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Abstract

Continuous air quality monitoring networks were commissioned in the mid-

twentieth century throughout the developed world to underpin the under-

standing of air pollution. These monitoring networks have produced a vast

observational record which continues to grow. However, these data are gen-

erally used for simple tasks such as checking for compliance to legal stan-

dards or guidelines and the additional information contained in the data

sets is not well leveraged to aid scientific understanding and inform policy

makers. This thesis addresses this issue and has the goal of extracting ad-

ditional information from “routine” air quality monitoring data using new,

and novel data analyses with a focus on the impact of transportation ac-

tivities across Europe. Specifically, this thesis outlines the development of

bivariate polar plots with pair-wise statistics to aid source apportionment,

the development of a European air quality database which much of this the-

sis’s work is based on, a European-wide analysis of roadside nitrogen diox-

ide (NO2), and the development of a framework and software to robustly

detect and quantify changes in pollutant concentrations. The additional

functionality of bivariate polar plots was useful for isolating the natural

and anthropogenic sources of pollutants and is now included in the open

source openair R package. The NO2 analysis revealed that directly emitted

NO2 from road vehicles is decreasing across Europe and assumed emissions

are too high resulting in pessimistic projections of future compliance. This

conclusion is very important for policy makers to consider in their plan-

ning of disruptive interventions, most relevant of which are low emission

zones because the observations suggest that the outlook is better than tra-

ditionally thought. For those analysing trends, a new technique has been

developed that is highly effective at robustly characterising and quantify-

ing the effects of interventions and the tools developed are available in the

form of the open source rmweather R package.
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Chapter 1

Introduction

1.1 Setting the scene

1.1.1 Urban air quality

Urban air quality has become a key environmental and public health issue

over the last three decades. The consequences of poor air quality are ex-

clusively negative and research continues to accurately quantify the health

and financial cost of poor air quality on society, but the effects are consid-

ered vast.[1,2] Currently, the World Health Organisation (WHO) attribute 4.2

million deaths a year to exposure to poor outdoor air quality and estimate

91% of the human population are exposed to polluted air.[3] Many global

risk assessments of causes of death place outdoor air pollution well within

the top ten risk factors which cause death and is considered the leading

environmental cause of premature death (Figure 1.1).[4–6] However, expo-

sure to poor air quality has a myriad of negative health effects other than

premature death (Figure 1.2).[7] These factors place very large burdens on

society and the global cost of air pollutant burdens has been estimated at

$5.11 trillion (using 2013 as the analysis year).[4]

Urban air pollution is a global issue, but the negative consequences of

poor air quality are disproportionally high in the under-developed and de-

veloping world.[9] However, the developed world also faces significant chal-
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Figure 1.1: Global attributable deaths by risk factor.[4] Air pollution is the

leading environmental cause of premature death.
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Figure 1.2: The pyramid of effects to poor air quality within a population,

adapted from United States Environmental Protection Agency [8].
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lenges and invest the most and lead the way in poor air quality mitigation

efforts.[10] In 2008, the landmark of the majority of the world’s population

resided in urban areas was met[11] which makes outdoor urban air quality a

relevant issue for the majority of the world’s population.[12]

Air pollution has both natural and anthropogenic sources.[3] The major-

ity of issues associated with poor air quality are due to anthropogenic pro-

cesses, but the combination of the presence of natural and human sourced

pollutants can be important at times.[13] Management of air pollution fo-

cuses on anthropogenic processes because such activities are more easily

controlled compared to natural processes. It can be seen that poor air qual-

ity is an issue which can be solved, but there are significant economic impli-

cations of doing so.[14] The costs involved with managing air quality leads

to exposure inequalities and this can be observed when comparing under-

developed, developing, and developed countries, but also when exploring

the differences among relative rich and poor within countries.[15]

1.1.2 Air pollutants

There are thousands of pollutants which contaminate urban atmospheres.

However, there are a handful of pollutants which are considered “classi-

cal” pollutants, are regularly monitored, where legislation exists to control

them, and are explored in this thesis. These pollutants are: particulate mat-

ter (PM) of various size fractions the most commonly encountered of which

are PM10 and PM2.5 (particulate matter 10 and 2.5 micrometers or less in

diameter respectively), ozone (O3), oxides of nitrogen (NOx), sulfur dioxide

(SO2), and carbon monoxide (CO). Both SO2 and CO have been effectively

controlled in the developed world because of improvements in the qual-

ity of fuels and combustion processes and are rarely an operational issue

in the outdoor environment. The World Health Organisation (WHO) out-

line ambient air quality guidelines for these pollutants with the exception

of CO because there is strong evidence about the negative consequences of

these pollutants (Table 1.1).[9] Table 1.1 demonstrates that air pollutants
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have both acute and chronic (short and long term) effects hence different

guideline values for different aggregation periods.

Table 1.1: World Health Organisation (WHO) Air Quality Guideline val-

ues.[9]

Pollutant Value Summary type

PM2.5 10µgm−3 Annual mean

PM2.5 25µgm−3 24-hour mean

PM10 20µgm−3 Annual mean

PM10 50µgm−3 24-hour mean

O3 100µgm−3 8-hour mean

NO2 40µgm−3 Annual mean

NO2 200µgm−3 24-hour mean

SO2 20µgm−3 Annual mean

SO2 500µgm−3 24-hour mean

For the negative consequences of air pollution to be realized, exposure to

the pollutant must occur. Therefore, there must be an interaction of emis-

sion or generation of pollutants, dispersion, and a subsequent exposure for

the negative effects to be felt by individuals and populations. Urban areas

are more susceptible to this interaction because of the combination of high

population density and intensive consumption of resources to meet eco-

nomic demands which results in the release of pollutants. At an individual

level, little can be done to avoid or reduce exposure to air pollutants and

therefore effective management requires the action of local, regional, and

national policy makers.[9,14]

The mechanisms of air pollutants’ negative effects on human health are

diverse and are dependent on the pollutant, but the common diseases in

order of prevalence are generally considered: heart disease, strokes, pul-

monary disease, lower respiratory infections, and lung cancer.[9] There are

however far more less dramatic negative effects (Figure 1.2) which are not

reported and are poorly quantified due to complicated relationships with
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other risk factors. For excellent reviews and summaries of the human health

effects of air quality see Cohen et al. [16], Nel [17], Curtis et al. [18], Pope

and Dockery [19], and Kampa and Castanas [20].

1.1.3 European context

In Europe, poor air quality within and near roadside environments has be-

come the dominating focus of air quality management. Air quality issues

surrounding road transport are far more common than industrial or resi-

dential (generally wood burning) activities, but these former issues are im-

portant in some European locations nevertheless.[21–25] There are examples

of very large and disruptive intervention efforts being applied to European

urban areas such as low emission zones (also called clean air zones), the

banning of private vehicles, and the promotion of cycling and public trans-

portation in an attempt to improve air quality.[26–31]

The majority of these roadside air quality issues have arisen due to Eu-

rope’s rapid, and unique dieselisation of its passenger vehicle fleet.[32] New

sales of diesel-powered passenger vehicles in Europe peaked at 56% in 2011

(Figure 1.3) and in most countries compose ≈45% of the in-service fleet.[33]

Diesel powered vehicles emit more NOx, the sum of nitrogen oxide (NO)

and nitrogen dioxide (NO2), and very fine particulates compared to gasoline

(petrol) fuelled vehicles. The Volkswagen (VW) diesel emission scandal,

also known as “dieselgate” or “emissiongate”[34–36] broke in late Septem-

ber 2015 and further promoted issues related to vehicle emissions and poor

air quality in the public, and therefore political domains. The European

Environment Agency (EEA) estimates that 399000, 75000, and 13600 pre-

mature European deaths are caused by exposure to PM2.5, NO2, and O3

respectively.[37,38]
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Figure 1.3: Market share of diesel powered passenger vehicles sold in Eu-

rope between 1990 and 2017.[33]

1.1.3.1 Volkswagen diesel emission scandal

The Volkswagen diesel emission scandal, also known as “dieselgate” out-

lined a major issue with the generality of vehicle emissions as measured

in test procedures to real-world environments. A defeat device was first

found within a popular Volkswagen AG (VW) 2.0 litre diesel engine (en-

gine code: EA189) manufactured between 2009 and 2015 in the form of a

piece of software in September 2015 by a research group at West Virginia

University.[39,40] This defeat device was designed to subvert laboratory test-

ing by changing engine dynamics when a test cycle was detected and then

deliver better performance and fuel economy in all other situations, but at

the consequence of a factor of 10 to 40 greater NOx emissions than the legal

limits impose.[39,41–43] The software within the vehicles’ electronic control

module (ECU) would evaluate the electronic stability control status, baro-

metric pressure, speed of vehicle, steering position, and engine run time to

determine if the vehicle was within a test cycle. If these tests were positive,

the ECU would change engine operation to reduce emissions to enable the
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vehicle to pass the test.[44]

Eleven million vehicles worldwide were embroiled in the scandal and

some critics have labelled the deception as a crime against humanity due

to the air quality consequences of the increased NOx emissions.[41,45] In the

United States, VW was legally required to purchase vehicles from owners

in some situations, and the locations where these vehicles were stored gives

some indication on how many vehicles were involved in the scandal (Fig-

ure 1.4).

To date, similar and sophisticated VW-like defeat devices have not been

been found in other manufacturers’ vehicles with the possible exception of

Daimler AG (Mercedes-Benz),[47] but it seems that most manufacturers have

engaged in emission control manipulation to enable their vehicles to pass

type approval tests, rather than focus on true solutions to reduce emission

in realistic on-road operation cycles.[48,49] Porsche and BMW have recalled

60000 and 12000 vehicles respectively for diesel emission control reasons,

however neither have admitted illegal activities and Porsche no longer of-

fers any diesel powered vehicles.[50–52] This has given rise to an issue where

diesel passenger vehicles are several times more NOx polluting when driven

on normal roads compared to what the test procedure data and the emission

standards suggest.[53] Work is ongoing to address and quantify this discrep-

ancy because it is especially important for European urban areas with their

high rates of dieselisation.

In the urban air quality domain, the disconnect between the progres-

sively stringent vehicular emission standards and the lack of decreasing

pollutant concentrations were highlighted well before the diesel emission

scandal.[34,54] Authors had noted that during the time when passenger vehi-

cle emissions were tightened from Euro 1 to Euro 6 between 1992–2014, the

emission limits for NOx as an example decreased by 92 % (Figure 1.5). How-

ever, during this period, ambient pollutant concentrations have decreased,

but not even close to the magnitude of change enforced by the emission

limits. Diesel passenger vehicle numbers increased during this period and
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Figure 1.4: A holding pen for 21000 Volkswagen AG vehicles embroiled

in the diesel emission scandal at the Southern California Logistics Airport

(from Worstall [46]).
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there is a lag period before the old vehicles are replaced with new vehicles

compliant to modern emission standards, but these factors did not explain

the lack of concentration decrease observed. In hindsight, it is clear that

there was a mismatch between vehicular emissions being reported during

laboratory test cycles and those being generated by vehicles operating in

their true environment on roads. The diesel emission scandal demonstrated

that this disconnect is very real and that some manufacturers have deployed

sophisticated and illegal subversion tactics which help explain why ambi-

ent pollutant concentrations have not decreased at the rates which could be

expected and has led to significant air quality consequences.
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Figure 1.5: Euro NOx emission standards for diesel powered passenger ve-

hicles.

1.2 Key chemistry of vehicular NOx emissions

NOx is formed from the combustion of fuels due to the presence of high

temperatures, nitrogen (N), and oxygen (O). For most combustion processes,

the majority of NOx is in the form of NO with a smaller component of

NO2.[55,56] NO formation by combustion processes is described by the ex-
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tended Zeldovich mechanism where dioxygen (O2) and dinitrogen (N2) are

broken and react to form NO (Equation 1.1):

N2 +O
NO+N

N +O2
NO+O

N +OH 
NO+H

(1.1)

For the combustion of hydrocarbon fuels used in road vehicles, there is no

significant NOx sourced from nitrogen containing compounds in the fuel

itself.[57]

The mechanisms determining engine-out NOx emissions for internal com-

bustion engines are excess oxygen and temperature. Diesel engines emit

more NOx because of their lean combustion cycle which creates combus-

tion environments with excess oxygen and higher peak flame temperatures

when compared to (usually) stoichiometric gasoline (petrol) engines.[58,59]

Gasoline engines emit very little if any NO2 but diesel engines can emit

a significant amount of NO2 in absolute terms, and their NO2/NOx ratio

is higher.[58] NO2 formation within a combustion chamber is described by

Equation 1.2:

NO+HO2→NO2 +OH (1.2)

The NO2 conversion back to NO is shown in Equation 1.3:

NO2 +O→NO+O2 (1.3)

In the presence of excess oxygen, the NO2/NOx ratio in a diesel engine is

driven primarily by temperature with lower temperatures generally result-

ing in higher NO2/NOx ratios while higher temperatures result in lower

NO2/NOx ratios.[56] Therefore, the highest NO2/NOx ratios tend to favour

low load situations such as idling and slow driving cycles such as those

encountered in congested traffic conditions.[58] Modern automotive diesel

engines with their very lean operation cycles and (usually) forced induction
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systems such as turbochargers also generally result in higher NO2/NOx ra-

tios when compared to the older, previous generation diesel engines.[60]

1.2.1 Diesel after-treatment technology

Modern diesel after-treatment technology further complicates the NO2/ NOx

ratio emitted out the tailpipe. Diesel oxidation catalysts (DOC) can signif-

icantly alter the ratio by oxidising some NO to NO2.[61] However, the re-

duction of NO2 to NO does occur which is rather unintuitive but DOC are

specifically designed to treat other species such as CO and hydrocarbons.

Diesel particulate filters (DPF) use NO2 as an oxidant to control partic-

ulate/soot emissions because NO2 is a more effective particulate oxidant at

lower temperatures compared to oxygen. To burn particulate in diesel ex-

haust, temperatures greater than ≈250–300◦C are required and such tem-

peratures are not commonly found in diesel exhaust. DPFs are installed

downstream of DOCs to allow the systems to work together and use NO2 as

a particulate oxidant.[62] If DPFs are poorly optimised, not all NO2 is con-

sumed in this process and increases the NO2/NOx ratio emitted from the

tailpipe.

The two principal after treatment technologies to reduce NOx emissions

to comply with the latest Euro 6 emission standards are lean NOx traps

(LNT; also known as NOx adsorbers) and selective catalytic reduction (SCR)

devices. LNTs operate by storing NOx in an adsorbent, commonly barium

oxide (BaO) and periodically switching to a “regeneration” cycle every few

minutes where NOx is reduced to elemental nitrogen under a rich burning

phase which lasts a few seconds.[64] SCR devices also reduce NOx, but with

the use of reducing agents, usually urea sourced from a diesel exhaust fluid,

better known by its commercial name AdBlue.[65]

The NOx reduction phases for both of these after-treatment strategies

operate more rapidly with higher NO2/NOx ratios than lean burn diesel

engines provide directly from the combustion chamber. Therefore, DOCs

usually based on platinum (Pt) are installed upstream to oxidise a fraction
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of NO to NO2 before being exposed to the reduction step.[65,66] In the same

way as particulate control can cause higher tailpipe NO2/NOx ratios due

to poor optimisation, the same issue can result from modern NOx after-

treatment technology resulting in a greater fraction of NO2 being emitted

into the roadside atmosphere which can have air quality consequences.

1.3 Measurement of ambient NOx

The vast majority of instruments used for the measurement of ambient NOx

exploit the chemiluminescence principle.[67,68] Chemiluminescence is de-

fined as the release of electromagnetic radiation (light) from a chemical

reaction. A chemiluminescence NOx gas analyser detects NO concentra-

tion after mixing a gas sample with excess O3 from an on-board generator

within a reaction chamber (Equation 1.4 and Figure 1.6).

NO+O3→NO∗2 +O2

NO∗2→NO2 + hv
(1.4)

The NO + O3 reaction generates excited NO2 molecules which emit photons

which are in turn detected by a photomultiplier tube and the concentration

of NO can be quantified.

NO2 Converter Reaction cell
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Figure 1.6: Conceptual diagram of a chemiluminescent NOx analyser.

This measurement principle does not allow for the direct detection of

NO2 and leads to an unusual situation where despite NO2 being a pollutant
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with legal limits, it is indirectly quantified with the standard instrumenta-

tion. To indirectly detect NO2, a converter is used upstream of the reaction

cell within the analyser (Figure 1.6). Such converters use heated molyb-

denum catalysts which reduce NO2 to NO before being introduced into the

reaction cell and results in a measurement of total NOx. A measurement cy-

cle is used where sample air is directed through the the NO2 converter and

a second cycle (or mode) where the converter is bypassed (Figure 1.6). The

separate and cyclical measurement of NO and NOx allows for calculation of

NO2 (NOx minus NO).

Chemiluminescence NOx analysers can be subjected to significant mea-

surement uncertainty, primarily due to less than 100% NO2 conversion ef-

ficiency and errors resulting from negative and positive interfering species

other than NO and NO2.[69–71] Compounds within the NOy family, includ-

ing nitric acid (HNO3), nitrous acid (HNO2/HONO), and peroxyacetyl ni-

trate (PAN) are positive interferents in chemiluminescence NOx analysers

and therefore are detected as NO2.[68,72] With the exception of HONO, these

interfering species are much more important in rural locations where air

masses have been exposed to chemical processes and ageing when com-

pared to roadside environments.[68] Combustion is a source of HONO how-

ever, and this compound is detected as NO2 by chemiluminescence analy-

sers.[73] The amount of HONO in the roadside atmosphere is poorly quan-

tified, but it is thought to be small and therefore will this interference is

very unlikely to influence results presented in this thesis (especially those

described in Chapter 4). Despite the known issues of chemiluminescence

NOx analysers, they are still widely used and installed, but newer technolo-

gies which are not as sensitive to interferences such as blue light (photolytic)

converters are becoming increasingly popular.[74]
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1.4 Air quality monitoring data

To underpin air quality knowledge and research, continuous monitoring

networks began to commissioned in the mid-twentieth century. At first,

such networks were crude and labour intensive. As technology improved,

the instrumentation and monitoring activities became progressively more

sophisticated and automated. By the 1980s, instrumentation had reached

an appropriate level of maturity for common gaseous pollutants and the

monitoring of outdoor air became a legal requirement in many jurisdictions

for CO, NOx, SO2, and O3. PM monitoring required further instrument

development than these common gases and continues to evolve today due

to the heterogeneous nature of PM and the vast range of sources.[75]

Air quality has grown into a data intensive domain. With most coun-

ties operating air quality monitoring networks to accurately determine con-

centrations of pollutants within their boundaries, the observational record

has continually grown since instruments became available and the amount

of data collected is now vast and continues to increase.[76] In the last ten

years, standardised reporting has been mandatory for a number of federal

and super-governmental bodies. This allows for a common infrastructure

to release and share air quality data. For European Union (EU) member

states and other cooperating countries or areas, the older AirBase system

and the current Air Quality e-Reporting (AQER) systems are publicly ac-

cessible.[77,78]

Despite the wealth of data collected and the efforts required to gain air

quality observations, they are generally only used to generate simple sum-

maries such as annual means to determine compliance to legal limits.[79]

Such analyses do not use these data to their potential and does little to un-

derstand the physical and chemical processes giving rise to elevated con-

centrations nor understand the characteristics of air pollution sources.

Within this “routine” air quality observational record there is potential

for new insights. Conducting careful and novel data analysis on these data
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sets could give insight into what gives rise to poor air quality and how pollu-

tant sources operate. This is the main focus of this thesis, to analyse routine

air quality data to gain additional and novel insight into physical and chem-

ical atmospheric processes. The advantages of leveraging such data is that

there is large amount of it and the measurements available are standardised

allowing for much easier comparisons among multiple locations and times

when compared with data collected during specialised and/or during short

term campaigns.

