
Integral Forms of Hall Algebras
and their Limits

Eoin P. Murphy

A thesis submitted for the degree of
Doctor of Philosophy

School of Mathematics and Statistics
The University of Sheffield

28th September 2018





Dom' wuintir



Abstract

In this thesis we tell the story of how two isomorphic algebras – quantized enveloping algebras and
Bridgeland-Hall algebras – are simultaneous deformations of two simpler algebras: the universal
enveloping algebra of a Lie algebra and the coordinate algebra of a Poisson-Lie group.

We will also explain how a similar deformation picture holds for Hall algebras, of which Bridgeland-
Hall algebras are a generalization, and a subalgebra of the quantized enveloping algebra called its
positive part.

Our particular contribution to this story is to establish the precise way in which Bridgeland-Hall
algebras deform coordinate algebras of Poisson-Lie groups. We will give a calculation of the Hall
algebraic structure of the resulting Poisson-Lie groups and also explain the relationship with how
quantized enveloping algebras deform coordinate algebras of Poisson-Lie groups.

Using the Bridgeland-Hall algebra approach to Poisson-Lie groups we will give a new way to extract
simple Lie algebras from Bridgeland-Hall algebras and in addition provide a computation of the Hall
algebraic structure of these Lie algebras.

Finally we provide a new, more direct proof of an old but tricky to prove theorem due to De Concini
and Procesi that quantized enveloping algebras are deformations of the coordinate algebra of a
particular Poisson-Lie group called the standard dual Poisson-Lie group.
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Thesis Overview

This thesis is concerned with telling the story of how two isomorphic algebras – quantized enveloping
algebras and Bridgeland-Hall algebras – are simultaneous deformations of two simpler algebras. One
of these more elementary algebras is the universal enveloping algebra of a Lie algebra while the other
is the coordinate algebra of a Poisson-Lie group. A Poisson-Lie group is an algebraic group which is
also a Poisson variety in a compatible way.

The exact narrative we will give has not been told before although a number of the results can be
found scattered throughout the literature, particularly in the works of Deng and Chen [CD15] and
Ringel [Rin90b]. Our contribution is to work out the details of how Bridgeland-Hall algebras are
deformations of coordinate algebras of Poisson-Lie groups. In addition we establish the relationship
with how quantized enveloping algebras deform coordinate algebras of Poisson-Lie groups.

Quantized enveloping algebras are a type of algebra originally introduced by Drinfel’d and Jimbo to
deform universal enveloping algebras of Lie algebras. Bridgeland-Hall algebras are a kind of algebra
which one can assign to certain Abelian categories. Bridgeland [Bri13] showed that for categories
of finite dimensional representations of a simply-laced quiver the resulting Bridgeland-Hall algebra
is isomorphic to the quantized enveloping algebra of a simple Lie algebra.

Bridgeland-Hall algebras are a generalization of Hall algebras which are algebras similarly associated
to certain Abelian categories. These were originally introduced by Ringel [Rin90a] based on the work
of Hall [Hal59]. Ringel proved that for categories of simply-laced quiver representations the resulting
Hall algebra is isomorphic to a subalgebra of the quantized enveloping algebra called its positive
part. Bridgeland’s motivation for his algebras was the question of how to find a Hall algebraic way
to recover the whole quantized enveloping algebra and not only its positive part.

The key notion for how algebras may be simultaneous deformations of different algebras is that of
an integral form. An integral form is a special Crt, t�1s-subalgebra of a Cptq-algebra which allows
one to formally set t to be certain values. A Cptq-algebra can have many different integral forms
with each degenerating to different algebras on specializing t at a certain value.

The algebras we have mentioned are either Cptq-algebras or in the case of our (Bridgeland-)Hall
algebras can naturally be upgraded to Cptq-algebras. These algebras will each have two special
integral forms which respectively have a universal enveloping algebra and a coordinate algebra as
their t � 1 limit. Note, in this thesis we shall use the terms specialization at t � 1 and t � 1 limit
interchangeably.

During the course of this thesis we will explain the simultaneous deformation picture of each of
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the above algebras independently. This involves discussing each type of algebra’s integral forms
and t � 1 limits. Although isomorphic, the languages of Bridgeland-Hall algebras and quantized
enveloping algebras are quite different. As such we will stress not only the deformation story of each
type of algebra independently but also how the two pictures match up with each other.

Once we have explained the simultaneous deformation story, another goal of this thesis is to use
Bridgeland-Hall algebras to investigate the structure of Poisson-Lie groups and related objects. One
example of the results we obtain is that we can give a very explicit calculation of the Hall algebraic
structure of Poisson-Lie groups arising from Bridgeland-Hall algebras

Another example comes from an interesting question regarding how Lie algebras arise from Hall
algebras. A general observation is that Hall algebras of Abelian categories often have some kind of
associated Lie algebra. Unfortunately these Lie algebras are only ever positive parts of a bigger Lie
algebra, just as a nilpotent subalgebra is only a part of a simple Lie algebra. An important question
then, is how can one realize full Lie algebras in a Hall algebraic way.

Deng and Chen [CD15] were the first to do this by using the universal enveloping algebra component
of the deformation story to extract simple Lie algebras from Bridgeland-Hall algebras of categories
of simply-laced quiver representations. In this thesis we will explain an alternative way to extract
simple Lie algebras from Bridgeland-Hall algebras using the Poisson-Lie group picture.

We will in fact obtain more than a Lie algebra, we will obtain a Lie bialgebra. Lie bialgebras are the
infinitesimal analogues of Poisson-Lie groups in the same way that Lie algebras are the infinitesimal
analogues of Lie groups. An upshot of our approach is that we will be able to give a very explicit
calculation of the Hall algebraic structure of the Lie (bi)algebras we obtain.

Our final goal in this thesis will be to use our results to give a simplification of a difficult proof
from the theory of quantized enveloping algebras. In particular, in [DCP93] De Concini and Procesi
gave an isomorphism between the Poisson-Lie group arising from quantized enveloping algebras and
a particular type of Poisson-Lie group G_ called the standard dual Poisson-Lie group. Poisson-Lie
groups satisfy a type of duality for which G_ can be considered dual to the simple Lie group G with
tangent Lie algebra g.

An unfortunate feature of De Concini and Procesi’s proof, however, is that it involves a lengthy
case-by-case analysis. As we will explain, using the Bridgeland-Hall algebra approach to Poisson-Lie
groups we can give a new, more direct proof of this fact.

In the remainder of this introduction we will give a more in-depth discussion of the various concepts
and results we have just outlined.

Integral Forms

The notion of integral forms gives a precise way to say how a Cptq-algebra may simultaneously
deform several different algebras.

Suppose that we have a Cptq-algebra B. The algebra B depends on a parameter t and one would
often like to set t to be a particular value, for example t � 1, in order to study the resulting algebra.
A problem arises however: the existence of elements with poles at t � 1 makes setting t � 1 behave
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badly.

To get around this problem, one instead takes certain Crt, t�1s-subalgebras Z � B called integral
forms. The defining property of such subalgebras is that the multiplication map induces a Cptq-
algebra isomorphism of the following form.

Cptq bCrt,t�1s Z Ñ B

For an integral form Z � B, its t � 1 limit is defined to be the quotient algebra of Z by the ideal
pt� 1q. There can be several choices of integral forms of B and each can have a different algebra
as its t � 1 limit. In this way a Cptq-algebra may deform several quite different algebras at once.

Quantized Enveloping Algebras: Integral Forms and t � 1 Limits

Quantized enveloping algebras are Cptq-algebras which were originally introduced by Drinfel’d and
Jimbo to deform universal enveloping algebras. Let us give an idea of how they are defined and then
say a little bit about their integral forms and t � 1 limits.

Any complex simple Lie algebra g has an associated C-algebra Upgq called its universal enveloping
algebra. Simple Lie algebras have a well-known generators and relations description. The same
generators and relations – viewed instead as generating an associative C-algebra – also define Upgq.
The quantized enveloping algebra Utpgq then, is defined by modifying the generators and relations
description of Upgq to obtain a Cptq-algebra.

As one might hope, in light of its name, one is able to recover Upgq from Utpgq. In particular
in [Lus90a] Lusztig introduced an integral form URes

t pgq � Utpgq called the restricted integral form
and proved the following theorem.

Theorem (Lusztig). The t � 1 limit of URes
t pgq is isomorphic to Upgq, the universal enveloping

algebra of g.

The interesting thing is that there is another natural integral form of Utpgq whose t � 1 limit is the
algebra of functions on a Poisson-Lie group. A Poisson-Lie group is an algebraic group which is also
a Poisson variety in a compatible way. In the affine case a Poisson variety is one whose coordinate
algebra is endowed with a Poisson bracket.

We will mainly be concerned with a particular type of Poisson-Lie group G_ called the standard
dual Poisson-Lie group. Poisson-Lie groups satisfy a kind of duality for which G_ can be considered
dual to the simple Lie group G with tangent Lie algebra g.

In [DCP93] De Concini and Procesi introduced an integral form of Utpgq which we will denote by
UPoiss
t pgq. We will refer to this integral form as the Poisson integral form, although our terminology

here is non-standard. De Concini and Procesi then proved the following non-trivial theorem via a
lengthy case-by-case proof.

Theorem (De Concini, Procesi). The t � 1 limit of UPoiss
t pgq is isomorphic to the coordinate

algebra of the standard dual Poisson Lie group G_.
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Thus Utpgq can be viewed as simultaneously deforming both Upgq and CrG_s. It will be convenient
to use the terminology quasi-classical and semi-classical limit to differentiate between these two
t � 1 limits of Utpgq respectively. We may package all of this diagrammatically as follows.

Utpgqquasi-classical
limit tÑ 1

{{

semi-classical
limit tÑ 1

$$

Upgq CrG_s

(1)

There is a special case of this story which will be important when we link things up with Hall algebras.
In particular there is a certain subalgebra Utpn�q of Utpgq called the positive part of the quantized
enveloping algebra. This subalgebra is the analogue the positive nilpotent subalgebra n� � g.

The Poisson and restricted integral forms of Utpgq descend to two natural integral forms UPoiss
t pn�q

and URes
t pn�q of the positive part respectively. The t � 1 limit of URes

t pn�q gives the universal
enveloping algebra of n� while that of UPoiss

t pn�q gives a Poisson subalgebra CrN�s � CrG_s.
Here N� is the underlying variety of the positive unipotent subgroup of the simple Lie group G.
Again we may represent these remarks diagrammatically as follows.

Utpn�qquasi-classical
limit tÑ 1

zz

semi-classical
limit tÑ 1

%%

Upn�q CrN�s

(2)

We will now introduce (generic) Hall algebras and Bridgeland-Hall algebras of categories of quiver
representations. The former will be isomorphic to Utpn�q while the later is isomorphic to Utpgq. In
particular we will be interested in understanding what the pictures (1) and (2) look like from a Hall
algebraic perspective.

Hall Algebras: An Overview

Hall algebras are a type of associative algebra which one can assign to any finitary Abelian category.
A finitary Abelian category is a small Abelian category such that all Hom and Ext1 groups have
only finitely many elements.

For the purposes of this thesis, the only finitary Abelian categories we will consider are the categories
Aq of representations of a simply-laced quiver ~Q over a finite field Fq. Here q is the number of

elements in Fq and a quiver is simply-laced if on forgetting the direction of arrows of ~Q then one is
left with a simply-laced Dynkin diagram. To any such quiver can be assigned a simple Lie algebra
g of corresponding Dynkin type. In this thesis we will fix g to be the Lie algebra associated to ~Q in
this way.

The basic idea for Hall algebras is to form a vector space whose elements are linear combinations of
(isomorphism classes of) objects in one’s chosen category.

Hq :�
à

LPIsopAqq
C � EL (3)
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One then places the following product on Hq which roughly speaking counts extensions of objects.

EMEN � q1{2xM̂,N̂y
¸

LPIsopAqq

|Ext1
AqpM,NqL|

|HomAqpM,Nq|
EL (4)

Here xM̂, N̂y :� dimFqHomAqpM,Nq � dimFqExt1
AqpM,Nq is what is called the Euler form of Aq

and Ext1
AqpM,NqL is the set of extensions of M by N whose middle term is isomorphic to L.

A remark which will become important with regards integral forms of Hall algebras is that there is an
equivalent product that one may place on Hq. If we define FLM,N to be the set of subobjects N � L
with quotient object M then with respect to the alternative set of basis vectors XL :� EL{|AutpLq|
one can show that Equation (4) is given by the following formula. Here we have denoted the group
of automorphisms of L by AutpLq.

XMXN �
¸

LPIsopAqq
FLM,NXL (5)

So far these algebras are C-algebras as opposed to Cptq-algebras, as was the case for quantized
enveloping algebras. However note that we have actually defined a whole family of algebras – one
for each q a prime power. Ringel observed that the structure constants of Hq are Laurent polynomials
in q1{2. By this we mean there exist elements of Crt, t�1s such that when we set t � q1{2 one recovers
the structure constants of Equation (4) and Equation (5).

The upshot is that one may define a new Hall algebra by replacing C in Equation (3) with Cptq
and swapping the structure constants of Equation (4) or equivalently Equation (5) for their Laurent
polynomial versions. One then obtains a Cptq-algebra called the generic Hall algebra which we will
denote by H. Either product Equation (4) or Equation (5) results in the same generic Hall algebra
over Cptq.

Although the generic Hall algebra is defined purely in terms of homological data of the categories Aq

a wonderful theorem due to Ringel relates them to positive parts of quantized enveloping algebras.

Theorem (Ringel). There is an isomorphism of Cptq-algebras Utpn�q Ñ H.

Quantized enveloping algebras are defined via generators and relations whereas Hall algebras have a
basis indexed essentially by quiver representations and moreover have very concrete product formu-
las. A consequence of this is that many results involving quantized enveloping algebras have quite
unpleasant proofs whereas their analogues for Hall algebras are very explicit and have a homological
flavour.

We know that the positive part Utpn�q has two integral forms with one specializing to the universal
enveloping algebra of a Lie algebra and the other to a Poisson algebra. By Ringel’s theorem this
must also be true for the generic Hall algebra. A natural question to ask is what do these integral
forms and their t � 1 limits look like on the Hall algebra side of things.

Hall Algebras: Integral Forms and t � 1 Limits

The way that integral forms of generic Hall algebras arise is via the two formulas for the product on
H given in Equation (4) and Equation (5). Each formula gives the structure constants of the product
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on H in a different basis and taking the Crt, t�1s-span of either set of basis vectors results in an
integral form. These two integral forms are not isomorphic as Crt, t�1s-algebras but are isomorphic
on base changing to work over Cptq.

We thus define Hex to be the Crt, t�1s-subalgebra of H spanned by the basis vectors EL. We call
this the extension counting integral form of H as its product roughly speaking counts extensions.
We will call the t � 1 limit of Hex the semi-classical Hall algebra and denote it by Hsc. In Chapter 9
of this thesis we will prove the following Proposition by mimicking the proof of a similar result due
to Bridgeland [Bri12] for a different flavour of Hall algebras called motivic Hall algebras.

Proposition 9.2.1. The semi-classical Hall algebra Hsc is a commutative Poisson algebra.

We similarly define Hfl to be the Crt, t�1s-subalgebra of H spanned by the elements of the form
XL. This is called the flag counting integral form of H since its product counts flags of subobjects.
We call the t � 1 limit of Hfl the quasi-classical Hall algebra and denote it by Hqc. In [Rin90b]
Ringel proved the following result for Hqc .

Proposition (Ringel). The quasi-classical Hall algebra Hqc is the universal enveloping algebra of a
Lie algebra.

Homological features of the categories Aq manifest themselves algebraically in Hsc and Hqc. For
example the Hall product on Hsc is given by taking direct sums of quiver representations. Moreover
as an algebra Hsc is the polynomial algebra in the basis vectors corresponding to indecomposable
quiver representations. For Hqc the Lie algebra sitting inside Hqc is the span of the basis vector
corresponding to indecomposable quiver representations.

Qualitatively then, the two integral forms Hex and Hfl of H have the same kind of t � 1 limits as
the integral forms UPoiss

t pn�q and URes
t pn�q of Utpn�q. A priori, however, one does not know that

the two sides match up. In [Rin95] Ringel partially resolved this with the following theorem.

Theorem (Ringel). The Cptq-algebra isomorphism Utpn�q Ñ H restricts to an isomorphism of
integral forms between URes

t pn�q and Hfl.

The proof of this result is not that difficult whereas the proof that UPoiss
t pn�q � Hex is much

more involved. This is essentially a consequence of the fact that the definition of UPoiss
t pn�q is

quite non-trivial in comparison to that of URes
t pn�q. In Chapter 16 we will complete the picture by

establishing the following result.

Theorem 16.2.5. The Cptq-algebra isomorphism Utpn�q Ñ H restricts to an isomorphism of inte-
gral forms between UPoiss

t pn�q and Hex.

We should point out that the particular isomorphism Utpn�q � H we use to establish the above two
theorems is slightly different to the one originally used by Ringel. The upshot of these two theorems
is that the following two pictures are then equivalent under our isomorphism Utpn�q � H.
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Utpn�qquasi-classical
limit tÑ 1

zz

semi-classical
limit tÑ 1

%%

Upn�q CrN�s

H
quasi-classical

limit tÑ 1

~~

semi-classical
limit tÑ 1

  

Hqc Hsc

Bridgeland-Hall Algebras: An Overview

Bridgeland-Hall algebras were introduced by Bridgeland in [Bri13] to solve the problem of finding
a suitable category whose Hall algebra would extend Ringel’s theorem by recovering the whole
quantized enveloping algebra. Bridgeland gave a general construction depending on finitary Abelian
categories satisfying certain conditions, however in this thesis we will only consider Bridgeland-Hall
algebras associated to categories of representations of simply-laced quivers.

Bridgeland’s key insight was to replace the category of quiver representations Aq in the definition of
the Hall algebra Hq with the category Cq of Z2-graded complexes in projective quiver representations.
The objects of Cq are complexes of the following form where L1 and L0 are projective objects in Aq.

L
 � L1

f
// L0

g
oo , f � g � g � f � 0 (6)

Morphisms of Cq are given by usual morphisms of complexes. Note that the category Cq has an
involution given by the usual shift functor. This sends a complex L
 to the complex L�
 given by
switching L0 with L1 and f with g. The resulting Hall algebra of Cq isn’t quite the correct object
to recover the quantized enveloping algebra however, and must be modified in two ways.

The first modification is that the factor in Equation (4) involving the Euler form must be altered
slightly. The other is that certain relations concerning acyclic complexes must be imposed by hand.
With these remarks in mind we make the following provisional definition.

HqpCqq :�
à

L
PIsopCqq
C � rL
s

The product on HqpCqq is given by the following where Ext1pM
, N
qL
 is the set of extensions of
complexes M
 by N
 whose middle term is isomorphic to L
.

rM
srN
s � q1{2xM̂0,N̂0y�1{2xM̂1,N̂1y
¸

L
PIsopCqq

|Ext1pM
, N
qL
 |

|HompM
, N
q|
rL
s (7)

The extra relation one needs to impose in order to get the correct algebra is to require that each rL
s
is the inverse of rL�
s for any acyclic complex L
. The resulting algebra is called the Bridgeland-Hall
algebra and is denoted by DHq.

As was the case for the Hall algebra Hq we actually have obtained a family of algebras depending
on q. Deng and Chen [CD15] showed that the structure constants of Equation (7) are Laurent
polynomials in q1{2 and so there exists a Cptq-algebra called the generic Bridgeland-Hall algebra
which we will denote by DH.

Bridgeland then succeeded in proving the following theorem, extended by Deng and Chen to the
generic case, which allows one to recover the whole quantized enveloping algebra.
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Theorem (Bridgeland, Deng, Chen). There is an isomorphism of Cptq-algebras Utpgq Ñ DH.

We can play the same game that we did for the generic Hall algebra H with regards to integral forms
of DH. There must be two integral forms whose t � 1 limits give the universal enveloping algebra
of a Lie algebra and the algebra of functions on a Poisson-Lie group respectively. What do these
integral forms look like? What do their t � 1 limits look like from a Hall algebraic perspective?

Bridgeland-Hall Algebras: Integral Forms and t � 1 Limits

The generic Bridgeland-Hall algebra roughly speaking has analogous integral forms to the generic
Hall algebra. One might expect that the integral forms of DH arise in exactly the same way as for
H. Unfortunately this is only true for the analogue of the extension counting integral form.

We thus define DHex to be the Crt, t�1s-subalgebra of DH spanned by the elements of the form
rL
s. We call this the extension counting integral form of DH as its product counts extensions
of complexes. We will call the t � 1 limit of DHex the semi-classical Bridgeland-Hall algebra and
denote it by DHsc.

To our knowledge we are the first to consider the extension counting integral form of the Bridgeland-
Hall algebra. In particular in Chapter 17 we establish that DHex enjoys the following property.

Proposition 17.1.1. The semi-classical Bridgeland-Hall algebra DHsc is the commutative Poisson
algebra of functions on a Poisson-Lie group.

This proposition, though not difficult to prove, implies that the spectrum of DHsc is a Poisson-Lie
group which we call the semi-classical Poisson-Lie group and which we denote by G_

sc. It was already
known that Utpgq deforms coordinate algebras of Poisson-Lie groups. However the precise mechanics
of how this works for Bridgeland-Hall algebras had not been investigated.

Now the structure of G_
sc is equivalent to that of its coordinate algebra DHsc. Moreover in the

previous section we saw that the Bridgeland-Hall algebra has a very explicit product formula. In
Proposition 17.2.1 of Section 17.2 we will derive similarly explicit formulas for the Poisson and
algebra structure of DHsc which encode homological features of the categories Aq and Cq.

We thus have a natural way to assign a very geometric object – a Poisson-Lie group G_
sc – to DH

and moreover the structure of G_
sc is determined by homological data. This allows one to think of

Bridgeland-Hall algebras from a geometric point of view and Poisson-Lie groups from a homological
perspective.

We now turn to the other integral form of DH, the flag counting integral form DHfl. The definition
of DHfl is a little more subtle: one does not simply take the Crt, t�1s-subalgebra of DH spanned
by elements of the form rL
s{|AutpL
q|.

It is a fact that the generic Bridgeland-Hall algebra has two copies of Hfl sitting inside as subalgebras
along with a subalgebra generated by rL
s where L
 is acyclic. Taking the Crt, t�1s-subalgebra of
DH generated by all three of these subalgebras yields the correct definition for DHfl.
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Deng and Chen [CD15] first considered the flag counting integral form of the Bridgeland-Hall algebra.
We will call the t � 1 limit of DHfl the quasi-classical Bridgeland-Hall algebra and denote it by
DHqc.

Proposition (Deng, Chen). The quasi-classical Bridgeland-Hall algebra DHqc is isomorphic to Upgq
the universal enveloping algebra of the simple Lie algebra g.

One of the upshots of Deng and Chen’s result is that it gives a way to extract full simple Lie algebras
from Bridgeland-Hall algebras. Later in this introduction we will explain an alternative way to obtain
full simple Lie algebras from Bridgeland-Hall algebras using the semi-classical Bridgeland-Hall algebra
instead.

Similar to the case of generic Hall algebras, the two integral forms DHex and DHfl of DH have the
same types of t � 1 limits as the integral forms UPoiss

t pgq and URes
t pgq of Utpgq. Again, however,

one does not know a priori that the two sides match up. In [CD15] Deng and Chen established the
following theorem.

Theorem (Deng, Chen). The Cptq-algebra isomorphism Utpgq Ñ DH descends to an isomorphism
of integral forms between URes

t pgq and DHfl.

As was the case for the generic Hall algebra, the proof of this result is not that difficult whereas the
proof that UPoiss

t pgq � DH is non-trivial. In Chapter 16 we will complete the picture by establishing
the following result.

Theorem 16.2.4. The Cptq-algebra isomorphism Utpgq Ñ DH descends to an isomorphism of
integral forms between UPoiss

t pgq and DHex.

We should point out that the particular isomorphism Utpgq � DH we use to establish the above two
theorems in this thesis is slightly different to the one originally used by Deng and Chen [CD15] and
Bridgeland [Bri13]. The consequence of these two theorems is that the following two are equivalent
pictures under our isomorphism Utpgq � DH.

Utpgqquasi-classical
limit tÑ 1

{{

semi-classical
limit tÑ 1

$$

Upgq CrG_s

DH
quasi-classical

limit tÑ 1

{{

semi-classical
limit tÑ 1

##

DHqc DHsc

Lie Algebras and Lie Bialgebras from Bridgeland-Hall Algebras

A general observation is that Hall algebras of Abelian categories often have some kind of associated
Lie algebra. Unfortunately these Lie algebras are only ever positive parts of a bigger Lie algebra in
the same way that the nilpotent subalgebra n� is only a part of the simple Lie algebra g.

An important question then is how to realize full Lie algebras in a Hall algebraic way. Moreover if
this was possible would there be nice formulas for the Lie bracket in the same way that H and DH
have a natural product formula?
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Deng and Chen were the first to realize full Lie algebras by considering Bridgeland-Hall algebras
of categories of simply-laced quiver representations. In [CD15] they succeeded in recovering the
full simple Lie algebra g from the quasi-classical Bridgeland-Hall algebra DHqc. Our results give an
alternative way to recover g from DH via the semi-classical Bridgeland-Hall algebra. The approach
we will use will in fact extract more than the simple Lie algebra: we will obtain what is called a Lie
bialgebra.

Lie bialgebras are infinitesimal analogues of Poisson-Lie groups in the same way that Lie algebras
are infinitesimal analogues of Lie groups. A Lie bialgebra is a Lie algebra whose dual vector space
is also a Lie algebra in a compatible way. The tangent Lie algebra of any Poisson-Lie group is a Lie
bialgebra with the additional Lie bracket induced from linearizing the Poisson structure.

We thus have a way to extract Lie bialgebras from Bridgeland-Hall algebras. Indeed in Chapter 18
we will take the tangent Lie bialgebra of the semi-classical Poisson-Lie group G_

sc which we will
denote by g_sc. An interesting feature of finite dimensional Lie bialgebras is that they satisfy a simple
duality. The vector space dual of any Lie bialgebra is again a Lie bialgebra. In our case if we take
the Lie bialgebra dual of g_sc we then obtain another Lie bialgebra gsc.

The machinery of Hall algebras allows us to very explicitly calculate the structure of these bialge-
bras. Indeed in Chapter 18 we will explain that gsc comes equipped with a natural basis involving
indecomposable quiver representations. Moreover in Theorem 18.2.1 and Theorem 18.2.2 we will
calculate the Hall algebraic structure constants of the Lie brackets of gsc.

What is the Lie bialgebra gsc? It is a fact that any simple Lie algebra g can be endowed with what
is called the standard Lie bialgebra structure. In Section 18.4 we prove the following theorem.

Theorem 18.4.2. There is an isomorphism between the Lie bialgebra gsc and the simple Lie algebra
g endowed with the standard Lie bialgebra structure.

The upshot of this theorem then is that it provides a new way to recover the whole simple Lie algebra
from Bridgeland-Hall algebras and a homological perspective on its structure.

New Proofs of Old Results

A general feature of results involving Hall algebras and Bridgeland-Hall algebras is that their proofs
are often more straightforward than the corresponding ones for quantized enveloping algebras. A
natural question to ask is whether one can use the Bridgeland-Hall algebra approach to Poisson-Lie
groups to simplify proofs of old but tricky to prove theorems.

In the introductory section on quantized enveloping algebras we mentioned that in [DCP93] De
Concini and Procesi proved that the t � 1 limit of the Poisson integral form of the quantized
enveloping algebra was isomorphic to the coordinate algebra of the standard dual Poisson-Lie group
G_. We also mentioned that the proof of this theorem involved a long case-by-case analysis.

In Chapter 19, using the machinery of Bridgeland-Hall algebras we will provide a new, more direct
proof of this theorem. Recall that we defined the semi-classical Poisson Lie group G_

sc to be the
spectrum of DHsc.
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Theorem 19.2.1. There is an isomorphism of Poisson-Lie groups between the semi-classical Poisson
Lie group G_

sc and the standard dual Poisson-Lie group G_.

The semi-classical Bridgeland-Hall algebra is the coordinate algebra of G_
sc and moreover, as we have

mentioned, in Chapter 17 we can explicitly calculate the algebra and Poisson structure of DHsc. A
consequence of the above theorem then is that, not only can we simplify an old proof, but we also
obtain a new point of view on the structure of the standard dual Poisson-Lie group G_.



Additional Remarks

Advice on Reading this Thesis

This thesis is divided into four distinct parts which we feel comprise the major logical divisions of
the text. Part I consists of background material, Part II is devoted to generic Hall algebras, Part
III is concerned with generic Bridgeland-Hall algebras and finally Part IV deals with semi-classical
Bridgeland-Hall algebras. Each of these parts is then subdivided into chapters on the main topics in
these areas and each chapter is further subdivided into sections on more specialized concepts.

There is quite a bit of notation littered throughout this thesis. As such we have included an annotated
glossary which we encourage the reader to refer to whenever necessary. The entries in the glossary
consist of the most frequently used mathematical objects in this thesis and so we have highlighted
each of these objects in a red hyperlink on their page of definition. This should enable one to quickly
find the place of definition of any unfamiliar objects.

Many readers will already be familiar with the background theory in the various chapters of Part I.
A short-cut for this part would be to skim through any sections on known material, glancing only
at the red hyperlinks to familiarize oneself with notation.

Other readers may also already be comfortable with Hall algebras of Abelian categories. If one
simply wants a quick flavour of how the ideas in this thesis work then we advise reading the 9 pages
contained in Chapter 8, Chapter 9 and Chapter 10 of Part II. In particular one should get a good
idea of how generic Hall algebras come equipped with two natural integral forms and the flavour of
their t � 1 limits.

Assumptions and Conventions

The sole assumption we will make is that the only (Bridgeland-)Hall algebras considered in this
thesis are those associated to categories of representations of a simply-laced quiver.

By affine variety we mean an irreducible, reduced affine scheme of finite type over C. For us an
algebraic group will be an affine algebraic group over C. We will write e for the group identity of
various algebraic groups. In each case we will always make clear from context which group is being
referred to.
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Part I

Background Material





Overview

Part I is devoted to collecting various pieces of background material that will be used in this thesis.
A nice feature of the theory of Hall algebras is that it lies at the intersection of a wide variety of rich
and interesting topics. We thus hope that the chapters in this part may be of independent interest
to those seeking a concise overview of the areas tangentially related to Hall algebras.

We begin with Chapter 1 where we run through the basic theory of simple Lie algebras and simple Lie
groups. One of the undercurrents of this thesis is how closely Hall algebras of quiver representations
are related to these Lie algebras and Lie groups. We will see that many of the features of these Lie
theoretic objects manifest themselves again and again as algebraic properties of Hall algebras.

In Chapter 2 we collect a number of different definitions and results pertaining to quivers, their
representations and complexes of their representations. Categories of quiver representations provide
the underlying category of the Hall algebras that will be considered in this thesis. Similarly cate-
gories of Z2-graded complexes in projective quiver representations give the underlying category of
Bridgeland-Hall algebras

The material in Chapter 3 concerns various topics regarding Poisson-Lie groups and Lie bialge-
bras. These objects arise from t � 1 limits of integral forms of quantized enveloping algebras and
Bridgeland-Hall algebras. Lie bialgebras are the infinitesimal analogues of Poisson-Lie groups in the
same way that Lie algebras are the infinitesimal analogues of Lie groups. One of the most important
things we will do in Chapter 3 is to construct a Poisson-Lie group G_ and Lie bialgebra g_ called
the standard dual Poisson-Lie group and standard dual Lie bialgebra respectively.

Chapter 4 is a short chapter where we rigorously define the notion of an integral form of a Cptq-
algebra. We also explain the formal requirements and process by which coordinate algebras of
Poisson-Lie groups may arise from integral forms.

In Chapter 5 we define quantized enveloping algebras of simple Lie algebras. We also give an overview
of two integral forms of the quantized enveloping algebra – the restricted integral form and what
we call the Poisson integral form. The restricted integral form has the universal enveloping algebra
Upgq as its t � 1 limit while the Poisson integral form has the coordinate algebra CrG_s as its t � 1
limit.

Finally Chapter 6 is an overview of Hall algebras and Bridgeland-Hall algebras associated to categories
of quiver representations of simply-laced quivers. Hall algebras of categories of quiver representations
were originally defined by Ringel who used them to recover positive parts of quantized enveloping
algebras. Bridgeland-Hall algebras were introduced by Bridgeland to extend Ringel’s results and
recover the whole quantized enveloping algebra.
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Chapter 1

Lie Algebras and Algebraic Groups

In this chapter we recall various definitions and results regarding Lie algebras and algebraic groups.
Section 1.1 is concerned with an overview of simple Lie algebras and simple Lie groups. The story of
integral forms of quantized enveloping algebras and Hall algebras makes heavy use of these objects.
In Section 1.2 we outline the technicalities of how adjoint actions of algebraic groups on their Lie
algebras may be described in the language of the functor of points approach to schemes.

1.1 Simple Lie Algebras and Lie Groups

One of the crowning achievements of the theory of simple Lie algebras is that they are determined
by certain graphs called Dynkin diagrams. We will take the approach of defining simple Lie algebras
in terms of these diagrams.

In this thesis we will not consider all simple Lie algebras, only those determined by what are called
simply-laced Dynkin diagrams. A complete list of the simply-laced Dynkin diagrams can be found
at the end of this section.

A simply-laced Dynkin diagram is equivalent to the data of what is called a symmetric Cartan
matrix paijq

r
i,j�1. Such a matrix is non-degenerate and is determined from the Dynkin diagram via

the following formula where mij is the number of edges between the vertices i and j.

aij :� 2δij �mij (1.1)

It is this symmetric Cartan matrix that allows one to define a simple Lie algebra via the following
generators and relations description.

Definition 1.1.1. Let paijq
r
i,j�1 be a Cartan matrix associated to a simply-laced Dynkin diagram.

Define the associated simple Lie algebra g with Lie bracket r�,�s to be the complex Lie algebra
with generators ei, fi and hi for 1 ¤ i ¤ r subject to the following relations where 1 ¤ i, j ¤ r.

rhi, hjs � 0 rhi, ejs � aijej

rei, fjs � δijhj rhi, fjs � �aijfj

We also require that the following so-called Serre relations hold for i � j where ad denotes the
adjoint action.

ad
1�aij
ei pejq � 0 ad

1�aij
fi

pfjq � 0

4
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Simple Lie algebras have some special Lie subalgebras that we will make frequent use of. The first
is the Cartan subalgebra h which is generated by the elements hi. There are also of the positive and
negative nilpotent and Borel subalgebras which are generated as follows.

n� :� xeiy b� :� xei, hiy (1.2)

n� :� xfiy b� :� xfi, hiy

In light of the generators and relations definition of g there is a vector space triangular decomposition
of g into these subalgebras.

g � n� ` h` n�

Now the Cartan subalgebra acts via adjoint action on g. That is, there is a map hÑ Endpgq given
by h ÞÑ adh where adhpxq � rh, xs for any x P g. The linear operators adh are simultaneously
diagonalizable and induce what is called the root space decomposition of g.

g � h`
à

α a root

grαs

Here a root α is elements of h� such that the subspace grαs :� tx P g | adh � αphqx for all h P hu
is non-zero. The subspaces grαs are called the root spaces of g. We will denote by Φ � h� the set
of roots of g which is of finite cardinality.

The Z-span of the roots in h� form a lattice ΛΦ called the root lattice. One can choose certain
minimal sets of generators of ΛΦ called simple roots. Given the generators and relations description
of g we have a canonical choice of simple roots αi which may be defined via the Cartan matrix as
follows.

