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ABSTRACT

In this thesis we tell the story of how two isomorphic algebras — quantized enveloping algebras and
Bridgeland-Hall algebras — are simultaneous deformations of two simpler algebras: the universal
enveloping algebra of a Lie algebra and the coordinate algebra of a Poisson-Lie group.

We will also explain how a similar deformation picture holds for Hall algebras, of which Bridgeland-
Hall algebras are a generalization, and a subalgebra of the quantized enveloping algebra called its
positive part.

Our particular contribution to this story is to establish the precise way in which Bridgeland-Hall
algebras deform coordinate algebras of Poisson-Lie groups. We will give a calculation of the Hall
algebraic structure of the resulting Poisson-Lie groups and also explain the relationship with how
quantized enveloping algebras deform coordinate algebras of Poisson-Lie groups.

Using the Bridgeland-Hall algebra approach to Poisson-Lie groups we will give a new way to extract
simple Lie algebras from Bridgeland-Hall algebras and in addition provide a computation of the Hall
algebraic structure of these Lie algebras.

Finally we provide a new, more direct proof of an old but tricky to prove theorem due to De Concini
and Procesi that quantized enveloping algebras are deformations of the coordinate algebra of a
particular Poisson-Lie group called the standard dual Poisson-Lie group.
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Thesis Overview

This thesis is concerned with telling the story of how two isomorphic algebras — quantized enveloping
algebras and Bridgeland-Hall algebras — are simultaneous deformations of two simpler algebras. One
of these more elementary algebras is the universal enveloping algebra of a Lie algebra while the other
is the coordinate algebra of a Poisson-Lie group. A Poisson-Lie group is an algebraic group which is
also a Poisson variety in a compatible way.

The exact narrative we will give has not been told before although a number of the results can be
found scattered throughout the literature, particularly in the works of Deng and Chen | ] and
Ringel [ |]. Our contribution is to work out the details of how Bridgeland-Hall algebras are
deformations of coordinate algebras of Poisson-Lie groups. In addition we establish the relationship
with how quantized enveloping algebras deform coordinate algebras of Poisson-Lie groups.

Quantized enveloping algebras are a type of algebra originally introduced by Drinfel'd and Jimbo to
deform universal enveloping algebras of Lie algebras. Bridgeland-Hall algebras are a kind of algebra
which one can assign to certain Abelian categories. Bridgeland [ | showed that for categories
of finite dimensional representations of a simply-laced quiver the resulting Bridgeland-Hall algebra
is isomorphic to the quantized enveloping algebra of a simple Lie algebra.

Bridgeland-Hall algebras are a generalization of Hall algebras which are algebras similarly associated
to certain Abelian categories. These were originally introduced by Ringel | | based on the work
of Hall | ]. Ringel proved that for categories of simply-laced quiver representations the resulting
Hall algebra is isomorphic to a subalgebra of the quantized enveloping algebra called its positive
part. Bridgeland’s motivation for his algebras was the question of how to find a Hall algebraic way
to recover the whole quantized enveloping algebra and not only its positive part.

The key notion for how algebras may be simultaneous deformations of different algebras is that of
an integral form. An integral form is a special C[t,¢™!]-subalgebra of a C(t)-algebra which allows
one to formally set t to be certain values. A C(t)-algebra can have many different integral forms
with each degenerating to different algebras on specializing ¢ at a certain value.

The algebras we have mentioned are either C(t)-algebras or in the case of our (Bridgeland-)Hall
algebras can naturally be upgraded to C(t)-algebras. These algebras will each have two special
integral forms which respectively have a universal enveloping algebra and a coordinate algebra as
their t = 1 limit. Note, in this thesis we shall use the terms specialization at ¢t =1 and ¢t = 1 limit
interchangeably.

During the course of this thesis we will explain the simultaneous deformation picture of each of
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the above algebras independently. This involves discussing each type of algebra’s integral forms
and t = 1 limits. Although isomorphic, the languages of Bridgeland-Hall algebras and quantized
enveloping algebras are quite different. As such we will stress not only the deformation story of each
type of algebra independently but also how the two pictures match up with each other.

Once we have explained the simultaneous deformation story, another goal of this thesis is to use
Bridgeland-Hall algebras to investigate the structure of Poisson-Lie groups and related objects. One
example of the results we obtain is that we can give a very explicit calculation of the Hall algebraic
structure of Poisson-Lie groups arising from Bridgeland-Hall algebras

Another example comes from an interesting question regarding how Lie algebras arise from Hall
algebras. A general observation is that Hall algebras of Abelian categories often have some kind of
associated Lie algebra. Unfortunately these Lie algebras are only ever positive parts of a bigger Lie
algebra, just as a nilpotent subalgebra is only a part of a simple Lie algebra. An important question
then, is how can one realize full Lie algebras in a Hall algebraic way.

Deng and Chen [ | were the first to do this by using the universal enveloping algebra component
of the deformation story to extract simple Lie algebras from Bridgeland-Hall algebras of categories
of simply-laced quiver representations. In this thesis we will explain an alternative way to extract
simple Lie algebras from Bridgeland-Hall algebras using the Poisson-Lie group picture.

We will in fact obtain more than a Lie algebra, we will obtain a Lie bialgebra. Lie bialgebras are the
infinitesimal analogues of Poisson-Lie groups in the same way that Lie algebras are the infinitesimal
analogues of Lie groups. An upshot of our approach is that we will be able to give a very explicit
calculation of the Hall algebraic structure of the Lie (bi)algebras we obtain.

Our final goal in this thesis will be to use our results to give a simplification of a difficult proof
from the theory of quantized enveloping algebras. In particular, in [ ] De Concini and Procesi
gave an isomorphism between the Poisson-Lie group arising from quantized enveloping algebras and
a particular type of Poisson-Lie group G called the standard dual Poisson-Lie group. Poisson-Lie
groups satisfy a type of duality for which G can be considered dual to the simple Lie group G with
tangent Lie algebra g.

An unfortunate feature of De Concini and Procesi's proof, however, is that it involves a lengthy
case-by-case analysis. As we will explain, using the Bridgeland-Hall algebra approach to Poisson-Lie
groups we can give a new, more direct proof of this fact.

In the remainder of this introduction we will give a more in-depth discussion of the various concepts
and results we have just outlined.
Integral Forms

The notion of integral forms gives a precise way to say how a C(t)-algebra may simultaneously
deform several different algebras.

Suppose that we have a C(t)-algebra B. The algebra B depends on a parameter ¢ and one would
often like to set t to be a particular value, for example ¢ = 1, in order to study the resulting algebra.
A problem arises however: the existence of elements with poles at t = 1 makes setting ¢ = 1 behave
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badly.

To get around this problem, one instead takes certain C[t,¢™!]-subalgebras Z < B called integral
forms. The defining property of such subalgebras is that the multiplication map induces a C(t)-
algebra isomorphism of the following form.

C(t) ®c[t,t-1] Z—-B

For an integral form Z < B, its t = 1 limit is defined to be the quotient algebra of Z by the ideal
(t — 1). There can be several choices of integral forms of B and each can have a different algebra
as its t = 1 limit. In this way a C(t)-algebra may deform several quite different algebras at once.

Quantized Enveloping Algebras: Integral Forms and ¢ = 1 Limits

Quantized enveloping algebras are C(t)-algebras which were originally introduced by Drinfel'd and
Jimbo to deform universal enveloping algebras. Let us give an idea of how they are defined and then
say a little bit about their integral forms and ¢t = 1 limits.

Any complex simple Lie algebra g has an associated C-algebra U(g) called its universal enveloping
algebra. Simple Lie algebras have a well-known generators and relations description. The same
generators and relations — viewed instead as generating an associative C-algebra — also define U(g).
The quantized enveloping algebra Uy(g) then, is defined by modifying the generators and relations
description of U(g) to obtain a C(t)-algebra.

As one might hope, in light of its name, one is able to recover U(g) from U:(g). In particular
in [ ] Lusztig introduced an integral form Uf**s(g) < Uy(g) called the restricted integral form
and proved the following theorem.

Theorem (Lusztig). The t = 1 limit of UZ®(g) is isomorphic to U(g), the universal enveloping
algebra of g.

The interesting thing is that there is another natural integral form of U;(g) whose ¢ = 1 limit is the
algebra of functions on a Poisson-Lie group. A Poisson-Lie group is an algebraic group which is also
a Poisson variety in a compatible way. In the affine case a Poisson variety is one whose coordinate
algebra is endowed with a Poisson bracket.

We will mainly be concerned with a particular type of Poisson-Lie group GV called the standard
dual Poisson-Lie group. Poisson-Lie groups satisfy a kind of duality for which G can be considered
dual to the simple Lie group G with tangent Lie algebra g.

In [ | De Concini and Procesi introduced an integral form of U;(g) which we will denote by
Uf"iss(g). We will refer to this integral form as the Poisson integral form, although our terminology
here is non-standard. De Concini and Procesi then proved the following non-trivial theorem via a
lengthy case-by-case proof.

Theorem (De Concini, Procesi). The t = 1 limit of UF°*3(g) is isomorphic to the coordinate
algebra of the standard dual Poisson Lie group G".
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Thus U(g) can be viewed as simultaneously deforming both U(g) and C[GY]. It will be convenient
to use the terminology quasi-classical and semi-classical limit to differentiate between these two
t =1 limits of Uy(g) respectively. We may package all of this diagrammatically as follows.

quasi-classical seml—classmal

limit ¢ —» 1 limit ¢ —

C[GY]

There is a special case of this story which will be important when we link things up with Hall algebras.
In particular there is a certain subalgebra Uy(n.) of U.(g) called the positive part of the quantized
enveloping algebra. This subalgebra is the analogue the positive nilpotent subalgebra n, < g.

The Poisson and restricted integral forms of U;(g) descend to two natural integral forms U%%(n )
and UPR*(n,) of the positive part respectively. The t = 1 limit of UF**(n,) gives the universal
enveloping algebra of n, while that of UF?$(n,) gives a Poisson subalgebra C[N,] = C[G"].
Here IN is the underlying variety of the positive unipotent subgroup of the simple Lie group G.
Again we may represent these remarks diagrammatically as follows.

Ut(n
quasi-classical t( +)

semi-classical
limit :}V W‘t —1 (2)

Ulny) CIN4]

We will now introduce (generic) Hall algebras and Bridgeland-Hall algebras of categories of quiver
representations. The former will be isomorphic to U;(n.) while the later is isomorphic to U(g). In
particular we will be interested in understanding what the pictures (1) and (2) look like from a Hall
algebraic perspective.

Hall Algebras: An Overview

Hall algebras are a type of associative algebra which one can assign to any finitary Abelian category.
A finitary Abelian category is a small Abelian category such that all Hom and Ext!' groups have
only finitely many elements.

For the purposes of this thesis, the only finitary Abelian categories we will consider are the categories
A, of representations of a simply-laced quiver @ over a finite field F,. Here ¢ is the number of
elements in ¥, and a quiver is simply-laced if on forgetting the direction of arrows of Cj then one is
left with a simply-laced Dynkin diagram. To any such quiver can be assigned a simple Lie algebra
g of corresponding Dynkin type. In this thesis we will fix g to be the Lie algebra associated to Q in
this way.

The basic idea for Hall algebras is to form a vector space whose elements are linear combinations of
(isomorphism classes of) objects in one's chosen category.

Hq = @ C- EL (3)
Lelso(Agq)
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One then places the following product on H, which roughly speaking counts extensions of objects.
ExtYy (M,N)
iy, (M N "
[Hom 4, (M, N)|

EyEy = /X080 D
Lelso(Agq)

Here (M, N) := dimp, Hom 4, (M, N') — dimﬂ:quthq (M, N) is what is called the Euler form of A,
and Exthq(M, N)r is the set of extensions of M by N whose middle term is isomorphic to L.

A remark which will become important with regards integral forms of Hall algebras is that there is an
equivalent product that one may place on H,. If we define FAL“V to be the set of subobjects N < L
with quotient object M then with respect to the alternative set of basis vectors X, := Er/|Aut(L)|
one can show that Equation (4) is given by the following formula. Here we have denoted the group
of automorphisms of L by Aut(L).

XuXy= Y, FinXy (5)
Lelso(Ag)

So far these algebras are C-algebras as opposed to C(t)-algebras, as was the case for quantized
enveloping algebras. However note that we have actually defined a whole family of algebras — one
for each ¢ a prime power. Ringel observed that the structure constants of H, are Laurent polynomials
in ¢*/2. By this we mean there exist elements of C[t,t™!] such that when we set t = ¢/ one recovers
the structure constants of Equation (4) and Equation (5).

The upshot is that one may define a new Hall algebra by replacing C in Equation (3) with C(¢)
and swapping the structure constants of Equation (4) or equivalently Equation (5) for their Laurent
polynomial versions. One then obtains a C(t)-algebra called the generic Hall algebra which we will
denote by H. Either product Equation (4) or Equation (5) results in the same generic Hall algebra
over C(t).

Although the generic Hall algebra is defined purely in terms of homological data of the categories A,
a wonderful theorem due to Ringel relates them to positive parts of quantized enveloping algebras.

Theorem (Ringel). There is an isomorphism of C(t)-algebras U;(n;) — H.

Quantized enveloping algebras are defined via generators and relations whereas Hall algebras have a
basis indexed essentially by quiver representations and moreover have very concrete product formu-
las. A consequence of this is that many results involving quantized enveloping algebras have quite
unpleasant proofs whereas their analogues for Hall algebras are very explicit and have a homological
flavour.

We know that the positive part Us(n,) has two integral forms with one specializing to the universal
enveloping algebra of a Lie algebra and the other to a Poisson algebra. By Ringel’s theorem this
must also be true for the generic Hall algebra. A natural question to ask is what do these integral
forms and their ¢ = 1 limits look like on the Hall algebra side of things.

Hall Algebras: Integral Forms and ¢ = 1 Limits

The way that integral forms of generic Hall algebras arise is via the two formulas for the product on
H given in Equation (4) and Equation (5). Each formula gives the structure constants of the product
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on H in a different basis and taking the C[t,t~!]-span of either set of basis vectors results in an
integral form. These two integral forms are not isomorphic as C[t, ¢ !]-algebras but are isomorphic
on base changing to work over C(t).

We thus define H, to be the C[t,t!]-subalgebra of H spanned by the basis vectors Er. We call
this the extension counting integral form of H as its product roughly speaking counts extensions.
We will call the t = 1 limit of H., the semi-classical Hall algebra and denote it by H.. In Chapter 9
of this thesis we will prove the following Proposition by mimicking the proof of a similar result due
to Bridgeland | | for a different flavour of Hall algebras called motivic Hall algebras.

Proposition 9.2.1. The semi-classical Hall algebra H,, is a commutative Poisson algebra.

We similarly define Hy; to be the C[t,t !]-subalgebra of H spanned by the elements of the form
Xp. This is called the flag counting integral form of H since its product counts flags of subobjects.
We call the t = 1 limit of Hy; the quasi-classical Hall algebra and denote it by Hge. In | ]
Ringel proved the following result for Hy. .

Proposition (Ringel). The quasi-classical Hall algebra H,. is the universal enveloping algebra of a
Lie algebra.

Homological features of the categories A, manifest themselves algebraically in Hy. and Hy.. For
example the Hall product on Hg. is given by taking direct sums of quiver representations. Moreover
as an algebra H,. is the polynomial algebra in the basis vectors corresponding to indecomposable
quiver representations. For Hg. the Lie algebra sitting inside Hy. is the span of the basis vector
corresponding to indecomposable quiver representations.

Qualitatively then, the two integral forms H, and Hy; of H have the same kind of ¢ = 1 limits as
the integral forms UF%%5(n, ) and UR*(n.) of Uy(n,). A priori, however, one does not know that
the two sides match up. In | | Ringel partially resolved this with the following theorem.

Theorem (Ringel). The C(t)-algebra isomorphism Uy(n;) — H restricts to an isomorphism of
integral forms between Uf**(n..) and Hy,.

The proof of this result is not that difficult whereas the proof that UF?®$(n,) ~ H,, is much
more involved. This is essentially a consequence of the fact that the definition of UF%%%(n, ) is
quite non-trivial in comparison to that of U**(n.). In Chapter 16 we will complete the picture by
establishing the following result.

Theorem 16.2.5. The C(t)-algebra isomorphism U;(n;) — H restricts to an isomorphism of inte-

gral forms between Uf”iss(mr) and H,,.

We should point out that the particular isomorphism Uy(n.) =~ H we use to establish the above two
theorems is slightly different to the one originally used by Ringel. The upshot of these two theorems
is that the following two pictures are then equivalent under our isomorphism U;(n; ) =~ H.

XVi



Ut (I‘l_;,_) quasi-class

. H
quasi-classical semi-classical ical semi-classical
limit :?1// W‘t ) limit ¢ — ‘1// wnit t 1

U(n+) C[N+] Hqc Hsc

Bridgeland-Hall Algebras: An Overview

Bridgeland-Hall algebras were introduced by Bridgeland in [ ] to solve the problem of finding
a suitable category whose Hall algebra would extend Ringel's theorem by recovering the whole
quantized enveloping algebra. Bridgeland gave a general construction depending on finitary Abelian
categories satisfying certain conditions, however in this thesis we will only consider Bridgeland-Hall
algebras associated to categories of representations of simply-laced quivers.

Bridgeland's key insight was to replace the category of quiver representations A, in the definition of
the Hall algebra H, with the category C, of Zs-graded complexes in projective quiver representations.
The objects of C, are complexes of the following form where L1 and L are projective objects in A,.

f
L.=L1<—T>L0, fog=gof=0 (6)

Morphisms of C, are given by usual morphisms of complexes. Note that the category C, has an
involution given by the usual shift functor. This sends a complex L, to the complex L¥ given by
switching Ly with Ly and f with g. The resulting Hall algebra of C, isn't quite the correct object
to recover the quantized enveloping algebra however, and must be modified in two ways.

The first modification is that the factor in Equation (4) involving the Euler form must be altered
slightly. The other is that certain relations concerning acyclic complexes must be imposed by hand.
With these remarks in mind we make the following provisional definition.

Hy(Cp) = @D C-[L.]

L.elso(Cyq)

The product on H,(C,) is given by the following where Ext! (M., N,)r. is the set of extensions of
complexes M, by N, whose middle term is isomorphic to L,.

[ML[N.] = g!/2¥oJo1/200.5) - § |[Ext! (M., Nz,

[L.] (7)
) |Hom(M,, N,)

Le€lso(Cqy

The extra relation one needs to impose in order to get the correct algebra is to require that each [L.]
is the inverse of [L¥] for any acyclic complex L,. The resulting algebra is called the Bridgeland-Hall
algebra and is denoted by DH,.

As was the case for the Hall algebra H, we actually have obtained a family of algebras depending
on q. Deng and Chen | ] showed that the structure constants of Equation (7) are Laurent
polynomials in ¢'/2 and so there exists a C(t)-algebra called the generic Bridgeland-Hall algebra
which we will denote by DH.

Bridgeland then succeeded in proving the following theorem, extended by Deng and Chen to the
generic case, which allows one to recover the whole quantized enveloping algebra.
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Theorem (Bridgeland, Deng, Chen). There is an isomorphism of C(t)-algebras U.(g) — DH.

We can play the same game that we did for the generic Hall algebra H with regards to integral forms
of DH. There must be two integral forms whose ¢ = 1 limits give the universal enveloping algebra
of a Lie algebra and the algebra of functions on a Poisson-Lie group respectively. What do these
integral forms look like? What do their ¢ = 1 limits look like from a Hall algebraic perspective?

Bridgeland-Hall Algebras: Integral Forms and ¢ = 1 Limits

The generic Bridgeland-Hall algebra roughly speaking has analogous integral forms to the generic
Hall algebra. One might expect that the integral forms of DH arise in exactly the same way as for
H. Unfortunately this is only true for the analogue of the extension counting integral form.

We thus define DH,, to be the C[t,t~!]-subalgebra of DH spanned by the elements of the form
[Lo]. We call this the extension counting integral form of DH as its product counts extensions
of complexes. We will call the t = 1 limit of DH., the semi-classical Bridgeland-Hall algebra and
denote it by DH,,.

To our knowledge we are the first to consider the extension counting integral form of the Bridgeland-
Hall algebra. In particular in Chapter 17 we establish that DH,, enjoys the following property.

Proposition 17.1.1. The semi-classical Bridgeland-Hall algebra DH;. is the commutative Poisson
algebra of functions on a Poisson-Lie group.

This proposition, though not difficult to prove, implies that the spectrum of DH,, is a Poisson-Lie
group which we call the semi-classical Poisson-Lie group and which we denote by G.. It was already
known that U,(g) deforms coordinate algebras of Poisson-Lie groups. However the precise mechanics
of how this works for Bridgeland-Hall algebras had not been investigated.

Now the structure of G, is equivalent to that of its coordinate algebra DH,.. Moreover in the
previous section we saw that the Bridgeland-Hall algebra has a very explicit product formula. In
Proposition 17.2.1 of Section 17.2 we will derive similarly explicit formulas for the Poisson and
algebra structure of DHy. which encode homological features of the categories A, and C,.

We thus have a natural way to assign a very geometric object — a Poisson-Lie group G, — to DH
and moreover the structure of G, is determined by homological data. This allows one to think of
Bridgeland-Hall algebras from a geometric point of view and Poisson-Lie groups from a homological
perspective.

We now turn to the other integral form of DH, the flag counting integral form DHy;. The definition
of DHy; is a little more subtle: one does not simply take the CJt,t!]-subalgebra of DH spanned
by elements of the form [L.]/|Aut(L.)|.

It is a fact that the generic Bridgeland-Hall algebra has two copies of H; sitting inside as subalgebras

along with a subalgebra generated by [L,] where L, is acyclic. Taking the C[t,¢~!]-subalgebra of
DH generated by all three of these subalgebras yields the correct definition for DH;.
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Deng and Chen | | first considered the flag counting integral form of the Bridgeland-Hall algebra.
We will call the ¢ = 1 limit of DHy; the quasi-classical Bridgeland-Hall algebra and denote it by
DHe.

Proposition (Deng, Chen). The quasi-classical Bridgeland-Hall algebra DH,. is isomorphic to U(g)
the universal enveloping algebra of the simple Lie algebra g.

One of the upshots of Deng and Chen's result is that it gives a way to extract full simple Lie algebras
from Bridgeland-Hall algebras. Later in this introduction we will explain an alternative way to obtain
full simple Lie algebras from Bridgeland-Hall algebras using the semi-classical Bridgeland-Hall algebra
instead.

Similar to the case of generic Hall algebras, the two integral forms DH,, and DHy; of DH have the
same types of t = 1 limits as the integral forms UZ¥*(g) and UZ¢(g) of U;(g). Again, however,
one does not know a priori that the two sides match up. In | ] Deng and Chen established the
following theorem.

Theorem (Deng, Chen). The C(t)-algebra isomorphism U;(g) — DH descends to an isomorphism
of integral forms between U;***(g) and DHy,.

As was the case for the generic Hall algebra, the proof of this result is not that difficult whereas the
proof that Ufom(g) =~ DH is non-trivial. In Chapter 16 we will complete the picture by establishing
the following result.

Theorem 16.2.4. The C(t)-algebra isomorphism U;(g) — DH descends to an isomorphism of
integral forms between UF°*%(g) and DH,,.

We should point out that the particular isomorphism U:(g) = DH we use to establish the above two
theorems in this thesis is slightly different to the one originally used by Deng and Chen | | and
Bridgeland [ ]. The consequence of these two theorems is that the following two are equivalent
pictures under our isomorphism U;(g) = DH.

. ) DH
quasi-classical semi-classical qu.as%—classmal semi-classical
hmltt?/ \\un\n‘tal hmltt—y \\lil‘tt_)l

DH,, DH,.

Lie Algebras and Lie Bialgebras from Bridgeland-Hall Algebras

A general observation is that Hall algebras of Abelian categories often have some kind of associated
Lie algebra. Unfortunately these Lie algebras are only ever positive parts of a bigger Lie algebra in
the same way that the nilpotent subalgebra n_ is only a part of the simple Lie algebra g.

An important question then is how to realize full Lie algebras in a Hall algebraic way. Moreover if
this was possible would there be nice formulas for the Lie bracket in the same way that H and DH
have a natural product formula?

XiX



Deng and Chen were the first to realize full Lie algebras by considering Bridgeland-Hall algebras
of categories of simply-laced quiver representations. In | | they succeeded in recovering the
full simple Lie algebra g from the quasi-classical Bridgeland-Hall algebra DH,.. Our results give an
alternative way to recover g from DH via the semi-classical Bridgeland-Hall algebra. The approach
we will use will in fact extract more than the simple Lie algebra: we will obtain what is called a Lie
bialgebra.

Lie bialgebras are infinitesimal analogues of Poisson-Lie groups in the same way that Lie algebras
are infinitesimal analogues of Lie groups. A Lie bialgebra is a Lie algebra whose dual vector space
is also a Lie algebra in a compatible way. The tangent Lie algebra of any Poisson-Lie group is a Lie
bialgebra with the additional Lie bracket induced from linearizing the Poisson structure.

We thus have a way to extract Lie bialgebras from Bridgeland-Hall algebras. Indeed in Chapter 18
we will take the tangent Lie bialgebra of the semi-classical Poisson-Lie group G5, which we will
denote by gy.. An interesting feature of finite dimensional Lie bialgebras is that they satisfy a simple
duality. The vector space dual of any Lie bialgebra is again a Lie bialgebra. In our case if we take
the Lie bialgebra dual of gy. we then obtain another Lie bialgebra gs..

The machinery of Hall algebras allows us to very explicitly calculate the structure of these bialge-
bras. Indeed in Chapter 18 we will explain that gs. comes equipped with a natural basis involving
indecomposable quiver representations. Moreover in Theorem 18.2.1 and Theorem 18.2.2 we will
calculate the Hall algebraic structure constants of the Lie brackets of gs..

What is the Lie bialgebra g,.? It is a fact that any simple Lie algebra g can be endowed with what
is called the standard Lie bialgebra structure. In Section 18.4 we prove the following theorem.

Theorem 18.4.2. There is an isomorphism between the Lie bialgebra g, and the simple Lie algebra
g endowed with the standard Lie bialgebra structure.

The upshot of this theorem then is that it provides a new way to recover the whole simple Lie algebra
from Bridgeland-Hall algebras and a homological perspective on its structure.

New Proofs of Old Results

A general feature of results involving Hall algebras and Bridgeland-Hall algebras is that their proofs
are often more straightforward than the corresponding ones for quantized enveloping algebras. A
natural question to ask is whether one can use the Bridgeland-Hall algebra approach to Poisson-Lie
groups to simplify proofs of old but tricky to prove theorems.

In the introductory section on quantized enveloping algebras we mentioned that in | ] De
Concini and Procesi proved that the t = 1 limit of the Poisson integral form of the quantized
enveloping algebra was isomorphic to the coordinate algebra of the standard dual Poisson-Lie group
G". We also mentioned that the proof of this theorem involved a long case-by-case analysis.

In Chapter 19, using the machinery of Bridgeland-Hall algebras we will provide a new, more direct
proof of this theorem. Recall that we defined the semi-classical Poisson Lie group G, to be the
spectrum of DH,,.
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Theorem 19.2.1. There is an isomorphism of Poisson-Lie groups between the semi-classical Poisson
Lie group G, and the standard dual Poisson-Lie group G

The semi-classical Bridgeland-Hall algebra is the coordinate algebra of G, and moreover, as we have
mentioned, in Chapter 17 we can explicitly calculate the algebra and Poisson structure of DHg.. A
consequence of the above theorem then is that, not only can we simplify an old proof, but we also
obtain a new point of view on the structure of the standard dual Poisson-Lie group G".



Additional Remarks

Advice on Reading this Thesis

This thesis is divided into four distinct parts which we feel comprise the major logical divisions of
the text. Part | consists of background material, Part Il is devoted to generic Hall algebras, Part
Il is concerned with generic Bridgeland-Hall algebras and finally Part IV deals with semi-classical
Bridgeland-Hall algebras. Each of these parts is then subdivided into chapters on the main topics in
these areas and each chapter is further subdivided into sections on more specialized concepts.

There is quite a bit of notation littered throughout this thesis. As such we have included an annotated
glossary which we encourage the reader to refer to whenever necessary. The entries in the glossary
consist of the most frequently used mathematical objects in this thesis and so we have highlighted
each of these objects in a red hyperlink on their page of definition. This should enable one to quickly
find the place of definition of any unfamiliar objects.

Many readers will already be familiar with the background theory in the various chapters of Part I.
A short-cut for this part would be to skim through any sections on known material, glancing only
at the red hyperlinks to familiarize oneself with notation.

Other readers may also already be comfortable with Hall algebras of Abelian categories. If one
simply wants a quick flavour of how the ideas in this thesis work then we advise reading the 9 pages
contained in Chapter 8, Chapter 9 and Chapter 10 of Part Il. In particular one should get a good
idea of how generic Hall algebras come equipped with two natural integral forms and the flavour of
their t = 1 limits.

Assumptions and Conventions

The sole assumption we will make is that the only (Bridgeland-)Hall algebras considered in this
thesis are those associated to categories of representations of a simply-laced quiver.

By affine variety we mean an irreducible, reduced affine scheme of finite type over C. For us an
algebraic group will be an affine algebraic group over C. We will write e for the group identity of
various algebraic groups. In each case we will always make clear from context which group is being
referred to.
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Background Material






Overview

Part | is devoted to collecting various pieces of background material that will be used in this thesis.
A nice feature of the theory of Hall algebras is that it lies at the intersection of a wide variety of rich
and interesting topics. We thus hope that the chapters in this part may be of independent interest
to those seeking a concise overview of the areas tangentially related to Hall algebras.

We begin with Chapter 1 where we run through the basic theory of simple Lie algebras and simple Lie
groups. One of the undercurrents of this thesis is how closely Hall algebras of quiver representations
are related to these Lie algebras and Lie groups. We will see that many of the features of these Lie
theoretic objects manifest themselves again and again as algebraic properties of Hall algebras.

In Chapter 2 we collect a number of different definitions and results pertaining to quivers, their
representations and complexes of their representations. Categories of quiver representations provide
the underlying category of the Hall algebras that will be considered in this thesis. Similarly cate-
gories of Zo-graded complexes in projective quiver representations give the underlying category of
Bridgeland-Hall algebras

The material in Chapter 3 concerns various topics regarding Poisson-Lie groups and Lie bialge-
bras. These objects arise from ¢t = 1 limits of integral forms of quantized enveloping algebras and
Bridgeland-Hall algebras. Lie bialgebras are the infinitesimal analogues of Poisson-Lie groups in the
same way that Lie algebras are the infinitesimal analogues of Lie groups. One of the most important
things we will do in Chapter 3 is to construct a Poisson-Lie group G and Lie bialgebra g called
the standard dual Poisson-Lie group and standard dual Lie bialgebra respectively.

Chapter 4 is a short chapter where we rigorously define the notion of an integral form of a C(¢)-
algebra. We also explain the formal requirements and process by which coordinate algebras of
Poisson-Lie groups may arise from integral forms.

In Chapter 5 we define quantized enveloping algebras of simple Lie algebras. We also give an overview
of two integral forms of the quantized enveloping algebra — the restricted integral form and what
we call the Poisson integral form. The restricted integral form has the universal enveloping algebra
U(g) as its ¢ = 1 limit while the Poisson integral form has the coordinate algebra C[G"¥] asitst = 1
limit.

Finally Chapter 6 is an overview of Hall algebras and Bridgeland-Hall algebras associated to categories
of quiver representations of simply-laced quivers. Hall algebras of categories of quiver representations
were originally defined by Ringel who used them to recover positive parts of quantized enveloping
algebras. Bridgeland-Hall algebras were introduced by Bridgeland to extend Ringel's results and
recover the whole quantized enveloping algebra.



Chapter 1

Lie Algebras and Algebraic Groups

In this chapter we recall various definitions and results regarding Lie algebras and algebraic groups.
Section 1.1 is concerned with an overview of simple Lie algebras and simple Lie groups. The story of
integral forms of quantized enveloping algebras and Hall algebras makes heavy use of these objects.
In Section 1.2 we outline the technicalities of how adjoint actions of algebraic groups on their Lie
algebras may be described in the language of the functor of points approach to schemes.

1.1 Simple Lie Algebras and Lie Groups

One of the crowning achievements of the theory of simple Lie algebras is that they are determined
by certain graphs called Dynkin diagrams. We will take the approach of defining simple Lie algebras
in terms of these diagrams.

In this thesis we will not consider all simple Lie algebras, only those determined by what are called
simply-laced Dynkin diagrams. A complete list of the simply-laced Dynkin diagrams can be found
at the end of this section.

A simply-laced Dynkin diagram is equivalent to the data of what is called a symmetric Cartan

matrix (a;;); ;_;. Such a matrix is non-degenerate and is determined from the Dynkin diagram via

the following formula where m;; is the number of edges between the vertices i and j.
Qij = 2(5” — Myj (11)

It is this symmetric Cartan matrix that allows one to define a simple Lie algebra via the following
generators and relations description.

