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Abstract

The mechanical properties of alloys depend on their microstructure, or grain

sizes, which are obtained during processes of the grain growth and recrystal-

lization. However, experiments do not allow to observe all details of the pro-

cess and there is no theoretical model to predict these. This is why computer

modelling allows for the prediction of microstructure. Cellular Automata (CA)

is known to be used to for the simulation of the grain growth. However, (CA)-

based models usually work only on the specific range of parameter, because

there is no linear relationship exists between cellular automata and the phys-

ical parameters.

This thesis describes a newly developed space and time realistic Cellular

Automata technique for the solving of various differential equations. Five

types of differential equations, which have been considered in this work, de-

scribe the grain boundary movement in the processes of recrystallization and

grain growth. These differential equations arise from a combination of the

main driving forces: curvature and stored energy difference. The Cellular Au-

tomata technique is designed to be space and time realistic and is capable of

taking into account the movement of cells in the triple junctions. The the-

sis includes numerous simulation results which have been compared with the

analytical solutions for each type of equation. The problems associated with

iii



the reversibility of Cellular Automata are discussed with their relationships

with the errors of the simulations. The thesis contains several original con-

tributions in the various aspects of Cellular Automata simulation principles,

including a new type of Margolus of neighbourhood.

It has been shown that the model is capable of solving the associated dif-

ferential equations, which describe grain boundary movement, but with the

errors that are related to the square grid. The newly suggested type of neigh-

bourhoods allowed to eliminate the effects of the grid and obtain better pre-

diction results.
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Chapter 1

Introduction

1.1 Motivation

When it comes to the solving of the differential equations, cellular automata

(CA) is not the first in the list to think about. However, CA techniques have

been used for those problems that involve differential equations for a long

time. For example, the lattice gas model has found application in solving the

Navier-Stokes equations. Others applications of CA are processes of diffusion,

reaction-diffusion equations, wave equations. Cellular automata have been

widely used for the modelling of the grain growth and recrystallization in

materials.

The mechanical properties of steels, such as hardness, strength, toughness,

brittleness etc. strongly depend on their microstructure (grain size distribu-

tion), which is normally obtained during thermomechanical processing. Ex-

periments do not allow to observe other important details of the process (for

example, the atomistic phenomena involved in the boundary migration that

occurs at high temperature) because of the associated rapid dynamics. There-
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fore, the most appropriate instrument for studying the grain growth may rest

in computer-based modelling.

Direct simulations via the Monte Carlo method or cellular automata (CA)

allow to include the topological requirements inherently, which would give

them the advantage over the statistical and theoretical methods. CA is con-

sidered as the preferred method, as it is scalable, flexible and versatile to

arbitrary time and space systems. CA [2] is the method for computer mod-

elling that is based on applying local transition rules, which determine the

future state of the cell, according to the states of its neighbours. One of the

recently developed approaches consists of applying local transition functions

(LTF) [3] as well as using Monte Carlo steps for the decision of changing a

cell at each time step.

The main factors influencing the grain growth that should be considered

are temperature, solutes and particles, specimen size and texture [4]. The

driving force for grain growth is based on the grain boundaries surface en-

ergy. The total surface energy is lowered, because the grain boundary area

decreases during grain growth due to the increase in their sizes and the re-

duction of their numbers [5]. This is the ideal case, as grain boundary motion

is driven only by local curvature. The grain growth law follows from the pro-

portionality of the growth rate dD
dt to the curvature of the cell walls c ∼ 1

D :

dD

dt
= K ′c =

K

D
, (1.1)

where K is constant of proportionality. As the grain boundary movement

proceeds through the diffusion of atoms, that is the energy activated process,

the constantK can be expressed through the temperature T and the activation

energy Q as follows:

K = K0e
−Q/RT . (1.2)
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These statements allow to connect the modelling and physical parameters and

calibrate the simulation results.

The more difficult aspect for investigation and control purposes is the ab-

normal grain growth (AGG), which is called also secondary recrystallization,

which is related to the growth of the ordinary grains when they slowed-down

because of one or several factors [6]: inclusions, locking points, preferred ori-

entation or sheet thickness. There are two cases that arise when such a growth

occurs [7]: 1) preferred orientation, when the mobility and the driving force

of the low-angle boundaries are lower; 2) the presence of inclusions at the

temperature which allows their slow dissolution. However, the nucleation

stage is worth a closer investigation. There are four distinguished models of

nucleation [8]: classical, martensitic, subgrain coarsening and bulging mecha-

nism model. To date, the initial nucleation stage was considered in CA models

using non-realistic approaches. However, the suitable choice for these models

defines the future grain growth.

The interaction between two grains is governed by the differential equa-

tions which are introduced later, and it is possible to have analytical solution

of the single grain growth kinetics. Unfortunately, there is no such analyt-

ical solution for the real structures where a big number of grains interact

with each other. Therefore, cellular automata has been used for decades for

the grain growth and recrystallization simulations. Cellular automata is a dis-

crete model which allows to predict the behaviour of the system with the large

number of components, such as grains.

The accuracy of the cellular automata, as the differential equations solver,

is highly important. The common way to increase it is to validate its results

via scaling solution to the one obtained in experiments. However, sometimes,

this method works only on a small range of variables, which requires to reval-

3
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idate results with new experiments. The reason of that that there is no linear

relationship between iterations and physical time.

The novel CA technique developed in this research solves differential equa-

tions, that describe grain boundary movement in the recrystallization and

grain growth processes. The technique has been designed from the princi-

ples of the time and space realism, which means that no further scaling to

the experiments is required. A particular attention is given to the study of the

errors that are produced with a developed CA technique.

1.2 Aims and Objectives

The aim of this research is to develop novel techniques for the simulation of

the grain growth and recrystallization. For this purpose a single grain growth

has been simulated and compared with the analytical solution of the differ-

ential equations. Simulations have been performed in MATLAB on Iceberg

HPC Cluster and for visualisation ParaView has also been used. The efficiency

of the performance has been estimated by finding errors and their conver-

gence have been studied. Consistency of the model parameters has also been

checked on the range of the cell sizes.

1.3 Outline of Thesis

Thesis is organised as follows. Chapter 2 introduces the reader with the his-

tory of applications of CA in material science, and briefly describes theories of

recrystallization and cellular automata. It also describes the modification of

the LTF that has been suggested for improvement of the shapes of the growing

grains. CA is used for solving differential equations, describing grain bound-
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Figure 1.1: The outline of the thesis.

ary movement under driven forces acting separately in Chapter 3, and the

coupled driven forces acting simultaneously in Chapter 4. Chapter 5 inves-

tigates the nature of the errors in simulations. It considers various methods

to reduce them including corrected Moore neighbourhood and new random

Margolus neighbourhood. Finally, Chapter 6 concludes the work in this thesis

and suggests some future research directions. The explanation of the new CA

developed technique is given in Appendix A. Appendix B includes the mis-

orientation calculations which are required for multigrain calculations. The

scheme of the thesis structure is shown in Fig. 1.1.

1.3.1 Summary of Contributions

The contributions of the research presented in this thesis are as follows:

1. Modified local transition functions have been suggested in order

to improve the shape of the growing grains (Chapter 3);
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2. A novel time-realistic deterministic Cellular Automata algorithm

has been designed which is capable of considering the movement

of cells in triple junctions (Chapter 3);

3. A developed CA technique alongside with its probabilistic version

has been applied as a numerical solver for non-linear differential

equations which describe the grain boundary movement (Chapter

3,4);

4. The errors of the simulations are extensively investigated and the

nature of these are explained; The new random Margolus neigh-

bourhood has been implemented to reduce errors caused by grid.

(Chapter 5)
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Chapter 2

Background: theory of

recrystallization, grain growth

and simulation techniques

2.1 Nucleation

Although nucleation is an important phenomenon since it leads to an initial

size distribution for the following grain growth, it is very difficult to measure

it experimentally, because it occurs very quickly and the structure obtained

after nucleation disappears during further recrystallization and grain growth.

2.1.1 Mechanism of nucleation for dynamic recrystallization

The classical fluctuation theory of the nucleation does not work for recrystal-

lization because of the low driving force and the high interface energy [9].

There are three recrystallization nucleation models, as described in [9]:
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SIMULATION TECHNIQUES

1. For the small strains and hot working the nucleation occurs due to

the strain induced by the pre-existing grain boundary migration;

this mechanism, which is also called a bulging, is mostly observed

during the dynamic recrystallization (DRX);

2. The nucleation by the low angle boundary migration occurs at the

high strains, high annealing temperatures, in the low stacking-

fault energy (SFE) metals and alloys with the heterogeneous sub-

grain size distribution;

3. The nucleation by the subgrain coalescence, which occurs dur-

ing static recrystallization (SRX), is possible in metals and alloys

with the transition bands, high SFE, at the moderate strains, low

temperatures and large spread in the distribution of subgrain an-

gles. SRX with the nucleation by the subgrain coalescence has

been simulated by Muramatsu [10] using the model of Kobayashi,

Warren and Carter (KWC) phase field method.

The first mechanism, DRX, which is investigated in the present work, is

the most suitable for the high temperature plastic deformation of metals with

the low-to-medium stacking fault energy materials where recovery proceeds

slowly during hot working (e.g. austenitic steels, γ -iron, copper, nickel, etc.)

[4]. The main differences between DRX and SRX are as follows:

� The modelling of DRX requires a multiscale approach, the cou-

pling of the microstructural evolution and macroscopic mechani-

cal behaviour;

� The dislocation density in SRX recrystallized grains is almost zero,

whereas it increases with the deformation during DRX;
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� During DRX, the nucleation occurs only on the pre-existing grain

boundary surfaces [11]. The nucleation rate laws have been de-

rived by Cahn [12];

� The required dislocation density for the initiation dynamic recrys-

tallization is much higher than for the SRX because of the driving

force reduction.

2.1.2 Dislocation density evolution: The KM model

The dislocation density depends on the two processes, occurring simultane-

ously: 1) the plastic deformation, which has a hardening effect, generates

dislocations; 2) the dynamic recovery annihilating dislocations that leads to

the softening effect. Therefore, the change of the dislocation density with the

true strain can be expressed as follows:

∂ρ

∂ε
=

(
∂ρ

∂ε

)
hard

+

(
∂ρ

∂ε

)
soft

(2.1)

Kocks and Mecking [13] proposed the following phenomenological equa-

tion for the variation of the mean dislocation density:

∂ρ

∂ε
= k1

√
ρ− k2ρ, (2.2)

where k1 is a constant related to the hardening and k2(ε, T ) = αµbk1/σst is

the softening parameter. This simplification in the literature is often called

KM model.

The steady-state stress [4] is described by the following expression:

σst = (A1ε̇ exp(QA/RT ))1/A2 , (2.3)

9
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SIMULATION TECHNIQUES

Figure 2.1: Stress-strain curves for dynamic recovery [11].

where QA is the activation energy.

The high-temperature flow stress σ is related to the average dislocation

density ρ̄ [4] as follows:

σ = αµb
√
ρ̄, (2.4)

ρ̄ =
1

n

n∑
i=1

ρi, (2.5)

where α is a dislocation interaction coefficient and for most metals approx-

imately equals 0.5 [4], b is the magnitude of the Burgers vector, µ is the

shear modulus, n is the total number of cells. The combination of these two

equations, Eq.(2.4) and Eq.(2.5), leads to a macroscopic stress-strain curve as

shown in Fig. 2.1.
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2.1.3 Critical dislocation density

The critical dislocation density for the initiation of DRX during hot working

was proposed by Roberts and Ahlblom [11] by neglecting dynamic recovery:

ρc =

(
20γε̇

3blMτ2

)1/3

, (2.6)

where γ is the grain boundary energy, ε̇ is the strain rate, b is the Burgers

vector of glide dislocations, l is the size of subgrains developed during defor-

mation or dislocation mean free path [14] and can be expressed as follows

[15]:

l =
Kµb

σ
, (2.7)

where constant K is about 10 for the most metals. Eq.(2.4) for the flow stress

σ gives l = K
α
√
ρini

= 10
0.5
√
ρini

, M is the boundary mobility, τ is the dislocation

line energy being as follows [11]

τ = µb2/2, (2.8)

µ is the shear modulus and the critical nucleus size being as follows [11]:

dc = 2rc =
6blmτ

5ε̇
ρ2
c (2.9)

The kinetics of the grain boundary nucleation was derived by Cahn as

follows: [12]:

X = 1− exp[−b−1/3
s · f(as)], (2.10)

where X is the volume fraction transformed in time t,

11
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f(as) = as

∫ 1

0
1− exp

{
−πa3

s

[
1− x3

3
− x2(1− x)

]}
dx, (2.11)

where x = y
Gt , G is the growth rate, y is distance,

as = (IsG
2)1/3t,

bs =
Is

8S3G
,

where Is is the specific grain boundary nucleation frequency per unit area and

S is the grain surface area per unit volume.

The time required for site saturation is tss = (IsG
2)−1/3 and the estimated

dynamically recrystallized grain size can be written as follows [11]:

D = dc + 2Gtss = dc + 2Y mτρ0ctss, (2.12)

where Y is within 1.05-1.25 depending on Zener-Holomon parameter, Z =

ε̇ exp
(
Q
RT

)
, where Q is the activation energy Q = −R [∂ ln ε̇/∂(1/T )]σmax

.

Takaki et al. [16], [17] developed a multi-phase-field (MPF) model firstly

proposed by Steinbach and Pezzolla [18] to simulate microstructural evolu-

tion during DRX. They used a computational algorithm as suggested by Kim

et al. [19] and Kocks-Mecking model [13] for the modelling of the disloca-

tion density evolution. The coupling of CA method with the KM model was

performed earlier by Ding and Gao [14].

2.1.4 Nucleation rate

When the dislocation density reaches the critical value ρc =
(

20γε̇
3blmτ2

)1/3
, the

nuclei are placed on the grain boundaries (or internal defects, e.g. impurities,

shear bands).
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The nucleation rate ṅ per unit area of a grain boundary can be written as

a function of the temperature T and the strain rate ε̇ [14] as follows:

ṅ(ε̇, T ) = Cε̇d exp

(
−QA
RT

)
, (2.13)

where C is constant, d was set as 1 in [14, 16, 17] and QA is the activation

energy.

2.2 Recrystallization

Recrystallization can be defined as a volume stored energy driven process

relating to the formation of the new grain structure in the plastically deformed

materials [20]. The two associated types exist: 1) static recrystallization,

which occurs after deformation; 2) dynamic recrystallization, where the new

grains are nucleated and grow during deformation. In addition, the latter

can be also divided into two groups: discontinuous (DDRX) and continuous

(CDRX) dynamic recrystallization. During the first one, the nucleation of the

new grains occurs at high-energy sites in the microstructure, primarily along

the boundaries. The second is accompanied by the formation of the long-angle

boundaries from the dislocation networks.

The dynamic recrystallization occurs when the dislocation density reaches

a critical value. At the lower process temperatures T or high strain rates

ε̇ the flow stress oscillates forming serrations, and the higher T or lower ε̇

lead to these smoothing of the oscillations (see Fig. 2.2). The modelling of

recrystallization allows to optimise these parameters that helps to create a

material with improved properties.

The annealing of the deformed metal occurs in three stages as was de-

fined by Turnbull [21]: 1) recovery, characterized by continues changes in

13
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Figure 2.2: Stress-strain curves for dynamic recrystallization [11].

physical properties, 2) recrystallization, which implies nucleation and nu-

clei growth, and 3) grain growth, occurring by the migration of the grain

boundaries, which existed before annealing. Metals, which have already un-

dergone recrystallization may incur secondary recrystallization or abnormal

grain growth (AGG).

2.2.1 Mean field theories

Several theories were introduced to describe the change of the grain size dis-

tribution f(R) with time t, which considered the average effect of the whole

ensemble of the grains on the embedded isolated grain and were classified by

Atkinson [22] as mean field theories.

It is convenient to consider them from the viewpoint of Hunderi and Ryum

[23]. They considered the normal grain growth as the motion of the individ-

ual grains and they demonstrated that the change of the grain size
∂R

∂t
accom-

panied by the grain boundary motion can be caused by two processes: 1) a

diffusion-like process characterized by diffusion constant Diff depended on

14
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the specific grain-boundary mobility, 2) by velocity v = dR/dt which is a drift

velocity induced by the driving force F . Therefore the continuity equation for

the grain flux j can be written as follows:

j = −Diff ∂f(R, t)

∂R
+ vf(R, t), (2.14)

where the distribution function f(R, t) is defined as follows:

∂f(R, t)

∂t
=

∂

∂R
(−j) =

∂

∂R

(
Diff

∂f(R, t)

∂R

)
− ∂

∂R
(vf(R, t)) (2.15)

Hence, the mean field theories can be divided into groups the theories

concentrating on:

1. the drift-velocity terms [24],[25]: Diff = 0,
∂f

∂t
+

∂

∂R
(fv) = 0 ;

2. diffusion, Louat [26]: v = 0,
∂f

∂t
= Diff

∂2f

∂R2

The first type methods are, in turn, divided into two approaches devel-

oped by: 1) Feltham [25], who obtained the drift velocity v using the exper-

imentally determined form of the grain size distribution f (he asserted it as

log-normal) and 2) Hilert [24], who suggested the particular expression for v

and then obtained f . These methods are described next in more detail.

2.2.1.1 Feltham

Feltham [25] neglected the diffusion term and by using the time invariant

properties of the grain ensemble distribution, he first obtained the drift ve-

locity dependence by claiming that the experimental grain size distribution

f(R, t) is log-normal:
∂D2

i

∂t
= C ln

Di

D′
, where C is a constant, Di is the di-

ameter of ith grain, D′ is the most probable spatial grain diameter. Assuming
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D = Dmax = 2.5D′ or time-invariance of the log-normal distribution Feltham

obtained a parabolic grain growth law D′2 − D′20 =
(
λV aσ
h

)
e−H/Kt for pure

metals, where t is the time of isothermal annealing, λ is a numerical constant

of order unity, a is a jump distance, σ is a specific surface energy, h is a Plank

constant, and H is the activation energy for grain-boundary self-diffusion.

However, as was noticed by Srolovitz [27], the real F distribution was

skewed and has upper cut-off in contrast to the symmetric log-normal func-

tion, whose tails approach infinity, and whose peaks of log-normal curve are

wider than in their simulation.

2.2.1.2 Hillert

Another approach was realized by Hillert [24], where he suggested a particu-

lar expression for a drift velocity as follows:

v = g
dR

dt
= αMσ

(
1

Rcr
− 1

R

)
, (2.16)

where α is dimensionless constant, M is the boundary mobility and σ – the

surface energy of the boundary, Rcr is the critical size at which switch from

the shrinkage to the growth occurs and proportional to the mean radius R.

Using this expression, he derived a steady state solution distribution function

f(R, t). However, as was noted by Hunderi [23], this distribution is much

more tapering than experimentally obtained and also it is difficult to check

experimentally this suggested relationship between drift velocity and grain

size. The more empirical relations were reviewed by Gao [28].

Hillert also suggested a defect model in accordance with the grain growth

occurring by the dislocation climb and obtained a parabolic growth law calcu-

lated from the number of the defects per grain c as follows:

16



2.2. Recrystallization

dR2
cr

dt
=

1

3
Mσ

∑
p

p · cp, (2.17)

where cp is the concentration of grains with n = 6−p neighbours and
∑

p p ·cp

is the total concentration of defects. Hillert’s model considers change of the

topological parameters only in the nearest neighbour cells. As the number

of defects is constant, therefore their concentration will grow during grain

growth approaching a high value required for the normal grain growth. Hillert

showed that this concentration should be equal
3

4
. However there maybe

annihilation of the defects, which will decrease number of them. This should

lead to a constant remaining number of the defects during the grain growth.

Hillert’s model was extended to textured microstructure, by introducing

the dependence of Rcr on the orientation by Abbruzzese and Lücke in [29].

These texture changes are rather rules than exceptions, because the primary

recrystallization almost leads to the preferred orientations. Abbruzzese and

Lücke define normal grain growth as continuous and abnormal (secondary

recrystallization) as discontinuous, at the same time noting that they are not

principally different processes, but are distinguished only by the values of the

input parameters, such as diffusivities, fractions of grains with different orien-

tations, mean radii and the standard deviations of the grain size distribution

for orientation H. They developed a statistical model by making assumptions

on the superposition of grain curvatures, homogeneity and of random grain

distribution. In contrast to the textureless case, they derived a different radius

R̃Hc and the diffusivity MH , for each orientation class. Their model predicted

deviations from the parabolic grain growth law, and a stepwise growth is ob-

served, that corresponds to the different time dependencies at the different

time stages of grain growth.
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2.2.1.3 Louat

An alternative method was to consider a boundary motion as a diffusion pro-

cess, excluding drift velocity process, which was done by Louat [26] as fol-

lows:

∂f

∂t
= Diff

∂2f

∂R2
. (2.18)

Louat made the assumption that the grain growth is a random process,

statistically determined. Assuming that the diffusion coefficient Diff is inde-

pendent of t, f , R, and given the boundary condition f(0) = 0 he obtained

the following solution:

f(R, t) =
CRe−R

2/4Difft

Difft3/2
, (2.19)

where C is a constant chosen to give distribution at time t = t0.

2.2.1.4 Hunderi and Ryum

Hunderi and Ryum [23] suggested a generalized approach to find either v or

f , where by using appropriate scaling for R, v and f , the Hillert distribution

can hence be obtained. They also found that the drift velocity derived by

Feltham is first term in a series expansion.

2.2.2 Driving forces for recrystallization

During recrystallization and grain growth, grain boundary is moving with ve-

locity as follows:

v = Mp, (2.20)
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where M – grain boundary mobility and p – driving pressure.

There main source of driving forces for grain boundary migration during

primary recrystallization is the stored deformation energy (10 [MPa]), which

is caused by the dislocations motion. The driving force for grain growth is

the grain boundary energy (1012 [MPa]). However, there are also other driv-

ing forces with lower magnitude such as surface energy (2 · 10−2 [MPa]),

chemical driving force (6 · 102 [MPa]), magnetic field (3 · 10−5 [MPa]), elas-

tic energy (2.5 · 10−4 [MPa]) and temperature gradient (4 · 10−5 [MPa]) [30]

but their estimated magnitude are significantly lower than for recrystallization

and grain growth and therefore they were not considered in the present work.

Therefore, only the pressures arising from curvature given by Gibbs-Thomson

relationship [4] pC = −2γ/r and dislocation density difference pD = τ [ρ] ,

were considered (the pinning pressure was no considered yet) in the present

research. Here, the dislocation line energy τ = αµb2, α is a constant of the

order of 0.5, b is a magnitude of Burgers vector, µ - shear modulus and jump

in dislocation density across the boundary [ρ] is the dislocation-density differ-

ence between grains δρ = ρi − ρj ,

p = pC + pD (2.21)

2.2.3 Mobility and boundary migration

The grain boundary movement following Cole, Feltham and Gilliam [31] can

be considered as transferring atoms from one grain to the adjoining by dif-

fusion jump across the boundary. In the presence of the driving force the

activation energy for migration or boundary self-diffusion Q is decreased in

one direction and increased in another. Therefore, a net flow of atoms can be
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written as follows [30]:

v = bv0cvg

{
exp

(
−Gm
kT

)
− exp

(
−Gm + pb3

kT

)}
, (2.22)

As pb3 � kT ,

v ∼= bv0cvg exp

(
−Gm
kT

){
1− 1 +

pb3

kT

}
= b4v0cvg

1

kT
exp

(
−Gm
kT

)
· p = mp,

(2.23)

where Gm is free activation energy, cvg is vacancy concentration, b is the

distance by which atom moves the boundary (about atomic diameter), v0 is

atomic vibration frequency [31, 32, 6, 30].

Taking into account the Nersnt-Einstein relationship and Arrhenius type

dependence on temperature of diffusion in solids the mobility can be written

as follows [32, 30]:

m =
b2Dm

kT
=
b2D0

kT
exp

(
−Qm
kt

)
, (2.24)

or if Qm is activation energy of grain boundary diffusion per mol

m =
b2D0

kT
exp

(
−Qm
RT

)
= m0 exp

(
−Qm
RT

)
, (2.25)

in this expression D0 is the pre-exponential of lattice diffusion and has di-

mension of [m2s−1]. It was used in the works of Davies [33], Lan [34], Zheng

[35, 36], Han [37]. Other authors such as Ding [14, 38], Kugler [39] used

the expression by setting δDob = bD0

M =
δDb

kT
b,
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δDb = δDob exp

(
− Qb
RT

)
, (2.26)

M =
bδDob

kT
exp

(
− Qb
RT

)
, (2.27)

here, δ is characteristic grain boundary thickness,Db is boundary self-diffusion

coefficient, and δDb has dimension of [m3s−1].

The orientation dependent expression for mobility was firstly introduced

by Humphreys [40] and used by Hallberg [41], Han and co-workers [37] as

follows:

m(T,Θ) = m0(T )

(
1− exp

[
−B

(
Θ

Θm

)k])
, (2.28)

where m0(T ) is the mobility at high angle boundary described above, k = 4,

B = 5.

The shear modulus has a temperature dependence, which was used by

Hallberg[42, 41] based on the relationship given by Frost and Ashby in [43],

for example:

µ(T ) = µ0

[
1 +

(
T − 300

Tm

Tm
µ0

dµ

dT

)]
, (2.29)

where µ0 is shear modulus at 300 K and TM
µ0

dµ
dT is the temperature dependence

of modulus and Tm is a melting temperature.

2.2.4 Primary recrystallization kinetics

The phenomenological model known as The Johnson-Mehl-Avrami-Kolnogorov

(JMAK) [44, 45, 46] equation is often used to quantitatively describe recrys-
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tallized fraction X as a function of time t:

X = 1− exp

{
−
(
t

tR

)q}
, (2.30)

where tR is the characteristic time for recrystallization.

2.3 Grain growth following recrystallization

2.3.1 The Turnbull rate equation

Turnbull’s work [21] was devoted to the study of the underlying physical

principles of the recrystallization and grain growth. They formulated a phe-

nomenological rate equation, describing grain-boundary segment motion un-

der the influence of the exerted by surface curvature on isolated section bound-

ary pressure p or driving force, which was considered as the reduction in the

energy and therefore a decrease in the grain boundary.

This pressure p is related to the grain boundary velocity v via the following

expression: v = Mp, where the grain boundary mobility M varies with the

temperature T according to: M = M0 exp
(
−Qa

RT

)
. Here, Qa is the activation

energy required for the boundary movement, R – ideal gas constant, T –

absolute temperature and M0 =
b
2
D0

KT
– pre-exponential factor, b – value of

Burgers vector, D0 – diffusion constant, k – Boltzmann constant. The pressure

p can be expressed through the boundary curvature κ as p = γκ, where κ =
1

r1
+

1

r2
, r1 and r2 are the principle radii of the curvature and supposing that

the boundary is the sector of sphere radius of which is R = r1 = r2 then

p =
2γ

R
. Up to misorientation of 15o the grain-boundary energy is γm and at

the misorientation Θm = 15o, corresponding to high angle grain boundary –

the grain boundary free energy γ can be obtained through the Read-Shockley

equation [47]:
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γ = γm

(
Θ

Θm

)[
1− ln

(
Θ

Θm

)]
, (2.31)

where Θ is the grain boundary misorientation, beyond Θ = 15o the grain

boundary energy is assumed constant.

For the isothermal conditions linear rate of growth or grain boundary ve-

locity ẋ can be simplistically expressed as ẋ =
K ′σV

R
, where σ is the sur-

face energy of the boundary, V is the grain atomic volume, rate constant

K ′ = K ′0 exp (−QG/RT ), where QG is the activation energy for grain growth

[21]. In the case of the isothermal annealing condition the following state-

ments are assumed: 1) boundary surface tension σ, and therefore the grain

boundary free energy γ is independent of the grain size and time, 2) boundary

curvature r is proportional to the mean diameter D or radius R of an individ-

ual grain, and so 3) the net increase
dR

dt
is proportional to ẋ:

dR

dt
∼ K ′σV

R
,

therefore one can derive the parabolic growth law for the isolated section of

the grain boundary

R
2
t −R

2
0 = kt, (2.32)

where R0 is the initial mean radius, Rt is the mean grain radius at the time t

and k is constant. In the limit Rt � R0, R2
t = kt and Rt = ktn, here n = 0.5

is also termed as grain growth exponent. However, experiments usually show

it to be less than 0.5 [48].

The reason for the discrepancy is that their equation describes the kinetics

of only individual grains, but does not consider the influence of neighbour-

ing grains, the topological requirements, which were studied by Smith [49],

although he also ignored kinetics or how quickly topological transformations

and overall grain growth can occur. Therefore, the grain growth should be de-
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scribed in terms of the interaction between topological space-filling and force

driving boundary migration. This attempt was made by Rhines and Craig

[50], who included two new parameters: the sweep constant Θ which corre-

sponds to the number of grains vanishing when boundaries sweep through the

unit volume and the structural gradient σ =
MV SV
NV

, where NV is the number

of grains per unit volume, MV is the total curvature per cm3, SV – the total

area of grain boundary per cm3. They obtained the grain growth exponent

of 1/3. The average grain volume increases with the rate proportional to the

mobility µ, the grain boundary surface tension γ and the structural gradient

σ:

V =
Θ∗µγMV

NV
t+ V0, (2.33)

where V0 is the mean grain volume at the time t = 0.

A review of theories for the normal grain growth in single phase materi-

als, which attempted to merge these two above approaches together, is repre-

sented by Atkinson [22]. Atkinson emphasizes that the normal grain growth

which is characterized by the time-invariant size distribution, its range being

relatively narrow.

2.4 Theory of Cellular Automata

2.4.1 Definition of CA

Cellular automata (CA) is a discrete (in space and time) model consisting of

a regular lattice, each site of which can take one of a finite set of possible

discrete states. These states are simultaneously upgraded according to local

rules, which define the state variable of each site as a function of the state
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of the neighbouring sites (local rules) and its previous state. This technique

allows to analyse and simulate the most sophisticated behaviour of nonlinear

dynamical systems, for example evolution of hydrodynamic flows [51].

S. Wolfram [52] defined the elementary cellular automaton as a one-

dimensional CA, each state of which takes one of two possible states and have

two adjacent neighbours (on the right and left). The rules are usually repre-

sented as a decimal number by reading its rule icon in base 2. Examples of

some rules are shown in Fig.2.3.

The configuration of neighbouring influences on the final state because of

the discretization of space. There are two types of neighbouring: type I –

neighbours which one coordinate differs by one unit and type II – none of its

coordinates differ by more than one unit. Conway’s game of life is the example

of type two-dimensional CA and belongs to the "totalistic" rules. The value of

the cell in totalistic CA depends on the sum of the values of its neighbours at

the last step [52].

Three sites of elementary CA (left, central and right) can be in 23 = 8 dif-

ferent configurations and there are 28 = 256 different rules, determining the

next state of the site. Usually, two requirements are used, that give just 32 pos-

sible rules called "legal": 1) rules must be symmetric (100=001, 110=011);

2) initial zero state should be unchanged. This gives general form of rules:

a1a2a3a4a2a5a40 [53]. Cellular automata increases complexity with higher

dimensions.

In addition, two broad classes of CA may be identified : 1) those which

lead to simple, homogeneous final configurations, 2) CA is also able to form

fairly complicated structures despite simple initial states. There are different

types of CA’s, such as the PCA (Probabilistic or Stochastic CA), the LGCA (Lat-

tice Gas Cellular Automats) and the DSMC (Direct Simulation Monte Carlo),
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Figure 2.3: Elementary CA rule icons.
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short overview of which is given in [54] with an example of the simulation of

recrystallization. Vanag [55] compared these methods on the example of the

Williamowski-Rossler model.

2.4.2 Properties of CA

In contrast to the Monte Carlo model, that reflects real microscopic models,

cellular automato-based simulations are scalable to arbitrary systems, but only

by achieving an appropriate scaling. The CA approach is flexible due to the fact

that automata can involve any relevant rules of transformation. These proper-

ties make CA versatile for the various space and time scales in the simulation

of microstructure. Depending on the type of rules, cellular automata can be

deterministic or probabilistic. It must be noted at this stage that there are

two different ways to make a cellular automata non-deterministic. In the first

approach lattice cells are selected randomly, but deterministic transformation

rules are used. In the other method, the probabilistic transformation is ap-

plied, but with systematic analysis of all lattice positions in the sequential

order.

