groups 

[15]. In vivo this negative charge is shielded through interactions with cations. The most 

notable cation that is responsible for charge neutralisation is Mg2+, which bonds to two 

adjacent negative charges along one ssDNA [16]. It is believed that Mg2+ binds indirectly 

through hydration layers, due to the specific formation of water molecules that surround 

both the DNA as well as the Mg2+ ion itself [17]. This stabilisation of the DNA helix has 

been observed by investigating the effect of salt concentration on the melting 

temperature of dsDNA molecules [18]. 

As well as Mg2+, other cations, including monovalent ones such as Na+ can be used to 

stabilise the DNA helix. Due to its decreased charge, as well differing binding mode, a 

higher concentration of Na+ is needed to stabilise the B-form of DNA [19]. It is also 

possible to promote DNA condensation with the use of molecules that have a higher net-

charge, such as Hexaminecobalt(III) chloride ([Co(NH3)6]Cl3) [20]. Other metals such as 

the group (II) and transition metals have also shown to stabilise the DNA helix, but these 

result in slight deformations of the helix due to the presence of differing binding modes 

[21]–[23]. This is of particular importance when studying the effects of heavy metals, 

which are toxic to organisms. Hg2+ for example is able to bind and stabilise two opposing 

thymine’s, which would not otherwise be able to form under normal conditions [24]. 

 Temperature 

Another important aspect that affects the stability of the double-helix is the temperature 

of the solution. As the anti-parallel strands of the DNA molecule are held together through 

hydrogen bonds, these can be readily broken with an increase in temperature. DNA 

melting simply refers to double-helix denaturation, separating into single strands and can 

also be caused by a decrease in salt concentration as well as a change in pH. The 
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melting temperature of the DNA strand is also dependent on the sequence composition, 

as GC bonds contain three hydrogens, whilst AT bonds contain only two [10]. 

 pH 

pH can also cause destabilisation of the DNA helix [25], [26]. The optimal pH range of 

DNA is around 6 - 8. At moderate alkali levels, the OH- ions can cause deprotonation of 

the bases, affecting both the base-stacking as well as hydrogen bonding. This can lead 

to a reduction in the melting temperature of the DNA. At higher pH levels, hydrolysis of 

the phosphodiester bond can occur, causing the DNA to fragment. In more acidic 

conditions the H+ ions can cause deprivation of the purines, resulting in melting due to a 

loss of 50% of the bases. At extremely low pH levels the phosphodiester bond becomes 

cleaved, resulting in nucleosides and nucleotides [27]. 

 RNA 

The presence of the hydroxyl group on the ribose sugar means that RNA does not adopt 

the B-form helical structure that is prevalent to DNA. RNA forms an A-form double helix, 

often forming inter-strand binding where sequence complementarity allows, forming 

complex secondary structures. The ability to form complex structures, similar to what is 

seen for proteins, means that RNA displays some enzymatic activity, as seen in enzymes 

known as ribozymes, present in the ribosome [28]. This enzymatic activity that is seen 

with RNA leads some to believe that it pre-dates DNA as a carrier of genetic information 

[29].  
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 Alternative DNA forms 

There are several forms of DNA that occur in vivo, with the most common being B-form; 

the form discovered by Watson and Crick. The exact size and shape of the DNA helix is 

dependent on the environment in which the DNA resides. In general, it is accepted that 

B-form DNA has an average diameter of 2 nm and a helical pitch of 10.50 bp with a base 

pair separation of 0.31 - 0.34 nm, resulting in an average rise of 3.6 nm per helical turn. 

The other common in vivo forms of DNA include A-form and Z-form [30]. DNA adopts A-

form in low humidity environments, resulting in a number of structural changes. Although 

A-form adopts the same right-handedness as seen with B-form, the helix is wider and 

less coiled than B-form. A-form typically occurs when the DNA is dehydrated, but can 

also result from certain molecular machinery stripping the DNA of its counter ions [31]. 

The final most common form of DNA found in vivo is Z-form. Unlike A-form and B-form 

DNA, Z-form adopts a left-handed twist. Z-form occurs when the DNA sequence contains 

pyrimidine repeats and at higher salt concentrations [32], [33]. As mentioned above, DNA 

bases bind together co-operatively through hydrogen bonds in the form of Watson-Crick 

base pairing. There is however another form of base binding called Hoogsteen base 

Figure 3: Conformations of A, B and Z-form DNA. B and A-DNA adopt a 
right-hand helix, whilst Z-form is left-handed. Z-DNA also has a smaller 

diameter. (Image recreated from x3dna.org). 
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pairing [34]. In Hoogsteen base pairs, the purine bases are rotated about the glycosidic 

bond (the linkage between the base and the C1 carbon on the sugar-ring).  This also 

causes the GC base-pair to bind with two hydrogen bonds and leads to variations in the 

chemical properties of DNA as well as its physical shape. 

 DNA secondary structure  

The linear sequence of bases is the primary structure of DNA and contains no 

information on the physical structure of the DNA molecule. The B, A and Z-forms of are 

all examples of possible secondary structure of DNA that occur from inter-chain base-

pairing. Similar to RNA, DNA can also form intra-chain base pairs, which can result in 

various secondary structures [35], [36]. A summary of these secondary structures is 

shown in figure 4. Hairpin loops and cruciforms arise when one, or both, of the ssDNA 

strands contains an inverted self-complementary sequence. This leads to intra-chain 

base pairing and the extrusion of a loop from the DNA helix. Hairpin loops are a common 

method for the functionalisation of DNA origami as they allow extrusion of DNA strands 

from the origami surface. They also occur in vivo, playing an important role in DNA 

replication [3], [37], [38]. A similar structure to this is the slipped structure. Slipped 

structures can occur when there are sequence repeats in one of the ssDNA strands [39]. 

This can cause misalignment between the two strands, resulting in the formation of a 

loop that is, like hairpins, extruded from the DNA helix. DNA can also form triple and 

even quadruple helical structures. Triple-helical structures occur when the DNA contains 

a mirrored stretches of homopurine:homopyrimidine bases. This allows for a single 

strand polynucleotide sequence to bind to the major groove of the underlying DNA to 

form a triple strand. The two most common tetraplexes are G-quadruplexes and I-motifs 

[36], [40], [41]. G-quadruplexes are formed by long stretches of G bases, following 

Hoogsten base pairing rather than abiding to Watson-Crick base paring. I-motifs are 

formed from stretches of C-rich DNA, forming unusual cytosine-cytosine bonds. I-motifs 

have been shown to be more stable in acidic conditions [42]. The DNA helix can also 
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contain sequence of both B and Z-form DNA, which occur when there are variations in 

the DNA sequence. 

 Supercoiling 

Supercoiling is the difference in topology of a DNA molecule compared to its relaxed 

counterpart. The linking number (Lk) describes how the two ssDNA strands of a DNA 

helix are linked together and is comprised of two components: twist (Tw) and writhe (Wr). 

The linking number of a general DNA molecule is given as 

𝐿𝑘 = 𝑇𝑤 + 𝑊𝑟 

Tw corresponds to the number of times the two ssDNA strands twist round each other, 

whilst Wr is the number of times the dsDNA helix overlaps itself. For a relaxed DNA 

molecule, the linking number is simply the number of times the two strands crossover 

each other: 

𝐿𝑘° =
𝑁

ℎ
 

Figure 4: Examples of Non-B DNA structures. Each example gives a schematic of 
the of geometry of each type of secondary strand, along with the necessary 

conditions which cause it  [159]. 
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Where N is the number of bases and h is the helical pitch. Therefore the degree of 

supercoiling for a given DNA molecule is known as the linking difference and given by: 

∆𝐿𝑘 = 𝐿𝑘 − 𝐿𝑘° 

When ∆𝐿𝑘 < 0 the DNA is negatively supercoiled (underwound) as the DNA molecule 

contains fewer twists than the relaxed case, whilst when ∆𝐿𝑘 > 0 the DNA is positively 

supercoiled (overwound) as it contains more twists than the relaxed case. Topology is 

conserved as long as the individual DNA strands remain unbroken meaning that any 

change in the Tw must be accompanied by an equal and opposite change in the Wr, and 

vice versa. Typically for low linking differences it is usually more energetically favourable 

for the DNA to partition supercoiling into writhe over twist (Figure 5). 

∆𝑊𝑟 =  −∆𝑇𝑤 

In the case of a constrained strand, such as a segment of DNA between two proteins, 

local topological variations are allowed. One example is in the nucleus of cells, where 

DNA binds to histone proteins. As histones induce negative supercoiling of the DNA 

molecule, segments between the histones must under wind so as to maintain the linking 

number [43]. This also occurs when DNA is intercalated with a molecule such as ethidium 

bromide, EtBr. The induced underwinding results in twisting and writhing of the DNA 

Figure 5: Effect of positive and negative supercoiling on a constrained linear 
DNA fragment. It can be seen that the contortions in positive and negatively 

wound DNA have opposing handedness. The red and blue strands depict the two 
ssDNA strands in a single dsDNA molecule. 
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molecule. In order to change the supercoiling of a molecule, one or both of the ssDNA 

strands have to be broken and then ligated back together [44]. In vivo this is mediated 

by topoisomerases, which are able to break the sugar-phosphate backbone and re-

orientate the strands before ligating them back together [45]. The physical consequence 

of DNA supercoiling results in contortions of the DNA molecule, known as plectonemes 

or toroids. A supercoiled DNA molecule will always adopt a conformation that is most 

energetically favourable. So, although a supercoiled DNA molecule is in a higher energy 

state that its relaxed counterpart (i.e. when ΔLk=0), provided that the linking difference 

remains constant, the supercoiled molecule will relax to the lowest energy conformation 

available to it. From this point of view, although the molecule is holding strain energy, we 

could say that a supercoiled DNA molecule is “relaxed” in its particular topological state. 

This idea has relevance to the work in this thesis when considering how curvature is 

generated in single-sheet origami. 

 DNA damage 

Helical destabilisation can be caused by damage to the DNA molecule. This typically 

involves some form of a chemical reaction with various part of the DNA helix such that it 

deviates from the idealised form. There are various types of DNA damage that can occur, 

resulting in single-base and double-base modifications as well as single- and double- 

strand breaks, i.e. breakage of the phosphodiester backbone bonds [46]. Single-base 

modifications include oxidation, methylation and hydrolysis. These are typically caused 

by reactive oxygen species (ROS) and their non-specificity in how they target the DNA 

helix. Double-base modifications typically include crosslinking of bases, requiring high 

energy from sources such as UV radiation. A common crosslinking photoproduct is 

cyclobutane pyrimidine dimers (CPDs), which is the formation of a covalent linkage 

between adjacent pyrimidine bases [47]. Higher energy electromagnetic radiation, such 

as UVC and X-rays can result in single and double strand breaks. Another wide 

classification of DNA damage is the formation of adducts, which involves the reaction 
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with carcinogenic chemicals. An overview of the types and sources of DNA damage are 

given in figure 6. 

As the main purpose of DNA is to carry genetic information, organisms have developed 

processes that can be used to repair the DNA molecule. One of the most common is 

nucleotide excision repair (NER), where a segment of the ssDNA is removed either side 

of the damage. The remaining undamaged DNA helix is then used as a template to repair 

the damage. If the rate of damage exceeds the rate of repair however, DNA transcription 

and replication pathways are disrupted, leading to mutagenesis. DNA mutagenesis can 

also be caused by intercalators. Intercalators are planar hydrophobic molecules able to 

bind between the base pairs, disrupting the base stacking as well unwinding and 

deforming the helix. Although this does not result in direct damage of the DNA strand, it 

can lead to errors during the reading of the DNA strand, which can cause mutagenesis. 

Excessive mutations in the DNA sequence can lead to cell death as well as the formation 

of cancerous cells. As the majority of the genome is non-coding genes for protein 

expression, mutations of the DNA which are present do not necessarily give rise to 

deleterious effects in vivo straight away.  

 DNA in biology 

The complete DNA sequence of an organism, known as the genome, encodes the 

necessary information required to produce the molecular machinery required for the 

normal operation of organism. It also acts as the method by which genetic information is 

transferred from mother to daughter cells. A core concept is the “Central Dogma of 

Molecular Biology” which describes the flow of genetic information [48]. DNA partakes in 

Figure 6: Examples of DNA damage and how it presents it self in a 
DNA molecule, with the red sections denoting the deviations from B-

form DNA. 
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two processes: replication and transcription. Replication describes the process of how 

the DNA sequence is replicated, so that it can be transferred to daughter cells, whilst 

transcription is the process by which the DNA sequence is used to create RNA and 

eventually proteins. Once the DNA has been transcribed into RNA, the RNA sequence 

is then translated into proteins, which are the molecules which carry all the necessary 

task for an organism’s survival. 

As DNA is used to generate RNA and subsequently proteins, any change in the DNA 

sequence can result in changes downstream. This is why maintaining the correct DNA 

sequence is such an important factor. In vivo DNA is found in eukaryotic and prokaryotic 

cells. The main difference is how the DNA is stored. In eukaryotic cells, DNA is found in 

the nucleus of a cell, whilst in prokaryotic it is found in the nucleoid. The DNA in 

eukaryotic cells is stored in a compacted linear form, known as chromosomes. The 

chromosomes themselves are made from a chromatin fibre, which is made from DNA 

being wrapped around histone proteins. The DNA in prokaryotes is stored inside the 

nucleoid, in a supercoiled circular form. The need to compact DNA is to reduce the 

volume it occupies, due the relatively long lengths of its corresponding linear form. The 

sequence of the genome can be broken into sequences known as genes, which 

Figure 7: Central dogma of molecular biology, showing how genetic 
information is turned from DNA into proteins, highlighting the molecular 

machinery in each prcoess. 
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correspond to production of certain proteins. These genes can be activated and 

deactivated, meaning that not all of the genome is used for the production of proteins. It 

also means that genes can be turned on and off, through the incorporation of certain 

epigenetic factors. In eukaryotic cells, DNA is also found in gametes. As chromosomes 

come in pairs, these are broken down in gametes. The normal process of cell division, 

mitosis, results in two identical cells. When a cell forms gametes however, it produces 

two cells which each contain half the number of chromosomes of the adult cell. It is also 

possible for sections of the chromosome to be exchanged with one another, in a process 

known as homologous recombination. 
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3 DNA nanotechnology 

 Introduction 

There are two methods for the manufacture of devices at the nanoscale: top-down and 

bottom-up. Top-down techniques such as photolithography suffer from limitations such 

as the diffraction limit of light, whilst other techniques such as electron beam lithography 

suffer from poor parallelisation. Top-down methods are however, able to create 

nanometre sized features through etching of crystal planes in substrates. Bottom-up 

processes however focus on the exploitation of the self-assembly exhibited by 

molecules. One area of inspiration has been biopolymers, specifically DNA. The rules 

which govern DNA-DNA interactions are perhaps some of the most well understood in 

nature, leading to the innovation that is DNA nanotechnology. The chemical and physical 

properties that have evolved over time allowing for the encoding of genetic information, 

has led to DNA becoming the robust molecule that we know today. The specific Watson-

Crick base pairing combined with the predictability of DNAs three-dimensional structure 

has allowed for the creation of fully addressable nanostructures.  

 Structural DNA nanotechnology 

The most important aspect to designing nanostructures from DNA is the need for a non-

1D, stable structural motif. In nature DNA typically exists as a linear molecule for 

replication and transcription purposes. Tertiary DNA structures limit the ability of 

molecular machines to traverse the DNA strand, which is why the few tertiary structures 

that do exist are typically short lived. One example is the Holliday junction, an 

intermediate 4-way junction that appears during genetic recombination. The Holliday 

junction is unstable due to the sequence symmetry in the DNA strands; ideal for nature, 

not so much for nanotechnologists. It was Nadrian Seeman who first theorised and 

reported the construction of an immobile Holliday junction by rationally designing the 

DNA sequences [1]. It took nearly a decade for the next breakthrough to occur, which 

once again came from Seeman. The immobile Holliday junction lacked structural rigidity 
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due to there being only one reciprocal strand exchange (the process whereby a strand 

starts on one helix and crosses over to the next). Through his process of reciprocal strand 

exchange, Seeman was able to design multiple structural motifs; the most well-known 

and used being the double-crossover (DX) [49]. The arrival of the DX motif lead to the 

creation of DNA “tiles”, which consisted of a DX motif with “sticky-ends”. These sticky-

ends are ssDNA overhangs whose sequence are designed to complement that of 

another tile. This allowed for the creation of 2D DNA lattices, which relied only on the 

self-assembling nature of DNA [50]. DNA hairpin loops were also incorporated into these 

DX tiles, demonstrating how DNA could be used to create periodic structural and 

functional arrays. Other structural motifs were also created, further increasing the scope 

of the field. One limitation that persists still today is the ability to create micron sized 

arrays with full addressability. The relatively small size of the DX tile meant that many 

hundreds would be needed to create large-scale aperiodic arrays, increasing the 

complexity of design.  

 DNA origami 

Named after the Japanese art of paper folding, DNA origami refers to the method of 

creating arbitrary 2D/3D shapes by “folding” or routing a long, viral strand of ssDNA 

(scaffold) with shorter ssDNA oligomers (staples) being generated to complement the 

routing pattern of the scaffold strand. In his inaugural paper, Rothemund demonstrates 

the process by designing several 2D shapes, perhaps most notably is the smiley face 

[3]. Rothemund also demonstrates the ability to functionalise the origami with hairpin 

loops, creating a map of the Americas and using DNA to write the word “DNA”. 

Rothemund discusses the process of origami design in detail, with the routing pathway 

and crossover spacing being the two most important aspects. In the early days of DNA 

origami, most were designed using custom software. The rise in interest of origami 

however, has led to dedicated software packages to aid with the design process which 

when combined with additional tools for origami structure prediction make the whole 

process somewhat trivial. Despite this however, the details outlined by Rothemund still 
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remain relevant. The first important design aspect is the routing of the scaffold. Similar 

to the rules of Seemans DX tiles, each crossover subunit requires adjacent helices to be 

anti-parallel. This allows the staple strands to form a series of interconnecting DX 

junctions, adding stability and rigidity to the structure. Although it has been demonstrated 

to use a routing pathway that has parallel helices, the anti-parallel routing remains the 

most dominant method [51].   

 Staple design 

A staple strand can be broken into three segments: head, body and tail. The point at 

which the staple strand switches between helices is a crossover point and is where the 

segments of the staple connect the scaffold together. Schematics of origami tile design 

usually show a gap at the crossover but structurally this is not the case. As there are no 

unpaired bases, it is only the phosphodiester bond between two segments which span 

the inter-helical gap. Crossovers are spaced along the helices such that the stretching 

of the bond at the crossover is minimised apart. This requires the bases either side to be 

in line with one another. This spacing is known as the single crossover (SX) spacing and 

Figure 8: Left: Schematic of how the bases in the scaffold and staple strands 
bind together and the definition of the single and double crossover spacing. 
Right: Simplified schematic highlighting the sections of the staple strands. 
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refers to the distance between crossovers at either end of the body segment (Figure 8). 

SX spacings may also consist of the head and tail of two differing staples, leading to a 

nicked segment of DNA. The double-crossover (DX) spacing is the gap between 

crossovers occurring between pairs of adjacent helices; comprised of the two SX 

spacings. The DX spacing is always a number of full-turns, whilst the ideal SX spacing 

is dependent on the both the spatial offset between the helices and the native form of 

the DNA.  

 Square based 

The first origami designed by Rothemund were single-layer origami (SL-O) built using 

the square-based (SQ) lattice. Here the offset between helices is 180° (½ turn), meaning 

that the ideal SX spacing is an odd-number of half-turns.  The SQ lattice has also been 

Figure 9: Schematics showing the offset between adjacent helices and the angle 
through which crossovers must rotate for i-iii) SL-O SQ, iv-vi) SL-O HC, vii-ix) 

ML-O SQ and x-xii) ML-O HC origami.  
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used to create multi-layered origami (ML-O), where the helices are offset by 90°. For SQ 

ML-O the staples have multiple adjacent helices to choose from when forming 

crossovers. Figure 9 gives an example of how the crossover may look, but there is a 

multitude of ways to connect the helices. In general, the ideal SX spacing is some 

multiple of a quarter helical turn.  

The design of DNA origami assumes that the native form of DNA in solution is B-form, 

with a helical pitch of 10.50 bp. In the case of SQ SL-O, the ideal SX spacing is typically 

designed to be 1.5 turns, which correlates to 15.75 bp for B-form DNA. As it is not 

possible to have a non-integer number of bases, the native SX spacing is generally 

designed such that it contains 16 bp. This leads to a mismatch between the ideal and 

native SX spacings; resulting in stress at the crossover points. This stress accumulates 

Figure 10: Schematic showing the offset between bases either side of the 
crossover that arises when the crossovers deviate from the idealised B-form 

spacing, denoting their relative supercoiling w.r.t twisted DNA. 
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along the length of the origami resulting in twisting or curvature of the origami tile. The 

mismatch is also present in ML-O origami due to a quarter turn containing 2.625 bp.  

 Honey comb 

The other common lattice used for designing origami is the honey-comb (HC) lattice, 

where the offset between helices is 120°. With adjacent helices being anti-parallel, the 

direction through which the SX spacing must rotate is either clockwise or anticlockwise. 

This means that the ideal SX spacing is either 120° or 240°. A spacing of 120° 

corresponds to 3.5 bp for B-form, which is too small to ensure adequate binding between 

the DNA strands; it is also requires a non-integer number of bases. The solution is to 

increase the SX spacing by one full turn, meaning the ideal spacings are either 480° or 

240°, which for B-form DNA is 14 bp and 7 bp respectively. As HC origami require an 

integer number of bases between crossovers, there is no issue of mismatch, meaning 

that they do not exhibit curvature, unless rationally implemented [52]. 

 Lattice free 

Both SQ and HC use tightly packed helices and crossovers at set intervals, limiting the 

complexity of origami design. One recent development to expand the range of potential 

2D and 3D structures is the wireframe method [53]–[55]. Here the origami is routed in 

such a way that it creates a series of vertices and lines. Vertices are connected using 

similar methods to create multi-arm junctions with the addition that poly-T segments are 

introduced to increase the flexibility whilst the edges are represented as a series of 

crossover junctions, leading a variety of 2D shapes. 

An extension of the wireframe method for creating nanoscale 3D shapes is to recreate 

them as polygon meshes. Here 3D shapes are represented as a series of triangles, with 

each edge being a single helix and each vertex designed such that the scaffold is non-

crossing, resembling a simple DNA junction. This method is a series of interconnected 

multi-arm junctions, but unlike the wireframe, requires the junctions to remain rigid to 

retain their 3D structure. Bathe and colleagues have extended this further to design 3D 

shapes where the edges consist of DX motifs, increasing the rigidity. There is also no 
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limitation on the need to have a mesh of triangles. Other methods used custom routing 

of the scaffold to create 3D structures, such as those designed by Han et al. [56]. 

 CAD design 

During the early days of structural DNA nanotechnology, the design of immobile junctions 

required DNA sequences be heterologous to ensure that domains would bind properly. 

To this end, Seeman developed SEQUIN, a FORTRAN based program where the user 

would sketch a 2D line drawing [57]. SEQUIN would then generate a set of DNA 

sequences ensuring that they were sufficiently different so as to prevent incorrect 

domains from binding. This was later expanded to GIDEON in 2006, which featured an 

easy to use interface as well as a simple 3D representation of the molecule. It was at 

this time however Rothemund invented DNA origami; changing the landscape of 

structural DNA nanotechnology forever. Rothemund details the design method used in 

his original paper, using a program known as “multishapes.m” for the generation of DNA 

sequences; which was never released. The second demonstration of DNA origami came 

from a group in China, who created a custom PERL script for the design of the staple 

strands [58]. 

The first open access CAD program for DNA origami was SARSE. Originally developed 

by Anderson et al. in 2007 for analysing RNA alignments, it was later modified in 2008 

to be used for DNA origami [59], [60], and the same year also saw the release of Tiamat 

and caDNAno, which have since gone on to be the most common software for origami 

design [61], [62]. Tiamat by Han et al. allows for designing lattice-free origami, replacing 

SEQUIN and GIDEON, whilst caDNAno is used for the design of square and honeycomb 

based origami. 

As DNA origami has become more prominent and the routing methods complex, 

researchers have sought to create software that is more accessible. Both Tiamat and 

caDNAno require input from the user when designing the routing path, but include simple 

3D models of the helices to keep track of the process. Recent developments in origami, 

such as the wireframe methods developed by Hogberg and Bathe have created 
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specialist software requiring minimal input from the user. Hogberg’s group developed 

vHelix, where the user must first construct a 3D triangle mesh of the nanostructure they 

wish to create [54]. vHelix then automatically generates a scaffold route and the staples 

such that each edge is represented by a single double-helix. In DAEDALUS, developed 

by Bathe and colleagues, the input model can be any 3D shape [55]. Here each edge is 

comprised of a crossover motif and allows for shapes with faces which are not limited to 

triangles.  

Once the origami had been designed and the staple sequences generated, there was no 

way to check if they would result in the desired structure unless they were visualised, 

with techniques such as AFM or EM. The development of modelling software has allowed 

for rapid error checking, reducing the financial costs associated with any potential 

sequence errors during the design process.  

Before the invention of origami, scientists have tried to model small artificial DNA 

structures. As origami increased the size of DNA nanostructures, it also increased the 

computational requirements needed to model such structures. The first tool developed 

to model origami structure was CanDo [63]. Developed in 2011 by Dietz and Bathe, it 

took a finite-element approach to modelling origami. CanDo is an online web service that 

uses a mechanical model of the double-helix, assuming that it is homogenous rod with 

axial stretching, twisting and bending. When it was first developed it only allowed 

submissions from caDNAno but has since been updated to allow submissions form 

Tiamat and DAEDULUS. 

Although imaging methods such as AFM and TEM are used to categorise DNA origami, 

they typically lack sufficient resolution for full structural details on the origami properties 

in solution. One of the problems with CanDo is that it does not consider the effect of 

electrostatic and solvent-mediated forces. In 2013 the first full-atomistic simulation of 

DNA origami was carried out using NAMD, allowing researchers to visualise structural 

fluctuations [64]. Due to the computational power required for full-atomistic simulations, 

NAMD still remains out of reach for the average user, although methods have been 
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developed to simplify the modelling process. In 2010 Doye and colleagues created 

OxDNA, a coarse-grain approach to modelling DNA nanostructures [65]. Unlike the two 

extremes of CanDo and NAMD, OxDNA lies in the middle offering detailed simulations 

without the need for large computing power. In 2015 it was revised to OxDNA2 to include 

differing widths for the major and minor grooves as well as a new electrostatic 

interactions to include modelling under varying salt concentrations [66]. 