αiphjq � aij (1.3)

Throughout this thesis r will be the number of simple roots of g. In light of Equation (1.3) the
elements hi of the Cartan subalgebra h are called the simple coroots of g. Root lattices have
important automorphisms called simple reflections which are given as follows.

si : ΛΦ Ñ ΛΦ, αj ÞÑ αj � aijαi

The simple reflections generate a group W � Autph�q called the Weyl group of g. The length of an
element w PW is defined to be the minimal number l of simple reflections such that w � si1 � � � sil .
It is a fact that there exists a unique element w0 of longest length in W . In particular the length of
w0 is given by the number N of positive roots Φ� of g.

The simple roots αi split the set of roots up into a set of positive roots Φ� and negative roots Φ�.
The positive roots are those roots which are positive linear combinations of the simple roots while
the negative roots are ones given by negative linear combinations.

Simple Lie algebras have a non-degenerate bilinear form p�,�qg on g called the Cartan-Killing form.
This is given by px, yqg :� Trpadx � adyq for any x, y P g. We may rescale this form so that for any
1 ¤ i, j ¤ r we have phi, hjqg � aij which we do in this thesis.

For simple Lie algebras the root spaces grαs are all one dimensional. A root vector is a basis vector
for grαs. In general there is no canonical way to choose root vectors for g. For each positive root α
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then, we will make a choice of positive root vector eα in grαs and negative root vector fα in gr�αs.
Moreover will require that these satisfy the following condition for any two α, β P Φ�.

peα, fβqg � δα,β

We end with some words on simple Lie groups. It is well known that a simple Lie algebra g can
be integrated to a simple algebraic group G. The subalgebras n�, h and b� integrate to a choice
of what are called positive and negative unipotent subgroups N� � G, maximal torus T � G
and positive and negative Borel subgroups B� � G respectively. One can show that there is a
semi-direct product decomposition B� �N� � T and that T � B� XB�.

A character of a torus is a group homomorphism χ : T Ñ Gm. The set of characters forms a lattice
X
pT q called the character lattice. Since T is a complex algebraic torus then the group algebra
CrX
pT qs of the character lattice is canonically isomorphic to the coordinate algebra CrT s. The
isomorphism here is given by taking a character and viewing it as a function on T via Gm � A1

C.

The reason why we are mentioning character lattices is that in general there are several Lie groups
G with the same Lie algebra g. We will choose G to be what is called of adjoint form. The only
consequence of this that we shall need is that the following map induces a canonical isomorphism
between the character lattice of T and the root lattice ΛΦ � h� of g.

X
pT q Ñ ΛΦ, χ ÞÑ deχ

Here by deχ we mean the differential of χ at the torus identity e.

The Simply-Laced Dynkin Diagrams

The following is a complete list of the simply-laced Dynkin diagrams. We have used the letter r to
denote the number of vertices.

Ar : t t t t
Dr : t t t

t
t

�
�
�

Q
Q
Q

E6 : t t t t t
t

E7 : t t t t t t
t

E8 : t t t t t t
t

t
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1.2 Adjoint Actions of Algebraic Groups

A general feature of a (differentiable, algebraic etc.) Lie group is that it natural acts on its Lie
algebra via what is called the adjoint action. In this section we will explain, in the case of algebraic
groups, how to compute this adjoint action in terms of algebraic data. This material will be needed
in Chapter 19. A reference for the following is Section 3 in Chapter II of [Mil].

We begin by discussing algebraic groups and their Lie algebras in the language of their functor of
points before then giving a formula for the adjoint action. In this section we will denote by K a
complex affine algebraic group and k its Lie algebra. Note that we will view k as a scheme as opposed
to a complex vector space.

Recall that the algebraic group structure on the underlying variety of K is equivalent to a Hopf
algebra structure on the coordinate algebra CrKs. The coproduct ∆ is the pullback of functions via
the group multiplication map, the antipode S is the pullback of functions via the inverse map and
the counit ε picks out the group identity.

From the functor of points perspective the maps ∆, S and ε induce the structure of a group on the
B-valued points of K for any C-algebra B. A special case of this is that if Brδs is the algebra of
dual numbers over B then KpBrδsq is a group. One should view KpBrδsq as the set of B-valued
points of the tangent bundle of K. The functor of points way to write the fact that the K sits
inside its tangent bundle as the zero section is given by the following.

KpBq ãÑKpBrδsq, y ÞÑ y � 0 � δ

Turning to the Lie algebra, the B-valued points of k consists of the set of C-derivations of CrKs
in B where B is regarded as a CrKs-module via the counit ε. Explicitly kpBq is the set of C-linear
maps X : CrKs Ñ B such that for any functions f, g P CrKs the following holds.

Xpfgq � εpfqXpgq � εpgqXpfq

Geometrically the Lie algebra k sits inside the tangent bundle of K as the tangent space at the
group identity. The functor of points way of writing this is given by the following.

kpBq ãÑKpBrδsq, X ÞÑ ε�X � δ

Using the functor of points descriptions above we now give the adjoint action of K on k. The
idea is to view kpBq as sitting inside KpBrδsq and then perform the adjoint action operations using
the group structure on KpBrδsq. Let y be a point in the group KpBq and X a derivation in
kpBq. The following formula then gives the induced map on B-valued points of the adjoint action
Ad : K � kÑ k.

AdypXq � y � pε�X � δq � y�1 (1.4)

Here we have written � and p�q�1 for the induced group multiplication and inverse operations on
KpBrδsq respectively. One can check that the expression given in Equation (1.4) does indeed land
in kpBq �KpBrδsq again.



Chapter 2

Quivers, Representations and
Complexes

In this chapter we collect various definitions and results regarding quivers, quiver representations
and complexes of quiver representations.

Section 2.1 is concerned with defining quivers and their Abelian categories of representations. Hall
algebras are algebras that one can associate to certain Abelian categories. This section then should
be viewed as describing the underlying categories of the Hall algebras used in this thesis.

In Section 2.2 we discuss various properties of categories of quiver representations. These properties
will manifest themselves as various algebraic properties of Hall algebras. Important results in this
section are the Krull-Schmidt theorem and Gabriel’s theorem which give a characterization of all
representations of the types of quivers we will consider.

The material in Section 2.3 concerns certain categories of Z2-graded complexes of quiver represen-
tations. These will form the underlying categories of Bridgeland-Hall algebras which in some sense
give a doubled version of Hall algebras of categories of quiver representations.

We end this chapter with Section 2.4 on certain functors between categories of quiver representations
called BGP reflection functors. Reflection functors are of interest to us as they induce certain
isomorphisms between Bridgeland-Hall algebras.

2.1 Quivers and their Representations

In this section we recall the basic facts we will need regarding quivers and their representations.
Good introductory references for quivers and their representations are [Bri08] and [Sch09].

We begin by discussing quivers before defining their categories of representations. A quiver ~Q is a
finite directed graph. As part of the data of a quiver we have a set of vertices Q0 and a set of arrows
Q1. We also have the following source and target maps which respectively pick out the source vertex
and target vertex of each arrow.

s, t : Q1 Ñ Q0

8
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We will denote by r the number of vertices of ~Q. It will be convenient to choose a total ordering
on Q0 by labelling the vertices 1, . . . , r.

In this thesis we will only consider simply-laced quivers. By this we mean a quiver such that when
one forgets the direction of the arrows one is left with one of the simply-laced Dynkin diagrams
that we gave in Section 1.1. There is a deep relationship between quivers and Lie algebras. Indeed
a simply-laced quiver ~Q determines a symmetric Cartan matrix of corresponding Dynkin type as
follows.

paijq
r
i,j�1 :� p2δij � nij � njiq (2.1)

Here nij is the number of arrows from i to j. We will assume throughout that our choice of simple

Lie algebra g is the one determined by ~Q in this way.

Quivers give rise to Abelian categories via their category of representations. We will denote by Aq

the category of finite dimensional representations of ~Q over a finite field Fq. Here q is the prime
power giving the number of elements of Fq.

An object Lq in Aq consists of the data of a finite dimensional Fq-vector space Li for each i P Q0

along with an Fq-linear map La : Lspaq Ñ Ltpaq for each arrow a P Q1. We define the dimension of
Lq to be the sum of the dimensions of the Li.

A morphism in Aq between two quiver representations Mq and Nq is the data of an Fq-linear map

ψi : Mi Ñ Ni for each vertex i of ~Q such that for each arrow a the following diagram commutes.

Mspaq Mtpaq

Nspaq Ntpaq

Ma

ψspaq ψtpaq

Na

It is a standard fact that Aq is an Abelian category linear over Fq. It is worth pointing out that we
have in fact an infinite family of distinct categories Aq with one for each choice of prime power q.
We will see in Section 7.1 however that many features of these categories are ‘independent of q’.

An equivalent and often useful way to view quiver representations is as modules over the path algebra
of ~Q.

Definition 2.1.1. The path algebra of ~Q is the Fq-algebra Fq ~Q with generators gi and ga for i P Q0

and a P Q1 subject to the following relations.

g2
i � gi gigj � 0 pi � jq gtpaqga � gagspaq � ga

A standard result in the theory of quiver representations is that the category of finite dimensional
(left) modules over Fq ~Q is equivalent to the category of quiver representations Aq. This equivalence

takes an Fq ~Q-module V to the quiver representation with vector spaces giV at each vertex i P Q0

and linear maps gspaqV Ñ gtpaqV for each a P Q1 given by multiplication by ga.
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2.2 Properties of Categories of Quiver Representations

In this section we discuss various properties of categories of quiver representations.

We begin by describing the simple objects of Aq. For each vertex i of ~Q there is a simple repre-
sentation Si,q in Aq determined by the requirement that the dimension of the vector space assigned
to vertex j is one if j � i and zero otherwise. For simply-laced quivers these give all the simple
representations up to isomorphism.

We will use the notation KpAqq for the Grothendieck group of Aq. Recall that the Grothendieck

group is the Abelian group generated by isomorphism classes pLq of objects in Aq modulo the relationspNq � pLq � xMq � 0 for any short exact sequence 0 Ñ Nq Ñ Lq ÑMq Ñ 0.

In the case of simply-laced quiver representations, KpAqq is freely generated by the classes pSi,q
corresponding to the simple representations. This follows from the fact that Aq is a finite length
category, that is, any object Lq has a finite composition sequence with simple factors.

The Grothendieck group KpAqq is canonically isomorphic to the root lattice ΛΦ of the simple Lie
algebra g via the following map. Here we recall that αi P Φ is a simple root of g.

KpAqq Ñ ΛΦ, Ŝi,q ÞÑ αi (2.2)

The reason why Equation (2.2) is an isomorphism is that, on the one hand, since Ŝi,q form a basis for

KpAqq then the rank of KpAqq is the same as r, the number of vertices of ~Q. On the other hand,
it is well known that the simple roots αi form a basis for the root lattice ΛΦ and that the number
of these is given by the number of nodes in the Dynkin diagram of g, which is r by definition.

Recall from Section 1.1 that we have simple reflections si of the root lattice ΛΦ of g. Via Equa-
tion (2.2) the simple reflections induce automorphisms of the Grothendieck group KpAqq which
we will also denote by si. There is a bilinear form on KpAqq called the Euler form given by the
following.

〈M̂q, N̂q〉 :� dimFqHompMq, Nqq � dimFqExt1pMq, Nqq (2.3)

We will also need the symmetrization p�,�q and skew-symmetrization p�,�qskew of the Euler form,
which are given by the following.

pM̂q, N̂qq :� xM̂q, N̂qy � xN̂q, M̂qy pM̂q, N̂qqskew :� xM̂q, N̂qy � xN̂q, M̂qy (2.4)

One can check that in the basis given by the simple representations the symmetrized Euler form
gives the Cartan matrix from Equation (2.1).

After simple representations the next most important flavour of quiver representations for us will be
the indecomposable ones. These give the building blocks of the objects of Aq via the Krull-Schmidt
theorem.

Theorem 2.2.1 (Krull, Schmidt). Any object Lq in Aq has a direct sum decomposition into multiples
of pairwise non-isomorphic indecomposables I1, . . . , Ik as follows.

Lq � In1
1 ` . . .` Inkk
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Moreover, up to isomorphism, these indecomposables objects Ik of Aq and their multiplicities
n1, . . . , nk P Z¥0 are uniquely determined up to reordering.

Proof. The Krull-Schmidt theorem holds for any finite length Abelian category, that is, every object
has a finite composition series with simple factors. A reference for this fact is Theorem 1.5.7
of [EGNO15]. It is well known that Aq is a finite length category, see for example Section 3.1
of [Sch09].

A nice feature of representations of simply-laced quivers is that we can classify all indecomposable
representations via the following theorem due to Gabriel. Let IndpAqq denote the set of isomorphism
classes of indecomposable objects in Aq.

Theorem 2.2.2 (Gabriel). The composition of the map IndpAqq Ñ KpAqq, given by Iq ÞÑ pIq,
with KpAqq � ΛΦ from Equation (2.2) is a bijection onto the set of positive roots Φ� � ΛΦ. In
particular the category Aq has only finitely many indecomposable objects up to isomorphism.

Proof. This is Theorem 3.7 in [Sch09].

For each positive root α of g we will denote by Iα,q a choice of indecomposable representation
corresponding to α via Theorem 2.2.2. We will find it convenient to denote by N the number of
isomorphism classes of indecomposable representations of ~Q. This also coincides with the number
of positive roots of g by Gabriel’s theorem.

One can give a very explicit description of all possible projective quiver representations. The inde-
composable projective Fq ~Q-modules are all of the form P piq � Fq ~Qgi, that is, the left ideals of Fq ~Q
generated by the elements gi. Using Krull-Schmidt for Aq and the equivalence of categories between

Aq and the category of Fq ~Q-modules this describes all possible projective quiver representations up
to isomorphism.

A standard result about the categories Aq is that they are at most of global dimension 1. The easiest

way to see this is that any Fq ~Q-module V has a projective resolution of the following form called
the standard resolution.

0
À
aPQ1

P ptpaqq bFq gspaqV
À
iPQ0

P piq bFq giV V 0F G

The maps F and G here are given by F pgbb vq � gbgab v� gbb gav and Gpgcbwq � gcw where
gb P P ptpaqq, gc P P piq, v P gspaqV and w P giV .

We end this section with the following proposition on split extensions of simply-laced quiver repre-
sentations.

Proposition 2.2.3. For any simply-laced quiver ~Q the only extension class in Ext1
AqpMq, Nqq whose

middle term is isomorphic to Mq `Nq is the split extension.

Proof. This follows from Theorem 1.2 in [Str05] on restricting to the special case of the zero
ideal.
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2.3 Z2-Graded Complexes

In this section we discuss categories of Z2-graded complexes in projective quiver representations.
The projective part means that we only consider complexes of projective objects. The Z2-graded
part means that our complexes are unbounded complexes which repeat every two steps. We begin
with some definitions before giving a Krull-Schmidt type theorem for complexes. We then end this
section with a discussion on extensions of certain complexes. A reference for the material which
follows is Section 3 of [Bri13] and Section 4 of [CD15].

Define Cq to be the category of Z2-graded complexes in projective objects in Aq. The objects L
q
of Cq are complexes of the following form where L1 and L0 are projective objects in Aq.

L1

f
// L0

g
oo , f � g � g � f � 0

Morphisms are given by usual morphisms of complexes. A feature of the Z2-grading is that the usual
shift functor for complexes induces an involution � : Cq Ñ Cq which sends a complex L
q to the
following shifted complex L�
q.

L0

g
// L1

f
oo

We now unravel some of the structure of Cq by describing four special types of complexes and then
explain how they form Krull-Schmidt type building blocks of Cq. For any quiver representation Lq
we’ll first need to fix what is called a minimal projective resolution of Lq as follows.

0 Ñ PLq
d
ÝÑ QLq Ñ Lq Ñ 0 (2.5)

Minimal here means that if we decompose PLq � `Pj and QLq � `Qj using the Krull-Schmidt
Theorem 2.2.1 then in the corresponding decomposition d � pdijq we have that none of the dij
are isomorphisms. Any minimal projective resolution is unique up to isomorphism, a fact which is
proved in Lemma 4.1 of [Bri13]. Throughout this thesis we will use the notation in Equation (2.5)
to denote a minimal projective resolution.

The point is that we can then associate to any representation Lq the following two objects of Cq
which are canonical up to isomorphism and interchanged by the shift functor.

CLq :� PLq
d // QLq
0
oo C�

Lq
:� QLq

0 // PLq
d
oo

In particular these complexes have Lq and 0 as their two homology objects. The homology of CLq is
given by Lq in degree zero while that of C�

Lq
is given by Lq in degree one. The other two important

types of objects in Cq are the following acyclic complexes associated to any projective object Pq in
Aq. Again these two complexes are interchanged by the shift involution.

KPq :� Pq
id // Pq
0
oo K�

Pq
:� Pq

0 // Pq
id
oo (2.6)

We then have the following Krull-Schmidt type theorem for Z2-graded complexes in projective quiver
representations.
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Theorem 2.3.1 (Bridgeland). Any object L
q in Cq splits as a direct sum of the following form.

CAq ` C�
Bq `KPq `K�

Qq (2.7)

Moreover the quiver representations Aq, Bq, Pq and Qq are unique up to isomorphism.

Proof. This is Lemma 4.2 in [Bri13].

Combining Theorem 2.3.1 with Gabriel’s Theorem 2.2.2 it follows that any object L
q in Cq is
determined uniquely up to isomorphism by a map of sets Φ

²
pZ2 �Q0q Ñ Z¥0 which determines

Aq, Bq, Pq and Qq in Equation (2.7). By Gabriel’s theorem, the Φ Ñ Z¥0 component determines
the two quiver representations Aq and Bq. To see that the component pZ2�Q0q Ñ Z¥0 determines

two projectives Pq and Qq we use the fact that the projective indecomposable representations of ~Q
are in bijection with Q0 .

We end with an interpretation of some extensions of complexes. That the claims in the following
discussion hold follows from the comments preceding Lemma 4.3 in [CD15]. We begin by letting
Mq and Nq be quiver representations and L
q be a complex fitting into a short exact sequence of
complexes of the following form, that is a short exact sequence in the category Cq.

0 Ñ C�
Nq Ñ L
q Ñ CMq Ñ 0 (2.8)

Suppose L
q has homology objects Aq and Bq in degree zero and degree one respectively. Taking
the induced long exact sequence on homology we obtain an exact sequence of the following form
where δ is the connecting homomorphism.

0 Ñ Aq ÑMq
δ
ÝÑ Nq Ñ Bq Ñ 0

The map we have just described which takes a short exact sequence to δ in fact gives an isomorphism
between the following sets.

Ext1pCMq , C
�
Nqq Ñ HompMq, Nqq (2.9)

If L
q fits in to an extension of the form Equation (2.8) then it is actually uniquely determined by
its homology objects Aq and Bq. In particular one can show that there is an isomorphism of the
following form where the acyclic direct summands are uniquely determined up to isomorphism by
the requirements that PMq � PMAq ` PAq and QNq � QNBq `QBq .

L
q � CAq ` C�
Bq `KPMAq

`K�
QNBq

(2.10)

Note that we have chosen the notation PMAq here to signify that this projective representation is
determined uniquely (up to isomorphism) by the representations PMq and PAq . Similarly QNBq is
determined uniquely by QNq and QBq respectively.

Now let Ext1pCMq , C
�
Nq
qL
q denote the subset of extensions with middle term isomorphic to L
q.

Denote also by HompMq, NqqAq ,Bq subset of morphisms with kernel Aq and cokernal Bq. From
the above discussion the isomorphism from Equation (2.9) descends an isomorphism between the
following sets where L
q is related to Aq and Bq via Equation (2.10).

Ext1pCMq , C
�
NqqL
q Ñ HompMq, NqqAq ,Bq (2.11)
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2.4 BGP Reflection Functors

In this section we recall some of the details regarding BGP reflection functors between categories of
quiver representations. A reference for the material which follows is Section 1.4 of [DDPW08].

Let’s introduce some notation. We will find it convenient to write A ~Q
q when we need to make

the dependence on ~Q explicit. For any vertex i P Q0 we have the following full subcategory of
representations which do not have the simple representation Si,q as a direct summand.

A ~Q
q xiy � A ~Q

q

Now from any vertex i of ~Q one can form a new quiver σi ~Q from ~Q by inverting the direction of all
arrows incident at i. We define a sink to be a vertex of ~Q which only has arrows pointing into it.
Conversely a source is a vertex which only has arrows pointing out of it. With this notation we can
state the main theorem of this section.

Theorem 2.4.1 (Bernstein, Gelfand, Ponomarev). Let i be a sink for ~Q with i then being a source
for σi ~Q. There exists functors called BGP reflection functors between the following categories.

σ�i : A ~Q
q Ñ Aσi ~Q

q σ�i : Aσi ~Q
q Ñ A ~Q

q

Moreover the σ�i have the following properties.

1. The functors σ�i restrict to mutually inverse equivalences of categories σ�i : A ~Q
q xiy Ñ Aσi ~Q

q xiy

and σ�i : Aσi ~Q
q xiy Ñ A ~Q

q xiy. In particular these restricted functors take indecomposable
representations to indecomposables representations.

2. For any representation Lq in A ~Q
q xiy the Grothendieck group class of σ�i pLqq is sipL̂qq where

si denotes the simple reflection on KpAqq from Section 2.2.

Proof. This can be found in Theorem 1.18 and Corollary 1.19 of [DDPW08].

We refer the interested reader to Section 1.4 of [DDPW08] for the explicit constructions of the
functors σ�i , although they will not be used in this thesis.



Chapter 3

Poisson-Lie Groups and Lie Bialgebras

In this chapter we give an overview of various results we shall need from the theory of Poisson-Lie
groups and Lie bialgebras.

In Section 3.1 we give the definition of a Poisson-Lie group. Poisson-Lie groups are algebraic groups
which are at the same time Poisson varieties such that the two structures are compatible. Section 3.2
concerns the theory of Lie bialgebras. These are the infinitesimal analogues of Poisson-Lie groups
in the same way that Lie algebras are the infinitesimal versions of Lie groups.

Finally in Section 3.3 we construct the main example of the Poisson-Lie groups and Lie bialgebras
that we use in this thesis. In particular we will construct a Poisson-Lie group G_ which is dual in
some sense to a simple Lie group G with Lie algebra g.

The importance of the Poisson-Lie group G_ for us lies in the fact that its coordinate Hopf algebra
appear as the semi-classical limit of quantized enveloping algebras and Bridgeland’s Hall algebra.
We will say more on this in Chapter 5 and Part IV.

3.1 Poisson-Lie Groups

In this section we define the notion of a Poisson-Lie group. A reference for the following material is
Section 6.2 of [CP95].

Recall that the structure of an algebraic group on a complex affine variety K is equivalent to a Hopf
algebra structure on its coordinate algebra CrKs. The coproduct is the pullback of functions via
the multiplication map, the antipode is the pullback of functions via the inverse map and the counit
picks out the group identity.

A Poisson-Lie group is an algebraic group K which is also a Poisson variety such that the Poisson
and algebraic group structures are compatible. The requirement on the algebraic side of things is
for CrKs to be a Poisson-Hopf algebra.

Definition 3.1.1. Let K be a complex affine algebraic group which is also a Poisson variety with
Poisson bracket t�,�u. We say that K is a Poisson-Lie group if its coordinate Hopf algebra is

15
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Poisson-Hopf, that is, if the following condition holds for any functions f and g in CrKs.

∆tf, gu � tf1, g1u b f2g2 � f1g1 b tf2, g2u (3.1)

Here we have written ∆ for the coproduct on CrKs and the subscripts 1 and 2 denote Sweedler’s

notation, a shorthand way of writing ∆pfq. More explicitly, since there exists f
piq
1 and f

piq
2 such that

∆pfq �
°
i f

piq
1 b f

piq
2 then one frequently drops the summation and simply writes f1 b f2 instead

of ∆pfq. This notation allows one to more easily manipulate expressions involving coproducts.

Equation (3.1) is an algebraic compatibility condition. There is also an equivalent geometric condi-
tion which we will give for C-valued points of K. In particular for any C-valued points x and y of
K and functions f and g in CrKs the following holds.

tf, gupx � yq � tlxf, lxgupyq � tryf, rygupxq (3.2)

In Equation (3.2) the symbol � denotes group multiplication. The notation lxf denotes the pullback
of f by left multiplication by x and ryf denotes the pullback of f by right multiplication by y.

3.2 Lie Bialgebras, Duality and Manin Triples

In this section we discuss Lie bialgebras and explain how they are the infinitesimal analogues of
Poisson-Lie groups. We will describe a kind of duality for Lie bialgebras which allows one to define
duality of Poisson-Lie groups. We then explain an equivalent and useful characterization of Lie
bialgebras called Manin triples. Finally we end with algebraic Manin triples which are the analogues
of Manin triples for algebraic groups.

Our references for the material which follows are Section 2.2 of [ES01] for Lie bialgebras and Section
2.2.3 of [ES01] for duality of bialgebras. For Manin triples we have two references: Section 4.1
of [ES01] and Section 11 of [DCP93].

We begin with the definition of a Lie bialgebra. A Lie bialgebra is a Lie algebra with the additional
structure of a compatible Lie algebra on its vector space dual.

Definition 3.2.1. A Lie bialgebra pk, r�,�sk, r�,�sk�q is a finite dimensional complex Lie algebra
pk, r�,�skq along with a Lie bracket r�,�sk� on the dual vector space k� such that if we let the
p : kÑ kbk be the dual linear map to r�,�sk� then the following compatibility condition is satisfied
for any X,Y P k.

pprX,Y skq � padX b idk � idk b adXqppY q � padY b idk � idk b adY qppXq

Here ad denotes the adjoint action endomorphism of k and idk is the identity endomorphism of k.

We will often simply write k in place of pk, r�,�sk, r�,�sk�q for a Lie bialgebra. A morphism of Lie
biagebras k1 Ñ k2 is a Lie algebra homomorphism such that the induced map on dual vector spaces
k�2 Ñ k�1 is also a Lie algebra homomorphism.

Lie bialgebras satisfy a very simple duality by switching the roles of the vector spaces k and k�. If
pk, r�,�sk, r�,�sk�q is a Lie bialgebra then, using the canonical isomorphism k � pk�q�, we have that
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pk�, r�,�sk� , r�,�skq is again a Lie bialgebra. A proof of this fact can be found in Proposition 2.2
of [ES01]. Performing the procedure twice recovers k up to canonical isomorphism of Lie bialgebras.

We will use the notation k_ as shorthand for pk�, r�,�sk� , r�,�skq and refer to it as the dual Lie
bialgebra of k. We will reserve the notation k� for the vector space underlying k_. More generally
we will say that two Lie bialgebras a and b are dual if a_ is isomorphic to b as a Lie bialgebra.

Let’s explain how Lie bialgebras arise from Poisson-Lie groups. First of all, a Poisson-Lie group K
is an algebraic group and so has a tangent Lie algebra pk, r�,�skq i.e. via the usual Lie group-Lie
algebra correspondence. In addition, linearizing the Poisson bracket t�,�u at the group identity
e P K induces the structure of a Lie algebra on the vector space k� dual to k. In particular the
resulting Lie bracket on k� is given as follows for any functions f, g P CrKs.

rdef, degsk� :� detf, gu (3.3)

We shall refer to r�,�sk and r�,�sk� as the tangent and cotangent Lie bracket of k respectively.
One can check, as for example in Proposition 11.34 of [LGPV13], that the Poisson-Lie group com-
patibility condition from Equation (3.1) induces the Lie bialgebra compatibility condition making
pk, r�, �sk, r�, �sk�q a Lie bialgebra. We call k the tangent Lie bialgebra of K.

The notion of duality for Lie bialgebras also extends to Poisson-Lie groups. If A and A_ are
Poisson-Lie groups then we say that A_ is dual to A if their tangent Lie bialgebras are dual.

In the remainder of this section we will discuss Manin triples and algebraic Manin triples. Manin
triples are an equivalent and useful way to package the data of a Lie bialgebra. Algebraic Manin
triples are the corresponding analogues for Poisson-Lie groups.

Definition 3.2.2. A Manin triple is a triple of finite dimensional complex Lie algebras pk, a, a_q with
the following properties.

(i) The Lie algebras a and a_ are Lie subalgebras of k such that k � a` a_ as a vector space

(ii) There is a non-degenerate, invariant, symmetric bilinear form on k with respect to which a
and a_ are isotropic, i.e. the form vanishes when restricted to a or restricted to a_. We refer
to this form as the Manin form

There is an obvious notion of a morphism of Manin triples and one has the following relationship
between Lie bialgebras and Manin triples.

Proposition 3.2.1. If a is a finite dimensional complex Lie algebra then there is a bijection between
isomorphism classes of Manin triples of the form pk, a, a_q and isomorphism classes of Lie bialgebra
structures on a.

Proof. See Section 4.1 of [ES01] for all of the details. In particular the Manin form identifies the
vector space dual a� with a_. This gives a� a Lie bracket r�,�sa� coming from the one on a_.
One can then check that pa, r�,�sa, r�,�sa�q is a Lie bialgebra.
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It is easy to see how duality works for Manin triples. If pk, a, a_q is a Manin triple then so too is
pk, a_, aq. Proposition 3.2.1 then says that both a and a_ have the structures of Lie bialgebras and
moreover one can check that a_ is the dual Lie bialgebra of a.

We now explain the notion of algebraic Manin triples.

Definition 3.2.3. An algebraic Manin triple is a triple of algebraic groups pK,A,A_q where A and
A_ are closed subgroups of K such that their corresponding triple of tangent Lie algebras pk, a, a_q
is a Manin triple.

We will refer to pk, a, a_q as the tangent triple of pK,A,A_q. We then have the following propo-
sition which relates algebraic Manin triples to Poisson-Lie groups.

Proposition 3.2.2. If pK,A,A_q is an algebraic Manin triple with tangent Manin triple pk, a, a_q
then there exists unique Poisson-Lie group structures on A and A_ whose tangent Lie bialgebras
are a and a_ respectively.

Proof. A proof of this fact can be found in Section 11 of [DCP93]. Existence is established on page
81 while uniqueness can be found at the end of page 80.

If pK,A,A_q is an algebraic Manin triple then since a_ is the dual Lie bialgebra of a we have that
by definition A_ and A are dual as Poisson-Lie groups.

3.3 Standard Dual Poisson-Lie Groups and Bialgebras

In this section we explain how to construct the main example of Poisson-Lie groups and Lie bialgebras
that we will use in this thesis: the standard dual Poisson-Lie group G_ and standard dual Lie
bialgebra g_. Our reference is Section 11 of [DCP93].

Let G be the simple algebraic group with tangent Lie algebra g, as in the discussion at the end of
Section 1.1. One can give G a certain Poisson structure called the standard Poisson-Lie structure.
This in turn endows g with a Lie bialgebra structure called the standard bialgebra structure.

In this section – and in this thesis more generally – our interest is not so much in the Poisson-Lie
group G but rather its dual G_. The tangent Lie bialgebra of G_ is the standard dual Lie bialgebra
g_. The objective of this section is to explain how to construct G_ and give a characterization of
g_. We also relate various subalgebras and subgroups of g_ and G_ to analogous ones in g and G.

Let’s first define G_ as an algebraic group. Recall from Section 1.1 that we have chosen positive
and negative Borel subgroups B� and a maximal torus T of G. Denote by π : B� �B� Ñ T the
product of the two canonical projections from B� and B� to the maximal torus. It is easy to see
that π is a homomorphism of algebraic groups. The algebraic group G_ is then defined to be the
kernel of the map π. We use the notation i_ for the inclusion of G_ into B� �B�.

Using Proposition 3.2.2 we now describe how G_ obtains the structure of a Poisson-Lie group by
showing that it fits into an algebraic Manin triple of the form pG �G,G,G_q. In this triple the
simple Lie group G is viewed as a subgroup of G �G via the diagonal embedding. The algebraic
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group G_ is identified with the subgroup of G �G via the inclusion i_ along with the fact that
B� �B� � G�G.

To show that pG�G,G,G_q is an algebraic Main triple we need to check that its tangent triple,
denoted by pg` g, g, g_q, is indeed a Manin triple. Here the simple Lie algebra g is identified with
the diagonal Lie subalgebra of g` g while g_ is given by the following Lie subalgebra of g` g.

g_ :� tpX�, X�q P b� ` b� | Xh
� �Xh

� � 0u (3.4)

The notation Xh here denotes the projection of an element X P g to the Cartan subalgebra h. One
can check that as a vector space g` g is the direct sum of its subspaces g and g_ and so we need
only establish the existence of a Manin form. Recall from Section 1.1 that we have a normalized
Cartan-Killing form p�,�qg on g. One can check that a Manin form on g ` g is determined by
the requirement that it restricts to p�,�qg on t0u ` g, �p�,�qg on g` t0u and that g` t0u and
t0u ` g are mutually orthogonal.

The hypothesis of Proposition 3.2.2 is then satisfied and so G and G_ have the structures of
Poisson-Lie groups which are dual to each other. In addition the tangent Lie algebras g and g_ have
the structures of Lie bialgebras which are again dual.

Definition 3.3.1. Define G to be the standard Poisson-Lie group and G_ to be the standard
dual Poisson-Lie group. The tangent Lie bialgebra structure on g is called the standard bialgebra
structure. The Lie bialgebra dual g_ is called the standard dual Lie bialgebra.

We will now unravel some of the features of g_ more explicitly. Using the Manin form on g` g one
can identify the vector space g with vector space dual of g_ which we do from now on. Using the
root vectors of g that we defined in Section 1.1 we have the following elements of g_.

e_α :� p�fα, 0q f_α :� p0, eαq h_i :�
1

2
p�hi, hiq (3.5)

With respect to the Manin form identification of g_ with the vector space dual of g one can check
that e_α is the dual vector of eα, f_α is the dual vector of fα and h_j phiq � aij . The elements in
Equation (3.5) thus give a basis for g_. We note that the root lattice ΛΦ of g sits inside h_ via
αi ÞÑ h_i .

We haven’t yet discussed the tangent and cotangent Lie brackets on g_. The cotangent Lie bracket
on the vector space dual of g_ is the one coming from the bracket r�,�s on g via the Manin form
identification. The tangent Lie bracket on g_, which we denote by r�,�s_, is given by the following
proposition.

Proposition 3.3.1. The tangent Lie bracket r�,�s_ on g_ is determined by the following where
α, β P Φ� and 1 ¤ i, j ¤ r.

rh_i , h
_
j s

_ � 0

rh_i , e
_
α s

_ �
1

2
pαi, αqg e

_
α

rh_i , f
_
α s

_ �
1

2
pαi, αqg f

_
α

re_α , f
_
β s

_ � 0
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The following Serre relations are also required to be satisfied for i � j.

ad
1�aij
e_αi

pe_αj q � 0 ad
1�aij
f_αi

pf_αj q � 0

Proof. This follows from how g_ was defined as a subalgebra of g` g in Equation (3.4) along with
the generators and relations description of g given in Definition 1.1.1.

We now define certain Lie subalgebras of g_ which are analogues of the Cartan, nilpotent and Borel
subalgebras of g. The analogue of the Cartan subalgebra is given by h_ :� xh_i y. The following
give the analogues of the nilpotent and Borel subalgebras.

n_� :� xe_α y b_� :� xe_α , h
_
i y

n_� :� xf_α y b_� :� xf_α , h
_
i y

How are the above subalgebras of g_ related to the Cartan, nilpotent and Borel subalgebras of g?
In the Borel case there is a canonical isomorphism between b_� and b	 given by the following.

b_� Ñ b� ` b� Ñ b	 (3.6)

Here the first map is given by the inclusion and the second is the canonical projection. It is easy
to check that the isomorphism b_� � b� sends e_α ÞÑ �fα and h_i ÞÑ �1{2 � hi. Similarly under
b_� � b� we have f_α ÞÑ eα and h_i ÞÑ 1{2 � hi. The isomorphism b_� � b	 restrict to give a
canonical isomorphism n_� � n	 and two different canonical isomorphisms h_ � h.

