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Abstract 

For a pesticide to be registered for use, the risk to non-target arthropods must first 

be assessed. Standardised laboratory tests are conducted to evaluate lethal and 

sublethal effects on these species, with sublethal assessments focusing on 

reproductive effects. One other sublethal effect reported in the scientific literature is 

behavioural changes – such as hyperactivity or arrested movement – in non-target 

arthropods exposed to pesticide residues. Avoidance behaviour is also of interest in 

this context, where individuals display signs of irritation or repellence, thus showing 

a preference for untreated surfaces. Behavioural changes can be a precursor to more 

deleterious effects of pesticides, while avoidance behaviour is seen as both positive 

and negative, depending on the context. Regulatory studies expose individuals to 

homogeneous residues, even though pesticide spray within crop systems is often 

heterogeneous. Regulatory studies thus consider the worst case scenario yet this 

leaves no consideration of effects arising from realistic exposure in the environment, 

in particular effects of avoidance behaviour. Additionally, little is known of pesticide 

exposure patterns at spatial scales relevant to non-target arthropods. This thesis 

documents studies of movement behaviour and avoidance behaviour in a predatory 

mite (Typhlodromus pyri) when exposed to three insecticides. Irritation, reduced 

activity and avoidance behaviour were observed in mites exposed to residues in 

arenas with residues covering half and the whole surface. The thesis also documents 

the quantification of pesticide residues and spray patterns at small spatial scales, and 

these results were combined with movement data to investigate how populations 

are impacted by heterogeneous residues and pesticide avoidance behaviour through 

individual-based modelling. The simple model showed that both heterogeneous 

pesticide residues and avoidance behaviour lead to increased longevity and 

reproduction in individuals. Additionally, novel methods for quantifying spray 

residues, spray patterns, and behavioural bioassays are presented. 

  



4 
 

Table of contents 

Abstract ........................................................................................................................ 3 

Table of contents .......................................................................................................... 4 

List of tables ............................................................................................................... 10 

List of figures .............................................................................................................. 16 

Acknowledgements .................................................................................................... 20 

Author’s declaration ................................................................................................... 21 

Chapter 1 – Introduction ............................................................................................ 22 

1.1 Background ....................................................................................................... 22 

1.2 Knowledge gaps ................................................................................................ 25 

1.3 Project aims ...................................................................................................... 26 

1.3.1 Chrysoperla carnea .................................................................................... 27 

1.4.2 Typhlodromus pyri ..................................................................................... 29 

1.5 Thesis outline .................................................................................................... 31 

Chapter 2 – Quantifying pesticide deposits and spray patterns at micro-scales on 

apple (Malus domesticus) leaves with a view to arthropod exposure ...................... 34 

2.1 Introduction ...................................................................................................... 34 

2.2 Materials and methods..................................................................................... 37 

2.2.1 Orchard sampling ....................................................................................... 37 

2.2.2 Residue sample collection ......................................................................... 39 

2.2.3 Leaf sample extraction and clean-up ......................................................... 40 

2.2.4 Gas chromatography-mass spectrometry (GC-MS) ................................... 41 

2.2.5 Analytical method development ............................................................... 42 

2.2.6 Spray pattern analysis ................................................................................ 43 

2.2.7 Testing DepositScan ................................................................................... 43 

2.2.8 Statistical analysis ...................................................................................... 47 



5 
 

2.3 Results .............................................................................................................. 47 

2.3.1 Spray pattern analysis ................................................................................ 47 

2.3.2 Leaf residues .............................................................................................. 50 

2.3.3 Comparing residue analysis methods ........................................................ 50 

2.3.4 Testing DepositScan ................................................................................... 53 

2.4 Discussion ......................................................................................................... 54 

2.4.1 Comparison of trends in leaf residue and water sensitive paper data ..... 54 

2.4.2 Comparing residue analysis methods ........................................................ 55 

2.5 Conclusions ....................................................................................................... 58 

2.6 Using spray data to contextualise laboratory studies ...................................... 60 

Chapter 3 – Pesticide induced changes in movement behaviour in the predatory mite 

Typhlodromus pyri ...................................................................................................... 62 

3.1 Introduction ...................................................................................................... 62 

3.1.1 Sublethal effects of pesticides ................................................................... 62 

3.1.2 Behavioural effects of pesticides ............................................................... 63 

3.1.3 Avoidance Behaviour ................................................................................. 64 

3.1.4 Study aim, species and pesticide selection ............................................... 66 

3.1.5 Hypotheses ................................................................................................ 67 

3.2 Materials and methods .................................................................................... 68 

3.2.1 Insects ........................................................................................................ 68 

3.2.2 Insecticides................................................................................................. 68 

3.2.3 Behavioural bioassays ................................................................................ 72 

3.2.4 Pesticide residue analysis .......................................................................... 78 

3.2.5 Statistical analysis ...................................................................................... 80 

3.3 Results .............................................................................................................. 89 

3.3.1 Environmental conditions .......................................................................... 91 



6 
 

3.3.2 Mite movement behaviour ........................................................................ 93 

3.4 Discussion ....................................................................................................... 103 

3.4.1 Pesticide residue analysis ........................................................................ 103 

3.4.2 Control mite movement .......................................................................... 104 

3.4.3 Mite activity/inactivity ............................................................................. 104 

3.4.4 Movement behaviour .............................................................................. 105 

3.4.5 Avoidance behaviour ............................................................................... 108 

3.4.6 Ecological relevance of findings ............................................................... 108 

3.4.7 Scope for further study ............................................................................ 112 

Chapter 4 – Can the predatory mite Typhlodromus pyri avoid pesticides? A study of 

movement behaviour and avoidance in choice arenas ........................................... 116 

4.1 Introduction .................................................................................................... 116 

4.1.1 Why choice arenas? ................................................................................. 116 

4.1.2 Studying avoidance behaviour in choice arenas...................................... 117 

4.1.3 Study aim ................................................................................................. 121 

4.1.4 Hypotheses .............................................................................................. 122 

4.2 Materials and methods................................................................................... 122 

4.2.1 Insects ...................................................................................................... 122 

4.2.2 Insecticides ............................................................................................... 122 

4.2.3 Behavioural bioassays .............................................................................. 124 

4.2.4 Pesticide residue analysis ........................................................................ 128 

4.2.5 Analytical method development ............................................................. 128 

4.2.5 Statistical analysis .................................................................................... 129 

4.3 Results ............................................................................................................. 137 

4.3.1 Environmental conditions ........................................................................ 139 

4.3.2 Mite activity/inactivity ............................................................................. 141 



7 
 

4.3.3 Zone preference study ............................................................................. 143 

4.3.4 Mite movement behaviour ...................................................................... 145 

4.4 Discussion ....................................................................................................... 153 

4.4.1 Pesticide residue analysis ........................................................................ 154 

4.4.2 Control mite movement and environmental conditions ......................... 154 

4.4.3 Mite activity/inactivity ............................................................................. 156 

4.4.4 Zone preference study ............................................................................. 157 

4.4.5 Mite movement behaviour ...................................................................... 158 

4.4.6 Avoidance behaviour ............................................................................... 163 

4.4.7 Study findings compared to hypotheses ................................................. 163 

4.4.8 Ecological relevance of findings ............................................................... 164 

4.4.9 Summary of findings and comparison to full coverage study ................. 167 

4.4.10 Risk assessment implications ................................................................. 168 

4.4.11 Further study ......................................................................................... 169 

Chapter 5 – From an individual to a population: modelling the effects of pesticide 

residues on Chrysoperla carnea and Typhlodromus pyri in the PANTA model ....... 172 

5.1 Introduction .................................................................................................... 172 

5.1.1 Models in ecotoxicology .......................................................................... 172 

5.1.2 Population consequences of avoidance behaviour ................................. 174 

5.1.3 Aim ........................................................................................................... 176 

5.1.4 Research questions .................................................................................. 176 

5.2 The model ....................................................................................................... 177 

5.2.1 Biological context ..................................................................................... 177 

5.2.2 Model Overview....................................................................................... 183 

5.3 Model testing ................................................................................................. 202 

5.3.1 Control development and reproduction ................................................. 202 



8 
 

5.3.2 Survival after 48 hours (lacewings) .......................................................... 208 

5.3.3 Mortality after 7 days (mites) .................................................................. 211 

5.3.4 Movement parameters ............................................................................ 215 

5.4 Results ............................................................................................................. 218 

5.4.1 Movement patterns ................................................................................. 218 

5.4.2 Simulation analysis methods ................................................................... 219 

5.4.3 Chrysoperla carnea survival ..................................................................... 219 

5.4.4 Chrysoperla carnea reproduction ............................................................ 224 

5.4.5 Typhlodromus pyri survival ...................................................................... 226 

5.4.6 Typhlodromus pyri reproduction ............................................................. 230 

5.5 Discussion ....................................................................................................... 232 

5.5.1 Model output verification and current status ......................................... 232 

5.5.2 Model simulation results ......................................................................... 232 

5.5.3 Model limitations ..................................................................................... 237 

5.5.4 Research needs ........................................................................................ 239 

Chapter 6 – Overall discussion ................................................................................. 242 

6.1 Key findings ..................................................................................................... 242 

6.2 Novel method contributions .......................................................................... 244 

6.3 Future research needs .................................................................................... 246 

6.3.1 Potential for pesticides to attract ............................................................ 246 

6.3.2 Interactive effects of environment and pesticide ................................... 247 

6.3.3 Studies to increase ecological relevance ................................................. 247 

6.4 Implications for pesticide manufacturers ...................................................... 250 

6.5 Implications for regulators ............................................................................. 251 

Appendices ............................................................................................................... 254 

Appendix A – Measures of environmental conditions ......................................... 254 



9 
 

Appendix B – PANTA lacewing model code (NetLogo) ........................................ 255 

Appendix C – PANTA mite model code (NetLogo) ............................................... 267 

References ................................................................................................................ 280 

 

 

  



10 
 

List of tables 

Table 2.1 – Variable spread factor values determined on water and used as an 

alternative to DepositScan’s built-in spread factor calculation (Syngenta, 2002; 

Cunha, Carvalho and Marcal, 2012) ........................................................................... 45 

Table 2.2 – Pesticide spray coverage – expressed as proportion of target covered by 

spray – and spray density – expressed as the number of droplets in an area – 

determined from water sensitive paper cards set within apple trees. ..................... 49 

Table 2.3 – Penconazole residues in apple leaves from Patch A, expressed as mean 

residue with 95% confidence intervals, split by tree and tree zone. ......................... 50 

Table 2.4 – The effect of two different spread factors on 6 stain diameter sizes. The 

spread factors were determined on water droplets. ................................................. 57 

Table 3.1 – Insecticidal active substances used in the present study with the lethal 

rate at which 50% of a Typhlodromus pyri population displays mortality after 7 days 

(7d-LR50) expressed as ga.s. Ha-1 and mga.s. L-1; both of these values are based on an 

application rate of 200 L Ha-1 (Blümel et al., 2000a). ................................................. 71 

Table 3.2 – The number of active and inactive mites for each studied insecticide split 

by treatment. Active mites comprised the final sample populations for statistical 

analysis of movement behaviours. ............................................................................ 81 

Table 3.3 – Influence of air temperature and relative humidity (covariates) on T. pyri 

movement behaviours, derived from correlation. .................................................... 83 

Table 3.4 – Summary of comparison of movement behaviours between male and 

female T. pyri adults observed in control test arenas. .............................................. 84 

Table 3.5 – Results of Box’s M Test for equality of covariance for the three studied 

insecticides. ................................................................................................................ 86 

Table 3.6 – Results of the Brown-Forsythe test for equality of variance, assessed for 

each movement behaviour included in the multivariate model. .............................. 87 

Table 3.7 – Results of the slope comparison test investigating variance in covariate 

response in the dimethoate dataset. Each movement behaviour was assessed against 

each environmental covariate. .................................................................................. 89 

file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126071
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126071
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126071
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126079
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126079
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126079
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126079
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126081
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126081
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126084
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126084


11 
 

Table 3.8 – Mean insecticide residue values, 95% confidence intervals, coefficient of 

variance (CV) based on residue, mean recovery compared to expected activity levels 

and associated 95% confidence intervals for each insecticide treatment level. ....... 90 

Table 3.9 – Summary of air temperature and relative humidity measured during mite 

movement observations in each treatment. ............................................................. 92 

Table 3.10 – Summary of mean difference ± 95% confidence intervals and Games-

Howell multiple comparisons test of differences in relative humidity measurements 

taken during mite movement observations. ............................................................. 92 

Table 3.11 – Summary of Games-Howell post-hoc analysis of the differences in 

measures of angular velocity as measured in T. pyri adults observed in control or 

treated arenas containing acetamiprid residues. ...................................................... 99 

Table 3.12 – Summary of Games-Howell post-hoc analysis of the differences in 

measures of distance moved, angular velocity, meander and time active as measured 

in T. pyri adults observed in control or treated arenas containing deltamethrin 

residues. ................................................................................................................... 100 

Table 3.13 – Summary of Games-Howell post-hoc analysis of the differences in 

measures of angular velocity as measured in T. pyri adults observed in control or 

treated arenas containing dimethoate residues. .................................................... 102 

Table 3.14 – Insecticide treatment concentrations used in the behaviour studies 

expressed as their equivalent field rate if applied at a rate of 200 L Ha-1 and as 

measured residues from the laboratory studies. .................................................... 110 

Table 3.15 – Field application rates for acetamiprid and deltamethrin expressed as 

estimations of residues landing on apple leaves in one hectare of orchard and per 

unit of leaf area. ....................................................................................................... 111 

Table 4.1 – Insecticidal active substances used in the present study with the lethal 

rate at which 50% of a Typhlodromus pyri population displays mortality after 7 days 

(7d-LR50) ................................................................................................................... 123 

Table 4.2 – Detection limits (Ld, expressed as counts) and minimum counts (as counts 

per minute, CPM)) for the two counting methods used to analyse insecticide residues 

extracted from half treated test arenas. ................................................................. 129 

Table 4.3 – Influence of air temperature and relative humidity on T. pyri movement 

behaviours in half treated arenas, derived from correlation. ................................. 131 

file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126086
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126086
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126086
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126087
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126087
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126088
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126088
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126088
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126092
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126092
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126092


12 
 

Table 4.4 – Results of Box’s M Test for equality of covariance for the three 

insecticides. .............................................................................................................. 135 

Table 4.5 – Results of the Brown-Forsythe test for equality of variance, assessed for 

each movement behaviour in each arena zone.. ..................................................... 136 

Table 4.6 – Mean measured insecticide residue values, 95% confidence intervals and 

coefficient of variance (CV) of measurements, mean recovery compared to expected 

radioactivity levels and associated 95% confidence intervals, and mean counting 

efficiency with 95% confidence intervals for each insecticide treatment level. ..... 138 

Table 4.7 – Summary of air temperature and relative humidity measured during mite 

movement observations in each treatment. ........................................................... 140 

Table 4.8 – Summary of mean difference ± 95% confidence intervals and Tukey’s 

multiple comparisons test of differences in air temperature measurements taken 

during mite movement observations. ...................................................................... 140 

Table 4.9 – Summary of mean difference ± 95% confidence intervals and Tukey’s 

multiple comparisons test of differences in relative humidity measurements taken 

during mite movement observations. ...................................................................... 141 

Table 4.10 – Summary of Tukey’s post-hoc analysis of the differences in time spent 

in treated arena halves, comparing time spent by mites on the control treated surface 

to the time spent on surfaces treated with dimethoate residues. .......................... 145 

Table 4.11 – Summary of paired t tests applied as post hoc analysis of the effect of 

acetamiprid residues on the velocity of T. pyri. ....................................................... 148 

Table 4.12 – Summary of paired t tests applied as post hoc analysis of the effect of 

acetamiprid residues on the time T. pyri individuals spend active.......................... 151 

Table 4.13 – Summary of Tukey’s multiple comparisons test, applied as post hoc 

analysis of the effect of deltamethrin residues on the overall distance walked by T. 

pyri in test arenas half treated with deltamethrin................................................... 152 

Table 4.14 – Summary of paired t tests applied as post hoc analysis of the effect of 

dimethoate residues on the distance walked by T. pyri individuals. ....................... 153 

Table 4.15 – Summary of mean difference ± 95% confidence intervals and paired t 

tests of differences in the proportion of time spent on untreated and treated surfaces 

in deltamethrin treated test arenas. ........................................................................ 161 

file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126099
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126099
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126099
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126099
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126100
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126100
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126101
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126101
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126101


13 
 

Table 4.16 – Insecticide treatment concentrations used in the behaviour studies 

expressed as their equivalent field rate if applied at a rate of 200 L Ha-1 and as 

measured residues from the laboratory studies. .................................................... 165 

Table 4.17 – Field application rates for acetamiprid and deltamethrin expressed as 

estimations of residues landing on apple leaves in one hectare of orchard and per 

unit of leaf area.. ...................................................................................................... 166 

Table 5.1 – Life stages and developmental times for the green lacewing Chrysoperla 

carnea presented in terms of mean number of days and survival (%) ± standard 

deviation (SD) for each developmental stage at 25°C, plus survival to adulthood. 179 

Table 5.2 – Life stages and developmental times for female predatory mites 

(Typhlodromus pyri) presented in terms of mean numbers of days ± standard 

deviation (SD) and survival for each developmental stage at 25°C. ........................ 180 

Table 5.3 – Comparison of life table parameters for female Chrysoperla agilis 

(member of C. carnea cryptic group) and Typhlodromus pyri, derived from 

development studies conducted at 25°C. ................................................................ 180 

Table 5.4 – Movement data used to parameterise individual movement behaviour for 

the two modelled species Chryosperla carnea and Typhlodromus pyri. ................. 183 

Table 5.5 – Descriptions of state variables implemented in the PANTA model for 

Chrysoperla carnea and Typhlodromus pyri. ........................................................... 185 

Table 5.6 – 48 hour mortality of Chrysoperla carnea larvae exposed to homogeneous 

acetamiprid residues at three concentrations (Nasreen, Mustafa and Ashfaq, 2005), 

and p-mortality values derived from mortality rates to assign “toxicity” to pesticide 

contaminated patches within the model. ................................................................ 187 

Table 5.7 – Seven day mortality (± standard deviation) of Typhlodromus pyri larvae 

exposed to homogeneous acetamiprid residues at five concentrations (EFSA, 2016; 

Volume 3 B.9 p. 182), and p-mortality values derived from mortality rates to assign 

“toxicity” to pesticide contaminated patches within the model. ............................ 188 

Table 5.8 – Parameters and values implemented in the PANTA Chrysoperla carnea 

model. ...................................................................................................................... 193 

Table 5.9 – Parameters and values implemented in the PANTA Typhlodromus pyri 

model. ...................................................................................................................... 195 

file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126109
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126109
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126109
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126118
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126118
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126119
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126119


14 
 

Table 5.10 – Model output verification of Chrysoperla carnea development and 

reproduction in a control exposure landscape (0% coverage). ............................... 204 

Table 5.11 – Comparisons of Chrysoperla carnea mean development time to 

adulthood, adult longevity and total oviposition between simulated control 

populations exhibiting avoidance behaviour and no avoidance behaviour, and 

empirical data used to parameterise the model (Pappas et al., 2013). .................. 205 

Table 5.12 – Model output verification of Typhlodromus pyri development and 

reproduction in a control exposure landscape (0% coverage). ............................... 207 

Table 5.13 – Comparisons of Typhlodromus pyri mean development time to 

adulthood, total longevity and total oviposition between modelled control 

populations exhibiting avoidance behaviour and no avoidance behaviour, and 

published data (Gadino and Walton, 2012). ............................................................ 208 

Table 5.14 – Model output verification of Chrysoperla carnea survival over 48 hours 

in a 100% coverage exposure landscape. ................................................................ 210 

Table 5.15 – Comparisons of survival after 48 hours of exposure on a 100% coverage 

surface between simulated populations exhibiting avoidance behaviour and no 

avoidance behaviour and published data used to parameterise the model (Nasreen, 

Mustafa and Ashfaq, 2005). ..................................................................................... 211 

Table 5.16 – Model output verification of Typhlodromus pyri mortality over 7 days in 

a 100% coverage exposure landscape. .................................................................... 213 

Table 5.17 – Comparisons of Typhlodromus pyri mortality after 7 days of exposure on 

a 100% coverage surface between simulated populations exhibiting avoidance 

behaviour and no avoidance behaviour, and published data used to parameterise the 

model (EFSA, 2016). ................................................................................................. 214 

Table 5.18 – Model output verification of movement behaviour in Chrysoperla carnea 

and Typhlodromus pyri in a control exposure landscape. ....................................... 216 

Table 5.19 – Comparisons of movement behaviour in Chrysoperla carnea and 

Typhlodromus pyri in a control exposure landscape. .............................................. 217 

Table 5.20 – Mean differences in survival to adulthood in Chrysoperla carnea 

individuals avoiding or not avoiding acetamiprid residues at three surface coverage 

levels. ........................................................................................................................ 221 

file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126120
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126120
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126122
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126122
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126124
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126124
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126126
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126126
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126127
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126127
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126127
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126127
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126128
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126128
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126129
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126129


15 
 

Table 5.21 – Mean differences in longevity in Chrysoperla carnea individuals avoiding 

or not avoiding acetamiprid residues at three surface coverage levels. ................. 223 

Table 5.22 – Mean differences in oviposition per female in Chrysoperla carnea 

individuals avoiding or not avoiding acetamiprid residues at three surface coverage 

levels......................................................................................................................... 225 

Table 5.23 – Mean differences in survival over seven days in Typhlodromus pyri 

individuals avoiding or not avoiding acetamiprid residues at three surface coverage 

levels......................................................................................................................... 227 

Table 5.24 – Mean differences in longevity in Typhlodromus pyri individuals avoiding 

or not avoiding acetamiprid residues at three surface coverage levels. ................. 229 

Table 5.25 – Mean differences in total oviposition in Typhlodromus pyri individuals 

avoiding or not avoiding acetamiprid residues at three surface coverage levels. .. 231 

Table 5.26 – Acetamiprid application rates utilised in the PANTA model expressed as 

the laboratory application rate and their equivalent liquid concentration if applied at 

a rate of 200 L ha-1. .................................................................................................. 236 

  

file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126136
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126136
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126136


16 
 

List of figures 

Figure 2.1 - Schematic of the nested orchard sampling design showing the four spatial 

scales used for apple leaf residue and water sensitive paper coverage analysis. ..... 39 

Figure 2.2 – Illustration of the overestimation of droplet size by DepositScan when 

presented with overlapping droplets.. ....................................................................... 46 

Figure 2.3 – Penconazole residues derived from GC-MS based on leaf mass (horizontal 

axis) and whole leaf upper surface area (vertical axis). ............................................. 51 

Figure 2.4 – Comparison of penconazole residue values based on surface area derived 

from leaf residue samples analysed via GC-MS and water sensitive paper (WSP) 

samples analysed via DepositScan image analysis with no correction factor (a) and 

with a correction factor applied to individual data points (b). .................................. 52 

Figure 2.5 – (a) Deposition values calculated from the same artificial stain using the 

default DepositScan spread factor and an alternative spread factor that varies based 

on stain diameter. n = 33 (b) Deposition values calculated by DepositScan based on 

whether two artificial circular stains of the same size touch or not. n = 33. ............. 53 

Figure 2.6 – Distribution of droplet diameters as a function of spray proportion on 

water sensitive papers from patch A. ........................................................................ 57 

Figure 3.1 – Screenshot of a sample video of the preliminary movement test arena 

with a bean leaf disc. .................................................................................................. 73 

Figure 3.2 – Screenshot of a sample video from the captan experiment as analysed in 

EthoVision XT 13, with a detected mite highlighted in yellow in the right hand arena 

and further highlighted by the red arrow. ................................................................. 76 

Figure 3.3 – Illustrative movement tracks from individual mites observed in the 

control (blue tracks) and insecticide treated test arenas (red tracks). ...................... 93 

Figure 3.4 – Proportions of T. pyri individuals displaying activity (grey) or inactivity 

(white) during the 10 min observation period in control and insecticide treated 

arenas. ........................................................................................................................ 95 

Figure 3.5 – Effect of acetamiprid (left column), deltamethrin (middle column) and 

dimethoate (right column), each at three concentrations, on the distance walked, 

velocity, angular velocity, meander and time spent active as observed in 

Typhlodromus pyri individuals over 10 min. .............................................................. 97 



17 
 

Figure 3.6 – Time taken for each trapped mite to become trapped when exposed to 

deltamethrin. Line and whiskers represent mean ± 95% confidence intervals. ..... 103 

Figure 4.1 – Representative movement tracks of individual lacewing larvae of the two 

species Chrysoperla externa and Ceraeochrysa cubana over 10 minutes in 9 cm test 

arenas half-treated with dried insecticide residues (upper sector of each arena). 119 

Figure 4.2 – Representative movement tracks of individual psocids (top row = 

Liposcelis entomophila; bottom row = L. bostrychophila) over 10 minutes in 2.5 cm 

test arenas half treated with dried insecticide formulations (right hand sector of each 

arena). ...................................................................................................................... 120 

Figure 4.3 – Twelve freshly treated arenas for the half coverage behaviour bioassay.

 .................................................................................................................................. 125 

Figure 4.4 – Screenshot of a sample arena from the dimethoate half coverage 

experiment with the two test arena zones identified in EthoVision XT 13. ............ 127 

Figure 4.5 – Proportions of T. pyri individuals displaying activity (dark grey) or 

inactivity (light grey) during the 10 min observation period in control arenas and 

arenas half treated with insecticides. ...................................................................... 142 

Figure 4.6 – Effect of a) acetamiprid, b) deltamethrin, and c) dimethoate residues, 

each at three concentrations, on time spent by Typhlodromus pyri in the treated 

(right hand) arena zone over 10 min.. ..................................................................... 144 

Figure 4.7 – Representative movement tracks from individual mites observed in the 

control (blue tracks) and insecticide treated test arenas (red tracks). ................... 146 

Figure 4.8 – Effect of acetamiprid (left column), deltamethrin (middle column) and 

dimethoate (right column), each at three doses, on the distance walked, velocity, 

angular velocity, meander and time spent active in the untreated (left hand; blue) 

and treated (right hand; pink) sections of the test arena, as observed in Typhlodromus 

pyri individuals over 10 min. .................................................................................... 150 

Figure 4.9 – Correlation between the distances walked by control mites in both the 

full and half coverage experiments, and air temperature (a), and relative humidity 

(b).. ........................................................................................................................... 155 

Figure 4.10 – Effect of deltamethrin residues at three concentrations, on the 

proportion of time spent by Typhlodromus pyri on the untreated (blue; left) and 

treated (pink; right) surfaces over 10 min.. ............................................................. 161 

file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126156
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126156
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126156
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126156
file:///C:/Users/jw818/Desktop/THESIS%20FINAL%20REVISED.docx%23_Toc3126156


18 
 

Figure 5.1 – An example exposure landscape within the PANTA model, with pesticide 

residues shown as yellow patches, and unexposed surfaces shown as green patches.

 .................................................................................................................................. 186 

Figure 5.2 – Movement tracks of individual larvae after 2.5 hours of simulation in a 

heterogeneous pesticide exposure landscape. ........................................................ 218 

Figure 5.3 – Proportion of Chrysoperla carnea larvae surviving to adulthood when a) 

not avoiding acetamiprid residues (left) and b) avoiding acetamiprid residues (right).

 .................................................................................................................................. 220 

Figure 5.4 – Differences in survival to adulthood in Chrysoperla carnea individuals 

that do not avoid acetamiprid residues (grey dots, left), and individuals that do avoid 

acetamiprid residues (pink dots, right). ................................................................... 221 

Figure 5.5 – Mean longevity of Chrysoperla carnea individuals when a) not avoiding 

acetamiprid residues (grey dots, left) and b) avoiding acetamiprid residues (pink dots, 

right). ........................................................................................................................ 222 

Figure 5.6 – Differences in longevity in Chrysoperla carnea individuals that do not 

avoid acetamiprid residues (grey dots, left), and individuals that do avoid acetamiprid 

residues (pink dots, right). ....................................................................................... 223 

Figure 5.7 – Total oviposition per adult female Chrysoperla carnea when a) not 

avoiding acetamiprid residues (grey dots) and b) avoiding acetamiprid residues (pink 

dots). ......................................................................................................................... 224 

Figure 5.8 – Differences in total oviposition per female in Chrysoperla carnea 

individuals that do not avoid acetamiprid residues (grey dots, left), and individuals 

that do avoid acetamiprid residues (pink dots, right).. ............................................ 225 

Figure 5.9 – Proportion of Typhlodromus pyri individuals surviving seven days of 

exposure when a) not avoiding acetamiprid residues (left) and b) avoiding 

acetamiprid residues (right). .................................................................................... 226 

Figure 5.10 – Differences in survival over seven days in Typhlodromus pyri individuals 

that do not avoid acetamiprid residues (grey dots, left), and individuals that do avoid 

acetamiprid residues (pink dots, right). ................................................................... 227 

Figure 5.11 – Mean  longevity of Typhlodromus pyri individuals when a) not avoiding 

acetamiprid residues (grey dots, left) and b) avoiding acetamiprid residues (pink dots, 

right). ........................................................................................................................ 228 



19 
 

Figure 5.12 – Differences in longevity in Typhlodromus pyri individuals that do not 

avoid acetamiprid residues (grey dots, left), and individuals that do avoid acetamiprid 

residues (pink dots, right). Lines represent mean ± 95% confidence intervals. ...... 229 

Figure 5.13 – Total oviposition per adult female Typhlodromus pyri when a) not 

avoiding acetamiprid residues (grey dots) and b) avoiding acetamiprid residues (pink 

dots). ........................................................................................................................ 230 

Figure 5.14 – Differences in total oviposition per female in Typhlodromus pyri 

individuals that do not avoid acetamiprid residues (grey dots, left), and individuals 

that do avoid acetamiprid residues (pink dots, right). ............................................ 231 

  



20 
 

Acknowledgements 

Thanks to the Biotechnology and Biological Sciences Research Council (BBSRC) and 

ADAMA Agricultural Solutions UK Ltd. for funding this research via a BBSRC iCASE 

studentship. I’d like to thank the staff in the Terrestrial Ecotoxicology team at 

Smithers Viscient in Harrogate for providing training and insight into regulatory 

ecotoxicology. Thank you also to those at ADAMA and across the terrestrial 

ecotoxicology and regulatory science industries who have offered ideas, insight and 

advice at various points through my research – there are too many names to list but 

you are all appreciated. Special thanks go to my three CASE partner supervisors, Gabe 

Weyman, Melissa Reed and Tania Alvarez, for the ideas and insight offered by their 

collective experience, the contacts that have proved to be so useful through 

undertaking this research, and for the opportunities you created. 

A big thank you goes to my two academic supervisors, Dr Roman Ashauer and Prof 

Mark Hodson, for everything that you have done through this project. Thank you for 

creating this project, but also for your ideas, advice, expertise, support, and patience. 

It has been a great four years, I’ve learned a lot and I am very lucky to have had you 

both as supervisors. We got there in the end! I’d also like to thank Rebecca, Debs and 

Matt of the Environment and Geography technical staff – again, your expertise and 

support have been invaluable. Finally, to my friends and family for being there all the 

way. I could not have done this without you.  

This thesis is dedicated to my parents and to the memory of Matthew Pyke. 

 

  



21 
 

Author’s declaration 

I declare that this thesis is a presentation of original work and that I am the sole 

author. In chapters presenting experiments and data, I have chosen to use the 

personal pronoun “we” as these chapters were written either for publication, or in 

preparation for publication, and so acknowledge the involvement of my supervisors 

and others. The work within this thesis has not previously been presented for an 

award at this, or any other, University. All sources are acknowledged in the 

References section. The table below reports the papers arising from this thesis. 

 

Title 
Thesis 
chapter Status Journal 

Quantifying pesticide deposits and 
spray patterns at micro-scales on 
apple (Malus domesticus) leaves with 
a view to arthropod exposure 2 

Published 
online July 
2018 

Pest Management 
Science 

Move it! Assessing effects of 
pesticide exposure on movement 
behaviour in the predatory mite 
Typhlodromus pyri 3/4 

In 
preparation  

 

  



22 
 

Chapter 1 – Introduction 

1.1 Background 

Pesticides are widely used in agriculture to manage pests effectively within the crop 

environment, and in 2016 over 16 thousand tonnes were applied to crops in Great 

Britain, of which 315 tonnes were insecticides (Fera, 2018). Although insecticides are 

effective in controlling populations of target organisms that cause damage to crops, 

they also affect beneficial species. Such species, including insects and arachnids, exist 

within agricultural ecosystems and can provide ecosystem services such as 

pollination and biocontrol of crop pests (Costanza et al., 1997; Fisher et al., 2009).  

However, insecticide use has been linked to reduced pollination services, vital for 

food production (Goulson, 2013). 

Insecticide use is known to be potentially lethal to beneficial insects – from this point 

on defined as non-target arthropods (NTAs) – through both direct and residual 

exposure (Medina et al., 2004; Rezaei et al., 2007). However, sublethal effects have 

also been reported, such as shortened lifespan, reduced fecundity, changes in gender 

ratio, and changes in reproductive and feeding behaviour (Stark and Banks, 2003; 

Tison et al., 2016). Such effects are certain to have wider implications on populations, 

especially life table parameters such as development time and fecundity (Stark et al., 

2004), and are deemed to be especially important for NTAs due to their longer term 

exposure to sublethal insecticide concentrations (Cordeiro et al., 2010; Joao Zotti et 

al., 2013). In addition, behavioural effects such as avoiding applied pesticides and 

reduced movement have been reported in a range of beneficial species, including 

pirate bugs, mites, and lacewings (Beers and Schmidt-Jeffris, 2015; Cordeiro et al., 

2010; Pereira et al., 2014), though the amount of research focusing upon behavioural 

effects is currently very limited, in spite of behavioural ecotoxicology being seen as 

an early warning for worse effects (Hellou, 2011). 

For a pesticide to be registered for use in the European Union, the submission is 

required to include details regarding the toxicity of an ingredient or formulation to 

non-target organisms (EU, 2009a). In addition, during assessment consideration must 

be made towards the relevance of the product in the integrated pest management 
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context – defined by the EU (2009b) as a philosophy aimed at discouraging  the 

growth of pest populations while keeping the use of pesticides at a minimum in 

favour of alternative forms of intervention, such as natural pest control. Ecological 

risk assessment is a process that allows for such evaluation by investigating the 

likelihood, and estimating the scale of adverse ecological effects arising from 

exposure to an environmental stressor (Munns, 2006). Although it is a tool developed 

for a wide range of stressors, it is most frequently applied to chemicals in the 

regulatory context (Galic et al., 2012).  

Laboratory experiments have traditionally been the source of toxicological data that 

assist in decision making in ecological risk assessment. Numerous methods for 

laboratory-based toxicity tests involving non-target arthropods have been defined 

(Candolfi et al., 2000), though these typically study lethal effects, and sublethal 

effects such as fecundity, with no consideration for behavioural effects. Additionally, 

population-level consequences are rarely considered, as ecological risk assessment 

concentrates upon effects at the individual level (Amelie Schmolke et al., 2010). 

Ecological models offer the ability to study the effect of chemicals at a larger spatial 

and temporal scale than laboratory studies would usually allow (EFSA Panel on Plant 

Protection Products and their Residues, 2018; Galic et al., 2012). Individual-based 

modelling, one such ecological modelling approach, involves simulation models that 

handle individuals within a population as unique entities, with properties such as age 

and weight that change through the life cycle of the individual giving rise to modelled 

population dynamics (Grimm and Railsback, 2005). Such models are a valuable tool 

for risk assessment with an ecological relevance, as they allow for laboratory-based 

risk assessment findings to be extrapolated to gain understanding of population-level 

consequences (Bartell et al., 2003; Grimm and Thorbek, 2014). Additional advantages 

of integrating modelling into risk assessment include the ability to reduce the 

financial and time costs (Galic et al., 2012). It is also relatively easy to develop a model 

for one species and the effects of one substance, but then adjust the model to work 

with another substance (Hommen et al., 2010). An ethical advantage to model-based 

risk assessment is the reduced need for in vivo laboratory studies, an advantage 

raised by experts within industry and regulatory bodies (EFSA Panel on Plant 
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Protection Products and their Residues, 2018; Hunka et al., 2013). When study 

methods can involve as many as 50 individuals per treatment concentration studied 

(Candolfi et al., 2000), this would be a significant benefit. 

While the argument for the integration of models into risk assessment is strong, there 

are many issues that lead to only a small number of population models being used in 

risk assessment frameworks (Galic et al., 2010). One issue highlighted by 

policymakers is the concern relating to models being overly complex, meaning such 

models are difficult to parameterise and any results produced by the model are 

difficult to understand (Amelie Schmolke et al., 2010). A lack of successful model 

validation is another regulatory concern (EFSA Panel on Plant Protection Products 

and their Residues, 2018). Another issue, instead arising from an academic 

perspective, is the need to consider heterogeneity of exposure when modelling 

population-level effects (Munns, 2006). Finally, issues relating to models not being 

transparent, and poor documentation and justification for specific decisions can lead 

to a model supporting a wrong decision, though this can be countered by the use of 

good modelling practice and clear and transparent documentation (Grimm et al., 

2010; e.g. A Schmolke et al., 2010). 

Few ecological models are currently being used to inform ecological risk assessment; 

however, the European Food Safety Authority (EFSA) recently reviewed toxicokinetic-

toxicodynamic modelling for aquatic environmental risk assessment, and concluded 

that one type of model, General Unified Threshold models of Survival (GUTS), is now 

ready to be used to predict effects (EFSA Panel on Plant Protection Products and their 

Residues, 2018). However, model applications in the terrestrial context are not yet as 

well accepted, though EFSA highlighted the value of using models to investigate 

landscape level pesticide effects on NTAs by saying such models would allow the 

ability to study source-sink dynamics with the hope of better understanding the 

resilience and recovery of NTA populations beyond a field scale (EFSA, 2015).  

The compatibility of pesticides and beneficial insects is a topic that is receiving 

attention within ecotoxicology, due to the increasing adoption of integrated pest 

management regimes. However, research has only recently started to consider the 

sublethal effects of pesticide exposure on NTAs that reside within the on- and off-
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crop environments (e.g. Beers and Schmidt-Jeffris, 2015; Joao Zotti et al., 2013), and 

behavioural effects such as pesticide avoidance are poorly understood with just a 

small number of published studies (e.g. Cordeiro et al., 2013; Porcel et al., 2011). 

Results from these studies suggest that more research into avoidance behaviour is 

vital for understanding the compatibility of pesticides and NTAs. We also need to 

better understand other behavioural changes that may arise from pesticide 

exposure, so that we can understand what population consequences may arise. This 

would assist in better understanding landscape-scale effects. 

 

1.2 Knowledge gaps 

Limited scientific evidence exists of avoidance behaviour in NTAs. Examples do exist 

within scientific literature: the lacewing Chrysoperla carnea exhibiting avoidance 

behaviour when exposed to kaolin film (Porcel et al., 2011), and C. externa showing 

avoidance when exposed to azadirachtin (Cordeiro et al., 2013); while predatory 

mites have also been observed avoiding certain compounds (Beers and Schmidt-

Jeffris, 2015). However, the knowledge base is limited, and authors frequently 

emphasise the need for further study into behavioural effects. 

Most reported examples of avoidance behaviour exist for below-ground arthropods, 

with springtails being one well studied group. Avoidance behaviour has been 

observed in Folsomia candida when exposed to substrates contaminated with the 

polycyclic aromatic hydrocarbon naphthalene (Boitaud et al., 2006), copper (Boiteau 

et al., 2011), and the pyrethroid insecticide cypermethrin (Zortéa et al., 2015). 

Avoidance bioassays have also been cited as a potential rapid screening tool for soil-

based ecological risk assessment, gauging the potential toxicity of contaminants in 

collembolan, earthworms and isopods (da Luz et al., 2004; Loureiro et al., 2005), and 

such work led to a standardised test being created that studied avoidance behaviour 

in choice situations in F. candida (Filser et al., 2014; ISO, 2011). 

Regarding pesticide application to crops, little is known about the distribution of 

residues at the micro-scale, such as across a single leaf. A recent study looked to map 

the distribution of a fungicide across a wheat leaf surface (Annangudi et al., 2015); 
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however, the published method had a number of limitations (Dong et al., 2015) and 

this showed the method required more work before further application. Little work 

has otherwise been undertaken to investigate spatial dimensions of residues, with 

researchers instead investigating patterns qualitatively using materials such as water 

sensitive paper (Jaeken et al., 2000). 

There is also a lack of research into long term, population-scale consequences of 

pesticide exposure to NTAs, and the effect any behavioural changes might have on 

populations. Ecological models have been developed for a small number of species, 

with only one investigating the interaction of avoidance behaviour and population 

dynamics (Meli et al., 2013). This is a distinct gap in the investigation of pesticide 

effects. 

 

1.3 Project aims 

The overall aim of this project was to understand pesticide avoidance behaviour in 

NTAs and the spatial heterogeneity of pesticide exposure, and to consider population 

consequences of exposure for NTA species. Additionally, this project aimed to 

improve the realism of regulatory risk assessment processes. The study aims can be 

broken down into four objectives, which are as follows; these will form the basis of 

completing the project: 

1. Develop ecological models for the two test species, Chrysoperla carnea and 

Typhlodromus pyri; 

2. Quantify the heterogeneity of pesticide spray exposure in an apple orchard, a 

crop environment relevant to both test species; 

3. Assess the effect of pesticides on pesticide avoidance behaviour in NTAs 

through the use of simple and novel choice arenas established within the 

laboratory; 

4. Combine behaviour study results and spatial heterogeneity of pesticide 

exposure with the species’ ecological models to produce an integrated 

individual-based population model. 



27 
 

When planning the project, it was decided that two NTA species would be 

investigated in the laboratory, and then modelled. The species needed to be native 

to the UK and Europe, be from different phyla to investigate differing sensitivities to 

pesticides, and be relevant to ecological risk assessment by being species that are 

regularly used in testing.  Most importantly, they needed to be easy to handle and 

rear under laboratory conditions. To this end, the two species selected were the 

green lacewing Chrysoperla carnea (order Neuroptera), and the predatory mite 

Typhlodromus pyri (order Acarina). C. carnea is widely used within ecological risk 

assessments and is highlighted as a “universal indicator” in the context of pesticide 

ecotoxicological tests (Andow and Hilbeck, 2004).  Similarly, T. pyri are regularly used 

in pesticide registration tests (Jepson, 1997). While both species are used widely, the 

guidance concerning species selection for registration tests emphasises testing on T. 

pyri. Though the intention was to study avoidance behaviour in both species in the 

laboratory, project time constraints meant that it was only possible to study T. pyri. 

 

1.3.1 Chrysoperla carnea 

Rather than being a single morphological species, the common green lacewing 

(Chrysoperla carnea) is a complex of eighteen “sibling” species, three of which are 

known to be present within the UK (Chapman et al., 2006; Henry et al., 2001; Charles 

S Henry et al., 2014). While they are both ecologically and morphologically similar, 

there are distinct differences in the mating song, suggested by Henry et al. (2014) to 

be a result of parallel speciation. DNA sequencing is a frequently applied method for 

differentiating species within the complex; it has been used to identify specimens 

(Price et al., 2015), and determine new sibling species (Henry et al., 2014) For the 

purpose of this project, the complex was treated as a single species as there was no 

scope to investigate differences in responses to pesticides between species within 

the complex.  

C. carnea are found in a range of agricultural and forest ecosystems, and are often 

found in arable fields, fruit orchards, natural and semi-natural grassland, and woody 

and hedgerow margins surrounding arable fields (Szentkirályi, 2007; Trouve et al., 

2002). Adults of some Chrysopid species, including C. carnea, are attracted to specific 
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locations by the presence of two chemical signal types: synomones and kairomones. 

Synomones are “habitat” signals, chemicals released by plants and that are attractive 

to lacewings (Hagen, 1986), and these identify food and oviposition sites for adult C. 

carnea (Zhu et al., 2005). Kairomones are attractants associated with food, and in 

combination with synomones, these encourage adult C. carnea to land as they signal 

the location of food and ideal oviposition sites (Hagen, 1986). 

The lacewing life cycle consists of four main life stages: egg, larva, pupa and adult. 

The larval stage has three sub-stages, based on larval moults. In the first three main 

stages of the life history of C. carnea, an individual will likely remain within the area 

of one, or a few plants (Szentkirályi, 2007), in part because Chrysopid larvae tend to 

prefer plants to soil (Clark and Messina, 1998). However, adults are highly mobile: 

upon emergence from the cocoon, an adult C. carnea in its migratory (or pre-

ovipositional) phase can travel up to 40 km in a 4 hour period, though a small number 

of individuals take advantage of high altitude winds and migrate up to 150 km in a 4 

hour period (Chapman et al., 2006). The different dispersal ranges exhibited by 

different life stages requires major consideration in the context of integrating 

population models with pesticide exposure, and is considered in more depth in 

Section 5.2.1.2. 

C. carnea are more active at night, and are most active in the 2 hours following 

sunset, with dispersal and migratory flights occurring during this time – this enables 

lacewings to avoid activity from predators, such as birds and dragonflies (Duelli, 

1984a). Rather than overwintering at the larval or pupal stage, which is the method 

of winter survival practised by many lacewing species, C. carnea adults go into 

diapause in the autumn – this is initiated by shortening day light cycles, and falling 

ambient temperatures (Honek, 1973). Diapause termination occurs in January or 

February; however the adults remain dormant until increasing day light cycles and 

temperature allow mating and oviposition to occur (Tauber et al., 1970). In Central 

Europe, C. carnea produce up to 2 generations per year (Honek, 1977), though this 

increases in warmer climates (Duelli, 1984a). 

As larvae, C. carnea provides an ecosystem service through being a natural predator 

to many agricultural crop pests. While adults feed on honeydew created by aphids, 
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nectar and pollen (Hagen, 1986), the larvae have been found to feed upon aphids, 

whiteflies, fruit flies, thrips and butterfly and moth eggs and caterpillars in field 

conditions (Canard, 2007). The larval life stages are those that are of interest for 

ecological risk assessment. 

Due to time constraints, it was not feasible to undertake laboratory studies with C. 

carnea and the focus was placed on refining methods with T. pyri. However, an 

individual-based model was still developed for the species, and this is reported in 

Chapter 5. 

 

1.4.2 Typhlodromus pyri 

Typhlodromus pyri is a generalist predatory mite found in fruit trees that feeds on a 

wide range of foods, both prey and non-prey (Zemek and Prenerova, 1997). Prey 

species are wide-ranging, and include thrips (McMurtry and Croft, 1997), mites such 

as the red mite Panonychus ulmi (Lorenzon et al., 2012) and the apple rust mite 

Aculus schlechtendali (McMurtry, 1992). T. pyri also feed on honeydew and plant 

juices (Duso et al., 2003). A key property of T. pyri is its ability to survive and 

reproduce while local prey populations are small by consuming plant products such 

as juices and pollen (Duso et al., 2003), honeydew, and even the fungus powdery 

mildew (Zemek and Prenerova, 1997). This is an advantage for farmers as it means 

the predator can be retained within a crop system while pest populations are low.  

While as a species T. pyri is tolerant of a number of pesticides, it is sensitive to 

sulphur-based compounds, and especially fungicides used to treat powdery mildew 

(Gadino et al., 2011). However, there are examples of local populations, or strains, 

being resistant or susceptible to certain pesticides (Bonafos et al., 2008). Metabolic 

changes can lead to resistance and tolerance and has been observed in earthworms 

exposed to metals (Otomo et al., 2016; Spurgeon and Hopkin, 2000). Changes in 

metabolism, such as increased activity of detoxifying enzymes, have also been 

identified in the polyphagous mite Tetranychus urticae in Dutch rose crops, where 

wild strains even displayed resistance to novel modes of action not yet used in the 

field (Khajehali et al., 2011). T. urticae also benefits from accelerated resistance 
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development arising from high fecundity and short life cycle; as a result, field 

resistance to new acaricides occurs within just a few years (Dermauw et al., 2012). T. 

pyri in central Europe averages three generations per year (Khan and Fent, 2005); 

therefore, it would be expected that resistance development is similarly accelerated 

in this species. 

T. pyri also react to kairomones from prey species. Female individuals were found to 

react to three prey mite species: P. ulmi, Tetranychus urticae, and A. schlechtendali, 

with responses to the kairomones altered depending on the food on which they were 

reared, and also their level of hunger (M Dicke, 1988).  

The life cycle of T. pyri involves four developmental stages: six-legged larva; and two 

eight-legged stages, the protonymph and deutonymph (Sabelis, 1985). To advance 

through the juvenile stages (i.e. from egg to end of protonymph), the developmental 

rate ranges from 8 – 13 days at 20 – 25˚C (Genini et al., 1991). The deutonymph, or 

adult stage can be further split into pre-oviposition, oviposition, and post-oviposition 

stages; while there is no morphological difference, Hayes (1988) suggests 

differentiating between the three stages is useful for modelling purposes, as his 

experiment suggests a prey consumption threshold exists for completing the pre-

oviposition development phase. T. pyri prefer humid conditions created by mature 

orchards, and can survive without prey food sources (Helle and Sabelis, 1985). 

In its lifetime, T. pyri covers a far smaller geographical range than lacewings. Spider 

mites such as T. pyri have been observed to move from the “parent” colony on one 

leaf, to found a new colony on a nearby leaf – this then creates so called “spider mite 

patches”, where a high density of individuals and colonies is found in a small area 

(Sabelis and Dicke, 1985).  