 DNA origami applications 

 Scaling up 

The size of a single origami tile is limited by the length of the scaffold strand. Most origami 

are folded using M13mp18 as the scaffold strand, due it to being easily accessible 

through commercial sources. One of the earliest attempts to create large origami was by 

Zhang, who created a 26k nt ssDNA strand using molecular biology techniques [67]. This 

was later replicated by Marchi et al. who created the largest single origami tile, using a 

scaffold of 51k nts [68].  Increasing the size of the scaffold strand requires a larger staple 

set, which is one of the highest financial costs associated with DNA origami. Whilst 

Zhang purchased theirs commercially, Marchi et al. had created an “inkjet” based method 

for creating oligomers, using freely available plans. Other methods have also been 

developed such as that by Praetorius et al., who demonstrated that it is possible to use 

bacteriophages to create staple strands of arbitrary length and sequence [69]. The inkjet 

method used by Marchi et al. however still requires a high upfront cost, meaning that the 

average researcher is still reliant of commercially sourced staple strands. 

An alternative approach to creating origami super-structures was demonstrated by Zhao 

et al. who used an additional ssDNA strand as a secondary scaffold [70]. The secondary 

scaffold strand was loosely folded into shape, with sticky-ends in the origami tiles 

themselves designed to bind to the secondary scaffold strand. A benefit of this approach 

is that the origami tiles can retain a core set of staples, with only the edge staples needing 

to be replaced. More recently Tikhomirov et al. demonstrated a multi-stage process for 

the hierarchal assembly of origami superstructures [5]. Similar to Zhao et al. a single 
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origami is used where a core set of staples are retained. Rather than using a secondary 

scaffold, rational design of sticky-ends were used to join origami tiles together. A multi-

stage step approach was taken to increase the yield of super-structures, where certain 

tiles were mixed together, before being mixed with other groups. This resulted in the first 

micron-scale origami with full addressability, whilst maintaining a relatively small staple 

set. A limitation of this approach however is the need to have a suitable number of sticky-

ends to ensure adequate and error-free binding between tiles, which is partially limited 

by the size of the original origami tile. 

Base stacking interactions between origami tiles was first noted by Rothemund who 

incorporated poly-T overhangs into staple strand that are along the edge of the origami, 

where the scaffold strand crosses over, to disrupt the inter-tile interactions. Base stacking 

interactions can however be exploited to create arrays of origami tiles. Suzuki et al. 

deposited origami onto a lipid bilayer, allowing the origami to remain mobile. Base 

stacking interactions between origami tiles would then occur, creating large scale arrays 

[7]. This technique was also used by Woo et al. on a mica surface, using a buffer 

containing Na+ ions to reduce the mica-DNA interaction, keeping the origami tiles mobile 

[71]. The greatest downside to base stacking between tiles is that they are non-specific 

meaning that there is no control over the ordering of tiles. The use of sticky-ends has 

however offered some control, but is still susceptible to unwanted interactions. 

 Functionalisation 

One goal of nanotechnology and bottom-up fabrication techniques is the ability to 

position nanomaterials with nanometre precision, something that DNA origami is well 

placed to solve. The well-ordered and characterised structure as well biological 

importance has meant that DNA is one of the most well understood biomolecules. This 

has led to numerous chemical modifications of the DNA molecule enabling it to become 

functionalised with a wide range of nanoparticles. 

The first step in creating functionalised DNA origami is to create DNA-nanoparticle 

conjugates. A chemically modified oligomer is incubated with the target nanoparticle, 
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which in the case of gold nanoparticles requires a thiol-modified oligomer. Conjugates 

containing a single oligomer are isolated using agarose gel electrophoresis (AGE), which 

also removes excess DNA. At the same time, staple strands in the origami are modified 

such that they contain a sticky-end that is complementary to that used in the conjugate. 

Both the modified origami and conjugates are incubated and subsequently filtered using 

AGE to isolate the desired structures. For larger, anisotropic particles such as gold 

nanorods, several binding sites in the origami are required to ensure accurate binding 

and orientation. The spacing and length of the sticky-ends is an important design aspect, 

as it affects the finer placement of nanoparticles.  

Ding et al. were the first to demonstrate the placement of multiple gold nanoparticles into 

origami structures [72]. Since then a number of 1D, 2D and 3D DNA-gold architectures 

with unique properties have been created. One of the most interesting areas is the design 

of plasmonic structures, where the close proximity of gold nanoparticles can lead to 

increase plasmonic resonance. DNA origami offers a way to finely tune the position and 

orientation of DNA, as demonstrated by Pal et al. [73]. DNA origami has also been used 

to arrange quantum dots (QDs), semiconductor nanocrystals with unique electronic and 

optical properties. Controllable positioning of QDs will allow for novel materials, as QD 

have already shown great promise in a wide range of applications [74]. 

One of the greatest benefits of DNA origami is that it allows multiple functional groups to 

be attached to a single structure. This was recently demonstrated by Li et al. with the 

targeted delivery and release of an anti-cancer drug [75].  

 Dynamic structures 

The most common method of creating dynamic DNA structures has been to take 

advantage of toe-hold strand displacement reactions. Commonly referred to as strand-

displacement reactions; two ssDNA strands are bound together, with one of the strands 

containing additional unbound bases. A third ssDNA strand is design to complement the 

original ssDNA strand which contains the unpaired region. The third strand is then able 
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to bind to the unbound section, and then displace the strand that was originally bound, 

being longer the third strand has a higher energy of interaction with the template. 

Dynamic DNA structures such as DNA walkers had already been developed before DNA 

origami, exploiting strand displacement reactions. Seeman was the first however to 

demonstrate how a DNA walker could be placed on an origami tile, making the 

complexity of dynamic systems possible [76]. The ability to program rules into DNA 

sequences has also led to some of the first DNA base computers, being able to perform 

logical operations. More recently though, Thubagere demonstrated the ability of DNA 

origami supported walkers for the transport and sorting of various cargo [77]. 

Anderson et al. were the first to demonstrate a dynamic DNA device using strand-

displacement reactions [78]. Their use of a “lock and key” systems allowed for the 

opening and closing of a 3D DNA origami box. In the locked state, two extended strands 

along its edge were bound to those on the neighbouring face. In the presence of a “key” 

ssDNA strand, the extended strands became separated, opening the box. More 

complicated dynamic structures have since been developed, with Ke et al. demonstrating 

the ability to create multi-conformation DNA origami with the addition of ssDNA strands 

that would complement ssDNA strands bound between two regions of the origami [79]. 

Kuzuya et al. demonstrated how a target molecule could be used to alter the 

conformation of a pair of nanotweezers [80]. 

 Biophysical studies 

An important aspect of DNA storage in biology is the wrapping of DNA inside of the 

nucleus. DNA origami offered a way to study the small forces and dimensions involved, 

revealing details on the packing of DNA. Dietz et al. created a DNA origami hinge 

allowing for the sub nanometre placement of a nucleosome pair, to study how salt 

concentrations can affect their dissociation whereas Le et al. used a nanocaliper device 

to study their wrapping efficiency. Other methods have involved DNA origami to constrain 

dsDNA segments, allowing for the study of dynamic processes such as T7 RNA 

polymerase transcribing the constrained dsDNA using high speed AFM. Yamamoto et 
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al. use a DNA origami frame to study how DNA bending is required for the binding of 

certain proteins [81]. This frame technique has recently been expanded to study how 

RecA searches for homologous sequences [82]. 

DNA origami has also been used to study the forces involved in single molecules. 

Techniques typically involve attaching nanometre sized proteins to micron-sized beads, 

which are subsequently probed using optical and magnetic tweezers. DNA origami offers 

the ability to create more rigid structures, meaning that it is possible to measure lower 

forces. Kilchherr et al. used a DNA origami supported method for measuring the forces 

of base-stacking at single molecule level [83]. Nickels et al. developed an origami force 

clamp method, to probe the single molecules on a parallel scale using FRET [84].  

One of Seeman’s original goals for DNA origami was the ability to created 3D crystals 

for use in determining the crystal structure of proteins. The recent advent of cryo-EM has 

allowed for near-atomic resolution of variety of biological molecules. The recent work of 

Dietz group have managed to get cryo-EM of DNA origami to sub nanometre resolution 

[85]. The combination of cryo-EM and DNA origami may finally allow for the structural 

determination of small proteins due to the ability of DNA origami to place proteins in with 

nanometre precision, forming crystalline-like structures. 

Membrane nanopores are important for controlling transport across cell membranes. It 

has been demonstrated that DNA origami nanopores can be inserted into lipid bilayers 

[86]. This can be extended up to large structures such as vesicles or microbubbles, 

allowing for transport across the membrane. DNA origami nanopores have also shown 

to be electrically conductive, which may lead to novel DNA sequencing techniques by 

acting as gatekeepers when combined with solid state nanopores [87]. 
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4 Imaging DNA origami with AFM 

 Introduction 

Atomic force microscopy (AFM) is a scanning probe microscopy (SPM) technique that is 

highly suited for imaging of biomolecules at the single molecule level. Its versatility allows 

for data collection in a wide range of environmental conditions ranging from vacuum to 

liquid, something that is matched only by optical based techniques. The advantage AFM 

has over optical techniques is the ability to image individual molecules, surpassing the 

limits of optical resolution without the need for additional agents, such as fluorescent 

dyes which can alter the native form of DNA. The other group of microscopy techniques 

are electron based, typically requiring the sample to be both conductive and imaged 

under vacuum, which too can lead to alterations of the DNA helix. Although recent 

advancements in electron microscopy, such as cryo-EM have shown to be able to 

achieve high-resolution imaging of DNA origami, AFM offers easier sample preparation 

methods as well as increased sample throughput. 

The focus of this thesis is on the adsorption orientation of DNA origami nanotiles onto 

mica from bulk aqueous solution, studying how the structure of DNA affects the apparent 

curvature as well as physical properties of the tiles themselves. This requires imaging 

under physiological conditions to maintain the DNA in B-form. Imaging under aqueous 

solution removes unwanted surface adsorption and binding effects that may occur 

through drying of the sample. The recent advancement in AFM instrumentation allows 

for high-speed imaging, improving sample throughput. It has also allowed for easier 

imaging under aqueous conditions, something that has been taken advantage of in this 

thesis. 

 Scanning probe microscopy 

SPM instruments utilise the interaction between the sample surface and a sharp 

nanometre sized probe to obtain data. The first atomic force microscope (AFM) was 

developed by Binnig and Rohrer, based on the scanning tunnelling microscope (STM) 
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which had earnt them the 1986 Nobel Prize for Physics [88], [89]. STM relies on the 

tunnelling of electrons between the probe and sample. This results in high resolution 

images in the Z-direction due to the exponential relationship between tunnelling current 

and tip-sample separation. STM however requires the sample be conductive, one of the 

key reasons that lead to the development of the AFM. Unlike STM, AFM collects data by 

measuring the deflection of a flexible cantilever as it interacts with the sample. The 

deflection is typically measured through the reflection of a laser spot on the back of the 

cantilever, which is why AFM can be used in a range of environments and on a range of 

samples [90]–[94]. With advancements in microfabrication techniques as well as AFM 

instrumentation, the size of the cantilever can be made smaller to be more sensitive to 

forces, leading to high resolution images of soft biological samples under aqueous 

conditions. 

 AFM instrumentation 

In AFM a sharp tip attached to the end of a flexible cantilever is scanned across the 

sample, where the physical interaction between the tip and sample is used to generate 

high-resolution topographical micrographs. AFM has numerous modes of operation but 

the core component still remains: the AFM probe. The AFM probe is a micro fabricated 

device usually made of silicon or silicon nitride that consists of a flexible cantilever with 

an integrated sharp tip. It is the tip which interacts with the sample through both long and 

short-range forces. The choice of cantilever size and shape is dependent on the samples 

Figure 11. Common cantilever design demonstrating the spring board 
(left) and the triangular (right) cantilevers. 



35 
 

mechanical properties as well as the imaging mode used. Cantilevers vary in spring 

stiffness from 0.01 to 400 Nm-1 with the tip sharpness being in the range of nanometres 

[95]. Careful probe selection is key for acquiring high-resolution topographical and 

quantitative data dependent on the sample measured and the application, e.g. imaging 

or force measurement. Figure 11 details the two most common probe cantilever design.  

Tip-sample interactions are the main source of force on the cantilever. This force results 

in sub-nanometre deflections of the cantilever, requiring a sensitive deflection 

measurement system. The most common method for cantilever deflection is the optical 

lever method, where a laser spot is focused onto the top-side of the cantilever [96]. This 

laser spot is then reflected onto a photodiode, with one or more intermediate mirrors 

used to direct the laser. This set up allows for amplification of the deflection signal, 

providing a vertical or Z-direction sensitivity of 0.01 nm [97], [98]. Accurate resolution in 

the X-Y direction is maintained with scanners typically made from piezoelectric materials 

along with closed loop feedback systems. A piezo tube is also used to maintain accurate 

Z-positioning [99], [100]. Although the specifics of AFM systems vary by manufacturer, 

the general concepts remain the same (see figure 12). Some AFMs control the Z 

Figure 12: Schematic of a basic sample-scanning AFM mounted on a 
piezoelectric scanner. This setup is not representative of all AFM systems, but all 

utilise a similar method. The probe is mounted in a holder (not shown) which 
controls the drive frequency (if applicable). 
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direction by mounting the sample on the piezo tube, whilst others mount the probe onto 

the piezo tube. 

 Forces in the AFM 

Images are collected in AFM by the forces that occur between the tip and the sample. 

The total force acting on the probe results in a deflection, which can be modelled using 

Hooke’s law: 

𝐹 = −𝑘𝑥 

Where F is the total force acting on the cantilever, k is the spring constant and x is the 

deflection. As the spring constant is known, and the deflection measured, the force on 

the cantilever can be calculated. The force between the sample and the tip can be 

modelled by the Lennard-Jones potential (Figure 13). At extended ranges, the force on 

the cantilever arises from van der Waals forces, which are relatively weak and always 

attractive. At low separation, the idea of “physical” interaction is questioned, as the Pauli 

Exclusion Principle states that no two identical fermions can occupy the same state [101]. 

Figure 13: Graphical representation of the Lennard-Jones potential: The 
dashed lines represent the contributions from long-range van der Waals 

forces, with the repulsive forces coming from the electron cloud 
interaction between the tip and sample.  
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This results in a repulsive force, that is highly dependent on the separation and has been 

exploited for high-resolution imaging.  

Other forces act on the probe and are a result of environmental conditions. In ambient 

conditions there exists a thin water layer on both the sample and the tip. When the two 

are brought into close proximity, the two water layers interact with each other, causing a 

capillary force on the tip [102]–[104]. This can cause the tip to snap onto the surface and 

is commonly seen in force-distance curves. This snapping action can result in sample 

and tip damage. The capillary force is not present under aqueous or vacuum conditions. 

The laser spot can cause heating of the cantilever, altering its relative stiffness. This has 

been mitigated to an extent with the design of smaller cantilevers and low-power laser 

spots. When imaging in aqueous conditions, hydrodynamic forces arise due to the 

relative motion of the probe and the sample which can perturb the sample. This too has 

been mitigated with the design of smaller cantilevers. It is also known that van der Waals 

forces are shielded in liquid due to the random orientation of the dipole moments. 

Imaging under vacuum eliminates these environmental interaction forces, with the 

cantilever deflection being dependent only on the interaction between the sample and 

the probe. This can lead to atomic or even sub-atomic resolution if the feedback control 

is optimised, with the cantilever being sufficiently stiff and the tip sufficiently sharp. The 

downside however is not all samples are suited for imaging in vacuum. 

 Imaging modes 

AFM can be operated in various modes. The first mode that was developed was contact 

mode, which is still in use today and can be operated in either constant height or constant 

force mode. In constant height mode, the tip is maintained at a constant set point 

regardless of sample topography. As the tip is scanned across the surface, the forces 

cause the cantilever to deflect, which is then recorded. In constant force mode, the 

deflection of the cantilever is maintained at a constant set-point. As the tip is scanned 

across the surface, the change in topography and forces cause the deflection to change. 

The change in deflection is detected through the laser spot and is fed into feedback loop, 
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which alters the z-piezo position so as to maintain the deflection set-point. The rate at 

which the z-piezo reacts to changes in the topography is controlled by a PID controller, 

and is limited in the response time of the z-piezo. Constant height mode is typically used 

for samples that are known to be flat, as movement of the z-piezo can introduce noise, 

which can be amplified by the feedback loop.  

The most common mode of AFM is intermittent-contact (IC) mode. This is also referred 

to as TappingModeTM or AC-mode, depending on the AFM manufacturer [105]. For 

simplicity it is referred to as tapping mode throughout this thesis.  In tapping mode, the 

cantilever is driven at a constant drive amplitude and frequency. The frequency chosen 

is at or close to the resonant frequency of the cantilever. There is an inherent phase-shift 

between the driving amplitude and the amplitude at the free-end of the cantilever. When 

the tip is brought into close proximity with the surface, sample-tip interactions reduce the 

free amplitude. The reduced amplitude of the free-end is maintained at a user defined 

set-point, and is used in the feedback loop to move the z-piezo during scanning. The 

interaction with the surface causes a retardation of the free-end oscillation, as the rate 

at which energy is dissipated is dependent on the properties of the sample [106], [107]. 

Figure 14: Simplified view of where the three main AFM modes operate. The blue 
denotes an attractive force, whilst the red repulsive. The sample is depicted as 

grey. In tapping mode the cantilever is driven such that it intermittently contacts 
the surface, whilst in non-contact mode the AFM is able to operate through 

interactions that are solely attractive forces. 
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This changes the phase-shift between the driving frequency and the frequency of the 

free-end of the cantilever, allowing for phase imaging of the sample. Phase imaging can 

be used to image samples that would otherwise appear identical in the topographical 

image [108], [109]. Due to the intermittent contact, lateral forces are minimised in tapping 

mode due to the short-interaction time between the tip and the sample. Tapping mode 

can result in tip and sample damage if the amplitude set-point is too low, due to excess 

energy being dissipated into the sample. 

The amplitude of oscillation in tapping mode means that the tip is continuously brought 

into and out of physical contact with the surface. It is possible to tune the system such 

that the tip does not physically contact the surface, but rather interacts with the attractive 

van der Waals forces as well as the repulsive forces [90], [110]–[112]. This allows for 

non-contact (NC) AFM imaging. NC-AFM typically operates in the attractive regime, 

feeling only effects of the van der Waals. It is also possible however to image close to 

the surface, such that the tip just feels repulsive forces. In this regime, the AFM is able 

to obtain higher resolution images due to the greater change in force over the same 

distance [113]. As both NC mode and tapping mode are forms of amplitude modulation 

(AM) imaging, it is important to distinguish between the two. NC mode can also operate 

in frequency modulation (FM) mode where the interaction with the surface causes a shift 

in the resonant frequency of the probe. The systems responds to this by changing the 

drive frequency of the cantilever, to maintain a constant amplitude of the free-end. 

AFM can also be used to obtain force-distance curves, allowing for quantitative analysis 

on the physical properties of the sample. This has been extended into modes such as 

ForceVolume and quantitate nanomechanical mapping (QNM). Both of these modes are 

variations of tapping mode, with the exception that the deflection of the cantilever is 

continually monitored. The deflection response of the cantilever as it comes into contact 

with the surface can then be used to obtain information such as sample adhesion, energy 

dissipation and hardness etc. 
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 High speed AFM 

One of the issues with AFM is the rate at which samples can be scanned, due to the 

physical interaction required between the tip and sample. There are two limiting factors 

which have since been overcome, leading to the development of faster AFM systems 

[114]–[119]. These are the rate of which the tip is oscillated and the rate at which the 

sample is moved. In tapping mode, the AFM probe has to physically contact the surface 

during each cycle. To ensure adequate sample interaction at each pixel, the cantilever 

needs to be oscillated at higher frequencies. One of the ways to achieve this is with the 

design of stiffer cantilevers. This however limits the softness of the sample that can be 

imaged. This was overcome with the development of smaller cantilevers, which allows 

for both softer cantilevers and higher drive frequencies. This also required the 

development of more responsive and higher bandwidth electronic systems, due to the 

increased data output. This was solved by the development of an RMS-DC converter 

that was capable of using a half-wave to convert the signal, rather that 5-6 waves that 

were previously required[114], [120]. 

The issue of speeding up sample movement was first demonstrated by Ando et al. who 

created a stacked piezo system [120]. Previously piezo tubes consisted of four crystals 

that worked in tandem to give the x, y and z movement. The systems designed by Ando 

remedied this by having the X and Y piezo in one plane, and the z piezo in another. This 

decouples the X and Y from the Z, removing vibrations. The stacking of piezo means 

that the sample can be moved in both X and Y simultaneously. There are now a range 

of commercial high speed AFM systems, such as the Bruker Dimension FastScan used 

in this work. The rate at which AFM systems can now scan has also lead to manufactures 

differentiating between high speed and video rate. High speed AFM was used 

extensively in this thesis due the increased sample throughput, allowing for increased 

statistical sampling and analysis. 
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 Imaging parameters 

An AFM user has control over key parameters of the system. In contact mode, the user 

adjusts the deflection set-point. A higher set-point corresponds to greater force on the 

tip, increasing sample damage and tip wear. In tapping mode, the drive amplitude and 

frequency are kept constant throughout. Rather than a deflection set-point, tapping mode 

maintains the amplitude set-point, corresponding to the absolute value of the amplitude, 

rather than a change in the amplitude. If the amplitude set-point is too low, excess energy 

is dissipated into the sample, resulting in damage. Similarly if the drive amplitude is too 

high, the relative difference between the drive amplitude and the amplitude set-point can 

result in tip damage. In QNM mode, the maximum force on the oscillating cantilever is 

kept constant. This is similar to the amplitude set-point in tapping mode, but takes into 

account the physical properties of the sample. 

The rate at which the system responds to changes in the deflection or amplitude is 

controlled by electronic feedback systems, known as PID controllers. An AFM user has 

control over the proportional (P) gain and the integral (I) gains. These gains affect the 

rate at which the z-piezo is adjusted, due to changes in the deflection or amplitude. 

Higher gains cause the system to respond quicker, sacrificing the signal-to-noise ratio 

as a result of high sensitivity which can arise due to thermal fluctuations. This can result 

in a noisy image. Conversely, low gains can cause the system to respond slowly, 

resulting in increased dwell times and can damage the tip. A key part of AFM is that the 

tip is scanned across the surface. This results in a fast and slow scan axis. The fast scan 

axis is typically set parallel to the long axis of the cantilever, whilst the slow axis is 

perpendicular.  

Resolution in AFM images are dependent on all the above factors. One of the most 

important factors that is beyond the control of the user is the tip radius. Ideally the tip 

would be one atom, such that force acts only on one spot. As this is rarely the case, the 

tip interacts over a certain volume, known as the interaction volume. If the tip radius is 

larger, it interacts over a greater volume, reducing the ability to obtain high resolution 
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images. This is why preservation of tip sharpness is key in obtaining high resolution 

images. 

Although the cantilever is often tuned to its resonant frequency so as to obtain the largest 

free amplitude, increasing Z-resolution, intermittent contact mode can operate at any 

frequency. As liquid is 600 time denser than air, a greater driving set-point amplitude is 

required to overcome dampening forces due to the liquid. This results in a wide, low 

resonant peak. The ratio of the height to the width of the peak is quoted as the Q factor. 

Vacuum has the greatest Q factor, as there are no damping effects present. Air has the 

second best, with Q value in the range of 10-500, whilst liquid has the worst in the range 

of 3 or even less. 

 AFM imaging of DNA molecules 

 Substrate choice 

The wide range of length scales afforded by AFM means that it is not always possible to 

image samples directly. In the case of nanometre and micrometre samples, a substrate 

is required to mount the sample. There are two main criteria that must be fulfilled to allow 

for imaging of DNA and DNA origami. Firstly, the substrate must be flat so as to discern 

topographical difference between the DNA and the substrate. Secondly the substrate 

must form an adequate bond with the DNA so that it is not perturbed by motions of the 

tip. The most commonly used substrates for the study of DNA are HOPG, glass, silicon 

and mica. HOPG and silicon both require modification to ensure adequate binding whilst 

glass lacks long-range flatness. The mica surface however is both negatively charged 

and atomically flat, making it ideal for studying DNA in both liquid and ambient conditions 

[97], [121]–[123].  

 Imaging of DNA molecules 

Mica is the collective name given to a set of silicate based layered materials. In AFM, 

the most common mica used is muscovite (ruby) mica. The muscovite mica layered 

structure can be easily cleaved with tape, to reveal a near-atomically flat surface. When 
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mica is cleaved, the interfacial K+ ions are shared between the two surfaces [124]. Under 

aqueous conditions the K+ ions dissociate from the surface into the liquid, leaving a 

negatively charged mica surface. As DNA in solution contains an excess of Mg2+ ions to 

neutralise the negative sugar-phosphate backbone, the Mg2+ ions are able to bind to the 

negative sites in the mica. This forms a layer of Mg2+ ions, which the DNA is then able to 

bind to. This mediated DNA-mica interaction with Mg2+ is known as a salt-bridge [125]. 

As the Mg-DNA interaction is non-specific and relatively weak, the DNA molecules are 

able to laterally diffuse across the surface, causing the DNA to adopt a surface 

equilibrated conformation [126]. This diffusion prevents individual DNA molecules from 

being imaged under aqueous conditions as they can be diffusing too quickly and/or 

perturbed by the AFM tip. In order to image DNA molecules under aqueous solution, the 

mica is typically pre-treated with Ni2+ [127]. Nickel forms a stronger bond with the mica 

surface, such that even when the DNA-buffer solution is deposited, the Mg2+ ions are 

unable to displace the Ni2+. The Ni-DNA interaction is also stronger than the Mg-DNA 

interaction. This limits the diffusion of the DNA when adsorbed, causing them to become 

kinetically trapped, adopting a 2D conformation that is representative of the 3D solution 

structure [128], [129]. Nickel pre-treatment is also required for imaging ssDNA molecules 

under ambient conditions due to the weaker Mg-DNA interaction [130]. 

