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Abstract

Magnetoacoustic waves are ubiquitous in the solar atmosphere.

The properties of their propagation, as well as the possibility that

they may trigger magnetohydrodynamic instabilities must have a

strong theoretical interpretation in order to better our understand-

ing of solar phenomena. In this Thesis, we develop two new models

of magnetoacoustic wave propagation and we study the conditions

for the triggering of the Kelvin-Helmholtz instability in each case.
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CHAPTER 1

Introduction

1.1 Overview

The Sun has been an object of fascination and study for most of humanity’s

recorded history. It is the main source of energy and accounts for most of

the mass in the solar system. The history of the Sun began approximately

4.6 billions years ago, with the gravitational collapse of a section of a massive

molecular cloud (Bouvier and Wadhwa, 2010). This collapse created a proto-

planetary disk with a protostar at its centre (Montmerle et al., 2006). The

protostar was composed of hydrogen, helium and lithium, which together ac-

counted for around 98% of its mass, while the other 2% were heavier elements

formed in younger generations of stars (Zeilik and Gregory, 1998). For ap-

proximately 50 million years after the formation of the protostar, it underwent

a slow contraction which increased the temperature and pressure at its core,

until it was able to start fusing hydrogen (Yi et al., 2001). At that point the

Sun became a main sequence star, which it will remain for at least another 5

billion years before becoming a red giant (Schröder and Connon Smith, 2008).

It will subsequently become a red giant, and then a white dwarf, after hav-

ing ejected nearly half of its mass (Schröder and Connon Smith, 2008). The

ejected mass will form a planetary nebula, while the white dwarf will survive

and may eventually become a hypothetical black dwarf (Bloecker, 1995).

The history of solar observations dates back to records of eclipses by Chi-

nese astronomers as early as the year 2000 BCE (Priest, 2014). Sunspots,

which are areas on the Sun’s photosphere that are darker and cooler than

their surroundings, have been recorded since at least 800 BCE by the Chi-

nese, and 300 BCE by the ancient Greeks. The first mention of the corona,

the high temperature atmosphere of the Sun, is attributed to the Byzantine

scholar Leo Diaconus, as he observed the total eclipse of 22 December 968

from Constantinople, although people might have been aware of it as early as

1
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Figure 1.1: The so-called butterfly diagram, displaying the distribution of
sunspots across latitudes over time. Sunspots are most commonly found fur-
ther from the equator at the beginning of the 11 year cycle, and closer to the
equator near its end. Credit: NASA Marshall Space Flight Center

the time of Plutarch. Solar prominences were first described in the Russian

First Chronicle of Novgorod as “live embers” coming out of the Sun during

the 1 May 1185 eclipse. For a detailed account of pre-telescope astronomy, see

Hetherington (1996).

The advent of modern physics and astronomy led to great advances in

solar physics in the past two centuries. Some of the important discoveries

that occurred during the 19th century include the first description of the Sun’s

spectral lines by Fraunhofer, the discovery of the 11 year sunspot cycle by

Schwabe (see Figure 1.1), and the first observations of solar flares and spicules

by Carrington and Secchi, respectively. The pace of discovery accelerated

during the 20th century, as new instruments, such as the coronagraph, were

created, and the theory of magnetohydrodynamics (MHD), which is used to

describe many solar phenomena, was established. Other important discoveries

include the first description of the solar wind (Parker, 1958) and the first

observations of coronal mass ejections (CMEs). Finally, our modern view of

the Sun has been shaped by the multitude of solar missions that have become

operational since the 1990s, such as Yohkoh, TRACE and SDO. For a more

detailed view of recent advances in solar physics, see, for example, Aschwanden

(2004); Priest (2014).
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1.2 Structure and Physical Properties of the

Sun

The Sun is a highly inhomogeneous nearly perfect sphere of plasma. Its mean

radius has been measured as being R� = 695.66 Mm (Haberreiter et al., 2008),

although the International Astronomical Union defines the nominal solar ra-

dius as RN
� = 695.7 Mm (Mamajek et al., 2015). It has a mass of 1.99× 1030

kg and loses around 1− 1.5× 109 kg s−1 due to the solar wind (Parker, 1958;

Priest, 2014). The Sun is composed primarily of hydrogen (over 70% of the so-

lar mass), and helium (around 27% of the solar mass), with only trace amounts

of other elements, such as oxygen, carbon or nitrogen (Lodders, 2003). The

mean distance between the Sun and the Earth is one astronomical unit, de-

fined as 1 au = 149 597 870 700 m, or approximately 150× 106 km (Capitaine

et al., 2012).

In the following Subsections, we shall discuss the structure and physical

properties of both the hidden solar interior, and of the visible atmosphere.

According to the latest models, the solar interior consists of four regions: the

core, the radiative zone, the tachocline, and the convective zone, listed here

from the innermost to the outermost. The solar atmosphere is composed of

the photosphere, chromosphere and corona. While the solar atmosphere is

observable with optical telescopes, due to the high density of solar plasma

beneath the photosphere, the solar interior is opaque. Our current knowledge

of the interior is obtained through the mathematical models of helioseismology.

All of the structure described above, as well as some other phenomena that

will be discussed later, has been visualised in Figure 1.2. The majority of the

current section has been adapted from Priest (2014), and should be considered

a reference, unless a different reference is stated.

1.2.1 The Solar Interior

The solar core extends from the center of the Sun to approximately 0.25 solar

radii. Its temperature is of the order of 15 million K, and its density around

1.6× 105 kg m−3, which is enough to enable nuclear fusion. The core contains

approximately half the mass of the Sun in only 1/50 of its volume, and produces

99% of its energy. Most of this energy comes from two sets of fusion reactions:

the proton-proton chain reaction and the CNO (carbon-nitrogen-oxygen) cycle.

Both of these reactions have the same outcome: four protons (1H) become fused

into one helium-4 nucleus (4He), while other atoms only act as catalysts. As a

3



Figure 1.2: The structure of the Sun. The core, radiative zone, tachocline and
convective zone form the opaque inner layers, while the photosphere, chro-
mosphere and corona form the observable atmosphere. Various observable
phenomena, including a flare, prominence and photospheric granulation are
also presented. Adapted from Wikipedia.

result of the process of fusion, some of the mass is converted into energy, and

escapes in the form of high-energy γ-rays and also electron neutrinos.

The radiative zone is the layer directly above the core, and extends from

approximately 0.25R� to 0.7R�. The plasma composing this layer is opaque

enough that the mean free path of photons travelling through it is of the order

of 10−4 m. If not for this opacity, photons would only take 2 s to cross the

radiative zone, but instead they perform a random walk which lengthens their

journey to 170 000 years. The numerous collisions that photons experience

during this time have a major effect, that of increasing the wavelength of the

high-energy γ-rays emerging from the core, to visible light at the solar surface.

In contrast to the radiative zone where energy is transported via radiative

diffusion and thermal conduction, in the convective zone the convective insta-

bility is the main source of energy transport. These two sections are separated

by a thin shear layer, called the tachocline (Spiegel and Zahn, 1992), which

is likely significant in the generation of the global solar magnetic field. The

convective zone is the last of the interior layers and extends from around 0.7R�

4



to 1R�.

1.2.2 The Solar Atmosphere

The solar atmosphere may be divided into four regions which have different

physical characteristics (see Figure 1.2). The lowest of these, the photosphere,

is the Sun’s surface layer and is only around 500 km thick. It is where most

of the Sun’s visible light is emitted. Most of the photosphere is composed of

granules with hot bright centres of rising plasma and cool dark boundaries.

This granulation is caused by turbulent convective motion lifting hot plasma,

which subsequently cools and falls, forming the granular boundaries, called

intergranular lanes. Regions of strong magnetic flux may inhibit this convec-

tion, and form sunspots. Granules have diameters ranging from 0.3 to 2 Mm,

and lifetimes of 1 to 20 minutes, with typical values of 5 to 8 minutes (Priest,

2014).

The chromosphere extends over the photosphere and exhibits various forms

of structuring. The most common of these are spicules, which are dynamic jets

that cover the solar surface and form a sort of canopy.

Figure 1.3: The mean variation of the density and temperature, as described
by the VAL model. Image credit: Avrett and Loeser (2008).

The corona is the outermost regions of the Sun’s atmosphere, separated

from the chromosphere by a narrow transition region, and extends outwards

into the solar wind. Significant structuring is present in the corona due to the

intense magnetic fields that permeate it. Of particular interest in this Thesis
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are coronal loops. They are a common form of structuring, comprising of hot

plasma (2 to 3 MK) frozen into the magnetic fields tied to the photosphere.

Coronal loops are waveguides for MHD waves of various modes, an aspect

which we examine in Chapter 3 of this Thesis. Other structures in the corona

include coronal holes, X-ray bright points, and coronal streamers.

Coronal mass ejections are large-scale releases of solar plasma from the

corona, often following solar flares or prominence eruptions. Their bulk speeds

take a wide range of values, from less than 100 km s−1 to over 2000 km s−1.

They account for approximately 5 to 10 per cent of the solar wind mass-

loss. It is shown in Chapter 2 that the high bulk speed of CMEs makes them

particularly prone to the Kelvin-Helmholtz instability.

The mean temperatures and densities of the regions introduced above are

commonly described using the VAL (Vernazza-Avrett-Loeset) model (Vernazza

et al., 1981; Avrett and Loeser, 2008). According to this model, the density

suffers a decrease from approximately 10−4 kg m−3 at the base of the photo-

sphere to around 10−10 kg m−3 at the transition region, and then falls steeply

to almost 10−12 kg m−3 in the corona. The temperature also rises dramatically

across the transition region, from a chromospheric value of 25 000 to over 1 MK

in the corona. The mechanisms that cause this abrupt increase in temperature

are still not well understood, and are a topic of ongoing study.

1.3 Equations of Magnetohydrodynamics

In Section 1.2 we described some of the main physical properties of the Sun,

gave an overview of its large- and small-scale structure, and introduced a num-

ber of solar phenomena. In order to mathematically model this phenomena, we

need to employ a suitable framework. Due to the fact that, in this Thesis, we

are mainly concerned with phenomena in the corona, we considered the most

appropriate framework the equations of ideal magnetohydrodynamics (MHD).

In this Section, we give a brief description of how the ideal MHD equations

are obtained, and we motivate their use in modelling coronal phenomena. The

MHD equations may be obtained using two different methods:

• Averaging the kinetic equations for plasmas;

• Combining Maxwell’s equations for electric and magnetic fields with the

fluid equations.
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The first of these methods is mathematically more complicated and shall be

omitted in this section. However, the relevant derivation may be found in

classical works such as Braginskii (1965) or Chapman and Cowling (1970), or

more modern introductions to MHD, such as Goossens (2003) or Goedbloed

and Poedts (2004).

For the second, we require the equations of Maxwell, that describe the

evolution of the electric field, E(r, t) (measured in V m−1), and magnetic field

B(r, t) (measured in T), in response to the current density j(r, t) (measured

in A m−2) and the total electric charge density τ(r, t) (measured in C m−3).

Additionally, we require the equations of conservation of momentum, mass,

and energy, which govern the dynamical evolution of the density, ρ(r, t) (mea-

sured in kg m−3), pressure p(r, t) (measured in N m−2), and velocity, v(r, t)

(measured in m s−1), of a fluid. Here, r is the position vector, and t is time

(measured in s).

After making a number of simplifying assumptions, we combine these two

systems of equations in order to eliminate, E, j, and τ , and obtain a system of

coupled equations in terms of v,B, ρ, and p.

1.3.1 Assumptions of Ideal MHD

The MHD equations describe the macroscopic dynamics of magnetised plas-

mas. As such, we need to establish under what conditions kinetic effects, i.e.

small scale effects, stop becoming significant, and the plasma may be treated

as a bulk fluid. This Subsection is based on Goedbloed and Poedts (2004) and

Priest (2014).

We begin by assuming that the model plasma is electrically neutral, which

is true for most applications in the solar photosphere and corona. We define

the number densities of positive and negative particles per unit volume, n+ and

n−, respectively, and the total number density per unit volume, n. It follows

that, for charge neutrality, we require |n+ − n−| � n. The absence of charge

neutrality is called a charge imbalance, and such an imbalance produces an

electric field with a spatial range of the Debye length (see, for example, Boyd

and Sanderson, 2003),

λD =

√
ε0kBT

nq
. (1.1)

The quantities in Equation (1.1) are defined as follows. The electric constant,
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ε0, also called the permittivity of free space, may be written as

ε0 =
1

µ0c2
≈ 8.854187817...× 10−12 F s−1, (1.2)

where, µ0 is the magnetic permeability of free space, defined as

µ0 = 4π × 107 N A−2, (1.3)

and c = 299 792 458 m s−1 is the speed of light. kB ≈ 1.38 × 10−23 J K−1 is

the Boltzmann constant, and q is the charge of a particle. We may now define

a plasma as a collection of charge particles whose number density, n, is very

large in a sphere of radius λD,

4

3
πλ3

Dn� 1. (1.4)

Typical values of the Debye length are of the order of 10−3 m in the corona,

10−11 m in the solar core, and 10 m in the solar wind.

The second assumption we must make is that the plasma may be treated as

a continuum. This is valid provided the length-scales of gradients in the plasma

are much greater than characteristic plasma lengths, such as the gyroradius

(also called the Larmor radius or cyclotron radius), which is defined as

rg =
mv⊥
|q|B

.

Here, m is the mass of the particle, v⊥ is the component of the velocity per-

pendicular to the magnetic field, and q is the electric charge of the particle.

Furthermore, we assume that the plasma is in thermodynamic equilibrium,

such that its distribution function is close to Maxwellian. This assumption is

true for time scales much greater than the collision times, and length scales

much greater than the mean free path of the plasma. The mean free path in

the ambient corona may be up to 1 km due to the low particle density of the

plasma.

We also assume that we may treat the plasma as a single fluid. This is a

good approximation for applications to the photosphere and corona, but may

not be accurate for models of the chromosphere since interactions between ions

and neutrals are significant in that region.

We also assume that the equations are formulated for an inertial frame,

and that the typical plasma velocity is non-relativistic. We may write this

second condition as v0 � c, where v0 is the typical speed of the plasma.
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Note that, in this Thesis, we only consider adiabatic, inviscid, and ideal

plasmas, so that we may neglect any terms related to heat transfer, viscosity

and resistivity, when deriving the ideal MHD equations.

Finally, we note that all equations shall be considered in their differential

form in m k s units.

1.3.2 Maxwell’s Equations

We begin by considering the first of Maxwell’s equations of classical electro-

dynamics, which is Gauss’s law for the electric field,

∇ · E =
τ

ε0

. (1.5)

This states that the divergence of the electric field is equal to the total electric

charge density divided by the electric constant, ε0, defined in Equation (1.2).

The second equation is the condition that there exist no magnetic monopoles.

This equation is also known as Gauss’s law for magnetism, and may be written

as

∇ ·B = 0. (1.6)

Equation (1.6) states that magnetic fields must be solenoidal vector fields. As

a consequence, point charges of magnetic field, analogous to electric charges,

may not exist.

The third equation is the Maxwell-Faraday equation,

∇× E = −∂B

∂t
, (1.7)

which states that any change of the magnetic field in time, will coincide with a

spatially varying non-conservative electric field, and vice-versa. A straightfor-

ward example of this concept is that of the generation of electric current in a

dynamo using a permanent magnet, such as a bar magnet. In such an instru-

ment, a rotating magnet surrounded by coils of wire, creates electric current

in the wires.

The final equation is known as Ampère’s circuital law,

∇×B = µ0j +
1

c2

∂E

∂t
, (1.8)

which states that magnetic fields may be generated through both an induced

electric current, and a change in the electric field. Only the first mechanism

was originally included in Ampère’s law, while the second mechanism is due to

Maxwell. It follows from Equations (1.7) and (1.8) that time-varying electric

and magnetic fields will generate spatially varying magnetic and electric fields,

respectively.
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1.3.3 Equations of Gas Dynamics

Having introduced Maxwell’s equations, (1.5) – (1.8), we now wish to introduce

the equations governing the dynamical evolution of the density, ρ(r, t), pressure

p(r, t), and velocity v(r, t) of a plasma. Before we proceed, we must introduce

the Lagrangian time-derivative of a fluid,

D

Dt
=

∂

∂t
+ v · ∇ (1.9)

which is evaluated in the frame of reference of a moving fluid, and differs from

the Eulerian time-derivative, ∂/∂t, which is evaluated at a fixed point.

Since we are only concerned with ideal MHD, we only consider the equa-

tions of conservation of mass, momentum and energy of adiabatic and inviscid

plasmas. The equation for the evolution of the density, most conveniently

written
Dρ

Dt
+ ρ∇ · v = 0, (1.10)

is called the mass continuity equation, and may also be written

∂ρ

∂t
+∇ · (ρv) = 0. (1.11)

In this form, we can see that it represents conservation of mass, since an

increase in density at a point, represented by a positive ∂ρ/∂t, is accompanied

by mass flowing in, i.e. ∇ · (ρv) < 0.

We introduce the energy equation, which may be written in terms of the

internal energy per unit mass, e (measured in J kg−1),

ρ
De

Dt
− p

ρ

Dρ

Dt
= −L, (1.12)

where L is the energy loss function (measured in J m−3 s−1). Since we are only

considering adiabatic processes, the energy gains and losses balance, so that

L ≡ 0, and Equation (1.12) may be written as

ρ
De

Dt
− p

ρ

Dρ

Dt
= 0, (1.13)

such that energy is conserved. In order to further simplify Equation (1.13),

we wish to eliminate the internal energy and obtain an equation relating the

pressure and density. The plasma pressure is determined by an equation of

state, which we assume to be the ideal gas law,

p =
kB
m
ρT, (1.14)
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where m is the mean mass (measured in kg) of the particles that make up the

plasma, and T is the absolute temperature of the plasma (measured in K).

For an ideal gas, the heat capacity is constant with temperature, and we may

write the internal energy as

e = cvT, (1.15)

where cv is the specific heat at constant volume. We define the specific heat

at constant pressure as

cp = cv +
kB
m
, (1.16)

and the ratio of specific heats (also called the adiabatic index),

γ =
cv
cp
. (1.17)

We may write the specific heat at constant volume as

cv =
1

γ − 1

kB
m
, (1.18)

and combine Equations (1.14), (1.15), and (1.18) to obtain

e =
1

γ − 1

p

ρ
. (1.19)

We substitute (1.19) into (1.13) to obtain the desired form of the energy equa-

tion,
Dp

Dt
− γp

ρ

Dρ

Dt
= 0. (1.20)

It is worth noting that, the adiabatic index is related to the number of degrees

of freedom of a molecule by γ = 1 + 2/f , where f is the number of degrees of

freedom. Since, in this Thesis, we are primarily concerned with fully ionised

monoatomic plasmas characteristic of the solar corona, we may assume that

f = 3, and γ = 5/3.

The final equation of gas dynamics is the equation of motion for a fluid

element, which connects the equations of electrodynamics, described in Sub-

section 1.3.2, with the gas dynamics equations described in the current section.

In order for conservation of momentum to be satisfied, we require

ρ
Dv

Dt
= F, (1.21)

where F (measured in units of force density, N m−3) is given by

F ≡ −∇p+ ρg + j×B + τE. (1.22)
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1.3.4 The Equations of Ideal MHD

In order to connect the equations of electrodynamics, described in Subsection

1.3.2, with the equations of gas dynamics described in Subsection 1.3.3, we

begin by introducing Ohm’s law, which links the electric, magnetic and velocity

fields via the current density, such that

E + v ×B = ηj, (1.23)

where η is the electrical resistivity (measured in Ω m). In this Thesis, we are

not concerned with situations where non-ideal effects, such as resistivity, play

an important role. As such, we may set η = 0, and Ohm’s law reduces to

E + v ×B = 0. (1.24)

From Equation (1.24), we see that the typical scales of the magnitude of the

electric field, E, and magnetic field, B, satisfy

E ∼ −vB. (1.25)

We now return to Equation (1.8), and find that

1

c2

∣∣∣∣∂E

∂t

∣∣∣∣ ∼ v

c2

B

t0
=
v2

c2

B

l0
= O(v2/c2), (1.26)

where t0 and l0 are the characteristic time and length scales. Here, O, repre-

sents the order of a quantity, and is known as Big O notation. The quantity in

Equation (1.26) is much smaller than the term on the LHS of Equation (1.8),

which is |∇ ×B| ∼ B/l0. It follows that the term in Equation (1.26) may be

neglected from Equation (1.8), and we recover the original form of Ampère’s

law,

j =
1

µ0

∇×B. (1.27)

The equation of motion, (1.21), is also simplified by the assumption of

non-relativistic velocities. Using Equations (1.5) and (1.25), we find that the

electrostatic acceleration satisfies

τ |E| ∼ vB

µ0c2l0
× vB =

v2

c2

B2

µ0l0
= O(v2/c2). (1.28)

Using Equation (1.27), we find that τ |E| � |j × B| ∼ B2/µ0l0. This means

that the final term in Equation (1.22) may be neglected, and the equation of

motion becomes

ρ
Dv

Dt
= −∇p+ ρg + j×B, (1.29)
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Finally, we combine Equations (1.7) and (1.24) to obtain the induction

equation,
∂B

∂t
−∇× (v ×B) = 0. (1.30)

We have, thus, obtained a system of 8 coupled partial differential equations,

Equations (1.10), (1.20), (1.29), and (1.30), which constitute the system of

ideal MHD equations. Equation (1.6), the condition that there are no magnetic

monopoles, is also part of this system, but is always satisfied if it is satisfied as

an initial condition. We can see this if we take the divergence, ∇·, of Equation

(1.30).