In [52] details about the behaviour of elementary CA with analyses of

some of their local statistical properties, such as density and two-point corre-

lation function, are given. It is shown that these characteristics cannot sense

the structures obtained via a complex CA. The sequence density Qi(n) – den-

sity of sequences consists of n adjacent sites with value i. These sequence den-

sities, normally obtained from configurations after the application of local cel-

lular automata rules, differ from the sequence density of its initial disordered

configuration. This is an exhibition of self-organization. Another reflection of

self-organization is the difference in the probabilities for initially equiprobable
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configurations. In addition, global properties (statistical properties not of the

set of cells in individual CA configuration, but ensemble CA) such as Ham-

ming distance H(s1, s2) are considered. The Hamming distance indicates the

number of sites which are different between the binary sequences of s1 and

s2. For additive rules, the behaviour of function is defined by the evolution of

the initial difference for τ time steps. In contrast, for nonadditive any small

change in initial steps linearly increases the number of the uncorrelated sites.

The most of the elementary CA are irreversible, since the final configura-

tion can be obtained from several different initial configurations. There are

6 CA rules among Wolfram’s elementary rules which are reversible: rule 204

(identical), rule 51 (complement), rule 170 (shift-left), rule 240 (shift-right)

and their invert analogues rule 85 and rule 15. Fig. 2.4 shows the evolution of

a single seed and random initial configuration according to these rules. Rules

105 and 150 become reversible when periodic boundary are used.

The extension to k possible states per site and d dimensions is also con-

sidered [52]. The time and length scales of appearing self-similarity are in-

creasing with k, and in the limit k → ∞ self-similarity may not be obvious

at any finite time. These CA can form an "impermeable membrane" protect-

ing the sites from external fluctuations. In the case of a five-site neighbour-

hood (the site itself, its nearest neighbours and its next-nearest neighbours)

self-similar patterns become less apparent than in three-site neighbourhood

for disordered initial states. CA can be considered as computers, where in-

put data represent the initial states. Complicated CA which can simulate any

computable function are called universal. Such CA are apparently capable of

computing any physical system.

Discussed global properties determined in algebraic properties of the poly-

nomials representing the additive CA time evolution rule are discussed in
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Figure 2.4: First 100 steps of evolution a a single seed and random initial
structure according to reversible elementary CA rules.
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[56]. It is shown on the example of the rule "modulo-two" that for the ad-

ditive CA global properties depend not only on the value of size N , but also

on its number theoretical properties of N . For example, irregular dependence

on N of cycle lengths has been found. The maximum possible length of cycle,

which grows on average exponentially with the size N of CA, is considered

to be of the order of the square root of the entire number of possible config-

urations, hence, there is the possibility of rather long cycles. State transition

can be represented by graphs. As shown by the diagram in Fig. 2.5 the nodes

joined by directed arcs represent possible configurations of states. The trees

representation (irreversible transactions) will have their roots in the cycles of

the state configuration which maybe visited repeatedly. Irreversibility is ex-

hibited by merging distinct branches in the trees, which is accompanied by

a decrease in the entropy; irreversibility can be measured by the fraction of

configurations which may be reached after one time step. Such cycles repre-

sent "attractors", on which characterization based classification is defined by

dynamical systems theory as denoted in [57]. The exception is the "reducible"

CA, which generate patterns, containing properties of several classes. Some

quantitative characteristics such as propagation speed λ, spatial set and mea-

sure (in terms of probabilities) entropies, s(x)(X) and s(x)
µ (X), are introduced

respectively, including the corresponding dimensions d(x) and d(x)
µ .

2.4.3 Classification of CA

There are four basic qualitative classes of CA established during statistical

studies. In Class I the outcome of the evolution is an homogeneous state, so

it is independent of the initial state and prediction is trivial. Its attractor can

be considered as the "limit points" observed in the phase space. Therefore,
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Figure 2.5: State transition diagram [56].

its dimensions are zero for such attractors. In Class II the final states are

stable or of periodic persistence structures. For Class II CA maximum aver-

age propagation speed λ+ and thus the temporal dimension vanish. Class III

CA evaluates to chaotic patterns and any changes in the initial states tend to

propagate with a finite speed. For those CA which generate more regular pat-

terns the length of transients are shorter and the fractions of states on cycles

are much smaller than those which generate more irregular patterns. Class

III CA exhibit decreasing entropy with time, which the indicates irreversibility.

Infinite CA Class IV are found to be probably capable of universal computa-

tion, namely they are capable of evaluating any computable function, and a

finite CA is only a subset of these functions. The result of the evaluation of

CA from this class cannot be predicted and its behaviour may be determined

only by explicitly running it. Sets of the configurations of the first two classes
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can be considered as sentences in regular grammar. CA are considered from

this point of view in [53], where each word of the language is represented

by a CA configuration. CA are represented by state transition graphs, where

nodes represent pairs of initial states. The total numbers of states Ξ(t) (size)

in the minimal DFA (deterministic finite automaton) gives a "measure of the

complexity".

A computation theory features of the above classes is proposed. The limit

sets for classes I and II CA lead to regular languages with a constant com-

plexity or increasing as polynomials in t. For classes III and IV one can ob-

serve rapidly-increasing complexities, so the limit sets do not form a regular

language: limits sets for Class III CA correspond to languages called "context-

sensitive", for IV – to "general". "Regular" languages are fairly elementary, so

their characterizations may be computable via finite calculating processes. In

the case of the limiting properties determined by an infinite computational

procedures, there are possible "short cuts" in order to obtain finite description

of the limiting properties. In contrast, for more complicated languages the

behaviour can be defined only via explicit simulation. This fact leads to the

non-computability and undecidability, which are suggested to be the common

feature for the systems investigated in mathematics, computation theory and

theoretical physics [58].

To evaluate real physical systems, such as dendritic crystal growth or

reaction-diffusion process, it is convenient to use two-dimensional CA , whose

global properties are very close to those of one-dimensional CA [59]. Two-

dimensional CA in most features are similar to one-dimensional CA, for exam-

ple they can be considered in the classifications mentioned above, however,

they have some new properties, for example forming dendritic and corrugated

boundaries, which are observed in natural systems.
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To characterize limiting structures of patterns a growth dimension is hereby

introduced, which is a noninteger for dendritic patterns, for example spatial

Dx = lim
t→∞

log n

log t
, where n is the total number of sites, which are arranged in

the patterns, and Dx = lim
t→∞

log n

log t
for the boundaries, where n is the number

of sites situated on the boundary. Boundary is defined as the set of the sites,

which can be obtained via the arbitrary path started from infinity and which

does not intersect any nonzero sites. These properties with some exceptions

do not depend on the form of the initial states for the resulting patterns,

obtained in the large times.

CA of Class III or IV may correspond to the physical process that seems

random or chaotic. These CA evolving from the random initial state exhibit

random behaviour. Such a type of system is called homoplectic. They also

can generates randomness even from a simple initial state, and these type of

system is called autoplectic [60].

2.4.4 2D CA

One of famous examples of two dimensional cellular automata is Conway’s

Game of Life. It is an outer totalistic CA, where cell change its state as fol-

lows depending on the sum of values of neighbours and on the state itself as

follows:

a
(t+1)
i,j = f̃(a

(t)
i,j , a

(t)
i,j+1 + a

(t)
i+1,j + a

(t)
i,j−1 + a

(t)
i−1,j) (2.34)

with a rule specification by a code as follows:

C =
∑
n

f [n]kkn (2.35)
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Figure 2.6: Rule table for Game of Life.

Rule table for Game of Life is shown in Fig. 2.6. According to Eq.(2.35)

the code rule is C = 27 + 26 + 25 = 128 + 64 + 32 = 224.

Some examples of structures generated by evolution of 2D outer totalistic

CA from a single grain are shown in Fig 2.7.

As has been shown by Wolfram and Packard [59], 2D CA global prop-

erties are similar to 1D CA. However some phenomena such as boundaries

and interfaces have no analogue in one dimension. An article [59] contains

an extensive study on two-dimensional CA by direct simulation of randomly

sampled CA rules. An interesting fact has been observed, some rules lead to

the diffusive growth of polygons or almost circular shapes, despite of regular

lattice. Some examples of such structure are shown in Fig. 2.8. Examples of

2D patterns in this section were generated using Wolfram Language.

For 2D CA Neumann neighbourhood (Fig. 2.9 a) consists of 5 cells and

Moore neighbourhood (Fig. 2.9 b) contains 9 cells. Therefore, there 25 =

32 and 29 = 512 different configurations which means 232 and 2512 possible

rules for Neumann and Moore neighbourhoods respectively. And 3D CA will

increase computational costs drastically.
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Figure 2.7: Structures obtained by evolution of 2D outer totalistic CA after 40
iterations.
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Figure 2.8: Structures obtained by evolution of 2D 9-neighbour outer totalistic
CA after 150 iterations with non-regular or round shapes.

Figure 2.9: Neighbourhoods for 2D cellular automata : Neumann neighbour-
hood (a); (b) Moore neighbourhood.

2.5 Historical review of CA models applied for

computer simulation of the recrystallization and

grain growth processes

As was noted by Atkinson [22], all models, called mean field theories led to

the grain growth exponent of 2, due to neglecting of the topological require-

ments. He gives the following classification for computer simulation models

of soap froth or polycrystalline grain growth: the model can be statistical or
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representing direct simulation, which in turn is distinguished between deter-

ministic and probabilistic. The deterministic type implies solving the motion

equation for velocity boundary, but one may define a separate computer pro-

cedure for simulating a whole evolving structure. The most common proba-

bilistic method is the Monte Carlo simulation method, although there are also

non-Monte-Carlo models. Among the works devoted to computer simulations,

Atkinson highlights the Monte Carlo simulations performed by Exxon group

which focus on the study of grain growth [27, 61, 29], abnormal grain growth

[62] and recrystallization [63] using Monte Carlo simulation on a discrete lat-

tice, which considered topological requirements automatically, as they are the

direct consequences of the evolving model. The results differ from the em-

pirical theories, for instance,where the grains can grow or shrink, though not

always in good agreement with experimental data [61].

Comparison of the main simulation methods such as Monte Carlo Potts

method, cellular automata, phase field method, vertex and level set models is

presented in [20]. Cellular automata are widely used due to their good scal-

ability, high spatial resolution, ability for efficient parallelization. Previously

the cellular automata approach has been used in different areas of material

science, such as solidification, primary static recrystallization and recovery,

nucleation and grain coarsening.

2.5.1 Solidification processes

Spittle and Brown, 1989 adapted the probabilistic rule-based Monte Carlo

method, developed by Srolovitz et. al. [27, 61, 29, 63], to model the pro-

cess of the solidification (columnar and equiaxed grain structures) based on

assumed nucleation behaviour [64], with the following attempts to consider
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latent heat absorption during remelting, grains movement, heat conduction,

and therefore to predict qualitatively the influence of the superheat and mould

temperature [65]. However the model still did not take into account the so-

lute redistribution, as only uniform composition was assumed. The solute

redistribution, which depends on the alloy composition and the constitutional

supercooling parameter has been introduced in the Spittle’s next work [66].

Later the authors used probabilistic CA model [67, 68] to predict kinetics of

the steady-state "free" dendrite growth with incorporating latent heat evo-

lution and heat diffusion. The investigation of the influence of the initial

undercoolings and solid-liquid interfacial energy on the final morphology of

dendrites was carried out in [69] using this method. An attempt to quan-

tifying results was made by calculating the hydraulic radius. Using CA for

steady-state growth of columnar dendrites in binary alloys was qualitatively

demonstrated in [70].

Zhu and Smith, 1992 [71] used the nucleation site distribution for hetero-

geneous nucleation and probabilistic growth, including changes in bulk free

energy and interface energy. Therefore, compared to earlier models, columnar

or equiaxed grain structures will be evolved based on the free energy change,

i.e. for itself. Also, they converted simulation time (Monte Carlo Steps) to real

time.

Rappaz and Gandin, 1993 developed two- [72] and simplified three-

dimensional [73] cellular automata model for solidification of dendrite al-

loys, using probabilistic heterogeneous nucleation in the bulk of the liquid

and at the mould wall with two different nucleation site distributions de-

duced from the experimental data and probabilistic growth of dendrite tips,

which was calculated via KGT (Kurz-Giovanola-Trivedi) model. The princi-

ple of "best alignment" criterion of crystallographic orientation of dendrite
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grains was taken into account which allowed the model to predict quanti-

tatively columnar to equiaxed transition. In order to make the orientation

of growing dendrite tips independent on CA grid, but to keep the original

anisotropy, the dendrite tip correction has been made. The limitation of these

models was the assumption of the uniform temperature field. Therefore, the

suggested CA model [72] was extended to the case of non-uniform tempera-

ture was coupled with Finite Element (FE) heat flow calculations [74] (2D),

[75, 76, 77](3D) where latent heat realized by the cells is fed back into the

FE model. The square growth and "decentred octahedron" algorithms, respec-

tively, were used to avoid the bias of the results due to anisotropy associated

with the network of CA.

Cortie, 1993 applied Cellular Automata technique to simulate the solid-

ification of a hypothetical liquid [78] by taking into account the anisotropy

properties of the orthogonal lattice.

2.5.2 Static and dynamic recrystallization

The first primary recrystallization simulations (grain nucleation and grain

growth) using two-dimensional cellular automata were implemented by Hes-

selbarth and Göbel, 1991 in [79]. Results were in agreement with the clas-

sical JMAK theory.1 They used the following neighbourhoods: Moore, Neu-

mann, 7-cells- and 25-cells-neighbourhoods. In contrast to the nucleation pro-

cess, grain growth depends on the neighbourhood. In Hesselbarth’s work, ho-
1It is considered the extended volume fraction xe = ktn which would be recrystallized if

the entire matrix was still unrecrystallized, i.e. in the absent of overlap. Assuming
dx

dxe
= 1−x,

where x(t) =
Vrec

Vtot
is the recrystallized matrix fraction or the degree of recrystallization, the

characteristic equation for JMAK theory can be written as X = 1 − exp(−ktn), where n is
Avrami exponent.
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mogeneous and heterogeneous recrystallization were distinguished, and they

studied the former type. Firstly, a cell switches its state if it has at least one

recrystallized cell in its neighbourhood. Three different model assumptions of

inhomogeneous recrystallization were considered: a) impeded impingement,

where adaptive lattice is used; b) variation of nucleation rate; and c) varia-

tion of the grain growth rates over computed grid. The results are presented in

the form of the double logarithmic Avrami-plot with log(t) along x−axes and

ln ln
1

1− x
along y−axes. The authors considered the effect of the impinge-

ment of grains that allowed them to explain the deviation of the experimental

results from JMAK-theory.

Hesselbarth showed that the concept of neighbourhood influences only

the shape of the recrystallization grains, but not the JMAK time exponent;

the same result but with 95% accuracy was obtained by Davies, 1995 [80].

He investigated the influence of the neighbourhood on the coefficients in the

JMAK equation and found an effect on the Avrami exponent n, but reported no

effect on the nucleation, growth and geometry of grains dependent constant k.

The results are in agreement with JMAK theory as simulated recrystallization

was implemented in particle-free matrix.

Although results of classical JMAK theory are not changed in the presence

of immobile discontinues particles with isotropic impingement, however, as

shown by Pezzee and Dunand, 1994 [81], oriented continues particles due

to anisotropic impingement have an influence on the recrystallization kinetics

and topology. The authors modified the Hesselbarth’s model to investigate

the geometric impingement influence of immobile particles on the proper-

ties of the recrystallized grains and kinetics of recrystallization. The kinetics

are slowed (Avrami exponent n falls) and hence the mean grain size reduces

accompanied by a corpuscle size reduction and the growing of the particle
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fraction and aspect ratio. Also, it was found that the growing corpuscle aspect

ratio, the grain size and the area fraction increase the grain average aspect ra-

tio. The results mentioned above are more significant for particles which have

the maximum aspect ratio, for example elongated fibres, as they interrupt

grain growth in the perpendicular directions orthogonal to the fibres. At high

and low recrystallized proportions deviations from JMAK-theory were found,

as well as in the Hesselbarth’s model [79]. The reason for these deviations is

thought to be in the stochastic scatter due to lacking statistics (small number

of growing grains). Shelton and Dunand, 1996 [82] extended the model

to the case of mobile particles and showed the existence of an effect of their

clustering along boundaries of growing grains.

Among the deficiencies of the aforementioned models one can underline

that they were not related to any real physical systems, were not calibrated

in space and time. Davies, 1997 [33] using two different approaches for cal-

culation the interface migration rate (the theoretical constant velocity model

and the Cahn-Hagel interface averaged migration rate) applied the 3D CA for

study kinetics of recrystallization of pure single crystal iron calibrated it to

real time. The parameters were based on the experimental data of the recrys-

tallization of single crystal iron. Used 3-dimensional models gave a more

adequate reflection of the physical characters, such as boundary mobility,

as it depends on misorientation between grains and orientation in its space

(boundary plane inclination). Further, Davies and Hong, 1999 [83] stud-

ied the static recrystallization of three classes of texture using 3D CA, where

nucleation and growth probabilities based on experimentally determined nu-

cleation rates and Cahn-Hagel interface migration rates were introduced.

Independently, Marx, 1996 with co-workers, developed a deterministic

3-dimensional CA (described in [84, 85]) for simulation texture evolution
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during primary static recrystallization and static recovery in fcc and bcc al-

loys. They modified it in order to use less computer resources: in the main

memory only information about boundaries was kept, as informational con-

tent about interior of nucleus expected to be low. The CA model included

3 sequentially called routines: recovery, which decreases dislocation density

inside cells; nucleation and nucleus growth. At the same time, this model

was used by Raabe, 1996 and co-authors [86, 87] where they introduced a

probabilistic three-dimensional CA model to simulate primary static recovery

and recrystallization in real time and space scales by using experimental grain

boundary mobility and energy. Their approach allowed to investigate the in-

fluence of the orientation dependence of recovery on the final microstruc-

ture. The probabilistic analogue of Turnbull rate equation [21] was used as

local transformation rule in order to calculate the switching probability. The

switching equation was scaled, normalized and was expressed through the

local values of mobility depending on local misorientation, driving force de-

pending on the dislocation density and maximum statistical variance. The

decrease of the cell size leads only to increasing in the time step required for

one switch, but does not change switching probability. The decision about cell

switch based on local switching probability was made by evaluating it using

the Monte Carlo algorithm.

A study by Goetz and co-workers, 1998 [88] is dedicated to static re-

crystallization with both heterogeneous and homogeneous recrystallization

resulted in site-saturation and continues (nucleation with constant rate) nu-

cleation on 2-D and 3-D. The results match the JMAK theory in the case of

homogeneous nucleation, both with saturation and constant rate. However,

in this work they did not take into account the misorientation angles. In the

heterogeneous recrystallization Goetz et al. explored the nucleation at the
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parent boundaries with extension to the case when first wave of nucleation

occurs at the parent grain boundaries, and the following – at the recrystal-

lized/unrecrystallized grain boundaries. To analyse such results they used

the Vandermeer’s microstructural path method 2 [89] and showed agreement

with it. A lamellar microstructure was obtained during site saturation and

transition from clusters at low nucleation rate to necklace-type microstruc-

ture at high rates.

Dynamic recrystallization was firstly simulated using CA by Goetz and

Seetharaman, 1998 [90] and then by Ding and Guo, 2001 [14] where they

combined the CA method which was used to predict grain growth and met-

allurgical principles for DRX to determine the variations of dislocations den-

sity, the growth kinetics of dynamically recrystallizing grains, the flow stress

and the nucleation rate of DRX. The last was supposed to depend on the de-

formation temperature and the strain stress and can be estimated from the

experimentally obtained percentage of DRX. The growth kinetics for each re-

crystallized grain is described by the driving force, and the transformation

probability for the sites lying on the allowable growth distance is calculated

by the CA. Simulation was implemented at various temperatures and strain

rates. The simulated and experimental percentage of DRX are correlated, dif-

ferences are explained by the fact that there had not considered another types

of nucleation sites during the simulation. The mean size and percentage of

the recrystallized grains are reduced with increasing strain rate and decreas-

ing temperature.
2

SV = C1(1−X)tm

SV = C2(1−X)[− ln(1−X)]q,

where C1, C2, q, m – constants, SV is the interface area between recrystallized and unrecrys-
tallized regions per unit volume
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Raabe [91] emphasises that the main disadvantage of mesoscale CA method

is the inability to reflect physics of the nucleation, such as in Ginzburg-Landau

phase field method with respect to the spinodal decomposition. Therefore,

Raabe continues, that it would be useful to combine cellular automata and

Ginzburg-Landau-type phase field methods.

A developed method in [87, 92, 91] was successfully applied to Ti stabi-

lized interstitial free (IF) steel sheets treated by cold rolling [93]. The texture

was divided by α− (cold rolling) and γ−(annealing) fibres, which differed in

the stored dislocation densities. An assumption was made in that the defor-

mation energy related to the dislocation density is inversely proportional to

the experimentally obtained EBSD image quality. It was observed that areas

with high accumulated local dislocation density recrystallized first that was

caused by the localized nucleation. This effect is called ’cluster phenomena’

and it apparently disappears with increasing threshold value. Two types of

nuclei have been identified: potential and successful densities, the last being

located inside or close to inherited grain boundaries of the deformed grains.

Also, two types of unrecrystallized areas were found: 1) thermodynamic, for

the areas with low dislocation density, due to insufficient driving forces, 2)

kinetic, for the areas with high driving forces, but surrounded by almost im-

mobile boundaries. Investigations of the influence of particles on the inherited

boundaries, called the ’Zener pining’, were also conducted. The dependence

of the recrystallization kinetics and the final microstructure on the precip-

itated volume fraction volume and the mean radius of particles with three

pronounced regimes was revealed.

One of the benefits of using discrete models such as CA is the possibility to

account for materials heterogeneities. It was shown that this method can be

used for the simulation of the primary static recrystallization in deformed alu-
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minium by using the combination of the probabilistic CA method with crystal

plasticity finite element method. This coupling approach is described in more

detail in [92]. Information about microtexture and accumulated shear that

was translated into state variables of CA model (crystal orientation and stored

elastic energy (dislocation density)) using as starting data, can be obtained

from the experiment (orientation imaging microscopy) or crystal plasticity

finite-element simulation as in the present work. For translation, a Finite Ele-

ment (FE) mesh was mapped onto the cellular automata regular lattice, which

was later filled by corresponding values of the translating variables within the

Wigner-Seitz cells. These data were used as input for the yield surface calcula-

tions [94]. Also, the given coupling approach is considered in another review

paper [91].

In these works, the kinetic and thermodynamic instability criteria of nu-

cleation are considered, and nucleation is assumed to be occurred in the re-

gions with high misorientations and local driving force between subgrains.

Therefore, the kinetic criteria suggests the formation of large-angle mobile

grain boundary and thermodynamic – stored energy changes across this newly

formed boundary, that in turn contributes in the driving force allowing bound-

ary movement towards the deformed matrix. At the same time a nucleation

model was chosen which does not create new orientations, but only proceeds

assigning zero dislocation density to the cell which had dislocation density

above some critical value. After that, misorientations were calculated in order

to check the kinetic criteria, and only for those cells that meet requirement

of minimum misorientation of 15o were subsequently treated by the growth

step using switching equation. The heterogeneity caused the deviation from

the classical JMAK theory – the Avrami exponent n was found lower than ex-

pected for site-saturated nucleation. This behaviour corresponded to earlier
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growth competition.

During the primary recrystallization there are two competing processes:

1) shrinkage due to curvature driven force and 2) volume boundary motion

caused by stored energy difference. The growth occurs when the grain reaches

the critical size. Monte Carlo (MC) Potts model is applicable for modelling

the first process and CA is satisfactory for the latter. Rollett and Raabe [95]

developed the hybrid model, combining Monte Carlo Potts and CA method for

considering both these types.

Zhang et al., 2002 [96] applied CA for the grain growth in combination

with recrystallization procedure for simulation of both static and dynamic re-

crystallization of C-Mn steels during hot deformation, that leads to austenite

grains refinement. The hexagonal array of cells was used in order to represent

fcc-lattice of austenite.

2.5.3 Nucleation and grain growth (normal and abnormal)

One of the first work devoted to study coupled radial grain growth in two-

phase systems occurring in varying transformations, such as eutectic or eutec-

toid growth by application three-dimensional CA was implemented by Spittle

and Brown, 1994 [97]. Hence the experiments to study these transforma-

tions are difficult to implement, computer simulations help to understand how

evolution of growing two-phase equiaxed grains occurs. They included in the

CA model procedures of growth, rejection of atomic or molecular species and

diffusion through interface.

Liu et al., 1996 [98] are the first to use cellular automata to simulate the

curvature driven grain growth, taking into account only the activation free en-

ergy. They obtained a microstructure evolution which was very similar to the
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experimental data. Kumar et al., 1998 [99] investigated the nucleation and

initial growth of ferrite in austenite using two-dimensional CA. Brown, 1998

[100] applied combined 3D cellular automaton finite difference method for

the simulation of solute diffusion controlled coupled two-phase unidirectional

growth. In contrast to [98], where the grain boundary energy did not depend

on the misorientation of the grains, Geiger et al., 2001 [101] studied the

influence of orientation value (defining the energy of the grain boundaries)

on the normal grain coarsening. They considered the sum of the thermal en-

ergy, governed by Maxwell-Boltzman distribution, and boundary energy rep-

resented as Hamiltonian depending on the misorientation angle which are

included in model through maximum oriental number qmax. Therefore, it is

shown, that at small qmax non-realistic structure is formed and variation of

high qmax does not affect the rate of coarsening and relative grain area distri-

bution.

The investigation made by Yu, 2002-2005 [102, 103, 104] was devoted

to the application of the two-dimensional CA for the simulation of the normal

and abnormal grain growth during reheating under different conditions, such

as temperature and reheating time, as these factors are the most important for

controlling at manufactures, although the initial microstructure, composition,

reheating rate also influence on the grain coarsening kinetics. This model

requires the knowledge of the following parameters: abnormal grain growth

temperature, fraction of randomly selected grains f , which become abnor-

mal, and two probabilities Plow and Phigh, corresponding to the normal and

abnormal growing grains. The Yu’s results of the simulation was scaled and

compared with the experiments for Nb steels and showed a good agreement.

Hillert [24] defines the normal grain growth as the steady-state, where a

number of the defects remains constant and abnormal growth as initial stage
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before normal. The first stage of the simulation was implemented by two

simultaneous processes: 1) nucleation, defined by using probability Pn1 that

each cell with initial zero state will change its state into one of Q possible

orientations represented by nonzero value and 2) nuclei growth defined by

probability Pn2 that cell with zero state will be consumed by the cell with

nonzero, namely will assign the same value. This stage continues until full

vanishing of all zero cells. Depending on the choice of Pn1 and Pn2 one can

obtain different microstructures, because in this model Pn1 corresponds to the

nucleation rate and Pn2 – to the nuclei growth rate: if the former is bigger,

then the nucleus will be formed more rapidly than will grow and there will be

fine-grained microstructure, otherwise grain size will be large.

The obtained microstructure was used as the initial stage for the next stage

– the normal grain coarsening. It was conducted through the probabilistic CA

method represented by using the following three rules: 1) Estimate which

area the cell belongs to: within the grain or on the boundary. If the cell is

inner, then the next cell is estimated, otherwise the second rule is applied;

2) Realization of the grain curvature effect; 3) The probabilistic rule, which

defines the probability Plow to change the state, which is related to the grain

coarsening kinetics. Here, homogeneous distribution of the grain boundary

energy is assumed, therefore equal probability was set for all grains. It was

found that the growth kinetics is increased with the temperature, which was

introduced into the model via the probability.

Also, a new method was adopted for abnormal grain coarsening, where by

changing the third rule for heterogeneous distribution, which is supposedly

caused by non-uniformly distributed pinning pressure due to heterogeneous

distribution of particles (their progressive dissolution and coarsening) was

applied. The abnormal grain coarsening was simulated in the next steps: 1)
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firstly, the normal grain growth was implemented as described above; 2) when

the temperature reaches the abnormal grain coarsening stage, randomly cho-

sen grains with a certain fraction are assigned a high probability Phigh > Plow,

Phigh was chosen as A · exp

(
− Q

8.3FT

)
and Plow = A · exp

(
− Q

8.3IT

)
, where

IT and FT are initial and final temperatures, respectively. Results showed

non invariant grain growth, that can be divided into three consistent regimes,

which are also observed in the experiments of isochronal grains coarsening:

1) suppressed normal grain coarsening occurs at low probability, showing uni-

modal distribution of the initial grains; 2) once temperature exceeds the cer-

tain critical point, abnormal grain growth temperature, those grains which

have higher probability grow faster, and duplex region with bimodal distribu-

tion is observed, corresponding retained primary grains and new abnormally

growing grains. Abnormally coarsening grains have higher mobility, hence

they consume other grains until their final disappearance and 3) there comes

a stage of normal, but accelerated grain coarsening, as now all grains have

the same, higher mobility.

A method for model correlation and experimental scaling was suggested.

Despite the fact that this work showed a good agreement with experimental

data, it has several limitations, such as:

1. The CA method is two-dimensional, while 2D and 3D structures

have different topologies, and 3D is more realistic and comparable

with experiments;

2. The model has difficulty with directly coupling the pinning effect,

and here it was simply assumed to be equivalent to the heteroge-

neous distribution of the grain energy;

3. No suitable method was developed for defining fraction of grains,
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which turn into abnormal and probability assigning them (select-

ing probabilities Plow and Phigh) which should be extracted from

the boundary energy of the abnormal and primary grains;

4. Also, there is a problem in consistency of the initial stage of isother-

mal grain coarsening with experiment at temperature 1100 o C,

because of the fact that in simulation grains need more time to

show larger grain sizes;

5. Although the model considered particle dissolution, it did not con-

sider the effect of precipitate dissolution on the grain coarsening

process directly.

Several other factors, such as the curvature effect, the interface migration and

the overlapping of diffusion fields are still in need of consideration in particle

coarsening and particle dissolution modelling.

Lan et al., 2006 [34] adopted their CA model [105] to simulate the

two-dimensional curvature driven normal austenite growth. The simulation

of the whole process of the austenite recrystallization during multi-pass hot

rolling with consideration of both dynamic and static recrystallization, and

meta-dynamic recrystallization (the process that takes place in the inter-pass

zone during at dynamic recrystallization), recovery and curvature driven grain

coarsening was implemented by Zheng, 2008 [106]. The curvature-driven

grain coarsening occurred after the impingement of the recrystallized fronts.

Additionally simulation of deformation was carried out. However, in these

works [34, 105, 106], not absolutely accurate calculation of the grain-boundary

curvature κ was carried out.

Janssens, 2010 [1] gives an example of the simulation of the curvature
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driven grain growth using 2D probabilistic CA (P =
k

kmax
, where kmax is

maximum curvature) with von Neumann neighbourhood. The microstructure

obtained in recrystallization simulation was taken as the initial distribution.

Simulation was implemented on the periodic grid and this was the reason

for the deviation from the analytical prediction. The problem, mentioned

also in [95], is how to perform scaling and couple the real world space-time

and simulation time steps. This is impossible in periodic grid, because of its

equidistantial aspect which leads to the influence of the orientation of the

CA grid on the velocity of a grain boundary. Using the irregular grid can

help to solve this problem due to its statistical isotropy of the neighbourhood

[107, 108]. In [109], this method was expanded to the 3D case with random

grid, that helped to improve anisotropy of the computation lattice, that was

observed in the previous works. Given randomness of a particular neighbour-

hood, it must be stored and calculated for each cell. To reduce computational

resources, cells from the inner part are removed from the data structure in

the case when sub-processes are either neglected or assumed constant. Also

it is proposed to circumvent the updating of those cells, which have already

recrystallized, using the "inverse" method 3. However, this is only applicable

to recrystallization, where grain growth causes a large energy release, this

type is called primary growth. During the secondary growth, occurring due

to a curvature of the grain boundaries, movement of the grain boundary may

reverse in time, because first grains may shrink. Therefore, the inverse updat-

ing scheme is not applicable. A developed method was implemented in [1],
3The most straightforward optimization is a simple preselection of the cells: those having

a status recrystallized are excluded from the updating scheme performing recrystallization.
But especially of the beginning of the recrystallization a lot of cells find no recrystallized cells
in their neighbourhood and thus are evaluated for updating without resulting effect. The
“inverse” method: if a cell has a recrystallized status then update the status of all cells in its
neighbourhood to the status recrystallized.
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where Janssens gives an example of the modelling of two different processes

such as solute diffusion and grain growth which occur simultaneously. He

uses an approach whereby both processes are implemented sequentially on

infinitesimally small time-steps. To simulate abnormal grain growth sequen-

tially calculates the grain growth step, the solute diffusion and the precipitate

dissolution step.