Definition 1.1.1. Let (aij)zjzl be a Cartan matrix associated to a simply-laced Dynkin diagram.
Define the associated simple Lie algebra g with Lie bracket [—, —] to be the complex Lie algebra
with generators ¢;, f; and h; for 1 < ¢ < 7 subject to the following relations where 1 < 4,5 < r.

[, hj] = 0 [hi, €] = aije;

lei, fi] = dijh; [hi, fi] = —ai; [
We also require that the following so-called Serre relations hold for i # j where ad denotes the
adjoint action.

ade, " (e;) =0 ad};“iﬂ' (f}) =0
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Simple Lie algebras have some special Lie subalgebras that we will make frequent use of. The first
is the Cartan subalgebra ) which is generated by the elements h;. There are also of the positive and
negative nilpotent and Borel subalgebras which are generated as follows.

ng = <€1> b+ = <€i7hi> (12)
no = (fi) b = {fi, hi)

In light of the generators and relations definition of g there is a vector space triangular decomposition
of g into these subalgebras.
g=n,®hdn_

Now the Cartan subalgebra acts via adjoint action on g. That is, there is a map h — End(g) given
by h +— adj where adp(x) = [h,z] for any € g. The linear operators adj, are simultaneously
diagonalizable and induce what is called the root space decomposition of g.

g=h® P gld]

a a root

Here a root « is elements of h* such that the subspace g|a| := {z € g | ad}, = a(h)zx for all h € h}
is non-zero. The subspaces g[«] are called the root spaces of g. We will denote by ® < h* the set
of roots of g which is of finite cardinality.

The Z-span of the roots in h* form a lattice Ag called the root lattice. One can choose certain
minimal sets of generators of Ag called simple roots. Given the generators and relations description
of g we have a canonical choice of simple roots a; which may be defined via the Cartan matrix as

follows.
ai(hy) = ay; (13)

Throughout this thesis » will be the number of simple roots of g. In light of Equation (1.3) the
elements h; of the Cartan subalgebra b are called the simple coroots of g. Root lattices have
important automorphisms called simple reflections which are given as follows.

S; ¢t Aq; - Aq>, Qj = O — Q505

The simple reflections generate a group W < Aut(h*) called the Weyl group of g. The length of an
element w € W is defined to be the minimal number [ of simple reflections such that w = s;, - - - s;,.
It is a fact that there exists a unique element wq of longest length in W. In particular the length of
wy is given by the number N of positive roots ®* of g.

The simple roots o; split the set of roots up into a set of positive roots ™ and negative roots .
The positive roots are those roots which are positive linear combinations of the simple roots while
the negative roots are ones given by negative linear combinations.

Simple Lie algebras have a non-degenerate bilinear form (—, —), on g called the Cartan-Killing form.
This is given by (x,y)q := Tr(ad, o ad,) for any ,y € g. We may rescale this form so that for any
1 <4,j < r we have (h, hj)q = a;; which we do in this thesis.

For simple Lie algebras the root spaces g[«]| are all one dimensional. A root vector is a basis vector
for g[a]. In general there is no canonical way to choose root vectors for g. For each positive root «
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then, we will make a choice of positive root vector ¢, in gla] and negative root vector f, in g|—a].
Moreover will require that these satisfy the following condition for any two o, 5 € ®7.

(€a, fﬁ)g = 501,,3

We end with some words on simple Lie groups. It is well known that a simple Lie algebra g can
be integrated to a simple algebraic group G. The subalgebras ny, h and b integrate to a choice
of what are called positive and negative unipotent subgroups N+ < G, maximal torus T' ¢ G
and positive and negative Borel subgroups By < G respectively. One can show that there is a
semi-direct product decomposition By = Ny x T and that T'= B_ n B;.

A character of a torus is a group homomorphism y : T'— G,,,. The set of characters forms a lattice
X*(T) called the character lattice. Since T is a complex algebraic torus then the group algebra
C[X*(T)] of the character lattice is canonically isomorphic to the coordinate algebra C[T"]. The
isomorphism here is given by taking a character and viewing it as a function on T via G,,, < A%:-

The reason why we are mentioning character lattices is that in general there are several Lie groups
G with the same Lie algebra g. We will choose G to be what is called of adjoint form. The only
consequence of this that we shall need is that the following map induces a canonical isomorphism
between the character lattice of T" and the root lattice Ap < h* of g.

X.(T)_)Aq)v X'_)dCX

Here by d.x we mean the differential of x at the torus identity e.
The Simply-Laced Dynkin Diagrams

The following is a complete list of the simply-laced Dynkin diagrams. We have used the letter r to
denote the number of vertices.

A, ° ° - - - ° °
°
D, : ° ° - - - °
°
Eg : ° ° ° ° °
°
Fr ° ° ° ° ° °
°
Eg : ° ° ° ° ° ° )
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1.2 Adjoint Actions of Algebraic Groups

A general feature of a (differentiable, algebraic etc.) Lie group is that it natural acts on its Lie
algebra via what is called the adjoint action. In this section we will explain, in the case of algebraic
groups, how to compute this adjoint action in terms of algebraic data. This material will be needed
in Chapter 19. A reference for the following is Section 3 in Chapter Il of [Mil].

We begin by discussing algebraic groups and their Lie algebras in the language of their functor of
points before then giving a formula for the adjoint action. In this section we will denote by K a
complex affine algebraic group and ¢ its Lie algebra. Note that we will view £ as a scheme as opposed
to a complex vector space.

Recall that the algebraic group structure on the underlying variety of K is equivalent to a Hopf
algebra structure on the coordinate algebra C[ K. The coproduct A is the pullback of functions via
the group multiplication map, the antipode S is the pullback of functions via the inverse map and
the counit ¢ picks out the group identity.

From the functor of points perspective the maps A, S and ¢ induce the structure of a group on the
B-valued points of K for any C-algebra B. A special case of this is that if B[d] is the algebra of
dual numbers over B then K (B|d]) is a group. One should view K (B[d]) as the set of B-valued
points of the tangent bundle of K. The functor of points way to write the fact that the K sits
inside its tangent bundle as the zero section is given by the following.

K (B) —-K(B|J]), y—>y+0-9

Turning to the Lie algebra, the B-valued points of ¢ consists of the set of C-derivations of C[ K]
in B where B is regarded as a C[K|-module via the counit . Explicitly ¢(B) is the set of C-linear
maps X : C[K] — B such that for any functions f, g € C[K] the following holds.

X(fg) = e())X(9) +e(9)X(F)

Geometrically the Lie algebra £ sits inside the tangent bundle of K as the tangent space at the
group identity. The functor of points way of writing this is given by the following.

t(B) - K (BJd]), X—e+X-6

Using the functor of points descriptions above we now give the adjoint action of K on £. The
idea is to view £(B) as sitting inside K (B[J]) and then perform the adjoint action operations using
the group structure on K(B][d]). Let y be a point in the group K(B) and X a derivation in
¢(B). The following formula then gives the induced map on B-valued points of the adjoint action
Ad: K xt— ¢

Ady(X) =y (e + X -0)xy * (1.4)

Here we have written % and (—)~! for the induced group multiplication and inverse operations on
K (BJ0]) respectively. One can check that the expression given in Equation (1.4) does indeed land
in ¢(B) c K(BJ[d]) again.



Chapter 2

Quivers, Representations and
Complexes

In this chapter we collect various definitions and results regarding quivers, quiver representations
and complexes of quiver representations.

Section 2.1 is concerned with defining quivers and their Abelian categories of representations. Hall
algebras are algebras that one can associate to certain Abelian categories. This section then should
be viewed as describing the underlying categories of the Hall algebras used in this thesis.

In Section 2.2 we discuss various properties of categories of quiver representations. These properties
will manifest themselves as various algebraic properties of Hall algebras. Important results in this
section are the Krull-Schmidt theorem and Gabriel's theorem which give a characterization of all
representations of the types of quivers we will consider.

The material in Section 2.3 concerns certain categories of Zo-graded complexes of quiver represen-
tations. These will form the underlying categories of Bridgeland-Hall algebras which in some sense
give a doubled version of Hall algebras of categories of quiver representations.

We end this chapter with Section 2.4 on certain functors between categories of quiver representations
called BGP reflection functors. Reflection functors are of interest to us as they induce certain
isomorphisms between Bridgeland-Hall algebras.

2.1 Quivers and their Representations

In this section we recall the basic facts we will need regarding quivers and their representations.
Good introductory references for quivers and their representations are | ] and [ ]

We begin by discussing quivers before defining their categories of representations. A quiver @ is a
finite directed graph. As part of the data of a quiver we have a set of vertices () and a set of arrows
Q1. We also have the following source and target maps which respectively pick out the source vertex
and target vertex of each arrow.

5,t: Q1 — Qo
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We will denote by r the number of vertices of Q It will be convenient to choose a total ordering
on Qg by labelling the vertices 1,..., 7.

In this thesis we will only consider simply-laced quivers. By this we mean a quiver such that when
one forgets the direction of the arrows one is left with one of the simply-laced Dynkin diagrams
that we gave in Section 1.1. There is a deep relationship between quivers and Lie algebras. Indeed
a simply-laced quiver Q determines a symmetric Cartan matrix of corresponding Dynkin type as
follows.

(@ij)ij—1 = (265 — nij — nji) (2.1)

Here n;; is the number of arrows from i to j. We will assume throughout that our choice of simple
Lie algebra g is the one determined by @ in this way.

Quivers give rise to Abelian categories via their category of representations. We will denote by A,
the category of finite dimensional representations of () over a finite field IF,. Here ¢ is the prime
power giving the number of elements of F,.

An object L, in A, consists of the data of a finite dimensional [F-vector space L; for each i € Qg
along with an Fy-linear map L, : Ly(q) — Ly(q) for each arrow a € Q1. We define the dimension of
L, to be the sum of the dimensions of the L;.

A morphism in A, between two quiver representations M, and N, is the data of an F4-linear map
; + M; — N; for each vertex i of () such that for each arrow a the following diagram commutes.

M,
Mgy —— My

lws(a) l%(a)
N,

Nya) — Ny

It is a standard fact that A, is an Abelian category linear over IF,. It is worth pointing out that we
have in fact an infinite family of distinct categories .4, with one for each choice of prime power g.
We will see in Section 7.1 however that many features of these categories are ‘independent of ¢'.

An equivalent and often useful way to view quiver representations is as modules over the path algebra
of Q.

Definition 2.1.1. The path algebra of Cj is the IF;-algebra Fq@ with generators g; and g, for i € Qq
and a € Q1 subject to the following relations.

91.2 =g; 9i9; = 0 (Z # ]) 9t(a)9a = Ga9s(a) = Ya

A standard result in the theory of quiver representations is that the category of finite dimensional
(left) modules over Fq@ is equivalent to the category of quiver representations .4,. This equivalence
takes an Fqé—module V' to the quiver representation with vector spaces g;V at each vertex i € Qg
and linear maps g,(,)V — gy(a)V for each a € Q1 given by multiplication by g,.
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2.2 Properties of Categories of Quiver Representations
In this section we discuss various properties of categories of quiver representations.

We begin by describing the simple objects of A,. For each vertex i of @ there is a simple repre-
sentation .5; , in A, determined by the requirement that the dimension of the vector space assigned
to vertex j is one if j = ¢ and zero otherwise. For simply-laced quivers these give all the simple
representations up to isomorphism.

We will use the notation /(.A,) for the Grothendieck group of Ag. Recall that the Grothendieck
group is the Abelian group generated by isomorphism classes L of objects in A; modulo the relations
N L +M = 0 for any short exact sequence 0 - N, —» L, — M, — 0.

In the case of simply-laced quiver representations, K (A,) is freely generated by the classes :S’\i,q
corresponding to the simple representations. This follows from the fact that A, is a finite length
category, that is, any object L, has a finite composition sequence with simple factors.

The Grothendieck group K (.A,) is canonically isomorphic to the root lattice Ag of the simple Lie
algebra g via the following map. Here we recall that a; € ® is a simple root of g.

A~

K(Aq) ad Acp, Si,q = Oy (22)

The reason why Equation (2.2) is an isomorphism is that, on the one hand, since Si,q form a basis for
K(A,) then the rank of K(A) is the same as 7, the number of vertices of Q. On the other hand,
it is well known that the simple roots «; form a basis for the root lattice Ag and that the number
of these is given by the number of nodes in the Dynkin diagram of g, which is 7 by definition.

Recall from Section 1.1 that we have simple reflections s; of the root lattice Ag of g. Via Equa-
tion (2.2) the simple reflections induce automorphisms of the Grothendieck group K(A,) which
we will also denote by s;. There is a bilinear form on K(A,) called the Euler form given by the
following.

(M, Ny) := dimg, Hom(M,, Ny) — dimy, Ext' (Mg, N,) (2.3)

We will also need the symmetrization (—, —) and skew-symmetrization (—, —)xe, Of the Euler form,
which are given by the following.

(Mqv Nq) = <Mqv Nq> + <Nq’ Mq> (Mqv Nq)skew = <Mqv Nq> - <Nq’ Mq> (2.4)

One can check that in the basis given by the simple representations the symmetrized Euler form
gives the Cartan matrix from Equation (2.1).

After simple representations the next most important flavour of quiver representations for us will be
the indecomposable ones. These give the building blocks of the objects of A, via the Krull-Schmidt
theorem.

Theorem 2.2.1 (Krull, Schmidt). Any object L, in A, has a direct sum decomposition into multiples
of pairwise non-isomorphic indecomposables I, ..., I} as follows.

Ly=I"®...®eL*
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Moreover, up to isomorphism, these indecomposables objects I}, of A, and their multiplicities
ni,...,Nk € Z>q are uniquely determined up to reordering.

Proof. The Krull-Schmidt theorem holds for any finite length Abelian category, that is, every object
has a finite composition series with simple factors. A reference for this fact is Theorem 1.5.7
of | ]. It is well known that A, is a finite length category, see for example Section 3.1
of | | O

A nice feature of representations of simply-laced quivers is that we can classify all indecomposable
representations via the following theorem due to Gabriel. Let Ind(.A,) denote the set of isomorphism
classes of indecomposable objects in A,.

Theorem 2.2.2 (Gabriel). The composition of the map Ind(A,) — K(A,), given by I, — I,
with K(A;) = Ag from Equation (2.2) is a bijection onto the set of positive roots ®* < Ag. In
particular the category A, has only finitely many indecomposable objects up to isomorphism.

Proof. This is Theorem 3.7 in | | O

For each positive root a of g we will denote by /,, a choice of indecomposable representation
corresponding to « via Theorem 2.2.2. We will find it convenient to denote by N the number of
isomorphism classes of indecomposable representations of Q This also coincides with the number
of positive roots of g by Gabriel's theorem.

One can give a very explicit description of all possible projective quiver representations. The inde-
composable projective Fq@—modules are all of the form P(i) = Fq@gi, that is, the left ideals of FQQ
generated by the elements g;. Using Krull-Schmidt for A, and the equivalence of categories between
A, and the category of Fq@—modules this describes all possible projective quiver representations up
to isomorphism.

A standard result about the categories A, is that they are at most of global dimension 1. The easiest
way to see this is that any F,Q-module V' has a projective resolution of the following form called
the standard resolution.

0 —— @ P(ta)) ®F, gs)V —— @ P@)®r, gV —>V ——0
aeQ1 i€Qo

The maps F' and G here are given by F(g, ®v) = g9, @ v — gp ® gov and G(g. @ w) = gcw where
g € P(t(a)), gc € P(i), v € gyq)V and w € g;V.

We end this section with the following proposition on split extensions of simply-laced quiver repre-
sentations.

Proposition 2.2.3. For any simply-laced quiver @ the only extension class in Ext}élq(Mq, Ny) whose
middle term is isomorphic to M, ® N, is the split extension.

Proof. This follows from Theorem 1.2 in | | on restricting to the special case of the zero
ideal. O
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2.3 7Z,-Graded Complexes

In this section we discuss categories of Zo-graded complexes in projective quiver representations.
The projective part means that we only consider complexes of projective objects. The Zs-graded
part means that our complexes are unbounded complexes which repeat every two steps. We begin
with some definitions before giving a Krull-Schmidt type theorem for complexes. We then end this
section with a discussion on extensions of certain complexes. A reference for the material which
follows is Section 3 of | ] and Section 4 of | ]

Define C, to be the category of Zs-graded complexes in projective objects in A,. The objects L.,
of C, are complexes of the following form where L; and Lg are projective objects in A,.

f
Ll(—T)I@v fog=gof=0

Morphisms are given by usual morphisms of complexes. A feature of the Zo-grading is that the usual
shift functor for complexes induces an involution * : C; — C, which sends a complex L., to the
following shifted complex Lg,.

We now unravel some of the structure of C, by describing four special types of complexes and then
explain how they form Krull-Schmidt type building blocks of C,. For any quiver representation L,
we'll first need to fix what is called a minimal projective resolution of L, as follows.

0 Pr, % Qp, —Ly—0 (2.5)

Minimal here means that if we decompose P, = ®P; and Qr, = @Q; using the Krull-Schmidt
Theorem 2.2.1 then in the corresponding decomposition d = (d;;) we have that none of the d;;
are isomorphisms. Any minimal projective resolution is unique up to isomorphism, a fact which is
proved in Lemma 4.1 of | ]. Throughout this thesis we will use the notation in Equation (2.5)
to denote a minimal projective resolution.

The point is that we can then associate to any representation L, the following two objects of C,
which are canonical up to isomorphism and interchanged by the shift functor.

d 0
o — o — —
CLq .= PLq TQ[J[I CLq = QLq (TPLq

In particular these complexes have L, and 0 as their two homology objects. The homology of Cr is
given by L, in degree zero while that of C7 is given by L, in degree one. The other two important
types of objects in C, are the following acyclic complexes associated to any projective object F; in
Ag. Again these two complexes are interchanged by the shift involution.
id . 0
Kp, = PQ?PQ Kp = Q?Pq (2.6)
?
We then have the following Krull-Schmidt type theorem for Z,-graded complexes in projective quiver
representations.
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Theorem 2.3.1 (Bridgeland). Any object L, in C, splits as a direct sum of the following form.
Cu, ®Cp ®Kp, ® K, (2.7)

Moreover the quiver representations A,, B,, P, and (), are unique up to isomorphism.
Proof. This is Lemma 4.2 in | ] O

Combining Theorem 2.3.1 with Gabriel's Theorem 2.2.2 it follows that any object L., in C; is
determined uniquely up to isomorphism by a map of sets ® [ [(Z2 x Qo) — Z=o which determines
Ay, By, P, and @, in Equation (2.7). By Gabriel's theorem, the & — Z~; component determines
the two quiver representations A, and B,. To see that the component (Zy x Qp) — Zx determines
two projectives P, and (), we use the fact that the projective indecomposable representations of C_j
are in bijection with Q) .

We end with an interpretation of some extensions of complexes. That the claims in the following
discussion hold follows from the comments preceding Lemma 4.3 in | ]. We begin by letting
M, and N, be quiver representations and L,, be a complex fitting into a short exact sequence of
complexes of the following form, that is a short exact sequence in the category C,.

0— Cy, = Log > Cr, = 0 (2.8)

Suppose L., has homology objects A, and B, in degree zero and degree one respectively. Taking
the induced long exact sequence on homology we obtain an exact sequence of the following form
where § is the connecting homomorphism.

0—>Aq—>Mqi>Nq—>Bq—>0

The map we have just described which takes a short exact sequence to J in fact gives an isomorphism
between the following sets.
Ext'(Car,, C%,) — Hom(M,, N,) (2.9)

If Lqq fits in to an extension of the form Equation (2.8) then it is actually uniquely determined by
its homology objects A, and B,. In particular one can show that there is an isomorphism of the
following form where the acyclic direct summands are uniquely determined up to isomorphism by
the requirements that Py, = Pya, ® Pa, and Qn, = Qnp, DB,

Ley=Ca, ®Ch, @ Kpy,, Kl (2.10)

Note that we have chosen the notation Pps4, here to signify that this projective representation is
determined uniquely (up to isomorphism) by the representations Pys, and Py,. Similarly Qnp, is
determined uniquely by @y, and Qp, respectively.

Now let Extl(C’Mq,C]”{,q)L.q denote the subset of extensions with middle term isomorphic to L,,.
Denote also by Hom(Mg, Ny)a,, B, subset of morphisms with kernel A, and cokernal B,. From
the above discussion the isomorphism from Equation (2.9) descends an isomorphism between the
following sets where L, is related to A, and B, via Equation (2.10).

Ext'(Cu,, CR,) L.y — Hom(Mg, No) a, 5, (2.11)
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2.4 BGP Reflection Functors

In this section we recall some of the details regarding BGP reflection functors between categories of
quiver representations. A reference for the material which follows is Section 1.4 of | |

Let's introduce some notation. We will find it convenient to write AqQ when we need to make
the dependence on @ explicit. For any vertex ¢ € )y we have the following full subcategory of
representations which do not have the simple representation S; , as a direct summand.

ASGy = AZ

Now from any vertex ¢ of @ one can form a new quiver O'Z'Q from Q by inverting the direction of all
arrows incident at ¢. We define a sink to be a vertex of Q which only has arrows pointing into it.
Conversely a source is a vertex which only has arrows pointing out of it. With this notation we can
state the main theorem of this section.

Theorem 2.4.1 (Bernstein, Gelfand, Ponomarev). Let i be a sink for @ with ¢ then being a source
for 0;Q). There exists functors called BGP reflection functors between the following categories.

o AY — AT o7t AT9 - AY

Moreover the a;—r have the following properties.

1. The functors 0" restrict to mutually inverse equivalences of categories o : .AqQ<i> - AZiQ<i>

and o; : AZZQ@'} - AqQ<i>. In particular these restricted functors take indecomposable
representations to indecomposables representations.

2. For any representation L, in A(?<z'> the Grothendieck group class of o (L,) is si(L,) where
s; denotes the simple reflection on K (A, from Section 2.2.

Proof. This can be found in Theorem 1.18 and Corollary 1.19 of | ]. O

We refer the interested reader to Section 1.4 of | | for the explicit constructions of the
functors aii, although they will not be used in this thesis.



Chapter 3

Poisson-Lie Groups and Lie Bialgebras

In this chapter we give an overview of various results we shall need from the theory of Poisson-Lie
groups and Lie bialgebras.

In Section 3.1 we give the definition of a Poisson-Lie group. Poisson-Lie groups are algebraic groups
which are at the same time Poisson varieties such that the two structures are compatible. Section 3.2
concerns the theory of Lie bialgebras. These are the infinitesimal analogues of Poisson-Lie groups
in the same way that Lie algebras are the infinitesimal versions of Lie groups.

Finally in Section 3.3 we construct the main example of the Poisson-Lie groups and Lie bialgebras
that we use in this thesis. In particular we will construct a Poisson-Lie group G which is dual in
some sense to a simple Lie group G with Lie algebra g.

The importance of the Poisson-Lie group G for us lies in the fact that its coordinate Hopf algebra
appear as the semi-classical limit of quantized enveloping algebras and Bridgeland's Hall algebra.
We will say more on this in Chapter 5 and Part IV.

3.1 Poisson-Lie Groups

In this section we define the notion of a Poisson-Lie group. A reference for the following material is
Section 6.2 of [ |

Recall that the structure of an algebraic group on a complex affine variety K is equivalent to a Hopf
algebra structure on its coordinate algebra C[K]. The coproduct is the pullback of functions via
the multiplication map, the antipode is the pullback of functions via the inverse map and the counit
picks out the group identity.

A Poisson-Lie group is an algebraic group K which is also a Poisson variety such that the Poisson
and algebraic group structures are compatible. The requirement on the algebraic side of things is
for C[ K] to be a Poisson-Hopf algebra.

Definition 3.1.1. Let K be a complex affine algebraic group which is also a Poisson variety with
Poisson bracket {—, —}. We say that K is a Poisson-Lie group if its coordinate Hopf algebra is

15
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Poisson-Hopf, that is, if the following condition holds for any functions f and g in C[K].

Alf.gt ={f1,91} ® f292 + fig1 ®{f2, 92} (3.1)

Here we have written A for the coproduct on C[K] and the subscripts 1 and 2 denote Sweedler's
notation, a shorthand way of writing A(f). More explicitly, since there exists ffl) and fQ(Z) such that

A(f) =2, fli) ® fQ(i) then one frequently drops the summation and simply writes f; ® fo instead
of A(f). This notation allows one to more easily manipulate expressions involving coproducts.

Equation (3.1) is an algebraic compatibility condition. There is also an equivalent geometric condi-
tion which we will give for C-valued points of K. In particular for any C-valued points x and y of
K and functions f and g in C[K] the following holds.

{f9¥(@-y) = {lof, lug}(y) + {ryf, ryg} () (32)

In Equation (3.2) the symbol - denotes group multiplication. The notation [, f denotes the pullback
of f by left multiplication by = and r, f denotes the pullback of f by right multiplication by y.

3.2 Lie Bialgebras, Duality and Manin Triples

In this section we discuss Lie bialgebras and explain how they are the infinitesimal analogues of
Poisson-Lie groups. We will describe a kind of duality for Lie bialgebras which allows one to define
duality of Poisson-Lie groups. We then explain an equivalent and useful characterization of Lie
bialgebras called Manin triples. Finally we end with algebraic Manin triples which are the analogues
of Manin triples for algebraic groups.

Our references for the material which follows are Section 2.2 of | | for Lie bialgebras and Section
2.2.3 of | | for duality of bialgebras. For Manin triples we have two references: Section 4.1
of [ ] and Section 11 of | |

We begin with the definition of a Lie bialgebra. A Lie bialgebra is a Lie algebra with the additional
structure of a compatible Lie algebra on its vector space dual.

Definition 3.2.1. A Lie bialgebra (¢,[—, —]¢,[—, —]ex) is a finite dimensional complex Lie algebra
(& [—, —]¢) along with a Lie bracket [—, —|¢= on the dual vector space ¢* such that if we let the
p: € — E®E be the dual linear map to [—, —]e+ then the following compatibility condition is satisfied
forany X,Y € t.

p([X, Y]g) = (adX ®ide + 1dp ® adx)p(Y) — (ady ®ide + 1de ® ady)p(X)
Here ad denotes the adjoint action endomorphism of £ and idg is the identity endomorphism of ¢.
We will often simply write ¢ in place of (¢, [—, —]¢,[—, —]ex) for a Lie bialgebra. A morphism of Lie

biagebras £; — £, is a Lie algebra homomorphism such that the induced map on dual vector spaces
€5 — €] is also a Lie algebra homomorphism.

Lie bialgebras satisfy a very simple duality by switching the roles of the vector spaces ¢ and £*. If
(¢, [—, —]¢, [=, —]ex) is a Lie bialgebra then, using the canonical isomorphism ¢ =~ (£*)*, we have that
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(&*,[—, —]ex, [—, —]e) is again a Lie bialgebra. A proof of this fact can be found in Proposition 2.2
of | |. Performing the procedure twice recovers £ up to canonical isomorphism of Lie bialgebras.

We will use the notation £¥ as shorthand for (£*,[—, —]ex,[—, —]¢) and refer to it as the dual Lie
bialgebra of £. We will reserve the notation £* for the vector space underlying ¢¥. More generally
we will say that two Lie bialgebras a and b are dual if a¥ is isomorphic to b as a Lie bialgebra.

Let’s explain how Lie bialgebras arise from Poisson-Lie groups. First of all, a Poisson-Lie group K
is an algebraic group and so has a tangent Lie algebra (¢,[—, —]¢) i.e. via the usual Lie group-Lie
algebra correspondence. In addition, linearizing the Poisson bracket {—, —} at the group identity
e € K induces the structure of a Lie algebra on the vector space £* dual to €. In particular the
resulting Lie bracket on £* is given as follows for any functions f, g € C[K].

[def,deglex = delf, g} (3.3)
We shall refer to [—, —]¢ and [—, —]ex as the tangent and cotangent Lie bracket of ¢ respectively.
One can check, as for example in Proposition 11.34 of | |, that the Poisson-Lie group com-

patibility condition from Equation (3.1) induces the Lie bialgebra compatibility condition making
(& [, ]e, [+, -]ex) a Lie bialgebra. We call € the tangent Lie bialgebra of K.

The notion of duality for Lie bialgebras also extends to Poisson-Lie groups. If A and AV are
Poisson-Lie groups then we say that A" is dual to A if their tangent Lie bialgebras are dual.

In the remainder of this section we will discuss Manin triples and algebraic Manin triples. Manin
triples are an equivalent and useful way to package the data of a Lie bialgebra. Algebraic Manin
triples are the corresponding analogues for Poisson-Lie groups.

Definition 3.2.2. A Manin triple is a triple of finite dimensional complex Lie algebras (¢, a,a“) with
the following properties.

(i) The Lie algebras a and a“ are Lie subalgebras of ¢ such that ¢ = a@ a" as a vector space

(ii) There is a non-degenerate, invariant, symmetric bilinear form on ¢ with respect to which a
and aV are isotropic, i.e. the form vanishes when restricted to a or restricted to a¥v. We refer
to this form as the Manin form

There is an obvious notion of a morphism of Manin triples and one has the following relationship
between Lie bialgebras and Manin triples.

Proposition 3.2.1. If a is a finite dimensional complex Lie algebra then there is a bijection between
isomorphism classes of Manin triples of the form (¢,a,a") and isomorphism classes of Lie bialgebra
structures on a.

Proof. See Section 4.1 of | | for all of the details. In particular the Manin form identifies the
vector space dual a* with a¥. This gives a* a Lie bracket [—, —|q+ coming from the one on aV.
One can then check that (a,[—, —]a,[—, —]a*) is a Lie bialgebra. O
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It is easy to see how duality works for Manin triples. If (¢,a,a") is a Manin triple then so too is
(¢,av,a). Proposition 3.2.1 then says that both a and a" have the structures of Lie bialgebras and
moreover one can check that aV is the dual Lie bialgebra of a.

We now explain the notion of algebraic Manin triples.

Definition 3.2.3. An algebraic Manin triple is a triple of algebraic groups (K, A, AY) where A and
AV are closed subgroups of K such that their corresponding triple of tangent Lie algebras (¢, a,a")
is a Manin triple.

We will refer to (¢,a,a") as the tangent triple of (K, A, AY). We then have the following propo-
sition which relates algebraic Manin triples to Poisson-Lie groups.

Proposition 3.2.2. If (K, A, AY) is an algebraic Manin triple with tangent Manin triple (¢, a,a")
then there exists unique Poisson-Lie group structures on A and AY whose tangent Lie bialgebras
are a and aV respectively.

Proof. A proof of this fact can be found in Section 11 of | ]. Existence is established on page
81 while uniqueness can be found at the end of page 80. 0

If (K, A, AY) is an algebraic Manin triple then since a¥ is the dual Lie bialgebra of a we have that
by definition AY and A are dual as Poisson-Lie groups.

3.3 Standard Dual Poisson-Lie Groups and Bialgebras

In this section we explain how to construct the main example of Poisson-Lie groups and Lie bialgebras
that we will use in this thesis: the standard dual Poisson-Lie group G and standard dual Lie
bialgebra gV¥. Our reference is Section 11 of | ]

Let G be the simple algebraic group with tangent Lie algebra g, as in the discussion at the end of
Section 1.1. One can give G a certain Poisson structure called the standard Poisson-Lie structure.
This in turn endows g with a Lie bialgebra structure called the standard bialgebra structure.

In this section — and in this thesis more generally — our interest is not so much in the Poisson-Lie
group G but rather its dual GY. The tangent Lie bialgebra of GV is the standard dual Lie bialgebra
g"¥. The objective of this section is to explain how to construct G~ and give a characterization of
gV. We also relate various subalgebras and subgroups of g¥ and G to analogous ones in g and G.

Let's first define G as an algebraic group. Recall from Section 1.1 that we have chosen positive
and negative Borel subgroups B+ and a maximal torus T" of G. Denote by 7 : B_ x By — T the
product of the two canonical projections from B, and B_ to the maximal torus. It is easy to see
that 7 is a homomorphism of algebraic groups. The algebraic group GV is then defined to be the
kernel of the map m. We use the notation 7V for the inclusion of G into B_ x B..

Using Proposition 3.2.2 we now describe how G'¥ obtains the structure of a Poisson-Lie group by
showing that it fits into an algebraic Manin triple of the form (G x G,G,G"). In this triple the
simple Lie group G is viewed as a subgroup of G' x G via the diagonal embedding. The algebraic
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group GV is identified with the subgroup of G x G via the inclusion ¢V along with the fact that
B_xB,cGxG.

To show that (G x G,G,G") is an algebraic Main triple we need to check that its tangent triple,
denoted by (g @ g,9,9"), is indeed a Manin triple. Here the simple Lie algebra g is identified with
the diagonal Lie subalgebra of g ® g while g is given by the following Lie subalgebra of g® g.

gV = {(X_,X)eb_ @b, | X" +X) =0} (3.4)

The notation XY here denotes the projection of an element X € g to the Cartan subalgebra . One
can check that as a vector space g @ g is the direct sum of its subspaces g and g¥ and so we need
only establish the existence of a Manin form. Recall from Section 1.1 that we have a normalized
Cartan-Killing form (—, —)g on g. One can check that a Manin form on g @ g is determined by
the requirement that it restricts to (—, =)y on {0} @ g, —(—, —)g on g@® {0} and that g ® {0} and
{0} & g are mutually orthogonal.