1.3.5 Consequences of Ideal MHD

A first remark on the ideal MHD equations comes from the momentum equa-

tion, (1.29), where the term j × B, called the Lorentz force, may be written

as

j×B =
1

µ0

(∇×B)×B =
(B · ∇)B

µ0

−∇
(

B2

2µ0

)
. (1.31)

The first term on the right-hand side is called the magnetic tension force,

while the second is the magnetic pressure force. It may be shown that the

magnetic tension results in a negative stress in a direction parallel to B, while

the magnetic pressure causes a positive stress normal to B (Goedbloed and

Poedts, 2004).

A second result of note is Alfvén’s frozen flux theorem, which states that,

in ideal MHD, magnetic flux is conserved so that the magnetic field moves

with the plasma. This is in addition to the quantities that we already know

are conserved, from the Euler equations, namely mass, energy and momentum.

While the ideal MHD equations have various other properties, we restrict

our discussion to the two above, as they are most relevant in this Thesis.

1.3.6 The Linear Ideal MHD Equations

The nonlinear form of the MHD Equations is difficult to treat analytically in

most situations. For many applications, we may linearise Equations (1.10),

(1.20), (1.29), and (1.30) in the following way. We assume that the dependent

variables, v,B, ρ and p, may be split into two distinct quantities: a background

(or equilibrium) value, and a small perturbation. We write this as

v = v0 + v′, B = B0 + b′,

ρ = ρ0 + ρ′, p = p0 + p′,
(1.32)
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where the subscript 0 represents the background value, and the apostrophe

denotes the perturbation. We assume that the perturbations of the magnetic

field, density and pressure are much smaller than their equilibrium values, i.e.

|B0| � |b′|, ρ0 � ρ′, p0 � p′. (1.33)

This assumption is not always applicable to the velocity perturbation since

the background flow may be zero (v0 = 0). In such cases, we say that the

velocity perturbation is much smaller than some other characteristic speed of

the system, such as the local speed of sound,

cs =

√
γ
p0

ρ0

, (1.34)

or Alfvén speed

vA =

√
B2

0

µ0ρ
. (1.35)

It is worth noting that the background quantities may be inhomogeneous spa-

tially and may evolve temporally.

We, now, insert Equations (1.32) into Equations (1.10), (1.20), (1.29), and

(1.30), and neglect nonlinear coupling due to products of perturbations. This

yields the system of linear ideal MHD equations

Dρ′

Dt
+ ρ0∇ · v′ = 0, (1.36)

Dp′

Dt
= c2

s

Dρ′

Dt
, (1.37)

ρ0
Dv′

Dt
= −∇p′ + 1

µ0

(∇× b′)×B0, (1.38)

∂b′

∂t
= ∇× (v0 × b′) +∇× (v′ ×B0), (1.39)

∇ · b′ = 0,

where the Lagrangian derivative is now defined as

D

Dt
=

∂

∂t
+ v0 · ∇, (1.40)

and the apostrophe was dropped when writing the perturbations. In deriving

Equations (1.36) - (1.39), we have neglected gravity, since the models we derive

in this Thesis have applications to small-scale phenomena, where gravity does

not have a strong effect. We also assumed that B0, ρ0 and p0 are spatially
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homogeneous in each layer, and do not evolve temporally (i.e. independent of

r and t), and v0 is homogeneous in space in each layer (i.e. independent of r).

These assumptions are not true in general, but are sufficient for the analyses

in this Thesis.

1.3.7 Equations of Incompressible Ideal MHD

A special form of the ideal MHD equations, which we will make use of later in

this Thesis, assumes that all motion is incompressible. We define incompress-

ibility as the property that density is constant in a fluid, such that the MHD

Equations (neglecting gravity) are reduced to

Dv

Dt
= −1

ρ
∇pT +

1

µ0ρ
(B · ∇)B, (1.41)

DB

Dt
= (B · ∇)v, (1.42)

∇ · v = 0, (1.43)

∇ ·B = 0,

where pT is the total (gas plus magnetic) pressure, and the Lagrangian deriva-

tive is given by Equation (1.9).

Following the method described in Subsection 1.3.6, we linearise Equations

(1.41) - (1.43), and obtain

Dv′

Dt
= − 1

ρ0

∇p′T +
1

µ0ρ0

(B0 · ∇)b′, (1.44)

Db′

Dt
= (B0 · ∇)v′, (1.45)

∇ · v′ = 0, (1.46)

∇ · b′ = 0,

where p′T is the perturbation of the total pressure, and the Lagrangian deriva-

tive is given by Equation (1.40). As in Subsection 1.3.6, we have assumed that

the background quantities are spatially homogeneous, and B0 is also indepen-

dent of t.

We now introduce the plasma displacement, ξ(r, t), which is related to the

velocity by

v′ =
Dξ

Dt
=

∂

∂t
+ (v0 · ∇)ξ. (1.47)
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Substituting Equation (1.47) into Equation (1.46), we obtain

D

Dt
(∇ · ξ) = 0, (1.48)

since v0 is independent of r, meaning that the operators D/Dt and ∇· com-

mute. The Lagrangian derivative cannot be zero since ξ is time-dependent,

which implies that the displacement must also be divergence free, i.e.

∇ · ξ = 0. (1.49)

We will use Equation (1.49) in Chapter 3.

1.4 Magnetohydrodynamic Waves

A fundamental property of the system of linear MHD equations presented in

Subsection 1.3.6 is that it allows for solutions in the form of waves. In the

following Subsections, we shall give a brief analysis of wave motions in both

homogeneous media, and in the presence of structuring. In this Thesis, we are

primarily concerned with magnetoacoustic waves, and although Alfvén waves

are mentioned, they will not receive a detailed description.

In Subsection 1.4.1, we derive the dispersion equation for the basic wave

modes that may propagate in a homogeneous unbounded plasma governed

by the ideal linear MHD equations. In the rest of the Section, we discuss

the behaviour of the magnetoacoustic modes in the presence of three types

of structuring: a plane Cartesian interface separating two media, two parallel

interfaces which form a slab, and the cylindrical flux tube.

Our discussion of the magnetoacoustic modes in structured plasmas is

largely based on the derivations included in Roberts (1981a,b); Edwin and

Roberts (1982), as well as Goedbloed and Poedts (2004); Priest (2014). It is

worth noting, though, that the study of magnetoacoustic waves in structured

media has a longer history, with works such as Cram and Wilson (1975); De-

fouw (1976); Roberts and Webb (1978); Wilson (1978); Roberts and Webb

(1979); Wentzel (1979); Wilson (1979); Spruit (1981) having set the founda-

tions for the more structured approach of Roberts and Edwin.

1.4.1 Linear MHD Waves in a Homogeneous Medium

We begin by assuming that all background quantities are homogeneous, i.e.

independent of r and t. Furthermore, we assume that the background medium

is static (v0 = 0), and the magnetic field is defined as B0 = (0, 0, B0), without
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loss of generality. The assumption that v0 = 0 is made in order to discuss only

MHD waves, and not flow instabilities. The MHD Equations (1.36) - (1.39)

may, therefore, be reduced to

∂p′

∂t
= −c2

sρ0∇ · v′, (1.50)

ρ0
∂v′

∂t
= −∇p′ + 1

µ0

(∇× b′)×B0, (1.51)

∂b′

∂t
= ∇× (v′ ×B0), (1.52)

∇ · b′ = 0.

where we have combined the mass and energy equations. Once again, we make

use of the displacement vector, first introduced in Equation (1.47). Since we

have assumed no background flow, the displacement is now related to the

velocity as

v′ =
∂ξ

∂t
. (1.53)

We introduce Equation (1.53) into Equations (1.50) and (1.52), and we may

immediately integrate them with respect to time to obtain

p′ = −c2
sρ0∇ · ξ, (1.54)

b′ = ∇× (ξ ×B0). (1.55)

Substituting Equations (1.53), (1.54), and (1.55) into (1.51) yields

∂2ξ

∂t2
= c2

s∇(∇ · ξ) +
1

µ0ρ0

B0 × (∇×∇× (B0 × ξ)) (1.56)

In deriving Equation (1.56), we have used the property that the cross product

is anti-commutative.

We consider plane wave solutions of the form

ξ = ξ̂ei(k·r−ωt), (1.57)

where k = (kx, 0, kz) is the wave vector, and ω is the angular frequency. The

⊥ and ‖ signs represent the components of the wave vector perpendicular and

parallel to the magnetic field, respectively. The differential operators now turn

into algebraic multiplication factors,

∇ → ik,
∂

∂t
→ −iω, (1.58)
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and Equation (1.56) becomes

− ω2ξ̂ = c2
sk(k · ξ̂) +

1

µ0ρ0

B0 × (k× k× (B0 × ξ̂)). (1.59)

We now introduce the vectorial Alfvén speed,

vA =
B0√
µ0ρ0

= (0, 0, vA), (1.60)

and, with the help of the vector identities in Goedbloed and Poedts (2004), we

rewrite Equation (1.59) as{[
ω2 − (k · vA)2

]
I− (c2

s + v2
A)kk + k · vA(kvA + vAk)

}
· ξ̂ = 0, (1.61)

where I is the unit tensor, and the lack of symbols between vectors, as in kk,

represents the dyadic product. Equation (1.61) may be written in matrix form

as ω2 − k2
x(c

2
s + v2

A)− k2
zv

2
A 0 −kxkzc2

s

0 ω2 − k2
zv

2
A 0

−kxkzc2
s 0 ω2 − k2

zc
2
s

ξ̂xξ̂y
ξ̂z

 = 0. (1.62)

In order for Equation (1.61) to have non-trivial solutions, we require that the

determinant of the matrix in Equation (1.62) be zero. We calculate the deter-

minant and obtain the dispersion relation for MHD waves in a homogeneous

unbounded medium,

(ω2 − k2
zv

2
A)
[
ω4 − ω2k2(c2

s + v2
A) + k2

zk
2v2
Ac

2
s

]
= 0, (1.63)

where k = |k| =
√
k2
x + k2

z .

Before we analyse Equation (1.63), we note that, due to the fact that we

obtained the dispersion relation from a description of the system in terms of

the displacement, we omitted the entropy wave. This mode, corresponding to

ω = 0, is degenerate in the sense that it involves no perturbations of the flow,

magnetic field or pressure. It constitutes a perturbation of the entropy of the

system (density and internal energy) which would propagate if a background

flow was present.

The first class of solutions of Equation (1.63) are obtained from the quadratic

factor, and are called Alfvén waves. They propagate with frequency

ω = ±ωA = ±kzvA = ±kvA cosφ, (1.64)

where φ is the angle between k and B0, and ωA is called the Alfvén frequency.

The± represents the two possible solutions: one propagating in the direction of
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B0, and corresponding to the + sign, and the other propagating in the opposite

direction, and corresponding to the − sign. These waves are incompressible

and purely transverse.

The second category of solutions of Equation (1.63) we discuss are mag-

netoacoustic (or magnetosonic) waves, which are obtained from the quartic

factor. They are split into two categories, slow modes and fast modes, which

propagate with frequencies

ω = ±ωs, ω = ±ωf , (1.65)

respectively. The slow and fast frequencies are defined as

ωs,f =
1

2
k2(c2

s + v2
A)
(
1±

√
1− 4c2

T cos2 φ
)
, (1.66)

where

cT =
csvA√
c2
s + v2

A

, (1.67)

is called the tube speed (or cusp speed or slow speed). Similarly to the Alfvén

wave solutions, the ± sign in Equation (1.65) corresponds to forward (+) and

backward (−) propagating waves. The ± sign in Equation (1.66) corresponds

to either the fast mode (+), or the slow mode (−).

1.4.2 Linear MHD Waves at a Tangential Interface

For the first case of inhomogeneous structuring, we utilise a Cartesian coordi-

nate system as in the previous section, and introduce a tangential discontinuity

in the yz-plane at x = 0. This interface separates regions of different homo-

geneous plasma density, temperature, pressure and magnetic field. We use

the subscript 0 and 1 to denote background quantities for x < 0 and x > 0,

respectively. The background magnetic field is assumed to be parallel to the

z-axis on both sides of the interface.

Since the described system is inhomogeneous along the x-axis, we may no

longer Fourier decompose the MHD Equations (1.36) - (1.39), with respect

to x. Furthermore, we only wish to study magnetoacoustic waves propagat-

ing along the interface, which we accomplish by assuming that all variables

are independent of y. This implies a decomposition of the form f(r, t) =

f̂(x) exp i(kzz − ωt), where f stands for any of the dependent variables. We

also drop the apostrophe from the perturbed quantities for ease of writing.

Our aim is to obtain governing equations for both sides of the interface,

solve them, and match the solutions across the interface using appropriate
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boundary conditions. We save the derivation of the governing equations for

Chapter 2, and present the equation directly,

d2v̂x
dx2
−m2

j v̂x = 0, (1.68)

where

m2
j = k2

z

(c2
j − c2

ph)(v
2
Aj − c2

ph)

(c2
j − v2

Aj)(c
2
Tj − c2

ph)
, j = 0, 1. (1.69)

Here, v̂x is the component of the velocity perturbation perpendicular to the

boundary, cj are the sound speeds, vAj are the Alfvén speeds, cTj are the tube

speeds, and cph = ω/kz is the phase speed. The parameter mj is sometimes

called the effective wavenumber. Note that the derivation for Equations (1.68)

and (1.69) may also be found in Roberts (1981a), or in modern textbooks such

as Goedbloed and Poedts (2004) or Priest (2014).

Equation (1.68) has two distinct classes of solutions: trapped modes, with

m2
j > 0, which decay as x → ∞ (see Figure 1.4a), and leaky modes, with

m2
j < 0, which propagate towards infinity. We also note that there exists an

unbound state propagating from infinity. We only consider trapped modes and

solve Equation (1.68),

v̂x(x) =

{
C0em0x, x < 0,

C1e−m1x, x > 0,
(1.70)

where C0 and C1 are arbitrary constants. The boundary conditions imposed at

x = 0 are that of continuity of displacement, and continuity of total pressure.

Since we are considering a static background (v0 = 0), the first of these

conditions is equivalent to continuity of v̂x. The total pressure is found to

be

p̂T =
iρj
ω

(c2
j + v2

Aj)
c2
Tj − c2

ph

c2
j − c2

ph

dv̂x
dx

, (1.71)

and the condition of continuity of total pressure yields the dispersion relation

for waves propagating along an interface,

c2
ph = v2

A0 −
ρ1m0

ρ1m0 + ρ0m1

(v2
A0 − v2

A1). (1.72)

1.4.3 Linear MHD Waves on a Slab in a Symmetric En-
vironment

The magnetic slab, formed of two parallel interfaces in a non-magnetic environ-

ment, was considered by Roberts (1981b), and in a magnetic environment by
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0 x0-x0 xx xx0-x0

(a) (b) (c)

Figure 1.4: A schematic representation of the profile of the velocity amplitude
for three different cases: (a) trapped waves on an interface; (b) surface waves
in a slab; (c) body waves in a slab. Adapted from Priest (2014).

(a) The sausage mode (b) The kink mode

Figure 1.5: A schematic representation of the two modes of oscillation of a
magnetic slab.

Edwin and Roberts (1982). Here, we consider a slab with boundaries at ±x0

in a non-magnetised symmetric environment. Background quantities will be

denoted by subscripts 0 and 1 in the regions |x| < x0 and |x| > x0, respectively.

Equation (1.68) now has trapped solutions of the form

v̂x(x) =


C10em1(x+x0), x < −x0,

C00 coshm0x+ C01 sinhm0x, |x| ≤ x0,

C11e−m1(x−x0), x > x0,

(1.73)

where C00, C01, C10, C11 are constants. The sign of m2
0 determines the nature

of the waves within the slab. If m2
0 > 0, the wave is evanescent inside the

slab and is called a surface mode (Figure 1.4b), whereas if m2
0 < 0, the wave is

oscillatory inside the slab and is called a body mode (Figure 1.4c). Furthermore,

if C00 = 0, then v̂x(x) is an odd function, while if C01 = 0, then v̂x is an even

function.
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The total pressure defined in (1.71) is used, and we apply the boundary

conditions as for the interface to obtain the dispersion relation for waves propa-

gating along a magnetic slab embedded in a symmetric magnetic environment.

The dispersion relation is factorised into two separate equations,

ρ1(v2
A1 − c2

ph)m0 tanh(m0x0) + ρ0(v2
A0 − c2

ph)m1 = 0,

ρ1(v2
A1 − c2

ph)m0 coth(m0x0) + ρ0(v2
A0 − c2

ph)m1 = 0,
(1.74)

where the equation containing tanh/coth corresponds to the sinh/cosh term in

Equation (1.73). It follows that the tanh and coth equations describe modes

of oscillation whose displacements are antisymmetric and symmetric around

x = 0, respectively. These modes are called the sausage and kink modes,

and are illustrated in Figure 1.5. Approximate analytical solutions, as well as

general numerical solutions to Equations (1.74) may be found, for example in

Edwin and Roberts (1982).

Solutions of Equations (1.74) are always neutrally stable since ω2 > 0. If

ω2 < 0, the left hand side of Equations (1.74) would always be positive, and

we would have a contradiction. Therefore, ω is real, and exp i(kzz − ωt) is

always oscillatory. This also makes sense from a physical point of view since

there are no effects that may cause the equilibrium to become unstable, such as

gravity or shearing flows. We shall encounter dispersion relations with complex

solutions in Chapter 2.

1.4.4 Linear MHD Waves in a Cylindrical Flux Tube

The final type of structuring that we need to address is the cylindrical flux

tube. We now use the cylindrical coordinate system (r, φ, z) and assume that

a cylindrical interface at r = r0 separates an interior region, denoted with the

subscript 0, from an exterior region, denoted by the subscript 1.

Similarly to Subsections 1.4.2 and 1.4.3, we write perturbations of the

cylindrical interface as f = f̂ exp{i(kzz + mφ − ωt)}, where kz and φ are

the wavenumbers corresponding to the z- and φ-directions, respectively. The

linear ideal MHD equations may now be reduced to the governing equation

d2p̂T
dt2

+
1

r

dp̂T
dr

+

(
m2

r2
+m2

j

)
p̂T = 0, (1.75)

where mj is defined in Equation (1.69), the total pressure is related to the

radial component of the velocity as

dp̂T
dr

= −iωρ0(ω2 − k2
zv

2
A)v̂r, (1.76)
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m = 0 m = 1 m = 4
Figure 1.6: A schematic representation of a cut-through of a cylindrical flux
tube undergoing a sausage oscillation (m = 0), kink oscillation (m = 1), and
an m = 4 fluting oscillation. Adapted from Murdin (2001).

and m is an integer. The full derivation of Equations (1.75) and (1.76) are not

included in this Thesis, and may be found in Edwin and Roberts (1983), or

more recent works such as Goedbloed and Poedts (2004); Priest (2014).

The solutions to Equation (1.75) in the interior region (r < r0) that are

bounded on the axis of the cylinder, i.e. at r = 0, have the form

p̂T = C0

{
Im(m0r), m2

0 > 0,

Jm(m0r), n2
0 = −m2

0 > 0,
(1.77)

where C0 is an arbitrary constant, and Jm and Im are the Bessel function of

the first kind of order m and modified Bessel function of the first kind of order

m, respectively. The solution of Equation (1.75) in the exterior region (r > r0)

which is evanescent as r →∞ is

p̂T = C1Km(m1r), (1.78)

where C1 is an arbitrary constant and Km is the modified Bessel function of

the second kind. Here m0 and m1 are defined as in Equation (1.69).

Using the boundary conditions of continuity of radial velocity and continu-

ity of total pressure, we obtain the dispersion relation for surface modes

ρ0(v2
Ai − c2

ph)m1
K ′m(m1r0)

Km(m1r0)
= ρ1(v2

Ae − c2
ph)m0

I ′m(m0r0)

Im(m0r0)
, (1.79)

where the dash represents the first derivative with respect to the argument.

For body modes, the Bessel function Im is replaced by Jm, and the effective

wavenumber m0 is replaced by n0, where n2
0 = −m2

0.