The atmosphere is an extremely complicated system.[80] The complica-

tion of the atmosphere makes probing the system very challenging in most

situations. In respect to urban air quality, a combination of source activity,

chemistry, and meteorological controls all play a role in determining the

concentrations of air pollutants. These families of processes also interact

with one another leading to a system being a function of competing pro-

cesses, all with differing dominance at different times and states.

Owing to the atmosphere’s complexity, changes in pollutant concentra-

tions are often nuanced and take time to move to a different state. It is

rare to see pollutant concentrations abruptly move from one regime to an-

other.[81] This gives rise to frustration when source activities change because

the effect of the change are often obscured by other atmospheric processes

which results in questions around the efficacy of intervention and manage-

ment efforts. Therefore, questions such as “has a low emission zone im-

proved air quality” can be very difficult to answer.

Questions concerning the behaviour of such source activity can be asked

of routine monitoring data. The challenge of such analyses is how to extract

new and interesting things related to source characteristics from the ob-

servations. Currently, the world is experiencing major growth in all things

data related with the utilisation of data-focused programming languages,

“big data”, and machine learning all becoming important components in a

diverse range of fields and domains.

To further our understanding about why and how poor air quality is
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experienced, more in depth data analysis is required, preferably with com-

mon and open methods and tools. Projects such openair have developed

and have resulted in the release of a set of free, open source, and cross plat-

form tools accessible to anyone with a modern computer.[79,82] The openair

project focuses on giving data users an integrated tool set to help with air

quality data analysis which has significant uptake around the world. ope-

nair has many functions for particular types of data visualisation common

in the atmospheric sciences such as wind roses, bivariate polar plots, time

series plots, and trend plots as well as utilities such as a flexible aggregator

allowing data to be aggregated to different time resolutions.

An important component in any data analysis activity is importing or

loading data.[83] openair contains importing functions which fetch up to

date air quality observations from web servers for many British monitor-

ing locations. An openair companion package named worldmet accesses

NOAA’s Integrated Surface Database (ISD) which imports meteorological

observations from the worldwide ISD network.[84,85] Meteorological obser-

vations are often necessary to have to analyse air quality data in a meaning-

ful way. Other projects such as OpenAQ are becoming prominent because

they act as aggregators for data and offer a framework to enable consistent

interaction with a heterogeneous collection of data sources.[86]

The provision and release of data to the public is not the only component

to allow for usability with file formats and file structures also requiring

substantial thought. The modern system used for European air quality data

transmission (AQER) uses Extensible Markup Language (XML)[87] as the

file format. XML is a common format for data transmission across the web,

but in the case of AQER the schema complication seems unnecessary with

deeply nested data structures being encountered. Data analysis activities

generally require two dimensional tabular objects which the nested XML

elements must be formatted into before analysis. Programmatically, this

can pose a substantial challenge and would stop many data users being able

to leverage these data. To address this issue in part, the smonitor Europe
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database was developed (Chapter 3) to allow the research questions to be

answered.

1.5 What this research will contribute

This thesis will present a number of linked analyses with the overarching

theme of extracting new and novel insights from routine air quality moni-

toring data. New techniques were researched, applied, and the tools, gener-

ally software, were distributed to others.

1.5.1 Objectives

The primary objective of this thesis is to extract new and novel information

from routine ambient air quality monitoring data. Additional information

to aid understanding of emission source behaviour and atmospheric phys-

ical and chemical processes on transportation activities is the main area of

focus with the ultimate aim to help with effective air quality management.

The tools which result from these developments are developed in a manner

which are distributable to other data users. To demonstrate the develop-

ments, four separate, but related case studies will be presented. These de-

velopments are (i) enhancements to a particular type of data visualisation

called bivariate polar plots with weighted pair-wise statistics to aid source

apportionment, (ii) the development of an air quality monitoring database

with a formal data model called smonitor Europe to enable a scalable and

convenient way to manage the European air quality observations and their

metadata, (iii) a trend analysis of European primary (directly emitted) ve-

hicular NO2 and the implications for future compliance to the European

ambient NO2 limits, and (iv) the presentation of a meteorological normali-

sation framework to remove the variability of pollutant concentrations due

to changes in weather in an air quality time series. The meteorological nor-

malisation framework is presented in two components because the two case

studies have different objectives. The first component is a formal trend anal-
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ysis for PM10 concentrations across Switzerland and the second component

is the exploration of interventions expected to impact pollutant concentra-

tions in two locations in the United Kingdom. As a side effect of the mete-

orological normalisation case studies, the rmweather R package which ap-

plies the technique is introduced. All case studies have the common theme

of investigating source characteristics relating to transportation activities

and extracting additional information from routine air quality monitoring

data.

1.5.2 Bivariate polar plots with pair-wise statistics

Bivariate polar plots are a popular technique in air quality data analysis

used for source apportionment.[88,89] In their most common and simplest

form, pollutant concentrations are aggregated into wind speed and wind

direction bins and are displayed on polar coordinates. Because of the patch-

iness of wind speed and directions experienced by most monitoring sites,

the surface is usually modelled to give some amount of interpolation which

results in a more aesthetically pleasing plot, for example, Figure 1.7. Al-

though it is intuitive to plot wind speed on the radial scale (moving from

the centre point outwards), any variable can be used and the use of other

surface meteorological variables such as ambient temperature can be very

effective at illuminating source processes.[79]

1.5.2.1 Pair-wise statistics

An extension to bivariate polar plots involves the use of pair-wise statistics.

Pair-wise statistics is a broad term for a statistical value which represents

two quantities in a singular fashion. Pearson correlation coefficients (r) and

slopes from simple least squared regression models (usually denoted as m

or β) are examples of pair-wise statistics. High levels of correlation between

two air pollutants can often give insight to the pollutants’ sources. For ex-

ample, metals such as vanadium (V) and nickel (Ni) are emitted together
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Figure 1.7: A bivariate polar plot displaying mean SO2 concentrations be-

tween 2001 and 2010 at Dover Landon Cliff. South of the monitoring site is

the Port of Dover complex, an area with significant SO2 emissions resulting

from the combustion of marine fuels.
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in certain ratios when certain types of heavy fuel oils are burnt and show

high levels of correlation[90–92] and the correlation between different par-

ticulate matter (PM) size fractions can indicate emission sources, especially

when investigating the division between natural and anthropogenic pro-

cesses.[93,94]

Perhaps more useful than correlation for source apportionment is the

slope between two pollutants. Using the slope between two pollutants or

compounds is a very common analysis procedure used in source appoint-

ment,[95] but when used with a bivariate polar plot, the sources can be fur-

ther disaggregated by wind direction which is a powerful technique when

conducting exploratory data analysis (EDA).

Chapter 2 presents an analysis using these tools. The enhancements to

the polarPlot function in openair has been implemented and has been

available in the package since November 2016†. Since publication, the ap-

proach has been used and reported by others.[96]

1.5.3 Data

For productive data analysis activities, data users require performant access

to standardised data. If this process is done well, the standardised data un-

derpins high quality analysis activities and complex questions can be asked

of the data without having to repeatedly handle data formatting issues due

to a common framework imposed on the data. To this end, the smonitor Eu-

rope database was designed and commissioned to aid much of the research

presented in this thesis.[97,98]

smonitor Europe primarily contains European air quality time series

data and a collection metadata units to support the observations in a useful

way. The smonitor relational data model was developed from the ground

up with an emphasis on usability.[97] The primary development focus was

to ensure data can be queried from the database as quickly and as easily as

possible. Other options do exist, most notably the 52◦North implementa-

†openair git commit 64db36d
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tion of a Sensor Observation Service (SOS), but this was not used due to its

unneeded complication for this application.[99–101] smonitor also contains

other components to allow for easy updating, invalidating, and the calcula-

tion of aggregations, but in the case of smonitor Europe, these are not used

because it only serves a data storage function. The database technology used

is PostgreSQL (version 9.5).[102] The smonitor data model has proven to be

highly scalable with the current disk size being 413 Gb containing 12800

sites† and 4.1×109 observations while still maintaining good performance.

The primary data sources for smonitor Europe are the data repositories

maintained by the European Environment Agency (EEA). For data between

1969 and 2012 (inclusive), the AirBase repository was used.[77,103] For the

2013 and beyond reporting years, a new data reporting system called Air

Quality e-Reporting (AQER) for the compliance to the 2004/107/EC and

2008/50/EC air quality directives was implemented and was used.[78] The

AirBase data are supplied as formatted text files which were easy to ac-

commodate into the smonitor framework. However, the AQER was a far

greater challenge because the self describing XML file format is used which

required far more programmatic development to parse and format these

data files. The XML documents submitted consist of separate “observa-

tional units” which requires the joining of many documents to one another

to make the files usable. Additionally, because AQER is a relatively new sys-

tem, many member states do this process poorly and errors are commonly

encountered.

Since the initial development of smonitor Europe, the EEA have ad-

dressed some of these issues and now have an interactive data portal to

access member states’ observations.[104] There is however a significant time

lag from when documents are submitted to when they become available and

the full data sets are not reported which results in using the submitted XML

still being the best option to get these data currently.

The final primary data source used is NOAA’s Integrated Surface Database

†smonitor Europe interactive site map

21

http://skgrange.github.io/www/maps/smonitor_europe_sites/smonitor_europe_sites.html


Chapter 1. Introduction

(ISD).[84] Unlike the EEA’s data repositories, the ISD is not concerned with

air quality observations, rather surface meteorological/weather data. For

many air quality analyses, high quality metrological data is necessary too.

The ISD’s scope is worldwide so for sites within a rough European boundary,

data were retrieved and inserted into smonitor Europe. An additional 100

monitoring sites have been inserted into smonitor Europe from other data

sources including the Centre for Environmental Data Analysis (CEDA),[105]

EBAS,[106] and the World Data Centre for Greenhouse Gases (WDCGG).[107]

This development allows easy access to European time series with the same

functions and framework enabling high quality data analysis to occur with-

out repeatably dealing with tedious data formatting issues. smonitor Eu-

rope has also seen use by others in their research, for example Hu et al.

[108]. Chapter 3 presents a technical note on smonitor Europe outlining

the technical development choices and how the database is structured and

used.

1.5.4 European vehicular primary NO2 trends

Roadside environments in Europe remain polluted with NOx and many

EU member states are non-compliant to the legal ambient air quality lim-

its.[37,109] Many European urban areas have experienced a somewhat counter-

intuitive situation where NOx concentrations have generally decreased while

NO2, a component of NOx, has not decreased at the same rate, and in some

situations has increased (Figure 1.8).[60,110–112] The vehicular emission stan-

dards in Europe exclusively prescribe limits for NOx with no regard to

NOx’s components.[113] However, air quality standards only exist for NO2

and highlights a disconnect between vehicle emission control and local air

quality management.

This disconnect has given rise to a situation where vehicular NOx emis-

sions have decreased, but NO2 emissions have not been reduced at the same

rate, i.e. the amount of directly emitted (usually called “primary”) NO2 has

changed.[114–116] This has been attributed to changes in the composition of
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Figure 1.8: Deseasonalised NOx and NO2 trends between 2000 and 2016 for

four European cities experiencing different climates. NO2 has constantly

reduced at a slower rate than NOx (and in the case of Berlin, has increased),

indicating composition changes of total NOx throughout Europe.
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the European passenger vehicle fleet. The European passenger vehicle fleet

has undergone significant dieselisation since ≈1990 and critically, the con-

trol of NOx emissions for diesel engines is much more difficult compared

to petrol powered vehicles.[62] The main reasons for this are that diesel en-

gines commonly use lean air-fuel ratio combustion conditions and the in-

ability for three-way catalysts to operate in oxygen rich exhaust environ-

ments. Diesel vehicles equipped with diesel particulate filters (DPF) for PM

emission control often use NO2 as an oxidant for soot removal and some

untransformed NO2 can also be directly emitted.[62,117,118]

The issue around changes in primary NO2 emissions is a subtle one and

has only been reported sparingly.[119] Despite this, there is evidence that

the importance of primary NO2 emissions on roadside NO2 concentrations

have decreased since ≈2010.[62] This has been explained by the lower emis-

sion limits imposed by the newer Euro standards, degradation of diesel ox-

idation catalysts (DOC) and perhaps DPF, and a process so-called “cata-

lyst thrifting” where manufacturers and original equipment manufacturers

(OEMs) have reduced the amount of platinum group metals within the cat-

alyst washcoat due to concerns regarding costs.

Chapter 4 outlines a pan-European trend analysis of primary NO2 be-

tween 1990 and 2016 using smonitor Europe (Section 1.5.3 and Chapter 3)

as a data source. Since publication, other studies have confirmed that the

trends presented in our European scale analysis are constant in their local

environments.[120,121]

1.5.5 Robust trend and intervention exploration

Trend analysis and the exploration of interventions using air quality data

are very common procedures.[122] Unfortunately, a myriad of processes re-

sulting from the complexity of the atmosphere can exacerbate or obscure

changes in emission sources when only concentration values are used for

these types of analyses.[123] For trend analysis and intervention exploration

to be conducted robustly, changes in meteorology/weather should be con-
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trolled or accounted for over the period of analysis.[124–128]

To address this, a framework to control for meteorology in an air quality

time series called meteorological normalisation was developed and the func-

tionality demonstrated. The chief philosophy of meteorological normali-

sation is to reduce variation of pollutant concentrations by statistical mod-

elling. To achieve this, random forest,[129–131] an ensemble decision tree ma-

chine learning technique is used to build a predictive model and it is used

repeatably to predict a sampled and simulated observational record which

result in a time series representing concentrations in “average weather”.

This prepared time series can then be exposed to formal trend analysis

and/or other EDA techniques.

Random forest was the algorithm chosen for this procedure because of

its useful attributes: it is fast to train and predict, is conceptually simple,

it is resistant to overfitting, is not extremely sensitive to its hyperparame-

ters, is non-parametric, can handle interaction and collinearity among ex-

planatory variables, and it is not a black box technique which allows the

learning process to be evaluated.[132–138] These advantages coalesce to form

a technique which can be used for a wind range of inputs without specialist

machine learning or statistical modelling knowledge, hence, functions can

be developed to be user friendly, flexible, and stable. There were three com-

ponents to this research (i), trend analysis of PM10 data across Switzerland,

(ii) an analysis of known air quality interventions related to transportation

activities and their impact on air quality, and (iii) the development and re-

lease of a tool to conduct analyses such as these in the form of an R package

called rmweather.

1.5.5.1 Swiss PM10

The Swiss federal air quality monitoring network (NABEL) has a very high

quality observational record of daily PM10 collected by gravimetric sam-

pling techniques.[139,140] Switzerland is not within the EU and therefore has

different air quality management plans and regulations when compared to
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other European countries, however, the differences are generally subtle.[141]

To test the effectiveness of local PM emission control and wider European

reductions of PM precursors, 31 PM10 sites were analysed with the mete-

orological normalisation technique across Switzerland with urban traffic,

urban background, suburban, rural motorway, rural, and rural mountain

site type classifications. After the meteorological normalisation technique

had been applied, a formal trend analysis was conducted.

In all but two Swiss monitoring sites, PM10 concentrations were found to

be significantly decreasing between 1997 and 2016 at rates between -0.09

and -1.16µgm−3 year−1. Suburban monitoring sites experienced less of a

decrease than expected which was speculated to be a result of rapid urban-

isation in many Swiss locations with many suburban monitoring sites be-

coming “more urban” in their characteristics during the period of analysis.

The legibility of the random forest models allowed physical and chemical

atmospheric processes to be illuminated. Most interesting of which was

that high temperatures, high boundary layer heights can still result in ele-

vated PM10 concentrations due to high rates of secondary generation of PM.

Chapter 5 describes and presents this research. Like other research projects

presented in this thesis, smonitor Europe was used as the data source (Sec-

tion 1.5.3 and Chapter 3).

1.5.5.2 Intervention exploration

When interventions or management activities are conducted in an attempt

to improve air quality, it is very common to use ambient air quality data

to attempt to find and quantify the effect of the interventions. However,

effects can be difficult to observe in time series resulting from the atmo-

sphere’s complexity and where changes usually occur progressively and in

a nuanced fashion. This often leads to ambiguous conclusions on the effi-

cacy of air quality management.[28,29,142] The meteorological normalisation

technique offers a tool to reduce variability in an air quality time series so

changes in concentrations and therefore emissions can be more easily ex-
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posed.

In Chapter 6, two well known interventions which were expected to re-

sult in improvements to air quality were explored in ambient air quality

data. The first intervention was the progressive reductions in the allowed

sulfur content in marine fuels and its effect on Dover’s (a port city in the

South East of England) SO2’s monitoring data.[143] In August 2006, reg-

ulations were introduced for EU ports which applied a 1.5% sulfur con-

tent limit for marine fuel oil and in 2010, another limit was imposed of

1% for berthed vessels.[144] The estimated change in sulfur fuel content

for 2006 was 44%[145] and the SO2 time series showed a 45% change in

pre- and post-intervention concentrations after the meteorological normal-

isation technique had been applied. This near exact representation of the

intervention was reflected because SO2 was sourced almost exclusively from

the port’s activities for the two monitoring sites investigated.

London is one of Europe’s largest cities and has a significant roadside

NOx and NO2 issue.[26] Some of London’s roadside monitoring sites report

the highest NO2 concentrations in Europe and in some cases being non-

compliant to the EU’s hourly NO2 standards within the first week of the

year.[146–149] To combat traffic congestion, a number of transport interven-

tions have been applied in London such as the Inner London Congestion

Charge Zone (CCZ) in 2003, the Greater London Low Emission Zone (in

2008 and made more stringent in 2012), and the T-Charge (2017) with other

management processes planned.[31] These events were also expected to im-

prove London’s roadside NO2 concentrations due to reducing the volume of

traffic and the incentivisation of modern vehicles.

London Marylebone Road is a monitoring site located on the A501 road

which marks the northern boundary if the CCZ. London Marylebone Road

is a prominent site due to the long monitoring record, a number of spe-

cialised pollutants are monitored, generally high pollutant concentrations,

and it has a complicated irregular street canyon siting.[150–152]

When London Marylebone Road’s NOx and NO2 time series was exposed
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to the meteorological normalisation technique, it was very clear that NOx

and NO2 were not behaving in the same way. Normalised NOx concentra-

tions, and therefore emissions have remained static since the implementa-

tion of the CCZ in 2003 to the end of the analysis period (2016). These

constant NOx emissions were present even with the progressively stringent

vehicular emission control being applied across Europe during the period

of analysis. However, in the case of NO2 emissions, they increased when the

CCZ was introduced.

Coinciding with the introduction of the CCZ, was the retrofitting of

many of the buses which service the local routes with continuously regen-

erating diesel particulate filters (CRDPF or also known by their commercial

name CRT filters).[153] These CRDPF devices oxidised NO to NO2 within

the exhaust stream for particulate matter emission control. However, these

devices did not reduce all NO2 after being oxidised resulting in NO2 be-

ing directly emitted into the roadside atmosphere, but without altering the

amount of total NOx emissions. When these retrofitted Euro III buses were

progressively replaced with fleets of Euro IV and V vehicles, the NO2 con-

centrations reduced and at the end of 2016, NO2 emissions were near pre-

CCZ levels.

These observations link the European analysis of primary NO2 reported

in Section 1.5.4 and Chapter 4. Although the particular processes respon-

sible for the NO2 emissions observed in London Marylebone Road are un-

likely to be the same for other European urban areas, there is consistency

between the different analyses. “Zooming” into the problem documented

at a European scale to an individual monitoring site demonstrates impor-

tant implications for air quality management with only the use of routine

monitoring data and applications of novel data analysis tools.

