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ABSTRACT  
 

The increasing demands on lightweight materials in the aerospace industry led to expansion in 

the use of carbon fibre composite laminates. Carbon fibre composite laminates have attracted 

the aerospace industry due to their high specific properties. While carbon fibre composite lami-

nates have shown excellent resilience for most types of loads, it can be vulnerable to impact 

events. This in turn led designers to increase safety factors for carbon fibre composite lami-

nates. This increases the costs of adopting components made of carbon fibre composite lami-

nates. The need for unconventional carbon fibre composite laminates has emerged to improve 

the reliability and safety of carbon fibre composite laminates components and decrease the 

costs. This thesis presents the results of the development of electrical self – sensing carbon 

fibre composite laminate panels which can detect, locate and quantify damage due to impact 

events. The main aims are boosting the reliability, decreasing the costs of composite compo-

nents by decreasing safety factors and reducing unnecessary inspection costs and unsched-

uled maintenance.  

The current electrical sensing system uses a four – probe electrical resistance method, where 

the electrical current was injected into the carbon fibre composite laminate panels through two 

electrodes (outer electrodes) and the voltage was measured between inner electrodes (sensing 

electrodes). The sensing system was tested on two types of woven fabric carbon fibre rein-

forced – epoxy composite laminate panels. These panels were fabricated using the autoclave 

processing and vacuum assisted resin transfer moulding techniques. The electrical sensing sys-

tem uses two sensing mats that are sensing mat 1 and sensing mat 2, the main difference 

between them being the size of the electrodes and the distance between the electrodes. Electri-

cal contact between the sensing mats and the carbon fibre composite laminate panels was 

made using a Silver – Epoxy conductive adhesive, where the sensing mats attached to the bot-

tom surface of the panels.  

To investigate the damage sensitivity of the sensing system for carbon fibre composite laminate 

panels fabricated by both the autoclave processing and the vacuum assisted resin transfer 

moulding technique, the panels with various thicknesses from 0.84 – 3.5 mm, were impacted at 

0.409 – 10 J to generate barely visible impact damage, the impact energy required was esti-

mated so as to cause barely visible impact damage.  
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It was found that due to occurrence of damage the electrical resistance changed, the degree of 

the electrical resistance change depends on the damage size and type. C – scan, optical and 

fluorescent microscopic images were adopted to identify the damage type, damage size, and 

damage extent and to validate discussions. Further calculations to estimate energy required to 

cause fibre breakage were conducted using data obtained from standard tensile and flexural 

tests. It was found that the sensitivity of the current sensing system decreases when the panel 

thickness increases, and this imposed a new challenge on the current sensing system. With the 

help of C – scan data a relationship between change in electrical resistance and the damage 

area was found and an inverse analysis was undertaken, where the size of damage was pre-

dicted from changes in electrical resistance. The sensing system demonstrated its capabilities 

in detecting, locating and quantifying damage in woven fabric carbon fibre reinforced – epoxy 

composite laminates panels. The current sensing system can also monitor changes in the elec-

trical resistance due to deflection, however the electrical resistance changes were reversible.  
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NOMENCLATURE 

NOMENCLATURE  
Acronyms  

Alternative current (AC) 

Analogue to digital converter (ADC) 

Autoclave processing panel that is made of four plies (AB) 

Autoclave processing panel that is made of eight plies (AC) 

Autoclave processing panel that is made of twelve plies (AD) 

Autoclave processing panel that is made of sixteen plies (AE) 

Barely visible impact damage (BVID) 

Bisphenol A Epichlorohydrin (DGEBA)  

Catalytic chemical vapour deposition (CCVD) 

Carbon fibre composite laminate (CFRP) 

Contrary (contra) 

Complementary (comp)  

Data acquisition system (DAQ) 

Degree of cure (DOC) 

Direct current (DC) 

Differential scanning calorimetry (DSC) 

Digital signal processor (DSP) 

Extrinsic Fabry – Perot interferometric (EFPI) 

Extruded polyacrylonitrile (ex – PAN) 

Flexible circuit board (FCB) 

Fibre Bragg grating (FBG) 

Grip at grip top (GAT) 

Lateral gage various (LGV) 

Lateral gage middle (LGM)  

Lateral gage middle (LGM)  

Lateral gage middle (LGM) 

Tension and compression at the loading nose top and bottom (TAB) (CAT)  

Tension at the loading nose bottom (TAB) 

Ultimate tensile strength (UTS) 

Ultraviolet (UV) 
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Vacuum assisted resin transfer moulding processed panel that is made of four plies (VB) 

Vacuum assisted resin transfer moulding processed panel that is made of eight plies (VC) 

Hydroxyl compound (MOH) 

Kinetic energy (KE) 

Non – destructive test (NDT) 

Non – destructive evaluation (NDE) 

Out of autoclave (OoA) 

Polytetrafluoroethylene (PTFE) 

Resin transfer moulding (RTM) 

Revolutions per minute (RPM) 

Silicon carbide (SiC) 

Polyacrylonitrile (PAN) 

Potential Energy (PE) 

Scanning electron microscope (SEM) 

Vacuum assisted resin transfer moulding (VARTM) 

Volatile organic compounds (VOC)  

 

Superscript  

o Degrees  

 

Greek symbols  

η Electrical resistivity 

ηc Electrical resistivity of composite  

ηf Electrical resistivity of fibre  

ηm Electrical resistivity of matrix  

 ηt Through – thickness electrical conductivity 

σ11 Normal stress in the fibre direction  

σ13 Shear stress in the longitudinal direction  

σ22 Normal stress in transverse direction 

σ23 Shear stress in the transverse direction  

σf Flexural stress  

εf Flexural strain 

βo Heating or cooling rate 

Ψ Universal gas constant  

µo Viscosity constant 



VII 
 

 
 

µ Viscosity  

δ Deflection  

ρ Density of carbon fibre composite laminate 

ρsp Relative density of carbon fibre composite laminate 

wp Weight of the pan 

φf Fibre content  

φr Resin content  

φv Void content  

ρf Density of the carbon fibre 

ρr Density of the resin 

β1 Regression coefficient  

κ Impact damaged area 

ξ Global electrical resistance  

 

Roman symbols  

A cross section area 

a Weight of the specimen in air 

b Weight of the specimen in the water 

Сc Electrical conductance of composite  

Сm Electrical conductance of matrix 

Сf Electrical conductance of fibre 

E Young’s modulus 

E Activation energy  

Ep Potential energy   

Ef Flexural Modulus  

V Voltage  

I Current  

m Mass  

g Gravity force  

h Height  

P Load  

J Current density  

R Electrical resistance  

Ro Electrical resistance before impact 

Ri Electrical resistance after impact 
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w Specimen width  

t Thickness 

Tg Glass transition temperature  

To Starting temperature  

t Time  

L Distance between electrodes  

Vf  Fibre volume fraction  

Vfo Fibre volume fraction at zero compaction pressure 

Vf∞ Ultimate fibre volume fraction at infinite compaction pressure  

wf Fibre mass 
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INTRODUCTION 
omposite materials may be the most advanced materials in 21st century since they allows 

the engineers to not only designing a structure, but also designing the composite material 

itself [1]. These materials have gained their importance from a wide range of applications 

and they have showed indications for wider potential future uses. In the last few decades, an 

enormous amount of studies have been undertaken, which has led to understanding and greater 

utilization of composite materials. The drop in prices of commodities due to technological ad-

vancements, and the advancements in composite materials manufacturing techniques have 

helped to expand their uses [2, 3]. Most present commercial production techniques for both 

composite constituents, i.e. reinforcing elements and matrices, and composite end user prod-

ucts are subjected to competition with conventional materials such as metallic alloys and ce-

ramics. Thereby, the economic importance of composite materials has grown sharply due to 

their increased demands [4, 5]. The assets that composite materials offer such as corrosion 

resistance, workability and tailorability outweigh their counterparts (i.e. metals and ceramics).    

Composite materials have been used in many engineering applications such as civil infrastruc-

ture, automotive, technology, medical, and aerospace industries [6-11]. In civil engineering, the 

maintenance of deteriorated, repair, damaged and substandard civil infrastructure have become 

a major issue for civil engineers worldwide [12]. Continuous carbon fibres are used to improve 

the shear strength of structural components (i.e. beams), and chopped carbon fibres are used 

to improve the mortar strength and reduce crack initiation and propagation [12]. In addition, 

composite materials have been used as a filler to reduce the cost of construction materials 

products such as epoxy mortars. 

The transportation industry is characterised by high demands on high performance compo-

nents, coupled with high service demands, as well as a high safety concern, therefore composite 

materials are expected to play major roles in this industry by applying specific composite mate-

rials for engines, gearboxes, chassis, aerodynamics, and suspensions. It is found that composite 

materials reduce fuel consumption [13], and this can have  positive impacts economically and 

environmentally. Factors such as strength-to-weight ratio, stiffness-to-weight ratio, scalability, 

workability and applicability of composite materials have contributed to expand their uses. For 

example, composite materials have been used extensively in military transportation applications 

such as armoured vehicles and tanks. In addition, composite materials have been used for cos-

metic purposes in the automotive industry [14-17]. 

C 
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Carbon fibre composite materials are deployed increasingly in aeronautical structures [18]. Lam-

inated carbon-fibre composite materials have been used particularly in satellites, helicopters, 

and civil and military aircrafts. These laminated composite materials consist of at least two lay-

ers that are bonded together. Lamination is used to combine the best aspects of the constitu-

ents and bonding materials promoted by lamination are strength, stiffness, low weight, corro-

sion resistance, wear resistance, thermal insulation, acoustical insulation [9, 19].  

However, laminated carbon fibre composite materials are susceptible to different types of dam-

age under different types of loads [20]. Interlaminar cracks, intralaminar cracking and crack-like 

defects are probably the most common types of damage in composite materials [21]. Due to 

the nature of the laminated composite materials, these types of damage can be initiated under 

low amounts of loads. Thereby, the need to develop new composite systems is vital for further 

use of composite materials. As a result, many techniques are under development to detect and 

quantify different types of damage in carbon fibre reinforced polymer (CFRP) laminates.  

Smart sensing composite systems are essential for economic applications of composite com-

ponents as they reduce the costs of maintenance, turnaround time and safety factors. This is 

important because the maintenance costs is the third largest expense after the labour and fuel 

[22]. In addition, the smart sensing composite systems are experiencing a growing interest from 

different communities [23], in particular, the aerospace industry where high operational safety 

factors, minimisation of downtimes, and reduction of structural inspection costs are required. 

For large composite structures, knowing the damage location and severity are desirable. To de-

termine the locations and the dimensions of damage in such complex structures, a reliable test-

ing system needs to be used. Different types of damage, such as delamination, matrix cracking 

and fibre breakage can be detected using different sensing techniques, for instance fibre optics, 

acoustics, thermography or electrical techniques. These techniques are essential in improving 

the reliability, robustness and reducing the cost of using composite materials [24]. Many appli-

cations have deployed self-sensing techniques in practice such as remote monitoring of post-

seismic building for safety where optical fibres were used  [25]. Further details will be discussed 

in the literature review in Chapter 2.    

Sensing techniques may differ in terms of expenses, levels of instrumentation, accuracy and 

robustness required. Many sensing techniques are in development to replace partially or com-

pletely non-destructive evaluation (NDE) techniques [26-29]. The later ones are expensive and 

problematic or not possible to deploy for real time monitoring. Non-destructive testing methods 

such as X-radiographic inspections, optical and fluorescent microscopy, acoustic emissions 

and ultrasonic testing have been used successfully to obtain qualitative data for the determina-

tion of a damage size and location [27, 30]. However, the quantitative characterizations are not 
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straight forward. The main obstacle to expanding the use of the composite material systems is 

that there is no such a monitoring system which is able to provide information about structural 

health status quickly and in a form easy to interpret by the inspectors of the structures.  

The electrical resistance monitoring technique has been studied to monitor strain and identify 

damage in carbon fibre composites [31, 32]. The electrical resistance change technique has 

outweighed other methods as it employs the carbon fibre itself as a sensor to measure the 

changes in electrical resistances and consequently detects damage. Fundamentally, a two-

probe method and a four-probe method are often used in electrical resistance measurements 

for self-sensing in CFRP. The two-probe method means that electrodes introduce an electrical 

current as well as measuring voltage, this method is simple and convenient, but it is sensitive to 

the quality of electrical contacts [33, 34]. The four-probe method injects an electrical current 

through two electrical contacts (normally outer electrodes) on the specimen and measures volt-

age between two different electrodes. This method is more sensitive, accurate and more precise 

than the two-probe method in sensing impact damage and fatigue in CFRPs, it can also present 

to measure subsurface behaviour [35].  

Impact energies introduce different types of damage in CFRP laminates [36]. The types of dam-

age depend on the amount of the impact energy, the type of carbon fibre, the thickness of the 

panel and the stacking sequence. Different types of damage can be observed in CFRP laminates, 

that are matrix cracking, fibre breakage and delamination. Matrix cracking happens in low im-

pact energies (low velocity impact) and it triggers the delamination [37]. The matrix cracking 

causes a small but detectable change in electrical resistance and so does delamination. How-

ever, fibre breakage occurs at high impact energies and causes a significant increase in the 

electrical resistance [38]. In the electrical resistance technique, the carbon fibre works as a sen-

sor, and that has made this technique extremely attractive.  

 

1.1  Aims of the Thesis  

 

The aim of this work is to demonstrate the applicability of the four-probe electrical resistance 

technique in detecting barely visible impact damage in woven fabric reinforced carbon fi-

bre/epoxy composite panels that are fabricated by the vacuum assisted resin transfer moulding 

(VARTM) and the autoclave processing techniques. All aspects pertinent from examining the 

constituents of the carbon fibre/epoxy composite laminates to produce carbon fibre/epoxy 

composite panels will be described in the first instance. The suitability of the sensing technique 
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as an economically viable replacement for conventional non-destructive testing techniques will 

be investigated.  

 

1.2  Outline  

This thesis is structured in the following manner: 

 

Chapter 2: literature Review  

This chapter gives a brief introduction on carbon fibre composite laminates in terms of their 

constituents and fabrication procedures. This chapter also presents the damage problems in 

carbon fibre composite laminates with emphasis on barely visible impact damage (BVID). Then 

it describes the structural response of carbon fibre composite laminates for impact events. 

Smart sensing techniques are reviewed throughout this chapter. Details of the electrical smart 

sensing techniques and the electrical conduction in carbon fibre composite laminates are pro-

vided.  

 

Error! Reference source not found.: Methodology 

This chapter presents materials considered for use in this work, and techniques carried out to 

characterize the materials. Sample preparation along with standard testing methods, machines 

and tools used in this project are described.  

 

Error! Reference source not found.Chapter 4: Results of Characterization Procedures 
for Raw Materials  

This chapter presents and discusses the results for the experiments of the raw materials. It 

discusses the results of differential scanning calorimetry (DSC) to measure the degree of cure 

and the activation energy. Scanning Electron Microscope (SEM) images for carbon fibre fila-

ments are presented and discussed. This chapter ends with discussion of the results of the 

sensing system resistivity.  

 

Chapter 5: Producing Composite Panels 

The first section of this chapter describes the vacuum assisted resin transfer moulding tech-

nique that was used to fabricate the CFRP panels. The second section presents in detail the 



5 
 

 
 

manufacturing of CFRP panels using the autoclave processing technique. The third section de-

tails the manufacturing process for sensing mats. The last section shows how self – sensing 

CFRP panels were produced.  

 

Chapter 6Chapter 6: Examination of Composite Panels 

This chapter aims to address most important characteristics that affect the electrical conduc-

tion in CFRP laminate panels. The first section of this chapter addresses the most critical as-

pects that have a significant effect on the surface, through – thickness, and volume electrical 

conduction of the CFRP laminate panels. Details of the experimental set ups are described. The 

second section of this chapter presents the results and discussions and provides a platform for 

further discussion in Chapter 7.   

 

Chapter 7: Damage Generation and Damage Detection in Composite Panels 

This chapter has three sections; the first section details the generation of barely visible impact 

damage in the CFRP laminate panels. The second section describes the use of a surface elec-

trical resistance method to detect, quantify, and locate damage. In this section as well, a through 

– thickness electrical resistivity and electrical conductivity and surface electrical resistance are 

measured and described in this chapter to support the discussions. The last section presents 

results and discussions where parameters that effect the electrical resistance sensing tech-

nique, are plotted against the change in electrical resistance and a conclusion is drawn.  

 

Chapter 8: Conclusion and Future Work 

This chapter summarises the most important findings of this work as well as the contribution 

to the knowledge and presents ideas for future work.  
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LITERATURE REVIEW 
his chapter introduces carbon fibre composite laminates as a function of their constit-

uents, which are a reinforcing element and a matrix. It provides details about different 

manufacturing techniques that are being used to fabricate carbon fibre composite lam-

inates. This chapter also addresses the most common damage problems that may 

occur in carbon fibre composite laminates and presents a detailed review about non-destructive 

testing and smart sensing: optical methods, tomography, acoustic methods and electrical meth-

ods. The smart materials section is particularly focused on the electrical methods, which make 

up the subject of the rest of the thesis. Details of most important aspects that govern the elec-

trical methods such as types of carbon fibres, laminate thicknesses, and types of electrical con-

tacts are provided. The electrical conduction principles in carbon fibres are mentioned briefly in 

this chapter, alongside piezoresistivity of carbon fibres and electrical conduction mechanisms 

in carbon fibre composite laminates. The electrical resistance sensing technique is highlighted 

in the last section of this chapter, as it is the means that is used to detect damage in this work. 

 

2.1  Constituents and Manufacture  

2.1.1  Dry Carbon Fibre  

Carbon fibre holds a unique place in modern industries as it is a possible solution when fuel 

consumption optimisation and light weight structures are required [13]. Products made of car-

bon fibres are considered as life time products since they have a high fatigue life [39, 40]. This 

property along with other key properties, such as light weight, high strength and high stiffness 

have encouraged industries, such as aviation, automotive and renewable energy industries to 

adopt composites in their products. That in turn has expanded the market share for the compo-

site industry [41].  

Carbon fibres can be classified depending on a precursor (the starting polymer) and a manufac-

turing technique. For instance, carbon fibres can be produced by extruding an organic precursor, 

such as polyacrylonitrile (ex – PAN), pitch (ex – pitch) and rayon, through a nozzle into continu-

ous filaments, followed by graphitization at temperatures up to 3500oC to convert polymer 

chains to graphite sheets. There are other four techniques for producing carbon fibres that are 

catalytic chemical vapour deposition (CCVD), carbon coated filaments, filaments produced from 

T 
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carbon arcs, and ion bombardments [42, 43], all of which produce graphite sheets with no need 

for a further heat treatment.  

The present work focuses on aerospace applications for CFRP where continuous carbon fibres 

with low modulus (200 – 300 GPa) and high strength (5.8 GPa) are required, as a result, PAN-

based carbon fibres were chosen. For the time being the predominant raw material for carbon 

fibres in the market is Polyacrylonitrile. Polyacrylonitrile is easy to be spun into highly oriented 

carbon fibres. PAN-based carbon fibres turn out to be more economical due to a low cost pre-

cursor and a simple fabrication technique [44]. Polyacrylonitrile (C3H3N)n, which has been used 

on a commercial scale, is a copolymer [45]. Thus, the carbon fibres are collective of highly or-

dered and amorphous zones of their precursors as shown in Figure 2-1. 

 

Figure 2-1: Schematic model of PAN-based fibre transverse cross-section [46].  

 

2.1.2  Epoxy Resins 

Another element in CFRP laminates is a matrix. In the aerospace industry, matrices used, are 

mostly epoxy and phenolic resins due to their desirable mechanical properties such as tensile, 

compression and toughness properties [47]. This is despite that fact that epoxy resins are more 

expensive than many other resins, but their high glass transition temperature has helped to in-

crease their usage. The relative size of the market for epoxy resins is 12% relative to the overall 

resins market, but only 7.5% of this amount is used as reinforced resins [48]. The global epoxy 

market is predicted to reach $17bn by 2018 [5].  

Epoxy resins can be synthesised by many ways that are described in detail in [48, 49]. Reacting 

a halohydrin with hydroxyl compounds to manufacture epoxy rings are the most important 
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routes as shown in Figure 2-2. The figure shows epichlorohydrin reacts with hydroxyl com-

pounds like phenols or aliphatic alcohols. MOH may vary, it could be potassium or sodium hy-

droxide. MOH is important to neutralize a halogen acid that is HCl in this reaction, when the 

epoxy ring is formed. Therefore, MOH should be used in a stoichiometric concentration. Details 

about epoxy types used in this work along with their physical and mechanical properties will be 

presented in Section 3.1.1 

 

 

Figure 2-2: Synthesising epoxy resin from reacting epichlorohydrin with hydroxyl compounds in the pres-
ence of a catalyst.   

 

Curing agents or hardeners are essential to convert liquid resins to hard and infusible thermoset 

networks, as they promote cross-linkings of epoxy resins [50]. There are many types of curing 

agents that are available in the market. The final properties of epoxy resins determine the type 

curing agent required. Amines are the most popular curing agents that are used with epoxy res-

ins [51]. Amine curing agents are classified according to hydrocarbons involved, they can be 

aliphatic, alicyclic, and aromatic amines.  

Aliphatic amines are used to cure epoxy resins at room temperature, it generates large quanti-

ties of heat and it has low usable time [48]. Cured epoxy resins have very good mechanical prop-

erties, high bonding properties and heat resistance up 100oC, Figure 2-3. The figure shows that 

the active hydrogen in primary amine reacts with an epoxy group that lead to form a secondary 

amine that in turn reacts to with an epoxy group to cure. The last stage is the polymerization 

process that occurs when a tertiary amine reacts with an epoxy group. The aromatic amines 

have been developed to achieve high heat resistance and chemical resistance [52]. The curing 

process initiates at room temperature; however epoxy resins require post curing, the first stage 

is carried out at 80oC to lessen heat generation then heating to a high temperature 150-170oC. 
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Figure 2-3: Shows the curing stages of an epoxy resin by an amine hardener [53]. 

 

There are more than eight types of curing agents that are used to achieve certain mechanical, 

physical, and chemical properties [50]. The suitability of a curing agent is a subject to environ-

ment conditions, applications, pot life, and other factors. In most cases, the curing agents are 

mixed with diluents, coupling agents, fillers, and other agents to improve the curing process or 

the properties of cured resins.  

 

2.1.3  Pre-impregnated Carbon Fibres (prepreg)  

Carbon fibre prepreg consists of a reinforcement element (carbon fibres) pre-impregnated with 

a resin matrix (either a thermosetting or thermoplastic matrix) in a controlled ratio [54, 55]. The 

resin system is partially cured (B-stage) to allow ease of handling [56]. The prepreg materials, 

mainly carbon fibres, are widely used in the aerospace industry [56]. The components that are 

made of prepreg offer higher mechanical properties than their equivalents that are made by a 

resin transfer moulding (RTM) or a vacuum assisted resin transfer moulding (VARTM) [57]. How-

ever, they are more expensive due to prepreg costs. Those materials are either cured in an au-

toclave or in an oven, using fluid heating, or an electromagnetic heating (out-of-autoclave (OoA)) 

curing process.  
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Autoclave processing is the chosen method to fabricate carbon fibre composite laminates for 

high performance applications, especially complex structures for the aerospace industry [58]. 

This manufacturing technique involves cutting thin-layers of prepreg and layering them up in a 

mould to form the required shape and then the uncured part is placed in a vacuum bag and then 

the whole component is inserted into an autoclave to be cured at high temperature under high 

pressure. More details about this technique will be discussed in Section 5.2. On the other hand 

there are many disadvantages to using the autoclave that are a high turnaround time, high in-

vestment cost, the tooling usually costs at least £400k [59], huge footprint, and excessive energy 

consumption. All those factors combine to become where the driving force to find an alternative 

curing process for curing parts for low performance industries. To overcome those challenges, 

many manufacturing techniques were developed with an eye on producing cost effective aero-

space parts. These include resin transfer moulding (RTM), vacuum assisted resin transfer 

moulding (VARTM) and out-of-autoclave processing (OoA) techniques [60, 61].  

 

2.1.4  Resin Transfer Moulding (RTM) 

 The need for a net shape, repeatability and high volume production in the automotive industries 

were the impetus to adopt RTM in composite manufacturing in the mid-1980s [60]. The principle 

is to have a unidirectional or woven fibre preform structures inside a net shaped mould and then  

the resins pushed inside the mould under a high pressure to bond the fibres together. The mould 

consists of two parts (male-female). The mould flanges are compressed a sealing tap which 

seals the mould and prevents resin leaks as shown in Figure 2-4. The resin (the matrix) must 

have certain properties to be used in RTM, those properties are low viscosity and fast curing 

resins. RTM depends on the clamping force that is applied on the mould to withstand the resin 

injection pressure without opening or distorting [60].  
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Figure 2-4: A schematic of typical resin transfer moulding [62].  

 

 

2.1.5  Vacuum Assisted Resin Transfer Moulding (VARTM) 

VARTM is a liquid composite moulding (LCM) process that has the ability to produce a large-

scale, complex, highly-integrated fibre reinforced polymer used in boat hulls, rotor blades, ar-

moured vehicles and aerospace applications. Also, it has potential to be cost-effective and pro-

vides a good work environment [63-65]. VARTM process integrates the advantages of high qual-

ity, repeatability and clean handling of the resin transfer moulding (RTM) process with the ben-

efits of flexibility and scalability of open-mould hand layup processing without volatile organic 

compound (VOC) emission [57]. VARTM utilizes the difference between atmosphere and vac-

uum pressure to infuse a liquid resin into to a preform while RTM uses positive injection pres-

sure and rigid mould equipment. VARTM is cost effective over a conventional autoclave mould-

ing process, as it uses a simple mould construction and low clamping forces [57]. A typical setup 

of VARTM is shown in Figure 2-5.  
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Figure 2-5: An illustration showing a typical setup of VARTM [66].  

 

Figure 2-5 illustrates a dry fibre reinforcement, which is known as a preform, covered by peel ply 

cloths and resin distribution media. All combinations are placed over a one-side mould then they 

are enveloped and sealed with a flexible plastic bag and sealing tape. Applying a vacuum pres-

sure through a vent creates negative pressure, which provides a resin driving force. The resin 

infuses the preform through a spiral tube from an inlet port and is smoothly distributed into the 

preform. The peel plies are used to peel off the resin distribution media and the vacuum bag 

after curing, while the main purpose of using resin distribution media is to speed up the resin 

infusion process [67]. 

In VARTM, the resin flow should be well controlled to prevent forming defects like dry spot and 

micro-voids [68]. Dry spots are caused by air entrapment that can occur for many reasons, for 

instance an improper mould design or the resin infusion process being too slow and the resin 

becoming viscous before reaching the vent. Other causes are complex shapes, a leakage in the 

vacuum bag or there is an impermeable insert inside the preform [69]. In terms of complex 

shapes, it is not easy to flow resin around corners or between joints [70], while the most common 

reason for dry spot is the leakage in the vacuum bag, that can be due to damage in the vacuum 

bag, resin supply tubes, connectors or leakage near sealing tapes [57]. Besides dry spots, which 

is a visible defect, micro-voids can form due to incompatibility in resin flow. The resin flow be-

tween tows is governed by Darcy’s law while the resin flow inside a tow is governed by capillary 

effect  [71]. Vacuum pressure is another parameter that can affect the micro-void content level 

[72]. The effect of compaction pressure on fibre volume fractions is given by, 
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Pcomp =  a 

((
Vf

Vfo
⁄ ) − 1)

((1
Vf

⁄ ) − (1
Vf∞

⁄ ))

4                           2-1 

Where a, Vf, Vfo and Vf∞ are the preform constant, fibre volume fraction, fibre volume fraction at 

zero compaction pressure and the ultimate fibre volume fraction at infinite compaction pres-

sure, respectively [57]. Many ways have been used to monitor and control the flow of resin in 

VARTM. Some researchers used an electrical current to monitor and control the flow and degree 

of cure in VARTM [73-75]. Optic fibres were used also to monitor the flow and cure of the resin 

in VARTM [76], whereas, others use photogrammetry analysis techniques to control resin infu-

sion in the vacuum infusion process [77]. In addition, methods such as dielectric and SMART-

weave sensing techniques have been used for the same purpose [78]. The dielectric sensing 

technique either uses a reusable sensor where it is located on a mould or a vacuum bag or an 

embedded sensor. The dielectric method is mainly used to measure gelation point and viscosity 

profile.   

The SMARTweave consists of a sensor grid, and software program that collects a real-time data, 

the sensor grid is laid up in the VARTM and/or RTM mould, and it is used to map the flow of the 

resin inside the mould. During this study, it has been found that most researchers have focused 

their work only on monitoring resin flow during the impregnating process in VARTM or RTM, 

except Lekakou et al. [79] who used optic fibres to monitor a resin flow front and composite 

curing, in addition using the same sensors to monitor composite damage later on. However, the 

drawbacks of using optic fibres will be discussed later in Section 2.4.3. For the first time as part 

of this study, electrical resistance self-sensing composites are made using VARTM. 

 

2.2  Damage Problems  

Barely visible impact damage (BVID) represents an obstacle for a large number of carbon fibre 

applications. When a structure made of fibre reinforced composite materials, such as CFRP, are 

subjected to low velocity impact, the CFRP is capable of absorbing and dissipating the incident 

energy in either elastic deformation or in form of damage [80]. Impact performance of the com-

posite laminates is vital to determine their appropriate selection for a specific application [81]. 

In addition, the impact response of laminated composites will provide the designer with infor-

mation about the damage tolerance in a presumed composite structure [82]. Barely Visible Im-

pact Damage (BVID), as a result of low velocity impact, occurs in carbon fibre composite lami-

nates when an object such as a tool dropped accidently on a carbon fibre composite structure. 

This damage may also be caused by debris on runways for an aircraft. This damage causes a 
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significant reduction in the mechanical properties of carbon fibre composite laminate, especially 

compression after impact properties [83].  

As a result of the impact, the carbon fibre composite laminate may suffer three types of damage 

that are matrix cracking, delamination, and fibre breakage [84]. All three forms of damage will 

cause a reduction in the compression strength of a composite laminate. Delamination, in par-

ticular, might cause a significant degradation in compression strength (up to 50%) since it will 

encourage the plies to act independently. Barely visible impact damage (BVID) represents a chal-

lenge for composite materials, polymer matrix composites particularly, because minor damage 

could produce a visible dent in a metallic panel but can cause unseen damage (delamination) 

to a composite panel [85].  

 

2.2.1  Barely Visible Impact Damage (BVID) Generation  

This section provides a description of the theory of low-velocity impacts. To evaluate the dam-

age behaviour of the carbon fibre composite laminates, two main factors are determining the 

impact performance of the carbon fibre composite laminate structure both of which should be 

considered. The first factor is the impact parameters that influence the damage mechanism. 

The impact parameters in the drop-weight impact test, which is used in this work, are the mass 

of the foreign object that impacts the carbon fibre composite laminates, the area of the foreign 

object, and the velocity of the foreign object [85].  

The second factor is the materials characteristics that determine the damage tolerance in car-

bon fibre composite laminates and the failure mechanism. The material characteristics are the 

fibre type, fibre volume fraction, fibre tow structure, the weave, stitching, the matrix properties 

and toughness and the fibre-matrix interfacial properties [85]. On the other hand, the response 

of carbon fibre composite structures is governed by the geometry, thickness, stacking sequence 

and lay-up procedure. The following sections present a comprehensive explanation of the meth-

ods and procedures that were used to analyse and capture the data.  