The hypothesis of Proposition 3.2.2 is then satisfied and so G and G have the structures of
Poisson-Lie groups which are dual to each other. In addition the tangent Lie algebras g and g have
the structures of Lie bialgebras which are again dual.

Definition 3.3.1. Define G to be the standard Poisson-Lie group and G to be the standard
dual Poisson-Lie group. The tangent Lie bialgebra structure on g is called the standard bialgebra
structure. The Lie bialgebra dual g¥ is called the standard dual Lie bialgebra.

We will now unravel some of the features of g¥ more explicitly. Using the Manin form on g@ g one
can identify the vector space g with vector space dual of g¥ which we do from now on. Using the
root vectors of g that we defined in Section 1.1 we have the following elements of gV.

1
) 1= (=1 0) Y= (0,e0) nimshih) (35)

With respect to the Manin form identification of g¥ with the vector space dual of g one can check
that e is the dual vector of ey, f. is the dual vector of f, and hjv(hi) = aj;. The elements in
Equation (3.5) thus give a basis for g¥. We note that the root lattice Ag of g sits inside h" via
Q; = hlv

We haven't yet discussed the tangent and cotangent Lie brackets on g¥. The cotangent Lie bracket
on the vector space dual of gV is the one coming from the bracket [—, —] on g via the Manin form
identification. The tangent Lie bracket on g¥, which we denote by [—, —]V, is given by the following
proposition.

Proposition 3.3.1. The tangent Lie bracket [—,—]" on gV is determined by the following where
a,Bedand 1<, <.

by hY]Y =0

[hivaec\x/]v = i(aiaa)g ec\x/
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The following Serre relations are also required to be satisfied for i # j.

ady; " (el ) =0 ad};i“"-"(fgj) —0

Proof. This follows from how g was defined as a subalgebra of g@® g in Equation (3.4) along with
the generators and relations description of g given in Definition 1.1.1. O

We now define certain Lie subalgebras of g¥ which are analogues of the Cartan, nilpotent and Borel
subalgebras of g. The analogue of the Cartan subalgebra is given by ¥ := (h). The following
give the analogues of the nilpotent and Borel subalgebras.

nY = (el bY = (el by

nY =) 0¥ :={fa hy')

How are the above subalgebras of g related to the Cartan, nilpotent and Borel subalgebras of g?
In the Borel case there is a canonical isomorphism between bY and b= given by the following.

by - b_ @b, — by (3.6)

Here the first map is given by the inclusion and the second is the canonical projection. It is easy
to check that the isomorphism by =~ b_ sends ey — —f, and h; — —1/2 - h;. Similarly under
bY = by we have f) + eq and by +— 1/2- h;. The isomorphism bY = by restrict to give a

canonical isomorphism nY = ny and two different canonical isomorphisms h" = b.

On the algebraic group side of things the Lie subalgebras nY, bY and h" of g" integrate to subgroups
N, BY and TV of G respectively. Integrating Equation (3.6) there is a canonical isomorphism
between BY and By given by the following.

B! - B_xB, — By

Here the first map is given by inclusion and the last is the canonical projection. The isomorphism
BY =~ B restricts to a canonical isomorphism between Ny and Ny and two canonical isomor-
phisms between TV and T



Chapter 4

Integral Forms and Poisson-Lie Groups

In this short chapter we discuss integral forms of C(t)-algebras. Integral forms are special types of
subalgebras of C(t)-algebras which allow one to rigorously set ¢ to be certain values. In particular, we
will explain the formal requirements and process by which Poisson algebras and coordinate algebras
of Poisson-Lie groups may arise from integral forms.

4.1 Integral Forms and Poisson-Lie Groups

Suppose that we have a C(t)-algebra which we will denote by B. Clearly B depends on a parameter
t and one would often like to set ¢ to be a particular value in order to study the resulting hopefully
simpler algebra. A problem arises when one attempts to do this naively however: the existence of
elements of B with poles can make specializing t behave badly.

Integral forms are certain C[t,t !]-subalgebras of C(t)-algebras which get around the above problem
and allow one to set the parameter ¢t to be any non-zero complex number. There can be lots of
different integral forms sitting inside a C(t)-algebra.

Definition 4.1.1. Let B be a C(t)-algebra. An integral form of B is a C[t,t !]-subalgebra Z € B
which is free as a C[t,t~!]-module and such that the multiplication map C(t) ®c[t,i-11 Z — Bis
an isomorphism of C(t)-algebras.

Once one has an integral form Z < B one can then set ¢ to be a non-zero complex number w by
taking the quotient algebra of Z by the ideal (¢t —w). We call the resulting algebra the specialization
of Z at t = w or alternatively the ¢ = w limit of Z. In this thesis we will usually specialize integral
forms at ¢ = 1. We also note that for the notion of an integral, one dos not necessarily have to work
over C. One could equally work over Z or Q instead.

We now explain how Poisson algebras or even coordinate algebras of Poisson-Lie groups arise from
integral forms. This phenomenon occurs in the special case that the ¢t = 1 limit of an integral form
is a commutative algebra.

When the ¢t = 1 limit of a C[t,t"!]-algebra Z is commutative we will call the quotient algebra
Zse := Z/(t — 1) the semi-classical limit of Z. We then have the following proposition. Note in

21
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general we will use the notation T for the image of an element x € Z in the quotient of Z by an
ideal.

Proposition 4.1.1. If Z is a C[t,t !]-algebra with commutative ¢ = 1 limit then Z,. is a commu-
tative Poisson C-algebra under the following Poisson bracket.

Proof. The Poisson bracket is well-defined since if the product on Z is commutative modulo (¢t — 1)
then (zy —yx)/(t —1) is a well-defined element of Z. Skew-symmetry is immediate while the Jacobi
identity can be obtained easily using the above formula. For the Leibniz identity note that we have
the following identity in Z for any elements x,y,z € Z.

xyz — zxy = zvyz + (rzy — x2Y) — 229
=x(yz — 2zy) + (xz — z2)y

Dividing by t — 1 and taking the image in Zs. we obtain that {7y, z} = ={y,z} + {7, Z}7. O

Suppose our C[t,t !]-algebra Z from Proposition 4.1.1 has in addition the structure of a C[t,¢ 1]-
Hopf algebra. One can check that the C[t,¢~!]-Hopf algebra structure on Z descends to a commu-
tative C-Hopf algebra structure on Z,.. Even better, the Poisson structure from Proposition 4.1.1
is compatible with this C-Hopf algebra structure in the following sense.

Proposition 4.1.2. If Z is a C[t,t~!]-Hopf algebra with commutative ¢t = 1 limit then Z. is a
commutative Poisson-Hopf algebra over C. In particular Z,. is the coordinate algebra of a Poisson-
Lie group.

Proof. Let A denote the coproduct on Z and A the induced coproduct on Z,.. The compatibility
between the Hopf algebra and Poisson structure required for a Poisson-Hopf algebra was given in
Equation (3.1). The requirement, in Sweedler's notation, is that for any =,y € Z we have the
following identity in Zs. ® Zs..

AT, 7} = {71,751} ® T2y + 7171 ® {T2, 7o} (4.1)
To see that Equation (4.1) holds consider first the following identity in Z ® Z.

Azy — yr) = 1y1 @ T2y2 — Y171 ® Y22
= (191 — 1171) ® Tay2 + Y171 @ (22 — Y272)
= (2151 — 1171) @ Tay2 + T131 ® (T2y2 — Y22) + O((t — 1)%)
In establishing the last equality we have used the fact that y121 = z1y1 + O(t — 1) and that

Yoo — woys = O(t — 1) where O denotes up to order. Dividing the above expression by ¢ — 1 and
taking the image in Z;. ® Zs. we obtain Equation (4.1). O

We end this section with a comment on a direction that we shall not explore this thesis. When the
t = 1 limit of a C[t,t !]-Hopf algebra a cocommutative Hopf algebra then one obtains something
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called a coPoisson-Hopf algebra. A coPoisson-Hopf algebra is the dual notion of a Poisson-Hopf

algebra.

Often one can show that the underlying Hopf algebra of a coPoisson-Hopf algebra is the universal
enveloping algebra of a Lie algebra. In such a case this Lie algebra is in fact a Lie bialgebra and the
coPoisson-Hopf structure is the induced structure that the universal enveloping algebra acquires.



Chapter 5

Quantized Enveloping Algebras

In this chapter we give an overview of quantized enveloping algebras. These are C(t)-algebras which
are quantizations of U(g) the universal enveloping algebra of the simple Lie algebra g.

For our purposes the most important feature of quantized enveloping algebras is the existence of
two natural integral forms. One, which we call the Poisson integral form, specializes at ¢ = 1 to the
coordinate algebra of functions on a Poisson-Lie group. The other is called the restricted integral
form and specializes at ¢ = 1 to U(g).

We start off this chapter with Section 5.1 where we define U(g), the quantized enveloping algebra
of g. This is done by deforming a generators and relations description of U(g).

Section 5.2 concerns algebra automorphisms of U;(g) due to Lusztig. These automorphisms are
used to define analogues in U;(g) of root vectors of g called quantum root vectors. For us the main
use of quantum root vectors is that they allow one to define the Poisson integral form of Section 5.5.

The aim of Section 5.3 is to introduce an algebra involution X of the quantized enveloping algebra.
This involution commutes with the automorphisms from Section 5.2. In Section 13.4 we will see
that X is the analogue of a certain shift functor induced involution of the Bridgeland-Hall algebra.

In Section 5.4 we give the definition of the restricted integral form of the quantized enveloping
algebra due to Lusztig. For us the main feature of this integral form is that its specialization at
t = 1 is universal enveloping algebra U(g).

Finally in Section 5.5 we discuss what we call the Poisson integral form of U;(g). This was originally
defined by De Concini and Procesi [ ] who showed that its ¢ = 1 limit is the coordinate algebra
of the dual Poisson-Lie group GV from Section 3.3.

5.1 Definition

This section is concerned with defining quantized enveloping algebras. A reference for the material
in this section is Section 9.1 of [ ].

The quantized enveloping algebra U(g) is a quantization of U(g) the universal enveloping algebra
of the simple Lie algebra g. Recall from Definition 1.1.1 that we defined g via Lie algebra generators

24



CHAPTER 5. QUANTIZED ENVELOPING ALGEBRAS 25

and relations. The same generators and relations — viewed instead as generating an associative
C-algebra — also define the universal enveloping algebra U(g).

Quantization of U(g) is achieved by modifying the generators and relations of U(g) to obtain a
C(t)-algebra Uy(g). A key point is that it will be possible to recover U(g) by taking the ¢t = 1 limit
of a suitable integral form of U;(g). We will make this statement rigorous in Section 5.4. In the
meantime, an elementary example of quantization is given by the following t-analogues of various

integers which we will need subsequently. Here n € N,s € Zxo with 0 < s < n and [0];! := 1 by
convention.
tn — " n []!
nly i = — nly! = —1f;---]1 = 5.1
e e e T B I v e R CY

It is easy to see that sending ¢ — 1 in the above definitions recovers the integers n, n! and binomial
coefficient (Z) respectively.

The quantized enveloping algebra of g is then given as follows. We remind the reader that (a;;)
denotes the symmetric Cartan matrix associated to a simply-laced Dynkin diagram.

s
3,j=1

Definition 5.1.1. Define the quantized enveloping algebra U;(g) of g to be the C(t)-algebra with
generators X;, Y; and Kjil for 1 < ¢ < r such that K; and K;l are mutually inverse and the
following relations are satisfied for 1 < 4,5 < r.

KK = K;K; (5.2)

KX =t X,K; (5.3)

KY; = ™Y K; (5.4)
K, — Kt

(X, Y] = 6y —— =1 (5.5)

We also require that the following t-analogues of the Serre relations hold for i # j.

S]] Xy —o S o] v <o
ptv=1—a;; H t ptv=1—a;; H t

Example 5.1.2. In the case of g = sly then 7 = 1 and the Cartan matrix is the 1x1 matrix with
a11 = 2. Thus Uy(sly) is the C(t)-algebra with generators X, Y and K*! such that K and K !
are mutually inverse and the following relations hold.

KX =t*> XK
KY =t %YK
K—-K!
XY]=——
[X,Y] 1

We end this section by defining U;(n ) to be the C(¢)-subalgebra of U;(g) generated by the elements
X;. This subalgebra plays an important role in the story of Hall algebras and is called the positive
part of the quantized enveloping algebra.
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5.2 Lusztig’s Automorphisms and Quantum Root Vectors

This section is concerned with certain automorphisms of quantized enveloping algebras due to
Lusztig. We will use these automorphisms to define special elements of U,(g) called quantum
root vectors. Quantum root vectors are analogues of root vectors of simple Lie algebras and are
used to define integral forms of U;(g). A reference for this section is Section 6.8 of | |

We begin with some notation. For any element = of U.(g) define the divided powers of = to be
) 1= zF /[k],! where k € Z~(. We then have the following theorem due to Lusztig.

Theorem 5.2.1 (Lusztig). For 1 < i < r there are C(t)-algebra automorphisms 7; of U(g) given
by the following where 1 < 4,7 < 7.

T;(X;) = —YiK;

Ti(Y;) = —-K; ' X;

Ti(Kj) = Kgy(a))

T(X)= Y, (-t XXX (i # j)
ptv=—a;;

)= Y ureyyy® (i # J)
ptv=—a;;

Here s; denotes the simple reflection at the simple root «;. The notation K, (,,) means that, on
decomposing si(a;j) = > ngay in Ag, then K (o) = [ K}

Proof. This is Theorem 6.41 in | ]. O

Lusztig showed that the automorphisms from Theorem 5.2.1 induce an action of the braid group of
g on Uy(g). We refer the interested reader to Theorem 6.45 of | | for a formal statement
of this fact, although we will not need it in this thesis.

In the remainder of this section we explain how Lusztig's automorphism generate special elements
of U;(g) called quantum root vectors. We will need to recall from Section 1.1 that there exists a
unique element wy of longest length in the Weyl group of g. In particular the length of the element
wq is given by the number N of positive roots of g.

A fact from the theory of simple Lie algebras is that any reduced decomposition of wg into simple
reflections wg = s;, ...s;, allows one to generate the set of positive roots from the simple roots.
This is done by setting 81 := «;, and then setting S := s;, ... sk_1(,) for each 1 <k < N. All
of the positive roots then appear exactly once in the list 81,..., By which we point out also comes
equipped with a total ordering.

Quantum root vectors of U,(g) are generated in a similar way except by applying Lusztig's automor-
phisms to the generators X; and Y; instead of simple reflections s; to the simple roots «;. In the
following definition we fix a reduced decomposition wg = s;, ... s;, and thereby fix a total ordering
B1,..., 0N of the set of positive roots .
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Definition 5.2.1. For each 1 < k < N define the quantum root vector of Uy(g) associated to [
to be the following.

X‘gk::T»_l---T_l (Xz) Ys =T ...t (}/Zk)

i1 ik—1 Pk i1 ik—1

Our convention here for k = 1 is that X, := X, and Y3, :=Y;,.

We emphasize that this procedure is not canonical and very much depends on our choice of reduced
decomposition of wy.

5.3 An Involution

In this section we introduce a certain algebra involution of U;(g) and then show that it preserves
Lusztig's automorphisms. This involution will come in useful later on in Section 13.4 and Sec-
tion 16.1.

We begin by defining > : Us(g) — Uy(g) as follows. A glance at the generators and relations
description of Uy(g) from Definition 5.1.1 shows that 3 does indeed give an algebra involution.

D(X;) = —tY; oY) = —t7'X; (K = KT (5.6)

(2

| could not find this definition in the literature and it appears to be non-standard. A pleasant feature
of 3, however, is that it commutes with Lusztig's automorphisms.

Proposition 5.3.1. For each 1 < i < 7 the following diagram commutes.

Us(s) —— Ui(g)

lz lz (5.7)

Us(s) —— Ui(g)

Proof. Using the formulas in Theorem 5.2.1 and Equation (5.6) we will check the commutativity of
Equation (5.7) on the generators X;, Y; and K;. The following gives the case of Kj.

TioX(K;) =Ty(K;) =K

j = E(Ksi(oaj)) =Xo TZ(KJ)

—si(ay)

For the generators X; and Y; we have the following. We point out that Equation (5.3) and Equa-
tion (5.4) are used for the third equalities below.

T, 0 X(X;) = Ti(—tY;) = tK; ' X; T; 0o X(Y;) = Ty(—t 7' X;) = t7'ViK;
=t X, K;! =tK;Y;
= N(-YK;) = X(-K;'X))

— S o Ty(X;) — T oT(V))
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The case of the generators X; when j # i can be shown as follows.

ToS(X) =Ti(-¥j)= 3, (-1l ty vy
prrv=—ai;
— Yo Z (_1)u+1—(1—an)tu+1—(1—aij)Xi(“)Xin(”)
HtV=—a;;
=0 Y (-1 xPxxY
ptrv=—ai;

=Yo0 T’z(Xj)
Similarly we have the case of the generators Y; for j # i.

Tiox(Y) =T(—t7'X;) = Y (-)rhix X, x
HEV=—a;;
=XYo 2 (—1)‘”1*(1*%‘)t*M*H(l*aij)Yi(’/)Y'jy;(ﬂ)
ptrv=—ai;
=Yo 2 (_1)1’t1/ }/I(V)Y'J}/Z(M)
ptrv=—ai;
— DoY)

O]

We end by mentioning how the involution ¥ interacts with the quantum root vectors from Defi-
nition 5.2.1. Indeed using the fact that ¥ commutes with Lusztig's automorphisms one can easily
establish the following identities for 1 < k < N.

¥(Xg,) = —tYp, %(Yp,) = —t7' X,

5.4 Restricted Integral Form

In this section we define an integral form of U;(g) due to Lusztig called the restricted integral form.
A key property of the restricted integral form is that (up to a slight caveat) it specializes at t = 1
to the universal enveloping algebra U(g). A reference for this section is Section 9.3 of | ]

Recalling the divided powers notation from Section 5.2 we begin with the following definition.

Definition 5.4.1. Define the restricted integral form of the quantized enveloping algebra to be the
C[t,t~1]-subalgebra Ul**(g) of U;(g) generated by the divided powers XZ»(k), Y,L.(k) along with the
elements Kiirl where k > 0and 1 <i < r.

That U“s(g) is indeed an integral form of U;(g) is Proposition 9.3.1. of | ]. Let’s discuss how
to recover the universal enveloping algebra of g from this integral form. One would hope that simply
setting ¢ = 1 does the job, but that is not quite true — one must also set each K; = 1. Defining
Uyge to be the quotient of Uf“es(g) by the ideal generated by the elements ¢ — 1 and K; — 1 where
1 < ¢ < r we have the following theorem.
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Theorem 5.4.1 (Lusztig). There is an isomorphism of C-algebras U(g) — Uy, given by the follow-
ing.

ei— X firm Y hi — [X;, Y]
Proof. This is (b) in Section 6.7 of Lusztig's [ ]. Note that Lusztig defined U(g) and U(g)
over the ground field of Q rather than C as we have done. The result follows on base changing
however. O

With an integral form we can also specialize ¢ to be values other than 1. In particular for any ¢
is a prime power we will define U,(g) to be the quotient of U®*(g) by the ideal generated by the
element ¢ — ¢g2. Note we are specializing at the positive square root of g here.

We end by defining positive parts of the algebras considered in this section. Define the positive part
of Uy(g) to be the subalgebra U,(n.) generated by the elements X; where 1 < i < r. The positive
part of the restricted integral form is defined to be the C[t,t!]-subalgebra U**(n ) of URes(g)
generated by the divided powers Xi(k) where 1 < < r.

5.5 Poisson Integral Form

This section is concerned with an integral form of U;(g) due to De Concini and Procesi which we
call the Poisson integral form. One of the main features of this integral form is that it specializes at
t = 1 to the coordinate algebra of the dual Poisson-Lie group that we defined in Section 3.3. The
name Poisson integral form is not standard and indeed does not seem to have been given a name in
the literature. A reference for this section is | ], however we will discuss a caveat below.

The key ingredient in defining the Poisson integral form is to renormalize the quantum root vectors
X, and Yp. To this end define the rescaled quantum root vectors to be the following elements of
U(g) for 1 <k < N.

k

g, = (1* — 1) Xp, Fp, o= (12 = 1)Yp, (5.8)

We point out that, as for the unscaled ones, the rescaled quantum root vectors are related by
Y(Eg,) = —tFp, and ¥(Fs,) = —t 1Eg,_where ¥ is the involution from Section 5.3. We can then
define the Poisson integral form as follows.

Definition 5.5.1. Define the Poisson integral form of the quantized enveloping algebra to be the
C[t,t~']-subalgebra U/ “***(g) of U;(g) generated by the elements Ejs,, Fj, and K;*' where 1 <
i<rand1 <k <N.

Using Bridgeland-Hall algebras we will show that U;(g) is indeed an integral form. This will follow
from Theorem 16.2.4 along with the commentary following Definition 15.1.1.

In [ ], De Concini and Procesi showed that U/ **(g) specializes at ¢ = 1 to the coordinate
algebra of the dual Poisson-Lie group that we defined in Section 3.3. In Chapter 19 we will explain
how to use Bridgeland-Hall algebras to give a proof of this fact. We should point out that there are
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some differences between how we have defined UPiss(g) and how De Concini and Procesi go about
defining UP°%5(g) in Section 12.1 of [ ].

The main difference is that Lusztig introduced several different automorphisms of U;(g) other than
the ones we gave in Theorem 5.2.1 and unfortunately De Concini and Procesi chose different ones
to the ones we use. Since UF?%%(g) is defined in terms of quantum root vectors which in turn are

defined in terms of these automorphisms | was not sure that the two definitions coincide.

Another albeit minor difference is that De Concini and Procesi consider a different variant of the
quantized enveloping algebra than we have used called the simply connected rational form of Uy(g).
The one that we have used in Definition 5.1.1 is called the adjoint rational form of U(g).

We end by defining the positive part of the Poisson integral form UPoiss(n,) to be the C[t,t71]-
subalgebra of U} °**(g) generated by the elements Fj, where 1 < k < r.



Chapter 6

Non-Generic (Bridgeland-)Hall Algebras

This chapter is concerned with giving an overview of (non-generic) Hall algebras and Bridgeland-Hall
algebras of categories of simply-laced quiver representations.

In Section 6.1 we discuss the background material that will be needed to define the structure
constants of Hall algebras and their integral forms. The two integral forms of Hall algebras treated
in this thesis are distinguished by whether their product formulas count sets of extensions of quiver
representations or flags of subobjects. In particular we carefully explain the difference between these
two sets.

Section 6.2 concerns the precise definition of non-generic Hall algebras. We state Ringel's founda-
tional result concerning the relationship between Hall algebras of categories of simply-laced quiver
representations and positive parts of quantized enveloping algebras.

Finally in Section 6.3 we define non-generic Bridgeland-Hall algebras. We also explain how Bridgeland
used these algebras to extend Ringel's theorem to recover the whole quantized enveloping algebra
rather than just its positive part.

6.1 Extensions vs Flags of Subobjects

This section is concerned with background material which will be used to define the structure
constants of Hall algebras. We will first discuss the difference between certain sets of extensions
of quiver representations and flags of subobjects of quiver representations. We then end with a
well-known formula due to Riedtmann which relates the cardinalities of these two types of sets.

Let Ly, M, and N, be quiver representations and consider the following set of short exact sequence.
SES(M,, Ny)r, i= {0 > Ny L L, & M, — 0}

The automorphism groups of the quiver representation L,, M, and N, give rise to two different
(left) actions on the set SES(M,, N,) L, each with a different quotient set (i.e. different set of orbits
under the group actions). One quotient set is a set of flags of subobjects of quiver representations,
the other is a of extensions of quiver representations.
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The first action is given by the following. We use the shorthand notation (f,g) € SES(M,, Ny)r,
to denote a short exact sequence of the form 0 — N, ER Ly % M, —o0.

Aut(N,) x Aut(M,) & SES(My, Ny)r,, (TN, Opr) - (frg) = (foUR L, Upog)  (6.1)

Here injectivity of f and surjectivity of g imply that the group Aut(M,) x Aut(N,) acts freely on
SES(My, Ng)1,- The quotient set, which we denote by Fi}‘q Ny is the set of subobjects N, < L,
with quotient object M,.

Here we are using the categorical definition of subobject and quotient object. In particular a subobject
N4 € Ly is an equivalence class of monomorpisms N, J, L, under the equivalence relation f ~ f’
if f'=Ffo \I!]_\,1 for some automorphism Wy of N,. A quotient object is an equivalence class of

epimorphisms L Iy M, under the equivalence relation g ~ ¢’ if ¢’ = W09 for some automorphism
\IJM of Mq.

The second action is given by the following.
Aut(Lg) @ SES(My, No)z,, Wi+ (f.9) = (YrofgoVy') (6.2)

The quotient of the set SES(M,, Ny) 1, by Aut(L,) is the subset Ext' (M, No) 1, € Ext! (Mg, Ny)
consisting of extensions of M, by N, with middle term isomorphic to L,. This interpretation comes
from the usual Yoneda description of Ext! as equivalence classes of short exact sequences.

Unlike the action in Equation (6.1), the action given by Equation (6.2) is not free. Let Stab ) <
Aut(L,) denote the stabilizer of a short exact sequence (f,g) under the group action in Equa-
tion (6.2).

Lemma 6.1.1. The following is an isomorphism between the additive group Hom(M,, N,) and
Stab(ﬁg).
Hom(M,, Ny) — Stabyy, g, hwidy, + fohog

Proof. We first note that idy, + f o hog is indeed an automorphism of L. as its inverse is simply
given by idy, — f o hog. For injectivity suppose that idy, + fohog=1idy, + foh'og. Thisis
equivalent to fohog = foh'og which implies that h = h' using the fact that f is a monomorphism
and g is an epimorphism.

For surjectivity suppose that ¢, € Stab( ), that is, ¥y - (f,9) = (f,g). Using the formula
in Equation (6.1) one can check that this condition is equivalent to (V1 —id,) o f = 0 and
go (¥ —idg,) = 0. We may rewrite these two conditions in terms of pullback and pushforwards
as f*(\I/L - iqu) =0 and g*(\I/L - iqu) =0.

Now applying the functors Hom(M,, —) and Hom(—, L) to the short exact sequence 0 — N, ER
Ly % M, — 0 we have the following two usual exact sequences.

0 — Hom(M,, N,) % Hom(M,, L;) £ Hom(M,, M,) (6.3)
0 — Hom(M,, L,) £ Hom(L,, Ly) 1 Hom(N,, L,) (6.4)
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Since f*(Vy —idr,) = 0, then by exactness of Equation (6.4) there exists an homomorphism
a € Hom(Mg, Lg) with g*(a) = W —idr,. We then have 0 = g, (V —idr,) = g«9*(a) = g*g«(a).
Injectivity of g* implies that g.(a) = 0 and so exactness of Equation (6.3) implies that a = f,(h) for
some h € Hom(Mg, Ng). We thus have that ¥, = idr, + fohog, which establishes surjectivity. [

The distinction between the sets Extl(Mq, Ny)r, and FM“q N, 1S of central importance to this thesis
and can be confusing when first encountered. The easiest way to get a feel for the difference is via
a simple example.

Example 6.1.2. Let Q = o be the Ay quiver, that is, the quiver with one vertex and no arrows. In
this case the category A, is equivalent to the category of finite dimensional F,-vector spaces. Up
to isomorphism every object in A, is of the form V,, = Fy where n = 0.

The set F“,/; v, is the set of ways that V,, sits inside V; as a vector subspace such that the quotient
vector space V;/V,, is of dimension m. This set is non-empty only when I = m + n in which case
F“//;Vn is simply the Grassmannian Gry, (1, Vi, +m) of n dimensional subspaces of V;,,1,, over Fy. It

is well known that the cardinality of Grp, (1, Vii4m) is given by the quantum binomial [m:"]q which

was defined in Equation (5.1). For example Fl‘//fvl has cardinality [ﬂq =1+gq.

On the other hand, the only extension of any two vector spaces is the split extension. Thus
Ext!(Vy,, Vo)v; is empty unless [ = m + n in which case Ext!'(V;,,, Vi)v,,.,,. is a set with cardi-
nality 1.

We point out that the Hom sets of .4, have finite cardinality as they are finite dimensional vector
spaces over a finite field. This implies that the automorphism groups of quiver representations have
flnltely many elements. Moreover since SES(My, Ny)r, © Hom(N,, Ly) x Hom(Lg, M) then the
sets FM ~, and Ext!' (M, Ng) 1, must be of finite cardinality. With these comments in mind we
end this section with the following formula due to Riedtmann [ ].

Proposition 6.1.1 (Riedtmann). For any quiver representations L,, M, and N, we have the fol-
lowing identity.
ph o IEUOR N (L)
MaNal = |Hom (Mg, Ng)| - |[Aut(Mq)||Aut(Ny)]

(6.5)

Proof. Since the group Aut(L,) acts on SES(M,, N,)r, with stabilizer Hom(M,, N,) then we have
the following via the orbit-stabilizer theorem.
|SES(Mq7Nq)Lq| _ |EXt1(Mq’Nq)Lq|
[Aut(L,)] [Hom (M, N,)|

(6.6)

Similarly since Aut(NNy) x Aut(M,) acts freely on the set SES(M,, N,)r, we have the following
identity.

|SES(MQ7NQ)LL1| | |

|Aut(Ng)|[Aut(M,)| iy

(6.7)

Combining Equation (6.7) and Equation (6.6) we obtain Equation (6.5). O
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6.2 Non-Generic Hall Algebras

In this section we give a brief overview of (non-generic) Hall algebras as introduced by Ringel | ].
For simplicity we will restrict ourselves to Hall algebras of the categories A, of finite dimensional
[F,-representations of simply-laced quivers.

We will begin with a discussion on Hall algebras in general and the definition of the Hall algebra
of A, in particular. We then state Ringel’s theorem before ending with a commentary on what
non-generic means. A superb reference for this section is [ ]

Hall algebras are associative algebras which one can assign to any finitary Abelian category. A
finitary Abelian category is a small Abelian category such that all Hom and Ext! sets have only
finitely many elements. Our categories of quiver representations A, are finitary but there are of
course other examples such as categories of coherent sheaves on projective schemes over F,.

The basic idea for Hall algebras is to form a vector space whose elements are linear combinations of
(isomorphism classes of) objects in one's chosen category. The Hall product then roughly speaking
counts numbers of extensions or, equivalently, flags of subobjects as described in Section 6.1. More
explicitly we have the following where we use the notation Iso(A,) to denote the set of isomorphism
classes of objects in A,.

Definition 6.2.1. For any ¢ a prime power define the Hall algebra of A, to be the C-vector space
H, generated by the set Iso(A,). The product of two basis elements E);, and Ey, corresponding
to two quiver representations M, and N, is given by the following.

|Ext! (Mg, No)L, |

En,En, = q1/2<Mq7Nq> Z Er, (6.8)
Lqelso(Ag) |Hom(Mq, Nq)|
If we define rescaled basis elements X1 := Ef /|[Aut(L,)| then by Riedtmann's formula from
Equation (6.5) the product on H, admits the following equivalent definition in this alternative basis.
1/2( Mgy, N, L
XMqXNq =q /2% Mq,Ng) Z |FM(;,Nq|XLq (69)
Ly€lso(Ag)

Of course, one must check that Equation (6.8) or equivalently Equation (6.9) really does define an
associative product. Using the isomorphism theorems for Abelian categories one can readily establish
associativity of the product for the form it takes in Equation (6.9).

We note that Equation (6.8) and Equation (6.9) remain associative with or without the factor

¢/ Ma:Na) - This factor is referred to as a twist by the Euler form and ensures that one obtains the
correct relations making H, isomorphic to the positive part of the quantized enveloping algebra.

We now state Ringel’s theorem on the relationship between quantized enveloping algebras and the
Hall algebra of A,. In the following recall from Section 5.4 that we denoted the specialization at
t = ¢%/2 of the positive part of the (restricted integral form of the) quantized enveloping algebra by

Ug(ny).
Theorem 6.2.1 (Ringel). The following describes an isomorphism of C-algebras.

Uq(n+) - qu XZ = XSZ"q

Here S; ;, denotes the simple quiver representation corresponding to the vertex i of Q
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Proof. See the proof of Theorem 3.16 in | | O

We end with the observation that we have defined in fact a family of Hall algebras H, as ¢ varies
over the prime powers. These are non-generic Hall algebras. One might hope that there exists a
single ‘generic’ Hall algebra which specializes to each of the H,.

In Part Il we will show that there does exist such a C(t)-algebra H called the generic Hall algebra.
One will be able to recover each of the algebras H, in our family from H by setting! the parameter
t to be the positive square root of ¢g. The advantage of having generic Hall algebras is that we can
set ¢ to be values other than square roots of prime powers and then study the resulting algebras.

We point out that although the two different Hall products in Equation (6.8) and Equation (6.9)
gave rise to the same algebra H,, we will see in Chapter 9 and Chapter 10 that the analogous
formulas for the generic Hall algebra H give rise to two non-isomorphic integral forms of H.