1.5.5.3 rmweather R package

The meteorological normalisation technique requires a large amount of pro-

gramming logic and careful treatment of input data sets to be reliable and
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stable. To ensure the meteorological normalisation tools could be distributed,

accessed by, and contributed to by other data users, the rmweather R pack-

age[154] was developed alongside the Swiss PM10 trend (Chapter 5) and

British intervention analyses (Chapter 6). rmweather was first accepted

onto CRAN (The Comprehensive R Archive Network) in May 2018,[155] R’s

official code repository which demonstrates the development has met rig-

orous quality control and can be installed by any R user easily with in-

stall.packages("rmweather"). rmweather depends on other user con-

tributed packages, most notably ranger (short for RANdom forest GEneRa-

tor) to gain access to a performant C++, multithreaded, and cross platform

random forest algorithm.[156] The development of rmweather fits within

into R’s modern “tidy data” analysis framework.[83,157]

1.6 Structure of thesis

This thesis uses four articles as stand alone chapters and the details are pre-

sented in the thesis’s declaration. The contents of the chapters are faithful

to the accepted and published articles, however minor formatting changes

have been made to section headings, figures and captions, citations and ref-

erence styles, and the inclusion of supplementary material for the sake of

completeness and consistency. Every chapter contains its own bibliography

to ensure the chapters form coherent units without the need for additional

document sections. There are minor inconsistencies among the different

chapters regarding counts of observations and sites used for the different

analyses. This has arisen due to the nature of working with time series data

where the data available continuously grows and the analyses being con-

ducted at different points during this growth.

Chapter 2 presents an R package called polarplotr.[158] Soon after pub-

lication, this package was made redundant because the functionality was

incorporated into the established openair package. Similarly, Chapter 5

references an R package called normalweatherr which was developed to
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perform the analysis presented.[159] The normalweatherr package can be

considered the Mk I version of the published rmweather package and al-

though is still accessible, it has been deprecated in favour of rmweather.
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Chapter 2

Enhancements to bivariate polar

plots

This work was originally published in Atmospheric Environment on 14 Septem-

ber, 2016.†

2.1 Abstract

This paper outlines the development of enhanced bivariate polar plots that

allow the concentrations of two pollutants to be compared using pair-wise

statistics for exploring the sources of atmospheric pollutants. The new

method combines bivariate polar plots, which provide source characteris-

tic information, with pair-wise statistics that provide information on how

two pollutants are related to one another. The pair-wise statistics imple-

mented include weighted Pearson correlation and slope from two linear

regression methods. The development uses a Gaussian kernel to locally

weight the statistical calculations on a wind speed-direction surface to-

gether with variable-scaling. Example applications of the enhanced polar

plots are presented by using routine air quality data for two monitoring

sites in London, United Kingdom for a single year (2013). The London ex-

amples demonstrate that the combination of bivariate polar plots, correla-

†https://doi.org/10.1016/j.atmosenv.2016.09.016
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tion, and regression techniques can offer considerable insight into air pollu-

tion source characteristics, which would be missed if only scatter plots and

mean polar plots were used for analysis. Specifically, using correlation and

slopes as pair-wise statistics, long-range transport processes were isolated

and black carbon (BC) contributions to PM2.5 for a kerbside monitoring lo-

cation were quantified. Wider applications and future advancements are

also discussed.

2.2 Introduction

Determining how variables are related to one-another is a key component

of data analysis and statistics. Within the atmospheric sciences, exploring

the relationships between chemical constituents and meteorological param-

eters is extremely common and the techniques for comparing, correlating,

and determining relationships are very diverse. Analysis involving the cor-

relation of two pollutants can often be insightful because it can lead to the

identification of emission source characteristics, as can investigation into

ratios or slopes from regression analysis between two pollutants.[1] Within

atmospheric disciplines, data analysis can also benefit from being able to

integrate wind behaviour.[2] The use of wind speed and direction can be in-

formative because it often leads to the suggestion of source locations and

source characteristics, such as height of emission above the surface.[3,4]

Exploration of relationships among variables can be achieved with many

different methods that can range from the simple to the numerically com-

plex. However, a technique that is used very widely is the simple x-y scatter

plot.[5] Scatter plots are useful because they allow for the visualisation of

variables and model fitting can be evaluated quickly and simply with visual

feedback. Regression techniques, most commonly ordinary least-squared

regression, are often employed to formally quantify how x and y are re-

lated. The use of least-squared regression is however technically question-

able in many cases, and despite a large collection of alternative techniques
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available, its use remains a persistent feature of air quality data analysis.

The use of simple scatter plots is usually carried out with entire datasets

or with simple or superficial filtering and therefore have potential to hide

some discrete relationships which are present in the global data if they do

not conform to the mean rate of change.[6]

Slopes from regression models relating two pollutants to one another

are often used in applications that use monitoring data such as emission

inventories and pollutant models. When measurements are not available,

slopes for the unknown pollutants are often substituted from the literature,

short-term monitoring, or data collected at a near-by location. However, the

use of simple and static ratios is likely to be deficient in many situations

because they can be expected to be highly dependent on source and time.[7]

To differentiate sources in air quality data, techniques other than simple

scatter plots often need to be used.

A common method for source characterisation is the use of bivariate po-

lar plots.[4,8–10] Polar plots are typically used to visualise and explore mean

pollutant concentrations for single species based on wind speed and wind

direction. In the atmospheric sciences, it is intuitive to plot wind direction

(from 0 to 360◦ clockwise from north) on the angular “axis” and wind speed

to be used for the radial scale. Aggregation functions other than the arith-

metic mean can be used and different variables apart from wind speed can

be used for the radial scale. For example, atmospheric temperature or sta-

bility are often useful variables to use. The main attribute for the choice of

radial-axis variable is that it helps to differentiate between different source

characteristics in some way due to different source types responding differ-

ently to values of the angular scale. Despite the range of potential options,

wind speed is widely used to help discriminate different source types and

is particularly useful when used together with wind direction and the con-

centration of a species.[11,12]

This type of polar plot analysis has, in part, become wide-spread due

to the open source polarPlot function available in the openair R pack-
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age.[13,14] Other similar techniques such as non-parametric wind regression

have also shown their ability to determine source locations for various pol-

lutants by using polar plots.[3,15,16]

2.2.1 Objectives

Combining correlation and regression techniques with those that provide

information on source apportionment potentially offers considerably more

insight into air pollution sources. The use of wind behaviour has the poten-

tial to evaluate correlation and slopes based on source locations and there-

fore different processes. It is common for emission inventories to use ratios

for pollutants when they are not measured or when high quality data is

lacking. It is hypothesised that the combination of correlation, regression,

and polar plots could lead to significant additions to data analysis by un-

derstanding how different pollutants are related to one another depending

on source.

In this paper, the combination of bivariate polar plots approaches with

correlation and regression techniques is considered for comparing two pol-

lutants. This combination of methods is then used to aid the interpretation

of air quality data. The primary objectives of this paper are as follows. First,

to develop methods to combine bivariate polar plot techniques with corre-

lation and a range of linear regression approaches. Second, apply the meth-

ods to commonly available measurements of air pollutants to demonstrate

the new insights made possible by these techniques. Third, to consider the

wider potential uses of the approaches in air quality science. The software

developed has been released with an open source licence and can be found

in the polarplotr R package.[17]
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2.3 Methods

2.3.1 Function development

2.3.1.1 Kernel weighting and scaling

The plotting mechanism for polar plots when using wind direction as the

polar axis generally involves first aggregating a time-series into wind speed

and direction intervals (or bins). The specific intervals and numbers of the

bins can be altered for a particular application, but all combinations of the

two types of bins are summarised by an aggregation function such as the

mean or maximum. In the openair polarPlot function, a smoothed sur-

face is fitted to these binned summaries using a generalised additive model

(GAM) to create a continuous surface which can be plotted with polar co-

ordinates. Further details of the approach can be found in Carslaw and

Beevers [9] and Uria-Tellaetxe and Carslaw [10].

When applying a simple aggregation function, the number of observa-

tions in a time-series which compose a discrete wind speed and direction

bin is not critical for the calculation or the visual presentation of the surface,

except at the edges of the plot where there are (usually) few observations.

However, when calculating correlations or relationships between two vari-

ables, it becomes important to consider the minimal number of observations

which would create a valid summary. If there are too few observations for

a particular bin and a statistic such as the correlation or slope is calculated

between a pair of variables, it is likely that unreliable summaries will be

generated due to large variations between neighbouring bins. To overcome

this limitation, for each wind speed and direction bin, the entire time-series

was evaluated but observations were weighted by their proximity to a wind

speed and direction bin i.e., wind speed or direction values further from the

bin centre are weighted less than those closer to the centre of the bin. Like

previous works such as Henry et al. [3] and Henry et al. [15], a weighting

kernel was used to create weighting variables.
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The weighting kernel used was the Gaussian kernel (Equation 2.1). The

Gaussian kernel has infinite tails and therefore all input bins are given a

non-zero weighting, but observations furthest from the bin being analysed

have very small weights associated with them. The Gaussian kernel was

used for weighting both wind speed and direction because it is considered

more utilitarian than many other kernels such as the Epanechnikov ker-

nel which have finite bounds and therefore at times, will give observations

weights of zero which can cause ambiguity issues.

K(u) =
1
√

2π
e−

1
2u

2
(2.1)

To ensure the weighing variable was appropriate for the particular wind

speed and direction application, the input wind speed and direction vari-

ables required scaling. The scaling process used was simple; the wind vari-

ables were multiplied by an integer to increase their bounds and therefore

influence within the weighting kernel. The variables were also normalised

to ensure that all observations had values between zero and one. This nor-

malisation step is not strictly necessary when the Gaussian kernel is used,

but is needed for some other kernels and ensures the output of process al-

ways had a known range.

If the weighting operated too locally, the inherently variable nature of

wind behaviour was represented in the plotted surface as noise. Conversely,

if weighting was extended too far, isolated areas of ‘real’ peaks were ob-

scured due to over-smoothing. It is difficult to determine an optimal set

of scaling values for wind speed and direction for every application, there-

fore a series of heuristic simulations were performed to determine the ideal

integer scaling values.

It was found that within a central range the final output was rather in-

sensitive to the scaling values. One reason for this relative insensitivity will

be due to the inherent random variability of concentrations as a function of

either wind speed or wind direction due to atmospheric turbulence. This

indicates that within a central band of values, the scaling process is not par-
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ticularly influential. It is possible for other applications that these scaling

magnitudes will have to be tuned and therefore the defaults can be altered

by the user. An example of the scaling defaults used in the polarPlot func-

tion are shown in Figure 2.1. Figure 2.1 allows visualisation of the Gaussian

weighting kernel for both the wind speed and direction variables as well as

the extent of the default scaling procedure for a single bin for 4.8ms−1 and

230 degrees.
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Figure 2.1: Three-dimensional surface of weights for a single wind speed

and direction bin (4.8ms−1 and 230 degrees respectively). The surface is

normalised and therefore intensity units are not informative.

After the appropriate weights have been calculated, the calculation of

any pair-wise statistic that allows for weighting could be calculated between

two pollutants. The first methods implemented were the Pearson correla-

tion coefficient and two linear regression methods. Using these two groups

of techniques allowed for the investigation of the correlation between two

pollutants and the investigation of the slope between pollutants, but with

the inclusion of wind speed and direction.

2.3.1.2 Correlation

Correlation is a measure of how well two (or more) variables are associated

to one-another. Correlation is a useful measure for air pollutants because

pollutants which demonstrate high levels of correlation are often emitted
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from the same source, or undergo similar chemical and physical transfor-

mations in the atmosphere. For use in polar plots, the correlation statistic

implemented was the weighted Pearson correlation coefficient (r).[18,19]

2.3.1.3 Regression

Regression is a very common statistical technique and is often used to de-

scribe and investigate relationships among variables.[20] Regression is a large

topic and only the linear regression techniques considered for the polar

plot function will be discussed. Of particular interest is the estimate of the

slope from a linear regression between two species. The slope will often re-

veal useful information concerning source characteristics, for example, the

amount of PM10 that is in the fine fraction (PM2.5), or the ratios of combus-

tion products such as CO and NOx which can be compared with emission

inventory estimates.

The first regression technique implemented was weighted least-squares

linear regression. This is very similar to ordinary least-squares linear re-

gression, but the weighted sum of squares are minimised which has the

effect of creating a model which preferentially represents a local area of the

input data rather than the entire set. Because of the common presence of

outliers in air pollution time-series measurements, other regression meth-

ods such as robust regression can offer advantages over the least-squares

regression for use in the enhanced polar plots.

Robust regression extends least-squares regression techniques in attempt-

ing to better handle situations where the parametric assumptions of the

least-squares regression method are violated. These violations are usually

involved with the presence of outliers and heteroscedasticity (non-equal

variances). Primarily, the power of robust regression lies in the resistance

to the influence of outliers. Robust regression achieves this by substituting

the least-squares estimator for a more robust estimator.[21] There are many

types of robust estimators, but they all operate by first classing observations

as outliers or not-outliers and then reducing the influence of the outliers on
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the regression model.[22] The procedures for calculating robust estimators

are iterative and more computationally demanding when compared to the

calculation of the least-squares estimator. This is noticeable to a user of the

polarPlot function because additional run-time is needed when the robust

regression techniques are used. The robust regression functions were sup-

plied by the MASS package and the estimator used was the M-estimator

because this estimator allows the use of weights.[23]

2.3.2 Data

Data analysis was conducted on hourly air quality monitoring data for two

sites included in the United Kingdom’s Automatic Urban and Rural Net-

work (AURN). The two sites were London Marylebone Road and London

North Kensington (Table 2.1 and Figure 2.2). Monitoring data for 2013

were downloaded using the openair importAURN function. Both monitor-

ing sites measure a large complement of chemical and particulate species

and achieve high data capture rates. The particulate matter measurements

were focused on for polar plot analysis and PM10 and PM2.5 at London

Marylebone Road and London North Kensington are monitored by TEOM-

FDMS (Tapered Element Oscillating Microbalance-Filter Dynamics Mea-

surement System) instruments. This enhanced method is not as suscep-

tible to removing volatile and semi-volatile components in the monitored

air-stream as standard heated TEOMs.[24,25] Hourly black carbon (BC) data

were also used and these data were sourced directly from the AURN mon-

itoring database after personal communication with Ricardo Energy & En-

vironment. More detailed site and instrument details can be found see at

https://uk-air.defra.gov.uk/.

Meteorological data for 2013 from London Heathrow (a major airport) in

western London were used to represent regional conditions for the two air

quality monitoring sites. Hourly data from the London Heathrow site were

obtained from the NOAA Integrated Surface Database (ISD) and access was

gained with the worldmet R package.[26,27] The data from Heathrow Airport
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Table 2.1: Details of locations of air quality and meteorological monitoring

sites in London providing data for this study.
Site name Latitude Longitude Elevation Site type

London North Kensington 51.5211 -0.2134 5 Urban background

London Marylebone Road 51.5225 -0.1546 35 Urban traffic

London Heathrow 51.4780 -0.4610 25.3 Meteorological only

London North Kensington

London Marylebone Road

London Heathrow

0km 5km 10km

Figure 2.2: Locations of air quality and meteorological monitoring sites in

London providing data for this study. The map’s internal polygons show

London’s Boroughs, the City of London, and the River Thames.

were used in preference to other local surface measurements, which tend to

be strongly influenced by local buildings.

2.4 Results & discussion

2.4.1 London North Kensington PM10 and PM2.5

London North Kensington is an urban background site (Table 2.1 and Fig-

ure 2.2) and it is expected that a wide range of sources will contribute par-

ticle concentrations, including both local (London) and long-range (conti-

61



Chapter 2. Enhancements to bivariate polar plots

PM2.5 = PM10 ⋅ 0.87 − 3.7,  R2 = 0.89

London North Kensington
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Figure 2.3: Simple x-y scatter plot of PM2.5 and PM10 for 2013 at London

North Kensington. Fitted line and equation represents the ordinary least-

squared regression model.

nental Europe) sources. A scatter plot of PM2.5 and PM10 shows that the

two particle size fractions showed a good degree of correlation during 2013

(Figure 2.3). From Figure 2.3 alone there is no obvious indication that differ-

ent source types contribute to the overall scatter of points. The mean ratio

between PM2.5 and PM10 was 0.87, as determined by the ordinary least-

squares linear regression model and it explained 89% of the variation (Fig-

ure 2.3).

The usual use of polar plots, by calculating the mean concentration for

wind speed and directions bins, show that the there were multiple sources

of PM10 and PM2.5 at London North Kensington in 2013 (Figure 2.4a and

Figure 2.4b). Figure 2.4 suggests that locally-sourced particulate matter

were present, as potentially indicated by the elevated concentrations at low

wind speeds, but the highest concentrations were experienced with easterly

winds when wind speeds were high (≈ 10ms−1). By contrast, NOx, a pol-
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lutant which is dominated by local (London) emissions, showed that only

when wind speeds were low, were elevated concentrations experienced due

to a lack of pollutant dispersion (Figure 2.4c). However, when the PM2.5

and PM10 data are plotted with a correlation statistic binned by wind speed

and direction, the situation is more revealing than the scatter plot and mean

polar plots would suggest alone (Figure 2.5).
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Figure 2.4: Polar plots of mean concentrations of PM10 (a), PM2.5 (b), and

NOx (c) for 2013 at London North Kensington.

The correlation polar plot of PM2.5 and PM10 demonstrates that during

easterly winds, the London North Kensington PM2.5 and PM10 concentra-

tions were very highly correlated with r ≈ 0.9 (Figure 2.5). The zone of high

correlation is interpreted to be due to long-range transport which is char-

acterised by the majority of PM10 being made up of PM2.5. In London, and

most areas of the UK, long-range transport is most important under east-

erly conditions where air-masses originate from continental Europe.[28–30]

Under these conditions the concentrations of fine particulate sulphate and

nitrate can dominate absolute particle concentrations. The surface of Fig-

ure 2.5 is also smooth and covers a wide range of wind speed and directions

which indicates a general, and large-scale process which is being appropri-

ately smoothed and represented by the weighting procedure (Section 2.3.1).

Other monitoring locations, including London Marylebone Road that also

measure PM2.5 and PM10 showed similar easterly behaviour (not shown).

Previous studies such as Harrison et al. [11], Liu and Harrison [30],

Querol et al. [31], and Charron and Harrison [32] have reported high PM2.5–
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Figure 2.5: Polar plot of the correlation between PM2.5 and PM10 for 2013

at London North Kensington. Grey areas indicate when fewer than two ob-

servations were present and were treated as missing due to the low number

of samples.

PM10 ratios for European sourced particulate matter in the UK and the cor-

relation presented in Figure 2.5 is consistent with these past studies which

reported high PM2.5–PM10 ratios. When HYSPLIT[33] back-trajectories for

2013 were clustered and joined to coincident pollutant observations, the

cluster representing air-masses from Europe also had the highest PM2.5–

PM10 ratio of all clusters, consistent with the conclusions inferred from Fig-

ure 2.5.

The polar plot of the slope between PM2.5 and PM10 at London North

Kensington demonstrates a similar surface pattern as the correlation po-

lar plot (Figure 2.6). The long-range sourced particulate from the east was

indeed primarily composed of PM2.5, as shown by a PM2.5 to PM10 slope

of about 90%. For other wind directions, coarser particulate matter was

a more important contributor to PM10 and the PM2.5 contributions drop

to approximately 30% (Figure 2.6). This reduction of PM2.5 to PM10 slope

was most likely caused the local process of mechanical resuspension. Even
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though the scatter plot of PM2.5 and PM10 (Figure 2.3) does not indicate dif-

ferent source influences, it is clear from Figure 2.6 in particular that there

are at least two major source types affecting particulate concentrations at

the London North Kensington site. It should be noted that a careful wind

speed, wind direction subset of the data shown in Figure 2.3 does confirm

the behaviour seen in Figure 2.6 with a much lower PM2.5 to PM10 slope for

south-westerly winds above 5ms−1.
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Figure 2.6: Polar plot of the robust slope between PM2.5 and PM10 for 2013

at London North Kensington. Grey areas indicate when fewer than two ob-

servations were present and were treated as missing due to the low number

of samples.