On the algebraic group side of things the Lie subalgebras n_�, b
_
� and h_ of g_ integrate to subgroups

N_
� , B_

� and T_ of G_ respectively. Integrating Equation (3.6) there is a canonical isomorphism
between B_

� and B	 given by the following.

B_
� Ñ B� �B� Ñ B	

Here the first map is given by inclusion and the last is the canonical projection. The isomorphism
B_
� � B	 restricts to a canonical isomorphism between N_

� and N	 and two canonical isomor-
phisms between T_ and T .



Chapter 4

Integral Forms and Poisson-Lie Groups

In this short chapter we discuss integral forms of Cptq-algebras. Integral forms are special types of
subalgebras of Cptq-algebras which allow one to rigorously set t to be certain values. In particular, we
will explain the formal requirements and process by which Poisson algebras and coordinate algebras
of Poisson-Lie groups may arise from integral forms.

4.1 Integral Forms and Poisson-Lie Groups

Suppose that we have a Cptq-algebra which we will denote by B. Clearly B depends on a parameter
t and one would often like to set t to be a particular value in order to study the resulting hopefully
simpler algebra. A problem arises when one attempts to do this näıvely however: the existence of
elements of B with poles can make specializing t behave badly.

Integral forms are certain Crt, t�1s-subalgebras of Cptq-algebras which get around the above problem
and allow one to set the parameter t to be any non-zero complex number. There can be lots of
different integral forms sitting inside a Cptq-algebra.

Definition 4.1.1. Let B be a Cptq-algebra. An integral form of B is a Crt, t�1s-subalgebra Z � B
which is free as a Crt, t�1s-module and such that the multiplication map Cptq bCrt,t�1s Z Ñ B is
an isomorphism of Cptq-algebras.

Once one has an integral form Z � B one can then set t to be a non-zero complex number w by
taking the quotient algebra of Z by the ideal pt�wq. We call the resulting algebra the specialization
of Z at t � w or alternatively the t � w limit of Z. In this thesis we will usually specialize integral
forms at t � 1. We also note that for the notion of an integral, one dos not necessarily have to work
over C. One could equally work over Z or Q instead.

We now explain how Poisson algebras or even coordinate algebras of Poisson-Lie groups arise from
integral forms. This phenomenon occurs in the special case that the t � 1 limit of an integral form
is a commutative algebra.

When the t � 1 limit of a Crt, t�1s-algebra Z is commutative we will call the quotient algebra
Zsc :� Z{pt � 1q the semi-classical limit of Z. We then have the following proposition. Note in
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general we will use the notation x for the image of an element x P Z in the quotient of Z by an
ideal.

Proposition 4.1.1. If Z is a Crt, t�1s-algebra with commutative t � 1 limit then Zsc is a commu-
tative Poisson C-algebra under the following Poisson bracket.

tx, yu :�

�
xy � yx

t� 1



, x, y P Z

Proof. The Poisson bracket is well-defined since if the product on Z is commutative modulo pt� 1q
then pxy�yxq{pt�1q is a well-defined element of Z. Skew-symmetry is immediate while the Jacobi
identity can be obtained easily using the above formula. For the Leibniz identity note that we have
the following identity in Z for any elements x, y, z P Z.

xyz � zxy � xyz � pxzy � xzyq � zxy

� xpyz � zyq � pxz � zxqy

Dividing by t� 1 and taking the image in Zsc we obtain that txy, zu � xty, zu � tx, zuy.

Suppose our Crt, t�1s-algebra Z from Proposition 4.1.1 has in addition the structure of a Crt, t�1s-
Hopf algebra. One can check that the Crt, t�1s-Hopf algebra structure on Z descends to a commu-
tative C-Hopf algebra structure on Zsc. Even better, the Poisson structure from Proposition 4.1.1
is compatible with this C-Hopf algebra structure in the following sense.

Proposition 4.1.2. If Z is a Crt, t�1s-Hopf algebra with commutative t � 1 limit then Zsc is a
commutative Poisson-Hopf algebra over C. In particular Zsc is the coordinate algebra of a Poisson-
Lie group.

Proof. Let ∆ denote the coproduct on Z and ∆ the induced coproduct on Zsc. The compatibility
between the Hopf algebra and Poisson structure required for a Poisson-Hopf algebra was given in
Equation (3.1). The requirement, in Sweedler’s notation, is that for any x, y P Z we have the
following identity in Zsc b Zsc.

∆tx, yu � tx1, y1u b x2y2 � x1y1 b tx2, y2u (4.1)

To see that Equation (4.1) holds consider first the following identity in Z b Z.

∆pxy � yxq � x1y1 b x2y2 � y1x1 b y2x2

� px1y1 � y1x1q b x2y2 � y1x1 b px2y2 � y2x2q

� px1y1 � y1x1q b x2y2 � x1y1 b px2y2 � y2x2q �Oppt� 1q2q

In establishing the last equality we have used the fact that y1x1 � x1y1 � Opt � 1q and that
y2x2 � x2y2 � Opt� 1q where O denotes up to order. Dividing the above expression by t� 1 and
taking the image in Zsc b Zsc we obtain Equation (4.1).

We end this section with a comment on a direction that we shall not explore this thesis. When the
t � 1 limit of a Crt, t�1s-Hopf algebra a cocommutative Hopf algebra then one obtains something
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called a coPoisson-Hopf algebra. A coPoisson-Hopf algebra is the dual notion of a Poisson-Hopf
algebra.

Often one can show that the underlying Hopf algebra of a coPoisson-Hopf algebra is the universal
enveloping algebra of a Lie algebra. In such a case this Lie algebra is in fact a Lie bialgebra and the
coPoisson-Hopf structure is the induced structure that the universal enveloping algebra acquires.



Chapter 5

Quantized Enveloping Algebras

In this chapter we give an overview of quantized enveloping algebras. These are Cptq-algebras which
are quantizations of Upgq the universal enveloping algebra of the simple Lie algebra g.

For our purposes the most important feature of quantized enveloping algebras is the existence of
two natural integral forms. One, which we call the Poisson integral form, specializes at t � 1 to the
coordinate algebra of functions on a Poisson-Lie group. The other is called the restricted integral
form and specializes at t � 1 to Upgq.

We start off this chapter with Section 5.1 where we define Utpgq, the quantized enveloping algebra
of g. This is done by deforming a generators and relations description of Upgq.

Section 5.2 concerns algebra automorphisms of Utpgq due to Lusztig. These automorphisms are
used to define analogues in Utpgq of root vectors of g called quantum root vectors. For us the main
use of quantum root vectors is that they allow one to define the Poisson integral form of Section 5.5.

The aim of Section 5.3 is to introduce an algebra involution Σ of the quantized enveloping algebra.
This involution commutes with the automorphisms from Section 5.2. In Section 13.4 we will see
that Σ is the analogue of a certain shift functor induced involution of the Bridgeland-Hall algebra.

In Section 5.4 we give the definition of the restricted integral form of the quantized enveloping
algebra due to Lusztig. For us the main feature of this integral form is that its specialization at
t � 1 is universal enveloping algebra Upgq.

Finally in Section 5.5 we discuss what we call the Poisson integral form of Utpgq. This was originally
defined by De Concini and Procesi [DCP93] who showed that its t � 1 limit is the coordinate algebra
of the dual Poisson-Lie group G_ from Section 3.3.

5.1 Definition

This section is concerned with defining quantized enveloping algebras. A reference for the material
in this section is Section 9.1 of [CP95].

The quantized enveloping algebra Utpgq is a quantization of Upgq the universal enveloping algebra
of the simple Lie algebra g. Recall from Definition 1.1.1 that we defined g via Lie algebra generators
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and relations. The same generators and relations – viewed instead as generating an associative
C-algebra – also define the universal enveloping algebra Upgq.

Quantization of Upgq is achieved by modifying the generators and relations of Upgq to obtain a
Cptq-algebra Utpgq. A key point is that it will be possible to recover Upgq by taking the t � 1 limit
of a suitable integral form of Utpgq. We will make this statement rigorous in Section 5.4. In the
meantime, an elementary example of quantization is given by the following t-analogues of various
integers which we will need subsequently. Here n P N, s P Z¥0 with 0 ¤ s ¤ n and r0st! :� 1 by
convention.

rnst :�
tn � t�n

t� t�1
rnst! :� rnstrn� 1st � � � r1st

�
n

s

�
t

:�
rnst!

rsst!rn� sst!
(5.1)

It is easy to see that sending tÑ 1 in the above definitions recovers the integers n, n! and binomial
coefficient

�
n
s

�
respectively.

The quantized enveloping algebra of g is then given as follows. We remind the reader that paijq
r
i,j�1

denotes the symmetric Cartan matrix associated to a simply-laced Dynkin diagram.

Definition 5.1.1. Define the quantized enveloping algebra Utpgq of g to be the Cptq-algebra with
generators Xi, Yi and K�1

i for 1 ¤ i ¤ r such that Ki and K�1
i are mutually inverse and the

following relations are satisfied for 1 ¤ i, j ¤ r.

KiKj � KjKi (5.2)

KiXj � taij XjKi (5.3)

KiYj � t�aijYjKi (5.4)

rXi, Yjs � δij
Ki �K�1

i

t� t�1
(5.5)

We also require that the following t-analogues of the Serre relations hold for i � j.¸
µ�ν�1�aij

p�1qµ
�
1� aij
µ

�
t

Xµ
i XjX

ν
i � 0

¸
µ�ν�1�aij

p�1qµ
�
1� aij
µ

�
t

Y µ
i YjY

ν
i � 0

Example 5.1.2. In the case of g � sl2 then r � 1 and the Cartan matrix is the 1x1 matrix with
a11 � 2. Thus Utpsl2q is the Cptq-algebra with generators X, Y and K�1 such that K and K�1

are mutually inverse and the following relations hold.

KX � t2 XK

KY � t�2Y K

rX,Y s �
K �K�1

t� t�1

We end this section by defining Utpn�q to be the Cptq-subalgebra of Utpgq generated by the elements
Xi. This subalgebra plays an important role in the story of Hall algebras and is called the positive
part of the quantized enveloping algebra.
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5.2 Lusztig’s Automorphisms and Quantum Root Vectors

This section is concerned with certain automorphisms of quantized enveloping algebras due to
Lusztig. We will use these automorphisms to define special elements of Utpgq called quantum
root vectors. Quantum root vectors are analogues of root vectors of simple Lie algebras and are
used to define integral forms of Utpgq. A reference for this section is Section 6.8 of [DDPW08].

We begin with some notation. For any element x of Utpgq define the divided powers of x to be
xpkq :� xk{rkst! where k P Z¥0. We then have the following theorem due to Lusztig.

Theorem 5.2.1 (Lusztig). For 1 ¤ i ¤ r there are Cptq-algebra automorphisms Ti of Utpgq given
by the following where 1 ¤ i, j ¤ r.

TipXiq � �YiKi

TipYiq � �K�1
i Xi

TipKjq � Ksipαjq

TipXjq �
¸

µ�ν��aij

p�1qµt�µX
pνq
i XjX

pµq
i (i � j)

TipYjq �
¸

µ�ν��aij

p�1qµtµY
pµq
i YjY

pνq
i (i � j)

Here si denotes the simple reflection at the simple root αi. The notation Ksipαjq means that, on
decomposing sipαjq �

°
nkαk in ΛΦ, then Ksipαjq �

±
Knk
k

Proof. This is Theorem 6.41 in [DDPW08].

Lusztig showed that the automorphisms from Theorem 5.2.1 induce an action of the braid group of
g on Utpgq. We refer the interested reader to Theorem 6.45 of [DDPW08] for a formal statement
of this fact, although we will not need it in this thesis.

In the remainder of this section we explain how Lusztig’s automorphism generate special elements
of Utpgq called quantum root vectors. We will need to recall from Section 1.1 that there exists a
unique element w0 of longest length in the Weyl group of g. In particular the length of the element
w0 is given by the number N of positive roots of g.

A fact from the theory of simple Lie algebras is that any reduced decomposition of w0 into simple
reflections w0 � si1 . . . siN allows one to generate the set of positive roots from the simple roots.
This is done by setting β1 :� αi1 and then setting βk :� si1 . . . sk�1pαikq for each 1   k ¤ N . All
of the positive roots then appear exactly once in the list β1, . . . , βN which we point out also comes
equipped with a total ordering.

Quantum root vectors of Utpgq are generated in a similar way except by applying Lusztig’s automor-
phisms to the generators Xi and Yi instead of simple reflections si to the simple roots αi. In the
following definition we fix a reduced decomposition w0 � si1 . . . siN and thereby fix a total ordering
β1, . . . , βN of the set of positive roots .
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Definition 5.2.1. For each 1 ¤ k ¤ N define the quantum root vector of Utpgq associated to βk
to be the following.

Xβk : � T�1
i1

� � �T�1
ik�1

pXikq Yβk :� T�1
i1

� � �T�1
ik�1

pYikq

Our convention here for k � 1 is that Xβ1 :� Xi1 and Yβ1 :� Yi1 .

We emphasize that this procedure is not canonical and very much depends on our choice of reduced
decomposition of w0.

5.3 An Involution

In this section we introduce a certain algebra involution of Utpgq and then show that it preserves
Lusztig’s automorphisms. This involution will come in useful later on in Section 13.4 and Sec-
tion 16.1.

We begin by defining Σ : Utpgq Ñ Utpgq as follows. A glance at the generators and relations
description of Utpgq from Definition 5.1.1 shows that Σ does indeed give an algebra involution.

ΣpXiq � �tYi ΣpYiq � �t�1Xi ΣpK�1
i q � K�	1

i (5.6)

I could not find this definition in the literature and it appears to be non-standard. A pleasant feature
of Σ, however, is that it commutes with Lusztig’s automorphisms.

Proposition 5.3.1. For each 1 ¤ i ¤ r the following diagram commutes.

Utpgq Utpgq

Utpgq Utpgq

Ti

Σ Σ

Ti

(5.7)

Proof. Using the formulas in Theorem 5.2.1 and Equation (5.6) we will check the commutativity of
Equation (5.7) on the generators Xi, Yi and Ki. The following gives the case of Ki.

Ti � ΣpKjq � TipK
�1
j q � K�sipαjq � ΣpKsipαjqq � Σ � TipKjq

For the generators Xi and Yi we have the following. We point out that Equation (5.3) and Equa-
tion (5.4) are used for the third equalities below.

Ti � ΣpXiq � Tip�tYiq � tK�1
i Xi

� t�1XiK
�1
i

� Σp�YiKiq

� Σ � TipXiq

Ti � ΣpYiq � Tip�t
�1Xiq � t�1YiKi

� tKiYi

� Σp�K�1
i Xiq

� Σ � TipYiq
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The case of the generators Xj when j � i can be shown as follows.

Ti � ΣpXjq � Tip�tYjq �
¸

µ�ν��aij

p�1qµ�1tµ�1Y
pµq
i YjY

pνq
i

� Σ �
¸

µ�ν��aij

p�1qµ�1�p1�aijqtµ�1�p1�aijqX
pµq
i XjX

pνq
i

� Σ �
¸

µ�ν��aij

p�1qνt�ν X
pµq
i XjX

pνq
i

� Σ � TipXjq

Similarly we have the case of the generators Yj for j � i.

Ti � ΣpYjq � Tip�t
�1Xjq �

¸
µ�ν��aij

p�1qµ�1t�µ�1X
pνq
i XjX

pµq
i

� Σ �
¸

µ�ν��aij

p�1qµ�1�p1�aijqt�µ�1�p1�aijqY
pνq
i YjY

pµq
i

� Σ �
¸

µ�ν��aij

p�1qνtν Y
pνq
i YjY

pµq
i

� Σ � TipYjq

We end by mentioning how the involution Σ interacts with the quantum root vectors from Defi-
nition 5.2.1. Indeed using the fact that Σ commutes with Lusztig’s automorphisms one can easily
establish the following identities for 1 ¤ k ¤ N .

ΣpXβkq � �tYβk ΣpYβkq � �t�1Xβk

5.4 Restricted Integral Form

In this section we define an integral form of Utpgq due to Lusztig called the restricted integral form.
A key property of the restricted integral form is that (up to a slight caveat) it specializes at t � 1
to the universal enveloping algebra Upgq. A reference for this section is Section 9.3 of [CP95].

Recalling the divided powers notation from Section 5.2 we begin with the following definition.

Definition 5.4.1. Define the restricted integral form of the quantized enveloping algebra to be the

Crt, t�1s-subalgebra URes
t pgq of Utpgq generated by the divided powers X

pkq
i , Y

pkq
i along with the

elements K�1
i where k ¥ 0 and 1 ¤ i ¤ r.

That URes
t pgq is indeed an integral form of Utpgq is Proposition 9.3.1. of [CP95]. Let’s discuss how

to recover the universal enveloping algebra of g from this integral form. One would hope that simply
setting t � 1 does the job, but that is not quite true – one must also set each Ki � 1. Defining
Uqc to be the quotient of URes

t pgq by the ideal generated by the elements t� 1 and Ki � 1 where
1 ¤ i ¤ r we have the following theorem.
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Theorem 5.4.1 (Lusztig). There is an isomorphism of C-algebras Upgq Ñ Uqc given by the follow-
ing.

ei ÞÑ Xi fi ÞÑ Y i hi ÞÑ rXi, Yis

Proof. This is (b) in Section 6.7 of Lusztig’s [Lus90a]. Note that Lusztig defined Upgq and Utpgq
over the ground field of Q rather than C as we have done. The result follows on base changing
however.

With an integral form we can also specialize t to be values other than 1. In particular for any q
is a prime power we will define Uqpgq to be the quotient of URes

t pgq by the ideal generated by the
element t� q

1
2 . Note we are specializing at the positive square root of q here.

We end by defining positive parts of the algebras considered in this section. Define the positive part
of Uqpgq to be the subalgebra Uqpn�q generated by the elements Xi where 1 ¤ i ¤ r. The positive
part of the restricted integral form is defined to be the Crt, t�1s-subalgebra URes

t pn�q of URes
t pgq

generated by the divided powers X
pkq
i where 1 ¤ i ¤ r.

5.5 Poisson Integral Form

This section is concerned with an integral form of Utpgq due to De Concini and Procesi which we
call the Poisson integral form. One of the main features of this integral form is that it specializes at
t � 1 to the coordinate algebra of the dual Poisson-Lie group that we defined in Section 3.3. The
name Poisson integral form is not standard and indeed does not seem to have been given a name in
the literature. A reference for this section is [DCP93], however we will discuss a caveat below.

The key ingredient in defining the Poisson integral form is to renormalize the quantum root vectors
Xα and Yβ. To this end define the rescaled quantum root vectors to be the following elements of
Utpgq for 1 ¤ k ¤ N .

Eβk :� pt2 � 1qXβk Fβk :� pt2 � 1qYβk (5.8)

We point out that, as for the unscaled ones, the rescaled quantum root vectors are related by
ΣpEβkq � �tFβk and ΣpFβkq � �t�1Eβk where Σ is the involution from Section 5.3. We can then
define the Poisson integral form as follows.

Definition 5.5.1. Define the Poisson integral form of the quantized enveloping algebra to be the
Crt, t�1s-subalgebra UPoiss

t pgq of Utpgq generated by the elements Eβk , Fβk and K�1
i where 1 ¤

i ¤ r and 1 ¤ k ¤ N .

Using Bridgeland-Hall algebras we will show that Utpgq is indeed an integral form. This will follow
from Theorem 16.2.4 along with the commentary following Definition 15.1.1.

In [DCP93], De Concini and Procesi showed that UPoiss
t pgq specializes at t � 1 to the coordinate

algebra of the dual Poisson-Lie group that we defined in Section 3.3. In Chapter 19 we will explain
how to use Bridgeland-Hall algebras to give a proof of this fact. We should point out that there are
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some differences between how we have defined UPoiss
t pgq and how De Concini and Procesi go about

defining UPoiss
t pgq in Section 12.1 of [DCP93].

The main difference is that Lusztig introduced several different automorphisms of Utpgq other than
the ones we gave in Theorem 5.2.1 and unfortunately De Concini and Procesi chose different ones
to the ones we use. Since UPoiss

t pgq is defined in terms of quantum root vectors which in turn are
defined in terms of these automorphisms I was not sure that the two definitions coincide.

Another albeit minor difference is that De Concini and Procesi consider a different variant of the
quantized enveloping algebra than we have used called the simply connected rational form of Utpgq.
The one that we have used in Definition 5.1.1 is called the adjoint rational form of Utpgq.

We end by defining the positive part of the Poisson integral form UPoiss
t pn�q to be the Crt, t�1s-

subalgebra of UPoiss
t pgq generated by the elements Eβk where 1 ¤ k ¤ r.



Chapter 6

Non-Generic (Bridgeland-)Hall Algebras

This chapter is concerned with giving an overview of (non-generic) Hall algebras and Bridgeland-Hall
algebras of categories of simply-laced quiver representations.

In Section 6.1 we discuss the background material that will be needed to define the structure
constants of Hall algebras and their integral forms. The two integral forms of Hall algebras treated
in this thesis are distinguished by whether their product formulas count sets of extensions of quiver
representations or flags of subobjects. In particular we carefully explain the difference between these
two sets.

Section 6.2 concerns the precise definition of non-generic Hall algebras. We state Ringel’s founda-
tional result concerning the relationship between Hall algebras of categories of simply-laced quiver
representations and positive parts of quantized enveloping algebras.

Finally in Section 6.3 we define non-generic Bridgeland-Hall algebras. We also explain how Bridgeland
used these algebras to extend Ringel’s theorem to recover the whole quantized enveloping algebra
rather than just its positive part.

6.1 Extensions vs Flags of Subobjects

This section is concerned with background material which will be used to define the structure
constants of Hall algebras. We will first discuss the difference between certain sets of extensions
of quiver representations and flags of subobjects of quiver representations. We then end with a
well-known formula due to Riedtmann which relates the cardinalities of these two types of sets.

Let Lq, Mq and Nq be quiver representations and consider the following set of short exact sequence.

SESpMq, NqqLq :� t0 Ñ Nq
f
ÝÑ Lq

g
ÝÑMq Ñ 0u

The automorphism groups of the quiver representation Lq, Mq and Nq give rise to two different
(left) actions on the set SESpMq, NqqLq each with a different quotient set (i.e. different set of orbits
under the group actions). One quotient set is a set of flags of subobjects of quiver representations,
the other is a of extensions of quiver representations.
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The first action is given by the following. We use the shorthand notation pf, gq P SESpMq, NqqLq
to denote a short exact sequence of the form 0 Ñ Nq

f
ÝÑ Lq

g
ÝÑMq Ñ 0.

AutpNqq �AutpMqq ýSESpMq, NqqLq , pΨN ,ΨM q � pf, gq � pf �Ψ�1
N ,ΨM � gq (6.1)

Here injectivity of f and surjectivity of g imply that the group AutpMqq � AutpNqq acts freely on
SESpMq, NqqLq . The quotient set, which we denote by F

Lq
Mq ,Nq

, is the set of subobjects Nq � Lq
with quotient object Mq.

Here we are using the categorical definition of subobject and quotient object. In particular a subobject

Nq � Lq is an equivalence class of monomorpisms Nq
f
ãÝÑ Lq under the equivalence relation f � f 1

if f 1 � f � Ψ�1
N for some automorphism ΨN of Nq. A quotient object is an equivalence class of

epimorphisms Lq
g
ÝÑÑMq under the equivalence relation g � g1 if g1 � ΨM �g for some automorphism

ΨM of Mq.

The second action is given by the following.

AutpLqq ýSESpMq, NqqLq , ΨL � pf, gq � pΨL � f, g �Ψ�1
L q (6.2)

The quotient of the set SESpMq, NqqLq by AutpLqq is the subset Ext1pMq, NqqLq � Ext1pMq, Nqq
consisting of extensions of Mq by Nq with middle term isomorphic to Lq. This interpretation comes
from the usual Yoneda description of Ext1 as equivalence classes of short exact sequences.

Unlike the action in Equation (6.1), the action given by Equation (6.2) is not free. Let Stabpf,gq �
AutpLqq denote the stabilizer of a short exact sequence pf, gq under the group action in Equa-
tion (6.2).

Lemma 6.1.1. The following is an isomorphism between the additive group HompMq, Nqq and
Stabpf,gq.

HompMq, Nqq Ñ Stabpf,gq, h ÞÑ idLq � f � h � g

Proof. We first note that idLq � f � h � g is indeed an automorphism of Lq. as its inverse is simply
given by idLq � f � h � g. For injectivity suppose that idLq � f � h � g � idLq � f � h1 � g. This is
equivalent to f �h�g � f �h1 �g which implies that h � h1 using the fact that f is a monomorphism
and g is an epimorphism.

For surjectivity suppose that ψL P Stabpf,gq, that is, ΨL � pf, gq � pf, gq. Using the formula
in Equation (6.1) one can check that this condition is equivalent to pΨL � idLqq � f � 0 and
g � pΨL � idLqq � 0. We may rewrite these two conditions in terms of pullback and pushforwards
as f�pΨL � idLqq � 0 and g�pΨL � idLqq � 0.

Now applying the functors HompMq,�q and Homp�, Lqq to the short exact sequence 0 Ñ Nq
f
ÝÑ

Lq
g
ÝÑMq Ñ 0 we have the following two usual exact sequences.

0 Ñ HompMq, Nqq
f�
ÝÑ HompMq, Lqq

g�
ÝÑ HompMq,Mqq (6.3)

0 Ñ HompMq, Lqq
g�
ÝÑ HompLq, Lqq

f�
ÝÑ HompNq, Lqq (6.4)
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Since f�pΨL � idLqq � 0, then by exactness of Equation (6.4) there exists an homomorphism
a P HompMq, Lqq with g�paq � ΨL�idLq . We then have 0 � g�pΨL�idLqq � g�g

�paq � g�g�paq.
Injectivity of g� implies that g�paq � 0 and so exactness of Equation (6.3) implies that a � f�phq for
some h P HompMq, Nqq. We thus have that ΨL � idLq�f �h�g, which establishes surjectivity.

The distinction between the sets Ext1pMq, NqqLq and F
Lq
Mq ,Nq

is of central importance to this thesis
and can be confusing when first encountered. The easiest way to get a feel for the difference is via
a simple example.

Example 6.1.2. Let ~Q � 
 be the A1 quiver, that is, the quiver with one vertex and no arrows. In
this case the category Aq is equivalent to the category of finite dimensional Fq-vector spaces. Up
to isomorphism every object in Aq is of the form Vn � Fnq where n ¥ 0.

The set F VlVm,Vn is the set of ways that Vn sits inside Vl as a vector subspace such that the quotient
vector space Vl{Vn is of dimension m. This set is non-empty only when l � m � n in which case
F VlVm,Vn is simply the Grassmannian GrFqpn, Vn�mq of n dimensional subspaces of Vm�n over Fq. It

is well known that the cardinality of GrFqpn, Vn�mq is given by the quantum binomial
�
m�n
n

�
q

which

was defined in Equation (5.1). For example F V2V1,V1 has cardinality
�
2
1

�
q
� 1� q.

On the other hand, the only extension of any two vector spaces is the split extension. Thus
Ext1pVm, VnqVl is empty unless l � m � n in which case Ext1pVm, VnqVm�n is a set with cardi-
nality 1.

We point out that the Hom sets of Aq have finite cardinality as they are finite dimensional vector
spaces over a finite field. This implies that the automorphism groups of quiver representations have
finitely many elements. Moreover since SESpMq, NqqLq � HompNq, Lqq � HompLq,Mqq then the
sets F

Lq
Mq ,Nq

and Ext1pMq, NqqLq must be of finite cardinality. With these comments in mind we
end this section with the following formula due to Riedtmann [Rie94].

Proposition 6.1.1 (Riedtmann). For any quiver representations Lq, Mq and Nq we have the fol-
lowing identity.

|F
Lq
Mq ,Nq

| �
|Ext1pMq, NqqLq |

|HompMq, Nqq|

|AutpLqq|

|AutpMqq||AutpNqq|
(6.5)

Proof. Since the group AutpLqq acts on SESpMq, NqqLq with stabilizer HompMq, Nqq then we have
the following via the orbit-stabilizer theorem.

|SESpMq, NqqLq |

|AutpLqq|
�
|Ext1pMq, NqqLq |

|HompMq, Nqq|
(6.6)

Similarly since AutpNqq � AutpMqq acts freely on the set SESpMq, NqqLq we have the following
identity.

|SESpMq, NqqLq |

|AutpNqq||AutpMqq|
� |F

Lq
Mq ,Nq

| (6.7)

Combining Equation (6.7) and Equation (6.6) we obtain Equation (6.5).
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6.2 Non-Generic Hall Algebras

In this section we give a brief overview of (non-generic) Hall algebras as introduced by Ringel [Rin90a].
For simplicity we will restrict ourselves to Hall algebras of the categories Aq of finite dimensional
Fq-representations of simply-laced quivers.

We will begin with a discussion on Hall algebras in general and the definition of the Hall algebra
of Aq in particular. We then state Ringel’s theorem before ending with a commentary on what
non-generic means. A superb reference for this section is [Sch09].

Hall algebras are associative algebras which one can assign to any finitary Abelian category. A
finitary Abelian category is a small Abelian category such that all Hom and Ext1 sets have only
finitely many elements. Our categories of quiver representations Aq are finitary but there are of
course other examples such as categories of coherent sheaves on projective schemes over Fq.

The basic idea for Hall algebras is to form a vector space whose elements are linear combinations of
(isomorphism classes of) objects in one’s chosen category. The Hall product then roughly speaking
counts numbers of extensions or, equivalently, flags of subobjects as described in Section 6.1. More
explicitly we have the following where we use the notation IsopAqq to denote the set of isomorphism
classes of objects in Aq.

Definition 6.2.1. For any q a prime power define the Hall algebra of Aq to be the C-vector space
Hq generated by the set IsopAqq. The product of two basis elements EMq and ENq corresponding
to two quiver representations Mq and Nq is given by the following.

EMqENq � q1{2xM̂q ,N̂qy
¸

LqPIsopAqq

|Ext1pMq, NqqLq |

|HompMq, Nqq|
ELq (6.8)

If we define rescaled basis elements XLq :� ELq{|AutpLqq| then by Riedtmann’s formula from
Equation (6.5) the product on Hq admits the following equivalent definition in this alternative basis.

XMqXNq � q1{2xM̂q ,N̂qy
¸

LqPIsopAqq
|F

Lq
Mq ,Nq

|XLq (6.9)

Of course, one must check that Equation (6.8) or equivalently Equation (6.9) really does define an
associative product. Using the isomorphism theorems for Abelian categories one can readily establish
associativity of the product for the form it takes in Equation (6.9).

We note that Equation (6.8) and Equation (6.9) remain associative with or without the factor

q1{2xM̂q ,N̂qy. This factor is referred to as a twist by the Euler form and ensures that one obtains the
correct relations making Hq isomorphic to the positive part of the quantized enveloping algebra.

We now state Ringel’s theorem on the relationship between quantized enveloping algebras and the
Hall algebra of Aq. In the following recall from Section 5.4 that we denoted the specialization at
t � q1{2 of the positive part of the (restricted integral form of the) quantized enveloping algebra by
Uqpn�q.

Theorem 6.2.1 (Ringel). The following describes an isomorphism of C-algebras.

Uqpn�q Ñ Hq, Xi ÞÑ XSi,q

Here Si,q denotes the simple quiver representation corresponding to the vertex i of ~Q.
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Proof. See the proof of Theorem 3.16 in [Sch09].

We end with the observation that we have defined in fact a family of Hall algebras Hq as q varies
over the prime powers. These are non-generic Hall algebras. One might hope that there exists a
single ‘generic’ Hall algebra which specializes to each of the Hq.

In Part II we will show that there does exist such a Cptq-algebra H called the generic Hall algebra.
One will be able to recover each of the algebras Hq in our family from H by setting1 the parameter
t to be the positive square root of q. The advantage of having generic Hall algebras is that we can
set t to be values other than square roots of prime powers and then study the resulting algebras.

We point out that although the two different Hall products in Equation (6.8) and Equation (6.9)
gave rise to the same algebra Hq, we will see in Chapter 9 and Chapter 10 that the analogous
formulas for the generic Hall algebra H give rise to two non-isomorphic integral forms of H.

6.3 Non-Generic Bridgeland-Hall Algebras

In this section we give a brief overview of non-generic Bridgeland-Hall algebras associated to cat-
egories of representations of simply-laced quivers. Bridgeland-Hall algebras were introduced by
Bridgeland in [Bri13] to solve the problem of finding a suitable category whose Hall algebra would
extend Ringel’s Theorem 6.2.1 by recovering the whole quantized enveloping algebra.

Bridgeland’s key insight was to replace the category Aq in the definition of Hq with the category
Cq of Z2-graded complexes in projective quiver representations. The resulting Hall algebra isn’t
quite the correct object and must be modified in two ways. The first difference is that one must
employ a non-standard twist by the Euler form. The other is that certain relations concerning acyclic
complexes must be imposed by hand.

We begin with the following näıve definition where we replace Aq in Definition 6.2.1 with the category
Cq. The twist by the Euler form in Equation (6.10) is different to that of Equation (6.8) but we
note that this does not affect associativity.

Definition 6.3.1. For any q a prime power define the Hall algebra of Cq to be the C-vector space
HpCqq generated by the set IsopCqq. The product of two basis elements rM
qs and rN
qs correspond-
ing to two complexes M
q and N
q is given by the following.

rM
qsrN
qs � q1{2xM̂0,N̂0y�1{2xM̂1,N̂1y
¸

L
qPIsopCqq

|Ext1pM
q, N
qqL
q |

|HompM
q, N
qq|
rL
qs (6.10)

One objection to Definition 6.3.1 is that the category Cq is not Abelian and so one may wonder
if it makes sense to take its Hall algebra. The category Cq is however a full subcategory of the
larger Abelian category of Z2-graded complexes in arbitrary quiver representations. Moreover the
subcategory Cq is closed under taking extensions of complexes since any extension of two projective
objects in Aq is necessarily projective.

1More precisely there will be integral forms of the generic Hall algebra H which recover Hq on setting t � q1{2.
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The larger category of Z2-graded complexes in arbitrary quiver representations is finitary Abelian
and so has a well-defined Hall algebra. That Cq is closed under extensions implies that HpCqq is then
a subalgebra of this larger Hall algebra and in particular is well-defined.

As observed by Bridgeland in [Bri13] the Hall algebra HpCqq is almost, but not quite the correct
one to recover the whole quantized enveloping algebra. If one tries to prove an analogue of Ringel’s
theorem it quickly becomes apparent that the subalgebra generated by the elements rKPq s and rK�

Pq
s

in HpCqq should correspond to the one generated by the elements Ki and K�1
i in Uqpgq. Here the

complexes KPq and K�
Pq

are the acyclic complexes defined in Section 2.3.

In particular one is led to expect that the relations rKPq srK
�
Pq
s � 1 in HpCqq should be the analogues

of the relations KiK
�1
i � 1 in Uqpgq. It is not true however that rKPq srK

�
Pq
s � 1 in HpCqq and so

one must impose this requirement by hand.

Definition 6.3.2. For any q a prime power define the Bridgeland-Hall algebra DHq to be the quotient
algebra of HpCqq by the following ideal.

prKPq srK
�
Pq s � 1 | Pq is projective in Aqq

Armed with this modified Hall algebra, Bridgeland then succeeded in proving the following extension
of Ringel’s theorem.

Theorem 6.3.1 (Bridgeland). There is an isomorphism of C-algebras Uqpgq Ñ DHq.

Proof. This is Theorem 4.9 in [Bri13].

As was the case of Section 6.2 later on in Chapter 13 we will discuss the existence of a generic
Bridgeland-Hall algebra from which one can recover the non-generic Bridgeland-Hall algebras DHq.