Much like Equations (1.74), Equation (1.79) only has stable solutions (ω2 >

0). The main difference between the solutions of the dispersion relation of
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waves propagating along a slab and that of waves propagating along a cylinder,

is that the cylindrical geometry supports additional modes of oscillation. The

parameter m determines the wave mode, with m = 0 and m = 1 being the

familiar sausage and kink modes, and m > 1 corresponding to the fluting

modes (see Figure 1.6).

In deriving Equation (1.79) we assumed that the magnetic field is vertically

straight both within and outside of the tube, which does not necessarily hold

in applications to solar cylindrical magnetic waveguides. Several models of

cylindrical flux tubes with twisted magnetic fields have been devised by, for

example, Bennett et al. (1999); Erdélyi and Fedun (2006, 2007); Ruderman

(2007); Erdélyi and Fedun (2010); Vasheghani Farahani et al. (2010); Ruder-

man (2015); Ruderman and Terradas (2015). These shall be important in the

context of the Kelvin-Helmholtz instability of transversely (kink) oscillating

flux tubes, in Chapter 3.

1.4.5 Coronal Loop Oscillations

In Subsections 1.4.2 - 1.4.4 we derived three of the most common theoretical

models for magnetoacoustic waves in structured media relevant for solar ap-

plications. In this Subsection we wish to apply some of the theory discussed

previously to one of the most fascinating objects of research in solar physics:

coronal loops, first introduced in Subsection 1.2.2, and their modes of oscilla-

tion.

Coronal loops are most often modelled as straight magnetic cylinders, due

to the fact that the curvature of the loop often plays little role on the proper-

ties of the oscillations (Van Doorsselaere et al., 2004). It follows that the loops

would exhibit the modes of oscillation described in Subsection 1.4.4. Inter-

preting the observed modes in terms of the cylindrical model, as well as other

models which we shall not discuss here, has led to the creation of the field of

coronal seismology. It uses the properties of observed waves, in addition to

knowledge of some background quantities, in order to determine parameters

that are difficult to measure, such as the strength of the magnetic field.

While observations of sausage waves in coronal loops do exist (Nakariakov

et al., 2003; Srivastava et al., 2008), by far the most common mode of oscil-

lation is the fast kink mode. For reviews on the subject, see, for example,

Nakariakov and Verwichte (2005); Ruderman and Erdélyi (2009); De Moortel

and Nakariakov (2012).
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Figure 1.7: The temporal evolution of the displacement of the loop studied in
Nakariakov et al. (1999), where the solid curve is the best fit function, and the
error bars correspond to ±0.5 pixels.

Kink (or transverse) oscillations of coronal loops have been a subject of in-

tensive study since their original observation on 14 July 1998 by the Transition

Region and Coronal Explorer (TRACE) (Aschwanden et al., 1999; Nakariakov

et al., 1999). A significant area of study has been their decay, which may be as

fast as a single period, and up to around 5 periods (Goddard and Nakariakov,

2016), as may be seen in Figure 1.7. The leading theory meant to explain

this phenomenon considers the fact that coronal loops should have a thin re-

gion where the high interior density decreases to a much lower value in the

surrounding corona. Due to the effects of resonant absorption (Hollweg and

Yang, 1988; Sakurai et al., 1991; Goossens et al., 2011) and phase mixing (Hey-

vaerts and Priest, 1983), energy is transferred from the transverse oscillation to

the Alfvén mode (Ruderman and Roberts, 2002). It is worth noting that this

phase mixed Alfvén mode may become Kelvin-Helmholtz unstable (Browning

and Priest, 1984). This topic will be discussed further in Section 1.5, and

Chapter 3.

Recently, several studies have found that there are also, so called, decay-less

transverse oscillations. Nisticò et al. (2013); Anfinogentov et al. (2013, 2015)

found that kink oscillations are commonly followed (and sometimes preceded)

by a phase of, what appears to be, a low-amplitude transverse oscillation which

does not decay. There are several theories as to the nature of this phenomenon

(Hindman and Jain, 2014; Antolin et al., 2016; Duckenfield et al., 2018), some
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Figure 1.8: The temporal evolution of the displacement of the loop studied in
Nisticò et al. (2013).

of which we shall discuss in Chapter 3.

Finally, we should note that it is likely that the magnetic fields of coronal

loops exhibit at least some degree of twist (Klimchuk et al., 2000; Malanushenko

et al., 2009, 2011). As such, it is important to consider this factor when

studying the properties of oscillations and instabilities. This will be especially

significant in Chapter 3.

1.5 The Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability (KHI), is a phenomenon resulting from shear-

ing motions of fluids or plasmas, and is a fundamental example of transition

from laminar to turbulent flow. It is named after the British and German

physicists, William Thomson, 1st Baron Kelvin, and Hermann von Helmholtz,

respectively, and was first described in von Helmholtz (1868) and Thomson

(1871).

The KHI is present in both hydrodynamics and MHD. It may occur when

there is velocity shear in a single fluid, or when there is a difference in velocities

over an interface separating two fluids. In hydrodynamical systems, in the

absence of surface tension, a boundary separating inviscid immiscible fluids in
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relative motion is always KH unstable. Introducing surface tension stabilises

the boundary and imposes a critical value of the relative flow, below which the

system is stable. Similarly, in MHD, the KH instability can develop on the

interface separating two plasmas in relative motion. The effect of the magnetic

field is potentially significant, and will be discussed in detail in Subsection

1.5.1.

The evolution of the KHI is as follows. When a boundary separating fluids

in relative motion is subject to a small perturbation, the shear flow at the

interface causes the perturbation to grow in time. The perturbation steepens

and becomes nonlinear, and eventually rolls up into a vortex. This succession

of phases is represented in Figure 1.9.

U0

U1

(a) (b)

(c) (d)

Figure 1.9: The stages of a KHI. Suppose that a magnetic interface (a) sepa-
rating two regions with background flows in opposite directions is subject to a
perturbation (b). As the system evolves in time, sufficiently strong flows will
amplify the perturbation, causing nonlinear wave steepening (c), until vortex
formation occurs (d). Further evolution typically renders the system turbulent.

The KHI may be found in nature in a variety of locations, including the

Earth’s atmosphere and oceans (Drazin, 2015; Smyth and Moum, 2012), plan-

etary magnetospheres Hasegawa et al. (2004); Masters et al. (2010), inter-

stellar clouds Vietri et al. (1997), supernova remnants Wang and Chevalier

(2001), and superfluids (Blaauwgeers et al., 2002) On the Sun, the KHI has

thus far been observed in some jets (Kuridze et al., 2016; Bogdanova et al.,

2018; Zhelyazkov et al., 2018), and on the flanks of some CMEs (Ofman and

Thompson, 2011; Foullon et al., 2011; Möstl et al., 2013). These observations

are discussed in Subsection 1.5.2.
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1.5.1 The KHI in MHD

Analytical studies of the KHI were performed soon after the formulation of the

ideal MHD equations. The linear phase of the instability was analysed in the

context of two different equilibrium configurations in Chandrasekhar (1961).

In the first case, a tangential interface separates regions of different density, ρ0

and ρ1, magnetic field strength B0 and B1, and flow, U0 and U1. Here, the

magnetic fields and flows are parallel to the interface, i.e. B0 ‖ B1, B1 ‖ U0,

U0 ‖ U1. It may be shown that the KHI is only triggered if

B2
0 +B2

1

µρ0ρ1

(ρ0 + ρ1) ≤ (U0 − U1)2. (1.80)

This is because perturbations perpendicular to the interface cause the magnetic

field parallel to the flow to stretch and produce a restoring force. This effect is

similar to how surface tension in hydrodynamics introduces a critical velocity

which the background flow needs to surpass in order for the boundary to

become KH unstable.

In the second case, the magnetic field is perpendicular to the flows. It

may be shown that, in this situation, the magnetic field has no effect and the

boundary is immediately unstable to perturbations perpendicular to it. This

is because perturbations may no longer stretch the field lines, and no restoring

force exists.

In recent years, a multitude of analytical studies of the linear phase of

the KHI have been performed to account for different geometries. Nakariakov

and Roberts (1995) studied the KHI in the context of a slab embedded in a

symmetric environment, and were able to derive the instability criterion in the

incompressible limit, similar to Equation (1.80). The results of Nakariakov

and Roberts (1995) will be of significance in Chapter 2 for comparison with

our own results.

The KHI due to flows along a cylindrical flux tube was first studied by

Somasundaram et al. (1999) and Terra-Homem et al. (2003). Subsequently,

the KHI in cylindrical flux tubes has been studied analytically in a variety

of contexts by Zaqarashvili et al. (2010); Soler et al. (2010); Zhelyazkov and

Zaqarashvili (2012); Zaqarashvili, Vörös and Zhelyazkov (2014); Zaqarashvili,

Vörös, Narita and Bruno (2014); Zaqarashvili et al. (2015). The studies cited

above will be of some significance in Chapter 3 for comparison with our own

model.
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Figure 1.10: A time-distance plot of the KHI observed on the flank of a CME
in Foullon et al. (2011). The parameters λ and h correspond to the distance
between the KH vortices, and the maximum height of a vortex as measured
from the flank, respectively.

1.5.2 The KHI on the Sun

The analytical studies mentioned in Subsection 1.5.2 have generally found that,

due to the stabilising effect of a magnetic field parallel to a flow, the KHI is

not a common occurrence on large scales in solar observations. Despite this

fact, provided flow speeds are strong enough, some observations of the KHI in

jets and CMEs have been made.

Of particular interest in this Thesis are the observations of the KHI on the

flanks of CMEs (see Figure 1.10). It was suggested by Foullon et al. (2011)

and Möstl et al. (2013), that the region on the CME flank where the instability

occurs may be modelled as a thin slab in an asymmetric environment. Möstl

et al. (2013) demonstrated that by increasing the strength of the magnetic field

on one side of the slab, the KHI on that side is inhibited. This numerical study

shows that exterior asymmetry is an important factor when considering the

physics of magnetic slabs. The observations of Ofman and Thompson (2011);

Foullon et al. (2011); Möstl et al. (2013) are further discussed in Chapter 2.

1.6 Outline of Thesis

In this Thesis, we study the stability of two MHD configurations subjected to

shear flows, and discuss their applications to solar phenomena. In Chapter 2,

we study the steady slab embedded in a static non-magnetic asymmetric en-

vironment. Our analysis starts with the derivation of the governing equations
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for each section of the system, which was omitted in our discussion of a slab in

a symmetric environment in Section 1.4. We, then, obtain a dispersion relation

for waves propagating along the slab, and some of its approximate solutions.

We solve the dispersion relation numerically to obtain general wave solutions

and determine the KHI threshold. Finally, we discuss how our model may be

used for the seismology of KH unstable CMEs.

In Chapter 3, we study an interface separating time-periodic counter stream-

ing flows. We find that the governing equation for perturbations perpendicular

to the interface is Mathieu’s equation, and we study its stability. We discuss

our findings in the context of applications to the stability of transverse coronal

loop oscillations.
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CHAPTER 2

Magnetoacoustic Waves and the KHI in a Steady

Slab Embedded in an Asymmetric Environment

Abstract

Recent observations have shown that bulk flow motions in structured solar

plasmas, most evidently in coronal mass ejections (CMEs), may lead to the

formation of Kelvin-Helmholtz instabilities (KHIs). Analytical models are thus

essential in understanding both how the flows affect the propagation of mag-

netohydrodynamic (MHD) waves, and what the critical flow speed is for the

formation of the KHI. We investigate both these aspects in a novel way: in a

steady magnetic slab embedded in an asymmetric environment. The exterior

of the slab is defined as having different equilibrium values of the background

density, pressure and temperature on either side. A steady flow and constant

magnetic field are present in the slab interior. Approximate solutions to the

dispersion relation are obtained analytically and classified with respect to mode

and speed. General solutions and the KHI thresholds are obtained numerically.

It is shown that, generally, both the KHI critical value and the cut-off speeds

for magnetoacoustic waves are lowered by the external asymmetry.

2.1 Introduction

The propagation of linear MHD waves along magnetic slabs has long been a

topic of study in the context of solar physics (see Section 1.4). The presence of

a steady flow in the equilibrium state of the system affects the propagation in

This chapter is based on the following refereed journal article:

• Barbulescu, M., Erdélyi, R. (2018); Magnetoacoustic Waves and the Kelvin-
Helmholtz Instability in a Steady Asymmetric Slab. I: The Effects of Varying Density
Ratios, Solar Phys., Volume 293, Issue 6
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(a) Quasi-sausage (b) Quasi-kink

Figure 2.1: Schematic representation of the quasi-modes of a magnetic slab in
an asymmetric non-magnetic environment, as depicted in Allcock and Erdélyi
(2017). The densities satisfy ρ1 > ρ2, the solid red lines represent the per-
turbed magnetic field, the thick solid black lines represent the perturbed slab
boundaries, and the dashed gray lines illustrate the position of the slab bound-
aries after half a period.

at least two important ways. First, perturbations may cause shearing motions

in the flow, which then could lead to the KHI (see Section 1.5). Second, the

phase speeds and the cut-off speeds of each mode of propagation are shifted

proportional to the speed of the flow (Nakariakov and Roberts, 1995; Terra-

Homem et al., 2003). Interactions between propagating waves and flows are not

limited to these two instances though. Other areas of study include negative

energy wave instabilities, if dissipative effects are taken into account (Cairns,

1979; Joarder et al., 1997), or resonant flow instabilities, if the dissipation is

due to resonant absorption (see Tirry et al., 1998; Taroyan and Erdélyi, 2002).

More information on the above topics may be found in Taroyan and Ruderman

(2011) and Ryutova (2015).

The effects of steady flows have been investigated in a number of differ-

ent waveguide geometries and magnetic topologies. Nakariakov and Roberts

(1995) studied the effect of a steady flow in an infinite slab of magnetised

plasma in a magnetic environment. Terra-Homem et al. (2003) then explored

the effects that a steady flow has on the propagation of both linear and nonlin-

ear waves in a straight infinite cylindrical flux tube. This latter work expanded

on the analysis of Somasundaram et al. (1999). For a more general approach

to analysing the stability of steady MHD flows see, for example, Goedbloed

(2009a,b, 2018a,b).

More recently, Soler et al. (2010) described the effects of an azimuthally de-

pendent flow on the stability of a straight flux tube, while Zaqarashvili, Vörös

and Zhelyazkov (2014) investigated the stability of an incompressible, twisted

cylindrical flux tube, subject to a straight flow, in a magnetic environment.

Finally, Zaqarashvili et al. (2015) studied the stability of an incompressible,
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rotating, and twisted cylinder. The theoretical results of the latter two works

were applied in Kuridze et al. (2016) to determine the stability of chromo-

spheric jets, and to estimate the growth time of the KHI.

Recent observational results have reinforced the idea that plasma flows are

present throughout the solar atmosphere. Berger et al. (2010) and Ryutova

et al. (2010) uncovered details about mass flows and the formation of the

KHI in solar prominences. KHI formation in the corona has also received

considerable attention (see Foullon et al., 2011; Ofman and Thompson, 2011;

Foullon et al., 2013). For a recent review, see Zhelyazkov (2015).

Of significant interest are the observations by Foullon et al. (2011) of a

KHI on the flank of a CME. The authors interpret the system’s configuration

as consisting of three regions: the dense solar ejecta, the CME sheath, and the

low density corona, with the KHI occurring in the region between the ejecta

sheath and the corona. A similar three layer system is described by Möstl

et al. (2013). By interpreting the CME boundary as a steady magnetic slab

embedded in an asymmetric magnetic environment, the authors demonstrated

that through increasing the magnetic field strength on only one side of the

slab, it provided a stabilising effect there only. This numerical study shows

that exterior asymmetry may be an important factor when considering the

physics of magnetic slabs.

The magnetic slab embedded in an asymmetric environment, has recently

been studied by a number of authors. Allcock and Erdélyi (2017) derived the

dispersion relation of waves propagating along a magnetic slab embedded in a

non-magnetic environment, in the absence of flows, while Allcock and Erdélyi

(2018) showcased a number of applications of the model to helioseismology.

Zsámberger et al. (2018) expanded upon the model of Allcock and Erdélyi

(2017) by including asymmetric magnetic fields in the environment outside the

slab. Finally, Barbulescu and Erdélyi (2018) derived the dispersion relation of

waves propagating along a steady magnetic slab embedded in a non-magnetic

environment and studied the impact of the density asymmetry upon the KHI

threshold value. Also of significance is the finding of Allcock and Erdélyi (2017)

that the modes of wave propagation along a magnetic slab in an asymmetric

environment do not decouple into the well known sausage and kink modes.

Rather, the modes are asymmetric and are better labelled as quasi-sausage

and quasi-kink modes (see Figure 2.1).

In this Chapter, we expand upon the results in Barbulescu and Erdélyi

(2018) concerning the effects that a steady flow within the slab has on the
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propagation of magnetoacoustic waves, and on how the asymmetry affects the

KHI threshold values. In Section 2.2, we derive the dispersion relation for

waves propagating along the slab from the ideal compressible MHD equations,

and classify the modes in terms of the characteristic speeds of the system. In

Section 2.3, we obtain approximate solutions to the dispersion relation using

the thin slab approximation, wide slab approximation and incompressible limit.

In Section 2.4, we obtain general numerical solutions to the dispersion relation,

as well as values for the KHI threshold in different parameter regimes. Section

2.5 contains an application of the described model with regard to estimating

the magnetic field strength in a CME. Finally, Section 2.6 contains a summary

and discussion of the results in the previous Sections.

2.2 The Dispersion Relation

We introduce a slab of plasma bounded by two interfaces at ±x0, of den-

sity, pressure, and temperature ρ0, p0, and T0 respectively, and magnetic field

B0 = (0, 0, B0), which is subject to a steady flow U0 = (0, 0, U0). The slab is

embedded in an asymmetric environment, defined as having density, pressure,

and temperature ρ1, p1 and T1 on the left side, and ρ2, p2, and T2, on the right

side, as illustrated in Figure 2.2. The exterior is neither subject to magnetic

fields, nor to flows. It follows that the fluid in the interior region of the slab is

governed by the ideal MHD equations, while the exterior regions are described

using the gas equations.

2.2.1 Governing Equation for the Interior

We wish to obtain a governing equation describing the propagation of linear

magnetoacoustic waves along the parallel interfaces. For this purpose, we

employ the compressible ideal linear MHD equations, introduced in Subsection
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Figure 2.2: The steady magnetic slab embedded in a static asymmetric non-
magnetic environment.

1.3.6, subject to the previously defined background conditions,

Dρ

Dt
+ ρ0∇ · v = 0, (2.1)

ρ0
Dv

Dt
= −∇(p+

B0

µ
bz) +

B0

µ

∂b

∂z
, (2.2)

Dp

Dt
= c2

0

Dρ

Dt
, (2.3)

Db

Dt
= −B0(∇ · v) +B0

∂v

∂z
, (2.4)

∇ · b = 0.

Here, ρ, p,b = (bx, by, bz), and v = (vx, vy, vz) are small perturbations from the

equilibrium, and
D

Dt
=

∂

∂t
+ U0

∂

∂z

is the material derivative, and the sound speed is defined as c2
0 = γp0/ρ0.

Equations (2.1) - (2.4) are only valid for the interior of the slab.

Since we are only concerned with magnetoacoustic waves propagating along

the slab, we may disregard all dependence on the y-component without loss of
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generality. Equations (2.1) - (2.4) may, thus, be written as

ρ0
Dvx
Dt

= − ∂

∂x

(
p+

B0

µ0

bz

)
+
B0

µ0

∂bx
∂z

, (2.5)

ρ0
Dvz
Dt

= −∂p
∂z
, (2.6)

Dp

Dt
= −c2

0ρ0∇ · v, (2.7)

Dbx
Dt

= B0
∂vx
∂z

, (2.8)

Dbz
Dt

= −B0
∂vx
∂x

. (2.9)

Here, Equations (2.5) and (2.6) are the x− and z−components of the mo-

mentum equation, Equation (2.7) is the result of combining Equations (2.1)

and (2.3), and Equations (2.8) and (2.9) are the x− and z−components of the

induction equation.

Let us Fourier decompose Equations (2.5) - (2.9) for waves propagating

along the slab by assuming that f(r, t) = f̂(x)ei(kz−ωt), where f stands for any

of the small perturbations, and f̂ is the amplitude of each perturbation. Here,

ω is the angular frequency, and k is the wavenumber in the z-direction. This

procedure allows us to remove all differential terms in the linearised MHD

equation, except for derivatives with respect to x, much like in Section 1.4.

Equations (2.5) - (2.9) become

iρ0Ωv̂x =
d

dx

(
p̂+

B0

µ0

b̂z

)
− ikB0

µ0

b̂x, (2.10)

ρ0Ωv̂z = kp̂, (2.11)

Ωp̂ = c2
0ρ0(−idv̂x

dx
+ kv̂z), (2.12)

Ωb̂x = −B0kv̂x, (2.13)

iΩb̂z = B0
dv̂x
dx

, (2.14)

where Ω = ω − kU0 is the Doppler-shifted frequency.