2.4.2 London Marylebone PM2.5 and BC

Unlike PM10 and PM2.5 at London North Kensington, the London Maryle-

bone Road BC and PM2.5 correlation was poor in 2013, as shown in Fig-

ure 2.7. Although BC exists primarily within the fine particle fraction[34,35]

and would be expected to be an important component of PM2.5 at a traffic-

dominated location like London Marylebone Road, PM2.5 also has a diverse
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BC = PM2.5 ⋅ 0.21 + 2.6,  R2 = 0.24
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Figure 2.7: Simple x-y scatter plot of BC and PM2.5 for 2013 at London

Marylebone Road. Fitted line and equation represents the ordinary least-

squared regression model.

number of other sources including secondary inorganic aerosol.[31] There-

fore, at times, BC will be a major contributor to PM2.5 while at others it will

be a minor component depending on the strength of the various sources.

Using a scatter plot to investigate this relationship is not immediately use-

ful because the two variables do not follow a mean rate of change. There-

fore, fitting a simple linear regression line to these data is not informative

(Figure 2.7).

The robust regression slope of BC and PM2.5 binned by wind speed and

direction at London Marylebone Road demonstrated patterns that were not

observed by the simple scatter plot alone (Figure 2.8a). Figure 2.8a shows

that the ratio between BC and PM2.5 was highly dependent on wind di-

rection. Winds from the south and west at London Marylebone Road had a

higher ratio of BC with ≈ 50% of PM2.5 being composed of BC. BC-PM2.5 ra-

tios are sparsely reported, however London Marylebone Road’s ratio is con-
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sistent with what Ruellan and Cachier [36] reported for a traffic-dominated

monitoring location in Paris (Porte d’Auteuil) with ratios of 43±20%. When

winds were from the north and westerly directions, the BC-PM2.5 ratio was

lower, usually under 20%. Additionally, winds from the north were nearly

completely free of BC particulate matter (Figure 2.8a).
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Figure 2.8: Polar plot of the robust slope between BC and PM2.5 at London

Marylebone Road (a) and London North Kensington (b). Grey areas indicate

when fewer than two observations were present and were treated as missing

due to the low number of samples.

The wind direction dependencies inferred from the polar plot are some-

what counter-intuitive given that the London Marylebone Road monitoring

site is located one metre from the kerb on the south-side of an arterial road

(Figure 2.9). However, the site is also within a significant street-canyon with

a width of 40 m and a height of 41 m which is likely to lead to complex recir-

culation patterns at a range of wind speeds.[32,37] Based on this evidence, ac-

cumulation of pollutants on the buildings’ lee-side (south) is an important

process to consider at London Marylebone Road when interpreting source

processes.

London North Kensington also measures BC and PM2.5 and the slope

of these two pollutants binned by wind speed is rather different compared

with London Marylebone Road (Figure 2.8b). London North Kensington
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London Marylebone Road

air quality monitoring site
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Figure 2.9: Location of the London Marylebone Road monitoring site in

Central London and its surrounds. The lines represent public roads.

is an urban background site and lacks the large traffic source being in im-

mediate proximity which London Marylebone Road experiences. There-

fore, BC was a much smaller component of PM2.5. In 2013, London North

Kensington had a maximum contribution of ≈ 15% of BC to PM2.5 (Fig-

ure 2.8b). However, this maximum contribution only occurred when wind

speeds were low and suggests that this contribution is reached only when

local traffic emissions influence the monitoring site.

Based on these results for the two monitoring sites, the clear and con-

sistent BC-PM2.5 ratio at London Marylebone Road of around 50% shown

in Figure 2.8a in the south-west quadrant can be interpreted as a contribu-

tion dominated by local traffic sources. The lower ratio of between 10–20%

mostly to the east is dominated by regional source contributions where the

concentration of PM2.5 is relatively high but where air masses contain very

little BC.
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2.4.3 Future directions

The examples presented for a single year of data for two air quality moni-

toring sites in London were the first steps for enhancing polar plots to in-

clude the functionality of pair-wise statistics. The enhancements were able

to substantially improve the information content available from routinely

monitored air pollutants where simple scatter plots and “standard” polar

plots gave no suggestion of the processes subsequently illuminated by the

correlation/slope polar plots.

The examples reported were for a few commonly measured species. How-

ever, it is expected that the use of polar plots using pair-wise statistics for

multi-species data such as metal or VOC concentrations could be highly in-

formative. Measurement of large numbers of metals and other species at

higher time resolutions (hourly) is becoming more common. A correlation

matrix of robust slope polar plots would potentially reveal more detailed

information on common source origins.

The use of other statistics is another valuable future direction such as

non-parametric measures of correlation such as Spearman. Other regres-

sion techniques such as quantile regression[38] could be implemented to

provide slope information across a range of quantile levels, potentially pro-

viding more comprehensive information on the relationship between two

pollutants and give further options when determining pollutant sources.

The main advantage of quantile regression is likely to be related to resolving

two or more sources that overlap and where there is not a single dominant

slope caused by one source. In this case, considering the full distribution

of slope values may help better resolve competing source contributions. Fi-

nally, the weighted statistics approach for paired statistics could usefully

be extended to model evaluation where two sets of data are compared (ob-

served and modelled). In this case, enhanced polar plot analyses could pro-

vide valuable information concerning where model agreement is good or

poor and indicate more clearly the conditions under which model perfor-

mance is acceptable and provide enhanced information on where model
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performance is poor.

2.5 Conclusions

This paper outlined the development of enhanced bivariate polar plots to

include pair-wise statistics to be used in the atmospheric sciences. Two

groups of statistical techniques were implemented: correlation and regres-

sion. The new development brings together commonly used pair-wise statis-

tics and relationships with wind speed and direction, which provides en-

hanced information on pollutant sources beyond currently used techniques.

Using a single year of data, in a single city, for routinely monitored pol-

lutants demonstrated that the enhanced polar plots were capable of deter-

mining relationships and processes that were not suggested by simple scat-

ter plots and the use of mean polar plots alone. Here we have reported that

traffic dominated PM2.5 is composed of 50% BC at a London monitoring

site. This is an important observation and ratios between other pollutants

such as elemental carbon and organic carbon (EC and OC) is an obvious

future application for the enhanced polar plots.

It is expected in the future that enhanced polar plots will be widely used

for the investigation of ratios for pairs of pollutants and further extended

to be a valuable tool for teasing apart pollutant sources and processes.
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Chapter 3

Air quality data — smonitor

Europe

3.1 Introduction

Ambient air quality monitoring data for all European Union (EU) member

states and many other cooperating countries are freely available to the pub-

lic. There are two main repositories containing these data which are main-

tained by the European Environment Agency (EEA) for the compliance to

the air quality reporting directives 2004/107/EC and 2008/50/EC.[1,2] The

first repository is called AirBase, which contains data between 1969 and

2012 inclusive.[3,4] From 2013 onwards, the AirBase reporting system was

superseded by what is known as Air Quality e-Reporting (AQER).[5] AQER

forms a small piece of the larger EEA central data repository (CDR) which

contains data and information for a very wide range of topics for the EU

and its member states. Although these data are freely available, it can be

difficult for data users to access the air quality data quickly and efficiently.

This is especially true for the newer AQER system because of the compli-

cated and convoluted data models and the XML file format which has been

chosen for transmission.

The lack of ease of access resulted in the development of smonitor Eu-

rope, a user-focused relational database which allows access to European

76



Chapter 3. Air quality data — smonitor Europe

air quality data in a quick and efficient manner.[6] The current database

contains 12800 monitoring sites, approximately 170000 unique time se-

ries, 4.1×109 observations, and consumes 413 GB of disc space (including

indices). An interactive map of the sites contained in the database is main-

tained for public viewing[7] and the sites are also mapped in Figure 3.1. This

chapter documents the database’s components and data sources.

Meteorological sites

Air quality sites

Figure 3.1: smonitor Europe’s monitoring sites map split by their data type.

As the database’s name suggests, most data are from Europe, but there are

data from monitoring sites located in other regions.
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3.2 The smonitor framework

smonitor refers to a framework, a data model, and a collection of functions

which operate on this specific data model.[6] The smonitor data model has

been designed for simplicity so getting data into and out of the database is

as easy as possible. Despite the simplicity, all air quality observations can

be related back to a data source and all of the granularity in the AirBase

and AQER data models are preserved so very little data is lost. PostgreSQL

is the database technology used for smonitor Europe and the functions are

written in R and contained within a portable R package.[6,8]

The core data model of smonitor is formed by five database tables: sites,

processes, observations, aggregations, and summaries. However, in the

case of smonitor Europe, the aggregations and summaries tables are not

used because these tables contain data on how to calculate and perform ag-

gregations on observations once they have been inserted. These actions are

not applicable in the European case because, currently, the database only

serves a storage function. The tables are self explanatory with the sites

table containing information about air quality monitoring sites/stations/

facilities, processes contains the details about the time series associated

at the sites, and the observations table contains the dates, validity, and

values of the observations/measurements.

In the smonitor nomenclature, a process is an important identifier to

understand. A process is best defined as a unique, and usually, an uninter-

rupted time series. For any given site, there will generally be a number of

processes representing the different variables (pollutants or surface meteo-

rological measures) monitored at the location. The simplest definition of a

process could therefore be a location-variable pair. However, there can be

further granulation of a single variable based on different data sources, ag-

gregation methods, or in the case of AQER, different combinations of inlets,

sampling points, and sampling point processes. An example of processes

in smonitor Europe can be displayed by using an example site: ch0010a, a
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monitoring site located in Zürich city (Switzerland) called Zürich-Kaserne.

The site’s entry in the sites table includes what is displayed in Table 3.1

(there are however more variables contained in the database).

Table 3.1: A selection of site information in smonitor Europe for the

ch0010a (Zürich-Kaserne) monitoring site.
site site_name latitude longitude site_type date_start date_end

ch0010a Zürich-Kaserne 47.38 8.53 background 1992-01-01 2017-12-31

This site has data from 1992 to the end of 2017 which means it will be

present in both the AirBase and AQER data repositories. For this site, the

processes table includes the processes displayed in Table 3.2. There are a

total of 73 processes associated with this particular site (not all are shown)

which are referenced by integer keys. The variables are replicated because

there are multiple aggregation periods and there are observations from two

data sources (airbase and aqer). Unlike the AirBase data, the AQER data

no longer contains the aggregations of observations because in the more

recent years only the “primary” measurements are reported.

The different periods forming separate processes for a single variable is

non-standard in the smonitor framework. This is because multiple aggrega-

tion methods/summaries usually hang off a single process. In the smonitor

Europe case, using multiple processes is an easier way to handle the many

aggregations and makes the database “flatter”. There are no duplicate sites

in smonitor Europe, but there has been no attempt to map the two different

data sources together to collapse the multiple processes for one variable,

for one aggregation period, for a site. It is more appropriate to keep the two

data sources separate and allow for the importing functions to abstract this

feature from the user.

The table which contains the observations/measurements is named ob-

servations. The observations table is very simple and contains seven

columns, all of which are integer or numeric data types. There are three

date variables: date_insert (observation insertion date), date (start date of
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Table 3.2: A select number of processes in smonitor Europe for ch0010a

(Zürich-Kaserne) monitoring site.
process site variable period date_start date_end data_source

14217 ch0010a as_in_pm10 year 2006-01-01 00:00:00 2012-01-01 00:00:00 airbase

14218 ch0010a bap_in_pm10 year 2006-01-01 00:00:00 2012-01-01 00:00:00 airbase

14221 ch0010a cd_in_pm10 year 1997-01-01 00:00:00 2012-01-01 00:00:00 airbase

14226 ch0010a ni_in_pm10 year 2006-01-01 00:00:00 2012-01-01 00:00:00 airbase

14229 ch0010a no2 day 1992-01-01 00:00:00 2012-12-31 00:00:00 airbase

14230 ch0010a no2 hour 1992-01-01 00:00:00 2012-12-31 23:00:00 airbase

14231 ch0010a nox day 1992-01-01 00:00:00 2012-12-31 00:00:00 airbase

14232 ch0010a nox hour 1992-01-01 00:00:00 2012-12-31 23:00:00 airbase

14233 ch0010a o3 day 1992-01-01 00:00:00 2012-12-31 00:00:00 airbase

14234 ch0010a o3 dymax 1992-01-01 00:00:00 2012-12-31 00:00:00 airbase

14235 ch0010a o3 hour 1992-01-01 00:00:00 2012-12-31 23:00:00 airbase

14236 ch0010a o3 hour8 1992-01-01 00:00:00 2012-12-31 23:00:00 airbase

14237 ch0010a pb_in_pm10 year 1997-01-01 00:00:00 2012-01-01 00:00:00 airbase

14238 ch0010a pm10 day 1997-01-01 00:00:00 2012-12-31 00:00:00 airbase

14239 ch0010a pm2.5 day 1998-01-01 00:00:00 2012-12-31 00:00:00 airbase

14242 ch0010a spm day 1992-01-01 00:00:00 1996-12-31 00:00:00 airbase

14874 ch0010a as_in_pm10 var 2012-12-31 23:00:00 2012-12-31 23:00:00 aqer

14875 ch0010a bap_in_pm10 var 2012-12-31 23:00:00 2012-12-31 23:00:00 aqer

14877 ch0010a cd_in_pm10 var 2012-12-31 23:00:00 2012-12-31 23:00:00 aqer

14879 ch0010a ni_in_pm10 var 2012-12-31 23:00:00 2012-12-31 23:00:00 aqer

14881 ch0010a no2 hour 2012-12-31 23:00:00 2013-12-31 22:00:00 aqer

14882 ch0010a nox hour 2012-12-31 23:00:00 2013-12-31 22:00:00 aqer

14883 ch0010a o3 hour 2012-12-31 23:00:00 2013-12-31 22:00:00 aqer

14884 ch0010a pb_in_pm10 var 2012-12-31 23:00:00 2012-12-31 23:00:00 aqer

14885 ch0010a pm10 day 2012-12-31 23:00:00 2013-12-30 23:00:00 aqer

14886 ch0010a pm2.5 day 2013-01-03 23:00:00 2013-12-29 23:00:00 aqer

15171 ch0010a as_in_pm10 year 2013-12-31 23:00:00 2015-12-31 23:00:00 aqer

15172 ch0010a bap_in_pm10 year 2013-12-31 23:00:00 2015-12-31 23:00:00 aqer

15174 ch0010a cd_in_pm10 year 2013-12-31 23:00:00 2015-12-31 23:00:00 aqer

15175 ch0010a ni_in_pm10 year 2013-12-31 23:00:00 2015-12-31 23:00:00 aqer

15177 ch0010a no2 hour 2013-12-31 23:00:00 2017-12-31 22:00:00 aqer

15178 ch0010a nox hour 2013-12-31 23:00:00 2017-12-31 22:00:00 aqer

15179 ch0010a o3 hour 2013-12-31 23:00:00 2017-12-31 22:00:00 aqer

15180 ch0010a pb_in_pm10 year 2013-12-31 23:00:00 2015-12-31 23:00:00 aqer

15181 ch0010a pm10 day 2013-12-31 23:00:00 2015-12-30 23:00:00 aqer

15182 ch0010a pm2.5 day 2014-01-02 23:00:00 2017-12-30 23:00:00 aqer

15291 ch0010a pm10 day 2015-12-31 23:00:00 2016-12-30 23:00:00 aqer

15374 ch0010a as_in_pm10 year 2016-12-31 23:00:00 2016-12-31 23:00:00 aqer

15375 ch0010a bap_in_pm10 year 2016-12-31 23:00:00 2016-12-31 23:00:00 aqer

15377 ch0010a cd_in_pm10 year 2016-12-31 23:00:00 2016-12-31 23:00:00 aqer

15378 ch0010a ni_in_pm10 year 2016-12-31 23:00:00 2016-12-31 23:00:00 aqer

15379 ch0010a pb_in_pm10 year 2016-12-31 23:00:00 2016-12-31 23:00:00 aqer

15380 ch0010a pm10 day 2016-12-31 23:00:00 2017-12-30 23:00:00 aqer
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observation), and date_end (end date of observation) which are all stored in

Unix time (number of seconds since January 1, 1970). The integer date for-

mats are time zone agnostic and makes SQL BETWEEN clauses efficient when

used within SELECT statements. The conversion of the Unix time variables

to date-time data classes is handled by the importing functions and allow

for time zone logic to be applied by the user and client during import. A

limitation of the smonitor data model is that values can only take numeric

values. This has not been an issue to-date, but an additional table and re-

lationship will need to be designed in the future to be able to store non-

numeric values if this is desired.

Table 3.3: Ten rows of the smonitor Europe observations table. The pro-

cess is ch0010a’s (Zürich-Kaserne’s) hourly O3 process sourced from the

AQER repository (Table 3.2).

date_insert date date_end process summary validity value

1536241368 1388530800 1388534400 15179 1 1 2.88

1536241368 1388534400 1388538000 15179 1 1 2.04

1536241368 1388538000 1388541600 15179 1 1 2.06

1536241368 1388541600 1388545200 15179 1 1 32.28

1536241368 1388545200 1388548800 15179 1 1 31.72

1536241368 1388548800 1388552400 15179 1 1 15.63

1536241368 1388552400 1388556000 15179 1 1 20.57

1536241368 1388556000 1388559600 15179 1 1 12.65

1536241368 1388559600 1388563200 15179 1 1 16.60

1536241368 1388563200 1388566800 15179 1 1 21.12

3.3 Importing data

The smonitor R package contains two main importing functions which are

used to fetch data from the database and make them available for an R

user.[6] These functions are import_by_process and import_by_site. Both

of these functions take arguments which are translated to SQL statements
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which are sent to the database service and R’s equivalent of a database table,

a data frame, is returned to the user. The import_by_process function

allows for more flexibility, but generally the import_by_site is used by

a user. An example using the Zürich-Kaserne (ch0010a) site is shown in

Listing 3.1.

Listing 3.1: An example of using smonitor Europe to import a site’s

hourly monitoring data. The con object is a previously created

database connection.

1 # Get a l l hourly data f or the Zurich−Kaserne s i t e

2 data _ zurich <− import_by_ s i t e (

3 con ,

4 s i t e = " ch0010a " ,

5 period = " hour "

6 )

This function call returns 1857985 observations and on my system using

the remote PostgreSQL database server, it takes about 15 seconds to run.

import_by_site allows for many other options such as returning only spe-

cific periods of data between dates, selected aggregation periods, is able to

return multiple sites with one function call, and can return reshaped data

which are ready for direct use in data analysis packages such as openair.[9]

An example of such a use with some optional arguments is displayed in

Listing 3.2.
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Listing 3.2: An example of using smonitor Europe to import two

sites’ hourly NOx monitoring data with the use of many optional

arguments.

1 # Get hourly data f or the Zurich−Kaserne and

2 # Zurich−Stampfenbachstrasse s i t e s

3 data _ zurich _two <− import_by_ s i t e (

4 con ,

5 s i t e = c ( " ch0010a " , " ch0013a " ) ,

6 variable = c ( " no " , " no2 " , " nox " ) ,

7 period = " hour " ,

8 spread = TRUE,

9 tz = " Etc /GMT−1" ,

10 s t a r t = 2010 ,

11 end = 2018

12 )

3.4 Data sources

3.4.1 AirBase

AirBase Version 8 data were downloaded in bulk from the European En-

vironment Agency data portal and the observations and aggregations are

available per country/state as .zip archives.[3] The files containing the ob-

servational data are supplied in simple, tabular text files which were easy

to clean and prepare for database inserts. The file names were decoded

because these contained the site, observed property (an integer which rep-

resents a pollutant), and averaging period information which was not part

of the tabular data proper. The different averaging period files have dif-

ferent formats and this is the only inconsistency across the data files. Two

helper tables were needed too, the station and measurement configurations

files which are approximately equivalent to the smonitor sites and pro-

cesses tables. These metadata tables contained the extra variables needed

to build a complete data model. Because the AirBase data repository has
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been replaced with AQER, it is likely that these data will remain static into

the future unless a large systematic error is discovered and needs to be ad-

dressed. There are a few known outstanding issues with the AirBase data.