 Imaging of DNA origami  

As origami are higher dimensional structures than linear DNA molecules, their solution 

structure is believed to affect their adsorption orientation onto mica. The solution 

structure of origami is determined by the underlying crossover composition and 

arrangement. For square-based single-sheet origami the inability to have a non-integer 

number of base pairs between crossovers means that the origami exhibit a curvature 

reflecting the underlying crossovers. CanDo is a commonly used finite-element model 

whose results are taken as de facto during the analysis of DNA origami. This is discussed 

in chapter 6, along with the impact of crossover composition and arrangement in chapter 

8. 
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As AFM is a surface-based technique, binding orientation information is lost when 

imaging symmetrical DNA origami due to the inability to distinguish between the origami 

“faces”. This is shown in figure 15, which demonstrates the extreme case of a curved 

origami and how this would appear when imaged with AFM. This can be alleviated by 

using an asymmetric tile, such as that used in this work, and previously demonstrated 

by Marchi et al. [68]. Curvature of origami has also been investigated with SAXS and 

EM, by Baker et al. and Mallik et al. respectively [131], [132]. A downside with SAXS is 

that it is only able to distinguish the magnitude of curvature and not its orientation. This  

Figure 15: Fundamental notion explaining adsorption orientation of origami tiles. 
The asymmetrical tiles allow for differentiation of orientation, as demonstrated in 

the mock AFM images. Binding ratios are therefore reflective of the underlying 
curvature, highlighting the extreme cases. 

Figure 16: Top; curvature of a symmetrical origami based on realistic crossover 
spacing’s. It is still not possible to infer solution curvature with AFM. Bottom; 

curvature of an asymmetric origami with realistic curvature. Although it is 
possible to infer orientation, the axis around which the origami curves cannot be 

measured. 
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Figure 17: A) Helical bundles showing how base insertion/deletion causes twisting 
[52]. B) CanDo models, AFM and EM images of a rectangle with a crossover spacing of 
16 bp [132]. C) Overview of formation of “nanoribbons” by joining diagonally opposed 

tiles [37]. D) Models, AFM images and observed binding of “flagpole” origami with 
increasing EtBr concentration by analysing cis and trans conformations [134]. E) 
Effect of UV radiation on the presence of “nanoribbons” as well on the flagpole 

origami [133]. F) CanDo models of smaller 7k nt origami, with AFM images showing 
size comparison between 51k nt and 7k nt origami. Binding statistics of larger 51k nt 

origami [68]. 
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is demonstrated in figure 16, showing how a symmetrical origami can curve, based on 

CanDo models as well as results of this work. In the EM paper of Mallik et al. they were 

able to demonstrate how an origami with a 10.67 helical pitch curves, as seen in figure 

17. The symmetrical nature of the tile means that it isn’t possible to determine if the 

origami is curved like that in figure 15 or figure 16, since they would both appear the 

same. This inability to distinguish the orientation of the tile is also present in the work by 

Dietz et al. [52]. They designed a honeycomb based helical bundle, demonstrating that 

the insertion/deletion of bases can cause the origami to adopt a left or right-handed twist 

(figure 17). The same problem that is present with the inability to distinguish between a 

symmetrical single-sheet origami is prevalent in these twisted bundles, as there are two 

possibilities for the formation of a left or right-handed helix.  

One of the methods to determine the magnitude and direction of origami curvature was 

demonstrated by Li et al. who formed “nanoribbons” of DNA origami by linking curved 

origami together [37]. As CanDo has shown that certain corners of origami are curved, 

linking these corners together will form a twisted structure, whilst linking the flat corners 

Figure 18: Potential structure and orientation of nanoribbons. The mock AFM 
images demonstrate how the two left- or right-handed ribbons would appear, 

showing that the axis around which the tile curves cannot be determined. 
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would create a flat structure. In figure 18 it can be seen how curved origami can be linked 

together, and the resultant structure’s that would form depending on the direction in 

which the tiles are linked. Similar to single symmetrical origami tiles, there are two cases 

which can result in either a left or right-handed nanoribbon. As they used a single tile 

design, basing their results on CanDo models, there is still an issue as to whether or not 

CanDo is correct since there are two potential causes for the formation of a right-handed 

nanoribbon. The main difference between the two right and left handed super-helices is 

the orientation of the starting origami. This information is lost in AFM images, with both 

cases appearing the same.  

Another attempt to measure the effect of tile curvature using both UV irradiation as well 

as intercalators came from the Choi group [133], [134]. They first used intercalators, 

which induces unwinding of the helix. The use of a “flagpole” structure allowed for 

distinguishing between a cis and trans conformation, by the position of the two flags 

either side of the central pole. The degree of twist in the origami was analysed through 

the proportion of origami observed to be cis or trans in AFM images. The problem is that 

the under or over-winding of one end is identical to that of the other and as such it cannot 

be determined if the flagpole is under or over-wound. This is a similar argument to the 

single-sheet origami where alternative corners curve in or out of the plane. Although the 

trans version can be either S-shaped or Z-shaped, they can be superimposed onto each 

other when flipped (Figure 19).  In theory however, detailed analysis on the tiles observed 

with the S- or Z-conformations would be able to determine the angular offset between 

Figure 19: Schematic demonstrating the inability to determine under- and over-
wound of flagpole origami due to symmetry of the design. 
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the two flags on either end, assuming the flags would be able to influence the binding 

orientation. 

The origami tile designed by Marchi et al. solves this degeneracy issue by using an 

asymmetric tile, such that it is possible to distinguish binding orientation of origami with 

AFM. Figure 16 demonstrates the possible ways that this asymmetric origami can curve, 

by changing the supercoiling of origami. CanDo predicts that the under and over-wound 

origami will curve into opposing planes, causing origami to bind with opposing faces on 

top. This was the exact result shown by Marchi et al. suggesting that CanDo is in fact 

correct. The CanDo model generated by Marchi et al. was for a smaller DNA origami 

using the M13mp18 scaffold, whilst the binding statistics were of a larger origami which 

used a custom 51k-nt scaffold. There are no results published for the smaller origami, 

which was a source of frustration due to the results observed in this thesis conflicting 

with those of Marchi et al. This is discussed in chapter 6, explaining how the larger 

origami has a lower effective Mg2+ concentration, affecting the DNA’s helical stability 

Figure 20: Schematic of the internal diamond lattice that is observed with DNA 
origami tiles. The rough geometric diagram demonstrates how the width of the 

origami would experience a greater change with increased electrostatic 
repulsions. 
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such that it is not strictly canonical B-form. Additionally, the OxDNA models in chapter 6 

combined with the binding results further show how inaccurate the CanDo software is.  

Once DNA origami is bound to mica, regardless of the effects of curvature, there a 

several factors which affect its apparent physical properties, such as width and length. 

The tightly packed helices of lattice-based origami means that the helices exert repulsive 

electrostatic forces on one another. This effect was first noted by Rothemund and it 

causes the DNA origami to appear wider than the idealised design, when imaged under 

liquid conditions [3]. This causes the appearance of an internal diamond lattice, where 

the corners are the crossovers and the edges are the DNA strands between the 

crossovers. In high resolution images of DNA origami there is an apparent asymmetry in 

the heights of the edges of these diamonds, as some of the DNA strands between 

crossovers are nicked. This allows the DNA to relax, causing them to deviate from the 

idealised B-form shape, as discussed in chapter 8, and is the source of the “major axis” 

hypothesis. This inter-helical gap is observed in both helical bundles as well as single 

sheet origami that have differing crossover lengths, with literature noting the structural 

and mechanical differences, as seen in figure 21. The effect is most noticeable along the 

axis perpendicular to that of the DNA helices. Figure 20 details how the width of the 

origami would theoretically change with an increase in electrostatic repulsion, noting that 

the effect is more noticeable along the axis perpendicular to the helices. This was the 

main reason width measurements were recorded and analysed in the results chapter, to 

measure the repulsion as well as helix stability. This internal diamond structure is only 

observed for hydrated DNA origami. Imaging origami under ambient conditions can result 

in a variety of observed structures due to various drying effects. The AFM work in this 

thesis was carried out under aqueous conditions, so as to remove any effect that may 

occur due to the sample drying affecting observed binding statistics. The inter-helical 

spacing is also dependent on the relative ionic concentration. The electrostatic repulsion 

between the helices as well as the DNA-Mica binding is dependent on the Mg2+ 

concentration, this is explored in chapter 6.  
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DNA origami binding to mica under aqueous conditions is often taken for granted, since 

they bind and are immobile in conditions that individual smaller DNA molecules are 

sometimes not. This has allowed origami to be imaged under a wide variety of conditions. 

Most notable is the folding and depositing in the presence of Na+ ions, which greatly 

affect the surface mobility as shown by Woo and Rothemund, as Na+ is known to weaken 

Figure 21: Top: Models of helical bundle showing placement of 
crossovers with varying spacing’s. Height profiles detail the difference 
between imaging of origami in air and liquid, as well as the difference 

observed in the varying regions [148]. Bottom: Origami showing how a 
marker section is used, with the other section containing varying 
crossover spacing, along with simple schematics showing staple 

arrangement. AFM images highlight difference observed with differing 
crossover spacings [149]. 
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the DNA-mica interaction [71]. The hope was to make the origami mobile, such that blunt-

end interactions would cause the formation of arrays. This was achieved, but the lack of 

control over the adsorption orientation means that this method is perhaps not ideal for 

creating large-scale structures. DNA origami have also been imaged on a supported lipid 

bilayer, with the aim of creating large-ordered arrays [7], [135]. This was demonstrated 

by Suzuki et al. who were able to deposit origami without the need of anchoring them to 

the bilayer [7]. This has led to some of the largest periodic arrays. As previously 

mentioned however, the lack of control over adsorption orientation as well as inter-tile 

binding leads a lot to be desired. One proposed method has been to generate 

lithographic templated substrates, which are designed to be hydrophilic such that the 

DNA binds in a specific place. This effect was taken further with the recent publication 

by Gopinath et al. who showed that by modifying one of the origami surfaces with ssDNA, 

it is possible to orientate them on the surface [136]. 

Figure 22: A) AFM images of adsorbed origami onto a lipid bilayer, showing 
how base stacking interactions, along with increased mobility, cause the 

formation of arrays [7]. B) Deposition of origami onto mica under Na+. Increased 
mobility leads to origami forming arrays with base-stacking interactions [71].  
C) Anchoring of origami to a lipid bilayer using cholesterol to anchor origami 

[135]. 
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The recent review article by Ramakrishnan et al. details the various environments that 

DNA origami has been shown to be stable in, highlighting its usability in a variety of 

buffers [137]. Most of these are derived from biological environments, which is just one 

potential area of DNA origami. Of the works discussed in the review however, most 

methods to assess origami structure have focused on their appearance on substrates 

and their degree of yield during the folding, rather than measuring the structural effects 

Figure 23: A) AFM images of triangular origami under solutions of urea 
and GdmCl [137]. B) AFM images of triangular origami under varying 

buffers (labelled) [138].  C) Overview of origami designs and their 
movement through AGE, highlighting yield of folding under Mg2+ and Na+ 
[139].  D) AFM images of triangular origami under varying buffers as well 

as varying conditions (UV exposure, high temperature) [140]. 
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of these buffers. An overview of some of the buffers are shown in figure 23, where AFM 

as well as agarose gel electrophoresis (AGE) where the main methods used to assess 

the folding yield [138]–[141].  
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5 Methods 
This section details the main experimental procedures used to fold and image the DNA 

origami constructs used in this work, with references to other methods that are used in 

literature, highlighting the broad spectrum of folding buffers as well as techniques. 

 Preparation of DNA origami 

Original files of the origami used in this work were obtained from Thomas LaBean, the 

corresponding author of the paper from which the designs in this thesis were based on. 

A list of the staple strands used in this work are given in the appendix. 

Lyophilised staple strands were purchased from Integrated DNA technologies, Inc. with 

standard desalting. These were re-suspended to a concentration of 100 μM. A 50 μL 

aliquot from each individual staple solution was taken and mixed with others in their 

corresponding column. This gave 20 columns for each origami design. A further 50 μL 

was taken from each column mixture and combined together. This gave a final staple 

solution of 1 mL with each staple at 384 nM. 

A standard folding mixture contained: 

 4 μL M13mp18 @ 100 nM 

 10 μL staple stock @ 384 nM 

 10 μL 400 mM Tris, 10mM ethylenediaminetetraacetic acid (EDTA) 

 10 μL 125 mM Mg-acetate 

 53 μL ddH2O 

This gave a final Mg2+ concentration of 12.5 mM along with an m13mp18 concentration 

of 4 nM with a 40x staple excess. The folding mixture was then heated to a temperature 

of 95°C and held for 4 mins, then cooled to 20°C at a rate of 1°Cmin-1. Once folded, the 

mixtures were left at 4°C for a minimum of 12 hrs before imaging. 
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The folded mixtures were used as a stock solution from which aliquots were taken and 

diluted such that the final origami solution was 1 nM with a 10x staple excess. It was at 

this stage that the ionic concentration was altered, by diluting samples into mixtures 

containing salts, TAE and water to obtain the desirable final Mg2+ or Ba2+ concentrations 

(or mixture of). Staples were left in solution as filtration methods can lead to potential 

contaminants in solution, as well as unknown salt:DNA concentrations.  

 UV exposure 

UV exposure of tiles was carried using a Pen-Ray Mercury lamp (Ultra-Violet products 

Ltd, Cambridge, UK) product no. 90-0012-01 (11SC-1). Intensity of the UV lamp was 

measured using a compact power and energy meter console (Thorlabs, part no.: 

PM100D) using a S120VC UV-sensitive photodiode sensor. The recorded irradiance 

was 17 Wm-2. Samples were exposed in 1 min intervals for fine UVC exposures, equating 

to a dosage of 1.02 kJm-2min-1. Lamp spectra from the manufacture noted a peak 

emission at 254 nm (UVC). 

Samples were folded with a 10 nM m13mp18 excess. An 80 μL aliquot was taken, which 

was diluted to 800 uL into an Ultra-micro cuvette (Brandtech Scientific, INC, product no.: 

759235). After each exposure, a 40 μL aliquot was taken for AFM imaging.  

 AFM imaging 

Images of the origami were captured in liquid using the Bruker Dimension FastScan AFM 

using FastScan-D probes (Bruker, Billerica MA). To prepare samples for imaging, 10 μL 

of the folded mixtures was deposited onto freshly cleaved mica and left to incubate at 

room temperature for 3 mins. After incubation, 240 μL of imaging buffer was added. The 

sample was then placed onto the AFM platform and the AFM head slowly lowered until 

the mica surface was in focus. The AFM was used in Tapping mode (liquid) with the 

cantilevers tuned using the auto tune feature. 
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 Sample analysis 

To achieve adequate statistical analysis of the binding ratio of tiles, images were 

collected by scanning areas that are 9x9 μm in size, with a pixel resolution of 3072x3072. 

These images were manually processed using FIJI, counting the number of tiles with the 

A- or B-face on top. Tiles whose orientation could not be determined were used for 

calculating errors. For width measurements of the tiles, this was reduced to 3 μm whilst 

maintaining the pixel resolution. For width measurements, a single image was taken so 

as to not perturb the tiles to an excessive degree, affecting their observed widths. 

Captured images were then analysed using Gwyddion due to increased number of line 

profiled that can be extracted. These line profiles were then imported into OriginPro 9.1, 

where the second derivative of the line profiles were used to determine the width. 

Due to the similarity and nature of analysis used for this work, most AFM images are 

similar in appearance. For improved reading, AFM images are omitted from the main text 

of this work as the author feels it detracts from the results. A series of example images 

are however given in the appendix, highlighting the tile design, buffer conditions and 

image resolution. The appendix also contains details on the analysis and significance of 

the scanning areas used. High resolution imaging of the DNA origami is however detailed 

in chapter 8. 
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6 Effect of Magnesium on origami 
curvature 

DNA origami has shown to be a versatile tool for a wide range of applications. One area 

of interest is having the ability to control the adsorption orientation of origami onto 

substrates. Being able to control orientation will lead to increase yields in experimental 

procedures such as surface supported biosensors, DNA walkers or applications where 

the DNA is functionalised. Measuring the adsorption orientation also offers a method for 

determining the solution structure of origami, where certain buffers may lead to changes 

in the structure of the origami. This is important for applications where the origami are 

used in an “exotic” buffer, which may cause unwanted/unknown structural changes. 

The crossover spacing of DNA origami has shown to cause twisting or curvature of the 

design, especially in square-based origami [37], [131], [134], [142]. This is particularly 

important for single-sheet origami, which are intrinsically more flexible than multi-layered 

origami. The benefit of using single-sheet origami is that they offer greater surface areas 

for surface-supported applications. The increased flexibility also means that it is easier 

to “tune” the curvature in a laboratory environment, and thereby bias the orientation of 

surface binding for controlling and creating hierarchical assemblies and devices based 

on single-sheet origami. 

AFM is used for measuring the curvature of origami as it allows for imaging under liquid 

conditions, maintaining the physiological conditions that DNA requires. It also does not 

require the use of dyes as in high resolution optical microscopy, which are often 

intercalators, which may alter the structure. Finally, studying origami on a surface is 

reflective of applications whereby DNA is adsorbed onto substrates. 

 Cause of origami curvature 

Supercoiling of DNA occurs to counteract the addition/removal of helical turns. The 

addition of helical twists results in DNA that is positively supercoiled (overwound), whilst 

the removal of helical twists results in negatively supercoiled DNA (underwound). DNA 
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wants to maintain the helical pitch imposed by the solution conditions, which is typically 

assumed to be B-form with a helical pitch of 10.50 bp [143]. The addition/removal of 

helical twists alters the helical pitch of the DNA. To counteract this, the DNA forms 

contortions known as toroids or plectonemes, when twist partitions into writhe. The 

handedness of the writhe is opposite to the direction of twist. This is seen in figure 5 

(chapter 2), where the twisted state of overwound DNA is right-handed, whilst the 

supercoils are left-handed.  

For square-based single sheet-origami, the crossovers have to be spaced an odd 

number of half-turns apart. This is typically 1.5 turns, which for B-form DNA would require 

15.75 bp. As it is not possible to have a non-integer number of bases, crossovers are 

typically spaced 16 bp or 15 bp apart. Figure 24i shows how the bases in relaxed DNA 

are orientated when it rotates 1.5 turns. Figures 24ii and 24iii show how over or under-

winding the helix would alter the orientation of the bases from the relaxed case. Figures 

24v and 24vi show how the bases are orientated in crossovers that are spaced 16 bp 

and 15 bp apart respectively. It can be seen that the orientation of the 16 bp is the same 

Figure 24: i) Orientation of bases seperated by 1.5 turns. Relative orientation 
of bases for ii) overwound and iii) underwound DNA. iv) angular mismatch of 

16 bp and 15 bp crossovers, relative to the idealised 1.5turns of 15.75 bp. 
Orientation of bases for a v) 16 bp and vi) 15 bp crossover, highlight the 

mismatch to 15.75 bp. 



59 
 

as the orientation of overwound DNA (in its twisted state). In the literature, the 

supercoiling or rather curvature of origami is defined as the left or right-handed twist that 

is resultant of the writhe seen for supercoiled DNA [52]. The important distinction is that 

the crossovers are not supercoiled, but rather they mimic the over or under-winding that 

occurs in the twisted state of supercoiled DNA. This distinction is important as it states 

that the curvature is simply a result of the angle through which the crossovers rotate, 

rather than the supposed mismatch between the crossover spacing and the idealised 

spacing. This is seen in literature, where underwinding of the DNA helix induced by EtBr 

causes origami with 16 bp crossovers to appear planar [134]. 

 Design overview 

A general overview of the origami design used in this is given in figure 25. The design is 

30 helical turns in length, which corresponds to 20 crossovers of 1.5 turns each along 

the long axis of the tile. Due to the inability to have a non-integer number of bases 

between crossovers, designs use spacings of 16 bp and 15 bp to alter the degree of 

supercoiling in DNA origami. Table 1 describes how the average helical pitch can be 

varied by changing the crossover composition.  

The first origami design used in this work uses crossovers that are all 16 bp in length. 

This would cause the origami to have an expected average helical pitch of 10.67 base 

pairs per turn (bppt), if it was fully constrained. The second design uses crossover 

spacing’s such that the expected average helical pitch is 10.50 bppt. which requires 

fifteen 16bp crossovers and five 15bp crossovers (Table 1). The position of the 15 bp 

crossovers are outlined in figure 25. The third design has ten 16bp crossovers and ten 

15 bp crossovers, creating a tile that has an expected average helical pitch of 10.33 bppt, 

whose average mismatch is equal and opposite to that of the 10.67, with respect to the 

10.50 bppt tile, which is expected to be planar. Each design uses the entirety of the 

No. 16 bp 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
No. 15 bp 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Resultant width 320 319 318 317 316 315 314 313 312 311 310 309 308 307 306 305 304 303 302 301 300
Helical Pitch 10.67 10.63 10.60 10.57 10.53 10.50 10.47 10.43 10.40 10.37 10.33 10.30 10.27 10.23 10.20 10.17 10.13 10.10 10.07 10.03 10.00

Table 1: Potential crossover compositions and resultant helical pitches for 
origami that is 30 helical turns (20 crossovers) in length. 



60 
 

scaffold strand so as to prevent binding effects that may arise from an ssDNA overhang. 

As each design slightly varies in length due to the crossover spacing, the length of the 

bottom two helices varies for each design. This is highlighted in figure 25, and is the only 

means of distinguishing the three designs in AFM images. 

Based on the concept of supercoiling as previously discussed, the 10.67 tile can be 

considered to be overwound, whilst the 10.33 tile is underwound. The 10.50 tile should 

have no mismatch to B-form DNA. As the helical pitch of B-form is said to range from 

10.4 to 10.6 bp, the three tiles used in this work serve as a means to study how the 

helical pitch of DNA varies with cationic concentration and species [144], [145]. The 

arrangement of the crossovers and the effect this has on computer models is discussed 

in chapter 8. Each of the tiles has the same overall shape, essentially a rectangle with a 

notch taken out of the same corner. This introduced asymmetry in the shape allows for 

Figure 25: Plan views of the three similar origami designs used in this work. Top 
right highlights the position of nicked crossovers. Position of 16 bp (blue) and 15 
bp (red) crossovers for the 10.67, 10.50 and 10.33 tiles. AFM images of the three 
origami under aqueous conditions (scale = 500 nm). White boxes highlight the 

overhanging double helical domains. 
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orientation discrimination when imaged with AFM. For simplicity, results and models are 

drawn with the A-face on-top. 

 Results and discussion 

 CanDo 

CanDo is most commonly used CAD package for predicting origami structure, aiding 

error-checking during the origami design process. As most origami are designed with 

CaDNAno or Tiamat, CanDo has been modified over the years to accommodate for 

these file types. An in-depth implementation on the methodology used by CanDo is given 

in the papers by Castro et al. and Kim et al., showing the efficacy of CanDo [63], [146]. 

The models generated are of the average solution structures, highlighting the degree of 

flexibility of the helices. Blue corresponds to regions that are more strained and hence 

resistant to thermal fluctuations, whilst red refers to helices that are less strained. The 

CanDo models for the three origami designs are summarised in figure 26. The CanDo 

models agree with the models of Marchi et al., suggesting that the utilisation of the entire 

M13mp18 scaffold strand does not alter the predicted structure [68]. 

Figure 26: CanDo models for the 10.67, 10.50 and 10.33 origami used in this 
work. All tiles are orientated with the A-face on top. It can be seen that the 10.67 

and 10.33 curve into opposing planes. There axis around which the origami 
curve can be seen to not lie parallel to the helices contained within the tiles. 
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The CanDo model for the 10.67 design shows a curved structure with a right-handed 

chirality, as predicted form the underlying crossover composition with respect to the 

ideas of supercoiling. The structure of the 10.33 tile shows that the curvature is left-

handed, supporting with the idea of supercoiling in origami. The main difference is that 

the plane into which the origami curve is opposite for the two designs, suggesting that 

the origami will bind with opposing faces when imaged with AFM. This was the outcome 

of the results presented by Marchi et al. [68]. The 10.50 exhibits a slight degree of 

curvature, perhaps due to the arrangement of the crossovers not being evenly spread 

throughout the design, creating domains that are locally over or under-wound. 

 OxDNA 

OxDNA is another CAD package that was developed to predict DNA nanostructures. The 

main difference between OxDNA and CanDo, is that OxDNA takes a coarse-grain 

approach to the modelling, offering increased resolution. The OxDNA models in this work 

were generated by Prof. Jonathan Doye (University of Oxford, UK) and Dr. John S. 

Schrek (Columbia University, NYC), two of the original designers of the OxDNA software. 

Implementation of the OxDNA software is summarised in papers by Doye et al. and 

Snodin et al., which highlights the recent advancements in the software, allowing for 

modelling under varying salt concentrations [66], [147]. An overview of the predicted 

origami structures are given in figure 27. 

The OxDNA models of the 10.67 tile show that the tile curves into the same plane as the 

CanDo models. The degree of curvature appears to increase with the Na+ concentration, 

suggesting that the DNA is better stabilised. Na+ has already been shown to be an 

effective cation for the folding and neutralising of DNA origami, but was not used for this. 

The change in curvature of the origami can therefore only be used as a qualitative guide. 

The models of the 10.50 design show a slight curvature across the Na+ series, opposite 

to the direction of bias for the CanDo models. For the 10.50 design, increasing the Na+ 

concentration appears to have little effect on the degree of curvature. The OxDNA 

models for the 10.33 design show that the plane into which the origami curve is the same 
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as that of the 10.67, unlike CanDo which predicts an opposite direction of the curvature. 

The 10.33 OxDNA models also exhibits a left-handed twist, which is to say that it does 

not go against the idea of supercoiling. Figure 28 shows the main differences between 

the CanDo and OxDNA models for the DNA origami used in this work. The models are 

orientated in the same direction for clarity. The key point is that the 10.33 is curved in 

opposite directions depending on the model used.  

The contradiction between the OxDNA and CanDo models for the 10.33 (underwound) 

tile were the basis for the analysis of current literature in chapter 4, as it demonstrates 

how interpretation of results can be influenced by a lack of incomplete data. The 

contradiction also shows why the papers by Li et al. and Dietz et al. are not enough to 

demonstrate the true direction of curvature or twist of origami [37], [52]. This contradiction 

is resolved in the next section, detailing which models are correct and how this applies 

to current literature. 
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Figure 28: CanDo (top) and OxDNA (bottom) comparing the direction of 
curvature for the 10.67, 10.50 and 10.33 origami tiles. All tiles are 

orientated with the A-face up. It can be seen that the 10.50 and 10.33 have 
opposing curvatures between the two model sets. 
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 Binding of origami to mica by AFM 

To assess what effect Mg2+ has on the stabilisation of the DNA helix, each of the DNA 

origami were imaged under aqueous conditions with Mg2+ ranging from 3.125 to 25 mM. 