Longevity and fecundity are strongly related to both air temperature and prey 

availability (Sabelis, 1985). In a study with variable temperature and prey availability, 

Hayes (1988) found that adult longevity ranged between 12.6 – 99 days, with 

oviposition lasting 0 – 67 days when temperature ranged between 15 and 26.5˚C and 

prey availability ranged between 1 – 12 larvae per day. An ideal combination seemed 

to be 25˚C and 12 larvae per day, giving an oviposition period of 40.5 days and total 
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fecundity of 29.3 eggs per female (Hayes, 1988). However, this contrasts with the 

suggestion that oviposition lasts just 10 days when T. pyri are reared at 25˚C (Blümel 

et al., 2000a). Another study suggested that development rate was altered by two 

correlated factors: species strain and geographical location, with a Canadian strain 

favouring temperatures below 20˚C when compared to European strains that 

favoured above 20˚C (Hardman and Rogers, 1991).  

 

1.5 Thesis outline 

The thesis is split into six main sections, including the current chapter, and is 

structured as follows. In addition to this broader introduction to the overall project 

topic, Chapters 2-5 include focused reviews of the state of the science for each topic, 

and identification of specific knowledge gaps. 

Chapter 2 details the field study of pesticide spray exposure in an apple orchard. We 

developed methods to allow both the quantification of leaf residues and spray 

patterns within the crop. We then compared the methods, and used the spray 

exposure data derived from the field study to contextualise our discussions in later 

chapters. 

Chapter 3 reports methods we developed for investigating movement behaviour in 

T. pyri. Results are discussed and placed into context. An extended review of current 

knowledge on pesticide effects on movement behaviour is also included. 

Chapter 4 extends the previous study by discussing pesticide avoidance behaviour, 

and reports the results of a study investigating avoidance behaviour in T. pyri in novel 

choice arenas. 

Chapter 5 introduces the two ecological models for our test species, and documents 

the development and testing undertaken. Results of survival and longevity studies 

are reported for both species in the context of exposure to heterogeneous pesticide 

spray patterns. 

Chapter 6 provides an overall discussion and reflection for the project, offering 

thoughts for future studies and directions for the science of movement behaviour 
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and population modelling of pesticide effects. We also offer thoughts on implications 

for pesticide regulators. 

Within the following chapters a number of pesticides were studied, either in 

formulation or as active substances. We discuss the compounds in further detail in 

the respective chapters, but we have briefly introduced them in turn below with the 

rationale behind the decisions. 

In Chapter 2 we studied the fungicide penconazole, formulated as Topenco 100 EC 

(100 g L-1, Globachem NV, Belgium). This was selected for study as we wanted to 

study a real pesticide application within a commercial apple orchard. While the 

preferred choice was to study an insecticide application, the logistics involved with 

our research schedule combined with the apple grower’s obligation to observe pre-

harvest intervals led to the decision to sample a fungicide spray application. 

In Chapters 3 and 4, we studied three insecticidal active substances: the 

neonicotinoid acetamiprid, the pyrethroid deltamethrin, and the organophosphate 

dimethoate. We chose these to cover a range of insecticidal classes and modes of 

action; we also selected them based on relevance to the test species, the apple crop 

context, and known sublethal responses to the substances. We were also limited in 

choice by the range of available radiolabelled substances.  

 

Note: The following chapter has been accepted for publication in Pest Management 

Science and is available online at doi:10.1002/ps.5136. We have presented the paper 

in the same format in which it was accepted for publication, but edited for 

presentation in this thesis. 
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Chapter 2 – Quantifying pesticide 

deposits and spray patterns at micro-

scales on apple (Malus domesticus) 

leaves with a view to arthropod 

exposure 
 

2.1 Introduction 

Pesticides are a globally important tool in the control of pests and diseases in 

commercial crop systems (Cooper and Dobson, 2007; Rugno et al., 2016; Santos et 

al., 2015); however, their use can adversely affect non-target populations of 

arthropods, with both lethal and sublethal effects reported for a wide range of 

species (Bowie et al., 2001; Garzón et al., 2015; Giolo et al., 2009; Kalajahi et al., 2014; 

Kim et al., 2006). In recent years the focus has turned more towards the sublethal 

effects on non-target species (Desneux, Decourtye and Delpuech, 2007; Stark, J D, 

Banks, 2003); this is partly due to the potentially prolonged exposure of both target 

and non-target species to sublethal concentrations in real conditions (Cordeiro et al., 

2010). 

Sublethal effects such as reproduction changes are studied in non-target arthropods 

as part of regulatory pesticide testing (Candolfi et al., 2000), and many studies have 

reported negative effects at recommended field rates (Owojori, Waszak and 

Roembke, 2014; Bowie et al., 2001; Cordeiro et al., 2010). Regulatory studies typically 

apply pesticide products using total coverage of a test arena as they must expose test 

organisms in a heterogeneous environment to reduce variability. Uniform residues 

can be considered to be worst-case exposure scenarios where individuals may avoid 

residues. However, this causes a lack of realism in terms of the test exposure 

environment not matching the exposure realistically achieved within crop systems 

where exposure is patchy and varies spatially; heterogeneous coverage may also lead 

to greater residues where spray lands Therefore, to bring realism to pesticide risk 
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assessment real exposure patterns must be considered at spatial scales relevant to 

the test species, either by modified toxicity and behaviour assays within laboratory 

settings or by computational modelling.  

Various methods exist for assessing pesticide residue and exposure patterns, from 

the conventional method of taking samples from a field and extracting the residues 

in the laboratory (Hall et al., 2004), to the use of tracers such as fluorescent dyes (Cilgi 

and Jepson, 1992) and artificial collectors such as water sensitive paper (de Moor, 

Langenakens and Vereecke, 2000) to investigate spray patterns such as deposition 

and coverage. Conventional residue testing – involving extraction, clean-up and 

analysis steps – is usually conducted in the context of human exposure, for instance 

to measure concentrations in food crops for dietary risk assessment (Angioni et al., 

2003; Ferrer et al., 2005; Hall et al., 2004). Some studies have also investigated 

residues on foliage (Li et al., 2015; Rueegg and Siegfried, 1996), a more relevant 

substrate in the context of non-target arthropods (e.g. parasitoids and predators) in 

crop systems. These foliage methods typically work with large samples of several 

leaves with a mass of 10 – 20 g, but residues averaged across many leaves are not 

very relevant for predatory insects who are so small that heterogeneous exposure 

within one leaf is what matters. One study worked with individual leaves weighing 

approximately 4.5 g (Sántis et al., 2012), though apple leaves are typically smaller.  A 

recently developed method is able to map pesticide residues on individual wheat 

leaves using MALDI-MS (Annangudi et al., 2015), and this method shows promise but 

has limitations such as inaccuracies when working with dense spray coverage (Dong, 

Zheng and Zhao, 2015), access to such instruments and operational costs. Therefore, 

to investigate pesticide residues at spatial scales relevant to predatory arthropods, 

conventional residue testing methods need to be adapted to the scale of individual 

leaves. 

One method that has been widely applied to the study of pesticide spray patterns is 

the use of water sensitive paper (Kunimoto and Inoue, 1997; Martin et al., 2000; 

Nansen et al., 2011). Water-sensitive paper is yellow card that is coated on one 

surface with bromophenol blue, a compound that turns from yellow to blue on 

contact with water and retains this colour once dry, thus creating a stain (Turner and 
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Huntington, 1970). As such, these cards can be used to evaluate spray patterns as 

long as the pesticide spray mixture contains water (Cunha, Carvalho and Marcal, 

2012). Water sensitive paper has received a lot of attention from researchers who 

have developed methods for assessing spray quality manually using either a 

microscope, or by scanning and magnifying the image to evaluate cards by eye, 

though these are time consuming (Chaim et al., 2002; Hill and Inaba, 1989; Salyani 

and Fox, 1994). More recent technology has allowed for the development of 

automated, computer-based analysis of cards, with a number of programs available 

(Nansen et al., 2015; Panneton, 2002; Wolf, 2003; Zhu et al., 2011). Studies 

comparing the efficacy of computer-based programs against manual analysis of cards 

have found that a number of programs show strong correlations with manual analysis 

when comparing droplet diameters, volumes and counts computed from the same 

water sensitive paper cards (Cunha, Farnese and Olivet, 2013). However, the authors 

found that there were differences of up to 10.4 times in droplet density values 

reported from different software packages, and thus suggest choosing one image 

analysis program and using it exclusively. Another comparison study found 

inconsistencies in relative droplet diameter values reported by three different 

programs, but also found that factors relating to 10th, 50th and 90th percentile 

diameters (DV0.1, DV0.5, DV0.9) were consistent (Hoffmann and Hewitt, 2005). 

While correlations between manual and digital assessment of water sensitive papers 

were strong enough to prove that digital analysis successfully emulated manual 

analysis, this only showed that it was effective in assessing spatial patterns in spray 

such as droplet density and droplet size (Hoffmann and Hewitt, 2005; Cunha, Farnese 

and Olivet, 2013). A further question is whether water sensitive paper can be used to 

determine pesticide residues. Through extraction and analysis of pesticide residues 

from water sensitive paper, a previous study demonstrated that droplet density and 

total mass of deltamethrin residues correlate well (Hill and Inaba, 1989). One study 

suggested that pesticide deposition could be estimated through droplet analysis 

using a microscope having studied the efficacy of the method with chemical tracers 

(Chaim, Maia and Pessoa, 1999). Additionally, liquid volumes derived through digital 

image analysis were consistent with microscopic droplet analysis (Chaim et al., 2002). 
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In summary, we know that water sensitive paper can be used to study spray 

distribution, and that digital image analysis of these paper samples can be quick, 

repeatable and consistent with manual analysis of samples (Zhu, Salyani and Fox, 

2011; Cunha, Farnese and Olivet, 2013). We also know that pesticide residue analysis 

on an apple leaf substrate can be both accurate and precise (Hall et al., 1997; Rueegg 

and Siegfried, 1996; Xu et al., 2008). However, we do not know whether it is possible 

to accurately estimate pesticide residues using data derived from the analysis of 

pesticide exposed water sensitive paper, which would provide a low cost analysis 

method that allows for greater understanding of residues at micro spatial scales, such 

as within a single apple leaf. 

In this study we aimed to assess the accuracy of methods used to analyse spatially 

distributed pesticide residues. The first objective was to assess pesticide residues and 

spray patterns in an apple orchard at spatial scales relevant to orchard-dwelling non-

target arthropods (e.g. leaf, tree, orchard scale). The second objective was to 

evaluate the potential for digital image analysis of water sensitive paper to be an 

effective alternative to conventional pesticide residue analysis for non-target 

arthropod exposure estimation. To achieve this, patterns in data from both methods 

were compared.  

 

2.2 Materials and methods 

2.2.1 Orchard sampling 

Field sampling was conducted in a commercial apple orchard in Cambridgeshire, UK 

in August 2015. The orchard had an area of 1.25 Ha and contained five-year-old 

dessert apple trees (Malus domestica cv. Braeburn) growing in rows 3.5 m apart and 

running from south-west to north-east in aspect. Trees were grown with a trellis 

support system with tree spacing within rows at 0.8 m. Trees were approximately 3 

m tall and in growth stage 8-9 according to the BBCH scale for pome fruit. (Meier et 

al., 1994) Samples were collected following a routine spray application of the 

fungicide penconazole formulated as Topenco 100 EC (100 g L-1, Globachem NV, 

Belgium), an emulsifiable concentrate diluted in tap water for spray application at a 
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rate of 450 mL diluted in 250 L water per hectare (final penconazole concentration = 

0.18 g L-1). Penconazole has a photolytic degradation half-life (λ) of 1.32 – 1.99 days; 

however, it is stable in darkness and also hydrolytically stable at air temperatures of 

50˚C for seven days (ECHA, 2012). Spray application was undertaken using a tower 

sprayer (Kirkland tower triprop sprayer, Kirkland UK), fitted with six each of Albuz ATR 

80 yellow and green hollow cone nozzles (Solcera, France) working at a spray 

pressure of 6 bar. Crop spraying commenced at 09:40 in overcast conditions at an air 

temperature of 19.8˚C with wind speeds of 0.54 m s-1 (60 s average) and 1.97 m s-1 

(60 s maximum). Samples were collected once pesticide residues were dry, after 

approximately 1 hour. 

An experimental design with nested spatial scales was established for the orchard 

sampling, similar to one previously outlined (Xu et al., 2006). Three rows were 

selected within the orchard, with one patch (A, B and C) per row. Each patch 

contained three consecutive trees and was located away from row ends to ensure 

pesticide spray was representative. Each tree was then split into three zones: top, 

middle, and outer, with the top portion starting approximately 2 m above ground 

(Figure 2.1).  
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Figure 2.1 - Schematic of the nested orchard sampling design showing the four spatial 

scales used for apple leaf residue and water sensitive paper coverage analysis. Each 

spatial scale is represented: (a) patch locations; (b) one patch comprising three trees; 

(c) one tree comprising three zones; (d) several samples within one zone. 

 

2.2.2 Residue sample collection 

Prior to the scheduled pesticide application, twelve water sensitive paper cards 

measuring 26 × 76 mm (Syngenta, Basel, Switzerland) were placed in the middle and 

outer zones in each tree across the three patches; these were attached to the upper 
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leaf surface using a small bulldog clip at the stem to minimise the impact of the 

additional weight. We were unable to access the top tree zone for placement of water 

sensitive paper cards due to health and safety constraints. After allowing 60 minutes 

for the pesticide spray to dry, the water sensitive paper cards were collected and 

stored at ambient air temperature in sealed plastic bags within an opaque box until 

analysis. 

Five apple leaves were collected from trees prior to pesticide application to act as 

blank samples for residue analysis. Following pesticide application and a drying 

period of approximately 60 minutes, 45 apple leaves were sampled from each tree in 

Patch A using telescopic secateurs, with 15 leaves from each of the three tree zones 

in each tree. Leaf samples were stored individually in centrifuge tubes in the dark at 

10˚C in the field before being transferred after 24 hours to a -20˚C freezer until 

analysis.  

 

2.2.3 Leaf sample extraction and clean-up 

Our method was adapted from one for extracting pesticide residues from bulk 

samples of leafy vegetables (10 g; González-Rodríguez et al., 2008), to the extraction 

of individual leaves by adjusting extractant volume to be of a similar ratio to the 

original method. The sampled leaves had a mean mass of 0.57 g (95% CIs [0.53 g, 0.62 

g]). Leaf samples were removed from the freezer and allowed to defrost at ambient 

temperature. Weight and upper leaf area were determined for each leaf before they 

were extracted, with leaf area determined by scanning and image analysis in ImageJ 

(version 1.38x, NIH, USA). Each leaf was cut into smaller pieces and returned to the 

centrifuge tube for extraction with 10 mL acetonitrile. Samples were homogenised in 

an ultrasonic bath for 10 min. An 8.5 mL aliquot of the extraction solution was then 

transferred into a glass test tube and concentrated down to 1-2 mL under a gentle 

stream of nitrogen gas using a heated sample concentrator (Techne Dri-Block DB-3; 

40˚C, N2 flow rate of 8 L min-1).  

For sample clean-up, a solid-phase extraction (SPE) cartridge (Supelclean ENVI-Carb-

II/PSA 500 mg/500 mg, 6 mL size) was conditioned with 3 mL acetonitrile:toluene (3:1 
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v/v). The acetonitrile sample extract was then loaded onto the cartridge and the 

retained pesticide was eluted slowly with 3 mL acetonitrile:toluene (3:1 v/v). The final 

eluate was then evaporated to dryness and reconstituted in 1 mL acetonitrile. The 

sample was mixed using a vortex mixer (25,000 rpm, 5 s) before it was transferred to 

an amber autosampler vial for analysis via gas chromatography-mass spectrometry 

(GC-MS). 

To compare leaf residue data from analytical chemistry with residues estimated from 

image analysis, penconazole residue data was converted so that residues were based 

on leaf upper surface area (Equation 2.1). It was not within the scope of this study to 

determine what proportion of pesticide spray lands on the upper and lower leaf 

surfaces, therefore the leaf residue values assume all residue was present on the 

upper leaf surface. Previous studies have investigated differences in upper and lower 

leaf surface residues (Hall et al., 1997). 

 

𝑅𝑎𝑟𝑒𝑎 =  
𝑅𝑙𝑒𝑎𝑓

𝐴
                 Equation 2.1 

Rarea denotes residue based on leaf surface area in μg cm-2, Rleaf denotes residue 

detected on a leaf sample in μg, and A denotes leaf area in cm2. 

 

2.2.4 Gas chromatography-mass spectrometry (GC-MS) 

Penconazole residues were determined using a Clarus 680/600C GC-MS 

(PerkinElmer, UK) fitted with an Elite-5MS fused silica capillary column (L 30 m × 0.25 

mm i.d. × 0.25 μm film thickness; PerkinElmer, UK). Samples were prepared in 

acetonitrile for analysis and 1 μL injected via a split-splitless injection port operated 

in splitless mode (splitless time 1 min; injector temperature 250°C). The oven was 

programmed from an initial temperature of 50˚C (hold 1 min) to 300˚C at a rate of 

20˚C min-1 where it was held for 3 min. Helium (99.999% purity) was used as the 

carrier gas at a flow rate of 1 mL min-1. The MS was operated in electron ionisation 

(EI) mode with an ionisation energy of 70 eV, source temperature of 180°C and inlet 

line temperature of 240°C. Data was acquired in selected ion monitoring (SIM) mode 
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at m/z 159 and 248 (dwell time 100 ms), used for quantification of penconazole 

(González-Rodríguez et al., 2008). The solvent delay was set to 4 min and the total 

run time was 16.5 min. Penconazole eluted with a retention time of 11 min. 

Instrument control, data acquisition and processing was by Turbomass software 

v5.4.1617 (PerkinElmer, UK). 

 

2.2.5 Analytical method development 

To determine the accuracy of the GC-MS method, apple leaves washed in deionised 

water were spiked with known quantities of penconazole analytical standard (Sigma 

Aldrich, Dorset, UK) in acetonitrile at five concentrations ranging from 0.1 – 4 μg per 

leaf, a range that covered all field residues determined in this study. These leaves 

were subject to extraction and SPE using the method previously outlined in Section 

8.3. Penconazole recovery was calculated along with the co-efficient of variation (CV). 

Method precision was determined by extracting five apple leaves spiked with 2 μg 

penconazole, and was expressed as CV. In a further step to validate the experimental 

method, a storage stability study was conducted where ten washed apple leaves 

were spiked with 2 μg penconazole each. One set of five leaves were extracted and 

analysed once residues were dry, and one set of five leaves were stored at -20C after 

drying for a total of 37 weeks before being defrosted, extracted and analysed. The 

penconazole recovery rate was determined along with CV.  

Recoveries were in the range of 74 – 119% (mean 90%; n = 21), with CV of 5.9 – 24.9% 

(mean 11.9%) for all standard concentrations. Precision, calculated from five 2 μg 

mL-1 samples, was 7.9% and within the acceptable CV limit of 20% (EU, 1996). Our 

storage stability study showed that recovery was in the range 83 – 110% (mean 99%) 

after 37 weeks. 

Analytical limit of detection (LOD) and limit of quantitation (LOQ) were calculated 

using signal to noise ratios of 3:1 and 10:1 respectively (Vial and Jardy, 1999), 

determined for spiked apple leaves. LOD and LOQ for penconazole were 0.08 mg kg-1 

and 0.26 mg kg-1 respectively. No field samples had detected residues that were 

below the LOQ, including the controls collected before the spray event. 
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2.2.6 Spray pattern analysis 

Following a review of the various image analysis packages available, DepositScan, a 

freely available droplet analysis program was selected for use in this study (Zhu, 

Salyani and Fox, 2011). Individual water sensitive paper cards (WSP) were scanned 

on a flatbed scanner (Canon CanoScan 9000F) at a resolution of 600 dpi as greyscale 

bitmap images and cropped and converted to GIF file type using Irfanview v4.4. 

Several parameters were determined by DepositScan including spray coverage 

(percentage of target covered), spray density (droplets cm-2), and liquid deposition 

(μL cm-2). The smallest droplet diameter that can be detected by DepositScan is 17 

μm (Zhu, Salyani and Fox, 2011); however, in the present study the smallest droplet 

diameter was 52.8 μm. These were analysed at the various spatial scales sampled 

(within tree, between tree, within orchard). Volume median diameter (VMD) is a 

common measure when describing droplet sizes; however this is easily skewed by 

factors such as a few large droplets amongst a mostly small droplet pattern (Cunha, 

Carvalho and Marcal, 2012); thus this metric was omitted. 

It is possible to calculate estimated pesticide deposits on apple leaves using data from 

DepositScan, if the concentration of pesticide in the spray tank mixture is known 

(Equation 2.2). 

 

𝑅 = 𝐶 ×  𝐷                  Equation 2.2 

R denotes active ingredient residue in μg cm-2; C denotes concentration of active 

ingredient in spray tank mixture in μg μL-1; D denotes the liquid deposition value 

calculated by DepositScan in μL cm-2. 

 

2.2.7 Testing DepositScan 

To test the way in which DepositScan calculates factors such as deposition, a number 

of tests were designed involving computer generated images of “stains”, with all 

images generated using Microsoft Paint. Stains on water sensitive paper are larger 
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than the area covered by the initial droplet due to the solution spreading (Cunha, 

Carvalho and Marcal, 2012). As water sensitive paper absorbs and expands the 

aqueous portion of a pesticide spray, it has been suggested that the measurement of 

water sensitive paper stains can overestimate the liquid deposition (Garcera, Molto 

and Chueca, 2014), as the stains created appear larger than the initial droplet. 

However, through using a spread factor, this error can be accounted for.  

To calculate the initial droplet diameter from which droplet volume can be derived, 

a spread factor was applied – DepositScan uses a formula where a single factor is 

applied to the stain area (Equation 2.3; Zhu, Salyani and Fox, 2011). An alternative 

spread factor calculation exists based upon stain diameter, with the spread factor 

varying based upon stain diameter. Documentation providing further information 

about water sensitive paper reports a range of spread factors, with spread factor 

values increasing as stain size increases (Table 2.1). The factors were determined 

using water sprayed at 20˚C and 40% relative humidity, though the authors state that 

pH and relative humidity have no effect (Syngenta, 2002). 

 

𝑑 = 𝑆𝐹 × 𝐴0.455                Equation 2.3 

d denotes droplet diameter in µm; SF denotes the spread factor (the DepositScan 

default used here is 1.06); A denotes the spot area calculated by DepositScan in µm2. 
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Table 2.1 – Variable spread factor values determined on water and used as an 

alternative to DepositScan’s built-in spread factor calculation (Syngenta, 2002; 

Cunha, Carvalho and Marcal, 2012) 

Stain diameter of droplet (µm) Spread factor Droplet diameter (µm) 

100 1.7 58.8 

200 1.8 111.1 

300 1.9 157.9 

400 2.0 200.0 

500 2.1 238.1 

600 2.1 285.7 

 

To apply this variable spread factor, the stain diameter was calculated from the stain 

area derived from DepositScan (Equation 2.4), and from this the droplet diameter 

was calculated using Equation 2.5 and applying the relevant spread factor from Table 

2.1 – for example, the spread factor for a droplet with a stain diameter in the range 

of 301-400 μm would be 2.0 (Syngenta, 2002). 

 

𝑑𝑠 =  (√𝐴
𝜋⁄ )  × 2                Equation 2.4 

ds denotes stain diameter in µm and A denotes spot area calculated by DepositScan 

in μm2. 

 

𝑑 =  
𝑑𝑠

𝑆𝐹
                              Equation 2.5 

d denotes droplet diameter in µm; ds denotes stain diameter in µm and SF denotes 

the spread factor value from Table 2.1 that applies to ds.  

 

To assess whether calculated deposition changed when different spread factors were 

applied to stain size data, we generated 33 artificial circular “stains” with diameters 
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in the range 95.5 – 1438 μm. These were analysed using DepositScan, and calculated 

deposition values derived from DepositScan’s own calculation and from the 

application of the varied spread factor were compared. To determine deposited 

volume, each droplet diameter was converted to volume. 

We also quantified the effect of droplets of equal size touching each other. The 

software creators state that DepositScan cannot differentiate between droplets that 

overlap, and so the software makes the assumption that two touching droplet stains 

are one single deposit (Zhu, Salyani and Fox, 2011). To assess whether this affected 

the estimation of deposition, the same artificial stains from the spread factor tests 

were used, with two images at each stain diameter analysed: one containing two 

stains of equal size that did not touch, and one containing two stains that touched at 

one side, but did not overlap. This meant that an image with two droplets each of 96 

µm diameter had a horizontal diameter of 192 µm, but still measured 96 µm at the 

longest vertical point, or vice versa (Figure 2.2). 

 

Figure 2.2 – Illustration of the overestimation of droplet size by DepositScan when 

presented with overlapping droplets. In this example, both black stains had diameters 

of 96 µm (blue horizontal line). However, because the two droplet stains overlapped 

slightly, in this example, DepositScan would count the two droplets as one single stain 

measuring 192 µm in diameter (red horizontal line), giving a deposition value based 

on a much larger assumed stain, illustrated by the red circle. 
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To calculate the droplet volume for each droplet, DepositScan uses Equation 2.5, and 

the sum of each volume is reported as deposition expressed as μL cm-2 (Zhu, Salyani 

and Fox, 2011). In this test, we compared the deposition value in μL per image for 

each image pair. 

 

2.2.8 Statistical analysis 

Analyses were undertaken using GraphPad Prism (Version 7.01, GraphPad Software 

Inc., California, US). All residue and water sensitive paper data were initially tested 

for normality using the D’Agostino & Pearson normality test (D’Agostino, 1986); the 

Brown-Forsythe test for equality of variances was also used to determine the best 

test for data sets (Brown and Forsythe, 1974). Data were analysed using one-way 

ANOVA with Tukey HSD test for multiple comparisons. When comparing exposure 

between trees, there was no grouping so all nine trees were compared with each 

other, with Trees 1-3 from Patch A, Trees 4-6 from Patch B, and Trees 7-9 from Patch 

C. Datasets comparing exposure between two tree zones were tested for normality 

using D’Agostino & Pearson, and then analysed using the unequal variances t-test 

(also known as Welch’s t test), chosen for its ability to handle unequal population 

variances (Ruxton, 2006).  

Data relating to testing DepositScan were tested for normality as above, but due to 

non-normal distributions in both tests, data were analysed using the Wilcoxon 

matched pairs ranked test. Regression analysis was performed to investigate whether 

leaf residues based on leaf area were comparable to residues based on leaf mass.  

 

2.3 Results 

2.3.1 Spray pattern analysis 

Mean pesticide coverage of the water sensitive paper surface was 16.3% [95% CIs: 

15.1%; 17.5%] across all samples (Table 2.2; n = 215). Mean surface coverage in Patch 

A was 20.1%, 14.9% in Patch B (mean difference A vs B 5.2%; 95% CIs [8.5%; 1.8%]; P 

= 0.0009), and 14% in Patch C (mean difference A vs C 6.1%; 95% CIs [9.4%; 2.7%]; P 

< 0.0001).  
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When analysing variance between all nine trees, the mean difference in pesticide 

coverage was 3.4% (P = 0.002). Tree 1 received the greatest pesticide coverage (Table 

2.2) and significantly greater coverage than Tree 4 (mean difference 7.7%; 95% CIs 

[15.3%; 0.03%]; P = 0.048), Tree 6 (mean difference 8.7%; 95% CIs [1.1%; 16.3%]; P = 

0.012), Tree 7 (mean difference 8.2%; 95% CIs [0.53%; 15.8%]; P = 0.026), Tree 8 

(mean difference 9.3%; 95% CIs [1.66%; 16.95%]; P = 0.026) and Tree 9 (mean 

difference 8.9%; 95% CIs [1.23%; 16.52%]; P = 0.026). Mean coverage in the middle 

zone was 15.3% and 17.2% in the outer zone (P = 0.12). 

Spray density averaged 120 droplets cm-2 [95% CIs: 114 droplets cm-2; 126 droplets 

cm-2] across all samples (Table 2.2; n = 215). On average, density varied significantly 

by 4.45 droplets cm-2 between patches (P < 0.0001), though in contrast to the trend 

shown in coverage, spray density was 31.4 droplets cm-2 higher in Patch A than Patch 

B (95% CIs: 47.5 droplets cm-2; 15.3 droplets cm-2; P < 0.0001), and 24.7 droplets cm-2 

higher in Patch C than Patch B (95% CIs: 8.7 droplets cm-2; 40.7 droplets cm-2; P = 

0.001). Spray density did not significantly vary within patches (Table 2.2). There was 

also no significant difference in spray density between tree zones, which is consistent 

with coverage trends. 
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2.3.2 Leaf residues 

Penconazole residues found on apple leaves in Patch A were between 0.35 – 6.56 mg 

kg-1 (Table 2.3). The mean difference in residues between trees was 0.22 mg kg-1 (P = 

0.18). In contrast, residues varied within trees by 0.63 mg kg-1 on average (P < 

0.0001), with residues in the top tree zone 0.95 mg kg-1 higher than in the middle 

zone (95% CIs [0.54 mg kg-1; 1.36 mg kg-1]; P < 0.0001) and 0.63 mg kg-1 higher in the 

outer zone than in the middle zone (95% CIs [0.22 mg kg-1; 1.04 mg kg-1]; P = 0.0005). 

The mean difference between top and outer zones of the trees was 0.32 mg kg-1 (95% 

CIs [-0.08 mg kg-1; 0.74 mg kg-1]; P = 0.657). 

 

Table 2.3 – Penconazole residues in apple leaves from Patch A, expressed as mean 

residue with 95% confidence intervals, split by tree and tree zone. Co-efficient of 

variance (CV) is also reported. 

    Penconazole residue in apple leaf 

(mg kg-1) 
 

     95% CIs   

   n Mean Lower Upper CV (%) P 

Patch A  135 2.28 2.09 2.47 48.31 - 

         

Tree 1  45 2.03 1.70 2.36 63.4 

0.18  2  45 2.44 2.08 2.79 40.8 

 3  45 2.37 2.08 2.67 47.5 

         

Zone Top  45 2.72 2.42 3.01 43.2 

< 0.0001  Middle  45 1.76 1.55 1.98 65.1 

 Outer  45 2.39 2.17 2.61 41.8 

 

 

2.3.3 Comparing residue analysis methods 

To compare leaf derived penconazole residue data to penconazole deposits 

estimated from water sensitive papers by DepositScan, residue data had to be 

converted to a comparable unit, so the following data are expressed as μg cm-2. Due 
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to leaf residue measurements only being undertaken on leaves from Patch A, water 

sensitive paper data from patches B and C were omitted to ensure data were 

comparable. Similarly, leaf residue data from the top tree zone were also omitted. 

Any residue estimates derived from water sensitive paper samples with coverage 

greater than 30% were also omitted, as volume estimates become inaccurate above 

this point (Zhu, Salyani and Fox, 2011). Regression analysis suggests that area-based 

leaf residue values correlate well with the mass-based leaf residue values (R2 = 0.65; 

P < 0.0001; Figure 2.3). Two main outliers that deviate far from the 95% CI boundary 

represent samples with lower leaf mass, or smaller leaf areas than average.  

 

 

Figure 2.3 – Penconazole residues derived from GC-MS based on leaf mass (horizontal 

axis) and whole leaf upper surface area (vertical axis). Solid trend line shows 

regression with 95% confidence bands (dotted lines). Regression: Y = 0.01675 × X + 

0.005528. R2 = 0.65; P < 0.0001; n = 135 

 

Penconazole residues based on leaf surface area averaged 0.039 μg cm-2 [95% CIs: 

0.035 μg cm-2; 0.044 μg cm-2]; the water sensitive paper derived values averaged 0.24 

μg cm-2 (95% CIs [0.21 μg cm-2; 0.27 μg cm-2]; P < 0.001; Figure 2.4a). The mean 

difference between the leaf residue and water sensitive paper estimate was 0.198 μg 

cm-2 (95% CIs [0.17 μg cm-2; 0.23 μg cm-2]; P < 0.001). To adjust the water sensitive 
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paper mean penconazole deposit to that of the apple leaf residues, an empirical 

correction factor of 0.1625 was applied to the water sensitive paper data (Equation 

2.6), and this successfully adjusted the mean penconazole deposit to 0.039 μg cm-2 

(95% CIs [0.035 μg cm-2; 0.044 μg cm-2]; Figure 2.4b). The 0.00013 μg cm-2 mean 

difference between mean corrected water sensitive paper residue values and leaf 

residue values was not significant (95% CIs [-0.006 μg cm-2; 0.006 μg cm-2]; P = 0.97). 

 

𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝑅 × 𝐶𝐹                Equation 2.6 

Rcorrected denotes corrected penconazole residue in μL cm-2; R denotes penconazole 

residue on water sensitive paper in μL cm-2; CF denotes the correction factor of 

0.1625. 

 

 

Figure 2.4 – Comparison of penconazole residue values based on surface area derived 

from leaf residue samples analysed via GC-MS and water sensitive paper (WSP) 

samples analysed via DepositScan image analysis with no correction factor (a) and 

with a correction factor applied to individual data points (b). The horizontal middle, 

lower and upper lines within each box indicate mean, 25th and 75th percentiles; caps 

at the top of the vertical lines indicate the 5th and 95th percentiles; dots depict 

extreme data points (i.e. values less than 25th Percentile - 1.5 × inter-quartile 

distance, or greater than 75th Percentile + 1.5 × inter-quartile distance). n = 90; 61 
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2.3.4 Testing DepositScan 

When comparing different spread factor calculations, mean droplet volume for the 

DepositScan spread factor was 0.055 μL per image [95% CIs: 0.035 μL; 0.075 μL], 

19.6% higher than the average droplet volume from the varied spread factor of 0.046 

μL (95% CIs [0.028 μL; 0.064 μL]; P < 0.0001; ratio paired t test). Deposition ranged 

from 0.00009 – 0.1882 μL when calculated using the DepositScan spread factor, and 

0.00009 – 0.1681 μL when calculated with the varied spread factor (Figure 2.5a). 

When assessing whether deposition is overestimated when 2 droplets touch 

compared to when there is no contact, the respective mean deposition volumes were 

0.14 μL [95% CIs: 0.09 μL; 0.19 μL] and 0.11 μL [CIs: 0.07 μL; 0.15 μL], thereby showing 

deposition was overestimated on average by 22.3% when the droplets were touching 

(P < 0.0001; Figure 2.5b). 

 

Figure 2.5 – (a) Deposition values calculated from the same artificial stain using the 

default DepositScan spread factor and an alternative spread factor that varies based 

on stain diameter. n = 33 (b) Deposition values calculated by DepositScan based on 

whether two artificial circular stains of the same size touch or not. n = 33. 
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2.4 Discussion 

2.4.1 Comparison of trends in leaf residue and water sensitive paper data 

Measurements derived from water sensitive paper analysis indicated there was a 

significant average difference of 28% in spray coverage and 20% difference in spray 

density between patches within the same orchard (Table 2.2). This is in contrast to 

findings from a study where a zinc tracer was sprayed in an apple orchard where no 

significant differences between plots within the same orchard were observed (Xu et 

al., 2006). These contrasting findings could be due to differences in weather 

conditions during the study, spray systems or settings, the methodology to identify 

spray coverage and density, sample numbers, tree type, tree spacing etc. and 

highlight the problems with inter-study comparisons. However, the nested sampling 

design used in our study enables detailed analysis of sources of variation within a 

single orchard which can be compared to findings in other studies. When studying 

trends within orchard patches, we found no significant differences in spray coverage 

or density; this was also the case within Patch A for apple leaf residues. When 

focusing upon Patch A, Tree 1 displayed the highest spray coverage, the second 

highest spray density, and the lowest leaf residue. This suggests that trends differ 

depending on the measurement analysed. Though the trees chosen for this study 

were uniform in height, growth habit and management, such differences in spray 

patterns between trees have previously been justified by tree architecture, in 

particular variability in leaf position (Xu et al., 2006). This seems to be consistent with 

our findings. 

In considering variance within trees, spray cover, density, and leaf residues were all 

higher in the outer zone than in the middle zone; leaf residues were higher in the top 

tree zone than in the middle (Table 2.3). The trend of outer tree sections receiving 

more residue than the centre is consistent with trends previously reported in a 

similarly designed apple orchard study using EDTA chelates of various metals as 

tracers (Cross et al., 2001) and also in the zinc EDTA chelate tracer study (Xu et al., 

2006), suggesting that our study method was a successful model of real pesticide 

exposure when compared to other studies. Between tree variation for measures 

based on water sensitive paper such as spray coverage and spray density showed 
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consistent but different trends to the actual residue analysis, and all were not 

significant, suggesting natural variation was responsible for observed differences. 

However, within a single patch of trees, spray pattern measurements showed no 

significant trends between trees. With observed trends differing at different spatial 

scales, we suggest an unmeasured factor may have an impact, such as variable 

proximity of the crop sprayer to trees.  

When considering within tree differences, leaf residue trends were consistent with 

spray coverage and density trends, with values in the outer zone higher than in the 

middle zone, though effect size varied: leaf residues were 36% higher in the outer 

zone, a significant difference, while spray coverage and density showed non-

significant differences where coverage was 12% higher and density was 8% higher in 

the outer zone.  This suggests that, while water sensitive paper analysis accurately 

estimates overall trends in within tree differences, effect size would be 

underestimated. 

 

2.4.2 Comparing residue analysis methods 

Overall, penconazole deposits estimated through image analysis of water sensitive 

paper were over five times higher than residues determined through GC-MS analysis 

of exposed apple leaves (Figure 2.4b). However, there was also a significant 

difference in variances, with overall CV higher for the leaf residues measured with 

GC-MS (52%) than it was for the water sensitive paper deposits (44%; F test; P < 

0.001). This suggests trends derived from water sensitive paper analysis are less 

affected by random variation. Our analytical method validation demonstrated that 

the penconazole extraction method was within validation guidelines (EU, 1996); 

additionally, the storage stability study demonstrated minimal penconazole losses of 

1% on average over time. Therefore, our findings suggest that DepositScan 

consistently overestimated penconazole residues when compared to the leaf 

residues.  

The source of overestimation could come from the farmer’s dilution of pesticide 

product when preparing spray tank mixtures, as varying precision in the preparation 
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could provide a source of error. The overestimation could also come from the spray 

tank mixture behaving differently on the water sensitive paper surface in comparison 

to water, which is used by the paper manufacturer in the preparation of varied spread 

factors (Syngenta, 2002). Additionally, many factors relating to DepositScan’s 

estimation of residues could lead to overestimation. Firstly, the software assumes 

droplet stains are circular, and is not capable of identifying droplets that are 

overlapping (Zhu, Salyani and Fox, 2011), and this can cause an overestimation of 

spray deposition. Additionally, when coverage is over 30%, spray density and 

deposition are potentially inaccurate (Zhu, Salyani and Fox, 2011), as droplets are 

more likely to be touching when there is a high coverage value. In the present study, 

12% of all water sensitive paper cards displayed coverage greater than 30%.  

A comparison of spread factors found that the factor used by DepositScan produced 

deposition values that were on average 11.5% higher than the deposition calculated 

from the varied spread factor. Table 2.4 shows how the two different spread factors 

would calculate droplet diameter from six hypothetical stain sizes, and displays a 

range of differences, from 5.8% at 200 μm diameter, to 12.3% at 500 μm diameter. 

While no studies have investigated whether image analysis programs overestimate 

deposition, one study showed that, when compared to manual analysis of water 

sensitive paper, DepositScan overestimated droplet density by 89% when dealing 

with fine droplets (Cunha, Farnese and Olivet, 2013). From further analysis of water 

sensitive paper samples from Patch A, on average 33% of all droplets were 

determined to be 100 μm or lower in diameter, with over 70% of all droplets 

measuring below 200 μm in diameter (Figure 2.6). This strong skew suggests that 

DepositScan’s overestimation of droplet density associated with fine droplets is a 

contributing factor in this study, and could also affect other calculated factors.  
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Table 2.4 – The effect of two different spread factors on 6 stain diameter sizes. The 

spread factors were determined on water droplets. 

 Droplet Diameter (μm)  

Stain 

Diameter (μm) 

DepositScan 

Spread Factor 

Varied Spread 

Factor Difference 

100 62.74 58.82 6.25% 

200 117.9 111.1 5.76% 

300 170.5 157.9 7.40% 

400 221.5 200.0 9.72% 

500 271.4 238.1 12.3% 

600 320.4 285.7 10.8% 

 

 

Figure 2.6 – Distribution of droplet diameters as a function of spray proportion on 

water sensitive papers from patch A. Bars show 95% confidence intervals (n = 70) 

 

One other reason for the overestimation could be that wetting agents within the 

pesticide formulation could cause the droplet to spread further on impact with a 

surface due to an altered surface tension, therefore creating a larger stain than that 

created by water alone. The aforementioned variable spread factors were developed 

based on droplets of water, as opposed to pesticide mixtures (Syngenta, 2002), which 

would in theory produce smaller stains for a droplet of the same volume. Finally, 
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when a pesticide is sprayed onto a plant some of the active ingredient might 

translocate into the plant, thus leading to lower residue values on the plant surface. 

This may be another source of the overestimation seen when analysing water 

sensitive paper. 

Despite the overestimation of residue from water sensitive paper, it is possible to use 

water sensitive paper and DepositScan to estimate pesticide residues with a 

correction factor. However, this correction factor might only apply to the 

penconazole formulation and application regime in this study, and more work is 

necessary to determine whether a single correction factor would work for all spray 

situations and pesticide formulations, or whether correction factors would be specific 

to formulations (e.g. due to different wetting agents, application concentrations). 

Digital image analysis of water sensitive paper to estimate pesticide deposits provides 

a time- and cost-effective high throughput method of studying pesticide residues in 

agricultural systems. At the time of writing, water sensitive paper cost under £40 

(GBP) for 50 pieces, and digital analysis of each sample can be completed in a matter 

of minutes. By comparison, conventional residue analysis methods involve pesticide 

extractions that can take over a day to complete, with chromatographic analysis time 

requirements varying based on method and retention times for the chosen study 

compounds. The analysis cost can be prohibitive due to the use of solid phase 

extraction techniques and the operation of analytical equipment. Therefore, the time 

and cost savings of using water sensitive paper are attractive as they allow for large 

sample numbers in study designs; water sensitive paper also allows for examination 

of pesticide spray patterns at a fine spatial scale, something that is not currently 

widely undertaken by conventional residue analysis.  

 

2.5 Conclusions 

Pesticide spray patterns can differ within an orchard, between and within trees 

during a single pesticide spray event. Trends showing differences in coverage, spray 

density and residue within trees are important for understanding the exposure 

patterns that tree-dwelling arthropods are subjected to in commercial apple 
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orchards. Together with the micro-scale exposure patterns derived from the water 

sensitive papers, these data will inform future experiments looking at effects of 

pesticide exposure on their behaviour.  

Through the study of pesticide spray patterns, we have been able to demonstrate 

that water sensitive paper could act as a replacement for conventional residue testing 

by offering a fast method of estimation, but the sources of uncertainty need to be 

fully understood. Water sensitive paper is a highly effective tool for analysing 

differences in spray patterns and allows for large sample numbers and rapid 

estimation of pesticide deposits on a surface. It also provides data on spray density 

and coverage that residue analysis cannot; however, if residue values are an 

important factor in the study of an untested compound then conventional residue 

analysis techniques should still be considered. Once the correlation between water 

sensitive paper data and conventional residue analysis is established for a pesticide 

product, with an adjustment factor if necessary, large numbers of water sensitive 

paper samples can be deployed for high throughput exposure analysis. Further work 

should explore whether pesticide residues derived from water sensitive paper 

correlate well with other pesticide formulations, and whether different correction 

factors are necessary for different pesticide formulations or situations. 
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2.6 Using spray data to contextualise laboratory studies 

Note: this section does not appear in the published article and is an addendum to aid 

in discussion of concepts in the following chapters 

 

In the following chapters, we have conducted laboratory studies and want to consider 

whether observed effects would occur in an apple orchard in a real spray event. As a 

result, we needed to know what proportion of a pesticide spray application landed 

on apple leaf surfaces, and data from this chapter made this possible. Data from 

water sensitive paper showed that 1.066 μL cm-2 was deposited in the apple tree 

canopy. However, from our comparison of penconazole residues derived from water 

sensitive paper and analysis of apple leaves, we found that water sensitive paper 

overestimated deposition (Section 2.4.3). After adjusting the aforementioned value 

using the correction factor of 0.1625, we determined penconazole spray deposition 

on apple leaves was 0.173 μL cm-2. This equated to 1.73 mL m-2, or 17.3 L Ha-1. 

However, this did not account for the fact that one hectare of apple orchard did not 

equate to one hectare of apple leaf surface. 

To determine exactly what proportion of spray landed on apple leaves, we utilised 

the leaf area index (LAI) concept. LAI is the ratio of one-sided leaf area per unit of 

ground area and is used for modelling atmosphere-vegetation processes (Jonckheere 

et al., 2004). A value greater than one indicates there is more leaf surface area than 

ground area (e.g. in broadleaved trees), while a value below one indicates there is 

more ground area than leaf surface area (e.g. in coniferous trees). LAI has been used 

in considering pesticide efficacy in grapevines (Siegfried et al., 2007). In apple 

orchards, LAI varies through the growing season and is also affected by the 

production system used for growing the apples (Wunsche et al., 1996). As we made 

no estimation of total leaf number or area in the studied apple orchard, we used 

information available to us to identify which literature LAI value was most 

appropriate. Based on tree growth stage, cultivar, tree height, row and tree spacing 

and the knowledge that trees we sampled were growing based on the slender spindle 

cultivation style, we identified the most appropriate LAI value to be 2.46, derived 
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from a study of dessert apples in Chile (Poblete-Echeverría et al., 2015). This value 

indicates that leaf area is 24,600 m2 per hectare of ground surface. 

Based on our measurements that showed penconazole spray deposition of 17.3 L Ha-1 

on apple leaves, by multiplying this value by the LAI, we conclude that 42.6 L, or 17%, 

of penconazole spray landed on apple leaves. This value will vary based upon many 

factors such as climatic conditions and spray equipment performance; however, this 

value allows us to consider the environmental relevance of effects observed in 

laboratory studies in the following chapters. 
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Chapter 3 – Pesticide induced changes 

in movement behaviour in the predatory 

mite Typhlodromus pyri 
 

3.1 Introduction 

3.1.1 Sublethal effects of pesticides 

The registration of pesticide active substances requires consideration of lethal effects 

(mortality) and sublethal effects (fecundity) in non-target arthropods as an absolute 

minimum. Parallel to this, most laboratory bioassays in the past have studied acute 

mortality of pesticide active substances and formulations, and only recently has a 

focus developed in the study of sublethal effects (Desneux et al., 2007). Sublethal 

effect studies in the regulatory context only typically cover changes in reproductive 

capacity (Beers and Schmidt-Jeffris, 2015); however, there is a greater scope to study 

sublethal effects. In a review of sublethal effects of pesticides on beneficial 

arthropods, Desneux et al. (2007) stated that sublethal effects cover physiological 

and behavioural effects and categorised such effects arising from intoxication into 

two classes: direct intoxication, which involves responses such as knock down, 

uncoordinated movement and excessive cleaning; and secondary intoxication which 

includes disruption in responses to kairomones and pheromones, repellence and 

irritation.  

Sublethal effects have been seen across a range of species. A study observing the 

carabid beetle Nebria brevicollis showed that individuals that ate prey contaminated 

with the pyrethroid deltamethrin went on to eat fewer uncontaminated prey, 

suggesting a physiological effect on feeding behaviour (Wiles and Jepson, 1993). A 

study by Beers and Schmidt (2014) also observed reduced prey consumption in the 

predatory mite Galendromus occidentalis when exposed to field rate doses of the 

neonicotinoids acetamiprid and imidacloprid, and the micro-organism derived 

insecticide spinosad. The organophosphate dimethoate also reduced feeding – and 
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therefore predatory capacity – in the ladybird Coccinella septempunctata (Singh et 

al., 2004). 

 

3.1.2 Behavioural effects of pesticides 

The need for greater understanding of ongoing behavioural effects arising from 

pesticide exposure, and any population- or ecosystem-level consequences arising 

from such effects on non-target arthropods has recently been identified as a priority 

by the European Food Standards Agency (EFSA, 2015). Changes in behaviour can have 

a deleterious effect on non-target arthropods, such as increasing their vulnerability 

to predation (Kunkel et al., 2001), decreased energy efficiency as a result of 

hyperactivity (Desneux et al., 2006), and reduced predatory efficiency (Singh et al., 

2004). Reproduction can also be impacted via changing sex pheromone 

communication and mating behaviours (Wang et al., 2018). Irritation, a term also 

used in the study of avoidance behaviour, has been defined to include behaviour 

changes such as increased walking rate, reduced resting time, and increased 

grooming (Wiles and Jepson, 1994). Effects are often seen at sublethal 

concentrations. Reproduction behaviours were disrupted in the parasitoid wasp 

Trichogramma brassicae when exposed to the insecticide chlorpyrifos at a dose with 

no apparent mortality (LD0.1, Delpuech et al., 1998). Effects can also be rapid: a study 

of movement behaviour in the plant bug Deraeocoris brevis found that at the 

maximum field rate of acetamiprid, 89% of individuals displayed immobility after just 

two hours with the remaining samples showing impaired mobility; at 0.1× maximum 

field rate 22% showed immobility and the rest showed impaired mobility (Kim et al., 

2006). 