The two most notable is that for a few member states, the 2012 year is com-

pletely absent from the repository, for example Germany and France and

the time zone used for each member state is undocumented.

3.4.2 Air Quality e-Reporting (AQER)

The AQER data were a far greater challenge to prepare for database inser-

tion compared to the AirBase data files. The AQER data model is far more

comprehensive and convoluted than the AirBase system and many issues

were encountered with the data files across the many member states. Many

of the issues found were due to the challenges of representing normalised

and tabular data in deeply nested XML files which despite strict schemas

being defined, much diversity was encountered which required significant

software development to handle correctly.

The AQER system is composed of a large number of observational units

which are termed “data flows”. For example Data Flow B contains infor-

mation about zones and agglomerations, Data Flow D contains data about

monitoring activities, and Data Flow E1a contains the observational data.

All XML files representing the data flows contain at least two observational

units; a header and a data unit. For example, a Data Flow D document con-

taining metadata of monitoring activities contains more than two units and

usually contains these six components:

Header A document preamble indicating what the other units contain and

what schema is being used.

Network Information about the monitoring network.

Station Information about the monitoring stations/sites/facilities.
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Sampling point Information about the variables/pollutants being moni-

tored.

Sample Information about the inlets used for the sampling points.

Sampling point process Information about the monitors/analyzers used for

the sampling points.

Functions and programmes were developed to transform all member

states’ AQER XML documents within the B (zones), D (monitoring activi-

ties), and E1a (observations) data flows into tabular data. The zones files are

spatial of nature and many member states have chosen not to use XML (or

GML) for their submissions and use other spatial data files such as shape-

files in their place until the tools exist to easily generate the custom XML

files.

The downloading and selection of the AQER XML documents is an im-

perfect process. Currently, a helper table is manually maintained which

contains the URLs of the documents and some metadata about the files

which are used to populate smonitor Europe. Often, multiple revisions of

the same XML documents are uploaded to the CDR repository due to mis-

takes or errors which are found by the member state or the EEA checking

processes. Unfortunately, there is little clarity on what has been changed

with the new revisions and what document the revision supersedes. Some-

times, only pieces of the documents are revised which makes it extremely

difficult to understand what needs to be done to gain a complete and cor-

rect data set. Examples of this is the 2015 Belgian E1a submission which

contains three revisions and the 2015 Polish E1a submission which at first

contained one XML document, but the revision contained multiple docu-

ments. Despite these issues, all efforts are taken to create a correct source

data table which can be modified if improvements need to be made in the

future.

When it is decided which AQER XML files are necessary, they are down-

loaded and the different observational units are parsed, cleaned, and trans-
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formed into tabular data with R functions. After the tables are created, a

significant challenge is determining the linkage between the station docu-

ment within the measures (D) data flow and what is contained within the

observation (E1a) documents. The station document’s primary identifier

is a prefixed code. For example, a station in Macedonia is represented as

STA-MK0001A. There are some differences among the member states on the

format and what the prefix is, but they are minor. However, in the obser-

vation documents, with the exception of the United Kingdom, the station

is not directly referenced. To create the key to link the station and obser-

vation documents therefore requires parsing of the observation_id, fea-

ture_of_interest, procedure, or sampling_point XML nodes. Among

the member states, there is much diversity and at times, for example Aus-

tria, the format of the observation XML nodes changes over time. In one

example, the 2015 Czech Republic observation document, it was not possi-

ble to link the observations with the stations in the 2015 measures data flow

which is clearly an error and therefore the observations could not be used at

the time. This seems to be an oversight by the developers of the documents’

schema because when building a relational data model, a critical compo-

nent is how the observational units are linked and it should be simple for a

data user to join the units together with a common variable (a key).

Once these issues are addressed, it becomes trivial to use these data in

the smonitor framework. Site keys are assigned and the unsuffixed lower

case version of the primary station identifier was used for this, for exam-

ple see Table 3.1. For the insertion of observations, the process integer keys

need to be joined to the tabular data and then inserted into the database.

The process keys used for observations are constrained so they must be

present in the processes table before they can be used in the observations

table. When new AQER data becomes available, new sites and processes are

created if necessary before the observations are inserted. The programmes

which handle the transformations and cleaning contain a number of tests

for these requirements and the database also enforces constraints to ensure
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the smonitor data model’s integrity. Most notably, the site→ process→

observation relationship must be correct to ensure the data model is valid.

3.4.3 NOAA’s Integrated Surface Database

Many air quality data analysis situations require meteorological data as

well as pollutant concentrations. To ensure surface meteorological data

can be accessed alongside air quality observations, all Integrated Surface

Database (ISD)[10] sites within an approximate European boundary which

have air temperature, atmospheric pressure, relative humidity, wind speed,

and wind direction observations have been inserted in smonitor Europe.

There are 2900 ISD sites serviced in smonitor Europe (Figure 3.1). The

country naming convention used in the ISD do not conform to the ISO coun-

try codes or names and therefore new site codes were generated to maintain

consistency with the European data sources.

3.4.4 Other data sources

Other people who have found smonitor Europe useful have often requested

other data sources to be included so they can have a consistent data access

API (application programming interface). I have been somewhat reluctant

to include other data sources because of the effort required to maintain

the various data sources by one person. However, the data cleaning, for-

matting and inserting functions have been written for the Centre for En-

vironmental Data Analysis (CEDA)[11], EBAS[12] the World Data Centre for

Greenhouse Gases (WDCGG)[13], Airparif (Paris’s monitoring network)[14],

and openair’s[15] access to monitoring data outside United Kingdom’s Au-

tomatic Urban and Rural Network (AURN) data portals or products. There

are a small amount of data from these data sources and about a few hundred

other sites not contained in the European or ISD data repositories because

of this (see Figure 3.1).
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3.5 Outstanding issues

There are a handful of outstanding issues with smonitor Europe.

3.5.1 Source data issues

AirBase time zones The time zones used for the member states in the Air-

Base repository are undocumented. UTC has been used but this is

likely to be incorrect for some member states’ data and is rather diffi-

cult to test.

AirBase 2012 data Some member states observational data for 2012 are ab-

sent from the AirBase repository, for example Germany and France.

AQER E1a file history A major source of frustration is how the revisions of

the E1a (observational) documents are handled by the member states.

It is unclear in many situations what the revisions are and what data

they replace. Decisions have been made to populate smonitor Europe,

but it would be preferable to have a new, single file which completely

supersedes the incorrect submissions when a revision is made.

NOx, NO2, and NO reporting Many member states no longer report the full

complement of NOx, NO2, and NO. This is frustrating to air quality

scientists because at least two of these need to be present to conduct

many analyses.

Polish site names The special characters in the Polish site names have not

been encoded correctly and therefore are incorrectly represented.

AQER zones (Data Flow B) Many of the member states’ zones data files

are invalid.

3.5.2 smonitor database issues

Validity The smonitor framework has a binary system to classify the va-

lidity of an observation: an observation is either valid or it is not. This
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results in the more granular validity classifications such as “valid but

below detection limit” used by AirBase and AQER to be lost in smon-

itor Europe.

Extra identifiers from AQER’s Data Flow D Although the AQER sampling

point, feature of interest, and sampling point process identifiers are

present in smonitor Europe processes table, the extra observational

units (tables) have not been inserted.

3.6 Sharing data and the europeimportr package

The entire PostgreSQL smonitor Europe database could be exported or dumped

and moved to another location for others to replicate and use. However, ar-

guably, a better way to share these data is to provide pre-prepared data

objects on a web server which can be retrieved and used quickly and easily.

An example of this has been provided Ricardo Energy & Environment in

the form of an R package called europeimportr.[16]

The europeimportr interface contains two components. The first, is a

directory containing a large number of .rds files, a native R data format,

which have been exported from smonitor Europe and have been uploaded

to a web server. Observations have been exported for every site in the

database, some aggregations have been calculated and are available, as are

the sites, processes, and zones (Data Flow B) tables. The second com-

ponent is a R package called europeimportr which contains a handful of

simple functions which download, load, and return data to an R user. The

europeimportr package makes it very easy and fast to access European air

quality monitoring data and a similar interface may be released in the fu-

ture to the public.
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Chapter 4

European vehicular primary NO2

trends

This work was originally published in Nature Geoscience on 27 November,

2017 and was featured on the cover of the journal’s issue (Figure 4.1).†

Figure 4.1: Nature Geoscience Volume 10 Number 12 cover.

†https://doi.org/10.1038/s41561-017-0009-0
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4.1 Abstract

Many European countries do not currently meet legal air quality standards

for ambient nitrogen dioxide (NO2) near roads; a problem that has been

forecast to persist to 2030. Whereas European air quality standards regulate

NO2 concentrations, emissions standards for new vehicles instead set lim-

its for NOx – the combination of nitric oxide (NO) and NO2. From around

1990 onwards, total emissions of NOx declined significantly in Europe, but

roadside concentrations of NO2 – a regulated species – declined much less

than expected. This discrepancy has been attributed largely to the increas-

ing usage of diesel vehicles in Europe and more directly-emitted tailpipe

NO2. Here we apply a data filtering technique to 130 million hourly mea-

surements of NOx, NO2 and ozone (O3) from roadside monitoring stations

across 61 urban areas in Europe over the period 1990 to 2015 to estimate

the continent-wide trends of directly emitted NO2. We find that the ratio of

NO2 to NOx emissions increased from 1995 to around 2010 but has since

stabilised at a level that is substantially lower than is assumed in some key

emissions inventories. The proportion of NOx now being emitted directly

from road transport as NO2 is up to a factor of two smaller than the esti-

mates used in policy projections. We therefore conclude that there may be a

faster attainment of roadside NO2 air quality standards across Europe than

is currently expected.

4.2 Introduction

Since the mid-1990s the European vehicle fleet has undergone considerable

dieselisation[1–4] with incentivisation over other fuels and technologies on

the basis of predicted fuel efficiency, lower CO2 emissions, and increased

driving performance.[5–7] By 2014 diesel vehicles accounted for an aver-

age of 53 % of new European passenger vehicle sales compared to 14 %

in 1990, in contrast to little increase in their adoption into US fleets.[3,4]
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The proportion of diesel powered vehicles across Europe has contributed to

widely published problems where legal ambient air quality standards are

breached, usually near roads. Of particular concern in recent years is ni-

trogen dioxide (NO2) although particulate matter (PM) is also important.[8]

Many European Union (EU) member states are struggling to comply with

the 2008/50/EC Air Quality Directive which sets legal limits for hourly and

annual average NO2 concentrations.[8–10] While total national emissions of

NOx (NO + NO2) have shown reductions in Europe, urban concentrations

of NO2 have decreased less than expected and this has been attributed to

the growth in diesel fuelled vehicles.[11–19]

The impacts on public health of NO2 are significant both through di-

rect harm on inhalation and as a precursor to secondary pollutants ozone

(O3) and PM.[20] Published estimates of premature deaths due to NO2 in 28

EU countries were reported to be 72000 annually, based on a 2012 analy-

sis year.[21] Roadside locations are perhaps the most important places where

NO2 must be controlled because this is where human exposure is at its high-

est. These are challenging locations from a legal compliance perspective —

of all the reported exceedances of EU hourly and annual limit values in

2016, 94 % of those occurred at roadside monitoring locations.[22]

NO2 concentrations at roadside locations are primarily controlled by lo-

cal road transport and are influenced by, firstly, the total amount of NOx

emitted and then the fraction of that NOx that is directly emitted as NO2.[23]

A shift towards higher NO2/NOx emissions from road transport can lead to

a counter intuitive situation where total NOx emissions can fall over time,

yet roadside concentrations of NO2 do not decline. The influence of this

key ratio in driving trends and forecasts has already been shown in central

London.[16] Predictions of future NO2 concentrations in Europe must make

assumptions about this NO2/NOx ratio, and predicted increases in this ra-

tio are in part, behind a predicted lack of air quality standard attainment

in many cities until 2025–2030.[15] Despite the critical importance of the

NO2/NOx ratio in controlling urban roadside concentrations, specific lim-
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its do not exist as part of European vehicular emission standards tests. New

European vehicle tests report only total NOx (NO + NO2) in exhaust gases

and whilst emission standards set limits for total NOx they do not speciate

between NO and NO2. Beyond initial new vehicle tests little is known about

how technologies such as diesel oxidation catalysts (DOC) and diesel par-

ticulate filters (DPF) influence this ratio in the real-world, despite the high

profile given to the topic since the Volkswagen (VW) emissions scandal.[7,24]

The implications of not correctly estimating NO2/NOx ratios in policy sup-

port tools such as COPERT and HBEFA (Handbook Emission Factors for

Road Transport) have been described by others.[25–28]

Although recent NOx emission underestimates from passenger cars have

received most media attention, other vehicles such as heavy duty vehicles

(HDVs) and buses are also important in controlling roadside NO2 because

they are predominately diesel fuelled. In this study, which focuses on NO2

trends in urban areas, it is expected that light duty vehicles (LDVs) and

urban buses will make significant contributions to vehicle emissions. It

should also be noted that in terms of emissions data availability there is

considerably more information available on passenger cars compared with

other types of vehicles. As a consequence, there is uncertainty in both the

absolute and relative contributions to NOx and NO2 from these additional

transport sources.

The NO2/NOx ratio from diesel vehicles is controlled by both engine and

exhaust control technologies that have advanced in response to the “Euro”

series of emissions standards. The introduction of Euro 3 in 2000 saw the

introduction of DOC into passenger vehicles; where in the presence of ex-

cess oxygen, NO can be oxidised to NO2 over DOC metal catalysts result-

ing in more direct NO2 being emitted.[16,29,30] The introduction of DPF in

2009 for compliance with the Euro 5 emission standards introduced a fur-

ther technology that could lead to additional direct tailpipe NO2.[31] How-

ever, as each progressive Euro standard has been introduced there have been

no systemic observations of how new exhaust technologies might affect the
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NO2/NOx ratio in real world emissions, or evaluation of whether the emis-

sions inventories that need this ratio for forecasts, and that unpin policy, are

preforming well.

4.3 Methods

4.3.1 Data

The primary data sources for the air quality data used in this study were the

European Environment Agency (EEA) AirBase and air quality e-Reporting

(AQER) data repositories.[32,33] These two repositories cover all European

Union (EU) member states and other cooperating countries such as those in

the European Economic Area (EEA) and Switzerland. The AirBase reposi-

tory contains observational data during 1969–2012 but from 2013 onwards,

the AirBase system was superseded with the more comprehensive AQER

reporting system. AQER uses new data vocabulary, file formats, and re-

quires EEA member states to report a range of observational units called

“data flows” which were not required for AirBase. The AQER system uses

the XML (Extensible Markup Language) file format to transfer data but it

is common for other file formats to be used alongside XML for some data

flows.

The AirBase and AQER data were cleaned and inserted into a single

database with a simple data model.[34] The AirBase data are available in

well-formatted tabular text files which only required decoding of their file

names to be used. However, the AQER XML, documents were a far greater

challenge due to the need to parse different observational units to create a

coherent and decoded data model. Despite AQER formalising XML schemas,

many variations were found across the member states’ files which required

significant development to ensure that the variations were handled cor-

rectly.

The database was also supplemented with other data where available.
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London for example, has a much larger air quality monitoring network

which is not represented by AirBase and the AQER repositories because

these monitoring activities are coordinated by other bodies and do not form

part of the national network. Therefore, these additional sites and data

were accessed using openair, which accesses data from King’s College Lon-

don.[35,36] These additional sites follow equivalent quality assurance and

quality procedures as the national network. Many countries have not re-

ported the full complement of NO, NO2, and NOx presumably due to a lack

of a legal obligation and file size concerns. The analysis reported here re-

quired both hourly NO2 and NOx to be present for a monitoring site and

therefore the missing variables were derived from the other components if

possible. In the case of Paris, the additional NOx was accessed through the

Airparif web portal.[37] Once the cleaning and tidying was complete, the

database contained 2.7 × 109 observations from 8400 air quality monitor-

ing sites.[34,38]

The data import, transformation, and tidying was conducted with R

and the database technology used was PostgreSQL.[39,40] NOx data spanned

from 1973 to 2015, but the analysis focused on years between 1990 and

2015 when the operation of chemiluminescent NOx instrumentation was

wide-spread throughout Europe.

4.3.2 NOx filtering method

To isolate the primary NO2 component, a multi-step filtering process was

conducted which was similar to past calculation of CO/NOx ratios by other

authors (for examples see Parrish et al. [41] and Hassler et al. [42]). The first

step was to choose urban areas and these were generally identified by the

European Commission’s Functional Urban Area definition.[43] A Functional

Urban Area includes a city and their commuting zones, which is approxi-

mately equivalent to a metropolitan area. The spatial boundaries (polygons)

for these urban areas were obtained from the AQER zones data flow which

form the official EU air quality management zones. When the polygons were
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not available or not suitable for use in the AQER repository, the appropriate

administrative boundaries were scraped from OpenStreetMap.[44,45] These

polygons were then used as a spatial boundary for an urban area and only

monitoring sites within the boundary were selected and used. Seventy-six

urban areas were identified and used but after the filtering process, 61 ur-

ban areas had the variables and volume of data needed for the analysis. An

European urban area map can be found in Figure 4.2.
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Figure 4.2: The 61 European urban areas which were tested for changes

in their NOx/NO2 ratios using filtering methods. Internal polygons/lines

indicate country boundaries.