In order to obtain a governing equation for the interior of the slab, we must

combine Equations (2.10) - (2.14) so that we eliminate all but one dependent

variable. While the governing equation may be written in terms of any of the
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dependent variables, we choose v̂x(x) since it is most convenient. We begin by

combining Equations (2.11) and (2.12) in order to eliminate v̂z, and obtain

p̂ = i
Ωc2

0ρ0

k2c2
0 − Ω2

dv̂x
dx

. (2.15)

We then introduce Equation (2.13) into Equation (2.10), in order to eliminate

b̂x,

(k2v2
A − Ω2)v̂x = −iΩ

ρ0

d

dx

(
p̂+

B0

µ0

b̂z

)
, (2.16)

where the Alfvén speed, vA, is defined as

v2
A =

B2
0

µ0ρ0

,

similar to Equation 1.35. Substituting Equation (2.14) into (2.16), we obtain

(k2v2
A − Ω2)v̂x = −iΩ

ρ0

dp̂

dx
− v2

A

d2v̂x
dx2

. (2.17)

Finally, we combine Equations (2.15) and (2.17) such that, except for v̂x, all

other perturbed quantities have been eliminated, leaving us with the governing

equation for the velocity amplitude:

d2v̂x
dx2
−m2

0v̂x = 0, (2.18)

where

m2
0 =

(k2v2
A − Ω2)(k2c2

0 − Ω2)

(c2
0 + v2

A)(k2c2
T − Ω2)

, (2.19)

and the tube speed, cT , is defined as

c2
T =

c2
0v

2
A

c2
0 + v2

A

.

similar to Equation (1.67)

2.2.2 Governing Equations for the Exterior

The same scheme that was used in Subsection 2.2.1 may be applied to the

exterior layers, with the consideration that, in both semi-infinite layers, there

are no magnetic fields or flows present. These regions are, therefore, governed

by the gas equations,

∂ρ

∂t
+ ρj∇ · v = 0, (2.20)

ρj
∂v

∂t
= −∇p, (2.21)

∂p

∂t
= c2

j

∂ρ

∂t
, (2.22)
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where the subscript j is either 1, for x < −x0, or 2, for x > x0, and the exterior

sound speeds are defined as c2
j = γpj/ρj. Substituting Equation (2.20) into

(2.22) yields
∂p

∂t
= −c2

jρj∇ · v. (2.23)

We differentiate Equation (2.20) with respect to t, and combine it with Equa-

tion (2.23), such that
∂2v

∂t2
− c2

j∇(∇ · v) = 0. (2.24)

Equation (2.24) may be written in component form

∂2vx
∂t2
− c2

j

(
∂2vx
∂x2

+
∂2vz
∂x∂z

)
= 0, (2.25)

∂2vz
∂t2
− c2

j

(
∂2vx
∂x∂z

+
∂2vz
∂z2

)
= 0, (2.26)

and Fourier decomposed ∼ ei(kz−ωt),

ω2v̂x + c2
j

(
d2v̂x
dx2

+ ik
dv̂z
dx

)
= 0, (2.27)

ω2v̂z + c2
j

(
ik

dv̂x
dx
− k2v̂z

)
= 0. (2.28)

By rearranging Equation (2.28) as

v̂z = −
ikc2

j

ω2 − k2c2
j

dv̂x
dx

, (2.29)

and substituting Equation (2.29) into Equation (2.27), the governing equations

for the outer layers is obtained,

d2v̂x
dx2
−m2

j v̂x = 0, (2.30)

where

m2
j = k2 − ω2

c2
j

. (2.31)

Equations (2.18) and (2.30) are analogous, as are Equations (2.19) and (2.31).

By removing all terms dependent on the magnetic field from Equations (2.18)

and (2.19), we obtain Equations of the form of (2.30) and (2.31), respectively.

Fourier decomposing Equation (2.23) yields

iωp̂ = c2
jρj

(
dv̂x
dx

+ ikv̂z

)
, (2.32)
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which, after substituting Equation (2.29) into Equation (2.32), becomes

p̂ = i
ωρj
m2
j

dv̂x
dx

. (2.33)

Equation (2.33) relates the exterior gas pressure perturbation amplitude to the

velocity perturbation amplitude perpendicular to the interface, and will be of

use later in the derivation.

2.2.3 Boundary Conditions and Dispersion Relation

In order to find trapped wave solutions to Equations (2.18) and (2.30), we

require that solutions to Equations (2.30) be evanescent, i.e. that all pertur-

bations vanish at ±∞. This implies that m2
j > 0 is required for j = 1, 2. The

solutions to Equations (2.18) and (2.30) may, therefore, be written as

v̂xj(x) =


A(coshm1x+ sinhm1x), x < −x0,

B coshm0x+ C sinhm0x, |x| ≤ x0,

D(coshm2x− sinhm2x), x > x0,

(2.34)

where A,B,C, and D are arbitrary constants. By inspection, we establish

that two wave modes are allowed to propagate under the given constraints:

one that is evanescent towards the center of the slab (for m2
0 > 0), and one

that is spatially oscillatory throughout the slab (for m2
0 < 0). These modes

of propagation are the so-called surface and body modes, respectively, which

were introduced in Section 1.4.

Equation (2.34) is subject to boundary conditions at the interfaces, namely,

the continuity of the Lagrangian displacement, and the continuity of total

pressure:

v̂x1(x = −x0)

ω
=
v̂x0(x = −x0)

Ω
,

v̂x2(x = x0)

ω
=
v̂x0(x = x0)

Ω
,

[pT ]x=−x0 = 0,

[pT ]x=x0 = 0.

(2.35)

Here, the total pressure is the sum of the gas and magnetic pressures, where

the gas pressures are defined in Equations (2.15), and (2.33). Since there is

no magnetic field in the exterior regions, the total pressure is simply the gas
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pressure. In order to calculate the magnetic pressure within the slab, we make

use of its definition from Equation (1.31). Since the quantities in Equation

(1.31) are nonlinear, we first linearise them, and obtain

pm =
B2

2µ
=

1

2µ0

(B2
0 + 2B0 · b + b2)

≈ B0 · b
µ0

=
B0bz
µ0

,

(2.36)

where pm is the magnetic pressure. The terms B2
0 and b2 in Equation (2.36)

vanish since we only keep the terms of order of the perturbations, i.e. pm and

B0 · b. We Fourier decompose Equation (2.36),

p̂m =
B0b̂z
µ0

, (2.37)

and substitute Equation (2.14) into Equation (2.37) to obtain

p̂m = −iv
2
Aρ0

Ω

dv̂x
dx

. (2.38)

Combining Equations (2.15), (2.33), and (2.38), we find that the total pressure

is

p̂T (x) =
dv̂x
dx



iρ1ω

m2
1

, x < −x0,

−iρ0(k2v2
A − Ω2)

m2
0Ω

, |x| ≤ x0,

iρ2ω

m2
2

, x > x0.

(2.39)

Using Equations (2.34) and (2.39), we may write the boundary conditions,

(2.35), as a system of four simultaneous homogeneous algebraic equations,

A(coshm1x0 − sinhm1x0)−Bω
Ω

coshm0x0 + C
ω

Ω
sinhm0x0 = 0,

B
ω

Ω
coshm0x0 + C

ω

Ω
sinhm0x0 +D(sinhm2x0 − coshm2x0) = 0,

AΛ1(coshm1x0 − sinhm1x0)−BΛ0 sinhm0x0 + CΛ0 coshm0x0 = 0,

−BΛ0 sinhm0x0 − CΛ0 coshm0x0 +DΛ2(coshm2x0 − sinhm2x0) = 0,

(2.40)
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where

Λ0 =
iρ0 (k2v2

A − Ω2)

m0Ω
,

Λ1 =
iρ1ω

m1

,

Λ2 =
iρ2ω

m2

.

(2.41)

Equations (2.40) may be written in matrix form as
c1 − s1 −ω

Ω
c0

ω

Ω
s0 0

0
ω

Ω
c0

ω

Ω
s0 s2 − c2

Λ1(c1 − s1) −Λ0s0 Λ0c0 0

0 −Λ0s0 −Λ0c0 Λ2(c2 − s2)




A

B

C

D

 =


0

0

0

0

 , (2.42)

where, for brevity, we introduced cj = coshmjx0, sj = sinhmjx0, for j =

0, 1, 2. We denote the matrix in Equation (2.42) as M0 and row reduce it to

obtain

M1 =



c1 − s1 −ω
Ω
c0

ω

Ω
s0 0

0
ω

Ω
c0

ω

Ω
s0 s2 − c2

0 −Λ0s0 + Λ1
ω

Ω
c0 Λ0c0 − Λ1

ω

Ω
s0 0

0 0 Λ 0


, (2.43)

where

Λ = (Λ0s0 − Λ1c0ω/Ω) (Λ0c0 − Λ2s0ω/Ω)

+ (Λ0c0 − Λ1s0ω/Ω) (Λ0s0 − Λ2c0ω/Ω) .
(2.44)

For the system of Equations (2.40) to have non-trivial solutions, we require

the determinant of M0 to be equal to zero. We may write the determinant of

M0 as

detM0 = (−Λ0s0 + Λ1c0ω/Ω)−1 detM1

= (c1 − s1)(s2 − c2)Λ.
(2.45)

It follows that the system of Equations (2.40) has non-trivial solutions if Λ = 0.

Explicitly, this may be written as

(Λ0s0 − Λ1c0ω/Ω) (Λ0c0 − Λ2s0ω/Ω) +

(Λ0c0 − Λ1s0ω/Ω) (Λ0s0 − Λ2c0ω/Ω) = 0,
(2.46)
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which, after some algebra, becomes

2

(
Λ2

0 + Λ1Λ2
ω2

Ω2

)
− Λ0(Λ1 + Λ2)

ω

Ω
(tanhm0x0 + cothm0x0) = 0. (2.47)

Substituting Equation (2.41) into Equation (2.47) yields

m2
0ω

4 +
ρ0

ρ1

m1
ρ0

ρ2

m2(k2v2
A − Ω2)2

− 1

2
m0ω

2(k2v2
A − Ω2)

(
ρ0

ρ1

m1 +
ρ0

ρ2

m2

)
(tanhm0x0 + cothm0x0) = 0.

(2.48)

Equation (2.48) is the dispersion relation for the propagation of magnetoacous-

tic waves in a steady magnetic slab embedded in an asymmetric non-magnetic

environment. It is a generalization of the dispersion relation for waves propa-

gating along a static slab in a non-magnetic asymmetric environment (Allcock

and Erdélyi, 2017). The dispersion relation of Allcock and Erdélyi (2017)

may be immediately recovered by removing the background flow, i.e. setting

U0 = 0. Equation (2.48) is also related to the dispersion relation found in

Nakariakov and Roberts (1995) for the propagation of waves in a steady slab

embedded in a magnetic environment. If we consider the model of Nakariakov

and Roberts (1995) with no exterior magnetic field, we obtain the same result

as when considering Equation (2.48) with equal exterior densities.

2.2.4 Comparison with Previous Models

Due to the fact that the properties of magnetoacoustic waves propagating

along a slab in a symmetric environment are qualitatively different from those

propagating along a slab in an asymmetric environment, it is useful to compare

Equation (2.48) to the dispersion relations of other similar models.

The dispersion relation for magnetoacoustic waves propagating along a slab

in a symmetric environment, Equation (1.74), was described in the previous

Chapter. Equation (1.74) has two sets of solutions: oscillations which are

symmetric about x = 0 (called sausage modes), and oscillations which are

anti-symmetric about x = 0 (called kink modes). The sausage modes are

described by the tanh variant of Equation (1.74), while the kink modes are

described by the coth variant.

In contrast, Equation (2.48) describes two modes of oscillation which are

not fully independent. Equation (2.48) does not factorise into an equation
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containing tanh and one containing coth, rather each hyperbolic function has

a contribution in determining the solution.

It may be shown that, if the exterior densities only differ by a constant

α� 1, Equation (2.47) factorizes into two equations, one describing the quasi-

kink mode and one the quasi-sausage. We first note that, since the total

pressure must be continuous at the boundaries, the exterior pressures are equal,

i.e. p1 = p2. It follows that, if ρ2 = ρ1 + α, then

m2
2 = m2

1 −
ω2

c2
1ρ1

α, (2.49)

and

Λ2 = Λ1 + iω
c2

2 + ω2/m2
2

c2
2m

2
2

α. (2.50)

We introduce ε� 1, such that Λ2 = Λ1 + ε and we introduce the fraction

(Λ1 + Λ2)2

4Λ1Λ2

=
(2Λ1 + ε)2

Λ2
1(1 + ε/Λ1)

=
1

4Λ2
1

(4Λ2
1 + 4εΛ1 + ε2)(1− ε/Λ1 +O(ε2))

=
1

4Λ2
1

(4Λ2
1 + 4εΛ1 − 4εΛ1 +O(ε2)).

(2.51)

Discarding terms of O(ε2) and higher in Equation (2.51), we obtain

(Λ1 + Λ2)2

4Λ1Λ2

≈ 1. (2.52)

This allows us to write Equation (2.47) as

2

(
Λ2

0

(Λ1 + Λ2)2

4Λ1Λ2

+ Λ1Λ2
ω2

Ω2

)
− Λ0(Λ1 + Λ2)

ω

Ω
(tanhm0x0 + cothm0x0) = 0.

(2.53)

Multiply Equation (2.53) by Λ1Λ2 and factorise it such that we obtain two

equations,

Λ0(Λ1 + Λ2) + 2Λ1Λ2 tanhm0x0 = 0,

Λ0(Λ1 + Λ2) + 2Λ1Λ2 cothm0x0 = 0,
(2.54)

or, using a more familiar format,

ρ0(k2v2
A − ω2)

(
m1

ρ1

+
m2

ρ2

)
+ 2m0ωΩ tanhm0x0 = 0,

ρ0(k2v2
A − ω2)

(
m1

ρ1

+
m2

ρ2

)
+ 2m0ωΩ cothm0x0 = 0.

(2.55)

Equations (2.55) are a generalization of the factorised dispersion relation of

waves propagating along a static slab in a non-magnetic asymmetric environ-

ment, first described in Allcock and Erdélyi (2017).
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2.2.5 Mode Classification

Information about the nature of the wave solutions may be obtained from

the parameters of the dispersion relation, Equation (2.48). We have already

established that in order for waves to be trapped, the exterior parameters m2
1

and m2
2 must be positive. Modes that do not meet this condition are referred

to as leaky and are excluded from the analysis in the present work. As in

Chapter 1, we operate in terms of the phase speed, cph = ω/k, and deduce

that for modes to be trapped they must satisfy

max(−c1,−c2) < cph < min(c1, c2). (2.56)

It is also worth noting that the sign of the phase speed, cph, determines whether

modes are forward or backward propagating, a positive sign corresponding to

the former, and a negative to the latter.

The parameter m2
0 offers a means of classifying the general solutions to

Equation (2.48), which will later be obtained numerically. We have already

established that surface modes satisfy the condition m2
0 > 0, while body modes

require m2
0 < 0. We may therefore categorize all solutions to equation (2.48)

with respect to the signs of cph,m
2
0,m

2
1, and m2

2. Solutions that satisfy

max(c0, vA) < |cph − U0| < min(c1 − U0, c2 − U0) (2.57)

are fast surface or body modes, depending on the sign of m2
0, which is deter-

mined by the ordering of the characteristic speeds. Slow body and surface

modes have phase speeds within the interval

cT < |cph − U0| < min(c0, vA), (2.58)

and

|cph − U0| < cT , (2.59)

respectively.

2.3 Approximate Analytical Solutions

The dispersion relation, Equation (2.48) is insoluble analytically (to the best

of our knowledge), without the use of simplifying approximations. In this Sec-

tion, we use a number of analytical approximations to obtain explicit solutions

to Equation (2.48). We consider the thin-slab, wide-slab, and incompressible

approximations. These approximate analytical solutions will be used to con-

firm that the numerical solutions obtained in section 2.4 are correct, while also

helping to interpret the results in 2.5.
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2.3.1 Incompressible Limit

We consider the dispersion relation, Equation (2.48), in the incompressible

limit, where γ →∞. Using this approximation, the sound speeds in all sections

of the system are unbounded, and the tube speed behaves like cT → vA. The

effective wavenumbers satisfy mj → k for j = 0, 1, 2, so that Equation (2.48)

reduces to

ω4 +
ρ2

0

ρ1ρ2

(k2v2
A − Ω2)2

− 1

2
ω2(k2v2

A − Ω2)

(
ρ0

ρ1

+
ρ0

ρ2

)
(tanh kx0 + coth kx0) = 0.

(2.60)

Since Equation (2.60) is still insoluble analytically, we require an additional

approximation. We introduce the phase speed normalised with respect to the

Alfvén speed

c̄ph =
cph
vA
, (2.61)

and the Alfvén Mach number,

MA =
U0

vA
, (2.62)

and assume that cph � U0, or equivalently, c̄ph � MA. Equation (2.60)

becomes a quadratic equation in c̄ph,

c̄4
ph +

ρ2
0

ρ1ρ2

(1− c̄2
ph)

2 − 1

2
c̄2
ph(1− c̄2

ph)

(
ρ0

ρ1

+
ρ0

ρ2

)
(tanh kx0 + coth kx0) = 0.

(2.63)

Equation (2.63) has solutions given by

c̄2
ph =

2 + σ ±
√
σ2 − 4ρ1ρ2

ρ2
0

2

(
1 + σ +

ρ1ρ2

ρ2
0

) ,

σ =
1

2

(
ρ1

ρ0

+
ρ2

ρ0

)
(tanh kx0 + coth kx0).

(2.64)

An equation analogous to Equation (2.64) was previously obtained by Allcock

and Erdélyi (2017) in the context of a model of a static slab embedded in an

asymmetric non-magnetic environment.
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2.3.2 Thin-slab Approximation

We assume that the wavelength of the propagating wave solution is much

longer than the width of the slab, i.e. that kx0 � 1. This is called the long-

wavelength approximation, or thin-slab approximation. For surface modes, we

may assume that m0x0 → 0 as kx0 → 0 and, hence, that

tanhm0x0 ≈ m0x0, cothm0x0 ≈
1

m0x0

, (2.65)

for kx0 � 1. This assumption may be verified a posteriori, and was proved in

several works including Roberts (1981b) and Allcock and Erdélyi (2017). The

dispersion relation, Equation (2.48), may then be written as

m2
0ω

4 +
ρ0

ρ1

m1
ρ0

ρ2

m2(k2v2
A − Ω2)2

− 1

2
m0ω

2(k2v2
A − Ω2)

(
ρ0

ρ1

m1 +
ρ0

ρ2

m2

)(
m0x0 +

1

m0x0

)
= 0.

(2.66)

In order to find approximate solutions, we also assume that the densities on

either side of the slab are of the same order such that Equation (2.66) may be

factorised into two equations, one for the sausage mode

ρ0(k2v2
A − ω2)

(
m1

ρ1

+
m2

ρ2

)
+ 2m2

0x0ωΩ = 0, (2.67)

and one for the kink mode

ρ0x0(k2v2
A − ω2)

(
m1

ρ1

+
m2

ρ2

)
+ 2ωΩ = 0. (2.68)

In order to find sausage wave solutions, we rewrite Equation (2.67) as

(k2c2
T − Ω2)

(
m1

ρ1

+
m2

ρ2

)
= −2

(k2c2
0 − Ω2)x0ωΩ

ρ0(c2
0 + v2

A)
, (2.69)

and we look for surface mode solutions to the form

ω = ω0 + kx0ω1 +O(k2x2
0). (2.70)

We find that

ω0 = k(cT + U0), (2.71)

for forward propagating waves, and by taking the terms of order kx0 in Equa-

tion (2.69), we find the first order terms in the perturbation expansion, and

hence obtain the approximate solution with Ω2 ≈ k2c2
T :

Ω2 ≈ k2c2
T

1− 2kx0(c2
0 − c2

T )(cT + U0)2

(c2
0 + v2

A)c2
T

[
ρ0
ρ1

(c21−(cT +U0)2)1/2

c1
+ ρ0

ρ2

(c22−(cT +U0)2)1/2

c2

]
 . (2.72)
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Equation (2.72) reduces to Equation (31) in Allcock and Erdélyi (2017) if

U0 = 0. From Equation (2.68) we see that there is a solution with ω0 = 0, and

so the quasi-kink mode with ω2 → 0 as kx0 → 0 is

ω2 ≈ kx0
2ρ0

ρ1 + ρ2

(k2v2
A − k2U2

0 ). (2.73)

Equation (2.73) simplifies to Equation (33) in Allcock and Erdélyi (2017) if

U0 = 0. Roberts (1981b) also found a surface sausage mode solution with

ω2 ≈ k2c2
e, however, this solution no longer exists unless a single exterior

sound speed c1 = c2 = ce exists.