• Impact parameters 

• Carbon fibre composite laminates parameters 

• Selection of impact energies (Barely visible impact damage loads) 

• Structural response of carbon fibre composite laminate during the impact events (damage 

development)  

2.2.1.1  Impact Parameters 

Impact parameters are impact velocity, impactor area and the weight of the dropped mass. The 

low-velocity impact that was used in this work is less than 10 m.s-1 [86], that means there is no 
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penetration of targets (carbon fibre composite laminate panels) achieved. Low-velocity impact 

refers to events where, during the contact duration between the impactor and the target, the 

entire structure responds to the waves that propagate to the boundary and are reflected several 

times [81, 87]. The response reflects different types of deformations. The carbon fibre compo-

site laminates are capable of absorbing and dissipating incident energies in either elastic defor-

mation or in form of damage [88, 89]. The damage generated during those events is barely visi-

ble impact damage (BVID). The damage can be in different forms that are delamination, matrix 

cracking, fibre/matrix debonding or/and fibre rupture.  

 

2.2.1.2 Carbon Fibre Composite Laminates Parameters  

The response of carbon fibre composite laminates to impact damage can be complex [84]. Car-

bon fibre composite laminates consist of three main elements that are the reinforcing compo-

nent (carbon fibres), the bonding component (the epoxy matrix), and a fine interphase region 

between fibre and matrix.  The way the carbon fibre composite laminates deform and fail de-

pends upon the both mechanical and chemical properties of the carbon fibre composite con-

stituents [90].  

Under low-velocity impact events, carbon fibre composite laminates may suffer from different 

types of damage that includes delamination, interlaminar matrix cracking, fibre-matrix interface 

debonding, fibre pull-out and fibre fracture [91]. The capability of these failure modes on absorb-

ing the impact energy depends on the constituent’s properties under a fixed loading mode of 

low-velocity impact events. As can be seen in the ultrasonic C-scan technique and fluorescent 

microscope in Section 7.3.3, delamination, matrix cracking, and fibre-matrix interphase debond-

ing result in low fracture energies. Whereas, fibre fracture failure mode results in significantly 

greater energy dissipation.  

The carbon fibre composite laminates in this study were made from Toray FT300B, in case of 

prepreg VTC401, and Formosa TC35 3K, in case of VARTM. Toray FT300B 3K and Formosa 

TC35 3K that have diameters of 7 μm; therefore, their ability to absorb the low-velocity impact 

energies is higher than fibres with small diameters. Also, the damage is more localized with 

energy being dissipated over an area immediate to the region of impact [42]. However, they have 

a lower fibre failure strain than small diameter fibres. The carbon fibres that were used are twill 

weave that means their capability to absorb and dissipate the impact energy locally is higher 

than their counterparts, such as unidirectional carbon fibres as shown with the ultrasonic C-

scan technique Section 7.3.3. 

The functions of the epoxy matrix in carbon fibre composite laminates are protection, alignment, 

stabilization, and stress transfer from one fibre to another. Generally speaking, the stiffness and 



17 
 

 
 

the strength of the epoxy matrix is considerably lower than those for reinforcing fibres. The fi-

bres are responsible for carrying most of the load in structural parts. However, the role of the 

epoxy matrix is critical [92]. For instance, damage to the epoxy matrix due to impact-induced 

delamination can reduce the load-bearing capability of the carbon fibre composite laminates by 

up to 50% [19]. Both epoxy resin systems (IN-2 Epoxy infusion resin and VTC401) that are used 

in this study, are toughened epoxy resin systems. The first system contains 1,6 bis (2,3-epoxy-

propoxy) hexane in its formula which improves the toughness of this system, while the latter is 

toughened epoxy resin matrix, the plasticizing modifier of the system is not known to the users 

as it is commercially secret. 

One of the most important factors that control the mechanical performance of the carbon fibre 

composite is the interphase [92], which  is the strength of the bond between the epoxy matrix 

resin and the reinforcing element (the carbon fibres). Normally, the carbon fibres pass through 

an oxidisation process to improve the level of adhesion with epoxy resin. In the VARTM process, 

an ultra-low viscosity epoxy resin was used with a viscosity of 225 mPa.s. A further reduction of 

the epoxy resin viscosity was induced due to the infusion at an elevated temperature of 40oC. 

The final viscosity of the resin during the infusion was 27.88 mPa.s. That reduction in the vis-

cosity of epoxy resins decreases the surface tension of the epoxy resin and increases the wet-

tability of the carbon fibres consequently, which in turn is expected to improve the fibre matrix 

adhesion.  

Stacking sequence also helps to determine the impact damage failure [93]. For example, in uni-

directional carbon fibre composite laminates that are subjected to a low-velocity impact event 

the main damage type is splitting, that in turn leads to a peanut-shaped curve in cross-play com-

posites, as shown in Figure 2-6. As a result, these materials are not suitable for applications 

where impact events might occur. However, a 2x2 mm twill weave carbon fibres mat was used 

in this study, as it was found that this material offers superior impact resistance and improved 

residual strengths [89, 94]. It increases the flexibility of the carbon fibre composite laminates, 

also it absorbs considerably more energy and dissipates the rest of the energy locally [95]. The 

damage pattern of this material is more localized as shown in Figure 2-7 and in the C-scan sec-

tion (Section 7.3.3).  
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Figure 2-6: The impact damage pattern for [0, 90] composite laminates [1]. 

 

 

Figure 2-7: shows the low velocity impact damage pattern for woven fabric carbon fibre composite lami-
nates.  

  

2.2.1.3 Selection of impact energies (barely visible impact damage loads) 

The vast majority of impact test work reported in the literature was undertaken in the range 

between 1 to 5 Joules [81]. It is found that these amounts of impact energies may cause minimal 

damage in the carbon fibre composite laminates. Also, the most recent standards for Boeing 

and Airbus state that barely visible impact damage (BVID) should be defined as a residual in-

dentation that ranges between 0.25 – 1 mm [96, 97]. In addition, the foreign object should not 
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be bigger than 25.4 mm in diameter. Also, those standards state that BVID should not be found 

during heavy maintenance general visual inspection using typical lighting conditions from a dis-

tance of 1.524 m. As will be seen later in optical microscopy and C-scan sections, the damage 

for the woven fabrics is predominantly delamination and fibre breakage and the deformation is 

more localized [94, 98]. Also, it depends on the curvature of the impactor tip.  

 

2.3  Structural Response of Carbon Fibre Composite Laminate During the 
Impact Events (Damage Development) 

In spite of the fact that delamination and fibres breakage are the main damage modes in the 

woven carbon fibre composite laminates, there are other types of damage modes that may oc-

cur (matrix cracking and penetration). The latter happen either when the impact energy is high 

or under high velocity impact events, both cases are out of the scope of this work. 

 

2.3.1  Matrix damage 

Matrix damage is the first type of damage that may occur during low-velocity impact events. 

Matrix damage may take two forms either matrix cracks or debonding between carbon fibres 

and epoxy matrix. The main reason that leads to matrix damage is the mismatch between the 

matrix (epoxy matrix) and reinforcing element (carbon fibres) [81]. Damage is usually oriented 

in planes parallel to the fibre direction in unidirectional carbon fibre composite laminates [99]. 

However, and as seen later in the fluorescent microscopy Section 7.1.3, the matrix damage in 

woven fabric carbon fibre/epoxy composite laminates initiates in the upper layer under the 

edges of the impactor. The matrix cracks on the bottom layer occur due to bending load and 

sometimes they are called bending cracks. Bending cracks are induced by high tensile bending 

stress and they characteristically growing through the thickness (in the vertical direction).  

 

2.3.2  Delamination 

Delamination can be defined as a crack which runs in the resin-rich area between the adjacent 

plies in composite laminates, the minimum size is approximately 0.07 μm in graphite/epoxy 

laminates [100, 101]. Delamination may be attributed to many reasons, one of the reasons is 

that there is a bending stiffness mismatch between adjacent layers [102, 103] that may be more 

likely in the unidirectional carbon fibre composite laminates. It is also found there is a connec-

tion between matrix cracks and delamination [103]. However, delamination is also affected by 

other parameters such as material properties, stacking sequence, and laminate thickness. The 

research has proved the relationship between matrix cracks and delamination [84, 104, 105]. It 
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is observed that delamination initiation only occurs in the presence of matrix cracks [106], at 

that point, a threshold energy must be reached. Scanning electron microscope revealed for the 

first time the association between matrix cracks and delamination, it is shown that the delami-

nation does not always run exactly in the interface region, however it can run slightly on either 

side [8]. In the unidirectional carbon fibre composite laminates, the matrix crack initiates when 

the impact energy exceeds the ultimate strength of the layer that is in contact with the impactor. 

Then the cracks propagate through the surface layer due to shear stress. When it reaches the 

interface, it is halted by a change in the direction of the fibres, therefore, it continues growing 

between the layers as a delamination due to interlaminar normal and shear stress [107]. 

In woven carbon fibre reinforced epoxy laminates, it is noticed that the material that is located 

directly under the impactor is compressed by translating over thickness in a time frame much 

less than that required for the overall response of the structure. Woven carbon fibre reinforced 

laminate deformation is highly localized, causing large transverse and normal stresses which 

can cause the damage to propagate and fail eventually. Impact events create a compression 

stress wave at the front face of the laminate that in turn, travels through the thickness of the 

laminate. This wave is reflected from the back surface as a tension wave which can cause fail-

ure at the first weakest interface, as a result, chipping and splintering of the parts of the rear ply 

may occur [107].  

At low-velocity impact events, woven carbon fibre/epoxy composite laminates can respond by 

bending and failing, either by shear resulting in delamination or flexural failure depending on 

short or long beam [108], respectively as shown in Figure 2-8. Delamination growth is suspected 

to be governed by interlaminar longitudinal shear stress σ13 and transverse in-plane stress σ22  

in the layer below the delaminated interface, and by the interlaminar transverse shear stress σ23 

in the layer above the interface [109]. It is worth mentioning here that delamination causes less 

degradation in the tensile properties, while its effect on the compression properties is significant, 

especially compression after impact.  
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Figure 2-8: Schematic of impact test and expecting failure modes, both modes are suspecting to occur 
at low-velocity impact events [107]. 

 

2.3.3  Fibre damage  

Generally, fibre failure mode occurs after matrix cracking and delamination, it is the last of the 

fracture process. In low-velocity impact events, it unlikely to happen; however, it might occur 

under the impactor due to locally high stresses that is mainly controlled by shear forces. Also, it 

may occur at the rear face of the plate (non-impacted face) due to high bending stresses. The 

fibre failure mode is the start for more serious damage that is penetration mode, fibre failure 

mode may lead to catastrophic failure [110]. The required energy to cause back surface flexure 

failure is given by Equation 2 – 2.  

 Energy =  
σf

2wtL

18 Ef
              2-2 

Where σf is the flexural strength, Ef is flexural modulus (in this work Young’s modulus was used 

in the calculations), w is the width, L is unsupported length and t is the specimen thickness. 

Since the supporting plate is circular in shape, therefore, w = L = 78 mm. 

 

2.4  Non-Destructive Testing and Smart Sensing   

Self-monitoring systems are an essential tool to improve the reliability of composites, reduce 

maintenance costs that come from taking parts out-of-service to test them and overcome limi-

tations of non-destructive tests (NDTs). Damage in composite materials can be varied, it takes 

many forms such as a matrix-cracking, fibre breakage and delamination [33, 111, 112]. By far, 

delamination is the most important form of damage due to it causing a considerable reduction 

in a composite’s compressive strength and stiffness [113]. Indeed, delamination and cata-

strophic propagation is the major concern to the aerospace industry, since it can occur due to 

different scenarios during the life of a composite structure, fabrication processes or mainte-

nance operations.  

For example, events such as instruments dropping on structures, hail falling on surfaces, acci-

dents with birds, and rocks or debris being kicked up at high velocities into the aircraft. Such 

damage is totally undetectable by visual tests, either damage is occurring between laminae or 

it is too small to be seen by normal eye [112]. This damage can grow during subsequent loading 

cycles, so it is important to detect it at an early stage (delamination initiation stage) to avoid a 

disastrous failure that is caused by a drastic reduction in mechanical properties. Impact damage 

may be the main cause for delamination, in addition to matrix cracking and fibre breakage [114]. 



22 
 

 
 

Low velocity impacts are expected to occur during many occasions like manufacturing pro-

cesses or uses of a composite structure. Extensive efforts have been directed to investigate 

damage effects on properties of composites.   

For low velocity impacts such as drop weight, pendulum and flyer plate, where the impactor 

velocity is less than 10 m/s, damage is usually not visually detectable, but can result in a signif-

icant strength reduction. The absence of visible surface damage creates special difficulties in 

adopting conventional damage characterization methods. It is then necessary to develop exper-

imental techniques to detect the presence of damage and record its nature, size, shape, and 

through-the-thickness distribution [16]. These techniques can be used for in-service inspections 

to ensure structural safety.   

 Hence, early detection of damage and its severity and location are key factors. Non-destructive 

testing techniques (NDT) such as thermography, ultrasonic C-scan, eddy current and X-Ray have 

been used to provide the location and size of defects within composite structures [115-117]. 

These tests might provide precise results about damage size, shapes and locations; However, 

they need special equipment and surface preparations. In reality, it might be difficult to use these 

techniques to test composite structures in-service due to complexity of composite materials, 

which are normally formed by layers of dissimilar materials, but they can be used to detect dam-

age in certain parts of composite structures. Fibre reinforced composite materials with reinforc-

ing elements like carbon, glass and Kevlar are increasingly used in a wide range of both low and 

high technology engineering applications. To meet these increases in using of composite ma-

terials in different applications like aerospace applications, developing new monitoring systems 

become more essential [118]. 

 

2.4.1  Thermography Methods 

A thermal approach has been used in a variety of applications such as examination of subsur-

face defects and the study of microstructural damage in composites using thermo-physical 

properties [119-121], observation of coating thickness and covered structures. The main interest 

here is to show how this approach has been used to test the integrity of composite structures, 

the vast majority of research in this area uses infrared to monitor heat flux at composite material 

surfaces [122]. This approach utilizes radiated energy to obtain subsurface defect and/or dam-

age information. The thermography can be divided into two approaches: passive and active 

thermography.  

In passive thermography no external heat source is required, where the defects or damage in 

composite are naturally at higher or lower temperature than the background, while in active ther-
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mography, an external heat source is needed to apply heat pulse to a composite material sur-

face that will generate heat flow inside the material. In the case that there are defects, flaws or 

damage it will affect the homogeneity of the heat flow [123, 124].  Non-contact, non-destructive 

and fast examination techniques are the most important characterizations, and that makes the 

thermography method attractive as a non-destructive inspection technique [125].  

Due to developments in thermal data interpretations, using thermography in the field of compo-

sites becomes increasingly important in both carbon fibre composites [126] and glass fibre 

composites [127].  However, the thermographic method has many limitations, for instance, dif-

ficulties of use with complex and large structures, cost of equipment, highly skilled operators, 

the ability to detect defects and damage that only make a measurable change in thermal prop-

erties and thermal losses due to emissivity.   

 

2.4.2  Acoustic Methods 

The propagation of an ultrasonic pulse in an object is scattered or reflected from any interface 

that separates regions of differing acoustic impedance [128]. If there are any defects, flaws or 

damage that will affect the manner in which an ultrasonic pulse is transmitted, the pulse will be 

scattered or reflected, and the location of the discontinuities can be determined (Figure 2-9). If 

there is no damage, the pulse will reflect from the far surface of an object.  Ultrasonic methods 

such as C-scan are widely used in aerospace applications for non-destructive evaluation (NDE) 

of structure [38].  

Ultrasonic methods are useful to characterize damage or a defect and give an integrated picture, 

see Section 7.3.3. Ultrasonic methods are suitable for in-line (during the manufacturing process) 

and end-of-line (finished products) quality control. Ultrasonic methods are providing vital infor-

mation about the damage and/or defects profile, size and severity. However, there are many 

limitations to use these methods for in-situ composite monitoring systems [129]. For example, 

they are expensive and they are point methods, therefore, it is difficult to apply them over the 

entire area of large structures [130].  
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Figure 2-9: Schematic shows the sound energy travels through the sample and it is either reflected by the 
backside of the sample or it is reflected earlier if a flaw or crack was found.  

Other type of sonic methods is acoustic emission [131]. The basic idea is detecting an energy 

emission (sound wave) that emits from a material due to deformation or damage occurrence. 

For instance, when a piece of wood is stressed, an audible cracking sound can be heard before 

the wood breaks. This phenomenon can be extended to other materials and including compo-

site materials [132]. By monitoring spontaneous noise that is generated in a composite material 

due to applying load, matrix cracking, fibre breakage and delamination can be detected, located 

and characterized [133-136].  

The acousto-Ultrasonic method is a combination of both acoustic and ultrasonic testing tech-

nique. This technique is mainly used to assess damage that is distributed over a large area but 

they are not suitable for detecting small damage such as delamination in a large area [137]. In 

these approaches (acoustic emission and acousto-ultrasonic), each probe needs a dedicated 

digital signal processor (DSP) with an internal analogue to-digital converter (ADC) and that adds 

more cost to this approach [138].  

 

2.4.3  Fibre-Optic Methods  

Fibre-optic sensors are tools in which light is transmitted to and from a monitoring region using 

fibre-optic links [139-141]. They may be easily integrated into composite structures to produce 

smart composite structures that enable sensors to approach interior composite structures and 

probe them easily [140]. It is found that these fibre optic sensors have a limited effect on a com-

posite structure in terms of failure stresses [35]. Intrinsic fibre optic sensors with the help of one 

of optical property such as intensity, wavelength, phase or state of polarization can measure the 

strain, temperature, pressure and detect damage in composite structures.  

Optical fibre properties (intensity, wavelength, phase or state of polarization) should be modu-

lated to measure strain, temperature, pressure or detect damage in large structures.  There are 

some difficulties associated with the use of optical fibres, for example to monitor strain within 

the structure requires a perfect bonding between fibre optic sensors and composite structures 

to experience the same strain gradient in host composite structures. Fibre optic sensors have 

been used increasingly to monitor fabrication strains during the fabrication process [142]. How-

ever, there are limitations in using fibre optic sensors because they cause a local distortion and 

resin-rich regions. That can happen when the optical fibre diameter is bigger than the thickness 

of the ply [143].  

There are several optic-based ways to monitor strain, like Extrinsic Fabry-Perot interferometric 

(EFPI) sensor [144, 145] and Fibre Bragg grating (FBG) sensor [145]. EFPI is phase modulated 
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optical fibre sensors, these sensors use the principle that reflected monochromic light with in-

terfere with the light from the original source that in turn will cause measurable light and dark 

fringes dependant on strain. A Fabry-Perot interferometer has been proved to be capable of de-

tecting impact damage on composite materials [146]. The ability of the Fabry-Perot interferom-

eter of locating damage was demonstrated by Schindler [147] with the help of a neural network. 

 FBG sensors are a popular choice in smart composite structures, since they are easy to use 

(they are wavelength based sensors, they operate on the principle that is detecting a narrowband 

of reflected light that its frequency changes depending on strain) [148, 149]. Those sensors can 

be used to characterize defects in composites or to monitoring strain [148, 150]. They are avail-

able in various lengths from 2 – 20 mm, they have a high failure strain, and they are being easy 

for multiplexing [151]. However, the measured strain that is acquired from FBG sensors require 

complex analysis to obtain accurate axial strains since the measured strain is three-dimensional 

nature [140].  

Both the FBG and EFPI have been used in sensing techniques in composites including structural 

health monitoring systems, strain/stress measurements and cure monitoring systems. The lat-

ter can be in form of pressures and/or temperatures [151, 152]. Once the optic fibres have been 

incorporated inside composite structures, they are affected by  strain generated during cure and 

heating and that in turn limits their applications. However, the FBG has been adopted by aero-

space and civil companies [153].  

One problem with optical fibre sensors is that failure of a fibre interrupts the sensing, meaning 

that sensing capability is lost [139]. The possible ways that optical fibres fractures in response 

to external loads are: the optical fibres will fracture because of large bending-induced tensile 

stresses, disregarding whether the composite matrix has damaged. The optical fibres could 

fracture in the path of delamination, where transverse shear stresses can be triggered in the 

optical fibres. Finally, the optical fibres can fail due to matrix cracking either in tension or shear 

as shown in Figure 2-10.  
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Figure 2-10: The mechanisms that could cause fracture in optical fibres [154]. 

 

2.4.4  Electrical Methods   

Detection and monitoring systems that are mentioned above are either incorporating sensors 

into the composites structure, such as a Fibre Bragg grating (FBG) or attaching or inserting sen-

sors to the composites, such as acoustic methods and the Fabry Perot Interferometer (FPI). 

Once those sensors have been integrated into composite structures, a new challenge will have 

to be overcome that is establishing a relationship between changes in physical properties of 

sensors and changes in properties of composite structures being monitored (such as tempera-

ture, pressure, stiffness etc.).  

An alternative way, which may be more natural, to obtain a smart material is to use composite 

material constituents as a sensor. This is highly possible in polymer matrix carbon fibre rein-

forced composites since they consist at least two elements that are carbon fibre (a highly con-

ductive material, its conductivity is 1.5 x 105 S/cm) and matrix that is highly insulating, for ex-

ample the electrical conductivity of the epoxy matrix is 10-13 - 10-15 S/cm that depends on many 

factors, such as temperature, inclusions and the epoxy resin types [155]. Transverse electrical 

conduction occurs in carbon fibre reinforced-epoxy composites due to waviness of carbon fi-

bres. The waviness is contributed to the difference in the coefficient of thermal expansions 70 

– 78 x 10-6 K-1 and -9.1 x 10-7 K-1 for epoxy resins and carbon fibres respectively [156, 157].       

The same concept extends to through thickness electrical conduction, however the through-

thickness electrical conduction is much less than transverse electrical conduction since it 

strongly depends on the amount of pressure that is used in the fabrication technique as shown 
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in Section 6.1.1. When carbon fibres break and/or when an epoxy matrix cracks, it prevents pre-

viously touching fibres from contacting, then a change in electrical properties will occur due to 

a decrease in fibre – fibre contacts [33]. There is directionality in electrical properties of compo-

site materials, electrical resistance of a composite material in the longitudinal direction differs 

from the electrical resistance in the transverse and through-thickness directions; this property 

has been deployed to investigate damage mechanisms [130].  

The features (i.e. strain monitoring, damage monitoring, and damage detection) determine the 

type of electrical currents being used. Direct current (DC) is suitable to monitor fibre fracture 

and delamination processes [130, 158, 159], since those types of damage produce a measurable 

change in electrical resistance. While alternative current (AC) may be used to monitor matrix 

cracks, transverse cracks, fibre/matrix debonding, and delamination [155, 160, 161]. AC (based 

on dielectric analysis) is mainly used to monitor a resin infusion process during liquid moulding 

processes [78, 162] and thermoset resins cure [78, 163].    

 DC (based on electrical resistance analysis) is used to monitor stiffness variations in carbon 

fibre reinforced – epoxy composites. DC used in either real-time monitoring systems to monitor 

strain and damage growth such as fatigue [129, 158, 164] or damage detection such as delam-

ination due to low velocity impact events [165, 166]. The amount of electrical resistance of car-

bon fibre composite – epoxy laminates relies on many factors that are carbon fibre (FT300B, 

Tairyfil TC-35, etc.), reinforcing pattern (unidirectional, cross-ply, quasi-isotropic or woven fabric 

reinforced carbon fibre composites), electrical connection methods (copper plate, silver plate, 

copper wires, etc.) [117, 167, 168], electrical measurement methods (two-probe or four-probe 

electrical measurement system), fibre volume fraction and fabrication techniques (autoclave 

processing technique, vacuum assisted resin transfer moulding (VARTM), etc.). Table 2-1 pre-

sents the main parameters affecting on electrical resistance sensing techniques and their con-

sequences on percentage changes in electrical resistance.       

 



30 
 

 
 

Table 2-1: Most important parameters that determine the effectiveness of self – sensing electrical resistance system in carbon fibre composite laminates.   

Author 
Carbon Fibre 

Composite Type 

Carbon Fibre 

Volume 

Fraction % 

Dimen-

sions 

(mm) 

Electrical 

Contact Type 
Test Type 

Direct Cur-

rent (mA) 

Electrical Measure-

ment System 

Electrical Re-

sistance (∆R) Ω 

Percentage 

Change 

(∆R/Ro) 

Abry et al. [155] 

[0/90]s 

Not available 
100 x 10 x 

2.2 
Copper plate Bending 10 

2-probe strain dam-

age 

0.009 

9 

[90/0]s 0.0045 

K. Schulte [158] 

[0]8 

Not available 

190 x 25 x 

1 
Copper plate 

Tensile 

50 

2-probe real-time 

monitoring system 
0.332 – 0.345 4 

[0/90]s 

 

190 x 25 x 

2 

Fatigue 

 
 0.3 – 0.316 5.3 

P. E. Irving et al. 

[129] 

 

0o 

59.8 

270 x 25 x 

2 

Copper strip 

Tensile 

30 

4-probe real-time 

monitoring system 

0.003 – 0.004 1.5 – 1.8 

90o 
270 x 25 x 

2 
1 6 - 16 1.6 – 3 

[0/90] 
270 x 25 x 

2 
30 0.005 – 0.01 1 – 2 

0o 

59.8 

270 x 25 x 

2 

Fatigue 

30 

4-probe real-time 

monitoring system 

0.03 – 0.04 10 – 15 

90o 
270 x 25 x 

2 
1 60 – 160 10 – 15 

[0/90] 
270 x 25 x 

2 
30 0.05 – 0.1 10 – 15 
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Author 
Carbon Fibre 

Composite Type 

Carbon Fibre 

Volume 

Fraction % 

Dimen-

sions 

(mm) 

Electrical 

Contact Type 
Test Type 

Direct Cur-

rent (mA) 

Electrical Measure-

ment System 

Electrical Re-

sistance (∆R) Ω 

Percentage 

Change 

(∆R/Ro) 

De Baere et al. 

[124] 
[0/90]4s Not available 

270 x 30 x 

2.5 
Rivet Tensile 100 

2-probe real-time 

monitoring system 
0.0064 - 0.0088 1.25 – 1.31 

T. J. Swait et al. 

[165] 
[90/0]2s 60 

110 x 110 x 

2 
FCB 

Low velocity 

impact 
0.5 

2-probe damage de-

tection system 
1.5 – 8 0.14 

Hart et al. [166] 

[0/45/-45/90]2s 

Not available  

152.4 x 

152.4 x 2 
Copper strips 

Low velocity 

impact 
Vary 

4-probe damage de-

tection system 

3.73 x 10-5 – 8.2 x 

10-5 

0.403 – 

0.672 

[0/45/-45/90]4s 
152.4 x 

152.4 x 4 
 

1.42 x 10-5 – 1.09 x 

10-4 

0.163 – 

0.480 

 

S. Wang et al. 

[169] 

[0/90] 63.5 
200 x 12 x 

3.2 
Copper wires 

Low velocity 

impact 
0.25 – 99 

4-probe damage de-

tection system 
0.888 0.1 

Todoroki et al. 

[170] 
[(0/90]2s 50 

200 x 105 

x1 
Copper plate Indentation 30 

4-probe damage 

monitoring system 
0.00012-0.00018 0.01 

Zappaloroto et 

al. [171] 
[0o]18 Not available 

225 x 25 x 

2.95  

Silver coating 

and copper 

plate  

Mode 1  250 
4-probe damage 

monitoring system 
Not available  0 – 30  

Gadomski et al. 

[172] 
[0/90]2 60 – 70  

160 x 25 x 

3  
Silver tape Bending  20 

4-probe damage 

monitoring system 
Not available  4 – 1400  

Kwon et al. [173] [0] Not available  100 x 16.2  

Silver paste 

and copper 

wires 

Bending 
Not availa-

ble  

2-probe damage 

monitoring system 
Not available  0 – 0.8  
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2.5  Electrical Conduction of Carbon Fibre Reinforced Polymer  

The investigation of electrical properties of a carbon fibre reinforced polymer (CFRP) laminate 

is essential in order to deploy an electrical self-sensing system of CFRP in a practical use. De-

tection of damage in carbon fibre polymer-matrix composites have been extensively studied by 

electrical resistance measurements [170]. To evaluate the structural integrity of CFRP lami-

nates, it is vital to understand how electrical resistance of CFRP changes in response to applied 

loads. The electrical resistance techniques have been applied successfully on unidirectional 

and multi-directional composite laminates such as cross-ply and quasi-isotropic CFRP lami-

nates [32, 165, 174] to monitor either the strain or detect damage. The piezoresistivity of carbon 

fibres enables identification of different forms of damage such as delamination, matrix cracks, 

and fibre breakage due to changes in electrical resistance [175].  

The electrical resistance sensing system may replace the ultrasonic methods as a non-destruc-

tive test technique [141]. Due to its great practical importance, many ways have been used to 

make an electrical connection between the CFRP laminates and electrodes. For example, the 

electrodes are co-cured with the panels or a conductive material such as silver paint, carbon 

cement, and silver epoxy were used [33, 111, 174]. Requirements such as low resistance, a long 

operating life and cost are needed to be considered when setting up a current flow at the con-

tacts of two electrodes.  

This section is organised as follows: Sections 2.5.1 and 2.5.2 present the electrical fundamen-

tals i.e. Ohm’s and current density law; Section 2.6 describes different electrical resistance 

sensing techniques i.e. two-probe and four-probe. 

 

2.5.1  Ohm’s Law  

The ability or lack of ability of materials to conduct electrical current is one of the principal 

characteristics of materials. Materials are categorised by this property, that is, they are divided 

into conductors, semiconductors, and insulators. Their conductivities are 104-106, 10-6-102, 10-

8-10-20 S/cm respectively. Materials such as metals and their alloys, silicon and ceramics are 

considered as conductors, semiconductors and insulators respectively. One of fundamental 

equations that describes electrical conduction in materials is Ohm’s law [176].  

This law is one of the simplest electrical laws, that can be applied to many materials such tung-

sten, bronze, brass, iron aluminium and copper. Ohm’s law may be expressed in Equation 2-3.  

V = IR                   2-3 

Where V is the potential difference in Volts, I is current flow in a circuit in Amperes and R is the 

resistance of the conductor in Ohms. According to equation 2-3, the amount of current that 
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flows through a wire is inversely proportional to resistance, which in turn is dependent upon 

chemical compositions of materials. 

 

2.5.2 Current Density 

Current density is the magnitude of the electric current per cross-sectional area [177], and it can 

be expressed using Equation 2-4  

J= 
I

A
                       2-4 

Where I is the electric current (amp) and A is the cross-sectional area (mm2). For materials with 

finite resistance, the current density J is directly proportional to the electric field E in the me-

dium. The resistivity of a material is the proportionality constant η, whose value is material and 

temperature dependent.    

J= 
1

η
 E                            2-5 

Where E= 
V

L
  (the voltage difference between two points divided by the distance separating 

them). 

 

2.6  Electrical Resistance Sensing Techniques  

A general method of measuring resistivity of an electrically conductive solid material is to meas-

ure potential differences between electrodes under a constant electrical current condition. 