2.6 State-of-the-Art

Vertyagina, 2013-2015 [110, 111] suggested a crystal lattice depending method,

based on the differentiated defining priority of the interaction between the

core cell and its Moore neighbourhood: it is believed that the Neumann neigh-

bourhood (6 cells in the 3-dimensional model) should be considered primar-

ily. The probability of the cells to influence the core cell via edges (12 cells) is

probability p2, and via vertices (8 cells) – p3, they are significant for fcc – and

bcc – structure respectively.

Instead of the local transition rules, local transition functions (LTF), which

are inherently probabilistic, were used, as they include real physical laws and

allow to take into account real parameters that truly influence the evolving

system. At the same time, as was noticed by Vertyagina et al. [110], LTF

requires defining its appropriate mathematical form and the area of the appli-

cation function. At each time-step the value of LTF fstep is calculated and

its normalized value f = fstep/fmax with its associated comparison with

the random value in the interval [0,1] thus implementing the real Monte

Carlo step. LTF were defined as follows: 1) 2D case: fmax = (4p1 + 4p2)2,

fstep = (N1p1 + N2p2)2; 2) 3D case: fmax = (6p1 + 12p2 + 8p3)3, fstep =

(N1p1 + N2p2 + N3p3)3, where N means the number of cell surrounding the
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core cell and belonging corresponding group. The probabilities p2 and p3 were

introduced via the ratio of v to vmax: p2,3 =
v

vmax
=

(
D0

D

)m
, where D0 is

initial grain size, m was chosen m = 2. The probability p1 was asserted to

be not related to the crystal structure, but it depends on the temperature T :

p1 = A exp

(
− Q

RT

)
.

The model allows to extract the grain boundary velocity v (first derivative

of the grain size), driving force p = α
γ

D
and the grain boundary mobility (was

calculated by the equation v = Mpm), where γ is the grain boundary energy

per unit area, α and m are constants, D is the mean grain size. Calibration op-

erations were performed on the simulated temperature, time and space with

experimental data using method described by Yu [102]. Results of tempera-

ture calibration despite the general good agreement showed some deviations

from the experimental points.

Verification has been made via comparison of the experimental and calcu-

lated values of data, based on the points of line intersections for the different

types of lattice for Gibbs energy. This model showed a good agreement with

experimental data, however there are deviations at the temperatures lower

than 1373 K. The authors suggested that it was caused by the incorrect choice

of parameters in LTF and can be explained by the fact that another mechanism

controlling the grain growth may exist.

Zhu et al., 2014 [112] investigated by means of the two-dimensional CA

the microstructural evolution during hot stamping of the ultra-high strength

steel (UHSS), consisted of pearlite and ferrite at room temperature. The

following stages were modelled: 1) nucleation and growth of austenite in

pearlite; 2) diffusion-controlled growth of austenite in ferrite which occurs

at higher temperature, the steel was reduced to ternary system Fe-Mn-C and

chemical driving force was calculated using FDM. For the first process, growth
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is assumed to be driven by the free energy reduction, the second – is induced

by chemical potentials difference of iron in austenite and ferrite and carbon

diffusion was taken into account; 3) curvature driven coarsening of austen-

ite. The real micrograph of UHSS was used as initial input structure. The

calculated mean grain size deviated from the measured, according to authors

because of neglecting of solute drag effect and the pinning. The fact that the

switching probability for the pearlite-to-austenite transformation depended

on the lattice size, caused influence of the lattice on the early stage of the

austenization. In addition, usage of FDM techniques for simulation of car-

bon diffusion and the algorithm for separating different grains led to large

calculation time.

Han et. al, 2015 [37] obtained a modified Zener pinning relation (with

the consideration of the initial grain size) based on simulations of grain growth

in the presence of second-part inert particles, which did not evolve, by using

realistic mobilities and driving forces, that led to real time and space. The in-

fluence of initial grain sizes and particles fraction and sizes on microstructural

evolution was investigated using deterministic CA firstly described by Zheng,

Raabe and Li, 2012 [113]. The new discrete disk template method with a di-

ameter of a 15 cells was used for a calculating boundary curvature, which was

found to be much effective than in the previous works [34]. Despite this at-

tempt to include second-part phase particles by Han et. al, 2015 [37], there

is still lack of CA models considering the influence of defects and precipita-

tion on the microstructural evolution, that will be in a good agreement with

experimental data.

As can be seen from the considered above works, the initial grain distri-

bution influences on the final microstructure. However, by now no physically

realistic methods were used for nucleation stage. Due to difficulties of the
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obtaining the experimental micrograph, the realistic prediction of initial nu-

cleation stage remains important problem to be solved.

2.7 Summary

This chapter has provided an extensive literature survey on the history of

using the CA techniques for modelling of recrystallisation and grain growth

phenomena in metals. The introduction to the theory of CA has been provided

in order introduce the reader with the different classification of CA techniques

and its application to the material science. The chapter also gives briefing to

the theory of recrystallization and grain growth. It has been shown that there

is still lack of the theory for nucleation processes and mechanisms forming

grain growth. The literature review has shown that the latest research on CA

technique has achieved high precision of prediction the real processes of the

grin growth.

Literature review has shown benefits of usage of CA in the modelling of

complex dynamic systems such as grain growth and recrystallization. It is a

discrete method, which allows to reflect any physical mechanism by an appro-

priate choice of rules and have a high spatial and time resolution. Therefore

CA approach has been chosen as a modelling technique for modelling grain

growth and recrystallization in the present research.
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Chapter 3

Modelling of a Single Grain -

Separate Driving Forces

3.1 Modified LTF functions

During the present research method suggested by Vertyagina (LTF [110, 111])

has been modified and called modified LTF. The original code has been written

in Delphi. It has been optimized and rewritten in Matlab for faster calcula-

tions, but with savings of the original algorithm.

The cells attached to the central by edges are called as Group I and repre-

sent Neumann neighbourhood, and cells within rotated Neumann or attached

by vertices are called Group II (see Fig. 3.1). The original method suggests

that a cell can be transformed only to a cell from Group I , without consider-

ation of Group II.

The modified approach considers both groups, but with a different weights.

The core cell will change its state to another state which is the most frequent

state, even if this cell lies in Group II. The difference is in the way of calculat-
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Figure 3.1: Positions of Group I (white cells), Group II (green cells) and core
cell(grey). [110, 111].

ing numbers N1 and N2. The original method defines N1 and N2 as follows:

N1 = (number of the cells in Group 1 with the state A)− 1, (3.1)

where A is the most frequent state in Group 1.

N2 = number of cells in Group 2 with state A. (3.2)

The following modifications of these definitions N1 and N2 have been

made:

Wi = g1 + 0.5
g2(g2 + 1)

2
, (3.3)

where g1 is the number of cells with state Ai in Group 1, g2 is the number of

cells with state Ai in Group 2, Ai is the unique state in Group I and II.
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N1 = (number of cells with the state A in Group 1), (3.4)

N2 = a (number of cells with the state A in Group 2), (3.5)

where A is the state corresponding to the maximum Wi, a = 0.3 is a fitting

parameter that will be describe below. The principle of randomness also been

added the code: if the weights of two different states are equal then the states

are chosen as the next step state of the core cell with the equal probabilities.

As a result, the structure of the grown grains become more similar to the

observed in the experiments. Fig. 3.2(a-b) simulated microstructures obtained

via original and modified method from the same initial microstructure shown

in Fig. 3.2c. The simulations have been run until the average grain size be-

come more than d = 20. The modified method allows to obtain grains with

smoother boundaries. The 5-side form, which is inherent with experimentally

observed structures [114] (see Fig. 3.2d), has become more distinguishable.

3.1.1 Comparison with the experimental data

The 2D simulations of the normal grain growth have been compared with the

experimental data on the austenite grain growth in the precipitate-free variant

of APIX60 steel performed by Zhou [114]. In order to quantitatively compare

simulation results with the experiments, the data from article [114] has been

digitized, and is shown in Table 3.1. The corresponding plot of the data is

shown in Fig.3.3. The obtained grain growth exponents n at the different

annealing temperatures T are also given in the Table 3.1.

It has been found that a influences the range of possible p1: grain growth

exponents showed values from 0.42 to 0.47 at varying p1 from 0 to 0.9. There-

fore, the series of the simulations have been carried out in order to choose the
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Figure 3.2: Simulated microstructure using original (a) and modified LTF (b)
method obtained from the same initial structure (c) in comparison with the
experimental structure (d) [114].
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3.1. Modified LTF functions

Temperature, K Average diameter, mm Time, s Grain growth exponent

1473

144 305.141

0.3852
201 902.156
285 1797.68
366 3601.99

1573

330 298.507

0.5222
552 590.381
741 895.522
825 1200.66

1673

1110 2706.47

0.5489
375 119.403
642 305.141
960 597.015
1110 902.156

Table 3.1: Average grain diameter with time at different temperatures in the
austenite grain growth experiments by Zhou [114] and obtained grain growth
exponents.

Figure 3.3: The kinetics of the austenite grain growth at the different tem-
peratures obtained in the experiments by Zhou [114]. The dashed lines show
regression curves with the corresponding regression equations.
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Figure 3.4: Simulated average grain size dependence on the probability p1.

appropriate value of a. Parameter a = 0.3 gives sufficient range of magnitudes

of grain growth exponents. Calculations were implemented on the 250x250

cells area and the calculation time was taken to be 10000 steps. The grain size

evolution is shown in Fig. 3.4 at the different values of probabilities p1 which

is correlated with the temperature T . Each simulation has been repeated

more than 15 times. As it can be seen, the deviations grows with increasing

probabilities.

The dependence of the grain growth exponent n on the value of probability

p1 at a = 0.3 is shown in Fig. 3.5. The experimental grain growth [114] lies

in the range of n = 0.3852 at T = 1473K and n = 0.5489 at T = 1673K, that

corresponds to the model probabilities p1 = 0.056 and p1 = 0.25.

Given the following form of equation:

p1 = A exp

(
− Q

RT

)
, (3.6)

one can write the following system of two equations:
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3.1. Modified LTF functions

Figure 3.5: Simulated grain growth exponent dependence on the probability
p1.

0.056 = A exp

(
− Q

8.31× 1473

)
, (3.7)

0.25 = A exp

(
− Q

8.31× 1673

)
, (3.8)

that gives A = 15253.28, Q = 153.19 kJ/mole . Therefore, the relationship

between the real temperature and modelling probability p1 can be written as

p1 = 15253.28 exp

(
153190

8.31T

)
. (3.9)

Substituting temperature T = 1573 K gives p1 = 0.124. The experimen-

tal grain growth at the given temperature is nexp = 0.5222, simulation is

nsim = 0.4928, or 5.63% of discrepancy. In comparing with the previous

results obtained in the original model [110], where n was about of 0.415, the
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Figure 3.6: Results of the calibration of the simulated data with experiments
[114].

present result is closer to the experimental data. These results are shown in

Fig. 3.6.

3.1.2 Motivation of study on a single grain

At the beginning of the present research the modified LTF CA has been sug-

gested and has shown the simulated structures are more similar to the 5-side

form of the grains, observed in the experiments than with the original method.

The calibration with experimental data showed a discrepancy equal to 5.63%

that is smaller in comparison with the original model. However as can be seen

from this method, the real experimental data is required to calibrate simula-

tion parameters. In the light of the lack of the sufficient experimental data, it

has been decided to conduct the future research on the grain boundary move-

ment from the first mechanical principles and compare simulation results with

mathematical solutions instead of experimental.
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3.2. Analytical solutions

3.2 Analytical solutions

The dynamics of the single spherical grain shrinkage simulated by CA can

be compared with the analytical solution, where the radius of the sphere or

the disk for the 2D case is a function of time. The grain boundary velocity

magnitude is given by following formula:

v = Mp, (3.10)

where p is the driving pressure, the mobility M = bδDob
kT exp

(
− Qb
RT

)
(see

Eq.(2.27)).

In this work the pressure p = pC + pD arising from the curvature is given

by the Gibbs-Thomson relationship pC = −2γr , and the dislocation density dif-

ference pD = τ [ρ] (the pinning pressure was no considered yet) [4]. Here, γ

is a grain-boundary energy, the dislocation line energy τ = αµb2, α is a con-

stant of the order of 0.5, b is magnitude of Burgers vector, µ is shear modulus

Eq. (2.29) and the jump in the dislocation density across the boundary [ρ] is

the dislocation-density difference between grains, 4ρ = ρi − ρj .

3.2.1 Constant dislocation density jump

Let us consider the grain boundary motion of the single grain driven only by

the dislocation density jump,

v = vD = MpD, (3.11)

pD = τ [ρ], (3.12)

where the kinetics of the grain radius r can be written as follows:

dr

dt
= Mτ [ρ] (3.13)
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∫
dr =

∫
Mτ [ρ]dt (3.14)

and then the analytical solution is as follows:

r(t) = r0 +Mτ [ρ] · t (3.15)

0 t
r=0

time

0

r
0

ra
d
iu

s

Figure 3.7: The change of the radius of a sphere shrinkage with a constant
velocity due to dislocation density jump.

In the case of a negative [ρ], the grain is shrinking with a constant velocity.

Schematically, the evolution of the grain radios with time is shown in Fig.3.7.

3.2.2 Evolving dislocation density jump

3.2.2.1 Notation for time

Each cell (i, j) if its 2D domain or (i, j, k) for 3D is assigned at the beginning

(t = 0) the initial dislocation density ρini. The KM model, described in lit-
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3.2. Analytical solutions

erature review, has been used for the simulations dislocation density. Every

time step, with time increment ∆t, at each point (i, j) dislocation density and

strain are calculated by following system of equation:


dρ
dε = k1

√
ρ− k2ρ,

dε(t) = ε̇dt

(3.16)

The first equation of the system Eq. (3.16) (KM model [13]) is a nonlinear

first order ODE expressing relationship between local dislocation density ρi in

the each ith grain and true strain ε, that physically related to the accumulation

of the dislocations due to: 1) deformation during work hardening – the first

term on the RHS of equation, where k1 is a constant related to hardening;

2) DRV — the second term, where k2 = αµbk1
σst

and steady-state stress σst is

a function of temperature T and strain rate ε̇: σst(T, ε) =
(
A1ε̇e

QA/RT
)1/A2 ,

α is the dislocation interaction coefficient, µ is the shear modulus, b is the

magnitude of the Burgers vector andQA is the activation energy. The constant

strain increment is described by the second equation of the system Eq. (3.16),

where ε̇ is the strain rate. The system of these equations can be rewritten as

follows:

dρ

ε̇dt
= k1

√
ρ− k2ρ (3.17)

The initial condition ρ(0) = ρini gives the solution ρ(t) as follows:

ρ(t) =
1

k2
2

(√
ρinik2e

− 1
2
k2ε̇t − k1e

− 1
2
k2ε̇t + k1

)2
, (3.18)

or

ρ(t) =
1

k2
2

(
(
√
ρinik2 − k1)e−

1
2
k2ε̇t + k1

)2
, (3.19)
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where the time is t = ∆t ·nstep and the strain ε is evaluating at each time step

nstep as ε = ε̇∆tnstep, assuming zero initial strain is ε|t=0 = 0.

Each cell is being checked as to whether it lies on the border or not. If

it does and the dislocation density at this cell has reached critical value ρc

then the nucleation is happening. Once the cell has become a new nucleus

at certain time t which will we call as tini, its dislocation density value is

returning to its initial value ρini.

The fact that the newly formed nucleus will have initial dislocation den-

sity ρini means that in Eq. (3.17) the initial condition ρ|t=0 = ρini should be

changed to ρ|tini = ρini. The more general solution of Eq. (3.17) will be as

follows:

ρ(t, tini) =

(
e−

1
2
k2ε̇(t−tini)(−√ρinik2 + k1)− k1

)2

k2
2

(3.20)

The usage of this form of equation allows to calculate dislocation density

implicitly in the simulations and obtain the analytical values at any iteration

regardless of the size of time increment. As can be seen this solution leads to

the particular case Eq. (3.19) at tini = 0.

The condition for the nucleation ρ = ρc can be hence written as follows:

(
e−

1
2
k2ε̇(t−tini)(−√ρinik2 + k1)− k1

)2

k2
2

= ρc (3.21)

From this equation t − tini = ∆tc = can be found, which will be used in

the CA simulations:

(
e−

1
2
k2ε̇∆tc(−√ρinik2 + k1)− k1

)2
= ρck

2
2 (3.22)
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e−
1
2
k2ε̇∆tc(−√ρinik2 + k1)− k1 = ±√ρck2 (3.23)

e−
1
2
k2ε̇∆tc =

k1 ±
√
ρck2

k1 −
√
ρinik2

(3.24)

− 1

2
k2ε̇∆tc = ln

k1 ±
√
ρck2

k1 −
√
ρinik2

(3.25)

∆tc = −2
1

k2ε̇
ln

k1 ±
√
ρck2

k1 −
√
ρinik2

(3.26)

3.2.2.2 Analytical solution of single grain shrinkage driven by evolving

dislocation density driving force

The solution Eq. (3.15) has been obtained for the constant dislocation density

jump [ρ]. Let us consider the case of dislocation density evolving according to

Eq. (3.19). The equation for grain radius is the same as Eq. (3.13), but the

variable [ρ] depends on time t:

dr

dt
= −Mτ [ρ](t), (3.27)

where the negative sign in (3.27) shows that equation represents the shrink-

age of the deformed grain, instead of the growth of the recrystallized grain,

[ρ](t) is the difference between dislocation densities of the deformed and the

recrystallized grains: [ρ](t) = ρd(t, t
d
ini) − ρr(t, trini). ρd(t, tdini) and ρr(t, t

r
ini)

can be rewritten using Eq. (3.20) as follows:

ρd(t, t
d
ini) =

(
e−

1
2
k2ε̇(t−tdini)(−√ρinik2 + k1)− k1

)2

k2
2

, (3.28)
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ρr(t, t
d
ini) =

(
e−

1
2
k2ε̇(t−trini)(−√ρinik2 + k1)− k1

)2

k2
2

, (3.29)

Therefore,

[ρ](t) = ρd(t, t
d
ini)− ρd(t, trini) =

(
e−

1
2 k2ε̇(t−tdini)(−√ρinik2+k1)−k1

)2

k22
−

−
(
e−

1
2 k2ε̇(t−trini)(−√ρinik2+k1)−k1

)2

k22
,

(3.30)

which leads to the following differential equation:

dr

dt
= −Mτ

k2
2

((
e−

1
2
k2ε̇(t−tdini)(−√ρinik2 + k1)− k1

)2
−

−
(
e−

1
2
k2ε̇(t−trini)(−√ρinik2 + k1)− k1

)2
)
,

(3.31)

r =

∫
−Mτ

k2
2

((
e−

1
2
k2ε̇(t−tdini)(−√ρinik2 + k1)− k1

)2
−

(
e−

1
2
k2ε̇(t−trini)(−√ρinik2 + k1)− k1

)2
)
dt+ C

(3.32)

r =
Mτ

k3
2 ε̇

[
(−√ρinik2 + k1)2

(
e−k2ε̇(t−t

d) − e−k2ε̇(t−tr)
)

+

+4k1(−√ρinik2 + k1)
(
−e−

1
2
k2ε̇(t−td) + e−

1
2
k2ε̇(t−tr)

)
+ k2

1k2ε̇(t
d − tr)

]
+ C

(3.33)

The constant C can be found from the initial condition r(0) = rini:

C = rini −
Mτ

k3
2 ε̇

[
(−√ρinik2 + k1)2

(
ek2ε̇t

d − ek2ε̇tr
)

+

+4k1(−√ρinik2 + k1)
(
−e

1
2
k2ε̇td + e

1
2
k2ε̇tr

)
+ k2

1k2ε̇(t
d − tr)

] (3.34)
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Then the solution can be written as follows:

r(t) =
Mτ

k3
2 ε̇

(
4k1 (−√ρinik2 + k1)

(
e

1
2
k2ε̇tdini − e

1
2
k2ε̇trini

)(
1− e−

1
2
k2ε̇t
)

+

+ (−√ρinik2 + k1)2
(
ek2ε̇t

r
ini − ek2ε̇tdini

)(
1− e−k2ε̇t

))
+ rini

(3.35)

Let us consider the radius with time of the deformed grain surrounded by

newly recrystallized. The initial conditions for the dislocation density are as

follows: at time t = 0 s the deformed grain has critical dislocation density

ρd|t=0 = ρc and the recrystallized grain has zero initial dislocation density

ρr|t=0 = 0 (or tinid = ∆tc, see Eq. (3.26), and tinir=0). The parameters for the

dislocation density calculations are shown in Table 3.2 and other parameters

are the same as in Table 4.1. Fig. 3.8a shows the radius r(t) of a single grain

during the shrinkage due to evolving dislocation density difference compared

with the driven by the constant dislocation density jump, which has been

discussed in the previous section. As can be seen from the figure, the grain

has not disappeared by the time t = 500 s in contrast the case of a constant

[ρ], but approaches the limit rlim ≈ 0.59 × 10−4. This can be explained by

the fact that the dislocation density difference has decreased with time (see

Fig. 3.8b) or in other words the driving force tends to zero.
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Parameter Value Description
ε̇ 2× 10−3 1/s Strain rate

k1 2.97× 108 m−1 [39]
Constant related to
the hardening

A1
1) 3.59× 1044 [14],
2) 2× 1044 [39]

Constant

A2 7.58 [14], 7.6 [39] Constant

QA
1) 261× 103 J/mol [14], [42], [41]
2) 275× 103 J/mol [39], [17], [16],

Activation energy

ρc 5.51× 1013 m−2 Critical dislocation density
ρini 0 m−2 Initial dislocation density

Table 3.2: Parameters.
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3.2. Analytical solutions

Figure 3.8: Radius evolution during the grain shrinkage due to dislocation
density difference: constant and evolving with time. Dislocation density evo-
lution.
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3.2.3 Curvature driven grain shrinkage

Let us now consider the case of when the grain is shrinking only by curvature,

so that pD = 0.

v = vC = MpC , (3.36)

pC = −2γ

r
, (3.37)

Therefore, the equation for the grain boundary motion v = dr
dt can be

written as follows:

dr

dt
= −M 2γ

r
, (3.38)

r · dr = −
∫

2Mγdt, (3.39)

This is a 1st order linear differential equation with the initial condition

r(0) = r0.

r2

2
= −2Mγt+

r2
0

2
, (3.40)

r2 = −4Mγt+ r2
0 (3.41)

Therefore, the kinetics of the grain radius can be described theoretically

as follows:

r(t) =
√
r2

0 − 4Mγt (3.42)

Schematically, the evolution of the grain radius with time is shown in

Fig.3.9.

Ding [14] did not calculate curvature, but instead he used directly radius

of grains ri. However, the radius of each grain is maybe unknown in the
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0 t
r=0time
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r
0

ra
d
iu

s

Figure 3.9: Radius evolution during the sphere shrinkage with a constant
velocity due to curvature

simulations. It can also be known, but the shape of the grains can be not

round, so the driven force is different for the different parts of grain and the

local curvature is required. Hence for the CA simulations local curvature k is

used:

v = Mγk (3.43)

The curvature k can be calculated and the most common method which

is based on Kremeyer’s work [115] has already been used in several works in

the past ( see Lan et al. [34], Zheng et al. [113], Yang et al. [116], Hallberg

[42], [41].)

k =
A

a

Kink −Ni

N + 1
, (3.44)

where A is a constant parameter, a is the cell size, Ni is the number of cells

in the neighbourhood of N + 1 cells belonging to the grain, and Kink is a
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number of cells within the neighbourhood belonging to the grain for a flat

interface.

3.3 Algorithm testing for simulation of single grain

shrinkage at different driving forces

The common problem of using CA methods for the simulation of the mi-

crostructure evolution is a requirement of the time scaling based on the real

physics [1]. The present method uses the real time increment ∆t, and hence

the real distance ∆r which the grain boundary passed for this time ∆t. Con-

sequently the results of the simulations do not require any further scaling.

The simplified algorithm is shown in Fig 3.10, more detailed code is shown in

Appendix 3. The algorithm was tested on the structures with different dimen-

sions: 1D line segment, 2D disk and 3D sphere with radius of 25 cells, which

are shown in Fig. 3.11.
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Figure 3.10: The simplified algorithm for CA simulations.
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Figure 3.11: Initial structures: line, disk and sphere with radius of 50 cells.
The boundary cells are shown by red color. Visualization made in Paraview.
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driving forces

3.3.1 Simulation of a single grain shrinkage driven by constant

dislocation density pressure

Similarly to the previous section, we will simulate the grain shrinkage due to

three different contributions of the driving forces: 1) the dislocation density

difference; 2) evolving dislocation density difference; 3) the curvature.

Assume that the structure consists of cells with a dislocation density ρ1

and surrounded by cells with ρ2 = 0. The driving pressure will then be pD =

τ [ρ] = τ(ρ1 − ρ2) = τρ1.

3.3.1.1 Dislocation density difference jump in 1D. Effect of the cells

size and time increment

The cells are located on a single line and each cell has two neighbours: on

the left and on the right. If a neighbouring cell is moving towards the central

position due to the difference in the dislocation density, the state of the central

cell changes once the passed distance becomes larger than the cell size.

The change of the radius with time, analytical and simulated, at different

time increments and cell sizes are shown in Fig. 3.12. If we choose a time

increment as ∆t = dcell/v
max
D , then the driving force pD will move the grain

boundary and the segment length will decrease with a constant velocity vD =

MpD by one cell from both ends after each iteration. The simulation result

perfectly agrees with the theory as can be seen in Fig. 3.12(a). This ∆t is

a minimal time increment and a larger value will lead to the wrong results,

while the smaller time increment will not influence on the kinetics, but the line

"radius-time" will have a stepped form (see Fig. 3.12b). This form becomes

less obvious with a finer cell structure (see Fig. 3.12c).
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Figure 3.12: The change of the radius a 1D segment with time: a) analytical
and simulated with cell size dcell = 5 ·10−6 m. b) simulated with the same size
cell but with time increment ∆t/10. c) simulated with time increment ∆t/10
and the cell size dcell = 2.5 · 10−6 m.

80



3.3. Algorithm testing for simulation of single grain shrinkage at different
driving forces

3.3.1.2 The 2D - Dislocation density difference jump

The kinetics in 1D simulations can be predicted very precisely, because the

geometry of cells grid does not influence accuracy. However, when the struc-

ture becomes 2D or 3D the results lead to a small difference from analytical

solution, because of the discreteness of the model.

An investigation into what happens with similar simulations as above for

the 2D disk has been made. For simplicity, the Von Neumann neighbourhood

will be used: the cell and 4 nearest neighbours.
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Figure 3.13: The change of the radius of a 2D disk with time calculated ana-
lytically compared with simulated with cells size a) dcell = 5 · 10−6 m and b)
dcell = 1.25 · 10−7 m.
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Figure 3.14: Shrinkage of a 2D disk with initial radius of 300 cells after 0, 50,
100, 150, 200, 250, 280, 296 time steps.

Effect of grid anisotropy: The results of simulations with different cell sizes

are shown in Fig. 3.13. As can be seen, the results of the 2D simulations do

not ideally lie on the analytical line. There is a discrepancy, which can be

explained by the anisotropic effects of the grid (see Chapter 5 for details).

The initially round shape takes the form of a square (see Fig. 3.14). The

similar effect was observed in others works for example by Lan et al. [34].

The decrease of the cell size does not help to rid of this effect. In Fig. 3.13b

the cell size was 40 times smaller, which increased the time of calculations,

but did not improve results.

Accuracy: As 2D and therefore 3D simulations will lead to some deviations

from the theory, we need to estimated the accuracy of simulations. The error

was estimated using the area under curves as follows:

error =
Areasim −Areaan

Aan
(3.45)

The errors calculated by this method are 0.0411 and 0.0367 for dcell =
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5 · 10−6 m and dcell = 1.25 · 10−7 m respectively. It is also worth noting that

the analytical and simulated initial radii are different due to discreteness: the

initial analytical radius is r0 = 1.25 ·10−4 m, simulated are r0 ≈ 1.254 ·10−4 m

and r0 ≈ 1.25·10−4 m at dcell = 5·10−6 m and dcell = 1.25·10−7 m respectively.

The plot of errors with the decrease of the cells size or increase of number per

initial radius ncells is shown in Fig.3.15. As can be seen from this graph, the

limit of error as the cell size approaches zero equals limdcell→0 error(dcell) =

0.037.

Figure 3.15: The errors of the simulations of the 2D disk shrinkage due to the
constant difference in the dislocation density at the different number of cells
per initial radius of the grain ncells.

3.3.1.3 Dislocation density difference jump in 3D

The anisotropic effect of the grid observed at 2D is intensified in the 3D sim-

ulations. The kinetics of shrinkage of a 2D disk and 3D sphere with the same

cell size dcell = 1.25 · 10−6 m compared with analytical line are shown in
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Fig. 3.16. As can be seen, the simulation in 2D results give the result as being

closer to the analytical solution, than in 3D. The error for 2D is 0.037 and for

3D is 0.0646.
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Figure 3.16: The change of the radius of a single grain shrinking with
a constant velocity calculated analytically and simulated in 2D and 3D at
dcell = 1.25 · 10−6 m.

3.3.2 Evolving dislocation density. Time increment for CA

The CA algorithm described in the previous chapter has been adopted for

the case of evolution of dislocation density with change of strain. In this

case, the driving force changes with time and velocity has its peak at the

almost beginning (see Fig.3.8) and decreases with time. Therefore, the time

increment can be chosen as tinc = dcell
vmax

, where vmax is either the highest
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velocity which can happen, particularly in the considering case it is a velocity

at t = tpeak and should be calculated, or vmax is the maximum velocity at the

current time step. Let us, for future notation, to call first definition fixed tinc

and second as updated at each iteration, or shortly updated.

For the case of the updated time increment, the real maximum velocity

has been found at each iteration. For the case of the fixed time increment

∆t = dcell
vmax

, where vmax = Mτ [ρ]max, [ρ]max = [ρ](t = tmax) corresponds to

the peak of the dislocation density difference (see Fig. 3.8b). In order to find

tmax the following derivative test has been used:

d[ρ]

dt
= 0, (3.46)

where [ρ] is described by Eq. (3.30):

d

dt

(
1

k2
2

(
e−

1
2
k2ε̇(t−tdini)(−√ρinik2 + k1)− k1

)2
−

− 1

k2
2

(
e−

1
2
k2ε̇(t−trini)(−√ρinik2 + k1)− k1

)2
)

= 0,

(3.47)

and the solution is follows:

tmax = trini −
2

k2ε̇
ln

(
− k1

e
1
2
k2ε̇(tdini−trini)(

√
ρinik2 − k1) +

√
ρinik2 − k1

)
,

(3.48)

3.3.2.1 Results of 1D CA simulations

Fig. 3.17 shows the change of the radius r(t) with time simulated by CA with

different cell sizes (or number of cells per segment). The graph shows that the

decrease of the cell size leads to a smoother solution. The same fact has been
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observed in the previous subsection (3.3.1.1). However, for the fixed time

increment even the small cell size such dcell = 2.5 × 10−7 m does not agree

well with an analytical solution (see Fig. 3.17a). The updated tinc Fig. 3.17b

shows that simulated solution converges with analytical with bigger number

of cells per the initial radius.

Figure 3.17: The change of the radius of a 1D segment with time at the dif-
ferent cell sizes (or number of cells per initial radius): dcell = 6.25 × 10−6 m
(or 20 cells), dcell = 1.25× 10−6 m (or 100 cells), dcell = 2.5× 10−7 m (or 500
cells), for fixed time increment (left) and updated at each iteration (right)
compared with analytical solution.