Several studies have looked at how movement behaviour can be affected. Adult 

female mites (G. occidentalis) sprayed directly with acetamiprid and exposed to 

residues were observed to be lethargic after 48 hours of exposure to 0.1× maximum 

field rate (Beers and Schmidt, 2014). Orientation behaviour was affected in the 

parasitic wasp Aphidius ervi when exposed for 24 hours to dry residues of the 

pyrethroid lamba-cyhalothrin at a sublethal dose (LD0.1), though negative responses 

had disappeared 24 hours after exposure ended, suggesting capacity for recovery 
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(Desneux et al., 2004). Another study demonstrated ability to recover from pesticide 

intoxication in A. rhopalosiphi exposed to deltamethrin within 12 hours of being 

removed from the insecticide source (Longley and Jepson, 1996). Effects on 

movement can also change over time: exposure to the neonicotinoid imidacloprid 

initially affected movement, particularly coordination and hyperactivity in the bee 

Apis mellifera; however, the symptoms gradually disappeared but eventually led to 

hypoactivity (Suchail et al., 2001). Singh et al. (2004) noted that behavioural 

responses, especially pesticide avoidance, could reduce exposure and therefore 

cancel out deleterious effects. However, a very recent study has shown that adaptive 

behaviours may not always arise, by showing that worker bees (Bombus terrestris) 

developed a preference for feeding from neonicotinoid treated flowers (Arce et al., 

2018). 

 

3.1.3 Avoidance Behaviour 

Avoidance behaviour is an umbrella term covering behavioural responses to pesticide 

residues, and is seen as a rapid response to contaminants that protects individuals 

from their effects (Hellou, 2011). Repellence and irritation are two key defined 

avoidance behaviours, each with differing definitions in the scientific literature. 

Cordeiro et al. (2010) defined the behaviours in relation to studies where individuals 

have a choice on whether to reside on a contaminated surface or not, with repellence 

as spending < 1 sec on a treated surface, while irritability was defined as spending < 

50% of an observation period on a treated surface. A similar definition was proposed 

by Beers and Schmidt-Jeffris (2015), with repellence defined as avoidance of treated 

surfaces by resting on residue-free surfaces; however, their definition of irritation 

varied, with it being defined as the tendency to run off a test arena to escape residues 

entirely. Like Cordeiro and colleagues, the definition of repellence reported by Beers 

and Schmidt-Jeffris assumes the test individuals have a choice of resting on residues 

or not, though the latter authors accept that most bioassay test arenas represent a 

worst case exposure scenario where harmfulness may be overstated as test species 

would have no option of a surface with no residue. Guedes et al. (2016) offers an 

alternative demarcation of the two behaviours, defining repellence as a behavioural 
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response following extensive contact with residues, while irritation arises from little 

to no pesticide contact.  

There are both positive and negative implications of repellence: on the individual 

level, contact with toxicants is reduced which reduces negative effects; however, 

repellence can also disperse non-target arthropod populations, therefore decreasing 

predator populations within crop systems where their biocontrol service is desired 

(Gerson et al., 2003; Hislop et al., 1981). Resurgences of spider mite pest populations 

have been observed in apple orchards, with the effect attributed to the use of 

pyrethroids that repel predatory mites (Gerson and Cohen, 1989); resurgences were 

also associated with deltamethrin and acetamiprid spray in aubergine fields (Barbar, 

2017). Therefore, repellence is an important side effect to consider at the population 

level and in the biocontrol context. 

The examples discussed above cover a range of spatial scales. Laboratory studies 

investigate avoidance at small, highly controlled spatial scales often at 10 cm or 

below to quantify avoidance behaviours in individuals in terms of time spent in 

contact with residues. Field studies on the other hand consider much larger spatial 

scales and investigate population-scale avoidance and repellence, with experimental 

areas of one or more field systems covering many hectares and even larger areas of 

leaf surface area. Consequently, avoidance behaviour also needs to be considered in 

the context of the spatial scales in which certain behaviours would be observed. 

There is also an ecological context to spatial scales, with the natural range of an 

organism being an important point to consider when investigating avoidance 

behaviour. Morphological differences mean that different species can cover vastly 

different ranges, meaning different spatial scales would be of relevance to different 

species and even within species where large morphological changes occur during 

development. For example, a 10 cm test arena may be appropriate for some 

predatory mites, or ladybirds, or for a lacewing larva that is capable of covering over 

100 cm in ten minutes (Porcel, Cotes and Campos, 2011). However, this would be 

inappropriate for a lacewing adult that can easily cover several kilometres (Duelli, 

1984), or for predatory mites or collembolan that would be better suited to smaller 

test arenas of 5 cm or below (e.g. Zortéa et al., 2015).  
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Avoidance behaviour has been reported in many species. Avoidance (reported as 

escaping test arenas) has been observed in the predatory mite Typhlodromus pyri 

when exposed to residues of the carbamate fungicides mancozeb and metiram 

(Blümel et al., 2000b). A study of C. septempunctata feeding behaviour observed 

avoidance of dimethoate-treated surfaces and treated prey, showing avoidance 

behaviour extends to avoidance of contaminated food sources (Singh et al., 2004). 

Another study investigating changes in foraging behaviour showed that the parasitoid 

A. rhopalosiphi spent less time in areas treated with both honeydew (a food cue for 

the parasitoid) and deltamethrin compared to areas of just honeydew (Longley and 

Jepson, 1996). 

3.1.4 Study aim, species and pesticide selection 

With the present study we aimed to investigate whether pesticide residues affected 

movement behaviour in the non-target arthropod Typhlodromus pyri. T. pyri is a 

generalist phytoseiid species that consumes spider mite prey, but also subsists on 

honeydew, pollen and fungi (McMurtry and Rodriguez, 1987), and it lives in many on-

crop habitats such as grapevines (Pozzebon et al., 2015), and apples (Duso and Pasini, 

2003) throughout humid climates in Europe, North America, Asia and New Zealand 

where it is a major biocontrol agent against the pest European red mite, Panonychus 

ulmi (Bowie et al., 1999; Helle and Sabelis, 1985; Nauen et al., 2001). It is also one of 

the most important predatory mites in Europe and North America due to a 

combination of its abundance and beneficial capacity (Kostiainen and Hoy, 1996). The 

species also has major relevance to pesticide regulation as it is one of two mandatory 

study species in the risk assessment of plant protection products and their effects on 

non-target arthropods in the EU (EFSA, 2015). 

We chose four pesticide active substances – active substances were studied so that 

any effects observed were due to the active substance and not any co-formulants 

contained within a product. To cover several scenarios, we selected study substances 

based on current literature, known toxicity to T. pyri as a non-target arthropod and 

relevance to both environmental exposure scenarios and regulatory testing. Based 

on these criteria, the following substances were chosen – three insecticides and one 

fungicide – each from different chemical classes: acetamiprid, a neonicotinoid 
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acetylcholine receptor agonist; deltamethrin, a pyrethroid sodium channel 

modulator; dimethoate, an organophosphate acetylcholinesterase inhibitor; and the 

fungicide captan, a phthalimide with protective and curative actions against fungal 

pests. All three insecticides have both contact and stomach action (Lewis et al., 2016). 

Acetamiprid and deltamethrin are registered within the EU for use in pome fruit e.g. 

apples, hence their inclusion in this study (EFSA, 2016; European Commission, 2002). 

Acetamiprid is of interest due to a near 2000% increase in usage in UK orchards 

between 2014 and 2016, apportioned to the withdrawal of chlorpyrifos (Garthwaite 

et al., 2017); therefore it is of environmental relevance in real world exposure 

considerations. Additionally, a recent study observed reductions in prey consumption 

when another predatory mite, G. occidentalis was exposed to acetamiprid doses of 

10% of the usage rate (Beers and Schmidt, 2014). Deltamethrin was included due to 

observations of repellence and avoidance behaviour in predatory mites exposed to 

pyrethroids in both laboratory and field studies (e.g. Penman and Chapman, 1981; 

Riedl and Hoying, 1983). Dimethoate is not registered for use in pome fruit crops; 

however, it is used as the toxic reference chemical in laboratory- and field-based 

registration studies (Blümel et al., 2000a), hence its inclusion in this study. Captan, 

the only fungicide in the study, was selected based on it being the most extensively 

used fungicide within UK fruit orchards in 2016 (Garthwaite et al., 2017). Though the 

substance is classed as having low toxicity to T. pyri, with 7% mortality observed at a 

rate of 1.7 kga.s. Ha-1 when the maximum rate in pome fruit is 2.4 kga.s. Ha-1 (EFSA, 

2008), it was included to investigate whether a low toxicity substance could elicit 

behavioural changes and also whether this fungicide would elicit avoidance 

behaviours like those observed in carbamate fungicides (Blümel et al., 2000b). 

 

3.1.5 Hypotheses 

Based on the information on the test substances above, it was appropriate to develop 

individual hypotheses for each substance. We hypothesised that acetamiprid, 

deltamethrin and dimethoate residues would lead to changes in movement 

behaviour based on previously reported changes in feeding behaviour in a phytoseiid 

(Beers and Schmidt-Jeffris, 2015), repellency observed in phytoseiids exposed to 
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pyrethroids (e.g. Riedl and Hoying, 1983) and high toxicity to the test species (Blümel 

et al., 2000a) respectively.  Though we intended to analyse movement behaviour in 

mites exposed to captan residues, analysis of the experiment was not possible due to 

poor analytical recoveries and crystallisation of the active substance on the test arena 

surface. Consequently, we have included the methodology used for captan but have 

not explored a hypothesis for this substance. 

 

3.2 Materials and methods 

3.2.1 Insects  

We sourced synchronised Typhlodromus pyri eggs from a pesticide sensitive culture 

at Bias Labs Ltd. (Kirkcaldy, Fife, UK), and these were grown in culturing arenas 

comprising acrylic sheet placed above a deionised water reservoir contained within a 

plastic box with a loosely placed lid. The culturing arena was developed based on 

guidance for regulatory testing and training in T. pyri culturing at a contract research 

laboratory (Blümel et al., 2000a). The culturing arena surface included filter paper 

providing constant water to the mites, small plastic shelters created from the plastic 

substrate on which eggs were delivered, and insect barrier glue (Agralan Ltd, 

Wiltshire, UK) to prevent mite escape. The culture was kept in a growth chamber 

(Sanyo MLR-351H, Sanyo Electric Co., Osaka, Japan) at a target temperature of 25˚C 

(mean 25.1˚C; 95% Confidence Intervals (CIs) [25.05; 25.19]) and a target relative 

humidity of 80% (mean 78.2%; 95% CIs [77.2; 79.2]) in a 24-hour constant light cycle 

providing approximate illuminance of 15 000 lx. Eggs hatched approximately 24 hours 

after placement in the growth chamber and protonymphs were reared on apple 

pollen to adulthood, which took seven days. All test individuals were 7 – 9 days old 

when analysed. 

 

3.2.2 Insecticides 

To allow for rapid, high throughput quantification of pesticide residues in this 

experiment, we decided to use radiolabelled active substances. 14C radiolabelled 

active substances were sourced from two providers: 14C-acetamiprid (methylene-
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labelled; 98.3% purity; 1188 MBq mmol-1) was sourced from Triskelion B.V. (Zeist, 

Netherlands); 14C-captan (carboximide-labeled; 96.7% purity; 2173 MBq mmol-1), 14C-

deltamethrin (benzyl-7-labeled; 98.7% purity; 1432 MBq mmol-1) and 14C-dimethoate 

(carbonyl-labeled; 96.7% purity; 1681 MBq mmol-1) were sourced from the Institute 

of Isotopes (Budapest, Hungary). To create the stock solutions, we separately mixed 

14C-acetamiprid, 14C-captan and 14C-dimethoate in methanol with analytical grade 

standards of the respective substance (Sigma Aldrich, Dorset, UK) to achieve the 

desired concentrations. Due to the low concentrations studied, the deltamethrin 

stock solution comprised 14C-deltamethrin in methanol only. Stock solutions were 

created at the following active substance concentrations: 0.18 mg mL-1 for 

acetamiprid; 0.48 mg mL-1 for captan; 1 × 10-4 mg mL-1 for deltamethrin and 0.115 mg 

mL-1 for dimethoate.  

We prepared three dosing stocks from each solution; for acetamiprid, deltamethrin 

and dimethoate these were based on published lethal rates at which 50% of a T. pyri 

population was affected after seven days of exposure (7d-LR50s) for the active 

substances with treatment levels based on 0.2, 1 and 2× LR50 (Table 3.1). For captan 

the dosing stocks were based on 15%, 7.5% and 1.5% of the maximum field 

concentration (3.2 ga.s. L-1 based on a product containing 80% captan). For 

acetamiprid and dimethoate we drew the seven day LR50 values from European Union 

substance registration documents; for deltamethrin, at the time of experimentation 

no published LR50 was publicly available in registration documents and therefore we 

derived the dosing stock concentrations from effect data derived from a three day 

exposure study in the scientific literature (Bonafos et al., 2007).  

Pyrethroid resistance had to be considered when deciding on deltamethrin dosing 

stocks.  The study published by Bonafos et al. (2007) studied two wild strains of T. 

pyri collected in France: one population was collected from an unsprayed and 

uncultivated area of bramble (Rubus spp); the other population suspected to be 

resistant to synthetic pyrethroids was collected from vineyards where synthetic 

pyrethroids and organophosphate insecticides were regularly sprayed. The two 

strains displayed very different LC50s after three days: the first population had a 3d-

LC50 of 0.05 mg L-1 (95% CIs [0.03, 0.08]), while the second population was much less 
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susceptible with a 3d-LC50 of 79 mg L-1 (95% CIs [46; 150]). The managing director of 

the company that supplied the T. pyri for study confirmed that the strain used in our 

studies had never been exposed to synthetic pyrethroids (M Wainwright, 2018, 

personal communication, 17 August); therefore, we based the dosing stocks on the 

lower 3d-LC50 of 0.05 mg L-1. Since the experiments were completed a 7d-LR50 was 

published in a draft EU renewal report from a higher tier T. pyri study conducted on 

leaf discs; this is quoted in Table 3.1 and equated to 0.0002 mg L-1 based on the 

application being carried in 200 L water (European Commission, 2017).  
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3.2.3 Behavioural bioassays 

3.2.3.1 Method development 

Initially, we aimed for the behaviour study experimental set up to be as 

environmentally relevant and realistic as possible, while also creating a consistent 

and controlled setting. T. pyri adults are known to reside on most parts of an apple 

tree throughout the year (Breth et al., 1998), but the most practical substrate for a 

behaviour bioassay was the apple leaf where female adults spend most time and 

prefer to oviposit (Sengonca et al., 2004). Mites are observed to occur most 

frequently on leaf undersides (Gerson et al., 2003), and higher tier registration 

studies are conducted on leaf undersides, with bean (Vicia faba) and bell pepper 

leaves commonly used (Blümel et al., 2000a; European Commission, 2017). We 

cultivated beans in the laboratory for leaves to harvest; however, the leaf underside 

had a significant ridge where leaf veins were, and mites would disappear in the 

shadow of the ridge, becoming undetectable for a period. Therefore, we transferred 

individual T. pyri adults onto the upper surface of a leaf disc placed with the underside 

on damp paper towel, used to prevent leaf desiccation and to maintain humidity.  

Mites were recorded using a Dino-Lite USB digital microscope mounted on a 

microscope pole stand (10 frames per second; Dino-Lite AM7013MT fitted with 

polarising filter; AnMo Electronics, Taiwan) and the videos were initially analysed in 

the free software package Ctrax (Branson et al., 2009). However, animal tracking in 

such software requires contrast between the test animal and test substrate, and the 

green leaf offered insufficient contrast against the cream mite (Figure 3.1). We 

therefore discounted natural substrates as test arenas and instead decided that the 

two priorities were a flat surface for accurate movement tracking and homogeneous 

pesticide coverage, and a substrate that allowed for a dark background to optimise 

contrast between the mite and the surface. We explored filter papers as they had 

been used previously in studies (Cordeiro et al., 2010; e.g. Pekár and Haddad, 2005), 

and would provide a consistent pesticide exposure environment. Black filter papers 

(Thomas Scientific, Swedesboro, New Jersey, United States) were tested; however, 

we found the surface was not consistent and small white fibres within black filter 

paper affected mite detection, so these were also discounted. We also considered 
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the ease of recovering pesticide residues following behaviour observation, and as a 

result, we decided upon a glass surface placed on black cardboard as the final test 

arena design. This decision had the added advantage of homogenising the surface 

texture, therefore removing the influence of leaf morphology (Penman and 

Chapman, 1981). A previous study highlighted the difficulty of tracking movement in 

T. pyri due to their translucent body and poor camera resolution, and used a 16 mm 

glass microscope slide coverslip as the test arena (Bowie et al., 1999). With improved 

resolution in contemporary cameras, we were able to use a 24 mm diameter circular 

glass coverslip as the test arena while also retaining clear focus with the USB 

microscope recording the mite. 

 

 

Figure 3.1 – Screenshot of a sample video of the preliminary movement test arena 

with a bean leaf disc. The T. pyri individual can be seen towards the centre bottom of 

the test arena and is highlighted by the blue arrow.  

 

We also decided to change movement behaviour software and, as a result, the final 

experiments were analysed in Noldus EthoVision XT 13 (Noldus Information 

Technology, Wageningen, Netherlands). We chose the software package for the 

more efficient working process, greater ability to cancel out spurious detections (e.g. 

those caused by uneven lighting and reflections), and the ability to manually draw 

arenas and zones, ensuring only the area available to mites was considered in 
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analysis. It is also the main software used in contemporary studies of digital 

movement behaviour analysis of non-target arthropods (Azandeme-Hounmalon et 

al., 2016; Nansen et al., 2016; Porcel et al., 2011; e.g. Prasifka et al., 2008). 

 

3.2.3.2 Experimental set up 

We created test arenas by placing circular glass microscope slide coverslips (24 mm 

diameter, Scientific Laboratory Supplies Ltd., Nottingham, UK) in duplicate on black 

cardboard, giving two replicates per card. Insect barrier glue (Agralan, Wiltshire, UK) 

was applied using a syringe around the coverslip edges to act as an arena barrier and 

adhesive to hold the arenas in place. Mean arena surface area was approximately 

2.83 cm2. 0.15 mL of dosing stock was applied to each arena surface using a pipette, 

ensuring the solution fully covered the surface. Control arenas were treated with 0.15 

mL methanol. Test arenas were left to dry for 75 min in a fume cupboard before the 

behavioural bioassay commenced. We used a randomised block design for the 

experiment, with random allocation of insecticide concentrations to test arenas to 

minimise any effects relating to time of day. To eliminate the risk of cross-

contamination of insecticides, one active substance was studied at a time. 

A single sexed T. pyri adult was removed from the culture and placed in the centre of 

a test arena using a fine (size 0) nylon paintbrush and was given 10 min to acclimatise 

to the new environment; however, we reduced the acclimatisation time to 30 sec for 

deltamethrin residues due to immediate responses to residues. Twenty four arenas 

were used for each treatment, and each mite was used once (12 female; 12 male), 

giving 24 independent replicates per treatment. Control contained 30 observed mites 

(15 female; 15 male) as the initial experimental design included 30 replicates per 

treatment; however, this was unfeasible in the time scale, so replicate numbers were 

reduced. Replicates were handled in duplicate, with two test arenas established at a 

time for simultaneous recording. Test arenas were placed on a thermostatically 

controlled heated propagator base set to 26°C (aiming to achieve 24°C) in 

preparation for measurement. Test arenas were lit using a targeted small white LED 

light. Humidity was increased in the heated propagator through the addition of blue 

roll saturated with deionised water. However, humidity was otherwise ambient and 
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heavily influenced by the prevailing weather conditions and intermittent issues with 

the air circulation systems in the laboratory. 

We recorded the movement of each mite for a 10 min observation period using a 

Dino-Lite USB digital microscope mounted on a microscope pole stand (10 frames per 

second; Dino-Lite AM7013MT fitted with polarising filter; AnMo Electronics, Taiwan); 

however, equipment failure during the study necessitated a change of recording 

equipment to a Canon DSLR camera (25 frames per second; EOS 1300D, Canon Inc., 

Tokyo, Japan) equipped with an 18-55 mm lens mounted on a metal hood (Syngene 

DigiGenius, Synoptics Ltd., Cambridge, UK). At the end of each recording, we lightly 

brushed mites that had ceased moving with the paintbrush to see whether mortality 

had occurred. Air temperature and relative humidity were recorded once during each 

observation period, approximately 1 min into the observation. The videos were then 

converted to mpeg format using the open source video transcoder software 

HandBrake (version 1.1.1) for movement behaviour analysis. 

 

3.2.3.3 Movement analysis 

We analysed mite movement behaviours using the video tracking software Noldus 

EthoVision XT 13. Videos were analysed at a rate of 5 frames per second to allow 

consistency in analysis between recordings from the different cameras. There were 

problems with successfully detecting and tracking mites in arenas treated with captan 

as the active substance left a white crystalline residue on the surface that meant the 

mite was often undetectable (Figure 3.2); this was thought to be due to the low 

substance solubility and subsequent precipitation as the methanol evaporated from 

the arena surface. As such it was not possible to successfully analyse movement 

behaviour and we did not analyse captan samples further. 
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Figure 3.2 – Screenshot of a sample video from the captan experiment as analysed in 

EthoVision XT 13, with a detected mite highlighted in yellow in the right hand arena 

and further highlighted by the red arrow. Note the white crystalline residues in the 

two test arenas – the left hand arena was treated with the second dosing level, and 

the right arena treated with the third dosing level. The crystalline structures created 

spurious detections in the software, thus rendering it impossible to successfully 

analyse T. pyri movement behaviour. 

 

We approximated arena surface area using the arena width readings generated by 

the software (Equation 3.1).  

 

𝐴𝑟𝑒𝑛𝑎 𝑎𝑟𝑒𝑎 (𝑐𝑚2) =  𝜋 (
𝑥̅𝑑

2
)

2

                        Equation 3.1 

x̄d denotes mean arena diameter. 
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Five movement behaviours were automatically analysed by the software. The 

definitions for each behaviour are as follows, adapted from Kaur et al. (2015); mean 

measurements were averaged over measurements taken every sampled frame, with 

3000 measurements taken per 10 min observation period:  

1. Distance walked (total; cm): the total distance covered by a mite over the 10 

min observation period. This estimated general mite activity; 

2. Velocity (mean; cm s-1): the walking speed of the mite within the arena over 

10 min. This also estimated general mite activity; 

3. Angular velocity (mean; deg s-1): the mean change in mite moving direction 

over time. This was calculated as the ratio between turn angle and sample 

interval; 

4. Meander (mean; deg cm-1): the change in mite moving direction relative to 

distance covered. This measure quantifies the level of tortuosity of the mite’s 

movement track; 

5. Time active (total; s): the time spent moving and not moving was determined 

by the software through use of thresholds in the distance moved per frame. 

The application of these thresholds (0.1 mm s-1 for moving; 0.09 mm s-1 for 

not moving averaged over 3 samples) minimised the influence of small 

wobbling movements created as an artefact of video resolution and frame 

rate. Only the time spent moving is reported. 

Though the sampling rate and thresholds applied for movement analysis helped to 

reduce noise, artefacts and noise arising from the analysis of videos is unavoidable 

and measured behaviours are highly sensitive to this noise (Hen et al., 2004). We 

applied two smoothing methods to each sample: locally weighted scatter plot 

smoothing (LOWESS; Cleveland, 1979); and minimal distance moved (MDM). The 

LOWESS process is iterative and involves fitting a curve to the data in sample windows 

– in this case each window is 10 samples. Hen et al. (2004) explain the process in 

detail regarding its application in EthoVision. It is useful for reducing the noise 

created by body wobble or the video resolution. The second method, MDM, filters 

out small movements caused by random noise, especially when the individual is 

inactive, by setting a threshold (Noldus, 2018). We used the “direct” method, which 
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is calculated based on the shortest distance between samples, and the threshold was 

0.03 mm. 

We manually analysed a sixth movement behaviour, time to trap, by watching each 

video and recording the point at which a mite became trapped in the arena barrier 

with a keystroke. Where this occurred, it was necessary to correct velocity and 

angular velocity as these were calculated based on the overall observation duration 

(10 min); therefore, the EthoVision readings for these behaviours were skewed by 

the time spent trapped. We corrected these values to ensure the measure only 

accounted for the time in which the mite remained in the arena (Equation 3.2). 

 

𝜈𝑐𝑜𝑟𝑟 𝑜𝑟 𝜔𝑐𝑜𝑟𝑟 =  
𝜈𝑒𝑠𝑡 𝑜𝑟 𝜔𝑒𝑠𝑡

(
𝑇𝑡
𝑇𝑒

)
                            Equation 3.2 

νcorr denotes velocity corrected for a mite becoming trapped. ωcorr denotes angular 

velocity corrected for a mite becoming trapped. νest denotes velocity as estimated by 

EthoVision. ωest denotes angular velocity as estimated by EthoVision. Tt denotes time 

at which a mite became trapped in seconds. Te denotes experimental test duration 

in seconds (600 s).  

 

3.2.4 Pesticide residue analysis 

We quantified actual pesticide residues by measuring the radioactivity present 

following extraction of the test arena. Following the observation period, each test 

arena was transferred into a tall 50 mL glass beaker and 10 mL methanol was added. 

Beakers were covered to reduce methanol evaporation and left for 10 min. Following 

extraction an 8 mL aliquot of the sample was transferred into a 20 mL HDPE screw 

cap scintillation vial containing 10 mL Ecoscint A (National Diagnostics, Nottingham, 

UK) and the activity quantified via liquid scintillation counting (Hidex 300 SL, Hidex 

Oy, Turku, Finland). Analysis commenced after a time delay of 2.5 hours for each 

sample run; each vial was counted three times for 60 sec. We corrected samples for 

background activity by subtracting readings derived from blank (control) vials 

containing 10 mL Ecoscint A + 8 mL methanol. Activity related to insecticide 
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concentration in dosing stocks was calculated (Equation 3.3 (1)), and from this, we 

calculated insecticide residue on the test arena surface (Equation 3.3 (2)). Finally, we 

adjusted the measured residue in each arena to express residues based on 

approximate arena area. 

 

(1)  𝑀𝛽 =  
𝜌𝑎.𝑠.

𝐴𝑎.𝑠.
                Equation 3.3 

(2)  𝑅𝑒𝑠𝑖𝑑𝑢𝑒 𝑖𝑛 𝑎𝑟𝑒𝑛𝑎 (𝑚𝑔) =  
𝑀𝛽

𝐴𝑠
   

Mβ denotes active substance mass per unit activity, expressed as mg KBq-1. ρa.s. 

denotes mass concentration of the active substance expressed as mg mL-1. Aa.s. 

denotes measured activity of dosing stock, expressed as kBq mL-1. As denotes activity 

measured in each sample, expressed as kBq. 

 

3.2.4.1 Analytical method development 

To quantify the counting method detection limits, we calculated three metrics: the 

critical level (Lc), the detection limit (Ld), and the lower limits of detection (LLD), which 

meant we could derive a minimum counts value to use as our methodological 

detection limit. Lc is the value used to decide whether a signal is a “true” signal 

(Currie, 1968), whereas the Ld is the true “net” signal that can be reliably detected, 

and the LLD is the minimal detectable activity, i.e. the lowest concentration of 

material that produces a signal above the background with a 95% probability (Passo 

and Cook, 1994). The formulae used to determine these are below and were selected 

as our background counts were below 70 counts (Equation 3.4; Prichard et al., 1992). 
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(1) 𝐿𝑐 (𝑐𝑜𝑢𝑛𝑡𝑠) = 0.1𝐵 + 2.33𝐵0.5        

(2) 𝐿𝑑  (𝑐𝑜𝑢𝑛𝑡𝑠) = 1.1(2.71 + 4.65𝐵0.5) + 0.1𝐵            Equation 3.4 

(3) 𝐿𝐿𝐷 (𝐵𝑞 𝐿−1) =  
𝐿𝑑

60𝐸𝑉𝑇𝑋
 

B denotes mean background reading in counts. E denotes counting efficiency. V 

denotes sample volume in L. T denotes counting time in min. 

 

Finally, to determine how many counts must be measured to achieve the calculated 

LLD, we used Equation 3.5 (Passo and Cook, 1994): 

 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑢𝑛𝑡𝑠 =  𝐿𝑐 + 𝐵               Equation 3.5 

 

Using this method, we determined that for this experiment, Lc = 15.3 counts; Ld = 31.4 

counts; and LLD = 3.45 Bq L-1. To achieve this threshold, the minimum counts was 

58.2. 

 

3.2.5 Statistical analysis 

In all subsequent analyses, we excluded mites that were not active during the 

observation period from further analysis of movement behaviour as the intention 

was to study the behavioural changes in mites that had moved. Final sample 

populations are presented in Table 3.2. All statistical analyses were undertaken in 

GraphPad Prism 7 (GraphPad Software Inc., La Jolla, USA) or SPSS 25 (IBM Inc., 

Armonk, USA), with software selection for each statistical test specified below. 
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Table 3.2 – The number of active and inactive mites for each studied insecticide split 

by treatment. Active mites comprised the final sample populations for statistical 

analysis of movement behaviours. 

Insecticide 

Concentration 

(μg cm-2) Active mites Inactive mites 

Control 0 24 6 

Acetamiprid 

0.95 21 3 

4.77 18 6 

9.54 16 8 

Deltamethrin 

0.00053 23a 0 

0.0027 23b 0 

0.0053 25 0 

Dimethoate 

0.24 21 3 

1.19 19 5 

2.38 20 4 
a – One replicate at this concentration comprised residues measuring in line with the highest 
concentration. Therefore, the sample was re-assigned to 0.0053 μg cm-2 
b – One replicate at this concentration was removed from final analysis after having been identified as 
a multivariate outlier. The process of identification is explained in section 3.2.5.2. 

 

3.2.5.1 Environmental conditions 

As each pesticide treatment was investigated at different time points, we wanted to 

investigate whether the environmental conditions were consistent from one 

pesticide to the next (i.e. from one week to the next) as this could help to inform 

conclusions. We compared air temperature and humidity measurements grouped by 

insecticide using one-way ANOVA in SPSS.  The Brown-Forsythe test for equality of 

variances was used to determine what post-hoc test to apply: if equal variances could 

be assumed, Tukey’s post hoc test was applied; if equal variances could not be 

assumed then the Games-Howell test was applied as the test is more robust where 

equal variances are not observed (Games et al., 1979). P values were automatically 

adjusted for multiple comparisons (α = 0.05). 
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3.2.5.2 Environment effects on mite movement behaviour 

Prior to investigating whether mite movement was affected by insecticide residues, 

we investigated whether air temperature and relative humidity affected mite 

movement behaviours to determine the final statistical test for each insecticide 

dataset. Linear regressions were undertaken in GraphPad Prism for each insecticide, 

correlating the five observed movement behaviours with air temperature and 

relative humidity. The outcome informed whether the environmental measures 

should be included in statistical analysis as covariates: where a slope was significantly 

not zero (α = 0.05), and with a fit greater than R2 = 0.2, then we included the relevant 

covariate. If these criteria were not met, then covariates were not included in final 

analysis. The fit criteria were selected to ensure that a weak trend arising between a 

behaviour and either temperature or humidity would be included in the final analysis 

for further exploration. 

All results are summarised in Table 3.3. Three movement behaviours displayed 

significant slopes with weak correlations (R2 < 0.2) to relative humidity when mites 

were exposed to acetamiprid; therefore, no covariates were included in the final 

acetamiprid test. No slopes generated between covariates and movement 

behaviours were significant when mites were exposed to deltamethrin and as such 

no covariates were included. When exposed to dimethoate, mite angular velocity 

correlated strongly with air temperature (R2 = 0.65; P <0.0001) and relative humidity 

(R2 = 0.57; P = 0.0005); there were also significant but weak correlations (R2 < 0.2) 

between both behaviours and relative humidity. Therefore, we included both 

environmental factors as covariates in the final dimethoate statistical test. 
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3.2.5.3 Mite movement behaviour 

Prior to any analysis of movement behaviours, it was necessary to determine whether 

behaviour differed between mite sex as this would need to be included in the final 

statistical design if there were significant differences in response. Previous studies of 

avoidance and behaviour have focused on females only (Beers and Schmidt-Jeffris, 

2015; Bowie et al., 2001, e.g. 1999), so we studied both sexes to see whether there 

were sex-specific responses. 

We conducted t tests, one per movement behaviour, comparing male and female 

average measurements in the control mites. As the Student’s t test is not robust when 

examining populations with unequal variances, we chose to use the unequal variance 

t test (also known as Welch’s test) due to its more robust nature, in particular in 

handling behavioural data (Ruxton, 2006). Table 3.4 summarises the results of 

comparison; as there were no significant differences in movement behaviour we did 

not include mite sex as a factor in subsequent analyses. 

 

Table 3.4 – Summary of comparison of movement behaviours between male and 

female T. pyri adults observed in control test arenas. Mean differences (comparing 

male to female), 95% confidence intervals of the difference, and Welch’s test results 

are shown. n = 11 (female); 13 (male). α = 0.05. 

Movement Behaviour Mean Difference 

95% Confidence 

Intervals t P 

Distance walked (cm) -17.81 -44.51 – 8.9 1.39 0.18 

Velocity (cm s-1) -0.017 -0.054 – 0.019 0.97 0.34 

Angular velocity (deg s-1) -2.08 -6.43 – 2.27 0.33 0.99 

Meander (deg cm-1) -6.27 -117.4 – 104.8 0.12 0.91 

Time active (s) 10.87 -179 – 201 0.12 0.91 
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Mite activity/inactivity 

To investigate whether the number of inactive (resting) mites was changed by 

insecticide residues, we conducted the binomial observed versus expected test in 

GraphPad Prism, comparing each insecticide treatment (observed) to the control 

(expected). As the test required equal sample populations, we adjusted the control 

sample population total from 30 to 24 by multiplying the active and inactive counts 

by 0.8. Due to the multiple tests the original significance value threshold of α = 0.05 

was adjusted using Bonferroni’s Correction, leading to a new level of α = 0.0167.  

 

Insecticide effects on movement behaviour 

To test whether insecticide residues affected mite movement behaviour, we 

subjected the movement behaviour data related to acetamiprid and deltamethrin 

residues to general linear models in SPSS, with the two options being multivariate 

analysis of variance (MANOVA) or multivariate analysis of covariance (MANCOVA), 

with all five measured behaviours included in the statistical model and one analysis 

per insecticide. Based on the outcome of the linear regressions plotting movement 

behaviour and environmental factors, we decided that acetamiprid and deltamethrin 

would be subjected to MANOVA, and dimethoate subjected to MANCOVA, as this 

allowed for statistical elimination of the influence of temperature and humidity 

(D’Alonzo, 2004). 

Prior to analysis, each dataset was tested for assumption violations. Multivariate 

outliers, defined as replicates with unusual combinations of values across the 

measured variables, are of importance as these can lead to skewed results (McCune 

and Grace, 2002). We conducted Mahalanobi’s Distance test to identify such outliers 

in each insecticide dataset as measurement error could have been responsible (e.g. 

through inaccurate tracking in EthoVision). The test was based on a critical chi value 

of 20.52 (α = 0.001; df = 5); and one replicate – from the 2.65 × 10-3 μg cm-2 

deltamethrin treatment – was identified. On scrutiny of the data and video recording 

it appeared the mite may have been injured during transfer into the arena as the 

walking behaviour was atypically convoluted; therefore, the replicate was excluded 

from further analysis.  
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Box’s M and Brown-Forsythe tests were conducted to assess equality of covariance 

and variance and inform selection of test statistic (Tables 3.5 – 3.6). For each test, the 

mean and mean difference ± 95% CIs are presented with interpretation of the Pillai’s 

Trace results. Based on the significant Box’s Test results, all three tests were 

interpreted based on the Pillai’s Trace value as this statistic is more robust to 

violations of the equality of covariance assumption (Pillai and Hsu, 1979). We used 

the Brown-Forsythe test to decide which post-hoc test was appropriate to apply to 

any significant results. As before, where equal variances were observed, Tukey was 

applied; where variances were unequal, the Games-Howell test was applied instead. 

For acetamiprid, Tukey was applied as the post-hoc test; for deltamethrin and 

dimethoate Games-Howell was applied. P values were automatically adjusted for 

multiple comparisons (α = 0.05). 

 

Table 3.5 – Results of Box’s M Test for equality of covariance for the three studied 

insecticides. Each insecticide included four treatment levels: three insecticide 

treatments and one control. α = 0.05. Significant values suggesting assumption 

violation are highlighted in bold. 

Insecticide Box’s M F P 

Acetamiprid 344.6 6.7 <0.0001 

Deltamethrin 457.5 9.2 <0.0001 

Dimethoate 420.7 8.3 <0.0001 
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For the dimethoate experiment, one additional assumption required testing: 

homogeneity of regression slopes in relation to the air temperature and relative 

humidity covariates. We tested this assumption by comparing the slopes of each 

movement behaviour, split by insecticide treatment level, to examine whether the 

responses differed between treatments. Responses to both air temperature and 

humidity differed between treatments when measuring angular velocity (Table 3.7). 

Where the assumption of slope homogeneity is violated, it is recommended that the 

Johnson-Neyman procedure is applied to determine regions of insignificance in the 

covariates (D’Alonzo, 2004); however, due to complexity we did not undertake this. 

As such we interpret results regarding angular velocity with caution. To confirm the 

final MANCOVA model design, the model was run to ascertain whether 

treatment*covariate interactions were significant (α = 0.05); if so, the interaction was 

retained in the model; if not, it was removed from the final model design. In the 

practice model run treatment*temperature was a significant interaction (P < 0.0001); 

however, treatment*humidity was not (P = 0.31). Therefore, we included dimethoate 

treatment; air temperature and relative humidity as covariates; and 

treatment*temperature as an interaction in the final MANCOVA model. 
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Table 3.7 – Results of the slope comparison test investigating variance in covariate 

response in the dimethoate dataset. Each movement behaviour was assessed against 

each environmental covariate. α = 0.05. A P value below 0.05 indicates that slopes 

generated for each dimethoate treatment are different, suggesting different 

responses to the covariate at different treatment levels. Significant outcomes are 

highlighted in bold. 

Movement Behaviour Covariate F P 

Distance walked 
Air Temperature 1.51 0.22 

Relative Humidity 1.08 0.36 

Velocity 
Air Temperature 0.27 0.85 

Relative Humidity 0.43 0.73 

Angular velocity 
Air Temperature 4.07 0.01 

Relative Humidity 9.35 <0.0001 

Meander 
Air Temperature 1.84 0.15 

Relative Humidity 2.57 0.06 

Time active 
Air Temperature 0.06 0.98 

Relative Humidity 0.64 0.59 

 

 

3.3 Results 

We observed no mite mortality during the observation period. Table 3.8 summarises 

the measured residue values for each insecticide and treatment level. Activity-based 

recoveries averaged 96% (95% CIs [91.4; 99.5]) for acetamiprid, 42% (95% CIs [39; 

44.7%]) for captan, 79% (95% CIs [77.5; 81.2]) for deltamethrin and 95% (95% CIs 

[90.4; 99.5]) for dimethoate compared to calculated expected activity. We found no 

samples measured below the minimum counts threshold, therefore all sample 

measurements were deemed valid. 
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3.3.1 Environmental conditions 

Table 3.9 summarises the environmental conditions recorded throughout the 

movement behaviour observations. We found no significant difference in 

temperature between the treatments (ANOVA; F = 0.82; P = 0.48); however, there 

was a significant difference in relative humidity between the treatments (ANOVA; F 

= 56; P < 0.0001), with humidity lowest in the deltamethrin samples, followed by 

control, acetamiprid and with highest humidity in dimethoate. Table 3.10 

summarises the post hoc analysis using the Games-Howell test. Graphs showing the 

spread of air temperature and humidity measurements for each treatment can be 

found in Appendix A. 
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3.3.2 Mite movement behaviour 

Tracks illustrative of typical mite walking behaviour on the control and insecticide 

treated arenas at each treatment level are shown in Figure 3.3. Comparing treated 

arenas to control, the largest visual difference in movement track comes between 

deltamethrin and control, where mites appear to cover less distance. The tendency 

to track around the outer arena barrier appeared absent in mites exposed to 

deltamethrin. 

 

 

Figure 3.3 – Illustrative movement tracks from individual mites observed in the 

control (blue tracks) and insecticide treated test arenas (red tracks). Mean arena area 

was 2.83 cm2. Each number corresponds to increasing insecticide treatment 

concentration – Acetamiprid 1 = 0.95 μg cm-2; 2 = 4.77 μg cm-2; 3 = 9.54 μg cm-2. 

Deltamethrin 1 = 5.3 × 10-4 μg cm-2; 2 = 2.65 × 10-3 μg cm-2; 3 = 5.3 × 10-3 μg cm-2. 

Dimethoate 1 = 0.24 μg cm-2; 2 = 1.19 μg cm-2; 3 = 2.38 μg cm-2. 
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3.3.2.1 Mite activity/inactivity 

Figure 3.4 shows the proportion of observed mites that were inactive or active in 

each insecticide treatment. When comparing these proportions at each treatment 

level (observed) against the control proportions (expected), we found no effect of 

acetamiprid residues at any concentration on the number of inactive mites (control 

= 20.8% inactive; 0.95 μg cm-2 = 12.5% inactive (95% CIs [4.3 – 31%]; P = 0.45); 4.77 

μg cm-2 = 25% inactive (95% CIs [12 – 45%]; P = 0.62); 9.54 μg cm-2 = 33.3% inactive 

(95% CIs [18 – 53%]; P = 0.14)). Deltamethrin residues on the test arena led to no 

mites (0%) being inactive in any of the three treatments (95% CIs of observed [0; 

13.8%]; P = 0.005 for all 3 treatments). Dimethoate residues did not change the 

proportion of inactive mites through the observation period (0.24 μg cm-2 = 12.5% 

inactive (95% CIs [4 – 31%]; P = 0.45); 1.19 μg cm-2 = 20.8% inactive (95% CIs [9 – 

40%]; P > 0.999); 2.38 μg cm-2 = 16.7% inactive (95% CIs [7 – 36%]; P = 0.8).  
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Figure 3.4 – Proportions of T. pyri individuals displaying activity (grey) or inactivity 

(white) during the 10 min observation period in control and insecticide treated 

arenas. Charts bordered in red signify a significant difference in the proportions when 

compared to control proportions (α = 0.016; all significant pairings P < 0.01).  
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3.3.2.2 Insecticide effects on movement behaviours 

Figure 3.5 summarises the effect of acetamiprid, deltamethrin and dimethoate on 

five movement behaviours (distance walked, velocity, angular velocity, meander and 

time active). For each insecticide we will discuss the effect of insecticide on 

movement behaviour considered as a whole; followed by a breakdown of effects on 

individual movement behaviours and finally effect of treatment levels. For 

dimethoate we will also discuss effect of environmental covariates. Effect sizes are 

discussed from interpretation of the partial eta squared (ƞ2) value. 
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Figure 3.5 – Effect of acetamiprid (left column), deltamethrin (middle column) and 

dimethoate (right column), each at three concentrations, on the distance walked, 

velocity, angular velocity, meander and time spent active as observed in 

Typhlodromus pyri individuals over 10 min. Line and whiskers for each column shows 
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mean ± 95% confidence intervals at each treatment level. Individuals deemed 

inactive throughout the observation period were excluded from analysis. Note the 

different Y axis for deltamethrin versus angular velocity. Significant effects of 

insecticide are shown on each graph, with brackets between control and a treatment 

level displaying significance of effect between that treatment and control; brackets 

to the top of each graph display significant effects of the pesticide overall versus 

control (P values adjusted for multiple comparisons; * = P < 0.05; ** = P < 0.01; *** = 

P < 0.001; **** = P < 0.0001). Control n = 24; acetamiprid n = 21; 18; 16; deltamethrin 

n = 23; 23; 25; dimethoate n = 21; 19; 20. 

 

Acetamiprid 

Exposure to acetamiprid residues affected the overall movement behaviour of T. pyri 

adults, though only one fifth of the variance seen is apportioned to acetamiprid 

(MANOVA; F = 0.392; P < 0.0001; ƞ2 = 0.209). When analysing each individual 

movement behaviour, angular velocity was found to be significantly higher in mites 

exposed to acetamiprid residues than those in control (F = 16.99; P < 0.0001; ƞ2 = 

0.4). Angular velocity increased by 7.95 deg s-1 between 0.95 μg cm-2 and control, 8.5 

deg s-1 between 4.77 μg cm-2 and control, and 6 deg s-1 between 9.54 μg cm-2 and 

control; results of the post-hoc analysis are summarised in Table 3.11. The other four 

movement behaviours displayed no significant effect of acetamiprid residue with 

negligible influence on the behaviours based on partial eta squared values of 

between 0.04 – 0.09. 
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Table 3.11 – Summary of Games-Howell post-hoc analysis of the differences in 

measures of angular velocity as measured in T. pyri adults observed in control or 

treated arenas containing acetamiprid residues. P values are corrected for multiple 

comparisons (α = 0.05). Significant differences between an acetamiprid 

concentration and control are highlighted in bold.  

Movement 

Behaviour 

Treatment 

Comparison 

Mean 

Difference 

95% Confidence 

Intervals P 

Angular 

velocity  

0 vs 0.95 µg cm-2 -7.95 deg s-1 -11.48 -4.43 <0.0001 

0 vs 4.77 µg cm-2 -8.53 deg s-1 -12.15 -4.91 <0.0001 

0 vs 9.54 µg cm-2 -5.98 deg s-1 -9.78 -2.17 0.0001 

 

 

Deltamethrin 

When exposed to deltamethrin residues, overall mite movement behaviour was 

significantly affected (MANOVA; F = 6.42; P < 0.0001; ƞ2 = 0.27); the effect of 

deltamethrin was greater than that caused by acetamiprid. When investigating the 

effects of deltamethrin on each movement behaviour, four behaviours were 

significantly affected: distance walked by the mites was decreased by deltamethrin 

residues (F = 38.4; P < 0.0001; ƞ2 = 0.56); angular velocity increased (F = 5.4; P = 0.002; 

ƞ2 = 0.15); meander increased (F = 9.27; P < 0.0001; ƞ2 = 0.23); and time active 

decreased (F = 22.3; P < 0.0001; ƞ2 = 0.42). Velocity was not significantly affected by 

deltamethrin residues and treatment had a very small influence (ƞ2 = 0.05). The 

strongest effect of deltamethrin was observed in changes in distance walked and time 

spent active; deltamethrin had a relatively small influence on angular velocity and 

meander. Table 3.12 summarises the post-hoc Games-Howell analysis for the effect 

of each deltamethrin dose against control for each of the four significant movement 

behaviours. There were stepwise reductions in distance moved with increasing 

deltamethrin residue, increasing angular velocity with increasing residue levels, 

increasing meander with increasing residue level (though the mean meander 

observed in the second treatment was slightly lower than that observed in the first 
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treatment), and finally decreasing time spent active as deltamethrin residues 

increased.  

 

Table 3.12 – Summary of Games-Howell post-hoc analysis of the differences in 

measures of distance moved, angular velocity, meander and time active as measured 

in T. pyri adults observed in control or treated arenas containing deltamethrin 

residues. P values are corrected for multiple comparisons (α = 0.05). Significant 

differences between a deltamethrin concentration and control are highlighted in 

bold.  

Movement 

Behaviour 

Treatment 

Comparison 

Mean 

Difference 

95% Confidence 

Intervals P 

Distance 

walked  

0 vs 5.3 × 10-4 µg cm-2 39.8 cm 20.8 58.7 <0.0001 

0 vs 2.65 × 10-3 µg cm-2 44.3 cm 26.2 62.3 <0.0001 

0 vs 5.3 × 10-3 µg cm-2 46.5 cm 28.6 64.5 <0.0001 

Angular 

velocity 

0 vs 5.3 × 10-4 µg cm-2 -8.6 deg s-1 -21.8 4.6 0.3 

0 vs 2.65 × 10-3 µg cm-2 -25.2 deg s-1 -39.2 -11.3 <0.0001 

0 vs 5.3 × 10-3 µg cm-2 -37.9 deg s-1 -72.6 -3.3 0.028 

Meander 

0 vs 5.3 × 10-4 µg cm-2 -199.3 deg cm-2 -319.3 -79.2 <0.0001 

0 vs 2.65 × 10-3 µg cm-2 -152.1 deg cm-2 -280.5 -23.7 0.015 

0 vs 5.3 × 10-3 µg cm-2 -331.5 deg cm-2 -523.3 -139.7 <0.0001 

Time active 

0 vs 5.3 × 10-4 µg cm-2 200.3 s 50.4 350.2 0.005 

0 vs 2.65 × 10-3 µg cm-2 287 s 156.4 417.6 <0.0001 

0 vs 5.3 × 10-3 µg cm-2 316.7 s 189.4 443.9 <0.0001 

 

 

Dimethoate 

Overall, once accounting for the environmental covariates, T. pyri movement 

behaviour was significantly affected by dimethoate residues, though the residues 

only had a small influence (MANCOVA; F = 3.85; P < 0.0001; ƞ2 = 0.21). Air 

temperature also significantly affected movement behaviour, and the influence was 

greater than the influence of dimethoate residues (F = 7.84; P < 0.0001; ƞ2 = 0.36). 