However, several set-ups exist for electrodes arrangements, they differ in absolute values and 

tendencies [178-180]. An experimental study on the effect of an electrode set-up was carried 

out by Wang et. al [180]. This study, as well as other studies [181, 182], explained the difference 

in absolute values and tendency in two different set-ups: two-probe and four-probe techniques 

using a direct current (DC). Two-probe and four-probe techniques are the subject of the follow-

ing sections.  

 

2.6.1 Electrical Sensitivity in CFRP Laminate 

The structure of a material is considered to be sensitive to its condition when it consists of 

sensors that are providing in-service data about the material itself or its operation environment. 

Thus this would improve the durability and reliability as well as widen the adoption of composite 

laminates in general and CFRP laminates in particular [180].  However, there are a few require-

ments that in-service health monitoring sensors need to meet. For example, they must not 

cause damage to the structure (i.e. they are small in size), they offer the possibility of being 
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located in remote and inaccessible areas of the structure and they must have the ability to 

transmit the information to a central processing unit.  

This data must be in a direct relation with the physical process being monitored and properties 

and performances that are to be maintained. The data, which is being provided, must compete 

in sensitivity with the data obtained by conventional non-destructive evaluation techniques 

(NDE) and it must cover a sufficient area of a structure. The best way to achieve all of that 

requirements is to use a material that has the ability to monitor itself. CFRP laminates consist 

of, at least, two different components that are the epoxy, which is highly insulating (the electrical 

conductivity (σ) ≈ 1.5 x 10-15 S/cm, and the carbon fibre, which is highly conductive σ ≈ 1.5 x 105 

S/cm. That makes it potentially a smart material by utilizing one or more of its components, 

CFRP laminates can be monitored during manufacturing processes [183-185] or in-service [186, 

187] by measuring the electrical conductivity of carbon fibres (i.e. increase or decrease in elec-

trical resistance as an indicator of strained or damaged CFRP laminates). In continuous carbon 

fibre reinforced composite laminates, the electrical conductivity in the fibre direction is very 

high. Therefore, the ideal conductivity can be easily estimated by multiplying electrical conduct-

ance of carbon fibres by fibre volume fraction.  

In the case of ideal carbon fibre composite laminates, the carbon fibre in a lamina is perfectly 

straight, perfectly aligned and evenly distributed. Each single fibre is separated from its neigh-

bours by a thin resin layer and that leads to zero conductivity in the transverse and through-

thickness directions. However, in practice carbon fibre in the lamina is wavy as shown in Figure 

2-11 [33]. 

 

Figure 2-11: Schematic shows practical structure of carbon/epoxy composite [188].  

In unidirectional carbon fibre composite laminates, the curved carbon fibres cause non-zero 

electrical conductivity in the transverse direction due to a large network that is formed by car-

bon fibre contacts with each other. However, the electrical conductivity of CFRP laminates in 

the transverse direction is much lower than the electrical conductivity in the fibre direction (37 

– 55) S/cm [33]. Studies [33, 155] have experimentally revealed the ratio between electric con-

ductivity in the fibre direction σo to the transverse direction σ90, σ90/σo = 3.7 X 10-2 and the ratio 

between electric conductivity in the fibre direction σo to through-thickness direction σt, σt/σo = 

3.8 X 10-3 for a continuous carbon fibre composite laminate of the fibre volume fraction is 0.62.    
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Through-thickness conductivity of a CFRP laminate is smaller than transverse direction con-

ductivity, although the fibre-fibre network structure is similar to the transverse direction [189]. 

That is attributed to thin resin rich layer that exists between laminae in a laminate. For a practi-

cal CFRP laminate, prepreg lamina are wavy as it is the case for carbon fibre as shown above 

in Figure 2-11. The contact between laminae leads to non-zero electric conductivity in the thick-

ness direction. The contacts between adjacent laminae create a circular pattern flow around 

the positive electric electrode as shown in Figure 2-12; this is one of the factors that reduces 

the accuracy of this method.   

 

Figure 2-12: Voltage contour for a cross-ply laminate [33].  

Two-probe and four-probe electrical resistance measurement methods are the most common 

techniques to measure the changes in electrical resistance in CFRP laminates. Both methods 

are detailed in the following two sections.  

2.6.2  Two-Probe Sensing Technique  

A two-probe technique uses two electrodes to introduce an electrical current and measure elec-

trical resistance via corresponding changes in voltage as shown in Figure 2-13.  

 

Figure 2-13: Two-probe electrical resistance technique. 

 



38 
 

 
 

This technique has been used to measure strain [112, 113, 116, 190] and to detect damage in 

carbon fibre reinforced polymer (CFRP) laminates [117, 124, 165]. It is simple and convenient, 

but it is sensitive to the quality of the electrical contacts [124]. This method has been questioned 

since electric resistance of a CFRP varies, some researchers reported an increase in electrical 

resistance [158] and others reported a decrease in electrical resistance [113, 129, 130, 168, 180] 

due to applied loads. The decrease in resistance is due to electrons travelling in an unexpected 

direction relative to the applied voltage gradient, due to backflow across a composite interface 

[191]. Todoroki et al [188] and Angelidis et al [174] attributed the reduction in the electrical re-

sistance to poor electrical contact at the electrodes.  

 

2.6.3   Four-Probe Sensing Technique  

The four-probe method injects an electrical current through two electrical contacts (normally 

outer electrodes) on a specimen and measures voltage between two electrodes as shown in 

Figure 2-14. It is more effective and precise than the two-probe technique in sensing impact 

damage and cycling loading damage (i.e. fatigue damage in CFRPs due to the essential elimi-

nation of contact resistance from the measured resistance) [180]. In addition, it has the ability 

to detect sub-surface damage [35, 192]. The electric current flows in a direction perpendicular 

to the equipotential line, the internal current distribution is shown in Figure 2-15: a. 

 

Figure 2-14: a. Image showing National Instruments cDAQ 9172 with NI9219 modules, b. Four-probe 
electrical resistance method where the DAQ system configured.    
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Figure 2-15: a. shows equipotential lines for the configuration b, b. schematic shows the internal current 
distribution[181].  

 

 As the position of voltage electrode approaches the position of the current electrode, the equi-

potential line approaches the surface of the specimen [181]. As a result, for the case of the two-

probe technique in which the current and the voltage electrodes share the same position, the 

measured voltage values might be significantly affected by the condition of the specimen sur-

face [33]. However, it is found that polishing the specimen surface will cause a considerable 

drop in the strength of the carbon fibre that is located at the surface of a CFRP laminate, con-

sequently the event number of fibre breakage shows higher values than unpolished specimens 

[181].  

It is expected that this is the difference between the resistance measurement results of a two 

and four-probe technique which might be caused by the effect of the surface polishing and not 

by the differences in the strength of the CFRP specimen. In the current work, electric resistance 

of panels was measured by attaching a sensing mat to the bottom surface of CFRP laminates. 

The occurrence of the damage will initiate at the tensile side of the CFRP laminate [155], there-

fore, it is desirable to attach the sensing mat to the bottom surface of a specimen.  

a 

b 
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2.6.4 Piezoresistivity in Carbon Fibre  

Piezoresistivity refers to changes in electrical resistance due to applied strain in carbon fibres. 

This property makes the carbon fibres attractive materials since it directly indicates damage 

and/or strain in structural materials, such as carbon fibre reinforced laminates. This is an intrin-

sic property in the reinforcing element (carbon fibres), and this property can be utilized to make 

carbon fibre composites smart materials. Due to the vast amount of work that has been taken 

in this field [42, 193-195], therefore, the following discussion will focus on ex-PAN continuous 

carbon fibres as they are going to be used in this work, also they have been used extensively in 

structural applications. 

 It has been reported in continuous carbon fibre/epoxy laminate [196] that have an applied ten-

sile stress in the fibre direction which causes a reversible increase in the resistance in the 

through-thickness direction as measured by a four-probe technique. This might be due to the 

increase in degree of fibre alignments and decrease in the contact points between fibres in 

adjacent layers. However, applying tensile strain in the fibre direction will cause a reversible 

decrease in electrical resistance in the fibre direction as measured by the four-probe technique. 

A possible explanation for that change is due to increase in the degree of alignment as it hap-

pens in the through-thickness direction. Electrical resistance in woven fabric carbon fibre rein-

forced composite laminates increases due to applied strain due to reduction in fibre – fibre 

contacts in the through – thickness direction as discussed in Section 7.3.2.  

 Irving et. al. [197] found that using a two-probe technique gives the opposite result. Whereas, 

electrical resistance of CFRP laminate increases due to applied uniaxial tension and that might 

be attributed to dimensional changes during tensile loads. In general, the four-probe technique 

might be better than the two-probe technique as it eliminates electrical contact resistance at 

the electrodes and it is more reliable as it measures electrical resistance accurately for conven-

tional homogeneous electrically conductors.  

It is found that the piezoresistivity of ex-PAN carbon fibre (filament) is complex [193]. Carbon 

fibres (filaments) show a linear increase in electrical resistance above 0.1% of strain. However, 

carbon fibres have variable behaviours in most cases at low strains. Typical curves for ex-PAN 

shown in Figure 2-16. The piezoresistivity in carbon fibres can be contributed to many reasons, 

one of these reasons is changes in the shape of carbon fibre under applied strain. Applying a 

uniaxial tensile load on a carbon fibre will decrease the diameter and increase the length of the 

carbon fibre consequently that would increase the resistance of a carbon fibre [42].   

It is useful to study these geometric effects from changes in resistivity separately, since it can 

produce either a negative or positive contribution to the piezoresistance. Figure 2-16 shows 
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different PAN based carbon fibres that their resistivity changes with applied strain. Celion 3000 

is a low modulus (E = 200 – 300 GPa) PAN-based carbon fibre, the resistivity (ρ) of this carbon 

fibre is 10-5 Ω.m at the room temperature. GY-50 is a medium modulus (E = 350 GPa) PAN-

based carbon fibre, ρ ≈ 1.05 x 10-5 Ω.m at the room temperature. GY-70 is a high modulus car-

bon fibre (E = 500 – 700 GPa), ρ ≈ 1.5 x 10-5 Ω.m at the room temperature. While GR-21 is an 

ex-pitch carbon fibre that is not of interest in this work. Two types of a PAN-based carbon fibre 

were used in this work that were Toray FT300B and Tairyfil TC-35, their tensile modulus is 230 

GPa and resistivity is 1.7 and 1.73 x 10 -5 Ω.m respectively. 

 

Figure 2-16: Typical curves for ex-PAN carbon fibres showing the resistance changes due to applied 
strains [42]. ∆R represents the change in electrical resistance due to applied strain and R represent the 
typical resistance of an unloaded carbon fibre.  

The piezoresistivity is a function of temperature, as temperature might be used to categorize 

the lattice perfection of a carbon fibre. Therefore, the resistivity curves are useful and they are 

similar for widely different classes of carbon-based materials [198]. Figure 2-17 shows a set of 

resistivity as function of temperature for ex-PAN fibres. For perfect fibres, fibres with less de-

fects, the resistivity curves approach that of single crystal graphite. Since the electrons scatter-

ing by defects are minimized but the intrinsic scattering by phonons must be considered. Nev-

ertheless, none of the resistivity curves completely attain the low values for single crystal graph-

ite due to residual defects remaining in the fibres [42]. At the room temperature, for different 

heat treatments, the resistivity curve for the CCVD fibres lies under ex-pitches fibres and ex-
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PAN fibres, in that order. That might reflect the degree of difficulty to graphitize these carbons 

as shown in Figure 2-18.  

 

Figure 2-17: Temperature dependence of the resistivity of ex-PAN [199]. 

 

Figure 2-18: Schematic variation of room temperature electrical resistivity versus heat treatment temper-
ature [42]. o is ex-rayon, solid o is stretched rayon; ∆ 𝑎𝑛𝑑 ∇ ex-PAN fibres, ◊ ex-pitch fibres and the solid 
line is CCVD fibres.  
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2.7  Summary 

• This chapter presented a brief introduction to constituents and manufacturing tech-

niques of carbon fibre composite laminates, two manufacturing techniques that were 

autoclave processing and vacuum assisted resin transfer moulding were described. 

The most familiar damage forms due to low velocity impact events, with particular em-

phasis on delamination, were presented with factors that have significant impacts on 

the type, shape, and severity of damage, such as resin matrix type, carbon fibre type, 

and impact parameters. The most common smart sensing systems were addressed 

briefly, however, the electrical smart sensing systems were detailed, and the electrical 

resistance sensing system was covered in detail as it presents the main object of this 

thesis. Critical parameters and their effects on the sensitivity of electrical resistance 

sensing system were presented in Table 2-1. The theory of electrical conduction in car-

bon fibre composite laminates were explained and laws that govern the electrical con-

duction were presented. Two electrical resistance measurement systems, that are two 

– probe and four – probe electrical resistance were described. This thesis utilized the 

four – probe electrical resistance measurements, therefore, the advantages of this tech-

nique were mentioned thoroughly. This chapter ended by discussing the most im-

portant electrical property that has made carbon fibre composite laminates interesting 

materials that is piezoresistivity. 

• As evident from the literature that the electrical resistance sensing technique has shown 

potential contributions to improve the reliability of carbon fibre composite laminates 

due to its ability to monitor strain and damage due to applied loads. The vast majority 

of the reported literature on electrical resistance sensing technique has conducted on a 

bar type specimen for proof-concept purposes (technology readiness level 1 – 3). This 

thesis described work that tests the applicability of electrical sensing technique on a 

panel type specimen.  

• Although previous studies have undertaken substantial efforts in applying electrical re-

sistance technique on carbon fibre composite laminates fabricated using autoclave pro-

cessing technique, the studies have shown a little effort to investigate the suitability of 

the electrical sensing technique to carbon fibre composite laminates fabricated using 

different fabricating techniques, such as a vacuum assisted resin transfer moulding 
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technique. This thesis explored the applicability of electrical resistance sensing tech-

nique on carbon fibre composite laminates made using VARTM processing technique.   

• Extensive studies were conducted on unidirectional, cross – ply, quasi – isotropic car-

bon fibre composite laminates, however a little effort has been made on testing the 

suitability of electrical resistance sensing technique on woven fabric carbon fibre rein-

forced – epoxy composite laminates. The current thesis investigated the suitability of 

the electrical resistance sensing technique to woven fabric carbon fibre composite lam-

inates. This thesis attempted to show the limitations in a potential use with electrical 

sensing system due to the lack of a sufficient theoretical background.   

• Neural network and response surface method were used in the literature to locate the 

damage in tested specimens, both methods required a large set of data for training. 

This thesis proposed innovative sensing mats that divide the panels into segments and 

measure the local variations in electrical resistance in each segment to locate damage. 

The variations in electrical resistance due to damage occurrence was analysed using a 

simple code that utilized simple analytical methods.     
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METHODOLOGY 
his chapter provides details of constituent materials used to produce smart carbon 

fibre composite laminate panels. Experimental procedures to characterize physical 

and electrical properties of raw materials are described.  

3.1  Materials  

Carbon fibre composite laminate panels were manufactured using two manufacturing tech-

niques that are a vacuum assisted resin transfer moulding (VARTM) and an autoclave pro-

cessing techniques. Resin systems are detailed in Section 3.1.1, Section 3.1.2 describes cop-

per-clad laminates that were used to make the sensing mats and carbon fibres are described 

in Section 3.1.3.  

 

3.1.1  Epoxy Resin Systems 

In this work two types of uncured epoxy resins were used. A liquid low viscosity epoxy resin 

was used to make carbon fibre/epoxy composite laminates in a vacuum assisted resin transfer 

moulding (VARTM). In addition, a partially cured epoxy resin (B-staged) with carbon fibres in the 

form of a prepreg was used to make carbon fibres/epoxy composite laminate panels in an au-

toclave processing technique.  

 

3.1.1.1  IN-2 Epoxy Infusion Resin 

This resin uses unique chemistry which is described below as provided by the manufacturer 

(Easy Composites, UK). The ingredients for the resin and the hardener are presented in Table 

3-1 and Table 3-2 respectively. This resin has an ultralow viscosity, high mechanical properties, 

and it is a toughened epoxy resin. Due to its low viscosity and long pot life, this resin is used 

mainly in a resin transfer moulding (RTM) and a vacuum resin transfer moulding (VARTM).    

 

Table 3-1: Ingredient percentages of IN-2 Epoxy infusion resin. 

Ingredients 
Bisphenol-A-Epichlor-

hydrin 

Bisphenol-F-Epichlor-

hydrin 

1,6 bis (2,3-epoxypropoxy) 

hexane 

Propylene Car-

bonate 

Concentra-

tion % 
30 - 50 30 – 50 20 – 30 5 

 

T 
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Table 3-2: Ingredient percentages of AT30 Epoxy Hardener-Slow 

Ingredients 
Polyoxypropyl-

enediamine 

3-aminomethyl-3,5,5-trimethyl-

cycolohexylamine 

2,2,4-(2,4,4-) Trimethylehexa-

methylenediamine 

Benzyl al-

cohol 

Concentra-

tion % 
30 – 50 30 – 50 5 – 10 5 

 

As seen in Table 3-1, the epoxy resin system that was used in this work is a mix of different 

epoxy resins. Each epoxy resin contributes to epoxy resin system in different ways as described 

below: 

 

Bisphenol A Epichlorohydrin (DGEBA) resin is responsible for the mechanical properties such 

as modulus, but it has high viscosity due to its low flexibility in comparison with Bisphenol F 

Epichlorohydrin.  

 

Bisphenol F Epichlorohydrin resin, in turn, is less viscous than Bisphenol A Epichlorohydrin but 

it has a higher average epoxy content than DGEBA. This chemical component contributes to 

the mechanical and rheological properties of the resin system by reducing the viscosity of the 

resin system, but its main function is increasing the chemical resistance of the resin system.   

 

In order to preserve the physical or mechanical properties of the resin system, but reduce the 

viscosity, 1,6 bis (2,3-epoxypropoxy) hexane was used. This a polyfunctional reactive epoxy dil-

uent that has the ability to reduce the viscosity of the resin system. However, the mechanical 

properties of the resin system are less affected by incorporation this diluent, as it does not 

affect the cross-link density of the system. In fact, it is found it enhances some of the properties 

such as the toughness [48].    
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Propylene carbonate is added as a modifier, where its main function is decreasing the viscosity 

of the resin system. Propylene carbonate has a high molecular dipole moment (4.9D) that 

makes this chemical component a strong solvent, but it becomes part of the resin system [48]. 

That is unlike conventional solvents which leaves the mixture.  Propylene carbonate reduces 

the mechanical properties of the resin system, but the reduction in the mechanical properties 

is not high due to its low percentage in the resin system 5%.  

The curing agent system (hardener) that was used with the resin system is described below. It 

can be seen that the curing agent consists of aliphatic amines and cyclo-aliphatic amines. The 

aliphatic amines have a significant impact on the final product (cured resin) in terms of me-

chanical properties and the glass transition temperature. The aliphatic amines reduce the me-

chanical properties such as the modulus, but they increase the toughness of the cured resin, in 

addition they cause a reduction in the glass transition temperature of the cured resin relative to 

aromatic amines. One additional advantage for this curing agent system is that it initially cures 

at room temperature. However, this curing system contains other curing agents which require 

post curing in an oven to complete the curing reaction. The curing agent chemicals are de-

scribed below.  

Polyoxypropylenediamine 

 

 

3-aminomethyl-3,5,5-trimethylcycolohexylamine 

 

2,2,4-(2,4,4-) Trimethylehexamethylenediamine  
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Benzyl alcohol 

 

Table 3-3 presents the curing and the post curing schedules for this resin system. The proper-

ties of the resin and the hardener prior to mixing are shown in  

Table 3-4. Table 3-5 shows the physical and mechanical properties for cured resin at room 

temperature. 

 

Table 3-3: curing schedules for the epoxy resin system 

Temperature (oC) RT 40 50 60 

Time (Hour) 24 6 6 12 

 

Table 3-4: Physical properties of uncured IN-2 Epoxy resin and AT30 hardener as provided by the supplier.  

Properties Material Value 

 

Viscosity at 〖25〗^o C 

Epoxy Resin 500-600 mPa.s 

Hardener 25-50 mPa.s 

Combined 225 mPa.s 

Density 

 

 

Epoxy Resin 1.14-1.16 g/cm3 

Hardener 0.94-0.97 g/cm3 

Combined 1.105 g/cm3 

 

Table 3-5: Physical and mechanical properties of the cured resin at 25oC as provided by the manufacturer.  

Properties Value Test Method 

Density 1.08 – 1.12 g/cm3 ASTM D 792 
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Hardness 84.5-88.5 Shore D/15 ASTM D 2240 

Maximum Tg 92 -98oC ASTM D 3418 

Flexural Strength 112-124 MPa ASTM D 790 

Flexural Modulus 3.15-3.55 MPa ASTM D 790 

Tensile Strength 65.5-73.5 MPa ASTM D 638 

Elongation at break 6-8 % ASTM D 638 

Maximum Strain 5-7 % ASTM D 790 

Strain at Break 6-8 % ASTM D 790 

Water Absorption (24h at room temperature) 0.12-0.2 % ASTM D 570 

 

 

3.1.2  Copper Clad Laminates (Pyralux FR8510R) 

Conventional smart sensing materials that are made using electrical sensing techniques re-

quire using a lot of wires [185]. In this work sensing mats that are made of flexible circuit boards 

(FCBs) were used to reduce the amount of wiring required. In addition, that will make this tech-

nique versatile for aerospace applications. The electrical connection reliability using sensing 

mats is high since it is almost impossible to make a wrong connection. The accuracy of attach-

ing sensing mats to surface of the carbon fibre composite laminates is higher than attaching 

an individual piece of copper (electrodes) to the surface.  

Conventional flexible circuit boards consist of five distinct layers of materials: Dielectric film, a 

conductor layer, a cover layer, and two distinct adhesive layers. Commercial flexible copper-

clad composite laminates sheets Pyralux FR8510R (Dupont, USA) were used in this work. Sheet 

Pyralux FR8510R is a single-sided composite laminate sheet that consists of an 18 µm thick of 

copper foil bonded to a 25 µm thick of flexible film of polyimide. This material is classified ac-

cording to IPC-4562, where FR8510 is a product code and R specifies the type of copper was 

used in this product which is rolled-annealed copper (or sometimes called wrought).  

The copper is Grade W5 that was processed according to IPC-4562A-WAM1. However, accord-

ing to the manufacturer, during the manufacturing press cycle to make the Pyralux FR8510R in 

an autoclave it changes to grade W7. This copper (grade W7) has a maximum resistivity of 

0.155 Ω.g/m2. However, the Pyralux FR8510R has passed through further processing during 
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attaching it to carbon fibre composite laminates and the actual resistivity was measured, as 

presented in Section 3.2.3.  

Since the substrate of the dielectric film has a significant impact on the manufacturing cost 

and the performance of the finished sensing mats. The insulation (dielectric film) used in this 

product is a 25 μm polyimide flexible film. The polyimide offers the best combination of costs 

and properties for this application. The polyimide film is covered with a 25 μm thick of C-staged 

acrylic adhesive. The laminating process to copper foil takes place with the use of heat and 

pressure in an autoclave to form the base laminate.  

A cover layer was used in this project to isolate tracks in a sensing mat from making contacts 

with the carbon fibre panels this being Pyralux FR 0110 Coverlay (Dupont, USA). That material 

consists of a 25 μm thick layer of polyimide covered with a 25 μm thick of B-staged acrylic 

adhesive. B-staged acrylic adhesive’s main function is to join the cover layer to the etched pat-

tern on the base laminate. Pyralux FR8510R offers two main advantages in this project. The 

first advantage is reduction the amount of wiring required in the work and it increases the tough-

ness of the carbon fibre composite laminates since it has polyimide in its structure [165].  

 

3.1.3  Carbon Fibres  

The matrix is responsible for transferring loads between the reinforcing elements in carbon 

fibre/epoxy composite laminates. Carbon fibres are carrying most of the loads. The mechanical 

properties of the carbon fibres depend greatly on the precursor used and the processing con-

ditions employed as these factors determine the degree of alignment of the crystals. That in 

turns means the behaviour of the carbon fibres depend largely on their microstructure. There-

fore, the microstructure of the carbon fibres, which were used in this work, was examined using 

scanning electron microscope as shown in Section 3.2.2. Two types of carbon fibres were used 

that are Taryfil TC-35 and Toray FT300B. 

It is worth to mention the fact that there is limited information provided by the suppliers regard-

ing the processing and conditions that are essential for producing the high mechanical proper-

ties carbon fibres. However, plenty of information was concluded from scanning electron mi-

croscope (SEM) that was carried out on the two types of fibres, therefore discussions in the 

following section is built on the information that was obtained from the SEM as well as the 

information that was provided by the suppliers. 
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3.1.3.1  Carbon Fibres Tairyfil TC-35  

These carbon fibres were supplied in a 2 x 2 mm twill weave fabric, 3000 filaments in a bundle 

(3K), and 200 grams per square meter (gsm). The mechanical properties are provided by the 

supplier as shown in Table 3-6. These are ex-PAN carbon fibres. PAN refers to the starting ma-

terials that is Polyacrylonitrile. These fibres are produced by extruding the polymer through a 

nozzle (ex: refers to the extrusion process). The carbon fibre (filament) diameter is 7 μm; the 

fibres were examined in the SEM. The examination shows that these fibres have a heterogene-

ous circular cross-section. 

 

Table 3-6: The physical and the mechanical properties of Tariyfil TC-35 as provided by the supplier.  

Property Value Unit Test 

Diameter 7 µm  

Density 1.8 g/cm3 JISR-7601 

Tensile strength 3.45 GPa JISR-7601 

Tensile modulus 230 GPa JISR-7601 

Elongation 1.5%   

Electrical resistivity 1.73 x 10-3 Ω.cm  

Sizing type Epoxy   

 

 

3.1.3.2  Carbon Fibres Toray FT300B  

These carbon fibres were supplied in a form of pre-impregnated carbon fibres with a 2 x 2 mm 

twill weave. The carbon fibre weight is 275 grams per square meter (gsm), it has 3000 filaments 

in a bundle. FT300B is an untwisted yarn that made from a twisted yarn through an untwisting 

process. This grade of carbon fibres is the baseline for the aerospace industry. They are PAN-

based carbon fibres. Those carbon fibres have a bean-shaped cross-sectional microstructure 

with an internal flaw in the structure. It is expected that those flaws have a significant influence 

on the mechanical and electrical properties as shown in Table 3-7.  

 

Table 3-7: Physical and mechanical properties of FT300B as provided by the supplier. 

Property Value Unit Test 

Diameter 7 μm  

Density 1.76 g/m3 TY01 

Tensile strength 3.53 GPa TY-030B-01 

Tensile modulus 230 GPa TY-030B-01 

Elongation 1.5%   
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Property Value Unit Test 

Electrical resistivity 1.7 x 10-3 Ω.cm  

Sizing type (FT300B) Epoxy, Phenolic and BMI   

3.2 Experimental Set ups and Procedures  

This section describes the experiments that were undertaken on the materials mentioned 

above. This section provides details of machines and adjustments, specimen preparations and 

test standards.  

3.2.1 Differential Scanning Calorimetry  

It is essential to understand the chemistry (degree of cure) and physics (glass transition tem-

perature) of epoxy resins used in this work. All chemical reactions and many physical transi-

tions are associated with heat generation or heat consumption. Differential scanning calorime-

try (DSC) is a fundamental tool in thermal analysis. Simply, DSC looks at how a material’s heat 

capacity is changed by temperature. Where a sample of known mass is heated or cooled and 

the changes in its heat capacity are tracked as changed in the heat flow. This allows detection 

of transitions such as melting temperature, glass transition temperature, phase changes and 

degree of cure. DSC was used to determine the degree of cure for both resin systems (VTC 401 

and NI-2 Epoxy Infusion Resin) used and the activation energy for IN-2 infusion resin. 

 

3.2.1.1 Degree of Cure  

DSC was used to determine the degree of cross-linking (degree of cure (DOC)) in thermosetting 

resin systems that were used. A Perkin Elmer 8500 DSC was used to assess the DOC. This is a 

heat flow DSC, it is power-controlled to measure heat flow. This machine has a double – fur-

nace, one for a reference sample and the other for an actual sample. The movement of heat in 

and out of a sample is monitored and recorded as a function of temperature and time. To meas-

ure the DOC a specimen was placed in a pan in the furnace. The movement of heat in and out 

of the sample is monitored by temperature sensors. A feedback loop (monitoring change of 

temperature with time) is used to keep the sample at a given temperature while measuring the 

power needed to do this against a reference sample. The reference sample consists of an 

empty closed pan.  

 

3.2.1.1.1 Specimen preparation and differential scanning calorimetry setup 

A standard test methodology, ASTM E2160-04, was adopted in the test. A 13 mg sample of 

liquid IN-2 epoxy infusion resin, or a 13 mg of 100 % uncured prepreg in case of VTC401 was 

placed in an aluminium pan. The pan was closed by a lid (a closed pan set up was used) then 
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it was placed in the DSC. The sample was heated at a constant heating rate (isothermal mode) 

at 10o C/min from the room temperature (25o C) to a target temperature, 250o C as shown in 

Equation 3-1  

T (t)= To+ β
o
.t                   3-1 

Where To is the starting temperature of the run and βo the heating or cooling rate. It can be 

noticed that Equation 3-1 is a linear function between temperature and time. Isothermal mode 

was used in the experiments, therefore, the term in βo in Equation 3-1 is zero. In the isothermal 

mode if no reactions or transitions take place in the sample, therefore, there is no heat ex-

changed with the sample and the heat flow rate should read zero. In the reality the heat ex-

change of the sample and the reference sample are different since they are asymmetric. To 

obtain precise heat of reactions a baseline run was carried out and then subtracted from the 

measured curve to obtain the true reaction heat flow rate. 

To determine the degree of cure (DOC), a small fragment of cured sample was placed in an 

aluminium pan then an open pan setup was used. The open pan was placed in the DSC. The 

sample was heated from the room temperature (25oC) to the targeted temperature 250o C in 

the isothermal mode at a constant heating rate of 10o C/min. The tests were undertaken ac-

cording to ASTM E2160-04. The heat of the reactions was calculated for both samples (liquid 

and solid samples) in order to determine the degree of cure.  

 

3.2.1.2 Kinetic Parameters by Differential Scanning Calorimeter Using Isothermal 
Method   

In a VARTM technique the resin viscosity is an important element to control the infusion pro-

cess and to obtain a high-quality part. Therefore, the viscosity of the IN-2 epoxy infusion resin 

was controlled by adjusting the infusion temperature. Hence, infusing of the resin at an elevated 

temperature will help to reduce the viscosity of the resin and increase the wettability of the resin 

to the carbon fibres. To estimate the reduction in the resin viscosity due to infusion at an ele-

vated temperature, a method to determine kinetic parameters of the activation energy by DSC 

using the isothermal method, according to ASTM E2070 – 13 – test method E, was adopted.  

 

3.2.1.2.1 Specimen preparation  

5 mg of IN-2 epoxy infusion resin was placed in an aluminium pan (Perkin Elmer, US) and sealed 

by using a dedicated lid (Perkin Elmer, US). The total weight of the specimen was recorded to 

the nearest ±10 µg and fed to software. Then the specimen was placed along with a reference 

sample in the DSC, then the DSC sample chamber was closed. Ranges of heating rates were 
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used (2, 5, 10, 15, 20, and 30oC/min). The sample was heated from the room temperature 25oC 

to 250OC in an isothermal mode as described above.  