Effect of cell sizes: The error as the percentage discrepancy from analytical

solution has been calculated as follows:

error =
∆r

ran
=
rsim − ran

ran
, (3.49)

where rsim is the radius of the grain at the end of the simulation and ran is the

analytical value at the corresponding time. The simulations were carried out

until time t = 800 s. The errors calculated as above with the change of the cell

sizes for the fixed and the updated time increments are shown in Fig. 3.18.
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Figure 3.18: The errors of the simulations of a single grain shrinking driven
by the evolving dislocation density simulated in 1D (a), 2D (b) and 3D (c)
cases at different cell sizes (or number of cells per initial radius) for fixed time
increment and updated at each iteration (right).

Effect of time increment: The simulations performed with the fixed and

updated time increment tinc reduced by number n = 1, 2, 3, 4, 10, 50, 100 are

shown in Fig. 3.19. As has been mentioned above, simulations with fixed

time increment does not agree well with analytical solution well, Fig. 3.17.

However, the reduction of the time increment by integer n lead to convergence

of simulation, Fig. 3.19a. Fig. 3.19b shows the similar set of the simulations

with the updated time increment. The updated time increment shows good

prediction already at the n = 1. Further reduction of the time increment

shows only slight improvement.

These facts are also shown in Fig. 3.20. As can be seen in this figure,

for both cases, fixed and updated tinc, a decrease in the time increment by

n significantly reduces error. However, for the updated time increment tinc,

the error approaches zero faster than for the fixed time increment. Fig. 3.18a
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Figure 3.19: The change of the radius of a single grain during shrinkage driven
by the evolving dislocation density simulated in 1D segment using the differ-
ent time increments tinc = ∆t

n = dcell
n·vmax

for the fixed (left) and updated (right)
at each iteration vmax. The cell size is dcell = 1.25× 10−6 m (or 100 cells).

compares errors with different time increments with an increase of the num-

ber of cells per initial radius ncells. It shows that the limit of the error as a

function of ncells decreases with the decrease of time increment tinc.
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Figure 3.20: The errors of the simulations at the different time increments
tinc = ∆t

n = dcell
n·vmax

for the fixed vmax and updated at each iteration. The cell
size is dcell = 1.25× 10−6 m (or 100 cells).

3.3.2.2 Results of 2D and 3D CA simulations

The same series of simulations as for 1D has been implemented for 2D disk.

The change of the radius r(t) with time is compared with 1D simulations for

the fixed and the updated time increments in Fig. 3.21. Simulations have

been performed using the cell size dcell = 1.25 × 10−6 m (or 100 cells). In

the case of the fixed tinc the simulations a 2D have bigger discrepancy with

analytical solution than for 1D. Fig. 3.18b shows that the errors in 2D are

shifted up in comparison with 1D. The error approaches value error = 0.055

with the decrease of the cell size. The errors for 3D are also greater than in

2D. Therefore, similarly to the results in 3.3.1.1, the grid anisotropy in 2D and
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Figure 3.21: The change of the radius of a single grain during shrinkage driven
by the evolving dislocation density simulated in 1D and 2D with different
types of the time increment: fixed (left) and updated (right) compared with
analytical solution. The cell size is dcell = 1.25× 10−6 m

3D simulations caused deviations from analytical solution.

3.3.3 Simulation of a single grain shrinkage driven by curvature

The grain boundary is moving with a velocity vc = Mγk, where M is the grain

boundary mobility, γ is the grain boundary energy and k is the curvature.
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The curvature k can be calculated by various of methods, as described in

the literature. The most straightforward is the counting cell method which

was suggested by Kremeyer [115] and has successfully been applied to CA

simulations by Janssens [1], Lan [34], Hallberg [41] and others.

A kink template (see Fig. 3.22a) is mapped over the cell. The template

assigns "1" to all positions which belonging to the same grain as the center

one and zero belonging to others. Furthermore, the curvature is calculated by

the following formula [34]:

k =
A

a

Kink −Ni

N + 1
, (3.50)

where Ni is the number of cells within the neighbourhood belonging to the

grain i, i.e. the same grain as the central cell, Kink is the number of cells

within a disk template belonging to the grain i in case of flat interface (k = 0),

A is the coefficient, a is the cell size and N is the number of neighbours within

neighbourhood. In some articles, it has been found wrong interpretation of

parameter A, for example [113], where A was called "topological coefficient",

which is in fact a scaling parameter. The parameter A in most papers (Zheng

2008 [106], Zheng et al. 2012, [113]) was chosen equal 1.28, the earliest

[34], but no derivation has been shown. It needs to be derived by calibration,

as has been done by Han et al. [37] for example. Han ([37] used follow-

ing formula [117], [118]) for the curvature which has been applied for disk

templates with a bigger radius:

k ' 3π

b

(
A

Atot
− 1

2

)
, (3.51)

where b is the radius of a disk template, Atot is the total area of the discrete

template, A is the area outside the line (Fig. 3.22b).
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However, in this particular article the parameter A has been calibrated at

one particular initial radius and has not been checked against grain shrinkage

with the different radii. The same practice has been implemented by Hallberg

[41], [42].

After the curvature has been calculated, the central cell should change its

state if the curvature is positive k > 0 [1]. The main difference between this

approach and a technique used in the present research is that now the curva-

ture of the neighbours is calculated instead of the central cell. The algorithm

scheme is shown in Fig. 3.10. This modification helps to avoid uncertainty in

the triple junctions (see Appendix A).

3.3.3.1 Curvature driving force in 2D - Effect of the cell size and time

increment

The driving force caused by curvature cannot be applied in 1D dimensions, so

the simulations for the curvature are performed only for the disk and sphere.

Let us consider Eq.(3.50) for the 2D case: the parameterN defines used neigh-

bourhood, a is a cell size, Ni is defined by cells allocation, so the two param-

eters left Kink and A can be considered as free which can be varied. In fact,

A will not change the form of the curve, but it can be considered as a scaling

parameter (see Fig.3.23), and Kink corresponds for the shape of curve. One

can obtain the fitted simulation model to the analytical by tuning parameters

Kink and A.

92



3.3. Algorithm testing for simulation of single grain shrinkage at different
driving forces

Figure 3.22: A scheme of a curvature calculation: a) a disk template 5x5
template applied to the cell [1], b) curvature depends linearly on the area
above the curve γ [117].
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Figure 3.23: Simulation of a single grain shrinkage driven by curvature with
different parameters A. The kinetics is slower than analytical at the parameter
A1 < A and faster at the parameter A2 > A.

The commonly used values for the parameters in Eq.(3.50) are [34]: Kink =

15, A = 1.28 and N = 24 (in the case of a Moore neighbourhood in 2D with

the first- and second-nearest neighbours). However, considering the fact that

the algorithm has been modified, the new parameters A and Kink should be

re-estimated. In order to see how different values of Kink influence results,

the simulations have been run with different values of Kink, the curves were

scaled to the analytical solution and the shapes have been compared. The

results of the simulations for dcell = 2.5 · 10−6 m are shown in Fig. 3.24. The

difference is not visible to the naked eye, hence further the calculated error

will be used for comparison.

The critical condition is that once the parameters A and Kink have been

established, the same needs to be used in the following chapter for the case

of the coupled forces. Ideally, the same parameters should be used at the

different time increments (smaller than minimal) and different cell sizes.

Effect of time increment: As has been discussed previously, there are two

ways in which to define the time increment within the algorithm: 1) to use the

minimal time increment: tinc = dcell
vmax

, where vmax = Mγkmax, the maximum
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Figure 3.24: The change of the radius of a single grain during shrinkage driven
by curvature, simulated at the different values of Kink and scaled to the
analytical solution, for the fixed (a)-(d) and updated (e)-(h) tinc. The cell size
is dcell = 1.25 · 10−6 m or 100 cells.

curvature kmax is happening at Ni = 0 (see Fig. 3.25); 2) to find the real

maximum velocity on the domain area and calculate the time increment at

each iteration, that for example has been realized by Hallberg [42].

However, for both methods, no analysis has been shown in the literature

as to what would happen if the time increments were to be reduced by inte-

ger number n: tinc = dcell
n·vmax

. For the cell size dcell = 5 · 10−6 m, Kink = 12 a

series of simulations has been done, for the fixed time increment and updated
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Figure 3.25: The grain boundary velocity of an individual cell driven by cur-
vature with the change of the number Ni according to Eq. (3.50).

at each iteration at different values n. The results are shown in Fig. 3.26. In

order to make the starting point of all cases equal zero the values of A are

shifted by first point Ai − A1. As can be seen from this figure, the parameter

A initially decreases with n and then continues to fluctuate. In the case of the

fixed time increment tinc the Kink = 15 has the highest amplitude of fluctua-

tions, but at the same time the smallest slope that means A is more consistent.

The usage of the fixed time increment also lead to the more consistent A for

others values of Kink in comparison with the updated time increment. The

amplitude of fluctuations in the case of the updated time increment is smaller

than for the fixed time increment.

The corresponding errors are shown in Fig. 3.27. As can be seen in this

figure, the errors do not decrease with n, so there is no need to use small time

increment, as it will not improve accuracy of simulations.

The fact that the proposed algorithm in [42] does not lead to the same
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Figure 3.26: The change of the parameter A shifted by A1(at n = 1) with the
change of the time increment ∆t = dcell

n·vmax
for the fixed (left) and updated

(right) time increment. The cell size is dcell = 1.25× 10−6 m (or 100 cells).

results with the different n (tinc = dcell
n·vmax

) can be explained as follows: in

the case of the dislocation density, the maximum velocity is constant, hence

the change of the time increment does not influence the results, flat segments

appear (see Fig. 3.12), but the shrinkage time does not shift. In the case of

the curvature driven shrinkage, there are no such flat segments, so at each

iteration, regardless of how small is the iteration, the cell structure changes.

This is happening because the maximum velocity (and therefore the time in-

crement tinc = dcell
n·vmax

) is not constant. The velocity vc = Mγk depends on the

number Ni Eq. (3.50) and the maximum curvature occurs at minimal Ni = 0

(see Fig. 3.25). However, the real minimal Ni in the simulations changes with

every iteration and oscillates between 9 and 12, (see Fig. 3.28).
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Figure 3.27: The errors of the scaled simulations performed with different
Kink and time increments ∆t = dcell

n·cellvmax
, fixed (top) and updated time

increments at each iteration (bottom). The cell size is dcell = 1.25 × 10−6 m
(or 100 cells).
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Figure 3.28: An example of the change of the minimal Ni with time.

98



3.3. Algorithm testing for simulation of single grain shrinkage at different
driving forces

Effect of cell sizes: In contrast to the simulations of the dislocation density

jump (section 3.3.1.1), there is a significant dependence of the parameter A

and Kink on the cell size in the case of the curvature driven grain growth

simulations. In multigrain simulations grains are changing in size, so the

number of cells per grain are changing as well. Therefore, it is important to

have a model for the curvature driven growth which works consistently at

the different numbers of cells per grain (or the cell size for the single grain

problem).

In order to check how the cell size influences the value of the parameter

A and errors, a series of simulations has been implemented with the initial

grain radius is r0 = 1.25 · 10−4 m and different values of Kink = 12..15. The

errors in the simulations calculated by Eq. (3.45) are shown in Fig. 3.29. As

can be seen from this figure all values of Kink shows big oscillations of error

at the big cell sizes. With a decrease of cell size the error stabilizes and the

best error convergence has been observed at Kink = 14 and fixed tinc.

Another graph Fig. 3.30 shows changes in A with the cell size for simula-

tions with different values of Kink. A should be consistent, as grains change

size in multigrain simulations and consist of different number of cells. As

can be seen from interpolated lines shown in Fig. 3.30, the smallest slopes

are in the case of fixed time increment with Kink = 12 (the slope equals to

−7 × 10−5). The value of A at Kink = 15 increases with the cell size, while

at others value of Kink it tends to remain constant.

This information can be interpreted as follows: the model will work con-

sistently in the certain range of cell sizes for values of Kink = 12, 13 or 14, but

not for 15. Any change in the cell size will require to recalculate A which will

make the multigrain calculations inaccurate. The preferable value for Kink

is 14, because of the best error convergence. Hence, these results also put
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Figure 3.29: The errors of the scaled simulations performed with the different
Kink and types of CAS: fixed (top) and updated tinc(bottom) with the change
of the cell sizes.

restrictions on the minimal space resolution of the model.

3.3.3.2 Curvature driven force in 3D

In 3D, the parameters for Eq. (3.50) will be: N = 124, and possible values

for Kink are bigger than for 2D. To find the optimal series of simulations

similar for 2D are required. However, the simulations of shrinkage driven by

curvature require more total iterations than that by the dislocation density

jump, and the simulations in 3D are more time consuming. Therefore, this

analysis has not been performed and is advised for future work.

3.3.4 Number of iterations

The number of iterations is of particular interest. Although the results become

more accurate, the bigger number of the calculation steps requires greater
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Figure 3.30: The change of the parameter Ai shifted by A1 calculated at the
different values of Kink and types of CAS: fixed (a) and updated (b), with
the change of the cell sizes. The cell size for A1 is dcell = 6.25× 10−6 m or 20
cells

computation time. As can be seen from this graph, the number of iterations

n grows non-linearly with the decrease of the cell size. The quickest growth

is observed in the simulations with the updated time increment at Kink = 12

and Kink = 13, the slowest is happening in the case of the fixed CAS and

Kink = 15.

3.4 The probabilistic version of developed CA

technique

The probabilistic version of a developed CA technique based on Monte Carlo

step instead of calculating distances has been developed. If the random num-
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Figure 3.31: The growth of the number of iterations for the simulations of a
single grain shrinkage driven by curvature at the different values of Kink and
types of CAS: fixed (a) and updated(b) with the change the cell sizes.

ber is less than the velocity of the moving the neighbour related to the maxi-

mum velocity rand < vneighb

vmax
then the cell changes its state to the neighbours

state. The deterministic CA rule implies that cell changes state to the state of

neighbour with distance variable greater than cell size. The probabilistic CA

rule implies that the cell changes its state to neighbours state with probability

equal to the value vneighb

vmax
.

3.4.1 Simulation of a single grain shrinkage driven by curvature

using developed PCA algorithm

The grain shrinkage with the fixed CAS is shown in Fig. 3.32. The disk shrinks

only at values of Kink = 5..15. Fig. 3.33 demonstrates the same simulations

by the deterministic CA using the updated tinc. As can be seen, the disk with

initial cell size r0 = 20 cells shrinks with any value of Kink = 1..15.

The probabilistic CA with the same initial radius, r0 = 20 cells, leads to the

different results of simulation with the same parameters. Fig. 3.34 shows 10

simulations for the probabilistic CA simulations using the fixed time increment
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Figure 3.32: The change of the radius of a single grain during curvature driven
shrinkage simulated with DCA at the values of Kink = 5..15 and scaled to the
analytical solution, for the fixed tinc.
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Figure 3.33: The change of the radius of a single grain during curvature driven
shrinkage simulated with DCA at the values of Kink = 5..15 and scaled to the
analytical solution, for the updated tinc.

and Fig. 3.35, Fig. 3.36 – updated.

The probabilistic CA with values of Kink = 12..15 has been studied simi-

larly to the deterministic CA described in the previous sections. The mean pa-

rameter A (see Fig. 3.37) and errors (see Fig. 3.38 were estimated by running

10 simulations with the same parameters. The behaviour of the parameter A

and errors with an increase of the number of cells per initial radius is similar

to the case of the deterministic CA.
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Figure 3.34: The change of the radius of a single grain curvature during driven
shrinkage simulated with PCA at the values of Kink = 6..15 and scaled to the
analytical solution, for the fixed tinc.
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Figure 3.35: The change of the radius of a single grain during curvature driven
shrinkage simulated with PCA at the values of Kink = 1..8 and scaled to the
analytical solution, for the updated tinc.
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Figure 3.36: The change of the radius of a single grain during curvature driven
shrinkage simulated with PCA at the values of Kink = 9..15 and scaled to the
analytical solution, for the updated tinc.
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Figure 3.37: The mean parameters Ai shifted by A1 over 10 different simu-
lations calculated at the different values of Kink and CAS with the change
of the cell sizes. Bars show standard deviation. The cell size for A1 is
dcell = 6.25× 10−6 m, r0 = 20 cells

Figure 3.38: The mean errors of the scaled simulations performed with the
different Kink and types of CAS with the change of the cell sizes. Bars show
standard deviation.
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3.5 Summary

Single grain simulations allows to validate CA model with theory, where a dy-

namics of the grain growth is known. Once algorithm has been validated with

analytical solution, it can be used for multigrain stricture. The main differ-

ence between single grain and miltigrain simulations is the presence of triple

junctions in the last one. A newly developed CA technique computes bound-

ary movements in the triple junctions inherently. Explicit CA simulation is a

powerful instrument for simulation of a complex systems with large number

of components, such as grains during recrystallization and grain growth. The

knowledge of driving forces which is a considered as a theory does not allow

to predict the evolution of structure. However validated on a single grain CA

approach solves governing equations discretely, which makes possible to take

into account local parameters such as impurities, texture, etc.

Three different ordinary differential equations describing the shrinkage of

a single grain, have been solved by the proposed real time CA. For the disloca-

tion density jump (first and second cases) the most accurate are simulations

in 1D, because calculations in the higher dimensions increase the discrepancy

from the analytical due to the grid anisotropy. For evolving dislocation density

jump and curvature driven shrinkage two different approaches of choosing

the time increment have been considered, fixed and updated at each itera-

tion, which both have different advantages and disadvantages. It has been

shown that CA with the updated time increment proved to be more accurate

for the case of the evolving the dislocation density jump. At the same time,

the reduction of the fixed time increment significantly improves accuracy.

The third equation described the curvature driven shrinkage, where the

variable CA parameters are the scale parameter A, and Kink. Simulations
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have been carried out for the values of Kink = 12, 13, 14, 15 using CA with

the fixed and updated time increment. It has been shown that the decrease

of time increment by integer n does not influence the average error of the

scaled simulations, but changes parameter A. The values of Kink influence

the parameter A and the most consistent A at different cell sizes is Kink = 12

at the fixed time increment.

For all three equations, the influence of the cell size has been also stud-

ied. It has been shown that finer initial structure will have more accurate

results, than the coarse structure. The decrease of time increment increases

convergence (not true for curvature).
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Chapter 4

Modelling of a Single Grain -

The Coupled Driving Forces

The differential equation considered in the previous chapter describes grain

boundary movement under different driving forces, dislocation density jump

and curvature, separately. However, in reality, these two forces are simulta-

neous and concurrent. During dynamic recrystallization the newly formed

nuclei with a low dislocation density are growing into a deformed matrix with

a high dislocation density, but at the same time is influenced by the curvature

driven force, which tends to shrink it.

There are not many works devoted to study of coupled forces: Lan [34],

Han [37], Zheng et al. [106], Zheng et al. [113] studied only curvature

driving grain shrinkage. The coupled driven forces have been considered by

Kugler [39], but in his paper the technique to calculate curvature has not

been specified. Ding [14] also simulated the grain growth driven by coupled

forces, but their methods were based on the calculation of the radii of the

grains instead of curvature. The same method has been found in works Xiao
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et al. [119], Yazdipour et al. [120]. Hallberg with co-workers [42], [41]

described CA for the simulation of the single grain shrinkage due to evolving

dislocation density and curvature driven forces. However, the calibration has

been made with one particular radius, and no investigation on the consistency

of its parameters at grains with the different radii.

Therefore, in the following chapter, CA will be applied to solve the com-

bined differential equations, where forces are acting simultaneously.

4.1 Analytical solutions

4.1.1 Single grain shrinkage due to constant dislocation density

jump and curvature

Combining two contributions, curvature and dislocation density jump driving

forces, into the driving pressure, we propose to derive the grain boundary

velocity, which consists of two parts:

v = vC + vD = M(pC + pD) (4.1)

The kinetics of the grain radius can be written as follows:

dr

dt
= M

(
τ [ρ]− 2

γ

r

)
(4.2)

This is a 1st-order non-linear differential equation with initial conditions,

r(0) = r0. Dividing both sides by M(τ [ρ]− 2γ
r ) yields:

dr
dt

M(τ [ρ]− 2γ
r )

= 1, (4.3)

Integrating both sides with respect to t leads to:
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4.1. Analytical solutions

∫ dr
dt

M(τ [ρ]− 2γ
r )
dt =

∫
1dt, (4.4)

For the left side integral, substitute u = r(t) and du = dr
dtdt;

1

M

∫
1

(τ [ρ]− 2γ
u )
du =

∫
dt, (4.5)

1

Mτ [ρ]

∫
u(

u− 2γ
τ [ρ]

)du =

∫
dt, (4.6)

1

Mτ [ρ]

∫ u+ u− 2γ
τ [ρ] − u+ 2γ

τ [ρ](
u− 2γ

τ [ρ]

) du =

∫
dt, (4.7)

1

Mτ [ρ]

(
2γ

τ [ρ]

∫
1

u− 2γ
τ [ρ]

du+

∫
du

)
=

∫
dt, (4.8)

1

Mτ [ρ]

(
2γ

τ [ρ]
ln

(
u− 2γ

τ [ρ]

)
+ u

)
= t+ C, (4.9)

And going back to r:

1

Mτ [ρ]

(
2γ

τ [ρ]
ln

(
r − 2γ

τ [ρ]

)
+ r

)
= t+ C, (4.10)

where C is the constant and can be found from initial condition r(0) = r0:

C =
1

Mτ [ρ]

(
2γ

τ [ρ]
ln

(
r0 −

2γ

τ [ρ]

)
+ r0

)
, (4.11)

1

Mτ [ρ]

(
2γ

τ [ρ]
ln

(
r − 2γ

τ [ρ]

)
+ r

)
= t+

1

Mτ [ρ]

(
2γ

τ [ρ]
ln

(
r0 −

2γ

τ [ρ]

)
+ r0

)
,

(4.12)
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2γ

τ [ρ]
ln

(
r − 2γ

τ [ρ]

)
+ r = Mτ [ρ]t+

2γ

τ [ρ]
ln

(
r0 −

2γ

τ [ρ]

)
+ r0, (4.13)

2γ

τ [ρ]

(
ln

(
r − 2γ

τ [ρ]

)
− ln

(
r0 −

2γ

τ [ρ]

))
+ r − r0 = Mτ [ρ]t, (4.14)

Which leads to the following expression:

2γ

τ [ρ]
ln

r − 2γ
τ [ρ]

r0 − 2γ
τ [ρ]

+ (r − r0) = Mτ [ρ]t, (4.15)

Fig. 4.1 shows the kinetics of the radius obtained via solving Eq. (3.15),

Eq. (3.42) and Eq. (4.15). As can bee seen, the sum of two forces leads to

more rapid shrinkage than in the case of each force separately. The parameters

used in the simulations are represented in Table 4.1.
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curvature and dislocation jump
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Figure 4.1: The change of the radius of a single grain during shrinkage driven
by three different forces: constant dislocation density jump, curvature and
combination of them acting simultaneously. The corresponding times of the
full shrinkage are ∼ 342 s, ∼ 500 s and ∼ 1559 s.
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4.1. Analytical solutions

Parameter Value Description
r0 125 µm Initial radius
b 2.56 · 10−10 m Magnitude of Burgers vector
k 1.38 · 10−23 JK−1 Boltzmann constant
R 8.31 Jmol−1K−1 Gas constant
T 750K Temperature

Qb
1) 104 · 103 J/mol [14]
2) 110 · 103 J/mol [39]

Boundary-diffusion
activation energy

γ 0.625 Jm2 Grain boundary energy

δDob
5 · 10−15 [14],

7.5 · 10−15 [39] m3s−1
boundary self-diffusion

multiplied by grain boundary thickness
µ0 4.21× 109 N

m2 Shear modulus at 300 K
TM
µ0

dµ
dT −0.54 Temperature dependence of modulus

Tm 1356 K Melting temperature
α 0.5 Dislocation interaction coefficient

[ρ] 5.51 · 1013m−2 Dislocation density difference
inside and outside of grain

Table 4.1: Single grain parameters.

4.1.2 Single grain shrinkage due to evolving dislocation density

jump and curvature

The combination of the two driving forces, curvature and constant disloca-

tion density jump, has been discussed in the previous subsection (see section

4.1.1). It is proposed to find the analytical solution taking into account the

time dependence of the dislocation density. The equation to solve is as fol-

lows:

dr

dt
= −Mτ

k2
2

((
e−

1
2
k2ε̇(t−tdini)(−√ρinik2 + k1)− k1

)2
−

−
(
e−

1
2
k2ε̇(t−trini)(−√ρinik2 + k1)− k1

)2
)
− 2Mγ

r

(4.16)

The numerical solution of this equation compared with the case of the
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4. MODELLING OF A SINGLE GRAIN - THE COUPLED DRIVING FORCES

constant dislocation density jump is shown in Fig. 4.2.

Figure 4.2: The change of the radius of a single grain during shrinkage driven
by two different forces acting simultaneously, curvature and dislocation den-
sity difference, constant and evolving with time. The corresponding times of
the full shrinkage are ∼ 342 s and ∼ 427.5 respectively.

4.2 Algorithm testing for simulation of a single grain

shrinkage driven by different driving forces

The combination of the two driving forces, curvature and constant dislocation

density difference jump, acting simultaneously will lead to faster shrinkage

than at forces acting separately as shown in Fig. 4.1. A series of simulations

has been implemented, for the different cell sizes and values of Kink for a

fixed and an updated time increment. The parameter A was taken from the

results in the previous chapter for the corresponding set of parameters: cell

size, Kink and type of time increment.
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4.2. Algorithm testing for simulation of a single grain shrinkage driven by
different driving forces

4.2.1 Simulation of a single grain shrinkage simultaneously

driven by the constant dislocation density jump and

curvature using a developed algorithm

The full time of a grain shrinkage for the analytical solution Eq. (4.15) is tan ≈

342 s (see Fig. 4.1). The difference between the simulated time and analytical

solution with the change of the cell sizes is shown in Fig. 4.3. The deviation

of the simulated results from the analytical solution have been estimated as

a relation tsim/tan and plotted against cell sizes. The ideal relation is 1 and

marked by a black dashed line. As can be seen from the graph, the closest to

the analytical solution simulation has been performed by CA with the updated

tinc at Kink = 12. However, the general tendency is the decrease of the

characteristic tsim/tan with the decrease of the cell size. The updated time

increment in comparison with the fixed give slightly better performance.

If the relation tsim/tan would be equal 1, then it could also cause sig-

nificant deviations from the analytical solution, because of the wrong shape.

Fig. 4.4 shows how the shape of the scaled solutions differs from the analyti-

cal curve. The simulations were performed at the cell size dcell = 1.25× 10−6

m or 100 cells.
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4. MODELLING OF A SINGLE GRAIN - THE COUPLED DRIVING FORCES

Figure 4.3: The change of the deviations of the simulations of a single grain
during shrinkage, driven by curvature combined with a constant dislocation
density difference, from the theory calculated for different values of Kink
and types of CAS: fixed (a) and updated tinc (b) with the decrease of the cell
size. The deviation has been estimated as a relation of the simulated time of
shrinkage to the analytical tsim/tan.
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4.2. Algorithm testing for simulation of a single grain shrinkage driven by
different driving forces
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Figure 4.4: The change of the radius of a single grain during shrinkage driven
by curvature combined with a constant dislocation density jump simulated at
the different values of Kink and scaled to the analytical solution, for the fixed
(a)-(d) and updated (e)-(h) tinc. The cell size is dcell = 1.25 · 10−6 m or 100
cells.
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As can be seen from this figure Kink = 14 and Kink = 15 at the fixed tinc

lead to a significant deviation of the shape from the analytical curve. Whereas

Kink = 12 at the updated tinc shows almost ideal prediction of shape. The

corresponding errors of the scaled simulations at the different cell sizes are

shown in Fig. 4.5.

Figure 4.5: The errors of the scaled simulations of a single grain during shrink-
age driven by curvature combined with a constant dislocation density jump
performed with the different values of Kink and types of CAS: fixed (top)
and updated (bottom) tinc with the decrease of the cell sizes.

The simulations performed by CA with the updated tinc at Kink = 12

have minimal levels of error which decrease with the number of cell per initial

radius. These two contributions, minimal deviation of shape and time, give a

better total prediction, which can be seen in Fig. 4.6, where the minimal level

of error has been observed also for the case of the updated tinc at Kink = 12.

The degradation of the performance characteristic tsim/tan (see Fig. 4.3) has

a significant contribution to the increase of the error.
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4.2. Algorithm testing for simulation of a single grain shrinkage driven by
different driving forces

Figure 4.6: The errors of the non-scaled simulations of a single grain during
shrinkage driven by curvature combined with a constant dislocation density
jump performed with the different values of Kink and types of CAS: fixed
(top) and updated tinc (bottom), with the decrease of the cell size.

The examples of simulations performed at the cell size dcell = 4.3860×10−7

m (or 285 cells) compared with the analytical solutions are shown in Fig. 4.7.

Although the CA simulation with the updated tinc andKink = 12 is not ideally

close to the analytical solution, its advantage as compared with others values

of Kink is apparent.
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Figure 4.7: The change of the radius of a single grain during shrinkage driven
by curvature combined with a constant dislocation density jump simulated at
the different values of Kink and types of CAS: fixed (a)-(d) updated (e)-(h)
tinc, compared with the analytical solution. The cell size is dcell = 4.3860 ×
10−7 m or 285 cells.
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4.2. Algorithm testing for simulation of a single grain shrinkage driven by
different driving forces

4.2.2 Simulation of a single grain shrinkage simultaneously

driven by the evolving dislocation density jump and

curvature using a developed algorithm

Another case of the coupled driving forces studied in the present research

is the combination of the evolving dislocation density and curvature driven

forces acting simultaneously. In this case the shape of curve is more complex

(see Fig. 4.2). By the analogy with the previous subsection, a series of CA

simulations has been carried out and the values tsim/tan, errors of the scaled

and non scaled simulation curves have been found at the different cell sizes,

time increment tinc and values of Kink.

The relation tsim/tan is shown in Fig. 4.8. As can be seen from this figure,

the CA with the updated tinc and Kink = 12 leads to the more accurate

prediction of time of the grain shrinkage. This result agrees with the result for

the constant dislocation jump in the previous subsection.

The difference in shape of the simulated curves compared with the analyt-

ical solution at the different values of Kink and tinc is shown in Fig.4.9. The

cell size used in the simulations is dcell = 4.717 × 10−7 m or 265 cells. The

values Kink = [14, 15] at the fixed tinc lead to almost straight lines, whereas

Kink = 12 at the both, fixed and updated, tinc predict the shape. To investi-

gate how prediction of the shape improves with the decrease of the cell size,

the errors of the scaled simulations were plotted against the number of cells

per initial radius ncells (see Fig.4.10). As can be seen from this graph, the

mean error for Kink = 12 is less than for others. However, the error increases

with the decrease of cell size. The errors of the non-scaled simulations are

shown in Fig.4.11. The errors increase with the decrease of the cell size for all

cases, and lie in the range greater than for the constant dislocation jump. An
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4. MODELLING OF A SINGLE GRAIN - THE COUPLED DRIVING FORCES

Figure 4.8: The change of the deviations of the simulations of a single grain
during shrinkage driven by curvature combined with a evolving dislocation
density difference, from the theory calculated for different values of Kink
and types of CAS: fixed (a) and updated tinc (b) with the decrease of the
cell size. The deviation has been estimated as a relation of simulated time of
shrinkage to the analytical tsim/tan

example of simulations is shown in Fig.4.12, where the significant differences

between the simulations and the analytical solutions can be seen.
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4.2. Algorithm testing for simulation of a single grain shrinkage driven by
different driving forces
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Figure 4.9: The change of the radius of a single grain during shrinkage,
driven by curvature combined with an evolving dislocation density difference,
simulated at the different values of Kink types of CAS: fixed (a)-(d) and
updated (e)-(h) tinc, and scaled to the analytical solution. The cell size is
dcell = 4.717× 10−7 m or 265 cells.
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4. MODELLING OF A SINGLE GRAIN - THE COUPLED DRIVING FORCES

Figure 4.10: The errors of the scaled simulations of a single grain during
shrinkage, driven by curvature combined with an evolving dislocation density
difference, performed with the different values of Kink and types of CAS:
fixed (top) and updated (bottom) tinc with the decrease of the cell sizes.