Part II

Generic Hall Algebras

Definition, Integral Forms, t � 1 Limits and Hopf Algebra Structure





Overview

In Part II we will be concerned with generic Hall algebras which were originally introduced by
Ringel [Rin90a] in the case of simply-laced quivers.

The basic idea is to take the non-generic Hall algebra from Chapter 6, observe that their structure
constants are in fact Laurent polynomial in q

1
2 and then formally take these polynomials to be the

structure constants of a Cptq-algebra. We will define the generic Hall algebra in Chapter 8. There
are some minor technical issues in doing so, however, and we deal with these first in Chapter 7.

The upshot of having a generic as opposed to non-generic Hall algebra is that one can talk of integral
forms of a generic Hall algebra. In particular the generic Hall algebra H has two natural integral
forms each with an interesting t � 1 limit.

One integral form Hex which we define in Chapter 9 has a product formula whose structure constants
count extensions of quiver representations. The other Hfl, which is dealt with in Chapter 10, has
structure constants counting flags of quiver representations. The main feature of these integral
forms is that the specialization at t � 1 of Hex is a Poisson algebra while the t � 1 limit of Hfl is
the universal enveloping algebra of a Lie algebra.

We end Part II with Chapter 11 where we discuss Hopf algebra structures on generic Hall algebras.
We will use these Hopf algebra structures to form a doubled version of the generic Hall algebra called
its the Drinfeld double.

Almost all of the results and proofs in Part II can be found in the literature in some guise or another,
though perhaps not presented in the narrative of integral forms that we will give.
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Chapter 7

Background Material

In this chapter we recall various bits of background theory that we will need define and work with
generic Hall algebras.

We begin in Section 7.1 by collecting some elementary results that will allow us to pass from
statements regarding non-generic Hall algebras to analogous statements about generic Hall algebras.
An example of this might be how associativity of the generic Hall algebra will follow from that of
the non-generic Hall algebra.

Then in Section 7.2 we explain how various features of the categories Aq are independent of q. Such
a feature might be IsopAqq the set of isomorphism classes of objects in Aq. The rationale here is
that the underlying vector space of a Hall algebra is defined in terms of the set IsopAqq and we
would rather not be tied down to any particular choice of prime power q when defining the generic
Hall algebra.

In Section 7.3 we discuss the existence of Hall polynomials. These are polynomial versions of the
structure constants of the non-generic Hall algebra which will be used as the structure constants of
the generic Hall algebra.

Finally Section 7.4 contains a generic (i.e. polynomial) version of Riedtmann’s formula from Equa-
tion (6.5) along with an elementary corollary. As we shall see later on in Section 9.1 and Section 10.1,
generic Hall algebras have two natural integral forms. The importance of the generic version of
Riedtmann’s formula is that it gives the relationship between these two forms.

7.1 Passing From Non-Generic to Generic Algebras

In this section we recall some elementary facts that will allow us to pass from statements about
non-generic Hall algebras to ones about generic Hall algebras.

Lemma 7.1.1. If p1, p2 P Crt, t�1s are two Laurent polynomials such that p1pwq � p2pwq for
infinitely many distinct w P C then p1 � p2.

Proof. This follows from the fundamental theorem of algebra applied to tnpp1 � p2q where the
exponent n is chosen so that tnpp1 � p2q is an element of Crts.
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Lemma 7.1.2. A rational function f P Qptq with fpkq P Z for infinitely many distinct k P Z is
polynomial i.e. we have f P Qrts.

Proof. Suppose f � a{b is a non-zero rational function with a, b P Qrts and moreover f has the
property that fpkq P Z for infinitely many distinct k P Z. The remainder theorem says that there
are polynomials p, q P Qrts such that a � pb� q and either q � 0 or q � 0 and degpqq   degpbq.

For the sake of contradiction suppose that q is non-zero and write a{b � p� q{b. Multiplying across
by a suitable non-zero integer, without loss of generality may assume that p P Zrts. We then have
that q{b has the property that its evaluation at infinitely many distinct k P Z is an integer since a{b
has this property and p P Zrts. However q{b Ñ 0 as t Ñ 8 since degpqq   degpbq. This implies q
vanishes at infinitely many points and so q � 0 by Lemma 7.1.1.

7.2 Simply-Laced Quiver Representations: Independence of Fq
In this section we discuss how the categories Aq are in some respects independent of q. Recall that
for each q a prime power Aq is the category of quiver representations over the finite field Fq.

We first explain how IsopAqq the set of isomorphisms classes of objects in Aq is independent of q. We
then discuss how the Grothendieck groups KpAqq and various properties of quiver representations
are also independent of q.

Note that Gabriel’s Theorem 2.2.2 and the Krull-Schmidt Theorem 2.2.1 imply that any repre-
sentation in Aq is determined uniquely up to isomorphism by a map Φ� Ñ Z¥0 prescribing the
multiplicities of its indecomposable direct summands. If we abuse notation by writing IsopAq for
the set of maps Φ� Ñ Z¥0 then we have canonical bijections between the following.

IsopAqq � IsopAq

These bijections induce canonical bijections of the following form for any prime powers q and q1.

IsopAqq � IsopAq1q

We will write L P IsopAq for maps L : Φ� Ñ Z¥0. Abusing notation again we will frequently refer
to the elements L P IsopAq as if were they genuine quiver representations. Should we need to, we
will write Lq for a particular choice of actual quiver representation in Aq determined by an element
L P IsopAq.

The Grothendieck groups of the categories Aq are also independent of q. Indeed by Equation (2.2)
we have the following canonical isomorphisms.

KpAqq � ΛΦ

We thus have canonical isomorphisms of the following form for any prime powers q and q1.

KpAqq � KpAq1q

Motivated by this fact we will define KpAq to be the root lattice ΛΦ of the simple Lie algebra
g. Moreover for any L P IsopAq we will define the class L̂ in KpAq to be the image of L̂q under
KpAqq � ΛΦ.
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We will abuse notation and denote by x�,�y, p�,�q and p�,�qskew respectively the induced
usual, symmetrized and skew-symmetrized Euler forms on KpAq. By induced here, we mean that
we consider the usual, symmetrized and skew-symmetrized Euler forms defined on KpAqq in Equa-
tion (2.3) and Equation (2.4) as forms on KpAq � ΛΦ via the identification KpAqq � ΛΦ given in
Equation (2.2).

Something we will need to know is that various properties of quiver representations are independent
of q. By this we mean that if L P IsopAq such that Lq has a certain property in Aq for a particular
q then Lq has that property in Aq for all prime powers q.

This will be true for any reasonable property such as being indecomposable, projective or simple. It
will then make sense to say things like I P IsopAq is indecomposable which simply means that Iq is
indecomposable in any (therefore all) of the categories Aq. We will denote by Si and Iα the elements
of IsopAq determining the simple and indecomposable objects Si,q and Iα,q of Aq respectively.

Being the direct sum of two representations is also independent of q. Indeed letting M,N P IsopAq
if we define M `N to be the map M �N : Φ� Ñ Z¥0 then for any q a prime power by definition
we have Mq `Nq � pM `Nqq in the category Aq.

We end by observing that for any M,N P IsopAq the following are also independent of q.

dimFqEndpMqq dimFqHompMq, Nqq dimFqExt1pMq, Nqq

That the two on the left are independent of q can be found in the proof of Lemma 3 from [Hub10].
That the Ext1 dimension is independent of q then follows from the fact that the Euler form is. We will
simply write dimEndpMq, dimHompM,Nq and dimExt1pM,Nq for these dimensions respectively.

7.3 Hall Polynomials

In this section we discuss the existence of Hall polynomials. These are polynomials in t which, when
evaluated at1 t � q

1
2 , give the structure constants of the non-generic Hall algebra from Chapter 6

(recall that every choice of finite field Fq with q elements gave rise to a non-generic Hall algebra
Hq). Hall polynomials are used to define generic Hall algebras which were originally introduced by
Ringel [Rin90a] in the case of simply-laced quivers.

We briefly recall the notation used for various structure constants of the non-generic Hall algebra
from Section 6.2. We used the following notation for the subset of extensions of Mq by Nq with
middle term isomorphic to Lq.

Ext1pMq, NqqLq � Ext1pMq, Nqq

We also defined F
Lq
Mq ,Nq

to be the set of subobjects Nq � Lq such that the corresponding quotient

object is isomorphic to Mq. Finally we wrote AutpLqq for the automorphism group of Lq. The
following proposition then establishes the existence of Hall polynomials.

Proposition 7.3.1 (Ringel). For any L,M,N P IsopAq there exists polynomials eLM,N , hM,N , fLM,N

and aL in Qrts such that for any q a prime power we have the following. Moreover each of eLM,N ,

hM,N , fLM,N and aL in fact lie in the subalgebra Qrt2s � Qrts, that is are polynomial in t2.
1One might wonder why we evaluate t at the square root of q, rather than at q. This is purely to accommodate

the q1{2xM̂q,N̂qy factor in Equation (6.8).
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eLM,N pq
1
2 q � |Ext1pMq, NqqLq |

fLM,N pq
1
2 q � |F

Lq
Mq ,Nq

|

hM,N pq
1
2 q � |HompMq, Nqq|

aLpq
1
2 q � |AutpLqq|

Proof. The existence of aL and fLM,N is well know, see for example Lemma 3 and Theorem 4
of [Hub10]. We also noted at the end of Section 7.2 that dimFqHompMq, Nqq is independent of q.

It follows that hM,N :� t2dimHompM,Nq has the correct specialization at t � q
1
2 and is polynomial

in t2. We will show that the existence of eLM,N follows from the others. To this end consider the
following definition.

eLM,N :� fLM,NhM,N
aMaN
aL

(7.1)

Setting t � q
1
2 in Equation (7.1) and using the non-generic version of Riedtmann’s formula given

in Equation (6.5) we have that eLM,N pq
1
2 q � |Ext1pMq, NqqLq | for any q a prime power. Moreover

since eLM,N is then an element of Qptq which satisfies the hypothesis of Lemma 7.1.2 we must have

that eLM,N P Qrts. Finally since each of fLM,N , hM,N , aM , aN and aL are polynomial in t2 then so

too is eLM,N .

When L � M ` N another useful polynomial is the one counting the number of elements of the
following projectivization.

PpExt1pMq, NqqLqq :� Ext1pMq, NqqLq{F�q (7.2)

The F�q -action here is the one coming from the Fq-vector space structure on Ext1pMq, Nqq which

induces a free F�q action on the set Ext1pMq, NqqLq when Lq � Mq ` Nq. This motivates the
following definition.

PpeqLM,N :� eLM,N{pt
2 � 1q (7.3)

It is easy to see that for any q a prime power the evaluation of PpeqLM,N at t � q
1
2 gives the number

of elements in the projectivized set from Equation (7.2). Moreover it follows from Lemma 7.1.2 that
PpeqLM,N is indeed polynomial i.e. is an element of Qrts.

Remark 7.3.2. An important example of the automorphism polynomials from Proposition 7.3.1
is the case when we have an indecomposable I P IsopAq. From Lemma 3.19 of [Sch09] any
indecomposable quiver representation of a simply-laced quiver has a one dimensional endomorphism
algebra. It follows that aI � t2 � 1.

7.4 Generic Riedtmann’s Formula

In this section we discuss the generic version of Riedtmann’s formula from Equation (6.5) and a
useful corollary. For us the formula is important for understanding the relationship between two
integral forms of the Hall algebra that we shall introduce in Section 9.1 and Section 10.1.
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Proposition 7.4.1 (Riedtmann). For any L,M,N P IsopAq we have the following identity in Qrts.

fLM,N �
eLM,N

hM,N

aL
aMaN

(7.4)

Proof. By the non-generic Riedtmann’s formula from Equation (6.5) we have that Equation (7.4)

holds when evaluated at t � q
1
2 for any q a prime power. The only thing preventing us from using

Lemma 7.1.1 to establish equality in Equation (7.4) is that a priori we don’t know that both sides
of Equation (7.4) live in Qrts. However that fLM,N P Qrts follows from Proposition 7.3.1. That the
right-hand side of Equation (7.4) is an element of Qrts follows from combining Lemma 7.1.2 and
Equation (6.5).

Restricting Riedtmann’s formula to indecomposables we have the following useful corollary relating
the evaluation at t � 1 of the flag counting polynomials fLM,N with the evaluation at t � 1 of the

polynomials PpeqLM,N defined in Equation (7.3). We recall that we use overline notation to denote
the evaluation of a polynomial at t � 1.

Corollary 7.4.1. Let I1, I2, J P IsopAq be indecomposable. Then we have the following identity.

f
J
I1,I2 � PpeqJI1,I2

Proof. By Remark 7.3.2 any indecomposable I has automorphism polynomial aI � t2 � 1. Multi-
plying across by hI1,I2 in Riedtmann’s formula we have the following identity in Qrts.

hI1,I2f
J
I1,I2 � eJI1,I2

aJ
aI1aI2

�
eJI1,I2
pt2 � 1q

� PpeqJI1,I2

Setting t � 1 we have f
J
I1,I2 � PpeqJI1,I2 since hI1,I2 � t2dimHompI1,I2q.



Chapter 8

Generic Hall algebras

In this chapter we recall the definition and properties of generic Hall algebras which are due to
Ringel [Rin90b].

The idea behind generic Hall algebras is to replace the structure constants of the non-generic Hall
algebra from Chapter 6 with the Hall polynomials we gave in Chapter 7 to obtain a Hall algebra
over Cptq. The advantage of doing so is that our Hall algebras now depend on a formal parameter
t. We can then talk of integral forms of the generic Hall algebra and moreover set t � 1 to obtain
degenerate Hall algebras. We will postpone the discussion on integral forms to Chapter 9 and
Chapter 10.

8.1 Definition and Properties

In this section we recall the definition of the generic Hall algebra H due to Ringel in [Rin90b]. We
also give some elementary properties of H.

Definition 8.1.1. Define the generic Hall algebra be the Cptq-vector space H generated by the set
IsopAq. The product of two basis elements EM and EN corresponding to two quiver representations
is given by the following.

EMEN � txM̂,N̂y
¸

LPIsopAq

eLM,N

hM,N
EL (8.1)

Proposition 8.1.1. H is a unital associative Cptq-algebra with unit element E0.

Proof. First of all note that the product formula is a well-defined element of H since by Proposi-
tion 7.3.1 the structure constants are Laurent polynomials and in particular elements of Cptq. That
E0 is the unit is obvious. For associativity let A, B and C be quiver representations. Expanding the
product EAEBEC in the two different ways gives two expressions

°
LPIsopAq Ψi

LEL for some Laurent

polynomials Ψ1
L and Ψ2

L.

By Proposition 7.3.1 the structure constants of Equation (8.1) evaluated at t � �q
1
2 give the

structure constants of the non-generic Hall algebra Hq for each q a prime power. Thus Ψ1
Lpq

1
2 q �

Ψ2
Lpq

1
2 q for each q a prime power by associativity of Hq. However by Lemma 7.1.1 if two Laurent

polynomials coincide at infinitely many points they must coincide.
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We will apply this proof strategy again and again to pass from results about non-generic Hall algebras
to generic ones.

We note that the generic Hall algebra is graded as an algebra by the Grothendieck group. In particular
let Hα � H be the subspace spanned by the elements EL of class L̂ � α in KpAq. Since the quiver
representations in Equation (8.1) have the property that L̂ � M̂ � N̂ then we have the following
grading of H.

H �
à

αPKpAq
Hα, Hα �Hβ � Hα�β (8.2)

In the literature the product on the generic Hall algebra usually takes a different form which we
now explain. Using the automorphism polynomials from Proposition 7.3.1 we first rescale the basis
vectors of H by letting XL :� EL{aL. Employing Riedtmann’s formula from Proposition 7.4.1 the
product in this basis becomes the following.

XMXN � txM̂,N̂y
¸

LPIsopAq

eLM,N

hM,N

aL
aMaN

XL � txM̂,N̂y
¸

LPIsopAq
fLM,NXL (8.3)

The dichotomy between these two products should be understood as giving rise to two different
integral forms of the generic Hall algebra. That natural integral forms of Hall algebras arise in this
way is one of the core messages of this thesis and appears to be only partially appreciated in the
literature. We define and explore these integral forms in the following two chapters and in particular
show that their t � 1 limits have very different flavours.



Chapter 9

Extension Counting Integral Form

This chapter is concerned with what we call the extension counting integral form Hex of the generic
Hall algebra H. The name comes from the fact that the structure constants of Hex in some sense
count extensions of quiver representations. The key property of this integral form is that its t � 1
limit is a commutative Poisson C-algebra which we call the semi-classical Hall algebra. We will define
Hex in Section 9.1 and then explain in Section 9.2 how its specialization at t � 1 is commutative
and Poisson.

9.1 Definition

In this section we define the extension counting integral form Hex of H. This is the obvious integral
form in light of Definition 8.1.1.

Definition 9.1.1. Define the extension counting integral form of H to be the Crt, t�1s-subalgebra
Hex spanned by the elements EL. The product is given by the following.

EMEN � txM̂,N̂y
¸

LPIsopAq

eLM,N

hM,N
EL

Recalling Definition 4.1.1 of an integral form we need to verify that Hex really is closed under the
product, free as a Crt, t�1s-module and has the property that the multiplication map induces an
isomorphism of Cptq-algebras Cptq bCrt,t�1s Hex Ñ H.

The subalgebra property follows from the fact that the structure constants txM̂,N̂yeLM,N{hM,N are

all Laurent polynomials by Proposition 7.3.1. That Hex is free as a Crt, t�1s-module follows from
the fact that the elements EL form a Cptq-basis for H. Finally it is easy to see that multiplication
induces an isomorphism of Cptq-algebras Hex bCrt,t�1s Cptq Ñ H.

Since we are dealing with the Hall algebras of an Abelian category we shall sometimes refer to Hex

as the Abelian extension counting integral form to distinguish it from the extension counting integral
form of the Bridgeland-Hall algebra that we shall introduce in Section 15.1.
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9.2 The Semi-Classical Hall Algebra

In this section we discuss the semi-classical Hall algebra Hsc. This is the t � 1 limit of the extension
counting integral form of H. In particular Hsc is shown to be a finitely generated commutative Poisson
algebra. This section is based on Bridgeland’s work in [Bri12] where he showed that analogous results
hold for a type of Hall algebra called the motivic Hall algebra.

Definition 9.2.1. Define the semi-classical Hall algebra Hsc to be the quotient algebra of Hex by
the ideal pt� 1q.

The following proposition gives the key property of the semi-classical Hall algebra. We will use the
overline notation to denote the image of an element in Hsc.

Proposition 9.2.1. The semi-classical limit Hsc is a commutative Poisson C-algebra with product
and Poisson bracket given by the following.

EMEN � EM`N tEM , ENusc :�

�
EMEN � ENEM

2pt� 1q



(9.1)

Proof. We establish the product formula first. The basic idea is to use the Fq-vector space structure
on Ext1pMq, Nqq. Recall that the zero vector is given by the split exact sequence, addition by the
Baer sum and scalar multiplication of an extension class by the following formula.

λ � rNq
ϕ
ÝÑ Lq

ψ
ÝÑMqs �

#
rNq

λ�1ϕ
ÝÝÝÑ Lq

ψ
ÝÑMqs λ P F�q

rNq ÑMq `Nq ÑMqs λ � 0
(9.2)

If Lq �Mq`Nq by Equation (9.2) we have that F�q acts freely on Ext1pMq, NqqLq and in particular

pq � 1q divides |Ext1pMq, NqqLq |. When L �M `N the rational function eLM,N{pt
2 � 1q then has

the property that its value at t � q
1
2 is an integer and so t2 � 1 divides eLM,N by Lemma 7.1.2.

Now the structure constants of the product EMEN are txM̂,N̂yeLM,N{hM,N . By Proposition 2.2.3

we have eM`N
M,N � 1 and so evaluating these structure constants of EMEN at t � 1 gives the value

1 if L �M `N and 0 otherwise. Thus the product on Hsc takes the following form which is clearly
commutative.

EMEN � EM`N

Finally by Proposition 4.1.1 the formula in Equation (9.1) endows Hsc with the structure of a Poisson
algebra.

Note that the reason for the 1{2 in the Poisson bracket formula is that morally we are dividing by

t2 � 1 instead of t � 1 and t� 1 � 2. However due to the term ptxM̂,N̂y � txN̂,M̂yqEM`N in its
expansion, EMEN � ENEM is not always divisible by t2 � 1 and so dividing out by t2 � 1 might
not land in Hex.

A nice property of the interplay between homological algebra and Hall algebras is that Hsc has
natural algebra generators given by the indecomposables. Indeed decomposing any representation L
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as a direct sum of indecomposable representations I`n1
1 ` � � � ` I`nkk we have the following identity

in Hsc.

EL � E
n1

I1 � � �E
nk
Ik

By Theorem 2.2.2 a simply-laced quiver has up to isomorphism only finitely many indecomposable
representations and so we have the following corollary to Proposition 9.2.1.

Corollary 9.2.2. Hsc is a finitely generated polynomial C-algebra in the |Φ�|-many indecomposable
representations.

Note that one could also have defined a t � �1 limit of Hex. One would then get a skew-commutative
algebra with product given as follows.

EMEN � p�1qxM̂,N̂yEM`N EMEN � p�1qpM̂,N̂qENEM



Chapter 10

Flag Counting Integral Form

In this chapter we consider what we call the flag counting integral form Hfl of the generic Hall
algebra H. The name here comes from the fact that the structure constants of Hfl in some sense
count flags of quiver representations. The key property of this integral form is that its t � 1 limit,
which we refer to as the quasi-classical Hall algebra, is the universal enveloping algebra of a Lie
algebra. We will define Hfl in Section 10.1 and then explain in Section 10.2 how its specialization
at t � 1 is an enveloping algebra.

10.1 Definition

In this section we define the flag counting integral form Hfl of H. The form that the product on
Hfl takes is the more usual Hall product that one finds in the literature.

Definition 10.1.1. Define the flag counting integral form of H to be the Crt, t�1s-subalgebra Hfl

spanned by the elements XL. The product is given by the following.

XMXN � txM̂,N̂y
¸

LPIsopAq
fLM,NXL

That Hfl is an integral form of H follows from the exact same reasoning as for the extension counting
integral form Hex. As with the case of Hex we shall sometimes refer to Hfl as the Abelian flag
counting integral form to distinguish it from the flag counting form of the Bridgeland-Hall algebra
that we shall introduce in Section 15.2.

It is worth comparing the two integral forms Hex and Hfl. We first note that there is an embedding
of Crt, t�1s-algebras given by the following.

Hex ãÑ Hfl, EL ÞÑ aLXL (10.1)

However this is not an isomorphism as surjectivity fails. If we were to work over Cptq instead,
Equation (10.1) would become an isomorphism. This contrasts with the non-generic case that the
reader may be more familiar with where the analogue of the above map does induce an isomorphism
of C-algebras.
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10.2 The Quasi-Classical Hall Algebra

In this section we discuss the t � 1 limit of the flag counting integral form of H which we will
call the quasi-classical Hall algebra Hqc. We will explain how the subspace of Hqc spanned by
indecomposable quiver representations is a Lie algebra under the commutator bracket. Moreover we
will show that Hqc is in fact isomorphic to the universal enveloping algebra of this Lie algebra. The
following material is due to Ringel [Rin90b].

Definition 10.2.1. Define the quasi-classical Hall algebra Hqc to be the quotient algebra of Hfl by
the ideal pt� 1q.

To see how Hqc is an enveloping algebra we will first place an elementary cocommutative bialgebra
structure on Hqc. That Hqc contains a Lie algebra of indecomposables and can by identified with its
enveloping algebra will then follow from standard results from the theory of bialgebras. That Hqc is
a bialgebra hinges on the following lemma which tells us how the Hall polynomials fLM,N behave on
setting t � 1.

Lemma 10.2.2. We have the following identity for any representations M and N .

f
L1`L2

M,N �
¸

M�M1`M2
N�N1`N2

f
L1

M1,N1
f
L2

M2,N2
(10.2)

Here the summation ranges over all the ways that the representations M and N decompose as direct
sums M �M1 `M2 and N � N1 `N2.

Proof. This is Proposition 3 in [Rin90b].

Using Lemma 10.2.2 we have the following proposition.

Proposition 10.2.1. The quasi-classical Hall algebra Hqc is a cocommutative C-bialgebra with the
following coproduct ∆qc and counit εqc.

∆qcpXLq �
¸

L�L1`L2

XL1 bXL2 εqcpXLq � δL,0

Here the summation ranges over all the ways that the representation L decomposes as a direct sum
L � L1 ` L2.

Proof. Cocommutativity follows by definition of ∆qc and the counit axioms are trivial to verify. To
see that ∆qc is an algebra homomorphism consider the following where we use Lemma 10.2.2 for
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the third equality.

∆qcpXM q∆qcpXN q �
¸

M�M1`M2
N�N1`N2

XM1XN1 bXM2XN2

�
¸

M�M1`M2
N�N1`N2

¸
L1,L2

f
L1

M1,N1
f
L2

M2,N2
XL1 bXL2

�
¸
L1,L2

f
L1`L2

M,N XL1 bXL2

�
¸
L

f
L
M,N∆qcpXLq

� ∆qcpXMXN q

Let’s explain how to use Proposition 10.2.1 to extract a Lie algebra from Hqc. Recall that an element
x of a bialgebra is called primitive if its image under the coproduct is given by the following.

x ÞÑ xb 1� 1b x

It is well known that the subspace of primitive elements of a bialgebra form a Lie algebra under the
commutator bracket. Using Proposition 10.2.1 it is easy to check that the primitive elements of Hqc

consists of the span of the elements XI where I is indecomposable. This motivates the following
definition.

Definition 10.2.3. Define the quasi-classical Lie algebra nqc to be the subspace of Hqc spanned by
the elements XI where I is indecomposable. The Lie bracket is the commutator bracket.

The quasi-classical Hall algebra is essentially determined completely by nqc.

Theorem 10.2.2. The map Upnqcq Ñ Hqc induced by the inclusion of the quasi-classical Lie algebra
is an isomorphism of C-bialgebras.

Proof. This follows via an application of the Milnor-Moore theorem. Recall that Milnor-Moore says
that any connected graded cocommutative bialgebra over C is isomorphic to the universal enveloping
algebra of its Lie algebra of primitive elements via the induced map as above. Connected here means
that the degree 0 part of the graded bialgebra is isomorphic to C.

In our case note that the grading on the generic Hall algebra H given in Equation (8.2) descends
to a grading of the quasi-classical Hall algebra Hqc. For connectedness by definition the degree 0
part is spanned by elements of the form EL where L̂ � 0. However for dimensional reasons the zero
quiver representation is the only representation with such a class KpAq and so the result follows by
Milnor-Moore.

The interested reader may wish to glance at the Theorem in Section 3 of [Rin90b] for further
details.
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It is worth describing the structure constants of the quasi-classical Lie algebra nqc. It is easy to
see that the Lie bracket is determined by the following where I1 and I2 are indecomposable and

ΓJI1,I2 :� f
J
I1,I2 � f

J
I2,I1 .

rXI1 , XI2sqc �
¸

J indecomposable

ΓJI1,I2XJ (10.3)

It will follow from Proposition 18.4.3 and Theorem 18.4.1 that nqc is isomorphic to the nilpotent
subalgebra n� of the simple Lie algebra g as given in Section 1.1.



Chapter 11

Hopf Algebras and Drinfeld Doubles

In this chapter we describe how to upgrade a slightly extended version of the generic Hall algebra
to a Cptq-Hopf algebra. Using this we will construct another natural Cptq-Hopf algebra called the
Drinfeld double. In Chapter 14 of Part III we will use the material in this chapter to give the generic
Bridgeland-Hall algebra the structure of a Hopf algebra.

11.1 Hopf Algebras and Drinfeld Doubles

We begin this section by defining a certain extended version of the generic Hall algebra. Using results
of Green [Gre95] and Xiao [Xia97] we will place two Hopf algebra structures on these algebras. We
then describe a Hopf algebra called the Drinfeld double which, roughly speaking, pieces these two
Hopf algebras together to form a new one.

It is not quite true that the generic Hall algebra H as defined in Definition 8.1.1 admits the structure
of a genuine Hopf algebra. One must first extend the algebra H by adding a copy of the group
algebra of the Grothendieck group CptqrKpAqs. In the following definition we will denote by Kα

the element of the group algebra corresponding to a class α P KpAq.

Definition 11.1.1. Define the extended Hall algebra to be H¥0 :� HbCptq CptqrKpAqs. The Cptq-
algebra structure on H¥0 is determined by the fact that H and CptqrKpAqs are subalgebras along
with the following relation for any α P KpAq and L P IsopAq. We recall that p�,�q here denotes
the symmetrized Euler form on KpAq and was defined in Section 7.2.

KαEL � tpα,L̂qELKα (11.1)

The extended Hall algebra admits two slightly different Hopf algebra structures which we will wish to
differentiate between when defining the Drinfeld double. To this end we will denote by H¤0 another
copy of H¥0. To avoid confusion we will write FL and K�

α in place of EL and Kα respectively in
H¤0. Recall also that we introduced the elements XL :� EL{aL of H in Section 10.1. In particular
XL P H¥0 and we will denote by YL the corresponding elements in H¤0.

The following theorem due to Green endows H¥0 and H¤0 with the structure of bialgebras. In
Theorem 11.1.2 we will extend these bialgebras to Hopf algebras by giving the antipode due to Xiao
.
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Theorem 11.1.1 (Green). The extended Hall algebras H¥0 and H¤0 have the structure of Cptq-
bialgebras with coproducts ∆ given as follows.

∆ : H¥0 Ñ H¥0 bCptq H¥0 ∆ : H¤0 Ñ H¤0 bCptq H¤0

EL ÞÑ
¸

M,NPIsopAq
txM̂,N̂yfLM,NEMKN̂ b EN FL ÞÑ

¸
M,NPIsopAq

txM̂,N̂yfLM,NFN b FMK
�
N̂

Kα ÞÑ Kα bKα K�
α ÞÑ K�

α bK�
α

The counits ε are given by εpELq � δL,0, εpKαq � 1 and εpFLq � δL,0, εpK�
αq � 1.

Proof. We must check that the non-generic version proved in the literature implies the generic
version. Note that the claimed bialgebra structure on H¤0 coincides with the opposite bialgebra
structure on H¥0. We thus need only establish the result for H¥0.

The unit and counit axioms are trivial to verify. We are left check that the coproduct on H¥0

is an algebra homomorphism. It is immediate that ∆pKαKβq � ∆pKαq∆pKβq. Expanding the
expressions one can check that the equality of ∆pEMEN q and ∆pEM q∆pEN q is equivalent to the
following identity holding for each representations M,N,A,B P IsopAq.¸

L

eLM,N

hM,N
fLA,B �

¸
A1,A2
B1,B2

t�2xA1,B2y
eAA1,A2

hA1,A2

eBB1,B2

hB1,B2

fMA1,B1
fNA2,B2

(11.2)

Using Reidtmann’s formula from Proposition 7.4.1 and multiplying across by aAaB one can see that
Equation (11.2) is equivalent to the following identity.¸

L

fLM,Nf
L
A,B

aMaNaAaB
aL

�
¸

A1,A2
B1,B2

t�2xA1,B2yfAA1,A2
fBB1,B2

fMA1,B1
fNA2,B2

aA1aA2aB1aB2 (11.3)

This is an identity in Crt, t�1s and so holds by Lemma 7.1.1 if it holds on setting t � �q
1
2 for all q

a prime power. However by Proposition 7.3.1 setting t � �q
1
2 in Equation (11.3) gives precisely the

identity that one can find proved in part pbq of the proof of Theorem 4.5. on page 124 of [Xia97].

To treat the case of the antipode we will need some notation for the structure constants of k-fold
products. For each k ¥ 1 denote by rf sLL1,...,Lk

, resLL1,...,Lk
the Laurent polynomials such that one

has the following.

XL1 � � �XLk � t

°
i j

xL̂i,L̂jy¸
L

rf sLL1,...,Lk
XL

EL1 � � �ELk � t

°
i j

xL̂i,L̂jy¸
L

resLL1,...,Lk
EL

Note that L̂ � L̂1 � . . .� L̂k in the Grothendieck group and that rf sLL1
� resLL1

� δL,L1 . Moreover
we have the following identities.

resAL0,...,Lk
�
¸
T

resAL0,T res
T
L1...Lk

(11.4)

rf sAL0,...,Lk
�
¸
N

rf sAL0,N rf s
N
L1...Lk

(11.5)
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Theorem 11.1.2 (Xiao). The bialgebras H¥0 and H¤0 have the structure of Cptq-Hopf algebras
with antipodes S given as follows.

S : H¥0 Ñ H¥0

EN ÞÑ δN,0 �
¸
k¥1

p�1qk
¸
L

¸
L1,...,Lk

�0

t
2
°
i j

xL̂i,L̂jy

resLL1,...,Lk
rf sNL1,...,Lk

K�1

N̂
EL (11.6)

Kα ÞÑ K�1
α

S : H¤0 Ñ H¤0

FN ÞÑ δN,0 �
¸
k¥1

p�1qk
¸
L

¸
L1,...,Lk

�0

resLLk,...,L1
rf sNL1,...,Lk

FLpK
�
N̂
q�1 (11.7)

K�
α ÞÑ pK�

αq
�1

Proof. We will prove the antipode axioms for H¥0 with the case of H¤0 being entirely similar.
Denoting the multiplication by m and the unit morphism by i. Recall that the antipode is required
to satisfy the following identities.

m � pidb Sq �∆ � i � ε m � pS b idq �∆ � i � ε

We will prove the identity on the left as the one on the right is similar. The identity is easy to verify
when applied to Kα so we need to show that m � pidb Sq �∆pEAq � δA,0. Using the formula for
the coproduct from Theorem 11.1.1 with L0 �M we have the following.

m � pidb Sq �∆pEAq �
¸
L0,N

txL̂0,N̂yrf sAL0,NEL0KN̂SpEN q (11.8)

The large summation term over k ¥ 1 appearing in the expansion of SpEN q from Equation (11.6)
is unwieldy to work with. Let us write σ1pNq and σ2pNq for the summations over k ¥ 1 and k ¥ 2
respectively. In particular the following identities hold for any N,A P IsopAq.

SpEN q � δN,0 � σ1pNq (11.9)

SpEAq � 2δA,0 �K�1

Â
EA � σ2pAq (11.10)

We can reduce the RHS of Equation (11.8) by first splitting the summation into its L0 � 0 and
L0 � 0 terms and then substituting Equation (11.9) for SpEN q and Equation (11.10) for SpEAq.

m � pidb Sq �∆pEAq � KÂSpEAq �
¸
N

¸
L0�0

txL̂0,N̂yrf sAL0,NEL0KN̂SpEN q

� KÂSpEAq � pEA � δA,0q �
¸
N

¸
L0�0

txL̂0,N̂yrf sAL0,NEL0KN̂σ1pNq

� δA,0 �KÂσ2pAq �
¸
N

¸
L0�0

txL̂0,N̂yrf sAL0,NEL0KN̂σ1pNq (11.11)

Thus if the sum of the last two terms in Equation (11.11) vanish then we are done. On the one
hand consider the last term of Equation (11.11). On substituting the k ¥ 1 summation term of
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Equation (11.6) for σ1pNq we obtain at the following equalities. Note we have replaced L by T in
Equation (11.6) and instead used L in the sum coming from the product of EL0 and ET to ease
notation later on.¸

N

¸
L0�0

txL̂0,N̂yrf sAL0,NEL0KN̂σ1pNq

�
¸
N

¸
L0�0

txL̂0,N̂yrf sAL0,NEL0KN̂

¸
k¥1

p�1qk
¸
T

¸
L1,...,Lk

�0

t
2
°
i j

xL̂i,L̂jy

resTL1,...,Lk
rf sNL1,...,Lk

K�1

N̂
ET

�
¸
k¥1

p�1qk
¸
N,T

¸
L0,...,Lk

�0

t
xL̂0,N̂y�2

°
i j

xL̂i,L̂jy

resTL1,...,Lk
rf sAL0,N rf s

N
L1,...,Lk

EL0ET

�
¸
k¥1

p�1qk
¸

L,N,T

¸
L0,...,Lk

�0

t
xL̂0,N̂�T̂ y�2

°
i j

xL̂i,L̂jy

resLL0,T res
T
L1,...,Lk

rf sAL0,N rf s
N
L1,...,Lk

EL (11.12)

On the other hand substituting the k ¥ 2 summation term from Equation (11.6) for σ2pAq in
KÂσ2pAq and reordering the summation over k we get the following.