The solutions obtained above do not constitute the full set of solutions for

a thin slab since we assumed that m0x0 → 0 as kx0 → 0. We now wish to find

solutions for which m0x0 is non-zero and finite as kx0 tends to zero. This only

occurs if |m2
0| → ∞ as kx0 → 0, and consequently, Ω→ k2c2

T as kx0 → 0. We

see that in this case m2
0 < 0 such that all solutions are body modes, and we

introduce n2
0 = −m2

0. For these solutions to exist, we require that n0 tan(n0x0)

and n0 cot(n0x0) in Equations (2.55) are finite. For this to be the case, we

require n0x0 → πn for sausage modes, and n0x0 → π(n− 1/2) for kink modes,

where n is an integer.

Ω2 ≈ k2c2
T

(
1 + k2x2

0

(v2
A − (cT − U0)2)(c2

0 − (cT − U0)2)

c2
0v

2
Aπ

2n2

)
, (2.74)

and one describing the set of quasi-kink modes

Ω2 ≈ k2c2
T

(
1 + k2x2

0

(v2
A − (cT − U0)2)(c2

0 − (cT − U0)2)

c2
0v

2
Aπ

2(n− 1
2
)2

)
, (2.75)

where n = 1, 2, 3 . . . .

2.3.3 Wide-slab Approximation

In the case of a wide slab, when the slab width is much larger than the wave-

length, we demonstrate that the two interfaces that define the slab cease in-

teracting. We begin by taking kx0 � 1, which implies that, for surface modes,

m0x0 � 1 (verified by Roberts, 1981b). In this approximation, tanhm0x0 ≈
cothm0x0 ≈ 1, which, when applied to Equation (2.48), allows us to factorise

the dispersion relation into two equations,

ρ0mj

ρjm0

(
k2v2

A − Ω2
)
− ω2 = 0, (2.76)
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for j = 1, 2. Equation (2.76) may be rearranged as

(R + 1)c2
ph − 2U0cph + U2

0 − v2
A = 0, (2.77)

where cph = ω/k is the phase speed, as introduced in Chapter 1, and

R =
ρ1m0

ρ0m1

. (2.78)

Since R depends on cph we may not immediately solve Equation (2.77). How-

ever, taking the incompressible limit, we obtain R→ ρ1/ρ0, and

cph =
ρ0

ρ0 + ρj
U0 ±

√
ρ0 + ρj
ρ0

v2
A −

ρj
ρ0

U2
0 . (2.79)

Using Equation (2.79), we recover the KHI criterion, Equation (1.80), where

only one side of the interface is magnetic,

U2
0 >

ρ0 + ρj
ρj

v2
A. (2.80)

We, therefore, see that when a surface wave propagates along a wide slab, it

behaves identically to two waves propagating on two independent interfaces.

As a consequence, the KHI threshold is unchanged. Equation (2.80) will be

employed in Section 2.4 to compare the analytical and numerical solutions to

the dispersion relation.

Body wave solutions in a wide slab also exist and are qualitatively different

from surface waves. Since the velocity amplitude of the wave does not decay

within the slab, but rather oscillates, the two interfaces that constitute the

slab may not be independent. Allcock and Erdélyi (2017) obtained formulas

for the body mode solutions in a static slab in an asymmetric environment,

which would only be changed by a Doppler-shift term in a steady slab.

2.4 General Numerical Solutions

2.4.1 Method

Let us find the general solutions to the dispersion relation, Equation (2.48).

Since, to the best of our knowledge, the general solutions cannot be obtained

analytically, we employ a numerical scheme. We begin by nondimensionalising

all quantities with respect to the Alfvén speed and, beside using the already

defined Alfvén Mach number MA = U0/vA, and normalised phase speed c̄ph =

cph/vA, we also introduce the normalised sound speeds c̄j =
√
c2
j/v

2
A (for j =

0, 1, 2), and normalised tube speed c̄T =
√
c2
T/v

2
A.
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In order to obtain general solutions to Equation (2.48) we write it in nondi-

mensional form by introducing the parameters defined above. The dispersion

relation may then be written as

R1R2M1M2c̄
4
ph +

[
1− (c̄ph −MA)2

]2
− 1

2
c̄2
ph

[
1− (c̄ph −MA)2

]
(R1M1 +R2M2)

[
tanh(M0K) + coth(M0K)

]
= 0

(2.81)

where R1 = ρ1/ρ0, R2 = ρ2/ρ0, K = kx0, and

M2
0 =

[
1− (c̄ph −MA)2

][
c̄2

0 − (c̄ph −MA)2
]

(1 + c̄2
0)
[
c̄2
T − (c̄ph −MA)2

]
M2

j =
m2

0

m2
j

=
c̄2
j

[
1− (c̄ph −MA)2

][
c̄2

0 − (c̄ph −MA)2
]

(c̄2
j − c̄ph)(1 + c̄2

0)
[
c̄2
T − (c̄ph −MA)2

] ,

(2.82)

for j = 1, 2.

Figure 2.3: Example for finding solutions in terms of K = kx0, for MA = 0,
R1 = R2 = 1.4, and c̄0 = 0.6.
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We wish to solve Equation (2.81) for c̄ph with respect to the parameters K,

MA, R1, R2, c̄0. Note that c̄T , c̄1 and c̄2 are defined in terms of the parameters

R1, R2, and c̄0. For the purposes of this Thesis, we will solve Equation (2.81)

for c̄ph in terms of arbitrary K or MA, while keeping the other variable, as well

as R1, R2, c̄0, fixed.

Suppose we wish to find solutions to Equation (2.81) for arbitrary K. Our

method is as follows. We begin by defining two sets,

X =
{
K(0), K(1), . . . , K(x̂)

}
,

Y =
{
c̄

(0)
ph , c̄

(1)
ph , . . . , c̄

(ŷ)
ph

}
,

(2.83)

such that their Cartesian product,

X × Y = {(K, c̄ph)|K ∈ X, c̄ph ∈ Y } , (2.84)

forms a grid in the Kc̄ph-plane. We use Newton’s method to solve Equation

(2.81) with c̄ph ∈ Y as starting points, and K ∈ X constant. Note that this

method may be used with any of the other parameters, MA, R1, R2, c̄0, instead

of K.

Figure 2.3 is a rudimentary dispersion diagram of Equation (2.81) which

illustrates the method described above. We defined a 51× 51 point grid, with

K(0) = 0, K(50) = 2, c̄
(0)
ph = 0 and c̄

(50)
ph = 0.9, which appears in solid gray

lines in the background of the figure. We define MA = 0, R1 = R2 = 1.4, and

c̄0 = 0.6 and apply our numerical scheme to find the solutions, which appear

as blue dots.

In order to obtain more elegant dispersion diagrams, we also employ the

technique known as numerical continuation. Using the method described

above, we obtain a set of solutions, S, of Equation (2.81). We, then, select

individual points, (K, c̄ph) ∈ S, and use Newton’s method to find solutions

for (K + δK, c̄ph + δc̄ph). Here, δK and δc̄ph are small quantities, typically at

least one order of magnitude smaller than K and c̄ph, respectively. Employing

this procedure allows us to obtain a line in the Kc̄ph-plane, which represents

the solution to Equation (2.81) for variable K and, although discrete, may be

represented as a continuous line. We use this technique to obtain Figures 2.4

to 2.12.

2.4.2 Numerical Results

Dispersion diagrams displaying general solutions to Equation (2.48) may be

found in Figures 2.4 to 2.12. They illustrate the behaviour of surface and body,
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quasi-sausage and quasi-kink modes, under the effect of a number of different

values of kx0 and MA. Figures 2.4 to 2.11 contain four types of equilibrium

conditions. Figures 2.4 to 2.7, represent the case where cT < c0 < vA and

the interior of the slab is denser than the exterior, while Figures 2.8 to 2.11

represent the case where vA < cT < c0 and the exterior densities are greater

than or equal to the interior. In order to better visualise the differences between

the symmetric and asymmetric environments, we have included side-by-side

phase diagrams that illustrate the change in behaviour due to the break in

symmetry. Thus, the four types of equilibria are defined by the density of the

interior of the slab as compared to the exterior regions (dense/sparse), and the

symmetry of the exterior (symmetric/asymmetric).

The imaginary part of the solutions to Equation (2.48) is displayed in the

dispersion diagrams where flow is present (MA 6= 0) in order to make a distinc-

tion between stable and unstable modes. Stable modes correspond to purely

real solutions, while unstable modes will have a non-zero imaginary component

which will act as a growth factor since we assumed that all perturbations are

proportional to e−i(ωt−kz).

In Figure 2.4a, we have recreated the dispersion diagram from Roberts

(1981b) for the slab in a symmetric environment with cT < c0 < vA, while in

Figure 2.4b we introduced a density asymmetry. As established in Subsection

2.2.5, slow surface modes have phase speed in the range (0, cT ), slow body

modes have phase speed in (cT , c0), and fast surface modes propagate with

phase speed in (c0,min(c1, c2)). Due to the asymmetry, the fast sausage mode

is pushed into the hatched region and is not present in 2.4b.

Figures 2.5 illustrates how a background flow of MA = 0.4 affects the

phase diagrams for both the symmetric and asymmetric exteriors. We observe

that this flow speed has broken the symmetry between forward and backward

propagating solutions in both cases. Because of this, the set of forward propa-

gating modes has been reduced to just the slow surface waves, but backward-

propagating fast body modes now exist. Note that in 2.5b, the asymmetry is

not large enough for the forward propagating slow surface quasi-sausage mode

to not be trapped.

Figures 2.6 display the effects of a background flow of MA = 0.6. This flow

strength is strong enough to cause the slow body modes, which would have been

backward propagating for lesser speeds, to now become forward propagating.

We notice that the behaviour is identical in the two panels, meaning that the
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asymmetry in the equilibrium profiles does not affect the change in direction

with increasing MA.

Figures 2.7 illustrate the behaviour of the system subject to a flow of MA =

0.9, which is strong enough for the KHI to occur. We see that in the case of

symmetric equilibrium profiles, the instability is restricted to a short range of

values of kx0 around 0.5. However, if the exterior parameters are asymmetric,

the mode which was previously unstable in only that small interval, is now

unstable for any value of kx0 greater than the instability onset value.

In Figure 2.8a, we have recreated the dispersion diagram from Roberts

(1981b) for the slab in a symmetric environment with vA < cT < c0, while in

Figure 2.8b we introduced a density asymmetry. As established in Subsection

2.2.5, slow surface modes have phase speed in the range (0, cT ), slow body

modes have phase speed in (cT , vA), and fast body modes propagate with

phase speed in (c0,min(c1, c2)). In order for the fast body modes to no longer

be trapped in the asymmetric system, we would require min(c1, c2) < c0.

Figures 2.9 to 2.11 showcase the effects of a non-zero flow on the symmetric

and asymmetric system for vA < cT < c0. In order for the backward propagat-

ing slow body modes to become forward propagating, we require MA > 1, as

may be seen in Figure 2.10. Figure 2.11 illustrates the fact that the slow kink

mode is unstable for any value of kx0 in the case of an asymmetric density

profile.

In Figures 2.12, the phase speed has been plotted with respect to MA, for

kx0 = 0.5 and two different density ratios. Panel (a) represents a symmetric

density profile, panel (b) an asymmetric one, and both satisfy cT < c0 < vA.

Comparing the two panels, it is immediately apparent that by increasing ρ2,

both the cut-off at c̄2 and the KHI threshold are lowered. Furthermore, the

lowered cut-off introduces the possibility that modes are no longer trapped for

some ranges of MA. It is also worth noting that modes with cph > min(c1, c2)

may exist as long as they are unstable since they satisfy the condition that

c2
ph > min(c2

1, c
2
2) and are thus trapped. The behaviour of the system is not

qualitatively different if the characteristic speeds are ordered as vA < cT < c0.

Figures 2.13 showcase the effect of having an asymmetric density profile

on the KHI threshold value. Throughout the panels, the green and red curves

(plotted for ρ1 = ρ2 = ρ0 and ρ1 = ρ2 = 2ρ0, respectively) represent the

symmetric density profiles. In the left panel, the blue curve also represents

a symmetric density profile, corresponding to a lower density ratio of ρ1 =

ρ2 = 0.5ρ0. This panel illustrates how, for symmetric density profiles, the
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KHI threshold increases, both with increasing values of kx0, but also with

decreasing values of the density ratios. As suggested by Equation (2.76), the

threshold value for a wide slab tends to that of a single interface. The middle

and right panels illustrate the effect of increasing asymmetry in the density

ratios. Due to the lack of interaction between the interface when kx0 � 1, the

greater density ratio will determine the threshold value. However, if kx0 / 1,

the densities on either side will play a role.

Figure 2.14 compares the effects of increasing density ratios in the case

of symmetric (left) and asymmetric slabs (centre). In both cases, three slab

widths are considered: a thin slab (red), with kx0 = 0.1, an “intermediate”

value of kx0 = 1 (green), and a wide slab (blue), with kx0 = 10. In the left

panel, the exterior densities are assumed to be equal (ρ1 = ρ2 = ρe), while

in the centre, we only assumed that ρ2/ρ0 = 2. The effect of the asymmetry

is most intense for small kx0, when there is most interaction between the

interfaces. The panel on the right illustrates how the wide asymmetric slab

becomes unstable when the interface corresponding to the highest density ratio

becomes unstable. For ρ1 < ρ2, the threshold corresponds to the interface with

the constant density ratio (represented by the horizontal dotted line), while

for ρ1 > ρ2, the threshold values tend to that of the interface with variable

density ratio (represented by the dot-dashed curve).
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Figure 2.4: The dispersion diagrams considering an interior that is dense, and
no background flow (MA = 0). Panel (a) illustrates the solutions obtained for
symmetric exterior density profiles, while (b)illustrates the effects of breaking
this symmetry. The shaded areas represent regions for which body modes
propagate. The hatched regions contain no stable trapped solutions (m2

1 < 0
or m2

2 < 0).
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Figure 2.5: The same as Figure 2.4, but including a background flow of Alfvén
Mach number MA = 0.4. The flow has removed the forward propagating fast
surface modes, and slow body modes.
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Figure 2.6: The same as Figure 2.4, but including a background flow of Alfvén
Mach number MA = 0.6. The bulk flow is now strong enough to have caused
the backward propagating slow body modes to become forward propagating.
The asymmetric density profile does not affect the threshold value at which
this happens.
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Figure 2.7: The same as Figure 2.4, but including background flows of Alfvén
Mach number MA = 0.9. In the symmetric case, the KHI occurs for a small
interval of kx0. If the exterior density profile is sufficiently asymmetric, the
slow kink mode becomes KH unstable for any value of kx0 greater than some
threshold value.
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Figure 2.8: The dispersion diagrams considering an interior that is sparse, and
no background flow (MA = 0). Panel (a) illustrates the solutions obtained for a
symmetric exterior density profile, while (b) illustrates the effects of breaking
this symmetry. The shaded areas represent regions for which body modes
propagate. The hatched regions contain no stable trapped solutions (m2

1 < 0
or m2

2 < 0).
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Figure 2.9: The same as Figure 2.8, but including background flows of Alfvén
Mach number MA = 0.4. The flow has shifted the phase speed, but unlike in
Figure 2.5 where the interior is dense, it has not removed any of the forward
propagating modes.

59



(a
)
c̄ 0

=
1.

3,
ρ
1
/ρ

0
=
ρ
2
/
ρ
0

=
5/

9
.

(b
)
c̄ 0

=
1.

3,
ρ
1
/
ρ
0

=
5/

9,
ρ
2
/
ρ
0

=
1
.

Figure 2.10: The same as Figure 2.8, but including background flows of Alfvén
Mach number MA = 1. The bulk flow is now strong enough to have caused
the backward propagating slow body modes to become forward propagating.
As in the case of the dense interior, the asymmetric density profile does not
affect the threshold value at which this happens.
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Figure 2.11: The same as Figure 2.8, but including background flows of Alfvén
Mach number MA = 1.4. In the symmetric case, the KHI occurs for a small
interval of kx0. If the exterior density profile is sufficiently asymmetric, the
slow kink mode becomes KH unstable for any value of kx0.
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Figure 2.12: The normalised phase speed, c̄ph, plotted with respect to the
Alfvén Mach number MA, for kx0 = 0.5. The density profile is symmetric in
Panel (a), and asymmetric in Panel (b). The shaded areas represent regions
where body modes propagate. The hatched regions contain no stable trapped
solutions (m2

1 < 0 or m2
2 < 0). Increasing the density on just one side of the

slab decreases the KH threshold and lowers cut-off speeds.
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Figure 2.13: The KHI threshold values of MA, calculated for values of kx0

from 0.05 to 2, for symmetric and asymmetric density profiles. The dashed
lines represent the threshold values of a single interface and correspond to the
density ratios of their respective colour.

Figure 2.14: The KHI threshold values of MA, calculated for symmetric (left)
and asymmetric density profiles (center, ρ2/ρ0 = 2). The panel on the right
compares the threshold values obtained for the wide asymmetric slab to that
of two non-interacting interfaces. The dotted horizontal line and the dot-
dashed curve represent the threshold values for the interfaces with constant
and variable density ratios, respectively.
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2.5 Applications

In the previous sections, we have derived the dispersion relation for a steady

slab embedded in an asymmetric environment and obtained approximate and

general solutions. We now wish to discuss possible applications of this model

and how it compares to previous formulations.

We will primarily focus on the observations described in Foullon et al.

(2011) of a KHI at a CME flank. The event observed by the Atmospheric

Imaging Assembly on board the Solar Dynamics Observatory on November

3, 2010 was described as a series of Kelvin-Helmholtz vortices propagating at

the flank of a CME. The region including the flank may be interpreted as a

three-layer waveguide, with the dense CME core on one side, the CME flank

in the middle, and the low density solar corona on the other side, as in Figure

2.15. Since the core ejecta is much slower than the flank on the time scale of

the instability, it is reasonable to approximate it as being static.

Using the parameters measured by Foullon et al. (2011) and Equation 2.48

we wish to estimate the densities of the CME core and flank in relation to

the coronal background density. We begin by assuming a background Alfvén

speed vA = 800 km s−1, and sound speed c0 = 0.6vA. The speeds of the

ejecta flow and of the perturbations at the interface were measured to be

U0 = 833 ± 5 km s−1, and cph = 417 ± 7 km s−1, respectively. Using these

values, we calculate the Alfvén Mach number of the flow, MA ≈ 1.05, and the

non-dimensionalised phase speed, c̄ph = 0.521 + ±0.009. The wavenumber is

measured as k ≈ 0.35 Mm, and the width of the shear layer is estimated to be

2x0 ≈ 2.25 ± 1.5 Mm, making kx0 ≈ 0.394 ± 0.263. Since kx0 < 1, there will

be interactions between the boundaries of the shear layer, meaning that the

density asymmetry will play an important roll in the formation of the KHI.

Before we start our analysis, we must first note that when the density

contrast between the three regions is such that min{c̄1, c̄2} < min{c̄0 +MA, 1+

MA}, there exist no trapped fast modes (as is the case in Figure 2.12). Since

we expect this to be the case, we immediately discount the fast modes. We

interpret the observation as that of a slow kink mode propagating along a

highly asymmetric steady slab. It has been shown by Allcock and Erdélyi

(2017) that, for both slow and fast modes, the transverse component of the

displacement is highly sensitive to the density asymmetry. The slow mode

interpretation is therefore reasonable despite the fact that one would expect

little transverse displacement in the low-beta coronal plasma.
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Figure 2.15: The KHI detected on the flank of the CME is displayed on the
left. The box on the right is a schematic representation of the unstable region.
For more details about the spatial and temporal evolution of this event, see
Foullon et al. (2011).

The results of the numerical analysis are presented in Figure 2.16, where

we assumed density ratios of ρ1/ρ0 = 1.7, and ρ2/ρ0 = 10−6. For MA ≈ 1.05,

we obtain c̄ph = 0.526, which matches the observed phase speed estimate of

c̄ph = 0.521 + ±0.009. The growth rate of the instability, i.e. the imaginary

part of ω, is calculated to be γ ≈ 0.023 s−1, which compares reasonably well

with the observed growth rate of γ = 0.05± 0.03 s−1.

We note that the choice of density ratios is significantly more sensitive on

the interface separating the core from the flank. We were able to obtain values

of c̄ph and γ in close agreement with the observations for values of ρ1/ρ0 in the

range (1.6, 1.8). On the other hand, ρ2/ρ0 may be as high 10−3, with values

lower than 10−6 having very little further effect. Our model is, therefore, in

good agreement with the observations, and estimates the density of the CME

ejecta to be at least 6 orders of magnitude higher than the background coronal

density of ≈ 10−12 kg m−3.