126



4.2. Algorithm testing for simulation of a single grain shrinkage driven by
different driving forces

Figure 4.11: The errors of the non-scaled simulations of a single grain during
shrinkage driven by curvature combined with an evolving dislocation density
difference, performed with the different values of Kink and types of CAS:
fixed (top) and updated tinc (bottom), with the decrease of the cell size.
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Figure 4.12: The change of the radius of a single grain during shrinkage driven
by curvature combined with an evolving dislocation density jump simulated at
the different values of Kink and types of CAS: fixed (a)-(d) updated (e)-(h)
tinc, compared with the analytical solution. The cell size is dcell = 4.3860 ×
10−7 m or 285 cells.
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4.3. Probabilistic CA technique testing for simulation of a single grain
shrinkage driven by the coupled driving forces

4.3 Probabilistic CA technique testing for simulation

of a single grain shrinkage driven by the coupled

driving forces

The probabilistic CA technique described in Chapter 3 has been applied for

solving coupled differential equation and analysed in the same manner as the

deterministic CA method. The parameter A has been obtained during simu-

lation on curvature (see Chapter 3), and the average value has been used for

the corresponding cell size in the simulations for the coupled driving forces.

4.3.1 Simulation of a single grain shrinkage simultaneously

driven by the constant dislocation density jump and

curvature driven forces using developed PCA algorithm

The simulated time of the grain shrinkage related to the analytical solution

with the change of the cell sizes is shown in Fig. 4.13. In comparison with

the deterministic CA (see Fig. 4.3) one can say that the probabilistic CA al-

lows to obtain the simulation results closer to the analytical than with the

deterministic CA, especially at the small cell sizes.

The deviation of the simulated results from the analytical solution has

been estimated as a relation tsim/tan and plotted against cell sizes. The bars

show standard deviation of the value t/tsim. As can be seen from the graph,

at the large cell sizes the accuracy of the prediction estimated via tsim/tan is

within 20%. The parameter Kink = 15 gives an improvement of the charac-

teristic tsim/tan with the decrease of the cell size and approaches 1, whereas

other parameters of Kink fluctuate around the same value for the updated

and slowly grow for the fixed time increment. The bars on the graph show
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Figure 4.13: The change of the deviations of the PCA simulations of a single
grain during shrinkage, driven by curvature combined with a constant dislo-
cation density difference, from the theory calculated for different values of
Kink and types of CAS: fixed (a) and updated tinc (b) with the decrease of
the cell size. The deviation has been estimated as a relation of simulated time
of shrinkage to the analytical tsim/tan.

that the standard deviation does not radically change with the decrease of the

cell size.

The errors of the scaled simulations are shown in Fig. 4.14. As can be seen

from this graph, the range of errors of the scaled simulations, which reflects

the similarity of the shapes of the curves, for PCA is also smaller than for DCA

(see Fig. 4.5).
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4.3. Probabilistic CA technique testing for simulation of a single grain
shrinkage driven by the coupled driving forces

Figure 4.14: The errors of the scaled PCA simulations of a single grain during
shrinkage driven by curvature combined with a constant dislocation density
jump performed with the different values of Kink and types of CAS: fixed
(top) and updated (bottom) tinc with the decrease of the cell sizes.

The errors for the real simulations (see Fig. 4.15) are all negative and

Kink = 15 gives errors approaching zero with the decrease of the cell size.

This behaviour is related to the improvement of tsim/tan.
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Figure 4.15: The errors of the non-scaled PCA simulations of a single grain
during shrinkage driven by curvature combined with a constant dislocation
density jump performed with the different values of Kink and types of CAS:
fixed (top) and updated tinc (bottom), with the decrease of the cell size.

4.3.2 Simulation of a single grain shrinkage simultaneously

driven by the evolving dislocation density jump and

curvature driven forces using developed PCA algorithm

By the analogy with the previous section the PCA version of a developed tech-

nique has been applied for the 2D simulation of the single grain shrinkage

driven by evolving dislocation density jump and curvature simultaneously.

Fig. 4.16 shows the characteristic tsim/tan and its behaviour with the cell size

is very similar to the previous case. However, the average value of tsim/tan is

smaller, which means low accuracy of simulations.
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4.4. Summary

Figure 4.16: The change of the deviations of the PCA simulations of a single
grain during shrinkage, driven by curvature combined with an evolving dis-
location density difference, from the theory calculated for different values of
Kink and types of CAS: fixed (a) and updated tinc (b) with the decrease of
the cell size. The deviation has been estimated as a relation of simulated time
of shrinkage to the analytical tsim/tan.

The shape of the scaled curves (see Fig.4.17) in comparison with the DCA

is better, Kink = 15 starts from the bigger errors but then with the decrease

of the cell size, errors approach zero, as well as other parameters.

The real errors (see Fig. 4.18) also approach zero with the decrease of the

cell size in contrast to the deterministic algorithm.

4.4 Summary

A developed CA has been tested in the case of the coupled driving forces

acting simultaneously, where the dislocation density jump first was chosen as
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Figure 4.17: The errors of the scaled PCA simulations of single grain during
shrinkage driven by curvature combined with an evolving dislocation density
jump performed with the different values of Kink and types of CAS: fixed
(top) and updated (bottom) tinc with the decrease of the cell sizes.

a constant, and in the next series of experiments as evolving due to hardening

and recovery. It has been shown that the values of Kink and the type of time

increment influence the shape of curve of the solution. The best variables are

Kink = 12 at the updated tinc, whereas Kink = 14, 15 showed the biggest

discrepancy in the shape. The error approaches zero or fluctuates near a

constant value in the case of the constant dislocation density jump, whereas

for evolving dislocation density jump it grows with the decrease of cell size.

A developed CA solves the system of equations for the evolving dislocation

density with the bigger errors. One of the reasons of that is non-symmetrical

grid, which caused the high errors in the simulations of evolving dislocation

density jump in the previous chapter. However, it showed the ability to solve

equation for the constant dislocation density jump with the appropriate choice

of the parameters Kink and type of time increment.

Although the advantage of using PCA was not very obvious in Chapter

134



4.4. Summary

Figure 4.18: The errors of the non-scaled PCA simulations of a single grain
during shrinkage driven by curvature combined with an evolving dislocation
density jump performed with the different values of Kink and types of CAS:
fixed (top) and updated tinc (bottom), with the decrease of the cell size.

3, it showed better results for the simulations of the combined differential

equations, especially when the updated CAS and Kink = 15 are used. In

contrast to the deterministic model, PCA has ability to minimize error with

the decrease of the cell size which means that the solver converges. Also, PCA

has a wider range of the possible values of Kink than the deterministic CA.
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Chapter 5

On Time Symmetry of CA Based

Techniques

The Newtonian mechanics (classical mechanics) which describes the motion

of the macroscopic objects is deterministic, in other words it is time-symmetric

or reversible. The differential equations governing such physical systems can

describe the evolution of the system in the future, but also knowing the

present state it is possible to say how the system has evolved in the past.

Therefore, the shrinkage of the grain is described by the same laws as growth,

but with the opposite sign in the driving forces.

Let us consider an example of the dislocation density jump driving force. If

there is a deformed grain d with initial radius rd0 surrounded by recrystallized

matrix r, then these grains have dislocation density difference [ρ] = ρr − ρd <

0 which gives the driving force for the grain shrinkage pD = τ [ρ] < 0 to

move the grain boundary with velocity vd = MpD < 0 towards the centre.

Now, let us consider another situation, where the recrystallized nucleus with

a very small radius rr0 � rd0 is surrounded by deformed matrix d, and the
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Figure 5.1: The growth and shrinkage of a single grain driven by equal in ab-
solute value and opposite in sign dislocation density difference driving force.

dislocation density is now positive [ρ] = ρd − ρr > 0, so the driving force

pD = τ [ρ] > 0 moves grain boundary away from centre and the velocity is

positive vr = MpD > 0.

The velocities of the deformed and recrystallized grain are opposite in sign

and equal in the absolute values: |vr| = |vd|, vr = −vd. The evolution of the

radius with time for this two examples is schematically shown in Fig. 5.1. In

fact, the considered examples reflects the time-symmetry: the negative sign

of [ρ] can be taken to the left side as follows:

dr

d(−t)
= Mτ [ρ]. (5.1)

In the case of the curvature driven force, the equation of the grain shrink-

age is as follows:
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dr

dt
= −M 2γ

r
, (5.2)

where the driving force is pC = −2γ
r . The hypothetical driving force with

opposite sign and equal in absolute value pC = 2γ
r , will make the grain grow

instead of shrinkage (see Fig. 5.2), which can also be interpreted as time

reversibility, as follows:

dr

d(−t)
= −M 2γ

r
, (5.3)

Therefore, the concept of time symmetry for shrinkage of a single grain,

in the sense of the deterministic behaviour, can be expressed via the following

expressions:

dr

dt
= Mpshrinkage, (5.4)

dr

d(−t)
= Mpgrowth, (5.5)

|pshrinkage| = −|pgrowth| (5.6)

The CA techniques which are used to solve the time-symmetric differen-

tial equations are required to be able to simulate both, the shrinkage and the

growth of the grain, for the case of the deterministic CA, so the CA needs

to be reversible, which means that each configuration has an unique prede-

cessor. Unfortunately, the discrete methods for simulations rarely show the

deterministic properties [121]. The problems and the potential solutions for

the suggested CA techniques are discussed in this chapter.
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Figure 5.2: The growth and shrinkage of a single grain driven by equal in
absolute value and opposite in sign dislocation density difference driven force.

5.1 Time symmetry of the grain growth-shrinkage

driven by curvature

The grain boundary velocity of the curvature driven grain growth is described

as follows: for the grain growth driven by curvature it can be described as

follows:

v = Mp = mkγ, (5.7)

where grain boundary curvature k is theoretically defined as k = 2/R [4] 4

The commonly used rules for calculating curvature are based on the disk-

template approach (see Fig. 3.22). This CA technique is well described by
4In some articles (see Lan et al. [34], Han et al. [37]) it has been stated that curvature

is defined as k = −1/R, whereas in other works (see Hallberg [42], [41], Xiao [119], Kigler
[39], [1]) it has been defined as k = −2/R. In the present research the second version has
been used, because it agrees with Gibbs-Thomson relationship [4].
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5.1. Time symmetry of the grain growth-shrinkage driven by curvature

Figure 5.3: Grain boundaries in the triple junction.

Janssens[1]. The curvature is calculated via the following formula:

k = 15−
∑

φiεi, (5.8)

where i is the location of the cell within neighbourhood, εi is the weight of the

cell i on the template and is equal to 1 in this case, a phase value φi = 1 if the

cell i belongs to the same grain as the central cell and φi = 0 if the cell i does

not belong to the same grain of the central cell, see Fig. 3.22 a. The technique

is probabilistic: the cell changes its state with the probability P = k
kmax

. In the

case of multigrain structure (see Fig. 5.3) phase values φi should be extended

from the binary 0 and 1 to p-adic or real numbers. More details related to the

problem of curvature calculations on the multigrain structure is discussed in

Appendix A.

An example of the disk shrinkage with the initial radius of 25 cell sim-

ulated by Janssens CA, is shown in Fig. 5.4. As can be seen the choice of

neighbourhood does not change the average solution, Moore neighbourhood

increases standard deviation.

It is worth noting, that Janssens CA result does not fit analytical solution

and requires further time scaling. As can be seen from Fig. 5.4c, the average
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time of the grain shrinkage is about 250 iterations. The plot of the analytical

solution of the equation

dr

dt
= M

2γ

R
, (5.9)

is shown in Fig.5.5, the parameters are as follows: the initial radius was

r0 = 25 cells, the mobility M = 1 m3

Ns and grain boundary energy γ = 1

J
m2 . Assuming that the cell size is 1 m, that gives the time of the full shrinkage

of the grain equal to t = 156.25 s, whereas the average number of iterations

required for the grain shrinkage is about 250. Therefore, the iteration in

Janssens techniques does not equal to seconds and requires scaling.
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5.1. Time symmetry of the grain growth-shrinkage driven by curvature

Figure 5.4: 10 different 2D cellular automaton simulations of a single grain
with radius of 25 cells shrinkage due to curvature driven force, where the
grain boundary was defined using Neumann (a) and Moore (b) neighbour-
hood, (c) results from original work [1].
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Figure 5.5: The change of the radius and area of a single grain during shrink-
age due to curvature. Mobility M = 1 m3

Ns , grain boundary energy γ = 1 J
m2 .

The initial radius is r = 25 m.

Let us compare Janssen’s algorithm with a developed technique in the

present work. Fig. 5.6 shows the scaled results for grain shrinkage with two

different initial radius r0 = 20 m and r0 = 70, performed by Janssen’s algo-

rithm. As can be seen the deviations become smaller with the decrease of the

cell size. For comparison, simulations performed by a developed in this work

deterministic algorithm are shown in Fig. 5.7 and by the PCA are shown in

Fig. 5.8-5.11

Figure 5.6: 10 2D CA [1] simulations of a single grain shrinkage compared
with analytical solution. Initial radii r0 = [20, 70] cells.
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Figure 5.7: 2D deterministic CA simulations of a single grain shrinkage com-
pared with the analytical solution. Initial radii r0 = [20, 70] cells.
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Figure 5.8: 10 2D probabilistic CA simulations with the fixed tinc of a single
grain shrinkage compared with the analytical solution. The initial radius r0 =
20 cells.

146



5.1. Time symmetry of the grain growth-shrinkage driven by curvature

Figure 5.9: 10 2D probabilistic CA simulations with updated tinc of a single
grain shrinkage compared with analytical solution. Initial radius r0 = 20 cells.
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Figure 5.10: 10 2D probabilistic CA simulations with the fixed tinc of a single
grain shrinkage compared with the analytical solution. Initial radius r0 = 70
cells.
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Figure 5.11: 10 2D probabilistic CA simulations with the updated tinc of a
single grain shrinkage compared with the analytical solution. Initial radius
r0 = 70 cells.
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As can be seen from these figures, all methods considered in this work are

capable of the simulation the grain shrinkage, with a slightly different but sim-

ilar accuracy. This approach based on formula Eq. (5.8) for curvature works

well for the grain shrinkage, but not for the grain growth. The change of sign

in the associated algorithm does not give the desired effect. Fig. 5.12 illus-

trates the growth and shrinkage of the disk simulated by the same method. As

can be seen, the simulations are not reversible.

Figure 5.12: a) Grain shrinkage simulated by CA method described in by
Janssens[1]; b) Simulation of the grain growth by the same method, where
curvature was taken with negative sign.
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5.2 Time symmetry of the grain shrinkage-growth

driven by dislocation density jump

Fig. 5.13 relates to the simulations by CA in 1D and 2D for the case of linear

growth and shrinkage. As can be seen in this figure, 1D is fully reversible, the

simulations perfectly predict the analytical solutions, whereas the 2D simu-

lations show the discrepancy from the theory, so in the case of growth simu-

lation errors do not converge. Fig. 5.14 shows a similar comparison for the

evolving dislocation density difference. 1D simulations have the same error

for growth and for shrinkage, whereas the 2D simulations have a greater error

for simulation of growth than for shrinkage.

In the literature, devoted to the study of the grain growth and recrystal-

lization by CA or Monte Carlo methods, it is common to show how the grain

shrinks but not how the grain grows, see for examples [1], [98], [101], [34],

[27]. Non-reversible curvature calculations and non-symmetry in the calcula-

tions of the linear growth-shrinkage (see Fig. 5.13) explain why the study on

a single grain shrinkage is usually used instead of the single grain growth.

The 2D CA rules used in the present work are not reversible. Fig. 5.15 il-

lustrates that one configuration can have two different ancestors. Kari (1994)

[122], [121] has shown that the reversibility problem is undecidable for the

2D CA with the Neumann neighbourhood. However, in some works, the ana-

lytical solution of the grain growth has been compared with the simulations as

by Hallberg et al. [42]. They used the hexagonal grid which led to a smaller

discrepancy from the theory.
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Figure 5.13: The growth and shrinkage of a single grain: analytical solutions
compared with simulations (dashed lines) in 1D and 2D. Cell size is dcell =
1.25× 10−6 m.
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Figure 5.15: For non-reversible CA the same configuration can have two dif-
ferent predecessors.
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density jump

5.2.1 The nature of errors in 2D simulations of grain growth

driven by dislocation density jump

For a deeper understanding of how the error is connected to the grid and

neighbourhood, let us look at Fig. 5.16. In the present research, the square

grid has been used. The application of CA rules for the grain growth on this

non-symmetrical grid will lead to a growth of a square cell in the form of

square when the rotated von Neumann and Moore neighbourhoods are used

(see Fig. 5.16a). However, the von Neumann neighbourhood, which has been

used in the simulation described above, leads to the rhombic grain growth

(see Fig. 5.16b).

The error used in the calculations Eq.(5.21) can be rewritten as follows:

error =
Arearhombus −Areacurcle

Areacirce
, (5.10)

where Aan is the area of the ideal round grain, and Asim grain in the form of

Figure 5.16: a) Rotated von Neumann and Moore neighbourhoods lead to a
square grain growth, b) von Neumann leads to a rhombic grain growth.
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rhombus obtained in a simulation with Neumann neighbourhood.

Considering the fact that Area represents velocity multiplied by time, this

formula will lead to the following:

error =
vrhombust− vcirclet

vcircet
, (5.11)

or

error =
vrhombus − vcircle

vcirce
, (5.12)

The grain boundary moves one cell forward per iteration with a velocity
dr
dt . However, the change of area of the grain for the ideal round growth and

the rhombic in the simulations are different. The change of areas dS
dt for the

rhombus and the circle can be written as follows:

dS

dt circle
= St+1 − St = πr2 − π(r + 1)2 = 2πr + π, (5.13)

dS

dt rhombus
= 2(r + 1)2 − 2r2 = 4r + 2, (5.14)

For the Moore type neighbourhood, when a cell grows as a square change

of area will be as follows:

dS

dt square
= 4(r + 1)2 − 4r2 = 8r + 4. (5.15)

Reversing back to the velocity variable leads to

dr

dt circle
=

√
1

π

dS

dt circle
=

√
2πr + π

π
(5.16)

dr

dt rhombus
=

√
1

π

dS

dt rhombus
=

√
4r + 2

π
, (5.17)
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dr

dt square
=

√
1

π

dS

dt square
=

√
8r + 4

π
, (5.18)

Substituting these variables in Eq. 5.12 leads to the following errors for

the grain rhombic and the square growth:

errorrhombus =
vrhombus
vcircle

− 1 =

√
4r + 2√

2πr + π
− 1 =

√
2

π
− 1 ≈ −0.2 (5.19)

errorsquare =
vsquare
vcircle

− 1 =

√
8r + 4√

2πr + π
− 1 =

2√
π
− 1 ≈ 0.128 (5.20)

As can be seen from Fig. 5.17, these values agrees with the errors of the

corresponding simulations of the grain growth. The error approaches the

value of 0.128 for simulations with the rotated Neumann (Eq. 5.20) and -0.2

in simulations with the Neumann neighbourhood (Eq.5.19) with the decrease

of the cell size .
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Figure 5.17: Errors of the grain growth and shrinkage if 2D disk with a con-
stant velocity simulated using Neumann and rotated Neumann.

5.2.2 Adjusted velocity

The following straightforward method first came to mind to eliminate the

errors caused by the square grid. As has been shown in Fig. 3.15 for the 2D

simulations of the grain shrinkage, the error approaches errordcell→0 = 0.037.

Considering the fact that the formula used for calculating the error was

based on comparing the areas:

error =
Areasim −Areaan

Areaan
, (5.21)

one can conclude that the error reflects deviation in the velocities. Therefore,

adjusting the velocity in the model via the multiplication by 1.037: vadj =

1.037 v should shift the value of the error and make it limdcell→0 error(dcell) ≈

0.
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Figure 5.18: Errors of simulations of the grain shrinkage due to constant (a)
and evolving (b) dislocation jump with decrease of the cell size, calculated
using adjusted velocity and compared with original algorithm.

The results of the implementation of this procedure are shown in Fig. 5.18.

Fig. 5.18a shows an improvement for the constant dislocation density jump,

as was expected. The simulations for the evolving dislocation density jump

with the same adjusted parameter has been carried-out and results are shown

in Fig. 5.18b. As can be seen from the graph, the suggested adjustment of

the velocity has also reduced the errors for the evolving dislocation density. It

is worth noting that the updated CAS has been used, because the fixed CAS

caused errors even in 1D, hence the errors on 2D for the fixed CAS are caused

not only by the square grid, but also by the time increment.

5.2.3 Corrected Moore-type neighbourhood

As has been shown earlier, the error obtained during simulations for the grain

shrinkage with a constant velocity is directly connected with the grid and
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the choice of neighbourhood. However, it is possible to obtain the different

shapes of grains, not only the rhombus and the square, by using a combination

of these Neumann and rotated Von Neumann neighbourhoods. Janssens first

introduced the corrected Moore-type neighbourhood [108]. This technique

is not commonly used, and how the usage of this type of neighbourhood can

reduce the errors induced by the grid has never been studied before. In the

present chapter, the corrected Moore-type neighbourhood has been applied to

attempt to reduce the errors caused by the square grid.

The corrected Moore-type neighbourhood is a hybrid form of the von Neu-

mann neighbourhood and the rotated von Neumann neighbourhood. At each

iteration, one of these two neighbourhoods is used with the probabilities P1

and P2 respectively. The shape of the linearly growing grain can be obtained

almost a being round. It is worth noting that this method is different from

the Margolus neighbourhood [123], which is required switch of the sampled

subzones of neighbourhood. This technique will be described later.

5.2.3.1 Application of the corrected Moore-type neighbourhood for a

newly developed CA technique for grain growth simulation

The equation for fraction for i neighbour at iteration n is written as follows:

fni = fn−1
i + vi∆tn, (5.22)

where vi is the velocity of neighbour i in the direction to the cell, ∆tn is the

time increment at the iteration n.

The application of the corrected Moore-type neighbourhood modifies this

equation as follows:
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fni = fn−1
i + sivi∆tn, (5.23)

fnj = fn−1
j + sjvj∆tn, (5.24)

where i and j are cells belonging to the Neumann and the rotated Von Neu-

mann neighbourhoods respectively and si, sj are defined as follows:

si =


1, if rand < P1.

0, otherwise.
(5.25)

sj =


1, if rand < P2.

0, otherwise.
(5.26)

where P1, P2 are the probabilities that neighbours connected by faces – P1

and edges – P2 are active. This method can reduce the corrected Moore-type

neighbourhood to the Neumann neighbourhood using P1 = 1, P2 = 0, to the

Moore neighbourhood P1 = 1, P2 = 1, and to the rotated Von Neumann:

P1 = 0, P2 = 1.

Fig. 5.19a shows the results of the shapes obtained during grain growth

simulations with three different pair of values P1, P2. As can be seen from the

figure, pairs (P1 , P2) = (0, 1) and (P1 , P2)(1, 1), corresponding to the rotated

Von Neumann and Moore neighbourhood respectively, lead to the quadratic

shape that resembles the initial square grain. The Von Neumann neighbour-

hood with the values (P1 , P2) = (0, 1) leads to the rhombic shape. The simu-

lated kinetics for these three pairs of (P1 , P2) are compared with the analytical

solution and are shown in Fig. 5.19b. As can be seen from this graph, the dif-

ferent combinations of P1 and P2 lead to the different kinetics of the grain
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boundary movement. Let us assume that there is a pair (P1 , P2) that will lead

to a spherical shape and the closest simulated kinetics the analytical solution.

A series of simulations of the grain growth initially was implemented with

the various combinations (P1 , P2). The initial radius r0 = 1 cell, the final

radius is 40 cells, the cell size dcell = 3.1250×106m. The values of probabilities

are P1 = [0.01 : 0.05 : 0.96], P2 = [0.01 : 0.05 : 0.96]. To estimate how

far the simulation lies from the analytical solution the errors were estimated

by calculating the deviations of the area under the lines from the analytical,

as has been described in Chapter 3. The surface plot of the absolute errors

against (P1 , P2) is shown in Fig. 5.20a. Fig. 5.20b shows the X − Y view. As

can be seen from this figure, the surface represents a gutter and there is no

distinguishable minimum error. Also, the errors at the P2 = 1 are all equal,

regardless of the value of P1.

The minimum value in the calculated data set is equal 2.0331 × 10−4 and

corresponds to the pair (P1 , P2) = (0.86, 0.31). For comparison, the errors

for the known types of neighbourhood estimated by this method are follow-

ing error(P1 ,P2)=(1,0) = −0.1885 (Neumann), error(P1 ,P2)=(0,1),(1,1) = 0.1244

(rotated Neumann, Moore). The shape obtained in the simulations with the

values (P1 , P2) = (0.86, 0.31) is shown in Fig.5.21a. As can be seen from this

figure, it is possible to obtain the shape of grain close to the circle using the

corrected Moore neighbourhood. It also helps to reduce the deviation of the

simulated kinetics from the theory as can be seen from 5.21 b.
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Figure 5.19: The shapes of grain obtained during simulations with different
values of probabilities P1 and P2 (a) and the corresponding simulated kinetics
of the grain growth compared with the theory (b). Simulations performed on
the initial grain with radius r0 = 1 cell and final radius r = 40 cells. The cell
size is dcell = 3.125× 10−6 m.
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Figure 5.20: Surface plots of errors for simulations of a single grain growth
at the different values of probabilities P1 and P2. The cell size is dcell =
3.125× 10−6 m or final radius r = 40 cells.

Figure 5.21: The shape of the grain obtained during simulations with values
(P1 , P2) = (0.86, 0.31) (a) and the corresponding simulated kinetics of the
grain growth (solid line) in comparison with theory (dashed line).
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5.2.3.2 The corrected Moore-type neighbourhood applied for the in a

newly developed CA technique for grain shrinkage simulation

The 2D CA simulations for dislocations with a constant velocity that is used

with Neumann neighbourhood showed insignificant deviations for the grain

shrinkage in comparison with the grain growth (see Fig. 5.13). The figure

also shows that the maximum deviation of the simulated radius from the ana-

lytical occurs at the half time of shrinkage. However, these deviations become

important in the simulations that involve the evolving dislocation density (see

Fig. 5.14, Fig. 4.11). As has been discussed in Chapter 3, such deviations are

caused by the square grid (see Fig. 3.14). To see how the corrected Moore-

type neighbourhood can improve the simulations of the grain shrinkage, a

procedure similar to the one described above has been implemented. It is

worth noting, that the principle of the time symmetry in CA simulations as-

sumes that the parameters (P1 , P2) should be the same as in the grain growth.

This means, that if one perfect pair has been found for the grain growth, it

should work for the grain shrinkage, otherwise additional improvements of

the technique maybe required.

The surface plots for grain shrinkage with the different probabilities (P1,

P2) are shown in Fig. 5.22. As can be seen there is an area where the errors

become very large, so this plot has been redrawn without visualization of any

errors greater than 1 (see Fig. 5.23). As can bee seen from this figure, the

error surface plot also includes a gutter, but it is shifted from the one for the

grain growth (see Fig. 5.20b), which means that even the application of the

corrected Moore will not lead to the fully symmetrical simulations.
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Figure 5.22: Surface plots of errors for simulations of a single grain shrinking
at the different values of probabilities P1 and P2. The cell size is dcell =
3.125× 10−6 m or final radius r = 40 cells.

Figure 5.23: Surface plots of errors for simulations of a single grain shrinkage
at the different values of probabilities P1 and P2. The cell size is dcell =
3.125× 10−6 m or final radius r = 40 cells.
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5.2.3.3 Other Moore-type neighbourhood variations

The short summary of the variations the Moore-type neighbourhood is de-

scribed in terms P1, P2 and possible algorithms. Let us call the calculation of

the variables si, sj via Eq. (5.25), Eq. (5.26) as a procedure STF (state trans-

formation function). The implementation of this procedure can be carried-out

in two different places in the code: at each time step or at each time step and

for each cell (see Fig. 5.24).

Extreme values of P1, P2: The extreme values P1, P2 correspond to the

known neighbourhoods: von Neumann (P1 = 1, P2 = 0), rotated von Neu-

mann – (P1 = 0, P2 = 1) and Moore neighbourhoods (P1 = 1, P2 = 1). The

ways in which to calculate si, sj do not matter too much. The shapes of the

grains obtained by these neighbourhoods have been shown in Fig. 5.19.

STF calculated at each iteration for each cell with other values of P1, P2

with: The way of implementation SFT, shown in Fig. 5.24 a, with the values

of P1, P2 different from the extreme leads the various shapes of the grain (see

example in Fig. 5.21). Fig. 5.25 illustrates the influence of each variable P1

and P2. The increase of P1 leads to a smoother shape. P2 is responsible for

the transition from the rhombic to the square shape. P2 = 1 leads to a square

Figure 5.24: Different ways to place STF in code: calculate si and sj at each
time step and for each cell (a); only at each time step (b).
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Figure 5.25: Variation of the grain shapes. STF is calculated at the each
iteration and for each cell with the different values of P1, P2, see procedure
in Fig. 5.24 a.

grain with any value of P1.

STF calculated at each iteration with other values of P1, P2: The variables

P1, P2 are responsible for the transition of non-symmetrical shapes: rhombus

→ octagon→ square. Fig. 5.26 illustrates some forms of the grain which were

obtained with different values of P1 and P2.

STF calculated at each iteration with other values random P1, P2: This

method allows the system to choose the variables of P1 and P2 randomly. It

can be implemented with the different possible ways as well, as shown in

Fig.5.27. The code shown in Fig.5.27a leads to octagons, while two other

codes allow to obtain various fringed shapes with slightly small differences

between (b) and (c) algorithms. Although, this list of variations infinite, we

will not investigate this aspect further.
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5.2. Time symmetry of the grain shrinkage-growth driven by dislocation
density jump

Figure 5.26: Variation of the grain shapes. STF is calculated at the each
iteration with the different values of P1, P2, see procedure in Fig. 5.24 b.

Figure 5.27: P1, P2 are defined as random code, variations of the code.

5.2.4 Margolus-type neighbourhood

When investigating symmetry and reversibility it is impossible not to mention

the Margolus-type neighbourhood. It is a block cellular automaton, where the

grid of cells are separated into 2x2 squares called blocks. They are shifted

at each iteration, therefore all 4 cells belong to the different block at each

iteration. This type of neighbourhood led to the most interesting results. Al-

though, the algorithm has been developed by the end of the research, the

specific preliminary results will be described further.
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5. ON TIME SYMMETRY OF CA BASED TECHNIQUES

5.2.4.1 Random Margolus-type neighbourhood

Let us rewrire Eq. (5.23) and Eq. (5.24) for each cell i = 1..8 within neigh-

bourhood as follows:


fn1 = fn−1

1 + s1v1∆tn,

...

fn8 = fn−1
8 + s8v8∆tn,

(5.27)

where fni is a distance fraction at the time step n of the cell i moving with the

velocity vi. The state transition variable s shows when the cell is active: si = 1

if active, si = 0 otherwise. The states transition variables are the functions of

the randomly chosen switch numbers W = 1..4 (see Fig. 5.28), which can be

formulated as follows:



s1 = we, s2, s4 = wf if W=1

s3 = we, s2, s5 = wf , if W=2

s8 = we, s5, s7 = wf , if W=3

s6 = we, s4, s7 = wf , if W=4

(5.28)

As well as for the corrected Moore type neighbourhood, this new type of

Margolus includes a few modifications (for example we,wf can be different)

and it requires further tests. However, it has been found that a pair we = 1/3,

wf = 1/3 gives almost a round shape of the growing grain without the fringe

(see Fig.5.29).
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5.2. Time symmetry of the grain shrinkage-growth driven by dislocation
density jump

Figure 5.28: The active neighbourhood depending on the W .

Figure 5.29: The grain obtained with the new random Margolus neighbour-
hood.
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5. ON TIME SYMMETRY OF CA BASED TECHNIQUES

5.3 Summary

The CA techniques used in the present research are time non-reversible. This

means that the change of sign in the velocity will not lead to the time reverse

process, for example from shrinkage to growth. The non-symmetrical grid is

the reason for the non-symmetry in time of the linear growth, whereas the

reason for the non-reversible curvature driven growth is the CA construction

itself.