KÂσ2pAq �
¸
k¥2

p�1qk
¸
L

¸
L1,...,Lk

�0

t
2
°
i j

xL̂i,L̂jy

resLL1,...,Lk
rf sAL1,...,Lk

EL

� �
¸
k¥1

p�1qk
¸
L

¸
L0,...,Lk

�0

t
2
°
i j

xL̂i,L̂jy

resLL0,...,Lk
rf sAL0,...,Lk

EL (11.13)

Using Equation (11.4) and Equation (11.5) along with the fact that N̂ � T̂ � L̂1 � . . . � L̂k it
follows that the sum of Equation (11.12) and Equation (11.13) vanishes.

We will now construct the Drinfeld double of H¥0 and H¤0. A reference for the details on the
construction of the Drinfeld double is Section 3.2.1, Section 3.2.2 and Section 3.2.3 of [Jos95].
The definition of the Drinfeld double depends on a certain pairing. In the case of Hall algebras
Green [Gre95] defined such a pairing P between H¥0 and H¤0 as follows.

P : H¥0 bH¤0 Ñ Cptq, P pEAKα, FBK
�
β q � tpα,βqaA � δA,B (11.14)

To form the Drinfeld double one needs to ensure that the pairing is skew-Hopf pairing. A skew-Hopf
pairing is one which satisfies the following requirements for all x, y P H¥0 and a, b P H¤0.

P p1, aq � εpaq P px, abq � P p∆pxq, ab bq

P px, 1q � εpxq P pxy, aq � P pxb y,∆oppaqq

Here ∆op denotes the opposite coproduct on H¤0 and we have extended the pairing to tensor
products via P px b y, a b bq � P px, aqBpy, bq. One can check that Green’s pairing is indeed
skew-Hopf.

Theorem 11.1.3 (Drinfeld). The vector space H¥0 bCptq H¤0 has the structure of a Cptq-Hopf
algebra determined by the following requirements.
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(i) The antipode is an anti-homomorphism and H¥0 and H¤0 are Hopf subalgebras via their
inclusions.

H¥0 Ñ H¥0 bCptq H¤0, x ÞÑ xb 1

H¤0 Ñ H¥0 bCptq H¤0, a ÞÑ 1b a

(ii) For any two elements x P H¥0 and a P H¤0 we have px b 1qp1 b aq � x b a along with the
following.

P px1, a1q � p1b a2qpx2 b 1q � P px2, a2q � x1 b a1 (11.15)

Here the subscripts 1, 2 denote Sweedler’s notation.

Proof. The details of this are standard and rely on P being a skew-Hopf pairing. See for example
Section 3.2.1, Section 3.2.2 and Section 3.2.3 of [Jos95].

There is a slightly more useful variant of the Drinfeld double where one formally sets each Kα b 1
to be the inverse of 1bK�

α. Recall that a Hopf ideal is an algebra ideal in the kernel of the counit
which is also a coalgebra coideal and is preserved by the antipode.

Definition 11.1.2. Define the reduced Drinfeld double to be the quotient Hopf algebra of the
Drinfeld double H¥0 bCptq H¤0 by the Hopf ideal pKα bK�

α � 1q.



Part III

Generic Bridgeland-Hall Algebras

Definition, Hopf Algebra Structure, Integral Forms and Quasi-Classical Limit





Overview

Part III is concerned with generic Bridgeland-Hall algebras and their integral forms. Generic Bridgeland-
Hall algebras are the generic versions of the algebras we discussed in Section 6.3. The existence of
these algebras was established by Deng and Chen [CD15] for the case of categories of simply-laced
quiver representations.

We will begin in Chapter 12 with the background material required to define Bridgeland-Hall algebras.
In particular we will recall from [CD15] the existence of Hall polynomials for Bridgeland-Hall algebras.
We also discuss how various properties of the categories of complexes Cq are independent of q.

In Chapter 13 we define the generic Bridgeland-Hall algebra DH. Following [CD15] we will develop
some properties of these algebras and in particular explain how DH is isomorphic to the quantized
enveloping algebra Utpgq. We also introduce new basis elements of DH and establish a product
expansion in terms of these. This expansion will be used in calculating the Poisson structure on the
semi-classical Bridgeland-Hall algebra in Part IV.

Chapter 14 deals with a natural Hopf algebra structure which one can place on DH. This is achieved
by establishing a generic version of results due to Yanagida [Yan16] which says that DH is isomorphic
to the Drinfeld double of the (extended) Abelian Hall algebra that we had in Chapter 11. The Hopf
algebra structure on the Drinfeld double then induces a Hopf algebra structure on DH.

The material in Chapter 15 concerns integral forms of DH. As in the Abelian case there will be two
natural integral forms of DH. One integral form DHex has product counting extensions while the
other DHfl roughly speaking has product counting flags. Deng and Chen introduced DHfl in [CD15]
and to our knowledge we are the first to consider DHex from the Hall algebra perspective.

In Chapter 15 we will also define the quasi-classical Bridgeland-Hall algebra DHqc which is the t � 1
limit of DHfl. Deng and Chen showed that DHqc is isomorphic to Upgq and used this fact to recover
the whole simple Lie algebra g from Hall algebras.

Both DHfl and DHqc seem tricky to work with and we will not develop their properties in great
detail. This contrasts with the semi-classical Bridgeland-Hall algebra DHsc which is the t � 1 limit
of DHex. The main feature of DHsc is that it is the algebra of functions on a Poisson-Lie group.
We will fully explore DHsc from a Hall algebraic point of view in Part IV.

Finally we end this part with Chapter 16 where we prove the first main result of this thesis: the
extension counting integral form of the Bridgeland-Hall algebra is isomorphic to the Poisson integral
form of the quantized enveloping algebra.
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Chapter 12

Background Material

In Chapter 12 we recall various bits of background theory that is needed to define and work with
generic Bridgeland-Hall algebras. The results contained here are the Z2-graded complexes analogues
of those in Chapter 7.

In Section 12.1 we start off this chapter by explaining how various features of the categories of
complexes Cq are independent of q. We then discuss the existence of Hall polynomials for Bridgeland-
Hall algebras in Section 7.3. The existence of these polynomials in the case of simply-laced quivers
was established by Deng and Chen in [CD15].

12.1 Z2-Graded Complexes: Independence of Fq
In this section we discuss how the categories Cq are independent of q, just as we did for the categories
Aq in Section 7.2. Recall that for each q a prime power Cq is the category of Z2-graded complexes
in projective objects in Aq. The material here is from [CD15].

We begin by explaining how IsopCqq the set of isomorphisms classes of objects in Cq is independent
of q. We then describe how various properties of Z2-graded complexes are also independent of q.

Note that we observed in the commentary following Theorem 2.3.1 that any complex in Cq is
determined uniquely up to isomorphism by a map Φ

²
pZ2 �Q0q Ñ Z¥0. If we abuse notation by

writing IsopCq for the set of maps Φ
²
pZ2�Q0q Ñ Z¥0 then we have canonical bijections between

the following sets.

IsopCqq � IsopCq (12.1)

These bijections induce canonical bijections of the following form for any prime powers q and q1.

IsopCqq � IsopCq1q

We will write L
 P IsopCq for maps L
 : Φ
²
pZ2 � Q0q Ñ Z¥0. Abusing notation again we will

frequently refer to the elements L
 P IsopCq as if were they genuine Z2-graded complexes. Should we
need to, we will write L
q for a particular choice of an actual complex in the category Cq determined
by the element L
 P IsopCq.
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For any representations L,P P IsopAq with P projective we will define elements CL, C�
L, KP and

K�
P to be the elements of IsopCq which for any q a prime power determine the objects CLq , C�

Lq
,

KPq and K�
Pq

of Cq that we defined in Section 2.3.

As for quiver representations, we will need to know that various properties of Z2-graded complexes
are independent of q. By this we mean that if L
 P IsopCq such that L
q has a certain property in
Cq for a particular q then L
q has that property in Cq for all prime powers q. This will be true for
any reasonable property.

Given two complexes M
, N
 P IsopCq we define their direct sum M
`N
 to be the following map.

M
 �N
 : Φ
º
pZ2 �Q0q Ñ Z¥0

We then have that the property of being a direct sum of complexes is independent of q since
pM
`N
qq �M
q`N
q for any q a prime power. By definition then, any complex L
 decomposes
uniquely as follows.

L
 � CA ` C�
B `KP `K�

Q

We define the degree zero and degree one homology objects of L
 to be H0pL
q :� A and H1pL
q :�
B respectively. We have HipL
qq � HipL
qq for i � 0, 1 and all q a prime power. In particular it
follows that property of being an acyclic complex is independent of q.

For a complex L
 P IsopCq we define its class in the Grothendieck group KpAq to be given by
L̂
 :� Â � B̂. For example we have ĈL � L̂ and Ĉ�

L � �L̂. We also note that the shift functor
involution � : Cq Ñ Cq induces an involution � : IsopCq Ñ IsopCq. This sends the complex L
 to the
shifted complex L�
 � CB ` C�

A `KQ `K�
P . We have pL
qq

� � pL�
qq for any q a prime power.

The projectives appearing in minimal projective resolutions, as defined in Equation (2.5), are in-
dependent of q. If L P IsopAq is a representation then there exists projectives PL, QL P IsopAq
such that for each q a prime power there is a minimal projective resolution of Lq of the form
PLq Ñ QLq Ñ Lq. The statement of this fact can be found at the end of page 22 in [CD15].

We end by observing that Lemma 3.5. (1) of [CD15] says that for any M
, N
 P IsopCq the following
dimensions are independent of q.

dimFqHompM
q, N
qq

Consequently we will simply write dimHompM
, N
q for these dimensions.

12.2 Hall Polynomials for Bridgeland-Hall Algebras

This section is concerned with Hall polynomials for Bridgeland-Hall algebras. We begin by estab-
lishing the existence of such polynomials due to Deng and Chen [CD15]. We then discuss some new
interpretations of these polynomials and prove some simple properties which to our knowledge have
not been considered in the literature.

We briefly recall the notation used for various structure constants of the non-generic Bridgeland-Hall
algebra from Chapter 6. We used the following notation for the subset of extensions of the complex
M
q by N
q whose middle term isomorphic to L
q.

Ext1pM
q, N
qqL
q � Ext1pM
q, N
qq
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We also defined F
L
q
M
q ,N
q

to be the set of subobjects N
q � L
q such that the corresponding quotient

object is isomorphic to M
q. Finally we wrote AutpL
qq for the set of automorphisms of L
q. The
following proposition then establishes the existence of Hall polynomials for Bridgeland-Hall algebras.

Proposition 12.2.1 (Deng, Chen). For any complexes L
,M
, N
 P IsopCq there exists polynomials
eL
M
,N


, hM
,N
 , fL
M
,N

and aL
 in Qrts such that for any q a prime power we have the following.

eL
M
,N

pq

1
2 q � |Ext1pM
q, N
qqL
q |

fL
M
,N

pq

1
2 q � |F

L
q
M
q ,N
q

|

hM
,N
pq
1
2 q � |HompM
q, N
qq|

aL
pq
1
2 q � |AutpL
qq|

Proof. This follows from Theorem 3.11, Corollary 3.12 and Lemma 3.5. in [CD15].

Using Proposition 12.2.1 we can derive the existence of some other polynomials. In Part IV these
polynomials will be integral to describing the Poisson and associated Lie algebra structures of semi-
classical Bridgeland-Hall algebras.

Recall from the end of Section 2.3 that for any A,B,M,N P IsopAq and any q a prime power
we have the set HompMq, NqqAq ,Bq of morphisms Mq Ñ Nq with kernel Aq and cokernel Bq. By
Equation (2.11) for any q a prime power we have an isomorphism of sets of the following form.

Ext1pCMq , C
�
NqqL
q � HompMq, NqqAq ,Bq (12.2)

Here L
 P IsopCq is the complex CA ` C�
B ` KPMA

` K�
QNB

where the acyclic direct summands
are uniquely determined by the requirement that PM � PMA ` PA and QN � QNB ` QB. Note
that the notation PMA signifies that PMA is determined uniquely by PM and PA. Similarly QNB is
determined uniquely by QN and QB.

It follows then from Proposition 12.2.1 that the following defines a well-defined polynomial which,
when evaluated at t � q

1
2 , counts the number of morphisms Mq Ñ Nq with kernel Aq and cokernel

Bq.

hA,BM,N :� eL

CM ,C

�
N

(12.3)

When pA,Bq � pM,Nq we also have the following polynomial which counts the number of elements
in the projectivization of the set HompMq, NqqAq ,Bq .

PphqA,BM,N :� hA,BM,N{pt
2 � 1q (12.4)

The F�q -action on HompMq, NqqAq ,Bq is given by the scaling of morphisms Mq Ñ Nq. This action
is free away from the zero morphism (which is the only morphism with kernel Mq and cokernel
Nq). That Equation (12.4) really does give a polynomial when pA,Bq � pM,Nq then follows from
Lemma 7.1.2.

The polynomials PphqA,BM,N in certain special cases have the following useful interpretation in terms
of the Hall polynomials which count flags of quiver representations.
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Lemma 12.2.1. For any A,B,M,N P IsopAq with M and N indecomposable we have the following
two identities.

PphqA,0M,N � fMN,A Pphq0,BM,N � fNB,M

Proof. We will establish the right-hand identity with the proof of the other being analogous. Recall
from Remark 7.3.2 that the automorphism polynomial of an indecomposable quiver representation
is t2 � 1. We thus have the following identity.

Pphq0,BM,N � h0,B
M,N{pt

2 � 1q � h0,B
M,N{aM (12.5)

Let q be a prime power and set t � q
1
2 in Equation (12.5). By definition the evaluation at t � q

1
2

of the polynomial h0,B
M,N counts injective homomorphisms Mq ãÑ Nq with corresponding quotient

object Bq. Dividing out by the number of automorphisms of Mq we get the number of subobjects

Mq � Nq with quotient Bq. However this is exactly the evaluation of fNB,M at t � q
1
2 . The result

then follows by Lemma 7.1.1.



Chapter 13

Generic Bridgeland-Hall Algebras

This chapter concerns the generic Bridgeland-Hall algebra DH due to Deng and Chen [CD15].
Generic Bridgeland-Hall algebras are the generic versions of the algebras we discussed in Section 6.3.

We start off this chapter in Section 13.1 by defining the generic Bridgeland-Hall algebra DH using
the Hall polynomials from Chapter 12. We then develop some properties of generic Bridgeland-Hall
algebras in Section 13.2 regarding subalgebras and tensor product descriptions.

In Section 13.3 we introduce new basis elements of DH and establish a product expansion in terms of
these elements. This expansion will be used in calculating the Poisson structure on the semi-classical
Bridgeland-Hall algebra in Part IV.

Finally we end with Section 13.4 where we explain how DH is isomorphic to the quantized enveloping
algebra Utpgq. This is the generic version of Bridgeland’s Theorem 6.3.1 and is due to Deng and
Chen. We also give a slight modification of this isomorphism and show that it intertwines a certain
shift functor induced involution of DH and the involution Σ on Utpgq from Equation (5.6).

13.1 Definitions

This section is concerned with the definition of generic Bridgeland-Hall algebras. These are the
generic counterparts of the Bridgeland-Hall algebras that we defined in Section 6.3. The existence
of generic Bridgeland-Hall algebras for categories of simply-laced quiver representations is due to
Deng and Chen [CD15].

We begin with the following generic version of Definition 6.3.1.

Definition 13.1.1. Define HpCq to be the Cptq-vector space generated by the set IsopCq. The
product of two basis elements rM
s and rN
s corresponding to two complexes is given by the
following.

rM
srN
s � txM̂0,N̂0y�xM̂1,N̂1y
¸

L
PIsopCq

eL
M
,N


hM
,N


rL
s (13.1)

The unit element r0
s is given by the zero complex 0
.
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Note that there is not a genuine category C whose Hall algebra we are taking here. However, in
light of Equation (12.1), the set of isomorphism classes of each category of Z2-graded complexes Cq
is canonically isomorphic to the set IsopCq that was defined in Section 12.1. Thus it is as if there
is an actual category C which gives the Hall algebra in Definition 13.1.1.

Proposition 13.1.1. HpCq is a unital associative Cptq-algebra.

Proof. The product is a well-defined element of HpCq since by Proposition 12.2.1 the structure
constants are Laurent polynomial and in particular elements of Cptq. Associativity then follows by
the same kind of argument that we had Proposition 8.1.1 in the Abelian case. That the unit is r0
s
is obvious.

As we observed in Section 6.3 the algebra HpCq is not quite the correct algebra to take. A problem
arises for example when one attempts to recover the whole quantized enveloping algebra Utpgq. In
particular the subalgebra of HpCq generated by the elements rKP `K�

Qs given by acyclic complexes
should correspond to the subalgebra of Utpgq generated by the elements Ki and K�1

i . However
rKP s and rK�

Qs are neither invertible nor is rKP s the inverse of rK�
P s. To remedy this one must

formally invert the elements rKP `K�
Qs and then set rKP s to be the inverse of rK�

P s.

One needs to take care in order to invert the elements rKP `K�
Qs as HpCq is a non-commutative

algebra. It is easy to check that rM
srN
s � rM
 `N
s in HpCq for any two acyclic complexes M


and N
. The following lemma will then allow one to formally invert the elements rKP `K�
Qs and

indeed is very useful in its own right.

Lemma 13.1.2. If L
 P IsopCq and P P IsopAq is projective then we have the following identities
in HpCq.

rKP srL
s � txP̂ ,L̂
yrL
 `KP s

rK�
P srL
s � t�xP̂ ,L̂
yrL
 `K�

P s

rL
srKP s � t�xL̂
,P̂ yrL
 `KP s

rL
srK
�
P s � txL̂
,P̂ yrL
 `K�

P s

Proof. This is an easy calculation using the acyclicity of the complexes KP and K�
P , which were

given in Equation (2.6).

Lemma 13.1.2 ensures that the Ore conditions are satisfied for localizing HpCq at the set of ele-
ments corresponding to acyclic complexes trM
s |M
 acyclicu. Accordingly we make the following
definition.

Definition 13.1.3. Define the generic localized Bridgeland-Hall algebra to be the following localized
algebra.

DHloc :� HpCq
�
rM
s

�1 |M
 acyclic
�

Unfortunately we would still not have that rKP s is the inverse of rK�
P s. We will introduce and

discuss some elements of DHloc and then formally set rKP s to be the inverse of rK�
P s. Let α be

a class in KpAq which we decompose into P̂ � Q̂ where P,Q P IsopAq are projective. We then
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define the following elements of DHloc which we note do not depend on the choice of decomposition
α � P̂ � Q̂.

Kα :� rKP srKQs
�1 K�

α :� rK�
P srK

�
Qs

�1

We observe that the elements Kα and K�
α were used in a different context to define generic extended

Hall algebras in Definition 11.1.1. We will see in Proposition 13.2.2 that no confusion should arise
from this an abuse of notation. Note that it follows from Lemma 13.1.2 that the following identities
hold in DHloc for any L
 P IsopCq and class α in KpAq.

KαrL
s � tpα,L̂
qrL
sKα K�
αrL
s � t�pα,L̂
qrL
sK

�
α (13.2)

By definition the elements rL
s form a basis for HpCq. Using the fact that a complex L
 decomposes
as a direct sum of the form CA ` C�

B ` KP ` K�
Q it is easy to see from Lemma 13.1.2 that the

elements KαK
�
β rCA ` C�

Bs form a basis for DHloc. Moreover using Equation (13.1) one can see
that the product in this basis has structure constants which are Laurent polynomials.

We may now define the following algebra which is the correct one for recovering the whole quantized
enveloping algebra.

Definition 13.1.4. Define the generic (reduced) Bridgeland-Hall algebra DH to be the quotient
of DHloc by the ideal pKαK

�
α � 1q. We will almost always refer to DH simply as the generic

Bridgeland-Hall algebra.

It is instructive to compare Definition 13.1.4 with that of Definition 11.1.2 for the reduced Drinfeld
double. We will show in Chapter 14 that these two algebras in fact coincide.

Similar to the case of DHloc it is easy to see that the elements KαrCA ` C�
Bs form a basis for

DH. Note also that the shift involution � : C Ñ C induces well-defined Cptq-algebra involutions of
both DHloc and DH given by rL
s ÞÑ rL�
s. We will abuse notation and also denote both of these
involutions by �. For example under this involution we have Kα ÞÑ K�

α.

We end this section by pointing out that we could also have defined DH directly to be the quotient
of HpCq by the following ideal.

DH :� HpCq{prKP srK
�
P s � 1 | P projectiveq (13.3)

The reason we have opted not to take this short-cut, which bypasses the definition of DHloc, is that
we will need to use the algebra DHloc in Section 14.1.

13.2 Properties of Generic Bridgeland-Hall Algebras

In this section we explain some of the structure of DHloc and DH in terms of their subalgebras. The
results in this section are generic versions of ones proved by Bridgeland in [Bri13].

Our definition of the subalgebras of DHloc and DH require the following special elements of DHloc

and DH associated to any L P IsopAq.
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EL :� txP̂L,L̂yK�P̂L
rCLs

XL :� EL{aL
(13.4)

FL :� txP̂L,L̂yK�
�P̂L

rC�Ls

YL :� FL{aL
(13.5)

Here recall from the end of Section 12.1 that PL P IsopAq is one of the projectives determining a
minimal projective resolution PLq Ñ QLq of Lq for any q a prime power. Note that under the shift
involution we have EL ÞÑ FL.

By abuse of notation we have already used EL and FL to denote basis vectors of two copies of
the generic Hall algebra H (sitting inside the extended Hall algebras H¥0 and H¤0 as defined in
Definition 11.1.1). The following proposition shows that no confusion may arise.

Proposition 13.2.1 (Bridgeland).

(i) DHloc contains two copies of the group algebra CptqrKpAqs as subalgebras. One is given by
the span of elements Kα while the other coincides with the span of the elements K�

α.

(ii) DHloc contains two copies of the generic Hall algebra H as subalgebras. One is given by the
span of elements EL while the other coincides with the span of the elements FL.

Proof. Using the shift involution it suffices to prove the assertions for the span of the elements
Kα and EL only. Using acyclicity of the complexes involved one can check that the elements Kα

all commute with each other. Moreover a straightforward calculation, exactly as in Lemma 4.3
of [Bri13], shows that the product of the elements EL as defined in Equation (13.4) coincides with
the product on H as defined in Equation (8.1).

The only thing left to check is that the elements Kα and EL are linearly independent in DHloc.
Working through the definitions of Ore localization one can check that linear independence of the
elements Kα in DHloc follows from the fact that the elements rKP s in HpCq are linearly independent
by definition.

To see that the elements EL in DHloc are linearly independent note that taking homology of a
complex M
 determines a linear map DHloc Ñ H as follows.

rM
s ÞÑ t�xM̂1, {H0pM
qyEH0pM
q

Linear independence then follows from the fact that under this map the elements EL in DHloc are
sent to the basis elements EL in H.

Recall that in Definition 11.1.1 we defined the extended Hall algebra which was denoted by H¥0

and alternatively H¤0. These were isomorphic as algebras (though differed as Hopf algebra). The
following proposition realises these two copies as subalgebras of the generic localized Bridgeland-Hall
algebra.

Proposition 13.2.2 (Bridgeland). DHloc contains two copies of the extended Hall algebra as subal-
gebras. One copy H¥0 coincides with the Cptq-subspace spanned by elements of the form by ELKα

the other copy H¤0 is the span of the elements FLK
�
α.
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Proof. This is the generic version of Lemma 4.6 in [Bri13].

We will see subsequently in Chapter 14 that the generic localized Bridgeland-Hall algebra in fact
coincides with the Drinfeld double that we defined in Chapter 11. The following proposition should
be viewed as the first step towards proving this statement.

Proposition 13.2.3 (Bridgeland). Multiplication induces the following isomorphism of Cptq-vector
spaces.

H¥0 bCptq H¤0 Ñ DHloc, EAKα b FBK
�
β ÞÑ EAKαFBK

�
β

Proof. This stated in the commentary preceding Equation 5.3 in [CD15].

Since the set of elements of the form EAKα and FBK
�
β give a basis for H¥0 and H¤0 respectively

then Proposition 13.2.3 implies that the set of elements of the form EAKαFBK
�
β give a basis for

DHloc.

In the following proposition we use Proposition 13.2.1 to identify the generic Hall algebra H with
the two subalgebras of DH spanned by the elements EL and FL respectively.

Proposition 13.2.4 (Bridgeland). Multiplication induces the following isomorphism of Cptq-vector
spaces.

HbCptq CptqrKpAqs bCptq H Ñ DH, EA bKα b FB ÞÑ EAKαFB

Proof. This is Lemma 5.4 in [CD15].

Similar to the case of DHloc, the above proposition implies that the Bridgeland-Hall algebra has a
Cptq-basis given by the elements of the form EAKαFB.

13.3 An Identity

In this section we introduced certain new basis elements of DH. We then prove a product expansion
formula in terms of these elements. This formula will be used in Section 17.2 to calculate the Poisson
algebra structure on the semi-classical Bridgeland-Hall algebra that will be introduced in Part IV.
The contents of this section are to our knowledge new and do not appear in Bridgeland’s original
paper [Bri13].

Recall from Equation (13.4) and Equation (13.5) that we defined the following elements DH which
were slight modifications of the elements rCLs and rC�

Ls respectively.

EL :� txP̂L,L̂yK�P̂L
rCLs FL :� txP̂L,L̂yKP̂L

rC�Ls (13.6)

Here CL is the complex given by a minimal projective resolution PL Ñ QL of the representation
L. Now for any two representations A,B P IsopAq we introduce the following modification of the
element rCA ` C�

Bs which generalizes EA and FB.

DA,B :� txP̂A�P̂B ,Â�B̂yKP̂B�P̂A
rCA ` C�

Bs (13.7)
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Indeed we observe that DA,0 � EA and D0,B � FB. A useful fact about these elements is that the
shift involution � of DH sends DA,B to DB,A.

We will now show that products of the form EMFN and FNEM have natural expansions in terms of
the elements DA,B. The structure constants of these expansions involve the polynomials hA,BM,N that
we defined in Section 12.2. Recall that these polynomials count morphisms M Ñ N with kernel A
and cokernel B. We observe that the Grothendieck group classes of the representations involved are
related via M̂ � Â � N̂ � B̂.

Proposition 13.3.1. For any M,N P IsopAq we have the following identities1 in DH.

EMFN �
¸

A,BPIsopAq
txN̂�B̂,M̂�N̂yhA,BM,NKB̂�N̂DA,B (13.8)

FNEM �
¸

A,BPIsopAq
txB̂�N̂,M̂�N̂yhB,AN,MKN̂�B̂DA,B (13.9)

Proof. We begin by showing that Equation (13.9) follows from Equation (13.8). To see this we first
apply the shift functor involution to Equation (13.8) and use the fact that D�

A,B � DB,A. Switching

M with N , A with B and using M̂ � Â � N̂ � B̂ one arrives at Equation (13.9).

It remains to establish Equation (13.8) which we do via a lengthy expansion of the product EMFN .
We begin with the following identity in DH where n1 � xP̂M , M̂y � xP̂N , N̂y � pP̂N , M̂q.

EMFN � txP̂M ,M̂y�xP̂N ,N̂yK�P̂M
rCM sKP̂N

rC�
N s

� tn1KP̂N�P̂M
rCM srC

�
N s

Here we have used Equation (13.6) to substitute for EM and FN and Equation (13.2) to skew
commute the element KP̂N

past rCM s. Expanding the product rCM srC
�
N s using Equation (13.1)

we obtain the following where n2 � n1 � xP̂M , Q̂Ny � xQ̂M , P̂Ny � 2xP̂M , Q̂Ny.

EMFN � tn2KP̂N�P̂M

¸
L
PIsopCq

eL

CM ,C

�
N
rL
s (13.10)

To obtain Equation (13.10) we have used the fact that dimHompCM , C
�
N q is the same as dimHompPM , QN q

and moreover dimHompPM , QN q � xP̂M , Q̂Ny since PM and QN are projective.

We will now rearrange Equation (13.10) by summing over the homology objects of the complexes
L
 rather than the complexes themselves. Recall from Equation (12.3) that by definition eL


CM ,C
�
N
�

hA,BM,N where A and B are the two homology objects of the complex L
. Moreover from the discussion
at the end of Section 2.3 we have that L
 � CA `C

�
B `KPMA

`K�
QNB

where PMA and QNB are
the unique projectives satisfying PMA ` PA � PM and QNB `QB � QN . We may thus sum over
A,B P IsopAq in Equation (13.10) to obtain the following identity.

EMFN � tn2KP̂N�P̂M

¸
A,BPIsopAq

hA,BM,N rCA ` C�
B `KPMA

`K�
QNB

s

1An interesting feature of these identities is that the coefficient of the A � B � 0 term is given by Green’s pairing
that was defined in Equation (11.14).
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Using Lemma 13.1.2 to pull out the term KPMA
`K�

QNB
we obtain the following equation where

n3 � n2 � xP̂MA � Q̂NB, Â� B̂y and γ � P̂N � P̂M � P̂MA � Q̂NB.

EMFN �
¸

A,BPIsopAq
tn3hA,BM,NKγrCA ` C�

Bs (13.11)

Now we have the following simplifications of γ and n3. The proofs of these are messy and so we
will postpone them to Lemma 13.3.1 for ease of reading.

n3 � xN̂ � B̂ � P̂A � P̂B, M̂ � N̂y γ � B̂ � N̂ � P̂B � P̂A

Substituting these identities into Equation (13.11) and using the definition of the elements DA,B

from Equation (13.7) we obtain Equation (13.8) as desired.

It remains to establish the following lemma.

Lemma 13.3.1. In the notation from the proof of Proposition 13.3.1 the following identities hold.

n3 � xN̂ � B̂ � P̂A � P̂B, M̂ � N̂y γ � B̂ � N̂ � P̂B � P̂A

Proof. We first observe that we have the following relationships in KpAq.

P̂MA � P̂M � P̂A

Q̂NB � Q̂N � Q̂B
(13.12)

B̂ � Q̂B � P̂B

N̂ � Q̂N � P̂N
(13.13)

Now using Equation (13.12) and Equation (13.13) we can establish the case of γ as follows.

γ � P̂N � P̂M � P̂MA � Q̂NB

� P̂N � P̂M � pP̂M � P̂Aq � pQ̂N � Q̂Bq

� pQ̂B � P̂Bq � pQ̂N � P̂N q � P̂B � P̂A

� B̂ � N̂ � P̂B � P̂A

For n3 we will first simplify n2. Using the facts that M̂ � Q̂M � P̂M and N̂ � Q̂N � P̂N one can
check that we have the following.

n2 � xP̂M , M̂y � xP̂N , N̂y � pP̂N , M̂q � xP̂M , Q̂Ny � xQ̂M , P̂Ny

� xP̂M � P̂N , M̂ � N̂y
(13.14)

Substituting Equation (13.14) into n3 and using Equation (13.12), Equation (13.13) and the fact
that Â� B̂ � M̂ � N̂ we establish the case of n3 as follows.

n3 � xP̂M � P̂N , M̂ � N̂y � xP̂MA � Q̂NB, Â� B̂y

� xP̂M � P̂N , M̂ � N̂y � xP̂M � P̂A � Q̂N � Q̂B, M̂ � N̂y

� xQ̂N � P̂N � Q̂B � PB � P̂A � PB, M̂ � N̂y

� xN̂ � B̂ � P̂A � P̂B, M̂ � N̂y
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13.4 Relationship with Quantized Enveloping Algebras

In this section we give the generic version of Bridgeland’s realization of the whole quantized en-
veloping algebra from Theorem 6.3.1. We also give a slight modification of this isomorphism and
show that it intertwines the shift functor involution of DH and the involution Σ on Utpgq that we
introduced in Equation (5.6).

The following theorem is due to Deng and Chen [CD15] in the generic case and Bridgeland [Bri13]
in the non-generic case.

Theorem 13.4.1 (Bridgeland, Deng, Chen). There is a Cptq-algebra isomorphism R : Utpgq Ñ DH
given by the following.

Xi ÞÑ XSi Yi ÞÑ �tYSi K�1
i ÞÑ K�1

Ŝi

Proof. This is Theorem 5.5 in [CD15] coupled with the facts that XSi � ESi{aSi and YSi �
FSi{aSi .

We now introduce a modified version of the isomorphism R from Theorem 13.4.1 and show that it
intertwines the shift functor involution � of DH and the involution Σ on Utpgq that we introduced
in Equation (5.6). The following does not appear in the literature to my knowledge.

We begin with the following provisional algebra involution ω of the quantized enveloping algebra
which we stress is not the same as the involution Σ given in Equation (5.6).

ωpXiq � �Yi ωpYiq � �Xi ωpKiq � K�1
i

A glance at the generators and relations description of Utpgq from Definition 5.1.1 shows that ω
does indeed give an algebra involution. Using ω we then modify Bridgeland’s isomorphism to get a
new isomorphism R̄ : Utpgq Ñ DH given by R :� � �R � ω. The map R̄ is indeed an isomorphism
since each of the algebra homomorphisms in its definition are. One can check that R is determined
by the following.

R̄pXiq � tXSi R̄pYiq � �YSi R̄pKiq � KŜi
(13.15)

A remark we will use in later chapters is that it is not hard to see that the isomorphism R̄ descends
to an isomorphism between the positive part of the quantized enveloping algebra Utpn�q and the
copy of the generic Hall algebra H in DH spanned by the elements of the form XL. Recall from
Equation (5.6) that the algebra involution Σ : Utpgq Ñ Utpgq was defined via the following.

ΣpXiq � �tYi ΣpYiq � �t�1Xi ΣpKiq � K�1
i (13.16)

We end this section by showing that R intertwines the two involutions Σ and �.

Proposition 13.4.2. The following is a commutative diagram of Cptq-algebra isomorphisms.

Utpgq Utpgq

DH DH

Σ

R̄ R̄

�
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Proof. This is immediate on using Equation (13.15), Equation (13.16) and the fact that X�
Si
� YSi ,

Y �
Si
� XSi and K�

Ŝi
� K�Ŝi

.



Chapter 14

Hopf Algebra Structure

In this chapter we endow the Bridgeland-Hall algebra with the structure of a Cptq-Hopf algebra.
We do so by giving an isomorphism between DH and the (reduced) Drinfeld double of the extended
Abelian Hall algebra from Chapter 11. The Drinfeld double Hopf algebra structure then induces
such a structure on DH. The results in this section follow from work due to Yanagida [Yan16] who
identified Bridgeland-Hall algebras with Drinfeld doubles in the non-generic case.

The reason why this chapter is important for us is that in Part IV we will see that the Hopf algebra
structure on DH descends to a Hopf algebra structure on the semi-classical Bridgeland-Hall algebra
DHsc. This in particular ensures that the spectrum of DHsc is an algebraic group.

14.1 Drinfeld Double and Hopf Algebra Structure

We start off this section by showing that the generic localized Bridgeland-Hall DHloc coincides with
the Drinfeld double defined in Theorem 11.1.3. We then show that this identification descends to an
isomorphism between the (reduced) Bridgeland-Hall algebra DH and the reduced Drinfeld double.
We will end with an explicit description of the resulting Hopf algebra structure on DH induced from
that of the reduced Drinfeld double. The reference for this section is [Yan16].