The proportion of the tiles observed to be A-face up was used to infer the orientation and 

magnitude of origami curvature. To maintain constant DNA concentrations, the tiles were 

folded with a scaffold concentration of 4nM with a 40x staple excess. Samples were then 

aliquoted out and diluted to origami concentration of 1nM with a 10x staple excess. 

Results are presented in figure 29. 

Most DNA origami are folded with a Mg2+ concentration of 12.5 mM, sourced from either 

MgCl2 or Mg(CH3COO)2 (Mg-ace) in the presence of TAE. As TAE contains EDTA, a 

known chelating agent, the Mg2+ is therefore chelated, which lowers its effective 

concentration. Preliminary results showed that at low Mg2+ concentrations with a 1xTAE 

concentration, a combination of excess monovalent (tris) ions as well as Mg2+ chelation 

prevented origami from binding. As a result, the ratio of Mg2+ to TAE was maintained 

constant. A summary of the Mg2+ and TAE concentrations are given in table 2, 

highlighting the effective Mg2+ concentration and number of Mg2+ ions per nucleotide in 

solution. It was assumed that each nucleotide in the staple strands as well as the EDTA 

in solution would sequester Mg2+ ions. For simplicity, the results refer to the assumed 

Mg2+ concentration, rather than the effective Mg2+ concentration. 

From figure 29 it can be seen that the 10.67 tile binds with a preference to the A-face on 

top in the typical concentration of 12.5mM Mg2+. As the Mg2+ concentration is decreased 

Table 2: Number of excess Mg2+ ions per nucleotide for the three tile designs 
when imaged under varying Mg2+ TAE concentrations. 
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to 3.125 mM the bias decreases, with a final bias observed of 57.8%. When the 

concentration of Mg2+ was increased above 12.5 mM, the origami exhibited greater 

curvature, reaching a maximum bias of 77.4% at 15.625 mM. After this the bias started 

to decrease, reaching a point of 71.7% at 25mM. Throughout the Mg2+ series, the bias 

remained consistent to the direction of A-face up. The binding of the 10.50 tile shows a 

Figure 29: Proportion of tiles observed with the A-face up under varying Mg2+ 
concentrations. Red data points correspond to “standard” conditions of 12.5 mM 
Mg2+, 1xTAE. OxDNA models are used as representatives to explain the trend of 
increasing curvature, with only those in 0.1M and 1.0 M Na+ concentrations shown. 



68 
 

slight bias to the A-face up across the Mg2+ series, remaining fairly consistent throughout, 

with some fluctuation but a trend of slightly increasing bias with Mg2+ concentration. The 

overall trend indicates that the 10.50 remains planar, independent of Mg2+ concentration. 

Similar to the 10.67 tile, the 10.33 tile exhibits a bias to the A-face up under 12.5mM 

Mg2+, strongly suggesting that the two tile designs are curved into the same plane (as in 

the OxDNA model). As the Mg2+ concentration is decreased, the 10.33 becomes planar 

until 3.125 mM, where the bias flips from A-face up to B-face up. At increased 

magnesium concentration, the 10.33 becomes more curved, as like the 10.67 tile, 

exhibiting a peak in curvature at 18.75 mM. The curvature then decreases as Mg2+ 

concentration further increases. 

At “standard” conditions of 12.5 mM Mg2+, both the 10.33 and 10.67 tiles exhibit bias to 

the A-face up, indicating that the two tiles are curved into the same plane. This is the 

result predicted by the OxDNA models and is highlighted alongside the binding results 

in figure 29 showing how the Na+ extremes of the OxDNA models are reflective of the 

observed binding. At elevated Mg2+ concentrations, the decrease in curvature for the 

10.33 and 10.67 tiles is attributed to an increase in shielding of electrostatic repulsion 

between the tightly packed helices. This decrease in curvature attributed to an increase 

in Mg2+ concentration infers that the electrostatic repulsions acts as an additional source 

of curvature for the origami tiles. This is a limitation of the OxDNA models, where Na+ is 

used for the simulations and not during experimentation, such that a like-for-like 

comparison wasn’t obtained. The reason for the shift in the peak of maximum curvature 

of the two designs is attributed to the length of the underlying crossovers. At low Mg2+ 

concentrations, the electrostatic repulsion between the helices maintains a maximum 

deformation. As the 16 bp crossover is longer, it experiences a greater overall 

deformation. This means that an increase in shielding is experienced sooner, as the 15 

bp crossovers would still be at maximum deformation. This change in the lengths of the 

crossovers means that the 10.67 tile starts to feel the effect of increased shielding sooner 

that the 10.33 tile and hence the observed shift in maximum curvature. Although this 
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would imply that the origami would become more biased to the A-face up at lower Mg2+ 

concentrations, the lower Mg2+ concentration alters the overall stability of the DNA helix. 

This means that the DNA is more flexible, making it resistant to the electrostatic 

repulsions. This also means that the angle through which the crossover rotates is 

lessened, causing the origami to flatten out.  

The combination of the OxDNA models and binding of the DNA to the mica is not enough 

to determine the axis around which the origami curve, as seen in the models. The results 

of Dietz et al. and Li et al. show that for an origami with a greater number of bases 

between crossovers, such as the 10.67 tile, there exists a right-handed helix, whilst for 

a lesser number of bases between crossovers, there exists a left-handed twist. This is 

necessary to assign the correct OxDNA models to the correct tile, as AFM alone cannot 

determine the axis around which the tile curves. The OxDNA and CanDo models were 

used as the basis for the figures in chapter 4, describing how information on the axis 

about which origami curve is lost in AFM images, whilst information on the plane into 

which they curve is preserved. 

The results of Marchi et al. suggested that the oppositely twisted origami would bind with 

opposing faces to the mica. Table 3 shows the amount of Mg2+ ions per nucleotide in the 

origami used by Marchi et al., indicating that the maximum Mg2+ excess is approximately 

68 ions per nucleotide. This is the similar case seen for the 10.33 tile used here under a 

Mg2+ concentration between 6.25 and 3.125 mM, where there is a flip in the bias of the 

origami. This highlights that the Marchi et al. tiles exist in a constant destabilised state, 

Table 3: Number of excess Mg2+ ions per nucleotide for the three tile designs 
used by Marchi et al. Scaffold, staple, Mg2+ and EDTA concentrations are based 

on their published methods. 
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due to the increased overall DNA concentration. This is important for comparisons of 

origami sizes, as the degree of helix stabilisation affects the overall curvature of the tile. 

6.3.3.1 Width of adsorbed tiles 

It has been noted in the literature that the electrostatic repulsion between the tightly 

packed helices of DNA origami results in the formation of an internal diamond lattice [3]. 

It is believed that the size of these diamond cavities is dependent on the length of the 

crossovers themselves, with 2.5 and 3.5 turns resulting in a smaller relative bending, as 

the repulsion is spread out over a larger length [148], [149]. The work in this thesis looked 

at how the Mg2+ concentration affects the apparent width of the origami themselves, as 

this can cause the origami to change size when on a surface. Results are shown in 

figures 30 and 31. This is important for the creation of large scale arrays, as the change 

in width will alter the relative position of functional groups.  

The results in Figure 30 show that under a Mg2+ concentration of 12.5 mM, the widths of 

the origami tiles are representative of their underlying crossover spacing, such that the 

10.67 is the widest at 76 nm and the 10.33 the thinnest, at 72.5 nm. The widths of the 

origami were also measured under varying Mg2+ concentrations, to assess the effects of 

both electrostatic repulsion and degree of helix stability. At lower Mg2+ concentrations, 

the origami generally became wider due to decreased shielding of the electrostatic 

Figure 30: Widths of the three origami tiles under 12.5 mM Mg2+, 1xTAE on mica 
under aqueous conditions. The decrease in width across the designs is 

reflective of their underlying crossover composition. 
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forces. It is also caused by an increase in DNA flexibility, allowing it to deform more. The 

Mica-DNA interaction is believed to remain constant throughout, due to the complete 

neutralisation of the mica surface. It also noted that for DNA molecules, the DNA-mica 

bond remains relatively weak, even under high Mg2+ concentrations, which is why the 

use of a stronger binding agent such as Ni2+ is typically used. 

The main reasoning for measuring the widths of the origami, rather than the lengths, is 

that a change in the deformation results in a greater change of the origami widths, as 

seen in chapter 4. Although the length of the origami themselves differ in length by 10 

bp across the designs, equating to ~3.4 nm, the change in length attributed to a change 

in the underlying diamond lattice results in minimal changes of the origami, as discussed 

previously in chapter 4.  

 Conclusions 

The results of this work show that the underlying crossover composition of origami results 

in a change of axis about which the origami curve, rather than a change of the plane into 

Figure 31: Widths for the 10.67, 10.50 and 10.33 tiles under varying Mg2+ 
concentrations adsorbed onto mica. Imaged under aqueous conditions. See 

table 2 for effective Mg2+ concentrations. 
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which the origami curve. This is evidenced in the OxDNA models only, as it is not 

possible to determine from AFM images. The underlying curvature of origami is a result 

of the total angle through which the crossovers rotate, as determined by their length and 

the helical pitch of the DNA in solution. The binding also highlights a contribution to the 

curvature from the inherent electrostatic repulsion between the tightly packed helices, 

which also shows the importance of the effective Mg2+ concentration, which has a two-

fold effect of both altering the overall helical pitch and secondly the helix stability of the 

DNA contained within the tiles. These two effects complete to give a maximum in the 

effective curvature of the tile at a given Mg2+ concentration, except for the 10.50 tile which 

remains largely planar. 
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7 Controlling DNA origami curvature 

 Introduction 

The results of the previous chapter demonstrate the effect that the inherent crossover 

spacing has on the curvature of origami tiles, highlighting that all designs curve into the 

same plane. The effect of Mg2+ concentration on the curvature of the tiles, along with the 

similarities observed for the 10.67 and 10.33 show how helix stabilisation can affect the 

curvature of single-sheet origami. These results act as a baseline for investigating 

methods of controlling origami curvature. The results from the previous chapter also 

demonstrate the intrinsic link between DNAs helical structure with the observed width of 

the tiles, which allow for finer placement of functional groups. 

The main reason for altering the curvature of origami is to expand the available 

conformation, such that a single design can be used for a variety of applications. One 

such area of interest is the ability to bias adsorption orientation, increasing the efficacy 

of novel surface-supported materials. Other applications involve methods such as 

targeted drug delivery, which means interfacing with biologically relevant systems. These 

broad ranging applications places limitations on the methods developed for controlling 

curvature. There have been several methods for controlling the structure of folded 

origami; including intercalators such as EtBr, UV radiation and cationic concentration as 

well as species [133], [134], [139], [150]. In vivo applications limit the use of intercalators 

or chemical adducts, due to potential interference with biological processes. This also 

limits the use of cationic species, which will dissociate from the DNA once in vivo. 

This chapter expands on the work of others, where UV radiation has been used to alter 

the structure of the DNA contained with origami, highlighting the impact UV radiation has 

on the crossover spacing. These results, combined with those of the previous chapter, 

act as the basis for determining how buffers containing Ba2+ as well as Ba2+ and Mg2+ 

impact the curvature of single-sheet origami. 
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 UV exposure 

The spectrum of UV light can be categorised into three main types: UVC (100-280 nm), 

UVB (280-315 nm) and UVA (315-400 nm). On Earth, UVC light generated by the sun is 

absorbed by the atmosphere, whilst UVB and UVA are able to penetrate to the surface. 

Long term exposure to UVB and UVA radiation can result in skin cancer of humans, as 

a result of direct and indirect damage to DNA [151]. UVA radiation is able to penetrate 

deeper into the skin, causing indirect damage by the formation of ROS, which 

subsequently damages DNA. The energy of UVB is high enough that it is able to directly 

damage DNA, resulting in photoproducts. The higher energy of UVC not only causes 

direct damage to DNA strands, resulting in photoproducts, but also creates single and 

double strand breaks [152]. 

UVC radiation has been shown to induce structural changes of DNA origami as a result 

of the formation of these photoproducts [133]. The most common photoproduct 

associated with UV radiation is cyclobutane pyrimidine dimers (CPDs). The most 

common type of CPD results when there are two adjacent thymine bases on the same 

strand, with the high-energy photon creating a covalent link between the two [153]. This 

also disrupts the base pairing with the associated adenines on the complementary 

strand. Chen et al. demonstrated that both UVB and UVC are able to directly alter the 

conformation of origami, with UVA only being effective when combined with the use of 

Figure 32: Left: Schematic showing how CPD results in binding of adjacent 
bases. Right: crystal structure of CPD (red) and how it deviates from the B-

form of DNA (green) [47]. 
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an intercalating agent [133]. It has been recently demonstrated that UVA can result in 

the formation of CPD in DNA origami through purposeful design of thymine overhangs 

between helical domains, resulting in the origami becoming rigid and resilient to harsh 

environments [154]. The results of Chen et al. suggest that CPD causes destabilisation 

of the DNA helices due to the disruption of the base pairing. The crystal structure of a 

thymine-thymine CPD however shows that the DNA backbone becomes distorted, 

resulting in an unwinding of the helix by 9°, as seen in Figure 32 [47]. The work in this 

section looks at how UVC radiation damages the DNA strand, emphasising how both 

CPD formation as well as single and double strand breaks alter curvature of single-sheet 

origami.  

 Cation introduction 

Although intercalators have shown to be an effective means of altering origami structure, 

they prove difficult to eliminate once inserted between the bases. Chen et al. figured out 

that this could be achieved by using an excess of staple strands to displace the bound 

intercalators from origami [134], but this may be unpractical for many applications. 

Intercalators can also lead to local distortions of the DNA structure due to the stochastic 

nature of their binding [44], meaning each origami may contain differing amounts and 

locations of intercalated bases. Cations do not suffer from these downsides, allowing for 

global changes in the origami structure. It has already been demonstrated that Na+ can 

be used to increase the mobility of origami once adsorbed onto mica [71]. It is hoped that 

cations can be used to bias the adsorption process but altering the solution structure of 

origami, with a subsequent buffer wash to control surface mobility as well as structure. 

Magnesium is the most commonly found cation in vivo, which acts to shield the 

phosphate backbone from both inter and intra-strand electrostatic repulsions, stabilising 

the DNA helix. The previous results demonstrate that there is an interplay between the 

DNA and excess Mg2+ ions in solution, due to the relatively weak interaction between the 

Mg2+ and the negative phosphate backbone. The results in the previous chapter also 

demonstrate how small changes in the degree of helix stabilisation as well as 
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electrostatic repulsion between neighbouring double-strands affects the curvature of 

origami. This is evidenced by the changes in curvature between the designs and how 

the magnitude/rate of change is similar for those in varying Mg2+ concentrations. 

There are two main modes of cations binding to the DNA helix, which are broadly 

categorised as binding to the bases or to the sugar phosphate backbone [22], [24], [155]. 

It has been demonstrated that all cations, to an extent, bind to both the bases and the 

backbone, with there being a spectrum from the two extremes [156]. It has already been 

demonstrated that Na+ can be used to fold multi layered structures, requiring higher 

concentrations due to a combination of the monovalent charge as well as decreased 

charge density of the sodium ion [139]. More recently however, Marras et al. 

demonstrated how origami is stable in the presence of Spd3+, Ca2+, K+, with the ions also 

stabilising ssDNA overhangs, allowing for control over a DNA origami hinge [150]. 

This work looks at how Ba2+ binds to the DNA helix, and the effect it has on the apparent 

curvature of DNA origami. This was expanded to include observations of the three tile 

designs in mixtures of both Ba2+ and Mg2+, to investigate the potential of using cationic 

mixtures for controlling curvature, expanding the phase space for choosing solution 

conditions for folding DNA origami. The results of the three origami folded in Mg2+ as well 

as those exposed to UV allow determination of how Ba2+ binds to DNA, and what effect 

this has on origami curvature. 

 Results and discussion 

 UV exposure 

Each origami design was folded with 10nM M13mp18 concentration. Once folded, the 

origami were diluted to a concentration of 1 nM with a final volume of 1 mL. The 1 nM 

tile solution was then placed into a disposable cuvette, which was subsequently exposed 

to UVC radiation. Aliquots were taken after each dosage, with the remaining solution 

used for continuous exposure. An aliquot of the unexposed solution was taken as a 

control, to ensure accurate folding of the origami. All origami were imaged under 
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aqueous conditions with a buffer containing 12.5 mM Mg-ace, 1xTAE. Binding results 

are presented in Figure 33, with width measurements in Figure 34. 

In contrast to the results of the tiles in varying Mg2+ concentrations, where the curvature 

of both the 10.67 and 10.33 tiles followed similar trends, low UVC exposure doses cause 

the 10.67 to become less curved, whilst the 10.33 tiles becomes more curved (up to 

approximately 10kJ/m2 exposure). The difference observed for the 10.67 and 10.33 tiles 

exposed to UVC indicates that the DNA helix does not destabilise for doses under 10 

kJm-2. The change in curvature observed can be attributed to unwinding induced by CPD 

formation as well as single and double-strand breaks. 

As discussed previously (chapter 6), the underlying crossover spacing determines the 

degree of twist for the crossovers, such that the 16 bp crossovers are overwound, whilst 

the 15 bp crossovers are underwound. Unwinding induced by CPD formation therefore 

reduces the degree of overwinding for 16 bp crossovers whilst emphasising the degree 

of unwinding for the 15 bp crossovers. As the 10.67 origami consists solely of 16 bp 

Figure 33: Binding of the 10.67, 10.50 and 10.33 tiles with increasing UVC dosages. 
Example AFM images as well as details on analysis are given in the appendix. 
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crossovers, the degree of twist across the tile is lessened as the number of CPDs present 

increases. This is apparent in figure 33, where the bias observed for the 10.67 tile 

decreases, indicating a reduction in the curvature. The increase in curvature observed 

for the 10.50 and 10.33 tiles is attributed to the composition of 16 and 15 bp crossovers 

contained within each respective design. As the 10.50 tile contains fifteen 16 bp and five 

15 bp crossovers, the overall twist tends to that which is more underwound. As the 10.33 

tile contains a higher proportion of 15 bp crossovers, CPD formation results in a relatively 

higher degree of unwinding, increasing the curvature of the tile. The increase in curvature 

for the UVC exposed 10.50 and 10.33 reflects the bias observed for the tiles in the Mg2+, 

where tiles curve into the same plane, due to the mismatch of the spacings relative to 

the solution-induced helical pitch , and hence idealised spacing, . 

At elevated UVC dosages (>10 kJm-2) all three origami designs experience a decrease 

in curvature due to the formation of single and double-strand breaks. This is seen in the 

10.67 tile as the rate at which the curvature decreases slows down. This effect is more 

Figure 34: Widths of the 10.67, 10.50 and 10.33 tiles with increasing UVC 
exposure. 
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apparent for the 10.50 and 10.33 tiles due to the initial increase in curvature associated 

with CPD formation. This changeover between CPD formation and single and double 

strand break formation is also apparent in width measurements of UVC exposed tiles. 

All tiles experience a very slight decrease in width upon UV exposure, associated with 

CPD formation, as seen in figure 34. The widths then start to increase, highlighting the 

formation of single and double strand breaks. This is most apparent in the 10.67 tile, 

where the curvature continually decreases with UVC exposure, despite an initial small 

decrease and then continuous increase of width. The curvature and width results taken 

together imply that strand breakage is occurring with a fairly constant frequency due to 

UV exposure, but that the CPD photoproduct formation is a more dominant effect, which 

will saturate when all possible neighbouring thymine-thymine bases have created 

adducts. 

The trend observed for the 10.67 tile in decreased Mg2+ and UVC-exposed are similar, 

leading one to assume that the decrease in curvature is attributed to helix destabilisation. 

The increase in curvature of the 10.50 and 10.33 tiles exposed to UVC radiation however 

demonstrate that CPD formation causes unwinding, rather than helix destabilisation. 

This shows how the results of Chen et al. incorrectly attribute the decrease in curvature 

to helix destabilisation, because they used origami lacking a range of crossover 

compositions [133]. 
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 Pure Ba2+ solutions 

Similar to the tiles in varying Mg2+ concentrations, the tiles here were folded following the 

same protocol, with the exception that BaCl2 was used instead of Mg(C2H3O2)2. Binding 

and width results of the tiles are shown in Figures 35, 36 and 37. The main result of the 

tiles folded in Ba2+ solutions deposited is that they are much flatter across the three tile 

designs compared to their Mg2+ counterparts, giving A/B ratios close to 50%. This 

indicates that the DNA helix is less stabilised in the presence of Ba2+, such that the 

crossover angles cannot be transmitted into twisting (curvature) of the whole origami 

Figure 35: Left: binding of the tiles deposited in buffers containing various Ba2+ 
concentrations. Right: binding of the tiles deposited in buffers containing Mg2+. 
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because the double-strands between crossovers are now not sufficiently rigid to transmit 

this geometrical strain.  

The results of the tiles imaged under Mg2+ combined with the OxDNA models highlight 

how the magnitude of curvature exhibited by the varying crossover compositions of the 

tiles is dependent on the mismatch between the total origami length and that of the 

idealised case. This effect was observed in the UVC exposed tiles, where CPD induced 

unwinding increased the curvature of the 10.33 tile, due to the increase in the mismatch. 

A similar effect is observed for the tiles folded under Ba2+, where the increased bias of 

the 10.33 tile compared to that of the 10.67 and 10.50 tiles, demonstrate that the 

underlying helical pitch of the DNA in solution becomes slightly overwound (figure 36). 

This reduces the mismatch in the 10.67 and 10.50 whilst increasing it in the 10.33 tile, 

resulting in the observed changes in the curvature. Destabilisation of the DNA is 

observed in the widths of the tiles, which once again reflect the underlying crossover 

Figure 36: Total binding observed of the tile designs in buffers containing Mg2+, 
Ba2+ and Mg2+ & Ba2+ mixtures across, demonstrating the range of curvatures 

observed across the differing buffer solutions. 
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spacing (figure 37). The widths are greater than those of the Mg2+ tiles due to the overall 

increase in flexibility of the DNA, allowing greater deformations from the electrostatic 

repulsions that arise from the tightly packed helices. The results highlight that the binding 

mode of Ba2+ is different from that of Mg2+. 

  

Figure 37: Top left: Comparison of widths of tiles in 12.5 mM Ba2+ and 12.5 mM 
Mg2, showing how Ba2+ leads to wider tiles. The same trend is observed, 
highlighting how the underlying crossover spacing correlates to widths. 

Remaining figures show the widths of the three tiles (as labelled) under varying 
Ba2+ concentrations. 
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 Binding results of barium and magnesium mixtures 

To aid with the results of the tiles in buffers containing only Ba2+, origami were imaged 

in buffers containing various concentrations of both Mg-ace and BaCl2 to examine the 

difference in the binding modes between the cationic species, and how curvature may 

be controlled with “exotic” buffers. Tiles were folded in either 12.5 mM Mg-ace or BaCl2 

with 1xTAE with an M13mp18 concentration of 4 nM. These were then diluted to a 1 nM 

tile concentration, varying the concentration of both Mg2+ and Ba2+ to achieve the 

respective concentrations as seen in the results in Figure 38. The results of the tiles in 

mixtures of Ba2+ and Mg2+ show an increase in curvature for the 10.33 tile in solutions 

Figure 38: Plots showing how buffers containing mixtures of Mg2+ and Ba2+ affect 
the binding of the three tile designs. 
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where the total ionic concentration is less than that of the tiles in pure Mg2+ solutions. 

This is most apparent in a solution containing both 3.125 mM Ba2+ and Mg2+, where the 

curvature is 65.6%, similar to that observed for 15.625 mM Mg. There is a similar peak 

observed in the 10.50 tile, in a solution containing 6.25 mM of both Ba2+ and Mg2+. There 

appears to be no overall trend in the 10.67 tile, due to the overwinding of the DNA in 

solution, as seen for tiles in pure Ba2+. The increase in curvature for the 10.50 and 10.33 

tiles suggest that Ba2+ and Mg2+ are co-operatively binding to the DNA helix as a result 

of their differing binding modes, with the Ba2+ preferentially binding the bases and the 

Mg2+ binding to the sugar-phosphate backbone [21], [157]. Deviations from these 

“islands of stability” are attributed to both an increase in the overall ionic concentration, 

increasing the shielding between helices, as well as the competiveness between the two 

ionic species. 

It was seen in the Mg2+ results that there is an ionic concentration at which the 10.33 tile 

obtains a maximum curvature. Although this was not observed for the 10.50 tile, it can 

be assumed that this is present in mixture of both Ba2+ and Mg2+ due to the shift in the 

native helical pitch of the DNA to an overwound state. When Ba2+ ions are added to 

solutions containing 12.5mM Mg, there is a sharp decrease in the curvature observed 

for both the 10.33 and 10.67 tiles. This is believed to be caused by the Ba2+ preferentially 

binding to the DNA helix, dominating the curvature.  Figure 36 shows the curvature 

observed for the three tiles in solutions of mixtures containing both Mg2+ and Ba2+. It can 

be seen that, on average, the 10.33 tiles exhibit an overall higher curvature than both 

the 10.50 and 10.67 tiles, indicating that the twist caused by the crossover composition 

is further from the “minimum” point. This is similar to the tiles in Mg2+ where the 10.67 

and 10.33 both exhibit greater curvature than the 10.50, as they both deviate from the 

helical pitch of 10.50. The combination from the results suggest that Ba2+, relative to 

Mg2+, induces a slight overwinding of the DNA helix in DNA origami. 

The binding of the tiles in mixtures containing both Ba2+ and Mg2+ act as a method for 

controlling curvature by further changing the inherent helical pitch and degree of 
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stabilisation of the DNA helix, demonstrating that it is possible to alter the curvature of 

tiles once folded, removing the need to design tiles with inherently different crossover 

spacings. The binding of the tiles to the mica under Ba2+ also demonstrate how the 

flexibility of tiles can be altered, which allow for the use of a buffer wash step to alter the 

inherent size of the origami once on a surface. The work demonstrated by Woo et al., 

where Na+ was used to alter the strength of binding to the surface, shows how DNA can 

become mobile once deposited. This allowed the origami to rearrange themselves, 

forming base stacking interactions between tiles and creating large-scale constructs [71]. 