For each urban area that was defined with a boundary, a representative
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Table 4.1: Details for the 61 European urban areas analysed in this analysis.
Country Urban area Population Latitude Longitude O3 site

Austria Vienna 2179769 48.16 16.53 at90lob

Austria Linz 193814 48.27 14.31 at4s416

Austria Graz 269997 47.08 15.44 at60018

Belgium Antwerp 1200000 51.21 4.43 betr801

Belgium Brussels 1800663 50.80 4.36 betr012

Bulgaria Sofia 1263807 42.67 23.40 bg0052a

Croatia Zagreb 792875 45.76 16.01 hr0009a

Czech Republic Prague 1964750 50.01 14.45 cz0alib

Czech Republic Ostrava 1153876 49.84 18.26 cz0toff

Denmark Copenhagen 1806667 55.70 12.55 dk0030a; dk0045a

Finland Helsinki 1224107 60.29 25.04 fi00208; fi00425

France Paris 11089124 48.83 2.36 fr04037

France Marseille 1831500 43.53 5.44 fr03029

France Lyon 1717300 45.74 4.83 fr20017

France Toulouse 1052497 43.62 1.44 fr12021

Germany Hamburg 3134620 53.56 9.97 dehh008

Germany Berlin 4971331 52.54 13.35 debe010

Germany Munich 2531706 48.15 11.55 deby039

Germany Cologne 1873580 51.02 6.88 denw053

Germany Frankfurt 2517561 50.13 8.75 dehe008

Germany Stuttgart 2663660 48.81 9.23 debw013

Germany Hanover 1294447 52.23 10.47 deni011

Germany Bremen 1249291 53.18 8.63 dehb004

Germany Dusseldorf 1525029 51.25 6.73 denw071

Germany Nuremberg 1288797 49.45 11.09 deby053

Greece Athens 4013368 38.08 23.70 gr0027a

Hungary Budapest 2393846 47.31 18.92 hu0032a

Iceland Reykjavik 130345 64.14 -21.77 is0004a; is0005a

Ireland Dublin 1535446 53.35 -6.28 ie0028a; ie0140a

Ireland Cork 399216 51.92 -8.38 ie0091a

Italy Rome 3457690 41.93 12.51 it0953a

Italy Milan 3076643 45.50 9.25 it1017a; it1650a

Italy Turin 1745221 45.01 7.55 it1120a

Latvia Riga 1003949 56.94 24.16 lv0rke2

Lithuania Vilnius 806404 54.69 25.21 lt00002

Netherlands Amsterdam 1443258 52.39 4.92 nl00520; nl00564

Netherlands Rotterdam 1186818 51.81 4.67 nl00441; nl00418

Norway Oslo 1090513 59.95 10.49 no0081a

Poland Warsaw 2660406 52.28 20.96 pl0044a

Poland Lodz 1163516 51.76 19.53 pl0096a

Poland Krakow 1725894 50.01 20.01 pl0011a ; pl0038a; pl0501a

Portugal Lisbon 2435837 38.70 -9.21 pt03087

Portugal Porto 1099040 41.16 -8.59 pt01028; pt01050

Spain Madrid 5804829 40.42 -3.75 es1193a

Spain Barcelona 4233638 41.39 2.01 es0694a; es1679a

Spain Valencia 1564145 39.48 -0.37 es1619a; es1183a

Spain Seville 1249346 37.34 -6.04 es1630a

Spain Granada 237540 37.20 -3.61 es1560a; es1394a; es1924a

Sweden Stockholm 1860872 59.32 18.06 se0022a

Sweden Malmo 687481 55.61 13.00 se0001a

Switzerland Zurich 1110478 47.38 8.53 ch0010a

Switzerland Geneva 197376 46.20 6.13 ch0051a

United Kingdom London 11917000 51.52 -0.21 gb0620a

United Kingdom Birmingham 2357100 52.51 -1.83 gb0851a; gb0569a

United Kingdom Leeds 2393300 53.80 -1.55 gb0584a

United Kingdom Glasgow 1747100 55.86 -4.26 gb0641a; gb1028a

United Kingdom Manchester 2539100 53.48 -2.24 gb0613a

United Kingdom Bristol 1006600 51.46 -2.59 gb0585a; gb0884a

United Kingdom Liverpool 1365900 53.41 -2.98 gb0594a; gb0777a

United Kingdom Newcastle 1055600 54.98 -1.61 gb0568a

United Kingdom York 204439 54.33 -0.81 gb0014r
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ozone (O3) background site was identified. The representative O3 site had

the requirements of having a continuous monitoring operation, i.e. not a

seasonal site and having an hourly time series of at least five years. These

O3 time series were used to represent the typical urban background con-

centrations of O3 for each urban area. In some situations, an unbroken time

series was unavailable, usually due to monitoring site closures, therefore

more than one representative O3 site was used to gain a minimum of five

years of O3 data (Table 4.1). No data capture filters were applied to the ob-

servations. Sites classified as urban background were prioritised over other

site types but for seven urban areas this was not possible and an industrial

or roadside site was used. One-hundred and thirty million hourly measure-

ments of NO2, NOx, and O3 were evaluated from 488 sites. Details on the

urban areas and the O3 monitoring sites can be found in Table 4.1.

After a representative O3 site was identified for an urban area, hourly

NO2 and NOx observations from traffic, roadside, and kerbside sites where

filtered to include only traffic-dominated periods between 06:00–18:00 (Co-

ordinated Universal Time, Eastern European Time, or Central European

Time depending on location; Table 3) for weekdays (Monday–Friday), and

when the representative O3 background concentrations were low. Low-O3

conditions were considered when hourly concentrations were ≤ 10µgm−3

(5ppb). The low-O3 threshold was varied to determine the effect on the cal-

culated ratio of NO2 to NOx. Varying the absolute value of the threshold

between 5 and 30µgm−3 did not alter the patterns which were determined,

only the absolute values of the NO2/NOx ratio due to an increase of contam-

ination of non-primary NO2 (Figure 4.3). The 10µgm−3 threshold allowed

for more recent years with higher urban O3 concentrations when compared

to earlier time periods to have an adequate number of observations which

could be used to estimate the NO2/NOx ratio which was not the case for the

5µgm−3 threshold.

The filtering process removed many of the total NO2 and NOx observa-

tions but had the goal of isolating the times when the influence of the NO
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Figure 4.3: The influence of different low-O3 thresholds on mean European

NO2/NOx ratios. The pattern remains identical but the offset increases due

to increased contamination of secondary NO2 into the filtered data. The

analysis reported used 10µgm−3 as the low-O3 threshold.

+ O3 reaction was negligible. These conditions would therefore represent

those when the roadside increment in NO2 above background would be

dominated by primary NO2 emissions from vehicles using the road. A po-

tential source of uncertainty is the use of chemiluminescent NOx analysers

with molybdenum catalysts in most analysers for compliance monitoring.

These instruments are affected by interference due to NOy species, which

are detected as NO2. However, at roadside locations, and in particular for

increments above local background concentrations with very little ageing

of the airmass, the influence of NOy species is expected to be negligible.[46]

A potentially more important interferent is the direct emission of nitrous

acid (HONO), which would also be detected as NO2 in these instruments.

Measurements of HONO in vehicle exhausts suggests only low amounts are

emitted and its effect would be small. For example, Kirchstetter et al. [47]

measured a HONO/NOx ratio of 2.9±0.5 × 10−3.
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4.3.3 NO2/NOx ratio estimation

After the filters had been applied, for each site and year combination, the

NO2/NOx ratio was calculated with robust linear regression with an MM-

estimator. The use of the linear model in this way allowed for the slope to

be estimated, which represents an estimate of the the primary NO2/NOx

ratio. The robust linear regression functions were provided with the MASS

R package.[48] The robust regression technique is hardened against outliers

by a high breakdown point which helped handle noisy observations before

2000 in some locations. When ratios were sequentially aggregated to ur-

ban area, country, and European level the arithmetic mean was used as the

summary function. After the NO2/NOx ratio estimates were aggregated to

European level, the trend was non-monotonic. The breakpoints in the trend

were identified with the segmented R package and three linear least squares

regression models were calculated to represent the pieces of the trend.[49,50]

4.3.4 Method validation

The filtering method employed was tested with a total oxidant (OX = NO2

+ O3) method reported by Jenkin [51]. OX can be thought of as the sum of

regional and local oxidant contributions at a monitoring site. Like the filter-

ing method, if the OX method is applied to a roadside site, the local oxidant

component can provide an estimate of the primary NO2/NOx ratio. There-

fore the estimates of the filtering and OX methods can be directly compared.

The OX method has the limitation of requiring O3 observations as well as

NOx observations. However, the measurement of O3 at roadside sites is un-

common. The two methods showed very good agreement and for London

Marylebone Road, a monitoring site reported by Jenkin [51], the methods

demonstrated near-equivalence for the years 1997–2014 (Figure 4.4).

102



Chapter 4. European vehicular primary NO2 trends

Filtering method =OX method ⋅0.99, R2 = 0.99

London Marylebone Road

10% 15% 20%

10%

15%

20%

OX method NO2 NOx ratio

Fi
lte

rin
g

m
et

ho
d

N
O

2
N

O
x

ra
tio

Figure 4.4: Relationship between two methods which estimate the annual

NOx/NO2 ratio at London Marylebone Road between 1997 and 2015. The

two methods show near-equivalence at this site, the fitted line represents a

simple linear regression model with a forced zero intercept, and the error

bars are the 95 % confidence intervals of the estimates.
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4.4 Ambient observations to determine the

NO2/NOx trend

Using the measured roadside atmospheric ratio of NO2 to NOx (NO2/NOx

ratio, expressed as a molar volume ratio) is one effective way of determining

the influence on NO2 of increased proportions of diesel vehicles in a fleet,

as well as a method to detect change in after treatment technologies result-

ing from progressive tightening of the Euro standards. Since there is no

systematic set of vehicle exhaust measurements that show NO2/NOx trends

we look instead at the combined national data sets of ambient monitoring

information which measure NO and NO2 in air. We carefully filter these

datasets for roadside locations where the ratio of these two species can be

taken as a proxy for the exhaust emission ratio. We note that there is con-

siderable diversity in the penetration and uptake of diesel vehicles, typical

vehicle lifespans, and climates when considering Europe as a whole. The

analysis in this section uses data from roadside monitoring sites across 61

European urban areas between 1990 and 2015. The combined European

trend (Figure 4.5) for the 61 areas demonstrates a clear increase in annual

mean NO2/NOx ratio between 1995 and 2010. The aggregation was per-

formed on the mean for each city in each year to ensure the results were not

biased towards cities with more measurement locations, such as London.

Figure 4.5 shows three distinct periods where NO2/NOx ratio behaviour

differed. The first, from 1990 to 1994 coincides with a pre-Euro 3 fleet

that did not use diesel oxidation catalysts (DOCs) and the ratio was stable

within the uncertainty of the slope estimate and less than 10 % (Table 4.2).

The second period from 1995 to 2008 is a period when there was a clear,

sustained, and significant increase in the NO2/NOx ratio corresponding to

a period of growth in diesel passenger cars numbers and the introduction

of DOC to new vehicles via Euro 3 and Euro 4. Over this period the ratio

increased to a peak value of approximately 16 % in 2010. The third period is

characterized by a stabilisation in the NO2/NOx ratio and coincides with the
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Figure 4.5: Mean NO2/NOx ratio for all roadside monitoring sites for the

61 European urban areas analysed between 1990 and 2015. The error bars

represent the 95% confidence intervals of the slope estimates based on the

number of samples. Linear regression models were applied to three sep-

arate periods: 1990–1994, 1995–2008, and 2009–2015 identified by seg-

mented regression.
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introduction of Euro 5 vehicles fitted with diesel particle filters (DPFs). The

second period is the only period that shows a statistically significant change

NO2/NOx ratio (Table 4.3). The trends shown in Figure 4.5 broadly follow

the pattern of reported changes in emissions seen from sporadic remote

sensing measurements of almost 70000 vehicles in London (during 2012),

with a progressive increase in NO2/NOx ratio for diesel passenger cars and

light vans from pre-Euro to Euro 5.[52]

Table 4.2: Extra summary statistics for Figure 4.5. The error is the aggre-

gated standard error of the slope estimates weighted by number of valid

slope estimates ( ε√
n

). The 95% confidence interval (CI) is the error × 1.96.

Year Slope Count of sites Count of urban areas Error CI lower (95%) CI upper (95%)

1990 0.077058 9 5 0.008685 0.060034 0.094081

1991 0.072517 20 7 0.011990 0.049016 0.096018

1992 0.068564 27 9 0.008907 0.051107 0.086021

1993 0.071794 28 9 0.007688 0.056725 0.086863

1994 0.062352 29 10 0.006827 0.048971 0.075733

1995 0.075844 30 11 0.005465 0.065134 0.086555

1996 0.077790 41 13 0.005923 0.066181 0.089398

1997 0.084951 61 17 0.005150 0.074857 0.095045

1998 0.083878 93 24 0.004851 0.074370 0.093386

1999 0.090260 121 29 0.003579 0.083245 0.097276

2000 0.095636 157 34 0.006192 0.083501 0.107772

2001 0.099663 163 36 0.005772 0.088350 0.110976

2002 0.106345 178 40 0.003690 0.099113 0.113577

2003 0.118140 185 42 0.005280 0.107791 0.128490

2004 0.124910 217 49 0.003740 0.117579 0.132241

2005 0.126285 215 48 0.005085 0.116318 0.136252

2006 0.136261 217 52 0.004156 0.128116 0.144407

2007 0.144266 213 50 0.004464 0.135516 0.153015

2008 0.158265 217 56 0.004988 0.148488 0.168042

2009 0.157058 219 55 0.004810 0.147630 0.166486

2010 0.160809 235 56 0.005563 0.149905 0.171712

2011 0.152091 249 60 0.004245 0.143771 0.160410

2012 0.151386 202 43 0.005455 0.140695 0.162078

2013 0.143514 187 45 0.005484 0.132764 0.154263

2014 0.158128 198 44 0.006992 0.144424 0.171831

2015 0.143121 168 37 0.006510 0.130361 0.155881

Although the ambient derived NO2/NOx ratio turning points in Fig-

ure 4.5 broadly coincide with identifiable regulatory landmarks, the changes

106



Chapter 4. European vehicular primary NO2 trends

Table 4.3: Linear regression model summaries for Figure 4.5. Period repre-

sent the three models: 1990–1994, 1995–2008, and 2009–2015.

Period n P -value Slope R2

1 5 0.0527 -0.0030 0.7639

2 14 < 0.001 0.0062 0.9681

3 7 0.1397 -0.0020 0.3810

are more complex than they would first appear. First, when a new Euro class

is introduced, it takes time for those new vehicles to significantly penetrate

the vehicle fleet and affect overall emissions. Second, the emissions charac-

teristics of vehicles will be expected to change as they age. For example, a

Euro 3 car introduced in year 2000 will be ≈ 5–6 years old at the end of the

Euro 3 period. Analysis of vehicle emission remote sensing data has shown

that vehicle ageing tends to decrease the NO2/NOx ratio of diesel passenger

cars (and likely other types of vehicles fitted with DOC).[16,53] All these in-

fluences, as well as other local effects, contribute to the overall pattern seen

in Figure 4.5. Nevertheless, it is clear that on average, across Europe, the

ratio has not continued to increase after 2010 and is now declining.

At an European level, mean annual roadside NOx concentrations demon-

strated an overall decrease from 1998 to 2015 with mean NOx concentra-

tions reducing from 338 to 228µgm−3 (Figure 4.6). Before 1998, the NOx

means are scattered due to fewer sites and observations and larger uncer-

tainties concerning the quality of the measurements. This decrease can be

attributed to improved vehicular NOx emission control during this period.

Figure 4.6 shows that mean NOx concentrations have remained stable since

2010, however, the trend in NO2 concentrations (the regulated species of

NOx) differs from total NOx in several important ways. First, NO2 con-

centrations tended to increase over the period from around 1997 to 2009

(despite concentrations of NOx decreasing). Second, concentrations of NO2

have tended to decrease from around 2009 at a time when concentrations of

NOx have been stable. These changes in concentrations are consistent with
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the changes calculated for the NO2/NOx ratio, shown in Figure 4.5.
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Figure 4.6: Mean NOx and NO2 concentrations after the filtering method

was applied for all roadside monitoring sites for the 61 European urban

areas analysed between 1990 and 2015. These concentration data were

used for the calculation of the NO2/NOx ratio displayed in Figure 4.5. The

smoothed lines are loess (local regression) fits.

4.4.1 Spatial analysis of roadside NO2/NOx over Europe

The Europe-wide aggregation displayed in Figure 4.5 hides the diversity of

trends in the NO2/NOx ratio across European roadside monitoring sites,

urban areas, and countries. When estimates of the NO2/NOx ratio were

aggregated at an urban level, a peak ratio was observed at or near 2010 in

most European urban areas (Figure 4.7). The trends in NO2/NOx ratio are

shown for two periods 2005 to 2010 and 2010 to 2015. Over the first pe-

riod most urban areas showed an increase in NO2/NOx, most pronounced

in western and central Europe. For the later period the majority of regions
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showed a declining trend in NO2/NOx albeit generally smaller than the ear-

lier increases.

(a)              2005--2010 (b)              2010--2015

Delta
0.05
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0.15

Direction
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Figure 4.7: The change in the NO2/NOx ratio for each urban area for two

time periods, the five years leading up to 2010, and the five years after

2010 (2010 is the year with the highest NO2/NOx ratio). Plot (a) shows

the change in the NO2/NOx ratios from 2005 to 2010 and the plot (b) dis-

plays the change in ratio from 2010 to 2015. The size of the dots indicates

the magnitude of the change.

Seven percent of the urban areas however showed opposing trends most

likely reflecting unique and localised site or urban area conditions. Some of

these urban areas including Amsterdam (Netherlands), Barcelona (Spain),

Milan (Italy), and Krakow (Poland) demonstrate a levelling-off of the NO2/NOx

ratio but had not shown decreasing trends by 2015. Other urban areas

such as Dublin (Ireland which had the largest delta), Rotterdam (Nether-

lands), some urban areas in central United Kingdom, and Helsinki (Fin-

land) showed further increases in NO2/NOx by 2015. Some urban areas,

most conspicuously in Reykjavík (Iceland), are not shown in the 2010–2015

panel (b) in Figure 4.7. This was due to the absence of more-recent obser-

vations, usually due to O3 or NOx monitoring site closures or when the EU

member state stopped reporting NOx and NO alongside NO2. It is very dif-
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ficult to attempt attribute the underlying causes of the 7 % outliers; it may

be associated with fleet make-up or indeed other local factors such as chang-

ing road layouts, new sources and urban infrastructure. In the absence of

consistent information across Europe on these factors we do not speculate

further.

The overwhelming consistency seen in the 93 % of urban areas and

across the whole of the continent is however strongly suggestive of a European-

scale influence on primary NO2, not that this change in NO2/NOx is a result

of a series of uncoordinated local factors. These changes are consistent with

a steady evolution of the European fleet as a whole, for example, the effect of

Euro standards and technologies, rather than trends driven by city or coun-

try specific interventions such as changes to local urban public transport

fleets, introduction of congestion zones, and so on.

4.4.2 Potential factors controlling recent declines in NO2/NOx

Whilst the periods of increase in the NO2/NOx ratio can be rationalised

based on previous evidence, the recent declines in ratio from around 2010

are more difficult to understand because diesel vehicles continue to use

DOC with DPF. We raise here some potential factors that could explain

this result. Remote sensing measurement of selected vehicles has showed

that selective catalytic reduction (SCR) control systems introduced on heavy

duty vehicles have improved, resulting in both lower overall emissions of

NOx and a better control of NO2.[16] Although the numbers of heavy duty

vehicles passing each monitor is unknown across Europe, this technology

working on part of the fleet may have contributed to the ratio declining. A

second potential factor is the ageing of exhaust control systems themselves,

and an engineering shift towards “catalytic thrifting”. This refers to vehicle

manufacturers and catalyst developers progressively reducing the amount

of platinum group metals used in exhaust systems which in turn has a con-

sequence of reducing the amount of NO2 generated. Finally, evidence from

vehicle emission remote sensing shows that as light duty diesel vehicles age,
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the NO2/NOx ratio does decrease over time although the extent of this is

uncertain.[16] It would seem plausible that all of these poorly understood

factors could, in combination, contribute to the stabilisation and decline

seen in NO2/NOx ratio since 2010. However, with ambient data alone, it is

impossible to quantify the individual contributions robustly.

4.5 Comparisons to emissions inventories

The Europe-wide primary NO2/NOx estimated by the observational filter-

ing method here differs substantially from previous works which report

roadside NO2/NOx ratio trends. Other inventories estimate higher NO2/NOx

than what we see in the real world. A modelled estimate of traffic emissions

at a national and European level in five year intervals between 2000 and

2030[15] predicted NO2/NOx to increase ≈ 25 % by 2020 and stay at this

level until 2030 (Figure 4.8). Using these model estimates of NO2/NOx

around 30 monitoring areas were then forecast to still be in breach of the

European NO2 air quality standard in 2030. The current United Kingdom

(UK) vehicular primary NO2 emission factors are also predicted up to 2030

in the National Atmospheric Emissions Inventory (NAEI).[54] The UK emis-

sion factors are derived from the COPERT database with modelling of pre-

dicted fleet changes in the future. The UK primary NO2 emission factors for

all UK urban areas are currently predicted to reach a peak NO2/NOx ratio

in 2015 at 23 % (Figure 4.8). After 2015, the UK emission factors decrease

until 2030 to a minimum ratio of 17 %.