However, it has been proven by Kari that the reversibility 2D CA is inde-

cidable. There are few possible ways to eliminate the errors, by designing the

neighbourhood that allows the grain to grow in the form of a circle. These

methods include the corrected Moore Neighbourhood, but it is possible to ob-

tain a circle at the expense of the smoothness of the boundaries. Another

discovered method is a random Margolus-type, which gives promising results

and is recommended for future studies.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the present research, Celluar Automata (CA) was considered as an ap-

proach to solve non-linear differential equations describing grain boundary

movement. Motivated by the lack of CA models capable of considering triple

junctions, a novel deterministic CA technique has been developed which con-

siders the movement of the neighbours instead of only the central cell. For

all considered equations the analytical solution of the single grain shrinkage

has been compared with the simulations, and the efficiency of a developed CA

techniques has been proven. The comparison made via the error calculations,

to test their convergence. The method of the error calculation of the errors

has been described in detail Chapter 3.

A developed CA technique showed the ability to solve equations that de-

scribe the grain boundary motion which is driven by the different forces.

Chapter 3 started from the simple equations of the constant velocity caused

by dislocation density jump across grain boundary. The effects of the cell size,
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the dimensions of the calculating area and the time increment have been dis-

cussed. It has been shown that the non-symmetrical square grid, which has

been used in the present research, decreases the accuracy of the simulated

solutions on the 2D simulations and leads to an even greater deviation on the

3D area.

A newly developed CA technique has been constructed to be reflective

of time and space. Simulated results do not require further scaling. In the

present research two different interpretations of Calculation Automata Steps

(CAS) are introduced , which were called "fixed" and "updated". Their in-

fluence on a developed CA technique has been compared during the present

research. The fixed CAS is a time increment which is calculated at the be-

ginning of simulations and equals to a distance that a cell can pass with the

maximum velocity among all possible values that can arise during the simula-

tion. The time increment for the updated CAS is calculated at each iteration

in the same manner as for the fixed CAS, but using the maximum velocity

among only those that occur in the current step. This means that at each iter-

ation at least one cell will update its state. For the single grain simulation of

shrinkage with a constant velocity the choice of this two algorithms does not

make a difference in the resulted kinetics. However, it influences the results

in the more complex cases, such as the grain boundary movement in the pro-

cesses of dynamic recovery. In this situation the dislocation density evolves

with time and hence the driven force. The fixed CAS has shown significantly

greater deviations of the 1D simulations from the theory than the updated

CAS. The further decrease of both of these types of time increments as well as

the decrease of the cell size led to the increase in accuracy. However, the cell

size did not improve the 2D and 3D calculations, because the deviations have

been caused by the square grid.

174



6.1. Conclusions

The most challenging task of the present research was the adoption of

the common methods for curvature calculations to the new technique. The

parameters used in the known formula for curvature such as A and Kink

have been tested. The following principle has been stated, that the parameter

A, which is a scaling parameter, should be consistent with the cell size and

the time increment. The reduction in the time increment significantly slowed

down the calculations, so it has been studied briefly. However, this condition

is less important than the cell size. Whereas the time increment is a compu-

tation parameter, the cell size in fact represents the size of a grain, which is

a dynamic parameter and changes during the grain growth simulations. The

parameter Kink, that represents the flat boundary, has been tested at four

different values. The results obtained in the various series of computational

experiments are as follows: 1) The consistency of A varies with the change of

the value Kink and type of CAS. The best consistency of A has been found

using Kink = 12 and the fixed CAS. 2) The shape of the simulated curve

strongly depends on the parameter Kink. The smallest errors were observed

forKink = 14 and the fixed CAS. The error approaches zero with the decrease

of the cell size, but not in all cases: Kink = 15 with the updated CAS showed

apparent trend towards an increase of the error with the decrease of the cell

size. This is a serious disadvantage of this pair of parameters, considering the

stated principle of the consistency of the parameters with the change of the

cell size. In the other hand, many simulations are usually conducted on the

large resolution in order to save on computational costs. Considering this fact,

it is important to have smaller fluctuations at the large cell sizes. Here, the

updated CAS combined with Kink = 15 gives the best result. Therefore, it is

important to consider the average grain sizes for the particular simulations in

order to choose the appropriate parameters.
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Chapter 4 made an attempt to solve differential equations, that do not

even have explicit analytical solutions. The grain shrinkage under two driving

forces acting simultaneously has been simulated with a developed CA tech-

nique in Chapter 3. It has been shown that a developed technique is capable

of solving these equations. However, significant deviations have also been

observed, which have been caused by the regular non-symmetry grid. The pa-

rameters obtained for the curvature simulations at the particular cell size have

been used without any changes for the combined equations simulated at the

corresponding cell size. That allowed to investigate how the parameter Kink

and the type of CAS influence the accuracy for the coupled driving forces. The

main results are as follows:

1) The simulations with Kink = 12 and the updated CAS give the closest

to the theoretical solution.

2) The shape of the simulated curves differs from the analytical solution

within 5% and less and the shape does not become closer to the analytical

with the decrease of the cells size.

3) The best time of the grain shrinkage has been observed as being differ-

ent from the analytical solution within 10% for the updated CAS and Kink =

12. However, for almost all cases the tendency to increase errors with the

decrease of the cell sizes has been observed.

It is believed that the one of the possible reasons that induce such big er-

rors is the square grid. The usage of the grid with a higher order of symmetry,

such as hexagonal, could potentially improve the accuracy.

In contrast to the commonly used probabilistic CA, a developed technique

is deterministic. The probabilistic version of the suggested CA has been devel-

oped alongside the deterministic approach. The analysis of parameters used

in the model has also been carried out similarly to the deterministic case. Al-
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though PCA showed big standard deviations, it also improved performance

characteristics, such as accuracy of the prediction of time of shrinkage and

the shape of curves. Therefore, it is recommended to continue the work with

the probabilistic model.

The problems of symmetry were discussed in Chapter 5. It has been shown

that the CA technique is non-reversible in time, which is caused by the regu-

lar grid and the CA approach for the calculations of the curvature itself. The

development of the time-reversible CA for curvature was not the aim of the

present research, so it was treated only as a simple observation. An attempt

has however been made to build a model that is capable of reductions the

effects of the square grid. A newly developed CA has been modified to in-

clude the Corrected Moore-type neighbourhood. This is a probabilistic way

of choosing the neighbourhood which helps to eliminate the effects of the

non-symmetrical grid.

6.2 Future Recommended Work

The results of the present research showed a potential for use of a developed

CA technique. Therefore, the following suggestions are recommended for

future research:

1. Prior to applying a developed CA technique to the multigrain simula-

tions it recommended to test it on a 3D single grain in order to establish the

parameters for curvature calculations.

2. It is recommended to carry out simulations on a hexagonal grid or

to use the probabilistic approach of neighbourhood in order to eliminate the

influence of the non-symmetrical grid.

3. The suggested probabilistic choice of neighbourhood requires further
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testing. It is recommended to choose several pares of values P1, P2 which

lie on the minimum level of errors plot, then to run the simulations with

the chosen parameters to simulate the grain shrinkage due to the evolving

dislocation density.

4. It is recommended to test the method of probabilistic choice of neigh-

bourhood on the curvature driven simulations in order to have a better un-

derstanding of how the symmetry of grid influences the consistency of time

scaling parameter.

5. Developed CA algorithm is ready to use in multigrain simulations as it

computes grain motion in triple junctions inherently. Once single grain model

is validated with theory it will become a powerful instrument for simulations

from first principles, allowing to predict complex system dynamics (different

systems, not only grain growth and recrystallization), where the governing

equations and main properties of system are known.

It is worth noting that for multigrain the formulas for calculating the mis-

orientation are given in Appendix B, which has also been prepared during the

current research.
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Appendix A

CA rules

In contrast to the case of the single grain, the multigrain structure contains

triple junctions – points where grain boundaries of three different grains meet

(see Fig. A.1). The cell at the boundary of the single grain can take only one

of two possible states, namely when the curvature is positive k > 0, the cell

changes its state from grain 2 to grain 1 with the probability k/kmax [1]. At

the triple junctions, the cell has a neighbourhood of three grains, and when

the curvature is positive, the cell should change state from grain 1 to grain

2 or grain 3. Janssens [1] suggested to simply choose those grains which

have the bigger fraction in the neighbourhood. However this approach is

not effective in the presence of other driving forces, for example when there

is dislocation density jump. Hence, in the present work the new algorithm

has been developed in order to take into account uncertainty at the triple

junctions.

Fig. A.2 shows the example of the grid of cells whose states correspond

to the three different grains 0, 1 and 2 and the grain boundaries are marked

via the green line. The cells A, B and C lie at the triple junctions. The
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A. CA RULES

Figure A.1: The cell (black square) is situated on the grain boundary between
two grains (a), and at the triple junction (b).
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corresponding 5 × 5 neighbourhoods for each cell A, B and C are shown in

Fig. A.2 with orange squares. Cell A has a negative curvature kA = Kink −

N1 = 15 − 20 = −5, hence, according to the old method [1] cell A keeps its

state in the next iteration, the curvature of the cell B is kB = Kink − N2 =

15 − 7 = 8 and for cell C is kC = Kink − N0 = 15 − 3, and as they are both

positive, then cells B and C will change their states in the next iteration.

In order to decide to which state they should change the state a new ap-

proach suggests considering in the first place neighbours instead of the central

cells. The neighbouring cells are moving towards or away from the central cell

with certain velocities ∆v and passing distances ∆r = ∆v∆t by the time incre-

ment ∆t (which can be fixed or different at each iteration). When the distance

becomes greater or equal the cell size, the central cell changes its state to the

state of neighbouring cell with the biggest distance. If there are two or more

equal distances, then the cell can change state with equal probabilities to one

of those states. Similar ideas with a few differences were implemented by

Lan et al. [34] for the curvature driven grain growth. The main differences

is that Lan’s equation included velocities in x and y directions separately and

has been applied for the central cell, not the neighbours, as follows:

f =
Vxdt

dx
+
Vydt

dy
− VxVydt

2

dxdy
, (A.1)

However, the method was not described in full details in the paper [34] and

as a result it was not possible to duplicate results.

Schematically, Fig. A.3 demonstrates how these approaches are different.

On the left side, the velocities v1..4 are velocities with which the grey cell is

moving towards the corresponding neighbours, and the biggest value shows

the direction of the movement for the grey cell, (if the maximum velocity is v1,

then at the next iteration the upper pink cell will become grey). However, this
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A. CA RULES

Figure A.2: Example of the triple junction: the grid of cells with states 0,
1 and 2, which represent belonging to the different grains. The cells neigh-
bourhoudes for the cell A, B and C are shown in orange squares.

approach does not take into account the movements of the cells surrounding

the upper pink cell and for example, if the yellow cell is moving faster with

u1 > v1, then the decision to change the state of the pink cell into grey would

be wrong, because it should become yellow. Therefore, the order of checking

cells has a strong influence on the output. Whereas in the newly suggested

approach (see Fig. A.3, on the right side) the velocities u1..4 show how fast

the neighbours are moving towards the cell, thus the cell will change its state

to a state of the neighbouring cell with the highest velocity. If there are two

or more cells that have maximum velocities, then a grey cell changes its state

with equal probability into one of those states. If the velocity is negative, then
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Figure A.3: Old approach considers influence of the central cell to neigh-
bours (left), new approach considers influence of neighbours to the central
cell (right).

it is assumed that it is zero and the neighbours are not moving.

Let us consider this approach on the example of the grid of cells shown in

Fig. A.2. In this example, for simplicity the velocity simply equals the negative

curvature. Hence, for each of 4 neighbours (colourful cells) the curvature

has been calculated and the minimal curvature corresponds to the maximum

velocity. According to the rules stated above, the cell A would remain its state

"1", and the cells B, C would change at their states to the grain "1".

This approach has been adopted for real time simulations. Each cell con-

tains s fraction variables corresponding to the each i = 1..s neighbour (s = 4

for 2D Von Neumann neighborhood and s = 8 for 2D Moore neighborhood)

(see Fig. A.5). The generalized form of equation of fraction for i neighbour at

iteration n can be written as follows:

fni = fn−1
i + vi∆tn, (A.2)

where vi is the velocity of neighbour i in the direction to the cell, ∆tn is the
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Figure A.4: The schematic representation of application the CA rules for cal-
culation curvature for neighbours (colourful) of the central (grey) cell.
184



time increment at the iteration n. If the fraction of i neighbour at the iteration

n becomes greater than 1 fi ≥ 1 then the cell changes its state to the state of

the i neighbour and all fraction variables become zero: fni=1..s = 0.
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A. CA RULES

Figure A.5: Schematic representations for calculations of the fraction vari-
ables. At iteration n bottom neighbour fully passed cell of the size d and cell
will change its state to the state of the bottom neighbour. After that all frac-
tions become again zero and at iteration n + 1 the fractions are calculated
again.
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Appendix B

Misorientation calculations

The initial orientations are obtained via the Bunge convention from three ran-

dom numbers ξ1, ξ2, ξ3 ∈ [0..1] as follows:

φ1 = 2πξ1

Φ = cos−1(1− 2ξ2) (B.1)

φ2 = 2πξ3

The two corresponding rotation matrices Ri and Rj can be constructed

for grains i and j with the given Euler angles {φi1,Φi, φi2} and {φj1,Φj , φj2} as

follows:

Ri =

(
cosφi

1 cosφi
2 − sinφi

1 sinφi
2 cos Φi sinφi

1 cosφi
2 + cosφi

1 sinφi
2 cos Φi sinφi

2 sin Φi

− cosφi
1 sinφi

2 − sinφi
1 cosφi

2 cos Φi − sinφi
1 sinφi

2 + cosφi
1 cosφi

2 cos Φi cosφi
2 sin Φi

sinφi
1 sin Φi − cosφi

1 sin Φi cos Φi

)
(B.2)
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Rj =

(
cosφj

1 cosφj
2 − sinφj

1 sinφj
2 cos Φj sinφj

1 cosφj
2 + cosφj

1 sinφj
2 cos Φj sinφj

2 sin Φj

− cosφj
1 sinφj

2 − sinφj
1 cosφj

2 cos Φj − sinφj
1 sinφj

2 + cosφj
1 cosφj

2 cos Φj cosφj
2 sin Φj

sinφj
1 sin Φj − cosφj

1 sin Φj cos Φj

)
(B.3)

The terms of rotation matrices and the misorienation matrix ∆Rij can be

defined as follows:

Rj = ∆RijRi (B.4)

∆Rij = RjR
−1
i ,

where R−1
i is the inverse matrix of Ri.

∆Rij =


∆R11 ∆R12 ∆R13

∆R21 ∆R22 ∆R23

∆R31 ∆R32 ∆R33

 (B.5)

The scalar value of misorienation θ between two grains i and j is as fol-

lows:

θ = cos−1

[
∆R11 + ∆R22 + ∆R33 − 1

2

]
(B.6)

The effect of crystal symmetry leads to the following corrections. No two

cubic lattices can be different by more than ∼ 62.8◦ because cube crystals

have 24 symmetries (full octahedral symmetry, O432): if there are two cubes

A (reference cube) and B (free to rotate), B can be rotated 24 definite ways to

coincide with A: 1 is identity (1), other 23 are rotations: 1) about each of the

3 axes through the centres of opposite faces, through π, π/2, 3π/2 (3× 3 = 9)

2) through π about each of the 6 axes through the midpoints of opposite edges

(1×6 = 6), and 3) about each of the 4 axes through opposite vertices, through
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π
2 π 3π

2 1
0
0

→ Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 s2 =

 1 0 0
0 0 −1
0 1 0

 s3 =

 1 0 0
0 −1 0
0 0 −1

 s4 =

 1 0 0
0 0 1
0 −1 0


 0

1
0

→ Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 s5 =

 0 0 1
0 1 0
−1 0 0

 s6 =

 −1 0 0
0 1 0
0 0 −1

 s7 =

 0 0 −1
0 1 0
1 0 0


 0

0
1

→ Rz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 s8 =

 0 −1 0
1 0 0
0 0 1

 s9 =

 −1 0 0
0 −1 0
0 0 1

 s10 =

 0 1 0
−1 0 0
0 0 1


Table B.1: Rotation matrices about the axes through the centres of opposite
face.

2π/3, 4π/3 (4 × 2 = 8), hence 1 + 9 + 6 + 8 = 24. Therefore, 24 symmetry

operators need to be applied to the misorienation matrix ∆q:

θ = min

∣∣∣∣cos−1

{
tr(O432∆g)− 1

2

}∣∣∣∣ , (B.7)

where the operatorO432 is represented by the matrix for a rotation by an angle

of θ about an axis in the direction of u:


cos θ + u2

x(1− cosθ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ

uyux(1− cos θ) + uz sin θ cos θ + u2
y(1− cos θ) uyuz(1− cos θ)− ux sin θ

uzux(1− cos θ)− uy sin θ uzuy(1− cos θ) + ux sin θ cos θ + u2
z(1− cos θ)


(B.8)

1) Identity (θ = 0,u = 0)

s1 =


1 0 0

0 1 0

0 0 1


2) Rotation matrices about the axes through the centres of opposite face

(see Table B.1);
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 1/
√

2
0

1/
√

2

 s11 =

 0 0 1
0 −1 0
1 0 0

  −1/
√

2
0

1/
√

2

 s12 =

 0 0 −1
0 −1 0
−1 0 0


 0

1/
√

2

1/
√

2

 s13 =

 −1 0 0
0 0 1
0 1 0

  0

−1/
√

2

1/
√

2

 s14 =

 −1 0 0
0 0 −1
0 −1 0


 1/

√
2

1/
√

2
0

 s15 =

 0 1 0
1 0 0
0 0 −1

  −1/
√

2

1/
√

2
0

 s16 =

 0 −1 0
−1 0 0
0 0 −1


Table B.2: The rotation matrices about the 6 axes through the midpoints of
opposite edges, θ = π.

2π/3 4π/3 1/
√

3

1/
√

3

1/
√

3

 s17 =

 0 0 1
1 0 0
0 1 0

 s18 =

 0 1 0
0 0 1
1 0 0


 −1/

√
3

−1/
√

3

1
√

3

 s19 =

 0 0 −1
1 0 0
0 −1 0

 s20 =

 0 1 0
0 0 −1
−1 0 0


 1/

√
3

−1/
√

3

−1/
√

3

 s21 =

 0 0 −1
−1 0 0
0 1 0

 s22 =

 0 −1 0
0 0 1
−1 0 0


 1/

√
3

−1/
√

3

1/
√

3

 s23 =

 0 −1 0
0 0 −1
1 0 0

 s24 =

 0 0 1
−1 0 0
0 −1 0


Table B.3: The rotation matrices about each of the 4 axes through opposite
vertices.

3) The rotation matrices about the 6 axes through the midpoints of oppo-

site edges, θ = π (see Table B.2);

4) The rotation matrices about each of the 4 axes through opposite vertices

(see Table B.3);
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Consider two grains: the recrystallized R with the orientations defined

by Euler angles {φr2,Φr, φr2} and the deformed D grain {φd2,Φd, φd2}. There

orientation matrices are as follows:

r =

(
cosφr

1 cosφr
2 − sinφr

1 sinφr
2 cos Φr sinφr

1 cosφr
2 + cosφr

1 sinφr
2 cos Φr sinφr

2 sin Φr

− cosφr
1 sinφr

2 − sinφr
1 cosφr

2 cos Φr − sinφr
1 sinφr

2 + cosφr
1 cosφr

2 cos Φr cosφr
2 sin Φr

sinφr
1 sin Φr − cosφr

1 sin Φr cos Φr

)
(B.9)

d =

(
cosφd

1 cosφd
2 − sinφd

1 sinφd
2 cos Φd sinφd

1 cosφd
2 + cosφd

1 sinφd
2 cos Φd sinφd

2 sin Φd

− cosφd
1 sinφd

2 − sinφd
1 cosφd

2 cos Φd − sinφd
1 sinφd

2 + cosφd
1 cosφd

2 cos Φd cosφd
2 sin Φd

sinφd
1 sin Φd − cosφd

1 sin Φd cos Φd

)
(B.10)

The misorientation matrix is ∆gdr = grg
−1
d and we will notate it for sim-

plicity as follows:

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (B.11)

This matrix is orthogonal, which means that:

∆gdr∆g
T
dr = grg

−1
d (grgd)

T =


1 0 0

0 1 0

0 0 1

 (B.12)

The application of 24 symmetry operators si, i = 1..24 leads to 24 varia-

tions of R as follows:
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R1 = s1R =


1 0 0

0 1 0

0 0 1



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R11 R12 R13

R21 R22 R23

R31 R32 R33


(B.13)

tr1 = R11 +R22 +R33 (B.14)

R2 = s2R =


1 0 0

0 0 −1

0 1 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R11 R12 R13

−R31 −R32 −R33

R21 R22 R23


(B.15)

tr2 = R11 −R32 +R23 (B.16)

R3 = s3R =


1 0 0

0 −1 0

0 0 −1



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R11 R12 R13

−R21 −R22 −R23

−R31 −R32 −R33


(B.17)

tr3 = R11 −R22 −R33 (B.18)

R4 = s4R =


1 0 0

0 0 1

0 −1 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R11 R12 R13

R31 R32 R33

−R21 −R22 −R23


(B.19)
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tr4 = R11 +R32 −R23 (B.20)

R5 = s5R =


0 0 1

0 1 0

−1 0 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R31 R32 R33

R21 R22 R23

−R11 −R12 −R13


(B.21)

tr5 = R31 +R22 −R13 (B.22)

R6 = s6R =


−1 0 0

0 1 0

0 0 −1



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R11 −R12 −R13

R21 R22 R23

−R31 −R32 −R33


(B.23)

tr6 = −R11 +R22 −R33 (B.24)

R7 = s7R =


0 0 −1

0 1 0

1 0 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R31 −R32 −R33

R21 R22 R23

R11 R12 R13


(B.25)

tr7 = −R31 +R22 +R13 (B.26)
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R8 = s8R =


0 −1 0

1 0 0

0 0 1



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R21 −R22 −R23

R11 R12 R13

R31 R32 R33


(B.27)

tr8 = −R21 +R12 +R33 (B.28)

R9 = s9R =


−1 0 0

0 −1 0

0 0 1



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R11 −R12 −R13

−R21 −R22 −R23

R31 R32 R33


(B.29)

tr9 = −R11 −R22 +R33 (B.30)

R10 = s10R =


0 1 0

−1 0 0

0 0 1



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R21 R22 R23

−R11 −R12 −R13

R31 R32 R33


(B.31)

tr10 = R21 −R12 +R33 (B.32)

R11 = s11R =


0 0 1

0 −1 0

1 0 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R31 R32 R33

−R21 −R22 −R23

R11 R12 R13


(B.33)
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tr11 = R31 −R22 +R13 (B.34)

R12 = s12R =


0 0 −1

0 −1 0

−1 0 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R31 −R32 −R33

−R21 −R22 −R23

−R11 −R12 −R13


(B.35)

tr12 = −R31 −R22 −R13 (B.36)

R13 = s13R =


−1 0 0

0 0 1

0 1 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R11 −R12 −R13

R31 R32 R33

R21 R22 R23


(B.37)

tr13 = −R11 +R32 +R23 (B.38)

R14 = s14R =


−1 0 0

0 0 −1

0 −1 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R11 −R12 −R13

−R31 −R32 −R33

−R21 −R22 −R23


(B.39)

tr14 = −R11 −R32 −R23 (B.40)
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R15 = s15R =


0 1 0

1 0 0

0 0 −1



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R21 R22 R23

R11 R12 R13

−R31 −R32 −R33


(B.41)

tr15 = R21 +R12 −R33 (B.42)

R16 = s16R =


0 −1 0

−1 0 0

0 0 −1



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R21 −R22 −R23

−R11 −R12 −R13

−R31 −R32 −R33


(B.43)

tr16 = −R21 −R12 −R33 (B.44)

R17 = s17R =


0 0 1

1 0 0

0 1 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R31 R32 R33

R11 R12 R13

R21 R22 R23


(B.45)

tr17 = R31 +R12 +R23 (B.46)

R18 = s18R =


0 1 0

0 0 1

1 0 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R21 R22 R23

R31 R32 R33

R11 R12 R13


(B.47)

196



tr18 = R21 +R32 +R13 (B.48)

R19 = s19R =


0 0 −1

1 0 0

0 −1 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R31 −R32 −R33

R11 R12 R13

−R21 −R22 −R23


(B.49)

tr19 = −R31 +R12 −R23 (B.50)

R20 = s20R =


0 1 0

0 0 −1

−1 0 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R21 R22 R23

−R31 −R32 −R33

−R11 −R12 −R13


(B.51)

tr20 = R21 −R32 −R13 (B.52)

R21 = s21R =


0 0 −1

−1 0 0

0 1 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R31 −R32 −R33

−R11 −R12 −R13

R21 R22 R23


(B.53)

tr21 = −R31 −R12 +R23 (B.54)
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R22 = s22R =


0 −1 0

0 0 1

−1 0 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R21 −R22 −R23

R31 R32 R33

−R11 −R12 −R13


(B.55)

tr22 = −R21 +R32 −R13 (B.56)

R23 = s23R =


0 −1 0

0 0 −1

1 0 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


−R21 −R22 −R23

−R31 −R32 −R33

R11 R12 R13


(B.57)

tr23 = −R31 −R12 −R23 (B.58)

R24 = s24R =


0 0 1

−1 0 0

0 −1 0



R11 R12 R13

R21 R22 R23

R31 R32 R33

 =


R31 R32 R33

−R11 −R12 −R13

−R21 −R22 −R23


(B.59)

tr24 = R31 −R12 −R23 (B.60)

Leading therefore, to 24 different misorientation angles, among which the

least should be chosen. The distribution for cubes with random orientations

was obtained first by Mackenzie [124, 125], and sometimes the angle/density

distribution plot is called the Mackenzie distribution or simply the Mackenzie

plot.
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Figure B.1: Misorientation histogram calculated in this work (a) and by
Mackenzie (b) for distribution of cubes with random orientations

.

The misorientation histograms derived by Mackenzie (1958) [125] and

obtained in this work are represented in Fig. B.1. As can be seen, both plots

have a peak near 45◦ and the limit is about 62◦. The values of the probability

density are also lie in the same range. Therefore, one can conclude that the

algorithm for calculation the misorientation described above is correct and

can be used future work.
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Appendix C

Example of MATLAB code for

2D simulation of a single grain

shrinkage due to evolving

dislocation density jump

C.1 Main Program

C.1.1 singlegrain

1 % This code simulates a single grain growth due to evolving dislocation density jump

2 % Daliya Aflyatunova

3

4 % load(’cur_diff_cell_sizes.mat’) %file contains values of the parameter A

5 fixed=1; % "1" for fixed, "0" for updated time incremenet

6 Kink=12;
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C. EXAMPLE OF MATLAB CODE FOR 2D SIMULATION OF A SINGLE GRAIN

SHRINKAGE DUE TO EVOLVING DISLOCATION DENSITY JUMP

7 step_div=1; % time increment delta_t/step_div

8 for i_iter=10:10

9 tic

10 %% grain and cell sizes

11 r_cells=15+i_iter*5 %grain radius

12 d_cell=0.000125/r_cells; % cell size

13 r0_true=125e-6; % true radius

14 r=round(r0_true/d_cell); % initial radius

15 %% Domain parameters

16 d=2; % dimension: "1" -1D, "2"-2D, "3"-3D

17 x0=5.5+r_cells; y0=x0; z0=1; % grain centre

18 %% area size

19 Nx=x0*2-1;

20 if d==2

21 Ny=Nx;

22 Nz=1;

23 elseif d==1

24 Ny=1;

25 Nz=1;

26 elseif d==3

27 Ny=Nx;

28 Nz=Nx;

29 z0=x0;

30 end;

31 % Physical constants

32 PhysicalConstants

33 % make a single grain
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C.1. Main Program

34 indvector=[1:Nx*Ny*Nz]’;

35 [grnumstring, phi1, phi,phi2, status]= arrayfun(@(inum) ...