6.3 Non-Generic Bridgeland-Hall Algebras

In this section we give a brief overview of non-generic Bridgeland-Hall algebras associated to cat-
egories of representations of simply-laced quivers. Bridgeland-Hall algebras were introduced by
Bridgeland in | | to solve the problem of finding a suitable category whose Hall algebra would
extend Ringel's Theorem 6.2.1 by recovering the whole quantized enveloping algebra.

Bridgeland's key insight was to replace the category A, in the definition of H, with the category
Cy of Zs-graded complexes in projective quiver representations. The resulting Hall algebra isn't
quite the correct object and must be modified in two ways. The first difference is that one must
employ a non-standard twist by the Euler form. The other is that certain relations concerning acyclic
complexes must be imposed by hand.

We begin with the following naive definition where we replace A, in Definition 6.2.1 with the category
Cq. The twist by the Euler form in Equation (6.10) is different to that of Equation (6.8) but we
note that this does not affect associativity.

Definition 6.3.1. For any ¢ a prime power define the Hall algebra of C, to be the C-vector space
H(C,) generated by the set Iso(C,). The product of two basis elements [M,,] and [N.,] correspond-
ing to two complexes M,, and N, is given by the following.

|Ext!(Mag, Neg) L., |
|Hom(M.q, N-q)|

[Moq] [N.q] = q1/2<M07N0>+1/2<M17N1> Z
Lag€elso(Cq)

[Lag] (6.10)

One objection to Definition 6.3.1 is that the category C, is not Abelian and so one may wonder
if it makes sense to take its Hall algebra. The category C, is however a full subcategory of the
larger Abelian category of Zy-graded complexes in arbitrary quiver representations. Moreover the
subcategory C, is closed under taking extensions of complexes since any extension of two projective
objects in A, is necessarily projective.

'More precisely there will be integral forms of the generic Hall algebra H which recover H, on setting t = 2.
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The larger category of Zs-graded complexes in arbitrary quiver representations is finitary Abelian
and so has a well-defined Hall algebra. That C, is closed under extensions implies that H(C,) is then
a subalgebra of this larger Hall algebra and in particular is well-defined.

As observed by Bridgeland in [ | the Hall algebra H(C,) is almost, but not quite the correct
one to recover the whole quantized enveloping algebra. If one tries to prove an analogue of Ringel's
theorem it quickly becomes apparent that the subalgebra generated by the elements [Kp,] and [KP ]
in H(Cy) should correspond to the one generated by the elements K; and K " in Uy(g). Here the
complexes Kp, and KPq are the acyclic complexes defined in Section 2.3.

In particular one is led to expect that the relations [Kp, [[ K}, | = 1 in H(Cy) should be the analogues
of the relations K;K; ' = 1in Uy(g). It is not true however that [Kp,][KF,] =1in H(Cq) and so
one must impose th|s requirement by hand.

Definition 6.3.2. For any ¢ a prime power define the Bridgeland-Hall algebra DH,, to be the quotient
algebra of H(C,) by the following ideal.

([Kp,J[Kp,] — 1| Py is projective in Ajy)

Armed with this modified Hall algebra, Bridgeland then succeeded in proving the following extension
of Ringel's theorem.

Theorem 6.3.1 (Bridgeland). There is an isomorphism of C-algebras U,(g) — DH,.
Proof. This is Theorem 4.9 in | ] O

As was the case of Section 6.2 later on in Chapter 13 we will discuss the existence of a generic
Bridgeland-Hall algebra from which one can recover the non-generic Bridgeland-Hall algebras DH,,.



Part Il

Generic Hall Algebras

Definition, Integral Forms, ¢ = 1 Limits and Hopf Algebra Structure






Overview

In Part Il we will be concerned with generic Hall algebras which were originally introduced by
Ringel | | in the case of simply-laced quivers.

The basic idea is to take the non-generic HaIIlaIgebra from Chapter 6, observe that their structure
constants are in fact Laurent polynomial in ¢2 and then formally take these polynomials to be the
structure constants of a C(t)-algebra. We will define the generic Hall algebra in Chapter 8. There
are some minor technical issues in doing so, however, and we deal with these first in Chapter 7.

The upshot of having a generic as opposed to non-generic Hall algebra is that one can talk of integral
forms of a generic Hall algebra. In particular the generic Hall algebra H has two natural integral
forms each with an interesting ¢t = 1 limit.

One integral form H., which we define in Chapter 9 has a product formula whose structure constants
count extensions of quiver representations. The other Hy;, which is dealt with in Chapter 10, has
structure constants counting flags of quiver representations. The main feature of these integral
forms is that the specialization at ¢ = 1 of H,, is a Poisson algebra while the ¢ = 1 limit of Hy; is
the universal enveloping algebra of a Lie algebra.

We end Part Il with Chapter 11 where we discuss Hopf algebra structures on generic Hall algebras.
We will use these Hopf algebra structures to form a doubled version of the generic Hall algebra called
its the Drinfeld double.

Almost all of the results and proofs in Part Il can be found in the literature in some guise or another,
though perhaps not presented in the narrative of integral forms that we will give.

39



Chapter 7

Background Material

In this chapter we recall various bits of background theory that we will need define and work with
generic Hall algebras.

We begin in Section 7.1 by collecting some elementary results that will allow us to pass from
statements regarding non-generic Hall algebras to analogous statements about generic Hall algebras.
An example of this might be how associativity of the generic Hall algebra will follow from that of
the non-generic Hall algebra.

Then in Section 7.2 we explain how various features of the categories A, are independent of g. Such
a feature might be Iso(.A,) the set of isomorphism classes of objects in A,. The rationale here is
that the underlying vector space of a Hall algebra is defined in terms of the set Iso(.A;) and we
would rather not be tied down to any particular choice of prime power g when defining the generic
Hall algebra.

In Section 7.3 we discuss the existence of Hall polynomials. These are polynomial versions of the
structure constants of the non-generic Hall algebra which will be used as the structure constants of
the generic Hall algebra.

Finally Section 7.4 contains a generic (i.e. polynomial) version of Riedtmann’s formula from Equa-
tion (6.5) along with an elementary corollary. As we shall see later on in Section 9.1 and Section 10.1,
generic Hall algebras have two natural integral forms. The importance of the generic version of
Riedtmann’s formula is that it gives the relationship between these two forms.

7.1 Passing From Non-Generic to Generic Algebras

In this section we recall some elementary facts that will allow us to pass from statements about
non-generic Hall algebras to ones about generic Hall algebras.

Lemma 7.1.1. If p;,py € C[t,t '] are two Laurent polynomials such that pi(w) = pa(w) for
infinitely many distinct w € C then p; = ps.

Proof. This follows from the fundamental theorem of algebra applied to t"(p; — p2) where the
exponent n is chosen so that t"(p; — p2) is an element of CJ[¢]. O
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Lemma 7.1.2. A rational function f € Q(t) with f(k) € Z for infinitely many distinct k € Z is
polynomial i.e. we have f € Q[t].

Proof. Suppose f = a/b is a non-zero rational function with a,b € Q[t] and moreover f has the
property that f(k) € Z for infinitely many distinct & € Z. The remainder theorem says that there
are polynomials p, ¢ € Q[t] such that a = pb + ¢ and either ¢ = 0 or ¢ # 0 and deg(q) < deg(b).

For the sake of contradiction suppose that ¢ is non-zero and write a/b = p+ ¢/b. Multiplying across
by a suitable non-zero integer, without loss of generality may assume that p € Z[t]. We then have
that ¢/b has the property that its evaluation at infinitely many distinct k£ € Z is an integer since a/b
has this property and p € Z[t]. However q/b — 0 as t — oo since deg(q) < deg(b). This implies ¢
vanishes at infinitely many points and so ¢ = 0 by Lemma 7.1.1. O

7.2 Simply-Laced Quiver Representations: Independence of F,

In this section we discuss how the categories A, are in some respects independent of ¢g. Recall that
for each ¢ a prime power A, is the category of quiver representations over the finite field IF,.

We first explain how Iso(.A,) the set of isomorphisms classes of objects in A, is independent of g. We
then discuss how the Grothendieck groups K (.A,) and various properties of quiver representations
are also independent of ¢.

Note that Gabriel's Theorem 2.2.2 and the Krull-Schmidt Theorem 2.2.1 imply that any repre-
sentation in 4, is determined uniquely up to isomorphism by a map ®* — Z prescribing the
multiplicities of its indecomposable direct summands. If we abuse notation by writing Iso(.A) for
the set of maps ®* — Z-( then we have canonical bijections between the following.

Iso(Ay) = Iso(A)
These bijections induce canonical bijections of the following form for any prime powers ¢ and ¢'.
Iso(Aq) = Iso(Ay)

We will write L € Iso(.A) for maps L : ®* — Z-. Abusing notation again we will frequently refer
to the elements L € Iso(A) as if were they genuine quiver representations. Should we need to, we
will write L, for a particular choice of actual quiver representation in 4, determined by an element
L € Iso(A).

The Grothendieck groups of the categories A, are also independent of ¢. Indeed by Equation (2.2)
we have the following canonical isomorphisms.

K(.Aq) ~ Ap
We thus have canonical isomorphisms of the following form for any prime powers ¢ and ¢'.
K(Ay) = K(Ag)

Motivated by this fact we will define K(A) to be the root lattice Ag of the simple Lie algebra
g. Moreover for any L € Iso(.A) we will define the class L in K(A) to be the image of L, under
K(Aq) >~ Ag.
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We will abuse notation and denote by (—, —), (—,—) and (—, —)skew respectively the induced
usual, symmetrized and skew-symmetrized Euler forms on K(A). By induced here, we mean that
we consider the usual, symmetrized and skew-symmetrized Euler forms defined on K(.A;) in Equa-
tion (2.3) and Equation (2.4) as forms on K (A) = Ag via the identification K(A,;) = Ag given in
Equation (2.2).

Something we will need to know is that various properties of quiver representations are independent
of ¢g. By this we mean that if L € Iso(.A) such that L, has a certain property in A, for a particular
q then L, has that property in A, for all prime powers g.

This will be true for any reasonable property such as being indecomposable, projective or simple. It
will then make sense to say things like I € Iso(A) is indecomposable which simply means that 1 is
indecomposable in any (therefore all) of the categories A,;. We will denote by S; and I, the elements
of Iso(.A) determining the simple and indecomposable objects \S; , and I, 4 of A, respectively.

Being the direct sum of two representations is also independent of ¢. Indeed letting M, N € Iso(A)
if we define M @ N to be the map M + N : & — Z~ then for any g a prime power by definition
we have M, ® N, = (M @ N), in the category A,.

We end by observing that for any M, N € Iso(.A) the following are also independent of g.
dimg, End(M,) dimp, Hom(M,, Ny) diquExtl(Mq, Ny)

That the two on the left are independent of ¢ can be found in the proof of Lemma 3 from | ].
That the Ext! dimension is independent of ¢ then follows from the fact that the Euler form is. We will
simply write dimEnd (M), dimHom(M, N) and dimExt! (M, N) for these dimensions respectively.

7.3 Hall Polynomials

In this section we diﬁcuss the existence of Hall polynomials. These are polynomials in ¢ which, when
evaluated at! ¢t = g2, give the structure constants of the non-generic Hall algebra from Chapter 6
(recall that every choice of finite field F, with g elements gave rise to a non-generic Hall algebra
H,). Hall polynomials are used to define generic Hall algebras which were originally introduced by
Ringel | | in the case of simply-laced quivers.

We briefly recall the notation used for various structure constants of the non-generic Hall algebra
from Section 6.2. We used the following notation for the subset of extensions of M, by NN, with
middle term isomorphic to L.

Ext!' (Mg, No)r, S Ext' (M, N,)

We also defined Fﬁ/“} . to be the set of subobjects NV, © L, such that the corresponding quotient
q>-'q

object is isomorphic to M,. Finally we wrote Aut(L,) for the automorphism group of L,. The

following proposition then establishes the existence of Hall polynomials.

Proposition 7.3.1 (Ringel). For any L, M, N € Iso(.A) there exists polynomials eﬁj\ har N, f[’(]\
and ay, in Q[t] such that for any ¢ a prime power we have the following. Moreover each of eﬁ“\,,
har N, f]\L/[’N and ay, in fact lie in the subalgebra Q[t?] = Q[t], that is are polynomial in 2.

1One might wonder why we evaluate ¢ at the square root of ¢, rather than at ¢. This is purely to accommodate

the ¢"/>Ma-Na> factor in Equation (6.8).
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D=

1
efrn(a?) = [Ext' (Mg, No)r,| han (g

— Lq
) = |FMq,Nq| ar(q

) = [Hom(My, Ny)|
) = |Aut(Lg)]

[SIE
D=

fJ\L/[,N(q

Proof. The existence of a;, and fﬁ[N is well know, see for example Lemma 3 and Theorem 4
of | ]. We also noted at the end of Section 7.2 that dimp, Hom (M, N,) is independent of q.
It follows that hps y = t24imHom(MN) has the correct specialization at ¢ = q% and is polynomial
in 2. We will show that the existence of eMN follows from the others. To this end consider the

following definition.

L. aMan

L
EM,N = fM,NhM,N

ar (7.1)
Setting t = q% in Equation (7.1) and using the non-generic version of Riedtmann’s formula given
in Equation (6.5) we have that eﬁLN(q%) = |Ext' (Mg, Ng)1,| for any g a prime power. Moreover
since eﬁ/[w is then an element of Q(¢) which satisfies the hypothesis of Lemma 7.1.2 we must have
that e]L%N € Q[t]. Finally since each of f]\L/[,Nv har,n, ay, an and ag, are polynomial in t2 then so
too is eﬁ/l,N- O

When L # M @ N another useful polynomial is the one counting the number of elements of the
following projectivization.

P(Ext! (Mg, No)r,) := Ext!'(My, No)r, /F (7.2)

The F-action here is the one coming from the F-vector space structure on Ext!(M,, N,) which
induces a free [ action on the set Extl(Mq,Nq)Lq when L, # My, ® N,. This motivates the
following definition.

P(e)frn = efn/(* = 1) (7.3)

It is easy to see that for any ¢ a prime power the evaluation of P(e)ﬁ/[’N att = q% gives the number
of elements in the projectivized set from Equation (7.2). Moreover it follows from Lemma 7.1.2 that
IP’(e)]LVLN is indeed polynomial i.e. is an element of Q[¢].

Remark 7.3.2. An important example of the automorphism polynomials from Proposition 7.3.1
is the case when we have an indecomposable I € Iso(A). From Lemma 3.19 of | | any
indecomposable quiver representation of a simply-laced quiver has a one dimensional endomorphism
algebra. It follows that ay = t> — 1.

7.4 Generic Riedtmann’s Formula

In this section we discuss the generic version of Riedtmann's formula from Equation (6.5) and a
useful corollary. For us the formula is important for understanding the relationship between two
integral forms of the Hall algebra that we shall introduce in Section 9.1 and Section 10.1.
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Proposition 7.4.1 (Riedtmann). For any L, M, N € Iso(.A) we have the following identity in Q][¢].

= o (7.4
M,N = :
’ hy N anvan

Proof. By the non-generic Riedtmann’s formula from Equation (6.5) we have that Equation (7.4)
holds when evaluated at t = q% for any g a prime power. The only thing preventing us from using
Lemma 7.1.1 to establish equality in Equation (7.4) is that a priori we don’t know that both sides
of Equation (7.4) live in Q[t]. However that fL \ € Q[t] follows from Proposition 7.3.1. That the
right-hand side of Equation (7.4) is an element of Q[t] follows from combining Lemma 7.1.2 and
Equation (6.5). O

Restricting Riedtmann’s formula to indecomposables we have the following useful corollary relating
the evaluation at ¢ = 1 of the flag counting polynomials f]\LLN with the evaluation at t = 1 of the
polynomials P(e)%; \; defined in Equation (7.3). We recall that we use overline notation to denote
the evaluation of a’polynomial att =1.

Corollary 7.4.1. Let Iy, 15, J € Iso(A) be indecomposable. Then we have the following identity.
—J ——J
f[l,fg = ]P)(e)fl,fg

Proof. By Remark 7.3.2 any indecomposable I has automorphism polynomial a; = t> — 1. Multi-
plying across by Ay, 1, in Riedtmann’s formula we have the following identity in Q[¢].

J

agy €r.I 7

h J — eJ — Ll2 Ple
ntafin = nn e = (€)1,1,

. —=J —J . .
Setting t = 1 we have f7, ;, =P(e);, ;, since hy, 1, = t2dimHom(/1,I2) O



Chapter 8

Generic Hall algebras

In this chapter we recall the definition and properties of generic Hall algebras which are due to
Ringel | |

The idea behind generic Hall algebras is to replace the structure constants of the non-generic Hall
algebra from Chapter 6 with the Hall polynomials we gave in Chapter 7 to obtain a Hall algebra
over C(t). The advantage of doing so is that our Hall algebras now depend on a formal parameter
t. We can then talk of integral forms of the generic Hall algebra and moreover set t = 1 to obtain
degenerate Hall algebras. We will postpone the discussion on integral forms to Chapter 9 and
Chapter 10.

8.1 Definition and Properties

In this section we recall the definition of the generic Hall algebra H due to Ringel in | ]. We
also give some elementary properties of H.

Definition 8.1.1. Define the generic Hall algebra be the C(t)-vector space H generated by the set
Iso(\A). The product of two basis elements £, and E corresponding to two quiver representations
is given by the following.

L
PR e
BEyEy =M N g, (8.1)

Lelso(A) hM’N

Proposition 8.1.1. H is a unital associative C(t)-algebra with unit element Ej.

Proof. First of all note that the product formula is a well-defined element of H since by Proposi-
tion 7.3.1 the structure constants are Laurent polynomials and in particular elements of C(¢). That
Ejy is the unit is obvious. For associativity let A, B and C' be quiver representations. Expanding the
product E4 EpFE¢ in the two different ways gives two expressions ZLEISO(A) \IJ’):EL for some Laurent

polynomials \IllL and \If%

By Proposition 7.3.1 the structure constants of Equation (8.1) evaluated at t = —|—q% give the
structure constants of the non-generic Hall algebra H, for each ¢ a prime power. Thus \IllL(q%) =

\Il%(q%) for each ¢ a prime power by associativity of H,. However by Lemma 7.1.1 if two Laurent
polynomials coincide at infinitely many points they must coincide. O
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We will apply this proof strategy again and again to pass from results about non-generic Hall algebras
to generic ones.

We note that the generic Hall algebra is graded as an algebra by the Grothendieck group. In particular
let H, = H be the subspace spanned by the elements E, of class L=ain K(A). Since the quiver
representations in Equation (8.1) have the property that L = M + N then we have the following
grading of H.

(—B H,., H, - Hﬁ - Ha+5 (8.2)
aeK(A)

In the literature the product on the generic Hall algebra usually takes a different form which we
now explain. Using the automorphism polynomials from Proposition 7.3.1 we first rescale the basis

vectors of H by letting X := Er/a;. Employing Riedtmann’s formula from Proposition 7.4.1 the
product in this basis becomes the following.

L
~ ~ 6 a/L ~ ~
XyXy = (AN MN Xp, = M b X 8.3
MXN Z Tt anpan F Z N XL (8.3)
Lelso(A) ’ Lelso(A)

The dichotomy between these two products should be understood as giving rise to two different
integral forms of the generic Hall algebra. That natural integral forms of Hall algebras arise in this
way is one of the core messages of this thesis and appears to be only partially appreciated in the
literature. We define and explore these integral forms in the following two chapters and in particular
show that their £ = 1 limits have very different flavours.



Chapter 9

Extension Counting Integral Form

This chapter is concerned with what we call the extension counting integral form H., of the generic
Hall algebra H. The name comes from the fact that the structure constants of H, in some sense
count extensions of quiver representations. The key property of this integral form is that its ¢t = 1
limit is a commutative Poisson C-algebra which we call the semi-classical Hall algebra. We will define
He, in Section 9.1 and then explain in Section 9.2 how its specialization at t = 1 is commutative
and Poisson.

0.1 Definition

In this section we define the extension counting integral form H, of H. This is the obvious integral
form in light of Definition 8.1.1.

Definition 9.1.1. Define the extension counting integral form of H to be the C[t,* !]-subalgebra
H.. spanned by the elements E. The product is given by the following.

L
(IS e
o
Lelso(A) M,N

Recalling Definition 4.1.1 of an integral form we need to verify that He, really is closed under the
product, free as a C[t,t~!]-module and has the property that the multiplication map induces an
isomorphism of C(t)-algebras C(t) ®cis-1] Hex — H.

The subalgebra property follows from the fact that the structure constants t<M’N>eﬁ47N/hM7N are
all Laurent polynomials by Proposition 7.3.1. That H, is free as a C[t,t ]-module follows from
the fact that the elements E, form a C(t)-basis for H. Finally it is easy to see that multiplication
induces an isomorphism of C(t)-algebras He, ®cy 17 C(t) — H.

Since we are dealing with the Hall algebras of an Abelian category we shall sometimes refer to He,
as the Abelian extension counting integral form to distinguish it from the extension counting integral
form of the Bridgeland-Hall algebra that we shall introduce in Section 15.1.
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9.2 The Semi-Classical Hall Algebra

In this section we discuss the semi-classical Hall algebra H.. This is the ¢ = 1 limit of the extension
counting integral form of H. In particular Hy. is shown to be a finitely generated commutative Poisson
algebra. This section is based on Bridgeland's work in | | where he showed that analogous results
hold for a type of Hall algebra called the motivic Hall algebra.

Definition 9.2.1. Define the semi-classical Hall algebra H,. to be the quotient algebra of H., by
the ideal (¢t —1).
The following proposition gives the key property of the semi-classical Hall algebra. We will use the

overline notation to denote the image of an element in Hg,.

Proposition 9.2.1. The semi-classical limit Hy. is a commutative Poisson C-algebra with product
and Poisson bracket given by the following.

. _ I — EyEn — ENE
EyEN = Eygn {EM,EX}SC:( e o M)

9.1
2(t—1) (9-1)
Proof. We establish the product formula first. The basic idea is to use the IF,-vector space structure
on Extl(Mq,Nq). Recall that the zero vector is given by the split exact sequence, addition by the
Baer sum and scalar multiplication of an extension class by the following formula.

-1
N, 2% L, 5 M) AeF

(9.2)
[Ng = M@ Ny — My] A=0

A-[Nq&LqiMq]z{

If L, £ M,® N, by Equation (9.2) we have that I acts freely on Extl(Mq,Nq)Lq and in particular
(¢ —1) divides [Ext' (M, Ng),|. When L # M @ N the rational function ef; n/(t* — 1) then has

the property that its value at ¢t = q% is an integer and so t? — 1 divides eﬁ/LN by Lemma 7.1.2.

Now the structure constants of the product Ey En are t<M’N>ehN/hM,N. By Proposition 2.2.3
we have e%(?\,]v = 1 and so evaluating these structure constants of Fj;En at t = 1 gives the value
1if L =M®®N and 0 otherwise. Thus the product on Hg. takes the following form which is clearly

commutative.
EyEN = EM(JBN

Finally by Proposition 4.1.1 the formula in Equation (9.1) endows Hy. with the structure of a Poisson
algebra. O

Note that the reason for the 1/2 in the Poisson bracket formula is that morally we are dividing by
t> — 1 instead of t — 1 and 7+ 1 = 2. However due to the term (tMN) — KNMY By oy in its
expansion, Ey Ex — EnxE)y is not always divisible by t2 — 1 and so dividing out by ¢t — 1 might
not land in He,.

A nice property of the interplay between homological algebra and Hall algebras is that H,. has
natural algebra generators given by the indecomposables. Indeed decomposing any representation L
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as a direct sum of indecomposable representations 1169”1 ®--- (—BI,?"’“ we have the following identity
in Hg..

- ——=n1i =N

By Theorem 2.2.2 a simply-laced quiver has up to isomorphism only finitely many indecomposable
representations and so we have the following corollary to Proposition 9.2.1.

Corollary 9.2.2. Hy, is a finitely generated polynomial C-algebra in the |®*|-many indecomposable

representations.

Note that one could also have defined at = —1 limit of He;. One would then get a skew-commutative
algebra with product given as follows.

EnEy = (1) N E gy EyEy = (-1)MYENEy



Chapter 10

Flag Counting Integral Form

In this chapter we consider what we call the flag counting integral form Hy; of the generic Hall
algebra H. The name here comes from the fact that the structure constants of Hy; in some sense
count flags of quiver representations. The key property of this integral form is that its ¢ = 1 limit,
which we refer to as the quasi-classical Hall algebra, is the universal enveloping algebra of a Lie
algebra. We will define Hy; in Section 10.1 and then explain in Section 10.2 how its specialization
at t = 1 is an enveloping algebra.

10.1 Definition

In this section we define the flag counting integral form Hy; of H. The form that the product on
Hy; takes is the more usual Hall product that one finds in the literature.

Definition 10.1.1. Define the flag counting integral form of H to be the C[t,¢ !]-subalgebra Hy,
spanned by the elements X;. The product is given by the following.

XyXy = HKMLNY Z fJ\L4,NXL
Lelso(A)

That Hy; is an integral form of H follows from the exact same reasoning as for the extension counting
integral form H.,. As with the case of H., we shall sometimes refer to Hy; as the Abelian flag
counting integral form to distinguish it from the flag counting form of the Bridgeland-Hall algebra
that we shall introduce in Section 15.2.

It is worth comparing the two integral forms H., and Hy;. We first note that there is an embedding
of C[t,t~!]-algebras given by the following.

Hep — Hyy, Ep, —ap Xy, (10.1)

However this is not an isomorphism as surjectivity fails. If we were to work over C(t) instead,
Equation (10.1) would become an isomorphism. This contrasts with the non-generic case that the
reader may be more familiar with where the analogue of the above map does induce an isomorphism
of C-algebras.
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10.2 The Quasi-Classical Hall Algebra

In this section we discuss the ¢ = 1 limit of the flag counting integral form of H which we will
call the quasi-classical Hall algebra Hy.. We will explain how the subspace of H,. spanned by
indecomposable quiver representations is a Lie algebra under the commutator bracket. Moreover we
will show that Hg is in fact isomorphic to the universal enveloping algebra of this Lie algebra. The
following material is due to Ringel | |

Definition 10.2.1. Define the quasi-classical Hall algebra H,. to be the quotient algebra of Hy; by
the ideal (¢t —1).

To see how Hy. is an enveloping algebra we will first place an elementary cocommutative bialgebra
structure on Hy.. That Hy. contains a Lie algebra of indecomposables and can by identified with its
enveloping algebra will then follow from standard results from the theory of bialgebras. That Hy. is
a bialgebra hinges on the following lemma which tells us how the Hall polynomials f]@’N behave on
setting t = 1.

Lemma 10.2.2. We have the following identity for any representations M and N.
—L1@®L =L =L
fun = Y Faomd i, (10.2)
M=MDM>
N=N1®N2
Here the summation ranges over all the ways that the representations M and N decompose as direct
sums M = M; ® My and N = N{ ® Ns.
Proof. This is Proposition 3 in | ] O

Using Lemma 10.2.2 we have the following proposition.

Proposition 10.2.1. The quasi-classical Hall algebra Hy. is a cocommutative C-bialgebra with the
following coproduct A and counit €.

AqC(YL) = Z XLl @YLQ SQC(YL) =070
L=L1DL>

Here the summation ranges over all the ways that the representation L decomposes as a direct sum
L=L&®L-.

Proof. Cocommutativity follows by definition of Ay, and the counit axioms are trivial to verify. To
see that Ay is an algebra homomorphism consider the following where we use Lemma 10.2.2 for
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the third equality.

AQC(XM)AQC(XN) = Z YMlyl\ﬁ ®YM2YN2

M=M1DM>
N=N1DN2

>0 ) v X ® X1,
M=M @Mz Li,L>
N=N1&N»

= Z fMl,N 2XvL1 X,
Li,L2

= > FrrnAge(X1)
L

= ch(XMYN)

O]

Let's explain how to use Proposition 10.2.1 to extract a Lie algebra from H,.. Recall that an element
x of a bialgebra is called primitive if its image under the coproduct is given by the following.

T IzR®1+1Qx

It is well known that the subspace of primitive elements of a bialgebra form a Lie algebra under the
commutator bracket. Using Proposition 10.2.1 it is easy to check that the primitive elements of H.
consists of the span of the elements X; where [ is indecomposable. This motivates the following
definition.

Definition 10.2.3. Define the quasi-classical Lie algebra 1. to be the subspace of Hy. spanned by
the elements X where I is indecomposable. The Lie bracket is the commutator bracket.

The quasi-classical Hall algebra is essentially determined completely by ng..

Theorem 10.2.2. The map U(n,.) — Hg. induced by the inclusion of the quasi-classical Lie algebra
is an isomorphism of C-bialgebras.

Proof. This follows via an application of the Milnor-Moore theorem. Recall that Milnor-Moore says
that any connected graded cocommutative bialgebra over C is isomorphic to the universal enveloping
algebra of its Lie algebra of primitive elements via the induced map as above. Connected here means
that the degree 0 part of the graded bialgebra is isomorphic to C.

In our case note that the grading on the generic Hall algebra H given in Equation (8.2) descends
to a grading of the quasi-classical Hall algebra Hy.. For connectedness by definition the degree 0
part is spanned by elements of the form E, where L = 0. However for dimensional reasons the zero
quiver representation is the only representation with such a class K (.A) and so the result follows by
Milnor-Moore.

The interested reader may wish to glance at the Theorem in Section 3 of | | for further
details. 0
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It is worth describing the structure constants of the quasi-classical Lie algebra ng.. It is easy to
see that the Lie bracket is determined by the following where I; and I» are indecomposable and

J .7 —-J
U =Inn—fnn

11Y72]qC = Z F{1J2YJ (103)

J indecomposable

It will follow from Proposition 18.4.3 and Theorem 18.4.1 that n,. is isomorphic to the nilpotent
subalgebra n of the simple Lie algebra g as given in Section 1.1.



Chapter 11

Hopf Algebras and Drinfeld Doubles

In this chapter we describe how to upgrade a slightly extended version of the generic Hall algebra
to a C(t)-Hopf algebra. Using this we will construct another natural C(¢)-Hopf algebra called the
Drinfeld double. In Chapter 14 of Part Il we will use the material in this chapter to give the generic
Bridgeland-Hall algebra the structure of a Hopf algebra.

11.1 Hopf Algebras and Drinfeld Doubles

We begin this section by defining a certain extended version of the generic Hall algebra. Using results
of Green | ] and Xiao | ] we will place two Hopf algebra structures on these algebras. We
then describe a Hopf algebra called the Drinfeld double which, roughly speaking, pieces these two
Hopf algebras together to form a new one.

It is not quite true that the generic Hall algebra H as defined in Definition 8.1.1 admits the structure
of a genuine Hopf algebra. One must first extend the algebra H by adding a copy of the group
algebra of the Grothendieck group C(¢)[K(.A)]. In the following definition we will denote by K|,
the element of the group algebra corresponding to a class a € K(A).

Definition 11.1.1. Define the extended Hall algebra to be H" := H®c(;) C(t)[K (A)]. The C(¢)-
algebra structure on H*? is determined by the fact that H and C(¢)[K(A)] are subalgebras along
with the following relation for any aw € K(A) and L € Iso(A). We recall that (—, —) here denotes
the symmetrized Euler form on K (.A) and was defined in Section 7.2.

K.E; = tDE K, (11.1)

The extended Hall algebra admits two slightly different Hopf algebra structures which we will wish to
differentiate between when defining the Drinfeld double. To this end we will denote by H<" another
copy of H*%. To avoid confusion we will write ¥ and K} in place of £y, and K, respectively in
H<". Recall also that we introduced the elements X := Er/ar, of H in Section 10.1. In particular
X1, € H*Y and we will denote by Y, the corresponding elements in HSC,

The following theorem due to Green endows HZ" and HSY with the structure of bialgebras. In
Theorem 11.1.2 we will extend these bialgebras to Hopf algebras by giving the antipode due to Xiao
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Theorem 11.1.1 (Green). The extended Hall algebras H>? and H<? have the structure of C(t)-
bialgebras with coproducts A given as follows.

A:H?? - g0 ®(C(t) H>° A:HSY  HgSO ®(C(t) H<0
Ep— >, MV VEuKg ®Ey Fp— Y, MV v Fn© Fu K]
M,Nelso(A) M,Nelso(A)
Ko— K, ®K, K;P—)K:;@K;

The counits ¢ are given by e(Er) = 610, e(Kq) =1 and e(FL) = 6r,0, e(K}) =1

Proof. We must check that the non-generic version proved in the literature implies the generic
version. Note that the claimed bialgebra structure on HS? coincides with the opposite bialgebra
structure on H?. We thus need only establish the result for H>".

The unit and counit axioms are trivial to verify. We are left check that the coproduct on H="
is an algebra homomorphism. It is immediate that A(K,Kg) = A(K,)A(Kg). Expanding the
expressions one can check that the equality of A(Ey En) and A(Ey)A(EN) is equivalent to the
following identity holding for each representations M, N, A, B € Iso(A).

L A B

M,N oA €4, Ay €B1.B
Zh fip= 2, t7% 1732>h = 2fA1 B, fAs.B, (11.2)
= hain i, A, A; BBy B

B1,B>

Using Reidtmann’s formula from Proposition 7.4.1 and multiplying across by a 4ap one can see that
Equation (11.2) is equivalent to the following identity.