In Proposition 13.2.3 we identified DHloc with H¥0bCptqH
¤0 as vector spaces. Moreover the latter is

precisely the vector space underlying the Drinfeld double (Hopf) algebra we had in Theorem 11.1.3.
Via this identification we thus a priori have two different algebra structures on DHloc. The following
theorem says that these two algebra structures in fact coincide.

Theorem 14.1.1 (Yanagida). The Drinfeld double algebra structure on H¥0 bCptq H¤0 coincides
with the Hall algebra structure on DHloc under the following vector space identification from Propo-
sition 13.2.3.

H¥0 bCptq H¤0 Ñ DHloc, EAKα b FBK
�
β ÞÑ EAKαFBK

�
β (14.1)

Proof. Recall from Theorem 11.1.3 that there are two conditions determining the Drinfeld double
algebra structure. We must verify that under Equation (14.1) these conditions are also satisfied by
the algebra structure on DHloc.
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The first says that H¥0 and H¤0 are subalgebras of DHloc. This was shown in Proposition 13.2.2.
The only non-trivial requirement from Theorem 11.1.3 to check then is that under Equation (14.1)
we have that Equation (11.15) holds in DHloc. Recall that Equation (11.15) says that for all x P H¥0

and a P H¤0 the following identity holds in H¥0 bCptq H¤0.

P px1, a1q � p1b a2qpx2 b 1q � P px2, a2q � x1 b a1 (14.2)

Set x � EAKα and a � FBK
�
β in Equation (14.2) and substitute the formula for Green’s pairing

from Equation (11.14) and the coproduct ∆ in Theorem 11.1.1. Applying Equation (14.1) to
Equation (14.2) we are then required to check that the following holds in DHloc.¸

A1,A2
B1,B1

txA1,A2y�xB1,B2yfAA1,A2
fBB1,B2

P pEA1KÂ2�α
, FB2K

�
β qFB1K

�
B̂2�β

EA2Kα (14.3)

�
¸

A1,A2
B1,B1

txA1,A2y�xB1,B2yfAA1,A2
fBB1,B2

P pEA2Kα, FB1K
�
B̂2�β

qEA1KÂ2�α
FB2K

�
β (14.4)

Using Equation (13.2) and Equation (11.14) we have the following identities.

K�
B̂2�β

EA2 � t�pÂ2,βqK�
B̂2
EA2K

�
β (14.5)

KÂ2�α
FB2 � t�pB̂2,αqKÂ2

FB2Kα (14.6)

P pEA1KÂ2�α
, FB2K

�
β q � tpÂ2�α,βqP pEA1 , FB2q (14.7)

P pEA2Kα, FB1K
�
B̂2�β

q � tpα,B̂2�βqP pEA2 , FB1q (14.8)

Substituting Equation (14.5) and Equation (14.7) into Equation (14.3) and Equation (14.6) and
Equation (14.8) into Equation (14.4) and then cancelling the factor tpα,βqKαK

�
β the equality of

Equation (14.3) and Equation (14.4) is equivalent to the following.¸
A1,A2
B1,B1

txA1,A2y�xB1,B2yfAA1,A2
fBB1,B2

P pEA1 , FB2qFB1K
�
B̂2
EA2 (14.9)

�
¸

A1,A2
B1,B1

txA1,A2y�xB1,B2yfAA1,A2
fBB1,B2

P pEA2 , FB1qEA1KÂ2
FB2 (14.10)

The non-generic version of exactly this equation can be found stated in Equation (2.1) of [Yan16]
and is also proved there. To see why the non-generic case implies the generic case we will use the
usual trick.

Note first that by definition P pEM , FN q � aMδM,N . We also observed in Section 13.1 that DHloc

has a set of basis vectors of the form KγK
�
δ rCM `CN s and moreover the structure constants of the

product on DHloc in this basis were Laurent polynomials. Using Equation (13.4) and Equation (13.5)
it follows that any product of elements of the form E, F , K and K� can be expressed as Crt, t�1s-
linear combination of the basis vectors of DHloc.

The previous paragraph implies that Equation (14.9) and Equation (14.10) can be both be ex-
pressed as a Crt, t�1s-linear combination of the above basis vectors of DHloc. Moreover the Laurent
polynomial coefficients in these expansions are expressions in Hall polynomials.
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Since Yanagida checked the equality of Equation (14.9) and Equation (14.10) in the non-generic
case, Proposition 7.3.1 and Proposition 12.2.1 then imply that the corresponding Laurent polynomial
coefficients in the expansions of Equation (14.9) and Equation (14.10) above coincide on setting
t � q1{2 for all q a prime power. Lemma 7.1.1 says then that such Laurent polynomials must coincide
and this establishes the result.

We also have a reduced version of the above theorem. Recall from Definition 11.1.2 that reduced
Drinfeld double was given by the quotient of the Drinfeld double by the (Hopf) ideal pKαbK

�
α�1q.

Under the identification with DHloc this ideal is sent to pKαK
�
α � 1q which precisely the algebra

ideal defining the (reduced) Bridgeland-Hall algebra in Definition 13.1.4.

Corollary 14.1.1 (Yanagida). The (reduced) Bridgeland-Hall algebra DH coincides with the reduced
Drinfeld double as algebras.

The Bridgeland-Hall algebra DH was defined in Definition 13.1.3 only as an algebra. The upshot of
combining Corollary 14.1.1, Theorem 11.1.3 and Definition 11.1.2 is that DH has the structure of a
Cptq-Hopf algebra.

Corollary 14.1.2. The Bridgeland-Hall algebra DH is a Cptq-Hopf algebra with coproduct ∆, an-
tipode S and counit ε given by the following formulas.

∆ : DH Ñ DHbCptq DH

EL ÞÑ
¸

M,NPIsopAq
txM̂,N̂yfLM,N � EMKN̂ b EN

FL ÞÑ
¸

M,NPIsopAq
txM̂,N̂yfLM,N � FN b FMK�N̂

Kα ÞÑ Kα bKα

S : DH Ñ DH

EM ÞÑ δM,0 �
¸
k¥1

p�1qk
¸
L

¸
L1,...,Lk

�0

t
2
°
i j

xL̂i,L̂jy

resLL1,...,Lk
rf sML1,...,Lk

�K�M̂EL

FM ÞÑ δM,0 �
¸
k¥1

p�1qk
¸
L

¸
L1,...,Lk

�0

resLLk,...,L1
rf sML1,...,Lk

� FLKM̂

Kα ÞÑ K�α

The counit is determined by EL ÞÑ δL,0, FL ÞÑ δL,0 and Kα ÞÑ 1.



Chapter 15

Integral Forms and Quasi-Classical
Limit

This chapter deals with two natural integral forms of DH along with the quasi-classical Bridgeland-
Hall algebra. These two integral forms will roughly speaking be the Bridgeland-Hall versions of
the extension and flag counting integral forms of H that we had in Part II. The quasi-classical
Bridgeland-Hall algebra is the analogue of the quasi-classical Hall algebra from Section 10.2.

In Section 15.1 we define DHex the extension counting integral form of DH. This is defined in a
completely analogous way to how Hex was defined in Chapter 9. In spite of its simple definition this
integral form does not seem to have been considered before in the Bridgeland-Hall algebra setting.

Later on in Chapter 16 we will give the first main result of this thesis by proving that DHex is
isomorphic to the Poisson integral form of the quantized enveloping algebra. The t � 1 limit of
DHex is what we will call the semi-classical Bridgeland-Hall algebra and will be explored in-depth
from a Hall algebraic point of view in Part IV.

Section 15.2 concerns DHfl the flag counting integral form of DH. Unlike DHex this integral form
is not defined in an entirely analogous way to how Hfl was in Chapter 10. We will explain what goes
wrong and then give the correct definition of DHfl due to Deng and Chen [CD15]. In this chapter we
will also explain how the flag counting integral form is isomorphic to URes

t pgq the restricted integral
form of the quantized enveloping algebra.

Finally Section 15.3 is a short section on the quasi-classical Bridgeland-Hall algebra. This is the
t � 1 limit of DHfl and is isomorphic to the universal enveloping algebra Upgq.

15.1 Extension Counting Integral Form

In this section we define and discuss the extension counting integral form DHex of DH. This is the
Z2-graded version of the extension counting integral Hex of the generic Hall algebra H that we had
in Section 9.1. The main feature of DHex, as we shall see in Section 17.1, is that its semi-classical
limit is the algebra of functions on a Poisson-Lie group.

Definition 15.1.1. Define the extension counting integral form of DH to be the Crt, t�1s-submodule
DHex spanned by the elements of the form rM
s.

78



CHAPTER 15. INTEGRAL FORMS AND QUASI-CLASSICAL LIMIT 79

We should make sure that DHex really is an integral form, as defined in Definition 4.1.1. Since by
Definition 13.1.1 the structure constants of the product on HpCq (in the basis given by the elements
rM
s) are Laurent polynomials, then by Equation (13.3) we must have that DHex is closed under
the product.

To see that DHex is free as a Crt, t�1s-module note that by Lemma 13.1.2 the Crt, t�1s-span of the
elements rM
s coincides with the Crt, t�1s-span of the elements KαrCM ` C�

N s. Freeness follows
from the fact which we observed in Section 13.1 that the latter elements form a Cptq-basis of DH.
Finally multiplication clearly an induces and isomorphism Cptq bCrt,t�1s DHex Ñ DH.

Remark 15.1.1. Setting t � q
1
2 in DHex recovers the non-generic Bridgeland-Hall algebra that we

had in Chapter 6. In particular for any q a prime power we have the following isomorphism of
C-algebras.

DHex{pt� q
1
2 q Ñ DHq, rM
s ÞÑ rM
qs and t ÞÑ q

1
2 (15.1)

We make some remarks as to why this is true. Comparing Definition 6.3.1 and Definition 6.3.2
with Definition 15.1.1, Definition 13.1.1 and Equation (13.3) shows that DHex and DHq have
completely analogous definitions. That Equation (15.1) is an isomorphism of algebras follows from
the following two facts. First the Hall polynomials from Proposition 12.2.1 determining the product
on DHex specialize at t � q

1
2 to give the structure constants determining the product on the non-

generic Bridgeland-Hall algebra as given in Equation (6.10). The second is that since DHex is free

as a Crt, t�1s-algebra then DHex{pt� q
1
2 q is isomorphic to DHq as a C-vector space.

In Chapter 16 we will show that DHex is isomorphic to the Poisson integral form of the quantized
enveloping algebra UPoiss

t pgq. A nice feature of the Hall algebra approach to integral forms is that
the definition of DHex is almost tautological. This contrasts with the definition of UPoiss

t pgq in
Section 5.5 which relied on the non-trivial machinery of Lusztig’s braid group action which we had
to introduce in Section 5.2.

How does Hex relate to DHex? Recall from Definition 9.1.1 that the extension counting integral
form Hex of the generic Hall algebra H was defined as the Crt, t�1s-span of elements of the form
EM . In Section 13.2 we observed that the Bridgeland-Hall algebra DH contains two copies of the
generic Hall algebra H as Cptq-subalgebras. One was given by the Cptq-spans of elements of the
form EM . Applying the shift involution gives the other which is spanned by the elements FN . Since
the elements EM and FN both lie in DHex we thus have that DHex contains two copies of Hex as
Crt, t�1s-subalgebras.

The triangular decomposition of DH from Proposition 13.2.4 descends to one of DHex. In the
following we use the previous paragraph to consider Hex as a subspace of DHex in two ways.

Proposition 15.1.2. Multiplication induces the following isomorphism of Crt, t�1s-modules.

Hex b Crt, t�1srKpAqs bHex Ñ DHex, EA bKα b FB ÞÑ EAKαFB

Proof. This follows by identical reasoning to the proof of Lemma 4.8. in [Bri13].
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We end by observing that the Cptq-Hopf algebra structure on DH descends to a Crt, t�1s-Hopf
algebra structure on DHex. To see this first note that elements of the form EM , FN and Kα all
lie in DHex. By Corollary 14.1.2 the Hopf algebra structure on DH was determined by the values
of the coproduct, antipode and counit on these elements. Since the formulas in Corollary 14.1.2 for
these operations all have Laurent polynomials as coefficients then the Hopf algebra structure must
descend to DHex.

15.2 Flag Counting Integral Form

In this section we define DHfl the flag counting integral form of the Bridgeland-Hall algebra. The
correct definition was given by Deng and Chen in [CD15] who used it to recover the whole simple
Lie algebra g from DH. The main feature of DHfl is that it is isomorphic to the restricted integral
form of the quantized enveloping algebra and that its t � 1 limit is isomorphic to Upgq.

Unfortunately the flag counting integral form of DH does not seem particularly easy to work with
in contrast with the extension counting integral forms of H and DH or indeed the flag counting
integral form of H. Another trait of DHfl is that it is not defined in the obvious way that one would
expect.

We begin by explaining what goes wrong with the obvious attempt to define a flag counting integral
form of DH. We then discuss the correct definition and explain how it is isomorphic to the restricted
integral form of the quantized enveloping algebra. The reference for this section is [CD15].

Recall that in the Abelian case that there were two sets of basis vectors of the generic Hall algebra
H given by the elements EL and XL :� EL{aL respectively. The Crt, t�1s-span of the former gave
rise to the extension counting integral form of H while the span of the latter gave the flag counting
one.

Similarly for Bridgeland-Hall algebras it was the Crt, t�1s-span of the elements rL
s which defined
the extension counting integral form of DHex. The obvious way to try and define DHfl then is to
define it to be the Crt, t�1s-span of the elements rL
s{aL
 .

This isn’t quite the correct definition however. To see why, let’s provisionally define DH1
fl to be the

Crt, t�1s-submodule of DH spanned by the elements rL
s{aL
 where L
 P IsopCq. It turns out that
this subspace is too large and includes certain elements corresponding to acyclic complexes which
prevent it from having a good t � 1 limit.

In particular to see what goes awry first note that if P P IsopAq is projective indecomposable then a
simple calculation shows that aKP � aK�

P
� t2 � 1. Now if DH1

fl was an integral form of DH then

in particular the following element would lie in DH1
fl.

rKP s

aKP

rK�
P s

aK�
P

�
rKP s

pt2 � 1q

rK�
P s

pt2 � 1q
�

1

pt2 � 1q2

Obviously one is going to run into problems on setting t � 1 and so DH1
fl would not have a good

t � 1 limit.

The correct way to define the flag counting integral form of DH is to take the smaller Crt, t�1s-
subalgebra generated by the two copies of Hfl along with the copy of Crt, t�1srKpAqs.
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Definition 15.2.1. Define the flag counting integral form of the Bridgeland-Hall algebra to be the
Crt, t�1s-subalgebra DHfl generated by the elements XL, YL and K�1

Ŝi
where L P IsopAq and

1 ¤ i ¤ r.

We will now discuss a smaller set of generators of DHfl before establishing that it really is an integral
form of DH. In particular let’s show that DHfl is also generated by the elements XSki

, YSki
and

K�1

Ŝi
where k ¥ 0 and 1 ¤ i ¤ r. Note this claim is equivalent to showing that Hfl is generated

by the elements XSki
, which we establish using the following argument due to Reineke which can be

found in Lemma 4.4 of [Rei03].

First choose an ordering of vertices 1, . . . , r of ~Q in such a way that i ¡ j if there is an arrow
iÑ j. Such an ordering is always possible for a simply-laced quiver. One can then check that any
L P IsopAq then has a unique filtration of subobjects 0 � L0 � L1 � � � � � Lr � L such that
Lk{Lk�1 � Slkk for any 1 ¤ k ¤ r and where lk P Z¥0. It follows that XL is equal to X

S
l1
1

� � �X
Slrr

up to some power of t and this establishes the claim.

Now the fact that DHfl really is an integral form of DH follows from the following proposition along
with the fact that URes

t pgq is an integral form of Utpgq.

Proposition 15.2.1 (Deng, Chen). The isomorphism R : Utpgq Ñ DH restricts to an isomorphism
of Crt, t�1s-algebras between URes

t pgq and DHfl.

Proof. Recall from Definition 5.4.1 that the restricted integral form of the quantized enveloping
algebra is defined as the Crt, t�1s-subalgebra URes

t pgq of Utpgq generated by the divided powers
X
pkq
i , Y

pkq
i along with the elements K�1

i . Moreover recall from Theorem 13.4.1 that the isomorphism
R : Utpgq Ñ DH was given by the following.

Xi ÞÑ XSi Yi ÞÑ �tYSi K�1
i ÞÑ K�1

Ŝi

The result then follows from the fact that, up to a factor of t, we have that X
pkq
Si

is equal to XSki
and Y

pkq
Si

is equal to YSki
.

We remark that the above proof also holds for the modified isomorphism R̄ : Utpgq Ñ DH that we
introduced in Section 13.4. It is also easy to see that R̄ : Utpgq Ñ DH restricts to an isomorphism
R̄ : Utpn�q Ñ H and that this isomorphism further restricts to a Crt, t�1s-algebra isomorphism
between URes

t pn�q and Hfl.

Note that we have used the fact that URes
t pgq is an integral form of Utpgq to establish that DHfl

is an integral form of DH. By contrast in Section 15.1 we saw that the extension counting integral
form of DH was tautologically an integral form.

It would be nice to find an elementary proof of the fact that DHfl is an integral form using the
language of Bridgeland-Hall algebras and without invoking the isomorphism between DH and Utpgq.
However after some thought we could not find such a simple proof.

On the other hand, a point worth making is that Proposition 15.2.1 was easy to prove. That the
analogous statement to Proposition 15.2.1 holds between UPoiss

t pgq and DHex is more involved and
is the subject of Chapter 16.
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15.3 The Quasi-Classical Algebra

Following Deng and Chen, in this short section we define the quasi-classical Bridgeland-Hall algebra
and establish that it is isomorphic to Upgq. Unlike the semi-classical Bridgeland-Hall algebra which
is the subject of Part IV we will not explore the structure of the quasi-classical Bridgeland-Hall
algebra in great detail and include this section only for completeness. The reference for this section
is [CD15].

The quasi-classical Bridgeland-Hall algebra is defined as follows. It may be instructive to compare
Definition 15.3.1 to the definition of Uqc in Section 5.4.

Definition 15.3.1. Define the quasi-classical Bridgeland-Hall algebra DHqc to be the quotient al-
gebra of DHfl by the ideal generated by t� 1 and the elements KŜi

� 1 where 1 ¤ i ¤ r.

We then have the following theorem which allowed Deng and Chen to recover the whole simple Lie
algebra g from the generic Bridgeland-Hall algebra. In Chapter 18 we will give an alternative way
to recover this Lie algebra using the semi-classical Bridgeland-Hall algebra.

Theorem 15.3.1 (Deng, Chen, Lusztig). There is an isomorphism of C-algebras Upgq Ñ DHqc

given by the following where 1 ¤ i ¤ r.

ei ÞÑ XSi fi ÞÑ �Y Si hi ÞÑ rYSi , XSis

Proof. This follows from Proposition 15.2.1 due to Deng and Chen along with Lusztig’s Theo-
rem 5.4.1.



Chapter 16

Identification of Integral Forms

In this chapter we establish the first main result of this thesis: the isomorphism R : Utpgq Ñ DH
from Section 13.4 descends to an isomorphism between UPoiss

t pgq the Poisson integral form of Utpgq
and DHex the extension counting integral form of DH.

One of the merits of this result is that DHex admits an almost tautological definition whereas
UPoiss
t pgq is non-trivial to define, depending as it does on the construction of quantum root vectors

via the machinery of Lusztig’s braid group action. Moreover it seems to us that UPoiss
t pgq is slightly

messy to work with whereas proofs involving DHex and its t � 1 limit seem more straightforward.

Let us give an outline of the proof method and then explain which steps correspond to which
sections. Recall that the Poisson integral form UPoiss

t pgq was defined in Definition 5.5.1 as the
Crt, t�1s-subalgebra of Utpgq generated by the rescaled quantum root vectors Eβ, Fβ along with
K�1
i . The rescaled quantum root vectors were defined via Lusztig’s braid group action and moreover

depended on a choice of reduced decomposition of the longest element of the Weyl group w0.

On the Bridgeland-Hall algebra side of things we have similar elements which are naturally assigned
to each positive root β. Indeed Gabriel’s Theorem 2.2.2 says there is a unique indecomposable Iβ
associated to each β and so we have corresponding elements EIβ and FIβ in DH. Moreover one

can show that the elements EIβ , FIβ and K�1

Ŝi
generate DHex as a Crt, t�1s-subalgebra of DH.

The idea for the proof then is to identify the elements Eβ and Fβ and Utpgq with (a scalar multiple
of) EIβ and FIβ in DH under the isomorphism R : Utpgq Ñ DH. This will involve making a suitable

choice of reduced decomposition of w0. It will then follow that UPoiss
t pgq and DHex are isomorphic.

Since the quantum root vectors Eβ and Fβ are defined via Lusztig’s braid group action on Utpgq,
the way to understand where they map under R involves understanding how this braid group action
behaves on the Bridgeland-Hall algebra side of things. It is known from [SVdB99], [XY01] and
[Gor] that in the non-generic case the braid group action corresponds to certain isomorphisms of
Bridgeland-Hall algebras induced by BGP reflection functors.

Thus in Section 16.1 we will give an overview of these reflection functor induced isomorphisms,
extending the details to the generic case in the process. Using this technology, in Section 16.2 we
then describe the proof that UPoiss

t pgq and DHex are isomorphic as Crt, t�1s-algebras.
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16.1 Reflection Functor Induced Isomorphisms of DH

In this section we discuss how BGP reflection functors induce isomorphisms of generic Bridgeland-
Hall algebras. In addition we will describe how these isomorphisms relate to Lusztig’s automorphisms
Ti that were defined in Section 5.2. The results in this section are due to Gorsky [Gor] and Ringel
[Rin96].

Let IsopA ~Qxiyq � IsopAq be the subset consisting of representations of ~Q which do not have Si
as a direct summand. It follows from Theorem 2.4.1 that for each sink i of ~Q the BGP reflection
functors induce mutually inverse bijections of the following form.

σ�i : IsopA ~Qxiyq Ñ IsopAσi ~Qxiyq(16.1) σ�i : IsopAσi ~Qxiyq Ñ IsopA ~Qxiyq (16.2)

Here σi ~Q is the quiver obtained from ~Q by reversing all arrows incident at i. In particular the above
bijections take indecomposables to indecomposables and for any L P IsopAq the class of σ�i pLq in

KpAq is sipL̂q where si denotes a simple reflection.

We then have the following theorem, due to Gorsky in the non-generic case, relating BGP reflection
functors to Bridgeland-Hall algebras.

Theorem 16.1.1 (Gorsky). Let i be a sink for ~Q or equivalently a source for σi ~Q. The following
determine mutually inverse Cptq-algebra isomorphisms with the property that T �1

i � � � � � T �1
i

where � is the shift involution on DH.

Ti : DHp ~Qq Ñ DHpσi ~Qq

ESi ÞÑ t�1FSiKŜi

EM ÞÑ Eσ�i M

Kα ÞÑ Ksipαq

T �1
i : DHpσi ~Qq Ñ DHp ~Qq

ESi ÞÑ tFSiK�Ŝi

EN ÞÑ Eσ�i N

Kα ÞÑ Ksipαq

Here M and N are required to have no Si as a direct summand and si are simple reflections.

Proof. We first note that Ti and T �1
i as defined above induce the following well-defined Crt, t�1s-

linear maps on restricting to the extension counting integral form of the Bridgeland-Hall algebra.

Ti : DHexp ~Qq Ñ DHexpσi ~Qq T �1
i : DHexpσi ~Qq Ñ DHexp ~Qq

We will prove that these give mutually inverse isomorphisms of Crt, t�1s-algebras with the result
following by tensoring along Cptq bCrt,t�1s p�q.

It is easy to check using the properties of the bijections in Equation (16.1) and Equation (16.2) that
the formulas defining Ti and T �1

i give mutually inverse linear maps. Moreover if one of the maps
is an algebra homomorphism then the other one is necessarily is. The only thing we need to check
then is that Ti : DHexp ~Qq Ñ DHexpσi ~Qq is a Crt, t�1s-algebra homomorphism.

Theorem 9.27 and Proposition 9.23 of [Gor] says that the same formulas for Ti above except with
t � q

1
2 give a C-algebra isomorphism of non-generic Bridgeland-Hall algebras DHqp ~Qq Ñ DHqpσi ~Qq.
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Recall Remark 15.1.1 says that DHex specializes to DHq on setting t � q
1
2 . We thus have that for

any x, y P DHexp ~Qq the image of Tipxyq � TipxqTipyq in DHexpσi ~Qq{pt� q
1
2 q vanishes for all q a

prime power. Combining this with Lemma 7.1.1 on the vanishing of Laurent polynomials along with
the fact that DHexpσi ~Qq is free as a Crt, t�1s-module gives the result.

We would like to show how the above isomorphisms relate to Lusztig’s automorphisms Ti of the
quantized enveloping algebra which were defined in Section 5.2. To do so we will need to know the
value of Ti on certain elements. For i a sink and any vertex j � i we have the following.

TipXSiq � t�1YSiKŜi
TipXSj q � Xσ�i Sj

(16.3)

This follows by rescaling the formulas defining Ti in Theorem 16.1.1 by dividing across by t2 � 1.
Indeed by definition XI :� EI{pt

2 � 1q and YI :� FI{pt
2 � 1q since for any I indecomposable we

have aI � t2 � 1. The only thing we need to be sure of is that if j � i then σ�i Sj is in fact
indecomposable. However this follows from the fact that the bijection Equation (16.1) preserves
indecomposables. To prove Theorem 16.1.2 below we will need the following key Lemma due to
Ringel.

Lemma 16.1.1 (Ringel). Let i be a source for σi ~Q. Then for i � j the following identity holds in
DHpσi ~Qq.

Xσ�i Sj
�

¸
µ�ν��aij

p�1qµtνX
pνq
Si
XSjX

pµq
Si

(16.4)

Proof. A proof of this can be found in Proposition 3 of [Rin96]. Ringel uses slightly different notation.
Define xXLy :� t�dimL�εpLqXL where εpLq � dimEndpLq. The identity proved in [Rin96] is then
the following.

xXσ�i Sj
y �

¸
µ�ν��aij

p�1qµt�µX
pνq
Si
XSjX

pµq
Si

(16.5)

Since σ�i Sj is indecomposable and our quiver is assumed to be simply-laced then it has a one
dimensional endomorphism algebra. Moreover by the properties of the bijection in Equation (16.1)
the class of σ�i Sj in the Grothendieck group is Ŝj � aijŜi and so its dimension is 1� aij . It is easy
to see from these observations that Equation (16.4) is equivalent to Equation (16.5).

Armed with the above identities we can prove that, under the modified isomorphism R̄ between
Utpgq and DH introduced in Equation (13.15), the isomorphisms T �1

i commute with Lusztig’s
automorphisms T�1

i .

Theorem 16.1.2. Let i be a sink for ~Q. Then the following diagrams commute.

Utpgq Utpgq

DHp ~Qq DHpσi ~Qq

Ti

R̄ R̄

Ti

Utpgq Utpgq

DHpσi ~Qq DHp ~Qq

T�1
i

R̄ R̄

T �1
i
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Proof. Commutativity of the right-hand diagram follows from that of the left-hand one. We need
to check then that this diagram commutes when applied to the generators Xk, Yk and Kk of the
quantized enveloping algebra where 1 ¤ k ¤ r.

We can cut down on the number of calculations required as follows. First recall that by Proposi-
tion 13.4.2 we have R̄ � Σ � � � R̄ where Σ is the involution of Utpgq defined in Equation (5.6).
Moreover Σ commutes with the Ti by Proposition 5.3.1 and � commutes with the Ti by Theo-
rem 16.1.1. It is easy to see that these facts imply that we need only check the statement for the
generators Xj and Kj .

We will use the formulas in Theorem 5.2.1 for Lusztig’s braid group action Ti. The definition of R̄
can be found in Equation (13.15). Theorem 16.1.1 and Equation (16.3) tell us the action of Ti. For
the convenience of the reader we reproduce the relevant formulas here. For any vertices k, j with
j � i we have the following.

R̄pKkq � KŜk

R̄pXkq � tXSk

R̄pYkq � �YSk

TipKŜk
q � KsipŜkq

TipXSiq � t�1YSiKŜi

TipXSj q � Xσ�i Sj

TipKkq � Ksipαkq

TipXiq � �YiKi

TipXjq �
¸

µ�ν��aij

p�1qµt�µX
pνq
i XjX

pµq
i

For the generators Kj and Xi we then have the following identities.

Ti � R̄pKkq � TipKŜk
q � KsipŜkq

� R̄pKsipαkqq

� R̄ � TipKkq

Ti � R̄pXiq � TiptXSiq � YSiKŜi

� R̄p�YiKiq

� R̄ � TipXiq

For the generators Xj where j � i the following equalities hold.

Ti � R̄pXjq � TiptXSj q � tXσ�i Sj

�
¸

µ�ν��aij

p�1qµtν�1X
pνq
i XjX

pµq
i [Lemma 16.1.1]

�
¸

µ�ν��aij

p�1qµt�µ�p1�aijqX
pνq
i XjX

pµq
i [ν � �µ� aij ]

�
¸

µ�ν��aij

p�1qµt�µR̄pX
pνq
i XjX

pµq
i q [1� aij � ν � 1� µ]

� R̄ � TipXjq

16.2 The Identification

In this section we prove that UPoiss
t pgq the Poisson integral form of the quantized enveloping algebra

is isomorphic to DHex the extension counting integral form of the generic Bridgeland-Hall algebra.
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We will first give a relationship between the quantum root vectors Eβ and Fβ of Utpgq and the ele-
ments EIβ and FIβ of DH where Iβ are indecomposables corresponding to positive roots β. We then
use this relationship to establish our result. In this section Proposition 16.2.2 and Theorem 16.2.3
are Bridgeland-Hall algebra versions of results due to Ringel [Rin96] in the Abelian case.

Recall from Section 5.2 that the definition of the quantum root vectors Eβ and Fβ depended on
a choice of reduced decomposition of w0 the longest element of the Weyl group. This contrasts
with the fact that the elements EIβ and FIβ are canonical to DHp ~Qq. This apparent discrepancy

is hidden in the fact that one has fixed a choice of orientation for ~Q. In [Lus90b] Lusztig gives the
following way to choose a reduced decomposition of w0 depending on a quiver ~Q.

Proposition 16.2.1 (Lusztig). Let ~Q be a simply-laced quiver. Then there exists a sequence of
vertices i1, . . . , iN of ~Q, where N is the number of positive roots, with the following properties.

1. i1, . . . , iN is a source sequence, that is, for 1 ¤ k ¤ N then ik is a source for σik . . . σi1
~Q.

2. w0 � si1 � � � siN is a reduced decomposition of the longest element of the Weyl group into
simple reflections.

Proof. This is part pbq of Proposition 4.12. in [Lus90b].

For the remainder of this section we fix a sequence of vertices i1, . . . , iN as in Proposition 16.2.1. For
1   k ¤ N let β1 :� αi1 and βk :� si1 � � � sik�1

pαikq be the total ordering of positive roots induced
by w0 � si1 � � � siN as in Section 5.2. By Gabriel’s Theorem 2.2.2 this determines a total ordering
of the indecomposables Iβ1 , . . . , IβN . In particular we have elements EIβk and FIβk in DHp ~Qq. On
the other hand by Definition 5.2.1 the reduced decomposition w0 � si1 � � � siN determines quantum
root vectors Eβk and Fβk in Utpgq.

The following Lemma says that the elements EIβk and FIβk of DH are generated by the isomorphism
Ti from Theorem 16.1.1 in an analogous way to how the quantum root vectors Eβk and Fβk are
generated by Lusztig’s automorphisms Ti.

Proposition 16.2.2. For any 1   k ¤ N the following identities hold in DHp ~Qq.

T �1
i1

� � � T �1
ik�1

pESik q � EIβk T �1
i1

� � � T �1
ik�1

pFSik q � FIβk

Proof. We prove the first identity as the second follows from the fact that the T �1
i commute with

the shift involution �. Since i1, . . . , iN is a source sequence and σjσj ~Q � ~Q then by Theorem 16.1.1
the following is a well-defined isomorphism.

T �1
i1

� � � T �1
ik�1

: DHpσik�1
� � �σi1

~Qq Ñ DHp ~Qq

Consider ESik as an element in DHpσik�1
� � �σi1

~Qq. We claim that a repeated application of

T �1
j pEN q � Eσ�j N

, where N does not have Sj as a direct summand, yields the following.

T �1
i1

� � � T �1
ik�1

pESik q � Eσ�i1 ���σ
�
ik�1

pSik q
(16.6)
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Since σ�j takes an indecomposable different from Sj to an indecomposable different from Sj the
only thing we need to check is that Sik � Sik�1

and for any 1   j ¤ k � 1 we do not have the
following equality of indecomposables.

σ�ij � � �σ
�
ik�1

pSikq � Sij�1 (16.7)

If Sik � Sik�1
then ik � ik�1 and w0 � si1 � � � siN would not be a reduced decomposition of w0.

For the other case, suppose Equation (16.7) held. Taking the image of Equation (16.7) in KpAq
then we would have the following implications (which we view as taking place in the root lattice
Λφ).

sij � � � sik�1
pαikq � αij�1

ùñ si1 . . . sik�1
pαikq � si1 � � � sij�2p�αij�1q

ùñ βk � �βj�1

However this is a contradiction since no positive root is the negative of another. We have established
Equation (16.6) and it remains to show that σ�i1 � � �σ

�
ik�1

pSikq � Iβk . Since σ�j takes an indecom-
posable different from Sj to an indecomposable then we know σ�i1 � � �σ

�
ik�1

pSikq is indecomposable.
Moreover the class of σ�i1 � � �σ

�
ik�1

pSikq in the Grothendieck group is si1 � � � sik�1
pŜikq which is equal

to Îβk by definition of βk. The result follows by Gabriel’s Theorem 2.2.2.

The following theorem gives the relationship between the quantum root vectors Eβ and Fβ of Utpgq
and the elements EIβ and FIβ of DH. We recall from Equation (13.15) that we introduced a modified
version R̄ of Bridgeland’s isomorphism between Utpgq and DH. In particular in the following we will
need to use the fact that R̄pESj q � tESj .

Theorem 16.2.3. For 1 ¤ k ¤ N we have the following identities in DHp ~Qq.

R̄pEβkq � tEIβk R̄pFβkq � �FIβk

Proof. We can reduce to the case of showing that R̄pEβkq � tEIβk . Indeed by Proposition 13.4.2

we have R̄ � Σ � Σ � � and from Section 5.5 that Fβk � Σp�t�1Eβkq. Thus we would have the
following.

R̄pFβkq � R̄ � Σp�t�1Eβkq � � � R̄p�t�1Eβkq � �FIβk

Using Equation (13.15) the result is obvious for k � 1 since β1 � αi1 and Iβ1 � Si1 . Suppose
that 1   k ¤ N . Using the fact that i1, . . . , iN is a source sequence, we can repeatedly apply
Theorem 16.1.2 to get the following commutative diagram of algebra isomorphisms.

Utpgq Utpgq

DHpσik�1
� � �σi1

~Qq DHp ~Qq

T�1
i1

���T�1
ik�1

R̄ R̄

T �1
i1

���T �1
ik�1



CHAPTER 16. IDENTIFICATION OF INTEGRAL FORMS 89

By combining Equation (5.8) and Definition 5.2.1 we have that Eβk � T�1
i1

� � �T�1
ik�1

pEikq in Utpgq.

Moreover by Proposition 16.2.2 we have that EIβk � T �1
i1

� � � T �1
ik�1

pESik q in DHp ~Qq. It follows then

that in DHp ~Qq we have the following.