 Conclusion 

The results of this section further highlight the effect of the underlying twist of the 

crossover and how this correlates to the overall global twist/curvature of the origami. The 

increase in bias to the A-face up for the 10.50 and 10.33 under UV exposure shows how 

the bias for tiles remains in the same plane, regardless of the underlying crossover 

spacing. This is important for applications where one decides how to functionalise the 

surface of origami to ensure that the functional groups are accessible to the user. The 

formation of single and double strand breaks however demonstrate that extreme damage 

to the DNA can result in the curvature being reduced, but leads to disintegration of tiles, 

making them ineffective for in vivo applications. The recent work of Gerling et al. however 

demonstrates that it is possible to design methods for UV exposure that do not cause 

long-term damage to DNA origami structures [154]. 

The results of the tiles in Ba2+, demonstrate the resilience of DNA in “exotic” buffers, and 

how there is more to learn about the robustness of origami. Literature has already 

demonstrated that once folded, the origami can remain intact up to high temperatures as 

well as survive in low ionic strength buffers [138]–[140]. This work furthers this, by 

demonstrating how non-biologically relevant cations can be used for the folding of DNA 

origami. It is hoped that these results will lead to increased study of cations and they 

effect they have on DNA origami. The results of binding for tiles in mixtures highlights 

how combinations of cations can also be used to alter the structure of origami, but also 
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demonstrates the sensitivity of origami to foreign cations, which could lead to unwanted 

consequences. 
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8 High resolution AFM imaging of 
DNA origami 

 Introduction 

The definition of high-resolution imaging is dependent on both the sample and 

microscopy technique. Optical based methods are typically limited by the diffraction and 

wavelength of light, although methods such as STORM can help reduce this. Despite 

this however, there are few methods that allow imaging of the DNA helix under aqueous 

conditions, such that the DNA remains in B-form. In this particular work, high-resolution 

refers to obtaining images of the internal structure of DNA origami tiles, such that the 

individual DNA strands can be imaged, along with secondary structure of the DNA itself. 

This chapter looks at how DNA origami tiles appear when imaged with AFM under 

aqueous conditions, highlighting how the underlying stapling design affects the various 

regions of the DNA origami, such as the presence of the internal diamond lattice as well 

as the seam. It focuses on the difference observed when the tiles are adsorbed onto 

mica, as well as nickel modified mica, leading the development of methods to alter the 

structure of DNA origami. High resolution imaging also allows for the possibility to 

measure how staples strands bind to the scaffold strand, highlighting how the regions of 

the staple affect the images obtained. 

 Results and discussion 

 General imaging 

Analysis of the adsorption orientation of the tiles used in thesis were taken from images 

that were 9x9 μm in the XY direction with a resolution of 3072x3072 pixels. This places 

a resolution limit of 3 nm for each pixel, such that the internal structure of origami tiles 

cannot be resolved. Even at decreased scan sizes, internal resolution of the tiles is only 

achievable with relatively sharp probes, due to tip convolution effects that arise. One 

issue that is present in imaging origami tiles at increased magnifications is that of sample 
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perturbation, due to high imaging forces, which can be seen in figure 39, where 

continuous high imaging forces can lead to tile degradation. This was a problem for 

obtaining width of tiles, as perturbing the sample can skew the measurement by 

distorting the tile on the surface. As a result, samples were imaged only once during 

width measurements, so as to minimise any bias that may occur from tip movement. This 

issue of sample perturbation was also apparent in samples of UV exposed tiles, where 

the decreased DNA rigidity makes them more susceptible to being degraded due to 

physical interaction with the tip when compared to their un-exposed counter parts. 

From the results of chapter 6 it can be seen that the effective Mg2+ concentration plays 

a pivotal role in the adsorption orientation of tiles. One other important factor is the 

concentration of tiles in solution, such that the concentration is high enough to obtain 

statistically relevant results, but low enough such that the tiles do not interfere with each 

other during adsorption from solution. Figure 40 shows the difference in surface 

Figure 39: AFM images of the 10.67 tile demonstrating how sustained high 
imaging forces lead to tile degradation. A) 0s, B) 4m32s, C) 9m5s. 
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coverage of a tile solution at 1 nM, 4 nM and 6 nM. The lack of a DNA multi-layer in both 

the 4 nM and 6 nM solutions, suggests that the origami tiles retain some mobility on a 

layer of DNA origami with DNA-DNA interactions being weaker than that of DNA-mica 

interactions. In addition to this, the relatively high number of adsorbed tiles makes it 

difficult to distinguish orientation of individual tiles.  

One of the common features observed when imaging origami tiles is the presence of 

concatemers, whereby multiple tiles appear to form a single larger structure. The 

formation of concatemers in this work is not fully understood but is believed to be caused 

by base stacking interactions between origami tiles in solution. It is also possible that 

staple strands along the edges bind between origami tiles, although this has not been 

explored. One of the aims in literature is to create large scale origami designs through 

the purposeful design of staple strands and sticky-end overhangs. Although the origami 

used in this work contained poly-T overhangs along the edge of the design, to try and 

disrupt base stacking interactions, preventing the formation of concatemers, the 

Figure 40: AFM images showing the density of tiles at A) 1 nM, 9 µm scan, 
B) 4 nM 3 µm scan and C) 6 nM, 1 µm scan. 
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appearance of short-length concatemers would suggest that base stacking interactions 

between tiles can still occur. This is believed to occur due to the poly-T overhangs not 

remaining rigidly in place. This can be seen in AFM images, where the ends of two 

adjoining tiles line up. These concatemers were not used during the analysis of tile 

adsorption orientation as it was felt they would not accurately reflect the magnitude and 

direction of curvature in individual tiles. 

In higher magnification images of origami tiles, the appearance of an internal diamond-

shaped lattice, which is caused by the electrostatic repulsion between the tightly packed 

helices as well as the crossover positioning. This diamond lattice has been discussed 

previously, and was the underlying reason for the increased in widths observed under 

different solution conditions. In addition to the diamond lattice, there is also the seam of 

the origami, where the scaffold strand switches direction. The use of a seam was 

Figure 41: Example AFM images of the tiles under aqueous conditions at 
varying lengthscales. The seam is noticable in all, with the diamond alttice 

visible in both B and C. 
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originally implemented by Rothemund, as it was noted that AFM images of tiles without 

a seam, caused stretching of the tiles, resulting in a so-called hour-glass effect. The 

change in appearance observed for the seam compared to the diamond lattice is due to 

the presence of three crossovers between the adjacent helices, such that the lengths of 

the two DNA helices between the crossovers are unable to deform to create a diamond 

lattice. The presence of the seam is used by a commercial company (Gattaquant GMBH, 

Hiltpoltstein) which utilised it as a method for nanorulers as a means of calibration in 

AFM images. In addition to the diamond lattice, holes in the tiles appear to be an 

occurrence in high magnification images, which are believed to be caused by a lack of 

staple strand bound to the scaffold strand. It is not known however if these holes are 

cause by the tip distorting the sample and dislodging the staples, or if it is a consequence 

of a mis-fold during the formation of the origami. 

 Sub-nm resolution 

Sub nanometre resolution of the DNA helix under aqueous solution using AFM is a 

difficult challenge to overcome due to a variety of factors that can affect image quality. 

One of the major limiting factors is tip sharpness, which remains out of control of the 

AFM user. Although recent advancements in probe manufacture have led to increased 

tip sharpness, preservation of the tip sharpness is the greatest limiting factor. Another 

limiting factor is relative motion between the sample and the tip, whether it is caused by 

drift of the piezo systems themselves at small scan sizes or perturbations between the 

tip and sample. These factors are ever present during attempts of high-resolution 

imaging and are the main reasons for the methodologies used for attempting high 

resolution imaging. 

The primary approach taken to obtain high resolution images was to preserve tip 

sharpness, by imaging the origami with a high amplitude set-point in tapping mode, so 

as to minimise energy dissipation into the sample. This can be seen in some of the low 

magnification images, where there is a lack of observable internal structure. Attempts at 
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high resolution imaging are summarised in figures 42 to 45, highlighting the subsequent 

scans and increase in magnification used throughout.  

Figure 42 was one of the earliest attempts at high resolution imaging of the tiles. The 

tiles were deposited in standard Mg2+ buffer with no surface pre-treatment. In this 

attempt, a dimer was imaged as it was believed that this would be less mobile due to the 

increase surface area binding the origami to the mica. In figure 42B the red line highlights 

the join between the two tiles, which shows how base stacking interactions between tiles 

causes the appearance of a seamless linkage. Unlike previous low magnification images, 

the diamond lattice appears to be interlaced with bumps, which are the grooves of the 

DNA helix. There is also the presence of the seam in figure 42B, which can be seen 

along the right-hand side of the image. Similar to the rest of the origami, there is also the 

Figure 42: Montage of a 10.67 dimer concatemer under aqueous conditions. A) 
Red box highlights zoom of subsequent images. B) Red line hihglights join 

between the two tiles. C) Red rhombus highlights one of the internal dimaond 
structures. D) Subsequent image following on from C where the tile appears to 

have moved. 
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presence of topographical periodicity along the DNA contained within the seam. An 

example of one of the diamonds is highlighted in figure 42C. The position of the repeating 

period along the DNA strands, when combined with the diamond lattice, highlights that 

there is a single groove between the crossovers, with the crossover themselves 

consisting of four bumps. This is consistent with the underlying stapling pattern, with the 

crossover spacing’s being 1.5 turns in length corresponding to three grooves. 

Another attempt looked at reducing the mobility of the tiles, by depositing them onto a 

nickel pre-treated mica surface with a solution containing 5 mM NiCl2. The images of this 

attempt are summarised in figure 43. The main difference between this attempt and that 

previous, is the mica surface itself, which appears to be covered in a layer of staple 

strands, due to the increased strength of binding, as is observed with singular linear and  

Figure 43: Montage of a 10.50 dimer imaged under aqueous conditions on a Ni2+ 
treated mica surface. A and B show the subsequent increase in magnification 
after finding an initial candidate to scan. C and D are scan of the same area, 
having altered the scanning parameters. The diamond lattice and bumps are 

visible in D. 
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circular DNA molecules in literature. The presence of the internal structure, such as the 

seam and diamond lattice is observable in figure 43A. Subsequent scans of increasing 

magnification reveal a similar occurrence to that in figure 42, with the grooves of the DNA 

strands presenting themselves as bumps along the DNA strands. Unlike before however,  

 

the appearance of the bumps is different, which may suggest an increased attraction to 

the mica surface. Other causes of this may arise from tip geometry, which can influence 

how the force from the DNA is “felt”, affecting how the DNA appears.  

A final attempt at high resolution imaging is shown in figures 44 and 45. Similar to the 

second attempt, the samples were deposited on a nickel treated mica surface, except 

this time the mica was pre-treated with a 50 mM solution. Unlike the previous two 

attempts, this allowed imaging of two different tiles with varying orientations. It is believed 

that the relative orientations of the helices with respect to the scanning direction of the 

tip affects the interaction between the tip and the DNA, and be used to explain the 

disparity between the two origami orientations. The high resolution images themselves 

however show a very different internal structure of those previous. The difference in the 

appearance is believed to not be caused by the relative orientation of the helices, but the 

increases strength of binding to the mica surface, preventing an apparent formation of 

diamonds for the origami whose helices are parallel to the fast scan axis. This effect has 

Figure 45: Attempt at high resolution imaging of tiles whose helices are 
perpendicular to the fast–scan axis. Same sample as in figure 44. 
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been highlighted in literature, where it was shown that the mica-DNA binding can 

influence the structure of the DNA.  

 2.5 turn 

One of the challenges with obtaining helical resolution of DNA contained within DNA 

origami tiles is the “coherence” length of the DNA strands. DNA origami can be 

considered as a series of short 1.5 turn DNA segments, connected through crossovers. 

The coherence length is in effect the crossover spacing, and is used to describe the 

distance over which the DNA remains a single un-nicked strand. In an attempt to 

increase the coherence length, the stapling pattern of the origami was altered such that 

a region contained a series of 2.5 turn crossovers. A schematic of this modification is 

given in figure 46, along with AFM images.  

Similar to the original attempts at high resolution imaging, increasing the staple length 

seemed to offer little help in obtaining measurements on the helical structure of the DNA 

contained with origami tiles. Despite a change in appearance on the internal diamond 

Figure 46: A) caDNAno image of the staple pattern for the inclusion of staples 
with 2.5 turns. B) Schematic, showing the routing of the staple strands. C) 
Schematic showing how electrostatic repulsions would result in internal 

diamond lattice. D-e) Subsequent scan of a dimer concatemer, showing the 
internal structure as a result of the modification. 
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lattice, other attempts resulted in similar quality images, highlighting the difficulty of high-

resolution imaging. The results however demonstrate the effect that a longer crossover 

length has on the structure of the diamond lattice, demonstrating that the initial diamond 

lattice is in fact a result of the underlying stapling pattern. The increase in size of the 

diamond lattice  highlights how internal modifications can be implemented as a means 

to alter the structure of origami, allowing for placement of larger groups in the plane of 

DNA itself, as well as a potential alternative method to create nanopores or nanofilters 

from DNA origami.  

 Major axis hypothesis 

Under certain imaging conditions, a modified internal structure becomes apparent; which 

is termed here as the “major axis”. This major axis is caused by the position of nicks and 

staple strands of the DNA origami which when combined with electrostatic repulsions, 

causes the two opposing sides of each diamond to be topographically higher. The sides 

of all the diamonds join up forming an apparent solid diagonal strand present. A 

schematic on how this arises is given in figure 47, along with example AFM images. The 

major axis is therefore believed to arise due to the position of the ligated strands aligning, 

making it appear that there is a solid DNA strand running through the design. This has 

given rise to the idea that the crossover arrangement affects the curvature of the origami 

tiles, which can be used to describe the curvature of the tiles under conditions of 12.5 

mM Mg-ace, 1xTAE. 

To test this hypothesis, several variations of the 10.33 tiles were designed with caDNAno 

and modelled using CanDo. Although the work in this thesis has already shown how 

CanDo can be inaccurate for certain origami, the results can act as a qualitative method 

for comparing crossover arrangements. Examples are summarised in figure 48, where 

each origami design has the same average crossover composition across each helix, 

such that they all have an average helical pitch of 10.33. The most striking result however 

is that in the top two models, where the resultant CanDo model predicts opposing 

curvature despite the same overall composition. In addition to the major axis, there is 
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also the minor axis, which is the composition of the nicked crossover strands. The 

difference in crossover arrangement for these two theoretical designs in figure 48 causes 

the major and minor axes to vary in their composition. This causes the first to have a 

major axis that is solely 16 bp, which is also the case for the 10.67 tile, whilst the 

arrangement of crossovers in the opposing design has a major axis that is wholly 

composed of 15 bp. The composition of the major and minor axis between the two 

causes the axis about which the origami tiles curve to rotate about the face. The 

Figure 47: A) caDNAno image showing the position and routing of the staple 
strands. B) Simple schematic showing the staple pattern. C) Schematic showing 
how the electrostatic repulsions result in the internal diamond lattice. D) Position 
of crossover spacings which are made of ligated DNA segments. E-H) Montage 

of AFM of decreasing scan sizes on a 10.50 tile. The presence of the major axis is 
clearly visible, reflecting the ligated crossover spacings. 
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theoretical design of the 10.33 tile which has a major axis of all 15 bp and a minor of all 

16 bp causes the CanDo model to exhibit a left-handed twist, whilst the 16 bp major and 

15 bp minor has a right-handed twist.  

The composition of the major and minor axis therefore serve as an additional means for 

the direction of curvature present in the tiles. Despite the overall helical pitch being that 
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Figure 48: Series of schematic and CanDo models of the 10.33 tile with varying 
crossover arrangements. In the schematics, red corresponds to 15 bp crossover 

with blue corresponding to 16 bp. 
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of an underwound origami, with a presumed left-handed curvature (based on previous 

observations and theories), the arrangement of the crossovers within the tiles act as an 

additional method to quantify origami curvature. Although these two represent an 

extreme case, it nonetheless demonstrates the possibility of altering origami curvature 

simply by altering the arrangement of crossovers. One of the main reasons for this 

analysis was the recent work of SAXS paper who created an origami design of 10.44 

and an unusual crossover arrangement. CanDo models of how the crossover 

arrangement affects the curvature of a tile, which is constructed of 1:2 15:16 bp 

crossovers is given in figure 48. Similar to the theoretical models seen for the 10.33 tile, 

CanDo models demonstrate that by changing arrangement of the crossovers, the major 

and minor axis can be altered. These are all purely theoretical, but the widespread usage 

of CanDo and its inaccuracy (as demonstrated in chapter 6) means that further 

investigation is required, and that comparison between models simply based on 

averages does not serve well. 

 Increasing staple length 

To investigate if the major axis is a result of the ligated strands aligning in the origami 

tile, another modification was made to the staples strands. Six staples were chosen and 

replaced with 3 longer staples, so as to create a region where the parts of the minor axis 

would appear solid, i.e. no nicks between crossovers, such that two rhombuses were 

formed with no nicks. A schematic of the modification is given in figure 49, along with the 

corresponding AFM images. The solid lines in Figure 49D correspond to the strands of 

DNA which do not contained nicked strands. As seen in Figure 47, these un-nicked 

strands appear to be solid in the AFM images, whilst the nicked strands are less 

prominent. It was hoped that the modified strands, as outlined in Figure 49, would appear 

solid. Similar to the previous attempts at high resolution imaging however, measuring the 

change in appearance of three crossover segments proved to be a difficult task in that it 

was not possible to differentiate between nicked and un-nicked strands. The attempts 

did however demonstrate again the ability to image the grooves of the DNA, through the 
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appearance of bumps along the strands, but the small coherence length once again 

proves how difficult it is to obtain sub-molecular imaging of the DNA helix.  

 Conclusion 

High resolution imaging of the origami tiles was not the main focus of this thesis, as it 

was known from the start that imaging the DNA helix under aqueous conditions is a 

challenging task. The results however demonstrate that the ability to modify the origami 

with longer crossovers act as an additional method for functionalisation. The use of 

double-length staples, spanning five adjacent helices, also demonstrates that this 

origami can still fold, at least for this limited staple substitution. They also reveal an 

asymmetry in the internal structure of the origami themselves, the major and minor axis, 

which combined with CanDo models, appears to be a method to alter the curvature of 

origami by changing the underlying arrangement of crossovers. This outcome is, 

however, hypothetical at the moment, because it is clear that CanDo models cannot 

Figure 49: caDNAno image of the staple pattern for the inclusion of staples that 
traverse 5 helices, rather than the standard 3. B) Schematic, showing the routing 
of the staple strands. C) Schematic showing how electrostatic repulsions would 

result in internal diamond lattice. D) Schematic showing where the minor axis 
would appear to be solid. E-F) AFM image of the modified tile. The red box 

highlights the area. The modified staples are below the blue line. 
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always reliably predict the degree of curvature and even the direction of curvature. 

Current methods to functionalise origami include the incorporation of hairpin loops, which 

are placed at the crossover junction or along the spacing between two crossovers. Single 

strand overhangs or modifications to the 3’ and 5’ ends can also be placed at the head 

and tail of the staple strand. It is currently unknown how the methods of functionalisation 

will impact the underlying crossover spacing, and hence structure of DNA origami. This 

leads to the question if all staples can truly be used as a functional site, requiring 

modification of the underlying stapling pattern to retain structural rigidity. 
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9 Final Conclusions 
Curvature of origami arises from the mismatch between the angle through which the 

DNA helix contained in crossovers rotates compared to that of idealised case. For single-

sheet square-based origami, the idealised angle is an odd-number of half-turns whilst 

the angle through which the DNA helix rotates is dependent on the helical pitch, stability 

and number of DNA bases between crossovers. The handedness of the curvature is 

related to the concepts of supercoiled DNA, whilst the plane into which the origami 

curves appears to be independent of mismatch. It is the authors opinion that a misnomer 

exists in literature on the cause of origami due to the mislabelling of supercoiling and 

misunderstanding on the stability of DNA contained within origami, such that curvature 

simply reflects the mismatch as the DNA exists in B-form, or slight variation as 

determined by the relative salt concentration. 

With the exception of the 10.33 tile in a solution containing 3.125 mM Mg2+, all tiles exhibit 

the same bias to the A-face up, demonstrating that all tiles curve into the same plane. 

This result is consistent with the OxDNA models, highlighting how CanDo can be 

inaccurate and misleading for certain origami designs. The change in magnitude of 

curvature observed for the tiles is a result of the underlying degree of stabilisation of the 

DNA helix, due to the effective Mg2+ concentration as well as the electrostatic repulsion 

between the helices due to them being tightly packed. In both the 10.67 and 10.33 tiles, 

decreasing the Mg2+ concentration from 15.625 mM corresponds to a decrease in the 

observed curvature, demonstrating how the DNA becomes less stable. When the Mg2+ 

is increased, there is a peak in curvature observed for both the 10.67 and 10.33 tiles. 

The subsequent drop in curvature is caused by a fully stable helix along with an increase 

in shielding between the tightly packed helices. The difference in the position of the 

peaks for the 10.67 and 10.33 tile is attributed to the underlying crossover spacing, where 

an increase in shielding is experienced sooner for the 10.67 tile, due to a longer 

crossover spacing which results in a drop in the deformation of the DNA sooner. Although 
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this deformation is present at lower Mg2+ concentrations, it remains at a constant level 

due to the crossover spacing’s being of consistent length in each design.  

Despite previous observations that the helical pitch of DNA is 10.50, the slight bias for 

surface binding seen for the 10.50 tile would suggest that the helical pitch varies slightly. 

The bias may also be a result of the crossovers having dimension to them, such that they 

influence the twist of adjacent crossover spacings. The decrease in magnitude of the 

10.33 tile compared to that of the 10.67 tile, with respect to the 10.50 tile however, 

suggests that the crossovers tend to a slightly underwound state, and as such the relative 

mismatch for the 10.33 tile is less than expected. This effect is also apparent in the tiles 

folded in Ba2+, where despite a large apparent decrease in helix stability, the tiles still 

exhibit some bias when adsorbed onto mica. Generally, the mismatches of the 10.67 

and 10.33 tiles compared to the 10.50 represents a change in helical pitch of only ±1.6%, 

highlighting the sensitivity of the origami. The AFM binding results of the tiles in varying 

Mg2+ therefore corresponds to minimal changes in the DNA helix, which may go 

unnoticed by molecular machinery in vivo, or in molecular biological applications. 

As the origami flatten out once bound to the mica surface, there is no direct way to 

measure along which axis the origami is curved. Although both OxDNA and CanDo show 

how the axis of curvature for the 10.67 and 10.33 tiles is not parallel to the DNA helices 

contained within the origami, there is no way for this to be experimentally verified with 

the techniques used in this thesis. Fortunately, the results of Mallik et al., Li et al. and 

Dietz et al. can be used to explain the axis of curvature. The results of Mallik et al. 

highlight that there are two curved corners of the origami, as seen in the EM images. 

This is the same result seen by Li et al., who joined diagonally opposed corners of 

overwound origami, highlighting the appearance of a right-handed chirality in the 

nanoribbons. The results of Dietz et al. show that an underwound origami (10.33 tile) 

exhibits a left-hand chirality. These three papers however all lack the use of an 

asymmetrical tile design, such the plane into which the origami curves cannot be 

determined. When the results of this thesis are combined with the work in literature 
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however, the true direction of curvature can be deduced, which highlights that the 

OxDNA models are in fact representative of the underlying crossover spacing. 

The results of Marchi et al., on which the origami used in this work was based, 

demonstrated that tiles with opposing degrees of supercoiling, as determined by the 

crossover spacing, causes an opposing bias in AFM images. The results presented by 

Marchi et al. however discuss the binding of a larger origami folded with a 51k nt scaffold, 

which has been calculated in this thesis to have a lower effective Mg2+ concentration. 

This correlates to the tiles in thesis, folded under Mg2+ concentrations between 3.125 

and 6.25 mM Mg2+. This notion of effective Mg2+ can therefore be used to describe the 

observed binding of the three large tiles in work by Marchi et al., highlighting the 

importance of effective Mg2+ concentration on the structure of origami in general. 

When the tiles in this thesis were exposed to UVC radiation, the changes in curvature 

can be attributed to both unwinding induced by CPD formation along with the formation 

of single and double strand breaks. Under doses of 10 kJm-2, the decrease in curvature 

for the 10.67 tile is attributed to unwinding of the overwound helices, whilst the increase 

in curvature of the 10.50 and 10.33 tile is attributed to an increase in unwinding of the 

underwound helices. This not only highlights how the curvature of origami is in fact a 

result of the twist of crossovers, but that the magnitude of curvature is a result of the 

underlying mismatch. At UVC exposures above 10 kJm-2 all tiles experience a decrease 

in curvature that is attributed to the formation of single and double strand breaks. This 

causes the structure of the DNA to degrade, as seen in both the width measurements as 

well as AFM images of the tiles. The formation of backbone breaks along the strand are 

detrimental to the underlying integrity of the origami tiles, which is assumed to be present 

even at low UVC does. The decrease in curvature attributed to ~10 kJm-2 is a result of 

the three origami designs having the same composition. The decrease however cannot 

be strictly attributed to the CPD formation becoming saturated, such that they no longer 

form, or that the build-up the single and double strand breaks start to dominate.  
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The binding of the tiles under Mg2+ as well as the tiles exposed to UV radiation act as a 

baseline for the tiles folded in Ba2+, to help determine the difference between helix 

stabilisation and changes in mismatch. When folded in pure Ba2+, the overall trend across 

the three tiles is indicative of an under stabilised helix. When comparing the trend across 

the tiles for all Ba2+ solutions however, the average curvature for the 10.33 tile, compared 

to both the 10.67 and 10.50 is greater. This indicate that the mismatch is greater, such 

that the helical pitch of DNA solution has become slightly overwound in the presence of 

Ba2+. This increase in the overwinding of the DNA therefore decreases the mismatch for 

the 10.67 and 10.50 tiles, causing them to have a relatively lower bias than that of the 

10.33. This effect is also observed in solutions containing both Ba2+ and Mg2+, where the 

ions co-operatively bind to the DNA helices in all three tiles. This effect is most apparent 

in the 10.33 tile, where the stabilised overwound DNA causes the mismatch to become 

greater, resulting in a larger curvature. The relatively small magnitude of curvature for 

the 10.67 and 10.50 tiles is therefore attributed to the mismatch being less. These results 

show not only how various cations bind to the helix, i.e. bases or phosphate backbone, 

but that the correct assignment of twist is important for determining the effect of cations 

on the DNA helix itself. In essence, the sensitivity of origami can be used a tool for 

measuring the effect of cations on the helical pitch of DNA, without the need to crystallise 

DNA strands, making the process easier. 