L OMANQAGRB —2(A;1,Bs) pA B M N
ZfM NIAB B— = Z ¢~ 2, 2>fA1,A2fBl,BgfAl,Blng,BzaA1aA2aB1aBz (11.3)
L A1, Az
Bi1,B2
This is an identity in C[¢,#7!] and so holds by Lemma 7.1.1 if it holds on setting ¢t = —i—q% for all ¢

a prime power. However by Proposition 7.3.1 setting t = —i—q% in Equation (11.3) gives precisely the
identity that one can find proved in part (b) of the proof of Theorem 4.5. on page 124 of | . O

To treat the case of the antipode we will need some notation for the structure constants of k-fold
products. For each k& > 1 denote by [f]%1 Ly [e]ﬁ1 .1, the Laurent polynomials such that one
has the following.

S<LiLy)

Xp, - Xp, =ti<i Z[ ]ﬁl XL
> (Li,Ly)
Ey, ---FEp, =t~ ZBL17 L EL

Note that L = Ly + ... + Ly, in the Grothendieck group and that [f1F, = [el7, = d1,L,. Moreover
we have the following identities.

el 2o, 1, = D lelf rlelT, 1, (11.4)
T
(12 e = 2 N AT 1 (11.5)

N
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Theorem 11.1.2 (Xiao). The bialgebras H>? and H<? have the structure of C(t)-Hopf algebras
with antipodes S given as follows.
S :H>Y - H>Y
2 S (LiLy)

En o dno+ Y (D)) 2 = (€12, 0 12 K B (11.6)
k=1 L Ly,
7&0
Ko K
S - H<O N H<0
Fy e dno+ 2, (=D X0 leltyn A0 Fr(KE) ™ (11.7)
k=1 L La,...,.Lyg
#0

Ky o (K™

Proof. We will prove the antipode axioms for H*? with the case of HS? being entirely similar.
Denoting the multiplication by m and the unit morphism by 7. Recall that the antipode is required
to satisfy the following identities.

mo (id®S)oA=ioe mo(S®id)oA=ioce

We will prove the identity on the left as the one on the right is similar. The identity is easy to verify
when applied to K, so we need to show that m o (id ® S) o A(E4) = d4,0. Using the formula for
the coproduct from Theorem 11.1.1 with Ly = M we have the following.

0 (id®S) o A(Eq) = ). (oM 14 VB K gS(Ex) (11.8)
Lo,N

The large summation term over k > 1 appearing in the expansion of S(Ey) from Equation (11.6)
is unwieldy to work with. Let us write 01(N) and o2(NN) for the summations over k > 1 and k > 2
respectively. In particular the following identities hold for any N, A € Iso(A).

S(EN) =(5N70+01(N) (11.9)
S(Ea) = 2040 — K Ea + 02(A) (11.10)

We can reduce the RHS of Equation (11.8) by first splitting the summation into its Ly = 0 and
Ly # 0 terms and then substituting Equation (11.9) for S(Ex) and Equation (11.10) for S(E4).

0 (id®5S) o A(Ea) = K;3S(Ea) + Y. D b0 ™1t By K S(Ey)

N Lg+#0
= K3S(Ea) + (Ba—6a0) + > Y. tF0[f4 VEr Kgoi(N)
N Lg#0
=640+ K j02(A) + Z Z LN F1 VEL K oy (N) (11.11)
N Lg+#0

Thus if the sum of the last two terms in Equation (11.11) vanish then we are done. On the one
hand consider the last term of Equation (11.11). On substituting the £ > 1 summation term of
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Equation (11.6) for o1 (V) we obtain at the following equalities. Note we have replaced L by T in
Equation (11.6) and instead used L in the sum coming from the product of Er, and Er to ease
notation later on.

Z Z <Eo V) [f]éO,NELOKNal(N)

N Lg+#0
{Lo,NY1 £14 22<L“L> T N -1

:Z 2 O L, NELo Ky Z( Z < e]Ll,...,Lk[f]Ll,...,LkKN Er

N Lo#0 k=1 T Li,...L

#0
<L0,N>+2 S LiLy)

= Z ( Z Z = [e]zl,...,Lk [f]éo,N [f]gl,...,LkELOET

k>1 NT Lo,...

9&0
(Lo, N+T)+2 X (Li,L;)

=Y (=DF > >t = lelZorlelly . o A 2 N AT B (1112)

k>1 L.N.T Lo,.... Ly

#0

On the other hand substituting the & > 2 summation term from Equation (11.6) for o32(A) in
K ;02(A) and reordering the summation over k we get the following.

pI@b )
Kj02(4) = Z Z 2 = lelz,,...o. LT, B
k=2 L Li,..L
%0
. 2 Sk )
- Z(_l) Z 2 t lelZ,...0. Lf] Lo, L EL (11.13)
k>1 L Lo L

%

Using Equation (11.4) and Equation (11.5) along with the fact that N = T = Ly + ... + Ly it
follows that the sum of Equation (11.12) and Equation (11.13) vanishes. O

We will now construct the Drinfeld double of H> and HS?. A reference for the details on the

construction of the Drinfeld double is Section 3.2.1, Section 3.2.2 and Section 3.2.3 of | ]
The definition of the Drinfeld double depends on a certain pairing. In the case of Hall algebras
Green | ] defined such a pairing P between H>? and H<" as follows.

P:H'QH > C(t), P(EaKa, FpKj) =t“Pay 045 (11.14)

To form the Drinfeld double one needs to ensure that the pairing is skew-Hopf pairing. A skew-Hopf
pairing is one which satisfies the following requirements for all z,y € H*® and a,b e HC.

P(1,a) = ¢(a) P(x,ab) = P(A(z),a®b)
P(z,1) = e(x) P(zy,a) = P(z @y, A%(a))
Here A denotes the opposite coproduct on HSY and we have extended the pairing to tensor

products via P(x ® y,a ® b) = P(x,a)B(y,b). One can check that Green's pairing is indeed
skew-Hopf.

Theorem 11.1.3 (Drinfeld). The vector space H=° ®c() HS? has the structure of a C(t)-Hopf
algebra determined by the following requirements.
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(i) The antipode is an anti-homomorphism and H?® and H<? are Hopf subalgebras via their
inclusions.

HZO N HZO ®(C(t) H<O7 ror®l
HSO — H=0 ®(C(t) HSO, a—>1®a

(i) For any two elements 2 € H*® and a € HS? we have (z ® 1)(1 ® a) = x ® a along with the
following.

P(xl,al) . (1 ®a2)(3:2 ) 1) = P(l’g,ag) -1 aq (11.15)

Here the subscripts 1,2 denote Sweedler’s notation.

Proof. The details of this are standard and rely on P being a skew-Hopf pairing. See for example
Section 3.2.1, Section 3.2.2 and Section 3.2.3 of | | O

There is a slightly more useful variant of the Drinfeld double where one formally sets each K, ® 1
to be the inverse of 1 ® K. Recall that a Hopf ideal is an algebra ideal in the kernel of the counit
which is also a coalgebra coideal and is preserved by the antipode.

Definition 11.1.2. Define the reduced Drinfeld double to be the quotient Hopf algebra of the
Drinfeld double H*® ®¢(;) H<? by the Hopf ideal (K, ® K — 1).



Part Il

Generic Bridgeland-Hall Algebras

Definition, Hopf Algebra Structure, Integral Forms and Quasi-Classical Limit






Overview

Part 11l is concerned with generic Bridgeland-Hall algebras and their integral forms. Generic Bridgeland-
Hall algebras are the generic versions of the algebras we discussed in Section 6.3. The existence of
these algebras was established by Deng and Chen | ] for the case of categories of simply-laced
quiver representations.

We will begin in Chapter 12 with the background material required to define Bridgeland-Hall algebras.
In particular we will recall from [ | the existence of Hall polynomials for Bridgeland-Hall algebras.
We also discuss how various properties of the categories of complexes C, are independent of g.

In Chapter 13 we define the generic Bridgeland-Hall algebra DH. Following [ | we will develop
some properties of these algebras and in particular explain how DH is isomorphic to the quantized
enveloping algebra U;(g). We also introduce new basis elements of DH and establish a product
expansion in terms of these. This expansion will be used in calculating the Poisson structure on the
semi-classical Bridgeland-Hall algebra in Part IV.

Chapter 14 deals with a natural Hopf algebra structure which one can place on DH. This is achieved
by establishing a generic version of results due to Yanagida | ] which says that DH is isomorphic
to the Drinfeld double of the (extended) Abelian Hall algebra that we had in Chapter 11. The Hopf
algebra structure on the Drinfeld double then induces a Hopf algebra structure on DH.

The material in Chapter 15 concerns integral forms of DH. As in the Abelian case there will be two
natural integral forms of DH. One integral form DH,, has product counting extensions while the
other DH; roughly speaking has product counting flags. Deng and Chen introduced DHy; in | ]
and to our knowledge we are the first to consider DH,, from the Hall algebra perspective.

In Chapter 15 we will also define the quasi-classical Bridgeland-Hall algebra DH,. which is the t = 1
limit of DHy;. Deng and Chen showed that DH,. is isomorphic to U(g) and used this fact to recover
the whole simple Lie algebra g from Hall algebras.

Both DHy; and DH,y. seem tricky to work with and we will not develop their properties in great
detail. This contrasts with the semi-classical Bridgeland-Hall algebra DH,. which is the ¢ = 1 limit
of DH,. The main feature of DHy, is that it is the algebra of functions on a Poisson-Lie group.
We will fully explore DH. from a Hall algebraic point of view in Part V.

Finally we end this part with Chapter 16 where we prove the first main result of this thesis: the
extension counting integral form of the Bridgeland-Hall algebra is isomorphic to the Poisson integral
form of the quantized enveloping algebra.
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Chapter 12

Background Material

In Chapter 12 we recall various bits of background theory that is needed to define and work with
generic Bridgeland-Hall algebras. The results contained here are the Zy-graded complexes analogues
of those in Chapter 7.

In Section 12.1 we start off this chapter by explaining how various features of the categories of
complexes C, are independent of g. We then discuss the existence of Hall polynomials for Bridgeland-
Hall algebras in Section 7.3. The existence of these polynomials in the case of simply-laced quivers
was established by Deng and Chen in | |.

12.1 Z,-Graded Complexes: Independence of [,

In this section we discuss how the categories C, are independent of ¢, just as we did for the categories
Ag in Section 7.2. Recall that for each ¢ a prime power C, is the category of Zs-graded complexes
in projective objects in A,. The material here is from [ |

We begin by explaining how Iso(C,) the set of isomorphisms classes of objects in C, is independent
of g. We then describe how various properties of Zo-graded complexes are also independent of q.

Note that we observed in the commentary following Theorem 2.3.1 that any complex in C, is
determined uniquely up to isomorphism by a map @[ [(Zy x Q¢) — Z=o. If we abuse notation by
writing Iso(C) for the set of maps @ [ [(Za x Qo) — Zx=( then we have canonical bijections between
the following sets.

Iso(Cy) = Iso(C) (12.1)
These bijections induce canonical bijections of the following form for any prime powers ¢ and ¢'.
Iso(Cq) = Iso(Cy)

We will write L, € Iso(C) for maps L : ®[[(Z2 x Qo) — Z=p. Abusing notation again we will
frequently refer to the elements L, € Iso(C) as if were they genuine Za-graded complexes. Should we
need to, we will write L, for a particular choice of an actual complex in the category C, determined
by the element L, € Iso(C).
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For any representations L, P € Iso(.A) with P projective we will define elements C,, C}, Kp and
K% to be the elements of Iso(C) which for any ¢ a prime power determine the objects Cr,, Czq,
Kp, and Kl*gq of C, that we defined in Section 2.3.

As for quiver representations, we will need to know that various properties of Zs-graded complexes
are independent of ¢. By this we mean that if L, € Iso(C) such that L., has a certain property in
Cy for a particular g then L,, has that property in C, for all prime powers g. This will be true for
any reasonable property.

Given two complexes M,, N, € Iso(C) we define their direct sum M, @ N, to be the following map.
M, + N, : @H(ZQ x Qo) = Z=o

We then have that the property of being a direct sum of complexes is independent of ¢ since
(Me@Na)g = M,g@® Nog for any g a prime power. By definition then, any complex L, decomposes
uniquely as follows.

L.=Cs®@C5®Kp® K

We define the degree zero and degree one homology objects of L, to be Hy(L.) := A and Hy(L,) :=
B respectively. We have H;(L,); = H;(Lsg) for i = 0,1 and all ¢ a prime power. In particular it
follows that property of being an acyclic complex is independent of ¢.

For a complex L, € Iso(C) we define its class in the Grothendieck group K(A) to be given by
= A— B. For example we have Cp = L and C’z — —L. We also note that the shift functor

involution 1 Cg = Cg4 induces an involution = : Iso(C) — Iso(C). This sends the complex L, to the

shifted complex L;=Cp@®Ci®Kg®K}. We have (Log)* = (LY), for any g a prime power.

The projectives appearing in minimal projective resolutions, as defined in Equation (2.5), are in-
dependent of ¢. If L € Iso(.A) is a representation then there exists projectives P, @ € Iso(A)
such that for each ¢ a prime power there is a minimal projective resolution of L, of the form
P, — Qr, — L4 The statement of this fact can be found at the end of page 22 in | ].

We end by observing that Lemma 3.5. (1) of | | says that for any M., N, € Iso(C) the following
dimensions are independent of q.
dimp, Hom(M.g, Nag)

Consequently we will simply write dimHom(M,, N,) for these dimensions.

12.2 Hall Polynomials for Bridgeland-Hall Algebras

This section is concerned with Hall polynomials for Bridgeland-Hall algebras. We begin by estab-
lishing the existence of such polynomials due to Deng and Chen [ ]. We then discuss some new
interpretations of these polynomials and prove some simple properties which to our knowledge have
not been considered in the literature.

We briefly recall the notation used for various structure constants of the non-generic Bridgeland-Hall
algebra from Chapter 6. We used the following notation for the subset of extensions of the complex
M,q by N.g whose middle term isomorphic to L.,.

Ext! (Mo, Neg) L.y S Ext! (Mag, Nog)
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We also defined F]Lw‘q .. to be the set of subobjects N,; S L., such that the corresponding quotient
eg;iVeq

object is isomorphic to M,,. Finally we wrote Aut(L,,) for the set of automorphisms of L,,. The

following proposition then establishes the existence of Hall polynomials for Bridgeland-Hall algebras.

Proposition 12.2.1 (Deng, Chen). For any complexes L., M,, N, € Iso(C) there exists polynomials
(’1{[\ hate,N.s f]f[‘.\. and ay, in Q[t] such that for any ¢ a prime power we have the following.

1 1
et v, (42) = [Ext!(Mag, Nog)L., hate,N, (q2) = [Hom(Mag, Neg)|
1 L, 1
fion (@) = [E37 v, ar.(q?) = [Aut(L.,)|
Proof. This follows from Theorem 3.11, Corollary 3.12 and Lemma 3.5. in | ] O

Using Proposition 12.2.1 we can derive the existence of some other polynomials. In Part IV these
polynomials will be integral to describing the Poisson and associated Lie algebra structures of semi-
classical Bridgeland-Hall algebras.

Recall from the end of Section 2.3 that for any A, B, M, N € Iso(A) and any g a prime power
we have the set Hom(My, Ny)a,, B, of morphisms M, — N, with kernel A, and cokernel B,. By
Equation (2.11) for any ¢ a prime power we have an isomorphism of sets of the following form.

Ext' (C,, C%,) Loy = Hom(Mg, No) a, 5, (12.2)

Here L, € Iso(C) is the complex Cy ® Cr®Kpy,, ® KE‘QNB where the acyclic direct summands
are uniquely determined by the requirement that Py; = Pya @ P4 and Qn = Qnp @ Qp. Note
that the notation Py 4 signifies that Py 4 is determined uniquely by Pys and Pa. Similarly Qnp is
determined uniquely by Qx and @p.

It follows then from ProPosition 12.2.1 that the following defines a well-defined polynomial which,
when evaluated at ¢t = ¢2, counts the number of morphisms M, — N, with kernel A, and cokernel
B,.
AB ._ L.
Py = €Chict (12.3)
When (A, B) # (M, N) we also have the following polynomial which counts the number of elements
in the projectivization of the set Hom(Mg, Ny)a, B,

P(h) 3 o= M/ (2 = 1) (12.4)

The F-action on Hom(My, Ny) a,,B, is given by the scaling of morphisms M, — N,. This action
is free away from the zero morphism (which is the only morphism with kernel M, and cokernel
Ny). That Equation (12.4) really does give a polynomial when (A, B) # (M, N) then follows from
Lemma 7.1.2.

The polynomials P(h)f/?v in certain special cases have the following useful interpretation in terms
of the Hall polynomials which count flags of quiver representations.
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Lemma 12.2.1. For any A, B, M, N € Iso(.A) with M and N indecomposable we have the following
two identities.

A B
P(h)M?N = f]]\\f/{A P(h)(])\}[,]v = fg,M

Proof. We will establish the right-hand identity with the proof of the other being analogous. Recall
from Remark 7.3.2 that the automorphism polynomial of an indecomposable quiver representation
is 2 — 1. We thus have the following identity.

P(h) 3 = hon/ (2 = 1) = Ry fan (12.5)

Let ¢ be a prime power and set ¢ = q% in Equation (12.5). By definition the evaluation at ¢ = q%
of the polynomial h(J)\fN counts injective homomorphisms M, — N, with corresponding quotient
object B,. Dividing out by the number of automorphisms of M, we get the number of subobjects
M, = N4 with quotient B;. However this is exactly the evaluation of fé{M att = q%. The result
then follows by Lemma 7.1.1. O



Chapter 13

Generic Bridgeland-Hall Algebras

This chapter concerns the generic Bridgeland-Hall algebra DH due to Deng and Chen | ].
Generic Bridgeland-Hall algebras are the generic versions of the algebras we discussed in Section 6.3.

We start off this chapter in Section 13.1 by defining the generic Bridgeland-Hall algebra DH using
the Hall polynomials from Chapter 12. We then develop some properties of generic Bridgeland-Hall
algebras in Section 13.2 regarding subalgebras and tensor product descriptions.

In Section 13.3 we introduce new basis elements of DH and establish a product expansion in terms of
these elements. This expansion will be used in calculating the Poisson structure on the semi-classical
Bridgeland-Hall algebra in Part IV.

Finally we end with Section 13.4 where we explain how DH is isomorphic to the quantized enveloping
algebra Uy(g). This is the generic version of Bridgeland's Theorem 6.3.1 and is due to Deng and
Chen. We also give a slight modification of this isomorphism and show that it intertwines a certain
shift functor induced involution of DH and the involution ¥ on U.(g) from Equation (5.6).

13.1 Definitions

This section is concerned with the definition of generic Bridgeland-Hall algebras. These are the
generic counterparts of the Bridgeland-Hall algebras that we defined in Section 6.3. The existence
of generic Bridgeland-Hall algebras for categories of simply-laced quiver representations is due to
Deng and Chen | ]

We begin with the following generic version of Definition 6.3.1.

Definition 13.1.1. Define H(C) to be the C(t)-vector space generated by the set Iso(C). The
product of two basis elements [M,] and [N.] corresponding to two complexes is given by the

following.
Le

NS S e
[MN.] = (Mo Noreit iy 37 Mt ] (13.1)
L.€Iso(C) Me,Ne

The unit element [0.] is given by the zero complex 0,.
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Note that there is not a genuine category C whose Hall algebra we are taking here. However, in
light of Equation (12.1), the set of isomorphism classes of each category of Zs-graded complexes C,
is canonically isomorphic to the set Iso(C) that was defined in Section 12.1. Thus it is as if there
is an actual category C which gives the Hall algebra in Definition 13.1.1.

Proposition 13.1.1. H(C) is a unital associative C(t)-algebra.

Proof. The product is a well-defined element of H(C) since by Proposition 12.2.1 the structure
constants are Laurent polynomial and in particular elements of C(¢). Associativity then follows by
the same kind of argument that we had Proposition 8.1.1 in the Abelian case. That the unit is [0,]
is obvious. O

As we observed in Section 6.3 the algebra H(C) is not quite the correct algebra to take. A problem
arises for example when one attempts to recover the whole quantized enveloping algebra Ui(g). In
particular the subalgebra of H(C) generated by the elements [Kp ® KZ‘?] given by acyclic complexes
should correspond to the subalgebra of U:(g) generated by the elements K; and K;l. However
[Kp] and [K{)] are neither invertible nor is [K'p] the inverse of [K}]. To remedy this one must
formally invert the elements [Kp @ K] and then set [Kp] to be the inverse of [K}].

One needs to take care in order to invert the elements [Kp @ K| as H(C) is a non-commutative
algebra. It is easy to check that [M,][N.] = [M. @ N.] in H(C) for any two acyclic complexes M,
and N,. The following lemma will then allow one to formally invert the elements [Kp @ K{)| and
indeed is very useful in its own right.

Lemma 13.1.2. If L, € Iso(C) and P € Iso(A) is projective then we have the following identities
in H(C).
[Kp[L] = €PLO[L, @ Kp] [L[Kp] = t DL, @ Kp]
[KEI[L.] = t=PLIL, @ K}] [LJ[Kp] = £5D(L, @ K]

Proof. This is an easy calculation using the acyclicity of the complexes Kp and K7}, which were
given in Equation (2.6). O

Lemma 13.1.2 ensures that the Ore conditions are satisfied for localizing H(C) at the set of ele-
ments corresponding to acyclic complexes {[M.] | M, acyclic}. Accordingly we make the following
definition.

Definition 13.1.3. Define the generic localized Bridgeland-Hall algebra to be the following localized
algebra.

DHZ()(: = H(C) [[Mo]il | M, acyclic]
Unfortunately we would still not have that [Kp] is the inverse of [K}]. We will introduce and

discuss some elements of DHj,. and then formally set [Kp]| to be the inverse of [K}]. Let a be
a class in K (A) which we decompose into P — Q where P,Q € Iso(.A) are projective. We then
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define the following elements of DH;,. which we note do not depend on the choice of decomposition
a=P—Q.

Ko = [Kp][Ko] ! K= [Kp][Ka)

We observe that the elements K, and K} were used in a different context to define generic extended
Hall algebras in Definition 11.1.1. We will see in Proposition 13.2.2 that no confusion should arise
from this an abuse of notation. Note that it follows from Lemma 13.1.2 that the following identities
hold in DHy,. for any L, € Iso(C) and class « in K(A).

Ko[L] = L[, K, K*[L.] = t~@L[L]K* (13.2)

By definition the elements [L,] form a basis for H(C). Using the fact that a complex L, decomposes
as a direct sum of the foom C4 ® C; ® Kp @ Ké it is easy to see from Lemma 13.1.2 that the
elements K,K3[Ca @ C%] form a basis for DHjo.. Moreover using Equation (13.1) one can see
that the product in this basis has structure constants which are Laurent polynomials.

We may now define the following algebra which is the correct one for recovering the whole quantized
enveloping algebra.

Definition 13.1.4. Define the generic (reduced) Bridgeland-Hall algebra DH to be the quotient
of DHy,. by the ideal (K K} — 1). We will almost always refer to DH simply as the generic
Bridgeland-Hall algebra.

It is instructive to compare Definition 13.1.4 with that of Definition 11.1.2 for the reduced Drinfeld
double. We will show in Chapter 14 that these two algebras in fact coincide.

Similar to the case of DHj, it is easy to see that the elements K,[C4 ® C};| form a basis for
DH. Note also that the shift involution * : C — C induces well-defined C(t)-algebra involutions of
both DHy,. and DH given by [L.] — [L¥]. We will abuse notation and also denote both of these
involutions by #. For example under this involution we have K, — KZ.

We end this section by pointing out that we could also have defined DH directly to be the quotient
of H(C) by the following ideal.

DH := H(C)/(|Kp][K}] — 1 | P projective) (13.3)

The reason we have opted not to take this short-cut, which bypasses the definition of DH,,, is that
we will need to use the algebra DHy,. in Section 14.1.

13.2 Properties of Generic Bridgeland-Hall Algebras

In this section we explain some of the structure of DH;,. and DH in terms of their subalgebras. The
results in this section are generic versions of ones proved by Bridgeland in | |

Our definition of the subalgebras of DH;,. and DH require the following special elements of DHy,,.
and DH associated to any L € Iso(A).
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EL - t<ISL7£>K_pL [CL] FL = t<I:)L,-t/>KiﬁL [Cz]

(13.4)
Xy, = FEp/ag, Yy = Fr/ar,

(13.5)

Here recall from the end of Section 12.1 that P, € Iso(A) is one of the projectives determining a
minimal projective resolution P, — Qr, of L, for any g a prime power. Note that under the shift
involution we have Ey, — FT,.

By abuse of notation we have already used E; and Fp, to denote basis vectors of two copies of
the generic Hall algebra H (sitting inside the extended Hall algebras HZ? and HSC as defined in
Definition 11.1.1). The following proposition shows that no confusion may arise.

Proposition 13.2.1 (Bridgeland).

(i) DHy,. contains two copies of the group algebra C(¢)[K(.A)] as subalgebras. One is given by
the span of elements K, while the other coincides with the span of the elements K.

(ii) DHy,. contains two copies of the generic Hall algebra H as subalgebras. One is given by the
span of elements £, while the other coincides with the span of the elements F7.

Proof. Using the shift involution it suffices to prove the assertions for the span of the elements
K, and Ej, only. Using acyclicity of the complexes involved one can check that the elements K,
all commute with each other. Moreover a straightforward calculation, exactly as in Lemma 4.3
of | |, shows that the product of the elements E, as defined in Equation (13.4) coincides with
the product on H as defined in Equation (8.1).

The only thing left to check is that the elements K, and Ej are linearly independent in DHj,..
Working through the definitions of Ore localization one can check that linear independence of the
elements K, in DHy,. follows from the fact that the elements [ Kp| in H(C) are linearly independent
by definition.

To see that the elements Ey in DHy,. are linearly independent note that taking homology of a
complex M, determines a linear map DH;,. — H as follows.
[M.] N t7<M17HE(—]\Z.)>EHO(M.)

Linear independence then follows from the fact that under this map the elements E, in DHy,. are
sent to the basis elements Ey, in H. ]

Recall that in Definition 11.1.1 we defined the extended Hall algebra which was denoted by H="
and alternatively HS?. These were isomorphic as algebras (though differed as Hopf algebra). The
following proposition realises these two copies as subalgebras of the generic localized Bridgeland-Hall
algebra.

Proposition 13.2.2 (Bridgeland). DHj,. contains two copies of the extended Hall algebra as subal-
gebras. One copy H>" coincides with the C(t)-subspace spanned by elements of the form by E; K,
the other copy HSY is the span of the elements FLKE.
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Proof. This is the generic version of Lemma 4.6 in [ ] O

We will see subsequently in Chapter 14 that the generic localized Bridgeland-Hall algebra in fact
coincides with the Drinfeld double that we defined in Chapter 11. The following proposition should
be viewed as the first step towards proving this statement.

Proposition 13.2.3 (Bridgeland). Multiplication induces the following isomorphism of C(¢)-vector
spaces.

H? @y HS > DHioe,  EaKo ® FpKj — EaKoFpK}
Proof. This stated in the commentary preceding Equation 5.3 in | ] O

Since the set of elements of the form EK, and FpK} give a basis for H*? and H<" respectively
then Proposition 13.2.3 implies that the set of elements of the form EAKQFBKE give a basis for
DHloc-

In the following proposition we use Proposition 13.2.1 to identify the generic Hall algebra H with
the two subalgebras of DH spanned by the elements E;, and F7, respectively.

Proposition 13.2.4 (Bridgeland). Multiplication induces the following isomorphism of C(t)-vector
spaces.

H ®c(t) Ct)[K(A)] ®c(t) H — DH, FAQK,QFgw— Ey,K,Fp
Proof. This is Lemma 5.4 in [ | O

Similar to the case of DHy,., the above proposition implies that the Bridgeland-Hall algebra has a
C(t)-basis given by the elements of the form E4 K, Fp.

13.3 An ldentity

In this section we introduced certain new basis elements of DH. We then prove a product expansion
formula in terms of these elements. This formula will be used in Section 17.2 to calculate the Poisson
algebra structure on the semi-classical Bridgeland-Hall algebra that will be introduced in Part IV.
The contents of this section are to our knowledge new and do not appear in Bridgeland's original

paper [Bril3].

Recall from Equation (13.4) and Equation (13.5) that we defined the following elements DH which
were slight modifications of the elements [C] and [C}] respectively.

E; = t(ﬁL,ﬁ>K71§L [CL] Fp = t<PL,£>KﬁL [Cz] (13.6)

Here Cp, is the complex given by a minimal projective resolution P;, — ()7, of the representation
L. Now for any two representations A, B € Iso(.A) we introduce the following modification of the
element [Cy @ C};| which generalizes E4 and Fp.

Dap:i= t(PAfPB,A—B>KﬁB_ﬁA [Ca®CE] (13.7)
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Indeed we observe that Do = E4 and Do g = Fg. A useful fact about these elements is that the
shift involution * of DH sends D4 g to Dp A.

We will now show that products of the form Ej;Fn and Fy Ejs have natural expansions in terms of
the elements D4 p. The structure constants of these expansions involve the polynomials hﬁ ~ that
we defined in Section 12.2. Recall that these polynomials count morphisms M — N with kernel A
and cokernel B. We observe that the Grothendieck group classes of the representations involved are
related via M — A = N — B.

Proposition 13.3.1. For any M, N € Iso(A) we have the following identities! in DH.

EyFy= Y (BNt i, «Dap (13.8)
A,Belso(A)

FNEM = 2 t<B NM N>hB?/[ N— BDAB (139)
A,Belso(A)

Proof. We begin by showing that Equation (13.9) follows from Equation (13.8). To see this we first
apply the shift functor involution to Equation (13.8) and use the fact that D} p = Dp,a. Switching

M with N, A with B and using M — A = N — B one arrives at Equation (13.9).

It remains to establish Equation (13.8) which we do via a lengthy expansion of the product EjFiy.
We begin with the following identity in DH where n; = (Py;, M) + (PN, N) — (PN, M).

EyFy = t<PIW My+{Py, N>K [CM] [C}‘H
=™ KPN—PAI [CM] [CN]

Here we have used Equation (13.6) to substitute for Ej; and Fy and Equation (13.2) to skew
commute the element Kp past [C]. Expanding the product [Ciy[[C}] using Equation (13.1)

we obtain the following where no = ny + <15M, QN> + <QM, PN> — 2<PM, QN>

EyFy =tKp 5 ). é;VI’C*[L] (13.10)
L4€Iso(C)

To obtain Equation (13.10) we have used the fact that dimHom(Cy, C,) is the same as dimHom(Pyz, Qn)
and moreover dimHom(Py, Qn) = (P, @n) since Py and @ are projective.

We will now rearrange Equation (13.10) by summing over the homology objects of the complexes

L, rather than the complexes themselves. Recall from Equation (12.3) that by definition eé ox =
A,B

by where A and B are the two homology objects of the complex L,. Moreover from the discussion
at the end of Section 2.3 we have that L.=Cy®C5®Kp,,, (—BKQ where Pyr4 and Qnp are
the unique projectives satisfying Pyya @ Pa = Py and Qnp @ Qp = QN. We may thus sum over
A, B € Iso(A) in Equation (13.10) to obtain the following identity.

BEyFy =t"Kp 5 > Wia[Ca@Ch@Kp,, @Ky, ]
A,Belso(A)

L An interesting feature of these identities is that the coefficient of the A = B = 0 term is given by Green's pairing
that was defined in Equation (11.14).
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Using Lemma 13.1.2 to pull out the term Kp,, , (—BK&NB we obtain the following equation where
n3 =ny — (Pya—Qnp, A— By and v = Py — Py + Pya — Qup.

ExFy= Y tmhy K [Ca®Ch) (13.11)
A,Belso(A)

Now we have the following simplifications of v and n3. The proofs of these are messy and so we
will postpone them to Lemma 13.3.1 for ease of reading.

ng = (N — B+ Py — Py, N — N V= BN+ Py Py
Substituting these identities into Equation (13.11) and using the definition of the elements D4 p

from Equation (13.7) we obtain Equation (13.8) as desired. O

It remains to establish the following lemma.

Lemma 13.3.1. In the notation from the proof of Proposition 13.3.1 the following identities hold.

ng = (N — B+ Py — Py, N — Ny = B—N+Py—Pa

Proof. We first observe that we have the following relationships in K(.A).

Pya=Py—P B=Qp-P
(13.12) R 0 =05~ Fs (13.13)
Ong=0QN - QB N =Qn — Py

Now using Equation (13.12) and Equation (13.13) we can establish the case of 7 as follows.