R̄pEβkq � R̄ � T�1
i1

� � �T�1
ik�1

pEikq

� T �1
i1

� � � T �1
ik�1

� R̄pEikq

� T �1
i1

� � � T �1
ik�1

ptESik q

� tEIβk

We can now show that the Poisson integral form UPoiss
t pgq of Utpgq is identified with the extension

counting integral form DHex of DH under R̄, the modified version of Bridgeland’s isomorphism.

Theorem 16.2.4. The Cptq-algebra isomorphism R̄ : Utpgq Ñ DH restricts to a Crt, t�1s-algebra
isomorphism of integral forms between UPoiss

t pgq and DHex.

Proof. Recall that in Definition 5.5.1 the Poisson integral form UPoisst pgq of Utpgq is defined as
the Crt, t�1s-subalgebra of Utpgq generated by the elements Eβk , Fβk and K�1

k . Moreover by
Theorem 16.2.3 we have that R̄pEβkq � tEIβk , R̄pFβkq � �FIβk and R̄pK�1

k q � K�1

Ŝk
. Thus we

need only show that EIβk , FIβk and K�1

Ŝk
generate DHex as a Crt, t�1s-subalgebra of DH.

Lemma 3.19 from [Sch09] says that there is a total ordering1 γ1, . . . , γN of the positive roots such
that if j   k then dimExt1pIγj , Iγkq � 0. Using this fact, a simple calculation shows that for any
representation L � In1

γ1 ` � � � ` InNγN then EL � tdEn1
Iγ1

� � �EnNIγN
for some d P Z. Applying the

shift involution establishes the analogous result for FL. The triangular decomposition of DHex from
Proposition 15.1.2 coupled with the above show that the elements EIβk , FIβk , and K�1

Ŝk
generate

DHex as a Crt, t�1s-algebra.

We mentioned in Section 13.4 that the isomorphism R̄ : Utpgq Ñ DH restricts to an isomorphism
between the positive part of the quantized enveloping algebra Utpn�q and the copy of the generic
Hall algebra H in DH spanned by the elements of the form XL or equivalently EL.

Recall also that by definition the positive part of the Poisson integral form UPoiss
t pn�q is the Crt, t�1s-

subalgebra of Utpgq generated by the rescaled quantum root vectors Eβk where 1 ¤ k ¤ r. The
proof of Theorem 16.2.4 thus also establishes the following theorem.

Theorem 16.2.5. The Cptq-algebra isomorphism R̄ : Utpn�q Ñ H restricts to a Crt, t�1s-algebra
isomorphism of integral forms between UPoiss

t pn�q and Hex.

1γ1, . . . , γN is a priori a different ordering to β1, . . . βN . Probably one can take them to coincide, however we will
not need to establish this fact.



Part IV

Semi-Classical Bridgeland-Hall Algebras

Poisson Structure, Lie Bialgebras and Poisson Lie Groups





Overview

Part IV is concerned with the semi-classical Bridgeland-Hall algebra DHsc. This is the t � 1 limit of
the extension counting integral form of DH that was defined in Section 15.1. The main attribute of
DHsc is that it is a commutative Poisson-Hopf algebra or equivalently the algebra of functions on a
Poisson-Lie group. To our knowledge the properties of semi-classical Bridgeland-Hall algebras have
not been studied from the Hall algebraic viewpoint before.

We begin with Chapter 17 where we define the semi-classical Bridgeland-Hall algebra. We explain
how DHsc is a commutative Poisson-Hopf algebra and give an explicit calculation of its Poisson
structure. In this chapter we emphasise how various homological properties of categories of quiver
representations and complexes translate into algebraic properties of DHsc. By definition, DHsc is the
coordinate algebra of a Poisson-Lie group G_

sc which we call the semi-classical Poisson-Lie group.

In Chapter 18 we discuss the tangent Lie bialgebra g_sc of the semi-classical Poisson-Lie group G_
sc.

We give an explicit calculation of the structure constants of g_sc and then show that it is isomorphic
to the standard dual Lie bialgebra g_ from Section 3.3. This chapter should be viewed as giving a
way to associate Lie bialgebras to Hall algebras and in particular a new way to recover the whole
simple Lie algebra g from Bridgeland-Hall algebras.

Finally in Chapter 19 we prove that the semi-classical Poisson-Lie group G_
sc is isomorphic to the

standard dual Poisson-Lie group G_ that was constructed in Section 3.3. This is a new proof using
Hall algebraic methods of the classical result of De Concini and Procesi [DCP93] that the t � 1 limit
of the Poisson integral form of Utpgq is the algebra of functions on G_

sc. We feel our Hall algebraic
proof is more direct and conceptual than De Concini and Procesi’s and in particular avoids the case
by case analysis of the proof in [DCP93].

We expect that the methods in this part should apply more generally to generic Bridgeland-Hall
algebras of categories other than representations of simply-laced quivers. In particular it should be
possible to extract Poisson-Lie groups from Hall algebras of hereditary categories other than the
categories considered in this thesis.
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Chapter 17

Semi-Classical Algebra and Poisson-Lie
Group

In this chapter we define and discuss the semi-classical Bridgeland-Hall algebra DHsc which is the
t � 1 limit of DHex. We also explain how Poisson-Lie groups arise from such algebras and give an
explicit computation of the Poisson structure.

We start off with Section 17.1 where we give the definition of DHsc and show that it is a commutative
Poisson-Hopf algebra over C. In particular DHsc is the algebra of functions on a Poisson-Lie group
G_
sc which we call the semi-classical Poisson-Lie group. Later on in Chapter 19 we will give a proof

of the fact that G_
sc coincides with the standard dual Poisson-Lie group G_ that was defined in

Section 3.3.

Section 17.2 is concerned with explicitly calculating the structure constants of the Poisson structure
on DHsc. We will linearize this Poisson structure in Chapter 18 to get the cotangent Lie algebra of
G_
sc which is isomorphic to the simple Lie algebra g. This will yield an alternative way to realize the

full simple Lie algebra in terms of Hall algebras than that of Section 15.3.

17.1 Definitions and Properties

In this section we define the semi-classical Bridgeland-Hall algebra DHsc and its associated semi-
classical Poisson-Lie group. In particular, DHsc will be the t � 1 limit of the extension counting
integral form DHex of DH. We will show that this t � 1 limit is commutative and so, as outlined in
Chapter 4, will inherit the structure of a Poisson-Hopf algebra. This structure is equivalent to the
data of a Poisson-Lie group which we shall call the semi-classical Poisson-Lie group.

Definition 17.1.1. Define the semi-classical Bridgeland-Hall algebra DHsc to be the quotient algebra
of DHex by the ideal pt� 1q.

Let us describe how the semi-classical Bridgeland-Hall algebra is a Poisson-Hopf algebra, as defined
in Definition 3.1.1. In Corollary 14.1.2 we gave the generic Bridgeland-Hall algebra DH the structure
of a Cptq-Hopf algebra. We observed at the end of Section 15.1 that this Hopf algebra structure
descended to a Crt, t�1s-Hopf algebra structure on the extension counting integral form DHex of
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DH. As outlined in Chapter 4 then, this Crt, t�1s-Hopf algebra structure descends to a C-Hopf
algebra structure on DHsc.

Proposition 17.1.1. The semi-classical Bridgeland-Hall algebra DHsc is a finitely generated com-
mutative Poisson-Hopf algebra over C. The product and Poisson bracket are determined by the
requirement that rKP s rK�

P s � 1 along with the following.

rM
s rN
s � rM
 `N
s trM
s, rN
susc :�

�
rM
srN
s � rN
srM
s

2pt� 1q




Proof. That rKP s rK�
P s � 1 holds is obvious from Definition 13.1.4 and Definition 15.1.1. To show

that we have rM
s rN
s � rM
 `N
s the exact same reasoning holds as in the proof of Proposi-
tion 9.2.1, once one replaces Ext1pMq, Nqq everywhere with Ext1pM
q, N
qq. The commutativity
of DHsc follows from that of the operation `, while the Poisson-Hopf structure then follows from
Proposition 4.1.1 and Proposition 4.1.2.

To see that DHsc is finitely generated note that by definition any complex M
 P IsopCq decomposes
as a direct sum of the form CA` CB `KP `K

�
Q. Thus DHsc is spanned by the following elements.

rCA ` C�B `KP `K�
Qs � rCAs rC�Bs rKP s rK�

Qs

Moreover each of the complexes CA, C�B, KP and K�
Q further decompose as a direct sum of their

indecomposable direct summands. One can then see that, as an algebra, DHsc is generated by the
elements rCI1s, rC�I2s, rKP1s and rK�

P2
s where I1, I2 are indecomposable and P1, P2 are projective

indecomposable. By Theorem 2.2.2 this is a finite collection of elements.

We now describe the semi-classical Bridgeland-Hall algebra completely as a C-algebra. Recall from
Section 13.2 that we had that DHex contains two copies of the Abelian extension counting integral
form Hex of H, given by the Crt, t�1s-span of the elements EL and FL respectively. The algebra
DHex also contains a copy of the group algebra Crt, t�1srKpAqs given by the span of the Kα.

Using Corollary 9.2.2 we can take the t � 1 semi-classical limit of these subalgebras of DHex.
The algebra Hsc is the polynomial algebra in the elements EI where I is indecomposable while the
quotient of the group algebra Crt, t�1srKpAqs by the ideal pt � 1q yields the algebra CrKpAqs.
We have the following algebra triangular decomposition of DHsc in terms of these semi-classical
subalgebras.

Proposition 17.1.2. Multiplication induces the following isomorphism of C-algebras.

Hsc bC CrKpAqs bC Hsc Ñ DHsc, EA bKα b FB ÞÑ EAKαFB

Moreover the two copies of Hsc are polynomial algebras in the elements EI and F I respectively with
I indecomposable.

Proof. Taking the t � 1 limit of Proposition 15.1.2 gives us an isomorphism of C-vector spaces.
Using commutativity of the product of the algebras involved it is easy to see that multiplication is
also preserved.
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We end this section by discussing the semi-classical Poisson-Lie group. As outlined in Section 3.1,
the geometric counterpart of a commutative Poisson-Hopf algebra is a Poisson-Lie group. Proposi-
tion 17.1.1 then allows us to make the following definition.

Definition 17.1.2. Define the semi-classical Poisson-Lie group to be G_
sc :� Spec DHsc.

By Proposition 17.1.2 the semi-classical Poisson-Lie group G_
sc is not particularly complicated as a

variety: it is isomorphic to ANC �Gr
m�ANC where N is the number of indecomposables or equivalently

the number of positive roots.

We have chosen notation G_
sc to emphasize that, as we shall show later in Section 16.2, the semi-

classical Poisson-Lie group is isomorphic to the dual Poisson-Lie group G_ that we defined in
Section 3.3. More generally we shall append the subscript sc to various objects such as Lie algebras
and subgroups related to G_

sc to indicate that they come from semi-classical Bridgeland-Hall algebra
as opposed to analogous objects related to G_ that one finds in Section 3.3.

17.2 Calculation of Poisson Structure

In this section we give an explicit calculation of the Poisson bracket on the semi-classical Bridgeland-
Hall algebra DHsc. Before doing so, we shall find it convenient to introduce some new notation for
structure constants of the Poisson bracket.

For representations L,M,N P IsopAq recall from Equation (7.3) that if L �M `N then we have
polynomials PpeqLM,N :� eLM,N{pt

2 � 1q counting the projectivization of the set Ext1pM,NqL. This
allows us to define the following structure constants.

ΓLM,N :�

#
PpeqLM,N � PpeqLN,M if L �M `N

1{2pM̂, N̂qskew � dimHompN,Mq � dimHompM,Nq if L �M `N

Recall that the overline bar notation here denotes the evaluation at t � 1 of a polynomial. Note
also that, for L, M and N indecomposable, the above notation appears to clash with that of the

structure constants ΓLM,N :� f
L
M,N � f

L
N,M defined in Definition 10.2.3. However by Corollary 7.4.1

these two definitions coincide.

Recall from Equation (12.3) that for representations A,B,M,N P IsopAq we have polynomials
hA,BM,N counting morphisms M Ñ N with kernel A and cokernel B. When pA,Bq � pM,Nq, by

Equation (12.4), we also have polynomials PphqA,BM,N :� hA,BM,N{pt
2 � 1q counting the projectivization

of these sets. We then define the following structure constants, which in general are elements of
CrKpAqs.

ΓA,BM,N :�

#
PphqA,BM,NKB̂�N̂ � PphqB,AN,MKN̂�B̂ if pA,Bq � pM,Nq

0 if pA,Bq � pM,Nq

Using the above structure constants we can now give an explicit calculation of the Poisson bracket.
The Leibniz rule implies that the Poisson bracket is determined by its value on the algebra generators
EI , F J and Kα of DHsc where I and J are indecomposable and α P KpAq.
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Proposition 17.2.1. The Poisson structure on the semi-classical Bridgeland-Hall algebra DHsc is
determined by the following identities, where I and J are indecomposable and α P KpAq.

tKα,Kβusc � 0 (17.1)

tEI , EJusc �
¸

LPIsopAq
ΓLI,JEL (17.2)

tF I , F Jusc �
¸

LPIsopAq
ΓLI,JFL (17.3)

tKα, EIusc �
1

2
pα, ÎqEIKα (17.4)

tKα, F Iusc � �
1

2
pα, ÎqF IKα (17.5)

tEI , F Jusc �
¸

A,BPIsopAq
ΓA,BI,J EAFB (17.6)

Proof. Equation (17.1) is trivial as the elements Kα all commute with each other. For Equa-
tion (17.2) consider the following identity in DHex which holds by Equation (8.1) and Proposi-
tion 13.2.1.

EIEJ � EJEI �
¸

LPIsopAq

�
txÎ,Ĵy

eLI,J
hI,J

� txĴ ,Îy
eLJ,I
hJ,I

�
EL

Split the summation into L � I ` J and L � I ` J components and note that by Proposition 2.2.3
we have eI`JI,J � eI`JJ,I � 1. We get the required formula on dividing across by 2pt � 1q taking the
t � 1 image in DHsc. Moreover by applying the shift involution we similarly obtain Equation (17.3).

For Equation (17.4) and Equation (17.5), by Equation (13.2) we have the following in DHex.

KαEI � EIKα � ptpα,Îq � 1qEIKα KαFI � FIKα � pt�pα,Îq � 1qFIKα

Dividing across by 2pt � 1q and taking the image in DHsc gives the result. Finally, for the case of
Equation (17.6), by Proposition 13.3.1 the following holds in DHex.

EMFN � FNEM �
¸

A,BPIsopAq

�
txN̂�B̂,M̂�N̂yhA,BM,NKB̂�N̂ � txB̂�N̂,M̂�N̂yhB,AN,MKN̂�B̂

	
DA,B

Using the following two facts, on dividing across by 2pt � 1q and taking the t � 1 image in DHsc

we obtain Equation (17.6). The first is that the pA,Bq � pM,Nq component of the summation
above vanishes. This is true as hM,N

M,N � 1 since the zero morphism is the only morphism M Ñ N

with kernel M and cokernel N . The second fact is that in DHsc we have DA,B � EAFB. This is
established by using that the product on DHsc is given by taking direct sums of complexes and then
comparing Equation (13.7) with Equation (13.4) and Equation (13.5).



Chapter 18

Semi-Classical Lie Bialgebras

This chapter is concerned with Lie bialgebras arising of Bridgeland-Hall algebras. In particular we
will see that these Lie bialgebras give a new way to recover the whole simple Lie algebra from
Bridgeland-Hall algebras. We will also use the results contained here in Chapter 19 to show that
the semi-classical Poisson-Lie group G_

sc coincides with the dual Poisson-Lie group G_.

In Section 3.2 we explained how tangent Lie bialgebra arise from Poisson-Lie groups on linearizing the
Poisson-Lie structure at the group identity. Furthermore in Section 17.1 we obtained a Poisson-Lie
group from the Bridgeland-Hall algebra called the semi-classical Poisson-Lie group G_

sc. Taking the
tangent Lie bialgebra of G_

sc we can thus extract a Lie bialgebra from the Bridgeland-Hall algebra
which we call the semi-classical Lie bialgebra g_sc.

We will begin with Section 18.1 with the definition of g_sc as the tangent Lie bialgebra of G_
sc. In

this section we also explain how g_sc comes equipped with a natural basis in terms of indecomposable
quiver representations.

In Section 18.2 we then give an explicit computation of the structure constants of g_sc. As for all
objects arising from Hall algebras, these will depend on the homological properties of the underlying
categories of quiver representations and their complexes.

The material in Section 18.3 concerns the definition of certain Lie subalgebras of g_sc and its dual
gsc along with a root space decomposition of gsc.

Finally in Section 18.4 we construct an isomorphism between g_sc and the standard dual bialgebra
g_ introduced in Definition 3.3.1. Since the dual bialgebra of g_ is g then this gives a new way
to recover the whole simple Lie algebra from Bridgeland-Hall algebras. The other way due to Deng
and Chen was discussed in Section 15.3.

18.1 Definitions and Basis

In this section we will define the semi-classical Lie bialgebra g_sc and its bialgebra dual gsc. We also
give a natural basis for these bialgebras.

Recall that in Section 3.2 we explained how a Lie bialgebra arises from linearizing the structure of a
Poisson-Lie group at the group identity. Applying this to the semi-classical Poisson-Lie group G_

sc
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we get a semi-classical Lie bialgebra.

Definition 18.1.1. Define the semi-classical Lie bialgebra g_sc to be the tangent Lie bialgebra to the
semi-classical Poisson-Lie group G_

sc. The bialgebra dual of g_sc will be denoted by gsc.

We will write r�,�s_sc for the tangent Lie bracket on g_sc and r�,�ssc for the cotangent Lie bracket
on gsc. A comment on why we have chosen the notation above: in Section 18.4 we will show that
the semi-classical Lie bialgebra g_sc coincides with the standard dual Lie bialgebra g_ that was given
in Definition 3.3.1. The dual of this statement is that the bialgebra dual of the semi-classical Lie
bialgebra gsc coincides with the standard Lie bialgebra structure on the simple Lie algebra g.

To work with the semi-classical Lie bialgebra we will need a basis for g_sc and its dual gsc. By
definition the underlying vector space of the semi-classical Lie bialgebra is TeG

_
sc. Recall that the

Cartan matrix paijq
r
i,j�1 is non-degenerate. Since DHsc is the coordinate algebra of the semi-classical

Poisson-Lie group G_
sc, by Proposition 17.1.2 then we have the following basis for TeG

_
sc of partial

derivatives at e.

e_I :�
B

BEI

����
e

f_I :�
B

BF I

����
e

h_
Ŝi

:�
1

2

ŗ

j�1

aij
B

BK Ŝi

�����
e

(18.1)

Here I ranges over the indecomposables and 1 ¤ i ¤ r. On the dual side of things the underlying
vector space of gsc is T �e G

_
sc and so has a basis of differentials at e of the coordinate functions on

G_
sc. Rescaling the differentials deK Ŝi

by a factor of 2 gives us the following basis.

eI :� deEI fI :� deF I hŜi :� 2deK Ŝi
(18.2)

For any class M̂ in the Grothendieck group we can extend the assignment of the class Ŝi to the
vectors h_

Ŝi
and hŜi to obtain elements h_

M̂
and hM̂

We end by remarking that the two bases of gsc and g_sc above are chosen to match up with basis
vectors introduced in Definition 1.1.1 and Section 1.1 for g and in Equation (3.5) in the case of g_.

18.2 Calculation of Lie Bialgebra Structure

In this section we compute the Lie bialgebra structure on the semi-classical Lie bialgebra g_sc. We will
split this up into computing the tangent Lie bracket r�,�s_sc in Theorem 18.2.1 before considering
the cotangent Lie bracket r�,�ssc in Theorem 18.2.2.

We begin by making a few remarks on how to compute tangent Lie algebras in terms of the algebraic
Hopf algebra data. The underlying vector space of the semi-classical Lie bialgebra is TeG

_
sc. We

view TeG
_
sc as the set of C-derivations on DHsc evaluated at the group identity e P G_

sc, that is
C-linear maps D : DHsc Ñ C such that for any two functions u, v P DHsc the following holds.

Dpuvq � εpuqDpvq � εpvqDpuq (18.3)

Here recall that ε is the counit of DHsc which picks out the group identity e. Remark 3.9.1 of [Car07]
says that, for the coordinate Hopf algebra of an algebraic group, the Lie bracket can be computed
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directly from the coproduct. Applied to our case, given any two derivations D1 and D2 in g_sc then
their Lie bracket is the derivation rD1, D2s : DHsc Ñ C given as follows.

rD1, D2s � pD1 bD2 �D2 bD1q �∆ (18.4)

Here D1 bD2pub vq � D1puqD2pvq for any u, v in DHsc.

We now compute the tangent Lie bracket of g_sc. For convenience, given three positive roots α, β

and γ we will write Γγα,β in place of Γ
Iγ
Iα,Iβ

:� f
Iγ
Iα,Iβ

� f
Iγ
Iβ ,Iα

.

Theorem 18.2.1. The tangent Lie bracket on the semi-classical Lie bialgebra g_sc is given by the
following identities where 1 ¤ i, j ¤ r and α, β are positive roots.

rh_
Ŝi
, h_

Ŝj
s_sc � 0 (18.5)

re_Iα , e
_
Iβ
s_sc �

#
Γα�βα,β e

_
Iα�β

α� β a positive root

0 otherwise
(18.6)

rf_Iα , f
_
Iβ
s_sc �

#
Γα�ββ,α f

_
Iα�β

α� β a positive root

0 otherwise
(18.7)

rh_
Ŝi
, e_Iαs

_
sc �

1

2
pŜi, Îαqe

_
Iα (18.8)

rh_
Ŝi
, f_Iαs

_
sc �

1

2
pŜi, Îαqf

_
Iα (18.9)

re_Iα , f
_
Iβ
s_sc � 0 (18.10)

Proof. To prove the above identities we will need the formulas for the coproduct ∆ from Corol-
lary 14.1.2 along with the formula for the Lie bracket in Equation (18.4). One then checks the
equality of derivations above on the algebra generators EJ , F J and Kγ of DHsc where J is indecom-
posable. In doing so we will need to use the formulas for the counit when employing Equation (18.3)
and so we recall that εpELq and εpFLq are zero unless L � 0 and that εpKαq � 1. We begin by
establishing Equation (18.5).

rh_
Ŝi
, h_

Ŝj
s_sc �

�
h_
Ŝi
b h_

Ŝj
� h_

Ŝj
b h_

Ŝi

	
�∆pKγq

�
�
h_
Ŝi
b h_

Ŝj
� h_

Ŝj
b h_

Ŝi

	
Kγ bKγ

� h_
Ŝi
pKγqh

_
Ŝj
pKγq � h_

Ŝj
pKγqh

_
Ŝi
pKγq

� 0

Since the derivations h_
Ŝi

vanish on elements of the form EM and FN of DHsc it is easy to check

that one also has rh_
Ŝi
, h_

Ŝj
s_scpEJq � 0 and rh_

Ŝi
, h_

Ŝj
s_scpF Jq � 0. For Equation (18.6) note first

that for any γ a positive root we have the following.

e_Iγ pEMKN̂ q � εpKN̂ qe
_
Iγ pEM q � εpEM qe

_
Iγ pKN̂ q � e_Iγ pEM q
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Using this identity we have the following computation.

re_Iα , e
_
Iβ
s_scpEJq �

�
e_Iα b e_Iβ � e_Iβ b e_Iα

	
�∆pEJq

�
�
e_Iα b e_Iβ � e_Iβ b e_Iα

	 ¸
M,NPIsopAq

f
J
M,NEMKN̂ b EN

�
¸

M,NPIsopAq
f
J
M,Ne

_
IαpEMKN̂ qe

_
Iβ
pEN q �

¸
M,NPIsopAq

f
J
M,Ne

_
Iβ
pEMKN̂ qe

_
IαpEN q

� f
J
Iα,Iβ

� f
J
Iβ ,Iα

�

#
Γα�βα,β α� β a positive root

0 otherwise

Since the derivations e_J vanish on elements of the form FM and Kγ of DHsc it is easy to see
check that the derivation re_Iα , e

_
Iβ
s_sc vanishes when applied to F J and Kγ . One can establish

Equation (18.7) in an entirely analogous manner.

Note that from Equation (18.2) one can check that h_
Ŝi
pK Îα

q � 1
2pŜi, Îαq. We establish Equa-

tion (18.8) then as follows.

rh_
Ŝi
, e_Iαs

_
scpEJq �

�
h_
Ŝi
b e_Iα � e_Iα b h_

Ŝi

	 ¸
M,NPIsopAq

f
J
M,NEMKN̂ b EN

�
¸

M,NPIsopAq
f
J
M,Nh

_
Ŝi
pEMKN̂ qe

_
IαpEN q

�
¸

MPIsopAq
f
J
M,Iα

�
εpEM qh

_
Ŝi
pK Îα

q � εpK Îα
qh_
Ŝi
pEM q

	
�

¸
MPIsopAq

f
J
M,IαεpEM qh

_
Ŝi
pK Îα

q

� f
J
0,Iαh

_
Ŝi
pK Îα

q

�

#
1
2pŜi, Îαq if J � Iα

0 otherwise

Since the derivations e_Iα vanish on elements of the form FM and Kγ in DHsc one can check that

the derivation rh_
Ŝi
, e_Iαs

_
sc vanishes when applied to F J and Kγ . Equation (18.9) is proved entirely

analogously to Equation (18.8).

For Equation (18.10) we use the fact that f_Iβ pEN q and f_Iβ pEMKN̂ q are both zero to make the
following computation.

re_Iα , f
_
Iβ
s_scpEJq �

�
e_Iα b f_Iβ � f_Iβ b e_Iα

	
�∆pEJq

�
�
e_Iα b f_Iβ � f_Iβ b e_Iα

	 ¸
M,NPIsopAq

f
J
M,NEMKN̂ b EN

�
¸

M,NPIsopAq
f
J
M,N

�
e_IαpEMKN̂ qf

_
Iβ
pEN q � f_Iβ pEMKN̂ qe

_
IαpEN q

	
� 0
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A similar calculation shows that re_Iα , f
_
Iβ
s_sc vanishes when applied to F J . Finally applying re_Iα , f

_
Iβ
s_sc

to Kγ gives zero as e_IαpKγq � 0 and f_Iβ pKγq � 0.

It remains to compute the Lie bracket r�,�ssc. As described in Section 3.2 the cotangent bracket
is given by the following formula where u, v P DHsc.

rdeu, devssc :� detu, vusc (18.11)

Since we have described the Poisson bracket explicitly in Proposition 17.2.1 we can compute the
cotangent Lie bracket as follows.

Theorem 18.2.2. The cotangent Lie bracket on the semi-classical Lie bialgebra g_sc is given by the
following identities where 1 ¤ i, j ¤ r and α, β are positive roots.

rhŜi , hŜj ssc � 0 (18.12)

reIα , eIβ ssc �

#
Γα�βα,β eIα�β α� β a positive root

0 otherwise
(18.13)

rfIα , fIβ ssc �

#
Γα�βα,β fIα�β α� β a positive root

0 otherwise
(18.14)

rhŜi , eIαssc � pŜi, ÎαqeIα (18.15)

rhŜi , fIαssc � �pŜi, ÎαqfIα (18.16)

reIα , fIβ ssc �

$''''&''''%
Γαβ,α�βeIα�β α� β a positive root

Γββ�α,αfIβ�α β � α a positive root

�hÎβ α � β

0 otherwise

(18.17)

Proof. We will compute the above identities by using Equation (18.11) to linearize the formulas for
the Poisson bracket that we derived in Proposition 17.2.1.

Throughout we will frequently need to make computations of the form depuvq � εpuqdev� εpvqdev
for various u and v in DHsc. To this end we will find it useful to recall that both εpELq and εpFLq
are zero unless L � 0 and that εpKαq � 1. A particular consequence of this is that deEL and deFL
vanish if L is not indecomposable.

We begin by noting that Equation (18.12) follows from the fact that tKα,Kβusc � 0. For Equa-
tion (18.13) consider the following.

reIα , eIβ ssc � detEIα , EIβusc �
¸

LPIsopAq
ΓLIα,IβdeEL

The identity in Equation (18.13) follows from the fact that if deEL � 0 then L must be indecompos-
able of class α�β in the Grothendieck group. An identical calculation establishes Equation (18.14).
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For Equation (18.15), recalling that hŜi :� 2deK Ŝi
, we have the following.

rhŜi , eIαssc � 2detK Ŝi
, EIαusc � pŜi, ÎαqdepEIαK Ŝi

q

� pŜi, Îαq
�
εpK Ŝi

qdepEIαq � εpEIαqdepK Ŝi
q
	

� pŜi, ÎαqdepEIαq

� pŜi, ÎαqeIα

A similar calculation proves Equation (18.16). Of all the identities, Equation (18.17) will take the
most work to establish. We provisionally make the following computation.

reIα , fIβ ssc � tEIα , F Iβusc

�
¸

A,BPIsopAq
de

�
ΓA,BIα,Iβ

EAFB

	
�

¸
A,BPIsopAq

εpΓA,BIα,Iβ
FBqdeEA � εpΓA,BIα,Iβ

EAqdeFB � εpEAFBqdeΓ
A,B
Iα,Iβ

�
¸

APIsopAq
εpΓA,0Iα,Iβ

qdeEA �
¸

BPIsopAq
εpΓ0,B

Iα,Iβ
qdeFB � deΓ

0,0
Iα,Iβ

(18.18)

Let us make some comments on how to simplify Equation (18.18). Recall from Section 17.2 that by
definition ΓA,BM,N necessarily vanishes unless pA,Bq � pM,Nq in which case we have the following.

ΓA,BM,N :� PphqA,BM,NKB̂�N̂ � PphqB,AN,MKN̂�B̂

Now in Lemma 12.2.1 we showed that, in the case that M and N are indecomposable, we have
PphqA,0M,N � fMN,A and Pphq0,BM,N � fNB,M . Thus evaluating ε on ΓA,BM,N and respectively setting B and
A to be 0 we obtain the following.

εpΓA,0Iα,Iβ
q � PphqA,0Iα,Iβ

� Pphq0,AIβ ,Iα
� f

Iα
Iβ ,A

� f
Iα
A,Iβ

� ΓIαIβ ,A(18.19)

εpΓ0,B
Iα,Iβ

q � Pphq0,BIα,Iβ � PphqB,0Iβ ,Iα

� f
Iβ
B,Iα

� f
Iβ
Iα,B

� Γ
Iβ
B,Iα

(18.20)

Let’s turn our attention to deΓ
0,0
Iα,Iβ

. First note that h0,0
M,N counts isomorphisms M Ñ N since both

kernel and cokernel must vanish. Thus h0,0
M,N vanishes unless M � N in which case we have h0,0

M,N �

aM . If M � N is indecomposable then, since aM � t2�1, we have Pphq0,0M,N � h0,0
M,N{pt

2�1q � 1.

Thus deΓ
0,0
Iα,Iβ

� 0 unless α � β in which case we have the following.

deΓ
0,0
Iα,Iβ

� de

�
Pphq0,0Iα,IβK�Îβ

� Pphq0,0Iβ ,IαK Îβ

	
� deK�Îβ

� deK Îβ

� �hÎβ (18.21)

We observe from Equation (18.19) and Equation (18.20) that if A � 0 then its class in the
Grothendieck group is α � β and similarly if B � 0 then its class is β � α. We obtain Equa-
tion (18.17) then on substituting Equation (18.19), Equation (18.20) and Equation (18.21) into
Equation (18.18) and using that deEL and deFL vanish if L is not indecomposable.
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18.3 Subalgebras and Properties

In this section we discuss various properties of gsc and g_sc. We will introduce various Lie subalgebras
of gsc and g_sc which will be used in Section 16.2 when proving that the semi-classical Poisson-Lie
group G_

sc is isomorphic to the dual Poisson-Lie group G_. We also discuss the root and coroot
lattices of gsc along with its decomposition into root spaces.

We begin by defining some Lie subalgebras. Recall from Equation (1.2) that we introduced various Lie
subalgebras of the simple Lie algebra g. The semi-classical analogue in gsc of the Cartan subalgebra
of g is given by hsc :� SpanCthŜiu. The analogues of the nilpotent and Borel subalgebras are give
by the following.

nsc,� : � SpanCteIu

nsc,� : � SpanCtfIu

bsc,� : � SpanCteI , hŜiu

bsc,� : � SpanCtfI , hŜiu

Similarly in Section 3.3 we defined certain Lie subalgebras of the standard dual g_. The semi-classical
analogues of these in g_sc are given by h_sc :� SpanCth

_
Ŝi
u along with the following.

n_sc,� : � SpanCte
_
I u

n_sc,� : � SpanCtf
_
I u

b_sc,� : � SpanCte
_
I , h

_
Ŝi
u

b_sc,� : � SpanCtf
_
I , h

_
Ŝi
u

That the above really are Lie subalgebras of gsc or respectively g_sc can be verified by glancing at
the formulas in Theorem 18.2.2 and Theorem 18.2.1.

Let’s discuss the relationship between the Grothendieck group and the root and coroot lattices. In
Theorem 18.4.1 we will show that the underlying Lie algebra of gsc coincides with the simple Lie
algebra g. On the semi-classical side of things note that the elements h_

Ŝj
and hŜi pair to give the

Cartan matrix as follows.

h_
Ŝj
phŜiq � aij

Thus the elements hŜi P hsc give simple coroots of gsc while the elements h_
Ŝi
P h_sc give simple

roots of gsc. Moreover the Grothendieck group is identified with the root and coroot lattices via the
following embeddings.

KpAq ãÑ h_sc, Ŝi ÞÑ h_
Ŝi

KpAq ãÑ hsc, Ŝi ÞÑ hŜi

We end with a remark on the root space decomposition of gsc. For each positive root α consider
the following one dimensional subspaces of gsc.

gscrαs :� SpanCteIαu gscr�αs :� SpanCtfIαu

These are the root spaces for the adjoint action of hsc on gsc. Indeed gsc is graded as a Lie algebra
by KpAq and Theorem 18.2.2 implies that we have the following root space decomposition.

gsc � hsc `
à

α a root

gscrαs
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A nice feature about the Hall algebra approach is that the indecomposable representations Iα furnish
us with natural positive and negative root vectors eIα and fIα of gsc.

18.4 Relationship with Standard Bialgebras

In this section we prove that the semi-classical Lie bialgebra g_sc and the standard dual Lie bialgebra
g_ are isomorphic. It will be easier to prove the equivalent dual statement that gsc is isomorphic
to the standard Lie bialgebra structure on the simple Lie algebra g. In this section we also relate
various nilpotent subalgebras of gsc and g_sc to the Lie algebra of indecomposables nInd defined in
Section 10.2.

We will split the proof that gsc and g are isomorphic up into two parts. We will first establish an
isomorphism of the underlying Lie algebras before upgrading it to one of Lie bialgebras.

Theorem 18.4.1. The following determines an isomorphism of Lie algebras θ : g Ñ gsc between
the simple Lie algebra and the dual semi-classical Lie algebra.

θpeiq � eSi θpfiq � �fSi θphiq � hŜi

Proof. We will first show θ induces a homomorphism of Lie algebras. This amounts to showing that
the elements eSi , �fSi and hŜi of gsc satisfy the same relations as ei, fi and hi of g that were given
in Definition 1.1.1. This follows easily from Theorem 18.2.2 with the only relations not completely
trivial to verify being reSi ,�fSj s � δi,jhŜi and that the elements eSi and �fSi satisfy the Serre
relations.

The first of these follows from Equation (18.17) along with the fact that αi�αj is not a positive root
of g and so by Theorem 2.2.2 there are no indecomposables with class Ŝi � Ŝj in the Grothendieck
group. The Serre relations follow from Equation (18.13) and Equation (18.14) along with the fact
that there is no positive root of the form p1� aijqαi � αj .