The appearance of the tiles under AFM, when imaged at high magnification and with 

high resolution highlights the appearance of a major axis, which is due to the composition 

of the crossover spacing containing both nick and ligated DNA strands. This leads to the 

concept of crossover arrangement having an effect on the origami curvature, as evidence 

by the work of Benn et al. whose crossovers were offset so as to increase the overall 

curvature of the origami [158]. This result also highlights how the underlying arrangement 

of crossover themselves can affect the curvature, as seen qualitatively with the CanDo 

models. This also indicates that the average pitch of the tiles is not necessarily a good 

indicator of the tile curvature. The modification of the tile to include 2.5 turns between 
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crossovers not only demonstrates that the diamond lattice is in fact due to the length of 

the crossovers and electrostatic repulsion between the helices, but that they act as a 

potential method for creating nanopores, as well as augmenting methods to functionalise 

origami and/or surfaces. This allows groups to be placed in the plane of the origami, such 

that groups could bind directly to the mica, rather than on a particular face of the origami, 

making the possibility of removing the DNA easier for future applications such as solid 

state devices, where aqueous conditions and the presence of organic material may prove 

detrimental. 

 Future work 

With DNA origami, form follows function. Understanding the factors which affect origami 

structure is therefore important, as it will help lead to new design methods. The results 

of this thesis have demonstrated how the underlying crossover composition causes 

single-sheet origami to curve into the same plane, whose magnitude is determined by 

the mismatch relative to the helical pitch of DNA as determined by the solution 

conditions. 

The associated cost with producing varying origami designs is one of the limiting factors 

for experimental validation. To this end, techniques such as cryo-EM as well as OxDNA 

modelling should be utilised to create a robust data set exploring how the underlying 

crossover composition affects origami structure, aiding the AFM results of this thesis. 

This will allow for greater exploration of how the crossover arrangement affects origami 

structure. The origami used in this contained crossovers which were spaced 1.5 turns 

apart, using crossover spacings of 16 bp and 15 bp to alter the mismatch across the 

length of the origami. This concept should be expanded further to crossovers with varying 

lengths, such as 0.5 turns and 2.5 turns, to help understand how the rigidity and hence 

curvature of tiles, is affected. The use of smaller staples will offer a greater number of 

sites for modification, but may limit the ability of the origami to fold. Longer staples may 

also affect the origami curvature and rigidity, but this has yet to be fully explored. The 

UV irradiation results have already demonstrated how an origami with crossover 
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spacing’s such that the average helical pitch is less than that of the 10.33 tile binds to 

mica. This would require further verification, such as the purposeful design of an origami 

with all 15 bp crossover. This is important for functionalisation of origami, where hairpin 

loops may allow relaxation of the crossover spacing, such that it twists similar to a 16bp 

staple, altering the inherent structure of the origami tile. 

Creating large scale arrays relies on joining smaller origami tiles together. This has been 

demonstrated both in solution as well as on a substrate in the literature. Creating origami 

arrays in solution has employed the method of both sticky ends as well as staples which 

are integrated into both tiles. The difference between these two methods however is the 

rigidity of the bond, such that the curvature of the two tiles may influence one another. 

This may lead to super-structures with unexpected consequences. This was 

demonstrated in the Li et al., with a similar effect assumed to occur with other origami 

designs. Ribbons would be undesirable in origami super-structures as they cause 

opposing faces of the super-structure to bind to the mica surface. As such control over 

the curvature of the tile is an important factor to consider, something which this thesis 

has explored. The results within this thesis, demonstrate that the curvature such as 

Marchi et al. could be changed, by folding the origami under increased Mg2+ 

concentrations. Surface based methods for assembling 2D arrays at present lack a 

degree of control of how tiles bind, due to the non-specific nature of base stacking 

interactions. Surface orientation as well as mobility can be modulated with cationic 

concentration species, allowing for increased yield over functional groups on origami. 

The issue of origami functionalisation has not been explored into too much detail in the 

literature to date. Of interest is the effect that functional groups have on the underlying 

twist of the crossover spacings, such that they may not be truly representative of the 

designed spacing. The work of Li et al. theorised that hairpin loops exert electrostatic 

repulsions across the surface of origami, causing it to curve. It did not however consider 

the potential changes in strain that may be associated at the point where the DNA 

protrudes from the surface. This also raises the question of the effect on the structure of 
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origami if all staples are used as a means for surface modification, independent of 

whether or not the protrusions are nucleic acid based or not.  

The recent review by Ramakrishnan et al. discusses the main areas of origami 

applications, which include biophysical and biochemical, biomedical and material 

science applications [137]. This review details the various types of buffers used to study 

how the origami structure is affected, highlighting how one of the aims is to develop 

method to preserve the origami structure under in vivo environments. To this end, the 

application of material sciences represents the best case scenario for DNA origami, due 

to its ability to place functional groups with nanometre precision. The results of the Ba2+ 

work in this thesis add to this plethora of studied environments, expanding the potential 

buffers that lead allow origami to fold. One of the main objectives of this work however, 

was the results on the effect that Ba2+ has on the origami structure itself, rather than 

other methods which have focused on a more general view of assessing origami 

structure. This highlights the need for increased detailed analysis on the effects of buffers 

on DNA origami, especially where the structure of origami is of up most importance. The 

need for better analytical methods when examining the structure of DNA origami is 

important for its survival in the future, to prevent it from remaining a curiosity. 
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10 Appendix 

 10.33 staples 

  
11[152]13[151] AGCTATATTTAGCAAAATTAAGCAGATTCAAA 
7[120]9[119] ATAGTAAGTCCCCCTCAAATGCTTAGATTAAG 
10[199]9[215] TACCTTTTCCAACAGGTCAGGATCATTAAA 
5[184]7[183] AGATGGTTTTATGCGATTTTAAGAAAATAGCG 
15[280]17[279] ACGCGCCTATTGAGAATCGCCATACGAGAAAA 
4[263]2[264] TATTCTGGGGTTGATATAAGTAAGGTTTAG 
1[184]3[183] GTCGCTGAGGGATCGTCACCCTCATTGTATCA 
19[280]21[279] ACCTGAGCAAAGAAATTGCGTAGACGTTATTA 
23[120]25[119] CCGTAAAGCGCGCTTAATGCGCCGAAGGGATT 
8[263]6[264] CGCCACCTCAGACGATTGGCCTGCCAGAAT 
14[199]13[215] ATAAATTATGATATTCAACCGTCTTGCGGG 
17[280]19[279] CTTTTTCAGATTAAGACGCTGAGATTTCAATT 
11[184]13[183] AAGGTGGCATCCAATAAATCATACTCAAATCA 
25[248]24[264] CATCACTTGCCTGAGTAGAAGAAGTAATAAA 
9[248]11[247] TTTGGGAAACATTCAACCGATTGATACCGAAG 
6[231]4[232] GTAAGCGCTGGTAATAAGTTTTAGAGGCTG 
9[216]10[200] GGTGAATTTATTGACGGAAATTATTTAGAGAG 
16[327]14[328] CTTACCAAAAAATAATATCCCAAGAACAAG 
16[295]14[296] GGGCTTAGTTTATCAACAATAGAGGAATCA 
23[152]25[151] AGCCCCCGCGGTCACGCTGCGCGTATCCTGAG 
20[71]18[72] TTTGCGTTTTTCAAGCTTGCATGCCTAACGACGG 
14[135]12[136] CCTGAGAGTAATGTGTAGGTAAAATAAAGCC 
21[280]23[279] ATTTTAAATTGAGGAAGGTTATCTAAACATCG 
13[216]14[200] AGGTTTTGTTAGCGAACCTCCCGATCTAGCTG 
20[199]19[215] CCTGGGGAGCCGGAAGCATAAAAACGGATT 
18[231]16[232] GACTACCACTATATGTAAATGCGGCATTTT 
12[199]11[215] CATTAACATCAATTCTACTAATGCAAGAAA 
15[216]16[200] ACAAAAGGGTAATAAGAGAATATAATCAAAAA 
8[231]6[232] ACCACCCGCCGCCAGCATTGACCCGTTCCA 
21[152]23[151] AGCAAGCGGATAGGGTTGAGTGTTCTAAAGGG 
4[231]2[232] AGACTCCCTCAGTACCAGGCGGCCCTCAGA 
13[312]15[311] GAGCCTAATTTTTATTTTCATCGTATAAGTCC 
22[71]20[72] ATCAGGGTTTTATTGGGCGCCAGGGTAGAGGCGG 
19[312]21[311] TCAAGAAATATCAAAATTATTTGCATCATTTT 
10[359]8[360] CAACATAGCGACAGAATCAAGTATCGGCAT 
22[231]20[232] CCGTCAAGACTTTACAAACAATTAACAGTA 
22[295]20[296] AAAGGAAAGTTTGAGTAACATTACGTAAAA 
23[312]25[311] AAGATAAATCTGAAATGGATTATTGAACAATA 
19[216]20[200] CGCCTGATCATCGGGAGAAACAATGTGTAAAG 
15[312]17[311] TGAACAAGGTATAAAGCCAACGCTATTTCATC 
10[263]8[264] AAGGGCGTTAGAGCCAGCAAAACTCAGAGC 
25[280]24[296] ATCGGCCTTGCTGGTAATATCCATACATTGG 
13[344]15[343] CCATATTAAGTACCGCACTCATCGTCCTAATT 
16[231]14[232] CGAGCCATAAAGTAATTCTGTCAGAACGCG 
21[184]23[183] GGCGAAAAAAATCCCTTATAAATCGGGAAAGC 
5[248]7[247] CAGTGCCTGCAGTCTCTGAATTTAAGGAGGTT 
1[248]3[247] TACCGTAAACCCTCAGAACCGCCAATAAGTGC 
13[280]15[279] AATCTTACGCCCAATAGCAAGCAAAATGCAGA 
23[88]25[87] CACCCAAATATGGTTGCTTTGACGAATCAGAGCG 
17[184]19[183] GCGCCATTGGCGATCGGTGCGGGCTTCCACAC 
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11[248]13[247] CCCTTTTTTATCAGAGAGATAACCATTAGTTG 
13[152]15[151] AGGGTGAGTCTACAAAGGCTATCATTTGTTAA 
14[71]12[72] CATATGTTTTTTTTATTTCAACGCAATTTGCGGG 
0[199]1[183] TCTGTATGGGATTTTGCTAAACATATATTCG 
7[88]9[87] AGATACATACGAGAATGACCATAAATAGTCAG 
14[295]12[296] TTACCGCCAACGCTAACGAGCGATTAACTG 
2[71]0[62] GTAATGCTTTTCTTTAATTGTATCGGGGCTCCAAAAGGAGCTT 
4[135]2[136] CCAACTTGACCCCCAGCGATTACAACGGCT 
15[152]17[151] AATTCGCAACATTAAATGTGAGCGGCTTTCCG 
0[167]1[151] CAGTTTCAGCGGAGTGAGAATAGATGACAAC 
21[344]23[343] ATTATCATACCTCAAATATCAAACTCAGTATT 
14[167]12[168] TGAGAGAAAAGGCCGGAGACAGAGGCAAGG 
17[152]19[151] GCACCGCTCCAGCTGGCGAAAGGGTTTCCTGT 
1[216]2[200] TCAGGGATCCCTCAGAGCCACCACAAAGGCCG 
5[216]6[200] GGAGTGTATCATACATGGCTTTTGTCATTGTG 
6[103]4[104] CATTATTCCAAATCAACGTAACAACGGTGT 
24[263]22[264] AGGGACAGAACTGATAGCCCTAAAAATATC 
15[184]17[183] ATTTTTTACGTCTGGCCTTCCTGTCAGGCAAA 
25[62]24[72] TTCTTTCCTCGTTAGAGCACGTA 
2[199]1[215] CTTTTGCGGCTTGCAGGGAGTTCCTCATTT 
24[135]22[136] CACCCGCCACTAAATCGGAACCGTTCCAGT 
2[103]0[104] TGAGGAACGAGGTGAATTTCTTATTTTTTC 
1[88]3[87] CTTGCTTTGTTTCCATTAAACGGGAACCTAAA 
22[359]20[360] TTGCTGACATATTCCTGATTATTTGTTTGG 
2[231]0[232] ACCGCCAAGCAAGCCCAATAGGAAAGTTTT 
9[120]11[119] AGGAAGCCATGCTGTAGCTCAACAACCATTAG 
14[103]12[104] TGAACGGAACCCTCATATATTTTGTACCAA 
8[103]6[104] TCAGAAAAACGCCAAAAGGAATCGGAACAA 
11[344]13[343] ATGATTAATTACAGAGAGAATAACATAAACAG 
16[199]15[215] TAATTCGACCAATAGGAACGCCAAGTACCG 
6[167]4[168] ATTATACGAACGAGTAGTAAATACGAGGCG 
25[120]24[136] TTAGACAGGAACGGTACGCCAGAAACCACCA 
4[103]2[104] ACAGACCGGCAAAAGAATACACCTTTTTCA 
13[120]15[119] ATGCCTGAGTCTGGAGCAAACAAGAAGCAAAT 
17[312]19[311] TTCTGACCTTAGAATCCTTGAAAAAACAAACA 
6[199]5[215] AATTACCTAATTTCAACTTTAAATGATACA 
24[231]22[232] TTCTGACATTTTTGAATGGCTAGATTAGAG 
12[263]10[264] GCGCTAAAAGAAAAGTAAGCAGAAAGACAA 
3[120]5[119] TCATCTTTTGAAAGAGGACAGATGAAAGCTGC 
10[295]8[288] AATTCATTACCATTAGCAAGGCCGGAACCAGAGCCAC 
2[263]0[264] TACCGCCCACTGAGTTTCGTCACAGACAGC 
18[359]16[360] CTTGCTTGATAAATAAGGCGTTAGAAAAAG 
18[263]16[264] TAGTGAAGCAAGACAAAGAACGTTTAACAA 
8[71]6[72] TCAGGTCTTTTGGAATACCACATTCAATCAGTTG 
5[152]7[151] AAACACCACAGTCAGGACGTTGGGACCCTCGT 
9[184]11[183] AAGCAAACAATTGCTCCTTTTGATGAGCTGAA 
11[216]12[200] CAATGAAAAAGCCCAATAATAAGAAGTAGTAG 
1[152]3[151] AACCATCGATCGGAACGAGGGTAGTACCAAGC 
24[103]22[104] CGCGTACTCAAGTTTTTTGGGGAGAACGTG 
24[327]22[328] TCAATCGACAGAGGTGAGGCGGCCTCAATC 
25[216]24[232] GTTGTAGCAATACTTCTTTGATTTAGAACCC 
3[280]5[279] AATAGGTGTTTTCCCCCTGCCTATTTCGGTATAAAC 
21[248]23[247] TCGTATTAGCACTAACAACTAATATTAGTCTT 
19[152]21[151] GTGAAATTGCGTTGCGCTCACTGCAGAGTTGC 
7[152]9[151] TTACCAGATACTGCGGAATCGTCAATCGCGTT 
8[327]9[311] CATCTTTTCATAATCAAAATCACCGGAAACG 
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12[231]10[232] TTGAGTTTAGCAATAGCTATCTGGGAGGGA 
3[152]5[151] GCGAAACATCAATCATAAGGGAACCTGACGAG 
21[120]23[119] GCCCTTCAAAGAGTCCACTATTAATCGAGGTG 
22[103]20[104] GACTCCAAGTGAGACGGGCAACGCTGCATT 
16[71]14[72] GTAGATGTTTTACCCCGGTTGATAATATGTCAAT 
11[280]13[279] ACAAAGTTTGAACAAAGTCAGAGGTTATCCTG 
19[184]21[183] AACATACGTGCCTAATGAGTGAGCCCCCAGCA 
22[263]20[264] TTTAGGAAATCCTTTGCCCGAATTTTCAGG 
18[71]16[72] CCAGTGCTTTTGGCGCATCGTAACCGACGTTGGT 
1[280]3[279] AACTACAATTTTTATCACCGTACTCAGGTAGCCCGG 
14[231]12[232] AGGCGTTAAGCCTTAAATCAAGCACAAGAA 
6[71]4[72] AGATTTATTTTGTAATCTTGACAAGATGACCTTC 
18[199]17[215] TGGGAAGCGCCATTCAGGCTGCTAGGTTGG 
4[167]2[168] CAGACGGAAGTACAACGGAGATGCAGCGAA 
19[88]21[87] ACTCTAGACGGCCAACGCGCGGGGGGTTTTTC 
0[263]1[247] CCTCATAGTTAGCGTAACGATCTAACCCATG 
18[103]16[104] TTTTCCCAGGGGACGACGACAGAAACGGCG 
5[280]7[279] AGTTAATGTTTTATAAATCCTCATTAAATGATATTC 
3[184]5[183] TCGCCTGAATGTTACTTAGCCGGATGGGCTTG 
1[120]3[119] TGATACCGCTTTGAGGACTAAAGATAAAACAC 
0[135]1[119] AACTAAAGGAATTGCGAATAATAAAACAGCT 
17[216]18[200] GTTATATATTTTTAACCTCCGGCTGCAACTGT 
0[231]0[200] GTCGTCTTTCCAGACGTTAGTAAATGAATTT 
4[71]2[72] ATCAAGATTTTCACTACGAAGGCACCTAAAATAC 
20[263]18[264] TTTAACGGAGGCGAATTATTCAAGAGTCAA 
17[248]19[247] ATCCAATCTTTATCAAAATCATAGGTTACAAA 
7[280]9[279] ACAAACAACACCGGAACCGCCTCCTCACCAGT 
16[359]14[360] CCTGTTTTGTAGAAACCAATCAACGGGTAT 
5[88]7[87] TTCATTACACAGGTAGAAAGATTCACTAATGC 
24[199]23[215] AGCGAAAGTGGCGAGAAAGGAAACGTGGCA 
9[152]11[151] TTAATTCGCGGATGGCTTAGAGCTACCTGTTT 
8[385]9[375] TTACTGTAGCGCGTTTTCTTGCCTTT 
8[135]6[136] CATTGAAAGCAACACTATCATAAAGAAAAA 
20[135]18[136] CAGTCGGTCATGGTCATAGCTGGGATGTGC 
3[216]4[200] GGGTTTTGTCAAGAGAAGGATTAGTCCGCGAC 
16[103]14[104] GATTGACACAGGAAGATTGTATAGAATCGA 
13[376]15[375] CGATTTTTTTTTCCTTATCATTCCAAGAATAATCGG 
2[135]0[136] ACAGAGGATAGTTGCGCCGACAAAAGGAAC 
22[135]20[136] TTGGAACCCGCCTGGCCCTGAGCCGCTTTC 
9[344]11[343] AATCAGTATAAAAGAAACGCAAAGGAACTGGC 
15[376]17[375] CTGTCTTTTTTTCGGAATCATAATTACTAAATAAGA 
3[248]5[247] CGTCGAGAAAACATGAAAGTATTAAACGGGGT 
15[120]17[119] ATTTAAATGATTCTCCGTGGGAACTATCGGCC 
14[263]12[264] TAGAAGGCACCCAGCTACAATTGTAATTGA 
17[344]19[343] GACCGTGTCTGTAAATCGTCGCTATTTAACAA 
22[199]21[215] ATCGGCATCCTGTTTGATGGTGGGATTTAG 
13[88]15[87] ATTTTTAGTAATCGTAAAACTAGCCAGAAAAG 
8[359]9[343] TTTCGGTCATAGCCCCCTTATTAAGCACCGT 
12[359]10[360] GCAGCCTGACTCCTTATTACGCAAAGGTGG 
15[88]17[87] CCCCAAAACGTAATGGGATAGGTCTGCATCTG 
16[263]14[264] CGCCAACACAACATGTTCAGCTATCAGATA 
14[359]12[360] TAAACCATTTATCCCAATCCAATGAAAATA 
19[344]21[343] TTTCATTTTTCTGAATAATGGAAGGGAGCGGA 
20[295]18[296] CAGAAATAAAAGAAGATGATGACATAGCGA 
21[216]22[200] AAGTATTATAGATAATACATTTGAGTTCCGAA 
24[71]22[72] TAACGTGTTTTCGATGGCCCACTACACCGTCT 
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9[88]11[87] AAGCAAAGACTAAAGTACGGTGTCCCCAATTC 
25[312]24[328] TTACCGCCAGCCATTGCAACAGGTTTGACGC 
9[376]11[375] AGCGTCAGTTTTTAGAAAATACATACATAGTATGTT 
25[152]24[168] AAGTGTTTTTATAATCAGTGAGGCGCTGGCA 
6[263]4[264] GGAAAGCTGAGTAACAGTGCCCGAACCTAT 
18[135]16[136] TGCAAGGATCGCACTCCAGCCAAGTAACAA 
23[344]22[360] AACACCGCCTGCAACAGTGCCACGCATCACC 
10[71]8[72] TCATTCCTTTTTTTACCCTGACTATTATCAAAAA 
21[88]23[87] TTTTCACCACGTCAAAGGGCGAAAAGTGAACCAT 
20[231]18[232] CCTTTTATGCTTTGAATACCAAGTCTGAGA 
11[376]13[375] AGCAAACGTTTTTGTTTAACGTCAAAAAATAAGAAA 
17[376]19[375] ATAAACACTTTTAATCAATATATGTGAGATGGAAAC 
20[359]18[360] ATTATACGAATTACCTTTTTTATGAATAAC 
11[120]13[119] ATACATTTATAAAGCTAAATCGGTTAAATGCA 
15[248]17[247] GACAATAAATGTAATTTAGGCAGATGATGCAA 
23[280]25[279] CCATTAAAACCAGTCACACGACCACTCAAACT 
23[184]25[183] CGGCGAACGGAGCGGGCGCTAGGGCCACCGAG 
8[167]6[168] CGTCCAACGACGATAAAAACCAACTGGCTC 
23[216]24[200] CAGACAATCTGAAAGCGTAAGAATGGGAAGAA 
3[88]5[87] ACGAAAGAAGGCGCATAGGCTGGCACCGGATA 
10[167]8[168] ATTTTTGAGCTTCAAAGCGAACCTGGATAG 
20[103]18[104] AATGAATGGATCCCCGGGTACCCGCCAGGG 
7[184]9[183] AGAGGCTTTAGTAAAATGTTTAGACAGACCGG 
25[88]24[104] GGAGCTAAACAGGAGGCCGATTACTACAGGG 
21[312]23[311] GCGGAACAGGTCAGTTGGCAAATCACCAGCAG 
25[184]25[215] TAAAAGAGTCTGTCCATCACGCAAATTAACC 
10[231]8[232] AGGTAAAATCACCGTCACCGACTCAGAGCC 
17[88]19[87] CCAGTTTGAGTCACGACGTTGTAAGCAGGTCG 
18[295]16[296] TAGCTTAAATATATTTTAGTTACAACAGTA 
12[71]10[72] AGAAGCCTTTTATATAACAGTTGATTTGGAAGTT 
11[312]13[311] CAATAATACGCATTAGACGGGAGATCTTTCCA 
2[167]0[168] AGACAGCCCCACGCATAACCGAACTTTCAA 
9[312]11[311] TCACCAATTTTATTTTGTCACAATAGGAAACG 
8[199]7[215] GGGGTAATTGCAAAAGAAGTTTAACCACCA 
20[167]18[168] ATTAATTGTTATCCGCTCACAACTCTTCGC 
5[120]7[119] TCATTCAGTAATAAAACGAACTAATACGAGGC 
10[103]8[104] ATATGCACGGATTGCATCAAAATAAACAGT 
18[167]16[168] TATTACGTCTGGTGCCGGAAACAGCCAGCT 
12[327]10[328] AGGGAAGACGGAATACCCAAAAACACCACG 
10[327]8[328] GAATAAGGAAACCATCGATAGCGCGTTTGC 
24[350]25[350] TTGAAATACCTACATAAAAACGCTCATGTT 
7[216]8[200] CCAGAGCCTCAGAGCCGCCACCAGTGCCAGAG 
22[167]20[168] AGCCCGAGTCCACGCTGGTTTGTAACTCAC 
6[135]4[136] TCTACGTTGAATAAGGCTTGCCCGAACTGA 
12[295]10[296] AACACCCACCAGAAGGAAACCGCAATAGAA 
10[135]8[136] GAATATACGAAAGACTTCAAATTAAATATT 
23[248]25[247] TAATGCGCTTCTGGCCAACAGAGAAGTAATAA 
13[248]15[247] CTATTTTGCTTATCCGGTATTCTACAGACGAC 
0[289]1[279] TTCGCCTGTAGCATTCCACCAGTACA 
11[88]13[87] TGCGAACGATGACCCTGTAATACTGGATAAAA 
19[248]21[247] ATCGCGCATCAGATGAATATACAGTCGACAAC 
0[103]1[87] ACGTTGAAAATCTCCAAAAAAAATTTATCAG 
12[103]10[104] AAACATTAGTAGATTTAGTTTGTGTTTTAA 
19[120]21[119] ATTCGTAAGAAACCTGTCGTGCCAAGCTGATT 
16[167]14[168] TTCATCATTAAATTTTTGTTAAGCTATTTT 
22[327]20[328] AATATCTAAGAAACCACCAGAAGGTTAGAA 
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16[135]14[136] CCCGTCGTGTAAACGTTAATATGGTCATTG 
13[184]15[183] CCATCAATAATGCCGGAGAGGGTAATCAGCTC 
4[199]3[215] CTGCTCCTAAATTGTGTCGAAAGATTAGCG 
18[327]16[328] TTTTCCCTAAATTTAATGGTTTTACAAATT 
19[376]21[375] AGTACATATTTTATCAATATAATCCTGACAGATGAT 
17[120]19[119] TCAGGAAGCGATTAAGTTGGGTAAGAGCTCGA 
12[135]10[136] TCAGAGCCGCAAATGGTCAATATAATTGCT 
24[167]22[168] AGTGTAGATTTAGAGCTTGACGAAAAGAAT 
20[327]18[328] CCTACCAACAAAATTAATTACATTAATTAA 
15[344]17[343] TACGAGCAAGTATCATATGCGTTAGAAATACC 
14[327]12[328] CAAGCCGTTTGCCAGTTACAAAATAAAAAC 
24[295]22[296] CAGATTCAATACCGAACGAACCAACAGTTG 
9[280]11[279] AGCACCATATGGTTTACCAGCGCCATAGCCGA 
12[167]10[168] CAAAGAATTTCATTTGGGGCGCAAGAGGTC 
21[376]23[385] GGCAATTCTTTTAAATGAAAAATCTAAAGCTGAGAGCCAGCAGCTT 
7[248]9[247] GAGGCAGGCTCAGAACCGCCACCCTTGAGCCA 