Although preliminary investigations of environmental measures showed relative 
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humidity affected angular velocity, the final model did not find a significant effect (F 

= 1; P = 0.42; ƞ2 = 0.07). There was a significant interaction between air temperature 

and dimethoate treatment, with the influence of this interaction as great as the effect 

of dimethoate (F = 3.79; P < 0.0001; ƞ2 = 0.21). When analysing movement behaviours 

individually, only angular velocity showed a significant response to any factor, though 

all effects were relatively small: dimethoate treatment increased the rate (F = 3.6; P 

= 0.017; ƞ2 = 0.128); air temperature (F = 10.8; P = 0.002; ƞ2 = 0.127), and the 

interaction of temperature and treatment (F = 4.1; P = 0.01; ƞ2 = 0.141) also 

significantly affected angular velocity. The interaction means that, while dimethoate 

residues did increase angular velocity, the effect varied depending on air 

temperature, and this effect was greater than individual effects of dimethoate or 

temperature. Post-hoc comparisons of estimated means – values corrected for the 

influence of air temperature (set at 23.7°C) and humidity (set at 54.6%) – showed 

that angular velocity increased when mites were exposed to dimethoate residues 

(Table 3.13) with an increase of 20.59 deg s-1 at 0.24 µg cm-2 (95% CIs [0.09; 41.2 deg 

s-1]; P = 0.048), 15.4 deg s-1 at 1.19 µg cm-2 (95% CIs [7.1; 23.6 deg s-1]; P < 0.0001), 

and 17.3 deg s-1 at 2.28 µg cm-2 (95% CIs [7.2; 27.3 deg s-1]; P < 0.0001) compared to 

control mite angular velocity. Although these differences in response between 

dimethoate residues and control are significant, caution must be taken in the 

interpretation due to the relatively small effects and response to treatment being 

affected by temperature. 
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Table 3.13 – Summary of Games-Howell post-hoc analysis of the differences in 

measures of angular velocity as measured in T. pyri adults observed in control or 

treated arenas containing dimethoate residues. Comparisons are based on estimated 

means arising from multivariate analysis of covariance (MANCOVA) and are corrected 

for the influence of air temperature and relative humidity. P values are corrected for 

multiple comparisons (α = 0.05). Significant differences between a dimethoate 

concentration and control are highlighted in bold.  

Movement 

Behaviour 

Treatment 

Comparison 

Mean 

Difference 

95% Confidence 

Intervals P 

Angular 

velocity  

0 vs 0.24 µg cm-2 20.59 deg s-1 0.09 41.2 0.048 

0 vs 1.19 µg cm-2 15.4 deg s-1 7.1 23.6 <0.0001 

0 vs 2.28µg cm-2 17.3 deg s-1 7.2 27.3 <0.0001 

 

 

3.3.2.3 Avoidance behaviour 

No mites became trapped in the arena barrier in the control, acetamiprid or 

dimethoate treated arenas. However, several mites became trapped at each dose 

level of deltamethrin, with 8, 16 and 14 mites becoming trapped during the 

observation period at 5.3 × 10-4, 2.65 × 10-3, and 5.3 × 10-3 µg cm-2 respectively. Figure 

3.6 shows the time taken for each mite to become trapped. When comparing the 

average time to trap, there was a 122 sec reduction in the time to become trapped 

between the first and second treatments (95% CIs [-4.1; 248 s]); a 99 sec reduction 

between the first and third treatments (95% CIs [-29.6; 227.8 s]); and a 23 sec 

increase between the second and third treatments (95% CIs [-129; 84 s]). 
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Figure 3.6 – Time taken for each trapped mite to become trapped when exposed to 

deltamethrin. Line and whiskers represent mean ± 95% confidence intervals. 

 

 

3.4 Discussion 

3.4.1 Pesticide residue analysis 

Our novel method developed during this study produced high activity recovery rates 

and relatively low variance for acetamiprid, deltamethrin and dimethoate (Table 3.8). 

It is likely that recovery was below 80%, and variances above 20% for deltamethrin 

due to the low levels of activity being measured in each sample, and in any future 

studies methods should be adapted to increase the radioactivity within each sample, 

or to increase counting time to improve the counting. Radioactivity recoveries for 

captan were very low at 42%, and likely a result of the substance’s low solubility in 

methanol (4 g kg-1) and instability in non-acidic solutions (EFSA, 2008). We conclude 

that this analytical method provided a rapid, accurate and precise method for 

quantifying residues of acetamiprid, deltamethrin and dimethoate, but was not 

successful in quantifying captan, which has a reputation for being a challenging 

compound to analyse by conventional means due to rapid degradation in solution, 

including in solvents (EURL, 2017). 
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3.4.2 Control mite movement 

We found that the movement of T. pyri observed in the control test arenas showed a 

tendency for individuals to track around the outer edge of the arena (Figure 3.3, 

Control 1), though there is a large degree of natural variation in movement 

behaviours as illustrated by the three control tracks. This behaviour has been noted 

previously in a comparison of movement with and without prey eggs within a test 

arena, where T. pyri individuals tracked the outside of the arena when no prey eggs 

were available, but displayed numerous visits to the prey egg site when these were 

within the arena (Varley et al., 1994). The mite movement observed in control test 

arenas therefore depicts typical food searching behaviour in individuals. 

 

3.4.3 Mite activity/inactivity 

Of the three insecticides, we found that deltamethrin residues caused a change in the 

activity of T. pyri, with no mites resting for the full ten minutes (Figure 3.4). In a study 

manually recording activity in T. pyri larvae, Croft and Zhang (1994) noted that mites 

on untreated surfaces tend to be most active in the first few hours of the study, 

though their data showed that 80% of individuals were noted to be resting at the first 

observation point four hours into the study, a much higher proportion of resting 

mites than observed in the control cohort of our study. This could be an artefact of 

natural variation amongst individuals; however, it could also suggest that in such 

studies, mites are less likely to rest in the hour after transfer into an arena. The 

significant response in activity related to deltamethrin residues is not unexpected as 

several studies have related pyrethroid exposure to hyperactivity in many species. 

Hyperactivity was observed in the assassin bug (Triatoma infestans) when they were 

exposed to topical applications of deltamethrin (Alzogaray et al., 1997), and in the 

two spotted spider mite (Tetranychus urticae) when exposed to fenvalerate and 

permethrin spray (Iftner and Hall, 1983). However, one study showed high 

concentrations of pyrethroids can arrest movement in two booklice species 

(Liposcelis bostrychophila and L. entomophila; Guedes et al., 2008), suggesting there 

is a threshold where low concentrations elicit hyperactivity, and high concentrations 

elicit arrest. In the present study it appears the residue levels mites were exposed to 
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were at levels that induce hyperactivity. We observed no significant differences in 

the number of resting mites in mites exposed to acetamiprid or dimethoate residues, 

suggesting that the residue levels were not high enough to induce changes in resting 

behaviour. 

 

3.4.4 Movement behaviour 

Prior to the experiments commencing, we hypothesised that residues of acetamiprid, 

deltamethrin and dimethoate would all lead to changes in movement behaviour. We 

came to this hypothesis for acetamiprid due to previously reported effects of 

acetamiprid on the feeding behaviour of a phytoseiid mite (Beers and Schmidt-Jeffris, 

2015). For deltamethrin, our hypothesis was based on observed repellency in 

phytoseiids exposed to pyrethroids (Riedl and Hoying, 1983). For dimethoate, we 

based the hypothesis on the high toxicity of the active substance to T. pyri (Blümel et 

al., 2000a). Our broad hypotheses were proven to be correct for all three insecticides 

to varying degrees, with acetamiprid and dimethoate only affecting angular velocity, 

and deltamethrin affecting many of the measured movement behaviours. 

Deltamethrin was the only pesticide to elicit a reduction in the distance walked by T. 

pyri when exposed to the residues, with reductions of 76%, 85% and 89% from the 

lowest to highest residue level compared to control (Figure 3.5). Additionally, the 

only significant response in time spent active was observed in mites exposed to 

deltamethrin, with 45%, 64% and 71% reductions respectively; the step-wise 

reduction in activity is consistent with the reduced distances walked. The 

measurements for deltamethrin were corrected for the mites that had escaped the 

arena (avoidance behaviour is discussed in section 3.4.5), meaning decreased activity 

is a result of increased resting behaviour rather than trapped individuals. Pyrethroids 

are known to arrest movement in spiders and psocids (Guedes et al., 2008; Shaw et 

al., 2006). A study of movement behaviour on leaves half treated with the pyrethroid 

esfenvalerate found that there were changes in walking behaviour in the red mite P. 

ulmi (Bowie et al., 1999), though the analysis to detect the differences was complex. 

In the present study, we checked each individual for mortality at the end of each 

observation period and no death was observed as each mite would move if provoked. 
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Therefore, we conclude the residues in the arena were likely at a threshold to cause 

reduced mobility via ataxia within the first few minutes of exposure; however, the 

exposure duration (or residue level) was not enough to turn the ataxia into paralysis 

of the mite. This contrasts with our finding in the previous section, suggesting the 

residues caused hyperactivity; therefore, we suggest the residues were at levels able 

to cause enough irritation to ensure each individual moved, but was also having an 

overall arresting effect. 

Angular velocity, also described as turning speed, was significantly increased in mites 

exposed to residues of all three pesticides (Figure 3.5). In acetamiprid all three 

residue levels elicited increases in turning; in deltamethrin the second and third 

treatment levels led to increased turning speeds; and dimethoate residues increased 

angular velocity in all residue levels compared to control. The meander (turning 

relative to distance moved) also increased with increasing concentrations of 

deltamethrin residues and in relation to control, a behaviour that is strongly related 

to angular velocity as both are calculated from the turning angle metric calculated by 

EthoVision. 

The increase in turning speed and path meander suggests either hyperactivity or 

agitation induced by the residues, especially when combined with the observed non-

significant increases in time spent active, and would be classed as irritation under the 

definition of Wiles and Jepson (1994). It could also be interpreted as a decrease in 

directed movement through loss of muscle coordination, especially with the slight 

downward trend in distance moved and slight increase in meander where 

acetamiprid exposure occurred. Turning behaviour has been identified as a key 

component of search orientation patterns (Bayley, 1995), therefore the observed 

increases in angular velocity could signal a change in food searching behaviour in field 

settings. This interpretation is consistent with reports of more indirect movement in 

ground beetles exposed to lambda-cyhalothrin (Prasifka et al., 2008), and ataxia in 

the spider Pardosa amentata (Shaw et al., 2006). Shaw et al. also observed reductions 

in prey consumption arising from the ataxia, validating the idea that food searching 

could be affected. 
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Dimethoate was the only active substance where movement behaviours were found 

to be affected by environmental factors, with air temperature and relative humidity 

both correlating with the mite’s angular velocity. The model analysed via MANCOVA 

showed that the initial correlation between angular velocity and humidity was not 

significant; however, air temperature significantly influenced the behaviour, and we 

found a significant interaction between dimethoate treatment and air temperature 

that explained more variance than each factor individually (ƞ2 = 0.14 compared to ƞ2 

= 0.13 for treatment and temperature).  

When comparing temperatures measured during the dimethoate experiment to 

temperatures measured during the other insecticide experiments, we found that the 

greatest temperature range was observed in the dimethoate samples (Table 3.9), but 

there was no significant difference when compared to the other treatments. 

Therefore, we may be observing a physiological reaction where dimethoate residues 

increase sensitivity to fluctuations in air temperature or humidity, especially since 

there were no strong correlations between control behaviour and environment 

(Table 3.3). There are no published findings to support this idea so we can only 

hypothesise at this point. However, there are a small number of studies that 

demonstrate insecticide toxicity changes with changes in air temperature. One study 

of insecticide toxicity to a field population of the lacewing Chrysoperla carnea found 

that 3d-LC50s reduced with increasing temperature for acetamiprid and chlorpyrifos, 

but increased for lambda-cyhalothrin and spinosad between 20 and 40°C (Mansoor 

et al., 2015). Another study highlighted that organophosphate toxicity increased with 

increased temperature (Glunt et al., 2013). We found that angular velocity and 

meander increased with increased air temperature in mites exposed to dimethoate 

residues, but not in control mites (Table 3.3); therefore, our alternative conclusion is 

that the higher air temperatures increased the toxicity of dimethoate to T. pyri, and 

that the effects were shown as more agitated movement, or irritation, just ten 

minutes after exposure. Further experiments would be necessary to test our 

conclusions to determine what exactly is happening. 

Ultimately, the analysis of variance showed a significant response in angular velocity 

once environmental effects were removed; however, due to the significant 
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interaction this conclusion must be interpreted with caution and further complex 

analysis would be necessary to see at what air temperatures the mite angular velocity 

is affected.  

 

3.4.5 Avoidance behaviour 

Avoidance behaviour was only observed in mites exposed to deltamethrin residues, 

with several mites attempting to escape the arena at all deltamethrin concentrations 

and thus becoming trapped in the arena barrier. We saw no attempts to escape 

arenas that led to trapping in any other mites in other treatments, and as such we 

conclude this response to deltamethrin is confirmed avoidance behaviour through 

running away. Based on the definitions given in the introduction, this avoidance 

behaviour is classed as repellence by Guedes et al. (2016), though it would class as 

irritancy under the definition of Beers and Schmidt-Jeffris (2015), who classed a 

tendency to escape as irritancy. Between the first and second concentration levels 

there was a 37% reduction in the time taken for mites to becoming trapped, and a 

30% reduction in the trap time between the first and third concentration levels 

(Figure 3.6). This suggests that the residue level that triggers a more rapid repellence 

is between 0.0005 and 0.0027 μg cm-2, giving a trigger below the maximum field rate.  

Avoidance behaviour has previously been reported in female T. pyri protonymphs 

exposed to fungicidal formulations containing mancozeb and metiram (Blümel et al., 

2000b). G. occidentalis mites displayed avoidance when exposed to acetamiprid and 

lambda-cyhalothrin residues in a choice arena (Beers and Schmidt-Jeffris, 2015). 

Avoidance by predatory insects of pesticide residues reduces the ability for such 

species to control pests (Umoru et al., 1996), which can lead to reduced efficacy as 

biocontrol agents (Hislop et al., 1981). 

 

3.4.6 Ecological relevance of findings 

Both changes in movement behaviours, such as ataxia and convoluted walking paths, 

and pesticide residue avoidance led to reduced prey consumption in spiders and 

parasitoids (Shaw et al., 2006; Umoru et al., 1996). Reduced prey consumption has 
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been linked to longer larval development periods in T. pyri (Hayes and McArdle, 

1987); as a side effect of pesticide-induced behaviour changes, this would therefore 

have population-level consequences. Avoidance of pyrethroid residues on leaves led 

to reduced oviposition rates in T. pyri; however, the study authors noted that this 

may not be deleterious; as prey also preferred unsprayed surfaces, this would not 

necessarily lead to predators hatching away from their food source (Bowie et al., 

2001). However, pesticide avoidance behaviour can ultimately lead to the dispersal 

of predatory mites like T. pyri from pyrethroid-treated crops, resulting in the loss of 

the predator from the ecosystem and a shift in species dynamics and pest stresses 

(Cordeiro et al., 2013; Gerson and Cohen, 1989). 

Our study investigated behavioural effects at insecticide active substance 

concentrations no more than double the published 7d-LR50 for T. pyri, and found that 

movement behaviour in mites was affected within 10 minutes when exposed to 

residues equivalent to one fifth of the LR50 for all three insecticides. However, we 

want to consider whether these effects would occur in an apple orchard. In Chapter 

2 we concluded that 42.6 L, or 17% of the sampled penconazole spray was deposited 

on the upper surface of apple leaves when 250 L was applied (Section 2.8). Our 

treatment concentrations for acetamiprid were based on regulatory studies, where 

active substances are applied at a rate to achieve no more than 200 L Ha-1 (Blümel et 

al., 2000a; EFSA, 2016); if 17% of spray landed on the leaf surfaces then this would 

equate to 34 L. Based on this, we have converted our nominal treatment 

concentrations for acetamiprid and deltamethrin to their equivalent application rate 

and the residue levels we would observe on apple leaves (Table 3.14). We also used 

the same basis to estimate how much active substance would land on apple leaves 

at the recommended application rate (i.e. label rate) for orchards (Table 3.15). This 

information has been used to inform our conclusions regarding these two active 

substances. We have not treated dimethoate in the same way as it is not permitted 

for use in apple orchards. 
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Table 3.15 – Field application rates for acetamiprid and deltamethrin expressed as 

estimations of residues landing on apple leaves in one hectare of orchard and per 

unit of leaf area. Presented values are based on the assumption that 17% of a 200 L 

Ha-1 pesticide spray application lands on apple leaves in a 1 Ha orchard. 

Active 

ingredient 

Field application 

Rate (ga.s. ha-1) 

Apple leaf residues in 

orchard (g ha-1
ground) 

Apple leaf residues  

(μga.s. cm-2
leaf) 

Acetamiprid 75 12.77 0.052 

Deltamethrin 8.75 1.49 0.006 

 

For acetamiprid, if acetamiprid is applied at the label rate of 75 ga.s. Ha-1, then we 

estimate that 12.77 g of the applied active substance would land on the apple leaves 

based on assumptions outlined in Section 2.8. The acetamiprid residue levels 

measured in our laboratory study were 19 – 182 times higher than the expected leaf 

residues arising from a field rate application (Table 3.14); therefore, the behavioural 

effects we observed would not be of concern in the crop environment unless they 

occur at much lower residue levels. This difference is a result of our laboratory study 

method applying 150 μL of treatment to the test arena, giving 53 μL cm-2 when 

deposition in the field amounted to 0.173 μL cm-2. We chose the application volume 

to ensure total coverage of residues on the test arena surface, though in future 

studies this method will require refinement for substances such as acetamiprid. 

For deltamethrin, a label rate application of 8.75 ga.s. Ha-1 would lead to 1.5 g landing 

on apple leaves in one hectare of orchard, giving 0.006 μga.s. cm-2
leaf (Table 3.15). 

Equivalent residues measured in our laboratory studies were 1.4 – 14 times lower 

than this; therefore, the range of behavioural changes we observed along with 

avoidance behaviour would be expected to occur in the crop environment. 

Moreover, with effects being observed at rates several times lower than what could 

be expected as leaf residues, we could conclude that the behavioural effects and 

residue avoidance could be long lasting while deltamethrin persists. However, one 

study has shown that agrobiont spiders avoided fresh permethrin residues, but did 

not avoid 24 hour old residues that continued to be detrimental to the test species 

(Pekár and Haddad, 2005), so we cannot draw conclusions regarding avoidance of 
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degrading residues without further study. Ultimately, the behavioural effects 

observed in mites exposed to deltamethrin are likely to be less severe than what we 

observed due to pyrethroid resistance in agricultural mite populations (Bonafos et 

al., 2008). As dimethoate is no longer used in crop systems where T. pyri reside, we 

cannot comment on the implications for this insecticide. Further study would be 

required to investigate the severity of implications linked to these changes in field 

populations. 

 

3.4.7 Scope for further study 

Firstly, we have identified an opportunity for an in depth study involving dimethoate 

residues. The interaction between dimethoate effects and temperature effects led to 

our two hypotheses that T. pyri are either more sensitive to environmental 

fluctuations when exposed to dimethoate, or that dimethoate toxicity is increased 

with increasing air temperature. However, it was not possible for these to be 

explored further. As such, a study involving a range of controlled temperatures and 

humidity and dimethoate residues could be undertaken to further investigate this 

potential interaction between a pesticide and environmental conditions. The study 

could also be extended to investigate the other compounds, as scientific literature 

has shown toxicity of organophosphates, pyrethroids and neonicotinoids are 

changed with changing air temperature (Mansoor et al., 2015).  

One major option for further laboratory-based study is for behavioural assays to be 

undertaken on pesticide formulations and the individual co-formulants contained 

within. The study could be extended to investigate any mixture effects, such as the 

combined effect of the active substance and an adjuvant combined on behaviour. 

Another option would be for numerous other non-target arthropods of different 

families to be studied. Chrysoperla carnea larvae are regularly included in higher tier 

laboratory and/or semi-field studies (EFSA, 2015). Our results also highlight the 

importance of considering environmental conditions to the response of mites to 

pesticides. A study of locomotory activity in G. occidentalis found that activity peaked 

at 24°C and reduced at temperatures above 25°C (Penman and Chapman, 1981); 

therefore, a more in depth study of responses at a range of air temperatures would 
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be useful, especially for risk assessment and the future modelling of predatory mite 

responses to pesticides in a range of climate zones or conditions. 

There are also many opportunities for further study through investigations of data at 

higher resolutions. EthoVision could be used to analyse whether movement 

behaviour changes through the observation period, for example comparing the first 

and fifth minutes of an observation in a repeated measures design. This, combined 

with longer observation periods, would allow for a precise investigation into when 

mite movement behaviours recover from pesticide residues, as suggested by 

Desneux et al. (2004). Studies could also be designed to investigate whether mites 

spend more or less time in different parts of a test arena, such as quantifying the 

proportion of time spent tracking around the arena edge. Studies could also 

investigate whether the residues change the behaviour over 24 hours or more, as 

such time scales would be relevant to better understanding of the implications for 

field populations. 

On a different perspective, there are many questions raised by our findings in relation 

to the risk to T. pyri populations as a result of pesticide induced behaviour changes. 

There are three pertinent questions to ask in this context: do behaviours change in 

the crop environment like we observed in the laboratory? Do any changes affect the 

biocontrol potential of T. pyri? Finally, do behavioural changes affect the overall 

population structure? These questions would require both field and laboratory 

studies: field investigations of mite behaviour in sprayed orchards; assessments of 

feeding and pest control in both the laboratory and the field; and laboratory studies 

of changes in reproductive behaviour would all inform the discussion of the risk to 

non-target arthropods arising from pesticide exposure. For example, the avoidance 

of pyrethroid residues (such as what we observed in the deltamethrin study) could 

reduce biocontrol potential, but could reduce mortality in field populations due to 

the ability to avoid contamination. This combination of effects would then give an 

arising question: what are the long term population consequences? Such studies 

could then be used to develop a population model to investigate the long term 

consequences of any behavioural changes; this would combine well with the previous 



 

114 

 

suggestion of studying effects at a range of temperatures to allow for the modelling 

of such consequences over large spatial scales. 

Because the present study arena design offered no choice to the mites in being 

exposed to insecticide residues, the next logical step for further study was to offer 

the mites a choice by creating a partly exposed test arena to see whether the 

presumed avoidance behaviour observed in this study is true avoidance behaviour 

when mites have a choice. In the following chapter we explore this idea in full through 

a series of experiments similar to those discussed in the present chapter.
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Chapter 4 – Can the predatory mite 

Typhlodromus pyri avoid pesticides? A 

study of movement behaviour and 

avoidance in choice arenas 
 

4.1 Introduction 

4.1.1 Why choice arenas? 

In Chapter 3 we explored the necessity for the study of sublethal effects induced by 

pesticides, notably behavioural changes, and how the natural progression of the 

original study was to investigate behaviours in arenas offering free choice to 

individuals, where part of the surface is treated with pesticide. Avoidance behaviour 

was highlighted in a review by Hellou (2011) as a factor warranting further testing. 

Avoidance can be good or bad depending upon the chosen test subject and context, 

with avoidance of residues being beneficial to non-target species, or detrimental to 

the control of pests. For example, Pekár and Haddad (2005) devised choice arena 

experiments to investigate whether agrobiont spiders could recognise and avoid 

contaminated surfaces, therefore reducing their contact with harmful substances. 

Such avoidance has been highlighted as a protective rapid response for non-target 

species (Hellou, 2011). Conversely, a study of pest responses to stored product 

pesticides found that repellence reduced the efficacy of pyrethroid insecticides in 

controlling psocid species (Guedes et al., 2008). It would not have been possible to 

identify these behavioural responses from bioassays using full coverage test arenas, 

demonstrating that the bioassays used for EU regulatory testing methods should be 

taken as worst case scenarios (Beers and Schmidt-Jeffris, 2015), and that studies 

using free choice arenas should be implemented more frequently to augment 

understanding of responses. 

The premise of studying partially treated arenas and the need for such experiments 

is also strengthened by literature regarding real pesticide spray patterns. Our study 

of fungicide spray exposure in an apple orchard demonstrated that spray covered on 
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average 16% of the upper surface of an apple leaf; therefore, pesticide exposure at 

the micro scale is heterogeneous (Chapter 2; Witton et al., 2018). Studies have also 

investigated differences between apple leaf surfaces. Spray retention on upper and 

lower apple leaf surfaces varied when sprayed with the same volume of pesticide, 

with upper leaf surfaces retaining 76% less pesticide than lower surfaces; this was 

related to more leaf hairs on the lower surface (Hall et al., 1997). Another study found 

that EDTA metal chelate deposits were at least twice as high on the lower leaf surface 

in apple trees sprayed by commercial sprayers (Cross et al., 2003). The heterogeneity 

and partial coverage of surfaces in the environment reiterate the previous point that 

experimental designs using full surface coverage demonstrate a worst case scenario, 

but also do not match reality.  

 

4.1.2 Studying avoidance behaviour in choice arenas 

In Chapter 3 we discussed the definitions of avoidance behaviour, reviewed literature 

that had already studied these behaviours, and also investigated avoidance in T. pyri. 

However, as highlighted at the end of our study, to better understand how 

movement behaviours are affected in a more realistic setting, studies need to 

investigate how behaviours change when individuals are offered a choice in whether 

to move or reside on exposed or unexposed surfaces. The use of such free choice 

experiments enables greater understanding of behaviour and its consequences in the 

spatially heterogeneous exposure landscapes found in agricultural systems. 

Additionally, the study of avoidance could fill gaps between the behaviour of natural 

enemies (such as T. pyri) in the field and the results of small scale, no-choice, worst-

case laboratory experiments (Beers and Schmidt-Jeffris, 2015).  

A number of studies have investigated behaviours of various pest species in choice 

arenas. Cordeiro et al. (2013) studied the behaviour of the pest Southern Red Mite 

(Oligonychus ilicis) in choice arenas where half of the surface was treated with a 

sublethal concentration of deltamethrin; the authors found no difference in the 

amount of time spent in the untreated and treated sectors, suggesting no avoidance 

behaviour occurred. Additionally, they observed no difference in the distance walked, 

the walking velocity, or the resting time, reinforcing the authors’ conclusion that 
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there were no deltamethrin induced behavioural changes. An earlier study by the 

same authors defined repellence as spending less than 1 second on the treated 

surface, and irritability as spending less than 50% of the observation period on the 

treated surface (Cordeiro et al., 2010), and these definitions have been used widely 

in recent work. The grain weevils Sitophilus granarius and S. zeamais showed 

irritability when exposed to formulations containing the pyrethroid deltamethrin and 

the micro-organism derived spinosad, though showed no notable avoidance of 

residues (Vélez et al., 2017). A study of the phytophagous mite Steneotarsonemus 

concavuscutum found individuals would spend on average 20% of their time on 

surfaces treated with acaricide formulations containing abamectin, azadirachtin and 

fenpiroximate (França et al., 2018). One study investigated avoidance behaviour in 

the tomato leaf miner (Tuta absoluta) when exposed to azadirachtin and found that, 

while there was no significant residue avoidance on filter paper substrates, there was 

significant avoidance of the insecticide at concentrations relating to LD50 and LD90 on 

tomato leaves, suggesting test substrate can impact on behaviour studies (Tome et 

al., 2013). The authors suggested that azadirachtin itself may not be repellent, but 

may instead mask compounds emitted by tomato leaves that are attractive to the 

species. 

A number of studies have also investigated avoidance behaviours in beneficial species 

in choice arenas. A study of repellence in three species (the ladybird Cycloneda 

sanguinea, the pirate bug Orius insidiosus, and the soldier beetle Chauliognathus 

flavipes) exposed to seven insecticide formulations in choice arenas half treated with 

insecticides found that bifenthrin, imidacloprid and acephate repelled all three 

species, and deltamethrin, a pyrethroid we studied in Chapter 3, also induced 

repellence in all three species with 75% repellence in C. sanguinea, and 65% 

repellence in O. insidious and C. flavipes (Fernandes et al., 2016). However, the 

methodology of this study was basic and involved counting how many individuals out 

of twenty were on the treated surface 15 minutes after their placement in the arena. 

Other studies used more sophisticated methods to determine repellence by using 

movement analysis software to calculate how much time was spent in each arena 

section. One such study involved two lacewing species, and showed that Chrysoperla 
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externa larvae were repelled by the plant derived insecticide azadirachtin in 

formulation, and Ceraeochrysa cubana larvae were completely repelled by the 

pyrethroid permethrin in formulation in half treated arenas (Cordeiro et al., 2010). 

Figure 4.1 illustrates this repellence when viewed as walking tracks derived from 

movement analysis, with no tracks falling within the treated sector. In contrast, 

Guedes et al. (2008) identified “weak repellence” caused by pyrethrins in a pest 

psocid species, with their statement describing a lower proportion of time spent on 

the treated surface versus the untreated surface; this subtler response is illustrated 

in Figure 4.2. 

 

 

Figure 4.1 – Representative movement tracks of individual lacewing larvae of the two 

species Chrysoperla externa and Ceraeochrysa cubana over 10 minutes in 9 cm test 

arenas half-treated with dried insecticide residues (upper sector of each arena). 

Repellence is observed in C. externa exposed to azadirachtin, and C. cubana exposed 

to permethrin (Cordeiro et al., 2010). 
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Figure 4.2 – Representative movement tracks of individual psocids (top row = 

Liposcelis entomophila; bottom row = L. bostrychophila) over 10 minutes in 2.5 cm 

test arenas half treated with dried insecticide formulations (right hand sector of each 

arena). Weak repellence is observed in L. bostrychophila when exposed to pyrethrin 

residues (bottom right), where individuals spent on average 42% of the observation 

time on the treated surface (Guedes et al., 2008) 

 

A study of avoidance behaviour in Galendromus occidentalis on bean leaves found 

that many formulations did not induce avoidance behaviours, but acetamiprid and 

lambda-cyhalothrin induced “run off”, where individuals escape the test arena 

(defined as irritancy in this study), and spirotetramat, flubendiamide and 

cyantriniliprole induced “repellence”, the term given for avoiding the treated surface 

by remaining on the untreated surface (Beers and Schmidt-Jeffris, 2015). Another 

study used a more complex, four choice arena: the authors investigated avoidance 

and movement in four agrobiont spider species exposed to commercial formulations 

containing the organophosphate phosalone; permethrin; the micro-organism 

derived biopesticide Bacillus thuringiensis; and a water control, and found that three 

of the four species were repelled by fresh phosalone and permethrin residues, but 
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not by one day old residues, raising concerns that the beneficial spiders are not 

repelled by compounds that continue to be toxic (Pekár and Haddad, 2005).  

In 2005 the lack of data on pesticide repellency to natural enemies was highlighted 

(Pekár and Haddad, 2005), and though many studies have been conducted, 

information continues to be limited for some species and compounds. There 

continues to be a lack of knowledge about pesticide induced repellency in phytoseiids 

(Beers and Schmidt-Jeffris, 2015).  

One factor that the majority of current choice arena studies has in common is that 

they study the effects of pesticides in formulation. While this is more realistic when 

considering real world exposure, it raises the idea that co-formulants may be inducing 

avoidance or other behavioural changes. Adjuvants and solvents included in 

commercial formulations of the biopesticide neem can influence toxicity (Isman, 

2006; Liang, Chen and Liu, 2003), and additives in deltamethrin formulations were 

attributed to honey bee repellency (Bos and Masson, 1983). Physical characteristics 

of spray (e.g. wetting agents) can also impact (Desneux, Decourtye and Delpuech, 

2007). In summary, the discussed studies all investigated formulation pesticides and 

as such can only report on the repellence and behaviour changes induced by pesticide 

formulations, and not by active ingredients. 

 

4.1.3 Study aim 

With this study we aimed to investigate whether the movement behaviour of the 

predatory mite Typhlodromus pyri was altered by pesticide residues in a free choice 

arena that comprised treated and non-treated surfaces. To achieve this aim, we 

looked to answer two main questions: do mites show a preference for treated or non-

treated surfaces; and do mite movement behaviours differ between the treated and 

non-treated surfaces? 

We previously studied movement behaviour changes in T. pyri when exposed to 

pesticide residues in a non-choice (i.e. fully exposed) arena; please refer to Section 

3.1 for the rationale for choosing this species for these studies. To eliminate the effect 

of co-formulants, we again focused on studying active substances, and investigated 
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three insecticidal active substances that were used in the no-choice experiment: 

acetamiprid, deltamethrin and dimethoate. The rationale for these choices can also 

be found in Chapter 3.  

 

4.1.4 Hypotheses 

Consistent with the previous study reported in Chapter 3, we developed individual 

hypotheses for each substance and based them on both the scientific literature and 

our findings in the previous study. We hypothesised that acetamiprid and 

deltamethrin would induce avoidance behaviour based on published observations for 

acetamiprid in the phytoseiid G. occidentalis (e.g. Beers and Schmidt-Jeffris, 2015), 

and on both published observations in three non-target arthropods and our own 

observations in T. pyri for deltamethrin (Fernandes et al., 2016). We hypothesised 

that dimethoate would not induce avoidance behaviour as there are no reports of 

repellency, though the active substance is highly toxic to T. pyri (Blümel et al., 2000a). 

 

4.2 Materials and methods 

4.2.1 Insects 

In Chapter 3 we provided details on the source and culturing of Typhlodromus pyri 

from eggs to adulthood. Cultures were again kept in growth chambers at a target 

temperature of 25°C (mean 25.3°C; 95% Confidence Intervals (CIs) [25.21; 25.35]) and 

target relative humidity of 80% (mean 77.2%; 95% CIs [76.06; 78.37]) in a 24-hour 

constant light cycle providing approximate illuminance of 15 000 lx. Consistent with 

the previous study, all observations were undertaken on 7 – 9 day adults. 

 

4.2.2 Insecticides 

As outlined previously, we used 14C-radiolabelled active substances to enable rapid 

quantification of residues. Three insecticidal substances were studied: acetamiprid, 

deltamethrin and dimethoate, with details on sourcing previously outlined in Chapter 
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3. Due to the inability to accurately quantify residues or measure behaviour on the 

residues, we did not include the fungicide captan in this experiment. 

Dosing stocks remained at the same levels as those studied in the previous behaviour 

study: 0.18 mg mL-1 for acetamiprid; 1 × 10-4 mg mL-1 for deltamethrin and 0.115 mg 

mL-1 for dimethoate. However, with this study only partly covering the test arena, 

overall activity from residues would be lower than those measured in the full 

coverage study and were at risk of being close to limits of detection. While activity 

levels in the acetamiprid dosing stocks were acceptable, deltamethrin and 

dimethoate samples were at risk of being close to background. It was not possible to 

increase activity in the deltamethrin dosing stock due to the low concentrations being 

studied; however, we increased the activity in the dimethoate dosing stock while 

maintaining the same concentration by increasing the proportion of 14C-dimethoate. 

Table 4.1 summarises the treatment levels expressed as residue per unit of treated 

arena area. 

 

Table 4.1 – Insecticidal active substances used in the present study with the lethal 

rate at which 50% of a Typhlodromus pyri population displays mortality after 7 days 

(7d-LR50); the application rate for formulated products in pome fruit orchards; and 

the three treatment levels for the present study expressed as active substance mass 

per unit area of treated test arena surface (i.e. half of the test arena area). 

Active 

Substance 

7d-LR50  

(g ha-1) 

Application Rate 

(ga.s. ha-1) 

Target Residue (μga.s. cm-2) 

1 2 3 

Acetamiprid 18a 75 0.95 4.82 9.57 

Deltamethrin 0.000043b 7.5 0.00053c 0.0027c 0.0053c 

Dimethoate 2.24 d -e 0.24 1.19 2.38 

n.b. 1 μg cm-2 equates to 100 g ha-1  

a – European Food Safety Authority (EFSA, 2016) 
b – European Commission (2017) 
c – Based on an LC50 of 0.05 mg L-1 (Bonafos et al., 2007) 
d – European Food Safety Authority (2013) 
e – Dimethoate use in apple orchards is not permitted 
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4.2.3 Behavioural bioassays  

4.2.3.1 Method development 

We used the full coverage behaviour study as the basis for the design of this 

experiment. As a result, the test arena construction is as previously described in 

Chapter 3. There were two matters that required further method development, 

however: how to create half covered arenas, and the measurement of residues. The 

latter is discussed in the next section. 

A literature review was undertaken to explore methods for creating half exposed 

arenas. Two studies used an artist’s airbrush to target pesticide spray on surfaces 

(Guedes et al., 2008; Porcel, Cotes and Campos, 2011); another adapted this idea and 

sprayed filter paper with water, and then placed a half filter paper sprayed with 

insecticide on top to provide the test arena (Cordeiro et al., 2010). Another pipetted 

dosing solution onto quarters of filter paper (Pekár and Haddad, 2005), while another 

idea was to dip the test arena surface, as done with bean leaves by Beers and 

Schmidt-Jeffries (2015) and by Fernandes et al. (2016) with half-dipping  filter paper. 

However, each of these methods created problems for the present study. Firstly, 

although the premise of spraying with an airbrush worked well, it was inappropriate 

in safety terms to spray radiolabelled pesticides in the laboratories, so this method 

was discounted. Additionally, the layering of several filter papers to create the choice 

arena generated the risk of mites being lost between the layers due to their small 

size. We also had issues with the surface not being homogeneous in colour and 

causing issues with mite detection. As such, filter papers were also dismissed. The 

glass coverslips decided upon for the full coverage experiment were therefore 

optimal for the half coverage experiment, but dipping glass coverslips for half 

coverage was a poor method for treating the surface due to uneven coverage and 

inconsistent residues on the surface.  

These considerations led to the idea of pipetting on part of the surface, and one idea 

that was explored was to use a glass scoring pen to score the centre of the arena to 

encourage the pesticide solution to remain in one section; this would allow a perfect 

50/50 exposed/unexposed surface. While it successfully prevented the spread of the 

pesticide solution, the glass scoring caused a groove deep enough to affect mite 
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movement. Our final method involved lightly dragging the tip of a loaded pipette in 

a line across the middle of the glass coverslip, and then steadily pipetting the 

remaining volume to the right of the liquid line. Experience in the laboratory showed 

that the surface tension of the initial line would prevent the liquid from spreading 

beyond the initial line if the concentration volume was ejected slowly from the 

pipette. Figure 4.3 shows a series of freshly exposed test arenas that were treated 

using this method. 

 

 

Figure 4.3 – Twelve freshly treated arenas for the half coverage behaviour bioassay. 

The dosing volume was applied through careful use of a pipette and the volume can 

be seen on the right hand side of each test arena, or to the top half at this viewing 

angle. 

 

4.2.3.2 Experimental set up 

Test arenas were created as outlined for the full coverage arenas in Chapter 3; 

however, rather than applying 0.15 mL of dosing solution onto the entire arena 

surface, we applied 0.075 mL to the right half of the arena surface with a pipette. This 

volume ensured residues on the treated surface were consistent with the area-based 

residues in the full coverage study. Control arenas were treated with 0.075 mL 

methanol in the same way. Test arenas were left to dry for 75 min in a fume cupboard 

before the behavioural bioassay commenced. Arena area was determined as outlined 
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previously (Chapter 3, Equation 1); in this experiment, mean arena surface area was 

2.81 cm2 (95% CIs [2.78 – 2.84]). 

As with the full coverage arena experiments, we placed single sexed T. pyri mites in 

the centre of the test arena and, in the case of methanol, acetamiprid and 

dimethoate exposures, these were given 10 min to acclimatise to the new 

environment; mites placed in deltamethrin treated arenas were given approximately 

30 s to adjust due to previously observed immediate behavioural responses. There 

were 24 replicates per treatment and control (12 female, 12 male). Due to the USB 

microscope failing during the full coverage experiment (Chapter 3), there was a 

deviation in the physical set up of the testing chamber for this experiment. Test 

arenas were placed on a platform raised 15 cm above the heated propagator base, 

with the base thermostat set to 26°C (aiming to achieve 24°C). Damp blue roll was 

placed at the bottom of the platform to elevate humidity, and the test arenas were 

again lit using a targeted small white LED light.  

All bioassays in this experiment were recorded for 10 min using a Canon DSLR camera 

(EOS 1300D, Canon Inc, Tokyo, Japan) equipped with an 18-55 mm lens recording at 

25 frames per second and mounted on a metal hood (Syngene DigiGenius, Synoptics 

Ltd., Cambridge, UK).  As the hood was opaque, temperature and humidity were 

noted at the end of each observation period, and the thermometer was placed to 

measure the conditions on the same level as the test arena. Video files were 

converted to mpeg format using HandBrake (Version 1.1.1) for movement behaviour 

analysis. 

 

4.2.3.3 Movement analysis 

As with the full coverage experiments, videos were analysed using Noldus EthoVision 

XT 13 (Noldus Information Technology, Wageningen, Netherlands) at a rate of 5 

frames per second to ensure consistency with the first experiment. The arena was 

identified and split into two zones for the movement behaviour analysis – Figure 4.4 

shows how this looked in EthoVision. The five movement behaviours previously 

described in Chapter 3 were automatically analysed again (distance walked, velocity, 



 

127 
 

angular velocity, meander, and time spent active); however, measurements were 

taken for each zone, giving two measurements per mite per movement behaviour. 

Additionally, a sixth metric was calculated: time in zone for each identified zone. The 

zone exit threshold – used to determine when a mite had fully transitioned from one 

zone to the next – was set to 0.03 mm, which is approximately 10% of the mite body 

length. Time to trap was also manually determined as previously described, though 

this was considered across the whole arena. Minimal distance moved and LOWESS 

smoothing were applied as previously outlined. 

 

 

Figure 4.4 – Screenshot of a sample arena from the dimethoate half coverage 

experiment with the two test arena zones identified in EthoVision XT 13. The yellow 

zone represents the untreated zone; the pink zone represents the treated zone. 

White rectangular labels identify the overall arena (orange rectangle to the centre); 

green rectangles identify each arena zone (S1 to the left; S2 to the right). With this 

set up EthoVision calculates movement behaviours for each zone as well as the test 

arena considered as a whole. 
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4.2.4 Pesticide residue analysis 

Pesticide residues were extracted from the arena surface as outlined previously in 

Chapter 3; however, we refined the liquid scintillation analysis due to lower expected 

activity arising from fewer residues.  

Following extraction in 10 mL methanol an 8 mL aliquot of the sample was transferred 

to a 20 mL glass screw cap scintillation vial containing 10 mL Ecoscint A (National 

Diagnostics, Nottingham, UK). Samples were wrapped in foil and refrigerated at 4.5°C 

for a maximum of 18 hours (typically no more than 6 hours), until enough samples 

had been generated for a full sample run on the liquid scintillation counter (Hidex 

300 SL, Hidex Oy, Turku, Finland). Analysis commenced after a time delay of 2.5 hours 

for each sample run to allow samples to settle. For acetamiprid and dimethoate, each 

vial was counted three times for 5 min, but due to low activity levels it was necessary 

to count deltamethrin vials three times for 20 min to sufficiently separate measured 

14C-deltamethrin activity and background activity. We measured background activity 

using blank (control) vials containing 10 mL Ecoscint A + 8 mL methanol; activity from 

these vials was averaged and subtracted from all samples to correct for background 

activity. Finally, we used the calculations previously reported to determine the 

activity related to insecticide concentration in each dosing stock, and the residues in 

each arena (Chapter 3, Equation 3.3). Residues were expressed as the mass of active 

substance in half of the arena area. Based on the mean arena surface area, the mean 

treated area was 1.41 cm2 (95% CIs [1.39 – 1.42]). It was not possible to determine 

the precise treated arena area for each replicate as residues did not always leave a 

visible trace; therefore, we based this on half of the arena area.  

 

4.2.5 Analytical method development 

As before, we calculated detection limits for the counting methods so that it was 

possible to determine whether sample counts were valid. As the counting windows 

were increased for the half coverage samples, background counts were greater than 

70; as such a different equation was used to determine the detection limit (Ld) and 

minimum counts (Equation 4.1; L’Annunziata and Kessler, 2012). Table 4.2 

summarises the detection limits for the two methods. 
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(1) 𝐿𝑑(𝑐𝑜𝑢𝑛𝑡𝑠) = 4.65√𝐵                              Equation 4.1 

(2) 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑢𝑛𝑡𝑠 =  𝐿𝑑 + 𝐵 

B denotes mean background reading in counts 

 

Table 4.2 – Detection limits (Ld, expressed as counts) and minimum counts (as counts 

per minute, CPM)) for the two counting methods used to analyse insecticide residues 

extracted from half treated test arenas. 

Counting window Samples analysed Ld (counts) Minimum counts 

5 min Acetamiprid, dimethoate 83.9 409 (82 CPM) 

20 min Deltamethrin 164.3 1413 (70.7 CPM) 

 

 

4.2.5 Statistical analysis 

4.2.5.1 Environmental conditions 

As in the first behavioural study, one insecticide was studied per week and as a result 

we wanted to investigate whether the environmental conditions were consistent 

from one pesticide to the next to help inform conclusions. Air temperature and 

humidity readings were grouped by pesticide and compared via one-way ANOVA; 

please refer to the methods outlined in Chapter 3 for how this was undertaken. 

 

4.2.5.2 Environment effects on mite movement behaviour 

Consistent with the statistical approach in the full arena coverage study, we 

investigated the effect of air temperature and relative humidity on mite movement 

through a series of correlations and these determined whether environmental 

factors needed to be included in the final analytical model or not (Table 4.3). As 

before, where a slope was significantly not zero (α = 0.05) and where it had a fit 

greater than R2 = 0.2, there the relevant covariate was included. If these criteria were 
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not met, then covariates were not included in final analysis. There were four 

significant control slopes, with angular velocity and meander both correlating 

moderately with air temperature and humidity. In the control population, both 

temperature and relative humidity correlated with angular velocity and meander. 

There were also two significant slopes in the pesticide treatments (angular velocity 

vs temperature in the deltamethrin population; angular velocity vs relative humidity 

in the dimethoate population), though neither slope had a fit greater than 0.2, and 

as such, no analyses included environmental factors as covariates.  
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Table 4.3 – Influence of air temperature and relative humidity on T. pyri movement 

behaviours in half treated arenas, derived from correlation. Goodness of fit (R2) is 

shown with F and P values indicating whether a slope is significant. Significant 

correlations (i.e. slope ≠ 0; α = 0.05) are in italic. n = 22 (control); 59 (acetamiprid); 50 

(deltamethrin); 54 (dimethoate). 

Treatment Behaviour 

Air temperature Relative humidity 

R2 F P R2 F P 

Control 

Distance walked 0.0002 0.004 0.95 0.006 0.13 0.73 

Velocity 0.003 0.06 0.81 0.002 0.04 0.84 

Angular velocity 0.43 15.06 0.001 0.43 15.22 0.001 

Meander 0.32 9.45 0.006 0.36 11.37 0.003 

Time moving 0.03 0.69 0.42 0.002 0.03 0.86 

Acetamiprid 

Distance walked 0.03 1.75 0.19 0.006 0.33 0.57 

Velocity 0.022 1.3 0.26 0.004 0.25 0.62 

Angular velocity 0.023 1.32 0.26 0.002 0.12 0.73 

Meander 0.016 0.89 0.35 0.002 0.11 0.74 

Time moving 0.018 1.03 0.32 0.001 0.05 0.83 

Deltamethrin 

Distance walked 0.022 1.09 0.3 0.007 0.32 0.57 

Velocity 0.041 2.03 0.16 0.003 0.14 0.71 

Angular velocity 0.136 7.55 0.008 <0.0001 0.001 0.98 

Meander 0.061 3.05 0.09 0.001 0.05 0.82 

Time moving 0.0002 0.01 0.92 0.0002 0.01 0.92 

Dimethoate 

Distance walked 0.015 0.77 0.39 0.015 0.82 0.37 

Velocity 0.012 0.62 0.43 0.016 0.84 0.36 

Angular velocity 0.031 1.66 0.20 0.083 4.72 0.03 

Meander 0.002 0.09 0.76 0.0004 0.02 0.88 

Time moving 0.003 0.14 0.71 0.003 0.17 0.69 
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4.2.5.3 Zone preference study 

Previous studies have shown that, when offered the choice of surfaces with and 

without pesticide residues, a mite’s preference to reside on untreated surfaces 

indicates repellency (Beers and Schmidt-Jeffris, 2015); an alternative definition from 

Cordeiro et al. (2013) splits this into two behaviours, with repellency including no 

contact with residues, and irritancy arising from spending less time on the treated 

surface compared to the untreated one. Repellency was therefore of interest in this 

study, so to investigate whether mites preferred the treated (right) or untreated (left) 

surfaces, we conducted two statistical tests. Firstly, we conducted a paired samples t 

test to investigate whether residues left by the methanol control (or other 

unquantified effects) influenced whether mites spent more time on the treated or 

untreated arena half. The second test investigated whether there was a difference in 

time spent on the treated surface at each concentration level for each active 

substance. Though the mite was placed in the arena centre on the border of the 

treated and untreated areas, individuals were not in the arena centre at the start of 

the movement recording. The data were subjected to one-way ANOVA, with one test 

per pesticide, comparing the time spent in the treated arena half at each 

concentration level against the time spent on the treated half of the methanol 

control. Where mites spent less than 50% of the observation time in the treated zone, 

this indicated a preference for untreated surfaces and therefore repellency. 

Prior to ANOVA and t tests, data were tested for normality using the D’Agostino & 

Pearson test (D’Agostino, 1986), and for ANOVA the equality of group variances was 

tested using the Brown-Forsythe test. No data transformations were necessary. Post 

hoc analysis for ANOVA compared responses at each concentration level to control 

and the test was chosen based on the criteria outlined for analysing differences in 

environmental conditions. α = 0.05 for both tests.  

 

4.2.5.4 Mite movement behaviour  

In Chapter 3 we started by investigating whether movement behaviours differed 

between male and female mites. Since there were no significant differences in 

behaviours in the first experiment, we did not test for any effects in this experiment. 
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Mite activity/inactivity 

Consistent with the full coverage behaviour study reported in Chapter 3, we 

investigated whether the number of inactive mites was affected by insecticide 

residues through the use of the binomial observed vs expected test in GraphPad 

Prism, where we compared each insecticide treatment (observed) to the control 

(expected). Three tests were undertaken per insecticide (one per treatment level), 

and as such Bonferroni’s Correction was applied to adjust the significance value to α 

= 0.0167. 