’YZPN—pM+pMA—QNB
= Py — Py + (Py — Pa) — (Qn — Q)
=(Qp—Pp)— (Qn — Pn) + Pg — P4
= B — N + PB — PA
For ng we will first simplify no. Using the facts that M = QM - PM and N = QN — PN one can
check that we have the following.
ng = <PM7M> + <PN3N> - (pN,M) - <pM>QN> + <QM,PN> (13.14)
= (Pyy — Py, M — N) '

Substituting Equation (13.14) into n3 and using Equation (13.12), Equation (13.13) and the fact
that A — B = M — N we establish the case of ng as follows.
ng = (Pyy — Pn,M — N) —(Pya — Qnp, A — B)
=(Py— Py, M —N)—(Pyy— Ps— Qn + @5, M — N)
=(Qn— Py —Qp+Pg+ Py~ Pg, M —N)
(N B+ Pa— Py, Nl — N
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13.4 Relationship with Quantized Enveloping Algebras

In this section we give the generic version of Bridgeland's realization of the whole quantized en-
veloping algebra from Theorem 6.3.1. We also give a slight modification of this isomorphism and
show that it intertwines the shift functor involution of DH and the involution ¥ on U(g) that we
introduced in Equation (5.6).

The following theorem is due to Deng and Chen [ | in the generic case and Bridgeland | ]
in the non-generic case.

Theorem 13.4.1 (Bridgeland, Deng, Chen). There is a C(t)-algebra isomorphism R : U;(g) — DH
given by the following.

X; — Xg, Y; > —tYg, K K;L_l

1
3

Proof. This is Theorem 5.5 in [ | coupled with the facts that Xg, = Eg,/as, and Ys, =
ng/asi. O

We now introduce a modified version of the isomorphism R from Theorem 13.4.1 and show that it
intertwines the shift functor involution * of DH and the involution ¥ on U(g) that we introduced
in Equation (5.6). The following does not appear in the literature to my knowledge.

We begin with the following provisional algebra involution w of the quantized enveloping algebra
which we stress is not the same as the involution 3 given in Equation (5.6).

w(X;) ==Y, w(Y;) = —-X; w(k;) = K1

A glance at the generators and relations description of U.(g) from Definition 5.1.1 shows that w
does indeed give an algebra involution. Using w we then modify Bridgeland’s isomorphism to get a
new isomorphism R : U;(g) — DH given by R := o Row. The map R is indeed an isomorphism
since each of the algebra homomorphisms in its definition are. One can check that R is determined
by the following.

R(X;) = tXs, R(Y;) = —Y5, R(K;) = Kg, (13.15)

A remark we will use in later chapters is that it is not hard to see that the isomorphism R descends
to an isomorphism between the positive part of the quantized enveloping algebra Uy(n,) and the
copy of the generic Hall algebra H in DH spanned by the elements of the form Xj. Recall from
Equation (5.6) that the algebra involution X : Uy(g) — U,(g) was defined via the following.

E(X;) = —tY; N(Yi) = —t X S(K;) = K; ! (13.16)
We end this section by showing that R intertwines the two involutions ¥ and .

Proposition 13.4.2. The following is a commutative diagram of C(t)-algebra isomorphisms.

Ui(g) — Uy(g)

L

DH —* - DH
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Proof. This is immediate on using Equation (13.15), Equation (13.16) and the fact that X = Yg,,

V¢ = Xg, and Kf = K_g. O



Chapter 14

Hopf Algebra Structure

In this chapter we endow the Bridgeland-Hall algebra with the structure of a C(t)-Hopf algebra.
We do so by giving an isomorphism between DH and the (reduced) Drinfeld double of the extended
Abelian Hall algebra from Chapter 11. The Drinfeld double Hopf algebra structure then induces
such a structure on DH. The results in this section follow from work due to Yanagida [ | who
identified Bridgeland-Hall algebras with Drinfeld doubles in the non-generic case.

The reason why this chapter is important for us is that in Part IV we will see that the Hopf algebra
structure on DH descends to a Hopf algebra structure on the semi-classical Bridgeland-Hall algebra
DHg.. This in particular ensures that the spectrum of DHy, is an algebraic group.

14.1 Drinfeld Double and Hopf Algebra Structure

We start off this section by showing that the generic localized Bridgeland-Hall DHy,. coincides with
the Drinfeld double defined in Theorem 11.1.3. We then show that this identification descends to an
isomorphism between the (reduced) Bridgeland-Hall algebra DH and the reduced Drinfeld double.
We will end with an explicit description of the resulting Hopf algebra structure on DH induced from
that of the reduced Drinfeld double. The reference for this section is [ ]

In Proposition 13.2.3 we identified DH;o. with H*?®c(;) H<" as vector spaces. Moreover the latter is
precisely the vector space underlying the Drinfeld double (Hopf) algebra we had in Theorem 11.1.3.
Via this identification we thus a priori have two different algebra structures on DHj,.. The following
theorem says that these two algebra structures in fact coincide.

Theorem 14.1.1 (Yanagida). The Drinfeld double algebra structure on H=° ®c(t) H<Y coincides
with the Hall algebra structure on DH;,. under the following vector space identification from Propo-
sition 13.2.3.

H*? ®@c () HS” — DHy, EaKo® FpKj — EsK FpKj (14.1)

Proof. Recall from Theorem 11.1.3 that there are two conditions determining the Drinfeld double
algebra structure. We must verify that under Equation (14.1) these conditions are also satisfied by
the algebra structure on DHj,..
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The first says that H? and HS" are subalgebras of DH,,.. This was shown in Proposition 13.2.2.
The only non-trivial requirement from Theorem 11.1.3 to check then is that under Equation (14.1)
we have that Equation (11.15) holds in DHy,.. Recall that Equation (11.15) says that for all z € H>°
and a € H" the following identity holds in H*? ®¢ ;) H<’.

P(w1,a1) . (1 ®a2)(az2 ® 1) = P(:L’Q,ag) I ®a1 (14.2)

Set z = E4K, and a = FpK} in Equation (14.2) and substitute the formula for Green's pairing
from Equation (11.14) and the coproduct A in Theorem 11.1.1. Applying Equation (14.1) to
Equation (14.2) we are then required to check that the following holds in DH,..

Z t<A1’A2>+<B1’BQ>fA41,A2fgl,BQP(EAlKA2+a7 FB2KE)FBIKEQ+,8EA2KQ (14.3)
A1,A2
Bi1,B:

— Z t<A1’A2>+<Bl’B2>f£1,A2fgl,BQP(EA2Kaa Fp, ngJrﬁ)EAlKAeraFB?KE (14.4)
A1,A
B1,By

Using Equation (13.2) and Equation (11.14) we have the following identities.

K} | B, = =D KE By, K (14.5)
K, oFp, = t"B29K, Fp K, (14.6)
P(EaK ;. Fp,K}) = t42 0D P(Ey, | Fp,) (14.7)
P(Ea, Ko, Fp, K% ) = @B p(E,  Fp)) (14.8)

Ba+p

Substituting Equation (14.5) and Equation (14.7) into Equation (14.3) and Equation (14.6) and
Equation (14.8) into Equation (14.4) and then cancelling the factor t(a’B)KaKE the equality of
Equation (14.3) and Equation (14.4) is equivalent to the following.

S {AAD BB A B P(Ea,, Fp,)Fp, K} Ea, (14.9)
A1,A2
B1,B1

= Z #{A1,A42)+(B1,B2) ¢4 ,Agfgl,sz(Esz Fg,)Ea, K ; Fp, (14.10)

1
A1,A2
B1,B1

The non-generic version of exactly this equation can be found stated in Equation (2.1) of [ ]

and is also proved there. To see why the non-generic case implies the generic case we will use the
usual trick.

Note first that by definition P(Eys, Fx) = anmdn,n. We also observed in Section 13.1 that DHj,,
has a set of basis vectors of the form K., K§[Cyr @ Cn| and moreover the structure constants of the
product on DHy,, in this basis were Laurent polynomials. Using Equation (13.4) and Equation (13.5)
it follows that any product of elements of the form E, F, K and K* can be expressed as C[t,t7!]-
linear combination of the basis vectors of DH,,...

The previous paragraph implies that Equation (14.9) and Equation (14.10) can be both be ex-
pressed as a C[t, t_l]—linear combination of the above basis vectors of DH;,.. Moreover the Laurent
polynomial coefficients in these expansions are expressions in Hall polynomials.
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Since Yanagida checked the equality of Equation (14.9) and Equation (14.10) in the non-generic
case, Proposition 7.3.1 and Proposition 12.2.1 then imply that the corresponding Laurent polynomial
coefficients in the expansions of Equation (14.9) and Equation (14.10) above coincide on setting
t = ¢'/2 for all ¢ a prime power. Lemma 7.1.1 says then that such Laurent polynomials must coincide
and this establishes the result. O

We also have a reduced version of the above theorem. Recall from Definition 11.1.2 that reduced
Drinfeld double was given by the quotient of the Drinfeld double by the (Hopf) ideal (K, ® KX —1).
Under the identification with DHj,. this ideal is sent to (K,K% — 1) which precisely the algebra
ideal defining the (reduced) Bridgeland-Hall algebra in Definition 13.1.4.

Corollary 14.1.1 (Yanagida). The (reduced) Bridgeland-Hall algebra DH coincides with the reduced
Drinfeld double as algebras.

The Bridgeland-Hall algebra DH was defined in Definition 13.1.3 only as an algebra. The upshot of
combining Corollary 14.1.1, Theorem 11.1.3 and Definition 11.1.2 is that DH has the structure of a
C(t)-Hopf algebra.

Corollary 14.1.2. The Bridgeland-Hall algebra DH is a C(t)-Hopf algebra with coproduct A, an-
tipode S and counit € given by the following formulas.

A :DH — DH ®(C(t) DH

Epe Y. MWl By Ky ®En
M, Nelso(A)

Fpe > (Mgl L Fy@FuK g
M, Nelso(A)

K, — Ko ® K,

S :DH — DH
K Scbalyy u
By o a0+ Y, (-DF )] Z '~ el 2y - By B
kl>1 L L17 7
Fy = dp0+ Y (DR Z Nt pr 0 - FLE g
k=1 L Ly,...
;éo
K,— K_,

The counit is determined by Er, — 410, Ff, +— 610 and K, +— 1.



Chapter 15

Integral Forms and Quasi-Classical
Limit

This chapter deals with two natural integral forms of DH along with the quasi-classical Bridgeland-
Hall algebra. These two integral forms will roughly speaking be the Bridgeland-Hall versions of
the extension and flag counting integral forms of H that we had in Part Il. The quasi-classical
Bridgeland-Hall algebra is the analogue of the quasi-classical Hall algebra from Section 10.2.

In Section 15.1 we define DH,, the extension counting integral form of DH. This is defined in a
completely analogous way to how H., was defined in Chapter 9. In spite of its simple definition this
integral form does not seem to have been considered before in the Bridgeland-Hall algebra setting.

Later on in Chapter 16 we will give the first main result of this thesis by proving that DH., is
isomorphic to the Poisson integral form of the quantized enveloping algebra. The ¢t = 1 limit of
DH,, is what we will call the semi-classical Bridgeland-Hall algebra and will be explored in-depth
from a Hall algebraic point of view in Part IV.

Section 15.2 concerns DHy; the flag counting integral form of DH. Unlike DH, this integral form
is not defined in an entirely analogous way to how Hy; was in Chapter 10. We will explain what goes
wrong and then give the correct definition of DHy; due to Deng and Chen | ]. In this chapter we
will also explain how the flag counting integral form is isomorphic to Ufes(g) the restricted integral
form of the quantized enveloping algebra.

Finally Section 15.3 is a short section on the quasi-classical Bridgeland-Hall algebra. This is the
t = 1 limit of DHy; and is isomorphic to the universal enveloping algebra U(g).

15.1 Extension Counting Integral Form

In this section we define and discuss the extension counting integral form DH,, of DH. This is the
Zo-graded version of the extension counting integral H,, of the generic Hall algebra H that we had
in Section 9.1. The main feature of DH,,, as we shall see in Section 17.1, is that its semi-classical
limit is the algebra of functions on a Poisson-Lie group.

Definition 15.1.1. Define the extension counting integral form of DH to be the C[t,¢~!]-submodule
DH,., spanned by the elements of the form [M,].
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We should make sure that DH,, really is an integral form, as defined in Definition 4.1.1. Since by
Definition 13.1.1 the structure constants of the product on H(C) (in the basis given by the elements
[M.]) are Laurent polynomials, then by Equation (13.3) we must have that DH,, is closed under
the product.

To see that DH,, is free as a C[t,¢ !]-module note that by Lemma 13.1.2 the C[t, ¢ !]-span of the
elements [M.] coincides with the C[t,t!]-span of the elements K,[Cys @ C%]. Freeness follows
from the fact which we observed in Section 13.1 that the latter elements form a C(t)-basis of DH.
Finally multiplication clearly an induces and isomorphism C(t) ®cp; ;-1] DHez — DH.

Remark 15.1.1. Setting t = q% in DH,, recovers the non-generic Bridgeland-Hall algebra that we
had in Chapter 6. In particular for any ¢ a prime power we have the following isomorphism of
C-algebras.

DH.,/(t — q2) —» DH,,  [M.] > [M.y] and t > ¢2 (15.1)

We make some remarks as to why this is true. Comparing Definition 6.3.1 and Definition 6.3.2
with Definition 15.1.1, Definition 13.1.1 and Equation (13.3) shows that DH., and DH, have
completely analogous definitions. That Equation (15.1) is an isomorphism of algebras follows from
the following two facts. First the Hall polynomials from Proposition 12.2.1 determining the product
on DH,, specialize at t = g2 to give the structure constants determining the product on the non-
generic Bridgeland-Hall algebra as given in Equation (6.10). The second is that since DH,, is free

as a C[t,t !]-algebra then DH,,/(t — q%) is isomorphic to DH, as a C-vector space.

In Chapter 16 we will show that DH,, is isomorphic to the Poisson integral form of the quantized
enveloping algebra UP?¥%(g). A nice feature of the Hall algebra approach to integral forms is that
the definition of DH,, is almost tautological. This contrasts with the definition of UF°¥*%(g) in
Section 5.5 which relied on the non-trivial machinery of Lusztig's braid group action which we had
to introduce in Section 5.2.

How does He, relate to DH.,? Recall from Definition 9.1.1 that the extension counting integral
form H,, of the generic Hall algebra H was defined as the C[t,¢ !]-span of elements of the form
Ejr. In Section 13.2 we observed that the Bridgeland-Hall algebra DH contains two copies of the
generic Hall algebra H as C(t)-subalgebras. One was given by the C(t)-spans of elements of the
form Ejs. Applying the shift involution gives the other which is spanned by the elements Fiy. Since
the elements E; and Fiy both lie in DH,, we thus have that DH., contains two copies of H, as
C[t,t~!]-subalgebras.

The triangular decomposition of DH from Proposition 13.2.4 descends to one of DHg;. In the
following we use the previous paragraph to consider H, as a subspace of DH., in two ways.

Proposition 15.1.2. Multiplication induces the following isomorphism of C[t, ¢ !]-modules.

Hez ® (C[t; til] [K(A)] ® Hem - DHem; Eyx® Ka Q@Fp— EsK,F5B

Proof. This follows by identical reasoning to the proof of Lemma 4.8. in | ] O
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We end by observing that the C(t)-Hopf algebra structure on DH descends to a C[t,t~!]-Hopf
algebra structure on DH,,. To see this first note that elements of the form Ej;, Fy and K, all
lie in DH¢,. By Corollary 14.1.2 the Hopf algebra structure on DH was determined by the values
of the coproduct, antipode and counit on these elements. Since the formulas in Corollary 14.1.2 for
these operations all have Laurent polynomials as coefficients then the Hopf algebra structure must
descend to DH,,.

15.2 Flag Counting Integral Form

In this section we define DHy; the flag counting integral form of the Bridgeland-Hall algebra. The
correct definition was given by Deng and Chen in [ | who used it to recover the whole simple
Lie algebra g from DH. The main feature of DHy; is that it is isomorphic to the restricted integral
form of the quantized enveloping algebra and that its ¢ = 1 limit is isomorphic to U(g).

Unfortunately the flag counting integral form of DH does not seem particularly easy to work with
in contrast with the extension counting integral forms of H and DH or indeed the flag counting
integral form of H. Another trait of DHy; is that it is not defined in the obvious way that one would
expect.

We begin by explaining what goes wrong with the obvious attempt to define a flag counting integral
form of DH. We then discuss the correct definition and explain how it is isomorphic to the restricted
integral form of the quantized enveloping algebra. The reference for this section is [ ].

Recall that in the Abelian case that there were two sets of basis vectors of the generic Hall algebra
H given by the elements E and X, := Ey/ay, respectively. The C[t,t!]-span of the former gave
rise to the extension counting integral form of H while the span of the latter gave the flag counting
one.

Similarly for Bridgeland-Hall algebras it was the C[t,¢~1]-span of the elements [L.] which defined
the extension counting integral form of DH,,. The obvious way to try and define DHy; then is to
define it to be the C[t,t~!]-span of the elements [L.]/ar, .

This isn't quite the correct definition however. To see why, let's provisionally define DH’ﬂ to be the
C[t,t~!]-submodule of DH spanned by the elements [L.]/ar, where L, € Iso(C). It turns out that
this subspace is too large and includes certain elements corresponding to acyclic complexes which
prevent it from having a good ¢t = 1 limit.

In particular to see what goes awry first note that if P € Iso(A) is projective indecomposable then a
simple calculation shows that ax, = apcx = t2 — 1. Now if DH’fl was an integral form of DH then

in particular the following element would lie in DH’ﬂ.

[Kpl[Kp] _ [Kp] [Kpl 1

arp agy  (E-D(E-1) (B 1)

Obviously one is going to run into problems on setting t = 1 and so DH’ﬂ would not have a good
t =1 limit.

The correct way to define the flag counting integral form of DH is to take the smaller C[t,¢7!]-
subalgebra generated by the two copies of Hy; along with the copy of C[t,t 1][K(A)].
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Definition 15.2.1. Define the flag counting integral form of the Bridgeland-Hall algebra to be the
C[t,t ']-subalgebra DH, generated by the elements X, Y7, and K;Fl where L € Iso(A) and
1<i<r '

We will now discuss a smaller set of generators of DH; before establishing that it really is an integral
form of DH. In particular let's show that DHy; is also generated by the elements Xgr, Ygr and
K+1 where £ > 0 and 1 <4 < r. Note this claim is equivalent to showing that Hy; is generated
by the elements Xsk which we establish using the following argument due to Reineke which can be

found in Lemma 4. 4 of | ]

First choose an ordering of vertices 1,...,r of @ in such a way that ¢ > j if there is an arrow
i — j. Such an ordering is always possible for a simply-laced quiver. One can then check that any
L € Tso(A) then has a unique filtration of subobjects 0 = Ly € Ly € --- € L, = L such that
Li/Lx—1 = S,lc’“ for any 1 < k < r and where [}, € Z~g. It follows that X, is equal to XSzl - 'XSZJ
up to some power of ¢ and this establishes the claim. '

Now the fact that DHy; really is an integral form of DH follows from the following proposition along
with the fact that U*S(g) is an integral form of Uy(g).

Proposition 15.2.1 (Deng, Chen). The isomorphism R : U;(g) — DH restricts to an isomorphism
of C[t,t!]-algebras between Uf°*(g) and DHy;.

Proof. Recall from Definition 5.4.1 that the restricted integral form of the quantized enveloping
al%ebra is defined as the C[t,t '] subalgebra URes(g) of Uy(g) generated by the divided powers
i anng with the elements K. Moreover recall from Theorem 13.4.1 that the isomorphism
R Ut( ) — DH was given by the followmg.
X; — X, Y; > —tYs, K?leaKgl
The result then follows from the fact that, up to a factor of ¢, we have that X( ) is equal to XSk
and Y( )is equal to Ygu. 0

We remark that the above proof also holds for the modified isomorphism R : U;(g) — DH that we
introduced in Section 13.4. It is also easy to see that R : U;(g) — DH restricts to an isomorphism
R : Uy(ny) — H and that this isomorphism further restricts to a C[t,t !]-algebra isomorphism
between Uf**(n ) and Hy;.

Note that we have used the fact that U*®*(g) is an integral form of U;(g) to establish that DHy,
is an integral form of DH. By contrast in Section 15.1 we saw that the extension counting integral
form of DH was tautologically an integral form.

It would be nice to find an elementary proof of the fact that DHy; is an integral form using the
language of Bridgeland-Hall algebras and without invoking the isomorphism between DH and Uy(g).
However after some thought we could not find such a simple proof.

On the other hand, a point worth making is that Propositionl 15.2.1 was easy to prove. That the
analogous statement to Proposition 15.2.1 holds between UP°%%(g) and DH,, is more involved and
is the subject of Chapter 16.
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15.3 The Quasi-Classical Algebra

Following Deng and Chen, in this short section we define the quasi-classical Bridgeland-Hall algebra
and establish that it is isomorphic to U(g). Unlike the semi-classical Bridgeland-Hall algebra which
is the subject of Part IV we will not explore the structure of the quasi-classical Bridgeland-Hall
algebra in great detail and include this section only for completeness. The reference for this section

is | ]

The quasi-classical Bridgeland-Hall algebra is defined as follows. It may be instructive to compare
Definition 15.3.1 to the definition of Uy in Section 5.4.

Definition 15.3.1. Define the quasi-classical Bridgeland-Hall algebra DH,,. to be the quotient al-
gebra of DHy; by the ideal generated by t — 1 and the elements KSZ_ — 1 where 1 <7 <r.

We then have the following theorem which allowed Deng and Chen to recover the whole simple Lie
algebra g from the generic Bridgeland-Hall algebra. In Chapter 18 we will give an alternative way
to recover this Lie algebra using the semi-classical Bridgeland-Hall algebra.

Theorem 15.3.1 (Deng, Chen, Lusztig). There is an isomorphism of C-algebras U(g) — DHg.
given by the following where 1 < i < r.

Proof. This follows from Proposition 15.2.1 due to Deng and Chen along with Lusztig's Theo-
rem 5.4.1. O



Chapter 16

Identification of Integral Forms

In this chapter we establish the first main result of this thesis: the isomorphism R : Uy(g) —» DH
from Section 13.4 descends to an isomorphism between UF%*%(g) the Poisson integral form of Uy(g)
and DH,, the extension counting integral form of DH.

One of the merits of this result is that DH., admits an almost tautological definition whereas
UPeiss(g) is non-trivial to define, depending as it does on the construction of quantum root vectors
via the machinery of Lusztig's braid group action. Moreover it seems to us that Uf"m(g) is slightly
messy to work with whereas proofs involving DH,, and its ¢ = 1 limit seem more straightforward.

Let us give an outline of the proof method and then explain which steps correspond to which
sections. Recall that the Poisson integral form UP?%%(g) was defined in Definition 5.5.1 as the
C[t,t ']-subalgebra of U;(g) generated by the rescaled quantum root vectors Eg, Fj along with
Kiil. The rescaled quantum root vectors were defined via Lusztig's braid group action and moreover

depended on a choice of reduced decomposition of the longest element of the Weyl group wy.

On the Bridgeland-Hall algebra side of things we have similar elements which are naturally assigned
to each positive root 3. Indeed Gabriel's Theorem 2.2.2 says there is a unique indecomposable Iz
associated to each 8 and so we have corresponding elements Ej, and Fj, in DH. Moreover one
can show that the elements £y, Fy, and K;{il generate DH,, as a C[t,t !]-subalgebra of DH.

The idea for the proof then is to identify the elements Eg and Fg and U(g) with (a scalar multiple
of) Er, and Fy, in DH under the isomorphism R : U;(g) — DH. This will involve making a suitable
choice of reduced decomposition of wy. It will then follow that Ufojss(g) and DH,, are isomorphic.

Since the quantum root vectors Eg and Fj are defined via Lusztig's braid group action on Uy(g),
the way to understand where they map under R involves understanding how this braid group action
behaves on the Bridgeland-Hall algebra side of things. It is known from | | | and
[Gor] that in the non-generic case the braid group action corresponds to certain isomorphisms of
Bridgeland-Hall algebras induced by BGP reflection functors.

Thus in Section 16.1 we will give an overview of these reflection functor induced isomorphisms,
extending the details to the generic case in the process. Using this technology, in Section 16.2 we
then describe the proof that UF“**%(g) and DH,, are isomorphic as C[t, ¢ ']-algebras.

83
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16.1 Reflection Functor Induced Isomorphisms of DH

In this section we discuss how BGP reflection functors induce isomorphisms of generic Bridgeland-
Hall algebras. In addition we will describe how these isomorphisms relate to Lusztig's automorphisms
T; that were defined in Section 5.2. The results in this section are due to Gorsky [Gor] and Ringel

[Rinoo].

Let Iso(A@<i>) c Iso(A) be the subset consisting of representations of @ which do not have S;
as a direct summand. It follows from Theorem 2.4.1 that for each sink ¢ of ) the BGP reflection
functors induce mutually inverse bijections of the following form.

(16.1) o7 : Iso(A9%)) — Tso(A%9()) o7+ Tso(A79()) — Tso(A9GY)  (16.2)

Here UZ-@ is the quiver obtained from Q by reversing all arrows incident at 7. In particular the above
bijections take indecomposables to indecomposables and for any L € Iso(.A) the class of JZL(L) in
K(A) is s;(L) where s; denotes a simple reflection.

We then have the following theorem, due to Gorsky in the non-generic case, relating BGP reflection
functors to Bridgeland-Hall algebras.

Theorem 16.1.1 (Gorsky). Let i be a sink for @ or equivalently a source for 0:Q. The following
determine mutually inverse C(t)-algebra isomorphisms with the property that 7,7! o + = % o 7,71
where = is the shift involution on DH.

7; : DH(Q) — DH(0;Q) T DH(0;@) — DH(Q)
ESi N t_lFSiKS'. ESi — tFSiK_SVi
Env = Eg Ey = EUZN
Ko — Ksi(a) Ko = Ksi(a)

Here M and N are required to have no S; as a direct summand and s; are simple reflections.

Proof. We first note that 7; and 771 as defined above induce the following well-defined C[t,¢~1]-
linear maps on restricting to the extension counting integral form of the Bridgeland-Hall algebra.

i : DH,.(G) — DH,.(0:G) 77!t DHey(04G) — DHer(Q)

We will prove that these give mutually inverse isomorphisms of C[t,t!]-algebras with the result
following by tensoring along C(t) ®cyy -1 (—)-

It is easy to check using the properties of the bijections in Equation (16.1) and Equation (16.2) that
the formulas defining 7; and 771 give mutually inverse linear maps. Moreover if one of the maps
is an algebra homomorphism then the other one is necessarily is. The only thing we need to check
then is that 7; : DH,y (@) — DHe,(0;Q) is a C[¢t, ¢ 1]-algebra homomorphism.

Theorlem 9.27 and Proposition 9.23 of [Gor] says that the same formulas for 7; above except with
t = ¢2 give a C-algebra isomorphism of non-generic Bridgeland-Hall algebras DH,(Q) — DH,(0;Q).
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Recall Remark 15.}.1 says that DH,, specializes to DH, on setting_’t = q%. YVe thus have that for
any z,y € DH.,(Q) the image of T;(zy) — Ti(z)Ti(y) in DH,(0;Q)/(t — q2) vanishes for all ¢ a
prime power. Combining this with Lemma 7.1.1 on the vanishing of Laurent polynomials along with
the fact that DH,, (0;Q) is free as a C[t,¢ ]-module gives the result. O

We would like to show how the above isomorphisms relate to Lusztig's automorphisms 7T; of the
quantized enveloping algebra which were defined in Section 5.2. To do so we will need to know the
value of 7; on certain elements. For i a sink and any vertex j # i we have the following.

Ti(Xs,) =t 'Y, Kg Ti(Xs,) = X, +g, (16.3)

This follows by rescaling the formulas defining 7; in Theorem 16.1.1 by dividing across by ¢ — 1.
Indeed by definition X; := E7/(t?> — 1) and Y7 := F;/(t?> — 1) since for any I indecomposable we
have a; = t* — 1. The only thing we need to be sure of is that if j # i then o} S; is in fact
indecomposable. However this follows from the fact that the bijection Equation (16.1) preserves
indecomposables. To prove Theorem 16.1.2 below we will need the following key Lemma due to
Ringel.

Lemma 16.1.1 (Ringel). Let i be a source for 0:Q. Then for i # j the following identity holds in

DH(c; Q).
Xprg = >, (DX Xg XU (16.4)
ptrv=—ai;
Proof. A proof of this can be found in Proposition 3 of [ ]. Ringel uses slightly different notation.

Define (X ) := t~4ml+e(L) X where (L) = dimEnd(L). The identity proved in [ | is then
the following.

Kpegy= >, (P rxPxe XY (16.5)

ptrv=—a;;

Since Jij is indecomposable and our quiver is assumed to be simply-laced then it has a one
dimensional endomorphism algebra. Moreover by the properties of the bijection in Equation (16.1)
the class of aij in the Grothendieck group is §j — aijﬁi and so its dimension is 1 — a;;. It is easy
to see from these observations that Equation (16.4) is equivalent to Equation (16.5). O

Armed with the above identities we can prove that, under the modified isomorphism R between
U(g) and DH introduced in Equation (13.15), the isomorphisms 7,*' commute with Lusztig's
automorphisms T;—rl.

Theorem 16.1.2. Let i be a sink for @ Then the following diagrams commute.

Ug) —Z s Ui(g) Uig) —— Uia)
lR R R R
DH(Q) _Ti, DH(0;Q) DH(c;Q) L DH(Q)
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Proof. Commutativity of the right-hand diagram follows from that of the left-hand one. We need
to check then that this diagram commutes when applied to the generators X, Yz and Kj of the
quantized enveloping algebra where 1 < k < 7.

We can cut down on the number of calculations required as follows. First recall that by Proposi-
tion 13.4.2 we have Ro ¥ = % o R where X is the involution of U;(g) defined in Equation (5.6).
Moreover ¥ commutes with the T; by Proposition 5.3.1 and * commutes with the 7; by Theo-
rem 16.1.1. It is easy to see that these facts imply that we need only check the statement for the
generators X, and Kj.

We will use the formulas in Theorem 5.2.1 for Lusztig's braid group action T;. The definition of R
can be found in Equation (13.15). Theorem 16.1.1 and Equation (16.3) tell us the action of 7;. For
the convenience of the reader we reproduce the relevant formulas here. For any vertices k,j with
J # ¢ we have the following.

R(Ky) = Kg Ti(Kg,) = K5, Ti(Ky) = K(ay)

R(Xk) = tXSk Z(Xsl) = tilYSiKSi Tz(Xz) = -V, K;

R(Y:) = =Y, Ti(Xs,) = X e, LX) = Y DX
}L+V:7a¢j

For the generators K; and X; we then have the following identities.

Tio R(Ky) = Ti(Kg) = K, (g, Tio R(X;) = Ti(tXs,) = Ys,Kg,
= R(Ksi(ak)) = :(—Y,Kz)
:ROT’i(Kk) :ROE(Xi)

For the generators X; where j # i the following equalities hold.

Tio R(X;) = Ti(tXs,) = tX + 5;

= 2 (—1)“t”+1Xi(V)XjXZ»(“) [Lemma 16.1.1]
ptrv=—a;;
_ Z (_1)utf,u+(1faij)Xi(V)Xin(#) [V = —pu— aij]
ptrv=—a;;
= > (DR XX M) [1—a;=v+1+y
ptrv=—a;;
UJ

16.2 The ldentification

In this section we prove that UI?%(g) the Poisson integral form of the quantized enveloping algebra
is isomorphic to DH,, the extension counting integral form of the generic Bridgeland-Hall algebra.
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We will first give a relationship between the quantum root vectors E3 and Fj3 of U.(g) and the ele-
ments £y, and F, of DH where I are indecomposables corresponding to positive roots 5. We then
use this relationship to establish our result. In this section Proposition 16.2.2 and Theorem 16.2.3
are Bridgeland-Hall algebra versions of results due to Ringel [ | in the Abelian case.

Recall from Section 5.2 that the definition of the quantum root vectors E and Fj3 depended on
a choice of reduced decomposition of wqg the longest element of the Weyl group. This contrasts

-

with the fact that the elements Ej, and Fj, are canonical to DH(Q®). This apparent discrepancy

is hidden in the fact that one has fixed a choice of orientation for Cj In [ | Lusztig gives the
following way to choose a reduced decomposition of wg depending on a quiver Q.

Proposition 16.2.1 (Lusztig). Let Cj be a simply-laced quiver. Then there exists a sequence of
vertices i1,...,1y of @), where N is the number of positive roots, with the following properties.

1. 41,...,in is a source sequence, that is, for 1 < k < N then i is a source for o;, ...0;, Q.

2. wy = s;, -+ Siy is a reduced decomposition of the longest element of the Weyl group into
simple reflections.

Proof. This is part (b) of Proposition 4.12. in | |. O

For the remainder of this section we fix a sequence of vertices 71, ...,ixy as in Proposition 16.2.1. For
1 <k<N let f1:=aq, and B :=s;, ---si,_, (e, ) be the total ordering of positive roots induced
by wo = si; -+ ;i as in Section 5.2. By Gabriel's Theorem 2.2.2 this determines a total ordering
of the indecomposables I, ..., Ig,. In particular we have elements Ey, and F, in DH(@). On
the other hand by Definition 5.2.1 the reduced decomposition wg = s;, - - - s;,, determines quantum

root vectors Eg, and Fp, in Uy(g).