36 Makecircle(inum,Nx, Ny, Nz,x0, y0, z0, r,d), indvector);

37 grnumstringstep=grnumstring;

38 grmax=max(grnumstring);

39 gr_properties=zeros(6,grmax);

40 for i=1:grmax

41 gr_properties(1,i)=i;

42 end;

43 for i=1:grmax

44 gr_properties(2,i)=nnz(grnumstring==gr_properties(1,i))

45 end;

46 gr_properties(3,1)=0; %recrystallized

47 gr_properties(3,2)=-Delta_t_c; % deformed

48 for i=1:grmax

49 gr_properties(4,i)=phi1(find(grnumstring==i,1));

50 gr_properties(5,i)=phi(find(grnumstring==i,1));

51 gr_properties(6,i)=phi2(find(grnumstring==i,1));

52 end;

53 clear phi1 phi phi2;

54 %% Find a border

55 boundarycells=zeros(1,Nx*Ny*Nz);

56 for inum=1:Nx*Ny*Nz

57 BorderChange % finds grain boundary cells

58 end;

59 %% Calculate grain size

60 gr_num=grmax;
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SHRINKAGE DUE TO EVOLVING DISLOCATION DENSITY JUMP

61 n=1;

62 CalculateGrainSize %calculates grain size

63 %cur_parameter=analizeddata_fixed_12(i_iter, 2);

64 %% Run simulation

65 Run

66 %SaveVTK % saves structure for visualization in ParaView

67 end;

C.1.2 PhysicalConstants

1 %% Physical constants

2 rho_c=5.510*10^(13); %[m^-2] %

3 delta_D_ob=7.50*10^(-15); %[m^3 s^-1]

4 burg_vec=2.560*10^(-10); %[m]

5 Q_b=110.0*10^3; %[J/mol]

6 R_gas=8.310; %[J mol^-1 K^-1]

7 k_boltz=1.380*10^(-23); %[J K^-1]

8 Temp=750.0; %[K]

9 M_0=delta_D_ob*burg_vec*exp(-Q_b/(R_gas*Temp))/(k_boltz*Temp);

10 gamma_m=0.625; %[Jm^2]

11 k1=2.970*10^8;

12 A1_stress=2.0*10^44;

13 eps_rate=0.0020; %[s^-1]

14 Q_a=275.0*10^3; %[J/mol]

15 A2_stress=7.60;

16 sigma_st=(A1_stress*eps_rate*exp(Q_a/R_gas/Temp))^(1/A2_stress);

204



C.1. Main Program

17 mu_0=4.21*10^10; %[Pa] //G in Kugler’s notation

18 Tm_mu0dmu_dT=-0.54;

19 Temp_m=1356; %[K]

20 alpha=0.50;

21 mu=mu_0*(1+Tm_mu0dmu_dT*(Temp-300)/Temp_m);

22 k2_dens=alpha*mu*burg_vec*k1/sigma_st;

23 tau=0.50*mu*burg_vec^2; %dislocation line energy

24 M=M_0*(1-exp(-5*(45/15)^4));

25 rho_ini=0;

26 cur_parameter=1;

27 Delta_t_c=-2/(k2_dens*eps_rate)*log((k1-sqrt(rho_c)*k2_dens)/(k1-sqrt(rho_ini)*k2_dens))

C.1.3 Makecircle

1 %% Create circle

2 function [grnumstring_el, phi1_el, phi_el,phi2_el, status_el]=Makecircle(i,Nx, Ny, Nz,x0, y0, z0,r,d)

3 z=fix((i-1)/Nx/Ny)+1; y=fix((i-1-Nx*Ny*(z-1))/Nx)+1; x= mod((i-1-Nx*Ny*z), Nx)+1;

4 if d==2

5 if ((x-x0)^2+(y-y0)^2<=r^2)&(z==1)

6 grnumstring_el=2;

7 phi1_el=degtorad(45);

8 phi_el=0;

9 phi2_el=0;

10 %status_el=1;

11 status_el=0;

12 else
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SHRINKAGE DUE TO EVOLVING DISLOCATION DENSITY JUMP

13 grnumstring_el=1;

14 phi1_el=0;

15 phi_el=0;

16 phi2_el=0;

17 %status_el=0;

18 status_el=1;

19 end;

20 elseif d==1

21 if ((x-x0)^2<=r^2)&(z==1)&(y==1)

22 grnumstring_el=2;

23 phi1_el=degtorad(45);

24 phi_el=0;

25 phi2_el=0;

26 %status_el=1;

27 status_el=0;

28 else

29 grnumstring_el=1;

30 phi1_el=0;

31 phi_el=0;

32 phi2_el=0;

33 %status_el=0;

34 status_el=1;

35 end;

36 elseif d==3

37 if ((x-x0)^2+(y-y0)^2+(z-z0)^2<=r^2)

38 grnumstring_el=2;

39 phi1_el=degtorad(45);

206



C.1. Main Program

40 phi_el=0;

41 phi2_el=0;

42 %status_el=1;

43 status_el=0;

44 else

45 grnumstring_el=1;

46 phi1_el=0;

47 phi_el=0;

48 phi2_el=0;

49 %status_el=0;

50 status_el=1;

51 end;

52 end

C.1.4 BorderChange

1 %% Boundary Change

2 z=fix((inum-1)/Nx/Ny)+1; y=fix((inum-1-Nx*Ny*(z-1))/Nx)+1; x= mod((inum-1-Nx*Ny*(z-1)), Nx)+1;

3 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

4 istring2=zeros(1,25); istring3=zeros(1,25);

5 switch d

6 case 1

7 istring3(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

8 istring3(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

9 istring3(23)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

10 for i=21:23
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11 condition2=false;

12 if boundarycells(istring3(i))==0

13 z=fix((istring3(i)-1)/Nx/Ny)+1; y=fix((istring3(i)-1-Nx*Ny*(z-1))/Nx)+1; x= mod((istring3(i)-1-Nx*Ny*z), Nx)+1;

14 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

15 istring2(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

16 istring2(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

17 istring2(23)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

18 count=0;

19 for ii=21:23

20 if grnumstring(istring2(ii))~=grnumstring(istring3(i))

21 count=count+1;

22 end;

23 if count>0

24 boundarycells(istring3(i))=1;

25 break

26 end;

27 end;

28 else

29 z=fix((istring3(i)-1)/Nx/Ny)+1; y=fix((istring3(i)-1-Nx*Ny*(z-1))/Nx)+1; x= mod((istring3(i)-1-Nx*Ny*z), Nx)+1;

30 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

31 istring2(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

32 istring2(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

33 istring2(23)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

34 count=0;

35 for ii=21:23

36 if grnumstring(istring2(ii))~=grnumstring(istring3(i))

37 count=count+1;
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38 end;

39 if count>0

40 condition2=true;

41 break

42 end;

43 end;

44 if condition2==false

45 boundarycells(istring3(i))=0;

46 end;

47 end;

48 end;

49 case 2

50 istring3(23)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

51 istring3(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

52 istring3(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

53 istring3(24)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

54 istring3(25)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

55 for i=21:25

56 condition2=false;

57 if boundarycells(istring3(i))==0

58 z=fix((istring3(i)-1)/Nx/Ny)+1; y=fix((istring3(i)-1-Nx*Ny*(z-1))/Nx)+1; x= mod((istring3(i)-1-Nx*Ny*z), Nx)+1;

59 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

60 istring2(23)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

61 istring2(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

62 istring2(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

63 istring2(24)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

64 istring2(25)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;
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65 count=0;

66 for ii=21:25

67 if grnumstring(istring2(ii))~=grnumstring(istring3(i))

68 count=count+1;

69 end;

70 if count>0

71 boundarycells(istring3(i))=1;

72 break

73 end;

74 end;

75 else

76 z=fix((istring3(i)-1)/Nx/Ny)+1; y=fix((istring3(i)-1-Nx*Ny*(z-1))/Nx)+1; x= mod((istring3(i)-1-Nx*Ny*z), Nx)+1;

77 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

78 istring2(23)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

79 istring2(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

80 istring2(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

81 istring2(24)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

82 istring2(25)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

83 count=0;

84 for ii=21:25

85 if grnumstring(istring2(ii))~=grnumstring(istring3(i))

86 count=count+1;

87 end;

88 if count>0

89 condition2=true;

90 break

91 end;
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92 end;

93 if condition2==false

94 boundarycells(istring3(i))=0;

95 end;

96 end;

97 end;

98 case 3

99 istring3(1)=(x-1)+(y-1)*Nx+(dirz2-1)*Nx*Ny+1;

100 istring3(2)=(x-1)+(y-1)*Nx+(dirz1-1)*Nx*Ny+1;

101 istring3(3)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

102 istring3(4)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

103 istring3(5)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

104 istring3(6)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

105 istring3(7)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

106 for i=1:7

107 condition2=false;

108 if boundarycells(istring3(i))==0

109 z=fix((istring3(i)-1)/Nx/Ny)+1; y=fix((istring3(i)-1-Nx*Ny*(z-1))/Nx)+1; x= mod((istring3(i)-1-Nx*Ny*z), Nx)+1;

110 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

111 istring2(1)=(x-1)+(y-1)*Nx+(dirz2-1)*Nx*Ny+1;

112 istring2(2)=(x-1)+(y-1)*Nx+(dirz1-1)*Nx*Ny+1;

113 istring2(3)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

114 istring2(4)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

115 istring2(5)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

116 istring2(6)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

117 istring2(7)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

118 count=0;
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119 for ii=1:7

120 if grnumstring(istring2(ii))~=grnumstring(istring3(i))

121 count=count+1;

122 end;

123 if count>0

124 boundarycells(istring3(i))=1;

125 break

126 end;

127 end;

128 else

129 z=fix((istring3(i)-1)/Nx/Ny)+1; y=fix((istring3(i)-1-Nx*Ny*(z-1))/Nx)+1; x= mod((istring3(i)-1-Nx*Ny*z), Nx)+1;

130 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

131 istring2(1)=(x-1)+(y-1)*Nx+(dirz2-1)*Nx*Ny+1;

132 istring2(2)=(x-1)+(y-1)*Nx+(dirz1-1)*Nx*Ny+1;

133 istring2(3)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

134 istring2(4)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

135 istring2(5)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

136 istring2(6)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

137 istring2(7)=(x-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

138 count=0;

139 for ii=1:7

140 if grnumstring(istring2(ii))~=grnumstring(istring3(i))

141 count=count+1;

142 end;

143 if count>0

144 condition2=true;

145 break
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146 end;

147 end;

148 if condition2==false

149 boundarycells(istring3(i))=0;

150 end;

151 end;

152 end;

153 end;

C.1.5 Direction

1 %% Direction

2 function [dirx1, dirx2, diry1, diry2, dirz1, dirz2] = Direction (x,y,z, Nx, Ny,Nz)

3 dirx1=x-1; dirx2=x+1;

4 diry1=y-1; diry2=y+1;

5 dirz1=z-1; dirz2=z+1;

6 if dirx1<1

7 dirx1=Nx;

8 end;

9 if dirx2>(Nx)

10 dirx2=1;

11 end;

12 if diry1<1

13 diry1=Ny;

14 end;

15 if diry2>(Ny)
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16 diry2=1;

17 end;

18 if dirz1<1

19 dirz1=Nz;

20 end;

21 if dirz2>(Nz)

22 dirz2=1;

23 end;

24 end

C.1.6 CalculateGrainSize

1 switch d

2 case 1

3 minsize=0;

4 case 2

5 minsize=0;

6 case 3

7 minsize=4;

8 end;

9 gr_properties_copy=[];

10 num=0;

11 for i=(n+1):2 %gr_num

12 if gr_properties(2,i)>minsize

13 gr_properties_copy=[gr_properties_copy gr_properties(2,i)]; %create am array with only grains>4 cells

14 num=num+1;

214



C.1. Main Program

15 end;

16 end;

17 diam=zeros(1,num);

18 if num>0

19 for i=1:num

20 if d==3

21 diam(i)=(6*gr_properties_copy(i)/3.14159265359)^(1/3);

22 end;

23 if d==2

24 diam(i)=(4*gr_properties_copy(i)/3.14159265359)^(1/2);

25 end;

26 if d==1

27 diam(i)=gr_properties_copy(i);

28 end;

29 end;

30 jj=0;

31 for i=1:num

32 jj=jj+diam(i);

33 end;

34 jj=jj/(num);

35 aver3dnew=jj; %average diameter

36 diam_av=zeros(1,num);

37 for i=1:num

38 diam_av(i)=log10(diam(i)/jj); %tnositel’no srednego

39 end;

40 diam=[];

41 diam_av=[];
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42 elseif num==0

43 aver3dnew=0; %average diameter

44 end;

C.2 Run Simulation

C.2.1 Run

1 %% Run Program

2 dis_weight=1;

3 cur_weight=0;

4 name=[’C:/Users/uos/Documents/MATLAB/example_for_latex/res/simulated_Nx’,int2str(Nx),’r0’,int2str(r_cells),’matlab_once.txt’];

5 fraction25=zeros(Nx*Ny*Nz, 25);

6 fraction25_1=zeros(Nx*Ny*Nz, 1);

7 fraction25_2=zeros(Nx*Ny*Nz, 1);

8 fraction25_3=zeros(Nx*Ny*Nz, 1);

9 fraction25_4=zeros(Nx*Ny*Nz, 1);

10 fraction25_5=zeros(Nx*Ny*Nz, 1);

11 fraction25_6=zeros(Nx*Ny*Nz, 1);

12 v_neighb=zeros(1,25);

13 v_neighb_dis=zeros(1,25);

14 v_neighb_cur=zeros(1,25);

15 calc_neighb=zeros(1,25);

16 grnumini=length(gr_properties(1, :));

17 CAS=0;

18 time_inc=0;
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19 time=time_inc*CAS;

20 eps=eps_rate*CAS*time_inc;

21 n=1;

22 CalculateGrainSize

23 switch d

24 case 1

25 nummdiv=25;

26 nummdiv2=Kink;

27 case 2

28 nummdiv=25;

29 nummdiv2=Kink;

30 case 3

31 nummdiv=125;

32 nummdiv2=Kink;

33 end;

34 f=fopen( name, ’w’ );

35 if d==1

36 numm=21;

37 numm2=22;

38 elseif d==2

39 numm=21;

40 numm2=24;

41 elseif d==3

42 numm=1;

43 numm2=6;

44 end;

45 while (time<800)
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46 v_max_real=0;

47 v_max_real_dis=0;

48 v_max_real_cur=0;

49 N_i_min=24;

50 frmax=0;

51 %% V MAX non-fixed

52 if fixed==0

53 i=(find(boundarycells==1))’;

54 [v_max_real(i)]=arrayfun(@( i) ...

55 v_max_fun( i, grnumstring, Nx, Ny, Nz, d, N_i_min, v_max_real, dis_weight, M_0, tau, ...

56 cur_weight, cur_parameter, nummdiv2, nummdiv, d_cell, gamma_m, v_max_real_dis, v_max_real_cur,...

57 gr_properties, time, k2_dens, eps_rate, k1, rho_ini), i, ’UniformOutput’ ,true);

58 v_max_real=max(v_max_real);

59 elseif fixed==1

60 %% %%% OR fixed

61 %v_max_real=cur_weight*M_0*gamma_m*cur_parameter*(nummdiv2-0)/(nummdiv*d_cell)+dis_weight*M_0*tau*rho_c; %constant dis jump

62 t_dis_max=(0-2/(k2_dens*eps_rate)*log(-k1/(exp(k2_dens*eps_rate*(-Delta_t_c)/2)*(sqrt(rho_ini)*k2_dens-k1)+...

63 sqrt(rho_ini)*k2_dens-k1)));

64 rho_d=1/(k2_dens^2)*(exp(-(k2_dens*eps_rate*(t_dis_max-(-Delta_t_c)))/2)...

65 *(k1-k2_dens*sqrt(rho_ini))-k1)^2;

66 rho_r=1/(k2_dens^2)*(exp(-(k2_dens*eps_rate*(t_dis_max-0))/2)...

67 *(k1-k2_dens*sqrt(rho_ini))-k1)^2;

68 rho_dis_jump_max=rho_d-rho_r;

69 v_max_real=cur_weight*M_0*gamma_m*cur_parameter*(nummdiv2-0)/(nummdiv*d_cell)+...

70 dis_weight*M_0*tau*rho_dis_jump_max; %evolving dis jump

71 end;

72 if v_max_real==0
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73 delta_t_dis=0;

74 else

75 delta_t_dis=d_cell/v_max_real/step_div;

76 end;

77 delta_t_cur=delta_t_dis;

78 delta_t_both=delta_t_dis;

79 delta_t=delta_t_both;

80 time_inc=delta_t;

81 if sum(gr_properties(2,:))~=Nx*Ny*Nz

82 error(’Error Message’)

83 end;

84 fprintf(f,’%6.5f %12.12f\r\n’, [time;aver3dnew/2*d_cell]);

85 DynamicGrowth;

86 CalculateGrainSize;

87 if sum(gr_properties(2,:))~=Nx*Ny*Nz

88 error(’Error Message’)

89 end;

90 CAS=CAS+1;

91 time=time+time_inc;

92 eps=eps+eps_rate*time_inc;

93 end;

94 toc

95 fclose(f);
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C.2.2 v_max_fun

1 %% maximum velocity

2 function [v_max_real]=v_max_fun( i_recr, grnumstring, Nx, Ny,Nz, d, N_i_min,...

3 v_max_real, dis_weight, M_0, tau, cur_weight, cur_parameter, nummdiv2, nummdiv,...

4 d_cell, gamma_m, v_max_real_dis, v_max_real_cur, gr_properties, time, k2_dens, eps_rate, k1, rho_ini)

5 grain1or2=grnumstring(i_recr);

6 z=fix((i_recr-1)/Nx/Ny)+1; y=fix((i_recr-1-Nx*Ny*(z-1))/Nx)+1; x= mod((i_recr-1-Nx*Ny*z), Nx)+1;

7 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

8 switch d

9 case 1

10 % calc_neighb(1)=dirx1+diry1*Nx+dirz2*Nx*Ny;

11 % calc_neighb(2)=dirx2+diry1*Nx+dirz2*Nx*Ny;

12 % calc_neighb(3)=dirx2+diry1*Nx+dirz1*Nx*Ny;

13 % calc_neighb(4)=dirx1+diry1*Nx+dirz1*Nx*Ny;

14 % calc_neighb(5)=dirx1+diry2*Nx+dirz2*Nx*Ny;

15 % calc_neighb(6)=dirx2+diry2*Nx+dirz2*Nx*Ny;

16 % calc_neighb(7)=dirx2+diry2*Nx+dirz1*Nx*Ny;

17 % calc_neighb(8)=dirx1+diry2*Nx+dirz1*Nx*Ny;

18

19 % calc_neighb(9)=x+diry1*Nx+dirz2*Nx*Ny;

20 % calc_neighb(10)=x+diry1*Nx+dirz1*Nx*Ny;

21 % calc_neighb(11)=dirx1+y*Nx+dirz2*Nx*Ny;

22 % calc_neighb(12)=dirx2+y*Nx+dirz2*Nx*Ny;

23 % calc_neighb(13)=dirx2+y*Nx+dirz1*Nx*Ny;

24 % calc_neighb(14)=dirx1+y*Nx+dirz1*Nx*Ny;

25 % calc_neighb(15)=x+diry2*Nx+dirz2*Nx*Ny;

220



C.2. Run Simulation

26 % calc_neighb(16)=x+diry2*Nx+dirz1*Nx*Ny;

27 % calc_neighb(25)=x+y*Nx+dirz2*Nx*Ny;

28

29 % calc_neighb(26)=x+y*Nx+dirz1*Nx*Ny;

30 %

31 % calc_neighb(19)=dirx2+diry1*Nx+z*Nx*Ny;

32 % calc_neighb(20)=dirx1+diry1*Nx+z*Nx*Ny;

33 %

34 % calc_neighb(17)=dirx2+diry2*Nx+z*Nx*Ny;

35 % calc_neighb(18)=dirx1+diry2*Nx+z*Nx*Ny;

36

37 % calc_neighb(23)=x+diry1*Nx+z*Nx*Ny;

38 calc_neighb(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

39 calc_neighb(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

40 % calc_neighb(24)=x+diry2*Nx+z*Nx*Ny;

41 numm=21; numm2=22;

42 case 2

43 % calc_neighb(1)=dirx1+diry1*Nx+dirz2*Nx*Ny;

44 % calc_neighb(2)=dirx2+diry1*Nx+dirz2*Nx*Ny;

45 % calc_neighb(3)=dirx2+diry1*Nx+dirz1*Nx*Ny;

46 % calc_neighb(4)=dirx1+diry1*Nx+dirz1*Nx*Ny;

47 % calc_neighb(5)=dirx1+diry2*Nx+dirz2*Nx*Ny;

48 % calc_neighb(6)=dirx2+diry2*Nx+dirz2*Nx*Ny;

49 % calc_neighb(7)=dirx2+diry2*Nx+dirz1*Nx*Ny;

50 % calc_neighb(8)=dirx1+diry2*Nx+dirz1*Nx*Ny;

51 %

52 % calc_neighb(9)=x+diry1*Nx+dirz2*Nx*Ny;
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53 % calc_neighb(10)=x+diry1*Nx+dirz1*Nx*Ny;

54 % calc_neighb(11)=dirx1+y*Nx+dirz2*Nx*Ny;

55 % calc_neighb(12)=dirx2+y*Nx+dirz2*Nx*Ny;

56 % calc_neighb(13)=dirx2+y*Nx+dirz1*Nx*Ny;

57 % calc_neighb(14)=dirx1+y*Nx+dirz1*Nx*Ny;

58 % calc_neighb(15)=x+diry2*Nx+dirz2*Nx*Ny;

59 % calc_neighb(16)=x+diry2*Nx+dirz1*Nx*Ny;

60 %

61 % calc_neighb(25)=x+y*Nx+dirz2*Nx*Ny;

62 % calc_neighb(26)=x+y*Nx+dirz1*Nx*Ny;

63 %

64 % calc_neighb(19)=dirx2+diry1*Nx+z*Nx*Ny;

65 % calc_neighb(20)=dirx1+diry1*Nx+z*Nx*Ny;

66 %

67 % calc_neighb(17)=dirx2+diry2*Nx+z*Nx*Ny;

68 % calc_neighb(18)=dirx1+diry2*Nx+z*Nx*Ny;

69

70 calc_neighb(23)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

71 calc_neighb(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

72 calc_neighb(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

73 calc_neighb(24)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

74 numm=21; numm2=24;

75 % nummdiv=25; nummdiv2=15;//15;

76 case 3

77 % calc_neighb(7)=dirx1+diry1*Nx+dirz2*Nx*Ny;

78 % calc_neighb(8)=dirx2+diry1*Nx+dirz2*Nx*Ny;

79 % calc_neighb(9)=dirx2+diry1*Nx+dirz1*Nx*Ny;
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80 % calc_neighb(10)=dirx1+diry1*Nx+dirz1*Nx*Ny;

81 % calc_neighb(11)=dirx1+diry2*Nx+dirz2*Nx*Ny;

82 % calc_neighb(12)=dirx2+diry2*Nx+dirz2*Nx*Ny;

83 % calc_neighb(13)=dirx2+diry2*Nx+dirz1*Nx*Ny;

84 % calc_neighb(14)=dirx1+diry2*Nx+dirz1*Nx*Ny;

85 %

86 % calc_neighb(15)=x+diry1*Nx+dirz2*Nx*Ny;

87 % calc_neighb(16)=x+diry1*Nx+dirz1*Nx*Ny;

88 % calc_neighb(17)=dirx1+y*Nx+dirz2*Nx*Ny;

89 % calc_neighb(18)=dirx2+y*Nx+dirz2*Nx*Ny;

90 % calc_neighb(19)=dirx2+y*Nx+dirz1*Nx*Ny;

91 % calc_neighb(20)=dirx1+y*Nx+dirz1*Nx*Ny;

92 % calc_neighb(21)=x+diry2*Nx+dirz2*Nx*Ny;

93 % calc_neighb(22)=x+diry2*Nx+dirz1*Nx*Ny;

94

95 calc_neighb(1)=(x-1)+(y-1)*Nx+(dirz2-1)*Nx*Ny+1;

96 calc_neighb(2)=(x-1)+(y-1)*Nx+(dirz1-1)*Nx*Ny+1;

97 % calc_neighb(23)=dirx2+diry1*Nx+z*Nx*Ny;

98 % calc_neighb(24)=dirx1+diry1*Nx+z*Nx*Ny;

99 % calc_neighb(25)=dirx2+diry2*Nx+z*Nx*Ny;

100 % calc_neighb(26)=dirx1+diry2*Nx+z*Nx*Ny;

101 calc_neighb(3)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

102 calc_neighb(4)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

103 calc_neighb(5)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

104 calc_neighb(6)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

105 numm=1; numm2=6;

106 % nummdiv=125; nummdiv2= 62; //nummdiv2=75;

223



C. EXAMPLE OF MATLAB CODE FOR 2D SIMULATION OF A SINGLE GRAIN

SHRINKAGE DUE TO EVOLVING DISLOCATION DENSITY JUMP

107 end;

108 %% unique

109 unique_num=1;

110 switch d

111 case 1

112 unique_NBH_Moore(1)=grnumstring(calc_neighb(21));

113 case 2

114 unique_NBH_Moore(1)=grnumstring(calc_neighb(21));

115 case 3

116 unique_NBH_Moore(1)=grnumstring(calc_neighb(1));

117 end;

118 for kk=numm:numm2

119 uniq_boolean=true;

120 for uniq=1:unique_num

121 if grnumstring(calc_neighb(kk))==unique_NBH_Moore(uniq)

122 uniq_boolean=false;

123 end;

124 end;

125 if uniq_boolean==true

126 unique_num=unique_num+1;

127 unique_NBH_Moore(unique_num)=grnumstring(calc_neighb(kk));

128 end;

129 end;

130 for kk=numm:numm2

131 for uniq=1:unique_num

132 gr_neighb=grnumstring(calc_neighb(kk));

133
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134 if gr_neighb==unique_NBH_Moore(uniq) %and (fraction25(ii,k)>1)

135 if gr_neighb==grain1or2

136 v_max_real=v_max_real;

137 else

138 if curvature_f(calc_neighb(kk), Nx, Ny, Nz, grnumstring)< N_i_min

139 N_i_min=curvature_f(calc_neighb(kk), Nx, Ny, Nz, grnumstring);

140 end;

141 rho_gr_neighb=1/(k2_dens^2)*(exp(-(k2_dens*eps_rate*(time-gr_properties(3,gr_neighb)))/2)...

142 *(k1-k2_dens*sqrt(rho_ini))-k1)^2;

143 rho_grain1or2 =1/(k2_dens^2)*(exp(-(k2_dens*eps_rate*(time-gr_properties(3,grain1or2)))/2)...

144 *(k1-k2_dens*sqrt(rho_ini))-k1)^2;

145 v_neighb_dis(kk)=(-1)*dis_weight*(M_0*tau*(rho_gr_neighb-rho_grain1or2));

146 if v_max_real<(-1)*dis_weight*(M_0*tau*(rho_gr_neighb-rho_grain1or2))-cur_weight*cur_parameter*(nummdiv2-curvature_f(calc_neighb(kk), Nx, Ny, Nz, grnumstring))/(nummdiv*d_cell)*M_0*gamma_m

147 v_max_real=(-1)*dis_weight*(M_0*tau*(rho_gr_neighb-rho_grain1or2))-cur_weight*cur_parameter*(nummdiv2-curvature_f(calc_neighb(kk), Nx, Ny, Nz, grnumstring))/(nummdiv*d_cell)*M_0*gamma_m ;

148 % if v_max_real<dis_weight*(M_0*tau*(gr_properties(3,gr_neighb)-gr_properties(3,grain1or2)))-cur_weight*cur_parameter*(nummdiv2-curvature_f(calc_neighb(kk), Nx, Ny, Nz, grnumstring))/(nummdiv*d_cell)*M_0*gamma_m

149 % v_max_real=dis_weight*(M_0*tau*(gr_properties(3,gr_neighb)-gr_properties(3,grain1or2)))-cur_weight*cur_parameter*(nummdiv2-curvature_f(calc_neighb(kk), Nx, Ny, Nz, grnumstring))/(nummdiv*d_cell)*M_0*gamma_m ;

150 else

151 v_max_real=v_max_real;

152 end;

153 end;

154 end;

155 end;

156 end;

157 end

225



C. EXAMPLE OF MATLAB CODE FOR 2D SIMULATION OF A SINGLE GRAIN

SHRINKAGE DUE TO EVOLVING DISLOCATION DENSITY JUMP

C.2.3 DynamicGrowth

1 %% Dynamic Growth

2 gr_properties_copy=gr_properties;

3 %% Dislocation density

4 grnumstringstep=grnumstring;

5 statusstep=status;

6 i=find(boundarycells==1)’;

7 changedcells=zeros(1, Nx*Ny*Nz);

8 [fraction25_1(i), fraction25_2(i), fraction25_3(i), fraction25_4(i), fraction25_5(i), fraction25_6(i), grnumstringstep(i), changedcells(i), statusstep(i)]=arrayfun(@( i) ...

9 DG( i, fraction25_1,fraction25_2, fraction25_3, fraction25_4, fraction25_5, fraction25_6, grnumstring, Nx, Ny, Nz, ...

10 dis_weight, M_0, tau, cur_weight, cur_parameter, nummdiv2, nummdiv, d_cell,...

11 gamma_m, delta_t_dis, delta_t_cur, numm, numm2, gr_properties, CAS, status, k2_dens, eps_rate, time, k1, rho_ini,d), i, ’UniformOutput’ ,true);

12 if sum(changedcells)>0

13 changedind=find(changedcells==1);

14 for inum=changedind

15 gr1=grnumstring(inum);%old

16 gr2=grnumstringstep(inum); %new

17 status(inum)=statusstep(inum);

18 grnumstring(inum)=gr2;

19 BorderChange;

20 gr_properties(2,gr1)=gr_properties(2,gr1)-1;

21 gr_properties(2,gr2)=gr_properties(2,gr2)+1;

22 end;

23 end;
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C.2.4 DG

1 function [fraction25_1, fraction25_2, fraction25_3, fraction25_4, fraction25_5, fraction25_6, grnumstringstep, changedcells,statusstep]=DG( i, fraction25_1, fraction25_2, fraction25_3, fraction25_4, fraction25_5, fraction25_6, grnumstring, Nx, Ny, Nz, dis_weight, M_0,...

2 tau, cur_weight, cur_parameter, nummdiv2, nummdiv, d_cell, gamma_m, delta_t_dis, delta_t_cur, numm, numm2, gr_properties, CAS,status, k2_dens,...

3 eps_rate, time,k1, rho_ini,d)

4 grain1or2=grnumstring(i);

5 z=fix((i-1)/Nx/Ny)+1; y=fix((i-1-Nx*Ny*(z-1))/Nx)+1; x= mod((i-1-Nx*Ny*z), Nx)+1;

6 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

7 if d==2

8 calc_neighb(23)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

9 calc_neighb(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

10 calc_neighb(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

11 calc_neighb(24)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

12 elseif d==1

13 calc_neighb(22)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

14 calc_neighb(21)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

15 elseif d==3

16 calc_neighb(1)=(x-1)+(y-1)*Nx+(dirz2-1)*Nx*Ny+1;

17 calc_neighb(2)=(x-1)+(y-1)*Nx+(dirz1-1)*Nx*Ny+1;

18 calc_neighb(3)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

19 calc_neighb(4)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

20 calc_neighb(5)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

21 calc_neighb(6)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

22 end;

23 %% Fraction

24 for kk=numm:numm2

25 gr_neighb=grnumstring(calc_neighb(kk));
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26 if gr_neighb==grain1or2

27 v_neighb_dis(kk)=0;

28 v_neighb_cur(kk)=0;

29 else

30 rho_gr_neighb=1/(k2_dens^2)*(exp(-(k2_dens*eps_rate*(time-gr_properties(3,gr_neighb)))/2)...

31 *(k1-k2_dens*sqrt(rho_ini))-k1)^2;

32 rho_grain1or2 =1/(k2_dens^2)*(exp(-(k2_dens*eps_rate*(time-gr_properties(3,grain1or2)))/2)...

33 *(k1-k2_dens*sqrt(rho_ini))-k1)^2;

34 v_neighb_dis(kk)=(-1)*dis_weight*(M_0*tau*(rho_gr_neighb-rho_grain1or2));

35 if cur_weight==0

36 v_neighb_cur(kk)=0;

37 else

38 v_neighb_cur(kk)=-cur_weight*cur_parameter*(nummdiv2-curvature_f(calc_neighb(kk), Nx, Ny, Nz, grnumstring))/(nummdiv*d_cell)*M_0*gamma_m ; %%% MAKE CUR FUN

39 end;

40 end;

41 end;

42 v_neighb_cur(v_neighb_cur<0)=0; %%%%%UNCOMEMT

43 v_neighb_dis(v_neighb_dis<0)=0;

44 if d==1

45 fraction25_1=fraction25_1(i)+(v_neighb_dis(21)*delta_t_dis+v_neighb_cur(21)*delta_t_cur)/(d_cell*0.9999999999);

46 fraction25_2=fraction25_2(i)+(v_neighb_dis(22)*delta_t_dis+v_neighb_cur(22)*delta_t_cur)/(d_cell*0.9999999999);

47 fraction25_3=0;

48 fraction25_4=0;

49 fraction25_5=0;

50 fraction25_6=0;

51 fr25string(numm:numm2)=[fraction25_1 fraction25_2];

52 elseif d==2
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53 fraction25_1=fraction25_1(i)+(v_neighb_dis(21)*delta_t_dis+v_neighb_cur(21)*delta_t_cur)/(d_cell*0.9999999999);

54 fraction25_2=fraction25_2(i)+(v_neighb_dis(22)*delta_t_dis+v_neighb_cur(22)*delta_t_cur)/(d_cell*0.9999999999);

55 fraction25_3=fraction25_3(i)+(v_neighb_dis(23)*delta_t_dis+v_neighb_cur(23)*delta_t_cur)/(d_cell*0.9999999999);

56 fraction25_4=fraction25_4(i)+(v_neighb_dis(24)*delta_t_dis+v_neighb_cur(24)*delta_t_cur)/(d_cell*0.9999999999);

57 fraction25_5=0;

58 fraction25_6=0;

59 fr25string(numm:numm2)=[fraction25_1 fraction25_2 fraction25_3 fraction25_4];

60 elseif d==3

61 fraction25_1=fraction25_1(i)+(v_neighb_dis(1)*delta_t_dis+v_neighb_cur(1)*delta_t_cur)/(d_cell*0.9999999999);

62 fraction25_2=fraction25_2(i)+(v_neighb_dis(2)*delta_t_dis+v_neighb_cur(2)*delta_t_cur)/(d_cell*0.9999999999);

63 fraction25_3=fraction25_3(i)+(v_neighb_dis(3)*delta_t_dis+v_neighb_cur(3)*delta_t_cur)/(d_cell*0.9999999999);

64 fraction25_4=fraction25_4(i)+(v_neighb_dis(4)*delta_t_dis+v_neighb_cur(4)*delta_t_cur)/(d_cell*0.9999999999);

65 fraction25_5=fraction25_5(i)+(v_neighb_dis(5)*delta_t_dis+v_neighb_cur(5)*delta_t_cur)/(d_cell*0.9999999999);

66 fraction25_6=fraction25_6(i)+(v_neighb_dis(6)*delta_t_dis+v_neighb_cur(6)*delta_t_cur)/(d_cell*0.9999999999);

67 fr25string(numm:numm2)=[fraction25_1 fraction25_2 fraction25_3 fraction25_4 fraction25_5 fraction25_6];

68 end;

69 %% Creating 4 rows array unique_NBH_Moore : 1st row unique elements, 2nd distance 3rd how many of them have fraction>0

70 unique_num=1;

71 unique_NBH_Moore=[];

72 unique_NBH_Moore(1,1)=grnumstring(calc_neighb(numm));

73 for ii=numm:numm2

74 uniq_boolean=true;

75 for uniq=1:unique_num

76 if grnumstring(calc_neighb(ii))==unique_NBH_Moore(uniq)

77 uniq_boolean=false;

78 end;

79 end;
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80 if uniq_boolean==true

81 unique_num=unique_num+1;

82 unique_NBH_Moore(unique_num)=grnumstring(calc_neighb(ii)); %uniq elements

83 end;

84 end;

85 unique_NBH_Moore=[unique_NBH_Moore; zeros(1, unique_num)];

86 for ii=numm:numm2

87 if fr25string(ii)>0

88 for uniq=1:unique_num

89 if (grnumstring(calc_neighb(ii))==unique_NBH_Moore(1,uniq)) %// and (fraction25[ii,k]>1) then

90 unique_NBH_Moore(2,uniq)=unique_NBH_Moore(2,uniq)+fr25string(ii);

91 end;

92 end;

93 end;

94 end;

95 %% Find max and max indices in 2nd row (max distance)

96 uniq_max=unique_NBH_Moore(2,1);