 

Insecticide effects on movement behaviour in half exposed arenas 

We also wanted to investigate movement behaviour changes between the untreated 

and treated surfaces and at different insecticide treatment levels. To investigate this, 

we conducted 3 × 2 mixed model analysis of variance (ANOVA), to analyse the effect 

of arena surface (two levels), insecticide treatment (three levels), and their 

interaction on the movement behaviours of mites. It was not appropriate to include 

the control test arenas in this statistical design; therefore, the three treatment levels 

are all insecticide concentrations. These tests were conducted separately for each of 

the three insecticides, giving a total of 15 ANOVAs. Each test analysed whether a 

movement behaviour differed between the untreated and treated zones, and 

whether insecticide concentration level interacted significantly with zonal differences 

(i.e. within-subject effects). If there was a significant interaction (α = 0.05), paired t 

tests were applied, one test per concentration level, to investigate the significance 

further. As each post hoc test included multiple t tests, Bonferroni’s Correction was 

applied to give an adjusted α of 0.0167. If there was a significant difference in 

response between zones, but no interaction, then post-hoc analysis was not 

necessary as the result showed that, while there was a difference in the behaviour in 

treated and untreated zones, there was no difference in effect at different treatment 

levels. In this case we reported mean difference ± 95% confidence intervals. Finally, 

the test would also assess whether there was a significant difference in response 

between treatment levels when considering test arenas as a whole (i.e. between-
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subject effects). Where a significant effect was found, Tukey’s multiple comparisons 

test was applied as post hoc analysis (α = 0.05) to see where significant differences 

were between the insecticide treated test arenas.  

As with the analysis of movement behaviour in Chapter 3, each dataset was tested 

for assumption violations prior to final analysis. Equality of variances and covariances 

were assessed using the Brown-Forsythe Test and Box’s M test respectively, and the 

outcomes were used to inform selection of test statistic (Tables 4.4 – 4.5). Due to 

over half of the analyses displaying unequal covariances, we used Pillai’s Trace for all 

test interpretation due to its robustness against violations of covariance equality 

(Pillai and Hsu, 1979). As we were applying mixed ANOVAs to each dataset, we would 

also normally inspect sphericity of data (i.e. equality of variances between all possible 

within-subject pairings) using Mauchly’s test of sphericity (Mauchly, 1940); however, 

with only two within-subject levels, this test was not necessary. 
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Table 4.4 – Results of Box’s M Test for equality of covariance for the three 

insecticides. Each insecticide included four treatment levels: three insecticide 

treatments and one control. α = 0.05. Significant values suggesting assumption 

violation are highlighted in bold. 

Insecticide Behaviour Box’s M F P 

Acetamiprid 

Distance walked 2.06 0.32 0.29 

Velocity 14.92 2.35 0.03 

Angular velocity 10.27 1.62 0.14 

Meander 8.7 1.37 0.22 

Time active 54 8.51 <0.0001 

Deltamethrin 

Distance walked 8.77 1.37 0.22 

Velocity 14.03 2.19 0.04 

Angular velocity 18.8 2.94 0.007 

Meander 40.95 6.39 <0.0001 

Time active 1.49 0.23 0.97 

Dimethoate 

Distance walked 33.75 5.29 <0.0001 

Velocity 10.88 1.71 0.12 

Angular velocity 33.57 5.26 <0.0001 

Meander 34.31 5.38 <0.0001 

Time active 21.81 3.42 0.002 
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Table 4.5 – Results of the Brown-Forsythe test for equality of variance, assessed for 

each movement behaviour in each arena zone. Each insecticide included three 

treatment levels. α = 0.1; significant values that suggest assumption violation are 

highlighted in bold. 

Insecticide Behaviour 

Untreated zone Treated zone 

F P F P 

Acetamiprid 

Distance walked 0.38 0.68 0.38 0.69 

Velocity 0.3 0.74 1.59 0.21 

Angular velocity 1.26 0.29 0.49 0.62 

Meander 3.54 0.036 1.15 0.32 

Time active 0.26 0.77 2.8 0.07 

Deltamethrin 

Distance walked 0.56 0.57 1.64 0.21 

Velocity 0.88 0.42 1.33 0.27 

Angular velocity 0.13 0.88 3.11 0.054 

Meander 0.2 0.82 3.94 0.03 

Time active 1.35 0.27 0.38 0.69 

Dimethoate 

Distance walked 6.25 0.004 2.59 0.085 

Velocity 2.65 0.08 3.89 0.027 

Angular velocity 4.91 0.01 1.37 0.26 

Meander 1.66 0.2 1.95 0.15 

Time active 5.57 0.007 1.04 0.36 
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4.3 Results 

No mite mortality was observed during the observation periods. Table 4.6 

summarises the expected and measured residue values for each insecticide and 

treatment level. Activity-based recoveries averaged 92% for acetamiprid (95% 

Confidence Intervals (CIs) [88 – 96%]); 56% for deltamethrin (95% CIs [53 – 60%]); 

and 90% for dimethoate (95% CIs [86 – 93%]). The poor recovery levels observed in 

deltamethrin samples are likely explained by the relatively low counting efficiency, 

probably caused by low activity in samples. In spite of the inconsistent recoveries, we 

found no samples measured below the minimum counts threshold, therefore all 

sample measurements were accepted as correct.  
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4.3.1 Environmental conditions 

Table 4.7 summarises the environmental conditions recorded throughout 

behavioural bioassays. We found temperature varied significantly between 

insecticide treatments (ANOVA; F = 88.7; P < 0.0001), with mean temperature 

recorded during the deltamethrin experiment almost 3°C lower than that measured 

in any other experiment, and temperatures recorded during the dimethoate 

experiment on average 1.7°C higher than any of the other experiments. Table 4.8 

summarises the mean differences and post hoc analysis conducted using Tukey’s 

multiple comparisons test. 

Relative humidity also varied significantly between treatments (ANOVA; F = 9.03; P < 

0.0001), with mean humidity on average 5% higher in deltamethrin than in any other 

treatment. Table 4.9 summarises the mean differences and Tukey’s multiple 

comparisons test. 
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Table 4.9 – Summary of mean difference ± 95% confidence intervals and Tukey’s 

multiple comparisons test of differences in relative humidity measurements taken 

during mite movement observations. α = 0.05; significant pairings are highlighted in 

bold. 

Treatment Pairing 

Mean Difference 

(%) 

95% Confidence 

Intervals P 

Control vs Acetamiprid 1.9 -2.9 – 6.7 0.74 

Control vs Deltamethrin -3.3 -8.2 – 1.7 0.32 

Control vs Dimethoate 4.1 -0.8 – 8.9 0.13 

Acetamiprid vs Deltamethrin -5.1 -8.8 – -1.5 0.002 

Acetamiprid vs Dimethoate 2.2 -1.4 – 5.8 0.4 

Deltamethrin vs Dimethoate 7.3 3.6 – 11.1 <0.0001 

 

 

4.3.2 Mite activity/inactivity 

Figure 4.5 shows the proportion of observed mites that were inactive (resting) or 

active in each insecticide treatment. As in the full coverage experiment, we compared 

these proportions at each treatment level (observed) against the control proportions 

(expected), and we found no effect of acetamiprid residues on half of the arena on 

the number of inactive mites (Control = 8.3% inactive; 0.95 μg cm-2 = 16.7% inactive 

(95% CIs [7 – 36%]; P = 0.13); 4.77 μg cm-2 = 20.8% inactive (95% CIs [9 – 40%]; P = 

0.045); 9.54 μg cm-2 = 16.7% inactive (95% CIs [7 – 36%]; P = 0.13)). Deltamethrin 

residues on half of the arena caused more mites to rest throughout the 10 min 

observation at all three concentrations than in control, with more mites inactive in 

the first (0.2× LC50) and second concentrations (1× LC50) than in the third 

concentration (2× LC50; 5.3 × 10-4 μg cm-2 = 33.3% inactive (95% CIs [18 – 53%]; P = 

0.0005); 2.7 × 10-3 μg cm-2 = 33.3% inactive (95% CIs [18 – 53%]; P = 0.0005; 5.3 × 10-

3 μg cm-2 = 25% inactive (95% CIs [12 – 45%]; P = 0.012)). Finally, more mites were 

inactive in the first and third dimethoate concentrations than in control, but not in 

the second concentration level (0.24 μg cm-2 = 29.2% inactive (95% CIs [15 – 49%]; P 
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= 0.003); 1.19 μg cm-2 = 16.7% inactive (95% CIs [7 – 36%]; P = 0.13); 2.38 μg cm-2 = 

29.2% inactive (95% CIs [15 – 49%]; P = 0.003). 
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Figure 4.5 – Proportions of T. pyri individuals displaying activity (dark grey) or 

inactivity (light grey) during the 10 min observation period in control arenas and 

arenas half treated with insecticides. Charts bordered in red signify a significant 

difference in the proportions when compared to control proportions (α = 0.016; * = 

P < 0.016; ** = P < 0.01; *** = P < 0.001). 
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4.3.3 Zone preference study 

There was no significant difference in the time spent in the treated and untreated 

arena zones when investigating mites in the control test arenas (paired t test; t = -

0.88; P = 0.39). This suggests that visible methanol residues do not influence mite 

behaviour, nor do any other (unquantified) factors arising from the observation set 

up. 

When comparing the amount of time spent in the treated arena half at each 

treatment level, we found no significant effects of acetamiprid (ANOVA; F = 1.8; P = 

0.16) or deltamethrin (F = 1.1; P = 0.37) residues on the time spent in the treated 

arena half (Figure 4.6).  However, there was a significant effect of dimethoate 

residues on the time spent in the treated zone (F = 3.8; P = 0.015). When comparing 

dimethoate concentration levels to control, there was no significant difference 

between the 0.24 μg cm-2 concentration and control, but there was a significant 

decrease in time spent on dimethoate residues at the 1.19 μg cm-2 and 2.38 μg cm-2 

concentrations (Table 4.10). 
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Figure 4.6 – Effect of a) acetamiprid, b) deltamethrin, and c) dimethoate residues, 

each at three concentrations, on time spent by Typhlodromus pyri in the treated 

(right hand) arena zone over 10 min. Line and whiskers for each column shows mean 

± 95% confidence intervals at each treatment level. Individuals deemed inactive 

throughout the observation period were excluded from analysis. Significant effects 

of insecticide residues are shown on each graph, with brackets between control and 

a treatment level displaying significance of effect between that treatment and 

control; brackets to the top of each graph display significant effects of the pesticide 

overall versus control (P values adjusted for multiple comparisons; * = P < 0.05). 

Control n = 22; acetamiprid n = 20; 19; 20; deltamethrin n = 18; 16; 16; dimethoate n 

= 17; 20; 17. 
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Table 4.10 – Summary of Tukey’s post-hoc analysis of the differences in time spent 

in treated arena halves, comparing time spent by mites on the control treated surface 

to the time spent on surfaces treated with dimethoate residues. P values are 

corrected for multiple comparisons (α = 0.05). Significant differences between a 

dimethoate concentration and control are highlighted in bold. 

Treatment 

Comparison 

Mean 

Difference (s) 

95% Confidence 

Intervals P 

0 vs 0.24 μg cm-2 54.87 -54.3 – 164.1 0.552 

0 vs 1.19 μg cm-2 110.9 6.4 – 215.4 0.033 

0 vs 2.38 μg cm-2 119 9.9 – 228.2 0.027 

 

 

4.3.4 Mite movement behaviour 

Figure 4.7 shows representative walking tracks of mites in test arenas half treated 

with methanol (control), and insecticides at each treatment level. Comparing 

insecticide treated arenas to control arenas, the largest visual difference in 

movement track comes between deltamethrin and control, where mites appear to 

cover less distance. There also appears to be a tendency to walk more on the 

untreated surface in the dimethoate treated arenas. 
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Figure 4.7 – Representative movement tracks from individual mites observed in the 

control (blue tracks) and insecticide treated test arenas (red tracks). Untreated arena 

zones are depicted in yellow and treated zones are depicted in pink. Mean arena area 

was 2.81 cm2. Each number corresponds to increasing insecticide treatment 

concentration – Acetamiprid 1 = 0.95 μg cm-2; 2 = 4.77 μg cm-2; 3 = 9.54 μg cm-2. 

Deltamethrin 1 = 5.3 × 10-4 μg cm-2; 2 = 2.65 × 10-3 μg cm-2; 3 = 5.3 × 10-3 μg cm-2. 

Dimethoate 1 = 0.24 μg cm-2; 2 = 1.19 μg cm-2; 3 = 2.38 μg cm-2. 

 

4.3.4.1 Insecticide effects on movement behaviour in half exposed arenas 

Figure 4.8 (page 148-149) summarises the effect of acetamiprid, deltamethrin and 

dimethoate on five movement behaviours (distance walked, velocity, angular 

velocity, meander and time active), with each behaviour quantified in the untreated 

and treated arena zones. For each insecticide we will discuss the effect of insecticide 

on each movement behaviour in the context of the results of the mixed ANOVAs, with 

three points discussed: the difference between responses in untreated and treated 

zones without accounting for insecticide concentration level and then any interaction 
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of insecticide concentration (i.e. within-subject effects); and the effect of insecticide 

concentration levels when comparing responses for arenas as a whole (i.e. between-

subject effects).  Effect sizes are discussed from interpretation of the partial eta 

squared (ƞ2) value.  

 

Acetamiprid 

When observing mite velocity, we saw a significant interaction of mite velocity in 

untreated and treated arena zones and acetamiprid treatment (F = 3.75; P = 0.03; ƞ2 

= 0.13), though velocity was not significantly different on the treated or untreated 

surface. We conducted three paired t tests to investigate further and found that mite 

velocity was 0.017 cm s-1 slower in the treated zone at the 9.57 μg cm-2 acetamiprid 

concentration, though there was no significant effect at any other concentration 

(Table 4.11). We also found that a mite’s path was more tortuous when walking on 

acetamiprid residues, as meander increased by 38 deg cm-1 on the treated surfaces 

when comparing treated and untreated surfaces irrespective of treatment level (95% 

CIs [8.3 – 68.1 deg cm-1]; F = 6.6; P = 0.01; ƞ2 = 0.11). However, there was no significant 

effect of concentration on meander (F = 2.9; P = 0.06; ƞ2 = 0.1). We also found time 

spent active was significantly affected by acetamiprid residues, with mites spending 

more time on treated than untreated surfaces (F = 24; P < 0.0001; ƞ2 = 0.3).   
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Table 4.11 – Summary of paired t tests applied as post hoc analysis of the effect of 

acetamiprid residues on the velocity of T. pyri. α = 0.0167 and is based on Bonferroni’s 

correction for multiple comparisons. Mean differences are comparing measurements 

for the untreated surface to the treated surface. Significant differences are 

highlighted in bold. 

Acetamiprid 

concentration 

(μg cm-2) 

Mean difference 

(cm s-1) 

95% Confidence 

Intervals t P 

0.95 0.009 -0.009 – 0.027 1.06 0.3 

4.82 -0.01 -0.025 – 0.005 -1.43 0.17 

9.57 0.017 0.008 – 0.027 3.99 0.001 

 

There was also a significant interaction with treatment, suggesting the effect of 

acetamiprid residues varied with concentration (F = 5; P = 0.01; ƞ2 = 0.16). We found 

that mites spent 73 seconds longer in the treated surface than the untreated surface 

at the 0.95 μg cm-2 concentration (95% CIs [22.4 – 123.8]; t = 3.02; P = 0.007), though 

the effect was not significant at any other concentration (Table 4.12). We found no 

effect of acetamiprid on the distance walked or angular velocity. 
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Table 4.12 – Summary of paired t tests applied as post hoc analysis of the effect of 

acetamiprid residues on the time T. pyri individuals spend active. α = 0.0167 and is 

based on Bonferroni’s correction for multiple comparisons. Mean differences are 

comparing measurements for the untreated surface to the treated surface. 

Significant differences are highlighted in bold. 

Acetamiprid 

concentration 

(μg cm-2) 

Mean difference 

(s) 

95% Confidence 

Intervals t P 

0.95 73.2 22.4 – 123.8 3.02 0.007 

4.82 1.28 -46.1 – 43.6 0.06 0.952 

9.57 42.5 -85.1 – 0.17 2.09 0.051 

 

 

Deltamethrin 

Distances walked by mites did not differ between treated or untreated surfaces, nor 

was there an effect of concentration on this; however, we found that when arenas 

were analysed overall, distances walked in the overall arena were significantly 

affected by deltamethrin residues (F = 3.7; P = 0.03; ƞ2 = 0.14). We conducted Tukey’s 

multiple comparisons test to identify the significant differences and found that 

distance walked by mites reduced by 4.8 cm between the lowest (5.3 × 10-4 μg cm-2) 

and middle (2.7 × 10-3 μg cm-2) deltamethrin concentrations (95% CIs [0.27 – 9.3]; 

adjusted P = 0.034), though no other comparison proved to be significant (Table 

4.13). Mite velocity differed between the untreated and the deltamethrin treated 

surfaces, with mites moving on average 0.01 cm s-1 faster on the deltamethrin 

residues irrespective of concentration (95% CIs [0; 0.018]; F = 4.2; P = 0.045; ƞ2 = 

0.08). There was no effect of deltamethrin concentration upon this difference. We 

found no effect of deltamethrin residues on angular velocity, meander, or time spent 

active in the half treated arena. 
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Table 4.13 – Summary of Tukey’s multiple comparisons test, applied as post hoc 

analysis of the effect of deltamethrin residues on the overall distance walked by T. 

pyri in test arenas half treated with deltamethrin. P values are adjusted for multiple 

comparisons (α = 0.05). Mean differences are comparing measurements for the 

untreated surface to the treated surface. Significant differences are shown in bold. 

Deltamethrin 

concentration (μg 

cm-2) 

Mean difference 

(cm) 

95% Confidence 

Intervals P 

5.3 × 10-4 4.8 0.27 – 9.33 0.034 

2.7 × 10-3 3.3 -1 – 7.65 0.19 

5.3 × 10-3 -1.48 -5.9 – 2.92 > 0.999 

 

 

Dimethoate 

We found that mites covered less distance on the treated surfaces than untreated 

surfaces (F = 22; P < 0.0001; ƞ2 = 0.31), and that dimethoate concentration 

significantly interacted with this (F = 3.3; P = 0.046; ƞ2 = 0.12). Post-hoc analysis 

showed that mites covered 9.8 cm less distance on the treated surface at 1.19 μg cm-

2 (95% CIs [2.2 – 17.4]; t = 2.7; P = 0.014), and 9.3 cm less at 2.38 μg cm-2 (95% CIs [6.3 

– 12.3]; t = 6.6; P < 0.0001; Table 4.14). Mite paths were more convoluted on 

dimethoate treated surfaces, with meander measuring 1.7 deg cm-1 higher than on 

untreated surfaces (95% CIs [0.74 – 2.68]; F = 5.7; P = 0.02; ƞ2 = 0.1), though this was 

not affected by concentration. Time active was also significantly different, with mites 

spending 76 fewer seconds active on the dimethoate residues (95% CIs [41.6 – 111.2]; 

F = 19.5; P < 0.0001; ƞ2 = 0.29). Again, there was no effect of concentration. We found 

no significant effect of dimethoate residue on velocity or angular velocity.  
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Table 4.14 – Summary of paired t tests applied as post hoc analysis of the effect of 

dimethoate residues on the distance walked by T. pyri individuals. α = 0.0167 and is 

based on Bonferroni’s correction for multiple comparisons. Mean differences are 

comparing measurements for the untreated surface to the treated surface. 

Significant differences are highlighted in bold. 

Dimethoate 

concentration 

(μg cm-2) 

Mean difference 

(cm) 

95% Confidence 

Intervals t P 

0.24 1.62 -1.2 – 4.4 1.2 0.24 

1.19 9.77 2.2 – 17.4 2.7 0.014 

2.38 9.28 6.3 – 12.3 6.6 <0.0001 

 

 

4.3.4.2 Avoidance behaviour 

No mites became trapped in the arena barrier in the control, acetamiprid or 

dimethoate treated arenas. In the deltamethrin experiment, just four mites became 

trapped in the half coverage experiment, with all four being trapped in the highest 

concentration (5.3 × 10-3 µg cm-2). As mites only became trapped at the highest 

concentration, we decided a statistical test was unnecessary. On average mites 

became trapped in 297 seconds (95% CIs [144; 452]). 

 

 

4.4 Discussion 

In the following section we will first discuss the results of each analysis from the 

present experiment, and will then discuss these results in comparison to the full 

coverage experiment reported in Chapter 3. 
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4.4.1 Pesticide residue analysis 

Our method, initially developed in Chapter 3 and refined for lower activity in this 

experiment, produced high recovery rates for acetamiprid and dimethoate, with 

recoveries across concentrations ranging 85 – 96% and co-efficients of variance 

within an acceptable range of 13 – 23% (Table 4.6). However, we experienced a 

reduction in quality of residue analysis for deltamethrin compared to the first 

experiment, with relatively poor recoveries of 54 – 58%. Variance was in the range 

11 – 21% so was within range of the other two insecticides, and when considering all 

metrics for the residue analysis, we feel that the low recoveries are simply down to 

very low levels of activity within samples, arising from the very low deltamethrin 

concentrations we worked with in this study. In future it would be worth spiking 

deltamethrin samples with additional activity through the addition of a benign 

radiolabelled compound to the dosing stock. We conclude that this analytical 

method, refined for lower activity levels, continues to be a rapid, accurate and precise 

method for both acetamiprid and dimethoate at low quantities, though requires 

further refinement for very low activity levels. 

 

4.4.2 Control mite movement and environmental conditions 

Mite movement in control arenas tended towards mites tracking outer edges of the 

arena (Figure 4.7, Control 1 and 3); however, mites show a large degree of natural 

variation in their movement. The tendency to track outer edges had previously been 

reported in mites observed in arenas with no food available (Varley et al., 1994); 

therefore, like in the full coverage experiment, we feel the behaviour observed 

depicts typical food searching behaviour. 

We observed that movement tracks appeared to be shorter in the control mites in 

this experiment, so compared the distance walked by control mites on full coverage 

arenas to distances walked by control mites in the present experiment and found that 

mites on average covered 21 cm less distance in the half coverage arenas (95% CIs 

[4.6 – 37.8]; Welch’s t test; t = 2.6; P = 0.015). Examination of the air temperature 

and relative humidity ranges for the respective experiments showed that there were 

significant differences in the average conditions mites were subjected to during the 
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behaviour bioassays: temperature was 2.6°C higher in the half coverage experiment 

(95% CIs [2.13 – 3.17]; Welch’s t test; t = 10.3; P < 0.0001); relative humidity was 17% 

higher in the half coverage experiment (95% CIs [12 – 22]; Welch’s t test; t = 6.8; P < 

0.0001). From this analysis we can infer that mite movement reduced between the 

first and second experiment due to the higher temperature and humidity levels 

within the measurement chamber, and when plotting a correlation of the control 

data from both experiments on the same chart, we see that mite movement reduced 

with increasing temperature (Figure 4.9a); and also reduced with increasing humidity 

(Figure 4.9b). Although these correlations were significant, they were not very strong 

(air temperature R2 = 0.17; P = 0.007; relative humidity R2 = 0.12; P = 0.025). In this 

instance the difference is most likely attributed to the change in experiment set up 

necessitated by the USB microscope failure during the full coverage experiment; 

however, we cannot dismiss natural, random variation in individual movement 

tendencies. 
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Figure 4.9 – Correlation between the distances walked by control mites in both the 

full and half coverage experiments, and air temperature (a), and relative humidity (b). 

Dotted lines depict 95% confidence intervals of plotted line. n = 42. 

 

Research into the effect of temperature and humidity on movement in T. pyri is 

limited, although Dunley and Croft (1990) hypothesised low dispersal in orchards 
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could be due to high temperature. Unfortunately, most studies fail to report 

measured environmental conditions during their experiments, and instead report the 

expected condition within, for example, a controlled temperature room. Studies 

often take place in optimal environmental conditions to maximise the performance 

of control populations (Holmstrup et al., 2010); however, natural environments are 

rarely optimal, and as our study has shown, optimal conditions can be difficult to 

maintain in reality in laboratory conditions.  

 

4.4.3 Mite activity/inactivity 

We found that two of the three insecticides induced changes in mite resting 

behaviours in the half coverage study: deltamethrin residues caused higher rates of 

mites resting for the full observation period, with eight mites resting in the lowest 

two treatments compared to two in control, and six mites resting throughout in the 

highest treatment (Figure 4.5). Additionally, more mites were observed to be inactive 

throughout the bioassay in the lowest and highest dimethoate treatments, with 

seven mites observed to be inactive throughout in both treatments. These results 

were not expected as, based upon the results of the same analysis in the first 

experiment, there was an increase in mite activity in the deltamethrin treated arenas, 

and no significant differences in activity rates in dimethoate treated arenas (Figure 

3.4).  

Though many studies have observed hyperactivity in species exposed to pyrethroids 

(e.g. Alzogaray, Fontán and Zerba, 1997; Iftner and Hall, 1983), one study 

demonstrated that high concentrations arrest movement (Guedes et al., 2008). 

When we place our results from the full and half coverage experiments into the 

context of previous studies, we have two conclusions to draw: either the increase in 

the number of resting mites in the arenas half treated with deltamethrin shows that 

residues within the overall test arena were low enough to not cause hyperactivity in 

T. pyri; conversely, we may have demonstrated that, at very low concentrations, 

deltamethrin also arrests movement, though there are no literature data or reports 

to confirm this idea. This result also suggests that there is a threshold between the 

total residues measured in the full coverage and half coverage arenas where mites 
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become agitated by the residues, though it was not our intention with this 

experiment to identify this threshold. 

The increase in the number of resting mites observed in those exposed to dimethoate 

residues was not expected and is in contrast to the limited information available 

regarding effects of the compound on insects. One study by Singh et al. (2001) 

demonstrated that ladybirds (Coccinella septempunctata) spent less time resting 

when exposed to dimethoate residues. Another study investigated movement 

behaviour in the soil dwelling collembolan (Folsomia candida) and found no 

significant effect of dimethoate residues on the time spent active at rates of 0.35 μg 

cm-2 and 0.7 μg cm-2 (Sørensen, Bayley and Baatrup, 1995). There are also reports of 

dimethoate residues increasing time spent active in woodlice (Bayley, 1995). 

Therefore, it seems that this could be the first report of dimethoate residues 

increasing the rate of resting behaviour in a predatory mite; alternatively, it could be 

a result of the large temperature difference between dimethoate and control 

experiments, with temperatures averaging 27.5°C and 26.3°C respectively. According 

to Figure 4.9b, 27.5°C would reduce distances covered in control mites. 

Consistent with our previous, full coverage experiment, we observed no significant 

influence of acetamiprid residues on the number of resting mites (Section 3.3.2); 

following that experiment we suggested the residue levels were not high enough to 

induce changes in resting behaviour and our findings in the half coverage experiment 

reinforce this conclusion. 

 

4.4.4 Zone preference study 

We found that T. pyri were not affected by methanol residues on the test arena 

surface, as there was no significant difference in the time spent on the treated or 

untreated surfaces (Section 4.3.3). This also suggested there were no other 

unmeasured factors impacting upon a mite’s preference for either side of the arena, 

such as light intensity. 

We found no significant effect of acetamiprid or deltamethrin residues on the 

proportion of observation time spent on the treated arena surface (Figure 4.6); there 
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appeared to be a non-significant reduction in the time spent on deltamethrin 

residues and no trend relating to acetamiprid residues. We did however observe a 

significant reduction in the proportion of time spent on dimethoate surfaces, with 

mites spending approximately 33% and 36% less time on the treated surface at 1.19 

μg cm-2 and 2.38 μg cm-2 respectively when compared to control. Our findings suggest 

a threshold exists between 0.24 μg cm-2 and 1.19 μg cm-2 where mites respond to the 

residues in such a way that causes them to spend time on untreated surfaces instead. 

This response equates to residue avoidance, likely through repellency based on the 

definition of Beers and Schmidt-Jeffries (2015); however, when applying the 

definition of Cordeiro et al. (2010) wherein irritation is observed in populations that 

spend < 50% of the observation period on treated surfaces, we can conclude that all 

three dimethoate concentrations lead to irrititation in T. pyri. By this definition we 

can also say that all three deltamethrin treatments also cause irritation, though mites 

exposed to deltamethrin residues display large variances in response and so we draw 

this conclusion with caution. 

Our findings regarding dimethoate are consistent with reports of avoidance 

behaviour in C. septumpunctata on leaves (Singh, Walters and Port, 2001), though 

reports of dimethoate avoidance in predatory mites are limited. In a field study, 

dimethoate residues were observed to be repellent to bees (EFSA, 2006). Regarding 

acetamiprid, there is a report of extreme avoidance behaviour in G. occidentalis 

exposed to acetamiprid residues in a choice arena, where mites escaped the test 

arena completely (Beers and Schmidt-Jeffris, 2015). The authors studied a 

concentration similar to our highest treatment rate (178 mg L-1 compared to 180 mg 

L-1 in our study). This leads us to conclude T. pyri are less sensitive to acetamiprid 

residues than G. occidentalis, though more work would be necessary to confirm this. 

 

4.4.5 Mite movement behaviour 

Acetamiprid residues led to a 20% reduction in T. pyri velocity at the highest 

concentration studied (9.57 μg cm-2), an 8% increase in meander on acetamiprid 

residues across the studied range, and also a 37% increase in the time spent active 

on acetamiprid residues at the lowest concentration (0.95 μg cm-2; Figure 4.8). This 



 

159 
 

overall picture of responses to acetamiprid is convoluted, but suggests that there is 

a degree of toxic stress, identified by the slower movement rate and increased 

meandering behaviour. A previous study has identified velocity and angular velocity 

as the behaviours most sensitive to toxic stress in collembolan (Sørensen, Bayley and 

Baatrup, 1995), and suggests that changes in such behaviours would indicate a 

reduced fitness of the animals under field conditions. Interestingly there were no 

significant effects on these behaviours in the full coverage study, though angular 

velocity was increased by acetamiprid exposure (Section 3.2.2; Figure 3.5). We are 

not sure why a response would be observed in lower residue concentrations, but not 

in higher concentrations, though the high rates of variance in individual behaviours 

may be masking effects in full coverage studies, or producing a false positive effect 

here. One theory is that physiological controls are induced at the lower 

concentrations, leading to observed behavioural effects, and as concentrations 

increase, more toxic effects that do not show in behaviour – or mortality within 10 

minutes – are occurring, overriding such physiological controls. Studies have shown 

that thiomethoxam, another neonicotinoid, affected thermoregulation, one such 

physiological control, in bees (Potts et al., 2018; Tosi et al., 2016). We would need to 

conduct further studies to determine whether physiological controls are the cause in 

our study. 

We observed reductions in distances walked when mites were exposed to 

deltamethrin residues in choice arenas (Figure 4.8). This was a curious effect with no 

difference between treated and untreated zones; however, there was a near 50% 

reduction in the distance covered by mites when counting distance across the whole 

arena, and not in the two individual zones. This suggests that the toxic stress effect 

of deltamethrin residues at these levels arrests movement, as previously suggested 

in Section 4.4.3. It also suggests one of two things: either that the effect of 

deltamethrin is not just through contact, and that mites sense the residues remotely; 

or that the effect of contact with deltamethrin is instant and lingers after an individual 

has moved to an untreated surface. Due to the time scales we studied here, we 

conclude this effect is most likely the latter suggestion, with toxicokinetic effects 

continuing once individuals have moved away from treated areas. Mites also 



 

160 
 

displayed higher velocity on deltamethrin treated surfaces, though concentration 

was not relevant: this correlates with previous studies suggesting hyperactivity 

induced by pyrethroids (e.g. Alzogaray, Fontán and Zerba, 1997; Iftner and Hall, 

1983), and when coupled with the reduced distances walked, it suggests that 

individuals may be irritated or stressed by contact with deltamethrin residues and 

subsequently move rapidly to escape the residues by moving to untreated surfaces. 

This combination of results would suggest that mites spent less time on the treated 

half.  

To investigate this further, we examined the proportion of time spent on the treated 

and untreated surface by mites in the deltamethrin treated arenas (Figure 4.10), and 

conducted multiple paired t tests, one per treatment, to see whether there was a 

difference in time spent by mites on treated and untreated surfaces. Table 4.15 

summarises the results and shows that, although less time was spent on the treated 

surface, there was no significant difference, likely due to the large variance in 

individual responses as illustrated in Figure 4.10. 
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Figure 4.10 – Effect of deltamethrin residues at three concentrations, on the 

proportion of time spent by Typhlodromus pyri on the untreated (blue; left) and 

treated (pink; right) surfaces over 10 min. Line and whiskers for each column shows 

mean ± 95% confidence intervals at each treatment level. Individuals deemed 

inactive throughout the observation period were excluded from analysis. n = 18; 16; 

16. 

 

Table 4.15 – Summary of mean difference ± 95% confidence intervals and paired t 

tests of differences in the proportion of time spent on untreated and treated surfaces 

in deltamethrin treated test arenas. α = 0.0167; n = 16; 16; 18. 

Deltamethrin 

concentration (μg 

cm-2) 

Mean difference (treated 

vs untreated surface; %) 

95% Confidence 

Intervals (%) t P 

5.3  10-4 -14.61 -34.73 – 5.52 1.55 0.14 

2.7  10-3 -9.98 -48.74 – 28.78 0.55 0.59 

5.3  10-3 -0.41 -25.5 – 24.69 0.03 0.97 

 

Based on the full coverage study (Chapter 3), we would have expected to see 

reductions in distances walked, increased angular velocity and meander, and reduced 

time spent active as a result of deltamethrin residues (Figure 3.5). While the effects 

on distance walked have carried over into the choice experiment, there was no 

significant effect on the other three measures, suggesting that either the reduced 
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overall surface residues in the choice test arenas were not large enough to induce 

effects, or that natural variation amongst individual responses was too great to see a 

trend. Though there was a significant, yet very weak trend of angular velocity 

increasing with increasing temperature in mites within the deltamethrin arenas 

(Table 4.3), we conclude that natural variation in behaviour is the most likely 

explanation in this case. 

Mites covered less distance in test arenas containing dimethoate residues, with a 

34% reduction in distance walked on residues at the 1.19 μg cm-2 concentration, and 

37% reduction at the 2.38 μg cm-2 concentration when compared to distances 

covered on untreated surfaces (Figure 4.8). Mite paths were increasingly convoluted 

on dimethoate residues, though this effect did not differ with concentration. Finally, 

mites spent less time active on the dimethoate residues than on the untreated 

surface, and again this was not affected by the different concentration levels, 

suggesting meander and time spent active are influenced by the presence of 

dimethoate residues at any level within the studied range. These findings are 

consistent with the findings that mites spend less time overall (i.e. whether active or 

resting) on dimethoate treated surfaces, and also display avoidance behaviour 

through a clear preference for untreated surfaces when given the choice (Section 

4.4.4). These findings are corroborated by responses seen in the ladybird C. 

septumpunctata (Singh, Walters and Port, 2001), though as previously mentioned, 

we have found reports of avoidance relating to dimethoate to be limited. The 

reduction in time spent active on dimethoate residues also correlates with our 

findings that mites are less likely to move at all when exposed to dimethoate residues 

(Figure 4.5), and also spend less time on residues (Figure 4.6), further supporting our 

suggestions that dimethoate not only reduces activity, but also leads to residue 

avoidance. 

A surprising difference between the full coverage and half coverage experiments was 

the lack of significant differences in angular velocity as a result of contact with 

pesticide residues. Our full coverage experiments found that angular velocity was 

affected by all three studied insecticides (Figure 3.5), and we were surprised to find 

no effects in this half coverage study. This suggests that angular velocity is a sensitive 
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measure of movement behaviour – an idea reinforced by Sorensen et al. (1995) – and 

that the behaviour was not affected by pesticides when placed in arenas with half of 

the overall residue level of that seen in the full coverage experiments.  

 

4.4.6 Avoidance behaviour 

Our study of avoidance behaviour following the same method as that applied in the 

full coverage study found that only four mites attempted to escape test arenas 

completely, and all four were at the highest deltamethrin treatment (Section 4.3.4). 

As there were no other examples of mites becoming trapped, we could not 

statistically investigate the behaviour within the half coverage study. When 

considering the response to residues in relation to responses seen in the full coverage 

experiment, 16 mites escaped the test arena when exposed to residues of 2.7 × 10-3 

µg cm-2; if residues in the half covered arena were considered across the whole arena, 

then the highest concentration in the half coverage arena would equate to the 

second concentration in the full coverage arena. When considering that only four 

mites escaped the test arena when residues were presented on half of the surface, 

we conclude that the rapid repellent effect of deltamethrin residues seen in the full 

coverage study is mitigated by mites having unexposed surfaces to rest or move on. 

This reinforces the suggestion that full coverage experimental designs overstate 

effects on species (Beers and Schmidt-Jeffris, 2015; Blümel, Pertl and Bakker, 2000). 

It also reinforces our conclusion from Chapter 3 that deltamethrin induces a rapid 

repellent effect. 

4.4.7 Study findings compared to hypotheses 

Prior to the experimental phase, we formulated working hypotheses for the three 

active substances. We hypothesised that acetamiprid and deltamethrin would induce 

avoidance behaviour, with the hypothesis for acetamiprid based on published 

observations involving G. occidentalis (Beers and Schmidt-Jeffris, 2015), and on our 

own observations in T. pyri for deltamethrin. We hypothesised that dimethoate 

would not induce avoidance behaviour as we observed no avoidance behaviour in 

our earlier studies; in addition there are no published reports of repellency in 
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predatory mites exposed to dimethoate, despite the substance being highly toxic 

(Blümel et al., 2000a).  

We were interested to find that our hypotheses were proved wrong in all three cases, 

especially as our full coverage experiments informed the hypotheses. No avoidance 

behaviour was observed in individuals exposed to acetamiprid residues, in contrast 

to findings reports in the scientific literature. The only avoidance behaviour we 

observed in mites exposed to deltamethrin was identified with small numbers of 

individuals becoming trapped in the test arena glue barrier, though this effect was 

not as clear as in the full coverage study. We were surprised to observe a clear 

preference in mites exposed to dimethoate in choice arenas, where mites spent over 

30% less time on treated surfaces than untreated surfaces. 

 

4.4.8 Ecological relevance of findings 

Our choice arena study investigated behavioural effects in mites exposed to residues 

amounting to no more than double the published 7d-LR50 for T. pyri, with residues on 

only half of the arena. In Chapter 2, we concluded that 17% of the sampled 

penconazole spray (250 L Ha-1) was deposited on the upper apple leaf surfaces 

(Section 2.8). In the previous chapter, we inferred that a 17% deposition of a 200 L 

Ha-1 application rate – consistent with application rates used in toxicity studies used 

for determining treatment levels in this study – would amount to 34 L being 

deposited on apple leaves (Section 3.4.6). Based on this, and consistent with the 

process in Section 3.4.6, we converted nominal treatment concentrations for 

acetamiprid and deltamethrin to the equivalent field application rate; we then 

estimated field residues based on the treatment concentrations (Table 4.16). We 

applied the same basis to estimate how much active substance would land on apple 

leaves at the recommended application rate (i.e. label rate) for orchards (Table 4.17). 

We then informed our conclusions regarding acetamiprid and deltamethrin using this 

information. As before, we have not considered dimethoate in the same way as it is 

not permitted for use in apple orchards. 

  



 

165 
 

 

Ta
b

le
 4

.1
6

 –
 In

se
ct

ic
id

e 
tr

ea
tm

en
t 

co
n

ce
n

tr
at

io
n

s 
u

se
d

 in
 t

h
e 

b
eh

av
io

u
r 

st
u

d
ie

s 
ex

p
re

ss
ed

 a
s 

th
ei

r 
eq

u
iv

al
en

t 
fi

el
d

 r
at

e 
if

 a
p

p
lie

d
 a

t 
a 

ra
te

 o
f 

2
0

0
 L

 h
a-1

 a
n

d
 a

s 
m

ea
su

re
d

 r
es

id
u

es
 f

ro
m

 t
h

e 
la

b
o

ra
to

ry
 s

tu
d

ie
s.

 M
ea

su
re

d
 r

es
id

u
es

 a
re

 b
as

ed
 o

n
 t

h
e 

re
si

d
u

es
 c

o
ve

ri
n

g 
th

e 
w

h
o

le
 t

es
t 

ar
e

n
a 

su
rf

ac
e.

 T
es

t 
co

n
ce

n
tr

at
io

n
s 

ar
e 

th
en

 e
xp

re
ss

ed
 a

s 
es

ti
m

at
io

n
s 

o
f 

re
si

d
u

es
 la

n
d

in
g 

o
n

 a
p

p
le

 le
av

es
 in

 o
n

e 
h

ec
ta

re
 o

f 
o

rc
h

ar
d

 a
n

d
 p

er
 u

n
it

 o
f 

le
af

 a
re

a.
 P

re
se

n
te

d
 v

al
u

es
 a

re
 b

as
ed

 o
n

 t
h

e 
as

su
m

p
ti

o
n

 t
h

at
 1

7
%

 o
f 

a 
2

0
0

 L
 h

a
-1

 p
es

ti
ci

d
e 

sp
ra

y 
ap

p
lic

at
io

n
 la

n
d

s 
o

n
 a

p
p

le
 le

av
es

 in
 a

 1
 h

a 

o
rc

h
ar

d
. 

 
Te

st
 c

o
n

ce
n

tr
at

io
n

s 
in

 la
b

o
ra

to
ry

 s
tu

d
ie

s 
Es

ti
m

at
e

d
 r

es
id

u
es

 o
n

 a
p

p
le

 le
av

es
 in

 f
ie

ld
 

A
ct

iv
e 

in
gr

ed
ie

n
t 

N
o

m
in

al
 t

re
at

m
en

t 

co
n

ce
n

tr
at

io
n

  

(m
g a

.s
. m

L-1
) 

Eq
u

iv
al

en
t 

fi
el

d
 

ap
p

lic
at

io
n

 r
at

e
 

(g
a.

s.
 H

a-1
) 

M
ea

su
re

d
 r

es
id

u
es

 

o
n

 t
e

st
 a

re
n

a 

su
rf

ac
e

 (
μ

g a
.s

. c
m

-2
) 

A
p

p
le

 le
af

 r
es

id
u

es
 in

 

o
rc

h
ar

d
 (

g 
H

a-1
gr

o
u

n
d
) 

A
p

p
le

 le
af

 r
es

id
u

es
  

(μ
g a

.s
. c

m
-2

le
af

) 

A
ce

ta
m

ip
ri

d
 

0
.0

1
8

 
3

.6
 

0
.4

6
 

0
.6

1
 

0
.0

0
2

5
 

0
.0

9
 

1
8 

2
.2

9
 

3
.0

6
 

0
.0

1
2

5
 

0
.1

8
 

3
6 

4
.3

1
 

6
.1

3
 

0
.0

2
4

9
 

D
el

ta
m

et
h

ri
n

 

1
 ×

 1
0

-5
 

0
.0

0
2

 
0

.0
0

0
1

 
0

.0
0

0
3

 
1

.4
 ×

 1
0-6

 

5
 ×

 1
0

-5
 

0
.0

1
 

0
.0

0
0

9
 

0
.0

0
2

 
6

.9
 ×

 1
0-6

 

1
 ×

 1
0

-4
 

0
.0

2
 

0
.0

0
1

8
 

0
.0

0
3

 
1

.4
 ×

 1
0-5

 

 



 

166 
 

Table 4.17 – Field application rates for acetamiprid and deltamethrin expressed as 

estimations of residues landing on apple leaves in one hectare of orchard and per 

unit of leaf area. Presented values are based on the assumption that 17% of a 200 L 

Ha-1 pesticide spray application lands on apple leaves in a 1 Ha orchard. 

Active 

ingredient 

Field application 

Rate (ga.s. ha-1) 

Apple leaf residues in 

orchard (g ha-1
ground) 

Apple leaf residues  

(μga.s. cm-2
leaf) 

Acetamiprid 75 12.77 0.052 

Deltamethrin 8.75 1.49 0.006 

 

 

As before, we estimated that 12.77 g of a 75 ga.s. ha-1 application of acetamiprid would 

land on apple leaves, which equates to leaf residues of 0.052 μga.s. cm-2
leaf (Table 

4.17). If we assume the residues applied to the choice test arenas were homogeneous 

across the test arena surface, then the acetamiprid levels we exposed T. pyri adults 

to were 9 – 83 times higher than the expected leaf residues, arising from field 

application of our test concentrations (Table 4.16). Consistent with our conclusion in 

Chapter 3, the effects of acetamiprid on velocity and time spent active would not be 

of concern in the crop environment, unless these effects also occur at much lower 

residue levels. 

For deltamethrin, a label rate field application of 8.75 ga.s. ha-1 would lead to 1.5 g 

landing on apple leaves in one orchard hectare – this equates to leaf residues of 0.006 

μga.s. cm-2
leaf (Table 4.17). When assuming deltamethrin residues were homogeneous 

across the test arena surface, the residue levels we assessed were 3.5 – 47 times 

lower than the residue levels we would anticipate based on the label rate field 

application (Table 4.16). We observed increased inactivity in mites exposed to 

deltamethrin residues at all three treatments when in choice arenas; therefore, we 

would anticipate this response to occur in the orchard environment. We also 

observed reduced distances covered by mites when comparing the first and second 

treatment levels and when considering mite movement across the whole arena – we 

would also anticipate these effects to occur in the crop environment when 

deltamethrin is sprayed at the field rate. Moreover, we would expect these 



 

167 
 

behaviours to be more likely as the effects were observed in heterogeneous exposure 

landscapes, meaning spray-free refugia are not enough to avoid negative effects of 

residues. 

As dimethoate is no longer used in crop systems where T. pyri reside (e.g. grapevines, 

fruit orchards), we cannot comment on the implications for this insecticide.  

 

4.4.9 Summary of findings and comparison to full coverage study 

In summary, we found that acetamiprid residues in choice arenas did not increase or 

decrease the number of active mites, nor did the residues affect the time spent on 

the treated surface compared to control. In comparing movement behaviours on 

treated and untreated surfaces, acetamiprid did not affect distances walked, angular 

velocity or meander. However, mite velocity was 20% slower on surfaces treated at 

the highest concentration (9.57 μg cm-2) than on untreated surfaces, and mites spent 

37% more time active on surfaces treated at the lowest concentration (0.95 μg cm-2) 

than on the untreated surface. In Chapter 3 we found that angular velocity was 

affected in full coverage arenas, with observed increases in angular velocity at all 

three concentrations. In considering all effects as a whole, we conclude that 

acetamiprid causes irritation to T. pyri at these concentrations, an effect especially 

highlighted by responses in the choice arenas. 

Deltamethrin residues in choice arenas reduced the number of active mites in 

comparison to control at all three concentrations, but did not significantly affect the 

time spent on the treated surface, either compared to control mites, or when 

comparing paired data from individuals. Distances covered by mites across whole 

arenas were reduced by 24% between arenas treated with the lowest (5.3 × 10-4 μg 

cm-2) and middle (2.7 × 10-3 μg cm-2) concentrations, but deltamethrin residues did 

not affect any other movement behaviour. Avoidance behaviour was again observed, 

but only in four mites at the highest concentration, a much lower number than those 

observed in the full coverage experiments. By comparison, mite movement 

behaviour in arenas fully covered with deltamethrin residues was significantly 

altered, with reduced distances covered and time spent active, and increased angular 
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velocity and meander. In Chapter 3 we concluded that deltamethrin residues at these 

low levels both irritated and arrested mite movement, and also caused a high number 

of mites to escape residues completely. In considering all of these effects, we 

conclude that mite movement behaviour is significantly affected by deltamethrin 

residues, but only where they have no choice between avoiding or being exposed to 

residues. 

We observed avoidance behaviour in T. pyri adults exposed to dimethoate residues 

of 1.19 and 2.38 μg cm-2 in choice arenas when comparing the time spent on the 

treated surface to the time mites spent on the control treated surface. Dimethoate 

residues also increased the number of inactive mites, but only at the lowest (0.24 μg 

cm-2) and highest (2.38 μg cm-2) residue levels. We also observed lower distances 

walked in the second and third concentrations, and an overall reduction in time spent 

active on all dimethoate treated surfaces. Considering these responses as a whole 

with responses in the full coverage arenas, there is a clear effect of dimethoate on T. 

pyri adults, with mites choosing to spend less time on residues if given the choice, 

and also to move less on these residues. When combined with mites displaying a 

more tortuous path when moving on dimethoate residues, we conclude that T. pyri 

adults detect the residues, are affected by the residues, and are avoiding residues as 

a result of irritancy.  

The subtleties of behavioural responses to deltamethrin and dimethoate were 

completely missed by the analysis of behaviour in full coverage arenas. If we took the 

conclusions from the full coverage studies, we would not have known that T. pyri 

adults avoid dimethoate residues given the choice; likewise, the strong behaviour 

changes elicited by deltamethrin residues were diminished when individuals had a 

choice of treated and untreated surfaces. As a result, our conclusions regarding both 

insecticides were altered. 