Our interpretation is significantly more accurate than one by means of

a single interface model. In such a model, one would have to assume an

unrealistically low Alfvén speed in order to match the observed phase speed

with a high density contrast. Otherwise, assuming a realistic Alfvén speed

vA = 800 km s−1 would yield a density ratio of ρ2/ρ0 = 1/3 between the flank

and the corona, which would significantly underestimate the density of the

CME. Similarly, the high density contrast could also not be obtained from a
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Figure 2.16: The slow kink mode plotted for c0 = 0.6vA, ρ1/ρ0 = 1.7, ρ2/ρ0 =
10−6, and kx0 = 0.5. The upper and lower panels contains the real and
imaginary parts of the non-dimensionalised phase speed, respectively.

model of a slab in a symmetric environment.

One limitation of our model is that it does not adequately explain the

absence of the KHI on the inner interface, between the core and the flank. It

is likely that the core is permeated by a strong magnetic field which inhibits

the formation of the instability. This effect would have to be included in a

more realistic interpretation.

2.6 Summary and Discussion

In this Chapter, we studied the effects of a steady flow on the propagation

of magnetoacoustic waves in a magnetic slab in an asymmetric environment,

and we examined the effects of the asymmetry on the KHI threshold value. In

order to accomplish this, we derived the dispersion relation, Equation (2.48),

from the ideal MHD equations (Subsections 2.2.1, 2.2.2 and 2.2.3). Since

our analysis is only concerned with trapped mode solutions, we first obtained

necessary and sufficient conditions for their existence. We, then, classified them

as surface or body, quasi-sausage or quasi-kink modes (Subsection 2.2.5), and

obtained analytical solutions using the incompressible, thin slab , and wide
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slab approximations (Section 2.3). We also obtained general solutions to the

dispersion relation and values for the KHI threshold under various parameter

regimes (Section 2.4). Finally, we present an application for the model with

the aim of estimating the magnetic field strength of a KH unstable CME flank

in Section 2.5.

The general numerical results, including the dispersion diagrams and KHI

threshold values, are presented in Figures 2.4 to 2.14. We found that the flow

causes the symmetry between forward propagating (cph > 0) and backward

propagating (cph < 0) modes to break, causing various modes to no longer be

trapped. Furthermore, it causes backward propagating modes to become for-

ward propagating after some threshold value particular to the mode. Finally,

flow speeds past a critical value will cause the KHI to occur. In terms of the

solutions to Equation (2.48), this occurs when ω2 < 0, where the imaginary

part of the solution acts as the growth rate in the time evolution of the wave,

causing it to steepen.

We wish to establish the qualitative effects of the asymmetry on the KHI

in order to generalise the results of Allcock and Erdélyi (2017) on wave prop-

agation. The authors found that asymmetry in the density profile asymmetri-

cally modifies the amplitudes of the sausage and kink modes. In a symmetric

slab, these modes would have anti-symmetric and symmetric amplitudes about

the z-axis, respectively. However, the asymmetric density profile causes the

quasi-sausage mode to increase in amplitude about the interface separating

the interior from the lower density region, and decrease in amplitude about

the other. The converse is true for the quasi-kink mode.

While it is clear that the slab is asymmetrically unstable for kx0 � 1, as

shown by the analysis of Subsection 2.3.3, we should consider the asymme-

try for intermediate and low values of kx0 as well. Considering the results

of Allcock and Erdélyi (2017) described above, we suggest that for asymmet-

ric density profiles and for intermediate or large values of kx0, the slab may

become asymmetrically unstable. A quasi-sausage wave would render KH un-

stable the boundary separating the sparser region from the interior, while the

converse would be true for the quasi-kink due to the asymmetry in the wave

amplitude (see also Figure 2.1). It is unlikely that this is true for thin slabs

since the boundaries interact strongly for both quasi-kink and quasi-sausage

modes. This hypothesis should be checked by performing a more detailed

analysis of the eigenfunctions which is beyond the scope of this Thesis.
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Highly asymmetric systems, such as the CME flank in Foullon et al. (2011),

are likely prone to KHIs as long as the boundaries of the slab interact. In that

example, the low density of the corona stabilises the CME flank, while the

high density core destabilises it, and we observe the KHI. Due to this configu-

ration of CMEs not being uncommon, we suggest that the limited number of

observations are not indicative of the number of instances of the KHI in these

phenomena. Further study is need in order to determine its prevalence. Appli-

cations of this model are in no way limited to CME flanks, even though they

received much attention in this Chapter. Any analysis of a steady configura-

tion, whether solar or magnetospheric, that may be modelled using the ideal

MHD equations and approximated by a slab geometry, would likely benefit

from the inclusion of asymmetry.
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CHAPTER 3

An Analytical Model of the Kelvin-Helmholtz

Instability of Transverse Coronal Loop Oscilla-

tions

Abstract

Recent numerical simulations have demonstrated that transverse coronal loop

oscillations are susceptible to the Kelvin-Helmholtz (KH) instability due to

the counter-streaming motions at the loop boundary. We present the first an-

alytical model of this phenomenon. The region at the loop boundary where

the shearing motions are the greatest is treated as a plane interface separating

time-periodic counter-streaming flows. In order to consider a twisted tube,

the magnetic field at one side of the interface is inclined. We show that the

evolution of the displacement at the interface is governed by Mathieu’s equa-

tion and we use this equation to study the stability of the interface. We prove

that the interface is always unstable, and that, under certain conditions, the

magnetic shear may reduce the instability growth rate. The result, that the

magnetic shear cannot stabilise the interface, explains the numerically found

fact that the magnetic twist does not prevent the onset of the KH instability at

the boundary of an oscillating magnetic tube. We also make use of the notion

of the loop σ-stability. We say that a transversally oscillating loop is σ-stable

if the KH instability growth time is larger than the damping time of the kink

oscillation. We show that even relatively weakly twisted loops are σ-stable.

This chapter is based on the following accepted manuscript:

• Barbulescu, M., Ruderman, M.S., Van Doorsselaere, T., Erdélyi, R.; An Analytical
Model of the Kelvin-Helmholtz Instability of Transverse Coronal Loop Oscillations,
Astrophys. J., accepted.
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3.1 Introduction

Transverse oscillations of coronal loops have been a subject of extensive study

since their original observation on 14 July 1998 by the Transition Region and

Coronal Explorer (TRACE) (Aschwanden et al., 1999; Nakariakov et al., 1999).

For a review of the theory of these oscillations see Ruderman and Erdélyi

(2009).

In particular, the damping mechanism of transverse loop oscillations has

received much attention (e.g. Ruderman and Roberts, 2002; Goossens et al.,

2002; Van Doorsselaere et al., 2004; Dymova and Ruderman, 2006; Williamson

and Erdélyi, 2014), with the caveat that many studies have relied on the as-

sumption that the oscillations are in the linear regime. The nonlinear damping

of transverse coronal loop oscillations has also been studied, both analytically

(Ruderman et al., 2010; Ruderman and Goossens, 2014; Ruderman, 2017), as

well as numerically (e.g. Terradas and Ofman, 2004; Magyar and Van Doorsse-

laere, 2016a). The numerical studies revealed important effects, such as that of

the ponderomotive force, and the presence of the Kelvin-Helmholtz instability

(KHI) at the loop boundaries. More recently, Goddard and Nakariakov (2016)

carried out a statistical study of observations of the damping of coronal loop

kink oscillations.

Terradas et al. (2008) suggested that a kink oscillation may render a flux

tube unstable due to the shear motions at the boundaries. The authors found

that, for a smooth transition layer, the instability developed rapidly where the

difference between the internal and external flow amplitudes was the great-

est. However, increasing the thickness of the transitional layer significantly

decreased the growth rate of the instability. It is worth noting that the KHI

in smooth transition layers via other mechanisms (e.g. phase mixing, resonant

absorption) had also received attention previously (see, for example, Heyvaerts

and Priest, 1983; Ofman et al., 1994; Poedts et al., 1997). For a recent review

on modelling the KHI see, e.g. Zhelyazkov (2015).

The topic of the transverse wave induced Kelvin-Helmholtz (TWIKH) in-

stability was subsequently investigated by Antolin et al. (2014), who suggested

that this phenomenon may be responsible for the fine strand-like structure ob-

served in some coronal loops. The TWIKH instability has since been studied

by Antolin et al. (2016); Magyar and Van Doorsselaere (2016a,b); Karam-

pelas et al. (2017); Howson et al. (2017b,a); Karampelas and Van Doorsselaere
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Figure 3.1: Sketch of a straight magnetic flux tube with stationary footpoints
undergoing transverse (kink) motion. The panel on the right represents the
velocity field in a cross section of the tube, at half the length of the tube. The
greatest shearing occurs between the vectors coloured in red, highlighted by
the dashed boxes.

(2018), who considered aspects of the instability onset, growth rate and obser-

vational properties.

The configuration of the equilibrium magnetic field is an important aspect

of TWIKH instabilities. It was suggested by Terradas et al. (2008) that a

twisted magnetic field may suppress the instability. The effect of twist on the

stability of transverse loop transverse oscillations was studied numerically by

Howson et al. (2017a) who investigated the energetics of the instability of a

magnetically twisted coronal loop and found that its evolution is affected by

the strength of the azimuthal component of the magnetic field. The authors

also found that, when magnetic twist is present, the KHI leads to greater

Ohmic dissipation as a result of the production of larger currents. Furthermore,

Terradas et al. (2018) studied the evolution of the instability and found that

the magnetic twist increases the instability growth time.

Numerical simulations have provided some insight into the development of

the KHI, but have not thoroughly established what the conditions are needed

for its onset. In this Chapter, we find these requirements analytically by

modelling the boundary of the flux tube where the shearing is greatest as a

single interface separating regions of different densities and magnetic fields, and

performing a local stability analysis. We emulate the effect of the transverse

oscillation by subjecting each region to temporally periodic counter-streaming

flows.
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The Chapter is organised as follows: in Section 3.2, we introduce a Carte-

sian model of the boundary of a twisted flux tube, and derive the governing

equation for the displacement. The stability of the flow is analysed in Sec-

tion 3.3, followed by applications to transverse coronal loop oscillations in

Section 3.4. Section 3.5 contains the summary of the obtained results and our

conclusions.

3.2 The Governing Equation

It is well established that a magnetic flux tube undergoing transverse oscillation

is prone to the Kelvin-Helmholtz instability due to the shearing motions at the

boundaries (Terradas et al., 2008). Considering only the fundamental mode of

oscillation, we wish to obtain the TWIKH instability criterion. We start by

considering a magnetically twisted flux tube of length L. The amplitude of a

fundamental transverse oscillation is greatest at the half-length of the tube,

L/2, so that is where the shearing is the greatest. We consider a plane Π

orthogonal to the tube axis and crossing it at its half-length. The intersection

of this plane with the tube boundary is a circle. We introduce the angle ϕ

in the plane Π, measured from the direction of the oscillation velocity in the

counter-clockwise direction. Then, the shear velocity at the tube boundary

takes its maximum at ϕ = π/2 and ϕ = 3π/2, i.e. at the two points where it

is parallel to the oscillation velocity (see Figure 3.1).

In order to study the effect of the shearing motions around this region, we

model it as a single interface separating temporally periodic counter-streaming

flows. We introduce the Cartesian coordinate system x, y, z with the x-axis

parallel to the direction of the polarisation of the kink oscillation, and the

z-axis parallel to the tube axis. The interior and exterior of the tube are

represented by the regions y < 0 and y > 0, respectively. The equilibrium

quantities in these regions are denoted by the subscripts i and e, respectively.

We assume that the equilibrium magnetic field is in the xz-plane. Since

we wish to obtain the stability criteria both for straight and twisted tubes,

we assume that the equilibrium magnetic field is parallel to the z-axis in the

region y > 0, and makes an angle θ with respect to the z-axis in the region

y < 0. Here, θ corresponds to the degree of twist (Figure 3.2a), which should

be small since highly twisted magnetic flux tubes are prone to other types of

instabilities, such as the kink instability, with which we are not concerned in
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θ
BiBe

(a) A twisted magnetic flux tube embedded
in a straight magnetic field.

Bi=(Bisinθ, 0, Bicosθ)

Ue = (-Ucos(Ωt), 0, 0)

Ui = (Ucos(Ωt)cosθ, 0, -Ucos(Ωt)sinθ)

x

y

z

θ

θ

θ

Be=(0, 0, Be)

(b) The magnetic fields and flows at the in-
terface.

Figure 3.2: Sketch of a twisted magnetic tube, (a), and a diagram of the flows
on each side of the boundary during transverse oscillation (b).

the present study (e.g. Shafranov, 1958; Kruskal et al., 1958; Hood and Priest,

1979). In the case of a non-twisted flux tube, θ = 0.

In the present model, the background flows are similar to the velocity field

at the boundary of a cylindrical flux tube undergoing a transverse oscillation.

In transverse oscillations of coronal loops, the displacement of the flux tube’s

boundary is almost perpendicular to the background magnetic field in the low-

beta plasma approximation (see, e.g. Ruderman, 2007), therefore, we consider

unperturbed magnetic fields and flow velocities, in Cartesian coordinates, of

the form

Bi = (Bi sin θ, 0, Bi cos θ),

Be = (0, 0, Be),

Ui = (U cos(Ωt) cos θ, 0,−U cos(Ωt) sin θ),

Ue = (−U cos(Ωt), 0, 0),

(3.1)

as illustrated in Figure 3.2b. Here, the period of the oscillatory flow, 2π/Ω,

corresponds to the period of oscillation of the flux tube.

It is worth noting that the problem of oscillatory counter-streaming flows

has been previously studied by, e.g. Kelly (1965) and Roberts (1973). Our

model is an improvement since we do not only consider parallel flows. Further-

more, our model differs from that of Roberts (1973) since we consider magnetic

fields perpendicular to the flows on each side of the interface.

We study the dynamics of the outlined problem in the framework of linear

ideal MHD. Since, for transverse loop oscillations, the effects of compressibility
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are not significant (Ruderman and Erdélyi, 2009), we may use the approxima-

tion of incompressible plasma in order to simplify the analysis. The set of

governing equations is, thus, Equations (1.44) – (1.46), which we rewrite here

as

Dv

Dt
= − 1

ρi,e
∇pT +

1

µ0ρi,e
(Bi,e · ∇)b, (3.2)

Db

Dt
= (Bi,e · ∇)v, (3.3)

∇ · v = 0, (3.4)

∇ · b = 0, (3.5)

where v,b and pT are the perturbations of the velocity, magnetic field, and

total pressure (magnetic plus plasma), ρi,e are the background internal and

external densities, and µ0 is the magnetic permeability of free space. Taking

into account Equation (3.1), the material derivative, D/Dt, may be written as

D

Dt
=


∂

∂t
+ U cos(Ωt) cos θ

∂

∂x
− U cos(Ωt) sin θ

∂

∂z
, y < 0,

∂

∂t
− U cos(Ωt) cos θ

∂

∂x
, y > 0.

(3.6)

Applying the material derivative to Equation (3.2) yields

D2v

Dt2
= − 1

ρi,e

D

Dt
∇pT +

1

µ0ρi,e
(Bi,e · ∇)

Db

Dt
, (3.7)

since the differential operators Bi,e · ∇ and D/Dt are independent of x and,

thus, commute. Introducing Equation (3.3) into (3.7), one obtains

D2v

Dt2
− 1

µ0ρi,e
(Bi,e · ∇)2v = − 1

ρi,e

D

Dt
∇pT . (3.8)

We now introduce the Lagrangian displacement ξ = ξ(x, t), which is related

to the velocity perturbation by v(x, t) = Dξ/Dt, as introduced in Equation

(1.47). Equation (3.8) becomes

D3ξ

Dt3
− 1

µ0ρi,e
(Bi,e · ∇)2 Dξ

Dt
= − 1

ρi,e

D

Dt
∇pT , (3.9)

which may be integrated to obtain

D2ξ

Dt2
− 1

µ0ρi,e
(Bi,e · ∇)2ξ = − 1

ρi,e
∇pT . (3.10)

The arbitrary functions of integration which should have been introduced when

obtaining Equation (3.10) may safely be omitted since we are only concerned
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with solutions at y = 0, and taking into account that the displacement and

total pressure must be continuous at the interface.

Taking into account Equation (1.49) and the fact that the divergence oper-

ator commutes with all other differential operators in Equation, we apply ∇·
on Equation (3.10). The result is Laplace’s equation for the total pressure

∇2pT = 0. (3.11)

We Fourier-decompose the total pressure and write it in the form pT = p̂T exp[i(kxx+

kzz)], such that Equation (3.11) becomes(
d2

dy2
− k2

x − k2
z

)
p̂T = 0. (3.12)

The solution to Equation (3.12), which satisfies the condition that the total

pressure is continuous at y = 0, is

p̂T (y) = p0

{
eky, y ≤ 0,

e−ky, y ≥ 0,
(3.13)

where p0 is an arbitrary constant, k = (kx, 0, kz) is the wave vector, and

k =
√
k2
x + k2

z .

Introducing ξ = ξ̂ exp[i(kxx + kzz)], and using Equation (3.13), the y-

component of Equation (3.10) may be written as(
∂

∂t
+ ikxU cos(Ωt) cos θ − ikzU cos(Ωt) sin θ

)2

ξ̂y

+ v2
Ai (kx sin θ + kz cos θ)2 ξ̂y = −p0

k

ρi
eky,

(3.14)

for y ≤ 0, and (
∂

∂t
− ikxU cos(Ωt)

)2

ξ̂y + v2
Aek

2
z ξ̂y = p0

k

ρe
e−ky, (3.15)

for y ≥ 0. Here, v2
Ai,e = B2

i,e/µ0ρi,e are the Alfvén speeds on either side of the

interface. Considering Equations (3.14) and (3.15) at the boundary (i.e. at

y = 0) allows us to eliminate p0 and obtain a single equation for ξ̂y(t),

ρi

(
d

dt
+ ikxU cos(Ωt) cos θ − ikzU cos(Ωt) sin θ

)2

ξ̂y

+ ρe

(
d

dt
− ikxU cos(Ωt)

)2

ξ̂y

+
[
ρiv

2
Ai

(
kx sin θ + kz cos θ

)2
+ ρev

2
Aek

2
z

]
ξ̂y = 0.

(3.16)
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Equation (3.16) may be rearranged such that we obtain the governing equation

for the displacement at the boundary,{
d2

dt2
+ 2iA cos(Ωt)

d

dt
− iΩA sin(Ωt)−B cos2(Ωt) + C

}
ξ̂y = 0,

A =
U
[
ρi(kx cos θ − kz sin θ)− ρekx

]
ρi + ρe

,

B =
U2
[
ρi (kx cos θ − kz sin θ)2 + ρek

2
x

]
ρi + ρe

,

C =
ρiv

2
Ai (kx sin θ + kz cos θ)2 + ρev

2
Aek

2
z

ρi + ρe
.

(3.17)

In order to be able to study the stability of Equation (3.17), we write ξ̂y as

ξ̂y(t) = g(t)η(t), (3.18)

which may be introduced into Equation (3.17), such that it becomes

d2g

dt2
η+2

dg

dt

dη

dt
+ g

d2η

dt2
+ 2iA cos(Ωt)(

dg

dt
η + g

dη

dt
)

−iΩA sin(Ωt)gη −B cos2(Ωt)gη + Cgη = 0.

(3.19)

In order to simplify Equation (3.19), we must find an appropriate condition for

g such that the first order derivatives of η vanish. From Equation (3.19), we

deduce that for there to be no first order derivatives of η in Equation (3.17),

we require
dg

dt

dη

dt
+ iA cos(Ωt)g

dη

dt
= 0. (3.20)

The solution of Equation (3.19) is

g(t) = exp

{
−iA

Ω
sin(Ωt)

}
. (3.21)

Note that |g(t)| = 1, meaning that it does not affect our local stability analysis.

Introducing Equation (3.21) into Equation (3.19) and simplifying the extra

terms, we obtain

d2η

dt2
+ [(A2 −B) cos2(Ωt) + C]η = 0, (3.22)

which may be rewritten as

d2η

dτ 2
+ [a− 2q cos(2τ)]η = 0, (3.23)
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where τ = Ωt, and

a =
1

2
(A2 −B) + C,

q =
1

4
(B − A2).

(3.24)

It is now convenient to rewrite the wave vector in terms of its magnitude,

k, and the angle between the wave vector and the x-axis, φ. Thus,

kx = k cosφ, kz = k sinφ. (3.25)

Considering Equations (3.17), (3.25) and the angle sum formulae, Equation

(3.24) becomes

q =
rκ2M2

A[cos(θ + φ) + cosφ]2

4(1 + r)2
,

α =
κ2[sin2(θ + φ) + rv̄2

A sin2 φ]

1 + r
,

a = α− 2q,

(3.26)

where τ = Ωt, r = ρe/ρi is the density ratio, MA = U/vAi is the Alfvén

Mach number, v̄A = vAe/vAi is the ratio of Alfvén speeds, and κ = kvAi/Ω

is the dimensionless wavenumber. From Equation (3.26), it is straightforward

to see that q and a are invariant with respect to the substitution φ + π → φ.