 

3.2.2  Scanning Electron Microscope  

Scanning electron microscopy (SEM) was used to determine the relationship between micro-

structures and electrical properties of PAN-based carbon fibres. SEM is a useful tool for visual-

ising micro-cracks, flaws, voids connected with fibre processing, and porous structures asso-

ciated with the exfoliation process. The SEM images demonstrate the lamellar organization of 

graphite layers which may be circumferential or radially oriented. 

 

 

3.2.2.1 Specimen Preparation  

Two PAN-based carbon fibres were examined. The Tairyfil TC-35 (Formosa, Taiwan) was ex-

tracted from a 200 gsm 2 x 2 twill weave fabric (Easy Composites, UK). The FT300B (Toray, 

Japan) fibre was extracted from prepreg VTC401, 275 gsm, 2 x 2 twill wave fabric (SHD Com-

posite Materials, UK) and a sample was placed in 70 % nitric acid for 90 minutes, washed with 

distilled water then dried in an oven (Thermo Scientific, UK) at 50oC for 1 hour in order to remove 

the remaining resin. The densities for the carbon fibres Tairyfil TC-35 and FT300B are 1.8 g/cm3 

and 1.76 g/cm3 respectively, these values are provided by the manufacturers.  

Single fibre samples were prepared by hand under stereo optical microscopy (Zeiss, Germany). 

An individual fibre was extracted from the carbon fibre bundles. Each fibre was cut using a razor 

blade (Swann Morton Limited, UK) then bonded onto a piece of silicon 5 x 5 mm (Agar scientific, 

UK) using conductive carbon tape (Agar scientific, UK) with electrical resistance of 9.5 Ω /(25.4 

mm2). The prepared sample is shown in Figure 3-1. 

 

 

Figure 3-1: Prepared sample for SEM examination 
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3.2.2.2 Scanning Electron Microscope Setup 

Each sample was examined using a high resolution thermal field emission scanning electron 

microscope, an Inspect F Scanning Electron Microscope (SEM) (FEI, USA). This SEM is oper-

ated in the range between 200V – 30 kV. This is an advanced SEM that gives much details of 

the carbon fibre filament’s transverse microstructure due to high vacuum technology that is 

used in this machine. In addition, the penetration of depth of lower kV electrons into the fibres 

is less than with the conventional electron microscopes. An Everhardt – Thornley secondary 

electron detector (ETD-SE) was used to capture the transverse microstructural images. The 

images dimensions are 1024 x 943 pixels. An extra image processing to adjust the brightness 

and the contrast of the images was undertaken by using Lightroom CC 2015 (Adobe, USA), the 

actual image sizes after processing are mentioned on the figures. As it can be noticed from the 

figures that various magnifications were used to show the carbon fibre filament from different 

angles. However, the transverse microstructure is responsible for the electrical conductivity in 

the filament.  

3.2.3 Resistivity Measurement of the Sensing System 

To prove the reliability of the electrical connection made with the carbon fibre composite lami-

nates. The total resistivity measure by the system was divided into Pyralux FR8510R, connec-

tion wires, electrodag 1415 (Agar Scientific, UK), silver epoxy 8331 (MG Chemicals, UK) and 

carbon fibre composite laminates resistivity. However, electrical resistivity of the measuring 

system (Pyralux, connection wires, electrodag or silver epoxy 8331) was measured all together 

at once. This amount of resistivity will be subtracted from the total resistivity to find the real 

resistivity of the panel. The test was undertaken according to IPC-TM-650-2.5.14A, where the 

letters IPC denote institution of printed circuit, TM denotes the test manual 650-2.5.14A is a 

serial number.  

 

3.2.3.1 Resistivity test setup 

A four-probe technique was used to measure the resistivity of a 330 X 20 mm strip of Pyralux 

FR8510R as shown in Figure 3-2. National Instrument mode NI9219 in a chassis NI cDAQ-9172 

was used, the accuracy of the system is ± 0.1% at the room temperature. The mode was con-

figured to a four-probe electrical resistance method, a default direct electrical current of 500 µA 

was used, it is found that this amount of electrical current does not generate additional heat in 

the sample. The electrical resistance readings were taken as shown in Figure 3-3 and then the 

average reading was considered in the calculations.  
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Figure 3-2: Photograph showing a representation of the four-probe technique. 

 

Figure 3-3: Schematic model of the experimental setup that is used to measure the resistivity for Pyralux 
FR8510R. The thickness dimensions have been magnified for the purpose of clarifications.    
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RESULTS OF CHARACTERIZATION PROCEDURES 

FOR RAW MATERIALS 
his chapter presents results and discussions of the characterization methods that were 

described in the previous chapter. The analytical calculations and the diagrams of degree 

of cure (DOC) for resin systems are explained and discussed.  The governing equations and the 

analytical calculations and the Arrhenius plot to determine the activation energy for IN-2 epoxy 

infusion resin are also given. The carbon fibres cross-sections were examined using the scan-

ning electron microscope (SEM), and the images are presented in this chapter. The resistivity 

of Pyralux FR 8510 was also examined, and the results are shown here. 

 

4.1  Differential Scanning Calorimetry   

4.1.1 Degree of Cure  

The DSC graphs for resin systems IN-2 epoxy infusion resin, and VTC401 are presented in Fig-

ure 4-1 and Figure 4-2 respectively.  These graphs have been obtained by heating uncured epoxy 

resin systems at a rate of 10oC/min. It can be seen from the graphs that with the increase in 

the specimen temperature, the epoxy resins undergo curing and where a large exothermic peak 

can be observed, in case of liquid resin, and a small peak, in case of cured samples. It can be 

seen from the graphs that the resins have gone through irreversible chemical reactions during 

heating-cooling cycles.  

The temperature at which the heat flow curve deviates from a linear response is considered the 

temperature at which the cure has onset. The exothermic peak reflects the maximum rate of 

curing of the epoxy resin. It is worth to mention here that the test was undertaken using a Perkin 

Elmer 8500 DSC, the Perkin Elmer DSCs shows exothermic peaks as down. At the end of the 

curing reaction (crosslinking), the DSC heat flows return to quasi-linear behaviour. The heat of 

the reaction can be calculated by integrating the area under the exothermic curve. Equation 4-

1 was used to calculate the degree of cure (DOC). It was found that the DOC for IN-2 Epoxy 

infusion resin is 95 % and the degree of cure for VTC401 is 94 %.  

DOC= 
∆Hliq- ∆Hsol

∆Hliq
 X 100                  4-1 

Where ∆Hliq is the enthapy of liquid resin and ∆Hsol is the enthalpy of sold resin. 

T 
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Figure 4-1: Curing reaction IN-2 Epoxy infusion resin as function of temperature.  

 

 

Figure 4-2: Curing reaction of VTC401 resin as function of temperature.  

 

 

4.1.2  Kinetic Parameters by Differential Scanning Calorimeter Using Isothermal 
Method  

Equation 4-2 represents a direct relationship between the resin viscosity and the temperature 

[200].  

μ= μ
o

exp (
E

ΨT
)             4-2 
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Where E, Ψ, T and µo are the flow activation energy (J/mol), the universal gas constant (8.314 

J/mol.oK), the absolute temperature (oK) and the viscosity constant (Pa.s) respectively.  

The relationship in Equation 4 – 2 showed that the viscosity of the resin can be managed effec-

tively by the infusion temperature. To measure the effect of the infusion temperature on the IN-

2 epoxy infusion resin, the activation energy need to be calculated. Therefore, an Arrhenius plot 

was drawn, the Arrhenius plot represents a logarithmic heating rate versus the inverse of the 

glass transition temperature, as shown in Figure 4-3.   

 

Figure 4-3: Arrhenius plot that represents the relationship between the heating rate and glass transition 
temperature for IN-2 Epoxy infusion resin.  

 

By applying the Equation 4-3, the activation energy was found to be 37.151 kJ mol-1  

E= 
Ψ

0.4567
* 

∆logβ

∆(1 T⁄ )
               4-3 

A relationship between the heating rate (β) and glass transition temperature (Tg) was estab-

lished for IN-2 epoxy infusion resin  

Tg=98.27+2.44* β-0.09*(β-13.66)
2
           4-4 

By applying Equation 4-2 at the room temperature the viscosity constant was found, by substi-

tuting the viscosity constant in Equation 4-2 the resin viscosity at the infusion temperature 

(313.15oK) was found to be 27.88 mPa.s. 

 

4.2  Scanning Electron Microscope Characterization   

The transverse cross-section for each fibre was examined using SEM as shown in Figure 4-4 

and Figure 4-5 and as described in Section 3.2.2. Figure 4-4 represents Formosa Tairyfil TC-35.  

It can be observed in the figure, that the fibres have a circular cross-section, the heterogeneity 
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can be observed too. The structure is mixed of radially oriented sheet-like structures in the core, 

granular and random structures towards the skin of the fibre.  

 

Figure 4-4: SEM micrographs of carbon fibres showing the surface and transverse cross section of For-
mosa Tairyfil TC-35. a. shows a low magnification image b. shows a high magnification image where the 
transverse cross section features appear clearly. Image dimensions is 1024 x 943 pixels.  

 

Figure 4-5 shows Toray FT300B carbon fibre. It is noticed that the transverse cross section of 

this type of carbon fibre is distorted oval and it contains a particulate or a granular structure. 

The distinct differences in the structures of carbon fibres is attributed to graphitization at dif-

ferent heat treatment temperatures.  

 

 

Figure 4-5: SEM micrographs of carbon fibres showing the surface and transverse cross section of Toray 
FT300B. a. shows a low magnification image 12000x b. shows a high magnification image 20000x where 
the transverse cross section features appear clearly. Image dimensions is 1024 x 943 pixels. 

 

All the electrical resistivity tests on carbon fibre composite laminates were undertaken at the 

room temperature (20oC). It is expected that the defects that are shown in the carbon fibre 

a b 

a b 
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structure in Figure 4-4 and Figure 4-5 will have a significant impact on the electrical resistivity 

of the carbon fibre since they may cause a considerable electron scattering. It is expected that 

the defects, in addition to the electric contact resistance may cause a high resistivity reading 

as will be shown in electrical resistance results in Section 7.2.3. The electrical resistivity of Toray 

FT300B and Tairyfil TC-35 are close in value due to the similarity in the transverse cross-section 

that are  (17 x 10-3 and 17.3 x 10-3  Ω.cm respectively).  

 

4.3  Sensing System Resistivity  

The measured resistivity of the whole sensing system, including sensing mats, interconnection 

and wiring, is 0.499 x 10-8 Ω.mm. The Pyralux FR8510R is made of wrought copper foil. In the 

wrought condition the grains are distorted in the longitudinal direction and copper that is 

formed has a high tensile strength, is fairly hard, and has a relatively low elongation [201]. It is 

expected that a big part of this resistivity was attributed to Pyralux FR8510 as well as the silver 

paste that was used to attach the flexible circuit boards to the carbon fibre composite laminate 

panels. 
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PRODUCTION OF COMPOSITE PANELS 
his chapter describes methods used to produce carbon fibre composite laminate 

panels using the materials selected in Section 3.1, consumables and variables af-

fecting the manufacturing techniques are also discussed thoroughly.   

 

5.1  Vacuum Assisted Resin Transfer Moulding  

This section discusses the production of carbon fibre composite laminates using a vacuum 

assisted resin transfer moulding (VARTM) technique. The materials used in this technique were 

mentioned in Section 3.1. The consumables and manufacturing variables such as the resin in-

fusion temperature, the infusion speed, the vacuum pressure, and curing schedules are pre-

sented in this section.  

 

5.1.1  Fabricating Process  

PAN-based woven twill 2 x 2 mm carbon fibre Tairyfil TC-35 was used to make the carbon fibre 

composite laminates. Two types of laminates 200 x 200 x 1.09 mm (VB panel) and 200 x 200 

x 2.06 mm (VC panel) were fabricated. The set up for a VARTM is illustrated in Figure 5-1. The 

arrangement of the preform is made in the following way: 

1. Carbon fibre plies were placed between two layers of peel plies measuring 300 x 300 

mm, (Econolease, Tygavac, UK). Peel plies were cut larger than the carbon fibre plies 

for easy release from the aluminium plate.  

2. A layer of a breather fabric measuring 300 x 300 mm (Air Weave N-10 (AWN-10),Tyga-

vac, UK) was applied on the top of the peel ply.  

T 
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Figure 5-1: A typical schematic diagram shows the setup for a VARTM technique. 

 

Typically, resin distribution mediums are used to enhance and speed up the infusion process, 

but they are not used in this setup, as the laminates are small in size, and it was found to be 

unnecessary. In addition, it is found that using the resin distribution mediums will cause dry 

spots on the upper surface since they are making a direct connection with the vent from one 

side and the preform from the other side. The breather fabric helps to distribute the pressure 

inside the vacuum bag evenly and consequently that helps to obtain uniform thickness panels. 

It is therefore found that removing the distribution medium helps to prevent formation of dry 

spots by increasing the resin pressure and ensuring a uniform flow front. 

Plastic tubes (Easy Composite, UK) were used to inject the ultra-low viscosity resin into the 

preform. The resin used in this work is IN-2 epoxy infusion resin (Easy Composites, UK). Helical 

open tubes were used as a resin injection line source on one end and a resin and air collector 

on the other end.  The helical tubes used in this work is commercially called Resin Infusion 

Spiral Medium Flow 4.5 mm (EasyComposite, UK) as shown in Figure 5-2. Two ports were 

placed on to the preform, one is resin injection port and the other is a vacuum port. The resin 

injection port was connected to the helical pipe and they were placed on to the breather fabric. 

A quick and simultaneous resin infusion into the preform was maintained using set up as shown 

in Figure 5-2. The vent port was placed slightly away from the preform on top of the peel ply to 

prevent direct competition against the dry fibre preform for the resin supplied from resin inject 

port.  
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Figure 5-2: A typical vacuum assisted resin transfer moulding setup. 

 

The preform was enveloped by a vacuum bag, which consists of a plastic film, (Wrightlon 7400, 

Tygavac, UK) that is capable of withstanding temperatures up to 204oC.  A sealant tape, (AT-

200Y, Tygavac, UK) was used to seal the film to the hotplate. The maximum use temperature 

for this product is 204oC. However, the infusion was undertaken at 40oC. Flexible plastic pipes 

are connected to ports on both resin injection and vacuum sides. The plastic pipe, that is linked 

to resin injection port, goes to the resin container and the plastic pipe on the other side goes to 

a catch pot that in turn connects to a vacuum pump as shown in Figure 5-2.  

The infusion was carried out at a constant pressure of 0.95 bar (95.95 kPa). It was found during 

the experiments that this pressure was enough to compact the preform and to obtain relatively 

high fibre volume fraction of 50% by volume. Debulking process was undertaken during the 

work, that allows better compaction of the fibre preform by cyclically compressing and relaxing 

it. In this process the vacuum pressure was applied on the preform for five minutes then the 

inlet was opened to let air in to the preform then the pressure was applied again. This process 

was carried out for three times. It was found that this helps to obtain panels with uniform thick-

ness. Before the infusion process the ultra-low viscosity resin, IN-2 epoxy infusion resin, was 

mixed manually then degassed using a vacuum oven (Gallenkamp, UK) for ten minutes. To 
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reduce the viscosity and ensure a low micro-void content, the resin infusion process was un-

dertaken at 40oC.  

The viscosity was decreased from 225 mPa.s to approximately 27 mPa.s by this level of heat-

ing, more details are mentioned in Section 3.1.1. The resin flow rate was adjusted by opening 

the clamps slightly as shown in Figure 5-2. Once the resin reaches the vacuum port, it is allowed 

to bleed out for five minutes to wash out all the air bubbles from the resin flow front and en-

trapped air bubbles in the preform. Then the resin injection port was clamped off and the resin 

was left to partially cure at the room temperature for 24 hours then the carbon fibre composite 

laminates were removed and post-cured in an oven (Heraeus Instruments GmbH, Germany), 

the curing schedules are shown in Table 5-1. 

Table 5-1: The curing schedules for the epoxy resin system.  

Temperature (oC) RT 40 50 60 

Time (Hour) 24 6 6 12 

 

The infusion time is a function of the preform thickness, hence, 20 and 10 minutes was the 

infusion time that was required to obtain 200 x 200x 2.06 mm (AC panel) and 200 x 200 x 1.09 

mm (AB panel) respectively. That included 5 minutes to washout the air bubbles from the pre-

form. No dry spots were noticed on the final panels, which was due to simple panels shape and 

the resin system that was used (the resin system was discussed in Section 3.1.1) which has 8 

to 11 hours gelation time at 25oC. A low micro-voids content was observed in the panels due to 

use a breather fabric instead of resin distribution medium, where the breather fabric slows the 

infusion process. Therefore, it reduces the dual scale flow behaviour due to the slow speed of 

resin infusion that happens between the plies. Dual scale flow behaviour occurs due to the dif-

ference in the flow patterns [57, 71, 72]. There are two flow patterns occurring, these being flow 

inside the fibre tow which is dominated by the capillary effect, and which is significantly slower 

than the other that happens between the fibre tows and it is governed by Darcy’s law.   

 

5.2 Autoclave processing  

This section will discuss the production of the carbon fibre composite laminate panels using 

an autoclave processing technique. The properties of materials (carbon fibres, and epoxy res-

ins) used in the autoclave processing fabricating technique were discussed in 3.1.3. The cutting 
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of prepreg sheets, the layup technique, bagging, and curing cycles are discussed in the follow-

ing section.  

 

5.2.1  Fabricating Process 

Pre-impregnated carbon fibre (prepreg) VTC 401 (SHD composites, UK) was used to make car-

bon fibre composite laminate panels. The prepreg sheets were cut using a scalpel (Swann Mor-

ton, UK) in to 200 x 200 mm2. Hand layup technique was used to stack the prepreg sheets. The 

prepreg sheets were then placed onto a steel plate, which is covered by a polytetrafluoroeth-

ylene (PTFE) sheet to avoid sticking. Then a hot air jet from a hair dryer was applied on each 

prepreg sheet to soften the uncured resin and improve the stickiness before laying of the con-

secutive sheets. A squeegee was used to consolidate this sheet along the fibre direction. The 

prepreg used were woven reinforced carbon fibre/epoxy, therefore, the consolidation process 

was carried out in the weft and warp directions.  

After the layup process, the prepreg stack was covered with various layers of cloth. The first 

layer was a bleeder (Econolease, Tygavac, UK) that assists to achieve an optimal fibre volume 

fraction by absorbing excess resin. The second layer is breather (Air Weave N-10, Tygavac, UK) 

that provides a path for removal of the air and volatile gasses from the component during the 

cure. Then the assembly was sealed inside a vacuum bag (Wrighton 7400, Tygavac, UK) as 

shown in Figure 5-3. The tool and assembly were then placed in the autoclave (Premier Auto-

clave and Solution, UK).  In order to cure the panel, the curing cycle is shown in Figure 5-4. 

 

Figure 5-3: Prepreg stacks prepared for autoclave processing.  
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Initially, inside the vacuum bag a uniform vacuum pressure was applied (101 kPa) to consoli-

date the prepreg stack and remove the air and volatile gasses.  Inside the autoclave chamber, 

the vessel was filled with a compressed gas at a rate of 0.2 bar/min. The pressure inside the 

pressure vessel helps to consolidate the prepreg stack and it normally remains on until the end 

of the curing cycle. When the external pressure (the pressure inside the vessel) increases to 

higher than 202 kPa (2 bars) the vacuum pressure inside the bag stops working, therefore, the 

vacuum pressure was set to vent as shown in Figure 5-4. Otherwise, the external pressure might 

damage the vacuum system in the autoclave.  

The temperature inside the autoclave was increased gradually at a rate of 2oC/min to the cure 

temperature. The cure temperature for the prepreg VTC 401 is 120oC for 45 minutes followed 

by post curing at 135oC for 120 minutes as shown in Figure 5-4. The autoclave was set to cool 

down to the room temperature then the assembly was taken out of the chamber the panels 

were peeled off and prepared for further processing. Composite laminate panels with four var-

ious thicknesses were prepared. The panels were AB, AC, AD, and AE with thickness 0.84, 1.64, 

2.54, and 3.5 respectively. The composite panels passed through further processing stages 

prior to convert them to smart composite panels.    

 

 

Figure 5-4: Autoclave processing cycle for prepreg VTC 401. 
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5.3  Producing Sensing Mats  

The main goal of this work is to make a reliable, robust, repeatable and applicable self-sensing 

system. Sensing mats have replaced connection wires to make electrical connections with car-

bon fibre composite laminates. The materials used to make the sensing mats were chosen 

carefully as discussed in Section 3.1.2, therefore no reduction in mechanical properties of the 

CFRP laminates will occur. Section 5.3.1 describes the stages to produce sensing mats from 

the design stage to ready-to-use sensing mats.  

 

5.3.1 Fabricating Procedure   

The first step to make sensing mats is to design artworks. The artworks were designed using 

photo editor software Photoshop CC 2017 (Adobe, USA) as shown in Figure 5-5 and Figure 5-6 

for sensing mat 1 and mat 2 respectively. The electrodes sizes, the tracks width, the distances 

between tracks and pads sizes were fixed for all sensing mats, they are either 10 x 10 mm or 

20 x 20 mm, 1 mm, 2 mm and 2 x 2 mm respectively. The artworks were printed at 1:1 ratio on 

an A4 translucent polyester drafting film, commercially called LaserStar (Mega Electronics, UK). 

The software allows print mirror images of the artworks, that means the black areas of the 

artworks will be in contact to the flexible circuit boards’ photo-sensitive side during UV exposure 

as shown in Figure 5-7.  

 

 

Figure 5-5:  Sensing mat 1 designed using Photoshop CC 2017. 
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Figure 5-6: Sensing mat 2 designed using Photoshop CC 2017. 

 

Figure 5-7: Preparation steps for producing sensing mats that are designed specifically for damage sens-
ing in carbon fibres composite laminates. The image on the right shows the artwork for the sensing mat 
that is going to be printed on the Pyralux FR8510R covered with photosensitive film that is shown in on 
left image.  

 

The photosensitive side of the flexible circuit was made by applying a photo-sensitive film (dry 

film) (Mega Electronics, UK) on the copper side of the Pyralux FR8510R (Figure 5-8). Where a 

layer of Pyralux FR8510R and the photo-sensitive film were cut by a pair of scissors to desired 

dimensions as shown in Table 5-2. As seen in Table 5-2 and Figure 5-8, the reason the dry film 

was cut to bigger sizes than the Pyralux FR8510R sizes is to ease removing the plastic film 

which is required prior to the developing stage. 
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Figure 5-8: Pyralux FR8510R that was covered with photo-resistive film.  

Table 5-2: Pyralux FR8510R, Coverlay FR0110 and Dry film dimensions corresponding to sensing mat 
sizes 

 

The combination of Pyralux FR8510R and the dry film were put inside a vacuum bag and then 

they are placed in an oven, (Heraeus Instruments GmbH, Germany) at 60oC under 101 kPa of 

vacuum pressure for two hours. It was found that a 3-5oC/min heating rate will maintain the 

light sensitivity of the dry film. Then the combination of Pyralux FR8510R and the dry film were 

exposed to UV light using a UV exposure unit (RS Compoents, UK) for 40 seconds. The protec-

tive plastic film was removed from the surface of the dry film prior to developing the exposed 

sensing mats in a printed circuit board (PCB) etcher (Mega electronics, UK). Then UV exposed 

boards were placed in a basket holder and immersed in a potassium carbonate solution, that is 

commercially called Dry Film Photoresist Developer (Conc.) (MEGA Electronics, UK). Potassium 

carbonate was diluted in distilled water, the dilution ratio is 25:1 (25 parts of distilled water to 1 

part of potassium carbonate). The development process occurred at 28oC in the PCB etcher for 

15 minutes. Since the artworks were negative, so the dry film removed from all areas apart from 

areas that were exposed to UV light (electrodes, tracks and pads areas) as shown in Figure 5-9.  

The developed sensing mats were taken out of the developing tank in the PCB etcher and 

washed by low pressure water jet at the room temperature. The developed and washed sensing 

mats were then placed into the basket holder and immersed in the etching tank in the PCB 

Sensing 

Mat 

Pyralux FR8510R di-

mensions (mm) 

Dry film dimen-

sions (mm) 

Coverlay FR0110 di-

mensions (mm) 

Sensing mats 

sizes (mm) 

Electrode di-

mensions (mm) 

Mat 1 235 x 200 x 0.043 250 x 160 235 x 140 x 0.025 
200 x 200 x 

0.068 
10 x 10 x 0.018 

Mat 2 220 x 200 x 0.043 240 x 160 220 x 140 x 0.025 
200 x 200 x 

0.068 
20 x 20 x 0.018 
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etcher. 40% ferric chloride solution UN2582 (MEGA Electronics, UK) was used as an etching 

solution to etch the developed sensing mats. Ferric chloride was mixed with the distilled water, 

the mixing ratio is 3:1 (three parts of ferric chloride to 1 part of distilled water). The etching 

process occurred at 38oC. Etching time was 5 minutes when the air pump in the etching tank 

was turned on, however, the etching time will be longer if the pump was turned off. It was found 

that 5 minutes etching time was enough to remove the unprotected copper from the developed 

sensing mats as shown in Figure 5-9.   

The etched sensing mats were then washed by low pressure water jet at the room temperature. 

A cleaning grade acetone (Sigma Aldrich, UK) was used to strip the remaining of dry film by 

immersing the etched sensing mats in the acetone for 10 minutes then a brush (Cottam, UK) 

was used to scrub the sensing mats. The last stage of preparing the sensing mats consists of 

applying the Coverlay FR0110 to the surface of the sensing mats prior to attaching them to the 

surface of the carbon fibre composite laminates. The coverlay was applied to the top surface 

of the sensing mat to isolate the tracks from making connections with the CFRP laminate.  

 

Figure 5-9: Steps to produce sensing mats a) sensing mat 1 pattern, b) the sensing mat after exposing 
to UV light, c) the sensing mat after developing, d) ready to use sensing mat. The total thickness of ready 
to use sensing mats dimensions is 0.068 μm.  

The areas of coverlay above the electrodes were cut using razor blades (Swann Morton Limited, 

UK), then the plastic cover was removed from the coverlay FR0110 then it was applied to the 

surface of the sensing mats. The coverlay FR0110 contains B-staged acrylic adhesive. The 
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combination was enveloped in a vacuum bag then placed in an oven (Heraeus Instruments 

GmbH, Germany) to cure the B-staged acrylic adhesive. The acrylic adhesive was cured at 70oC 

for 2 hours under 1 bar of pressure. After cure, the peel strength between the coverlay FR0110 

and the Pyralux FR8510R was 1.6 N/mm measured according to IPC-TM-650. That peel 

strength should be enough to prevent any conductive liquids, that will be used to attach the 

sensing mats to the surface of carbon fibre composite laminates, from penetrating between 

the coverlay and the sensing mats.  

 

5.4 Attaching Sensing Mats to the Carbon Fibres Composite Laminates 

This is the first stage in the process of converting conventional carbon fibre composite lami-

nates panels to smart materials. A good quality electrical contact between the carbon fibre 

laminate made using VARTM and autoclave processing and the sensing mat this was neces-

sary for electrical sensing analysis. Preparation starts with trimming the sharp edges of the 

sample that were formed during the VARTM technique. That was followed by grinding and then 

polishing stages as will be described in the below section. The same method that was described 

below was applied on prepreg carbon fibre laminates. 

 

5.4.1  Attaching Sensing Mats to Carbon Fibre Composite Laminate Panels Using Con-
ductive Epoxy  

A rough grinding for carbon fibre laminates was required to remove the artefacts that were 

formed because of the nature of the manufacturing technique. Where the samples were in con-

tact with rough surfaces (peel plies), more details about VARTM and autoclave processing set-

ups were described in Section 5.1 and Section 5.2. The rough grinding step was essential to 

remove the epoxy layer from the surface that will be in contact with the sensing mat. This step 

started with using 240 grit SiC papers with presence of coolant (water) at the room temperature, 

where the water has two functions. The first function is dissipating the heat generated due to 

friction between the abrasive and the sample’s surface, the second function is to hold the dust 

that is generated during the erosion process.  

The samples were then ground using 240, and 600 grit silicon carbide (SiC) papers (Metprep, 

UK) and polished using 1200 grit silicon carbide papers (Metprep, UK). A cleaning grade of iso-

propyl alcohol (Sigma Aldrich, UK) was used to remove any particulates from the surface. A 10x 

magnifier (Zeiss, UK) was used to ensure that the epoxy was removed from the targeted area.  

The grinding and polishing procedure were undertaken by hand since the size of the sample 

helped to do it manually rather than using automated grinding machines. To maintain a high-
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quality flat surface the sample held from one side by one hand and the grinding step starts from 

one side all the way up to the other side repeatedly in warp then in weft direction consecutively 

as shown in Figure 5-10. Then the sample was washed with water then dried in the air, then 

washed using Isopropyl alcohol between each stage. Figure 5-11 shows the final samples be-

fore attaching the sensing mat to the panels.   

 

 

Figure 5-10: Schematic representing directions of grinding and polishing steps. 

 

Figure 5-11: Graphs showing the finish of the same sample before and after abrasion process.  
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To measure the resistance of carbon fibre composite laminate panels, efficient electrical con-

tacts are vital for this technique, therefore the panels have passed through many preparation 

stages (as discussed above) before attaching the sensing mats to their surfaces. Contacts 

were applied with Silver-Epoxy conductive adhesive . Vacuum pressure was applied on the pan-

els to ensure good electrical contacts between them and the sensing mats. Silver-Epoxy con-

ductive adhesive 8331S was a two-component 1:1 mixing ratio silver epoxy paste (MG Chemi-

cals, UK), that cured at the room temperature to form a polymer with a high thermal conduction 

10 W/(m.K), and low resistivity 0.0010 μΩ.cm; It adheres to the carbon fibre/epoxy composites 

efficiently. This material achieved an operational cure at five hours at room temperature and 

full cure at 24 hours. It has a strong resistance to water, brine, acids, bases and aliphatic hydro-

carbons. 

A small quantity of epoxy silver paste was placed carefully on the electrodes (1 g on each elec-

trode in sensing mat 1 and 1.5 g on each electrode in sensing mat 2). Care was taken to ensure 

all the electrodes were covered with the same amount of the epoxy silver paste. Then the panels 

were placed onto the sensing mats and were enveloped in a vacuum bag.  101 kPa of vacuum 

pressure was applied inside the vacuum bag for 24 hours as shown in Figure 5-12. Then the 

panels were taken out of the vacuum bag for further processing. It was found that the panels 

were able to undergo further handling and testing when they had been left under the vacuum 

pressure for 24 hours. The smart carbon fibre composite laminate panel is shown in Figure 

5-13. 