 

4.4.10 Risk assessment implications  

Differences in results between the choice arenas and full coverage arenas reinforces 

the point that the full coverage arenas used in pesticide risk assessment are worst 
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case scenarios and may overstate effects (Beers and Schmidt-Jeffris, 2015), though 

as we have previously noted, heterogeneous coverage may also lead to greater 

residues where spray lands, therefore their assertion is not certain. However, our 

work suggests the overstatement comes as a result of an overly simple test design, 

and suggests caution when interpreting results elicited in test environments with 

small spatial and temporal scales, as these may differ in the crop environment. As 

previously discussed in Section 3.4, avoidance behaviour is a double edged sword: it 

could reduce the toxic effects of residues; however, it could also reduce the 

biocontrol capabilities of non-target arthropods such as T. pyri. Similar arguments 

have been made in other ecotoxicology contexts: Meli et al. (2013) highlighted the 

importance of knowing how homogeneous (or heterogeneous) chemical 

concentrations are in soil, as toxicity may be overstated if homogeneity is erroneously 

assumed. Additionally, a study comparing responses in T. pyri to fungicides in 

laboratory and field trials found disparities between responses, with laboratory 

studies overestimating deleterious effects (Blümel, Pertl and Bakker, 2000).  

Based on our findings across the full- and partial coverage test arenas, we feel that 

regulators should consider the inclusion of choice arenas in the risk assessment of 

plant protection products. The inclusion of laboratory-based choice arena studies 

may help to bridge the gap between effects seen in the laboratory and in field studies, 

therefore improving the understanding of pesticide effects and subsequent 

ecosystem- and population-level consequences. 

 

4.4.11 Further study 

In Chapter 3 we considered several ideas for additional laboratory-based studies to 

develop further knowledge of behavioural changes (Section 3.4.7). These are also 

relevant to the choice arena study design we have reported here so will not be 

repeated. Instead, we will explore further study options in different directions. 

There are many questions raised by our findings in relation to the risk to T. pyri 

populations as a result of pesticide induced behaviour changes. There are four 

pertinent questions to ask in this context: what mechanisms are behind avoidance 

behaviour? Do behaviours change in the crop environment in the same way as we 
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observed in the laboratory? Do any changes affect the biocontrol potential of T. pyri? 

Finally, do behavioural changes affect the overall population structure? These 

questions would require both field and laboratory studies: field investigations of mite 

behaviour in sprayed orchards; assessments of feeding and pest control in both the 

laboratory and the field; and laboratory studies of changes in reproductive behaviour 

would all inform the discussion of the risk to non-target arthropods arising from 

pesticide exposure. For example, the avoidance of pyrethroid (such as that we 

observed for deltamethrin, though to a greater extent in the full coverage study) and 

dimethoate residues could reduce biocontrol potential, but could reduce mortality in 

field populations due to the ability to avoid contamination. This combination of 

effects would then give an arising question: what are the long term population 

consequences? Such studies could then be used to develop a population model to 

investigate the long term consequences of any behavioural changes; this would 

combine well with the previous suggestion in Chapter 3 of studying effects at a range 

of temperatures to allow for the modelling of such consequences over large spatial 

scales. 

In the case of our present work, the movement behaviour changes we quantified in 

this and the previous chapter will be used to parameterise and develop an individual 

based model to begin to answer the question of long term population consequences. 

The movement behaviour data will be integrated with existing life table parameters 

from the scientific literature to try to understand whether avoidance behaviour and 

movement behaviour changes would have long term consequences. 
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Chapter 5 – From an individual to a 

population: modelling the effects of 

pesticide residues on Chrysoperla 

carnea and Typhlodromus pyri in the 

PANTA model 
 

5.1 Introduction 

5.1.1 Models in ecotoxicology 

Once lethal and sublethal effects of pesticides have been quantified in a species, it 

can be difficult to consider how this might affect populations in the short term, long 

term, and in the natural environment. More importantly, it is difficult to conclude 

whether any of the observed effects are important, such as in the context of 

population consequences. Though laboratory studies lack the ecological realism that 

would allow determination of population effects, field studies can be prohibitively 

expensive, complex and difficult to interpret (Jänsch et al., 2006).  The European Food 

Safety Authority (EFSA) concluded in a scientific opinion report that field studies and 

modelling can be used to assess recovery following exposure, but also that modelling 

can go further than field studies by allowing extrapolation from small to larger scales, 

as well as the study of pesticide effects on species in different landscape scenarios 

and climatic conditions (EFSA, 2015). 

Ecological modelling is increasingly being used in support of environmental decision 

making (A Schmolke et al., 2010). Models offer welfare advantages by reducing the 

need for animal testing; modelling also allows extrapolation of effects from the 

individual scale to the population (EFSA Panel on Plant Protection Products and their 

Residues, 2018; Amelie Schmolke et al., 2010). Models can also take into account 

various spatial and temporal scales that might prove impossible to study in 

experiments (Augusiak, Van den Brink and Grimm, 2014). Though models have in the 

past courted criticism and scepticism due to poor documentation and 
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communication of model processes, some modelling methods have recently been 

deemed ready for regulatory use for aquatic organisms (EFSA Panel on Plant 

Protection Products and their Residues, 2018; Grimm et al., 2010).  

One popular approach for population modelling is individual-based modelling (IBM), 

also known as agent-based modelling (ABM); this is an approach that allows 

simulation of populations via creation of discrete individuals (Grimm and Railsback, 

2005). Individuals, or agents, are governed by simple rules that define their 

behaviour, and these can be altered by interactions with other agents or the 

environment in which they are modelled (Macal and North, 2010). As opposed to top-

down population parameters driving models as in differential equation modelling 

(e.g. Hanson and Stark, 2011), IBMs work from the bottom-up, allowing population-

level behaviours to emerge from interactions between the discrete individuals and 

their environment (DeAngelis and Grimm, 2014). Recent IBM applications include 

studying soil warming and tillage effects on earthworm populations (Johnston, Sibly 

and Thorbek, 2018), metal contamination effects on springtail populations (Meli et 

al., 2013), and the effects of stressors, impaired foraging, and landscape changes on 

honeybee colonies (Becher et al., 2014). 

In the study of contaminants affecting organisms, toxicokinetic-toxicodynamic (TKTD) 

modelling has emerged as the main method. Toxicokinetics cover what an organism 

does with a toxic chemical (e.g. the absorption, distribution, biotransformation and 

elimination), while toxicodynamics cover what the chemical does to that organism 

(Ashauer et al., 2011). Two main theories exist within this. The first, dynamic energy 

budget theory (DEB), works on the basis that individuals consume resources and 

convert them into energy for completing their entire life cycle (Kooijman, 2010), and 

this is tied to food availability and temperature (Lika et al., 2011). DEB in toxicology 

(DEBtox) is an extension of this, with models considering the mechanisms of action 

and subsequent effect of a contaminant on life history over time and different 

exposure concentrations (Billoir, Péry and Charles, 2007). Though the theory has led 

to the development of many models, including for earthworms (e.g. Baveco and 

Roos, 1996), there are still many gaps in the application due to a lack of knowledge 

of physiological modes of action (Ashauer and Jager, 2018); as such, DEBtox is not yet 
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routinely used for regulatory purposes (EFSA Panel on Plant Protection Products and 

their Residues, 2018).  

The second main TKTD application is the general unified threshold model of survival 

(GUTS; Jager et al., 2011), which is used to model lethal effects through connecting 

external contaminant concentrations with damage dynamics. GUTS combines two 

assumptions regularly applied in ecotoxicology: individual tolerance, where each 

individual has their own tolerance of a contaminant and tolerance exceedance leads 

to mortality; and stochastic death, where all individuals share a common threshold, 

and once this is exceeded mortality occurs stochastically (Ashauer et al., 2015; Jager 

et al., 2011). The use of GUTS in ecological risk assessment has recently been 

recommended by EFSA, who suggest such models are now ready for regulatory use 

in studying effects on aquatic organisms (EFSA Panel on Plant Protection Products 

and their Residues, 2018); this contrasts with their opinion on DEBtox models which 

EFSA believes have the potential to be used in regulatory frameworks, but require 

further validation. 

Although GUTS models have been recommended for aquatic applications, there is 

currently no recommendation for their application in terrestrial organisms. In 2015 

EFSA highlighted the lack of modelling involving terrestrial species, in particular non-

target arthropods (EFSA, 2015), and we have been unsuccessful in finding TKTD 

models relating to Typhlodromus pyri, the species we studied in Chapters 3 and 4, 

even though this is widely used in regulatory studies. At the time of writing, known 

physiological modes of action – necessary for TKTD model development – are limited 

to mainly soil dwelling arthropods and worms in the terrestrial compartment 

(Ashauer and Jager, 2018). Therefore, any attempts to consider the population level 

consequences of pesticides on non-target arthropods will be much simpler in 

application. 

 

5.1.2 Population consequences of avoidance behaviour 

In Chapters 3 and 4, we studied the effects of three insecticides on the movement 

behaviour of T. pyri, and as part of these studies we observed and quantified 



 

175 
 

avoidance behaviour when individuals were exposed to deltamethrin (Chapter 3) and 

dimethoate residues (Chapter 4). Having identified these behaviours in individuals in 

the laboratory, it is difficult to then understand how avoidance might affect 

populations in the natural environment. Previous studies in parasitoids and spiders 

have observed reduced prey consumption in individuals displaying more convoluted 

walking trajectories, arrested movement, and avoidance (Umoru, Powell and Clark, 

1996; Shaw, Waddicor and Langan, 2006). Reduced prey consumption has been 

linked to longer development times in T. pyri larvae (Hayes and McArdle, 1987), 

which would in turn have population-level consequences. It has also been suggested 

that pesticide avoidance behaviour in crop systems would lead to the dispersal and 

loss of predatory mites from crops, leading to changes in species dynamics and pest 

stresses (Cordeiro et al., 2013; Gerson and Cohen, 1989).  

Individual-based models can be utilised to gain greater understanding of the 

population consequences of avoidance behaviour. In an IBM developed to study 

metal contamination avoidance by springtails, Meli et al. (2013) demonstrated that 

the ability to detect and avoid toxicants influenced feeding behaviours and that a 

heterogeneous exposure landscape allowed population equilibrium to be achieved. 

However, applications of IBMs in the study of avoidance behaviour and population 

consequences are otherwise sparse. 

Although we have studied movement behaviour in T. pyri at the individual level, we 

do not know how these changes, including avoidance behaviour, interact with a 

heterogeneous pesticide exposure landscape such as those reported in Chapter 2. 

We also do not know what population-level consequences could arise from changes 

in behaviour. To this end we developed an IBM to better understand these topics. 

Though our ideal model concept would include TKTD model principles, it was 

important to develop a simple model with as little uncertainty as possible. Therefore, 

we made the decision not to pursue the addition of TKTD principles in this initial 

model. 
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5.1.3 Aim 

Our individual-based model, Pesticide Avoidance in Non-Target Arthropods (PANTA), 

was developed with the aim of investigating the population-level consequences of 

pesticide exposure and avoidance behaviour in non-target arthropods through the 

study of survival. We have parameterised the model for two species, the green 

lacewing Chrysoperla carnea, and the predatory mite Typhlodromus pyri.  

 

5.1.4 Research questions 

This study is intended as a proof of concept, to demonstrate that individual-based 

modelling can act as the bridge to understand how pesticide-induced behaviour 

changes, avoidance behaviour, and spatially heterogeneous pesticide exposure 

interact and affect non-target arthropod populations. 

We produced a series of hypothetical questions for the model to answer for both 

modelled species. These were tested through the simulation of lacewings and mites 

in heterogeneous exposure landscapes to study the effect of avoidance behaviour at 

a range of pesticide coverage levels. The chosen insecticide for this study was 

acetamiprid as it was one of the substances studied in Chapters 3 and 4, is relevant 

to both species, and some data on mortality is available for both species. Evidence 

exists of avoidance behaviour in non-target arthropods when placed in choice arenas 

with neonicotinoids (e.g. Beers and Schmidt-Jeffris, 2015; Fernandes et al., 2016); 

however, our own laboratory studies failed to detect a significant response in T. pyri 

(Chapter 4). 

Three questions were tested in relation to both C. carnea and T. pyri: 

1. How much longer do individuals survive when they avoid contact with 

pesticide residues? 

2. How many more individuals survive when they avoid contact with pesticide 

residues? 

3. How many more eggs are laid by adults when they avoid contact with 

pesticide residues? 
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We hypothesise that the ability to avoid pesticide residues increases survival in both 

species, and through that, also the total fecundity of females as longer longevity 

would allow more reproduction. These questions were answered by running the 

PANTA individual-based model with 24 real life pesticide exposure patterns derived 

from water sensitive papers collected in the study reported in Chapter 2 (24 from one 

apple tree). We also included two “control” exposure patterns: 0% and 100% 

coverage. 

The research questions allow us to consider the population consequences through 

changes in female oviposition rates. Standardised regulatory tests involve studying C. 

carnea survival to adulthood, which can take four weeks but do not have a specified 

temporal end point (Vogt et al., 2000). Such tests involving T. pyri study juvenile 

mortality after seven days of exposure (Blümel et al., 2000a), a time point where most 

individuals have developed into adults from our experience of rearing mites in the 

laboratory. Therefore, the first two questions were answered for C. carnea by 

studying survival to adulthood, and for T. pyri by studying survival after seven days. 

Female oviposition rates were studied through the life time of adult individuals, and 

data arising from these simulations also informed the investigation of pesticide 

effects on longevity. 

 

5.2 The model 

5.2.1 Biological context 

As previously mentioned, we developed the model for two non-target arthropod 

species with differing lifestyles and developmental periods. We have previously 

introduced and described the two study species (Chapter 1), and will go into further 

detail below with details relevant to the modelling of the two species.  

 

5.2.1.1 Development and life table parameters 

Both Chrysoperla carnea and Typhlodromus pyri share apple orchards as habitats; 

however, they have very different developmental times and longevities. For example, 
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in laboratory studies at 25°C, C. carnea take on average 27 days to develop from egg 

to adult and live for 81 days (Pappas et al., 2013), but T. pyri take just 8 days to reach 

adulthood, and live for 45 days at the same temperature (Gadino and Walton, 2012). 

Detailed developmental studies have published life table parameters for both species 

at a range of air temperatures and displayed different developmental rates at 

different temperatures, and after scrutiny of data we chose two studies that had 

published data in a way that was compatible with parameterising individual-based 

models: for C. carnea we cited data from Pappas et al. (2013), as their data were 

derived from a study of C. agilis, a member of the C. carnea group; for T. pyri we cited 

data from Gadino and Walton (2012).  

We intended to tie the development rate to the air temperature at which movement 

behaviours were measured for two reasons: firstly, the work published by Pappas and 

colleagues, and Gadino and Walton demonstrated that air temperature impacts 

significantly on development, survival and reproduction; secondly, our study of 

movement behaviours in T. pyri showed that air temperature can affect movement 

rates (Chapters 3-4). However, this proved difficult. Very little data are available 

pertaining to movement behaviour in lacewings, with one study from 1980 tracking 

larval movement by hand for five to eight minutes and providing little information of 

use (Bond, 1980), and one contemporary study investigating avoidance behaviour in 

C. externa through video analysis (Cordeiro et al., 2010). Neither study reported the 

air temperature at which behaviour was monitored, so it could be inferred to be one 

of two approximate temperatures: ambient air temperature, which could be 

assumed to be close to 20°C, or the temperature at which culturing and mortality 

studies take place, which is around 25°C. Since we undertook our own studies of 

movement behaviour in T. pyri, we have the air temperature range at which 

movement behaviour was recorded, which ranged 22 – 27°C (Chapters 3-4). Based 

on the data available to us, we decided to use published developmental times based 

on 25°C. Tables 5.1 and 5.2 summarise developmental time data for C. carnea and T. 

pyri respectively. Table 5.3 summarises reproduction data for the two species, 

highlighting the large differences in oviposition rates between lacewings and mites. 

A more complete model would have had development rates for each species 
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calculated as a function of temperature response, allowing movement behaviour and 

development to be modelled at different temperatures.  

 

Table 5.1 – Life stages and developmental times for the green lacewing Chrysoperla 

carnea presented in terms of mean number of days and survival (%) ± standard 

deviation (SD) for each developmental stage at 25°C, plus survival to adulthood. Adult 

data relates to females only while other life stages comprise aggregated data for both 

sexes. Data derived from Pappas et al. (2013) and adapted for inclusion in the PANTA-

lacewing model. 

 Life stage Days SD Survival to adult (%) 

 
Egg 4 2.24 

74 

Larval Instar 1 3.9 3.6 

Instar 2 2.9 2.24 

Instar 3 3.9 2.24 

Pupal Prepupa 3.8 3.1 

Pupa 8.3 4.9 

Adult Pre-ovipositional 6.9 0.89  

Adult longevity 54.1 11.2  

 

  



 

180 
 

Table 5.2 – Life stages and developmental times for female predatory mites 

(Typhlodromus pyri) presented in terms of mean numbers of days ± standard 

deviation (SD) and survival for each developmental stage at 25°C. Data derived from 

Gadino and Walton (2012) and adapted for inclusion in the PANTA-mite model. 

 Life stage Days SD Survival to adult (%) 

 Egg 2.8 0.49 

89.6 

Pre-imaginal Larvae 1 0.49 

Protonymph 2.1 0.49 

Deutonymph 2.1 0.49 

Adult Pre-ovipositional 2.2 2.4  

Ovipositional 31.3 13.9  

Post-ovipositional 6.6 13.4  

 Total longevity 45 21.6  

 

 

Table 5.3 – Comparison of life table parameters for female Chrysoperla agilis 

(member of C. carnea cryptic group) and Typhlodromus pyri, derived from 

development studies conducted at 25°C. Means +/- standard deviation (SD) are 

presented. Data for C. carnea derived from Pappas et al. (2013); data for T. pyri 

derived from Gadino and Walton (2012). 

 C. carnea T. pyri 

 Mean SD Mean SD 

Total oviposition (eggs per female) 697.4 139.1 43.7 14.4 

Egg hatchability (%) 85 5.8 98.1 - 

Generation time (days) 51.4 - 23.8 - 

 

 

5.2.1.2 Movement behaviour 

Chrysoperla carnea is a complex species group to study and implement into a model 

due to vast differences in their locomotory behaviour at different life stages. Larvae 
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typically remain within one tree; however, upon hatching as an adult, lacewings will 

fly up to 40 km on the first night following emergence in what was described as an 

“obligatory migration flight” (Duelli, 1984b). They then also take flight each night, and 

as a result, the authors highlight that next to no eggs will be laid by a female in the 

habitat they emerged in. This migration and reproduction strategy complicated the 

implementation of reproduction in the model, and as a result, some decisions were 

made that oversimplify the life cycle and population dynamics for the function of the 

model. Rather than having adults emerge, take flight and leave the exposure 

landscape, or have previously unexposed adults enter the landscape for oviposition, 

we decided to keep the adults within the exposure landscape in which they 

developed. By doing this, we were able to study the effect of a certain level of 

pesticide coverage on an individual throughout its life. 

As previously mentioned, data are scarce on lacewing larval movement behaviour, 

with few studies having investigated metrics such as distances covered, velocity and 

turning behaviour.  We used control data from one choice arena study that 

investigated the effect of kaolin particles on C. carnea larval movement behaviour to 

parameterise the lacewing movement within the model (Porcel, Cotes and Campos, 

2011). However, we could only find information on activity over 15 minutes, with no 

detailed information on how active larvae are over a 24 hour period. We were able 

to infer that larvae are active for 46% of the observation time in the Porcel et al. 

study; however, better quality data regarding activity over larger temporal scales 

would be ideal.  

Parameterisation of short term T. pyri movement behaviour was more simple due to 

our own experiments (Chapters 3 and 4). To parameterise movement, we utilised the 

control mite movement data from the 100% coverage experiments. We considered 

including different behaviours based upon our findings in Chapters 3 and 4; however, 

there were few significant differences between mites exposed to acetamiprid and 

control mites. In Chapter 3 we only observed increases in mean velocity at the highest 

treatment (9.57 µg cm-2, or 957 g ha-1), a concentration that was not studied in the 

mortality tests we used to parameterise the model (Section 5.2.2). When mites were 

placed in choice arenas, we observed that mites were active for 45 seconds longer 
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on acetamiprid residues at the 0.97 µg cm-2 concentration, compared to the 

untreated surface (Chapter 4, Figure 4.6). However, when we looked at mite activity 

relative to how long individuals spent on untreated and treated surfaces, we found 

that the difference in activity was marginal, with mites being active for 79% of their 

time on the untreated surface, and 80.6% of their time on the treated surface (mean 

difference 1.6%; 95% confidence intervals [-14.2 – 17.4%]). Therefore, we did not 

include differences in movement behaviour on untreated and treated surfaces for 

acetamiprid, though based on our laboratory results, future implementation of 

deltamethrin and dimethoate would benefit from such implementation. 

We have summarised the movement measures used to parameterise movement in 

Table 5.4. Mean velocity and time spent active were used to parameterise the model. 

As with life cycles, there were some similarities in movement behaviour, but also 

large contrasts: both species move in random food searching patterns until they 

sense food, at which point their movement is directed towards the source (e.g. Bond, 

1980; Nyrop, 1988); however, the distances covered and proportions of time spent 

active are different. Though conclusions cannot be drawn from any comparisons due 

to the many differences in test set up and conditions, the data illustrate strong 

differences in both movement behaviour and development between the two species, 

justifying the need for different models for the two species. 
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Table 5.4 – Movement data used to parameterise individual movement behaviour for 

the two modelled species Chryosperla carnea and Typhlodromus pyri. Data for C. 

carnea are derived from Porcel, Cotes and Campos (2011); T. pyri data are derived 

from our own movement behaviour studies and are based on control mites (Chapter 

3). Data for distance covered, velocity and time spent active are presented as mean 

and standard deviation (SD).  

Movement behaviour C. carneaa T. pyrib 

Distance walked (cm) 131.1 52.1 

SD 44.9 31.7 

Velocity (mm s-1) 1.51 0.63 

SD 0.52 0.43 

Time active (%) 46.0 74.6 

SD 9.7 19.9 
a – Study duration = 15 min 
b – Study duration = 10 min 

 

 

5.2.2 Model Overview 

We have described the PANTA individual-based model following the ODD (Overview, 

Design concepts, Details) protocol widely used for describing ecological IBMs (Grimm 

et al., 2010, 2006). The model was implemented in NetLogo version 6.0.4 (Wilensky, 

1999), a free-to-use modelling platform for developing and implementing individual-

based models that is widely used in answering ecological and ecotoxicological 

questions (e.g. Becher et al., 2018; Johnston et al., 2014; Meli et al., 2013). 

 

5.2.2.1 Purpose 

The overall purpose of the PANTA model is to simulate the plant-dwelling non-target 

arthropod species Chrysoperla carnea and Typhlodromus pyri and to quantify the 

improvements in survival and longevity that arise from avoidance of pesticide 

contaminated surfaces. In its current state, the model can be used to investigate 

survival to adulthood and female longevity in both species when placed in 
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environments with spatially heterogeneous pesticide residues. Female fecundity can 

also be investigated by the model; however, at this point, this is only as a function of 

female longevity. The model does not currently take into consideration pesticide 

effects on reproduction through the application of e.g. GUTS or DEB theory, though 

it is hoped that future versions will implement this. 

 

5.2.2.2 Entities, state variables, and scales 

One time step equals one minute, and the duration of each model simulation 

depended upon the research question being answered by the simulation. Please refer 

to Section 5.3 for model simulation durations. 

 

Individuals 

The model includes several different entities for individuals, and these depend on 

whether the model is simulating C. carnea or T. pyri. For C. carnea, there are six 

entities: eggs, and female lacewings (larval instars 1-3, pupa, and adult). The pupa 

entity covers both the pre-pupal and pupal stages in Table 5.1. For T. pyri, there are 

five entities: eggs, and female mites (larva, protonymph, deutonymph, and adult). 

For each species, each larval life stage was modelled separately to maximise 

stochasticity amongst individuals. Lacewings and mites are represented as individuals 

moving across an exposure landscape and have numerous state variables, listed in 

Table 5.5. One state variable that requires highlighting is tolerance to pesticide: 

although we were not able to fully implement GUTS or DEB theory in the model as 

presented, we have included the premise of individual tolerance thresholds in the 

model (Ashauer et al., 2015). Tolerance was set as a random value from 1 – 100, and 

once the tolerance level was exceeded by cumulative pesticide exposure, the 

individual died. We note that this is simplistic as individuals with low tolerances 

would suffer near instant death within the model when we have no data to suggest 

this happened in laboratory experiments, and as such the tolerance variable would 

benefit from refinement.  
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Table 5.5 – Descriptions of state variables implemented in the PANTA model for 

Chrysoperla carnea and Typhlodromus pyri. Variables are grouped by those that are 

currently used for analysis, and those that currently exist and can be used for future 

analysis scenarios with model refinement. 

State variable Units Description 

Age (age) Minutes The age of the individual 

Time as adult (adult-age) Minutes Duration of life spent as an adult 

Duration of exposure  
(exposure-duration) 

Minutes Duration of exposure to pesticide 
residues 

Cumulative effect of pesticide 
exposure 
(tox) 

 A value that accumulates with every 
minute spent on pesticide residues. 
Once this value is above the 
individual’s tolerance, they die. 

Tolerance to pesticide (tolerance) Random 
1-100 

A randomly generated number that 
determines how sensitive an 
individual is to pesticide exposure. 
Used to inform mortality arising from 
exposure (tox). Based on the theory of 
individual tolerance to toxic 
compounds (Ashauer et al., 2015). 

Oviposition of female (eggs-laid)  The number of eggs laid by an adult 
female. 

Development time from egg hatch to 
adult (time-to-adult) 

Minutes The time an individual takes to 
develop into an adult. 

Position within environment X/Y co-
ordinates 

 

Heading Degrees Direction of facing for the individual.  

Fertility of individual (fertile) True/false A variable that determines whether 
the individual is fertile or not. Based 
on a randomly generated number 
(infertility-chance); 0-90 means the 
individual is fertile; 91 – 100 is 
infertile. 

Cumulative time spent active  
(time-active) 

Minutes The amount of time spent moving as 
individuals do not move every model 
step. 

Cumulative distance walked 
(distance-traveled) 

mm The distance covered by individuals. 
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Environment 

The model world is a heterogeneous exposure landscape, a two-dimensional surface 

measuring 260 × 260 patches, with each patch measuring 1 mm2. Landscapes are 

imported from cropped binary images of water sensitive paper (dimensions 26 mm × 

26 mm) collected from the pesticide spray sampling conducted for the study reported 

in Chapter 2, with a representative landscape illustrated in Figure 5.1. 24 samples, all 

collected from one apple tree, were imported into the model. The global 

environment has no variability in time of day or season. 

 

Figure 5.1 – An example exposure landscape within the PANTA model, with pesticide 

residues shown as yellow patches, and unexposed surfaces shown as green patches. 

The heterogeneous landscape shown was derived from pesticide spray patterns 

measured using water sensitive paper in an apple orchard (Witton et al., 2018), and 

depicts 13% surface coverage. 

 

All patches were assigned two variables: whether a patch contained pesticide or not 

(true/false), and the scent of the patch (a value of 100 was assigned to unexposed 

patches, with 50% of this scent being diffused to neighbouring patches to create 
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gradients of scent). Patches containing pesticide residue were assigned two further 

variables: active substance, and the effect of the residue (p-mortality), based upon 

the concentration of the spray that caused the residues. Residue effects for C. carnea 

were drawn from toxicity data resulting from a 48-hour mortality study investigating 

effects of acetamiprid at three concentrations on larvae (Nasreen, Mustafa and 

Ashfaq, 2005), whereas residue effects for T. pyri were drawn from 7-day mortality 

studies at five concentrations (EFSA, 2016). To account for the time discrepancy, we 

adapted the method published by Meli et al. (2013) and converted the proportion of 

lacewing mortality over 48 hours to 1 minute (i.e. by dividing by 2880 min), and 

converted mite mortality over 7 days to 1 minute by dividing by 10080. Table 5.6 

summarises the residue effect (p-mortality) values for the three acetamiprid levels 

included within the lacewing model, which then accumulate for individual lacewings 

and mites in the “tox” variable. Table 5.7 summarises the p-mortality values and 

mortality for the five acetamiprid levels included within the mite model. 

 

Table 5.6 – 48 hour mortality of Chrysoperla carnea larvae exposed to homogeneous 

acetamiprid residues at three concentrations (Nasreen, Mustafa and Ashfaq, 2005), 

and p-mortality values derived from mortality rates to assign “toxicity” to pesticide 

contaminated patches within the model. 

Acetamiprid 
concentration (%) 

48 hour mortality 
(%) 

p-mortality 
value 

0.05 91.6 0.0318 

0.1 100 0.0347 

0.15 98.3 0.0342 
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Table 5.7 – Seven day mortality (± standard deviation) of Typhlodromus pyri larvae 

exposed to homogeneous acetamiprid residues at five concentrations (EFSA, 2016; 

Volume 3 B.9 p. 182), and p-mortality values derived from mortality rates to assign 

“toxicity” to pesticide contaminated patches within the model. 

Acetamiprid 
concentration (ga.s. Ha-1) 

7 day mortality 
(%) 

p-mortality 
value 

10.66 31.7 ± 25.7 0.00315 

18.66 51.7 ± 14.4 0.00513 

32.65 43.3 ± 2.9 0.00430 

57.14 85.0 ± 15.0 0.00843 

100 95.0 ± 5.0 0.00943 

 

 

5.2.2.3 Process overview and scheduling 

Every minute, each of the following processes are run in the order below. For each 

process, where necessary, we indicate what entities are affected by each process, 

and where these vary between modelled species. The submodels representing these 

processes are described in further detail in Section 5.2.2.7. 

Ageing (all individuals) 

Each minute, all individuals’ ages increase by 1. When an egg hatches, its age is reset 

to 0. 

Move (Lacewings: larvae I1, larvae I2, larvae I3, adults; mites: larvae, protonymphs, 

deutonymphs, adults) 

Individuals move in a semi-random pattern across the landscape, following the scent 

of uncontaminated patches if the individuals are set to avoid pesticides. 

Expose-pesticide (all individuals) 

If individuals come into contact with acetamiprid residues, the cumulative exposure 

time and toxicity are increased accordingly, with no scope for decrease or recovery. 
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Reproduce (adults) 

Lacewings and mites may reproduce once they have reached reproductive maturity 

and if they are fertile individuals. The procedure runs once every 24 hours, and the 

number of eggs laid is determined by an individual’s reproduction rate parameter. 

Lacewing development:  

grow-adult (pupae); grow-pupa (larvae I3); grow-l3 (larvae I2); grow-l2 (larvae I1) 

Mite development:  

grow-adult (deutonymphs); grow-deuto (protonymphs); grow-proto (larvae) 

Each of these processes run to allow for development from one life stage to the next, 

with the time at which an individual develops to the next stage determined by 

parameters set for each individual.  

For lacewings and mites, one process also includes a mortality factor: to reflect 

lacewing survival to adulthood as published in literature, grow-adult determines 

whether pupae survive to adulthood based on a pre-defined value (pup_surv). For 

mites, this occurs also during the grow-adult process; however, it is based on the 

value of deuto-surv. 

Hatch-egg (eggs) 

Eggs hatch to first instar larvae based upon their viability and age at which they are 

ready to hatch. If an egg is laid on acetamiprid residues, then the individual may also 

die due to contamination before hatching. 

Death (all individuals) 

Mortality is handled in egg hatch and juvenile development based on the viability of 

individuals to make it to the next life stage. In addition to this, the death submodel 

introduces natural death in adults, and pesticide-related mortality in all individuals. 
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5.2.2.4 Design concepts 

Basic principles 

The key underlying hypothesis of the PANTA model is that, if individuals avoid 

pesticide residues, longevity will increase. This will then impact on populations as 

increased longevity is likely to increase the fecundity of adult females. 

Stochasticity 

Parameters used within the PANTA model are summarised in Tables 5.8 and 5.9 

(pages 194-197). Almost all of these parameters are drawn from normal probability 

distributions, allowing the model to reflect heterogeneity in individuals in terms of 

development rates and life table parameters. Stochasticity is also used in the starting 

position of each individual at the model initialisation; it is also used in the 

determination of movement behaviour through the use of normal probability 

distributions. 

Due to extreme values being returned by the use of the random-normal function 

(which draws from a mean and standard deviation), we would sometimes observe 

negative development periods, or the end of adult life occurring before an individual 

reached adulthood. To refine the values being returned by the random-normal 

function, we utilised a check-parameters submodel, which is described in full in 

Section 5.2.2.7. 

Emergence 

Emerging from the study of whether longevity increases with pesticide avoidance 

behaviour is the trend of total oviposition per female. Oviposition is based on life 

table parameters in the scientific literature. The PANTA model does not take into 

account effects of pesticide exposure on reproduction, so this emerging result is basic 

and only based upon changes in individual longevity. 

Adaptation 

Individuals within the model adapt to the exposure landscape by seeking out cells 

with the strongest “leaf” scent. Individuals then follow the strongest scent, and adjust 

movement trajectories. This behaviour therefore reduces the incidence of individuals 
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coming into contact with pesticide residues, thus reducing their individual exposure 

and increasing longevity. 

Learning and prediction 

No learning or prediction takes place within this model as a result of the adaptation 

or any other factor. If research identifies such learning within the two modelled 

species, it would be imperative to include this within future versions of the model. 

Sensing 

Individuals sense a scent given off by leaf surfaces not contaminated with pesticide 

residues. In doing so, they make decisions on where to move based on where the 

scent is strongest, which then minimises contact with pesticide residues. This sensing 

concept was developed based upon a study in the parasitoid wasp Diaeretiella rapae, 

where foraging behaviour was altered by pesticide residues, possibly due to the 

pesticide masking plant volatiles detected by the wasp (Umoru, Powell and Clark, 

1996). Earlier studies had found that pesticides made plants less attractive to foraging 

pests (Jiu and Waage, 1990); furthermore, non-host plant volatiles are effective at 

masking plant odours, altering pest behaviour in tomatoes (Tosh and Brogan, 2015), 

Although such behavioural changes have not been specifically reported in lacewings 

or predatory mites, we have assumed that they would also exhibit such a behaviour 

as the two species also forage based upon host plant volatiles (Marcel Dicke, 1988; 

e.g. Duelli, 1984b). 

Interaction 

There is no interaction between individuals coded into the PANTA model currently; 

however, it would be important to study and include this in future versions of the 

model that include food. 
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5.2.2.5 Initialisation 

The initial state of the model (i.e. at time = 0) depends upon what model scenario is 

being initialised (and therefore what question is being answered). All model 

simulations begin with individuals as if they had just emerged: first instar larvae for 

lacewings, and larvae for mites. Individuals are randomly distributed across the 

landscape. Values for each individual’s state variables are drawn from the 

distributions outlined in Table 5.8. If a model simulation is being started to investigate 

lacewing survival to adulthood, or mite survival over seven days, then the simulation 

begins with 20 individuals. If a simulation is being run to investigate reproduction and 

longevity, then simulations begin with just one individual.  

 

5.2.2.6 Input data 

The model has one input source: the model landscape. These are chosen by the user 

via a drop down box on the model interface, and each option calls a binary image of 

a pesticide spray pattern derived from water sensitive paper collected from a 

pesticide spray event within an apple orchard (Chapter 2; Witton et al., 2018). Upon 

calling the binary images, the model recolours these so that pesticide spray is 

represented by yellow patches, and unexposed surfaces are represented by green 

patches. 

 

5.2.2.7 Submodels 

All state variables and parameters mentioned in the following section are described 

in Tables 5.5, 5.7 and 5.8. 

 

Move  

This submodel comprises three steps: a decision on whether to move this time step; 

pesticide avoidance; and then the actual movement.  
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Every time step, each individual that can move is assigned a value that determines 

whether they will move or not (active-or-not). The following steps then occur 60 

times within one time step, to simulate movement each second. If a randomly 

generated number (from 0 – 100) falls below “active-or-not”, the individual initially 

turns according to a combination of random turning and then the submodel “repel”. 

Turning is determined by individuals turning left and right based on random number 

generation each time they move: for lacewings, this is between 0 – 30.6 degrees; for 

mites this is a random normal distribution based on 19.2 ± 5.1 degrees. These 

numbers allowed individuals to walk in a generally forward direction while still 

accounting for turning behaviour (Table 5.4). 

Repel is only applied if avoidance behaviour is being applied (via a switch on the user 

interface). Repel is a submodel that instructs individuals that are moving to 

determine the patch scent (p-scent) in adjacent patches within a 90° line of sight in 

front of the individual. The individual then determines which patch has the strongest 

scent, and then turns to face in that direction. 

Following the repel submodel, the distance that the individual will move is 

determined, and then the individual moves forward that number of patches. The 

distance travelled is logged in the variable “distance-travelled”, and the time spent 

active is logged in “time-active”. 

Expose-pesticide  

If, after attempting to avoid pesticide residues via the “repel” submodel above, the 

individual ends a time step on pesticide residues, then the “expose-pesticide” 

submodel logs this. The counter for duration of pesticide exposure (exposure-

duration) is updated by 1 minute, and cumulative toxicity (tox) is increased based on 

the pesticide concentration. Tox can never decrease, as we have assumed there is no 

scope for recovery or repair.  

Reproduce  

Every 1440 time steps (i.e. every 24 hours), adults are asked to check their fertility 

status (determined as they develop into adults). If the adult is a fertile individual, the 

next submodel check is to see whether the adult is at an ovipositing age, determined 
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by the “be-mature” variable. If the individual’s adult-age counter is higher than their 

be-mature value, they will oviposit. The number of eggs laid is determined by the 

repro-rate state variable, and this number is deposited on the patch the adult resides 

on at that moment. For each egg laid, the time to hatch (hatch-time) and egg viability 

(egg-via) are determined. 

 

Lacewing development submodels: 

Grow-adult  

The submodel for development of pupae into adults firstly checks the age of the 

pupa. If their age is over the point at which that individual would develop into an 

adult (based on the sum of the state variables grow-to-adult, grow-to-pup, grow-to-

l3 and grow-to-l1), the individual either develops into an adult, or dies, and this is 

based upon a randomly generated number (0 – 100): if it falls below pup_surv, the 

pupa becomes an adult; otherwise the pupa dies. This is based on development data 

published by Pappas et al. (2013), who demonstrated that 74% of larvae develop into 

adults. 

grow-pupa  

The submodel checks the age of third instar larvae (larvae-3): if their age is over the 

threshold for pupating (based on grow-to-l2, grow-to-l3 and grow-to-pup), then the 

larvae will develop into a pupa. The pupal stage is a combination of the pre-pupa and 

pupal stages as described by Pappas et al. (2013). 

grow-l3  

The submodel checks the age of second instar larvae (larvae-2): if their age is over 

the threshold for pupating (based on grow-to-l2 and grow-to-l3), then the larva will 

moult into a third instar larva. 

grow-l2 

The submodel checks the age of first instar larvae (larvae-1): if their age is over the 

threshold for moulting (based on grow-to-l2), then the larva will moult into a second 

instar larva. 
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hatch-egg  

The submodel checks the age of the egg: if the age is over the threshold for hatching 

(hatch-time), then one of two events occur. If a randomly generated number (0 – 

100) falls below the egg’s viability value (egg_via), then the egg hatches, their age is 

reset to 0, and their state variables are defined. Otherwise, the egg fails to hatch and 

the individual dies. 

 

Mite development submodels: 

grow-adult  

The submodel for development of deutonymphs into adults firstly checks the age of 

the deutonymphs. If their age is over the point at which that individual would develop 

into an adult (based on the sum of the state variables grow-to-adult, grow-to-deuto 

and grow-to-proto), the individual either develops into an adult, or dies. This is based 

upon a randomly generated number (0 – 100): if it falls below deuto-surv, the 

deutonymph becomes an adult; otherwise it dies. This is based on development data 

published by Gadino and Walton (2012), where survival to adulthood was 89.6%. 

grow-deuto 

The submodel checks the age of protonymphs: if their age is over the threshold for 

developing into a deutonymph (based on grow-to-proto + grow-to-deuto), then the 

individual develops into a deutonymph. 

grow-proto 

The submodel checks the age of mite larvae: if their age is over the threshold for 

developing into a protonymph (based on grow-to-proto), then the individual’s breed 

is changed to protonymph. 

hatch-egg 

This submodel is identical to the submodel of the same name in the lacewing 

development submodels. 
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Death  

The death submodel handles age- and pesticide-related mortality. Every time step, 

the adult-age of adults is checked against their natural-end; if adult-age exceeds 

natural-end, the adult dies. Once an hour (60 steps), individuals’ accumulated toxicity 

(tox) is checked against their pesticide tolerance (tol). if tox exceeds tol, the individual 

dies. 

Check-parameters (on setup only) 

The check-parameters submodel only runs at the model initialisation, and checks the 

assigned development and reproduction parameter values. This was necessary due 

to instances where, for example, an individual’s development to the next life stage 

was negative, meaning entire life stages were skipped. If values are extreme (i.e. 

outside the bounds of mean ± SD), then the submodel would draw the extreme values 

back within the expected range. An excerpt of code is below to provide an example 

of how this worked with T. pyri development. 

to check-parameters 

  ask larvae [ 

    if grow-to-proto < 3326.4 [ 

      set grow-to-proto (grow-to-proto + 705.6) 

    ] 

  ] 

End 

This code checked whether the development time for a mite larva to become a 

protonymph was below the mean – SD. If so, the code then reset the grow-to-proto 

value by adding the standard deviation (705.6) to the original value. We found that 

this step was only necessary for adjusting values at the lowest end of the scale, and 

that similar adjustment of values at the highest end of the scale did not deliver any 

further improvement to numbers. Therefore, we only implemented this on the 

lowest values. A more sophisticated method to eliminate extreme development 

times would be to truncate the applied distributions at the 2.5th and 97.5th 

percentiles. 
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5.3 Model testing 

To ensure the model was performing as expected, we conducted a number of tests 

where the model was run on two “control” exposure landscapes: one 0% pesticide 

coverage, to mimic a water control, and one 100% pesticide coverage, to mimic the 

exposure landscape individuals would be exposed to in laboratory assays. Based on 

the framework for model “evaludation” devised by Augusiak et al. (2014a), we are 

conducting “model output verification”, defined as the step of comparing data and 

patterns output by the model to the data and patterns that aided model design. 

All analysis was undertaken in GraphPad Prism 7 (GraphPad Software Inc., La Jolla, 

California, US). 

 

5.3.1 Control development and reproduction 

We selected one dataset per species for parameterising development and 

reproduction, and selected datasets that investigated development rates at a range 

of air temperatures for future model development. For lacewings, we parameterised 

using data published by Pappas et al. (2013), based on development at 24°C and 

reproduction at 25°C; for mites we used data published by Gadino and Walton (2012) 

based on development and reproduction at 25°C. Both datasets published separate 

development rates for male and female individuals; in the current model iteration we 

only modelled females, so utilised the female-specific development data. For each 

species, we ran a single model simulation to test five factors: first development time 

from egg hatch to adulthood, survival to adulthood, adult longevity, total oviposition 

per lacewing, and infertility rates. Although parameters were the same irrespective 

of whether avoidance behaviour was exhibited by individuals, we ran simulations of 

lacewings and mites with and without avoidance behaviour to ensure the behaviour 

did not cause shifts in development or reproduction.  

Model simulations were conducted on the 0% coverage (control) surface. Individuals 

were simulated one at a time to allow for a high resolution of data, with 200 

individuals per avoidance behaviour. These were modelled from egg hatch, so 

lacewings started as first instar larvae, and mites started as larvae, through to death. 
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The model output total longevity, time to adulthood, time as an adult, and the 

number of eggs per female. If an individual died during the pupal stage, only total 

longevity would be returned by the model. 

We summarised metrics in Tables 5.11 and 5.12, and conducted one-way ANOVAs to 

examine the variance in population means for development and reproduction 

parameters, comparing them against the datasets used to parameterise the model. 

 

5.3.1.1 Lacewings 

Simulated lacewing larvae take up to 2.5 days less time to emerge into adults 

compared to the literature data (Table 5.10); however, our modelled individuals 

displayed smaller confidence intervals around the averages, and these fell within the 

confidence intervals of the published data. Adult longevity and total oviposition 

observed in the modelled populations were very close to the published data (Table 

5.11), with the largest difference in longevity being less than 0.01% off the published 

data, and the largest difference in oviposition being just 1.6% versus published data. 

Finally, infertility rates were also very close to the published data.  

We conclude the development and reproduction in simulated lacewings is a good 

representation of the published data from laboratory studies, and requires no further 

refinement to improve the model functioning. Any variance seen between the 

populations with and without avoidance behaviour is due to model stochasticity. 
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Table 5.11 – Comparisons of Chrysoperla carnea mean development time to 

adulthood, adult longevity and total oviposition between simulated control 

populations exhibiting avoidance behaviour and no avoidance behaviour, and 

empirical data used to parameterise the model (Pappas et al., 2013). Mean 

differences and 95% confidence intervals (in parentheses) are presented. One-way 

ANOVA was conducted to test whether development parameters differed 

significantly between simulated populations and empirical data (α = 0.05). 

Comparisons 

Larva to adult  
(days) 

Adult longevity  
(days) 

Total oviposition 
(eggs per female) 

Mean 
Differences  P 

Mean 
Differences  P 

Mean 
Differences  P 

Avoidance vs 
Published 

-1.4 
(-4.8 – 3.4) 

0.16 

-0.12 
(-3.6 – 3.4) 

0.81 

7.4 
(-58.3 – 73.1) 

0.58 

No avoidance 
vs Published 

-2.6 
(-6 – 0.9) 

0.47 
(-3 – 4) 

-11.8 
(-77.6 – 54) 

Avoidance vs 
No avoidance 

1.2 
(-0.96 – 3.4) 

-0.59 
(-2.8 – 1.6) 

19.2 
(-24.1 – 62.5) 

 

5.3.1.2 Mites 

Table 5.12 summarises the mite model testing results. Simulated mites take about 

half a day longer to develop into adults compared to the literature data, with 

differences between simulated and literature populations significant (Table 5.13). 

This is likely due to our “check-parameter” submodel only being applied to prevent 

extreme low values. However, the increase in longevity of two days in simulated 

mites compared to literature data was not significant. Finally, simulated adult female 

mites produced on average three more eggs each compared to literature data. 

Confidence intervals around the means for simulated total longevity and oviposition 

are smaller than the confidence intervals relating to literature data. We did not 

compare population fertility rates as we did not have literature data for comparison. 

In summary, overall development and reproduction in mites simulated in the PANTA 

model are good representations of the published data resulting from laboratory 

studies. There are some small significant differences in the larvae to adult 

development period rates in simulated mites. This could benefit from some 
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refinement; however, we are not concerned at this stage due to the total longevity 

values being in agreement with literature data.  
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Table 5.13 – Comparisons of Typhlodromus pyri mean development time to 

adulthood, total longevity and total oviposition between modelled control 

populations exhibiting avoidance behaviour and no avoidance behaviour, and 

published data (Gadino and Walton, 2012). Mean differences and 95% confidence 

intervals (in parentheses) are presented. One-way ANOVA was conducted to test 

whether development parameters differed significantly between simulated 

populations and empirical data (α = 0.05). 

Comparisons 

Larva to adult  
(days) 

Total longevity  
(days) 

Total oviposition 
(eggs per female) 

Mean 
Differences  P 

Mean 
Differences  P 

Mean 
Differences  P 

Avoidance vs 
Published 

0.4 
(-0.01 – 0.81) 

0.004 

2.1 
(-7.1 – 11.3) 

0.86 

3.4 
(-3.4 – 10.2) 

0.50 

No avoidance 
vs Published 

0.55 
(0.14 – 0.96) 

1.8 
(-7.4 – 11.0) 

3.1 
(-3.7 – 9.9) 

Avoidance vs 
No avoidance 

-0.15 
(-0.34 – 0.04) 

0.3 
(-3.9 – 4.5) 

0.3 
(-2.9 – 3.5) 

 

 

5.3.2 Survival after 48 hours (lacewings) 

We parameterised the mortality portion of the model based on survival data derived 

from Nasreen, Mustafa and Ashfaq (2005), which studied larval survival following 

exposure to acetamiprid residues at three levels (0.05%, 0.1%, 0.15%). The authors 

did not clearly report actual dose rates; in addition, “Raja”, the formulated product 

assessed in the published study, is no longer on the market, so we have had to make 

some assumptions. The authors state that 0.1% corresponds to the recommended 

application rate; based on the current recommended application rate of 75 ga.s. ha-1, 

we infer the following acetamiprid concentration rates: 0.05% = 37.5 g ha-1; 0.1% = 

75 g ha-1; 0.15% = 112.5 g ha-1. Respective mortalities reported by Nasreen and 

colleagues were 91.6%, 100% and 98.3% after 48 hours, with this trend not discussed 

or explained by the authors. We parameterised each of the treatments individually 

based on these mortality data.  

To verify our model outputs, we generated a scenario where lacewings were exposed 

to 0% and 100% coverage exposure landscapes over 48 hours (2880 model steps). 
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Each run was conducted ten times per landscape, per pesticide concentration, with 

each run containing 20 lacewings at larval instar 1 (total simulated n = 200 per 

combination). As in the control development test, we modelled individuals exhibiting 

avoidance and no avoidance behaviour, to ensure responses were consistent. The 

model returned the number of surviving lacewings at the 48 hour point for each run.  