This enables us to only consider values of φ in the interval [−π/2, π/2] when

studying the stability of Equation (3.23).

It is important to note that, since |g(t)| = 1, the variable substitution

does not affect the stability analysis. Hence, unstable perturbations of the

boundary correspond to unstable solutions of Equation (3.23). Equation (3.23)

is known as Mathieu’s equation (McLachlan, 1946). Mathieu’s equation also

arises in other MHD problems, namely, it describes the amplification of MHD

waves by periodic external forcing (e.g. Zaqarashvili, 2000; Zaqarashvili et al.,

2002, 2005), and the Rayleigh-Taylor instability of a magnetic interface in the

presence of oscillating gravity (Ruderman, 2018).

3.3 Investigation of Stability

In this section, we use Equation (3.23) to study the stability of the tangential

discontinuity with an oscillating shear velocity. For comparison, we first briefly

outline the well-known results related to the stability of a tangential discon-

tinuity separating steady flows. To the best of our knowledge, these results

were first obtained by Syrovatskii (1957) (see also Chandrasekhar, 1961).
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3.3.1 Stability of Steady Flows

Before analysing the fully time dependent governing Equation (3.23), we return

to Equation (3.17) and set Ω = 0, in order to perform the analysis of the

configuration in the presence of steady flows. Equation (3.17) becomes{
d2

dt2
+ 2iA

d

dt
−B + C

}
ξ̂y = 0. (3.27)

Since the coefficients in Equation (3.27) are independent of t, we can look

for the solution to this equation proportional to e−iωt, where ω is the angular

frequency of the perturbation. We obtain the dispersion relation

(1 + r)c̄2
ph − 2MA[cos(θ + φ)− r cosφ]c̄ph +M2

A[cos2(θ + φ) + r cos2 φ]

− sin2(θ + φ)− rv̄2
A sin2 φ = 0,

(3.28)

where c̄2
ph = ω2/k2v2

Ai is the non-dimensionalised phase speed.

We note that if the roots to Equation (3.28) are real, then ξ̂y(t) is oscillatory

and the system is neutrally stable. However, if complex conjugate roots exist,

one of the roots has a positive imaginary part, meaning that |e−iωt| → ∞ as

t → ∞, and the equilibrium configuration is unstable. Equation (3.28) has

complex roots when its discriminant,

∆ = 4M2
A

[
cos(θ + φ)− r cosφ

]2
− 4(1 + r)

{
M2

A[cos2(θ + φ) + r cos2 φ]− sin2(θ + φ)− rv̄2
A sin2 φ

} (3.29)

is negative, which occurs when MA > MA0, where

M2
A0 =

(1 + r)[sin2(θ + φ) + rv̄2
A sin2 φ]

r[cos(θ + φ) + cosφ]2
. (3.30)

Considering (3.29), the solutions of Equation (3.28) may be written as

ω =
kvA

2(1 + r)

[
2MA

(
cos(θ + φ)− r cosφ

)
±
√

∆

]
. (3.31)

Equation (3.30) is singular for some specific values of φ and θ which are

obtained by solving the equation

cos θ − tanφ sin θ + 1 = 0. (3.32)

By inspection, we immediately find that

θ = (2n+ 1)π, (3.33)
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satisfies Equation (3.32), where n is an integer, and φ is arbitrary. This is the

case when the flows on either side of the interface are parallel and the system

cannot be unstable since there is no velocity shear. Solving Equation (3.32)

explicitly, we find a second solution

φ = arctan

(
1 + cos θ

sin θ

)
, (3.34)

and by using the half angle formula, we find that

1 + cos θ

sin θ
=

1− cos ((2n+ 1)π − θ)
sin ((2n+ 1)π − θ)

= tan

(
(2n+ 1)π − θ

2

)
.

Equation (3.34) may, thus, be written as

θ = (2n+ 1)π − 2φ. (3.35)

Equations (3.33) and (3.35) define the lines in the φθ-plane where solutions to

Equation (3.28) are stable regardless of MA.

The minimum value of MA0 in terms of θ may be obtained by differentiating

Equation (3.30) with respect to φ and solving the resulting equation,

tanφ(cos θ + rv̄2
A) + sin θ = 0. (3.36)

Equation (3.36) has the solution

φ = φ0 ≡ − arctan

(
sin θ

cos θ + rv̄2
A

)
. (3.37)

Substituting Equation (3.37) into Equation (3.30), yields the minimum value

of MA0,

min{M2
A0} =

v̄2
A(1 + r) tan2(θ/2)

1 + rv̄2
A

. (3.38)

It follows that the system is stable for any value of MA below min{MA0},
while there are always unstable perturbations when MA > min{MA0}. The

value of min{M2
A0} is plotted with respect to θ in Figure 3.3. Although for

applications to transverse loop oscillations we only consider θ � 1, here we

included a wider range of values for completeness.

The value of MA0 is illustrated as a contour plot with respect to φ and θ in

Figure 3.4. Both the singular values obtained in Equations (3.33) and (3.35)

are found in this figure. Furthermore, for the values of v̄A =
√

3 and r = 1/3,

which were considered here, Equation (3.37) reduces to φ0 = (2n+ 1)π − θ/2.

One final remark must be made regarding the stability of solutions of Equa-

tion (3.28). Since ω is proportional to k, as shown in Equation (3.31), it follows
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Figure 3.3: The minimum value of MA0 with respect to θ, for v̄2
A = r−1 = 3.

that the instability growth rate is also proportional to k. This implies that the

growth rate tends to infinity as k →∞. Since the growth rate of the instability

is unbounded, we say that the initial value problem describing the evolution

of the boundary is ill-posed. If the growth rate were bounded as k → ∞, we

would have said that the initial value problem were well-posed. In the case of

the stability of Equation (3.23) for the oscillatory flows defined in Equation

(3.1), the question of whether the initial value problem is well- or ill-posed is

discussed in Subsection 3.3.3.

3.3.2 Stability of Oscillating Flows

We now use Equation (3.23) to study the stability for arbitrary values of the

equilibrium quantities. Floquet’s theorem states that Equation (3.23) has a

solution of the form

η+(τ) = eµτP (a, q, τ),

where µ = µ(a, q) is the characteristic exponent, and P (a, q, τ) is a periodic

function in τ , with period π (see, e.g., McLachlan, 1946; Abramowitz and Ste-

gun, 1965). Since Equation (3.23) is invariant with respect to the substitution

−τ → τ it follows that η−(τ) = e−µτP (a, q,−τ) is also a solution to this equa-

tion. Then, the general solution to Equation (3.23) is the linear combination

of η+(τ) and η−(τ) unless iµ is an integer number.

The parameter µ determines the nature of solutions to Mathieu’s equation.

We may always assume that <(µ) > 0, unless µ is purely imaginary, where <
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Figure 3.4: Contour plot of MA0 with respect to φ and θ, for v̄2
A = r−1 = 3.

indicates the real part of a quantity. Since we may write

eµτ = exp(<(µ)Ωt) exp(i=(µ)Ωt),

where = indicates the imaginary part of a quantity, it follows that purely

imaginary values of µ correspond to neutrally stable solutions, while real and

complex values correspond to unstable solutions. Hence, <(µ) > 0 corresponds

to an unstable perturbation. Unfortunately, µ cannot be easily computed

analytically, and, for this reason, we perform a numerical analysis to gain

further insight.

Following McLachlan (1946), we plot the stability diagram of Equation (3.23)

in the qa-plane (Figure 3.5a). In accordance with the definition of q in Equa-

tion (3.26), we only consider q > 0. The white and hatched regions correspond

to purely imaginary and real/complex values of µ, respectively, and thus, to

stable and unstable solutions to Equation (3.23). The contours bounding the

regions are defined by the condition that iµ is an integer number, so that

Equation (3.23) has either π or 2π-periodic solutions when the point (q, a) is

on one of these contours. These contours are called the characteristic curves,
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(a)

(b)

Figure 3.5: The stability diagram for solutions to Mathieu’s equation (a).
Solutions are stable/unstable for (q, a) in the white/hatched region. In (b),
the real part of µ is plotted for q > 0.

and are defined by the equations a = aj(q) and a = bj(q). These func-

tions satisfy the inequalities aj < bj+1 < aj+1, where j = 0, 1, 2, . . . . The

curves aj(q) and bj(q) are shown by solid and dotted lines, respectively, in

Figure 3.5a. The asymptotic behaviour of aj(q) and bj+1(q) for large q is given
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Figure 3.6: The stability diagram for solutions to Mathieu’s equation, for three
possible values of K. The curves a = aj(q) and a = bj(q) are shown by solid
and dotted lines, respectively, as in Figure 3.5a. The blue, green, and red
straight lines correspond to K ≈ 4, K ≈ −0.2, and K = −2, respectively.

by aj(q) ∼ bj+1(q) ∼ −2q (Abramowitz and Stegun, 1965).

Complementary to the above, Figure 3.5b shows the values of the charac-

teristic exponent µ. Purely imaginary solutions are plotted in white, and are

separated from real/complex solutions by the characteristic curves, while the

real part of µ is plotted in contours in the unstable regions.

The coefficients in Equation (3.23) depend on six dimensionless parame-

ters. Four of these parameters, r, θ, MA, and v̄A, are only dependent on the

equilibrium quantities, while the other two, κ, and φ, are related to particular

perturbations, and are thus arbitrary. Hence, we must study the behaviour

of solutions to Equation (3.23) for all possible values of these two parameters.

When φ is fixed and κ varies from 0 to∞, Equations (3.26) describe a straight

line in the qa-plane. The equation of this line may be written as

a = Kq, K =
4M2

A0

M2
A

− 2. (3.39)
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From Equations (3.30) and (3.39), we note that K > −2 for any θ 6= 0 and

any values of the other parameters. Considering the asymptotic behaviours of

the characteristic curves, it follows that the line a = Kq always intersects all

curves a = aj(q) and a = bj+1(q), for j = 0, 1, . . . . Hence, there always exist

some values of κ and φ for which perturbations are unstable, regardless of the

values of the other parameters. This implies that the tangential discontinuity

separating oscillating flows is unstable for any value of MA, which is quali-

tatively different from the discontinuity separating steady flows considered in

Subsection 3.3.1. In the case of no magnetic shearing, i.e. when θ = 0, per-

turbations with φ = φ0 = 0 and any κ are unstable since the line a = Kq will

always be under the curve a0(q). This is illustrated by the red line in Figure

3.6. The green and blue lines in Figure 3.6 correspond to θ = 0.5◦ and θ = 1◦,

respectively, and φ = φ0. The straight lines in Figure 3.6 are further discussed

in Subsection 3.4.1.

3.3.3 The Initial Value Problem

In Subsection 3.3.2, it was demonstrated that all solutions of Equation (3.23),

with q and a satisfying Equation (3.26), are unstable for arbitrary k. Re-

call from the definition in Subsection 3.3.1 that the initial value problem for

Equation (3.23) is said to be well-posed if the growth rate of the instabil-

ity is bounded as k → ∞, and ill-posed if the growth rate is unbounded as

k →∞. The unbounded growth problem as k →∞ consequence of neglected

dissipation, which scales like k2.

In Subsection 3.3.1 it was shown that, if the flows on each side of the

boundary are steady, the configuration is unstable for MA > min{MA0} and

stable for MA < min{MA0}. Furthermore, the initial value problem for MA >

min{MA0} was shown to be ill-posed. In the current Subsection, we prove that

the initial value problem for Equation (3.23), with q and a satisfying Equation

(3.26), is ill-posed for MA > min{MA0}, and well-posed for MA < min{MA0}.
In order to prove that the initial value problem is ill-posed for MA >

min{MA0}, we use the comparison theorem for second order linear ordinary

differential equations, also called the Sturm-Picone comparison theorem (e.g.

Coddington and Levinson, 1955). This theorem states that, given two equa-

tions of the form
d2f

dt2
+ g1,2(t)f = 0, (3.40)

where g1,2(t) are piecewise continuous functions on an interval [t0, t1], with

g1 ≥ g2, it may be shown that f1 ≥ f2, where f1,2(t) are the solutions of the
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two Equations (3.40). This theorem is only valid if the two Equations (3.40)

have identical initial conditions.

Consider MA > MA0, such that K < 2, as may be seen from Equation

(3.39). The scaled variables ã = κ−2a, q̃ = κ−2q, and τ̃ = κτ are introduced,

and Equation (3.23) is rewritten as

d2η

dτ̃ 2
+ [ã− 2q̃ cos(2τ̃ /κ)]η = 0. (3.41)

It is important to note that ã and q̃ are independent of κ, and also that ã = Kq̃.

The aim, now, is to find some Equation of the form

d2η

dτ̃ 2
+ gη = 0. (3.42)

such that

ã− 2q̃ cos(2τ̃ /κ) ≥ g, (3.43)

on the interval τ̃ ∈ [0, τ̃0], where τ̃0 is to be determined.

Let g = −4h2q̃. For τ̃ = 0, the inequality

2−K > 4h2, (3.44)

should be satisfied, which means that we may write

h =
1

2

√
1−K/2. (3.45)

For τ̃ = τ̃0, the equality

ã− 2q̃ cos(2τ̃ /κ) = −4h2q̃, (3.46)

should be satisfied. Equation (3.46) may be rearranged as

τ̃0 =
1

2
κ arccos(1/2 +K/4) = κ arcsinh (3.47)

From Equations (3.44), (3.45), (3.46), and (3.47) it follows that

ã− 2q̃ cos(2τ̃ /κ) ≥ −4h2q̃, (3.48)

for τ̃ ∈ [0, τ̃0], where τ̃0 = κ arcsinh. Both the left-hand and right-hand sides

of Equation (3.48) are continuous on the interval [0, τ̃0].

In order to be able to use the comparison theorem, the equation

d2η

dτ̃ 2
− 4h2q̃η = 0, (3.49)
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is considered. A solution to Equation (3.49) is

η1 = η0 exp(2hq̃1/2τ̃) = η0 exp
(
τ
√
q(1−K/2)

)
, (3.50)

where η0 is an arbitrary constant. From Equation (3.50) and the definition of

q in Equation (3.26), it follows that η1 is unbounded as κ→∞. The solution

in Equation (3.50) satisfies the initial conditions

η1 = η0,
dη1

dτ̃
= 2hη0q̃

1/2 at τ̃ = 0. (3.51)

We also consider a solution η2 to Equation (3.41) satisfying the same initial

conditions. Then, it follows from Equation (3.48) and the comparison theorem

that η2 ≥ η1 for τ̃ ∈ [0, τ̃0]. The initial conditions, Equation (3.51), may be

rewritten for η2 as

η2 = η0,
dη2

dτ
= 2hη0κ

−1q1/2 at τ̃ = 0. (3.52)

Considering Equation (3.52), it is straightforward that η2 is bounded at τ = 0

for κ ∈ (0,∞). From the definition of dη2/dτ in Equation (3.52) and the

definition of q in Equation (3.26), it follows that dη2/dτ is also bounded at

τ = 0 for κ ∈ (0,∞). Then, it follows from the inequality η2 ≥ η1 and Equation

(3.50) that, for any τ ∈ (0, arcsinh), there is such a solution to Equation (3.41)

that it is bounded together with its first derivative at τ = 0 for any value of

κ, but it is unbounded at τ = τ0 as κ → ∞. Hence, the instability growth

rate is unbounded and the initial value problem describing the evolution of the

perturbed discontinuity is ill-posed when MA > min{MA0}.
Now, we assume that MA < MA0(φ), so that, in accordance with Equation

(3.39), K > 2 and a > 2q. We calculate the instability growth rate for κ� 1.

Let η̄(τ) be the solution to Equation (3.23), satisfying the initial conditions

η̄ = 1,
dη̄

dτ
= 0 at τ = 0. (3.53)

Then, the characteristic exponent is defined by the equation (Abramowitz and

Stegun, 1965)

cosh(πµ) = η̄(π). (3.54)

We use the WKB method and look for a solution to Equation (3.23) in the

form η+ = eκΘ. Substituting this expression into Equation (3.23) we obtain

κ−1 d2Θ

dτ 2
+

(
dΘ

dτ

)2

+ ã− 2q̃ cos(2τ) = 0. (3.55)
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From Equation (3.53), it follows that the initial conditions for Equation (3.55)

are

Θ = 0,
dΘ

dτ
= 0 at τ = 0. (3.56)

We look for the solution of Equation (3.55) as the perturbation expansion

Θ = Θ1 + κ−1Θ2 + . . . (3.57)

Substituting this expansion into Equation (3.55) and collecting terms of the

order of unity we obtain (
dΘ1

dτ

)2

= 2q̃ cos(2τ)− ã. (3.58)

The solution to this equation satisfying the condition Θ1 = 0 at τ = 0 is

Θ1(τ) = i

∫ τ

0

√
ã− 2q̃ cos(2τ ′) dτ ′, (3.59)

where we chose the plus sign of the square root. It is clear that the function

being integrated in Equation (3.59) is even, meaning that its integral over the

interval (0, x) is odd. Therefore, Θ1(τ) is an odd function.

In the next order approximation we collect terms of the order of κ−1 in

Equation (3.55) to obtain

d2Θ1

dτ 2
+

dΘ1

dτ

dΘ2

dτ
= 0. (3.60)

Using Equation (3.59) we find that the solution to this equation satisfying the

condition Θ2 = 0 at τ = 0 is

Θ2(τ) = −1

2
ln

(
ã− 2q̃ cos(2τ)

ã− 2q̃

)
. (3.61)

Since the function inside the natural logarithm in Equation (3.61) is even

and the logarithm does not affect the parity, it follows that Θ2(τ) is an even

function.

Recall that η−(τ) = η+(−τ) is also a solution to Equation (3.23). Then,

since Θ1(τ) is an odd function and Θ2(τ) is an even function, it follows that

η̄ =
η+ + η−

2
= eΘ2 cos(κΘ1) +O

(
κ−1
)
. (3.62)

Introducing the notation χ = Θ1(π) and γ = Θ2(π) we transform Equation

(3.23) to

cosh(πµ) = eγ cos(κχ). (3.63)
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When the absolute value of the right-hand side of this equation does not exceed

unity the two values of µ satisfying this equation are purely imaginary and the

corresponding wave mode is neutrally stable. When the absolute value of the

right-hand side is larger than unity one of the two values of µ satisfying this

equation has positive real part and the corresponding wave mode grows expo-

nentially. However, we can observe that the right-hand side of Equation (3.63)

is bounded for any κ. This implies that the real part of µ is also bounded, and

the same is true for the growth rate. We made this conclusion for a particular

value of φ and MA < MA0(φ). If we now assume that MA < min{MA0}, then

the growth rate of any wave mode is bounded. This means that the initial

value problem describing the evolution of the discontinuity is well-posed when

MA < min{MA0}. From Equation (3.38) we see that this condition may be

written in the approximate form as

MA <
v̄Aθ

2

√
1 + r

1 + rv̄2
A

, (3.64)

since, typically, θ � 1.

3.4 Application to Transverse Coronal Loop

Oscillations

The aim of this section is twofold. First, we further elaborate the analysis

of Section 3.3 by considering the σ-stability of Equation (3.23). Afterwards,

we apply some of the results obtained in Subsections 3.3.2 and 3.3.3 to the

stability of coronal loop oscillations.

3.4.1 The σ-stability

We, now, use the concept of σ-stability, first introduced by Goedbloed and

Sakanaka (1974) and Sakanaka and Goedbloed (1974). This concept is used

in studies of thermonuclear plasma confinement where it is necessary that

perturbation amplitudes remain sufficiently small on some relevant time scale.

An equilibrium is σ-stable if the amplitudes of unstable perturbations grow at

most like exp(σt).

We apply the concept of σ-stability to the analysis of the KH instability

induced by transverse oscillations of solar coronal loops. We say that a trans-

verse coronal loop oscillation is σ-stable if the growth time of the KH instability

exceeds the damping time due to resonant absorption. Let tD = αP be the
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damping time, where P = 2π/Ω is the oscillation period, and α varies from 1

to 5 (see, e.g., Goddard and Nakariakov, 2016). It follows from our definition

that σ = 1/ΩtD, or

σ =
1

2πα
. (3.65)

When α varies from 1 to 5, σ decreases from approximately 0.16 to 0.03. We see

that, in any case, the interface cannot be σ-stable if the maximum growth rate

exceeds 0.16, which implies that if the interface is σ-stable then the increment

is much less than unity. It is shown in Appendix A that, in this case, the

maximum growth rate for fixed φ is approximately equal to 1/2K. Then, the

maximum growth rate for all values of φ is 1/2Km, where Km = minφK.