The following Lemma says that the elements Efﬁk and F[ﬁk of DH are generated by the isomorphism
7; from Theorem 16.1.1 in an analogous way to how the quantum root vectors Eg, and Fpg, are
generated by Lusztig's automorphisms T;.

Proposition 16.2.2. For any 1 < k < N the following identities hold in DH(Q)

Tt T L (Bs, ) = By, T Tl (Fsy) = iy,

k-1 1k—1

Proof. We prove the first identity as the second follows from the fact that the ’7;_1 commute with

the shift involution . Since i1, ... iy is a source sequence and ajan = Q then by Theorem 16.1.1
the following is a well-defined isomorphism.

7;1*1 Ry DH(o;, _, "'Uilé) - DH(Q)

lg—1
Consider ESik as an element in DH(o;,_, ---ah@). We claim that a repeated application of

7;_1(EN) = EU;N, where N does not have S; as a direct summand, yields the following.

i o
k=1 ip %
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Since o takes an indecomposable different from S; to an indecomposable different from S; the
only thing we need to check is that S;, # S;, , and for any 1 < j < k — 1 we do not have the
following equality of indecomposables.

O, ++-0; (51)251

ij ig—1

(16.7)

j—1

If S;, = Si, , then i, = 7,1 and wg = s;, - - - s;, would not be a reduced decomposition of wy.
For the other case, suppose Equation (16.7) held. Taking the image of Equation (16.7) in K(.A)
then we would have the following implications (which we view as taking place in the root lattice

Ag).

Sij e Sik—1(aik) = Qg
= Sy - Sip_y (@) = Siy e Siy o (—ai; )

= By = —fBj-1

However this is a contradiction since no positive root is the negative of another. We have established
Equation (16.6) and it remains to show that o, ---o;  (S;) = Ig,. Since o, takes an indecom-
posable different from S; to an indecomposable then we know o; - - 02-;1(51- ) is indecomposable.
Moreover the class of o; ---0;  (S;,) in the Grothendieck group is s;, - - - 5;,_, (5i,) which is equal
to Ig, by definition of ;. The result follows by Gabriel's Theorem 2.2.2. O

The following theorem gives the relationship between the quantum root vectors Eg and F of Uy(g)
and the elements E7, and Fy, of DH. We recall from Equation (13.15) that we introduced a modified
version R of Bridgeland's isomorphism between U;(g) and DH. In particular in the following we will
need to use the fact that R(Eg,) = tEs,.

Theorem 16.2.3. For 1 < k < N we have the following identities in DH(@)

R(Eﬁk) = tEIBk R(Fﬁk) = _Ffﬁk

Proof. We can reduce to the case of showing that R(Ej, ) = tE7, . Indeed by Proposition 13.4.2
we have Ro X = ¥ o = and from Section 5.5 that F, = X(—t 'Es, ). Thus we would have the
following.

R(Fﬂk) = Ro E(_t_lEﬂk) =*0 R(_t_lEﬂk) = _Flﬁk

Using Equation (13.15) the result is obvious for k = 1 since 51 = «;, and Ig, = S;,. Suppose
that 1 < k < N. Using the fact that iq,...,ix is a source sequence, we can repeatedly apply
Theorem 16.1.2 to get the following commutative diagram of algebra isomorphisms.

_1... -1
i -1

Ui(g)

Ui(g)

|7
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By combining Equation (5.8) and Definition 5.2.1 we have that Eg, = T-:l - -Tfl(Eik) in U(g).

3 K3

Moreover by Proposition 16.2.2 we have that By, = 7;:1 . 7;;_11 (Es,, ) in DH(@). It follows then

-

that in DH(Q) we have the following.

R(Eg) = RoT; ' ---T; ' (Ey)
=T Tl o R(Ey,)
=7, T, (tEs, )
= tEr,

O

We can now show that the Poisson integral form UF?3(g) of Uy(g) is identified with the extension
counting integral form DH,, of DH under R, the modified version of Bridgeland's isomorphism.

Theorem 16.2.4. The C(t)-algebra isomorphism R : U;(g) — DH restricts to a C[t,t!]-algebra
isomorphism of integral forms between UF%%(g) and DH,,.

Proof. Recall that in Definition 5.5.1 the Poisson integral form U/%%%(g) of U;(g) is defined as

the C[t,t!]-subalgebra of Ui(g) generated by the elements Eg,, Fj, and K,:—rl. Moreover by

Theorem 16.2.3 we have that R(Ep,) = tEy, , R(Fp,) = —Fy, and R(K;') = K'. Thus we
k

need only show that E]ﬁk,F[ﬁk and K;{l generate DH,, as a C[t,t !]-subalgebra of DH.
k

Lemma 3.19 from | ] says that there is a total ordering! 1, ...,y of the positive roots such
that if j < k then dimExtl(IW,I%) = 0. Using this fact, a simple calculation shows that for any
representation L = It @ --- @ IJY then Ej = tdEIT-:l1 EZ];’V for some d € Z. Applying the
shift involution establishes the analogous result for F7,. The triangular decomposition of DH,, from
Proposition 15.1.2 coupled with the above show that the elements EIBk’ FIB;C’ and K£! generate

S
DH,, as a C[t,t !]-algebra. § O

We mentioned in Section 13.4 that the isomorphism R : U;(g) — DH restricts to an isomorphism
between the positive part of the quantized enveloping algebra Uy(n, ) and the copy of the generic
Hall algebra H in DH spanned by the elements of the form X or equivalently Ey.

Recall also that by definition the positive part of the Poisson integral form UZ?**(n, ) is the C[t,t~']-
subalgebra of U.(g) generated by the rescaled quantum root vectors Eg, where 1 < k < r. The
proof of Theorem 16.2.4 thus also establishes the following theorem.

Theorem 16.2.5. The C(t)-algebra isomorphism R : Uy(ny) — H restricts to a C[t,t!]-algebra
isomorphism of integral forms between UZ°*$(n, ) and He,.

Yy1,...,vn is a priori a different ordering to B1,...Bn. Probably one can take them to coincide, however we will
not need to establish this fact.



Part IV

Semi-Classical Bridgeland-Hall Algebras

Poisson Structure, Lie Bialgebras and Poisson Lie Groups






Overview

Part IV is concerned with the semi-classical Bridgeland-Hall algebra DH,.. This is the t = 1 limit of
the extension counting integral form of DH that was defined in Section 15.1. The main attribute of
DHg, is that it is a commutative Poisson-Hopf algebra or equivalently the algebra of functions on a
Poisson-Lie group. To our knowledge the properties of semi-classical Bridgeland-Hall algebras have
not been studied from the Hall algebraic viewpoint before.

We begin with Chapter 17 where we define the semi-classical Bridgeland-Hall algebra. We explain
how DH,. is a commutative Poisson-Hopf algebra and give an explicit calculation of its Poisson
structure. In this chapter we emphasise how various homological properties of categories of quiver
representations and complexes translate into algebraic properties of DHg.. By definition, DHy. is the
coordinate algebra of a Poisson-Lie group G, which we call the semi-classical Poisson-Lie group.

In Chapter 18 we discuss the tangent Lie bialgebra g, of the semi-classical Poisson-Lie group G..
We give an explicit calculation of the structure constants of gy, and then show that it is isomorphic
to the standard dual Lie bialgebra g¥ from Section 3.3. This chapter should be viewed as giving a
way to associate Lie bialgebras to Hall algebras and in particular a new way to recover the whole
simple Lie algebra g from Bridgeland-Hall algebras.

Finally in Chapter 19 we prove that the semi-classical Poisson-Lie group G, is isomorphic to the
standard dual Poisson-Lie group G that was constructed in Section 3.3. This is a new proof using
Hall algebraic methods of the classical result of De Concini and Procesi [ | that the ¢ = 1 limit
of the Poisson integral form of U.(g) is the algebra of functions on G.. We feel our Hall algebraic
proof is more direct and conceptual than De Concini and Procesi's and in particular avoids the case
by case analysis of the proof in [ ]

We expect that the methods in this part should apply more generally to generic Bridgeland-Hall
algebras of categories other than representations of simply-laced quivers. In particular it should be
possible to extract Poisson-Lie groups from Hall algebras of hereditary categories other than the
categories considered in this thesis.
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Chapter 17

Semi-Classical Algebra and Poisson-Lie
Group

In this chapter we define and discuss the semi-classical Bridgeland-Hall algebra DH,. which is the
t = 1 limit of DH.,. We also explain how Poisson-Lie groups arise from such algebras and give an
explicit computation of the Poisson structure.

We start off with Section 17.1 where we give the definition of DH. and show that it is a commutative
Poisson-Hopf algebra over C. In particular DHg, is the algebra of functions on a Poisson-Lie group
G .. which we call the semi-classical Poisson-Lie group. Later on in Chapter 19 we will give a proof
of the fact that G coincides with the standard dual Poisson-Lie group G’V that was defined in
Section 3.3.

Section 17.2 is concerned with explicitly calculating the structure constants of the Poisson structure
on DH,.. We will linearize this Poisson structure in Chapter 18 to get the cotangent Lie algebra of
G .. which is isomorphic to the simple Lie algebra g. This will yield an alternative way to realize the

full simple Lie algebra in terms of Hall algebras than that of Section 15.3.

17.1 Definitions and Properties

In this section we define the semi-classical Bridgeland-Hall algebra DH. and its associated semi-
classical Poisson-Lie group. In particular, DH,. will be the ¢ = 1 limit of the extension counting
integral form DH,., of DH. We will show that this ¢ = 1 limit is commutative and so, as outlined in
Chapter 4, will inherit the structure of a Poisson-Hopf algebra. This structure is equivalent to the
data of a Poisson-Lie group which we shall call the semi-classical Poisson-Lie group.

Definition 17.1.1. Define the semi-classical Bridgeland-Hall algebra DH;.. to be the quotient algebra
of DHe, by the ideal (t —1).

Let us describe how the semi-classical Bridgeland-Hall algebra is a Poisson-Hopf algebra, as defined
in Definition 3.1.1. In Corollary 14.1.2 we gave the generic Bridgeland-Hall algebra DH the structure
of a C(t)-Hopf algebra. We observed at the end of Section 15.1 that this Hopf algebra structure
descended to a C[t,t~!]-Hopf algebra structure on the extension counting integral form DH,, of
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DH. As outlined in Chapter 4 then, this C[t,t!]-Hopf algebra structure descends to a C-Hopf
algebra structure on DHg,.

Proposition 17.1.1. The semi-classical Bridgeland-Hall algebra DHg, is a finitely generated com-
mutative Poisson-Hopf algebra over C. The product and Poisson bracket are determined by the

requirement that [Kp] [K}] = 1 along with the following.

[M.] [N.] = [M. ® N.] (M.,

—_
—
=
—_
N
w

a

Il

Proof. That [Kp| |K}] = 1 holds is obvious from Definition 13.1.4 and Definition 15.1.1. To show
that we have [M,] [N.] = [M. @ N.] the exact same reasoning holds as in the proof of Proposi-
tion 9.2.1, once one replaces Ext!(M,, N,) everywhere with Ext!(M,,, N.;). The commutativity
of DH,, follows from that of the operation @, while the Poisson-Hopf structure then follows from
Proposition 4.1.1 and Proposition 4.1.2.

To see that DHg, is finitely generated note that by definition any complex M, € Iso(C) decomposes
as a direct sum of the form C4 @ Cp @KPEBKE‘?. Thus DHy. is spanned by the following elements.

[Ca®CE® Kp® K] = [Ca] [CE] [KP] [KE]

Moreover each of the complexes C4, C5, Kp and K5 further decompose as a direct sum of their
indecomposable direct summands. One can then see that, as an algebra, DH,, is generated by the
elements [Cp, ], [C} ], [Kp,] and [K}, ] where Iy, I5 are indecomposable and P, P are projective
indecomposable. By Theorem 2.2.2 this is a finite collection of elements. O

We now describe the semi-classical Bridgeland-Hall algebra completely as a C-algebra. Recall from
Section 13.2 that we had that DH,, contains two copies of the Abelian extension counting integral
form He, of H, given by the C[t,t7!]-span of the elements E; and Fy, respectively. The algebra
DH,, also contains a copy of the group algebra C[t,t '][K(.A)] given by the span of the K,.

Using Corollary 9.2.2 we can take the t = 1 semi-classical limit of these subalgebras of DH,,.
The algebra H,, is the polynomial algebra in the elements E; where I is indecomposable while the
quotient of the group algebra C[t,t '][K(A)] by the ideal (t — 1) yields the algebra C[K(A)].
We have the following algebra triangular decomposition of DH,. in terms of these semi-classical
subalgebras.

Proposition 17.1.2. Multiplication induces the following isomorphism of C-algebras.
Hse ®c (C[K(A)] ®c Hse — DHg, EA ®fo¢ ®FB = EAFO(FB
Moreover the two copies of Hy, are polynomial algebras in the elements E; and F; respectively with

I indecomposable.

Proof. Taking the t = 1 limit of Proposition 15.1.2 gives us an isomorphism of C-vector spaces.
Using commutativity of the product of the algebras involved it is easy to see that multiplication is
also preserved. O
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We end this section by discussing the semi-classical Poisson-Lie group. As outlined in Section 3.1,
the geometric counterpart of a commutative Poisson-Hopf algebra is a Poisson-Lie group. Proposi-
tion 17.1.1 then allows us to make the following definition.

Definition 17.1.2. Define the semi-classical Poisson-Lie group to be G := Spec DH,..

By Proposition 17.1.2 the semi-classical Poisson-Lie group G is not particularly complicated as a
variety: it is isomorphic to Ag x Gy, x Ag where N is the number of indecomposables or equivalently
the number of positive roots.

We have chosen notation G, to emphasize that, as we shall show later in Section 16.2, the semi-
classical Poisson-Lie group is isomorphic to the dual Poisson-Lie group G that we defined in
Section 3.3. More generally we shall append the subscript sc to various objects such as Lie algebras
and subgroups related to G, to indicate that they come from semi-classical Bridgeland-Hall algebra
as opposed to analogous objects related to GV that one finds in Section 3.3.

17.2 Calculation of Poisson Structure

In this section we give an explicit calculation of the Poisson bracket on the semi-classical Bridgeland-
Hall algebra DH,.. Before doing so, we shall find it convenient to introduce some new notation for
structure constants of the Poisson bracket.

For representations L, M, N € Iso(.A) recall from Equation (7.3) that if L # M @ N then we have
polynomials P(e)hN = 6%47]\[/(?52 — 1) counting the projectivization of the set Ext!(M, N)r. This
allows us to define the following structure constants.

— L — I .
rk o= P(e)rn = P(€)nar ifL##M®N
A 1/200, N e + dimHom(N, M) — dimHom(M, N)  if L =M @N

Recall that the overline bar notation here denotes the evaluation at ¢ = 1 of a polynomial. Note

also that, for L, M and N indecomposable, the above notation appears to clash with that of the
=L =L : : o

structure constants Fﬁ“\, = fam N — fn . defined in Definition 10.2.3. However by Corollary 7.4.1

these two definitions coincide.

Recall from Equation (12.3) that for representations A, B, M, N € Iso(A) we have polynomials

hfjﬁ\, counting morphisms M — N with kernel A and cokernel B. When (A, B) # (M, N), by

Equation (12.4), we also have polynomials ]P’(h)f/ﬁv = hf/f’?\, (t> — 1) counting the projectivization

of these sets. We then define the following structure constants, which in general are elements of

CLE(A)].
——A,B — ——B,A — .
rAs . JPMu N Py Ky g if (4, B) # (M, N)
0 if (A,B) = (M, N)
Using the above structure constants we can now give an explicit calculation of the Poisson bracket.

The Leibniz rule implies that the Poisson bracket is determined by its value on the algebra generators
E;, Fjand K, of DHg. where I and J are indecomposable and o € K(A).



CHAPTER 17. SEMI-CLASSICAL ALGEBRA AND POISSON-LIE GROUP 96

Proposition 17.2.1. The Poisson structure on the semi-classical Bridgeland-Hall algebra DHy. is
determined by the following identities, where I and J are indecomposable and a € K(.A).

{Ka,Kglse =0 (17.1)
{EI;EJ}SC = Z I‘%JEL (17.2)
Lelso(A)
{FI7FJ}SC = Z F%JFL (17.3)
Lelso(A)
. 1 ~—
{KaaEI}sc = i(aaj)ElKa (17.4)
. 1 ~—
{chFI}sc = _i(aaI)FIKa (175)
{ELFJ}SC = Z F}L‘,:]BEAFB (176)
A,Belso(A)

Proof. Equation (17.1) is trivial as the elements K, all commute with each other. For Equa-
tion (17.2) consider the following identity in DH,, which holds by Equation (8.1) and Proposi-
tion 13.2.1.

.. el oL
E/E;—EjE = )] <t<I,J>hI,J _ t(J,I)}LJ,I> B,
LeTso(A) 1,J JI

Split the summation into L = I ®J and L # I ®J components and note that by Proposition 2.2.3
we have eﬁ%‘] = eg(?‘] = 1. We get the required formula on dividing across by 2(t — 1) taking the
t =1 image in DHg.. Moreover by applying the shift involution we similarly obtain Equation (17.3).

For Equation (17.4) and Equation (17.5), by Equation (13.2) we have the following in DH,,.
KoE; — E1K, = (t) — 1)E/K, Ko Fy — FiK, = (@D — 1) F K,

Dividing across by 2(t — 1) and taking the image in DH,, gives the result. Finally, for the case of
Equation (17.6), by Proposition 13.3.1 the following holds in DH,,.

EvFy — FnEy = Z t<N_B’M_N>h}?4’5VK37N - t<B_N’M_N>h§’7}?/[KN7 ) Dap
A,Belso(A)

Using the following two facts, on dividing across by 2(¢t — 1) and taking the t = 1 image in DH,,
we obtain Equation (17.6). The first is that the (A, B) = (M, N) component of the summation
above vanishes. This is true as h%% = 1 since the zero morphism is the only morphism M — N
with kernel M and cokernel N. The second fact is that in DH,. we have EA,B = FE Fp. Thisis
established by using that the product on DHy. is given by taking direct sums of complexes and then
comparing Equation (13.7) with Equation (13.4) and Equation (13.5). O



Chapter 18

Semi-Classical Lie Bialgebras

This chapter is concerned with Lie bialgebras arising of Bridgeland-Hall algebras. In particular we
will see that these Lie bialgebras give a new way to recover the whole simple Lie algebra from
Bridgeland-Hall algebras. We will also use the results contained here in Chapter 19 to show that
the semi-classical Poisson-Lie group G, coincides with the dual Poisson-Lie group G.

In Section 3.2 we explained how tangent Lie bialgebra arise from Poisson-Lie groups on linearizing the
Poisson-Lie structure at the group identity. Furthermore in Section 17.1 we obtained a Poisson-Lie
group from the Bridgeland-Hall algebra called the semi-classical Poisson-Lie group G_.. Taking the
tangent Lie bialgebra of G. we can thus extract a Lie bialgebra from the Bridgeland-Hall algebra
which we call the semi-classical Lie bialgebra g

We will begin with Section 18.1 with the definition of g;,. as the tangent Lie bialgebra of G.. In
this section we also explain how g, comes equipped with a natural basis in terms of indecomposable
quiver representations.

In Section 18.2 we then give an explicit computation of the structure constants of gg.. As for all
objects arising from Hall algebras, these will depend on the homological properties of the underlying
categories of quiver representations and their complexes.

The material in Section 18.3 concerns the definition of certain Lie subalgebras of g;. and its dual
gsc along with a root space decomposition of g;..

Finally in Section 18.4 we construct an isomorphism between gy and the standard dual bialgebra
g introduced in Definition 3.3.1. Since the dual bialgebra of gV is g then this gives a new way
to recover the whole simple Lie algebra from Bridgeland-Hall algebras. The other way due to Deng
and Chen was discussed in Section 15.3.

18.1 Definitions and Basis

In this section we will define the semi-classical Lie bialgebra gy, and its bialgebra dual gs.. We also
give a natural basis for these bialgebras.

Recall that in Section 3.2 we explained how a Lie bialgebra arises from linearizing the structure of a
Poisson-Lie group at the group identity. Applying this to the semi-classical Poisson-Lie group G,
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we get a semi-classical Lie bialgebra.

Definition 18.1.1. Define the semi-classical Lie bialgebra g, to be the tangent Lie bialgebra to the
semi-classical Poisson-Lie group G_.. The bialgebra dual of g;. will be denoted by g..

We will write [—, —] . for the tangent Lie bracket on gy, and [—, —]s. for the cotangent Lie bracket
on gs.. A comment on why we have chosen the notation above: in Section 18.4 we will show that
the semi-classical Lie bialgebra g coincides with the standard dual Lie bialgebra g that was given
in Definition 3.3.1. The dual of this statement is that the bialgebra dual of the semi-classical Lie
bialgebra g,. coincides with the standard Lie bialgebra structure on the simple Lie algebra g.

To work with the semi-classical Lie bialgebra we will need a basis for g;. and its dual g,.. By
definition the underlying vector space of the semi-classical Lie bialgebra is T.G.. Recall that the
Cartan matrix (aij)zj:l is non-degenerate. Since DH,, is the coordinate algebra of the semi-classical
Poisson-Lie group G, by Proposition 17.1.2 then we have the following basis for T.G . of partial
derivatives at e.

0 0 1 « 0
ef = — fi= = h¢ = Z aij —— (18.1)
oE; oF; e o 2 Jj=1 ang e
Here I ranges over the indecomposables and 1 < ¢ < r. On the dual side of things the underlying
vector space of g, is TG, and so has a basis of differentials at e of the coordinate functions on
G.. Rescaling the differentials defg_ by a factor of 2 gives us the following basis.

e :=d.Es fri=doFr he = 2d.K g (18.2)

For any class M in the Grothendieck group we can extend the assignment of the class S; to the
vectors hgi and hSi to obtain elements hXZ and hy;

We end by remarking that the two bases of g,. and g_. above are chosen to match up with basis
vectors introduced in Definition 1.1.1 and Section 1.1 for g and in Equation (3.5) in the case of g".

18.2 Calculation of Lie Bialgebra Structure

In this section we compute the Lie bialgebra structure on the semi-classical Lie bialgebra g;.. We will
split this up into computing the tangent Lie bracket [—, —]2. in Theorem 18.2.1 before considering
the cotangent Lie bracket [—, —]s. in Theorem 18.2.2.

We begin by making a few remarks on how to compute tangent Lie algebras in terms of the algebraic
Hopf algebra data. The underlying vector space of the semi-classical Lie bialgebra is T.G;.. We
view Te G, as the set of C-derivations on DHj. evaluated at the group identity e € G, that is
C-linear maps D : DH;. — C such that for any two functions u,v € DHg, the following holds.

D(uv) =&(u)D(v) + &(v)D(u) (18.3)

Here recall that £ is the counit of DH. which picks out the group identity e. Remark 3.9.1 of | ]
says that, for the coordinate Hopf algebra of an algebraic group, the Lie bracket can be computed
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directly from the coproduct. Applied to our case, given any two derivations Dy and Dy in g, then
their Lie bracket is the derivation [Dy, D3] : DH,. — C given as follows.

[D1,Ds] = (D1 ® Dy — Dy @ D1) o A (18.4)
Here D1 ® D2(u ® v) = D1(u)Do(v) for any u,v in DHg..

We now compute the tangent Lie bracket of gsc For convenience, given three positive roots «, 8

. . ’y
and y we will write I'| 5 in place of FI Is f]q,][; flﬂ I.-

Theorem 18.2.1. The tangent Lie bracket on the semi-classical Lie bialgebra gy is given by the
following identities where 1 < 4,5 < r and «, 3 are positive roots.

[hg, g Jse =0 (18.5)
rethey a + 3 a positive root
Y Vv o a,f Ia+/3 18.6
el ,ef. ]y '
Saya {0 otherwise (18.6)
rath ey a + B a positive root
A MR 18.7
[f]a flﬁ]sc {0 otherwise ( )
1 ~ 4
[hg.ser.)se = i(Sz‘Ja)efa (18.8)
1, . -
(1. f1.)se = 5(Si, La) [T, (18.9)
i 2
[6};, fl\;g];/c =0 (1810)

Proof. To prove the above identities we will need the formulas for the coproduct A from Corol-
lary 14.1.2 along with the formula for the Lie bracket in Equation (18.4). One then checks the
equality of derivations above on the algebra generators E 7, 'y and K., of DH,. where .J is indecom-
posable. In doing so we will need to use the formulas for the counit when employing Equation (18.3)
and so we recall that £(E) and (F L) are zero unless L = 0 and that £(K,) = 1. We begin by
establishing Equation (18.5).

S ’ S ]sc hv ®hv hg ®h5’\{1) OZ(F’Y)

.,
(Ky)hg (Ky) = hg (Ky)hg (Ky)

7,

(n
( L®hY —hy ®hV)K oK,
ny (&
0

Since the derivations h;‘ vanish on elements of the form E;; and F of DH,, it is easy to check
E;) =0 and [hs’ g, Y ]¥.(F;) = 0. For Equation (18.6) note first

that for any ~ a positive root we have the following.

that one also has [hs e L]

ef (EmKy) =K g)ef (Em) +E(Ewm)ef (Kg) = ef (Eu)
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Using this identity we have the following computation.
(e, e, J5e(Es) = (ef, @ e, — cf, e, ) o B(Ey)

= (ei,@ei, =i, ®cL) Y, FunEwKg®Ex

M,Nelso(A)
-J vV (T To v (o —+J vV (L. 1o vV (T

= 2 funer, (EMKN)%; (En) — 2 fM,NeIB (EmK ger, (En)

M,Nelso(A) M,Nelso(A)

—=J —J
= f1a0 = F1p14
_ Fg’zﬁ a + f3 a positive root

0 otherwise

Since the derivations e vanish on elements of the form Fr and F7 of DH,, it is easy to see
check that the derivation [e}a,elvﬁ]v vanishes when applied to F'; and K,. One can establish

sc

Equation (18.7) in an entirely analogous manner.

Note that from Equation (18.2) one can check that h;(? ) = %(S’i,Ia). We establish Equa-
tion (18.8) then as follows.

v vV (o % v v % - 5 7 inl
[hy e, 1(E)) = (hs ®ey —ef. ®h§i) S FunEuKg®FEN
M,Nelso(A)
= ] Funhg (EuK ger, (En)
M, Nelso(A)
= Y T (BB (K + (K )G (Ban)
MEelso(A)
= ) i E(Em)hg (K )
MEelso(A)
= for.hg (Kj)
_ 3085, 10) if J =1,
0 otherwise

Since the derivations eIVa vanish on elements of the form Fj; and Fﬁ, in DH,. one can check that
the derivation [hé, ey ]s. vanishes when applied to Fj and K. Equation (18.9) is proved entirely
analogously to Equation (18.8).

For Equation (18.10) we use the fact that I (En) and fIVB(EMFN) are both zero to make the
following computation.

(e, [ )e(B) = (e, ® J3, = f1, @}, ) o A(Ey)
(et @8 - fr,@et) Y TunEwmEg®Ey
M,Nelso(A)
-7 A ni7d V(T e nl7d v (1
> Faw (eh, BuK Q) (Ex) = f1,(BuE g)ei, (Bx))
M,Nelso(A)
=0
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A similar calculation shows that [ey , fl\;];/c vanishes when applied to ;. Finally applying lef; flvﬁ]svc
to K, gives zero as ey (K,) = 0 and f} (K,) = 0. =

It remains to compute the Lie bracket [—, —]s.. As described in Section 3.2 the cotangent bracket
is given by the following formula where u,v € DHg..

[deuadev]sc = de{uﬂf}sc (1811)

Since we have described the Poisson bracket explicitly in Proposition 17.2.1 we can compute the
cotangent Lie bracket as follows.

Theorem 18.2.2. The cotangent Lie bracket on the semi-classical Lie bialgebra gy, is given by the
following identities where 1 < 4,5 < r and «, 3 are positive roots.

[hS yhg ]SC 0 (18.12)
a+B .-
ler,rer,]ue = { a8 €lats a+f &.L positive root (18.13)
otherwise
a+6 -
t t
[fras frp]se = Jress o+ § a positive roo (18.14)
otherwise
[hg 7eIa]sc = S j eIa (18.15)
[hg,, fr)se = —(Si, 1a) fi, (18.16)
L% 0 gl s a — (3 a positive root
T — « a positive root
[efa ) fIB]SC - B_Oé7af157a 5 P (1817)
_hf/j o = B
0 otherwise

Proof. We will compute the above identities by using Equation (18.11) to linearize the formulas for
the Poisson bracket that we derived in Proposition 17.2.1.

Throughout we will frequently need to make computations of the form d.(uv) = (u)dev + &(v)dev
for various u and v in DHy,.. To this end we will find it useful to recall that both (E) and £(F )
are zero unless L = 0 and that £(K,) = 1. A particular consequence of this is that d.E, and d.F 1,
vanish if L is not indecomposable.

We begin by noting that Equation (18.12) follows from the fact that {K,, Kg}sc = 0. For Equa-
tion (18.13) consider the following.

[elaa elg]sc = de{EIaaplg}sc = Z F%a,jﬁdeEL
Lelso(A)

The identity in Equation (18.13) follows from the fact that if d. £, # 0 then L must be indecompos-
able of class v+ /3 in the Grothendieck group. An identical calculation establishes Equation (18.14).
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For Equation (18.15), recalling that hg := 2deK:, we have the following.

[hgiaela]sc:2de{?§i7E[a}sc (Si, 1n)de(E; )
- (55 f)(( §)de(F1,) +2(F1,)de(K 5
= (Si o) (Ex,)
= (S, La)er,

A similar calculation proves Equation (18.16). Of all the identities, Equation (18.17) will take the
most work to establish. We provisionally make the following computation.

[efavffﬁ]sc = {Efaaffg}sc

Y d (FﬁﬁﬁEAFB)

A,Belso(A)

S g(rgﬁﬁfB)deﬁA + é(Fﬁ;ﬁﬁFA)defB + g(EAFB)dergﬁﬁ
A,Belso(A)

= >, B )dEa+ Y, =9 )dFp+dIy, (18.18)
Aelso(A) Belso(A)

Let us make some comments on how to simplify Equation (18.18). Recall from Section 17.2 that by
definition F N necessarily vanishes unless (A, B) # (M, N) in which case we have the following.

A,B =7~ AB = B,A —
FM,N = P(h>M,NKéfN P(h) KN B

Now in Lemma 12.2.1 we showed that, in the case that M and N are indecomposable, we have
]P’(h)MN = fNA and IP(h)MN = ng. Thus evaluating £ on Ff/[’?\, and respectively setting B and
A to be 0 we obtain the foIIowmg

_ /A0 —A0 —0,A 0,B 0,B B,0
E(FIQ,I,;) = P(h)fa,fﬂ - P(h)fﬂ,fa eIy 15) P(h)za,zﬁ - P(h)fﬂ,fa
= ?IZ,A - ?Aa,fﬁ = fB,Ia - ?IQ,B
(18.19) =T} =I5, (18.20)

Let's turn our attention to d FI’ I . First note that h 0 M. counts isomorphisms M — N since both

kernel and cokernel must vanish. Thus h 0 M.N vanishes unless M = N in which case we have hMN =
apr. If M = N is indecomposable then, since ay; = t? — 1, we have P(h)oo = h(])woj\,/(t2 —-1) =1

Thus del“?a I = = 0 unless o = 8 in which case we have the following.

——0,0 — I
deF?;OJﬁ = de (P(h)z I _P(h)IB,I K; )
= 4K ; -dK;
= —h;, (18.21)

We observe from Equation (18.19) and Equation (18.20) that if A # 0 then its class in the
Grothendieck group is o — 3 and similarly if B # 0 then its class is 8 — a. We obtain Equa-
tion (18.17) then on substituting Equation (18.19), Equation (18.20) and Equation (18.21) into
Equation (18.18) and using that d.Er, and d.F, vanish if L is not indecomposable. O



CHAPTER 18. SEMI-CLASSICAL LIE BIALGEBRAS 103

18.3 Subalgebras and Properties

In this section we discuss various properties of gs. and g,.. We will introduce various Lie subalgebras
of gsc and gy, which will be used in Section 16.2 when proving that the semi-classical Poisson-Lie
group G, is isomorphic to the dual Poisson-Lie group G. We also discuss the root and coroot
lattices of gs. along with its decomposition into root spaces.

We begin by defining some Lie subalgebras. Recall from Equation (1.2) that we introduced various Lie
subalgebras of the simple Lie algebra g. The semi-classical analogue in g, of the Cartan subalgebra
of g is given by . := Span(c{hgi}. The analogues of the nilpotent and Borel subalgebras are give
by the following.

Nt 1 = Spanc{es} bse,+ 1 = Spanc{el,hgi}
Nge,— - = Span@{fl} bse,— 1 = Span((]{f]a hs'l}

Similarly in Section 3.3 we defined certain Lie subalgebras of the standard dual g¥. The semi-classical
analogues of these in gy are given by . := Span(c{hb!_} along with the following.

ny., : = Spanc{ey} by, : = Spanc{ey , hY}
ng., = Spanc{f;’} by, = Spanc{fy, h}}

That the above really are Lie subalgebras of g, or respectively g;. can be verified by glancing at
the formulas in Theorem 18.2.2 and Theorem 18.2.1.