It remains to show that θ is an isomorphism. Since g and gsc have the same finite dimension this is
equivalent to establishing the injectivity of θ. Recall from the theory of simple Lie algebras that the
adjoint action of the Cartan subalgebra h on g induces the following root space decomposition.

g � h`
à

α a root

grαs

First note that θ restrict to an isomorphism on the Cartan subalgebras h Ñ hsc as both have the
same dimension. To establish injectivity we will show that θ respects the root space decompositions
of g and gsc and that θ is injective on each root space.

Using the facts that θ is a homomorphism, n� is generated by the ei and gsc is graded by KpAq
one can see that for α a positive root the map θ takes grαs to gscrαs. Similarly for α a positive root
θ takes gr�αs to gscr�αs.

We claim then that θ is injective on the one dimensional root spaces grαs ãÑ gscrαs. Supposing
that this isn’t the case, let v P grαs be nonzero with θpvq � 0. The theory of simple Lie algebras
says there is a u P gr�αs such that rv, us P h is nonzero. However then we would have the following
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contradiction.

0 � rθpvq, θpuqs � θprv, usq � 0

Identical reasoning shows that gr�αs ãÑ gscr�αs.

Before upgrading θ to an isomorphism of Lie bialgebras we’ll need a discussion on root vectors and
the linear dual of the map θ. Recall that in Section 1.1 we made a choice of root vectors for g with
the property that peα, fβqg � δα,β. This choice was arbitrary but we now fix it so that we have the
following.

θpeαq � eIα θpfαq � �fIα (18.22)

In the proof of Theorem 18.4.2 we will view the linear dual to the map θ : g Ñ gsc as a map
θ_ : g_sc Ñ g_. We need to be careful as to what we mean by θ_ being the vector space dual of θ.
For the vector space dual of the domain of θ, recall that g was defined by generators and relations
in Definition 1.1.1. In Section 3.3 we identified g with T �e G

_ via the Manin triple form. By the
canonical isomorphism between a vector space and its double dual then, we can then identify the
vector space dual of g with TeG

_ which is by Definition 18.1.1 the underlying vector space of g_.

For the dual of the codomain of θ, recall from Definition 18.1.1 that the underlying vector space of
gsc is by definition T �e G

_
sc. Using the canonical isomorphism between a vector space and its double

dual we can then identify the vector space dual of gsc with TeG
_
sc which is by Definition 18.1.1 the

underlying vector space of g_sc. A simple calculation using the above identifications shows that θ_

is given by the following.

θ_pe_Iαq � e_α θ_pf_Iαq � �f_α θ_ph_
Ŝi
q � h_i (18.23)

Theorem 18.4.2. The isomorphism of Lie algebras θ : gÑ gsc is an isomorphism of Lie bialgebras
between the standard Lie bialgebra and the dual semi-classical Lie bialgebra.

Proof. To show θ is a bialgebra homomorphism it is enough to check that the inverse of the dual
map pθ_q�1 : g_ Ñ g_sc is a Lie algebra homomorphism. However using Theorem 18.2.1 and
Equation (18.23) one can check that the basis vectors e_Iα , �f_Iα and h_

Ŝi
of g_sc satisfy the same

relations as the basis vectors e_α , f_α and h_i of g_ which were given in Proposition 3.3.1.

The only relations which are not immediate to check is that e_Iαi
and �f_Iαi

satisfy the Serre relations.

This follows from Equation (18.6) and Equation (18.7) coupled with the fact that there is no positive
root of the form p1� aijqαi � αj .

Applying bialgebra duality to the statement of Theorem 18.4.2 we obtain the following corollary.

Corollary 18.4.1. The following determines an isomorphism θ_ : g_sc Ñ g_ between semi-classical
Lie bialgebra g_sc and standard dual Lie bialgebra g_.

θ_pe_Iαq � e_α θ_pf_Iαq � �f_α θ_ph_
Ŝi
q � h_i
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We end this section discussing how subalgebras of gsc and g_sc relate to the quasi-classical Lie algebra
nqc that we gave in Definition 10.2.3.

Proposition 18.4.3. The quasi-classical Lie algebra nqc is isomorphic to each of the Lie algebras
nsc,� and n_sc,�

Proof. All of these Lie algebras are vector spaces on the set of indecomposable representations. We
need only show that for each the structure constants in the basis of indecomposables all coincide.
By Equation (10.3) the structure constants of nqc are given by the following where I1, I2 and J are
indecomposable.

ΓJI1,I2 :� f
J
I1,I2 � f

J
I2,I1

By Equation (18.6) and Equation (18.7) these give the structure constants of n_sc,�. The same holds
for nsc,� by Equation (18.13) and Equation (18.14).



Chapter 19

Identification of Poisson-Lie Groups

In this chapter we will show that the semi-classical Poisson-Lie group G_
sc coincides with the dual

Poisson-Lie group G_ that was defined in Section 3.3. We do so by first characterizing various
subgroups of G_

sc in Section 19.1 and then using these characterizations to build up an explicit
isomorphism of Poisson-Lie groups between G_

sc and G_ in Section 19.2.

The contents of this chapter should be viewed as a new proof of an old result. Indeed in the case of
quantized enveloping algebras the corresponding identification of Poisson-Lie groups was originally
proved by De Concini and Procesi in [DCP93]. In particular they showed that the t � 1 limit of the
Poisson integral form UPoiss

t pgq of Utpgq coincides with the coordinate algebra of G_.

We could of course use [DCP93] to show that G_
sc and G_ are isomorphic. Indeed in Theo-

rem 16.2.4 we identified the extension counting integral form DHex of the Bridgeland-Hall algebra
with UPoiss

t pgq. It should then follow that the semi-classical Bridgeland-Hall algebra DHsc is also
isomorphic to CrG_s.

We will opt to give a direct proof, however, that G_
sc and G_ are isomorphic rather than using

De Concini and Procesi’s result. There are two reasons why we choose to do so. The first is that
De Concini and Procesi’s proof involves a lengthy case-by-case computation. Using machinery of
Bridgeland-Hall algebras we feel that one can give a direct and in our view more conceptual proof
of the fact that G_

sc is isomorphic to G_.

The second (minor) obstacle to simply directly using De Concini and Procesi’s result is that, as
outlined in Section 5.5, the way that UPoiss

t pgq is defined in [DCP93] differs slightly from the one
we have given in Section 5.5.

19.1 Subgroups of Semi-Classical Poisson-Lie Groups

In this section we characterize various subgroups of the semi-classical Poisson-Lie group G_
sc. We

will use these characterizations to construct an explicit isomorphism between G_
sc and G_ in Sec-

tion 19.2.

Let’s introduce semi-classical analogues of the subgroups B_
� , N_

� and T_ of G_ discussed at the
end of Section 3.3. Define subgroups B_

sc,�, B_
sc,� and T_

sc of G_
sc to be those given by the Hopf

107
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ideals pF Iq, pEIq and pEI , F Jq of DHsc respectively. Also let N_
sc,� be the subgroup of B_

sc,�

determined by the Hopf ideal pK Ŝi
� 1q of the coordinate algebra of B_

sc,�.

For convenience we will use notation of the form, for example, CrB_
sc,�s :� DHsc{pF Iq for the

coordinate algebras of these subgroups. We will abuse notation and simply write, for example, EI
for the image of EI in the quotient Hopf algebra DHsc{pF Iq.

The reason we are considering these subgroups is that, as we will see, G_
sc is almost B_

sc,� �B_
sc,�

and each B_
sc,� is a semi-direct product N_

sc,��T_
sc . Moreover as outlined in Section 3.3 the group

G_ is almost B��B� and it is well known that B� is a semi-direct product N��T . Thus if we
want to build an isomorphism G_

sc between and G_ we should first relate these two collections of
groups. Indeed the remainder of this section is devoted to constructing isomorphisms of algebraic
groups between B_

sc,� and B	 by constructing isomorphisms N_
sc,� ÑN	 and T_

sc Ñ T .

Proposition 19.1.1. There are isomorphisms of unipotent algebraic groups ν� : N_
sc,� Ñ N	

inducing the following isomorphisms of Lie algebras deν� : n_sc,� Ñ n	.

n_sc,� Ñ n�

e_Iα ÞÑ �fα
(19.1)

n_sc,� Ñ n�

f_Iα ÞÑ �eα
(19.2)

Proof. We will first construct the isomorphisms of nilpotent Lie algebras in Equation (19.1) and
Equation (19.2) before using Baker-Campbell-Hausdorff to obtain the required isomorphisms ν� of
unipotent groups.

It is easy to see that the isomorphism from Corollary 18.4.1 between g_sc and g_ restricts to iso-
morphisms between the subalgebras n_sc,� and n_�. Moreover the isomorphisms n_� Ñ n	 from
Equation (3.6) restrict to give isomorphisms n_� Ñ n	. Combining these we get the isomorphisms
of Lie algebras given in Equation (19.1) and Equation (19.2).

Now since the n	 are finite dimensional nilpotent Lie algebras then so too are the n_sc,�. Using the
Baker-Campbell-Hausdorff formula one can upgrade these Lie algebras to algebraic groups which
we will also denote by n_sc,� and n	 by abuse of notation. The C-valued points of these algebraic
groups are precisely the underlying complex vector spaces of the Lie algebras n_sc,� and n	. Moreover
the isomorphisms of Lie algebras in Equation (19.1) and Equation (19.2) induce isomorphisms of
algebraic groups u� : n_sc,� Ñ n	, that is on C-valued points we have the following.

u�pe
_
Iαq � �fα u�pf

_
Iαq � �eα (19.3)

It is well known that there are canonical exponential and logarithm maps giving algebraic group
isomorphisms between finite dimensional unipotent groups and their nilpotent Lie algebras, viewed
as algebraic groups. Thus we have a chain of isomorphisms of algebraic groups whose composition
we denote by ν� : N_

sc,� ÑN	.

N_
sc,� n_sc,� n	 N	

log

ν�

u� exp
(19.4)
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Since the differential of the exponential and logarithm maps at the group identities give the identity
Lie algebra homomorphism one can check that deν� gives the claimed isomorphisms of Lie algebras.

Let’s turn our attention to the tori. We’ll show first that there are two canonical isomorphisms
τ� : T_

sc Ñ T . Since T is a complex algebraic torus then CrT s is canonically the group algebra
CrX
pT qs of the character lattice X
pT q of T . Since we assumed that G is of adjoint type in
Section 1.1 then the theory of simple Lie groups says that then X
pT q is canonically identified with
the root lattice ΛΦ and hence with the Grothendieck group KpAq by definition from Section 7.2.

Denoting by kα P CrX
pT qs the function corresponding to an element α of the root lattice ΛΦ or
equivalently KpAq then the isomorphisms τ� : T_

sc Ñ T are determined by the following.

τ�� : CrT s Ñ CrT_
sc s

kα ÞÑ K�α

(19.5)
τ�� : CrT s Ñ CrT_

sc s

kα ÞÑ Kα

(19.6)

Proposition 19.1.2. The isomorphisms of algebraic tori τ� : T_
sc Ñ T induce isomorphisms of

Cartan subalgebras deτ� : h_sc Ñ h given by h_
Ŝi
ÞÑ 	1

2hi.

Proof. Let’s check that deτ�ph
_
Ŝi
q � �1{2 hi as the other calculation is similar. Recall that by

definition we have hsc � T �e T
_
sc and h� � T �e T . The map τ� : T_

sc Ñ T induces the pullback
cotangent spaces at the identity pdeτ�q

� : h� Ñ hsc. Applying this to a simple root αj in h� we
have the following identity in hsc.

pdeτ�q
�pαjq � pdeτ�q

�pdekαj q � deK�Ŝj
� �

1

2
hŜj

That we have deτ�ph
_
Ŝi
q � �1

2hi then follows from the following computation.

αjpdeτ�ph
_
Ŝi
qq � pdeτ�q

�pαjqph
_
Ŝi
q � �

1

2
hŜj ph

_
Ŝi
q � �

1

2
aij

We now consider the case of the Borel subgroups.

Lemma 19.1.1. As an algebraic group each B_
sc,� splits as a semi-direct product N_

sc,� � T_
sc .

Proof. We will treat the case of B_
sc,� as the case of B_

sc,� is similar. We must show that there
is a homomorphism of algebraic groups B_

sc,� Ñ T_
sc restricting to the identity on the subgroup

T_
sc � B_

sc,� and with kernel N_
sc,�. To this end consider the homomorphism B_

sc,� Ñ T_
sc given

by the following homomorphism of Hopf algebras.

CrT_
sc s Ñ CrB_

sc,�s, Kα ÞÑ Kα (19.7)

That the restriction of B_
sc,� Ñ T_

sc to T_
sc � B_

sc,� is the identity comes from the fact that the
map in Equation (19.7) composed with the quotient map CrB_

sc,�s Ñ CrT_
sc s is the identity. It
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remains to check the kernel condition i.e. that N_
sc,� is the fibre over the torus group identity

of the homomorphism B_
sc,� Ñ T_

sc . However one can easily verify the equivalent Hopf algebraic
statement that the following is a pushout diagram in the category of Hopf algebras over C.

CrN_
sc,�s CrB_

sc,�s

C CrT_
sc s

Here the top map is the quotient map by the ideal pKα�1q, the right-hand map is the homomorphism
from Equation (19.7) and the bottom one is given by the Hopf algebra counit sending Kα ÞÑ 1.

In Proposition 19.1.3 we will show that B_
sc,� and B	 are isomorphic as semi-direct products. In

order to do so will need to discuss how actions of tori on nilpotent Lie algebras induce root space
decompositions. For the remainder of this section will continue to abuse notation and view nilpotent
Lie algebras as schemes rather than as complex vector spaces. For example n� will mean the Lie
algebra viewed as an algebraic group via Baker-Campbell-Hausdorff rather than the underlying vector
space.

Recall that for a simple Lie group the adjoint action of the maximal torus T on the nilpotent Lie
algebra n� induces a decomposition of varieties into one dimensional root spaces.

n� �
¹

α a positive root

nr�αs (19.8)

Letting A denote a C-algebra, the adjoint action Ad : T � n� Ñ n� is determined by the following
where g and ξ are A-valued points of the torus T and root space nr�αs respectively.

Adgpξq � k�αpgqξ (19.9)

An analogous decomposition of n_sc,� is also induced from the adjoint action of the torus T_
sc on

n_sc,�. First note that the basis of n_sc,� given by the vectors e_Iα in Equation (18.1) induces the
following decomposition of varieties into one dimensional spaces.

n_sc,� �
¹

α a positive root

n_scrαs (19.10)

Recall that in Section 1.2 we gave a formula for the adjoint action of an algebraic group on its Lie
algebra. Applying this to the algebraic group B_

sc,� and suitably restricting, one obtains an adjoint
action of the torus T_

sc � B_
sc,� on the nilpotent Lie algebra n_sc,� � b_sc,�.

A straightforward calculation using Section 1.2, along with the formulas for the coproduct and
antipode of the Bridgeland-Hall algebra given in Corollary 14.1.2, shows that the adjoint action
Ad : T_

sc � n_sc,� Ñ n_sc,� is determined by the following where g and ξ are A-valued points of T_
sc

and n_scrαs respectively.

Adgpξq � Kαpgqξ (19.11)

We now relate the algebraic groups B_
sc,� and B	.

Proposition 19.1.3. There are isomorphisms of algebraic groups b� : B_
sc,� Ñ B	 inducing the

following isomorphisms of Lie algebras deb� : b_sc,� Ñ b	.
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b_sc,� Ñ b�

e_Iα ÞÑ �fα

h_
Ŝi

ÞÑ �
1

2
hi

(19.12)

b_sc,� Ñ b�

f_Iα ÞÑ �eα

h_
Ŝi

ÞÑ
1

2
hi

(19.13)

Proof. It is well known that for Borel subgroups of simple algebraic groups one has B	 �N	�T .
Similarly in Lemma 19.1.1 we showed that B_

sc,� � N_
sc,� � T_

sc . Now by Proposition 19.1.1 and
Proposition 19.1.2 we have isomorphisms of algebraic groups ν� : N_

sc,� ÑN	 and τ� : T_
sc Ñ T .

We will show that b� :� ν� � τ� gives an isomorphism of semi-direct products N_
sc,� � T_

sc Ñ
N	 � T . In particular we observe that by Proposition 19.1.1 and Proposition 19.1.2 the induced
maps of Lie algebras are the ones claimed in Equation (19.12) and Equation (19.13).

We will show that b� is an isomorphism with the case of b� being similar. Since ν� and τ�
are isomorphisms of algebraic groups then b� :� ν� � τ� will be an isomorphism of semi-direct
products if we can show that it preserves the adjoint actions of T_

sc on N_
sc,� and T on N�. In

particular, recalling how ν� was defined in Equation (19.4), we need to show that the following
diagram commutes.

T_
sc �N_

sc,� T_
sc � n_sc,� T � n� T �N�

N_
sc,� n_sc,� n� N�

Ad

id�log τ��u�

Ad

id�exp

Ad Ad

log u� exp

We need only verify that the central square commutes as the cases of the left-hand and right-hand
squares follow from the fact that adjoint actions commute with exponentiation. Letting A denote
a C-algebra, take g and ξ to be A-valued points of T_

sc and n_scrαs respectively. We need to check
that we have the following equality of A-valued points of n�.

Adτ�pgq � u�pξq � u� �Adgpξq (19.14)

To establish Equation (19.14) we will expand the left-hand and right-hand sides while explaining
what is going in words as the notation is a little cumbersome. Expanding the left-hand side we
obtain the following.

Adτ�pgq � u�pξq � k�αpτ�pgqqu�pξq � τ��pk�αqpgqu�pξq (19.15)

To explain Equation (19.15) we first note that map u� : n_sc,� Ñ n� preserves the root space
decompositions from Equation (19.8) and Equation (19.10). This is true since u� preserves root
vectors e_Iα ÞÑ �fα by Equation (19.3). In particular we have that u�pξq is an A-valued point of
the root space nr�αs. Moreover by definition τ� : T_

sc Ñ T sends the point g of T_
scpAq to τ�pgq

in T pAq.

Now for the first equality in Equation (19.15) we use Equation (19.11) to see that the adjoint action
of τ�pgq on u�pξq gives k�αpτ�pgqqu�pξq. For the second equality we note that evaluating the
function k�α on the point τ�pgq is the same as evaluating the pullback function τ��pk�αq on the
point g.
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Expanding the right-hand side of Equation (19.14) we have the following.

u� �Adgpξq � u�pKαpgqξq � Kαpgqu�pξq � τ��pk�αqpgqu�pξq (19.16)

For the first equality in Equation (19.16) we use the fact from Equation (19.11) that the adjoint
action of g on ξ gives Kαpgqξ. For the second equality we use the A-linearity of u� while the last
equality comes from Equation (19.5) which says that τ��pk�αq � Kα.

Combining Equation (19.15) and Equation (19.16) we obtain Equation (19.14).

19.2 Statement and Proof

In this section we give an isomorphism of Poisson-Lie groups between the semi-classical Poisson-
Lie group G_

sc and the dual Poisson-Lie group G_ using the results from the previous section. In
particular the goal of this section is to prove the following theorem.

Theorem 19.2.1. There is an isomorphism of Poisson-Lie groups g : G_
sc Ñ G_.

Let us assume for the moment that there exists an isomorphism g : G_
sc Ñ G_, a priori only of

algebraic groups. We will suppose in addition that the induced isomorphism of tangent Lie algebras
is in fact an isomorphism of Lie bialgebras. Under this hypothesis we would have the following proof
of Theorem 19.2.1.

Proof. We have two Poisson-Lie groups G_
sc and G_ which are isomorphic as algebraic groups. The

only extra condition we need to check for g to be an isomorphism of Poisson-Lie groups is that
it is Poisson. Now g being Poisson is equivalent to the requirement that the pushforward of the
semi-classical Poisson bracket t�,�usc under g coincides with the Poisson bracket t�,�u on G_.
Here the pushforward is given by the following formula where a, b P CrG_s.

g�ta, busc :� ta � g, b � gusc � g
�1

Note that by virtue of the fact that g is an isomorphism of algebraic groups, g�t�,�usc endows G_

with the structure of a Poisson-Lie group. We then have two (a priori distinct) Poisson structures
g�t�,�usc and t�,�u on the algebraic group G_ which both turn it into a Poisson-Lie group.
Moreover since g induces an isomorphism of tangent Lie bialgebras then both g�t�,�usc and t�,�u
give G_ the exact same tangent Lie bialgebra structure

Stepping for a moment into the category of complex manifolds (as opposed to complex varieties)
Theorem 11.39 (1) of [LGPV13] says the following: given a complex Lie group K and the structure
of a complex Lie bialgebra on its tangent Lie algebra then there is at most one Poisson structure on
K turning it into a complex Poisson-Lie group inducing the prescribed Lie bialgebra.

It is easy to see that this implies that g�t�,�usc � t�,�u on our algebraic group G_.

The remainder of this section is dedicated to showing the hypothesized existence of an isomorphism
g : G_

sc Ñ G inducing an isomorphism of tangent Lie bialgebras.
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Theorem 19.2.2. There is an isomorphism of algebraic groups g : G_
sc Ñ G_.

Proof. We will show that the isomorphisms b� � b� : B_
sc,� � B_

sc,� Ñ B� � B� induced by
Proposition 19.1.3 descends to an isomorphism g : G_

sc Ñ G_. Recall from Section 3.3 that the
algebraic group G_ fits into the following short exact sequence of algebraic groups.

G_ i_
ÝÑ B� �B�

π
ÝÑ T (19.17)

Here π was the product of the two canonical projections to the torus while i_ was the inclusion
of the kernel. We will define maps so that the following is an analogous short exact sequence of
semi-classical groups. Showing that Equation (19.17) is isomorphic to Equation (19.18) as short
exact sequences will provide us with the required isomorphism g.

G_
sc

i_scÝÑ B_
sc,� �B_

sc,�
πscÝÝÑ T_

sc (19.18)

Let’s define the maps πsc and i_sc and show that they do indeed give a short exact sequence. Recall
that the coordinate algebras of T_

sc and B_
sc,� were defined as quotient Hopf algebras at the beginning

of Section 19.1. Using these definitions along with the Hopf algebra formulas in Corollary 14.1.2
one can check that the following is a homomorphism of Hopf algebras. This gives the map πsc.

CrT_
sc s Ñ CrB_

sc,�s bC CrB_
sc,�s, Kα ÞÑ Kα bK

�
α

Similarly the following two Hopf algebra homomorphisms give the two maps G_
sc Ñ B_

sc,� deter-
mining i_sc.

CrB_
sc,�s Ñ CrG_

scs

EI ÞÑ EI

Kα ÞÑ Kα

(19.19)

CrB_
sc,�s Ñ CrG_

scs

F I ÞÑ F I

K
�
α ÞÑ K

�
α

(19.20)

It is easy to see that πsc is surjective. That i_sc is the kernel of πsc is equivalent to verifying that the
following is a pushout in the category of C-Hopf algebras which one can readily check.

CrG_
scs CrB_

sc,�s bC CrB_
sc,�s

C CrT_
sc s

pi_scq
�

ε

π�sc

Here bottom map is the counit given by εpKαq � 1 which picks out the group identity of the torus.

It remains to give the isomorphism of short exact sequences between Equation (19.18) and Equa-
tion (19.17). Recall from Proposition 19.1.3 and Proposition 19.1.2 that we have isomorphisms of
algebraic groups b� : B_

sc,� Ñ B	 and τ� : T_
sc Ñ T . Using the semi-direct product decompo-

sition of the Borel subgroups involved one can check the right-hand square in the diagram below
commutes. This induces a required isomorphism of algebraic groups g : G_

sc Ñ G_ via the universal
property of the kernel.

G_
sc B_

sc,� �B_
sc,� T_

sc

G_ B� �B� T

i_sc

g

πsc

b��b� τ�

i_ π

(19.21)
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The only thing we haven’t yet checked is that the isomorphism of algebraic groups g : G_
sc Ñ G_

does what we want on the level of Lie bialgebras.

Proposition 19.2.3. The isomorphism of algebraic groups g : G_
sc Ñ G_ induces exactly the

isomorphism of tangent Lie bialgebras that we constructed in Corollary 18.4.1.

Proof. Recall that the isomorphism of tangent Lie bialgebras θ_ : g_sc Ñ g_ from Corollary 18.4.1
was given by the following.

θ_pe_Iαq � e_α θ_pf_Iαq � �f_α θ_ph_
Ŝi
q � h_i

We will check that deg coincides with θ_ using the following commutative diagram of tangent Lie
algebras induced from Equation (19.21).

g_sc b_sc,� ` b_sc,�

g_ b� ` b�

dei_sc

deg deb�`deb�

dei_

(19.22)

We will compute that deg � θ_ using the three other maps in this diagram. For the first map
using Equation (19.19) and Equation (19.20) a simple calculation shows that dei

_
sc is given by the

following.

e_Iα ÞÑ pe_Iα , 0q f_Iα ÞÑ p0, f_Iαq h_
Ŝi
ÞÑ ph_

Ŝi
, h_

Ŝi
q

For the next map it follows from Proposition 19.1.3 that under deb� ` deb� we have the following.

pe_Iα , 0q ÞÑ p�fα, 0q p0, f_Iαq ÞÑ p0,�eαq ph_
Ŝi
, h_

Ŝi
q ÞÑ

1

2
p�hi, hiq

Finally from Section 3.3 we have that dei
_ is simply the inclusion of the subalgebra g_ � b� ` b�

since i_ is the inclusion of the subgroup G_ � B��B�. We arrive at our result by combining the
above observations with the fact that the basis vectors for g_ were defined in Equation (3.5) to be
the following.

e_α :� p�fα, 0q f_α :� p0, eαq h_i :�
1

2
p�hi, hiq
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Glossary

Hall Algebras and Bridgeland-Hall Algebras

DA,B Basis vector of Bridgeland-Hall algebra 70

EL Basis vector of (Bridgeland)-Hall algebra; EL � aLXL 45, 69

FL Basis vector of (Bridgeland)-Hall algebra; FL � aLYL 54, 69

R Isomorphism between quantized enveloping algebra and generic Bridgeland-Hall algebra 73

S Antipode of various Hopf algebras such as DH; underlying algebra indicated by context 77

XL Basis vector of (Bridgeland)-Hall algebra; XL � EL{aL 46, 69

YL Basis vector of (Bridgeland)-Hall algebra; YL � FL{aL 54, 69

∆ Coproduct of various Hopf algebras such as DH; underlying algebra indicated by context 77

� Z2-graded complexes shift functor involution; induced involution on Bridgeland-Hall algebras 12

Ti BGP reflection functor induced isomorphisms of Bridgeland-Hall algebras 84

R Modification of isomorphism R 73

DHex Extension counting integral form of generic Bridgeland-Hall algebra DH 78

DHfl Flag counting integral form of generic Bridgeland-Hall algebra DH 81

DHloc Generic localized Bridgeland-Hall algebra 67

DHq Non-generic Bridgeland-Hall algebra 36

DHsc Semi-classical Bridgeland-Hall algebra; t � 1 limit of DHex 93

DH Generic Bridgeland-Hall algebra 68

HpCq Generic Hall algebra of category of Z2-graded complexes in projective representations 66

Hex Extension counting integral form of generic Hall algebra H 47

Hfl Flag counting integral form of generic Hall algebra H 50

Hqc Quasi-classical Hall algebra Hfl 51

Hq Non-generic Hall algebra of category of quiver representations Aq 34

Hsc Semi-classical Hall algebra; t � 1 limit of Hex 48

H Generic Hall algebra 45

ε Counit of various Hopf algebras such as DH; underlying algebra indicated by context 77

t�,�usc Semi-classical Poisson bracket on Hsc and DHsc 48, 94
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Structure Constants for Algebras and Lie Algebras

ΓA,BM,N Hall algebra structure constant for Poisson brackets 95

ΓLM,N Hall algebra structure constant for Poisson brackets and Lie algebras 53, 95

PpeqLM,N Polynomial counting projectivization of set Ext1pM,NqL 43

PphqA,BM,N Polynomial counting projectivization of set of maps M Ñ N with kernel A and cokernel B 64

aL
 Polynomial counting automorphisms of complex L
 64

aL Polynomial counting automorphisms of representation L 42

eL
M
,N

Polynomial counting extensions of complexes M
 by N
 with middle term isomorphic to L
 64

eLM,N Polynomial counting extensions of M by N with middle term isomorphic to L 42

fL
M
,N

Polynomial counting number of subobjects of complexes N
 � L
 with quotient M
 64

fLM,N Polynomial counting number of subobjects N � L with quotient M 42

hA,BM,N Polynomial counting homomorphisms M Ñ N with kernel A and cokernel B 64

hM,N Polynomial counting homomorphisms from M to N 42

hM
,N
 Polynomial counting homomorphisms of complexes from M
 to N
 64

Quantized Enveloping Algebras

Eβk Rescaled quantum root vector; Eβk � pt2 � 1qXβk 29

Fβk Rescaled quantum root vector; Fβk � pt2 � 1qYβk 29

K�1
i Generator of quantized enveloping algebra Utpgq 25

Ti Lusztig’s braid group automorphisms 26

Xβk Quantum root vector; Xβk � Eβk{pt
2 � 1q 27

Xi Generator of quantized enveloping algebra Utpgq 25

Yβk Quantum root vector; Yβk � Fβk{pt
2 � 1q 27

Yi Generator of quantized enveloping algebra Utpgq 25

Σ Algebra involution of Utpgq; commutes with Lusztig’s braid group action 27

Uqpgq Specialization at t � q
1
2 of the restricted integral form of Utpgq 29

Uqpn�q Positive part of Uqpgq 29

Utpgq Quantized enveloping algebra of simple Lie algebra g 25

Utpn�q Positive part of quantized enveloping algebra 25

UPoiss
t pgq Poisson integral form of quantized enveloping algebra 29

URes
t pgq Restricted integral form of quantized enveloping algebra 28

Miscellaneous

rnst! t-analogue of n! 25

rnst t-analogue of integer n 25

Fq Finite field with q elements 9

q Cardinality of finite field Fq; a prime power 9�
n
s

�
t

t-analogue of binomial coefficient
�
n
s

�
25

119



Quivers, Representations and Complexes

~Q A simply-laced quiver 8

p�,�qskew Skew-symmetrized Euler form on Grothendieck group KpAq 10

p�,�q Symmetrized Euler form on Grothendieck group KpAq 10

paijq
r
i,j�1 Symmetric Cartan matrix of simple Lie algebra assigned to a simply-laced quiver ~Q 9

Iα Element of IsopAq determining indecomposable Iα,q of Aq; α a positive root of g 11, 42

KpAq By abuse of notation KpAq :� ΛΦ; canonically isomorphic to to each KpAqq 41

KpAqq Grothendieck group of the category of quiver representations Aq 10

N Number of indecomposable representations of ~Q; equivalently number of positive roots of g 11

Q0 Set of vertices of the quiver ~Q 8

Q1 Set of edges of the quiver ~Q 8

Si Element of IsopAq determining simple object Si,q of ~Q in Aq corresponding to vertex i 10, 42

x�,�y Euler form on Grothendieck group KpAq 10

Aq Abelian category of finite dimensional representations of ~Q over a finite field Fq 9

Cq Category of Z2-graded complexes in projective objects of Aq 12

σ�i BGP reflection functors at vertex i 14

IsopAq Set of maps Φ Ñ Z¥0; canonically isomorphic to each IsopAqq 41

IsopAqq Set of isomorphism classes of objects in Aq 34

IsopCq Set of maps Φ
²
pZ2 �Q0q Ñ Z¥0; canonically isomorphic to each IsopCqq 62

IsopCqq Set of isomorphism classes of objects in Cq 62

r Number of vertices of ~Q; equivalently number of simple roots of g 9

Algebraic Groups and Poisson-Lie Groups

B_
� Borel subgroups of dual Poisson-Lie group G_ 20

B� Borel subgroups of simple Lie group G 6

B_
sc,� Borel subgroups of semi-classical Poisson-Lie group G_

sc 107

G_ Standard Dual Poisson-Lie group 19

G_
sc Semi-classical Poisson-Lie group 95

G Simple Lie group; endowed with standard Poisson-Lie group structure 6, 19

N_
� Unipotent subgroups of dual Poisson-Lie group G_ 20

N� Unipotent subgroups of simple Lie group G 6

N_
sc,� Unipotent subgroups of semi-classical Poisson-Lie group G_

sc 108

T_ Maximal torus of dual Poisson-Lie group G_ 20

T_
sc Maximal torus of semi-classical Poisson-Lie group G_

sc 107

T Maximal torus of simple Lie group G 6

ν� Isomorphism of unipotent algebraic groups between N_
sc,� and N	 108

τ� Isomorphism of tori between T_
sc and T 109

b� Isomorphism of Borel subgroups between B_
sc,� and B	 110

e Identity of various algebraic groups; algebraic group in question indicated by context xxii

g Isomorphism of Poisson-Lie groups between G_
sc and G 112

u� Isomorphism of between n_sc,� and n	 viewed as algebraic groups via BCH 108

120



Lie Algebras and Lie Bialgebras

p�,�qg Normalized Cartan-Killing form on g 5

paijq
r
i,j�1 Symmetric Cartan matrix of simple Lie algebra assigned to a simply-laced quiver ~Q 4

N Number of indecomposable representations of ~Q; equivalently number of positive roots of g 5

r�,�sqc Lie bracket on quasi-classical Lie algebra 53

r�,�s_sc Lie bracket on dual semi-classical Lie algebra 98

r�,�ssc Lie bracket on semi-classical Lie algebra 98

r�,�s Lie bracket on simple Lie algebra 4

ΛΦ Root lattice of simple Lie algebra g 5

Φ� Set of positive roots of simple Lie algebra g 5

Φ Set of roots of simple Lie algebra g 5

αi Simple root of g 5

b_� Borel subalgebras of standard dual Lie bialgebra g_ 20

b� Borel subalgebras of simple Lie algebra g 5

b_sc,� Borel subalgebras of semi-classical Lie bialgebra g_sc 103

bsc,� Borel subalgebras of gsc 103

grαs Root space of simple Lie algebra g 5

g_ Standard dual Lie bialgebra 19

gscrαs Root space of gsc 103

g_sc Semi-classical Lie bialgebra 98

gsc Bialgebra dual of semi-classical Lie bialgebra g_sc 98

g Simple Lie algebra; endowed with standard Lie bialgebra structure 4, 19

h_ Cartan subalgebra of standard dual Lie bialgebra g_ 20

h_sc Cartan subalgebra of semi-classical Lie bialgebra g_sc 103

hsc Cartan subalgebra of gsc 103

h Cartan subalgebra of simple Lie algebra g 5

n_� Nilpotent subalgebras of standard dual Lie bialgebra g_ 20

n� Nilpotent subalgebras of simple Lie algebra g 5

nqc Abelian quasi-classical Lie algebra 52

n_sc,� Nilpotent subalgebras of semi-classical Lie bialgebra g_sc 103

nsc,� Nilpotent subalgebras of gsc 103

r Number of vertices of ~Q; equivalently number of simple roots of g 5

si Simple reflection of root lattice or equivalently of Grothendieck group 5, 10

w0 Longest element of Weyl group 5, 26

Variables for Lie Algebras and Lie Bialgebras

e_I Positive root vector of semi-classical Lie bialgebra g_sc 98

eI Positive root vector of g_sc 98

e_α Positive root vector of standard dual Lie bialgebra g_ 19

eα Positive root vector of simple Lie algebra g 6

ei Generator of simple Lie algebra g 4

f_I Negative root vector of semi-classical Lie bialgebra g_sc 98
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fI Negative root vector of g_sc 98

f_α Negative root vector of standard dual Lie bialgebra g_ 19

fα Negative root vector of simple Lie algebra g 6

fi Generator of simple Lie algebra g 4

h_
Ŝi

Basis vector of h_sc 98

hŜi Basis vector of h_sc 98

h_i Basis vector of h_ 19

hi Generator of simple Lie algebra g 4
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