 

 

Figure 5-12: The panels were enveloped in a vacuum bag and subjected to 1 bar of vacuum pressure.  
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Figure 5-13: Experimental set ups for electrical resistance measurements of a test specimen before being 
subjected to a low velocity impact test.  
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EXAMINATION OF COMPOSITE PANELS 

6.1 Specimens and Experimental Procedures  

6.1.1 Microscopical Examination of Carbon Fibre Composite Laminate Panels 

he optical microscope was adapted in this work to examine electrical contacts be-

tween adjacent plies. The electrical contacts are essential to understand electrical 

conduction in through – thickness direction and understand the damage detection 

mechanism in the electrical resistance sensing technique in carbon fibre composite 

laminates. In addition, epoxy resin rich areas and void distribution have been investigated for 

all types of carbon fibre composite laminates used in the experiments. The following section 

describes the specimen preparations and optical microscope used.  

 

6.1.1.1  Specimen preparation and optical microscope setup 

The specimens (AB, VB, AC, VC, AD, and AE) were sectioned to a manageable size 18 x 18 x t 

mm, where t is the specimens thickness that is 0.84, 1.09, 1.63, 2.06, 2.54, and 3.5 mm respec-

tively. The specimens were sectioned in the z-axis (through – thickness direction), with a dia-

mond cutter being used. The sectioning was undertaken in the presence of water (the water 

was used as a cutting fluid and coolant at the same time) to maintain the temperature of the 

specimens at the room temperature and to avoid creating or altering the artefacts of the spec-

imens. The rotation speed of the diamond cutter was fixed at 3000 rpm (no load speed) while 

the linear speed of the sample was adjusted manually. The linear speed was low to avoid dam-

aging the specimens. After cutting the specimens were washed by water to remove any remain-

ing particulates after cutting, then dried in an oven (Thermo Scientific, UK) at 50oC.  

The specimens were mounted in a mounting compound, EPO-SET resin (Met Prep, UK). The 

specimens were labelled on the mounting mould during curing then documented on the side 

opposite to the polishing face during the preparation stage. Thin tip, black colour permanent 

makers were used to label the mould during the mounting stage. A red colour permanent 

marker was used to label the specimens during the polishing stage. The purpose behind using 

different markers was to get a good contrast on the parts. The specimens were mounted in a 

23 mm circular plastic moulds (Metprep, UK). The moulds were lubricated using Vaseline oil as 

a mould release agent.  The casting resin used was a two-part resin system that comprises a 

T 
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resin and a hardener.  This is a cold mounting resin; its curing time is 4-5 hours at room tem-

perature. It was noticed that the resin system used in this work gives a good edge retention. 

  

An automated grinder and polisher machine, EcoMet 250 Pro (Buehler, USA) was used. The 

specimens passed through many grinding and polishing stages to eliminate sectioning and 

mounting induced artefacts. These stages were essential to adjust the level where the desirable 

information was found. The grinding and polishing stage started with rough grinding to obtain 

a planar surface. Silicon carbide papers 600 grit was locked on a planar polishing wheel as 

described in Table 6-1. Water was used to displace the removed particles. In addition, the water 

cools down the temperature of the sample and maintain it at the room temperature reducing 

the heat damage. A 60 RPM head speed and 150 RPM platen rotation speed were used. The 

head rotation was complimentary to the platen rotation, it was found that this increases the 

removal rate of the specimen surface without damaging the composite. The head speed was 

constant during all grinding and polishing stages, where the platen rotation speeds were varied 

as shown in Table 6-2 and  

Table 6-3. The pressure on the sample surface was essential to increase the sample removal 

rate. The pressure on the sample surface was 25 N that pressure was fixed during all grinding 

and polishing stages. The grinding and polishing times that are mentioned in Table 6-2 and  

Table 6-3 are typical for carbon fibre/epoxy composite laminates, however, they were adjusted 

slightly depending on the condition of the sample surface.  

An automated rough polishing stage followed the rough grinding stage to further remove the 

specimen surface. The rough polishing stage started using cloth (Planocloth H) (Metprep, UK) 

with 9 µm water-based diamond abrasive suspension. The Planocloth H was locked on the 

platen rotation of the polishing machine then a small quantity of the abrasive suspension was 

applied on the surface. The platen rotation speed was fixed in this stage on 250 RPM and the 

polishing time was 4 minutes. The next stage consisted of using 6 µm water-based abrasive 

diamond suspension with special type of cloth that (Planocloth). In this stage, the polishing 

process was the same as mention above, but the polishing time was less than the first polishing 

stage, 3 minutes.  

The next stage transitions to polishing using napless cloths (Durasilk, Metprep, UK), with the 

0.06 µm of silica suspension. A small quantity of the silica suspension was applied on Durasilk, 

the cloth was kept wet with the silica suspension to avoid damaging the specimen since this 

type of cloth does not retrain lubricant. The platen rotation was fixed at 100 RPM and the pol-

ishing time was 5 minutes as shown in Table 6-2. The final polishing stage included using ultra 
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fine cloth (Chemocloth) with 0.06 µm of silica suspension (Silco, Metprep, UK). The platen ro-

tation speed was fixed at 80 RPM and the polishing time was 2 minutes.  

Table 6-1: The primary abrading stage 

Surface Abrasive Pressure (N) Head Speed RPM Plate Speed RPM 

SiC paper 600 grit Water 25 60 150-comp 

 

Table 6-2: The secondary abrading stage 

Surface Abrasive Pressure (N) Head Speed RPM Plate Speed RPM Time (Minutes) 

Planocloth H 9 µm (WB) Diamond 25 60 250-comp 5 

Planocloth 6µm (WB) Diamond 25 60 250-comp 3 

Durasilk 0.06 µm (WB) Silco 25 60 100-comp 5 

 

Table 6-3: The polishing stage 

Surface Abrasive Pressure (N) 
Head Speed 

RPM 

Plate Speed 

(RPM) 
Time (Minutes) 

Chemocloth 0.06 µm Silco 15 60 80-comp 2 

  

6.1.2 Flexural Properties of Carbon Fibre Composite Laminates 

Three-point bending system was used to determine the flexural properties of CFRP panels. The 

test was carried out according to ASTM D7264/D7264M and ASTM 6856/D6856M. This tests 

through-thickness flexural properties such as strength, stiffness and load/deflection behaviour. 

The specimen and testing process are described below 

 

6.1.2.1  Specimen preparation and test setup 

Bars of rectangular cross sections (w ≈ 8.2 mm and t ≈ 0.84, 1.09, 1.63, 2.06, 2.54, and 3.5 mm) 

were prepared from the CFRP panels that were described in Section 5.1 and 5.2. The span-to-

thickness ratio was used 32:1 according to ASTM D7264/D7264M, the specimen must be at 
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least 20% bigger than the support span. Since the CFRP panels were fabric-reinforced, there-

fore, ~ 8.2 mm the width of the sample was chosen, to ensure that it was at least two-unit cells 

width.  Eighteen samples were tested, twelve samples were made from prepreg VTC 401 using 

an autoclave fabricating technique; the other six samples were made by a vacuum assisted 

resin transfer moulding (VARTM).  

The specimens were cut into desired dimensions using a 3000-rpm diamond cutter, the linear 

cutting speed was adjusted manually. To avoid changing the mechanical properties of carbon 

fibre composite laminates, water was used as a coolant to ensure that the specimen tempera-

ture was still at the room temperature. Since the flexural properties will vary depending on which 

surface of the specimen is in compression, therefore same surface that will be subjected to low 

velocity impact was compressed by the force member as shown in Figure 6-1 and Figure 6-2. 

The test was carried using a tensometer (Zwick/roell Z020, Germany). The test was undertaken 

at the room temperature 23oC. The speed of testing was set at a constant rate at 1 mm/min.  

 

Figure 6-1: Experimental setup for flexural test according to ASTM D7264/D7264M. 

 

Figure 6-2: Flexural loading diagram according to ASTM D7264/D7264M.  
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The outputs of the test were bending forces (P) vs deformation () and for the purpose of further 

analyses to estimate the required energy to cause fibre breakage in low velocity impact events, 

the flexural strength and flexural strain are calculated by using Equation 6 – 1.  

σf= 
3PL

2wt2           6-1 

Where σf is the flexural stress at the outer surface in the load span region (MPa), P bending 

force (N), L support span (mm), w width of the specimen (mm) and t is thickness of the speci-

men (mm). The maximum deflection (δ) at the mid span (mm). δ was measured as a displace-

ment of the force member, ideally a strain gauge should be used. Therefore, the strain values 

were not used any further to calculate the impact energy that was required to cause fibre break-

age in the CFRP laminates.  

 

6.1.3 Tensile Properties of Carbon Fibre Composite Laminates 

ASTM D6856/D6856M for preparation of textile composite fabricated using fabric preforms 

along with ASTM D3039/D3039M were used in this test. This standard allows the determination 

of the in-plane tensile properties of carbon fibre composite laminate panels. This test enables 

to determination of the ultimate tensile strength, the ultimate tensile strain, and the tensile mod-

ulus of elasticity (Young’s modulus).  

 

6.1.3.1 Specimen Preparation and Test Set up  

Eighteen samples were prepared, twelve samples were made from prepreg VTC 401-C275-

T300- 2 x 2 mm twill weave- 3K-42 % resin weight (SHD Composites Materials, UK). This mate-

rial was cut into sheets 200 x 200 mm then they laid up on a flat plate using hand lay-up tech-

nique. Then they were placed in an autoclave to cure at 120oC for 1 hour at 606 kPa then post 

cured at 135oC for 2 hours as detailed in Section 5.2. The other six samples were made by a 

vacuum assisted resin transfer moulding (VARTM), where an ultra-low viscosity resin IN-2 

epoxy infusion resin (Easy Composite, UK) was infused into a 2X2 mm twill weave 200 gsm 

carbon fibre preform (Easy composite, UK), more details given in Section  5.1.  

The samples were then cut using a 3000-rpm diamond cutter, the linear cutting velocity was 

adjusted manually. All the samples were cut into 150 x 10 mm (LxW). The width of the sample 

was chosen according to ASTM D6856/D6856M-03 where the width to unit cell width (2 mm) 

was 5:1. However the thicknesses of the samples were varied, that were 0.84, 1.09, 2.06, 1.63, 

2.54, and 3.5 mm. Rapid setting Araldite adhesive (Huntsman, Switzerland) was used to adhere 

the end tabs to the samples. A Z020 tensometer (Zwick/Roell, Germany) was used to carry out 
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the tensile test as shown in Figure 6-3. The testing machine was set up according to ASTM 

D3039/D3039M. The test was undertaken at the room temperature 23oC, and a constant head 

speed 2 mm/min was used. A standard test method to measure the strain was adopted, where 

stickers placed on the samples and a camera was set to monitor the movement of stickers and 

report an error free strain measurement.  

  

 

Figure 6-3: View of tensile test frame, Zwick/Roell Z020.  

 

6.1.4 Fibres, Resin Volume Fraction and Void Contents  

The evaluation of electrical properties of CFRP laminates is a key element in development of 

the electrical self-sensing carbon fibre composite laminates. In order to make comparative 

studies, factors that were influencing the electrical properties were considered. Those factors 

were carbon fibre volume fraction, resin and void contents. The carbon fibre volume fraction 

has a direct impact on the electrical properties, as it is the element that is responsible for the 

electrical conduction process in the CFRP laminates. Where the ideal electrical resistivity of the 

CFRP laminates were calculated by multiplying the fibre volume fraction by electrical resistivity 

of the carbon fibre filaments. 
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6.1.4.1  Samples preparation  

The first step to measure the fibre volume fraction was to cut the specimens. Three specimens 

18 x 18 x t mm (t is the panel thickness 0.84, 1.09, 1.63, 2.06, 2.54, and 3.5 mm as shown in 

Table 6-8) were prepared carefully, using 3000-rpm diamond cutter with the linear velocity being 

adjusted manually. The water was used as a cutting fluid and coolant at the same time. Rough 

grinding of the specimen was undertaken to ensure that the specimens have the same dimen-

sions. The rough grinding was carried out using 240 grit silicon carbide papers. A single wheel 

grinder and polisher (ATM, SAPHIR 320, Germany) was used, the speed was fixed at 150 rpm. 

 

6.1.4.2  Carbon fibre composite density  

The immersion method was adopted to determine the density of CFRP laminates according to 

ASTM D792 – 13. A density measurement device (Mettler Toledo-Newclassic MS.  Model 

MS104S/01, UK) was used to measure the relative density of the CFRP laminates. The device 

utilizes Archimedes principle in which the CFRP specimen was immersed in distilled water at 

known temperature, normally the room temperature ± 3oC. The specimen will undergo an ap-

parent loss in weight which equals to weight of the distilled water it displaces as shown in Fig-

ure 6-4.  

 

 

Figure 6-4: Precision balance to measure the density of carbon fibre composite laminates.  

The temperature of the distilled water was measured by a thermometer, 23oC. Then the speci-

men was weighed in air to the nearest 0.1 mg. The specimen was held by tweezers then im-
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mersed in the distilled water and weighed. The specimen was tilted and inserted into the dis-

tilled water to ensure there are no bubbles adhere to the surface of the specimen. The device 

used the following formula to calculate the relative density of the CFRP specimen:  

 ρ
sp

= 
a

(a+wp- b)
             6-2 

Where ρsp is the relative density of the CFRP laminate at 23oC. a is the weight of the specimen 

in air, b is the weight of the specimen completely immersed in the distilled water. wp is the 

weight of the pan. Then the density of the carbon fibre composite laminate can be calculated 

as follows  

ρc (
kg

m3 )= ρ
sp

(at 23oC)*997.5                6-3 

A pycnometer was also used to measure the CFRP density. Where a certain amount of a spec-

imen (from 300-500 mg) was placed in a chamber then the chamber was closed. An inert gas, 

Helium, was subjected on the sample to measure the volume of the sample under 82047.612 

kPa, 20 cycles were used. Each run took 120 minutes to finish, it was found that this method 

did not give accurate results. A contributing factor in this was the light weight of the carbon 

fibres. It was found that values were low even though the carbon fibres fill the chambers, and 

the weight of the sample was less than the required by the machine to obtain accurate results.  

6.1.4.3  Acid digestion method  

The acid digestion method was used to determine the constituent content of CFRP laminate. 

According to ASTM D3171-15, it was assumed that the reinforcement, carbon fibres, was unaf-

fected by the digestion medium. The digestion medium chemically dissolved the matrix portion 

of carbon fibre composite laminates. When dissolving in a digestion medium, the remaining 

residue, containing the carbon fibres, was then filtered, washed, dried, cooled and weighed. The 

weight percentage of the carbon fibres was calculated and from that value, and the densities 

of both the CFRP laminate and carbon fibres, the fibre volume percentage was calculated.  

An 18 x 18 x t mm (where t is the specimen thickness that is 0.84, 1.09, 1.63, 2.06, 2.54, and 3.5 

mm) specimen was placed in a flask that contained at least 30 mL of 70 % nitric acid. The flask 

was placed in an oil bath and they were placed on a hot plate. It was found that the optimum 

digestion time was 120 minutes when the temperature was maintained at 80oC ± 2 as shown 

in Figure 6-5. It was found that digestion time and temperature give no evidence of fibre attack 

as shown in Figure 6-6 and Figure 6-7. Those scanning electron microscope images show that 

the resin was digested without any damage to the carbon fibres.  

Once digestion was complete the specimen was taken out of the flask, filtered into pre-weighed 

sintered glass filter under a vacuum of 101 kPa, using a vacuum pump. The carbon fibres were 
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then washed using distilled water then placed in an air-circulation oven (Heratherm, Thermo-

scientific, USA) to dry at 50oC for 90 minutes. Then the specimens were weighed to nearest 

0.0001 g. The specimen was dried again in the oven and reweighed after 90 minutes, and the 

process continued until constant mass was reached. The following formulas were used to cal-

culate fibre, resin and void contents respectively: 

φ
f
= 

wf x ρc

ρf

                     6-4 

φ
r
= 

(100-wf)xρc

ρr

              6-5 

φ
v
=100-(φ

f
+ φ

r
)     6-6 

where φf is the fibre content %, φr is the resin content %, φv is the void content %, wf is the fibre 

mass (g), ρc is the density of carbon fibre composite (g/cm3), ρf is the density of the carbon fibre 

(g/cm3) and ρr is the density of the resin (g/cm3) 

 

Figure 6-5: Set up used to measure the constituent content of carbon fibre composite laminate. 
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Figure 6-6: SEM image shows the surface of the carbon fibre and residual resin for Tairyfil TC-35 carbon 
fibre.  

 

 

Figure 6-7: SEM image shows the surface of the carbon fibre and residual resin for VTC 401 carbon fibre.
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6.2 Results and Discussions 

6.2.1  Microscopical Examination of Carbon Fibre Composite Laminate Panels  

A Nikon Eclipse LV-150 reflected-light microscope was used to examine specimens. It was 

found that void content and resin rich areas of CFRP laminates can be examined using low 

magnification, a 5x objective was used. The voids and resin rich areas were viewed normal to 

the ZX plane. The ZX plane was chosen as it provided plenty of information about number of 

plies, ply terminations, and micro-cracks, as well as the electric contacts between plies which 

was the most important feature in this work. These features were examined using a 10x objec-

tive. To identify electrical contacts of some of the laminates a greater magnification was re-

quired, therefore, a 20x objective was used.  

 

6.2.1.1  Voids, resin rich areas, bundles drops, and number of plies analysis  

Since carbon fibre fabric used in this work was 2 x 2 mm twill weave, therefore, bundle termi-

nations (resin rich areas) can be observed in Figure 6-8 and Figure 6-9. It can be noticed that 

adjacent plies accommodate bundle-drops. However, the bundle-drops created voids and resin 

rich areas in the transition areas. In Figure 6-8 and Figure 6-9, the spherical dark areas (black 

areas) represent voids, while the circular yellow regions represented the fibres and the brown 

areas were the resin. The panels made by a vacuum assisted resin transfer moulding (VARTM) 

technique shown in Figure 6-8 have more void contents than the others since they have been 

formed due to entrapped air during the manufacturing process. On the other hand, the panels 

made by an autoclave have less voids contents, although the voids could still have been gener-

ated due to entrapped air and volatiles. 

The voids, which were observed in Figure 6-8, were attributed to the manufacturing technique 

and the resin systems that were used. The epoxy system that was used in this technique was 

ultralow viscosity, and although it was degassed in a vacuum oven at the room temperature for 

10 minutes prior to infusion into the preform, as described in Section 5.1, some air was ex-

pected to be entrapped into the resin during insertion of the inlet plastic pipes in the resin con-

tainer. In addition, this resin system contains solvents, propylene carbonate and benzyl alcohol, 

in the formulation that may also form voids in the structure.  
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Figure 6-8: Cross sections of a 2 x 2 mm twill weave CFRP laminates panel, reflected-light bright-field 
illumination, 5x objective. a) represents 4 plies CFRP laminates b) represents 8 plies CFRP laminates. 
Samples were made by a vacuum assisted resin transfer moulding technique (VARTM). 

 

Since limited information was provided by supplier about the VTC401 resin system, due to con-

fidentiality, the discussion addressed in this section is conclusory. Figure 6-9 shows the voids 

contents and resin rich areas. Since the epoxy systems, in general, contain between 0.3 – 0.7 

wt % water, it was assumed that the water was the main factor in the voids production, as well 

as other factors such as the manufacturing technique. It was proved elsewhere that the prepreg 

can absorb considerably high moisture during the layup process, and that may cause a consid-

erable reduction in the mechanical properties [202]. That helps to explain the void formation in 

VTC 401. 

 

1 mm 

 

a) 

1 mm 

b) 
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Figure 6-9: Entrapped air, resin rich areas, bundles termination and number of plies in CFRP laminate 
panels that were made with 2 x 2 mm twill weave carbon fibres by an autoclave. a) represents 4 plies of 
prepreg VTC401, b) represents 8 plies of prepreg VTC401, c) represents 12 plies of prepreg VTC401, and 
d) represents 16 plies of prepreg VTC401. A reflected light bright-field illumination, 5x magnification.  

 

The CFRP laminate panels in Figure 6-9 have less void content than the VARTM panels in Figure 

6-8. Since the prepreg VTC401 contains less resin content 48% by volume than the VARTM 

panels, Figure 6-8, those panels that were made of prepreg VTC401, have less resin volume 

1mm 

d) 

1mm 

c) 
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fraction than panels that were made by a vacuum assisted resin transfer moulding (VARTM) 

technique.  

It is important to mention that the woven fabrics that were used in this work cause low hydro-

static resin pressure. Therefore, voids formed in carbon fibre composite panels when the vola-

tile vapour pressure exceeds the hydrostatic resin pressure before gelation. In general, voids 

that were observed in all figures were irregular in shape and size and they were concentrated 

at the interstitial regions in the woven fabrics. It is expected that the high void content has a 

significant impact on the electric properties of carbon fibre composite laminates as they inter-

rupt the electric paths through the composite laminates by preventing fibre – fibre contacts. 

The void content was less than 2 % in all composite panels used in this work, therefore, the 

effect of the void content on the electrical resistance was minimal.  

 

6.2.1.2  Electrical connection analysis 

The electrical contacts between consecutive plies (through-thickness contacts) were investi-

gated using a Nikon Eclipse LV-150 reflected-light microscope. The electrical connections be-

tween adjacent plies due to fibre – fibre contacts are essential for understanding how efficiently 

the carbon fibre composite laminates panels will respond to the subjected electrical current in 

the electrical resistance self-sensing technique. The more fibre – fibre contacts there are be-

tween adjacent plies the more similar the electrical resistance of the carbon fibre composite 

panels will be to the typical resistance of carbon fibres composite laminates. 

Factors such as fibre volume fraction, void contents, and fabrication techniques determine the 

electrical conductivity of CFRP laminates. Higher fibre volume fraction, lower void content and 

higher pressure applied during the fabricating process ensure higher electrical conductivity of 

CFRP laminates panels. It can be seen clearly that the panels that were made from prepreg 

VTC401 by an autoclave processing in Figure 6-11 have higher number of contacts between 

plies than panels made using a vacuum assisted resin transfer moulding VARTM (Figure 6-10). 

That is due to higher pressure used during the fabrication process (606 kPa). It is therefore 

expected to be more sensitive for damage detection in through-thickness direction.  
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Figure 6-10: Cross-section of CFRP laminate panels that were made by a vacuum assisted resin transfer 
moulding (VARTM), through-thickness electrical conduction due to fibre – fibre contacts are shown in a) 
4-ply panel (VB) that was examined using bright-field illumination, 20x objective, and b) 8-ply panel (VC) 
that was examined using bright-field illumination, 10x objective. 
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Figure 6-11: Cross-section of CFRP laminate panels that were made from prepreg VTC401 by using an 
autoclave processing technique. The electrical contacts between adjacent plies occurred due to fibre – 
fibre contacts that can be seen in all images. a) 4-ply panel (AB), b) 8-ply panel (AC), c) 12-ply panel (AD), 
and d) 16-ply panel (AE). All the panels were examined using bright-field illumination, 10x objective apart 
from the panel that was showed in a that was examined under 20x objective. 

0.5 mm 

c) 

0.5 mm 

d 
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6.2.2 Flexural Strength of Carbon Fibre Composite Laminate Panels 

The flexural profile for AB CFRP panel is depicted in Figure 6-12, the other data used in this work 

given in Appendix A. The flexural test was carried out on three specimens of each panel accord-

ing to ASTM D7264/D7264M and ASTM 6856/D6856M as shown in Figure 6-12. The average 

values were considered in further calculations to estimate the required energy to cause fibre 

breakage in low velocity impact events. The non-linearity in the σ – ε flexural curve was caused 

by structural change in the fabric during the deformation [203].  The flexural test showed that 

the dominant mode of failure, apart from AB specimen, was tension under the loading nose at 

the bottom surface of the laminates. The damage in the lower surface was from tensile failure, 

however a close observation showed that there was small visible damage at the compressive 

side of laminate (upper surface). As the amount of load increased a crack initiated in the outer 

layer on the tensile side, this crack initiated when the tensile stress exceeded the epoxy matrix 

tensile strength [203-205] Table 6-4 classifies the flexural failure modes according to ASTM 

D7264/D7264M. Error! Reference source not found. shows the flexural properties of CFRP lam-

inates that were made in the autoclave processing and the VARTM processing techniques. The 

carbon fibre composite laminates, which were made using a VARTM technique, have higher 

flexural strength than the CFRP laminates made using autoclave processing. This was at-

tributed to the fibre type (Tairyfill TC-35) and the toughened resin system (IN-2 Epoxy Resin). It 

was found that the thicker the laminate the higher the carbon fibre volume fraction and the 

higher flexural properties and this agrees with the rule of mixture [204].  

 

Figure 6-12: Three-point flexural test for AB panel, the average σf = 790 MPa. 

Table 6-4: Flexural fracture shapes and failure identification codes according to ASTM D7264/D7264M. 

Matrix cracks  

Fibre failure initiated  

Fibre fracture at the bottom side of 

the laminate  



95 
 

 
 

Specimen Failure shape and failure identification code 

AB 

 

AC 

 

AD 

 

AE 
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Specimen Failure shape and failure identification code 

VB 

 

VC 

 

 

Table 6-5: Flexural properties of CFRP laminates considered in the experiments.  

Specimen Maximum Flexural Stress (MPa) Percent Coefficient of Variant % 

AB 790 11.43 

AC 810 5.42 

AD 870 1.5 

AE 890 1.01 

VB 610 5.42 

VC 690 4.4 

 

6.2.3 Tensile Strength of Carbon Fibre Composite Laminate Panels 

A typical representation stress – strain curve that was obtained from tensile test for an auto-

clave processed panel (AC) is shown in Figure 6-13, the stress – strain curves for all panels 

used in this work is given in Appendix A. All the specimens showed a similar behaviour, where 

the strain increased with the applied stress and the failure occurred suddenly. Typical fracture 

modes for all the specimens are presented in Table 6-6. Table 6-6 classifies the tensile failure 

mode in each specimen according ASTM D6856/D6856M and ASTM D3039/D3039M. Table 

6-7 reports the results of the tensile properties for all the panels used in this work. The reported 

data have been compared to data in [206-208]. Ultimate tensile strength (UTS) varied from a 

specimen to the other since the value of UTS depends on many factors that are manufacturing 
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processes, void content, fibre volume fraction, and surface roughness. UTS increased when 

fibre volume fraction increased (see Table 6-8).  

 

Figure 6-13:  Tensile stress-strain curve for AC panel.    

 

Table 6-6: Tensile fracture shape and fracture codes according to ASTM 3039/3039M for all panels used 
in this work.  

Specimen Failure shape and failure identification code 

AB 

 

AC 

 

Fibre splitting  

Crack initiation  

Fibre fracture  
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Specimen Failure shape and failure identification code 

AD 

 

AE 

 

VB 

 

VC 

 

 

Table 6-7: Tensile properties of carbon fibre composite laminates panel used in this work.  

Specimen Young’s Modulus (GPa) UTS (MPa) Coefficient of Variation % 

AB 55 607 9.1 

AC 57 620 1.2 

AD 57 690 4.72 

AE 57 735 5.67 

VB 53 419 6.1 

VC 55 450 8.5 

 

It can be noticed in Table 6-7 that although AB, AC, AD, and AE panels were made from the 

same prepreg but they have different Young’s modulus because their carbon fibre volume frac-

tion was varied as shown in Table 6-8, and this comply with the rule of mixture where modulus 

of elasticity is a function of carbon fibre volume fraction.  
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6.2.4  Fibres, Resin Volume Fraction, and Void Contents in Carbon Fibre Composite 
Laminate Panels 

Results of acid digestion for fibre volume fraction, resin and void content analyses, showing 

mean and standard deviation values are listed in Table 6-8. To minimize the errors in this anal-

ysis, three samples of each panels were tested, and the results are shown in Table 6-8. The fibre 

volume fraction was increased when the thickness of a panel was increased. The same pattern 

applies equally on the panels that were made by a VARTM or autoclave techniques. However, 

the panels that were made in a VARTM technique have lower fibre volume fraction than their 

counterparts that were made using an autoclave technique.  

The void content was less than 2% in all panels under investigation as shown in Table 6-8. How-

ever, it was obvious from the table that they do not follow a regular pattern. It is worth to men-

tion that the void content can differ greatly from one panel to another at a specific thickness 

since they were subject to varying manufacturing conditions and raw materials preparations. 

Those factors were in such a complexity to control. It was expected that the highest void con-

tents can be observed in the panels that were made using a VARTM technique due to increased 

sources for voids in the fabricating process.  

 

Table 6-8: The fibres, resin, voids contents volume fraction for carbon fibres composite laminates panels.  

Specimen Type 
Sample 

No. 

Fibre Volume Fraction 

% 

Resin Volume Fraction 

% 

Void Volume Fraction 

% 

AB 

1 45.52 54.2 0.28 

2 43.99 55.34 0.67 

3 43.30 56 0.7 

Mean  44.27 55.18 0.55 

Standard Devia-

tion 
 1.136 0.91 0.234 

AC 

1 52.46 45.5 2.04 

2 50.67 48.2 1.13 

3 48.88 50.1 1.02 

Mean  50.67 49.93 1.39 

Standard Devia-

tion 
 1.76 2.311 0.559 

AD 

1 55.39 44 0.6 

2 53.65 45.6 0.75 

3 54.01 44.9 1 

Mean  54.35 44.83 0.78 
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Standard Devia-

tion 
 0.918 0.802 0.202 

AE 

1 53.05 45.26 1.69 

2 54.98 44.2 0.82 

3 5.30 43.6 1.1 

Mean  54.44 44.35 1.2 

Standard Devia-

tion 
 1.21 0.84 0.444 

VB 

1 39.35 59.2 1.45 

2 44.43 54.87 0.7 

3 47.84 51.36 0.8 

Mean  43.87 55.14 0.98 

Standard Devia-

tion 
 4.272 3.927 0.407 

VC 

1 45.01 53.39 1.6 

2 48.3 49.9 1.78 

3 48.2 50.8 1 

Mean  47.17 51.36 1.46 

Standard Devia-

tion 
 1.871 1.811 0.408 
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DAMAGE GENERATION AND DETECTION IN COM-

POSITE PANELS 
The aim of the current chapter is to describe the introduction of barely visible impact damage 

into CFRP laminates panels using a drop – weight method (Section 7.1) and to detect the dam-

age. Section 7.2 presents the data acquisition system that was used to acquire through – thick-

ness electrical resistivity, surface electrical resistance and changes in electrical resistance due 

to bending loads. A non-destructive testing technique (C-scan) is presented in Section 7.2.5 to 

validate the electrical resistance sensing technique data. A destructive technique (fluorescent 

microscope Section 7.2.6) was used to provide further evidence to results and discussions in 

Section 7.3. Section 7.3 presents the results and discussions of the electrical resistance self – 

sensing technique; supported by C – Scan and fluorescent microscope data.   

7.1 Damage Generation (Drop – Weight Impact Test) 

Damage was generated using a drop – weight impact tester according to ASTM 

D7136/D7136M-15. Where a flat CFRP laminate panel 200 x 200 x t mm (t = 0.84, 1.09, 1.63, 

2.02, 2.54, and 3.5 mm) was subjected to through-thickness, concentrated impact energy. The 

weight (1.456 kg) was left to fall from pre-determined heights. Various heights were used, these 

being 70, 105, 140, 245, 375 and 700 mm, to strike a CFRP laminate panel. A hemi-spherical 

impactor, 13 mm in diameter, was used. The CFRP laminate panel was supported on the hori-

zontal plane using G-clamps. The impact energies are shown in Table 7-1. 