Let’s discuss the relationship between the Grothendieck group and the root and coroot lattices. In
Theorem 18.4.1 we will show that the underlying Lie algebra of gs. coincides with the simple Lie

algebra g. On the semi-classical side of things note that the elements hg_ and hg pair to give the
J K2
Cartan matrix as follows.

hY (hgz) = Q55
Thus the elements hg € b give simple coroots of gsc while the elements hV € b.. give simple

roots of gse. l\/Ioreover the Grothendieck group is identified with the root and coroot lattices via the
following embeddings.

K(A) — b,
K(A) = bee,  Si+ hg

gith

We end with a remark on the root space decomposition of gs.. For each positive root o consider
the following one dimensional subspaces of g;..

0sc|a] := Spanc{er, } 9sc[—a] := Spanc{fr,}

These are the root spaces for the adjoint action of hs. on gs.. Indeed g, is graded as a Lie algebra
by K(A) and Theorem 18.2.2 implies that we have the following root space decomposition.

Ysc = hsc ® (‘B gsc[a]

o a root
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A nice feature about the Hall algebra approach is that the indecomposable representations I, furnish
us with natural positive and negative root vectors ey, and fr, of gs.

18.4 Relationship with Standard Bialgebras

In this section we prove that the semi-classical Lie bialgebra g, and the standard dual Lie bialgebra
gV are isomorphic. It will be easier to prove the equivalent dual statement that gs. is isomorphic
to the standard Lie bialgebra structure on the simple Lie algebra g. In this section we also relate
various nilpotent subalgebras of gs. and g to the Lie algebra of indecomposables ny,q defined in
Section 10.2.

We will split the proof that gs. and g are isomorphic up into two parts. We will first establish an
isomorphism of the underlying Lie algebras before upgrading it to one of Lie bialgebras.

Theorem 18.4.1. The following determines an isomorphism of Lie algebras 6 : g — gs. between
the simple Lie algebra and the dual semi-classical Lie algebra.

0(e;) = es, 0(f:) = —Tfs, 0(h;) = hg

k3

Proof. We will first show 6 induces a homomorphism of Lie algebras. This amounts to showing that
the elements eg;, —fs, and hSi of g satisfy the same relations as ¢;, f; and h; of g that were given
in Definition 1.1.1. This follows easily from Theorem 18.2.2 with the only relations not completely
trivial to verify being [es,, —fs;] = 5i’jh§i and that the elements eg, and —fg, satisfy the Serre
relations.

The first of these follows from Equation (18.17) along with the fact that a; —«; is not a positive root
of g and so by Theorem 2.2.2 there are no indecomposables with class S; — S’j in the Grothendieck
group. The Serre relations follow from Equation (18.13) and Equation (18.14) along with the fact
that there is no positive root of the form (1 — a;j)o; + a;.

It remains to show that 6 is an isomorphism. Since g and gs. have the same finite dimension this is
equivalent to establishing the injectivity of 6. Recall from the theory of simple Lie algebras that the
adjoint action of the Cartan subalgebra ) on g induces the following root space decomposition.

g=h® P glo]

o a root

First note that 6 restrict to an isomorphism on the Cartan subalgebras h — b, as both have the
same dimension. To establish injectivity we will show that 6 respects the root space decompositions
of g and gs. and that 8 is injective on each root space.

Using the facts that 6 is a homomorphism, n_ is generated by the ¢; and g, is graded by K(.A)
one can see that for « a positive root the map 6 takes g[a] to gs:[«]. Similarly for a a positive root
0 takes g[—a] to gsc[—a].

We claim then that 6 is injective on the one dimensional root spaces gla] < gsc[a]. Supposing
that this isn't the case, let v € g[a] be nonzero with #(v) = 0. The theory of simple Lie algebras
says there is a u € g[—«]| such that [v,u| € b is nonzero. However then we would have the following
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contradiction.
0=1[0(v),0(u)] =0(v,u]) #0

Identical reasoning shows that g[—a] < gs.[—«]. O

Before upgrading 6 to an isomorphism of Lie bialgebras we'll need a discussion on root vectors and
the linear dual of the map . Recall that in Section 1.1 we made a choice of root vectors for g with
the property that (eq, f3)g = da,3. This choice was arbitrary but we now fix it so that we have the
following.

e(ea) = €], H(fa) = _fla (18'22)

In the proof of Theorem 18.4.2 we will view the linear dual to the map 6 : g — g, as a map
0Y g . — g¥. We need to be careful as to what we mean by 6" being the vector space dual of 6.
For the vector space dual of the domain of @, recall that g was defined by generators and relations
in Definition 1.1.1. In Section 3.3 we identified g with TG via the Manin triple form. By the
canonical isomorphism between a vector space and its double dual then, we can then identify the
vector space dual of g with T.G" which is by Definition 18.1.1 the underlying vector space of g".

For the dual of the codomain of @, recall from Definition 18.1.1 that the underlying vector space of
Osc is by definition T*G.. Using the canonical isomorphism between a vector space and its double
dual we can then identify the vector space dual of g, with T.G, which is by Definition 18.1.1 the
underlying vector space of g.. A simple calculation using the above identifications shows that 6"
is given by the following.

0% (er,) = ea

[0}

0v(f) =1 0V (hY)=h (18.23)

Theorem 18.4.2. The isomorphism of Lie algebras 6 : g — g5 is an isomorphism of Lie bialgebras
between the standard Lie bialgebra and the dual semi-classical Lie bialgebra.

Proof. To show 6 is a bialgebra homomorphism it is enough to check that the inverse of the dual
map (#¥)~! : g¥ — g is a Lie algebra homomorphism. However using Theorem 18.2.1 and
Equation (18.23) one can check that the basis vectors e} , —f}’ and hg_ of g. satisfy the same

relations as the basis vectors ey, fy and b of g¥ which were given in Proposition 3.3.1.

The only relations which are not immediate to check is that ef and —f;’ satisfy the Serre relations.
This follows from Equation (18.6) and Equation (18.7) coupled with the fact that there is no positive

root of the form (1 — a;;)co; + «;. O
Applying bialgebra duality to the statement of Theorem 18.4.2 we obtain the following corollary.

Corollary 18.4.1. The following determines an isomorphism 6V : gy. — g" between semi-classical
Lie bialgebra g and standard dual Lie bialgebra g".

0% (er,) = eq 0" (fr.) =—1d 0% (hg,) = hi
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We end this section discussing how subalgebras of g, and g.. relate to the quasi-classical Lie algebra
ng. that we gave in Definition 10.2.3.

Proposition 18.4.3. The quasi-classical Lie algebra ny. is isomorphic to each of the Lie algebras
Nge+ and ny, 4

Proof. All of these Lie algebras are vector spaces on the set of indecomposable representations. We
need only show that for each the structure constants in the basis of indecomposables all coincide.
By Equation (10.3) the structure constants of n,. are given by the following where I, I and J are
indecomposable.

J .7 r
U'nn=Inn—fnn

By Equation (18.6) and Equation (18.7) these give the structure constants of nj, ,. The same holds
for ng. + by Equation (18.13) and Equation (18.14). O



Chapter 19

Identification of Poisson-Lie Groups

In this chapter we will show that the semi-classical Poisson-Lie group G, coincides with the dual
Poisson-Lie group G that was defined in Section 3.3. We do so by first characterizing various
subgroups of G in Section 19.1 and then using these characterizations to build up an explicit
isomorphism of Poisson-Lie groups between G, and G in Section 19.2.

The contents of this chapter should be viewed as a new proof of an old result. Indeed in the case of
quantized enveloping algebras the corresponding identification of Poisson-Lie groups was originally
proved by De Concini and Procesi in [ ]. In particular they showed that the ¢ = 1 limit of the
Poisson integral form UZ?*5(g) of Uy(g) coincides with the coordinate algebra of G'¥.

We could of course use [ | to show that G, and GV are isomorphic. Indeed in Theo-
rem 16.2.4 we identified the extension counting integral form DH,, of the Bridgeland-Hall algebra
with UF?3(g). It should then follow that the semi-classical Bridgeland-Hall algebra DH,, is also
isomorphic to C[G"].

We will opt to give a direct proof, however, that G, and GV are isomorphic rather than using
De Concini and Procesi's result. There are two reasons why we choose to do so. The first is that
De Concini and Procesi’s proof involves a lengthy case-by-case computation. Using machinery of
Bridgeland-Hall algebras we feel that one can give a direct and in our view more conceptual proof
of the fact that G, is isomorphic to G'V.

The second (minor) obstacle to simply directly using De Concini and Procesi's result is that, as
outlined in Section 5.5, the way that UF°¥%(g) is defined in | | differs slightly from the one
we have given in Section 5.5.

19.1 Subgroups of Semi-Classical Poisson-Lie Groups

In this section we characterize various subgroups of the semi-classical Poisson-Lie group GY,. We
will use these characterizations to construct an explicit isomorphism between G, and G in Sec-
tion 19.2.

Let's introduce semi-classical analogues of the subgroups BY, Ny and T'Y of G discussed at the
end of Section 3.3. Define subgroups B, ., By, and T, of G, to be those given by the Hopf

sc,— sc
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ideals (F1), (E1) and (Eg, Fj) of DH,, respectively. Also let N . be the subgroup of By, ,
determined by the Hopf ideal (FS — 1) of the coordinate algebra of By, ..

For convenience we will use notation of the form, for example, C[By. ,| := DH,./(F) for the
coordinate algebras of these subgroups. We will abuse notation and simply write, for example, E;
for the image of E in the quotient Hopf algebra DHg./(F1).

The reason we are considering these subgroups is that, as we will see, G, is almost B, . x By

sc,—
and each By, | is a semi-direct product N, , x T,’. Moreover as outlined in Section 3.3 the group
GV is almost B_ x B, and it is well known that By is a semi-direct product N1 x T. Thus if we
want to build an isomorphism G, between and GV we should first relate these two collections of
groups. Indeed the remainder of this section is devoted to constructing isomorphisms of algebraic

groups between B |, and Bz by constructing isomorphisms N , — Nz and T, — T.

Proposition 19.1.1. There are isomorphisms of unipotent algebraic groups v+ : Ng. . — Nz
inducing the following isomorphisms of Lie algebras devy :ng, 4 — nz.

- n_ ny, _ —ng

n;/c + sc,—
(19.1) ’ ’ (19.2)

6}/a = —fa f[\; = —€q

Proof. We will first construct the isomorphisms of nilpotent Lie algebras in Equation (19.1) and
Equation (19.2) before using Baker-Campbell-Hausdorff to obtain the required isomorphisms v+ of
unipotent groups.

It is easy to see that the isomorphism from Corollary 18.4.1 between g, and g" restricts to iso-
morphisms between the subalgebras ng, , and nY. Moreover the isomorphisms nY — nx from
Equation (3.6) restrict to give isomorphisms nY — ns. Combining these we get the isomorphisms
of Lie algebras given in Equation (19.1) and Equation (19.2).

Now since the nz are finite dimensional nilpotent Lie algebras then so too are the nj, . Using the
Baker-Campbell-Hausdorff formula one can upgrade these Lie algebras to algebraic groups which
we will also denote by ny. , and ny by abuse of notation. The C-valued points of these algebraic
groups are precisely the underlying complex vector spaces of the Lie algebras ng,. . and ns. Moreover
the isomorphisms of Lie algebras in Equation (19.1) and Equation (19.2) induce isomorphisms of
algebraic groups u : ng. . — nz, that is on C-valued points we have the following.

wi(e),) = —fa u(f) = —ea (19.3)

It is well known that there are canonical exponential and logarithm maps giving algebraic group
isomorphisms between finite dimensional unipotent groups and their nilpotent Lie algebras, viewed
as algebraic groups. Thus we have a chain of isomorphisms of algebraic groups whose composition

we denote by vy : N, , — Nz

log U+ erp

Ns\é,i — ng/c,i nx N¢ (194)
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Since the differential of the exponential and logarithm maps at the group identities give the identity
Lie algebra homomorphism one can check that d.v4 gives the claimed isomorphisms of Lie algebras.
O

Let's turn our attention to the tori. We'll show first that there are two canonical isomorphisms
7+ : T, — T. Since T is a complex algebraic torus then C[T] is canonically the group algebra
C[X*(T)] of the character lattice X*(T') of T. Since we assumed that G is of adjoint type in
Section 1.1 then the theory of simple Lie groups says that then X*(T') is canonically identified with
the root lattice Ag and hence with the Grothendieck group K (.A) by definition from Section 7.2.

Denoting by k, € C[X*(T)] the function corresponding to an element « of the root lattice Ag or
equivalently K(.A) then the isomorphisms 74 : T,), — T are determined by the following.

ko — K_g ko — K,

i 1 CT] - C[T] 72 ClT] - C[T]

(19.5) (19.6)

Proposition 19.1.2. The isomorphisms of algebraic tori 74 : T,, — T induce isomorphisms of
Cartan subalgebras de7y : h. — b given by hgi — $%hi.

Proof. Let's check that de7i (R ) = —1/2 h; as the other calculation is similar. Recall that by
definition we have by, = T}T,). ‘and h* = TFT. The map 74 : T, — T induces the pullback
cotangent spaces at the identity (de71)* : b* — bs.. Applying this to a simple root a; in h* we
have the following identity in hs.

— 1
(der4)*(j) = (de)"(deka,) = de g, = —5hg,

That we have denr(hé_) = —1h; then follows from the following computation.
\ * \ 1 \ ]'
aj(deﬁr(hgi)) = (dey) (Oéj)(hgi) = —§h§j(hgi) = 5%

We now consider the case of the Borel subgroups.

Lemma 19.1.1. As an algebraic group each By, | splits as a semi-direct product Ng; y x T,

Proof. We will treat the case of By, . as the case of By, _ is similar. We must show that there

is a homomorphism of algebraic groups By, , — T restricting to the identity on the subgroup
T, < B, . and with kernel N . To this end consider the homomorphism By, . — T given
by the following homomorphism of Hopf algebras.

ClTy] — C[Bq

sc,+1»

Ko,— K, (19.7)

That the restriction of By, . — T, to T, < By, . is the identity comes from the fact that the
map in Equation (19.7) composed with the quotient map C[By. .| — C[Ty] is the identity. It
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remains to check the kernel condition i.e. that INj | is the fibre over the torus group identity
of the homomorphism By, . — T . However one can easily verify the equivalent Hopf algebraic
statement that the following is a pushout diagram in the category of Hopf algebras over C.

CINg+] < C[Bg 4]

| I

C+— C|T]

Here the top map is the quotient map by the ideal (K, —1), the right-hand map is the homomorphism
from Equation (19.7) and the bottom one is given by the Hopf algebra counit sending K, — 1. O

In Proposition 19.1.3 we will show that B, ; and Bz are isomorphic as semi-direct products. In
order to do so will need to discuss how actions of tori on nilpotent Lie algebras induce root space
decompositions. For the remainder of this section will continue to abuse notation and view nilpotent
Lie algebras as schemes rather than as complex vector spaces. For example n_ will mean the Lie
algebra viewed as an algebraic group via Baker-Campbell-Hausdorff rather than the underlying vector
space.

Recall that for a simple Lie group the adjoint action of the maximal torus T' on the nilpotent Lie
algebra n_ induces a decomposition of varieties into one dimensional root spaces.

n = 11 n[—a] (19.8)

« a positive root

Letting A denote a C-algebra, the adjoint action Ad : T' x n_ — n_ is determined by the following
where g and £ are A-valued points of the torus T' and root space n|—a«] respectively.

Ady (&) = k-a(9)§ (19.9)

An analogous decomposition of ny, , is also induced from the adjoint action of the torus T on
ny. .. First note that the basis of ny. | given by the vectors ey in Equation (18.1) induces the
following decomposition of varieties into one dimensional spaces.

n;/c,-‘r = 1_[ 11;/0[0(] (1910)

« a positive root

Recall that in Section 1.2 we gave a formula for the adjoint action of an algebraic group on its Lie
algebra. Applying this to the algebraic group By, . and suitably restricting, one obtains an adjoint
action of the torus T} < By, , on the nilpotent Lie algebra ny, , < by, ..

A straightforward calculation using Section 1.2, along with the formulas for the coproduct and
antipode of the Bridgeland-Hall algebra given in Corollary 14.1.2, shows that the adjoint action
Ad : Ty xng, . —ng, , is determined by the following where g and & are A-valued points of Ty,
and n).[«] respectively.

Ady(€) = Ka(9)¢ (19.11)

We now relate the algebraic groups By , and Bz.

Proposition 19.1.3. There are isomorphisms of algebraic groups b+ : By, — Bz inducing the
following isomorphisms of Lie algebras deby : by, . — bz.
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b;/c,Jr — b b;/c,f - b-‘r
(19.12) ej, = —fa fi, = —ea (19.13)
\'2 1 \4 1
hSz [ _ihl hSZ [ 5 i

Proof. It is well known that for Borel subgroups of simple algebraic groups one has By = Nz xT.
Similarly in Lemma 19.1.1 we showed that By, , = Ny . x T. Now by Proposition 19.1.1 and
Proposition 19.1.2 we have isomorphisms of algebraic groups v+ : Nyt . — Ny and 71 : T,g —> T
We will show that by := v4 x 71 gives an isomorphism of semi-direct products Ny . x T —

Nz x T. In particular we observe that by Proposition 19.1.1 and Proposition 19.1.2 the induced
maps of Lie algebras are the ones claimed in Equation (19.12) and Equation (19.13).

We will show that b, is an isomorphism with the case of b_ being similar. Since vy and 7.
are isomorphisms of algebraic groups then by := vy x 7. will be an isomorphism of semi-direct
products if we can show that it preserves the adjoint actions of Ty on Ny, and T on N_. In
particular, recalling how v, was defined in Equation (19.4), we need to show that the following

diagram commutes.

v v idxlog v v T4 XU idXexp
T, x NSC’+ T, x Nt T xn_ T x N_
lAd lAd JAd lAd
log U4 exp
v v
_— — —
Nsc,+ nsc,+ n N

We need only verify that the central square commutes as the cases of the left-hand and right-hand
squares follow from the fact that adjoint actions commute with exponentiation. Letting A denote
a C-algebra, take g and £ to be A-valued points of T, and n}.[«] respectively. We need to check
that we have the following equality of A-valued points of n_.

Adr, (g) 0 ut(§) = uy 0 Ady(§) (19.14)

To establish Equation (19.14) we will expand the left-hand and right-hand sides while explaining
what is going in words as the notation is a little cumbersome. Expanding the left-hand side we
obtain the following.

Ady, (g) 0 ut(§) = k-a(T4(9))us () = 75 (k-a)(g)u+(S) (19.15)

To explain Equation (19.15) we first note that map u, : nJ. ., — n_ preserves the root space
decompositions from Equation (19.8) and Equation (19.10). This is true since u preserves root
vectors ef — —f, by Equation (19.3). In particular we have that u,(§) is an A-valued point of
the root space n|—a]. Moreover by definition 7 : T,), — T sends the point g of T,/ (A) to 74(g)
in T(A).

Now for the first equality in Equation (19.15) we use Equation (19.11) to see that the adjoint action
of 74(g) on uy(§) gives k_o(74(g9))us(§). For the second equality we note that evaluating the
function k_, on the point 7, (g) is the same as evaluating the pullback function 7} (k_,) on the
point g.
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Expanding the right-hand side of Equation (19.14) we have the following.

uy 0 Adg(§) = ui(Ka(9)€) = Kalg)ui(§) = 71 (k-a)(9)u+(€) (19.16)

For the first equality in Equation (19.16) we use the fact from Equation (19.11) that the adjoint
action of g on & gives K,(g)§. For the second equality we use the A-linearity of u. while the last
equality comes from Equation (19.5) which says that 7} (k_o) = K.

Combining Equation (19.15) and Equation (19.16) we obtain Equation (19.14). O

19.2 Statement and Proof

In this section we give an isomorphism of Poisson-Lie groups between the semi-classical Poisson-
Lie group G, and the dual Poisson-Lie group G using the results from the previous section. In
particular the goal of this section is to prove the following theorem.

Theorem 19.2.1. There is an isomorphism of Poisson-Lie groups g : Gy, — G".

Let us assume for the moment that there exists an isomorphism ¢ : G;. — G, a priori only of
algebraic groups. We will suppose in addition that the induced isomorphism of tangent Lie algebras
is in fact an isomorphism of Lie bialgebras. Under this hypothesis we would have the following proof
of Theorem 19.2.1.

Proof. We have two Poisson-Lie groups G, and G~ which are isomorphic as algebraic groups. The
only extra condition we need to check for g to be an isomorphism of Poisson-Lie groups is that
it is Poisson. Now g being Poisson is equivalent to the requirement that the pushforward of the
semi-classical Poisson bracket {—, —}s. under g coincides with the Poisson bracket {—, —} on G".
Here the pushforward is given by the following formula where a,b € C|G"].

gs{a,b}sc :={aog,bog}s o 9_1

Note that by virtue of the fact that g is an isomorphism of algebraic groups, g.{—, —}sc endows G
with the structure of a Poisson-Lie group. We then have two (a priori distinct) Poisson structures
g«{—, —}sc and {—, —} on the algebraic group G which both turn it into a Poisson-Lie group.
Moreover since g induces an isomorphism of tangent Lie bialgebras then both g.{—, —}s. and {—, —}
give GV the exact same tangent Lie bialgebra structure

Stepping for a moment into the category of complex manifolds (as opposed to complex varieties)
Theorem 11.39 (1) of | | says the following: given a complex Lie group K and the structure
of a complex Lie bialgebra on its tangent Lie algebra then there is at most one Poisson structure on
K turning it into a complex Poisson-Lie group inducing the prescribed Lie bialgebra.

It is easy to see that this implies that g.{—, —}sc = {—, —} on our algebraic group G".

O]

The remainder of this section is dedicated to showing the hypothesized existence of an isomorphism
g : Gy, — G inducing an isomorphism of tangent Lie bialgebras.
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Theorem 19.2.2. There is an isomorphism of algebraic groups g : Gy, — G".

Proof. We will show that the isomorphisms b x b_ : By, | x By, — B_ x B, induced by
Proposition 19.1.3 descends to an isomorphism g : G). — G". Recall from Section 3.3 that the
algebraic group G fits into the following short exact sequence of algebraic groups.

G'B xB. 5T (19.17)
Here m was the product of the two canonical projections to the torus while i¥ was the inclusion
of the kernel. We will define maps so that the following is an analogous short exact sequence of
semi-classical groups. Showing that Equation (19.17) is isomorphic to Equation (19.18) as short
exact sequences will provide us with the required isomorphism g.

Gy % By x By, T5TY (19.18)
Let's define the maps 7. and 7. and show that they do indeed give a short exact sequence. Recall
that the coordinate algebras of T and By, | were defined as quotient Hopf algebras at the beginning

of Section 19.1. Using these definitions along with the Hopf algebra formulas in Corollary 14.1.2
one can check that the following is a homomorphism of Hopf algebras. This gives the map mg..

C[T;] - C[By ]®cC[B;. ], Ko Ko®K,

Similarly the following two Hopf algebra homomorphisms give the two maps G, — B, | deter-
mining 7.

C[B,. ] — CIG,, C[B,. 11— ClG,,
(19.19) Er By Fr Ty (19.20)
Ko,— K, F; — F:l

It is easy to see that 7y is surjective. That i, is the kernel of 7. is equivalent to verifying that the
following is a pushout in the category of C-Hopf algebras which one can readily check.

(ise)*

ClGs.] < C[Bg. ] ®c C[By. ]

w ]

C - ClTy]

Here bottom map is the counit given by £(K,) = 1 which picks out the group identity of the torus.

It remains to give the isomorphism of short exact sequences between Equation (19.18) and Equa-
tion (19.17). Recall from Proposition 19.1.3 and Proposition 19.1.2 that we have isomorphisms of
algebraic groups by : By, . — Bx and 7, : Tg; — T. Using the semi-direct product decompo-
sition of the Borel subgroups involved one can check the right-hand square in the diagram below
commutes. This induces a required isomorphism of algebraic groups g : G;. — G via the universal
property of the kernel.

7:\/ T
\ sc 2 2 sc \
Gsc Bsc,+ x B Tsc

sc,—

I 21

v

G —" sB_ xB, —™ T
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O

The only thing we haven't yet checked is that the isomorphism of algebraic groups g : G;. —» G
does what we want on the level of Lie bialgebras.

Proposition 19.2.3. The isomorphism of algebraic groups g : Gy. — GV induces exactly the
isomorphism of tangent Lie bialgebras that we constructed in Corollary 18.4.1.

Proof. Recall that the isomorphism of tangent Lie bialgebras 8" : g;. — g" from Corollary 18.4.1
was given by the following.

0 (cf,) = e 0¥ (f1,) = — £ 0¥ (hy) = by

We will check that d.g coincides with ¥ using the following commutative diagram of tangent Lie
algebras induced from Equation (19.21).

deisvc
g;/c — b;/C,+ (‘B b;/c,—
ldeg ldelu@deb, (19.22)

gV % b @b

We will compute that d.g = 6V using the three other maps in this diagram. For the first map
using Equation (19.19) and Equation (19.20) a simple calculation shows that d.i). is given by the
following.

ef, = (ef,. 0) Jio = 0, f7) h, = (hg, hg)

For the next map it follows from Proposition 19.1.3 that under d.b; @ deb_ we have the following.

(67,.0) = (~f,0) (0. 47,) = (0, —c0) (g ) = 5(~hes i)

Finally from Section 3.3 we have that d.i" is simply the inclusion of the subalgebra g¥ c b_ ®b.
since ¢ is the inclusion of the subgroup G¥ < B_ x B,. We arrive at our result by combining the
above observations with the fact that the basis vectors for gV were defined in Equation (3.5) to be
the following.

ey i= (—fa,0) 12 = (0,e0) ny = g (i ho)
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Glossary

Hall Algebras and Bridgeland-Hall Algebras

Dap Basis vector of Bridgeland-Hall algebra 70

E; Basis vector of (Bridgeland)-Hall algebra; Er, = ar X, 45, 69
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Polynomial counting projectivization of set Ext!(M, N)y, 43

Polynomial counting projectivization of set of maps M — N with kernel A and cokernel B 64
Polynomial counting automorphisms of complex L, 64

Polynomial counting automorphisms of representation L 42

Polynomial counting extensions of complexes M, by N, with middle term isomorphic to L, 64
Polynomial counting extensions of M by N with middle term isomorphic to L 42

Polynomial counting number of subobjects of complexes N, € L, with quotient M, 64
Polynomial counting number of subobjects N € L with quotient M 42

Polynomial counting homomorphisms M — N with kernel A and cokernel B 64

Polynomial counting homomorphisms from M to N 42

Polynomial counting homomorphisms of complexes from M, to N, 64

Quantized Enveloping Algebras

Eg, Rescaled quantum root vector; Eg, = (t2 — 1)Xg, 29

Fp, Rescaled quantum root vector; Fj5, = (12 —1)Yp, 29

Kiirl Generator of quantized enveloping algebra U;(g) 25

T; Lusztig's braid group automorphisms 26

Xg, Quantum root vector; X, = Eg, /(t* — 1) 27

X; Generator of quantized enveloping algebra U;(g) 25

Y, Quantum root vector; Y, = Fg, /(t* — 1) 27

Y; Generator of quantized enveloping algebra U;(g) 25

X Algebra involution of U;(g); commutes with Lusztig's braid group action 27

Uy(9) Specialization at t = q% of the restricted integral form of U.(g) 29

Ug(ny) Positive part of Uy(g) 29

Us(g) Quantized enveloping algebra of simple Lie algebra g 25

U(ny) Positive part of quantized enveloping algebra 25

Uf"iss(g) Poisson integral form of quantized enveloping algebra 29

URes(g)  Restricted integral form of quantized enveloping algebra 28
Miscellaneous

[n]¢!  t-analogue of n! 25

[n]:  t-analogue of integer n 25

Fy, Finite field with g elements 9

q Cardinality of finite field IF;; a prime power 9
[7], t-analogue of binomial coefficient (7}) 25
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Quivers, Representations and Complexes

Cj A simply-laced quiver 8

(= —)skew Skew-symmetrized Euler form on Grothendieck group K(.A) 10

(=, -) Symmetrized Euler form on Grothendieck group K(.A) 10

(aij);jzl Symmetric Cartan matrix of simple Lie algebra assigned to a simply-laced quiver Q 9

1, Element of Iso(.A) determining indecomposable I, , of A,; « a positive root of g 11, 42
K(A) By abuse of notation K(.A) := Ag; canonically isomorphic to to each K(A,) 41

K(A,) Grothendieck group of the category of quiver representations 4, 10

N Number of indecomposable representations of @; equivalently number of positive roots of g 11
Qo Set of vertices of the quiver Q 8

Q1 Set of edges of the quiver Q 8

S; Element of Iso(.A) determining simple object .S; ; of Qin A, corresponding to vertex i 10, 42
(—, =) Euler form on Grothendieck group K(.A) 10

A, Abelian category of finite dimensional representations of Q over a finite field IF, 9

Cq Category of Za-graded complexes in projective objects of A, 12

O'Z»i BGP reflection functors at vertex ¢ 14

Iso(A) Set of maps ® — Zx; canonically isomorphic to each Iso(A,) 41

Iso(Ay) Set of isomorphism classes of objects in A, 34

Iso(C) Set of maps @ [ [(Za x Qo) — Z=o; canonically isomorphic to each Iso(C,) 62

Iso(Cy) Set of isomorphism classes of objects in C, 62

r Number of vertices of Q; equivalently number of simple roots of g 9

Algebraic Groups and Poisson-Lie Groups

BY Borel subgroups of dual Poisson-Lie group G 20

By Borel subgroups of simple Lie group G 6

Bg. . Borel subgroups of semi-classical Poisson-Lie group G, 107
G Standard Dual Poisson-Lie group 19

G, Semi-classical Poisson-Lie group 95

G Simple Lie group; endowed with standard Poisson-Lie group structure 6, 19
NY Unipotent subgroups of dual Poisson-Lie group G 20

Ny Unipotent subgroups of simple Lie group G 6

N, . Unipotent subgroups of semi-classical Poisson-Lie group G';,. 108

T Maximal torus of dual Poisson-Lie group G 20

T, Maximal torus of semi-classical Poisson-Lie group G 107

T Maximal torus of simple Lie group G 6

vy Isomorphism of unipotent algebraic groups between N, , and Ny 108

T+ Isomorphism of tori between T, and T" 109

by Isomorphism of Borel subgroups between B, , and By 110

e Identity of various algebraic groups; algebraic group in question indicated by context xxii
g Isomorphism of Poisson-Lie groups between G_. and G 112

Uy Isomorphism of between ny, ; and n viewed as algebraic groups via BCH 108
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Lie Algebras and Lie Bialgebras

(—,—)g  Normalized Cartan-Killing form on g 5
(aw) ii=1 Symmetric Cartan matrix of simple Lie algebra assigned to a simply-laced quiver Cj 4

N Number of indecomposable representations of Cj; equivalently number of positive roots of g 5
[—,—]lqc  Lie bracket on quasi-classical Lie algebra 53
[—,—]y.  Lie bracket on dual semi-classical Lie algebra 98
[—,—]sc  Lie bracket on semi-classical Lie algebra 98
[—, -] Lie bracket on simple Lie algebra 4
A Root lattice of simple Lie algebra g 5
ot Set of positive roots of simple Lie algebra g 5
P Set of roots of simple Lie algebra g 5
o Simple root of g 5
by Borel subalgebras of standard dual Lie bialgebra g“ 20
by Borel subalgebras of simple Lie algebra g 5
p Borel subalgebras of semi-classical Lie bialgebra g;. 103
bsc + Borel subalgebras of g, 103
gla] Root space of simple Lie algebra g 5
g Standard dual Lie bialgebra 19
gsc[a] Root space of gs. 103
[: ) Semi-classical Lie bialgebra 98
Osc Bialgebra dual of semi-classical Lie bialgebra g_. 98
g Simple Lie algebra; endowed with standard Lie bialgebra structure 4, 19
hv Cartan subalgebra of standard dual Lie bialgebra g¥ 20
e Cartan subalgebra of semi-classical Lie bialgebra gy 103
Bsc Cartan subalgebra of g,. 103
b Cartan subalgebra of simple Lie algebra g 5
ny Nilpotent subalgebras of standard dual Lie bialgebra g 20
ng Nilpotent subalgebras of simple Lie algebra g 5
Nge Abelian quasi-classical Lie algebra 52
OV Nilpotent subalgebras of semi-classical Lie bialgebra g.. 103
Nge 4+ Nilpotent subalgebras of gs. 103
r Number of vertices of @; equivalently number of simple roots of g 5
Sq Simple reflection of root lattice or equivalently of Grothendieck group 5, 10
wo Longest element of Weyl group 5, 26

Variables for Lie Algebras and Lie Bialgebras

ef  Positive root vector of semi-classical Lie bialgebra g;. 98
er  Positive root vector of g;. 98

ey  Positive root vector of standard dual Lie bialgebra g 19
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€; Generator of simple Lie algebra g 4
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121



Negative root vector of g;. 98
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