Table 5.14 summarises this verification test.  As the authors of the study we drew the 

parameterisation data from did not include information such as standard error with 

their results, we assumed that standard errors were 0 to allow us to conduct three 

one-way ANOVAs, one per acetamiprid treatment level. Table 5.15 summarises the 

mean differences between simulated populations showing avoidance behaviour and 

no avoidance behaviour, and the published data. There were no significant 

differences between survival in our simulated populations and the published data, 

therefore we conclude that, when lacewings have no choice in exposure to 

acetamiprid residues within the model, their survival is representative of the 

published data. No further refinement is necessary. 
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Table 5.15 – Comparisons of survival after 48 hours of exposure on a 100% coverage 

surface between simulated populations exhibiting avoidance behaviour and no 

avoidance behaviour and published data used to parameterise the model (Nasreen, 

Mustafa and Ashfaq, 2005). Mean differences and 95% confidence intervals are 

presented. One-way ANOVA was conducted to test whether development 

parameters differed significantly between simulated populations and empirical data 

(α = 0.05). 

Comparisons 

0.05% Acetamiprid 0.1% Acetamiprid 0.15% Acetamiprid 
Mean 
Differences  P 

Mean 
Differences  P 

Mean 
Differences  P 

Avoidance vs 
Published 

-0.4 
(-20.9 – 9.7) 

0.95 

2.0 
(-6.2 – 10.2) 

0.82 

2.3 
(-10.8 – 15.4) 

0.54 

No avoidance 
vs Published 

-1.4 
(-21.9 – 19.1) 

2.0 
(-6.2 – 10.2) 

4.3 
(-8.8 – 17.4) 

Avoidance vs 
No avoidance 

1.0 
(-7.7 – 9.7) 

0.0 
(-3.5 – 3.5) 

-2.0 
(-7.6 – 3.6) 

 

 

5.3.3 Mortality after 7 days (mites) 

Mite mortality when exposed to acetamiprid was parameterised using mortality data 

from EFSA (2016), where T. pyri protonymphs were exposed to acetamiprid at five 

concentrations ranging 10.66 – 100.0 g ha-1. Mortality was reported after seven days 

exposure, with mortality ranging 32 – 95% in that time. Control mortality in the 

exposure experiment was 14%, though the model is parameterised using survival 

data used to parameterise development to adulthood (Gadino and Walton, 2012). To 

verify model outputs, we generated similar scenarios to those used to verify lacewing 

survival: mites were exposed to 0% and 100% coverage exposure landscapes over 

seven days (10080 model steps). Each run was conducted ten times per landscape, 

per pesticide concentration, with each run containing 20 mite larvae (total simulated 

n = 200 per combination). As with previous verification tests, we modelled individuals 

exhibiting avoidance and no avoidance behaviour. Each model run output the 

number of surviving mites after seven days of exposure. 
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Table 5.16 summarises the mortality test results, and Table 5.17 presents the mean 

differences between the simulated populations and the published data used for 

parameterisation. There were no significant differences in mortality between 

simulated and published data where mites were exposed to acetamiprid. We 

observed a large difference in control mortality: data published by EFSA reported 

control mortality of 14% whereas modelled populations reported mortality of 5.5 and 

7%. We did not assess this difference because the purpose of the test was to verify 

mortality in relation to pesticide exposure. We also know that the difference is due 

to control mortality in modelled populations arising from development-related 

mortality, whereas control mortality from the laboratory study leading to the EFSA 

data included mortality and loss via escape and trapping in test arena boundaries. 

Since there were no significant differences in simulated and published mortalities in 

relation to acetamiprid exposure, we conclude that their simulated mortality after 

seven days is representative of the published data. 
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5.3.4 Movement parameters 

Movement was parameterised based on the distances walked and time spent active 

for each species (Table 5.4). To test whether the modelled individuals were behaving 

as expected, we conducted one test per species to allow for model output verification 

of distance walked and time active. We generated a scenario where individuals were 

simulated in the control landscape over 10 minutes (10 model steps) for T. pyri, and 

15 minutes for C. carnea. As with previous model tests, we tested populations 

exhibiting avoidance and no avoidance behaviour. Each scenario was run 100 times, 

with each run containing one individual (total simulated n = 100 per behaviour, per 

species). After 10 or 15 minutes, the model returned total distance walked and time 

spent active. 

Table 5.18 summarises the movement verification test. Table 5.19 summarises the 

mean differences in distance covered and time spent active, comparing values from 

simulated populations and either literature data in the case of C. carnea, or 

laboratory data from our own studies in the case of T. pyri. We observed no 

significant differences in the movement behaviour of simulated lacewings or mites in 

comparison with the parameterisation data. The largest deviation from 

parameterisation data was observed in the distance walked by simulated lacewings, 

with simulated populations covering on average an extra 8 cm in comparison to the 

published data. However, the means and confidence intervals fell within the 

published data confidence intervals, so we did not refine the behaviour further within 

the model.  

We conclude that simulated movement behaviour for both lacewings and mites is 

behaving as expected, and that the movement within modelled landscapes is a good 

representation of observed movement in the two species. 
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5.4 Results 

5.4.1 Movement patterns 

Figure 5.2 shows the difference in movement patterns in C. carnea and T. pyri 

individuals that avoid or do not avoid pesticide residues. When showing avoidance 

behaviour, individuals do not always avoid residues; however, their contact with 

them is reduced markedly due to the ability to sense unexposed surfaces. 

 

Figure 5.2 – Movement tracks of individual larvae after 2.5 hours of simulation in a 

heterogeneous pesticide exposure landscape. Acetamiprid residues are coloured 

yellow; unexposed surfaces are coloured green. a) Chrysoperla carnea larva not 

avoiding residues; b) C. carnea avoiding residues; c) Typhlodromus pyri larva not 

avoiding residues; d) T. pyri avoiding residues. Acetamiprid coverage in all images is 

35%. 
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5.4.2 Simulation analysis methods 

For the following simulation tests, we chose one acetamiprid concentration per 

species: 0.05% for Chrysoperla carnea, and 10.66 g ha-1 (which equates to 0.05% 

acetamiprid in 200 L water) for Typhlodromus pyri. We simulated movement of 

individuals on 24 exposure landscapes, all derived from pesticide spray patterns 

derived from a field study (Witton et al., 2018). These were then plotted as scatter 

graphs for visual comparison of trends when individuals showed avoidance behaviour 

or no avoidance behaviour. To quantify the effect of avoidance behaviour (and thus 

answer our research questions), we selected three exposure landscapes: the median 

(13.1%), the 25th percentile (8.74%), and the 75th percentile (18.5%) for surface 

coverage across the 24 samples that comprise a single apple tree from the 

aforementioned study. We then conducted multiple t tests to compare measures 

derived from populations that avoided residues, and those that did not. P values were 

adjusted for multiple comparisons using the Bonferroni-Dunn method (α = 0.05).  

 

5.4.3 Chrysoperla carnea survival 

More lacewings tend to survive to adulthood when the larvae show avoidance 

behaviour (Figure 5.3). When unable to avoid residues, 1% (95% confidence intervals 

(CIs) [-0.96%, 2.96%]) of larvae survived to adulthood on a 24% covered surface with 

no survival to adulthood at any higher coverage level; by comparison, 4% (95% CIs 

[2.04%; 5.96%]) of larvae survived to adulthood on a surface with 46% acetamiprid 

residue coverage. When exposed to 100% coverage, no lacewings survived to 

adulthood (data not shown on graphs). 
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Figure 5.3 – Proportion of Chrysoperla carnea larvae surviving to adulthood when a) 

not avoiding acetamiprid residues (left) and b) avoiding acetamiprid residues (right). 

Survival to adulthood was simulated on 24 heterogeneous acetamiprid exposure 

landscapes with varying residue coverage levels. Acetamiprid concentration was set 

at 0.05%. Dots represent mean ± 95% confidence intervals generated by five 

simulations of 20 lacewings (total simulated n = 100 per coverage per behaviour). 

 

When comparing survival to adulthood in the three example exposure landscapes, 

we found that avoidance behaviour led to significant increases in survival rates of 

44% on the 8.7% coverage surface, 48% on the 13.1% coverage surface and 44% on 

the 18.5% coverage surface (Figure 5.4; Table 5.20). 
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Figure 5.4 – Differences in survival to adulthood in Chrysoperla carnea individuals 

that do not avoid acetamiprid residues (grey dots, left), and individuals that do avoid 

acetamiprid residues (pink dots, right). Lines represent mean ± 95% confidence 

intervals. Each dot represents a model run with 20 lacewings. Brackets display 

statistical significance in comparison between behaviours (P values adjusted for 

multiple comparisons; *** = P < 0.001; **** = P < 0.0001). Total simulated n = 100 

per behaviour, per coverage level. 

 

Table 5.20 – Mean differences in survival to adulthood in Chrysoperla carnea 

individuals avoiding or not avoiding acetamiprid residues at three surface coverage 

levels. Comparison of no avoidance behaviour vs avoidance behaviour is shown with 

the standard error of the difference and adjusted P values resulting from multiple t 

tests. n = 100 per behaviour, per coverage level. Significant differences (α = 0.05) are 

highlighted in bold. 

Surface 
coverage (%) 

Mean 
difference (%) P 

8.7 44 (± 4.6) < 0.0001 

13.1 48 (± 6.0) 0.0001 

18.5 44 (± 6.7) 0.0005 
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We explored the mean longevity of individuals simulated for the reproduction study 

(Section 5.4.2), and observed that avoidance behaviour improves the longevity of 

individuals, with lacewings exposed at all coverage levels living on average over eight 

days when they avoid residues, compared with longevity dropping below eight days 

at 18.5% coverage (Figure 5.5). 
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Figure 5.5 – Mean longevity of Chrysoperla carnea individuals when a) not avoiding 

acetamiprid residues (grey dots, left) and b) avoiding acetamiprid residues (pink dots, 

right). Data were generated by simulating individuals completing life cycles on 24 

pesticide exposure landscapes with the acetamiprid concentration set at 0.05%. Dots 

represent mean ± 95% confidence intervals; n = 100 per behaviour, per coverage 

level. 

 

When investigating the three representative coverage levels, we observed that 

avoidance behaviour on average increased lacewing longevity by over 32 days (Figure 

5.6). Acetamiprid residue avoidance led to increased longevity of 36.6 days in the 

8.7% coverage scenario, 31.5 days in the 13.1% coverage scenario, and 29.1 days in 

the 18.5% coverage scenario (Table 5.21). 
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Figure 5.6 – Differences in longevity in Chrysoperla carnea individuals that do not 

avoid acetamiprid residues (grey dots, left), and individuals that do avoid acetamiprid 

residues (pink dots, right). Lines represent mean ± 95% confidence intervals. Each dot 

represents an individual lacewing. Brackets display statistical significance in 

comparison between behaviours (P values adjusted for multiple comparisons; **** 

= P < 0.0001). Total simulated n = 100 per behaviour, per coverage level. 

 

Table 5.21 – Mean differences in longevity in Chrysoperla carnea individuals avoiding 

or not avoiding acetamiprid residues at three surface coverage levels. Comparison of 

no avoidance behaviour vs avoidance behaviour is shown with the standard error of 

the difference in parentheses, and adjusted P values resulting from multiple t tests. 

n = 100 per behaviour, per coverage level. Significant differences (α = 0.05) are 

highlighted in bold. 

Surface 
coverage (%) 

Mean difference 
(days) P 

8.7 54.9 (± 3.2) < 0.0001 

13.1 31.5 (± 2.8) < 0.0001 

18.5 29.1 (± 2.1) < 0.0001 
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5.4.4 Chrysoperla carnea reproduction 

Lacewing adults laid more eggs when they avoided acetamiprid residues (Figure 5.7). 

In lacewings not exhibiting avoidance behaviour, reproduction was observed up to 

13.6% surface coverage; in lacewings that did avoid residues, reproduction was 

apparent at every coverage level, though diminished. No eggs were laid by lacewings 

exposed to 100% coverage, as no individuals survived to adulthood (data not shown 

in graph). 
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Figure 5.7 – Total oviposition per adult female Chrysoperla carnea when a) not 

avoiding acetamiprid residues (grey dots) and b) avoiding acetamiprid residues (pink 

dots). Oviposition was simulated on 24 pesticide exposure landscapes with the 

acetamiprid concentration set at 0.05%. Dots represent mean ± 95% confidence 

intervals generated by five simulations of 20 lacewings (total simulated n = 100 per 

coverage per behaviour; infertile individuals and individuals that did not survive to 

adulthood omitted from analysis). 

 

When comparing oviposition at the three representative coverage levels, we found 

that avoidance behaviour led to a mean increase in oviposition of 472 eggs per female 

at 8.7% surface coverage (Figure 5.8, Table 5.22). At 13.3% coverage, we saw an 

increase in oviposition of 390.5 eggs per female; however, we could not test this due 

to only one female being reproductive at this coverage level. No reproduction was 

observed in females not avoiding residues at the 18.5% coverage level.  
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Figure 5.8 – Differences in total oviposition per female in Chrysoperla carnea 

individuals that do not avoid acetamiprid residues (grey dots, left), and individuals 

that do avoid acetamiprid residues (pink dots, right). Lines represent mean ± 95% 

confidence intervals. Each dot represents a single reproducing female; infertile 

females are excluded from analysis. Brackets display statistical significance in 

comparison between behaviours (**** = P < 0.0001). Comparisons are not shown for 

the other coverage levels due to lack of samples in the population not avoiding 

residues. 8.7% n = 35, 14; 13.1% n = 26, 1; 18.5% n = 27. 

 

Table 5.22 – Mean differences in oviposition per female in Chrysoperla carnea 

individuals avoiding or not avoiding acetamiprid residues at three surface coverage 

levels. Comparison of no avoidance behaviour vs avoidance behaviour is shown with 

the 95% confidence intervals of the difference in parentheses, P value resulting from 

a Welch’s t test. Significant differences (α = 0.05) are highlighted in bold. 

Surface 
coverage (%) 

Mean difference 
(eggs per female) P 

8.7 472 (377.4 – 566.5) < 0.0001 
13.1a 390.5 Not tested 

18.5b 230.6 Not tested 

a – Comparison not tested as only one lacewing reproduced in the no avoidance population 
b – Comparison not tested as no lacewings reproduced in the no avoidance population 
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5.4.5 Typhlodromus pyri survival 

No distinct trend was apparent in the proportion of mites surviving seven days of 

exposure to 10.66 g ha-1 acetamiprid when showing avoidance behaviour or not 

(Figure 5.9). At all coverage levels, mean mite survival was consistently above 70% 

irrespective of behaviour. At 100% coverage, 7-day survival averaged 72% across 

both avoiding and non-avoiding populations (95% CIs [67.5, 76.5]; data not shown on 

graph). 
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Figure 5.9 – Proportion of Typhlodromus pyri individuals surviving seven days of 

exposure when a) not avoiding acetamiprid residues (left) and b) avoiding 

acetamiprid residues (right). The seven-day survival assessments were simulated on 

24 heterogeneous acetamiprid exposure landscapes with varying residue coverage. 

Acetamiprid concentration was set to 10.66 g ha-1.  Dots represent mean ± 95% 

confidence intervals generated by five simulations of 20 lacewings (total simulated n 

= 100 per coverage per behaviour).  

 

When comparing survival after seven days of exposure in the three example exposure 

landscapes, we found no significant differences in survival when mites avoided 

residues at any coverage level (Figure 5.10, Table 5.23). 
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Figure 5.10 – Differences in survival over seven days in Typhlodromus pyri individuals 

that do not avoid acetamiprid residues (grey dots, left), and individuals that do avoid 

acetamiprid residues (pink dots, right). Lines represent mean ± 95% confidence 

intervals. Each dot represents a model run with 20 lacewings. Total simulated n = 100 

per behaviour, per coverage level. 

 

Table 5.23 – Mean differences in survival over seven days in Typhlodromus pyri 

individuals avoiding or not avoiding acetamiprid residues at three surface coverage 

levels. Comparison of no avoidance behaviour vs avoidance behaviour is shown with 

the standard error of the difference in parentheses, and adjusted P values resulting 

from multiple t tests. n = 10 × 20 individuals per behaviour, per coverage level.  

Surface 
coverage (%) 

Mean difference 
(%) P 

8.7 4 (± 2.2) 0.33 

13.1 -1 (± 4.2) > 0.99 

18.5 6 (± 7.1) > 0.99 

 

 

We also explored the mean longevity of individual mites simulated for the 

reproduction study (Section 5.4.6), and observed that avoidance behaviour improves 

the longevity of individuals at higher coverage levels. Mites exposed at all coverage 

levels surviving on average over 40 days when they avoid residues, compared with 
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survival time dropping below 35 days at 23.95% coverage (Figure 5.11). In mites 

exposed to 100% coverage, mean longevity was 10.8 days (95% CIs [9.8, 11.8]; data 

not shown on graph). 
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Figure 5.11 – Mean  longevity of Typhlodromus pyri individuals when a) not avoiding 

acetamiprid residues (grey dots, left) and b) avoiding acetamiprid residues (pink dots, 

right). Data were generated by simulating individuals completing life cycles on 24 

pesticide exposure landscapes with the acetamiprid concentration set at 10.66 g ha-

1. Dots represent mean ± 95% confidence intervals; n = 100 per behaviour, per 

coverage level. 

 

When investigating the three representative coverage levels, we observed that 

avoidance behaviour on average increased mite longevity by over 7 days at 13.13% 

and 18.5% surface coverage (Figure 5.12). Acetamiprid residue avoidance had no 

significant impact on mite longevity at the 8.72% coverage level, at 13.13% avoidance 

behaviour increased longevity by 7.8 days, and avoidance behaviour improved 

longevity by 6.8 days in the 18.5% coverage scenario (Table 5.24). 
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Figure 5.12 – Differences in longevity in Typhlodromus pyri individuals that do not 

avoid acetamiprid residues (grey dots, left), and individuals that do avoid acetamiprid 

residues (pink dots, right). Lines represent mean ± 95% confidence intervals. Each dot 

represents an individual mite. Brackets display statistical significance in comparison 

between behaviours (P values adjusted for multiple comparisons; * = P < 0.05). Total 

simulated n = 100 per behaviour, per coverage level. 

 

Table 5.24 – Mean differences in longevity in Typhlodromus pyri individuals avoiding 

or not avoiding acetamiprid residues at three surface coverage levels. Comparison of 

avoidance behaviour vs no avoidance behaviour is shown with the standard error of 

the difference in parentheses, and adjusted P values resulting from multiple t tests. 

n = 10 × 20 individuals per behaviour, per coverage level. Significant differences (α = 

0.05) are highlighted in bold. 

Surface coverage (%) Mean difference (days) P 

8.7 2.5 (± 2.6) 0.98 

13.1 7.8 (± 2.8) 0.02 

18.5 6.8 (± 2.8) 0.04 
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5.4.6 Typhlodromus pyri reproduction 

Adult mites laid more eggs when they avoided acetamiprid residues (Figure 5.13). In 

mites not exhibiting avoidance behaviour, reproduction showed a downward trend 

with increasing acetamiprid coverage, with total oviposition dropping to 20 eggs per 

female at 30.6% coverage; however, total oviposition did not drop below 30 eggs per 

female in mites that avoided residues. In mites exposed to 100% coverage, mean 

oviposition was 4.1 eggs per female (95% CIs [3.4, 4.9]; data not shown on graph). 
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Figure 5.13 – Total oviposition per adult female Typhlodromus pyri when a) not 

avoiding acetamiprid residues (grey dots) and b) avoiding acetamiprid residues (pink 

dots). Oviposition was simulated on 24 pesticide exposure landscapes with the 

acetamiprid concentration set at 10.66 g ha-1. Dots represent mean ± 95% confidence 

intervals generated by 10 simulations of 20 lacewings (total simulated n = 200 per 

coverage per behaviour; infertile individuals and individuals that did not survive to 

adulthood omitted from analysis). 

 

When comparing oviposition at the three representative coverage levels, we found 

that avoidance behaviour led to a mean increase in oviposition of 8 eggs per female 

at 8.7% surface coverage (SE of difference = 1.96, t = 4.1; P = 0.0002; Figure 5.14). At 

13.3% coverage, we saw an increase in oviposition of 12 eggs per female (SE = 2.01; 

t = 6.03; P < 0.0001), and at 18.5% oviposition increased by 13 eggs per female (SE = 

2.06; t = 6.35; P < 0.0001). 
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Figure 5.14 – Differences in total oviposition per female in Typhlodromus pyri 

individuals that do not avoid acetamiprid residues (grey dots, left), and individuals 

that do avoid acetamiprid residues (pink dots, right). Lines represent mean ± 95% 

confidence intervals. Each dot represents a single reproducing female; infertile 

females are excluded from analysis. Brackets display statistical significance in 

comparison between behaviours (*** = P < 0.001; **** = P < 0.0001). Comparisons 

not shown for the other coverage levels due to lack of samples in the no avoidance 

behaviour population. 8.7% n = 92, 87; 13.1% n = 83, 85; 18.5% n = 86, 86. 

 

Table 5.25 – Mean differences in total oviposition in Typhlodromus pyri individuals 

avoiding or not avoiding acetamiprid residues at three surface coverage levels. 

Comparison of avoidance behaviour vs no avoidance behaviour is shown with the 

standard error of the difference in parentheses, and adjusted P values resulting from 

multiple t tests. n = 100 individuals per behaviour, per coverage level. Significant 

differences (α = 0.05) are highlighted in bold. 

Surface 
coverage (%) 

Mean difference 
(eggs per female) P 

8.7 8.0 (± 2.0) 0.0002 

13.1 12.1 (± 2.0) < 0.0001 

18.5 13.1 (± 2.1) < 0.0001 
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5.5 Discussion 

5.5.1 Model output verification and current status 

Having tested the PANTA model to verify outputs based upon longevity, reproduction 

and movement in control scenarios, and mortality in acetamiprid exposure scenarios, 

we were able to conclude that our model provides a good representation of lacewing 

and mite development, reproduction, movement and mortality when exposed to 

acetamiprid (Section 5.3). However, we have not yet covered several steps in model 

“evaludation”. Two important steps to undertake are sensitivity analysis and output 

corroboration against data independent to those used for parameterisation 

(Augusiak et al., 2014b), though these steps would only be appropriate once the 

model’s concept is developed further. 

 

5.5.2 Model simulation results 

In its current state, our PANTA model allowed us to investigate the indirect effects of 

pesticide exposure on non-target arthropods through the use of standard laboratory 

test data. Our simulations showed that avoidance of acetamiprid residues increased 

the survival of Chrysoperla carnea larvae to adulthood by an average of 45% (Figure 

5.4). Acetamiprid avoidance also increased mean longevity by an average of 36 days 

when compared to lacewings that did not avoid residues (Figure 5.5). In 

Typhlodromus pyri, we observed no change in the trend in 7-day survival when mites 

avoided residues or not (Figure 5.9); though more mites appeared to survive 7 days 

when avoiding residues, we observed > 70% survival in all replicates, irrespective of 

behaviour, and the difference between means was not significant (Figure 5.10). This 

was likely a result of the relatively low mortality observed in the regulatory study at 

10.66 g ha-1 (31.7%; SD ± 25.7%; EFSA, 2016). However, we did observe a change in 

longevity trend in mites at different coverage levels: a distinct downward trend in 

mean longevity in mites not avoiding acetamiprid was lost when mites avoided 

residues (Figure 5.11). When comparing longevity, we observed increases in longevity 
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of over one week (a 19% increase) in mites that avoided residues at 13.1% and 18.5% 

coverage levels (Figure 5.12).  

 

Due to the improvements in longevity, we also observed increases in oviposition in 

both species when avoiding acetamiprid residues. Lacewing adults that avoided 

residues laid on average 430 more eggs – a 12 times increase – than those that did 

not avoid (Figure 5.8). We also observed oviposition at every acetamiprid coverage 

level in lacewings that avoided residues, whereas those that did not avoid residues 

failed to reproduce at coverage levels above 13% (Figure 5.7). Oviposition rates in T. 

pyri followed similar trends to mite longevity, where oviposition decreased with 

increasing acetamiprid coverage levels in individuals that did not avoid residues, but 

oviposition rates were more constant in mites that avoided acetamiprid (Figure 5.13). 

We detected an increase in oviposition of 11 eggs, or 36%, between mites that 

avoided residues and those that did not (Figure 5.14). Therefore, the trends we 

observed in oviposition were similar between species, though the size of increase 

when individuals avoided acetamiprid differed. This is likely a result of the lower 

mortality of acetamiprid at 10.66 g ha-1, or roughly 0.05% concentration when diluted 

in 200 L, in mites than in lacewings. 

In laboratory studies, mites laid on average 4.9 eggs per female (SD = 1.0) when 

exposed to 10.66 g ha-1 acetamiprid (EFSA, 2016). These data were not used to 

parameterise the model; however, our model produced a result of 4.1 eggs per 

female (95% CIs [3.4, 4.9]). We conclude our model functioned well in assessing 

indirect effects on reproduction in this instance. There were no comparable data for 

reproductive effects in C. carnea; however, EFSA (2016) reported no significant 

effects of acetamiprid residues on reproduction at 13 and 100 g ha-1. 

Beers and Schmidt-Jeffris (2015) suggested that bioassays that use homogeneously 

covered test arenas for the study of lethal and sublethal effects were likely to be 

overestimating the harmful effects of pesticide contact exposure on non-target 

arthropods. By comparing the results for both mites and lacewings in heterogeneous 

exposure scenarios (i.e. those below 100% coverage), to observations in populations 
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in a homogeneous exposure landscape, we can conclude that our findings support 

the hypothesis of Beers and Schmidt-Jeffris, as longevity, survival and reproduction 

all increased in lacewings and mites in heterogeneous exposure scenarios. This was 

observed even in individuals that did not avoid acetamiprid residues. 

There is no acetamiprid LR50 published for C. carnea, with EFSA (2016) deeming the 

insecticide to have “no adverse lethal or sublethal effects” on the lacewing, though 

this contrasts with the study used to parameterise this model (Nasreen, Mustafa and 

Ashfaq, 2005). Conversely, the same EFSA assessment concluded that the 7-day LR50 

for T. pyri was 30 g ha-1 (95% confidence intervals [24.6, 35.9 g ha-1]), while an older 

assessment reported a 7-day LR50 of 18 g ha-1 (European Commission, 2004), meaning 

the lethal effects observed in laboratory studies are occurring at rates less than half 

of what is suggested for use in orchards. The study utilised for risk assessment does 

not quantify the actual residues mites were exposed to, nor the size of the test arena; 

however, the study was undertaken to Good Laboratory Practice principles and 

followed IOBC approved methods, so we trust that the pesticide application was 

conducted with accuracy and precision. Based on these LR50s alone, we would expect 

the conclusion that acetamiprid posed an unacceptable risk to T. pyri; however, the 

risk assessment also included aged residue studies that allowed EFSA to conclude that 

lethal effects in T. pyri were short-lived, and that populations would recover 

sufficiently fast to not be affected at unacceptable levels (EFSA, 2016). 

In Chapter 2, we calculated that 17% of the penconazole spray applied to an apple 

orchard was deposited on the upper surfaces of apple leaves when 250 L of spray was 

applied (Section 2.8). In apple crops, the suggested application rate for acetamiprid 

as an active substance is 75 g ha-1 (or 375 g formulated product; EFSA, 2016), and in 

the T. pyri mortality study this was applied in 200 L Ha-1, giving a concentration of 

0.375 mg mL-1. The mortality study only reported concentrations of acetamiprid in 

solution (Nasreen et al., 2005), so we have inferred that this was also equivalent to 

being applied in 200 L Ha-1. If 17% of a 200 L Ha-1 application landed on apple leaves 

within an orchard, then this would equate to 34 L, or 0.173 μL cm-2
leaf. Based on this, 

we have converted the active substance field application rates to show their assumed 

concentrations in solution, and have then used this to estimate acetamiprid residues 
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on apple leaves in an orchard (Table 5.26). We also applied the same basis to the 

recommended application rate for acetamiprid, to allow discussion in the context of 

residues expected in orchards. 

If acetamiprid was applied at a rate of 75 g ha-1 in 200 L in an orchard, then based on 

our field study, an average of 0.052 μga.s. cm-2
leaf would be deposited on apple leaves, 

equating to total leaf residues in the orchard of 12.77 g ha-1
ground. This is based on an 

overall mean spray coverage of 15.6% when considering all samples from the field 

study, though mean coverage amongst the sample spray patterns within the PANTA 

model was 15.1%, depositing 0.22 μL cm-2
leaf. Based on these calculations, we can 

infer that the effects we observed in our simulations when the acetamiprid rate was 

set to 10.66 ga.s. Ha-1 would be similar to what would be experienced in apple orchards 

if acetamiprid was applied at the field rate of 75 ga.s. Ha-1 in 200 L water. We conclude 

that, based on our model simulations, heterogeneous spray exposure leads to higher 

survival rates and thus increased longevity and reproduction. By combining model 

simulation results and our knowledge of spray patterns, we can also conclude that, if 

17% of the acetamiprid applied in an orchard at recommended field rate lands on 

apple leaves, then a mortality rate close to the 32% observed at the 10.66 g ha-1 rate 

in laboratory studies would be expected within the orchard. However, to be able to 

make robust conclusions in this context, more information on typical spray patterns 

for acetamiprid would be necessary. 
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In summary, our model has shown that heterogeneous spray exposure leads to 

improvements in longevity and thus reproduction. In addition, we have shown that 

avoidance behaviour further increases longevity and reproduction, with the effect 

more noticeable when mortality rates are higher. These are clearly positive outcomes 

in terms of population consequences for the two modelled species. However, we 

cannot interpret these results too much as the model in its current state is too simple 

and not yet robustly tested. 

 

5.5.3 Model limitations 

The largest limitation to our PANTA model is that it is currently a very simple model 

design with no validation. Energy, food requirements, and toxic effects of acetamiprid 

on reproduction are not yet considered within the model, and for this model to be of 

any regulatory use, it would need to be improved to become a TKTD model. However, 

as we noted previously, TKTD at this stage would have introduced additional 

complexity and uncertainty that was unnecessary when developing the concept. 

To be considered a successfully validated model, good quality data are required for 

model conceptualisation, parameterisation, calibration, and finally validation 

(Augusiak et al., 2014b). A major issue we encountered when developing and 

parameterising the model was that many of the relevant data in the present literature 

are not well suited to parameterising or testing individual-based models. Ideally, we 

would have generated our own data for pesticide effects on survival and 

reproduction to parameterise the model, but time constraints made this unfeasible. 

There is also a lack of consistency in data quantity, driven by some species receiving 

more research focus. T. pyri movement behaviour has been studied widely in many 

settings; the literature surrounding this was reviewed in Chapters 3 and 4. We 

conducted laboratory studies to complement the current research by studying 

movement behaviour changes at a high resolution and a small temporal scale, and 

then followed this up with studies to investigate avoidance behaviour. However, it 

was very difficult to find information on lacewing larva movement behaviour, as most 
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research effort into the movement of lacewings has focussed upon the long distances 

covered by adults (Chapman et al., 2006; Duelli, 1984b; Peter Duelli, 1980; Keulder 

and Van den Berg, 2013). Our movement data came from two studies, neither of 

which studied behaviour for more than 15 minutes. Conversely, data on T. pyri 

movement behaviour was more complete, and one study also offered insight into 

activity over a 24 hour period (Croft and Zhang, 1994). As a result of our decision to 

keep the PANTA model’s function consistent for the two modelled species, our model 

assumes that movement and activity remains the same for every hour of the day, 

even though we know this not to be true, in particular for T. pyri. To accurately reflect 

movement behaviour in the model, we would need high resolution data from 

studying individuals over a long temporal scale, and also at different life stages. We 

fully discuss research needs in the next section (Section 5.5.4). 

Another major limitation of the present model relates to spatial scale, and this is a 

concept that is a great challenge for modelling population consequences in a realistic 

environment. The current spatial scale of 26 cm2 requires refinement as the water 

sensitive paper image from which the exposure patterns are derived only 

represented 2.6 cm2. Each of the papers represented coverage on the upper surface 

of one leaf (Chapter 2), and we modelled the full life cycle of individuals on that one 

“leaf”. However, T. pyri can complete their full life cycle on one apple tree (Zacharda, 

1989), and spend time on spurs, twigs, and within the bark. Lacewings on the other 

hand remain within the tree canopy during larval stages, but as adults they disperse 

from the original habitat, flying for up to 40 km before landing in another habitat (P 

Duelli, 1980). Once they reach reproductive age, they then fly into habitats where 

they have detected the kairomones of prey, deposit eggs, and then take flight once 

again (Duelli, 1984b). Covering such a spatial scale would be highly complex, though 

the life history raises interesting questions: how would initial contact exposure as a 

larva then impact on populations in a regional landscape covering several kilometres? 

This could be answered with a great deal of effort placed on improving the spatial 

representation within the PANTA model. 

 



 

239 
 

5.5.4 Research needs 

To successfully model the population consequences of pesticide exposure, and to 

investigate the potential for avoidance behaviour to mitigate pesticide effects, many 

studies would be necessary to inform the model development. Additionally, the 

studies would need to be undertaken in a particular way so that data are suitable for 

parameterising a model. 

Two classes of studies are required: ecological studies, necessary for increasing the 

understanding of the ecology, development and behaviour of the test species; and 

toxicological studies, necessary for understanding the species-specific responses to a 

particular pesticide. The ecological studies would only need to be conducted once, 

and would need to fill gaps in the current literature: there are studies investigating 

the effects of food availability and temperature on development and reproduction 

for both C. carnea and T. pyri, so these would not need repeating. However, there 

are aforementioned gaps in the knowledge of movement and activity in both species, 

and these gaps would need to be filled before good quality ecological models could 

be developed for the two species. Toxicology studies would be repeated for every 

compound that would be tested in the model, and these would ideally follow a set 

protocol for identifying specific responses to a compound, in line with regulatory 

needs for knowing lethal and sublethal responses. These would be conducted at a 

range of concentrations, and, if relevant, temperatures and food availability rates.  

A high priority for laboratory studies would be to undertake experiments that 

increase the community’s knowledge of the effects of various contaminants on 

energy allocation in mites and lacewings (i.e. physiological modes of action). 

Understanding energy allocation would enable the application of TK/TD theory and 

allow for the development of a DEBtox model. The details necessary for modelling 

effects of compounds on organisms are well known for aquatic species (Ashauer et 

al., 2013; EFSA Panel on Plant Protection Products and their Residues, 2018); 

however, more work is required for terrestrial species. Of fifteen species listed as 

having known physiological modes of action, only one is a terrestrial non-target 

arthropod: the soil dwelling springtail Folsomia candida (Ashauer and Jager, 2018). 
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Another priority would be to consider movement behaviour of lacewings and mites 

in longer temporal scales. The availability of digital cameras and tracking systems 

such as EthoVision enable researchers to study behaviour for hours at a time, and 

this should be put to use to better understand movement behaviour. Studies should 

focus on understanding how mite and lacewing activity fluctuates over a 24-hour 

period, to discern whether there are diurnal patterns in larval behaviour. They should 

also investigate the movement behaviour effects over several hours using a repeated 

measures design to investigate whether the behavioural changes we observed are a 

temporary effect, whether there are long term impacts on movement, and also 

whether there is a point at which behaviour recovers to pre-exposure levels.  

To ensure data arising from laboratory and field studies are of sufficient quality for 

parameterising a model, experiments would need to be designed with sufficiently 

large sample sizes as small samples risk inflating the effect of outliers, thus reducing 

the chances of a model being successfully validated (Augusiak, Van den Brink and 

Grimm, 2014). Studies would also need to be reported with a good level of detail. 

One specific problem we encountered when examining published studies was the 

lack of clear detail on sample sizes, or a lack of reporting standard deviation, standard 

error, or confidence intervals surrounding reported means. For understanding 

results, confidence intervals are a useful addition; however, for modelling purposes, 

provision of raw data would be ideal to allow modellers to fully understand and 

integrate the variance in responses. This would help avert issues regarding extreme 

values being generated, as previously discussed (Section 5.2.2.7). 

To produce a realistic population-scale life cycle model, it would be necessary to 

include factors such as the developmental time of larvae to adults at different air 

temperatures and photoperiods. Both of these factors have been shown to be 

important for C. carnea development (Pappas et al., 2013; Fujiwara and Nomura, 

1999; Joschinski, Kiess and Krauss, 2017) and T. pyri (Gadino and Walton, 2012; Hayes 

and McArdle, 1987), and the resolution of these data would allow implementation of 

the effects in a more developed version of our model. Development is also affected 

by the food choice and availability (Atlihan et al., 2004; Hayes and McArdle, 1987) 

and this would need to be considered to increase model realism. 
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Field studies would be necessary to maximise the model’s realism on larger spatial 

scales. Surveys should be undertaken to develop understanding of mite and lacewing 

densities within orchards and should also consider on- and off-crop densities. This 

would enable extrapolation of individual-level effects identified within laboratory 

studies to landscape scales. 

Finally, a population model should be able to operate on an annual cycle to determine 

cross-generational impacts on populations, both lethal and sublethal. For example, 

C. carnea are known to have three generations per year in France (Trouve et al., 

2002), and two per year in the UK (Perry and Bowden, 1983). The model should be 

capable of covering this over several years; it would then be well placed to inform 

academia, industry and regulatory bodies of the long term population impacts upon 

the two species.  
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Chapter 6 – Overall discussion 

 

6.1 Key findings 

This research project had an overall aim to understand three topics: the spatial 

heterogeneity of pesticide exposure, pesticide avoidance behaviour in non-target 

arthropods, and the population consequences of exposure and avoidance behaviour. 

Additionally, this project aimed to improve the realism of regulatory risk assessment 

for NTAs. Below is a summary of the key findings.  

The results arising from the spray coverage study demonstrate that pesticide residues 

can be successfully quantified on individual apple leaves with high levels of accuracy 

and precision. Furthermore, the data show correlation between measures of 

pesticide deposition derived from water sensitive paper and residues quantified 

analytically from leaves (Witton et al., 2018). Pesticide residues measured on apple 

leaves were found to be six times lower than residue values derived from estimates 

of liquid deposition on water sensitive paper, demonstrating that water sensitive 

paper overestimates pesticide residues when used on its own (Figure 2.3). 

Additionally, in the case of the crop spray event analysed, 42.6 L out of the 250 L 

applied to the orchard landed on apple leaves (i.e. 17%; Section 2.8). This value was 

based on liquid deposition measured on the water sensitive paper samples, and was 

scaled up through applying the leaf area index (LAI) concept to better estimate the 

overall proportion of spray landing on apple leaves. This was useful for informing the 

discussion of pesticide effects on non-target arthropods in crop systems. 

The results from the behaviour studies show that movement behaviour of the 

predatory mite Typhlodromus pyri is significantly altered by the presence of low levels 

of deltamethrin residues. Deltamethrin residues on the entire arena led to no mites 

being inactive for the 10-minute observation period (Figure 3.4), which suggests 

deltamethrin causes irritation or hyperactivity. The effects on distance walked, 

angular velocity, meander and time spent active were all seen in mites exposed to 
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surface residues of 0.0004 – 0.004 μga.s. cm-2
glass when the product label rate of 8.75 

ga.s. ha-1
orchard would equate to apple leaf residues of 0.006 μga.s. cm-2

leaf (Tables 3.14 

– 3.15). Therefore, we would expect to see these effects in mites residing in apple 

crops sprayed with deltamethrin. Mites also exhibited avoidance behaviour when 

exposed to fully treated arenas at these rates (Figure 3.6), meaning that we would 

also expect to observe avoidance behaviour in orchards sprayed at the recommended 

label rate and also at diluted rates. However, these effects were not carried over into 

the choice arena experiments, where, surprisingly, no clear avoidance of 

deltamethrin was observed; nor were behavioural changes when mites made contact 

with the residues (Figure 4.8). 

In choice arenas, deltamethrin affected distances walked by mites, but the effect was 

only observed when considering the test arena as a whole (Figure 4.8). This suggests 

that the effect of deltamethrin on mite movement is not only observed when 

individuals are in direct contact with residues, indicating either that there is an effect 

when in close proximity to residues, or that effects continue for a period of time after 

moving to an unexposed surface. This means that mite movement would likely be 

affected by deltamethrin even in a heterogeneous residue exposure landscape, as 

refugia do not appear to alleviate deltamethrin effects. 

A clear preference was observed for mites to spend less time on dimethoate treated 

surfaces when exposed to the residues in a choice arena, with mites spending 

approximately 65% of the observation time on untreated surfaces (Figure 4.6). This 

was an unexpected response as mites did not show avoidance behaviour in the full 

coverage experiments. However, it cannot be inferred whether effects observed in 

the laboratory would occur under field conditions, as dimethoate use is no longer 

permitted in fruit orchards and as such there are no published application rates. 

Across all movement behaviours, angular velocity was the most sensitive behaviour 

in terms of effects of pesticide residues. In the full coverage study, angular velocity 

increased in mites exposed to all insecticides. This suggests that acetamiprid, 

deltamethrin and dimethoate all caused irritation in T. pyri, based on the definition 

by Wiles and Jepson (1994).  
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With behaviour responses varying greatly when comparing full coverage arenas and 

choice arenas, this work reinforces the premise put forward by Beers and Schmidt-

Jeffris (2015) that full coverage arenas really are a worst case scenario for considering 

pesticide effects on non-target arthropods. 

The simple individual-based model, PANTA, demonstrated that individual avoidance 

of acetamiprid residues increases survival, longevity and reproduction in the green 

lacewing Chrysoperla carnea and T. pyri (Section 5.4). The model also demonstrated 

that heterogeneous pesticide coverage increases survival and longevity. However, 

when conceptualising the model, it was learned that the premise of modelling 

population consequences at the landscape scale, with ecological realism, is a highly 

complex matter. Though the PANTA model is simplistic and is some way from 

regulatory application, it is a useful tool even in these early development stages for 

aiding the interpretation of experiments and would be useful for designing future 

experiments.  

 

6.2 Novel method contributions 

Throughout this project, novel analytical methods and ecotoxicological studies have 

been developed that hopefully will be utilised by researchers in the future. These 

contributions are summarised below. 

There was a need for a conventional analytical method that could quantify pesticide 

residues on individual leaves. Previously reported methods had extracted and 

quantified residues from bulk samples of leafy vegetables (González-Rodríguez et al., 

2008), while the most relevant method in terms of context analysed residues on 

apple leaves, with two leaves per sample (X.-M. Xu et al., 2008). The GC-MS method 

developed in this thesis is able to quantify the fungicide penconazole (applied as a 

formulated product) on individual apple leaves weighing on average 0.6 g (Witton et 

al., 2018). The method is both accurate and precise based on pesticide residue 

quantification benchmarks set out by the European Commission (1996), and has a 

limit of detection of 0.08 mg kg-1, and limit of quantification of 0.26 mg kg-1. None of 

the extracted leaf samples had residues below the LOQ, including the control leaf 
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samples that were taken before the spray was applied. Based on this, it can be 

concluded that this analytical method is effective at sampling very low levels of 

penconazole, and can be adapted for several other active ingredients. 

In studying pesticide spray patterns in the crop environment, water sensitive paper 

was used to obtain visual representations of the spray pattern. Using digital analysis, 

it was possible to quantify the volume of liquid deposited on the paper through using 

DepositScan (Zhu et al., 2011); however, it was unknown as to whether these data 

could be used to accurately estimate pesticide residues. The software was used to 

determine liquid deposition based on area, and through knowing the penconazole 

concentration in the spray mixture, it was possible to estimate the penconazole 

deposits. Water sensitive paper residue estimates were found to be over six times 

higher than actual leaf residues; this was likely due to co-formulants causing droplets 

to spread on impact. However, by knowing the difference in actual residues on apple 

leaves, and estimated residues derived from water sensitive paper, a correction 

factor can be applied to the latter measure. This allows water sensitive paper to be 

used to provide a rapid, low cost method for estimating pesticide residues within a 

crop environment. This method has the potential to allow large sample sizes that 

would normally be prohibitively expensive and time consuming to analyse.  

When developing methods for studying pesticide induced movement behaviour 

changes in mites, the review revealed an apparent route to poor reporting of effects: 

no papers reported actual pesticide residues from the test arenas used in their 

experiments. Additionally, the present style of documenting studies used in 

regulatory decision making does not clearly report actual residues, nor do they report 

measures that would allow scientists to estimate surface residues, such as volume of 

spray deposited on the test arena surface. Residues need to be quantified and 

reported to best understand any observed responses, so as part of this study 

methods were developed that involved test arena designs that allowed easy 

extraction of surface residues. 14C-radiolabelled insecticidal active substances were 

used to develop a single method that demonstrated high recovery rates of 96% for 

acetamiprid and 95% for dimethoate, and acceptable recoveries of 79% for 
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deltamethrin (Section 3.3). The method is also easily adapted for low concentrations 

(Section 4.2.4).  

The theme of unquantified pesticide residues in lethal and sublethal effect studies 

continued with the development of choice arenas. Chapter 4 outlined the existing 

methods and highlighted how many of these were inappropriate either for the study 

of mite behaviour, or for measuring residues. The method used for applying pesticide 

residues for full pesticide coverage experiments was adapted so that residues were 

on roughly half of the test arena surface, while still ensuring residue extraction was 

possible. This novel method balances the issues of having a homogenous test arena 

surface, so as to not affect mite movement, while also having only partial pesticide 

residue coverage and also being able to quantify the residues after observations were 

complete. 

 

6.3 Future research needs 

6.3.1 Potential for pesticides to attract 

This project has focussed upon the premise of pesticides being repellent to non-

target arthropods, with pesticide avoidance behaviour being a well-known 

phenomenon. However, the opposite response to repellence – attraction – is now 

receiving attention. A recent study into bee foraging behaviour found that flowers 

contaminated with neonicotinoids become disproportionately attractive to the bees, 

leading to the potential for reductions in colony size and function (Arce et al., 2018). 

The authors concluded that the attractiveness of pesticides to foraging bees should 

be incorporated into risk assessments, and this is a premise that should also be 

explored for other non-target species, especially in considering population- and 

ecosystem-scale consequences. No attraction to surface residues was observed in the 

studies for this thesis; however, the premise could easily be studied when 

researchers investigate avoidance behaviour, and so future studies could draw 

conclusions on both avoidance and attraction.  
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6.3.2 Interactive effects of environment and pesticide 

Chapter 3 concluded that there was an interaction between exposure to dimethoate 

residues and air temperature in T. pyri adults, shown in increased angular velocity 

and meander in individuals with increasing concentration (Figure 3.3), but also 

increasing air temperature (Table 3.3). This indicated that one of two points were 

true: either dimethoate residues could increase mite sensitivity to environmental 

conditions, or higher air temperatures increased dimethoate toxicity in mites. The 

latter premise is reinforced by other studies (Glunt et al., 2013; Mansoor et al., 2015), 

with the former authors recommending that, as a result, testing regimes for 

investigating pesticide efficacy in malaria control should be improved to include a 

range of air temperatures. A similar recommendation is proposed for risk assessors: 

to improve the understanding of the effects of insecticides in non-target arthropods, 

laboratory assessments of pesticide effects should be undertaken at a range of air 

temperatures related to those the species would be exposed to in the natural 

environment. The studies should be done to complement the current IOBC standard 

tests (undertaken at 25°C), but at a range of additional temperatures relevant to the 

test species. Gadino and Walton (2012) studied the effect of temperature on a T. pyri 

population collected from orchards in Oregon, US, and found that the minimum and 

maximum development thresholds were 7.2 and 42.6°C respectively, with population 

growth occurring between 15 and 30°C. Therefore, studies should be undertaken at 

a range of temperatures within the species’ limits. Generation of these data would 

allow better informed decisions on pesticide use, potentially allowing regulators to 

deliver more refined advice on when to spray particular active substances to 

minimise the effects on non-target arthropods.  

 

6.3.3 Studies to increase ecological relevance 

Future research would need to consider whether population fitness is affected by 

repeated exposures to both the same compound, and a range of compounds. A study 

involving the freshwater invertebrate Gammarus pulex found that the sequence of 

contaminants can affect survival (Ashauer et al., 2017), and this premise requires 
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investigation in non-target arthropods, especially as UK apple orchards received on 

average 16 spray treatments containing 32 products in 2016 (Garthwaite et al., 2017). 

Any laboratory studies involving pesticide exposure should cover three points: they 

should study realistic residue levels, heterogeneous exposure patterns, and should 

build residue analysis into the experimental design.  Residue levels should be 

considered in the context of what mites and lacewings would be exposed to in 

orchard systems, both on- and off-crop. Laboratory studies should then study these 

residue levels, but should also consider a range of pesticide coverage levels to 

maximise realism in the laboratory. Finally, as previously mentioned, few lethal and 

sublethal effect studies in the terrestrial ecotoxicology context quantify the residues 

test subjects are exposed to, and this is an important factor for understanding 

observed effects. It was demonstrated in Chapters 3 and 4 that the use of 

radiolabelled active substances allows for rapid quantification of residues; by 

knowing exactly what residues individuals were exposed to, it is possible to better 

understand responses. Quantifying residues would also improve the quality of data 

being implemented in the model, as any measurement or instrument errors would 

be known and dealt with appropriately, thereby reducing the chance of data quality 

being too low for modelling use (Augusiak et al., 2014b). 

Although laboratory studies are useful for studying lethal and sublethal effects of 

toxicants on non-target arthropods in standardised test set ups (e.g. Candolfi et al., 

2000), such studies lack ecological relevance. This can be improved by field studies, 

though these can be prohibitively expensive and difficult to interpret (Jänsch et al., 

2006). Laboratory studies also lack realism. For one, they tend to only consider one 

route of exposure in NTAs, which is contact with dried residues, when field exposure 

can occur via contact with dry and wet residues, oral exposure, and overspray of an 

individual (EFSA, 2015). Some studies are starting to consider other routes by 

studying the effects of direct spray on individuals (e.g. Porcel, Cotes and Campos, 

2011), though this has not yet filtered into regulatory studies used for risk 

assessment. Another way in which laboratory studies lack realism is through not 

investigating the effects of pesticides in heterogeneous exposure environments: the 
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work in Chapter 2 demonstrates that pesticide spray varies widely within a single 

apple tree, as well as between trees within the same orchard (Witton et al., 2018).  