 

 10.50 staples 

  
7[248]9[247] CACCCTCAGTTTGCCATCTTTTCACATTCA 
21[376]23[385] CGTTATTATTTTATCGCCATTAAAAATTGATAGCCCTAAAACTT 
4[71]2[72] AAAGAGGATTTTGAGGACTAAAGACTTTCGGCTACA 
17[312]19[311] GGTTATATTTTGAATTACCTTTTCAATAAC 
22[327]20[328] CGGTCAGTGAAGTATTAGACTTTAACCAGAAG 
9[344]11[343] AGCAAAATAAAGAACTGGCATGATTTTTAAGA 
2[199]1[215] ACCATCGCATAGTTGCGCCGACAAACTCAGGA 
21[152]23[151] TGCAGCAAAGATAGGGTTGAGTGTAAGGGAGC 
2[103]0[104] CAGCATCAAAATCTCCAAAAAAACAACTTT 
20[359]18[360] ATCATTTTCGCAGAGGCGAATTATATGAAACA 
18[263]16[264] AACCTTGCATTTATCAAAATCATAGAAAAAGC 
24[71]22[72] GCTTTCCTTTTTGATGGCCCACTACGTACCGTCT 
20[295]18[296] AGATGATGTTTACATCGGGAGAAATTAATGGA 
13[120]15[119] TTAGAACCAGGCTATCAGGTCATTCCCAAAAA 
20[167]18[168] AACTCACTGTGAAATTGTTATCGATCGGTG 
19[152]21[151] GTTTCCTGATTAATTGCGTTGCGCGAGAGAGT 
21[88]23[87] TTTCTTTTACGTCAAAGGGCGAAAAGAACCATCA 
1[216]2[200] GGTTTAGTATAGGTGTATCACCGTTGACAACA 
17[152]19[151] CCAGCCAGCTTCGCTATTACGCCATCATAGCT 
14[71]12[72] TAATCGTATTTTACCCTGTAATACTTTTTACCAAAA 
11[152]13[151] GATACATTTCCAATAAATCATACAGCAATGCC 
3[280]5[279] GATTAGCGTTTTCAGGAGTGTACTGGTAATGGCTTT 
19[376]21[375] AATTACCTTTTTATTTTAAAAGTTTGAGCCCGAA 
25[62]24[72] TTCGTTAGAATCAGAGCATAACGT 
18[327]16[328] CAATTTCAAACTATATGTAAATGCAAATACCG 
10[135]8[136] AGGTCATTAAGCAAAGCGGATTGCAAATGTTT 
14[263]12[264] CAAGTACCGGTATTCTAAGAACGCCAGCCTTT 
15[344]17[343] ATAAACAATAAATTTAATGGTTTGTGATGCAA 
22[71]20[72] ATCAGGGCTTTTTGCGTATTGGGCGCCAGCGGGGAG 
21[120]23[119] GATTGCCCAAGAGTCCACTATTAAGAGGTGCC 
18[167]16[168] CGGGCCTCTTTCCGGCACCGCTTCGCGTCT 
20[263]18[264] TGTTTGGATAACGTCAGATGAATAGAGTGAAT 
20[199]19[215] GTGTAAAGCAACATACGAGCCGGAATTTGCAC 
19[248]21[247] TTCAGGTTTTATACTTCTGAATAAGGTTAT 
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17[376]19[375] CTTTTTCATTTTGAGCAAAAGAAGATGTCATTTC 
19[280]21[279] CAGTACCTGCAATTCATCAATATACAACTAAT 
10[231]8[232] TTGTCACACAAAGACAAAAGGGCGATAATCAA 
25[120]24[136] GAACGGTACGCCAGAATCCTGAGACCACACCC 
23[88]25[87] CCCAAATCTGCTTTGACGAGCACGTGGGAGCTAA 
10[359]8[360] AATACCCACACCAGTAGCACCATTGAAACCAT 
20[135]18[136] CGCTTTCCGAATTCGTAATCATGGGCTGGCGA 
4[231]2[232] CGTATAAATTATTCTGAAACATGAATAAGTAT 
1[248]3[247] CCTCAGAAGTCGAGAGGGTTGATAAGTATT 
12[71]10[72] ACATTATGTTTTGCAACTAAAGTACGGTAACATGTT 
20[103]18[104] TGCATTACGACTCTAGAGGATCTAAGTTGG 
3[152]5[151] GAGGCAAATGTCGAAATCCGCGACTTACCCAA 
7[280]9[279] CCAGAACCTCGGCATTTTCGGTCATATTGACG 
15[88]17[87] CCCCGGTTAACAAACGGCGGATTGGGGCGCAT 
24[231]22[232] CCTACATTCATTGGCAGATTCACCAAATATCA 
13[280]15[279] TTAGCGAATCATTCCAAGAACGGGATTTTCGA 
0[167]1[151] TTTTGTCGTCTTTCCAGACGTTATTTATCAG 
2[167]0[168] CGCTGAGCGAGGTGAATTTCTTATCTAAAG 
6[167]4[168] CAACTTTAACAAAGCTGCTCATTCGCCTGA 
9[184]11[183] TCGCGTTTGCAAACTCCAACAGGTAACCTGTT 
13[184]15[183] TGAGAAAGATTCAACCGTTCTAGCTTCGCATT 
8[359]9[343] CGATAGCAGCACCGTAATCAGTAGTTAGAGCC 
6[231]4[232] CCTTGATAAATGGAAAGCGCAGTCACAGTGCC 
10[263]8[264] AAACGCAAAGGGAGGGAAGGTAAATAGCCCCC 
21[248]23[247] CTAAAATAACCTTGCTGAACCTCAGTCACA 
6[103]4[104] ACGTTGGCTGGCTGACCTTCATAGACGGTC 
5[216]6[200] AAAGCCAGTTCACAAACAAATAAACCAGAACG 
12[199]11[215] AAGGTGGCTTTTCATTTGGGGCGCCACCCTGA 
25[216]24[232] TACTTCTTTGATTAGTAATAACATTGGAAATA 
15[312]17[311] AAAGGTAAATAAATAAGGCGTTATAGGTTG 
15[216]16[200] GCTTAATTATAAAGCCAACGCTCATTTTAACC 
17[280]19[279] AGACTACCATAAATCAATATATGTTACAGTAA 
11[312]13[311] CAATAGCTATCCAAATAAGAAACAGGTTTT 
22[295]20[296] CACGCTGAGCCGTCAATAGATAATTGATTATC 
8[103]6[104] CATAAATTCAGTTGAGATTTAGCAGTCAGG 
18[295]16[296] AACAGTACTTTTTAACCTCCGGCTAATAAGAA 
2[263]0[264] TAAGTGCCCCGCCACCCTCAGAGCATAGGAAC 
23[248]25[247] CGACCAGTCAGGAAAAACGCTCACACTTGC 
0[135]1[119] ATTTTCTGTATGGGATTTTGCTAAAAGGCTCC 
17[120]19[119] GACGACAGTGTGCTGCAAGGCGATCCCGGGTA 
16[231]14[232] TTACCAGTGAGAATCGCCATATTTAAGCAAGC 
22[167]20[168] TAGCCCGGCGGTCCACGCTGGTAGTGAGCT 
16[295]14[296] TAAACACCTAAGAGAATATAAAGTCGGCTGTC 
7[88]9[87] AAGATTCAATTCATTGAATCCCCCTGACCATA 
22[103]20[104] GACTCCACACCAGTGAGACGGGGTGCCAGC 
4[199]3[215] AAAGTACACAGCGATTATACCAAGCCTATTTC 
16[263]14[264] CTGTTTAGTAATTTAGGCAGAGGCTATTAAAC 
23[280]22[296] AGAGATAGAACCCTTCTGACCTGAAACAGTGC 
1[120]3[119] AAAAGGAGATCGTCACCCTCAGCAATACGTAA 
3[216]4[200] GGAACCTACAGTTAATGCCCCCTGCGCGAAAC 
24[263]22[264] CATTGCAAAATAAAAGGGACATTCAAAAATCT 
16[327]14[328] ACCGTGTGAGTAATTCTGTCCAGAATTTACGA 
18[231]16[232] TAATTTTCAGATTAAGACGCTGAGACAAATTC 
5[248]7[247] TTACCGTTGTTGAGGCAGGTCAGGAACCGC 
23[152]25[151] CCCCGATTACGCTGCGCGTAACCAAGTGTTTT 
24[103]22[104] CTATGGTAAGTTTTTTGGGGTCAGAACGTG 
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16[135]14[136] AAATGTGATTGTATAAGCAAATATTTTGAGAG 
6[71]4[72] CGAACTAATTTTCAGATGAACGGTGTACCAACTTTG 
16[167]14[168] GGCCTTCAATATTTTGTTAAAATGATAAAT 
17[248]19[247] AATAGTGATTCTGTAAATCGTCGGTAGATT 
8[135]6[136] AGACTGGATAATGCAGATACATAACTTATGCG 
8[263]6[264] TTATTAGCGAGCCACCACCCTCAGCCAGCATT 
19[312]21[311] GGATTCGCTTATCATCATATTCCACATTTG 
3[184]5[183] TTGACCCCACGGAGATTTGTATCATCAGTGAA 
16[103]14[104] CCGTGGGGATAATCAGAAAAGCGCCTGAGA 
15[248]17[247] CCAACATGTATCATATGCGTTATAAGAGTC 
4[167]2[168] TAAATTGAGAATACACTAAAACTATTCGGT 
8[231]6[232] AATCACCGAGAGCCGCCACCCTCAACGATTGG 
9[376]11[375] GCAAGGCCTTTTCCGAGGAAACGCAATGTTACCA 
10[167]8[168] GAGAGTAGGAAGCCCGAAAGACAAAAGAAG 
15[280]17[279] GCCAGTAAGGAATCATAATTACTAGGTCTGAG 
17[216]18[200] GATAGCTTCCTTAGAATCCTTGAAGCCATTCA 
19[344]21[343] CAAAATCGGCGGAACAAAGAAACCCAAACAAT 
25[152]24[168] TATAATCAGTGAGGCCACCGAGTGCAAGTGT 
8[385]9[375] TTGGAAACGTCACCAATACCATTA 
18[135]16[136] AAGGGGGATATCGGCCTCAGGAAGTCAACATT 
0[289]1[279] TTAGGGATAGCAAGCCCACACCACCC 
25[88]24[104] ACAGGAGGCCGATTAAAGGGATTGGCGCGTA 
11[344]13[343] AAAGTAAGTTACAAAATAAACAGCCTATTTTG 
15[184]17[183] AAATTTTTCGCCATCAAAAATAATTCTGGTGC 
23[312]22[328] AGAATACGTGGCACAGACAATATTAGGTGAGG 
23[184]25[183] CGAACGTGGGGCGCTAGGGCGCTGAAAAGAGT 
23[120]25[119] GTAAAGCATAATGCGCCGCTACAGTTAGACAG 
21[312]23[311] AGGATTTAATTAACACCGCCTGCAAGCGTA 
9[312]11[311] TCACCGACGCAGTATGTTAGCAAGAAATAG 
6[263]4[264] GACAGGAGCCAGTAAGCGTCATACATAAGTTT 
11[248]13[247] CAGAGAGAAATAACATAAAAACAATAGAAG 
24[167]22[168] AGCGGTCTAGAGCTTGACGGGGCAAAAGAA 
10[199]9[215] GACCGGAATAATTCGAGCTTCAAATATGGTTT 
13[248]15[247] GCTTATCCGCACTCATCGAGAACAACAACG 
14[359]12[360] CAAGAAAATACAATTTTATCCTGAGAGCCTAA 
10[327]8[328] CTTATTACTTGAGCCATTTGGGAACGACAGAA 
21[280]23[279] AGATTAGAGAGCCAGCAGCAAATGTGGCCAAC 
15[152]17[151] TAAACGTTCTGTAGCCAGCTTTCAATCGCACT 
10[295]8[288] AATACATATCATTAAAGGTGAATTCTGTAGCGCGTTTTCA 
5[120]7[119] ATCTTGACAACTGGCTCATTATACGAATACCA 
20[231]18[232] GTTAGAACGAAATAAAGAAATTGCCTATTAAT 
17[184]19[183] CGGAAACCAACTGTTGGGAAGGGCCGCTCACA 
19[88]21[87] CTGCAGGTATGAATCGGCCAACGCGGGTGGTT 
9[216]10[200] ACCAGCGCATCAATAGAAAATTCAGCGAACCA 
11[376]13[375] GAAGGAAATTTTACGAGCGTCTTTCCAATCTTAC 
14[167]12[168] TAATGCCGTGTAGGTAAAGATTGTAGTAGC 
16[359]14[360] TTCTGACCCATGTTCAGCTAATGCGTCCTGAA 
22[199]21[215] AAATCGGCAAATCCTGTTTGATGGTTGGCAAA 
22[263]20[264] AAAGCATCTCTTTAGGAGCACTAAATCCTGAT 
11[216]12[200] ACAAAGTCGGGAGAATTAACTGAAGAGCTGAA 
22[135]20[136] TTTGGAACTTCACCGCCTGGCCCTTCACTGCC 
14[231]12[232] CGTTTTTAAGCAAGCAAATCAGATGGGAAGCG 
19[184]21[183] ATTCCACACCTGGGGTGCCTAATGTTGCCCCA 
21[216]22[200] TCAACAGTATCAATATCTGGTCAGTGGTTCCG 
8[167]6[168] TTTTGCCGAGGCATAGTAAGAGTTTAATTT 
1[280]3[279] TCATTTTCTTTTGGGTTTTGCTCAGTACAGGATTAG 
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12[295]10[296] GTTTAACGAAGAGCAAGAAACAATACGTAGAA 
3[248]5[247] AAGAGGCTTCAGTGCCTTGAGTATCTGAAT 
11[88]13[87] GTTTCATTAAAGCTAAATCGGTTGGCGGGAGA 
15[376]17[375] GCCTGTTTTTTTAATATATTTTAGTTAGAGAAAA 
20[327]18[328] GAGCGGAACTGATTGCTTTGAATAACATTTAA 
4[103]2[104] AATCATACATTAAACGGGTAAAGCGAAAGA 
7[184]9[183] TCATAACCAGCGAGAGGCTTTTGCTTCAAATA 
25[184]25[215] CTGTCCATCACGCAAATTAACCGTTGTAGCAA 
24[135]22[136] GCCGCGCTCTAAATCGGAACCCTATGTTCCAG 
20[71]18[72] AGGCGGTTTTTTACGGCCAGTGCCAAGCACGACGTT 
8[327]9[311] TCAAGTTTGCCTTTAGCGTCAGAATCACCG 
9[120]11[119] ATAGTCAGTTTGCGGATGGCTTAGTTCCCAAT 
14[199]13[215] AATATGATGCCGGAGACAGTCAAACATTACCG 
9[248]11[247] ACCGATTGAGACACCACGGAATACTAATAT 
11[184]13[183] TAGCTATAATCAATTCTACTAATACAAAAGGG 
21[184]23[183] GCAGGCGAAAAATCCCTTATAAATAAAGCCGG 
1[88]3[87] TCACGTTGGGAACGAGGGTAGCAATTCATGAG 
13[216]14[200] CGCCCAATTTTTCATCGTAGGAATTCACCATC 
11[280]13[279] CCAATAATTCAAAAATGAAAATAGGAGGCGTT 
4[263]2[264] TAACGGGGGAGACTCCTCAAGAGACAGGCGGA 
14[135]12[136] ATCTACAACTCATATATTTTAAATGGCAAGGC 
2[71]0[62] GAGGCTTTTTTTAAGGAATTGCGAATAATAGAAAGGAACAACTATT 
8[71]6[72] TTTAAACATTTTCGGAACAACATTATTATAATAAAA 
18[359]16[360] AACATCAAGCAAGACAAAGAACGCATTTCATC 
5[184]7[183] TAAGGCTTATTGGGCTTGAGATGGCAACACTA 
13[88]15[87] AGCCTTTAGCAAACAAGAGAATCGCATATGTA 
8[199]7[215] ACCAAAATCTCGTTTACCAGACGACGGAACCG 
19[120]21[119] CCGAGCTCAGTCGGGAAACCTGTCCAACAGCT 
12[359]10[360] TTTGCCAGCAGATAGCCGAACAAAAATAACGG 
0[103]1[87] CAACAGTTTCAGCGGAGTGAGAATAATTTTT 
12[327]10[328] TTATCCCAATCTTACCGAAGCCCTTAAGACTC 
18[103]16[104] GTAACGCTGCATCTGCCAGTTTCGGATTCT 
13[312]15[311] GAAGCCTTAAACCAATCAATAATACCGACA 
14[295]12[296] TTTCCTTACCTCCCGACTTGCGGGGATTTTTT 
3[88]5[87] GAAGTTTCAGGGAACCGAACTGACAGACCAGG 
4[135]2[136] TGTTACTTCGAAGGCACCAACCTAAGGCCGCT 
9[88]11[87] AATCAAAATATAATGCTGTAGCTCGTCTGGAA 
3[120]5[119] TGCCACTAAGCCGGAACGAGGCGCCAAGAGTA 
6[135]4[136] ATTTTAAGAAGAACCGGATATTCACTGCTCCA 
13[152]15[151] TGAGTAATGGAGAGGGTAGCTATTTTAAATTG 
14[103]12[104] GTCTGGATTTCAACGCAAGGATAAAGCCTC 
5[152]7[151] ATCAACGTAATCATTGTGAATTACCGCCAAAA 
22[359]20[360] AACCACCATCGTATTAAATCCTTTGTAACATT 
7[120]9[119] CATTCAACTAGCGTCCAATACTGCTGACTATT 
19[216]20[200] GTAAAACACTACCATATCAAAATTAGCATAAA 
10[103]8[104] TGCTGAAATCAGGTCTTTACCCGGAATCGT 
1[152]3[151] CTTGCTTTGCTTGCAGGGAGTTAAAAACGAAA 
16[71]14[72] GGGATAGGTTTTAAACTAGCATGTCAATATGAACGG 
16[199]15[215] AATAGGAAGTTAAATCAGCTCATTACAGTAGG 
1[184]3[183] TGATACCGCCACGCATAACCGATAACTCATCT 
18[71]16[72] GTAAAACGTTTTTCACGTTGGTGTAGATACCGTAAT 
24[286]25[287] TCCAGAACAATATTAGGCCTTGCTGGTAATA 
23[344]22[360] GCTATTAGTCTTTAATGCGCGAACACCGAACG 
12[263]10[264] ACAGAGAGTAACCCACAAGAATTGTATAAAAG 
6[199]5[215] AGTAGTAAGCCCTGACGAGAAACATCCTCATT 
17[88]19[87] CGTAACCGCAGGGTTTTCCCAGTCTTGCATGC 
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18[199]17[215] GGCTGCGCAGGCAAAGCGCCATTCAACATAGC 
14[327]12[328] GCATGTAGAAATCAAGATTAGTTGCATATTAT 
11[120]13[119] TCTGCGAAAGCAAAATTAAGCAATAAAAATTT 
15[120]17[119] CAGGAAGAGCGAGTAACAACCCGTGAGGGGAC 
0[263]1[247] CCATGTACCGTAACACTGAGTTTCCGCCAC 
7[216]8[200] CCTCCCTCGAACCAGAGCCACCACCGATAAAA 
22[231]20[232] AACCCTCATGAAAGGAATTGAGGAATGGAAGG 
5[280]7[279] TGATGATATTTTACCACCAGAGCCGCCGAGCCGCCA 
0[199]1[183] ACAGCCCTCATAGTTAGCGTAACGAAACAGCT 
21[344]23[343] TCGACAACGCAGAAGATAAAACAGTTTGAATG 
12[167]10[168] ATTAACATCGCAAATGGTCAATCAGGATTA 
12[135]10[136] AAAGAATTCGAGTAGATTTAGTTTTTGATAAG 
0[231]0[200] GTACAAACTACAACGCCTGTAGCATTCCACAG 
24[199]23[215] AAAGGAGCGCGAGAAAGGAAGGGATGAAATGG 
13[344]15[343] CACCCAGCATAATATCCCATCCTACGACGACA 
12[231]10[232] CATTAGACAGAGGGTAATTGAGCGAGTTTATT 
25[248]24[264] CTGAGTAGAAGAACTCAAACTATCCCGCCAGC 
2[231]0[232] AGCCCGGAACCGCCACCCTCAGAACGTCACCA 
12[103]10[104] AGAGCATCCATATAACAGTTGAAGCTTAAT 
17[344]19[343] ATCCAATCGAAAACAAAATTAATTCCAAGTTA 
7[152]9[151] GGAATTACAGAGGGGGTAATAGTAATCAAAAA 
10[71]8[72] TTAAATATTTTTGTTCAGAAAACGAGAATCAAATGC 
23[216]24[200] ATTATTTATTGACGCTCAATCGTCAGAAAGCG 
2[135]0[136] TTTGCGGGCCTTTAATTGTATCGGGTAAATGA 
13[376]15[375] CAACGCTATTTTATCAACAATAGATAAAGAACGC 
9[152]11[151] GATTAAGACCTTTAATTGCTCCTTGACCATTA 
9[280]11[279] GAAATTATCATAAAGGTGGCAACAAGTTAAGC 
5[88]7[87] CGCATAGGGAAGAAAAATCTACGTCAGGTAGA 

 