Those impact energies and velocities were chosen according to the literature and trials and 

error so as to cause barely visible impact damage, where no destruction of the CFRP laminate 

panels should occur [81, 90]. The incident energy was the kinetic energy (KE)of the impactor 

before impact events took place. While the potential energy (PE) was the energy of the impactor 

at certain heights as given in Equation 7-1. 

 

PE =  mgh 

KE = 0.5 m v^2   

 

Where m is the total mass of the impactor plus the carriage that is 1456 g. g is the acceleration 

due to gravity, taken as 9.81 ms-2, and h is the height of the impactor above the CFRP panel. v 

7-1 
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is the incident velocity (m/s). The drop height, PE, KE, and incident velocities are presented in 

Table 7-1. Ideally the force – displacement and force – time curves for various impact energies 

should be presented but the available impact tester does not provide this data.   

 

Table 7-1: Experimental data of low velocity impact tests. 

 

 

7.2 Damage Detection in Carbon Fibre Composite Laminates 

7.2.1 Data Acquisition System  

A data acquisition system (DAQ) that was used in this technique consists of modules of NI9219 

(National instrument, US). Those modules are analogue to digital converters (ADC). Each mod-

ule has four channels, those channels having a 24bit resolution. A total of twenty-four analogue 

inputs were used, and they are able to acquire 100 S/s/ch simultaneously. The modules were 

installed in a NI cDAQ-9172 (National instruments, US) chassis. The input range that was used 

Specimen Striker Type Drop Height (m) PE (J) Incident velocity (m/s) KE 

(kg.m2/s2) 

AB 13 mm round 0.07 1 0.75 0.409 

0.105 1.5 0.95 0.657  

0.14 2 1.4 1.426 

0.245 3.5 2.14 3.333 

0.35 5 2.61 4.959 

AC 13 mm round 0.14 2 1.4 1.426 

0.245 3.5 2.14 3.333 

0.35 5 2.61 4.959 

AD 13 mm round 0.35 5 2.61 4.959 

0.7 10 3.7 9.966 

AE 13 mm round 0.35 5 2.61 4.959 

0.7 10 3.7 9.966 

VB 13 mm round 0.14 2 1.4 1.426 

0.245 3.5 2.14 3.333 

0.35 5 2.71 4.959 

VC 13 mm round 0.14 2 1.4 1.426 

0.245 3.5 2.14 3.333 

0.35 5 2.61 4.959 
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in this study, varied from 0 Ω to 10.5 kΩ. Those modules were thus low noise and they have low 

distortion effects that gives high-accuracy measurements.  

A four-probe electrical resistance configuration was used. The NI9219 computed the electrical 

resistance from the resulting electrical potential readings according to Ohm’s law. In the four-

probe technique the contact resistance (Pin headers, soldering materials, and connection wires) 

were neglected since there is only a small amount or none of electrical current flowing across 

the electrical potential terminals. Figure 7-1 represents the four-wire resistance connection 

map. The four-wire resistance technique is more sensitive, accurate and more precise than the 

two-probe method in sensing impact damage and fatigue in CFRP laminates [31]. It is proved 

elsewhere that it can present a subsurface behaviour [209]. However, it is more complicated 

than the two-wire resistance technique. 

 

Figure 7-1: Schematic diagram of 4-wire resistance circuit. 

The connection between sensing mats (Section 5.3) and the dedicated modules was made by 

connection pin headers (RS, UK) that were soldered to sensing mats using a lead-free solder 

(Sn, 3% Ag, 0.5% Cu ) (Weller, UK). These are plugged into the terminals in NI9219 modules 

through special connection wires. The data collection was triggered and collected using a ded-

icated software that was written in LabView 2015 (National Instruments, USA); the software 

was written on a Windows PC platform. The terminals in the modules were executed consecu-

tively to avoid the electric interference between a terminal and the others during the data col-

lection process. 

The NI9219 modules were placed in a chassis cDAQ-9172. Each module has four channels, the 

channels were set to execute consecutively; structural loops were used. One channel measures 

the electrical resistance between a certain pair of electrodes while the other channels in the 

same loop were configured to measure the voltage Figure 7-2. Eight structural loops were used 

to acquire the electrical resistance readings for sensing mat shown in Figure 5-5. Each channel 

has a dedicated structural loop, Appendix B. Four structural loops were used to obtain the elec-

trical resistance for sensing mat shown in Figure 5-6. Each loop measures the electrical re-
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sistance between a certain pair of electrodes as shown in Figure 7-2. This strategy was suc-

cessful to avoid the electric interference between channels if they were set to measure the 

electrical resistance between all electrodes at the same time as shown in Figure 7-1 and Figure 

7-2.  

 

Figure 7-2: Data collection flow chart using NI cDAQ-9127 and NI9219 modules.  

 

A 500 μA electrical current was selected to be injected into the panels. It was found that this 

amount of the electrical current did not generate Joule heating during electrical tests. 10 read-

ings were taken for each channel before and after barely visible impact damage was generated 

in the panels. A statistical software (Matlab R-2017b) was used to organize and analyses the 

data. Matlab sorts the raw data obtained from the electrical tests into matrices then it calcu-

lates the mean value and standard deviation for each channel to determine whether changes 

have occurred as shown in Table 7-2. 

 

7.2.2 Through – Thickness Electrical Resistance Measurements and Electrical Con-
ductivity Calculations 

Measurements of electrical resistance of carbon fibre composite laminates were conducted 

using a four-probe electrical resistance method. Through – thickness electrical resistivity was 
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measured using National Instrument data acquisition system NI cDAQ-9172 chassis with 

NI9219 modules as was shown in Figure 5-13. A 200 x 200 x t mm CFRP laminate was used, 

where t represents the thickness of the panels AB, AC, VB, VC, AD, and AE that are 0.84, 1.63, 

1.09, 2.06, 2.54, and 3.5 mm respectively. The laminates manufacturing processes were de-

tailed in Section 5.1 and 5.2. The laminates were ground and polished as described in Section 

5.4.1 prior to attaching sensing mats. Two sensing mats (either 2 sensing mat 1 or 2 sensing 

mat 2) were attached to the upper and lower surface of the CFRP laminate panels to measure 

the through – thickness electrical resistance as shown in Figure 7-3.  

The experimental set up to measure the through – thickness electrical resistance is shown in 

Figure 7-3. 500 µA of direct current that flows from the negative electrode at the bottom surface 

of the laminate to the positive electrodes at the upper surface of the laminate and the voltage 

was measured using two other electrodes that were placed next to the current electrodes on 

the upper and lower surface of the laminate (red colour). This process was reversed for one 

main purpose that was to acquire more electrical resistance readings at a shorter time. 10 read-

ings were taken, and the average values were considered in further calculations. The through – 

thickness electrical resistivity of the panel (ηt) was calculated using the following equation  

ηt = R . (A/L)                  7-2 

Where R is the electrical resistance (Ω), A is the electrode area (mm2), L is the distance between 

the voltage electrodes (mm). Equation 7 – 3 was used to calculate the distance between the 

voltage electrodes (sensing electrodes)  

L = √t2+ b
2
                        7-3 

Where t is the thickness of the panels AB, AC, AD, AE, VB, and VC that being 0.84, 1.63, 2.54, 3.5, 

1.09, and 2.06 mm and b = 60 mm for sensing mat 1 and 130 for sensing mat 2. The angle 

between the voltage electrodes on the upper and lower surface was calculated using Equation 

7 – 4, therefore θ was 0.8, 1.55, 2.42, 3.33, 1.04 and 1.96o for panels AB, AC, AD, AE, VB, and VC 

using sensing mat 1, and θ was 0.37, 0.71, 1.11, 1.54, 0.48, and 0.90o for panels AB, AC, AD, AE, 

VB, and VC using sensing mat 2.  The electrical resistivity data is presented and discussed in 

Section 7.3.1.   

 

tan θ = 
t

b
                       7-4 
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Figure 7-3: Schematic diagram illustrate through – thickness electrical resistance experimental set ups.  

 

The electrical conductivity of composites (Сc) is a fundamental property that determines the 

oppose of CFRP laminate panels for the flow of the electrical current. The electrical conductivity 

of composite (Сc) was calculated for each type of CFRP laminates that were used in this work  

and presented in Table 7-4. The rule of mixture was used to calculate the electrical conductivity 

(Сc) in the CFRP laminate panels. Equation 7 – 5 describes the relationship between Сc of com-

posites and their constituents  

Сc = Сf  . Vf + Сm . (1 – Vf)                  7-5 

Where Сf is the electrical conductivity of the carbon fibre (carbon filaments), there were two 

types of carbon fibres used in this work that were Toray FT300B and Tairyfil TC – 35 their elec-

trical conductivity, which were obtained from the data sheet, was 58827 and 57803 S/m re-

spectively, Vf is the fibre volume fraction, Сm is the electric conductivity of the epoxy matrix. The 

epoxy matrix is an insulator, therefore Сm is vanished and the rule of mixture equation will be 

simplified to Equation 7 – 6. Vf is the mean value of three specimens of each panel as presented 

in Table 6-8. The panels electrical conduction data is depicted and discussed in Section 7.3.1 

Сc = Сf .Vf                         7-6 

7.2.3 Surface Electrical Resistance Measurements and Global Electrical Resistance 
Calculations  

Six types of CFRP laminate panels, which were AB, AC, AD, AE, VB, and VC, were examined. 

These panels were made using two different manufacturing techniques that were  VARTM (VB 

and VC) and autoclave processing techniques (AB, AC, AD, and AE). The fabrication processes 
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were detailed in Section 5.1 and 5.2 respectively. On each panel, the measurements of the sur-

face electrical resistance were taken as shown in Figure 7-4 using the data acquisition system 

that was presented in Section 7.2.1, along with the sensing mats that were described in Section 

5.3. A 500 µA of direct current was injected into CFRP laminate panels. 10 electrical resistance 

readings were taken of each electric channel (A1, A2, A3, A4, B1, B2, B3 and B4) and the average 

values were used in further calculations. Noise was calculated by dividing the standard devia-

tion on the mean value of electrical resistance in each channel and presented in Table 7-2.   

Table 7-2 shows electrical resistances for all panels measured using sensing mat 1 and sensing 

mat 2 (Section 5.3 detailed each sensing mat), the electrical resistances were measured before 

and after damage was generated. The current sensing system adopted a four probe electrical 

resistance technique (discussed in Section 2.6.3), in this technique the electrical resistance of 

the contact is neglected, where 500 µA of direct current was injected by the outer electrodes 

and the voltage was measured by the inner electrodes, (inner electrodes sometimes are called 

sensing electrodes) as shown in Figure 7-4. The outputs of the sensing code that is shown in 

Figure 7-2 and Appendix B give the electrical resistance changes following the measurement 

process.  

 

Figure 7-4: Electrical resistance measurement map using sensing mat 1 a) electrical resistance along 0o 
and b) electrical resistance along 90o. 

The sensing mats attached to the bottom surface of the CFRP laminate panels (Section 5.3.1), 

whereas the impact events occurred on the top surface (Section 7.1). It can be seen in Table 

7-2 that the pre-impact electrical resistance readings all differ, since the initial resistance is a 

function of the manufacturing technique of the panels, the sensing mats and the amount of 

electrical contacts made with carbon fibres. Also, it strongly depends on procedure that was 
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used to attach the sensing mat to the panel, the factors that affect electrical sensing techniques 

where presented in Section 2.4.4. Once this project will be upscaled, this issue can be partially 

resolved by automating this procedure to obtain more consistent data. There are other varia-

bles that have a significant impact on electrical resistances, such as exact amount of pressure, 

resin viscosity, surface quality of electrodes, fabricating procedures for sensing mats and CFRP 

laminates, shape and size of electrodes, materials of electrodes, amounts and types of an elec-

tric current, the place on the CFRP laminates that electrical measurements were taken at. The 

most important factor is how much contacts can be made with carbon fibres since that deter-

mines the electrical resistance in each point of measurements. The data obtained in Table 7-2 

clearly shows the change in electrical resistance due to damage occurrence. This is raw data 

that was acquired from the data acquisition system directly as shown in Figure 7-2, further 

processing was undertaken to detect, quantify and locate the damage, with more details being 

shown in Section 7.3.3, Section 7.3.4, and Section 7.3.5.  

It was found that increasing the contacts area from 100 mm2 (mat 1) to 400 mm2 (mat 2) in-

creased the baseline electrical resistances up to ≈ 55 %, this occurs due to the decrease in the 

current density and the increase in the distance between the electrodes from 40 mm to 90 mm. 

It was also found that the change in the baseline electrical resistance over time has been mini-

mal that is an advantage of the four-probe electrical resistance method over other electrical 

sensing methods. Where the separation of current and voltage electrodes in this technique has 

eliminated the contacts electrical resistance, therefore, the contacts aging did not have an ef-

fect on the resistance baseline. An aging test was undertaken on the AC, AD, and VC specimens, 

where the electrical resistances were measured at the room temperature (20oC), the samples 

were kept in the lab for seven months and after seven months the electrical resistance was 

measured again at the room temperature (20oC), it was found that a very small change in elec-

trical resistance had occurred, which was as low as ≈ 0.00001%.   It can be noticed from Table 

7-2 that the damage can be detected using both sensing mats, however, the sensing mat 2 has 

reduced the cost of the sensing system from £3200 to £1800, as discussed in Section   5.3, 

where sensing mat 2 has less sensors and therefore it required less number of NI9219 mod-

ules. It can be seen in Table 7-2 that the electrical resistance readings of mat 2 are more con-

sistent in comparison with electrical resistance readings of mat 1. This can be attributed to 

surface area of the electrodes, where the current is distributed on a larger area. However, the 

change in electrical resistances due to damage using mat 1 is higher than the change in elec-

trical resistance using mat 2 since the distance between consecutive electrodes is smaller (Sec-

tion 5.3).    
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Table 7-2: Electrical resistance changes due to impact events measured using both sensing mat 1 and 
mat 2.  

Sensing 

Channel 

Ro before Im-

pact (Ω) 

STD Noise Ri after Im-

pact (Ω) 

STD Noise 

AB – 0.406 J – Mat 1 

A1 0.0404031 0.0000002 0.0000050 0.0405122 0.0000002 0.0000049 

A2 0.0355110 0.0000001 0.0000028 0.0362349 0.0000001 0.0000028 

A3 0.0348322 0.0000002 0.0000057 0.0355153 0.0000001 0.0000028 

A4 0.0418006 0.0000001 0.0000024 0.0418005 0.0000001 0.0000024 

B1 0.0441643 0.0000002 0.0000045 0.0442150 0.0000001 0.0000023 

B2 0.0351508 0.0000002 0.0000057 0.0382359 0.0000001 0.0000026 

B3 0.0376009 0.0000001 0.0000027 0.0400007 0.0000009 0.0000225 

B4 0.0472153 0.0000001 0.0000021 0.0475101 0.0000002 0.0000042 

AB – 0.657 J – Mat 1 

A1 0.0385211 0.0000002 0.0000052 0.0389305 0.0000002 0.0000051 

A2 0.0295404 0.0000001 0.0000034 0.0305142 0.0000001 0.0000033 

A3 0.0324331 0.0000001 0.0000031 0.0339517 0.0000009 0.0000265 

A4 0.0416248 0.0000001 0.0000024 0.0418109 0.0000002 0.0000048 

B1 0.0417141 0.0000001 0.0000024 0.0421115 0.0000002 0.0000047 

B2 0.0328025 0.0000002 0.0000061 0.0341245 0.0000002 0.0000059 

B3 0.0355412 0.0000001 0.0000028 0.0370016 0.0000002 0.0000054 

B4 0.0426344 0.0000001 0.0000023 0.0434287 0.0000001 0.0000023 

AB – 0.607 J – Mat 2 

A1 0.0420061 0.0000004 0.0000095 0.0422731 0.0000003 0.0000071 

A2 0.0351252 0.0000001 0.0000028 0.0374185 0.0000001 0.0000027 

B1 0.0385016 0.0000002 0.0000052 0.0392619 0.0000002 0.0000051 

B2 0.0248331 0.0000006 0.0000242 0.0251384 0.0000003 0.0000119 

AB – 1.426 J – Mat 1 

A1 0.0341926 0.0000001 0.0000029 0.0353401 0.0000002 0.0000057 

A2 0.0332224 0.0000005 0.0000151 0.0374307 0.0000001 0.0000027 

A3 0.0328002 0.0000003 0.0000091 0.0383504 0.0000002 0.0000052 

A4 0.0383212 0.0000002 0.0000052 0.0395006 0.0000001 0.0000025 

B1 0.0425232 0.0000003 0.0000071 0.0431356 0.0000005 0.0000116 

B2 0.0341237 0.0000002 0.0000059 0.0362223 0.0000003 0.0000083 

B3 0.0339011 0.0000001 0.0000029 0.0354602 0.0000001 0.0000028 

B4 0.0382112 0.0000001 0.0000026 0.0391406 0.0000002 0.0000051 

AB – 1.426 J – Mat 2 

A1 0.0325033 0.0000005 0.0000154 0.0328214 0.0000005 0.0000152 

A2 0.0328331 0.0000002 0.0000061 0.0332117 0.0000002 0.0000060 

B1 0.0248007 0.0000006 0.0000242 0.0254408 0.0000005 0.0000197 

B2 0.0248114 0.0000006 0.0000242 0.0255444 0.0000005 0.0000196 
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Sensing 

Channel 

Ro before Im-

pact (Ω) 

STD Noise Ri after Im-

pact (Ω) 

STD Noise 

AB – 3.333 J – Mat 1 

A1 0.0365441 0.0000003 0.0000082 0.0386403 0.0000003 0.0000078 

A2 0.0365215 0.0000002 0.0000055 0.0448504 0.0000002 0.0000045 

A3 0.0356351 0.0000002 0.0000056 0.0384488 0.0000002 0.0000052 

A4 0.0397113 0.0000002 0.0000053 0.0413175 0.0000002 0.0000048 

B1 0.0412122 0.0000002 0.0000049 0.0426921 0.0000002 0.0000047 

B2 0.0423216 0.0000002 0.0000047 0.0455513 0.0000002 0.0000044 

B3 0.0354652 0.0000001 0.0000028 0.0369127 0.0000003 0.0000081 

B4 0.0412708 0.0000002 0.0000048 0.0424364 0.0000002 0.0000047 

AB – 3.333 J – Mat 2 

A1 0.0553675 0.0000002 0.0000036 0.0567819 0.0000002 0.0000035 

A2 0.0668332 0.0000002 0.0000030 0.0688545 0.0000020 0.0000290 

B1 0.0664117 0.0000001 0.0000015 0.0689343 0.0000001 0.0000015 

B2 0.0678233 0.0000002 0.0000029 0.0682346 0.0000002 0.0000029 

AB – 4.96 J – Mat 1 

A1 0.0367455 0.0000003 0.0000082 0.0435715 0.0000003 0.0000069 

A2 0.0337773 0.0000020 0.0000592 0.0500398 0.0000002 0.0000040 

A3 0.0342124 0.0000010 0.0000292 0.0510739 0.0000002 0.0000039 

A4 0.0462213 0.0000020 0.0000433 0.0520562 0.0000002 0.0000038 

B1 0.0387667 0.0000002 0.0000052 0.0422191 0.0000002 0.0000047 

B2 0.0381234 0.0000002 0.0000052 0.0445923 0.0000002 0.0000045 

B3 0.0319852 0.0000001 0.0000031 0.0410791 0.0000001 0.0000024 

B4 0.0448197 0.0000002 0.0000045 0.0430045 0.0000002 0.0000047 

AB – 4.96 J – Mat 2 

A1 0.0677433 0.0000001 0.0000015 0.0699001 0.0000001 0.0000014 

A2 0.0794217 0.0000004 0.0000050 0.0861423 0.0000004 0.0000046 

B1 0.0719006 0.0000002 0.0000028 0.0857825 0.0000002 0.0000023 

B2 0.0732657 0.0000002 0.0000027 0.0890519 0.0000003 0.0000034 

AC – 1.426 J – Mat 1 

A1 0.0251127 0.0000001 0.0000040 0.0253005 0.0000002 0.0000079 

A2 0.0210582 0.0000010 0.0000475 0.0217132 0.0000002 0.0000092 

A3 0.0231484 0.0000011 0.0000475 0.0240315 0.0000014 0.0000583 

A4 0.0320041 0.0000013 0.0000406 0.0323651 0.0000016 0.0000494 

B1 0.0304711 0.0000012 0.0000394 0.0302118 0.0000020 0.0000662 

B2 0.0202493 0.0000010 0.0000494 0.0231478 0.0000017 0.0000734 

B3 0.0230029 0.0000015 0.0000652 0.0238414 0.0000015 0.0000629 

B4 0.0270715 0.0000000 0.0000001 0.0271351 0.0000012 0.0000442 

AC – 1.426 J – Mat 2 

A1 0.0408331 0.0000011 0.0000269 0.0412131 0.0000011 0.0000267 
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Sensing 

Channel 

Ro before Im-

pact (Ω) 

STD Noise Ri after Im-

pact (Ω) 

STD Noise 

A2 0.0376171 0.0000002 0.0000053 0.0385583 0.0000005 0.0000130 

B1 0.0424008 0.0000012 0.0000283 0.0432019 0.0000007 0.0000162 

B2 0.0484604 0.0000009 0.0000186 0.0492814 0.0000006 0.0000122 

AC – 3.33 J – Mat 1 

A1 0.0253477 0.0000001 0.0000039 0.0271932 0.0000010 0.0000368 

A2 0.0195712 0.0000001 0.0000051 0.0220084 0.0000003 0.0000136 

A3 0.0223004 0.0000002 0.0000090 0.0251316 0.0000004 0.0000159 

A4 0.0296071 0.0000001 0.0000034 0.0315574 0.0000001 0.0000032 

B1 0.0272017 0.0000002 0.0000074 0.0274043 0.0000006 0.0000219 

B2 0.0221705 0.0000002 0.0000090 0.0222223 0.0000009 0.0000405 

B3 0.0192447 0.0000002 0.0000104 0.0212012 0.0000004 0.0000189 

B4 0.0234278 0.0000002 0.0000085 0.0235901 0.0000007 0.0000297 

AC – 3.33 J – Mat 2 

A1 0.0381121 0.0000004 0.0000105 0.0401932 0.0000001 0.0000025 

A2 0.0473246 0.0000002 0.0000042 0.0487119 0.0000004 0.0000082 

B1 0.0376816 0.0000010 0.0000265 0.0383147 0.0000008 0.0000209 

B2 0.0407342 0.0000001 0.0000025 0.0416912 0.0000005 0.0000120 

AC – 4.96 J – Mat 1 

A1 0.0246814 0.0000003 0.0000122 0.0252471 0.0000003 0.0000119 

A2 0.0207324 0.0000001 0.0000048 0.0246817 0.0000001 0.0000041 

A3 0.0222091 0.0000001 0.0000045 0.0263181 0.0000001 0.0000038 

A4 0.0257415 0.0000006 0.0000233 0.0264652 0.0000004 0.0000151 

B1 0.0247214 0.0000008 0.0000324 0.0268133 0.0000008 0.0000298 

B2 0.0234306 0.0000004 0.0000171 0.0280029 0.0000004 0.0000143 

B3 0.0286173 0.0000002 0.0000070 0.0356919 0.0000002 0.0000056 

B4 0.0286323 0.0000001 0.0000035 0.0327213 0.0000001 0.0000031 

AC – 4.96 J – Mat 2 

A1 0.0421742 0.0000001 0.0000024 0.0443121 0.0000001 0.0000023 

A2 0.0405611 0.0000002 0.0000049 0.0441249 0.0000002 0.0000045 

B1 0.0413701 0.0000002 0.0000048 0.0432167 0.0000002 0.0000046 

B2 0.0436516 0.0000004 0.0000092 0.0448115 0.0000003 0.0000067 

AD – 4.96 J – Mat 1 

A1 0.0388162 0.0000002 0.0000052 0.0383011 0.0000002 0.0000052 

A2 0.0363006 0.0000004 0.0000110 0.0374381 0.0000004 0.0000107 

A3 0.0373024 0.0000004 0.0000107 0.0386695 0.0000004 0.0000103 

A4 0.0382163 0.0000001 0.0000026 0.0390158 0.0000001 0.0000026 

B1 0.0350083 0.0000007 0.0000200 0.0355009 0.0000007 0.0000197 

B2 0.0363318 0.0000001 0.0000028 0.0372541 0.0000001 0.0000027 

B3 0.0372612 0.0000002 0.0000054 0.0379011 0.0000002 0.0000053 
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Sensing 

Channel 

Ro before Im-

pact (Ω) 

STD Noise Ri after Im-

pact (Ω) 

STD Noise 

B4 0.0340156 0.0000004 0.0000118 0.0345114 0.0000005 0.0000145 

AD – 4.96 J – Mat 2 

A1 0.0350047 0.0000002 0.0000057 0.0360892 0.0000002 0.0000055 

A2 0.0365031 0.0000002 0.0000055 0.0369017 0.0000001 0.0000027 

B1 0.0373814 0.0000002 0.0000054 0.0377513 0.0000002 0.0000053 

B2 0.0326113 0.0000001 0.0000031 0.0325073 0.0000004 0.0000123 

AD – 9.95 J – Mat 1 

A1 0.0248114 0.0000002 0.0000081 0.0273549 0.0000002 0.0000073 

A2 0.0212319 0.0000001 0.0000047 0.0264151 0.0000001 0.0000038 

A3 0.0209041 0.0000001 0.0000048 0.0220039 0.0000001 0.0000045 

A4 0.0282516 0.0000001 0.0000035 0.0294211 0.0000001 0.0000034 

B1 0.0287212 0.0000001 0.0000035 0.0290094 0.0000001 0.0000034 

B2 0.0238015 0.0000004 0.0000168 0.0244384 0.0000003 0.0000123 

B3 0.0293313 0.0000003 0.0000102 0.0312633 0.0000003 0.0000096 

B4 0.0340307 0.0000001 0.0000029 0.0343131 0.0000001 0.0000029 

AD – 9.95 J – Mat 2 

A1 0.0381212 0.0000002 0.0000052 0.0391751 0.0000003 0.0000077 

A2 0.0405413 0.0000002 0.0000049 0.0410528 0.0000002 0.0000049 

B1 0.0476035 0.0000001 0.0000021 0.0482846 0.0000001 0.0000021 

B2 0.0393375 0.0000003 0.0000076 0.0411639 0.0000003 0.0000073 

AE – 4.96 J – Mat 1 

A1 0.0241023 0.0000001 0.0000041 0.0242761 0.0000001 0.0000041 

A2 0.0268131 0.0000001 0.0000037 0.0273442 0.0000001 0.0000037 

A3 0.0286315 0.0000003 0.0000105 0.0291623 0.0000003 0.0000103 

A4 0.0316172 0.0000002 0.0000063 0.0319041 0.0000002 0.0000063 

B1 0.0280104 0.0000005 0.0000179 0.0283022 0.0000004 0.0000141 

B2 0.0274322 0.0000002 0.0000073 0.0282518 0.0000002 0.0000071 

B3 0.0264174 0.0000004 0.0000151 0.0274109 0.0000004 0.0000146 

B4 0.0279151 0.0000002 0.0000072 0.0281111 0.0000002 0.0000071 

AE – 4.96 J – Mat 2 

A1 0.0452542 0.0000002 0.0000044 0.0461521 0.0000002 0.0000043 

A2 0.0413411 0.0000002 0.0000048 0.0420105 0.0000002 0.0000048 

B1 0.0409022 0.0000001 0.0000024 0.0413019 0.0000001 0.0000024 

B2 0.0419428 0.0000001 0.0000024 0.0424307 0.0000001 0.0000024 

AE – 9.95 J – Mat 1 

A1 0.0248151 0.0000002 0.0000081 0.0252862 0.0000002 0.0000079 

A2 0.0212742 0.0000001 0.0000047 0.0230967 0.0000001 0.0000043 

A3 0.0209055 0.0000001 0.0000048 0.0219381 0.0000001 0.0000046 

A4 0.0282931 0.0000005 0.0000177 0.0294092 0.0000003 0.0000102 
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Sensing 

Channel 

Ro before Im-

pact (Ω) 

STD Noise Ri after Im-

pact (Ω) 

STD Noise 

B1 0.0287032 0.0000006 0.0000209 0.0280434 0.0000006 0.0000214 

B2 0.0238004 0.0000004 0.0000168 0.0256728 0.0000004 0.0000156 

B3 0.0252666 0.0000004 0.0000158 0.0263321 0.0000003 0.0000114 

B4 0.0340642 0.0000002 0.0000059 0.0343842 0.0000002 0.0000058 

AE – 9.95 J – Mat 2 

A1 0.0450912 0.0000001 0.0000022 0.0455406 0.0000001 0.0000022 

A2 0.0434164 0.0000001 0.0000023 0.0440652 0.0000001 0.0000023 

B1 0.0417403 0.0000001 0.0000024 0.0422543 0.0000001 0.0000024 

B2 0.0484531 0.0000001 0.0000021 0.0489049 0.0000001 0.0000020 

VB – 1.426 J – Mat 1 

A1 0.0345473 0.0000002 0.0000058 0.0347751 0.0000002 0.0000058 

A2 0.0343592 0.0000002 0.0000058 0.0370486 0.0000002 0.0000054 

A3 0.0347971 0.0000002 0.0000057 0.0352251 0.0000001 0.0000028 

A4 0.0447481 0.0000003 0.0000067 0.0450082 0.0000003 0.0000067 

B1 0.0320129 0.0000001 0.0000031 0.0330231 0.0000003 0.0000091 

B2 0.0374884 0.0000001 0.0000027 0.0397501 0.0000003 0.0000075 

B3 0.0290041 0.0000002 0.0000069 0.0320829 0.0000005 0.0000156 

B4 0.0310023 0.0000001 0.0000032 0.0330139 0.0000003 0.0000091 

VB – 1.426 J – Mat 2 

A1 0.0572431 0.0000003 0.0000052 0.0593212 0.0000003 0.0000051 

A2 0.0776125 0.0000002 0.0000026 0.0784132 0.0000002 0.0000026 

B1 0.0685014 0.0000001 0.0000015 0.0701609 0.0000004 0.0000057 

B2 0.0670046 0.0000002 0.0000030 0.0673214 0.0000002 0.0000030 

VB – 3.33 J – Mat 1 

A1 0.0461254 0.0000004 0.0000087 0.0493631 0.0000004 0.0000081 

A2 0.0523836 0.0000004 0.0000076 0.0630023 0.0000004 0.0000063 

A3 0.0413412 0.0000002 0.0000048 0.0505333 0.0000002 0.0000040 

A4 0.0420222 0.0000004 0.0000095 0.0424951 0.0000004 0.0000094 

B1 0.0316678 0.0000001 0.0000032 0.0330002 0.0000001 0.0000030 

B2 0.0301667 0.0000002 0.0000066 0.0398194 0.0000002 0.0000050 

B3 0.0405554 0.0000002 0.0000049 0.0490199 0.0000002 0.0000041 

B4 0.0350002 0.0000002 0.0000057 0.0390023 0.0000002 0.0000051 

VB – 3.33 J – Mat 2 

A1 0.0624323 0.0000006 0.0000096 0.0635304 0.0000005 0.0000079 

A2 0.0204561 0.0000005 0.0000244 0.0220647 0.0000005 0.0000227 

B1 0.0710325 0.0000005 0.0000070 0.0730239 0.0000002 0.0000027 

B2 0.0927146 0.0000001 0.0000011 0.0940321 0.0000002 0.0000021 

VB – 4.96 J – Mat 1 

A1 0.0270023 0.0000001 0.0000037 0.0331032 0.0000002 0.0000060 
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Sensing 