Both emission estimates appear to substantially overstate the current

fraction of emissions that is directly released as NO2, in one case by nearly

a factor two for the year 2015, and the measured vs. modelled trends are

currently diverging further from one another. If primary NO2 emissions re-

main similar or even further decreases as the current analysis suggests, the

use of these inventory estimates for air quality modelling purposes would

result in overly pessimistic future predictions of compliance with European
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Figure 4.8: Comparison of three methods which estimate roadside primary

NO2 as a NO2/NOx ratio and forecasts from two other sources.[15,54] Shaded

zones are the individual EU member state range in Kiesewetter et al. [15]

and the 95% confidence interval of the observation filtering method’s loess

fit.
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NO2 ambient air quality standards.

4.6 Impact on the attainment of air quality stan-

dards

Policy projections of air quality that use too high a value for the NO2/NOx

ratio will predict higher concentrations of roadside NO2 than may actually

occur for the same total amount of NOx emitted. As an example of the po-

tential changes brought about by using different NO2/NOx ratios, we com-

pare how ambient concentrations would vary based on the current range of

estimates. The most recent ratio reported here by the filtering method was

14.5 % in 2015 while the other reported estimates ranged from 25 to 22 %

(Figure 4.8). To estimate the influence of differing primary NO2 assump-

tions on roadside annual mean NO2 concentrations, we have considered the

roadside increment of NOx concentration at each measurement site i.e. the

increment in NOx concentration above urban background values of NO2.

Two scenarios have been considered: first, that the roadside NOx increment

is associated with a NO2/NOx ratio of 14.5 % and second, that it is associ-

ated with a ratio of 23 %. Considering all European roadside sites, the mean

difference in NO2 concentration between these two scenarios is 6.6µgm−3.

The current analysis, which applies data filtering techniques, is not strictly

consistent with the changes expected to annual mean NO2 concentrations

because only a subset of data have been analysed. However, the changes in

the NO2/NOx ratio identified will have a strong influence on annual mean

NO2 concentrations close to roads.

The impact of differing primary NO2 assumptions will clearly vary de-

pending on individual sites. However, for the most polluted NO2 sites in

Europe, examples being Brixton Road and Farringdon Street in London, the

annual mean difference in NO2 from the traffic contribution could be as

much as 19µgm−3. Differences in projected NO2 of this kind of magnitude

are highly significant when compared against targets for compliance with
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the European annual NO2 ambient standard which is currently 40µgm−3.

In this respect, current air quality modelling of roadside NO2 that uses

these unrealistically high NO2/NOx ratios for the future will tend to also be

overly pessimistic. Should NO2/NOx ratios of the kind now being observed

across Europe be projected forward for the next decade then attainment of

annual roadside NO2 standards in many places might be achieved sooner

than is currently predicted.

We note however the substantial disconnections that still exist between

the legislative controls being placed on reporting vehicle emissions and air

quality standards designed to protect public health. By only requiring the

reporting of total NOx from new vehicles, and not NO and NO2 as separate

quantities, the later impacts of those vehicles, and how they influence the

regulate pollutant NO2, cannot be assessed. The continued lack of any sys-

tematic collection of information on changes to NO and NO2 emissions as

vehicles age is a further gap in evidence that if filled would greatly improve

the reliability of future forecasts of air quality in cities.
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4.7 Post-publication: Updates when additional ob-

servations were delivered

The original analysis used observations between 1990 and 2015. However,

since publication two additional years of data have been reported and are

available to update the analysis. The trends discussed have continued to fol-

low the patterns outlined in the original analysis (Figure 4.9, Figure 4.10,

and Figure 4.11). Figure 4.10 demonstrates that the European NO2/NOx

emission ratio determined by the observational record is now outside the

uncertainty of the European model presented in Kiesewetter et al. [15].

Therefore, it seems there is little doubt that the flattening off or decrease

of the NO2/NOx emission ratio at a European level will continue for the

next several years.
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Figure 4.9: Updated European primary NO2/NOx emission ratio. The orig-

inal data set ended at the end of 2015, data for 2016 and 2017 are now

available.
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Chapter 5

Meteorological normalisation of

Swiss PM10

This work was originally was published in Atmospheric Chemistry and Physics

on May 3, 2018.†

5.1 Abstract

Meteorological normalisation is a technique which accounts for changes in

meteorology over time in an air quality time series. Controlling for such

changes helps support robust trend analysis because there is more certainty

that the observed trends are due to changes in emissions or chemistry, not

changes in meteorology. Predictive random forest models (RF; a decision

tree machine learning technique) were grown for 31 air quality monitoring

sites in Switzerland using surface meteorological, synoptic scale, boundary

layer height, and time variables to explain daily PM10 concentrations. The

RF models were used to calculate meteorologically normalised trends which

were formally tested and evaluated using the Theil-Sen estimator. Between

1997 and 2016, significantly decreasing normalised PM10 trends ranged be-

tween -0.09 and -1.16 µgm−3 year−1 with urban traffic sites experiencing

the greatest mean decrease in PM10 concentrations at -0.77 µgm−3 year−1.

†https://doi.org/10.5194/acp-18-6223-2018
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Similar magnitudes have been reported for normalised PM10 trends for ear-

lier time periods in Switzerland which indicates PM10 concentrations are

continuing to decrease at similar rates as in the past. The ability for RF

models to be interpreted was leveraged using partial dependence plots to

explain the observed trends and relevant physical and chemical processes

influencing PM10 concentrations. Notably, two regimes were suggested by

the models which cause elevated PM10 concentrations in Switzerland: one

related to poor dispersion conditions and a second resulting from high rates

of secondary PM generation in deep, photochemically active boundary lay-

ers. The RF meteorological normalisation process was found to be robust,

user friendly and simple to implement, and readily interpretable which

suggests the technique could be useful in many air quality exploratory data

analysis situations.

5.2 Introduction

5.2.1 Air quality trend analysis

Trend analysis of ambient air quality data is a common and important pro-

cedure. The goal of such trend analysis usually involves the confirmation,

or lack of confirmation of a statistically significant change in pollutant con-

centrations over time. If pollutant concentrations are significantly increas-

ing or decreasing, there is evidence that air quality is better or worse than

in the past and conclusions such as these are useful for scientists, policy

makers, and the public.[1] However, air quality trend analysis is compli-

cated because it is usually unknown if the behaviour of the trend is driven

by changes in meteorology or changes in emissions or atmospheric chem-

istry.[2–6] The former is usually is of greatest importance for policy makers

because investigation in changes in emissions, and in turn, the perturba-

tions on ambient pollutant concentrations is how efficacy of intervention

activities are judged.[7,8] Despite the uncertainty surrounding the drivers of
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air pollutant trends, this issue is often acknowledged but rarely robustly

compensated for.

The issue surrounding meteorology and air quality trend analysis arises

because air quality and pollutant concentrations are highly dependent on

meteorological conditions across all spatial scales.[9] Wind speed, wind di-

rection, atmospheric temperature and stability can be expected to have large

influences on pollutant concentrations at most locations. The influence of

such meteorological variables can be much greater than an intervention ac-

tivity which results in meteorological conditions often obscuring or exacer-

bating trends.[10] In situations where these processes are not accounted for,

a calculated trend is less likely to represent changes in pollutant emissions

due to air quality management efforts and therefore erroneous conclusions

can be made on what is causing the observed trend.

The methods used for trend analysis are diverse and range from sim-

ple least squares linear regression analysis to numerically complex meth-

ods often requiring multiple pre-processing or work-up steps before the fi-

nal trend test is conducted.[1,11,12] When trends are found to be monotonic,

i.e. constantly changing with time, the robust non-parametric linear regres-

sion Mann-Kendal test is often used.[13] The Mann-Kendal test can be sup-

plemented by using the Theil-Sen estimator and bootstrapping techniques

which increase the test’s robustness and can account for autocorrelation in

the time series.[14–16] Although methods for the testing of monotonic trends

are mature and are in common usage in air quality and other environmen-

tal applications[17], much of the effort of trend analysis is put into the pre-

processing steps which generally involves deciding what aggregation pe-

riod and function to use as well as handling the removal of the seasonal

component if necessary (an annual cyclical pattern). Common techniques

to allow for removal of the seasonal component of a time series is classical

decomposition using loess (often called seasonal and trend decomposition

using loess; STL) and Kolmogorov-Zurbenko filters.[6,18,19] Although these

decomposition methods help treat the time series for further trend analysis,
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they alone do not address changes of meteorology over time.

5.2.2 Meteorological normalisation

A method to control or take into account meteorology effects on pollutant

concentrations involves the development and use of predictive statistical

models.[8,11,20–22] Such models attempt to use a number of explanatory vari-

ables such as surface measurements of wind behaviour, atmospheric tem-

perature, and pressure to explain the variability of pollutant concentrations.

Time variables such as Julian day (day of the year), weekday, and hour of the

day can also be used as predictors. These time variables act as proxies for

emission strength because pollutant emissions or generation processes vary

by the time of day, day of the week, and season.[23] If the predictive mod-

els are found to explain an adequate amount of the variation in pollutant

concentration, the model can be used to account for the influence of me-

teorological variables on the pollutant concentration. The explanation of

some of the variation in a time series also has the side effect of allowing

significant trends to be detected earlier because of the reduction of estimate

uncertainty. This technique is known by a few different names but here, we

refer to the technique as meteorological normalisation.

The application of meteorological normalisation approaches are how-

ever complicated due to how pollutant concentrations vary based on me-

teorological variables. For example, for a traffic sourced pollutant such as

nitrogen dioxide (NO2), it would be expected that concentrations would de-

crease with increasing wind speed due to atmospheric dilution and disper-

sion processes.[24] However, this process is highly unlikely to be linear and

when a monitoring site is located adjacent to a kerb, the effect of dilution

based on the wind speed would also be highly dependent on wind direc-

tion. There would be further complication if the monitoring site was located

within a street canyon. When variables depend on one another (or among

more than two variables) in such a way, this is termed interaction.[25] Inter-

action effects generally require special treatment in most statistical models.
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Additionally normality, homoscedasticity, multicollinearity, and indepen-

dence should also be addressed before and during statistical modelling. All

of these features are commonly encountered in air quality time series which

can make the use statistical techniques highly burdensome in this domain.

5.2.3 Machine learning

In the past three decades, there has been large development in the field of

what is now known as machine learning (ML). ML is a fusion of statistics,

data science, and computing which experiences use across a very wide range

of applications.[26,27] ML is a diverse topic but it has seen the development

of many predictive models which offer alternatives to “classical” statistical

models for exploratory data analysis. Some of the more popular ML pre-

dictive models include decision tree methods such as boosted regression

trees and random forest, the kernel methods which include support vec-

tor machines, and finally artificial neural networks.[28] These ML methods,

when used in regression mode, can be used in similar applications as mul-

tiple regression models such as general additive models (GAMs). These ML

techniques are non-parametric and have the critical advantage of not need-

ing to address many of the assumptions needed for statistical models such

as sample normality, homoscedasticity, independence, adherence to other

strict parametric assumptions, and the careful handling of interaction ef-

fects.[29] ML predictive models have the potential to supplement more clas-

sical statistical techniques which may result in improved air quality trend

analysis.

5.2.3.1 Decision trees and random forest

Random forest (RF) (also known as decision forests) which is utilised in this

study is an ensemble decision tree ML method.[30,31] Decision trees use a bi-

nary recursive classifying algorithm which creates “pure” nodes by splitting

observations into two homologous groups. The recursive nature of the al-
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gorithm means splitting is repeated until node purity is achieved. Together

the entire series of splits, individually called nodes or branches, is referred

to as a tree. The recursive algorithm will always correctly classify input

data if the trees are allowed to grow to their maximum depth. Algorithms

of this sort are called greedy.[32] This greedy behaviour can result in very

deep trees (especially with continuous numeric variables) where the final

split is only evaluating two observations i.e., a singleton node. Models such

these will very rarely generalise to new data which was not used to train

the model. Therefore, decision trees are prone to overfitting.[33] RF con-

trols for this disadvantage by growing many individual decision trees from

a training set using a process called bagging (bootstrap aggregation). RF is

an ensemble method because the model consists of many individual trees/-

models/learners grown from bagged data but when used for prediction, all

the trees’ outputs are used together (Figure 5.1).

Bagging refers to randomly sampling observations with replacement from

the training set along with sampling of explanatory variables.[35] A set which

results from bagging is called out-of-bag data (OOB) and OOB data will al-

ways be lacking some of the input data. When a single tree is grown from

OOB data, it is unlikely to contain the same observations and variables used

by other trees if the process is repeated. RF models usually contain a few

hundred trees using OOB data and this creates a forest which consists of

many decorrelated trees which have been trained on different subsets of the

training set (Figure 5.1). Every tree can then be used to predict and the

predictions are aggregated to form a single prediction. In regression ap-

plications, the mean of predictions is used. Somewhat counter intuitively,

the bagging process and ensemble predictions addresses decision trees’ ten-

dency to overfit training sets.[36] This allows RF to produce predictive mod-

els which generalise well and predictive performance is generally consid-

ered among the best of any ML technique.[37]

RF also has the advantage of not being a “black-box” method.[38] Deci-

sion trees are one of the few ML techniques where the learning process can
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...
Training set

Testing set

nOut-of-bag
data

Single prediction

Out-of-bag
data

Out-of-bag
data

Validation
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Figure 5.1: Conceptual diagram of a random forest model. Many out-of-

bag samples are taken from the training set and different decision trees are

grown. After many decision trees are grown, termed the forest, all trees

are used to form a single prediction. The predictions can then be validated

using the test set which is withheld from the training process. Tree icons

are from freepik.com [34].
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be explained, investigated, and interpreted. In the case of artificial neu-

ral networks or kernel based learning methods, this is much more difficult

to do.[31,33] RF models can be investigated with partial dependence plots

which demonstrate the relationships among variables and a variable’s im-

portance as a predictor can be determined. RF can be used in unsupervised,

regression, or classification modes, accepts numeric and categorical vari-

ables, and is known to be simpler to tune when compared to other decision

tree methods which usually require pruning; a process which removes some

of the grown branches from the forest. The combination of these attributes

has made RF a popular ML technique.[29,36]

5.2.4 Objectives

Improvements in the pre-processing steps for air quality trend analysis need

to be made which control, or account for meteorology and allow for more

robust trend and intervention exploration. This paper has the overall ob-

jective to present a meteorological normalisation technique which uses RF

predictive models to prepare ambient atmospheric pollutant concentration

data for trend analysis. Specifically, this paper will (i) present a meteo-

rological normalisation technique using RF predictive models using rou-

tine data which will be accessible to most data users, (ii) present a trend

analysis of the meteorologically normalised time series, and (iii) use RF’s

advantage of being able to interpret the learning processes to explain the

trends which are observed. Daily PM10 observations from across Switzer-

land will be used for the analysis. The use of daily Swiss PM10 data was

chosen because the data record and capture rates are excellent, and a pre-

vious study[39] conducted a PM10 trend analysis using a different method

for observations between 1991 and 2008. Therefore, this work also updates

and extends previous work.
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5.3 Methods

5.3.1 Data

Routine air quality observations from Switzerland were used in this study

and these data were accessed from the European Environment Agency (EEA)

AirBase and Air Quality e-Reporting (AQER) data repositories.[40,41] The

AirBase repository includes data between 1969 and 2012 (inclusive) while

the AQER repository contains data from 2013 onwards. These two reposi-

tories contain monitoring sites which are within Switzerland’s National Air

Pollution Monitoring Network (NABEL) and sites which are managed by

the Swiss Cantons (states).[42,43] Data from the two repositories have differ-

ent data models and file formats which required transformation and pro-

cessing into a standardised relational data model called smonitor.[44,45] The

Härkingen-A1 and Sion-Aéroport sites’ data are not submitted to the EEA,

therefore these data were requested and delivered directly from the Swiss

Federal Office for the Environment (FOEN).

Daily PM10 observations were used as the pollutant of interest and in

the models as the dependent variable. Observations between 1997 and 2016

were used and the observations were collected with the use of commercially

available gravimetric instrumentation and are subjected to quality assur-

ance and control procedures.[43] A total of 186400 PM10 observations from

31 sites were used. The sites were classified into six site types: rural, rural

mountain, urban background, suburban, rural motorway, or urban traffic

based on classifications in the AQER reporting system. For site locations

and details see Table 5.1 and Figure 5.2.

The 31 PM10 monitoring sites where chosen for their suitably for use in

trend analysis. The main condition was that PM10 observations needed to

be unbroken for at least five years. One exception was made for Zürich-

Schimmelstrasse. Zürich-Schimmelstrasse has a broken PM10 time series

due to PM10 monitoring occurring every second year between 2002 and

2010, however, these data were still considered valuable to include in the
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analysis. All other sites had very high data capture rates (median of 99 %)

for the duration they were operational. Five monitoring sites were closed

before, or did not have PM10 data to the end of the analysed time period

(the end of 2016) but until their date of closure, had uninterrupted PM10

time series.

Table 5.1: Information for the Swiss PM10 and meteorological monitoring

sites used in this study.
Site name Latitude Longitude Elevation (m) Site type Site name ISD (met.)

Avully-Passeiry 46.163 6.005 427 Rural Geneva Cointrin

Magadino-Cadenazzo 46.160 8.934 203 Rural Locarno - Magadino

Payerne 46.813 6.944 489 Rural Payerne

Saxon 46.139 7.148 460 Rural Sion

Tänikon 47.480 8.905 538 Rural Aadorf-Taenikon

Härkingen-A1 47.312 7.821 431 Rural motorway Wynau

Sion-Aéroport-A9 46.220 7.342 483 Rural motorway Sion

Chaumont 47.050 6.979 1136 Rural mountain Chasseral

Rigi-Seebodenalp 47.067 8.463 1031 Rural mountain Luzern

Basel-Binningen 47.541 7.583 316 Suburban Bale Mulhouse

Dübendorf-EMPA 47.403 8.613 432 Suburban Zuerich-Fluntern

Ebikon-Sedel 47.068 8.301 482 Suburban Luzern

Ittigen 46.976 7.479 460 Suburban Bern-Zollikofen

Lugano-Pregassona 46.026 8.968 305 Suburban Lugano

Meyrin-Vaudagne 46.231 6.074 439 Suburban Geneva Cointrin

Opfikon-Balsberg 47.439 8.570 430 Suburban Zuerich-Fluntern

Thônex-Foron 46.196 6.211 422 Suburban Geneva Cointrin

Basel-St-Johann 47.566 7.582 260 Urban background Bale Mulhouse

Lugano-Università 46.011 8.957 280 Urban background Lugano

Luzern-Museggstrasse 47.056 8.310 460 Urban background Luzern

Winterthur-Obertor 47.500 8.732 448 Urban background Zuerich-Fluntern

Zürich-Kaserne 47.378 8.530 409 Urban background Zuerich-Fluntern

Basel-Feldbergstrasse 47.567 7.595 255 Urban traffic Bale Mulhouse

Bern-Bollwerk 46.951 7.441 536 Urban traffic Bern Belp

Bern-Brunngasshalde 46.949 7.450 533 Urban traffic Bern-Zollikofen

Genève-Ile 46.206 6.143 375 Urban traffic Geneva Cointrin

Genève-Wilson 46.216 6.151 376 Urban traffic Geneva Cointrin

Lausanne-César-Roux 46.522 6.640 530 Urban traffic Geneva Cointrin

St-Gallen-Rorschacherstrasse 47.429 9.387 660 Urban traffic St. Gallen

Zürich-Schimmelstrasse 47.371 8.524 415 Urban traffic Zuerich-Fluntern

Zürich-Stampfenbachstrasse 47.387 8.540 445 Urban traffic Zuerich-Fluntern

Surface meteorological variables to be included in the modelling process

such as wind speed, wind direction, and atmospheric temperature were ac-
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Figure 5.2: Locations of the air quality and meteorological sites included in

the analysis. The map outline is the extent of Switzerland.

cessed from the Integrated Surface Database (ISD) with the worldmet R

package.[46,47] These observations are generally available as hourly means

and were therefore aggregated to daily averages. The wind speed aggre-

gation used was the scalar averages which represents average atmospheric

motion well at this aggregation period.[48] Generally, the closest ISD site

with a complete time series was matched to an air quality monitoring site,

but there were cases where the data record was poor for the closest site,

or it was unrepresentative (usually due to large differences in elevation) so

another ISD site was used instead. Some air quality monitoring sites moni-

tor meteorological variables, but often the time series were not complete in

the ISD database and another site was therefore supplemented. Fourteen

unique ISD sites were used and Table 5.1 shows which ISD site was used for

each of the 31 air quality monitoring sites.