 10.67 staples 

  
11[248]13[247] GCGCATTATCCCAATCCAAATAAGATCGAGAA 
10[231]8[232] TACATACAACACCACGGAATAAGTCGTTTTCA 
10[135]8[136] TACCTTTAAGGTCTTTACCCTGACAAAGAAGT 
13[344]15[343] GAGGCGTTCGACAATAAACAACATATTTAGGC 
21[248]23[247] CTAAAGCACCAGCAGAAGATAAAACAATATTA 
5[248]7[247] ACAAACAACCTCAGAGCCGCCACCATCACCGG 
23[88]25[87] ACCCAAATTTTGACGAGCACGTATGCTAAACA 
7[216]8[200] GTTTGCCATTCGGTCATAGCCCCCAACACTAT 
13[152]15[151] TATATTTTAGCTGATAAATTAATGTTGTATAA 
14[71]12[72] AGAGAATCTTTTGGTTGTACCAAAAACAAGCATAAA 
19[280]21[279] AACCTACCTTTAAAAGTTTGAGTACAAATATC 
8[359]9[343] AATCACCAGTAGCACCATTACCATGACGGAAA 
15[312]17[311] CATATTTACGCGAGAAAACTTTTTAGCTTAGA 
14[135]12[136] GGTAGCTAGGATAAAAATTTTTAGTTAACATC 
20[327]18[328] CGACAACTAAAGAAATTGCGTAGAACAAAATC 
22[295]20[296] TAGCCCTAAATCAATATCTGGTCACCCGAACG 
11[88]13[87] TGCAACTAAGCAATAAAGCCTCAGTTATGACC 
21[280]23[279] AAACCCTCAAACATCGCCATTAAAACGCTCAT 
12[135]10[136] CAATAAATACAGTTGATTCCCAATTTAGAGAG 
24[234]22[232] TTCATCACTTGCTGGTAATATCCAGAACAGAGGTG 
10[167]8[168] GAAGCAAAAAAGCGGATTGCATCAGATAAAAA 
22[263]20[264] ACGAACCATCACCTTGCTGAACCTACATTATC 
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9[216]10[200] ACGCAAAGTAAAGGTGGCAACATAATATCGCG 
24[103]22[104] ATGGTTGCCAAGTTTTTTGGGGTCAAAGAACG 
17[312]19[311] TTAAGACGGCGAATTATTCATTTCCACGTAAA 
21[88]23[87] TGGTTTTTAACGTCAAAGGGCGAAGAACCATC 
10[327]8[328] GAAGGAAAAGGGAAGGTAAATATTTAGCAAGG 
19[312]21[311] ACAGAAATCGTATTAAATCCTTTGGTTGGCAA 
14[231]12[232] ATCGGCTGACCAAGTACCGCACTCAAACGATT 
2[103]0[104] AAAGGCCGAAAGGAACAACTAAAGCTTTCCAG 
12[263]10[264] ATTATTTAGACGGGAGAATTAACTAAGACTCC 
13[376]15[375] AGGTTTTGTTTTCGACAAAAGGTAAAGTAGAGAATA 
12[359]10[360] TATTTTGCATAAGAGCAAGAAACATTTTTAAG 
15[88]17[87] CATGTCAAGATTCTCCGTGGGAACCGTTGGTG 
21[184]23[183] CCAGCAGGGGCAAAATCCCTTATAAAGCCGGC 
18[295]16[296] GAGCAAAATTGAAAACATAGCGATCAAATATA 
24[167]22[168] GCGGTCACTAGAGCTTGACGGGGAAATCAAAA 
25[88]24[104] GGAGGCCGATTAAAGGGATTTTAGCGCGTACT 
11[120]13[119] TCCATATACATACAGGCAAGGCAACTTTATTT 
13[216]14[200] GGTATTAATCTTTCCTTATCATTCAAGGCCGG 
12[167]10[168] TCAATTCTTTTAGTTTGACCATTACCAGACCG 
14[359]12[360] CCAGACGATTAGCGAACCTCCCGATTAGTTGC 
11[376]13[375] GCAATAGCTTTTAAGCCTTAAATCAAGACTTGCGGG 
16[327]14[328] ACAAAGAAACAACGCCAACATGTAGTTCAGCT 
20[199]19[215] GCATAAAGTTCCACACAACATACGTATCAGAT 
23[248]22[264] CCGCCAGCCATTGCAACAGGAAAAAATACCGA 
8[231]6[232] TCGGCATTTCTTTTCATAATCAAAAGAACCAC 
23[280]22[296] GGAAATACCTACATTTTGACGCTCCGAACTGA 
0[103]1[87] ACGTTAGTAAATGAATTTTCTGTAAGCGGAGT 
16[359]14[360] TATGTAAATTTCGAGCCAGTAATAAATTCTGT 
22[167]20[168] GAATAGCCGCAAGCGGTCCACGCTCCTAATGA 
2[231]0[232] TGCTCAGTTATAAGTATAGCCCGGAGGGATAG 
21[120]23[119] AGCTGATTACAAGAGTCCACTATTGAGGTGCC 
11[344]13[343] GCCCAATAACCCAGCTACAATTTTAAGAACGC 
5[184]7[183] CCAAATCACTTGCCCTGACGAGAACGCCAAAA 
16[295]14[296] TTTTAGTTCAGTAGGGCTTAATTGACAATAGA 
18[231]16[232] TTGAATTAATATGTGAGTGAATAAGATAAATA 
19[216]20[200] GATGGCAATCATCATATTCCTGATAGCCGGAA 
11[152]13[151] CGAGTAGAACTAATAGTAGTAGCAAACCCTCA 
7[120]9[119] AAAGATTCAGGGGGTAATAGTAAACCATAAAT 
10[359]8[360] AAAAGTAATAAAGGTGAATTATCAGCCAGCAA 
17[216]18[200] AAATCAATCCTTTTTTAATGGAAAAAGCGCCA 
0[263]1[247] CTCAGAGCCACCACCCTCATTTTCAATAGGTG 
1[152]3[151] AAAAAAGGACAACCATCGCCCACGCGGGTAAA 
20[263]18[264] ATTTTGCGACTTCTGAATAATGGAACATCAAG 
22[231]20[232] AGGCGGTCGAGAGCCAGCAGCAAAAGAAGGAG 
6[135]4[136] TTTCAACTATAGGCTGGCTGACCTTGTATCAT 
21[344]23[343] CTAAAATAATACGTGGCACAGACAATTCACCA 
6[103]4[104] CGATTTTAGAGGACAGATGAACGGCGCGACCT 
3[152]5[151] ATACGTAAAAGTACAACGGAGATTTCATCAAG 
8[135]6[136] TTTGCCAGATCAGTTGAGATTTAGTGGTTTAA 
11[184]13[183] TCGCAAATGGGGCGCGAGCTGAAATAATGTGT 
11[280]13[279] TGAACAAAGCCAGTTACAAAATAACGTAGGAA 
22[327]20[328] GAATGGCTTTGAAAGGAATTGAGGAAACAATT 
14[327]12[328] AATGCAGAGCTTATCCGGTATTCTATCCTGAA 
19[152]21[151] TCATAGCTACTCACATTAATTGCGCCCTGAGA 
19[376]21[375] CTTTTACATTTTGCCGTCAATAGATAATCAACTAAT 
13[184]15[183] AGGTAAAGAAATCACCATCAATATAATATTTT 
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20[231]18[232] CGGAATTATTCATCAATATAATCCAATTTCAT 
23[184]25[183] GAACGTGGGGCGCTAGGGCGCTGGAGTCTGTC 
14[167]12[168] ACCGTTCTAAATGCAATGCCTGAGAGGTGGCA 
22[359]20[360] GCGTAAGATCTTTAGGAGCACTAAACATTTGA 
4[199]3[215] CTCATCTTGAGGCAAAAGAATACAGGGGTCAG 
4[135]2[136] CGCCTGATGGAAGTTTCCATTAAACATAACCG 
25[62]24[72] TTTAGAATCAGAGCGGGAAACGTGCT 
3[120]5[119] TTTCATGAAAATTGTGTCGAAATCTGTACAGA 
8[167]6[168] CCAAAATATAATGCAGATACATAAACACCAGA 
16[167]14[168] AAATAATTTTAAATTGTAAACGTTGATATTCA 
19[344]21[343] TTTAACGTAAGTATTAGACTTTACAAGGTTAT 
22[199]21[215] CCGAAATCCGAAAATCCTGTTTGAGCAACAGT 
18[199]17[215] TTCGCCATTGCCGGAAACCAGGCACAGTACAT 
21[312]23[311] ATCAACAGATTAGTCTTTAATGCGAATCGTCT 
17[248]19[247] CTGTAAATATTAATTACATTTAACTGATTGTT 
13[120]15[119] CAACGCAATTTTTGAGAGATCTACTGATAATC 
11[312]13[311] ATCAGAGAACGCTAACGAGCGTCTAAATCAGA 
5[88]7[87] CTTTGAAAAGAACTGGCTCATTATTTAATAAA 
0[289]1[279] TTACCGCCACCCTCAGAATACCGCCA 
12[295]10[296] CCTAATTTGTCAGAGGGTAATTGAATAACGGA 
6[199]5[215] GAATAAGGACGTAACAAAGCTGCTCAGGAGGT 
10[263]8[264] TTATTACGAATAGAAAATTCATATATCAAGTT 
0[231]0[200] CAAGCCCAATAGGAACCCATGTACCGTAACAC 
6[71]4[72] GGACGTTGTTTTTCATAAGGGAACCGAAAGGCGCAG 
7[88]9[87] ACGAACTAGCGTCCAATACTGCGGAATGCTTT 
14[103]12[104] TCAGGTCACTTTTGCGGGAGAAGCAGAATTAG 
3[184]5[183] AAACGAAATGACCCCCAGCGATTATTCATTAC 
9[344]11[343] TTATTCATGCAGATAGCCGAACAATGAGTTAA 
19[120]21[119] CCCGGGTACTTTCCAGTCGGGAAACGGGCAAC 
13[280]15[279] TCATTACCGAACAAGAAAAATAATTAAAGCCA 
22[135]20[136] AGTTTGGAGCCCTTCACCGCCTGGTTGCGCTC 
15[152]17[151] GCAAATATCGCGTCTGGCCTTCCTGGCCTCAG 
4[167]2[168] GCGAAACATGCCACTACGAAGGCATGCGCCGA 
16[199]15[215] GCTCATTTTCGCATTAAATTTTTGGGAATCAT 
22[71]20[72] TATCAGGGTTTTCGGTTTGCGTATTGGGAACGCGCG 
20[103]18[104] GCCAGCTGCCTGCAGGTCGACTCTGCAAGGCG 
6[263]4[264] GCCACCACATAAATCCTCATTAAACGTTCCAG 
22[103]20[104] TGGACTCCCTTTTCACCAGTGAGACCTGTCGT 
1[280]3[279] CCCTCAGATTTTTGAAAGTATTAAGAGGCTATTATT 
10[199]9[215] TTTTAATTGCCCGAAAGACTTCAATAAAAGAA 
14[295]12[296] TAAGTCCTGCGCCCAATAGCAAGCTTCCAGAG 
7[184]9[183] GGAATTACTCGTTTACCAGACGACAAAAGATT 
16[103]14[104] ACCCGTCGTCATATGTACCCCGGTAAAGGCTA 
6[231]4[232] CACCAGAGGTCAGACGATTGGCCTGATACAGG 
9[312]11[311] ATTGAGGGCCGAGGAAACGCAATAGCGCTAAT 
15[376]17[375] TAAAGTACTTTTGGCTTAGGTTGGGTTATACCTTTT 
19[88]21[87] CTTGCATGCATTAATGAATCGGCCCGCCAGGG 
18[359]16[360] CCTGATTGCATAGGTCTGAGAGACTATAACTA 
3[88]5[87] ACGGCTACTTACTTAGCCGGAACGCTGACCAA 
8[71]6[72] TAAATATTTTTTGGAAGAAAAATCTACGACCAGTCA 
5[120]7[119] CCAGGCGCTTAATCATTGTGAATTACAGGTAG 
4[231]2[232] AGTGTACTGTAACAGTGCCCGTATCGGGGTTT 
4[263]2[264] TAAGCGTCCTGCCTATTTCGGAACCTGAGACT 
15[120]17[119] AGAAAAGCAACATTAAATGTGAGCATCTGCCA 
14[263]12[264] CTAATTTACCGTTTTTATTTTCATACAGCCAT 
13[88]15[87] CTGTAATATTGCCTGAGAGTCTGGAAAACTAG 
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12[71]10[72] GCTAAATCTTTTCTGTAGCTCAACATGTATTGCTGA 
8[199]7[215] CATAACCCGAGGCATAGTAAGAGCTTATTAGC 
24[199]23[215] AAGGAGCGCGAGAAAGGAAGGGAACAAACTAT 
16[71]14[72] GATTGACCTTTTGATGAACGGTAATCGTAGCAAACA 
9[280]11[279] AGCGCCAAAAGAACTGGCATGATTGAACACCC 
4[71]2[72] ACGGTCAATTTTGACAGCATCGGAACGAACCCTCAG 
10[295]8[288] ATACCCAAAGACAAAAGGGCGACATCGATAGCAGCACCGT 
24[135]22[136] CGCGCTTACTAAATCGGAACCCTAGTTGTTCC 
13[248]15[247] CAAGCAAGCGAGCATGTAGAAACCTATCATAT 
25[152]24[168] ATCAGTGAGGCCACCGAGTAAAAGCAAGTGTA 
25[120]24[136] GGTACGCCAGAATCCTGAGAAGTGACACCCGC 
23[120]25[119] GTAAAGCAATGCGCCGCTACAGGGACAGGAAC 
12[327]10[328] TCTTACCAGATAACCCACAAGAATAGTTACCA 
20[167]18[168] GTGAGCTAGTTTCCTGTGTGAAATTTGGGAAG 
20[295]18[296] TTATTAATATATCAAAATTATTTGAATTACCT 
0[135]1[119] CGTAACGATCTAAAGTTTTGTCGTGAATTGCG 
7[280]9[279] GAGCCGCCAATCAGTAGCGACAGAGGTTTACC 
25[184]25[215] CATCACGCAAATTAACCGTTGTAGCAATACTT 
18[71]16[72] CACGACGTTTTTGTAATGGGATAGGTCAAAACGGCG 
18[135]16[136] CAGCTGGCGGACGACGACAGTATCGTAGCCAG 
23[152]25[151] CCCCGATTGCTGCGCGTAACCACCTTTTTATA 
1[248]3[247] TATCACCGGAAGGATTAGGATTAGAAACAGTT 
3[280]5[279] CTGAAACATTTTCAGTCTCTGAATTTACGCCAGAAT 
23[344]22[360] GTCACACGACCAGTAATAAAAGGGACCTGAAA 
16[263]14[264] AATGGTTTCAAATTCTTACCAGTAATCCCATC 
17[184]19[183] GCTTCTGGTCAGGCTGCGCAACTGTGTTATCC 
3[216]4[200] TGCCTTGAGGTAATAAGTTTTAACCTAAAACA 
8[327]9[311] CCGGAAACGTCACCAATGAAACCATTCAACCG 
18[103]16[104] ATTAAGTTCGCATCGTAACCGTGCGAGTAACA 
9[120]11[119] CAAAAATCATTGCTCCTTTTGATAAGTTTCAT 
11[216]12[200] CTTTACAGAACGTCAAAAATGAAAAGCTATAT 
8[385]9[375] TTCCATTTGGGAATTAGACCGTCACC 
9[152]11[151] TCAGAAGCCTCCAACAGGTCAGGATCTGCGAA 
15[248]17[247] GCGTTATAGAAATACCGACCGTGTCCTTGCTT 
15[184]17[183] GTTAAAATTTTAACCAATAGGAACCCGGCACC 
17[88]19[87] TAGATGGGGGGTAACGCCAGGGTTGTGCCAAG 
20[71]18[72] GGGAGAGGTTTTTGTAAAACGACGGCCATTCCCAGT 
23[312]22[328] GAAATGGATTATTTACATTGGCAGATATTTTT 
20[359]18[360] GGATTTAGCAGATGAATATACAGTCGGATTCG 
21[152]23[151] GAGTTGCACGAGATAGGGTTGAGTAAGGGAGC 
14[199]13[215] AGACAGTCATTCAAAAGGGTGAGACAAGAACG 
23[216]24[200] CGGCCTTGCCTGAGTAGAAGAACTGAAAGCGA 
12[199]11[215] TTTCATTTGGTCAATAACCTGTTTATAGCAGC 
15[280]17[279] ACGCTCAAAATTTCATCTTCTGACTTTTCCCT 
1[120]3[119] AATAATAAGGTCGCTGAGGCTTGCAAAGACTT 
16[135]14[136] CTTTCATCCCCAAAAACAGGAAGACCGGAGAG 
4[103]2[104] GCTCCATGAGAGGCTTTGAGGACTAGGGAGTT 
12[231]10[232] TTTTGTTTAGAGAATAACATAAAAGTAGAAAA 
18[327]16[328] GCGCAGAGCTGAGAAGAGTCAATAATCGCAAG 
17[344]19[343] ATCAAAATCTTTGAATACCAAGTTTTTTCAGG 
24[71]22[72] TTCCTCGTTTTTCGATGGCCCACTACGTAAACCGTC 
15[216]16[200] AATTACTAAATAAGAATAAACACCTTAAATCA 
20[135]18[136] ACTGCCCGCCGAGCTCGAATTCGTTATTACGC 
2[71]0[62] CAGCGAAATTTTAACTTTCAACAGTTTCTGGGATTTTGCTAAACTT 
8[263]6[264] TGCCTTTACCACCACCGGAACCGCCCCTCAGA 
2[199]1[215] CTTAAACATCAGCTTGCTTTCGAGCCGTCGAG 
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3[248]5[247] AATGCCCCATACATGGCTTTTGATTGATATTC 
2[135]0[136] ATATATTCTTTTTTCACGTTGAAAATAGTTAG 
15[344]17[343] AGAGGCATTGCTGATGCAAATCCAGTGAATTT 
16[231]14[232] AGGCGTTAGAAAAAGCCTGTTTAGAATCAATA 
19[248]21[247] TGGATTATGAACAAAGAAACCACCTGAAAAAT 
6[167]4[168] ACGAGTAGTGACAAGAACCGGATATACCAAGC 
17[280]19[279] TAGAATCCGAAGATGATGAAACAAAGGGTTAG 
9[88]11[87] AAACAGTTGATGGCTTAGAGCTTATTTAAATA 
21[216]22[200] GCCACGCTAGTATTAACACCGCCTTGGTGGTT 
17[120]19[119] GTTTGAGGGAAAGGGGGATGTGCTAGAGGATC 
17[152]19[151] GAAGATCGGTGCGGGCCTCTTCGCAATCATGG 
7[152]9[151] CATTCAACGCGAGAGGCTTTTGCATATTATAG 
17[376]19[375] TAACCTCCTTTTTCGGGAGAAACAATAAAACAGTAC 
5[216]6[200] TGAGGCAGCCGCCGCCAGCATTGACATTCAGT 
5[152]7[151] AGTAATCTTAAATTGGGCTTGAGAGAATACCA 
2[167]0[168] CAATGACACTCCAAAAGGAGCCTTACAACGCC 
18[167]16[168] GGCGATCGCACTCCAGCCAGCTTTGCCATCAA 
9[376]11[375] GACTTGAGTTTTTATCTTACCGAAGCCCATGAAATA 
5[280]7[279] GGAAAGCGTTTTACCCTCAGAACCGCCACTCCCTCA 
18[263]16[264] AAAACAAACGTCGCTATTAATTAACTAAATTT 
19[184]21[183] GCTCACAATGTAAAGCCTGGGGTGGGTTTGCC 
10[71]8[72] ATATAATGTTTTCATTGAATCCCCCTCAAATCGTCA 
1[89]3[87] AGAATAGCTTTTGCGGGATCGTCGGGTAGCA 
8[103]6[104] ACTGGATAACGGAACAACATTATTACCTTATG 
25[216]25[234] CTTTGATTAGTAATAATTT 
1[216]2[200] AGGGTTGAACCAGGCGGATAAGTGGTGAATTT 
10[103]8[104] TTTTTGCGCAGAAAACGAGAATGAATGTTTAG 
9[248]11[247] TCACAATCCAGTATGTTAGCAAACACAGGGAA 
9[184]11[183] AAGAGGAACGAGCTTCAAAGCGAAGATACATT 
21[376]23[385] AGATTAGATTTTAGATAGAACCCTTCTGACATTCTGGCCAACAGTT 
0[199]1[183] TGAGTTTCGTCACCAGTACAAACTTAATTGTA 
12[103]10[104] CAAAATTAAAGTACGGTGTCTGGAAGAGGTCA 
13[312]15[311] TATAGAAGACGCGCCTGTTTATCAAGAATCGC 
7[248]9[247] AACCAGAGGCGTCAGACTGTAGCGTTATTTTG 
1[184]3[183] TCGGTTTAGCTTGATACCGATAGTCCAACCTA 
2[263]0[264] CCTCAAGATACTCAGGAGGTTTAGCCGCCACC 
0[167]1[151] TGTAGCATTCCACAGACAGCCCTCATCTCCAA 

 

 Modification staples 

 Double-length 

14[135]10[136] GATCTACACCTCATATATTTTAAAAGGCAAGGCAAAGAATACG 

AGTAGATTTAGTTTTTGATAA 

11[120]15[119] TTCTGCGATAGCAAAATTAAGCAATAAAAATTTTTAGAACAAGG 

CTATCAGGTCATCCCCAAAA 

9[152]13[151] AGATTAAGACCTTTAATTGCTCCTTGACCATTAGATACATATCC 

AATAAATCATACTGCAATGC 
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 2.5-turn staples 

10[116]8[104] GCTTAGAGCTTAATTGCTGAAATCAGGTCTTTACCCGGAATCG 

13[93]15[87] TTTATTTCAACGCGAGAGTCTGGAGCAAACAAGAGAATCTCAT 

ATGT 

9[120]8[136] TATAGTCAGAAGCAAAGCGGATTGAAAATGTT 

9[152]11[146] AGATTAAGACCTTTAATTGCTCCTTTTGATAAGAAGATTTAGTTT 

GA 

13[149]15[15

1] 

TGCCTGAGTAACGGAGAGGGTAGCTATTTTAAATT 

14[123]12[12

1] 

CTATCAGGTCATTGCCTAAGGATAAAAATTTTTAGAACCCTCATA 

AGAATTAGCAAA 

9[88]11[92] AAATCAAAATATAATGCTGTAGCTTGTCTGGAAGTTT 

12[120]10[11

7] 

ATTAAGCAATAAAGAGTTGATTCCCAATTCTGCGAACGAGTGGT 

CATTTTTGCGGATG 

11[147]13[14

8] 

CCATTAGATACATATCCAATAAATCATACAGGCAAGGCAATATTTTAAAT

GCAA 

11[93]13[92] CATTCCATATAACCCTCAGAGCATAAAGCTAAATCGGTTTGCGGGAGAA

GCC 

16[135]14[12

4] 

TAAATGTGATTGTATAAGCAAATATTTTGAGAGATCTACAAAGG 

15[112]17[11

9] 

CCCCAAAAACAGGAAGAGCGAGTAACAACCCGTGAGGGGA 

16[103]15[11

1] 

TCCGTGGTGATAATCAGAAAAG 
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 Example AFM images 

The next section shows a selection of the AFM images captured and used for the 

analysis of the adsorption orientation as well as width measurements used in this thesis. 

A brief description on the tile design such as scan size, m13mp18 and other 

miscellaneous details are given 

 “Standard” conditions 

 

Figure 50: 10.33, 24 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace 
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Figure 51: 10.33, 3 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace 

 

Figure 52: 10.33, 1 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace 
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 Nickel Treated 

 

Figure 53: 10.67, 1.5 µm, 6 nM m13mp18, 10 mM nickel treated mica, 12.5 mM Mg-
ace 

 

Figure 54: 10.67, 0.5 µm, 6 nM M13mp18, 10 mM nickel treated mica, 12.5 mM Mg-
ace 
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Figure 55: 10.67, 200 nm, 6 nM m13mp18, 10 mM nickel treated mica, 12.5 mM Mg-
ace 

 

Figure 56: 10.67, 150 nm, 6 nM m13mp18, 10 mM nickel treated mica, 12.5 mM Mg-
ace 
  



129 
 

 UV exposed 

 

Figure 57: 10.67, 3 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace, 5 min UVC exposure 

 

 

Figure 58: 10.67, 3 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace, 10 min UVC 
exposure 

 



130 
 

 

Figure 59: 10.67, 3 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace, 15 min UVC 
exposure 

 

 

Figure 60: 10.67, 3 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace, 20 min UVC 
exposure 
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Figure 61: 10.67, 3 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace, 25 min UVC 
exposure 

 

 

Figure 62: 10.67, 3 µm, 1 nM m13mp18, mica, 12.5 mM Mg-ace, 30 min UVC 
exposure 
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 Barium 

 

 

Figure 63: 10.33, 3 µm, 1 nM m13mp18, mica, 3.125 mM BaCl2 
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Figure 64: 10.33, 3 µm, 1 nM m13mp18, mica, 6.25 mM BaCl2 

 

 

Figure 65: 10.33, 3 µm, 1 nM m13mp18, mica, 12.5 mM BaCl2 
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Figure 66: 10.33, 3 µm, 1 nM m13mp18, mica, 25 mM BaCl2 
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 Barium and Magnesium 

 

Figure 67: 10.50, 3 µm, 1 nM m13mp18, mica, 3.125 mM BaCl2, 3.125 mM Mg-ace 

 

Figure 68: 10.50, 3 µm, 1 nM m13mp18, mica, 6.25 mM BaCl2, 3.125 mM Mg-ace 
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Figure 69: 10.50, 3 µm, 1 nM m13mp18, mica, 3.125 mM BaCl2, 6.25 mM Mg-ace 

 

Figure 70: 10.50, 3 µm, 1 nM m13mp18, mica, 6.25 mM BaCl2, 9.375 mM Mg-ace 
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Figure 71: 10.50, 3 µm, 1 nM m13mp18, mica, 9.375 mM BaCl2, 9.375 mM Mg-ace 

 

Figure 72: 10.50, 3 µm, 1 nM m13mp18, mica, 12.5 mM BaCl2, 12.5 mM Mg-ace 
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 2.5 turn 

 

Figure 73: 10.67, 200 nm, 1 nM m13mp18, mica, 12.5 mM Mg-ace, 2.5 turn 
crossovers 

 

Figure 74: 10.67, 200 nm, 1 nM m13mp18, mica, 12.5 mM Mg-ace, 2.5 turn 
crossovers 
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 Image analysis 

The size of DNA origami, achievable scan areas of AFM and number of origami folded 

in solution all present issues for achieving accurate adsorption orientation data. This 

section introduces the methodology and reasoning for the image capture and analysis 

used throughout this work, addressing some of the issues. 

 Adsorption analysis 

The adsorption orientation of samples was determined by analysis of AFM images. For 

each sample, two 9x9 µm AFM images with a digital resolution of 3072x3072 pixels were 

captured. The number of tiles observed to be A-face up (NA), B-face up (NB) and 

indistinguishable tiles (NNA) were manually recorded for one of these images. All results 

in this thesis are quoted as the proportion of tiles measured to be A-face up. Upper and 

lower limits are calculated based on the assumption that the indistinguishable tiles are 

wholly A-face up or B-face up, respectively.  

Proportion tiles A-face up:  
ேಲ 

ேಲାேಳ
 

Upper limit:    
ேಲାேಿಲ

ேಲାேಳశேಿಲ
 

Lower limit:   
ேಲ

ேಲାேಳశேಿಲ
 

 Width measurements 

The width of origami tiles was determined by capturing images that were 1x1 µm in size 

at a digital resolution of 1024x1024 pixels. A total area of 3x3 µm was scanned, resulting 

in a total of 9 1x1 µm images. The images were analysed using the programme 

Gwyddion, as it allows for a greater number of line profiles to be extracted. A line profile 

with a width of 10 pixels was used for each origami, measuring the width adjacent to the 

seam. Tiles which were appeared to be degraded or not fully folded where not used for 

analysis. The data for the line profiles were then saved and imported into Origin. The 

width of the tile was determined to be the FWHM of the line profiles, which was calculated 

using built-in Origin functions. This was done to remove bias that may occur from the 
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author. The widths were then plotted using the box-plot function of origin. The total 

number of tiles for each data set ranged from 60-80. 

 Statistical analysis 

The choice for imaging areas that are 9x9 µm in size is based on the work of a previous 

PhD student. The increase in scan rate offered by the newer AFM system meant that a 

single 9x9 µm image could be captured with a resolution of 3072x3072, rather than nine 

3x3 µm images with resolutions of 512x512 pixels, as was previously done. This greatly 

reduced the time required to image samples. Although the newer system offers 

increased data output, the manual counting of tiles was a limiting factor during data 

analysis. This section looks at how the adsorption orientation of tiles is dependent on 

area size. 

The binding of origami to mica is assumed to be uniform across the whole surface. As 

AFM images areas on the order of microns, there is a possibility to image non-uniform 

areas. Here, a 24x24 µm area of the sample was scanned (figure 50). The number of 

Figure 75: Number of countable tiles in each area of the larger 24x24 µm 
image, divided into smaller areas to explore the surface coverage 
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countable tiles can be seen in figure 75, showing how this varies with the size of area 

scanned. This image was then divided into a set of 576 1x1 µm images, counting the NA, 

NB and NNA tiles. A set of faux images were then generated, consisting of a random 

selection of these 576 images, to replicate an image that is nxn µm in size. This also 

assumes that each 1x1 µm area is independent of each other. For each set of faux 

images, a total of 1000 images were generated.  

Figure 76 shows the proportion of tiles with the A-face observed for faux images that are 

nxn µm in size. For smaller faux images, there is a greater chance that the observed 

orientation is outside that of the larger 24x24 µm image, such that it does not accurately 

reflect the whole population. This illustrates how imaging an area that is too small is 

subject to fluctuations due to non-uniformity that is present at small length scales. As 

mentioned, two 9x9 µm images were captured for each sample although only one was 

analysed. In figure 76, the data sets for the 9x9 µm and 13x13 µm faux images are 

highlighted (n.b (2x92)½ = 12.73). As these data sets exclude the number of 

indistinguishable tiles (i.e. error bars) it is in the authors opinion that single 9x9 µm is 

sufficient for measuring the samples adsorption orientation and hence origami curvature 

Figure 76: Binding orientations of tiles constructed from faux images using the 
set of images of the 24x24 µm image. 
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of the sample. This spread in the data sets of the faux images also demonstrate how 

small changes in observed binding, such as those in chapter 6 at elevated Mg2+ are not 

necessarily indicative of a change in curvature. 

 Conclusion 

Although a large image would give better confidence in the adsorption orientation for 

samples, the current method of manual origami counting means that time is a limiting 

factor during data analysis. Although the size of images used is arbitrary, the results from 

the larger 24x24 µm image indicate that an image of 9x9 µm is sufficient for this work. 

Measuring widths of origami tiles still presents a challenge, with data required on ideal 

image forces to ensure a lack of tile perturbation as well as degradation. 
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