A pair of recent studies in the United States have found that, in many cases, the 

toxicity of pesticides can vary between different life stages, with larvae more 

resistant to some pesticides than adults, and vice versa (Amarasekare et al., 2016; 

Mills et al., 2016). The studies in this thesis were undertaken on one life stage, with 

T. pyri adult behaviour studied, and the population model for C. carnea was 

parameterised using toxicity data for one life stage. However, a combination of the 

findings from the two aforementioned studies and experiences of conceptualising 

the PANTA model (Chapter 5) lead to conclusions that more time and effort should 

be spent studying the varied toxicity of pesticides on different life stages of non-

target arthropods. This recommendation would benefit the scientific community, and 

hopefully allow for the development of accurate models showing the long term 

population consequences of pesticide exposure. It would also benefit the pesticide 

risk assessors by allowing them to better consider the population consequences of 

pesticide exposure.  

Finally, choice arena studies such as the one devised in Chapter 4 need to be 

extended to investigate what choices mites and lacewings make when presented 

with a contaminated food source. If an active substance is highly repellent to an 

individual, does it not feed, or come into contact with the pesticide to feed? This 

would be an important study to undertake if long term population effects are to be 

truly understood. 

Although it would be beneficial to improve the ecological realism of tests for species 

such as T. pyri, the increased realism might not be appropriate for direct application 

in pesticide regulatory science. T. pyri is used widely as it is a sensitive species with 

fast generation times and is relatively easy to culture in laboratories. However, these 

traits may make it unsuitable for studying avoidance behaviour and the population 

implications of avoidance. Furthermore, there is a disconnect between laboratory 

and wild strains of T. pyri due to widespread wild resistance to pesticides. As such, it 

may be appropriate for T. pyri to remain as a species used for generalised 

ecotoxicology studies; behavioural research should focus on longer lived species such 
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as Chrysoperla carnea when considering the wider implications of avoidance of 

pesticide exposure. 

6.4 Implications for pesticide manufacturers 

Though the main research aims did not aspire to investigate or even consider 

pesticide efficacy, some conclusions cover efficacy and as such would be of use to 

pesticide manufacturers. Conclusions drawn in previous chapters surrounding the 

implications of heterogeneous pesticide coverage for non-target arthropods could be 

redirected to consider implications for pest species. A homogeneous surface 

coverage within a crop may prove to be most effective for pest control; however, if 

the substance is repellent to the target species, it may lead to control only where 

heterogeneous residues are found, and no population- or landscape-scale control as 

the repellence may simply displace pest populations to crop areas with less 

consistent protection. Similarly, a heterogeneous spray coverage would compromise 

efficacy by potentially providing refugia for pests to reside and forage without coming 

into contact with the insecticide intended to control the pest. 

Based on the findings from this study, pesticide manufacturers may benefit from 

considering field application methods, with particular focus on whether specific 

active substances require total crop coverage to achieve optimal efficacy.  

The study of dimethoate effects on T. pyri movement behaviour unexpectedly 

showed one of two outcomes: either air temperature increased sensitivity to 

dimethoate, or dimethoate exposure affected sensitivity to air temperature. The 

previous section highlighted the need for more study into interactions between 

pesticide exposure and environmental conditions, and this is something that also 

warrants further consideration in pesticide efficacy. By investigating effects at a range 

of temperatures, manufacturers may find that an active substance may demonstrate 

higher or lower efficacy in certain regions. This would be advantageous to 

manufacturers who could tailor the formulated products based on any interactive 

effects of temperature and effect, and could also reduce the risk of an active 

substance or product failing to be approved for use on grounds of insufficient efficacy 

in some regions. 
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6.5 Implications for regulators 

Additional to the main research aims, this study also aimed to improve the realism of 

regulatory risk assessment of pesticides. By considering the effects of pesticide 

residues on movement behaviour in full and half coverage arenas, it is clear that 

homogeneous pesticide coverage could act as a worst case scenario for pesticide 

exposure in non-target arthropods, though this is not certain as heterogeneous 

coverage may also lead to greater residues where spray lands. Laboratory studies and 

modelling show that, even if non-target arthropods do not avoid residues, 

heterogeneous exposure patterns on leaves increase longevity. Therefore, it is 

recommended that a heterogeneous coverage study be added to follow the standard 

full coverage studies undertaken for product registration. Half coverage arena 

designs would allow avoidance and repellence to be quantified and may assist in 

bridging the gap between laboratory and field study outcomes. Half coverage studies 

could also reduce the necessity for field studies, which would then greatly reduce the 

costs associated with registering a pesticide. 

As highlighted in the previous section, dimethoate and air temperature potentially 

interacted for T. pyri. Though these findings were highlighted from an efficacy 

perspective for pesticide manufacturers, the implications outlined above also apply 

to regulators. By considering pesticide efficacy on target pests and non-target effects 

at a range of temperatures, regulators will be better placed to make refined decisions 

on pesticide use, tailoring approvals to climatic zones where deleterious effects on 

non-target arthropods are reduced and target pest efficacy is increased. As an 

example, if T. pyri is more sensitive to an insecticide when air temperatures are above 

25°C, regulators could limit usage of the insecticide in regions where air temperatures 

regularly exceed that level, but offer less restriction in areas where that temperature 

is rarely experienced. 

Finally, the inclusion of validated, standardised individual-based population models 

into risk assessment processes would provide regulators with insight that cannot be 

gained from a laboratory or field study, and instead is currently only being learned 
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through experience or observation of the effects in crop systems over several years. 

By using an ecological model, long term impacts on non-target arthropod populations 

would be better understood. The modelling would potentially allow risk assessors to 

model a sequence of pesticide applications through a whole growing season, offering 

greater understanding of population recovery following each exposure. This could 

then be extrapolated over several years to gain a fuller understanding of population 

consequences over several years. 

There is great potential for the use of individual-based modelling in risk assessment, 

and this has been recognised through the recent conclusion from EFSA that TK/TD 

models are ready to be used in aquatic contexts (EFSA Panel on Plant Protection 

Products and their Residues, 2018). As more studies are undertaken to develop our 

understanding of exactly how pesticides affect non-target arthropods, hopefully 

models will also be used in the terrestrial context. 
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Appendices 

Appendix A – Measures of environmental conditions 
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Figure A.1 – Spread of air temperatures measured throughout the full coverage arena study. 

Black line and whiskers represent mean ± 95% confidence intervals. CON = control; ACM = 

acetamiprid; DEL = deltamethrin; DIM = dimethoate. n = 24; 56; 71; 59. 
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Figure A.2 – Spread of relative humidity measured throughout the full coverage arena study. 

Black line and whiskers represent mean ± 95% confidence intervals. CON = control; ACM = 

acetamiprid; DEL = deltamethrin; DIM = dimethoate. n = 24; 56; 71; 59. 
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Appendix B – PANTA lacewing model code (NetLogo) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; SETTING BREEDS FOR MODEL ;;;;;;;;------------------- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

 

patches-own [ 

  pesticide-patch? ; determines whether patch contains pesticide 

  active-sub       ; defines the active substance (e.g. acetamiprid, 

dimethoate) 

  p-mortality      ; used to define the hourly mortality based on 48 

hr tests. This accumulates and reduces the life of individuals 

  patch-scent      ; patch "scent" to aid in avoidance of pesticide 

patches 

] 

 

turtles-own [      ; the following are measures that are specific to 

each lacewing 

  exposure-duration         ; records how long individual has been 

exposed in hrs/ticks 

  tox                       ; the accumulated toxicity from walking 

on contaminated surfaces derived from p-mortality. Eggs and pupae 

residing on exposed surfaces end up with much higher levels due to 

inability to avoid at that life stage 

  tolerance                 ; tolerance to exposure. Adds randomness 

to when individuals succumb to exposure but should all die after 48 

hours cumulative exposure 

  eggs-laid                 ; number of eggs laid by the individual 

  distance-traveled         ; to record distance covered by each 

lacewing. Velocity will be calculated from this 

  time-active               ; to determine whether lacewing moves each 

tick 

  age                       ; individual's age in hours 

  adult-age                 ; counts how long an adult has been an 

adult. Used to work out natural death 

  pup_surv                  ; probability of pupa hatching to adult 

  repro-rate                ; the individual's reproduction rate, 

defined at creation and based on total oviposition @ 25C (Pappas et 

al, 2013) 

  infertility-chance        ; determines whether individual is fertile 

or not (based on Pappas et al, 2013 @ 25C) 

  fertile                   ; tells us whether individual is fertile 

or not 

  grow-to-l2                ; the grow-to-X measures are defined for 

each individual to allow for development processes to happen 

  grow-to-l3                ; within a range around an average time 

at each stage. This set up allows the development to have some 

stochasticity. 

  grow-to-pup               ; All based on Pappas et al (2013) @ 25C. 

  grow-to-adult 

  be-mature                 ; the age at which an adult becomes 

reproductively mature. Works like the grow-to-X measures. 
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  natural-end               ; used for varying when individual adults' 

lives end naturally. Based on adult-age 

  time-to-adult   ; records time to develop to adult (for model 

checking) 

] 

 

breed [eggs egg] 

breed [larvae-1 larva-1] 

breed [larvae-2 larva-2] 

breed [larvae-3 larva-3] 

breed [pupae pupa] 

breed [adults adult] 

breed [dead-adults dead-adult]   ; used to check model operation only 

 

eggs-own 

[ 

  hatch-time   ; time to hatch to larvae. Temperature dependent 

  egg_via      ; egg viability; probability the eggs will hatch 

] 

 

;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; SETUP ;;;;;;;;------------------- 

;;;;;;;;;;;;;;;;;;;;;;; 

 

; acts as a reset and will do this when the "setup" button is pressed 

 

to setup 

  ca 

  set-default-shape eggs "dot" 

  set-default-shape larvae-1 "bug" 

  set-default-shape larvae-2 "bug" 

  set-default-shape larvae-3 "bug" 

  set-default-shape pupae "dot" 

  set-default-shape adults "butterfly" 

 

  setup-patches   ; to generate model landscape 

  setup-turtles 

  reset-ticks 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; SETUP SUBMODELS ;;;;;;;;------------------- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; ENVIRONMENT SUBMODELS ;;;---------------- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to setup-patches 

  setup-env        ; Allows user to use drop down to select model 

landscape from a series of artificially generated, and real exposure 

landscapes. Real landscapes are derived from water sensitive paper 

collected from field study (Witton et al, 2018) 

  assign-patches   ; Re-colours the binary images used to generate 

model landscape and establishes what is pesticide exposure and what 

is not 
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  setup-contam 

  diffuse-scent 

end 

 

 

to setup-env 

; Various exposure landscapes to allow behaviour and life cycle to be 

studied in different exposure landscapes. 

; The files cover a range of coverage rates, but also one orchard 

tree, and the off-crop exposure in the hedgerow. 

  if file = "Avoidance Test 1" [import-pcolors "Images/Avoidance Test 

1.png"]  ; artificial arena 

  if file = "Avoidance Test 2" [import-pcolors "Images/Avoidance Test 

2.png"]  ; artificial arena 

  if file = "choice arena" [import-pcolors "Images/Choice Arena.png"]          

; Replicates 50% coverage lab test arena 

  if file = "control" [ask patches [set pcolor 3]]  ; Acts as the 

control 

  if file = "100% cover" [ask patches [set pcolor 1]]   ; Acts as 100% 

cover control 

; Real exposures 

  if file = "1" [import-pcolors "Images/B-1-M-001-crop-binary.png"] 

  if file = "2" [import-pcolors "Images/B-1-M-002-crop-binary.png"] 

  if file = "3" [import-pcolors "Images/B-1-M-003-crop-binary.png"] 

  if file = "4" [import-pcolors "Images/B-1-M-004-crop-binary.png"] 

  if file = "5" [import-pcolors "Images/B-1-M-005-crop-binary.png"] 

  if file = "6" [import-pcolors "Images/B-1-M-006-crop-binary.png"] 

  if file = "7" [import-pcolors "Images/B-1-M-007-crop-binary.png"] 

  if file = "8" [import-pcolors "Images/B-1-M-008-crop-binary.png"] 

  if file = "9" [import-pcolors "Images/B-1-M-009-crop-binary.png"] 

  if file = "10" [import-pcolors "Images/B-1-M-010-crop-binary.png"] 

  if file = "11" [import-pcolors "Images/B-1-M-011-crop-binary.png"] 

  if file = "12" [import-pcolors "Images/B-1-M-012-crop-binary.png"] 

  if file = "13" [import-pcolors "Images/B-1-O-001-crop-binary.png"] 

  if file = "14" [import-pcolors "Images/B-1-O-002-crop-binary.png"] 

  if file = "15" [import-pcolors "Images/B-1-O-003-crop-binary.png"] 

  if file = "16" [import-pcolors "Images/B-1-O-004-crop-binary.png"] 

  if file = "17" [import-pcolors "Images/B-1-O-005-crop-binary.png"] 

  if file = "18" [import-pcolors "Images/B-1-O-006-crop-binary.png"] 

  if file = "19" [import-pcolors "Images/B-1-O-007-crop-binary.png"] 

  if file = "20" [import-pcolors "Images/B-1-O-008-crop-binary.png"] 

  if file = "21" [import-pcolors "Images/B-1-O-009-crop-binary.png"] 

  if file = "22" [import-pcolors "Images/B-1-O-010-crop-binary.png"] 

  if file = "23" [import-pcolors "Images/B-1-O-011-crop-binary.png"] 

  if file = "24" [import-pcolors "Images/B-1-O-012-crop-binary.png"] 

 

end 

 

 

to assign-patches     ; used to recolour environment and assign 

pesticide attributes 

  ask patches [ 

    if pcolor > 2.5 [ 

      set pcolor 63 

      set pesticide-patch? false 

  ] 
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  ] 

  ask patches [ 

    if pcolor <= 2.5 [ 

      set pcolor 44 

      set pesticide-patch? true 

  ] 

  ] 

  ask patches [ 

    ifelse pesticide-patch? 

    [ set patch-scent 0 ] 

    [ set patch-scent 100 ] 

  ] 

end 

 

 

to setup-contam   ; used to establish toxicity of pesticide 

contaminated patches 

                  ; ACM based on Nasreen et al (poorly reported data) 

if pesticide = "ACM 0.15%" [ 

    ask patches [ 

      if pesticide-patch? = true [ 

        set active-sub "acetamiprid" 

        set p-mortality 0.0342   ; Mortality rate from 48h study made 

into per hour value. 

      ] 

    ] 

  ] 

if pesticide = "ACM 0.1%" [ 

    ask patches [ 

      if pesticide-patch? = true [ 

        set active-sub "acetamiprid" 

        set p-mortality 0.0347 

      ] 

    ] 

  ] 

if pesticide = "ACM 0.05%" [ 

    ask patches [ 

      if pesticide-patch? = true [ 

        set active-sub "acetamiprid" 

        set p-mortality 0.0318 

      ] 

    ] 

  ] 

 

end 

 

to diffuse-scent   ; only diffuses the pesticide scent on setup meaning 

diffused scent should reach over pesticide patches 

    diffuse patch-scent 0.5 ; diffuses 50% of pesticide scent to 8 

neighbouring patches 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; POPULATION SETUP   ;;;------------------------------------------

---- 

;;;;;;;;;;;;;;;;;;;;;;;;;; 
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to setup-turtles       ; sets up initial population of larvae based 

on sliding scale 

  create-turtles larvae-number [ 

    set breed larvae-1 

    set color 0 

    set size 5 

    setxy random-xcor random-ycor 

    set heading random 360 

    set pup_surv (round random-normal 74 0)  ; this and all development 

times below are based on Pappas et al 2013 

    set repro-rate (round random-normal 14.78 2.95) 

    set infertility-chance (round random-float 100) 

    ;set grow-to-l1 (round random-normal 5760 3225.6) ; all updated 

for 1 tick = 1 min 

    set grow-to-l2 (round random-normal 5616 5184) 

    set grow-to-l3 (round random-normal 4176 3225.6) 

    set grow-to-pup (round random-normal 5616 3225.6) 

    set grow-to-adult (round random-normal 17424 11520) 

    set be-mature (round random-normal 9936 1281.6) 

    set natural-end (round random-normal 77904 16128) 

    set tolerance precision random-float 100 2 

    check-parameters 

    if movement-track = true [ 

      set pen-mode "down" 

    ] 

  ] 

end 

 

; this is all necessary to prevent development stage values falling 

significantly out of range. 

to check-parameters 

  ask larvae-1 [ 

    if grow-to-l2 < 432 [ 

      set grow-to-l2 (grow-to-l2 + 5184) 

    ] 

  ] 

 

  ask larvae-1 [ 

    if grow-to-l3 < 950.4 [ 

      set grow-to-l3 (grow-to-l3 + 3225.6) 

    ] 

  ] 

 

  ask larvae-1 [ 

    if grow-to-pup < 2390.4 [ 

      set grow-to-pup (grow-to-pup + 3225.6) 

    ] 

  ] 

 

  ask larvae-1 [ 

    if grow-to-adult < 5904 [ 

      set grow-to-adult (grow-to-adult + 11520) 

    ] 

  ] 
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  ask larvae-1 [ 

    if be-mature < 8654.4 [ 

      set be-mature (be-mature + 1281.6) 

    ] 

  ] 

  ask larvae-1 [ 

    if be-mature > 11217.6 [ 

      set be-mature (be-mature - 1281.6) 

    ] 

  ] 

  ask larvae-1 [ 

    if natural-end < 61776 [ 

      set natural-end (natural-end + 16128) 

    ] 

  ] 

  ask larvae-1 [ 

    if natural-end > 94032 [ 

      set natural-end (natural-end - 16128) 

    ] 

  ] 

  ask larvae-1 [ 

    if repro-rate < 11.83 [ 

      set repro-rate (repro-rate + 2.95) 

    ] 

  ] 

  ask larvae-1 [ 

    if repro-rate > 17.73 [ 

      set repro-rate (repro-rate - 2.95) 

    ] 

  ] 

end 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; GO PROCEDURE ;;;;;;;;--------------------------------------

-------- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to go 

  if not any? turtles [stop]    ; model stops when no lacewings left 

  ; alternative go procedure 

  ; for model output verification and for testing fecundity 

  if (not any? adults) and (not any? pupae) and (not any? larvae-3) 

and (not any? larvae-2) and (not any? larvae-1) [stop]   ; model stops 

when all surviving lacewings have moulted to adult 

 

  ; for testing survival to adults 

  ;if turtles = adults [stop] 

 

 

  ask turtles                ; so lacewings age and develop 

    [ set age (age + 1) ]   ; age is in mins/ticks 

  ;test-rng 

  move 

  expose-pesticide 
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  if reproduction? = true 

    [ reproduce ] 

 

  ask adults 

    [ set adult-age (adult-age + 1) ] 

 

  ask pupae 

    [ grow-adult ] 

 

  ask larvae-3 

    [ grow-pupa ] 

 

  ask larvae-2 

    [ grow-l3 ] 

 

  ask larvae-1 

    [ grow-l2 ] 

 

  ;ask eggs 

   ; [ hatch-egg ] 

 

  death 

  tick 

end 

 

to test-rng 

  let a 0 

  let b 0 

  repeat 1000000 [ 

    set b random-normal 5760 3225.6 

    if b > 8985.6 [set a a + 1] 

  ] 

  print a 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; LACEWING DEVELOPMENT ;;;;;;;;------------------------------

---------------- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to grow-adult 

  if age > (grow-to-l2 + grow-to-l3 + grow-to-pup + grow-to-adult) [ 

    ifelse random 100 < pup_surv [ 

      set breed adults 

      set color 52 

      set size 10 

      set adult-age 0 

      set time-to-adult age 

  ] 

    [die] 

  ] 

end 

 

to grow-pupa 

  if age > (grow-to-l2 + grow-to-l3 + grow-to-pup) [ 

    set breed pupae 

    set color 7 
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    set size 10 

  ] 

 

end 

 

to grow-l3   ; note that in literature dataset all Instar 2 make it 

to Instar 3; this is coded in so that others can modify survival based 

on their own datasets 

  if age > (grow-to-l2 + grow-to-l3) [ 

    set breed larvae-3 

    set color 11 

    set size 10 

  ] 

 

end 

 

to grow-l2 

  if age > grow-to-l2 [ 

    set breed larvae-2 

    set color 33 

    set size 7 

  ] 

 

end 

 

to hatch-egg   ; set up is "if at this age, if number is below egg 

viability rate, hatch to larvae; otherwise die. 

  ask eggs [ 

    if age > hatch-time [ 

      ifelse random-float 100 < egg_via [ 

      set breed larvae-1 

      set age 0 

      set color 13 

      set size 5 

      set heading random 360 

      ] 

      [die] 

  ] 

  ] 

end 

 

;-------------------------------------------------------------------

--------------- 

 

to reproduce ; allows oviposition only if old enough. Egg laying rate 

is based on 697.4 across entire adult lifetime (Pappas et al 2013); 

done daily. 

  if ticks mod 1440 = 0 [ 

    ask adults [ 

      check-fertility 

      if adult-age > be-mature [ 

        if fertile = "true" [ 

          set eggs-laid (eggs-laid + repro-rate) 

          show eggs-laid 

          hatch repro-rate [ 

            set breed eggs 
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            set color white 

            set size 5 

            set age 0 

            set hatch-time round random-normal 5760 3225.6 

            set egg_via precision (random-normal 75.1 3.3) 2 ; sets 

the egg's chance of hatching at creation (Amarasekare and Shearer, 

2013) 

            set eggs-laid 0 

            set tox 0 

            set distance-traveled 0 

            set exposure-duration 0 

            set adult-age 0 

            set pup_surv 0 

            set repro-rate 0 

            set infertility-chance 0 

            set grow-to-l2 0 

            set grow-to-l3 0 

            set grow-to-pup 0 

            set grow-to-adult 0 

            set be-mature 0 

            set natural-end 0 

 

            ask eggs [ 

              if hatch-time < 2534.4 [ 

               set hatch-time (hatch-time + 3225.6) 

              ] 

            ] 

            ask eggs [ 

              if hatch-time > 8985.6 [ 

                set hatch-time (hatch-time - 3225.6) 

              ] 

            ] 

 

  ] 

  ] 

      ] 

  ] 

  ] 

end 

 

to check-fertility   ; based on infertility observed by Pappas et al., 

2013 and oviposition period from Amarasekare and Shearer (2013). 

  ask adults [ 

    ifelse infertility-chance < 90 

    [ set fertile "true" ] 

    [ set fertile "false" ] 

  ] 

end 

 

;-------------------------------------------------------------------

--------------- 

 

to move ; does not apply to eggs or pupae. 

 

  ask larvae-1 [ 

    let active? random-normal 46 9.73   ; reset every minute 
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    repeat 60 [   ; movement is run for every second within the minute 

      if random 100 < active? [ 

        rt random 30.6 

        lt random 30.6 

        repel 

        let d random-normal 3.28 1.14  ; distance changed every second 

        forward d   ; they move this proportion of a patch 

        let ta 1   ; counts how many seconds they move 

      set distance-traveled (precision (distance-traveled + d) 2) 

      set time-active time-active + ta 

  ] 

  ] 

  ] 

 

  ask larvae-2 [ 

    let active? random-normal 46 9.73   ; reset every minute 

    repeat 60 [   ; movement is run for every second within the minute 

      if random 100 < active? [ 

        rt random 30.6 

        lt random 30.6 

        repel 

        let d random-normal  3.28 1.14  ; distance changed every 

second 

        forward d   ; they move this proportion of a patch 

        let ta 1   ; counts how many seconds they move 

      set distance-traveled (precision (distance-traveled + d) 2) 

      set time-active time-active + ta 

  ] 

  ] 

  ] 

 

  ask larvae-3 [ 

    let active? random-normal 46 9.73   ; reset every minute 

    repeat 60 [   ; movement is run for every second within the minute 

      if random 100 < active? [ 

        rt random 30.6 

        lt random 30.6 

        repel 

        let d random-normal 3.28 1.14  ; distance changed every second 

        forward d   ; they move this proportion of a patch 

        let ta 1   ; counts how many seconds they move 

      set distance-traveled (precision (distance-traveled + d) 2) 

      set time-active time-active + ta 

  ] 

  ] 

  ] 

 

  ask adults [ 

    let active? random-normal 46 9.73   ; reset every minute 

    repeat 60 [   ; movement is run for every second within the minute 

      if random 100 < active? [ 

        rt random 30.6 

        lt random 30.6 

        repel 

        let d random-normal 3.28 1.14  ; distance changed every second 

        forward d   ; they move this proportion of a patch 
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        let ta 1   ; counts how many seconds they move 

      set distance-traveled (precision (distance-traveled + d) 2) 

      set time-active time-active + ta 

  ] 

  ] 

  ] 

 

end 

 

;-------------------------------------------------------------------

--------------- 

 

to repel ; attracts lacewings away from pesticide, but only within a 

90 degree cone around the lacewing's heading 

  if avoidance? = true [ 

  ask larvae-1 [ 

    let scent-ahead patch-scent-at-angle 0 

    let scent-right patch-scent-at-angle 45 

    let scent-left patch-scent-at-angle -45 

    if (scent-right > scent-ahead) or (scent-left > scent-ahead) 

  [ ifelse scent-right > scent-left 

    [ rt 45 ] 

    [ lt 45 ] 

  ] 

] 

    ask larvae-2 [ 

    let scent-ahead patch-scent-at-angle 0 

    let scent-right patch-scent-at-angle 45 

    let scent-left patch-scent-at-angle -45 

    if (scent-right > scent-ahead) or (scent-left > scent-ahead) 

  [ ifelse scent-right > scent-left 

    [ rt 45 ] 

    [ lt 45 ] 

  ] 

] 

    ask larvae-3 [ 

    let scent-ahead patch-scent-at-angle 0 

    let scent-right patch-scent-at-angle 45 

    let scent-left patch-scent-at-angle -45 

    if (scent-right > scent-ahead) or (scent-left > scent-ahead) 

  [ ifelse scent-right > scent-left 

    [ rt 45 ] 

    [ lt 45 ] 

  ] 

] 

    ask adults [ 

    let scent-ahead patch-scent-at-angle 0 

    let scent-right patch-scent-at-angle 45 

    let scent-left patch-scent-at-angle -45 

    if (scent-right > scent-ahead) or (scent-left > scent-ahead) 

  [ ifelse scent-right > scent-left 

    [ rt 45 ] 

    [ lt 45 ] 

  ] 

] 

  ] 
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end 

 

to expose-pesticide 

  ask turtles [ 

    if pesticide-patch? = true [ 

      set exposure-duration (exposure-duration + 1) 

      set tox (precision (tox + p-mortality) 3) 

  ] 

  ] 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;; 

 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;; 

 

to death 

  ask turtles [   ; step 1: natural death by coming to end of life 

    if adult-age > natural-end [ 

      set breed dead-adults 

 

    ] 

   ] 

  if ticks mod 60 = 0 [ 

  ask turtles [   ; step 2: death from exposure to pesticides 

    if tox > tolerance [ 

        set breed dead-adults 

    ] 

    ] 

  ] 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;; 

 

to-report coverage 

 report precision ((count patches with [pcolor = 44] / count patches) 

* 100) 2 

end 

 

to-report patch-scale 

  report ("1 mm") 

end 

 

to-report mean-exposure 

  report (mean [exposure-duration] of turtles) 

end 

 

to-report exposure 

  report ([exposure-duration] of dead-adults) 

end 

 

to-report mean-toxicity 
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  report (mean [tox] of turtles) 

end 

 

to-report toxicity 

  report ([tox] of turtles) 

end 

 

to-report distance-walked 

  report ([distance-traveled] of turtles) 

end 

 

to-report activity 

  report ([time-active] of turtles) 

end 

 

to-report patch-scent-at-angle [angle] 

  let p patch-right-and-ahead angle 1 

  if p = nobody [ report 0 ] 

  report [patch-scent] of p 

end 

 

to-report eggs-per-female 

  report count eggs 

end 

 

to-report tol 

  report ([tolerance] of adults) 

end 

 

to-report count-lacewings 

  report count turtles 

end 

 

to-report adult-longevity 

  report [adult-age] of dead-adults 

end 

 

to-report dev-to-adult 

  report [time-to-adult] of turtles 

end 

 

to-report fertility-status 

  report [fertile] of dead-adults 

end 

 

Appendix C – PANTA mite model code (NetLogo) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; SETTING BREEDS FOR MODEL ;;;;;;;;--------------------------------- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

 

patches-own [ 

  pesticide-patch? ; determines whether patch contains pesticide 
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  active-sub       ; defines the active substance (e.g. acetamiprid, 

dimethoate) 

  p-mortality      ; used to define the hourly mortality based on 48 hr 

tests. This accumulates and reduces the life of individuals 

  patch-scent      ; patch "scent" to aid in avoidance of pesticide patches 

] 

 

turtles-own [      ; the following are measures that are specific to each 

lacewing 

  exposure-duration         ; records how long individual has been exposed 

in hrs/ticks 

  tox                       ; the accumulated toxicity from walking on 

contaminated surfaces derived from p-mortality. Eggs and pupae residing on 

exposed surfaces end up with much higher levels due to inability to avoid at 

that life stage 

  tolerance                 ; tolerance to exposure. Adds randomness to when 

individuals succumb to exposure but should all die after 48 hours cumulative 

exposure 

  eggs-laid                 ; number of eggs laid by the individual 

  distance-traveled         ; to record distance covered by each lacewing. 

Velocity will be calculated from this 

  time-active               ; to determine whether lacewing moves each tick 

  age                       ; individual's age in hours 

  adult-age                 ; counts how long an adult has been an adult. 

Used to work out natural death 

  repro-rate                ; the individual's reproduction rate, defined at 

creation and based on eggs per day @ 25C (Gadino and Walton, 2012) 

  grow-to-proto             ; the grow-to-X measures are defined for each 

individual to allow for development processes to happen 

  grow-to-deuto             ; within a range around an average time at each 

stage. This set up allows the development to have some stochasticity. 

  grow-to-adult 

  ;surv-to-adult             ; chance of surviving to adulthood derived from 

figure 1 in Gadino and Walton (2012) 

  larvae-surv               ; chance of surviving larval stage 

  proto-surv                ; chance of surviving protonymph stage 

  deuto-surv                ; chance of surviving deutonymph stage 

  be-mature                 ; the age at which an adult becomes reproductively 

mature. Works like the grow-to-X measures. 

  natural-end               ; used for varying when individual adults' lives 

end naturally. Based on adult-age 

  time-to-adult   ; records time to develop to adult (for model checking) 

] 

 

breed [eggs egg] 

breed [larvae larva] 

breed [protonymphs protonymph] 

breed [deutonymphs deutonymph] 

breed [adults adult] 

breed [dead-adults dead-adult]   ; used to check model operation only 

 

eggs-own 

[ 

  hatch-time   ; time to hatch to larvae. Temperature dependent 

  egg_via      ; egg viability; probability the eggs will hatch 

] 

 

 

 

;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; SETUP ;;;;;;;;---------------------------------------------- 
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;;;;;;;;;;;;;;;;;;;;;;; 

 

; acts as a reset and will do this when the "setup" button is pressed 

 

to setup 

  ca 

  set-default-shape eggs "dot" 

  set-default-shape larvae "bug" 

  set-default-shape protonymphs "bug" 

  set-default-shape deutonymphs "bug" 

  set-default-shape adults "bug" 

 

  setup-patches   ; to generate model landscape 

  setup-turtles 

  reset-ticks 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; SETUP SUBMODELS ;;;;;;;;------------------------------------------

---- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; ENVIRONMENT SUBMODELS ;;;---------------------------------------------- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to setup-patches 

  setup-env        ; Allows user to use drop down to select model landscape 

from a series of artificially generated, and real exposure landscapes. Real 

landscapes are derived from water sensitive paper collected from field study 

(Witton et al, 2018) 

  assign-patches   ; Re-colours the binary images used to generate model 

landscape and establishes what is pesticide exposure and what is not 

  setup-contam 

  diffuse-scent 

end 

 

 

to setup-env 

; Various exposure landscapes to allow behaviour and life cycle to be studied 

in different exposure landscapes. 

; The files cover a range of coverage rates, but also one orchard tree, and 

the off-crop exposure in the hedgerow. 

  if file = "Avoidance Test 1" [import-pcolors "Images/Avoidance Test 1.png"]  

; artificial arena 

  if file = "Avoidance Test 2" [import-pcolors "Images/Avoidance Test 2.png"]  

; artificial arena 

  if file = "choice arena" [import-pcolors "Images/Choice Arena.png"]          

; Replicates 50% coverage lab test arena 

  if file = "control" [ask patches [set pcolor 3]]  ; Acts as the control 

  if file = "100% cover" [ask patches [set pcolor 1]]   ; Acts as 100% cover 

control 

; Real exposures 

  if file = "1" [import-pcolors "Images/B-1-M-001-crop-binary.png"] ; Real 

exposures from the field study 

  if file = "2" [import-pcolors "Images/B-1-M-002-crop-binary.png"] 

  if file = "3" [import-pcolors "Images/B-1-M-003-crop-binary.png"] 

  if file = "4" [import-pcolors "Images/B-1-M-004-crop-binary.png"] 

  if file = "5" [import-pcolors "Images/B-1-M-005-crop-binary.png"] 

  if file = "6" [import-pcolors "Images/B-1-M-006-crop-binary.png"] 

  if file = "7" [import-pcolors "Images/B-1-M-007-crop-binary.png"] 
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  if file = "8" [import-pcolors "Images/B-1-M-008-crop-binary.png"] 

  if file = "9" [import-pcolors "Images/B-1-M-009-crop-binary.png"] 

  if file = "10" [import-pcolors "Images/B-1-M-010-crop-binary.png"] 

  if file = "11" [import-pcolors "Images/B-1-M-011-crop-binary.png"] 

  if file = "12" [import-pcolors "Images/B-1-M-012-crop-binary.png"] 

  if file = "13" [import-pcolors "Images/B-1-O-001-crop-binary.png"] 

  if file = "14" [import-pcolors "Images/B-1-O-002-crop-binary.png"] 

  if file = "15" [import-pcolors "Images/B-1-O-003-crop-binary.png"] 

  if file = "16" [import-pcolors "Images/B-1-O-004-crop-binary.png"] 

  if file = "17" [import-pcolors "Images/B-1-O-005-crop-binary.png"] 

  if file = "18" [import-pcolors "Images/B-1-O-006-crop-binary.png"] 

  if file = "19" [import-pcolors "Images/B-1-O-007-crop-binary.png"] 

  if file = "20" [import-pcolors "Images/B-1-O-008-crop-binary.png"] 

  if file = "21" [import-pcolors "Images/B-1-O-009-crop-binary.png"] 

  if file = "22" [import-pcolors "Images/B-1-O-010-crop-binary.png"] 

  if file = "23" [import-pcolors "Images/B-1-O-011-crop-binary.png"] 

  if file = "24" [import-pcolors "Images/B-1-O-012-crop-binary.png"] 

 

 

end 

 

 

to assign-patches     ; used to recolour environment and assign pesticide 

attributes 

  ask patches [ 

    if pcolor > 2.5 [ 

      set pcolor 63 

      set pesticide-patch? false 

  ] 

  ] 

  ask patches [ 

    if pcolor <= 2.5 [ 

      set pcolor 44 

      set pesticide-patch? true 

  ] 

  ] 

  ask patches [ 

    ifelse pesticide-patch? 

    [ set patch-scent 0 ] 

    [ set patch-scent 100 ] 

  ] 

end 

 

 

to setup-contam   ; used to establish toxicity of pesticide contaminated 

patches 

                  ; ACM based on EU ACM Dossier (EFSA, 2016) 

if pesticide = "ACM 10.66 g Ha" [ 

    ask patches [ 

      if pesticide-patch? = true [ 

        set active-sub "acetamiprid" 

        set p-mortality 0.00315 

      ] 

    ] 

  ] 

if pesticide = "ACM 18.66 g Ha" [ 

    ask patches [ 

      if pesticide-patch? = true [ 

        set active-sub "acetamiprid" 

        set p-mortality 0.00513 

      ] 
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    ] 

  ] 

if pesticide = "ACM 32.65 g Ha" [ 

    ask patches [ 

      if pesticide-patch? = true [ 

        set active-sub "acetamiprid" 

        set p-mortality 0.00430 

      ] 

    ] 

  ] 

 

if pesticide = "ACM 57.14 g Ha" [ 

    ask patches [ 

      if pesticide-patch? = true [ 

        set active-sub "acetamiprid" 

        set p-mortality 0.00843 

      ] 

    ] 

  ] 

 

if pesticide = "ACM 100 g Ha" [ 

    ask patches [ 

      if pesticide-patch? = true [ 

        set active-sub "acetamiprid" 

        set p-mortality 0.00943 

      ] 

    ] 

  ] 

end 

 

to diffuse-scent   ; only diffuses the pesticide scent on setup meaning 

diffused scent should reach over pesticide patches 

    diffuse patch-scent 0.5 ; diffuses 50% of pesticide scent to 8 

neighbouring patches 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; POPULATION SETUP   ;;;---------------------------------------------- 

;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to setup-turtles       ; sets up initial population of larvae based on 

sliding scale 

  create-turtles larvae-number [ 

    set breed larvae 

    set color 0 

    set size 5 

    setxy random-xcor random-ycor 

    set heading random 360 

    ;set larvae-surv (round random-normal 93.9 0)  ; Survival rates derived 

from Gadino and Walton (2012) 

    ;set proto-surv (round random-normal 93.9 0)   ; Based on observations 

at 25C 

    set deuto-surv (round random-normal 89.6 0)   ; 

    set repro-rate (round random-normal 1.4 0.48) ; Based on the eggs per 

day value. Total fecundity in the thesis chapter can be used to validate. 

Might need some rethinking due to small numbers. 

    set grow-to-proto (round random-normal 1440 705.6) 

    set grow-to-deuto (round random-normal 3024 705.6) 

    set grow-to-adult (round random-normal 3024 705.6) 

    set be-mature (round random-normal 3168 3456)   ; the SD might cause 

issues so maybe refine to 3168 
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    set natural-end (round random-normal 64800 31104) 

    set tolerance precision random-float 100 2 

    check-parameters 

    if movement-track = true [ 

      set pen-mode "down" 

    ] 

  ] 

end 

 

; this is all necessary to prevent development stage values falling 

significantly out of range. 

to check-parameters 

  ask larvae [ 

    if grow-to-proto < 3326.4 [ 

      set grow-to-proto (grow-to-proto + 705.6) 

    ] 

  ] 

 

  ask larvae [ 

    if grow-to-deuto < 734.4 [ 

      set grow-to-deuto (grow-to-deuto + 705.6) 

    ] 

  ] 

 

  ask larvae [ 

    if grow-to-adult < 2318.4 [ 

      set grow-to-adult (grow-to-adult + 705.6) 

    ] 

  ] 

 

  ask larvae [ 

    if be-mature < 0 [ 

      set be-mature (be-mature + 3456) 

    ] 

  ] 

  ask larvae [ 

    if be-mature > 6624 [ 

      set be-mature (be-mature - 3456) 

    ] 

  ] 

  ask larvae [ 

    if natural-end < 33696 [ 

      set natural-end (natural-end + 31104) 

    ] 

  ] 

  ask larvae [ 

    if natural-end > 95904 [ 

      set natural-end (natural-end - 31104) 

    ] 

  ] 

  ask larvae [ 

    if repro-rate < 0.92 [ 

      set repro-rate (repro-rate + 0.48) 

    ] 

  ] 

  ask larvae [ 

    if repro-rate > 1.88 [ 

      set repro-rate (repro-rate - 0.48) 

    ] 

  ] 

end 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; GO PROCEDURE ;;;;;;;;---------------------------------------------

- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to go 

  if not any? turtles [stop]    ; model stops when all mites have died 

  ; alternative go procedure 

  ; for model output verification and for testing fecundity 

  if (not any? adults) and (not any? deutonymphs) and (not any? protonymphs) 

and (not any? larvae) [stop]   ; model stops when all surviving mites have 

moulted to adult 

 

  ; for testing survival to adults 

  ;if turtles = adults [stop] 

 

 

  ask turtles                ; so lacewings age and develop 

    [ set age (age + 1) ]   ; age is in mins/ticks 

  ;test-rng 

  move 

  expose-pesticide 

 

  if reproduction? = true 

    [ reproduce ] 

 

  ask adults 

    [ set adult-age (adult-age + 1) ] 

 

  ask deutonymphs 

    [ grow-adult ] 

 

  ask protonymphs 

    [ grow-deuto ] 

 

  ask larvae 

    [ grow-proto ] 

 

  ;ask eggs 

   ; [ hatch-egg ] 

 

  death 

  tick 

end 

 

to test-rng 

  let a 0 

  let b 0 

  repeat 1000000 [ 

    set b random-normal 5760 3225.6 

    if b > 8985.6 [set a a + 1] 

  ] 

  print a 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; LACEWING DEVELOPMENT ;;;;;;;;-------------------------------------

--------- 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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to grow-adult 

  if age > (grow-to-proto + grow-to-deuto + grow-to-adult) [ 

    ifelse random 100 < deuto-surv [ 

      set breed adults 

      set color 52 

      set size 10 

      set adult-age 0 

      set time-to-adult age 

  ] 

    [die] 

  ] 

end 

 

to grow-deuto 

  if age > (grow-to-proto + grow-to-deuto) [ 

 

    set breed deutonymphs 

    set color 7 

    set size 10 

  ] 

end 

 

to grow-proto 

  if age > (grow-to-proto) [ 

 

    set breed protonymphs 

    set color 11 

    set size 10 

  ] 

end 

 

to hatch-egg   ; set up is "if at this age, if number is below egg viability 

rate, hatch to larvae; otherwise die. 

  ask eggs [ 

    if age > hatch-time [ 

      ifelse random-float 100 < egg_via [ 

      set breed larvae 

      set age 0 

      set color 13 

      set size 5 

      set heading random 360 

      ] 

      [die] 

  ] 

  ] 

end 

 

;--------------------------------------------------------------------------

-------- 

 

to reproduce ; allows oviposition only if old enough. Done daily. 

  if ticks mod 1440 = 0 [ 

    ask adults [ 

      if adult-age > be-mature [ 

          set eggs-laid (eggs-laid + repro-rate) 

          show eggs-laid 

          hatch repro-rate [ 

            set breed eggs 

            set color white 

            set size 5 
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            set age 0 

            set hatch-time round random-normal 4032 705.6 

            set egg_via precision (random-normal 98.1 0) 2 ; sets the egg's 

chance of hatching at creation (Amarasekare and Shearer, 2013) 

            set larvae-surv 0 

            set proto-surv 0 

            set deuto-surv 0 

            set repro-rate 0 

            set grow-to-proto 0 

            set grow-to-deuto 0 

            set grow-to-adult 0 

            set be-mature 0 

            set natural-end 0 

            ; tolerance is inherited from mother 

          set distance-traveled 0 

          set time-active 0 

          set exposure-duration 0 

 

            ask eggs [ 

              if hatch-time < 3326.4 [ 

               set hatch-time (hatch-time + 705.6) 

              ] 

            ] 

            ask eggs [ 

              if hatch-time > 4737.6 [ 

                set hatch-time (hatch-time - 705.6) 

              ] 

            ] 

 

  ] 

  ] 

      ] 

  ] 

 

end 

 

;--------------------------------------------------------------------------

-------- 

 

to move ; does not apply to eggs 

 

  ask larvae [ 

    let active-or-not random-normal 74.6 36.3   ; reset every minute 

    if active-or-not < 38.3 [ set active-or-not (active-or-not) + 36.3] 

    repeat 60 [   ; movement is run for every second within the minute 

      if random 100 < active-or-not [ 

        rt random-normal 19.15 5.07 

        lt random-normal 19.15 5.07 

        repel 

        let d random-normal 1.166 0.71  ; distance changed every second 

 

        forward d   ; they move this proportion of a patch 

        let ta 1   ; counts how many seconds they move 

      set distance-traveled (precision (distance-traveled + d) 2) 

      set time-active time-active + ta 

  ] 

  ] 

  ] 

  ask protonymphs [ 

    let active-or-not random-normal 74.6 36.3   ; reset every minute 

    if active-or-not < 38.3 [ set active-or-not (active-or-not) + 36.3] 
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    repeat 60 [   ; movement is run for every second within the minute 

      if random 100 < active-or-not [ 

        rt random-normal 19.15 5.07 

        lt random-normal 19.15 5.07 

        repel 

        let d random-normal 1.166 0.71  ; distance changed every second 

 

        forward d   ; they move this proportion of a patch 

        let ta 1   ; counts how many seconds they move 

      set distance-traveled (precision (distance-traveled + d) 2) 

      set time-active time-active + ta 

  ] 

  ] 

  ] 

  ask deutonymphs [ 

    let active-or-not random-normal 74.6 36.3   ; reset every minute 

    if active-or-not < 38.3 [ set active-or-not (active-or-not) + 36.3] 

    repeat 60 [   ; movement is run for every second within the minute 

      if random 100 < active-or-not [ 

        rt random-normal 19.15 5.07 

        lt random-normal 19.15 5.07 

        repel 

        let d random-normal 1.166 0.71  ; distance changed every second 

 

        forward d   ; they move this proportion of a patch 

        let ta 1   ; counts how many seconds they move 

      set distance-traveled (precision (distance-traveled + d) 2) 

      set time-active time-active + ta 

  ] 

  ] 

  ] 

  ask adults [ 

    let active-or-not random-normal 74.6 36.3   ; reset every minute 

    if active-or-not < 38.3 [ set active-or-not (active-or-not) + 36.3] 

    repeat 60 [   ; movement is run for every second within the minute 

      if random 100 < active-or-not [ 

        rt random-normal 19.15 5.07 

        lt random-normal 19.15 5.07 

        repel 

        let d random-normal 1.166 0.71  ; distance changed every second 

 

        forward d   ; they move this proportion of a patch 

        let ta 1   ; counts how many seconds they move 

      set distance-traveled (precision (distance-traveled + d) 2) 

      set time-active time-active + ta 

  ] 

  ] 

  ] 

end 

 

;--------------------------------------------------------------------------

-------- 

 

to repel ; attracts lacewings away from pesticide, but only within a 90 

degree cone around the lacewing's heading 

  if avoidance? = true [ 

  ask larvae [ 

    let scent-ahead patch-scent-at-angle 0 

    let scent-right patch-scent-at-angle 45 

    let scent-left patch-scent-at-angle -45 

    if (scent-right > scent-ahead) or (scent-left > scent-ahead) 
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  [ ifelse scent-right > scent-left 

    [ rt 45 ] 

    [ lt 45 ] 

  ] 

] 

    ask protonymphs [ 

    let scent-ahead patch-scent-at-angle 0 

    let scent-right patch-scent-at-angle 45 

    let scent-left patch-scent-at-angle -45 

    if (scent-right > scent-ahead) or (scent-left > scent-ahead) 

  [ ifelse scent-right > scent-left 

    [ rt 45 ] 

    [ lt 45 ] 

  ] 

] 

    ask deutonymphs [ 

    let scent-ahead patch-scent-at-angle 0 

    let scent-right patch-scent-at-angle 45 

    let scent-left patch-scent-at-angle -45 

    if (scent-right > scent-ahead) or (scent-left > scent-ahead) 

  [ ifelse scent-right > scent-left 

    [ rt 45 ] 

    [ lt 45 ] 

  ] 

] 

    ask adults [ 

    let scent-ahead patch-scent-at-angle 0 

    let scent-right patch-scent-at-angle 45 

    let scent-left patch-scent-at-angle -45 

    if (scent-right > scent-ahead) or (scent-left > scent-ahead) 

  [ ifelse scent-right > scent-left 

    [ rt 45 ] 

    [ lt 45 ] 

  ] 

] 

  ] 

end 

 

to expose-pesticide 

  ask turtles [ 

    if pesticide-patch? = true [ 

      set exposure-duration (exposure-duration + 1) 

      set tox (precision (tox + p-mortality) 3) 

  ] 

  ] 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;; 

 

to death 

  ask adults [   ; step 1: natural death by coming to end of life 

    if adult-age > natural-end [ 

      set breed dead-adults 

 

    ] 

   ] 

  if ticks mod 60 = 0 [ 

  ask turtles [   ; step 2: death from exposure to pesticides 

    if tox > tolerance [ 

        die 
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    ] 

    ] 

  ] 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;; 

 

to-report coverage 

 report precision ((count patches with [pcolor = 44] / count patches) * 100) 

2 

end 

 

to-report patch-scale 

  report ("1 mm") 

end 

 

to-report mean-exposure 

  report (mean [exposure-duration] of turtles) 

end 

 

to-report exposure 

  report ([exposure-duration] of dead-adults) 

end 

 

to-report mean-toxicity 

  report (mean [tox] of turtles) 

end 

 

to-report toxicity 

  report ([tox] of turtles) 

end 

 

to-report distance-walked 

  report ([distance-traveled] of turtles) 

end 

 

to-report activity 

  report ([time-active] of turtles) 

end 

 

to-report patch-scent-at-angle [angle] 

  let p patch-right-and-ahead angle 1 

  if p = nobody [ report 0 ] 

  report [patch-scent] of p 

end 

 

to-report eggs-per-female 

  report count eggs 

end 

 

to-report tol 

  report ([tolerance] of adults) 

end 

 

to-report count-mites 

  report count turtles 

end 

 

to-report adult-longevity 

  report [adult-age] of dead-adults 
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end 

 

to-report dev-to-adult 

  report [time-to-adult] of turtles 

end 
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