Channel 

Ro before Im-

pact (Ω) 

STD Noise Ri after Im-

pact (Ω) 

STD Noise 

A2 0.0280041 0.0000001 0.0000036 0.0321661 0.0000002 0.0000062 

A3 0.0270130 0.0000002 0.0000074 0.0312924 0.0000001 0.0000032 

A4 0.0260311 0.0000003 0.0000115 0.0320023 0.0000003 0.0000094 

B1 0.0406802 0.0000002 0.0000049 0.0566789 0.0000002 0.0000035 

B2 0.0381485 0.0000001 0.0000026 0.0416608 0.0000001 0.0000024 

B3 0.0312925 0.0000002 0.0000064 0.0405551 0.0000002 0.0000049 

B4 0.0371128 0.0000002 0.0000054 0.0390082 0.0000002 0.0000051 

VB – 4.96 J – Mat 2 

A1 0.0488131 0.0000002 0.0000041 0.0552393 0.0000002 0.0000036 

A2 0.0950112 0.0000002 0.0000021 0.0980372 0.0000002 0.0000020 

B1 0.0246235 0.0000003 0.0000122 0.0285234 0.0000003 0.0000105 

B2 0.0406211 0.0000002 0.0000049 0.0440133 0.0000002 0.0000045 

VC – 1.426 J – Mat 1 

A1 0.0212790 0.0000001 0.0000047 0.0215946 0.0000001 0.0000046 

A2 0.0227809 0.0000002 0.0000088 0.0228308 0.0000002 0.0000088 

A3 0.0205278 0.0000003 0.0000146 0.0206000 0.0000003 0.0000146 

A4 0.0289768 0.0000004 0.0000138 0.0291007 0.0000004 0.0000137 

B1 0.0270000 0.0000005 0.0000185 0.0270000 0.0000005 0.0000185 

B2 0.0233442 0.0000006 0.0000257 0.0233442 0.0000006 0.0000257 

B3 0.0202774 0.0000007 0.0000345 0.0202774 0.0000007 0.0000345 

B4 0.0220298 0.0000001 0.0000045 0.0220298 0.0000001 0.0000045 

VC – 3.33 J – Mat 1 

A1 0.0224053 0.0000002 0.0000089 0.0229686 0.0000002 0.0000087 

A2 0.0220925 0.0000002 0.0000091 0.0240203 0.0000002 0.0000083 

A3 0.0219047 0.0000003 0.0000137 0.0250040 0.0000003 0.0000120 

A4 0.0326692 0.0000002 0.0000061 0.0327945 0.0000002 0.0000061 

B1 0.0291646 0.0000002 0.0000069 0.0297132 0.0000002 0.0000067 

B2 0.0257849 0.0000002 0.0000078 0.0290049 0.0000002 0.0000069 

B3 0.0250711 0.0000003 0.0000120 0.0273322 0.0000003 0.0000110 

B4 0.0240320 0.0000003 0.0012483 0.0241576 0.0000003 0.0000124 

VC – 3.33 J – Mat 2 

A1 0.0200222 0.0000001 0.0000050 0.0210343 0.0000001 0.0000048 

A2 0.0670231 0.0000001 0.0000015 0.0681135 0.0000002 0.0000029 

B1 0.0287327 0.0000002 0.0000070 0.0291343 0.0000003 0.0000103 

B2 0.0530237 0.0000002 0.0000038 0.0535722 0.0000002 0.0000037 

VC – 4.96 J – Mat 1 

A1 0.0212790 0.0000002 0.0000094 0.0235946 0.0000002 0.0000085 

A2 0.0227809 0.0000002 0.0000088 0.0255308 0.0000002 0.0000078 

A3 0.0205278 0.0000003 0.0000146 0.0234026 0.0000003 0.0000128 
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Sensing 

Channel 

Ro before Im-

pact (Ω) 

STD Noise Ri after Im-

pact (Ω) 

STD Noise 

A4 0.0289768 0.0000002 0.0000069 0.0281007 0.0000002 0.0000071 

B1 0.0240099 0.0000002 0.0000083 0.0260022 0.0000002 0.0000077 

B2 0.0233442 0.0000002 0.0000086 0.0242775 0.0000003 0.0000124 

B3 0.0181304 0.0000003 0.0000165 0.0227741 0.0000003 0.0000132 

B4 0.0261042 0.0000002 0.0000077 0.0290372 0.0000001 0.0000034 

VC – 4.96 J – Mat 2 

A1 0.0397212 0.0000006 0.0000151 0.0420135 0.0000004 0.0000095 

A2 0.0668013 0.0000005 0.0000075 0.0700296 0.0000004 0.0000057 

B1 0.0420134 0.0000002 0.0000048 0.0470704 0.0000002 0.0000042 

B2 0.0700297 0.0000006 0.0000107 0.0560921 0.0000005 0.0000089 

 

 

The global electrical resistance change refers to the whole change in electrical resistance of 

the CFRP laminate panels due to damage. The surface electrical resistances that were pre-

sented in Table 7-2, were deployed to calculate the global electrical resistances. Equation 7 – 7 

and Equation 7 – 8 were used to calculate the global electrical resistance change for the CFRP 

laminate panels. 

ξ1 = (
∑ (

∆R

Ro
)+ ∑ (

∆R

Ro
)B4

B1
A4
A1

8
) *100                        7-7 

ξ2 = (
∑ (

∆R

Ro
)+ ∑ (

∆R

Ro
)B2

B1
A2
A1

4
) *100                        7-8 

ξ1 is the global electrical resistance using sensing mat 1 (Ω), ξ2 is the global electrical resistance 

using sensing mat 2 (Ω). ∆R is (Ri – Ro); Ri represents mean value of ten electrical resistance 

readings after impact acquired using electrical channels A1, A2, A3, A4, B1, B2, B3, and B4 as 

shown in Table 7-2, Ro represents the mean value of ten electrical resistance readings before 

the impact A1, A2, A3, A4, B1, B2, B3, and B4 shown in Table 7-2.  

The following formula was used to calculate the standard error (ϒ) in the global electrical re-

sistances.  

ϒ = ѕ/√n             7-9 

Where ѕ is standard deviation of the electrical resistance readings and n is the number of elec-

trical resistance readings.  
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7.2.4 Electrical Resistance Change Due to Flexural Loads 

Changes in electrical resistance due to applied flexural loading was investigated using a four – 

probe electrical resistance method as described in the previous section. A 200 x 20 x t mm 

specimen (AC and VC panel) was used. The specimen was cut using 3000 rpm diamond cutter, 

the cutting was undertaken in the presence of water to keep the specimen at the room temper-

ature and to avoid damaging the specimen due to cutting heat. The specimen was ground using 

silicon carbide papers (240 and 600 grit) and polished using 1200 silicon carbide papers prior 

to attach the sensing mats to the specimens. A1 channel of sensing mat 1 and sensing mat 2 

were attached to the bottom surface of the specimen using Silver – Epoxy conductive adhesive 

as described in Section 5.3.1. However, due to size constraints (the size of the bar is 200 x 20 

(L x W) mm and the sizes of the sensing mats are 200 x 200 (L x W)), therefore only A1 readings 

were taken.   

Figure 7-5 shows the specimen and the test set up, the outer electrodes are current electrodes 

and inner electrodes are voltage electrodes (sensing electrodes). The specimen was subjected 

to four loading cycles and the deflection due to applied force was measured using camera in-

stalled on the testing frame as shown in Figure 7-6. The test speed was set at 2 mm / min and 

the test was paused four times to measure the electrical resistance at various deflections that 

were (2, 4, 6, and 8 mm), the pausing time was 3 minutes. 10 electrical resistance readings were 

acquired, and the average values were considered in further calculations. The electrical re-

sistance changes due to deflection are depicted and discussed in Section 7.3.2.  

 

Figure 7-5: Flexural test and specimen configuration.  

 

A1 
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Figure 7-6: Experimental set-up; 1. Digital camera to monitor the movement of the specimen and record 
the deflection, 2. DAQ system to measure electrical resistance data from the CFRP laminate, 3. CFRP 
laminate, 4. Flexural testing rig.   

7.2.5  Non-Destructive Testing Technique (C-scan)  

In this non-destructive testing technique, the sound waves that are simply organized mechani-

cal vibrations travel through the CFRP laminate. The waves will be reflected once they hit a 

discontinuity in the materials, such as delamination, matrix crackings and voids. The damage 

profile, the damage size, and the location of the damaged region were investigated using a C-

scan camera (DolphiCam, UK), the software (DolphiCam, UK) was used to analyse the images, 

further image processing was carried out using Photoshop CC 2017 (Adobe, USA). 

 

7.2.5.1 Specimen preparation and C-scan setup 

DolphiCam is a hand-held real-time imaging ultrasound camera with dry-coupling front surface 

that enables inspection of CFRP laminates without any liquid couplants. However, the CFRP 

laminate panels under investigation must be dust free. The C-scan camera shoots up to 4 

frames per second (fps) due to the field programmable gate array (FPGA) that is installed on-

camera. The transducer is a 30 x 30 mm, the transducer consists of a piezoelectric two-dimen-

sional 124 x 124 element array as shown in Figure 7-7. When a high electric pulse is applied to 

the transducer, a mechanical vibration generated which travels through a 2.84 mm dry coupling 

pad and into the material under inspection. The reflected waves are then picked up by the same 

element in the array. The waves are then converted from mechanical energy to electrical sig-

nals. DolphiCam CF08 can inspect CFRP laminates up to 8 mm thickness.  
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Figure 7-7: DolphiCam C08 transducer. 

The C-scan camera was calibrated prior to the start of the scan. The velocity of the sound in 

CFRP laminate was fixed at 3000 m / s, longitudinal mode of propagation was used, and a 3.8 

MHz ultrasonic beam was applied on the specimen. A few drops of Sonagel-w (Sonatest, UK) 

was used to allow smooth probe movement during testing. The output of the C-scan camera 

includes A-scan, B-scan and C-scan (Figure 7-8). A-scan is presented as a signal processed 

time series of the ultrasound reflection from the material at the intersection between the cross-

hairs on the main C-scan images, over the depth of the material (Graph in the bottom left hand-

corner of Figure 7-8). The B-scan is presented as the cross-section through the material, shown 

in the top left-hand graph and bottom centre graph of Figure 7-8. There are two B-scan lines, 

those being vertical and horizontal sections through the material coinciding with the position of 

the cross-hair on the main C-scan images. The vertical B-scan displays the vertical cross-sec-

tion at the position of the vertical line in the C-scan. While the horizontal B-scan displays the 

cross-section at the horizontal line in the C-scan. B-scan information is vital to determine the 

location of the damage through the thickness as shown in Figure 7-8. Of the 3 C-scan images, 

the most clear representation of damage is shown in the C – scan (Time of Flight) image in the 

top right hand corner, where the depth of damage within the structure can be seen in the 

changes of colour. In this case, a cross-shaped damage area can be seen in the image at a 

depth of about 1.5 mm from the surface. 
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Figure 7-8: C – scan, B – scan, and A – scan images for a) damage free CFRP laminates (AE panel) and 
b) the same panel but impacted at 10 J. In C – scan TOF image in top right corner, the dark blue colour 
represents the back face of the panel and the light blue colour represents the top surface roughness. B 
– scan images in the left top corner and bottom middle represent the depth of damage through – thick-
ness. A – scan in the bottom left corner shows reflection of ultrasound wave due to damage. 

a) 

b) 



120 
 

 
 

7.2.6 Destructive Testing Technique (Fluorescent Microscope Test) 

Epi-fluorescent microscopy is a valuable tool to observe the micro-cracks and macro-cracks 

and their extent in composite materials. In thermosetting carbon fibre/epoxy composites, some 

of the micro-cracks cannot be observed in a conventional microscope (dark-field and bright-

field illumination), therefore using an Epi-fluorescence microscopy is essential to see these 

cracks. In addition, there are many types of features that can benefit from the high contrast that 

can be obtained from a fluorescing dye. This is especially true if the fluorescing contrast can 

impregnate the damaged areas. 

 

7.2.6.1 Sample Preparation and Machine Setup  

Firstly, representative areas were cut from the impacted panels using a cutting wheel, the cutter 

speed was fixed at 3000 rpm (no load speed), the linear speed was adjusted manually, the linear 

cutting speed was low with a water spray as a coolant. Then the specimens were ground down 

using a grinder and polisher (ATM Saphir 320, Germany). A rough silicon carbide paper (grit 

180) at 150 RPM of platen rotation speed was used with water as a coolant to avoid creating 

or changing artefacts at the surface. The specimens were washed and dried for 12 hours at 

50oC in an oven (Thermo Scientific, UK) to obtain a clean interface to bond to the mounting 

resin.  

The specimens were potted at the room temperature in a cold-setting mounting resin (Epofix, 

Struers, Denmark) in mounting cups. This is a two-components resin with a low-viscosity, it is 

suitable for vacuum impregnation. Its mixing ratio by weight is 25 parts of resin to 3 parts of 

hardener. To achieve greater contrast between the micro-cracks, macro-cracks and other fea-

tures, a fluorescent dye (EpoDye, Struers, Demark) was mixed with the mounting resin Epofix 

(component A) prior to adding the hardener (component B) to the resin. This dye will fluoresce 

under the UV-light, therefore, it provides high contrast to distinguish between various types of 

features in the panels.   

The necessary quantity of the mounting resin and the hardener were mixed manually and then 

placed in a vacuum oven at the room temperature for 10 minutes to remove entrapped air. The 

specimens were placed in plastic mounting cups (Buehler, Germany), the mounting cups were 

release-coated using release agent (Marbocote CEO 75, US), clips were used to support the 

samples to ensure a flat planar surface will be obtained. The resin was then slowly poured into 

the cups and the cups were placed in a vacuum chamber at 101 kPa for 2 hours at the room 

temperature then they were taken out and left to cure at the room temperature for 12 hours. 

Then the mounted specimens were ejected from the mould and they were ready for grinding 

and polishing stages as shown in Table 7-3.  
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Table 7-3: Grinding and polishing stages for CFRP laminates for fluorescence microscopy.  

Stage Abrasive Lubricant 
Extender 

Force (N) 

Time 

(min:sec) 

Planten 

Speed 

(RPM) 

Head 

Speed 

(RPM) 

Relative 

Rotation 

1 P600 Water 22 Until planar 175 60 Contra 

2 P1200 Water 22 0:50 175 60 Contra 

3 
15 m dia-

mond 

15 m Polycrystal-

line Diamond sus-

pension 

22 0:50 175 60 Contra 

4 
6 m dia-

mond 

6 m Polycrystal-

line Diamond sus-

pension 

18 4 100 60 Contra 

5 
0.05 m 

diamond 

0.05 m Diamond 

suspension 
18 1:30 75 60 Contra 

6 
0.05 m 

diamond 

0.05 m Diamond 

suspension 
18 1:30 75 60 Comp 

 

 

An automated polishing head with circular openings EcoMet 250 Pro (Buehler, Germany) was 

used. This machine used compressed air to clamp the samples in a place. In the first stage the 

samples were ground on wet silicon carbide abrasive papers (grit size 600), the head speed 

was 175 RPM and using counter-direction rotation of the platen, the platen speed was 60 RPM 

as shown in Table 7-3. This stage ended when the damaged areas were reached. The speci-

mens after this stage had a high roughness and were ready for the next stage that was rough 

polishing.  

An automated rough polishing stage included reduction in abrasive size and the use of abrasive 

suspensions. 1200 grit size silicon carbide papers were used with water for cooling the sample. 

A 22 N pressure was applied on the sample when the head speed was 175 RPM in counter-

direction to the platen that was at 60 RPM for 50 seconds. A 15 µm polycrystalline diamond 

suspension (Buehler, Germany) was then used on a polishing cloth (Buehler, Germany). Moder-

ate pressure 22 N was applied on the sample when the head speed was 175 RPM for 50 sec-

onds as shown in Table 7-3. The final rough polishing stage started using 6 µm polycrystalline 

diamond suspension (Buehler, Germany) applied to a 15 µm diamond cloth (Buehler, Germany).  

The fine polishing stage started using non-nap cloths with a 0.05 µm diamond suspension 

(Buehler, Germany) with low pressure 18 N and low head speed 75 RPM counter-direction to 

platen speed that was 60 RPM. The final polishing stage used a 0.05 µm diamond cloth (Bueh-
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ler, Germany) with a 0.05 µm diamond suspension in this stage the head rotation was compli-

mentary to platen rotation direction that were 75 and 60 RPM respectively. Then the samples 

were placed in distilled water in an ultrasonic cleaner for 5 minutes, then dried using a hair dryer 

then specimens with smooth surfaces were ready to be examined under a fluorescence mi-

croscopy.   
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7.3 Results and Discussions 

7.3.1 Through – Thickness Electrical Resistivity Measurements and Electrical Con-
ductivity Calculations  

Table 7-4 shows through – thickness electrical resistivity for all CFRP laminate panels that were 

used in this thesis, the through – thickness electrical resistivity measured using the set up de-

scribed in Section 7.2.2 using both sensing mats (sensing mat 1 and sensing mat 2). It can be 

seen that the baseline of the through – thickness electrical resistivity decreases when the panel 

thickness increases that is due to increase of carbon fibre volume fraction as shown in Table 

7-4. When carbon fibre volume fraction increases and because of the wavy shapes of the car-

bon fibre that all combined helps to increase the fibre – fibre contacts between adjacent plies 

and decrease the through – thickness electrical resistivity baseline. This in turn means the fibre 

volume fraction has more effect than thickness on electrical resistance. Table 7-4 shows that 

the baseline electrical resistivity using mat 2 is higher than the electrical resistivity baseline 

measured using mat 1, this is attributed to the distance between the voltage electrodes (sens-

ing electrodes) that were 130 mm in sensing mat 2 and 60 mm in sensing mat 1. The electrical 

conductivity follows the same pattern where it increases when the carbon volume fraction in-

creases.     

                

Table 7-4: Through – thickness electrical resistivity and electrical conductivity of composites at various 
carbon fibre volume fractions.  

Panel AB AC AD AE VB VC 

Vf % 44.27 50.67 54.35 54.44 43.87 47.17 

ηt (mat 1) Ω.mm 0.052 0.037 0.036 0.029 0.050 0.032 

ηt (mat 2) Ω.mm 0.124 0.115 0.094 0.093 0.152 0.116 

Сc  S/mm 2604 2980 3197 3202 2535 2726 

 

 The effect of panel thicknesses and the fibre volume fraction on the through – thickness elec-

trical resistivity is shown in Figure 7-9 and Figure 7-10. Where the through – thickness electrical 

resistivity was measured using sensing mat 1 and sensing mat 2 as detailed in Section 7.2.2. It 

can be seen in both figures that with the increasing of carbon fibre volume fraction and due to 

waviness of carbon fibre the number of fibre – fibre contacts also increase, resulting in a de-

crease in through – thickness electrical resistivity. Because of losing these fibre – fibre contacts 

will increase the electrical resistance of the panels this makes the electrical resistance sensing 

method very suitable to detect internal damage. It can be seen from the figures that the maxi-

mum carbon fibre volume fraction obtained was 54.44 % that is due to carbon fibre texture (twill 
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fabric weave), where the fabric weave does not allow the resin to bleed out of the layup stack 

during the curing process.  

 

Figure 7-9: Dependence of through – thickness electrical resistivity of CFRP laminate panels on thick-
ness and fibre volume fraction. The electrical resistivity was measured using sensing mat 1.  

 

The electrical resistivity increased by up to 50 % when measured using sensing mat 2 (Figure 

7-10) that is due to electrode size and the sensing length that were 400 mm2 and 90 mm for 

sensing mat 2 and 100 mm2 and 40 mm for sensing mat 1. However, sensing mat 2 was less 

sensitive for damage detection than sensing mat 1 as will be discussed in Section 7.3.3. The 

straight line in electrical resistivity curve in the region between 2.54 and 3.5 mm means that 

sensing mat 2 was not able to measure the reduction in electrical resistivity due to increase in 

fibre volume fraction.   
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Figure 7-10: Dependence of through – thickness electrical resistivity of CFRP laminate panels on thick-
ness and fibre volume fraction. The electrical resistivity was measured using sensing mat 2.  

 

7.3.2 Changes in Electrical Resistance Due to Flexural Loads 

Flexural test was performed on an autoclave processing CFRP laminate panel (AC) and vacuum 

assisted resin transfer moulding panel (VC) using both sensing mats (sensing mat 1 and sens-

ing mat 2). The typical experimental set up was illustrated in Figure 7-5. Four loading cycles 

were used, the electrical resistance was measured prior to applying flexural loads and then it 

was measured while the specimen was loaded, due to the limitations in the data acquisition 

system (DAQ system was not capable of monitoring changes in electrical resistance in real 

time) the test was paused several times to measure the changes in electrical resistance while 

the specimen was loaded. A strong relationship was observed between the applied load and 

the changes in electrical resistance, the electrical resistance increased with the deflection. Fig-

ure 7-11 shows the changes in electrical resistance acquired using sensing mat 1 due to applied 

loads, at loading cycle one and loading cycle two where the maximum deflection was 2 and 4 

mm respectively, the electrical resistance increased reversibly. However, in loading cycle three 

and cycle four where the maximum deflection was 6 and 8 mm, the change in electrical re-

sistance was increased irreversibly by up to 0.02 % and 0.032 % respectively. This change in 

electrical resistance was attributed to minor damage where matrix crackings were heard during 

the test.  
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Figure 7-11: Changes in electrical resistance due to deflection at 2, 4, 6, and 8 mm in AC panel. The 
electrical resistance readings were acquired using sensing mat 1.  

These matrix cracks presumably reduce the number of fibre – fibre contacts in plies and be-

tween adjacent plies and decrease the surface electrical conduction and through – thickness 

electrical conduction and increase the electrical resistance consequently. It was noticed that 

the irreversible changes in electrical resistance increased when the deflection increased that 

was because the minor damage (matrix cracks) becomes more defined. Figure 7-12 shows the 

changes in electrical resistance due to applied loads for VC panel, the electrical resistance was 

measured using sensing mat 1. The changes in electrical resistance was reversible in loading 

cycle one and cycle two, however the VC panel showed irreversible changes in electrical re-

sistance when it was loaded at loading cycle three and cycle four, the change in electrical re-

sistance at loading cycle three and cycle four was 0.017 % and 0.024 % respectively. It can be 

seen that the changes in electrical resistance in VC panel was smaller than AC panel because 

IN – 2 Epoxy Infusion Resin was tougher than VTC 401 resin, thanks to presence of 1,6 bis (2,3-

epoxypropoxy) hexane in its formula (more details mentioned in Section 3.1.1), a comparison 

between damage size due to impact loading between VC and AC panel is presented in Table 

7-6.  
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Figure 7-12: Changes in electrical resistance due to deflection at 2, 4, 6, and 8 mm in VC panel. The 
electrical resistance readings were acquired using sensing mat 1. 

In Figure 7-13 the changes in electrical resistance due to applied loads were measured in AC 

panel using sensing mat 2. Loading cycle one and cycle two were undetectable, therefore no 

change in electrical resistance occurred. The AC panel showed reversible changes in electrical 

resistance at loading cycle three. 0.027 % irreversible change in electrical resistance was ob-

served when the specimen was loaded at loading cycle 4, this was attributed to minor damage 

as mentioned above. Sensing mat 2 was less sensitive to strain monitoring and damage detec-

tion as it will be discussed in Section 7.3.4. Figure 7-14 shows the change in electrical resistance 

in VC panel, the irreversible change in the electrical resistance was as low as 0.01 % that is due 

to toughened epoxy matrix as explained above.  
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Figure 7-13: Changes in electrical resistance due to deflection at 2, 4, 6, and 8 mm in AC panel. The 
electrical resistance readings were acquired using sensing mat 2.  

 

Figure 7-14: Changes in electrical resistance due to deflection at 2, 4, 6, and 8 mm in VC panel. The 
electrical resistance readings were acquired using sensing mat 2. 

 

7.3.3 Damage Detection in Woven Fabric Carbon Fibre Reinforced Composite Lami-
nates 

The aim of this section is to investigate the ability of the current sensing system using a four-

probe electrical resistance technique to detect damage in woven fabric CFRP laminate panels. 
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To study the sensitivity of the sensing system to detect barely visible impact damage (BVID) a 

range of impact energies were used as shown in Figure 7-15. Those energies were chosen 

based on trial and error so as to cause barely visible impact damage. In Figure 7-15 sensing 

mat 1 was attached to the bottom surface of the CFRP laminate panels, while impact energies 

were applied on upper surface of the panels. The scatter graph in Figure 7-15 shows that there 

is a strong relationship between the percentage in the global electrical resistance changes (ξ) 

of the CFRP laminate panels and the impact energies. The global electrical resistance change 

(ξ) calculations were detailed in Section 7.2.3.  

 

Figure 7-15: The percentage change in electrical resistance in carbon fibre composite laminate panels 
due to impact damage using sensing mat 1.  

 

Fundamentally, the amount of changes in electrical resistance depends on the panel thick-

nesses, the fabricating processes, the epoxy matrix, the impact energies, and sensing mats 

(variables that govern the electrical conduction in CFRP laminate panels were detailed Section 

2.4.4). When 0.405 J of impact energy was applied on the panels, it was noticed that BVID was 

created in the panel AB, while the other panels were not affected by that amount of impact 

energy. As C-scan images in Figure 7-16 shows, damage in the form of matrix cracks and de-

lamination were generated in AB panel due to impact events. The Time of Flight (TOF) mode 

shows the damage clearly, the dark blue area represents the bottom face of the laminate and 
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the light blue area is upper surface roughness that comes from using cloth – type release film 

during the curing process, the light green area is the damaged area that is a combination of 

matrix cracks and delamination. The B-scan (B-scan vertical and B-scan horizontal) shows the 

damage profile through-thickness direction along the horizontal and vertical cross-section of 

the specimen where the crosshair of the C-scan was placed. The thickness of each carbon fibre 

ply before the cure is 0.275 mm and because the damage occurred in the thickness between 0 

– 0.5 mm (as shown in B – scan vertical), therefore, that implies that matrix cracks occurred in 

ply number 1 and ply number 2 right under the impact point and delamination occurred between 

ply number 1 and ply number 2. However, there was no damage observed in VB, and VC panel.  

 

Figure 7-16: Impact damage distribution in CFRP laminates panel (AB). The panel was subjected to 0.405 
J impact energy using a semi-spherical impactor with a 13 mm diameter head. The damage is a combi-
nation of matrix cracks and delamination.  

 

When damage becomes observable in C-scan images, due to increase in impact energies, the 

changes in electrical resistance increased in both sensing mats (Mat 1 and Mat 2). When the 

impact energy increased to 1.426 J, all the panels apart from AD and AE panels showed signs 

of damage as shown in the C-scan images in Figure 7-17. The amount of changes in electrical 

resistance was varied depending on the size of damage and that in turn differs due to size effect 

as discussed in Section 2.3, at a given impact energy the severity of damage decreased when 

the panel thickness increased. At 1.426 J of impact energy the AB panel showed a bigger dam-

age size than AC panel (122 and 71 mm2 consequently). The damage in AB was a combination 

of matrix cracks, delamination and intralaminar crack. Figure 7-18 shows a fluorescent image 
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of AB panel, the figure shows a montage of several images of impact damage in the panel. As 

can be seen, the montage allows a larger field of view than a single image. Although most of 

the researchers in optical microscopy field consider that making the montage is time consum-

ing, an innovative way was used to obtain the images. Multiple images were taken of the sam-

ple, then the images were converted to JPEG extension format before being imported into Light-

room CC 2015.12 (Adobe, USA). In Lightroom CC the images were merged and developed to 

give the final images. The whole process, converting the images extensions, importing images, 

merging them and developing the images took less than a minute for each sample. The figure 

shows different types of damage (interlaminar crack, delamination, and matrix crack) that oc-

curred due to impact events. It can be seen that damage in a form of delamination was gener-

ated and grew between layer number 1 and layer number 2 another delamination was created 

between layer number 3 and layer number 4. The intralaminar crack was observed on the tensile 

surface of the panel (the bottom surface) due to tension at bottom surface of the panel. How-

ever, AC panel showed only matrix cracks and delamination and no fibre breakage was ob-

served as shown in Figure 7-19. The above pattern applies on VB and VC panel, however, the 

damage size was smaller than AB and AC panel and no fibre breakage was observed.   

 

The highest electrical resistance change was observed in the AB panels. At a given impact en-

ergy the size of damage in AB panels were bigger than their equivalent VB panels that maybe 

attributed to many factors, such as the manufacturing process, the type of carbon fibre and the 

type of epoxy matrix (detailed in Section 2.4.4). Where AB panels were processed in an auto-

clave under pressure of 606 kPa while VB panels were cured in a vacuum bag under 101 kPa of 

pressure. The high processing pressure helped to create fibre – fibre contacts in autoclave pro-

cessing panels higher than vacuum assisted resin transfer moulding panels as discussed in 

Section 6.2.1.2 and shown in Figure 6-10 and Figure 6-11. Table 7-4 shows that the through – 

thickness electrical resistivity of panels made using a vacuum assisted resin transfer moulding 

technique was higher than their equivalent of autoclave processing panels. This in turn has 

increased changes in electrical resistance due to damage in autoclave processing panels more 

than their equivalent of vacuum assisted resin transfer moulding processing panels. Once the 

delamination was initiated and grew in autoclave processing panels (AB, AC, AD, and AE), it 

disrupt  higher number of fibre –fibre contacts between adjacent plies than VARTM processing 

panels (VB and VC). In spite of the fact that Tory FT300B has higher electrical conductance 

than Tairyfil TC – 35 (Table 7-4), the autoclave processing panels showed higher change in 

electrical resistance due to damage under all energy levels as shown in Figure 7-15. It is worth 

mentioning that the IN – 2 Epoxy Infusion Resin (the epoxy matrix for VB and VC panels) had a 
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toughening component in its structure that was epoxypropoxy hexane that helped to reduce 

the damage size due to impact and the electrical resistance change consequently. On the other 

hand, the brittle nature of the epoxy matrix in VTC 401 along with the weak fibre – matrix inter-

face allowed the translation of the impact energy to destroy the composite laminate throughout 

the thickness direction. It was expected that the void content in all panels have a minor impact 

on the electrical resistance since it was less than 2% as shown in Table 6-8.   

 

 

AB 
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Figure 7-17: Impact damage distribution in different CFRP laminates. The panels were subjected to 1.426 
J of impact energy using a semi-spherical impactor with a 13 mm diameter head.  

 

 

Figure 7-18: Montage image of impact damage of AB panel. The panel was subjected to drop weight 
impact at 1.426 Joules. Epi-fluorescence, 390-440 nm excitation, 4x objective. 

 

VC 
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Figure 7-19: Montage image of impact damage of AC panel, the panel was mounted in with EpoDye. Epi-
fluorescent, 4x objective. The laminate was subjected to a 1.426 Joules impact energy. 