97 for uniq=1:unique_num

98 if unique_NBH_Moore(2,uniq)>uniq_max

99 uniq_max=unique_NBH_Moore(2,uniq);

100 end;

101 end;

102 c1=[];

103 for uniq=1:unique_num

104 if unique_NBH_Moore(2,uniq)==uniq_max

105 c1=[c1 uniq];

106 end;
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107 end;

108 %% Make decision to change cell state

109 if ( fraction25_1>=1|fraction25_2>=1|fraction25_3>=1|fraction25_4>=1|fraction25_5>=1|fraction25_6>=1)

110 if length(c1)>1

111 index_c1=c1(randi(length(c1)));

112 grnumstringstep(i)=unique_NBH_Moore(1,index_c1);

113 gr1=grnumstring(i); %prev gr

114 gr2=unique_NBH_Moore(1,index_c1); %new grain

115 grnumstringstep=gr2;

116 changedcells=1;

117 statusstep=1;

118 fraction25_1=0;

119 fraction25_2=0;

120 fraction25_3=0;

121 fraction25_4=0;

122 fraction25_5=0;

123 fraction25_6=0;

124 elseif length(c1)==1

125 gr1=grnumstring(i); %prev gr

126 gr2=unique_NBH_Moore(1,c1); %new grain

127 grnumstringstep=gr2;

128 changedcells=1;

129 statusstep=1;

130 fraction25_1=0;

131 fraction25_2=0;

132 fraction25_3=0;

133 fraction25_4=0;
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134 fraction25_5=0;

135 fraction25_6=0;

136 end;

137 else

138 grnumstringstep=grain1or2;

139 changedcells=0;

140 statusstep=status(i);

141 end;

142 end

C.2.5 curvature_f

1 function [result]=curvature_f (inum,Nx, Ny, Nz, grnumstring)

2 if isempty(inum)==1

3 result=0;

4 end;

5 for i=1:length(inum)

6 z=fix((inum(i)-1)/Nx/Ny)+1; y=fix((inum(i)-1-Nx*Ny*(z-1))/Nx)+1; x= mod((inum(i)-1-Nx*Ny*z), Nx)+1;

7 [dirx1, dirx2, diry1, diry2, dirz1, dirz2]=Direction(x,y,z, Nx, Ny, Nz);

8 [dirx_1, dirx_2, diry_1, diry_2, dirz_1, dirz_2]=Direction2(x,y,z, Nx, Ny, Nz);

9

10 istring3(1)=(dirx_1-1)+(diry_1-1)*Nx+(z-1)*Nx*Ny+1;

11 istring3(2)=(dirx1-1)+(diry_1-1)*Nx+(z-1)*Nx*Ny+1;

12 istring3(3)=(x-1)+(diry_1-1)*Nx+(z-1)*Nx*Ny+1;

13 istring3(4)=(dirx2-1)+(diry_1-1)*Nx+(z-1)*Nx*Ny+1;

14 istring3(5)=(dirx_2-1)+(diry_1-1)*Nx+(z-1)*Nx*Ny+1;
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15 istring3(6)=(dirx_1-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

16 istring3(7)=(dirx1-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

17 istring3(8)=(x-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

18 istring3(9)=(dirx2-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

19 istring3(10)=(dirx_2-1)+(diry1-1)*Nx+(z-1)*Nx*Ny+1;

20 istring3(11)=(dirx_1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

21 istring3(12)=(dirx1-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

22 istring3(13)=(dirx2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

23 istring3(14)=(dirx_2-1)+(y-1)*Nx+(z-1)*Nx*Ny+1;

24 istring3(15)=(dirx_1-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

25 istring3(16)=(dirx1-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

26 istring3(17)=(x-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

27 istring3(18)=(dirx2-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

28 istring3(19)=(dirx_2-1)+(diry2-1)*Nx+(z-1)*Nx*Ny+1;

29 istring3(20)=(dirx_1-1)+(diry_2-1)*Nx+(z-1)*Nx*Ny+1;

30 istring3(21)=(dirx1-1)+(diry_2-1)*Nx+(z-1)*Nx*Ny+1;

31 istring3(22)=(x-1)+(diry_2-1)*Nx+(z-1)*Nx*Ny+1;

32 istring3(23)=(dirx2-1)+(diry_2-1)*Nx+(z-1)*Nx*Ny+1;

33 istring3(24)=(dirx_2-1)+(diry_2-1)*Nx+(z-1)*Nx*Ny+1;

34 numm=1; numm2=24;

35 result(i)=sum(grnumstring(istring3(numm:numm2))==grnumstring(inum(i)));

36 end;

37 end
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C.2.6 Direction2

1 function [dirx_1, dirx_2, diry_1, diry_2, dirz_1, dirz_2]=Direction2(x,y,z, Nx, Ny, Nz)

2 dirx_1=x-2; dirx_2=x+2;

3 diry_1=y-2; diry_2=y+2;

4 dirz_1=z-2; dirz_2=z+2;

5 if dirx_1<1

6 dirx_1=Nx;

7 end;

8 if dirx_2>Nx

9 dirx_2=1;

10 end;

11 if diry_1<1

12 diry_1=Ny;

13 end;

14 if diry_2>Ny

15 diry_2=1;

16 end;

17 if dirz_1<1

18 dirz_1=Nz;

19 end;

20 if dirz_2>Nz

21 dirz_2=1;

22 end;

23 end

234



Bibliography

[1] K.G.F. Janssens. An introductory review of cellular automata modeling

of moving grain boundaries in polycrystalline materials. Mathematics

and Computers in Simulation, 80(7):1361 – 1381, March 2010. Multi-

scale modeling of moving interfaces in materials.

[2] S. Wolfram. A New Kind of Science. Wolfram Research, 2002.

[3] J. L. Schiff. Cellular Automata: A Discrete View of the World. Wiley

Interscience, 2008.

[4] M.Hatherly F.J. Humphreys. Recrystallization and related annealing

phenomena. Elsevier, 2004.

[5] R. E. Reed-Hill. Physical metallurgy principles. D. Van Nostrand Com-

pany, 1973.

[6] D. McLean. Grain boundaries in metals. Clarendon Press Oxford, 1957.

[7] H.Hu P.A. Beck. J. Metals, 185:627, 1949. quited in [6] p. 252.

[8] F. Haessner. Recrystallization of metalic materials. Dr. Reiderer Verlag

GmbH, 1978.

235



BIBLIOGRAPHY

[9] P. R. Rios, F. Siciliano Jr, Hugo R. Z. Sandim, R. L. Plaut, and A. F.

Padilha. Nucleation and growth during recrystallization. Materials Re-

search, 8:225 – 238, 09 2005.

[10] M. Muramatsu, Y. Aoyagi, Y. Tadano, and K. Shizawa. Phase-field simu-

lation of static recrystallization considering nucleation from subgrains

and nucleus growth with incubation period. Computational Materials

Science, 87(Supplement C):112 – 122, 2014.

[11] W. Roberts and B. Ahlblom. A nucleation criterion for dynamic recrys-

tallization during hot working. Acta Metallurgica, 26(5):801 – 813,

1978.

[12] J. W. Cahn. The kinetics of grain boundary nucleated reactions. Acta

Metallurgica, 4(5):449 – 459, 1956.

[13] H. Mecking and U.F. Kocks. Kinetics of flow and strain-hardening. Acta

Metallurgica, 29(11):1865 – 1875, 1981.

[14] R. Ding and Z.X Guo. Coupled quantitative simulation of microstruc-

tural evolution and plastic flow during dynamic recrystallization. Acta

Materialia, 49(16):3163 – 3175, September 2001.

[15] S. Takeuchi and A. S. Argon. Steady-state creep of single-phase

crystalline matter at high temperature. Journal of Materials Science,

11(8):1542–1566, Aug 1976.

236



Bibliography

[16] T. Takaki, A. Yamanaka, and Yoshihiro Tomita. Multi-phase-field simu-

lations of dynamic recrystallization during transient deformation. ISIJ

International, 51(10):1717–1723, 2011.

[17] T. Takaki, T. Hirouchi, Y. Hisakuni, A. Yamanaka, and Y. Tomita. Multi-

phase-field model to simulate microstructure evolutions during dy-

namic recrystallization. MATERIALS TRANSACTIONS, 49(11):2559–

2565, 2008.

[18] I. Steinbach and F. Pezzolla. A generalized field method for multiphase

transformations using interface fields. Physica D: Nonlinear Phenomena,

134(4):385 – 393, 1999.

[19] S. G. Kim, D. I. Kim, W. T. Kim, and Y. B. Park. Computer simulations

of two-dimensional and three-dimensional ideal grain growth. Phys.

Rev. E, 74:061605, Dec 2006.

[20] H. Hallberg. Approaches to modeling of recrystallization. Metals, spe-

cial issue on ´́ Processing and Properties of Bulk Nanostructured Materi-

als´́ , 1(1):16–48, 2011.

[21] J.E. Burke and D. Turnbull. Recrystallization and grain growth. Progress

in Metal Physics, 3:220 – 292, 1952.

[22] H.V. Atkinson. Overview no. 65: Theories of normal grain growth in

pure single phase systems. Acta Metallurgica, 36(3):469 – 491, March

1988.

237



BIBLIOGRAPHY

[23] O. Hunderi and N. Ryum. The kinetics of normal grain growth. Journal

of Materials Science, 15(5):1104–1108, May 1980.

[24] M Hillert. On the theory of normal and abnormal grain growth. Acta

Metallurgica, 13(3):227 – 238, March 1965.

[25] P. Feltham. Grain growth in metals. Acta Metallurgica, 5(2):97 – 105,

February 1957.

[26] N.P Louat. On the theory of normal grain growth. Acta Metallurgica,

22(6):721 – 724, June 1974.

[27] M.P Anderson, D.J Srolovitz, G.S Grest, and P.S Sahni. Computer simu-

lation of grain growth - i. kinetics. Acta Metallurgica, 32(5):783 – 791,

May 1984.

[28] N. Gao and T.N. Baker. Austenite grain growth behavior of microal-

loyed al-v-n and al-v-ti-n steels. ISIJ International, 38(7):744–751,

1998. Iron and Steel Inistitute of Japan.

[29] G. Abbruzzese and K. Lücke. A theory of texture controlled grain

growth – i. derivation and general discussion of the model. Acta Met-

allurgica, 34(5):905 – 914, May 1986.

[30] G. Gottstein. Physical Foundations of Materials Science. Springer, 2005.

[31] D. G. Cole, P. Feltham, and E. Gillam. On the Mechanism of Grain

Growth in Metals, with Special Reference to Steel. Proceedings of the

Physical Society B, 67:131–137, February 1954.

238



Bibliography

[32] K. Lücke and H.P. Stüwe. On the theory of grain boundary motion. In

L. Himmel, editor, Recovery and Recrystallization of Metals, pages 171–

210. New York: Interscience, Oxford, 1963.

[33] C.H.J. Davies. Growth of nuclei in a cellular automaton simulation of

recrystallisation. Scripta materialia, 36(1):35–40, 1997.

[34] Y.J. Lan, D.Z. Li, and Y.Y. Li. A mesoscale cellular automaton model

for curvature-driven grain growth. Metallurgical and Materials Trans-

actions B, 37(1):119–129, 2006.

[35] C. Zheng, N. Xiao, D. Li, and Y. Li. Mesoscopic modeling of austenite

static recrystallization in a low carbon steel using a coupled simulation

method. Computational Materials Science, 45(2):568 – 575, 2009.

[36] C. Zheng, N. Xiao, L. Hao, D. Li, and Y. Li. Numerical simulation of dy-

namic strain-induced austenite–ferrite transformation in a low carbon

steel. Acta Materialia, 57(10):2956 – 2968, 2009.

[37] F. Han, B. Tang, H. Kou, J. Li, and Y. Feng. Cellular automata

simulations of grain growth in the presence of second-phase parti-

cles. Modelling and Simulation in Materials Science and Engineering,

23(6):065010, 2015.

[38] R. Ding and Z.X. Guo. Microstructural modelling of dynamic recrystalli-

sation using an extended cellular automaton approach. Computational

Materials Science, 23(1):209 – 218, 2002.

239



BIBLIOGRAPHY

[39] G. Kugler and R. Turk. Modeling the dynamic recrystallization under

multi-stage hot deformation. Acta Materialia, 52(15):4659 – 4668,

2004.

[40] F.J. Humphreys. A unified theory of recovery, recrystallization and

grain growth, based on the stability and growth of cellular microstruc-

tures—i. the basic model. Acta Materialia, 45(10):4231 – 4240, 1997.

[41] H. Hallberg, B. Svendsen, T. Kayser, and M. Ristinmaa. Microstructure

evolution during dynamic discontinuous recrystallization in particle-

containing cu. Computational Materials Science, 84(Supplement C):327

– 338, 2014.

[42] H. Hallberg, M. Wallin, and M. Ristinmaa. Simulation of discontinu-

ous dynamic recrystallization in pure cu using a probabilistic cellular

automaton. Computational Materials Science, 49(1):25 – 34, 2010.

[43] H. J. Frost and M. F. Ashby. Deformation-Mechanism Maps: The Plastic-

ity and Creep of Metals and Ceramics. Pergamon Press, 1982.

[44] W.A. Johnson and R.F. Mehl. Trans. In AIME, volume 135, page 416,

1939.

[45] A.N. Kolmogorov et al. An kolmogorov, bull. acad. sci. ussr, phys. ser.

3, 355 (1937). Bull. Acad. Sci. USSR, Phys. Ser., 3:355, 1937.

[46] M. Avrami. Kinetics of phase change. i general theory. The Journal of

chemical physics, 7(12):1103–1112, 1939.

240



Bibliography

[47] W. T. Read and W. Shockley. Dislocation models of crystal grain bound-

aries. Phys. Rev., 78:275–289, May 1950.

[48] M. L. Holzwoorth P. A. Beck and P. R. Sperry. Effect of a dispersed

second phase on grain growth in al-mn alloys. Transactions of the Met-

allurgical Society AIME, 180:163–192, 1949.

[49] C. S. Smith. Some elementary principles of polycrystalline microstruc-

ture. Metallurgical Reviews, 9(1):1–48, January 1964.

[50] F. N. Rhines, K. R. Craig, and R. T. DeHoff. Mechanism of steady-state

grain growth in aluminum. Metallurgical Transactions, 5(2):413–425,

February 1974.

[51] J. B. Salem and S. Wolfram. Thermodynamics and hydrodynamics with

cellular automata. Thinking Machines Corp. Tech. Rep. Series, 1985.

[52] S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys.,

55(3):601–644, July 1983.

[53] S. Wolfram. Computation theory of cellular automata. Communications

in Mathematical Physics, 96(1):15–57, 1984.

[54] D. Raabe. Computational Materials Science. The simulation of Materials

Microstructure and Properties. Wiley-Vch, 1998.

[55] V. K. Vanag. Study of spatially extended dynamical systems using prob-

abilistic cellular automata. Physics-Uspekhi, 42(5):413, 1999.

241



BIBLIOGRAPHY

[56] O. M., A.M. Odlyzko, and S. Wolfram. Algebraic properties of cellular

automata. Communications in Mathematical Physics, 93(2):219–258,

1984.

[57] S. Wolfram. Universality and complexity in cellular automata. Physica

D: Nonlinear Phenomena, 10(1-2):1–35, 1984.

[58] S. Wolfram. Undecidability and intractability in theoretical physics.

Phys. Rev. Lett., 54(8):735–738, February 1985.

[59] N.H. Packard and S. Wolfram. Two-dimensional cellular automata.

Journal of Statistical Physics, 38(5-6):901–946, March 1985.

[60] S. Wolfram. Origins of randomness in physical systems. Phys. Rev. Lett.,

55(5):449–452, July 1985.

[61] D.J. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S. Grest. Computer

simulation of grain growth—ii. grain size distribution, topology, and

local dynamics. Acta Metallurgica, 32(5):793 – 802, May 1984.

[62] D.J. Srolovitz, G.S. Grest, and M.P. Anderson. Computer simula-

tion of grain growth—v. abnormal grain growth. Acta Metallurgica,

33(12):2233 – 2247, December 1985.

[63] D.J. Srolovitz, G.S. Grest, and M.P. Anderson. Computer simulation of

recrystallization—i. homogeneous nucleation and growth. Acta Metal-

lurgica, 34(9):1833 – 1845, September 1986.

242



Bibliography

[64] S. G. R. Brown and J. A. Spittle. Computer simulation of grain growth

and macrostructure development during solidification. Materials Sci-

ence and Technology, 5(4):362–368, 1989.

[65] J.A. Spittle and S.G.R. Brown. A computer simulation of the influence

of processing conditions on as-cast grain structures. Journal of Materi-

als Science, 24(5):1777–1781, 1989.

[66] J.A Spittle and S.G.R Brown. Computer simulation of the effects of

alloy variables on the grain structures of castings. Acta Metallurgica,

37(7):1803 – 1810, 1989.

[67] S.G.R. Brown and J.A. Spittle. Rule-based lattice computer models

for simulating dendritic growth. Scripta Metallurgica et Materialia,

27(11):1599 – 1603, 1992.

[68] S.G.R. Brown, T. Williams, and J.A. Spittle. A cellular automaton model

of the steady-state "free" growth of a non-isothermal dendrite. Acta

Metallurgica et Materialia, 42(8):2893 – 2898, 1994.

[69] S. G. R. Brown, G. P. Clarke, and A. J. Brooks. Morphological varia-

tions produced by cellular automaton model of non-isothermal ‘free’

dendritic growth. Materials Science and Technology, 11(4):370–374,

1995.

[70] J.A. Spittle and S.G.R. Brown. A cellular automaton model of steady-

state columnar-dendritic growth in binary alloys. Journal of Materials

Science, 30(16):3989–3994, 1995.

243



BIBLIOGRAPHY

[71] P. Zhu and R.W. Smith. Dynamic simulation of crystal growth by monte

carlo method—i. model description and kinetics. Acta Metallurgica et

Materialia, 40(4):683 – 692, 1992.

[72] M. Rappaz and Ch.-A. Gandin. Probabilistic modelling of microstruc-

ture formation in solidification processes. Acta Metallurgica et Materi-

alia, 41(2):345 – 360, 1993.

[73] Ch.-A. Gandin, M. Rappaz, and R. Tintillier. Three-dimensional proba-

bilistic simulation of solidification grain structures: Application to su-

peralloy precision castings. Metallurgical Transactions A, 24(2):467–

479, 1993.

[74] Ch.-A. Gandin and M. Rappaz. A coupled finite element-cellular au-

tomaton model for the prediction of dendritic grain structures in solid-

ification processes. Acta Metallurgica et Materialia, 42(7):2233 – 2246,

1994.

[75] Ch.-A Gandin and M Rappaz. A 3d cellular automaton algorithm for

the prediction of dendritic grain growth. Acta Materialia, 45(5):2187

– 2195, 1997.

[76] Ch.-A. Gandin, J.-L. Desbiolles, M. Rappaz, and Ph. Thevoz. A three-

dimensional cellular automation-finite element model for the predic-

tion of solidification grain structures. Metallurgical and Materials Trans-

actions A, 30(12):3153–3165, 1999.

[77] Ch.-A. Gandin. Stochastic modeling of dendritic grain structures. Ad-

vanced Engineering Materials, 3(5):303–306, 2001.

244



Bibliography

[78] M.B. Cortie. Simulation of metal solidification using a cellular automa-

ton. Metallurgical Transactions B, 24(6):1045–1053, 1993.

[79] H.W. Hesselbarth and I.R. Göbel. Simulation of recrystallization by

cellular automata. Acta Metallurgica et Materialia, 39(9):2135 – 2143,

1991.

[80] C.H.J. Davies. The effect of neighbourhood on the kinetics of a cellular

automaton recrystallisation model. Scripta Metallurgica et Materialia,

33(7):1139 – 1143, October 1995.

[81] C.F. Pezzee and D.C. Dunand. The impingement effect of an inert,

immobile second phase on the recrystallization of a matrix. Acta Met-

allurgica et Materialia, 42(5):1509 – 1524, May 1994.

[82] R.K. Shelton and D.C. Dunand. Computer modeling of particle push-

ing and clustering during matrix crystallization. Acta Materialia,

44(11):4571 – 4585, 1996.

[83] C.H.J. Davies and L. Hong. The cellular automaton simulation of

static recrystallization in cold-rolled {AA1050}. Scripta Materialia,

40(10):1145 – 1150, 1999.

[84] V. Marx, D. Raabe, O. Engler, and G. Gottstein. Simulation of the tex-

ture evolution during annealing of cold rolled bcc and fcc metals using

a cellular automation approach. Texture, Stress, and Microstructure,

28(3-4):211–218, 1997.

245



BIBLIOGRAPHY

[85] V. Marx, F.R. Reher, and G. Gottstein. Simulation of primary recrystal-

lization using a modified three-dimensional cellular automaton. Acta

Materialia, 47(4):1219 – 1230, March 1999.

[86] D. Raabe, F. Roters, and V. Marx. Experimental investigation and nu-

merical simulation of the correlation of recovery and texture in bcc

metals and alloys. Textures and Microstructures, 27(1):611, 1996.

[87] D. Raabe. Introduction of a scalable three-dimensional cellular au-

tomaton with a probabilistic switching rule for the discrete mesoscale

simulation of recrystallization phenomena. Philosophical Magazine A,

79(10):2339–2358, 1999.

[88] R.L. Goetz and V. Seetharaman. Static recrystallization kinetics with

homogeneous and heterogeneous nucleation using a cellular automata

model. Metallurgical and Materials Transactions A, 29(9):2307–2321,

September 1998.

[89] R.A. Vandermeer and R.A. Masumura. The microstructural path of

grain-boundary-nucleated phase transformations. Acta Metallurgica et

Materialia, 40(4):877 – 886, April 1992.

[90] R.L. Goetz and V. Seetharaman. Modeling dynamic recrystallization

using cellular automata. Scripta Materialia, 38(3):405–413, 1998.

[91] D. Raabe. Cellular automata in materials science with particular ref-

erence to recrystallization simulation. Annual review of materials re-

search, 32(1):53–76, 2002.

246



Bibliography

[92] D. Raabe and R. C. Becker. Coupling of a crystal plasticity finite-

element model with a probabilistic cellular automaton for simulating

primary static recrystallization in aluminium. Modelling and Simulation

in Materials Science and Engineering, 8(4):445, 2000.

[93] D. Raabe and L. Hantcherli. 2d cellular automaton simulation of the

recrystallization texture of an {IF} sheet steel under consideration of

zener pinning. Computational Materials Science, 34(4):299 – 313, De-

cember 2005.

[94] D. Raabe. Yield surface simulation for partially recrystallized aluminum

polycrystals on the basis of spatially discrete data. Computational Ma-

terials Science, 19(1-4):13 – 26, 2000.

[95] A.D. Rollett and D. Raabe. A hybrid model for mesoscopic simulation

of recrystallization. Computational Materials Science, 21(1):69 – 78,

May 2001.

[96] L. Zhang, C.B. Zhang, X.H. Liu, G.D. Wang, Y.M. Wang, et al. Modeling

recrystallization of austenite for c-mn steels during hot deformation by

cellular automaton. J. Mater. Sci. Technol., 18(2), 2002.

[97] J.A. Spittle and S.G.R. Brown. A 3d cellular automaton model of cou-

pled growth in two component systems. Acta Metallurgica et Materialia,

42(6):1811 – 1815, June 1994.

[98] Y. Liu, T. Baudin, and R. Penelle. Simulation of normal grain growth by

cellular automata. Scripta Materialia, 34(11):1679 – 1683, June 1996.

247



BIBLIOGRAPHY

[99] M. Kumar, R. Sasikumar, and P. Kesavan Nair. Competition between

nucleation and early growth of ferrite from austenite - studies using

cellular automaton simulations. Acta Materialia, 46(17):6291 – 6303,

1998.

[100] S.G.R. Brown. Simulation of diffusional composite growth using the

cellular automaton finite difference (cafd) method. Journal of Materials

Science, 33(19):4769–4773, 1998.

[101] J. Geiger, A. Roosz, and P. Barkoczy. Simulation of grain coarsening in

two dimensions by cellular-automaton. Acta Materialia, 49(4):623 –

629, February 2001.

[102] W. Yu. Cellular automata modelling of austenite grain coarsening during

reheating. PhD thesis, University of Sheffield (United Kingdom), 2002.

[103] W. Yu, C.D. Wright, S.P. Banks, and E.J. Palmiere. Cellular automata

method for simulating microstructure evolution. Science, Measurement

and Technology, IEE Proceedings -, 150(5):211–213, Sept 2003.

[104] E.J. Palmiere and S.P. Banks. Cellular automata modelling of grain

coarsening during reheating and validation with the experimental re-

sults. Acta Metallurgica Sinica (English Letters), 2:004, 2005.

[105] Y. J. Lan, D. Z. Li, C. J. Huang, and Y. Y. Li. A cellular automaton

model for austenite to ferrite transformation in carbon steel under non-

equilibrium interface conditions. Modelling and Simulation in Materials

Science and Engineering, 12(4):719, 2004.

248



Bibliography

[106] C. Zheng, N. Xiao, D. Li, and Y. Li. Microstructure prediction of

the austenite recrystallization during multi-pass steel strip hot rolling:

A cellular automaton modeling. Computational Materials Science,

44(2):507 – 514, 2008.

[107] K.G.F. Janssens, J.N. Reissner, and F. Vanini. Thermodynamic and ki-

netic coupling of a random grid cellular automaton for the simulation

of grain growth. Advanced Engineering Materials, 4(4):200–202, 2002.

[108] K. G. F. Janssens, D. Raabe, E. Kozeschnik, M. A. Miodownik, and B.

Nestler. Computational materials engineering: an introduction to mi-

crostructure evolution. Academic Press, 2010.

[109] K. G F Janssens. Random grid, three-dimensional, space-time cou-

pled cellular automata for the simulation of recrystallization and grain

growth. Modelling and Simulation in Materials Science and Engineering,

11(2):157, March 2003.

[110] Ye. Vertyagina, M. Mahfouf, and X. Xu. 3d modelling of ferrite and

austenite grain coarsening using real-valued cellular automata based

on transition function. Journal of Materials Science, 48(16):5517–5527,

August 2013.

[111] Ye. Vertyagina and M. Mahfouf. A 3d cellular automata model of

the abnormal grain growth in austenite. Journal of Materials Science,

50(2):745–754, January 2015.

[112] B. Zhu, Y. Zhang, C. Wang, P. Liu, W.K. Liang, and J. Li. Modeling of

the austenitization of ultra-high strength steel with cellular automation

249



BIBLIOGRAPHY

method. Metallurgical and Materials Transactions A, 45(7):3161–3171,

2014.

[113] C. Zheng, D. Raabe, and D. Li. Prediction of post-dynamic austenite-to-

ferrite transformation and reverse transformation in a low-carbon steel

by cellular automaton modeling. Acta Materialia, 60(12):4768 – 4779,

2012. 2012.

[114] T. Zhou, R.J. O’malley, and H.S. Zurob. Study of grain-growth kinetics

in delta-ferrite and austenite with application to thin-slab cast direct-

rolling microalloyed steels. Metallurgical and Materials Transactions A,

41(8):2112–2120, August 2010.

[115] K. Kremeyer. Cellular automata investigations of binary solidification.

Journal of Computational Physics, 142(1):243 – 263, 1998.

[116] H. Yang, C. Wu, H.W. Li, and X.G. Fan. Review on cellular automata

simulations of microstructure evolution during metal forming process:

Grain coarsening, recrystallization and phase transformation. Science

China Technological Sciences, 54(8):2107–2118, Aug 2011.

[117] O. I. Frette, G. Virnovsky, and D. Silin. Estimation of the curvature of

an interface from a digital 2d image. Computational Materials Science,

44(3):867 – 875, 2009.

[118] J.W. Bullard, E.J. Garboczi, W.C. Carter, and E.R. Fuller. Numerical

methods for computing interfacial mean curvature. Computational Ma-

terials Science, 4(2):103 – 116, 1995.

250



Bibliography

[119] N. Xiao, C. Zheng, D. Li, and Y. Li. A simulation of dynamic recrys-

tallization by coupling a cellular automaton method with a topology

deformation technique. Computational Materials Science, 41(3):366 –

374, 2008.

[120] N. Yazdipour, C.H.J. Davies, and P.D. Hodgson. Microstructural model-

ing of dynamic recrystallization using irregular cellular automata. Com-

putational Materials Science, 44(2):566 – 576, 2008.

[121] J. Kari. Reversibility and surjectivity problems of cellular automata.

Journal of Computer and System Sciences, 48(1):149 – 182, 1994.

[122] J. Kari. Reversibility of 2d cellular automata is undecidable. Physica D:

Nonlinear Phenomena, 45(1):379 – 385, 1990.

[123] N. Margolus. Physics-like models of computation. Physica D: Nonlinear

Phenomena, 10(1):81 – 95, 1984.

[124] J. K. Mackenzie and M. J. Thomson. Some statistics associated with the

random disorientation of cubes. Biometrika, 44(1-2):205–210, 1957.

[125] J. K. Mackenzie. Second paper on statistics associated with the random

disorientation of cubes. Biometrika, 45(1/2):229–240, 1958.

251


	List of Figures
	List of Tables
	Abbreviations
	Nomenclature
	Introduction
	Motivation
	Aims and Objectives
	Outline of Thesis
	Summary of Contributions


	Background: theory of recrystallization, grain growth and simulation techniques
	Nucleation
	Mechanism of nucleation for dynamic recrystallization
	Dislocation density evolution: The KM model
	Critical dislocation density
	Nucleation rate

	Recrystallization
	Mean field theories
	Driving forces for recrystallization
	Mobility and boundary migration
	Primary recrystallization kinetics

	Grain growth following recrystallization
	The Turnbull rate equation

	Theory of Cellular Automata
	Definition of CA
	Properties of CA
	Classification of CA
	2D CA

	Historical review of CA models applied for computer simulation of the recrystallization and grain growth processes
	Solidification processes
	Static and dynamic recrystallization
	Nucleation and grain growth (normal and abnormal)

	State-of-the-Art
	Summary

	Modelling of a Single Grain - Separate Driving Forces
	Modified LTF functions
	Comparison with the experimental data
	Motivation of study on a single grain

	Analytical solutions
	Constant dislocation density jump
	Evolving dislocation density jump
	Curvature driven grain shrinkage

	Algorithm testing for simulation of single grain shrinkage at different driving forces
	Simulation of a single grain shrinkage driven by constant dislocation density pressure
	Evolving dislocation density. Time increment for CA
	Simulation of a single grain shrinkage driven by curvature
	Number of iterations

	The probabilistic version of developed CA technique
	Simulation of a single grain shrinkage driven by curvature using developed PCA algorithm

	Summary

	Modelling of a Single Grain - The Coupled Driving Forces
	Analytical solutions
	Single grain shrinkage due to constant dislocation density jump and curvature
	Single grain shrinkage due to evolving dislocation density jump and curvature

	Algorithm testing for simulation of a single grain shrinkage driven by different driving forces
	Simulation of a single grain shrinkage simultaneously driven by the constant dislocation density jump and curvature using a developed algorithm
	Simulation of a single grain shrinkage simultaneously driven by the evolving dislocation density jump and curvature using a developed algorithm

	Probabilistic CA technique testing for simulation of a single grain shrinkage driven by the coupled driving forces
	Simulation of a single grain shrinkage simultaneously driven by the constant dislocation density jump and curvature driven forces using developed PCA algorithm
	Simulation of a single grain shrinkage simultaneously driven by the evolving dislocation density jump and curvature driven forces using developed PCA algorithm

	Summary

	On Time Symmetry of CA Based Techniques
	Time symmetry of the grain growth-shrinkage driven by curvature
	Time symmetry of the grain shrinkage-growth driven by dislocation density jump
	The nature of errors in 2D simulations of grain growth driven by dislocation density jump
	Adjusted velocity
	Corrected Moore-type neighbourhood
	Margolus-type neighbourhood

	Summary

	Conclusions and Future Work
	Conclusions
	Future Recommended Work

	CA rules
	Misorientation calculations
	Example of MATLAB code for 2D simulation of a single grain shrinkage due to evolving dislocation density jump
	Main Program
	PhysicalConstants
	Makecircle
	BorderChange
	Direction
	CalculateGrainSize

	Run Simulation
	Run
	v_max_fun
	DynamicGrowth
	DG
	curvature_f
	Direction2


	Bibliography