Hence, the σ-stability condition reads

Km ≥
1

2σ
, Km =

4 min{M2
A0}

M2
A

− 2. (3.66)

To estimate Km we take as typical values r = 1/3 and v̄2
A = 3. Then, using

Equations (3.38) and (3.66), and taking into account the fact that, typically,

θ � 1, we reduce the σ-stability criterion to

θ ≥ MA

2

√
4 +

1

σ
. (3.67)

The typical displacement of a kink-oscillating coronal loop is of the order of

the loop radius. Then, the ratio of the velocity to vAi is of the order of the

loop radius and length. Hence, the typical value is MA = 0.01. Now, it follows

from Equation (3.67) that the interface is σ-stable if θ & 1◦ for α = 1, and

σ-stable if θ & 2◦ for α = 5. Even the maximum value θ = 2◦ corresponds

to only about a half-turn of magnetic field lines from one loop footpoint to

the other. Hence, the loop boundary is σ-stable for a very moderate magnetic

twist.

In Figure 3.7, we present the values of µ associated with the three straight

lines in Figure 3.5. We assumed that r = 1/3, v̄2
A = 3, MA = 0.01, and φ = φ0

so that K = Km. For θ = 0, µ is a monotonically increasing function of κ,

and perturbations with any q are unstable. The green curve corresponds to

θ = 0.5◦, and is unbounded as κ→∞ since minMA0 ≈ 0.0062 < MA. Finally,

the blue curve, which corresponds to θ = 1◦, is bounded for κ ∈ (0,∞) since

minMA0 ≈ 0.0123 > MA. The equation of the dashed line is µ = 0.16, and we

see that the loop with θ = 1◦ is σ-stable for σ defined in Equation (3.65) with

α = 1.
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Figure 3.7: The growth rate of the instability, µ, plotted with respect to q.
The red, green, and blue lines correspond to the lines in Figure 3.5a

We note that if a magnetic loop is σ-stable, then the initial value problem

describing the evolution of its boundary perturbation is well-posed. However,

the converse is not always true. The initial value problem is well-posed if the

growth rate is bounded, but it may still be very large. On the other hand, a

magnetic loop is σ-stable when the maximum growth rate is below a definite

and, usually, sufficiently small number.

3.4.2 Coronal Loop Parameters

The model that we outlined in the previous sections can be only applied for

the local analysis of the stability of the boundary of an oscillating magnetic

tube. In this analysis, we can consider oscillations with the characteristic scale

in the azimuthal direction that is much smaller than the tube radius R, and

the characteristic scale in the axial direction that is much smaller than the
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(a) n = 1

(b) n = 4

Figure 3.8: The dependence of the solutions on m in the qa-plane, for MA =
0.01, r = 1/3, v̄2

A = 3, n = 1 (top) and n = 4 (bottom). The red, green and
blue dots correspond to increasing degrees of twist.

tube length L. Hence, we take

kx =
m

R
, kz =

πn

L
, (3.68)
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(a) θ = 0◦

(b) θ = 0.5◦

Figure 3.9: The dependence of the growth rate on m for MA = 0.01, r = 1/3,
v̄2
A = 3, θ = 0◦ (top) and θ = 0.5◦ (bottom). The red and blue dots correspond

to n = 1 and n = 4, respectively.

where m and n are sufficiently large integer numbers. Using Equations (3.25)

and (3.68) we obtain

k2 =
m2

R2
+
π2n2

L2
, tanφ =

πnR

mL
. (3.69)

We assume that n . |m|. Since in coronal magnetic loops R � L, it follows

that we may use the approximate expressions

k ≈ |m|
R
, φ ≈ πnR

mL
. (3.70)
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Throughout this section we assume that v̄2
A = r−1. This assumption holds if

the magnitudes of the interior and exterior magnetic fields are equal, which is

typically true for coronal loops. We also assume that θ � 1. Then, we obtain

the approximate expressions

M2
A0 =

1 + r

4r

[(
θ +

πnR

mL

)2

+
π2n2R2

m2L2

]
, (3.71)

min{M2
A0} =

(1 + r)θ2

8r
. (3.72)

The condition MA < min{M2
A0} gives

θ > MA

√
8r

1 + r
. (3.73)

If we take r = 1/3, the right-hand side of this inequality is approximately

equal to MA, that is it is of the order of 0.01. Hence, the inequality (3.73) can

be satisfied even for quite moderated twist. If the inequality is satisfied, then

the IVP describing the evolution of the tube boundary is well-posed and the

growth rate of perturbations is bounded.

In Figures 3.8 and 3.9, we show the dependence of the growth rate on m

for n = 1 (left) and n = 4 (right), MA = 0.01, r = 1/3, v̄2
A = 3, R/L = 200,

and θ = 0◦ (red), θ = 0.5◦ (green) and θ = 1◦ (blue). We note that, obviously,

n = 1 does not satisfy the condition that n is large, so we considered n = 1 only

for comparison. While, for n = 1, the points in the qa-plane corresponding

to θ = 0◦ are virtually unchanged as compared to the line in Figure 3.6, for

n = 4 they are shifted upwards considerably. This is also the case for θ = 0.5◦.

We see that for n = 1 there are some modes which are unstable in the range

selected, for n = 4 there are no such modes. There may be unstable modes

for θ = 0.5◦ and n = 4, but only for very large m. In terms of the IVP, for

θ = 1◦, corresponding to a well-posed solution, no value of m corresponds to an

unstable solution in the qa-plane. In general, well-posed solutions seem to be

unstable only for very large m. These results are significant since they suggest

that very localised longitudinal perturbations of the flux tube are generally

more stable.

3.5 Summary and Discussion

In this work, we performed the first analytical study of the transverse wave

induced Kelvin-Helmholtz instability of solar coronal loops. We modelled the

94



region on the loop boundary where the shear flows are the greatest as a tangen-

tial discontinuity separating time-periodic counter-streaming flows. To model

the magnetic twist in coronal loops we assumed that the equilibrium magnetic

fields on either side of the discontinuity are not parallel. The flow velocities

at the two sides of the discontinuity have opposite directions and equal mag-

nitudes oscillating harmonically. For the sake of mathematical simplicity, we

assumed that the plasma on both sides of the interface is incompressible. Using

the linearised set of ideal MHD equations, we derived the governing equation

describing the evolution of the shape of the tangential discontinuity, known as

Mathieu’s equation.

We employed Mathieu’s equation to study the stability of the discontinuity.

For comparison, we first presented the results of the stability analysis in the

case of steady flows, which we obtained by setting the flow oscillation frequency

to zero. In this case, the stability of the discontinuity is determined by the

Alfvén Mach number, which is defined as the ratio of the background velocity

magnitude to the Alfvén speed at one side of the interface. The discontinuity

is unstable when the Alfvén Mach number exceeds a critical value, and the in-

stability growth rate is proportional to the wavenumber, and thus unbounded.

This implies that the initial value problem describing the evolution of the per-

turbed discontinuity is ill-posed. We note that the critical Alfvén number is

zero when there is no magnetic shear.

In contrast to the interface separating steady flows, the tilted magnetic

field cannot stabilise the discontinuity if the flows oscillate. A similar result

was obtained by Roberts (1973) in the case of MHD tangential discontinuity

with the magnetic field having the same direction at both sides and the flow

velocity parallel to the magnetic field.

Even though the interface is always unstable, the critical Alfvén Mach

number still plays an important role in the stability properties. We showed

that the growth rate of the instability is unbounded when the Alfvén Mach

number exceeds the instability threshold, and thus the initial value problem

is ill-posed. Hence, in this case the stability properties are qualitatively the

same as in the case of steady flows. On the other hand, when the Alfvén Mach

number is below its critical value, the instability increment is bounded, and

the initial value problem is well-posed.

In Section 3.4.1, we applied the concept of σ-stability to kink oscillating

coronal loops, which states that the loop is σ-stable if the growth time of the

instability exceeds the resonant damping time of the transverse oscillation.
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We obtained the criterion for the σ-stability and showed that, for parameters

typical for transverse coronal loop oscillations, even moderate magnetic twist

makes the loop boundary σ-stable.

In Section 3.4.2, we used our model to perform a local stability analysis

of the sections of the loop boundary where the amplitudes of the shear flows

are the greatest (see Figures 3.1 and 3.2). The local analysis is only valid for

perturbations with the azimuthal wavelength much smaller than the radius of

the loop cross-section R, and the axial wavelength much smaller than the loop

length L. In accordance with these latter assumptions, we took kx = m/R and

kz = πn/L, where kx is the component of the wave vector in the azimuthal

direction, and kz is the component of the wave vector in the axial direction, and

|m| and n are positive integer numbers. We note that, while n is positive, m can

be either positive or negative. We found that the nature of solutions is changed

by this new definition of the parameters. While, previously, all solutions were

unstable regardless of the background parameters, the discretisation of the

parameter space has introduced the possibility that unstable solutions exist

only for sufficiently large values of |m|.
Finally, we note that our study does not include the effects of strong shear

induced by resonant absorption, which may be significant in the generation of

the KHI, as suggested by Howson et al. (2017a) and Terradas et al. (2018).
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CHAPTER 4

Conclusions

4.1 Overview of Thesis

This Thesis constitutes a study of magnetoacoustic waves and the magneto-

hydrodynamic Kelvin-Helmholtz instability of two novel equilibrium configu-

rations. Chapter 1 introduces the background material needed to develop the

new theory. The equations of ideal magnetohydrodynamics are derived from

Maxwell’s equations and the equations of gas dynamics. Subsequently, the ba-

sic theory of MHD waves is derived from the ideal linear MHD equations, and

the Kelvin-Helmholtz instability and its possible applications to solar physics

are introduced.

The first of the two novel models is studied in Chapter 2. The equilibrium

configuration being investigated is that of a steady slab of magnetised plasma

subject to a steady flow, embedded in a non-magnetic atmosphere, with differ-

ent background parameters on each side of the slab. This configuration differs

from those in previous models since it considers both a steady flow within the

slab, as well as asymmetry of the exterior parameters. A dispersion relation for

magnetoacoustic waves propagating along the slab is derived and its solutions

are obtained in both approximate analytical form, and in general numerical

form. Applications to solar physics are discussed in the context of determining

the parameters of Kelvin-Helmholtz unstable flanks of coronal mass ejections.

The second model is investigated in Chapter 3. It involves the study of an

interface separating temporally oscillating background plasmas in a magnetic

environment. The analytical study of transient flows in MHD has been rather

uncommon due to the difficulty of obtaining results in closed form. However,

utilising the incompressible plasma approximation allowed us to obtain the

governing equation of the stability of the boundary in the form of Mathieu’s

equation. We studied the general stability of its solutions as well as the nature
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of the initial value problem for the given form of the parameters. An applica-

tions to the transverse wave induced Kelvin-Helmholtz instability in coronal

loops using this model is also presented in this Chapter.

4.2 Summary of Results

4.2.1 Chapter 2

The dispersion relation of waves propagating along a steady slab in an asym-

metric environment was obtained in Subsection 2.2.3, and the possible modes

of propagation are classified in terms of the characteristic speeds in Subsection

2.2.5. The analytical solutions of the dispersion relation in the incompress-

ible plasma limit and the thin and wide slab approximations are obtained in

Section 2.3. General numerical solutions are obtained in Section 2.4 and it

is found that the modes are consistent with the classification in terms of the

characteristic speeds from Subsection 2.2.5. The Kelvin-Helmholtz threshold

value for the most unstable mode, the slow surface kink mode, is also obtained

in Section 2.4 and it is found that the asymmetry in background density may

significantly lower the threshold value for thin slabs. Finally, we estimate the

densities of a Kelvin-Helmholtz unstable flank of a coronal mass ejection in

Section 2.5. We find that the flank of the CME is at least three orders of

magnitude denser than the background corona for the observed parameters of

the KHI.

4.2.2 Chapter 3

The governing relation of the stability of a boundary separating temporally

oscillating flows is found to be Mathieu’s equation in Section 3.2. In order to

better understand the stability of the boundary separating oscillating flows at

an angle, we first study the stability of steady flows at an angle in Subsection

3.3.1. We find that the initial value problem in this case is ill-posed regardless

of the magnitude of the flow. The stability of the transient configuration is

studied in Subsection 3.3.2, and it is found that solutions are always unstable

for some value of the wavenumber magnitude. The initial value problem is

found to be ill-posed when the flow magnitude is above a certain threshold

and well-posed when it is below this threshold. The application of the results

of this model are applied to the study of the KHI of transverse coronal loop

oscillations in Section 3.4. In Subsection 3.4.1 we introduce the concept of

σ-stability and find the analytical condition for coronal loops to be σ-stable.
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Finally, in Subsection 3.4.2 we introduce a new set of parameters which should

generalise the local stability analysis to the three dimensional and cylindrical

nature of coronal loops. We find that coronal loops are always unstable to the

KHI, but may become σ-stable if there is magnetic twist present.

4.3 Future Work

A natural extension to the investigation performed in Chapter 2 would be to

introduce parallel magnetic fields of different magnitudes in the exterior regions

of the slab. This would significantly alter the classification of the modes of

propagation with respect to the characteristic speeds since there would be two

new Alfvén speeds.

A different possible direction would be to replace the boundaries of the slab

with thin regions of linear density change. The slab would, therefore, no longer

be delimited by tangential discontinuities, but by linear density transition

regions. This would severely complicate the analysis since the linear change in

density introduces a singularity in the Alfvén speed.

The model in Chapter 3 may be extended by including a linear decrease of

the flow from one side of the interface to the other. Similarly, a linear decrease

in density could also be considered, which would let us study the effects of res-

onant absorption on the instability. Incorporating both of the aforementioned

modifications would yield a model closer to what we believe is the structure

of a coronal loop. However, such a model is bound to be mathematically very

complex and there is no assurance that a governing equation can be obtained

analytically.

A different avenue of exploration is that of the application of the exist-

ing model, with only minor modifications, to other solar and magnetospheric

phenomena. A potential application would be to kink oscillations of solar

prominences. An important differences between solar prominences and coro-

nal loops is that the plasma in the former may not be fully ionized. This effect

would have to be taken into account in the model.
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APPENDIX A

The Maximum Growth Rate

As we have already stated before, the characteristic exponent, µ, is determined

by the equation

cosh(πµ) = η̄(π), (A.1)

where η̄(τ) is the solution to the initial value problem to Equation (3.23) with

η̄ = 1,
dη̄

dt
= 0 at τ = 0, (A.2)

(Abramowitz and Stegun, 1965). When a perturbation is unstable, its growth

rate is given by γ = <(µ). In the context of the σ-stability analysis, we assume

that the growth time of the instability is much larger than the oscillation

period. In terms of dimensionless quantities, this condition is written as γ � 1.

The numerical investigation shows that this condition is only satisfied for all

values of q when K � 1. In accordance with this, we introduce the small

parameter ε = 1/K. Figure 3.5 shows that a is close to j2 on parts of the

line a = Kq corresponding to unstable perturbations when K � 1, where

j = 1, 2, . . . . We obtain a = j2 taking q = j2ε, which implies that q = O(ε).

First we study the case with j = 1. Using the expansion valid for small q

(Abramowitz and Stegun, 1965),

a1(q) = 1 + q +O(q2), b1(q) = 1− q +O(q2), (A.3)

we obtain that the line a = Kq in Figure 3.5 intersects the curves a = b1(q)

and a = a1(q) at q ≈ ε−O(ε2) and q ≈ ε+O(ε2), respectively. Then q = ε+ q̄ε2

on the part of the curve a = Kq between the intersection points, where q̄ is a

free parameter varying from approximately −1 to approximately 1. It follows

that q = ε + q̄ε2 on the line a = Kq between the intersection points, where

q̄ is a free parameter. The equation of the curve a = Kq is now rewritten as

a = 1 + q̄ε, and Equation (3.23) becomes

d2η

dτ 2
+ [1 + q̄ε− 2(ε+ q̄ε2)(cos(2τ)]η = 0. (A.4)
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To calculate the increment we need to find the solution η̄(τ) to this equation

satisfying the initial conditions Equation (A.2). To do this we use the regular

perturbation method with

η̄ = η̄(0) + η̄(1) + η̄(2) + . . . . (A.5)

Substituting Equation (A.5) into Equations (A.2) and (A.4), and collecting

the terms of the order of unity, we obtain

d2η̄(0)

dτ 2
+ η̄(0) = 0, (A.6)

and the associated initial conditions

η̄(0) = 1,
dη̄(0)

dτ
= 0 at τ = 0. (A.7)

The solution to this initial value problem is

η̄(0) = cos τ. (A.8)

Collecting term of the order of ε yields

d2η̄(1)

dτ 2
+ η̄(1) = [2 cos(2τ)− q̄] cos τ, (A.9)

η̄(1) = 0,
dη̄(1)

dτ
= 0 at τ = 0. (A.10)

After straightforward calculation we obtain

η̄(1) =
1− q̄

2
τ sin τ − 1

8
cos(3τ) +

1

8
cos τ. (A.11)

Finally we collect terms of the order of ε2 to obtain

d2η̄(2)

dτ 2
+ η̄(2) = [2 cos(2τ)− q̄]η(1)

1 + 2q̄ cos(2τ) cos τ, (A.12)

η̄(2) = 0,
dη̄(2)

dτ
= 0 at τ = 0. (A.13)

The solution to this initial value problem is given by

η̄(2) =
1− q̄2

8
τ 2 cos τ +

2q̄2 + 7q̄ − 2

16
τ sin τ − 1− q̄

16
τ sin(3τ)

+
cos(5τ)

192
− 2 + 3q̄

32
cos(3τ) +

11 + 18q̄

192
cos τ. (A.14)

Using Equations (A.8), (A.11), and (A.14) we obtain

η̄(π) = −1− 1− q̄2

8
π2ε2 +O(ε3). (A.15)
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It follows from this equation that

µ = i± ε

2

√
1− q̄2 +O(ε2). (A.16)

This result implies that

γ =
ε

2

√
1− q̄2 +O(ε2), γm =

ε

2
, (A.17)

where γm is the maximum value of the instability increment when the point

(a, q) is on the part of line a = Kq that is between the curves a = b1(q) and

a = a1(q).

Now we consider the part of line a = Kq that is between the curves a =

bj(q) and a = aj(q), j = 2, 3, . . . For q � 1 we have b1(q) = n2 + O(q2) and

a1(q) = n2 +O(q2) (Abramowitz and Stegun, 1965). Since K = ε−1, it follows

that q = n2ε(1 + q̄ε2) and a = n2(1 + q̄ε2), where q̄ is again a free parameter.

Substituting these expressions in Eq. (A.1) we transform it to

d2η

dτ 2
+ j2[1 + q̄ε2 − 2(ε+ q̄ε3)(cos(2τ)]η = 0. (A.18)

Then we again look for the solution in the form of the expansion given by

Eq. (A.5). Substituting this expansion in Equations (3.23) and (A.2), and

collecting terms of the order of unity we obtain

d2η̄(0)

dτ 2
+ j2η̄(0) = 0, (A.19)

η̄(0) = 1,
dη̄(0)

dτ
= 0 at τ = 0. (A.20)

The solution to this initial value problem is

η̄(0) = cos(jτ). (A.21)

Collecting terms of the order of ε yields

d2η̄(1)

dτ 2
+ j2η̄(1) = 2j2 cos(2τ) cos(jτ), (A.22)

η̄(1) = 0,
dη̄(1)

dτ
= 0 at τ = 0. (A.23)

After straightforward calculation we obtain

η̄(1) = 1− 1

3
cos(4τ)− 2

3
cos(2τ) (A.24)

for j = 2, and

η̄(1) =
j2 cos[(j − 2)τ ]

4(j − 1)
− j2 cos[(j + 2)τ ]

4(j + 1)
− n2 cos(jτ)

2(j2 − 1)
(A.25)
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for j > 2. Collecting terms of the order of ε2 we obtain

d2η̄(2)

dτ 2
+ η̄(2) = 2j2η̄(1) cos(2τ)− j2q̄ cos(jτ), (A.26)

η̄(2) = 0,
dη̄(2)

dτ
= 0 at τ = 0. (A.27)

The solution to this initial value problem is given by

η̄(2) =

(
5

3
− q̄
)
τ sin(2τ) +

cos(6τ)

24
+

2

9
cos(4τ) +

29

72
cos(2τ)− 2

3
(A.28)

for j = 2, and by

η̄(2) =
j

4

(
j2

j2 − 1

)
τ sin(jτ) +

j4 cos[(j + 4)τ ]

32(j + 1)(j + 2)
+

j4 cos[(j + 2)τ ]

8(j + 1)(j2 − 1)

− j4(j4 − 3j2 + 16) cos(jτ)

16(j2 − 1)2(j2 − 4)
− j4 cos[(j − 2)τ ]

8(j − 1)(j2 − 1)
+

j4 cos[(j + 4)τ ]

32(j − 1)(j − 2)
(A.29)

for j > 2. Using Eqs. (A.21), (A.24), (A.25), (A.28), and (A.29), we obtain

η̄(π) = (−1)n +O(ε3). (A.30)

It follows from this equation that µ = O(ε3) for even j and µ = i + O(ε3)

for odd j, and thus γ = O(ε3/2), that is γ � γm. Hence, γm = 1/2K is the

maximum value of the instability increment with respect to q when K = ε−1.
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