 

Table 7-5 shows the threshold impact energy for fibre breakage for each panel, the values in  

Table 7-5 were calculated using Equation 2-2 and data in Error! Reference source not found. and 

Table 6-7. It was noticed that when the impact energy level was below the threshold in  

Table 7-5, the dominant form of damage was delamination and matrix cracks, therefore 

changes in electrical resistance were relatively low. However, when the impact energy exceeded 

the threshold energy a considerable change in electrical resistance was observed as shown in 

Figure 7-15, since all types of damage, which were fibre breakage, delamination and matrix 

cracking, occur. It is important to mention that even when the impact energy was lower than 

fibre breakage threshold impact energy for (AB, VB, and AC), fibre breakage was observed; that 

may be attributed to the accuracy of an impact tester and the way the CFRP laminate panels 

were installed in the tester as discussed in Section 7.1.   

 

Table 7-5: The impact energies required for fibre failure due to back surface flexure. 

AB (J) VB (J) AC (J) VC (J) AD (J) AE  (J) 

3.22 2.56 6.26 5.91 11.30 16.34 

 

When the CFRP laminate panels (AB, AC, VB and VC panel) were subjected to 3.333 J of impact 

energy, fibre failure was observed in AB and VB panel as shown in Figure 7-20 and Figure 7-21. 

Fibre ruptured on the bottom surface of the CFRP laminate panels, therefore the damage in 

these panels (AB and VB panel) was a combination of delamination, matrix cracking and fibre 

breakage. The damage in AB and VB panel was classified as visible impact damage, while the 

damage in AC and VC panel was smaller in size and less in severity, therefore, it was classified 
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as barely visible impact damage as shown in Figure 7-22 and Figure 7-23 respectively, although 

an extensive delamination occurred between almost every ply as can be seen in Figure 7-22. 

 

 

AB 

VB 



137 
 

 
 

 

 

Figure 7-20: Impact damage distribution in different CFRP laminates. The panels were subjected to 3.33 
J of impact energy using a semi-spherical impactor with a 13 mm diameter head.  

AC 

VC 

Damaged area 

Damaged area 
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Figure 7-21: Montage image of impact damage of VB panel, epi-fluorescence, 4x objective. The laminate 
was subjected to low velocity impact at 3.33 Joules. 

 

Figure 7-22: Montage image of impact damage of AC panel, epi-fluorescence, 4x objective. The laminate 
was subjected to low velocity impact at 3.33 Joules. 

 

 

Figure 7-23: Montage image of impact damage of VC panel, epi-fluorescence, 4x objective. The laminate 
was subjected to low velocity impact at 3.33 Joules. 

 

4.96 J of impact caused significant changes in electrical resistances in the impacted regions 

of AB, AC, VB and VC panels shown in Figure 7-15. The impactor perforated AB panel, it caused 

a significant damage in VB panel (the damaged area was 210 mm2) as shown in Figure 7-24, 

this led to high increase in electrical resistance ≈ 23 %. In addition to matrix cracks, and delam-

ination this impact energy caused fibre breakage in AC panel as shown in Figure 7-25. Fibre 

breakage was not observed in all other panels. However, VC panel undergo a significant delam-

ination (Figure 7-26 ) that caused a high increase in electrical resistance Figure 7-15. 4.96 J of 
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impact energy created damage of 200 and 170 mm2 in AD and AE panel respectively, however, 

it was found that the electrical resistances of AD and AE changed by up to 2 % due to impact at 

4.96 J. This indicated that there was a critical thickness at which the current sensing system 

cannot be used to detect damage. Through – thickness electrical resistivity of CFRP laminates 

has an inverse relationship to laminate thicknesses as presented in Table 7-4. Through – thick-

ness current density decreased when the composite cross section area increased (as detailed 

in Section 2.5.2), this means the sensitivity of the current sensing system decreased.  

 

 

AB 

VB 
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Figure 7-24: Impact damage distribution in CFRP laminates panels (AB, VB, AC, VC, AD and AE). The 
panels were subjected to 4.96 J impact energy using a semi-spherical impactor with a 13 mm diameter 
head. 

AD 

AE 
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Figure 7-25: Montage image of impact damage of AC panel, epi-fluorescence, 4x objective. The laminate 
was subjected to low velocity impact at 4.96 Joules. 

 

Figure 7-26: Montage image of impact damage of VC panel, epi-fluorescence, 4x objective. The laminate 
was subjected to low velocity impact at 4.96 Joules. 

 

To investigate the suitability of the current sensing system to detect damage in thick CFRP 

laminates, AD and AE panels were subjected to 9.96 J of impact energy.  The C – scan images 

in Figure 7-27 show damage in a form of delamination that occurred in both AD and AE panels, 

the damaged areas were 293 and 232 mm2 respectively. The electrical resistance changed by 

only 7 % in AD panel and 3.8 % in AE panel as shown in Figure 7-15.  

 

AD 



143 
 

 
 

 

Figure 7-27: Impact damage distribution in CFRP laminates panels (AD and AE). The panels were sub-
jected to 9.96 J impact energy using a semi-spherical impactor with a 13 mm diameter head. 

 

As the current electrical sensing system was proved to be successful in detecting damage in 

various CFRP laminates made by both autoclave processing and VARTM processing tech-

niques and in order to make this sensing system economically viable, the effect of the sensor 

size and spacing between electrodes on the sensitivity of the technique was studied as it can 

be seen in Figure 7-28, where sensing mat 2 was used to collect electrical resistance data from 

carbon fibre composite laminates panels. In sensing mat 2 the electrode area was 400 mm2 

and the distance between electrodes was 90 mm. The data in Figure 7-28 was extracted from 

Table 7-2 as explained earlier in this section. At a given impact energy the changes in electrical 

resistance using sensing mat 2 in all panels (AB, AC, AD, AE, VB, and VC panel) were less than 

the changes in electrical resistance using sensing mat 1 as shown in Figure 7-15 and Figure 

7-28. In fact, when 0.406 J caused damage of 61 mm2 in AB panel, this damage caused a meas-

urable electrical resistance change using mat 1 (the damage was detectable), however, it was 

not detectable when mat 2 was used.  

AE 
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Figure 7-28: The percentage changes in electrical resistance in CFRP laminate panels due to impact 
damage using sensing mat 2.   

 

7.3.4 Quantification of Damage   

After the investigation of the applicability of the current sensing system to detect damage using 

two different sensing mats (sensing mat 1 and sensing mat 2) in different CFRP laminates, this 

section aims to investigate the ability of the sensing system to quantify the damage using both 

sensing mats. Therefore, electrical resistances of the panels were measured before and after 

the damage was created as detailed in Section 7.2.3, and then C – scan was deployed to meas-

ure the damage size as shown in Table 7-6. To calculate the damaged size precisely, the C – 

scan images were imported to Adobe Photoshop CC 19.1.5 (Adobe, US). The total number of 

pixels of C - scan transducer pad that was shown in Figure 7-7 was counted and it was found 

to be 40716 pixel, and then number of pixels in the damaged region was counted. The percent-

age of the damaged size to the total size of the C – scan transducer pad was calculated by 

dividing the number of pixels of the damaged size by the whole C – scan transducer pad’s 

pixels. The C – scan transducer pad area is known that is 900 mm2 as shown in Figure 7-7, 

therefore, the damaged areas were calculated by multiplying 900 mm2 by the percentage of 

damaged area, therefore the damaged areas were presented in Table 7-6. 
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It can be seen from the table that the damaged area was a function of impact energy, the fab-

ricating process, and the panel thicknesses. At a given impact energy autoclave processed pan-

els showed bigger damaged areas than the VARTM processed panels, that may be attributed 

to epoxy resin system as well as curing processes where higher pressure and temperatures 

were used. It was found that the damage areas decrease when the thickness increases, where 

the panels become stiffer and their ability to disperse the impact energies into bigger areas 

increases.  

  

Table 7-6: Damaged areas due to various impact energies for CFRP laminate panels used in this thesis, 
measured by C - scan.  

Specimen Impact energy (J) Damaged area (mm2) 

AB 

0.409 61.60 

0.657  100.06 

1.426 122.01 

3.333 400.13 

4.959 654.06 

AC 

1.426 71.68 

3.333 250.77 

4.959 338.88 

AD 

1.426 No damage observed 

3.333 No damage observed 

4.959 200.36 

9.966 293.52 

AE 

1.426 No damage observed 

3.333 No damage observed 

4.959 170.46 

9.96 232.53 

VB 

1.426 82.22 

3.333 174.11 

4.959 210.43 

VC 

1.426  No damage observed 

3.333 107.58 

4.959 138.50 
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The damaged area measured by C – scan was plotted against the percentage of global electri-

cal resistance changes, the global electrical resistance changes (ξ) were calculated and de-

scribed in Section 7.3.3. Figure 7-29 shows the damage identification using the electrical self-

sensing system, sensing mat 2 was attached to bottom surface of the CFRP laminate panels 

and the impact test was applied to the upper surface of the CFRP laminate panels. The electri-

cal resistance along A1, A2, B1, and B2 was measured before and after the damage generation, 

then the global electrical resistance (ξ) was calculated for each panel at each impact energy 

and then ξ was plotted against the damaged areas that were acquired from C – scan tests as 

shown in Figure 7-30 to Figure 7-35.  

 

 

Figure 7-29: Illustration of damage identification and quantification using the electrical resistance change 
method. The figure illustrates the bottom face of a CFRP laminate panel where sensing mat 2 was at-
tached. The panel was subjected to impact energy on the upper face of the composite panel.    

 

It was found that low impact energy levels produce measurable changes in the electrical re-

sistance of the panels using both sensing mats, however, all damage types were clearly defined 

and approximately quantified when sensing mat 1 was used. Figure 7-30 to Figure 7-35 present 

the relationship between the global electrical resistance changes (ξ) and the damaged areas in 

AB, VB, AC, VC, AD and AE panel respectively, the points represent the actual data that was 

acquired from Table 7-2 and processed as described in Section 7.2.3. It was evident that both 

sensing mats were able to identify the damage, however, it can be seen that the changes in 

electrical resistance in sensing mat 2 were lower than the changes in electrical resistance in 

sensing mat 1, in spite of the fact that the electrical resistance baseline for sensing mat 2 was 

higher than mat 1 (discussed in Section 7.2.3) the changes in electrical resistance were lower. 

According to Equation 2 – 4, increasing the surface area of the electrode decreased the current 

density, therefore the sensitivity of the sensor decreased. It is worth mentioning that the area 
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of the electrode in sensing mat 2 was higher than sensing mat 1, 400 mm2 and 100 mm2 re-

spectively. That in turn meant sensing mat 2 made contacts with higher number of carbon fi-

bres and since the distance between electrodes in mat 2 was higher (90 mm) while the distance 

between the electrodes in mat 1 was 40 mm. This helps the electric current to find alternative 

paths to follow when damage occurs that makes the reduction in electrical resistance less ob-

vious than mat 1. An important point can be concluded that the spacing between electrode had 

greater effect on damage detection than the electrode sizes.  

In this thesis the effects of other variables such as humidity and temperature have been ex-

cluded due to time, facilities, and funding constraints. For the purpose of an inverse analysis an 

exponential fit was used to fit the data in Figure 7-30.  It is important to mention that the bigger 

the data set is the more accurate the fitting, and more accurate the relationship between dam-

aged areas and changes in electrical resistance will be. It can be seen in all the figures that 

changes in electrical resistance measured by sensing mat 2 were smaller than changes in elec-

trical resistance measured sensing mat 1, that means the sensing mat 2 was less sensitive to 

quantify the damage. That was proved in AB in Figure 7-30. AB panel was subjected to 0.406 J 

of a low velocity impact test, the impact test generated damage of 61 mm2, this damage pro-

duced a measurable change in electrical resistance using sensing mat 1 but this damage size 

was below the damage threshold of sensing mat 2, therefore this damage was not detected 

and therefore it was not quantified using mat 2 but it was both detectable and quantifiable using 

mat 1. It can be concluded that there was an inverse proportional relationship between the 

global changes in electrical resistance (ξ) and the distance between the electrodes, the higher 

the distance the lower the accuracy of the sensing system was. On the other hand, the higher 

the distance between the electrodes the more economical the sensing system was.       
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Figure 7-30: Relationships between the damaged areas and the percentage in electrical resistance 
changes for AB panel using both sensing mats. 0.607 J impact energy was excluded from the graph to 
be used for inverse analysis later in this section.  

 

Figure 7-31: Relationships between the damaged areas and the percentage in electrical resistance 
change for VB panel using both sensing mats.  
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Figure 7-32: Relationships between the damaged areas and the percentage in electrical resistance 
change for AC panel using both sensing mats.  

 

Figure 7-33: Relationships between the damaged areas and the percentage in electrical resistance 
change for VC panel using both sensing mats.  
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Figure 7-34: Relationships between the damaged areas and the percentage in electrical resistance 
change for AD panel using both sensing mats.  

 

Figure 7-35: Relationships between the damaged areas and the percentage in electrical resistance 
change for AE panel using both sensing mats.  
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In an attempt to quantify damage using electrical resistance data, an inverse analysis was un-

dertaken on AB panel. The AB panel was subjected to a 0.607 J of low velocity impact energy. 

The global electrical resistance change (ξ) was measured using sensing mat 1, it was found 

that ξ equals to 2.555 % then this value was projected on the fitting line in Figure 7-30, the 

damaged area was estimated  to be 85 mm2 then the damage was estimated using non-de-

structive test ( C- scan test) and the damaged area was found to be 100 mm2 as shown in 

Figure 7-36. The error of estimation was found to be 15 mm2 ,the difference between the meas-

urements can be attributed to three factors that were low through – thickness electrical con-

ductance (discussed in Section 7.3.1), the fitting line, which requires a large set of data to obtain 

an accurate slope to improve prediction, and the negative electric current at the panel surface. 

Ideally in metals the electric current flows from the negative electrode to the positive electrode 

directly. However, in CFRP laminate panels due to orthotropic nature of CFRP laminates the 

electric current flows from the negative electrode to the positive electrode, but electric current 

passes the positive electrode and then flows back to the positive electrode (as shown in Figure 

2-12). This circular flow causes a reduction in electrical resistance changes due to damage, this 

means the actual electrical resistance changes were higher than the measured ones, therefore 

the damage area predicted using electrical resistance changes was smaller than the actual 

damaged area.   

 

Figure 7-36: C – scan image for AB panel impacted at 0.607 J.    
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7.3.5 Damage Location 

After investigating the effectivity of the electrical resistance sensing system to measure the 

severity of damage and discussions in the areas that are needed to be researched to improve 

the accuracy of the current sensing system. Another challenging subject was the investigation 

of the sensor to enable damage location within the panel. The main advantage of this technique 

was the ease with which the damage can be located. This technique has an advantage over C-

scan in that it located the damaged area within few seconds while C-scan is a point-test and it 

requires an extensive work to locate internal damage such as delamination. However, a four-

probe electrical resistance technique cannot map the damage while C-scan can do that in 2D 

and 3D view. The ease with which the damage can be located was attributed to innovative 

sensing mats, four-probe electrical resistance technique, and a simple data processing proce-

dure.  

The data acquired from the DAQ system was presented Table 7-2. The sensing mats divided 

the CFRP laminate panels into segments as shown in Figure 7-37, at which the electrical re-

sistances were measured before and after each impact events. the four-probe electrical re-

sistance technique offered a precise way to measure the resistance by eliminating electrical 

contact resistances. The electrical resistance at each segment was measured and then the 

electrical resistance changes at each segment were measured again at various impact ener-

gies. The electrical resistance readings were analysed by plotting the change in electrical re-

sistance (∆R) using Equation 7 – 10 against the sensing electrodes that were used to measure 

them.    

∆R = Ri – Ro                             7-10 

Where ∆R is the change in resistance at a segment, Ri is the electrical resistance after an impact 

event, and Ro is the electrical resistance before the impact event as shown Table 7-2.   
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Figure 7-37: Representation of damage identification technique using electrical resistance change 
method. 

 

The damage was located by significant local variations in the electrical resistances occurred in 

a panel as shown in Figure 7-38 to Figure 7-43. Those figures were generated in the following 

method: changes in electrical resistance in the horizontal direction were (∆RA1, ∆RA2, ∆RA3, ∆RA4) 

and changes in electrical resistance in the vertical direction were (∆RB1, ∆RB2, ∆RB3, ∆RB4); 

changes in horizontal and vertical directions were multiplied to generate a 4 x 4 matrix and then 

a cubic interpolation function was used to expand the matrix from 4 x 4 to 7 x 7 matrix. The 

purpose interpolation function was that to make the transition between damage and undam-

aged regions smooth and then the contour was plotted using “contourf” function in MATLAB.   

 It can be seen from the figures that when impact energy was low, the changes in electrical 

resistance were low, therefore, it was hard to locate damage precisely since the local variations 

in electrical resistances were high in comparison with undamaged areas in a CFRP laminate 

panel. This can be seen clearly in Figure 7-38a, however when the impact energy increased 

damage became more defined hence damage was located accurately.  
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Figure 7-38: Damage location in AB panel that was impacted at a) 0.406 J, b) 0.607 J, c) 1.426 J, d) 3.333 
J, and e) 4.96 J. The arrows on C – scan image at the top left and right corners represent the current flow 
direction.  

 

It can also be seen that C-scan images helped to determine damage profiles. The smaller the 

damage the more spread the contours were. The arrows around C-scan images represent the 

direction of electrical current applied into the CFRP laminate panels. All panels were impacted 

in Segment 2 (Figure 7-37), therefore the highest changes in electrical resistance were occurred 

in the region between A2, A3, B2, and B3. In spite of the fact that the sensing electrode in this 

region experienced the highest electrical resistance changes, however the changes in electrical 

resistance were varied from a sensing electrode to the others. This in turn was shifted damaged 

areas on the contours from Segment 2 to other segments slightly. This challenge was attributed 

to amount of electrical contacts made with the carbon fibres in CFRP laminate panels during 

attaching the sensing mats to CFRP laminate panels. It is important to state that this type of 

error was inherited in the electrical resistance sensing technique and it required an advanced 
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signal processing technique to overcome it. In this thesis a simple and straightforward relation-

ship was used to determine the damage location as give in Equation 7-10.  

When impact energy increased to 4.96 J, all types of damage occurred (matrix crack, fibre 

breakage and delamination), therefore the damaged area was big as shown in Figure 7-38e.  

When the thickness of the CFRP laminate panel increased to 1.63 mm (Figure 7-39), the 

changes in electrical resistance were less than CFRP laminate (Figure 7-38). When the thick-

ness increased to 2.54 mm the changes in electrical resistance were as low as 11 x 10-4 Ω when 

the panel impacted at 4.96 J (Figure 7-40). However, damage was located, and damage was 

more localised when the CFRP panel was impacted at 9.996 J.    

 

Figure 7-39: Damage location in AC panels that were impacted at a) 1.426 J, b) 3.333 J, and c) 4.96 J. 
The C-scan images at the top left and right corners show the damage profile, the arrows around C-scan 
images show the current flow direction.  

 

Figure 7-40: Damage location in AD panels that were impacted at a) 4.96 J, and b) 9.996 J. The C-scan 
images at the top left and right corners show the damage profile, the arrows around C-scan images 
show the current flow direction. 
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4.96 J and 9.996 J impacted energies caused barely visible impact damage in 3.5 mm CFRP 

laminate panel; the changes in electrical resistance was as low as 3.5 x 10-4 and 2.5 x 10-3 Ω 

respectively. It can be concluded according to Equation 7 – 1 that fibre volume fraction has 

higher impact on the electrical resistance sensing system than panel thicknesses.  

 

 

Figure 7-41: Damage location in AE panels that were impacted at a) 4.96 J, and b) 9.996 J. The C-scan 
images at the top left and right corners show the damage profile, the arrows around C-scan images 
show the current flow direction. 

 

Damage location in two CFRP laminate panels, that were made using a VARTM technique, was 

investigated. It was found that VB panel in Figure 7-42 followed the same pattern as AB panel 

in Figure 7-38, however the changes in electrical resistance were higher which was attributed 

to the manufacturing technique, where fibre volume fraction was lower as discussed in Section 

6.2.4. Also fibre-fibre contact network was lower than AB panel, therefore disruptions caused 

to fibre-fibre contact network caused due to damage had a higher impact on the electrical re-

sistance of the panels. The CFRP laminate panels made using a VARTM technique had bigger 

resin rich areas and void contents than their equivalent made in an autoclave as discussed in 

Section 6.2.1 and Section 6.2.4. All those factors played an important role in damage detection 

and location.    
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Figure 7-42: Damage location in VB panels that were impacted at a) 1.426 J, b) 3.33 J, and c) 4.96 J. 
The C-scan images at the top left and right corners show the damage profile, the arrows around C-scan 
images show the current flow direction. 

 

Impact energy of 4.96 J caused visible damage in VB panel (full perforation was occurred) and 

that caused damage not only to the CFRP laminate panel but also to sensing electrodes, there-

fore damage was spread over a large area. Although VC panel had higher fibre volume fraction 

than VB panel (Table 6-8) but it also had a bigger resin rich area, therefore that was reduced 

fibre-fibre contact network in through-thickness direction as show in Figure 6-8. Hence the 

changes in electrical resistance due to BVID was lower than VB panel as shown in Figure 7-43. 

Given these results the electrical resistance sensing system showed a great advantage to lo-

cate damage in a short time (few seconds) over conventional non-destructive techniques, such 

as C-scan.   
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Figure 7-43: Damage location in VC panels that were impacted at a) 1.426 J, b) 3.33 J, and c) 4.96 J. 
The C-scan images at the top left and right corners show the damage profile, the arrows around C-scan 
images show the current flow direction 

 

7.3.6 Summary of the Findings  

The current sensing system was tested on six different CFRP laminate panels that were made 

using two different manufacturing techniques that were autoclave processing and vacuum as-

sisted resin transfer moulding techniques. Two different sensing mats (sensing mat 1 and 

sensing mat 2) were attached to the bottom surface of the CFRP laminate panels. The CFRP 

laminate panels were subjected to impact energies at the upper surface using a low velocity 

impact tester, a range of impact energies were used (0.406 – 9.996 J), the purpose was to 

investigate the ability of the electrical resistance sensing system to detect, locate, and quantify 

barely visible impact damage (BVID). The results showed that the sensing system using sens-

ing mat 1 cannot detect damage below a threshold that is 61, 71, 200, 170, 82, and 107 mm2 in 

panel AB, AC, AD, AE, VB, and VC respectively. It was found that at a given damage size the 

change in global electrical resistance (ξ) was significantly lower (as twice as lower) when sens-

ing mat 2 was used than sensing mat 1.  

In order to quantify the damage using the current sensing system an inverse analysis was un-

dertaken on AB panel, the panel was impacted at 0.607 J, then depending on the global electri-

cal resistance changes the damage was estimated to be 85 mm2, however the actual damage 

size was measured using C – scan and it was found 100 mm2. The error of estimation was 15 
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mm2, this error was inevitable since it was attributed to the electrical properties of CFRP lami-

nate panels. There were two sources of error when damage was quantified, the first source was 

the through – thickness electrical resistivity that depends on the fibre – fibre contact network 

between adjacent plies, these fibre – fibre contacts depends on the manufacturing techniques 

and even if the CFRP laminate panels made using the same manufacturing technique, the den-

sity of fibre – fibre contacts differ from region to the other in the same panel. The second source 

of error was due to negative electrical current flow, this flow creates a circular pattern flow 

around the positive electric electrode and this in turn decreases the change in electrical re-

sistance due to damage and reduce the estimated damage size consequently. Damage was 

located in all CFRP laminate panels that were used in this work using an innovative sensing mat 

that breaks down the panel into segments. The sensing system measures electrical resistance 

variations in these segments, and then it was assumed that the damage in a particular segment 

when the highest electrical resistance variations occurred in that segment. The locating dam-

age process takes few seconds for each panel used in this thesis.  
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CONCLUSIONS AND FUTURE WORK 
8.1 Summary and Conclusions  

The aim of this thesis was to develop a sensing system for damage detection in woven fabric 

CFRP laminate panels. The sensing system utilizes the electrical properties of the reinforcing 

element (carbon fibres) in CFRP laminates. The main goal is to introduce an integrated struc-

tural health monitoring system that can potentially replace the expensive non-destructive test-

ing techniques and reduce the periodical check-up time. During early stages of this work, prom-

ising results were obtained from CFRP laminate panels made using an autoclave processing 

technique, therefore, the sensing system was extended to cover CFRP panels made using a 

VARTM technique.  

Using the VARTM technique to produce panels that are suitable for electrical self-sensing is 

challenging due to the quality of the panels and low fibre volume fractions. Therefore, the sec-

ond aim was to produce high quality CFRP laminates using the VARTM. The conventional pro-

cess to produce CFRP laminates using the VARTM technique was amended in terms of preform 

sequence, infusion temperature and vacuum pressure.  CFRP laminate panels with less than 

2% void content and fibre volume fraction ≈ 45 % were obtained; those CFRP laminate panels 

were suitable for electrical self-sensing.  

The third aim was to design a sensing mat to maximize the performance of the sensing system; 

two sensing mats were designed and investigated. 

The following conclusions were obtained:    

• The electrical resistance sensing technique can be used to detect, locate and quantify 

damage in woven fabric CFRP laminate panels.  

• Many parameters affected the electrical resistance readings, such as carbon fibre types, 

CFRP processing techniques, fibre volume fractions, specimen thicknesses, electrical 

measurement techniques, size of sensing electrodes, location of sensing electrodes, 

type of sensing electrodes, integration of sensing electrodes, electrical current type, 

electrical current amount, connection wires, and the data acquisition system. Most of 

all, the amount of electrical contacts between the electrodes and carbon fibres in CFRP 

laminate panels determine the accuracy and sensitivity the sensing system as well as 

the readings of electrical resistance. This is, in turn, is very difficult to control and it is 
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varied from location to the other on the same panel. This explains why there is a signif-

icant difference in the published data in the literature.    

• Fibre-fibre contacts between the consecutive layers in CFRP laminate panels improved 

the damage detection sensitivity of the electrical sensing system but it decreased dam-

age quantification ability of the system because it causes negative electrical current 

flow.     

• The impact of the sensor area (100 mm2 and 400 mm2) on the accuracy of the electrical 

sensing technique was significant. The bigger the sensor the higher accuracy, on the 

other hand the bigger distance between sensors the less the resolution. However, in the 

cases assessed it was always possible to detect damage within the structure. 

• Spacing distance between sensing electrodes had a greater impact on the sensitivity of 

the sensing system than the electrode size. 

• Carbon fibre volume fraction had a greater impact on the sensing system than panel 

thicknesses.  

• This technique showed its capabilities in detecting change in electrical resistance due 

to BVID, it also can detect the change in electrical resistance when the sample was 

loaded below BVID energy threshold as determined using C-scanning.  

• The electrical resistance sensing technique can map the damage area in 2D, however, 

the accuracy of the map requires improvements as will be discussed in the following 

section. 
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8.2 Future work  

To further develop this project beyond the successful results that were obtained. The following 

points need to be addressed to fully utilize this technique and extend it to an industrial scale.  

• In this thesis 200 x 200 mm (LXW) panel size was studied, the future work could inves-

tigate the effect of a bigger panel size on the changes in electrical resistance for impact 

damage detection. 

• To reduce the cost of the sensing system, the number of the sensing electrodes and the 

number of channels in the data acquisition system consequently could potentially de-

crease. This can be achieved by exploring a larger spacing between sensing electrodes 

in the sensing mats; this will reduce the sensitivity of the sensing system but establish-

ing a precise relationship between the very small change in electrical resistance due to 

damage and damage size and location would resolve this issue. This relationship could 

be obtained by undertaking a large set of experiments.  

• In this thesis the effect of humidity and temperature on the electrical resistance were 

excluded. Future work could investigate the effects of these factors on the electrical 

resistance readings.  

• Develop a remote sensing system by implanting a transceiver into the composite struc-

ture, that could communicate with the sensing mats, the transceiver collects and sends 

the electrical resistance data to a data processing unit that analyses and presents the 

data. This could expedite the implementation of this technique in the aerospace indus-

try.  

• In this thesis, the sensing system was tested on a woven fabric CFRP laminate, future 

work could explore the suitability of the sensing system to unidirectional CFRP lami-

nates. 

• In this thesis, two types of manufacturing techniques, which are autoclave processing 

and VARTM techniques, were used to fabricate the CFRP laminate panels. Future work 

could explore using CFRP laminate panels that are made by RTM and press forming 

manufacturing techniques. These techniques generate fibre – fibre contact density in 

the through -  thickness direction between the adjacent plies somewhere between au-

toclave processing panels and VARTM processing panels.  

• In this thesis a 2 x 2 mm twill weave carbon fibre reinforcing mat was used, other weave 

architectures could be explored.   

• Use FE to simulate the electrical behaviour of CFRP laminates. However, for time being 

there is no electrical conduction theory for CFRP laminate available in the literature.  
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APPENDIX A  

1. Tensile Test for Carbon Fibre Composite Laminates Panels 

 

Figure A-1: Stress – Strain curve for AB panel, the average UTS = 607.33 MPa and E = 55 GPa. E was 
calculated at a strain range of 0.002 in the region between 0.002 and 0.004 for specimen 1, 0.004 
and 0.006 for specimen 2, and 0.006 and 0.008 for specimen 3.  

 

Figure A-2: Stress – Strain curve for AC panel, the average UTS =620.6 MPa and E = 57.744 GPa. E 
was calculated at a strain range of 0.002 in the region between 0.002 and 0.004 for all the speci-
mens.  

Matrix cracking 

Fibre splitting  
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Figure A-3: Stress – Strain curve for AD panel, the average UTS = 690 MPa and E = 57.46 GPa. E was 
calculated at a strain range of 0.002 in the region between 0.0052 and 0.0072 for all the specimens.  

 

Figure A-4: Stress – Strain curve for AE panel, the average UTS = 735.5 MPa and E = 57.33 GPa. E 
was calculated at a strain range of 0.002 in the region between 0.002 and 0.004 for all the speci-
mens.  

Tab slipped during test  

Fibre splitting  
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Figure A-5: Stress – Strain curve for VB panel, the average UTS = 419 MPa and E = 53 GPa. E was 
calculated at a strain range of 0.002 in the region between 0.003 and 0.005 for all specimens.  

 

Figure A-6: Stress – Strain curve for VC panel, the average UTS = 450 MPa and E = 55 GPa. E was 
calculated at a strain range of 0.002 in the region between 0.004 and 0.006 for all the specimens.  

 

 

 

Grips slipt during the test 

Matrix cracking 
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2. Flexural Tests for Carbon Fibre Composite Laminates Panels  

 

Figure A-7: Three-point bending test for AB panel. The average σf = 790 MPa. 

 

Figure A-8: Three-point flexural test for AC panel. The average σf = 810 MPa. 

Fibre breakage 

Final specimen failure 

Fibre splitting  
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Figure A-9: Three-point flexural test for AD panel. The average σf = 870 MPa. 

 

Figure A-10: Three-point flexural test for AE panel. The average σf = 890 MPa. 
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Figure A-11: Three-point flexural test for VB panel. The average σf = 610 MPa. 

 

Figure A-12: Three-point flexural test for VC panel. The average σf = 690 MPa. 
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APPENDIX B  

 

Figure B-1:Electrical sensing code that was used to acquire the data from DAQ system.  

 