Synoptic scale weather patterns were included into the models by us-

ing the Swiss Weather Type Classifications (WTC). The WTC is an objec-
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tive and automatic classification scheme which is used to describe broad

synoptic scale circulation patterns in Switzerland. There are ten different

WTCs types but only the CAP9 classification was used which defines nine

distinct clusters of synoptic weather patterns calculated by principal com-

ponent analysis.[49] Descriptions of what these nine classes represent are

displayed in Table 5.2.

Table 5.2: The nine synoptic scale weather type classifications (WTC) used

in this study.[49]

CAP9 class CAP9 description

1 North-East, indifferent

2 West-South-West, cyclonic, flat pressure

3 Westerly flow over Northern Europe

4 East, indifferent

5 High Pressure over the Alps

6 North, cyclonic

7 West-South-West, cyclonic

8 High Pressure over Central Europe

9 Westerly flow over Southern Europe, cyclonic

Modelled daily boundary layer heights between 1997 and 2016 were

sourced from the European Centre for Medium-Range Weather Forecasts

(ECMWF) ERA-Interim data portal.[50] The highest spatial resolution out-

puts were used which were at 0.125 × 0.125 decimal degrees. The NetCDF

ECMWF model outputs were promoted to a raster stack and the midday

boundary layer heights were extracted for each of the 31 monitoring sites.[51,52]

Many of the Swiss urban monitoring sites are within close proximity and

therefore only 23 unique raster cells were needed to represent the 31 sites.

After the raster extraction, daily time series of boundary layer heights for

each site were generated. The modelled ECMWF outputs were tested against

radio sounding observations at Payerne before 2010 when such data ex-

ists. Although the two data sets did not agree well, a positive correlation
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was present and inclusion of boundary layer variable was done to allow the

models to have a predictor which represented approximate atmospheric sta-

bility and the modelled data was judged to be suitable for this purpose.

For each of the 23 raster cells, daily back trajectories were calculated us-

ing the HYSPLIT model for the monitored period of PM10 (1997–2016).[53]

The back trajectories were calculated backwards in time for 120 hours and

used half the mean monthly boundary layer height as their starting height.

This start height ensured that the back trajectory receptor was aloft, but

remained within the boundary layer throughout the year. The back trajec-

tories were then clustered into six clusters using the Euclidian distance and

these clusters were used to represent the common air masses the PM10 mon-

itoring sites were exposed to. The use of six clusters was a heuristic, but the

six clusters represented distinct air masses and they were very stable across

the 23 receptor locations. The HYSPLIT clustering function in openair was

used to determine these clusters.[54]

5.3.2 Modelling

RF models which used PM10 as the dependent variable for each of the 31

air quality monitoring sites were grown. All RF models used the same ex-

planatory variables to predict daily PM10 concentrations. The explanatory

variables were: wind speed, wind direction, atmospheric temperature, syn-

optic weather pattern, boundary layer height, air mass cluster based on the

HYSPLIT back trajectories, a linear trend term which was the Unix time of

the observation (number of seconds since 1 January, 1970), Julian day (day

of the year) as the seasonal term, and day of the week. The air mass cluster,

the synoptic weather pattern, and day of the week variables were categori-

cal variables while all others were numeric. All variables were used within

their response scale with no transformations being applied. The random-

Forest R package was used as the interface to the RF functions reported

by Breiman [30].[55] A daily PM10 concentration was only modelled if valid

wind speed data was available for that day. For all other input variables,
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missing data was imputed with the median of numeric variables and the

mode for categorical variables. Training of the models was conducted on

80 % of the input data and the other 20 % was withheld from the training

and used to validate the models once they had been grown.

RF only requires a handful of tuning parameters (also called hyper pa-

rameters) to be specified by the user.[29,55] To determine the optimal values,

many models were run with different combinations of tuning parameters.

The model performance statistics using the testing set (data withheld from

the training step) and run times were evaluated to judge what hyper pa-

rameters grew the best performing models. For this application, the models

were found to be rather insensitive to tuning parameters. However, the

number of variables used to grow a tree was set to three, the minimum

node-size or depth was five, and the number of trees within a forest was set

at 300 for all models.

5.3.2.1 Meteorological normalisation

The meteorological normalisation of the daily PM10 time series was achieved

by repeatedly sampling and predicting using individual site RF models,

rather than attempting to solve-for, and then remove the short term vari-

ation in a time series. The RF predictive model for a site was used to predict

every PM10 concentration 1000 times. For every prediction, the explanatory

variables, with the exception of the trend term, were sampled without re-

placement and randomly allocated to a dependent variable observation (a

PM10 concentration). The 1000 predictions were then aggregated using the

arithmetic mean and this represented “average” meteorological conditions

and hence, this was the meteorologically normalised trend. If more than

a thousand predictions were made, only a very minor reduction of noise

was achieved. The functions used to grow the RF models and apply the

meteorological normalisation procedure reported here are available in the

normalweatherr R package.[56]
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5.3.3 Trend tests

After the normalised time series for a site had been calculated, formal trend

tests were preformed. The Theil-Sen estimator accounting for autocorre-

lation was used at the 95 % confidence level (α = 0.05) to indicate a sig-

nificant trend. The autocorrelation consideration process results in more

conservative confidence intervals for the trend estimates. These functions

were also provided by the openair R package.[54]

5.4 Results and discussion

5.4.1 Random forest model evaluation

The predictive random forest (RF) models performed well for most PM10

monitoring sites. All mean squared errors (MSE) and R2 values are dis-

played in tabular form in Table 5.3. R2 values ranged from 54 to 71 %

(Figure 5.3). This indicates for some sites in Switzerland PM10 concentra-

tions could be well explained by a combination of surface meteorological

conditions, boundary layer height, synoptic scale conditions, back trajec-

tory receptor air mass clusters, and time variables which acted as proxies

for emission strength. There were only two obvious patterns observed be-

tween site type and predictive model performance: the rural motorway sites

performed in a similar way and the rural mountain sites’ models generally

performed worse than other site types when using the R2 metric. However,

there were only two of each of these site types analysed in this study, and

the other four site types did not demonstrate any conclusive grouping with

model performance measures (Figure 5.3).

The most important explanatory variable for PM10 concentrations de-

pended on which site was being investigated. However, generally, wind

speed was the variable with the greatest importance for prediction (Fig-

ure 5.4). Variable importance was defined as the difference between the

MSE of each tree in the forest, minus the MSE for each independent variable,
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Table 5.3: Random forest model performance statistics for 31 PM10 air qual-

ity monitoring sites in Switzerland.
ID Site Site type MSE R2 (%)

1 Avully-Passeiry Rural 54.824 59.980

2 Magadino-Cadenazzo Rural 129.356 56.898

3 Payerne Rural 60.854 62.431

4 Saxon Rural 64.023 62.097

5 Tänikon Rural 51.140 67.523

6 Härkingen-A1 Rural motorway 84.145 65.531

7 Sion-Aéroport-A9 Rural motorway 53.355 64.646

8 Chaumont Rural mountain 26.095 61.019

9 Rigi-Seebodenalp Rural mountain 32.276 53.513

10 Basel-Binningen Suburban 65.807 64.247

11 Dübendorf-EMPA Suburban 64.563 63.084

12 Ebikon-Sedel Suburban 68.702 54.373

13 Ittigen Suburban 68.965 64.415

14 Lugano-Pregassona Suburban 84.349 55.492

15 Meyrin-Vaudagne Suburban 52.188 59.037

16 Opfikon-Balsberg Suburban 57.011 62.900

17 Thônex-Foron Suburban 61.899 66.192

18 Basel-St-Johann Urban background 63.320 66.413

19 Lugano-Università Urban background 173.909 55.792

20 Luzern-Museggstrasse Urban background 89.484 62.690

21 Winterthur-Obertor Urban background 68.498 57.971

22 Zürich-Kaserne Urban background 73.583 61.867

23 Basel-Feldbergstrasse Urban traffic 62.058 63.296

24 Bern-Bollwerk Urban traffic 94.146 67.708

25 Bern-Brunngasshalde Urban traffic 66.208 57.540

26 Genève-Ile Urban traffic 66.777 59.299

27 Genève-Wilson Urban traffic 80.017 62.025

28 Lausanne-César-Roux Urban traffic 80.206 61.248

29 St-Gallen-Rorschacherstrasse Urban traffic 55.139 60.131

30 Zürich-Schimmelstrasse Urban traffic 91.317 70.609

31 Zürich-Stampfenbachstrasse Urban traffic 75.976 61.974
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Figure 5.3: The R2 values for the 31 random forest models grown for the

Swiss PM10 monitoring sites.
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Figure 5.4: Variable importance for the 31 Swiss PM10 monitoring sites’

random forest models. Dots represent the mean increase in mean square

error (MSE) and the lines represent the interquartile range for each variable.
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scaled by the standard deviation of the differences.[55] Other sites demon-

strated that the seasonal term (Julian day), or trajectory cluster were the

most important variables to explain variability in PM10 concentrations (Fig-

ure 5.4). This indicates that both local and regional scale processes were

important when explaining PM10 concentrations in Switzerland. Day of the

week and the synoptic-scale classification (WTC) were generally the least

important variables in the RF models, but both variables always contributed

to the models’ predictive ability (Figure 5.4). Including variables with little

predictive power does not negatively effect the performance of RF mod-

els and therefore there was no attempt to remove such variables from the

models. Interestingly, wind direction was often a relatively unimportant

variable (Figure 5.4). This may be due to daily wind direction averages not

contributing much information gain in the model because the aggregation

period results in the metric representing atmospheric motion rather poorly.

For all of the 31 sites, the normalised PM10 was approximately monotonic

and no seasonal component was apparent which made formal trend tests

suitable.

5.4.2 PM10 trend analysis

In all but two PM10 Swiss monitoring sites, normalised PM10 concentra-

tions were found to be significantly decreasing at the α = 0.05 level be-

tween 1997 and 2016. Significantly decreasing normalised PM10 trends at

individual sites ranged from -0.09 to -1.16 µgm−3 year−1 (Figure 5.5). These

values were similar to the normalised trends reported by Barmpadimos et

al. [39] of -0.15 to -1.2 µgm−3 year−1 which analysed Swiss PM10 trends

between 1991 and 2008 with a different method (general additive models;

GAMs). The similarities between the two studies suggests that PM10 con-

centrations have continued to reduce at the same rate as reported in the past,

which also validates the performance of emission control measures relating

to vehicular and heating PM emissions and confirms the trends that were

modelled based on emission inventories and their projections.[57] Luzern-
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Museggstrasse was the only monitoring site which demonstrated a signifi-

cantly increasing normalised PM10 trend of 0.14 µgm−3 year−1. However,

this facility stopped monitoring PM10 in 2009 and therefore it is unknown

if this trend continued to more recent times. The two monitoring sites in

Geneva also did not have PM10 observations to the end of the analysis pe-

riod. PM10 at Genève-Wilson demonstrated no significant normalised trend

and Genève-Ile had the least significant normalised PM10 trend across the

31 sites analysed (Figure 5.5). This may suggest that Geneva’s PM10 trends

are different from the rest of Switzerland, but with the lack of more recent

observations, this is uncertain.

Sites classified as “urban traffic” had a greater decreasing trend when

compared to other site types (Figure 5.6). When the six site type trends

were aggregated together, the stronger decreasing trend for traffic sites was

clear with an average trend of -0.77 µgm−3 year−1, compared to the other

site types which ranged between -0.39 and -0.63 µgm−3 year−1 (Figure 5.6).

Barmpadimos et al. [39] also reported trends based on site type but their

site type definitions were not the same as used in this study so they should

not be directly compared. The higher first four points in the rural panel

of Figure 5.6 was caused by the aggregated time series only containing the

Magadino-Cadenazzo monitoring site at the very beginning of the analysis

period. Magadino-Cadenazzo is located south of the Alps and experiences

higher average concentrations of PM10 compared to the other rural sites.

Without the observations from the other rural sites, these higher concen-

trations leveraged the mean seen in Figure 5.6. These observations were

still included in the analysis and the Theil-Sen estimator used is hardened

against outliers so this will have minimal influence on the trend estimate.

Difference in annual mean PM10 concentrations between the rural and

urban traffic site types for 2016, the final year of analysis, was 4.7 µgm−3

compared to 9.8 µgm−3 in 1997. The deltas between rural and other site

types (excluding the mountainous sites) also decreased during the analysis

period. This suggests the locations which are influenced by immediate PM10
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Figure 5.5: Meteorologically normalised PM10 trends for the 31 sites anal-

ysed in Switzerland between 1997 and 2016. The annotation format is:

Slope [Lower 95% CI, Upper 95% CI] in µgm−3 year −1.
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sources are becoming less polluted by local emissions and are increasingly

heading towards rural background levels. The rural and urban background

sites’ trend metrics are very similar indicating that these two site types are

behaving in a very similar way in respect to changes to PM10 concentrations

over time.
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Figure 5.6: Aggregated meteorologically normalised PM10 trends for the

six site types in Switzerland between 1997 and 2016. Points represent the

aggregated meteorologically normalised monthly means and lines represent

the trend estimate. The annotation format is: Slope [Lower 95% CI, Upper

95% CI] in µgm−3 year −1, and n represents the number of sites in the

group.

The site type classifications used in this study can be sorted by their

increasing anthropogenic PM10 load in this order: rural mountain, rural,

suburban, urban background, and urban traffic. Site types which experi-

ence more anthropogenic PM10 emissions could be expected to demonstrate

greater reductions in PM10 concentrations when emission inventions or con-

trols are applied. This continuum is only partially shown in the trend mag-
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nitudes however with suburban and rural motorway sites not conforming to

this expected pattern (Figure 5.6). In fact, the suburban sites demonstrate

the smallest decrease in PM10 concentrations.
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Figure 5.7: PM10 trend slope estimates of meteorological normalised and

non-meteorological normalised observations for five site types in Switzer-

land between 1997 and 2016. The line ranges represent the 95 % confidence

intervals of the slope estimates.

The rural motorway trends can be explained because although PM (tailpipe)

emissions for road traffic have decreased in Switzerland between 1997 and

2016, the volume of traffic using the adjacent roads has increased.[58] This

increase in traffic would have offset the lower emissions during the time

period and thus PM concentrations would not have decreased as much as

could be expected based on vehicular emissions alone. The suburban sites’

lack of decrease is more difficult to explain. There are many processes which
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could explain this feature, but we attribute this result due to changes in the

surrounding environment of the suburban sites. Many of the monitoring

sites in Switzerland which are classed as suburban have become increas-

ingly urban during the period of analysis (1997 and 2016). Therefore, some

of these suburban monitoring sites are being influenced by more urban-like

processes and emissions due to the development in their vicinity.

Woodburning is a source of PM10 in the alpine, suburban, and urban

areas in Switzerland. The number of woodburning appliances and heat-

ing demand is decreasing over time and this change will contribute to the

trends observed in Figure 5.6.[59] However, the quantification of the reduc-

tion in woodburning activity on PM10 concentrations among the different

site types is cannot be conducted with the current data concerning wood-

burner usage.

The comparison of the RF meteorological normalisation models with

other techniques was not a primary objective of this work. However, it

is important to consider what effect meteorological normalisation had on

the trend estimates. To investigate this, the PM10 observations which were

subjected to the meteorological normalisation process were aggregated to

monthly means and their trends tested with the Theil-Sen test with identical

parameters as used on the normalised time series. This could be considered

a “standard” and routine procedure for air quality data analysis. With the

exception of the rural motorway sites, the normalised trend estimate was

found to be greater (more negative), than the non-normalised trend esti-

mates (Figure 5.7). This indicates that meteorology in Switzerland between

1997 and 2016 has masked or obscured changes in PM10 emissions during

the same period in the observational record. Because the meteorological

normalisation technique helps to explain variation in PM10 concentrations,

the normalised trend estimates had a much lower range of uncertainty when

compared to the aggregated observations in all cases (Figure 5.7). Therefore,

not only did the meteorological normalisation technique generally estimate

more negative trends compared to standard methods, the trends calculated
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were more robust and less uncertain when compared to a routine analysis

method which would lead to quicker identification of significant trends.

5.4.2.1 Explaining the observed trends

One of the primary advantages of decision tree methods like RF over other

machine learning techniques is the ability to interpret and explain the mod-

els and discussion of this is presented in Section 5.2.3.1. Here, this ad-

vantage will be leveraged to help explain some of the features in the PM10

trends in Switzerland between 1997 and 2016.

Partial dependence plots allow RF models to be evaluated and to con-

firm how the explanatory variables are being used in the models for predic-

tion.[38] For the application presented here, there are general physical and

chemical processes which should be confirmed in the RF models. For exam-

ple, it can be expected that PM10 concentrations will be inversely related to

wind speed due to increased atmospheric dispersion, and that wintertime

concentrations will be higher than other seasons resulting from a combina-

tion of greater emissions and atmospheric stability. These general predic-

tions and processes were confirmed by the RF models’ partial dependence

plots (one site shown as an example in Figure 5.8).

The partial dependence plots of the Zürich-Stampfenbachstrasse RF model

(Figure 5.8) showed some interesting features and were typical for Switzer-

land’s traffic influenced sites. The y (vertical) axis for each plot represents

the dependence of PM10 concentration on one variable if all other variables

are fixed at their average level. The most important variable at this location

was wind speed and the non-linear relationship is present in Figure 5.8.

When wind speeds were very low, the PM10 concentrations were on average

over 38 µgm−3 day−1 but the influence on PM10 concentrations was strong

and therefore at wind speeds greater than 3 ms−1, average concentrations

decreased to under 22 µgm−3 day−1 (Figure 5.8). There was minimal evi-

dence of increasing PM10 concentrations at high wind speeds due to resus-

pension of wind blown PM at any monitoring site in the RF models.
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Figure 5.8: Partial dependence plots of the explanatory variables used in

the Zürich-Stampfenbachstrasse PM10 random forest model.

Weekday was the variable of least importance for the Zürich- Stampfen-

bachstrasse RF model but the partial dependence plot still demonstrates

what would be expected. Weekdays (days 1–5; Monday–Friday) were more

polluted than the weekend days due to higher traffic sourced emissions, but

the variability of PM10 concentrations among the weekdays was less than

2 µgm−3 day−1, i.e., the response scale was small (Figure 5.8). There was

evidence of a sequential loading process over the weekdays which peaked

on Thursdays (day 4) and also lower concentrations during the early work-

ing week (Monday and Tuesday; days 1 and 2) which resulted from reduced

precursor PM emissions during the weekend, especially Sunday.

The seasonal component represented by Julian day showed a similar pat-

tern to air temperature (Figure 5.8). Despite the similar shapes of depen-

dencies on PM10 for these variables, they represent rather different pro-

cesses. The Julian day dependence represents the changes in local and re-

gional emissions which influence PM10 concentrations over the course of

the year. In the case of Zürich-Stampfenbachstrasse, this will be dominated

by changes in regional background concentrations with the addition of lo-
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cal traffic emissions. The seasonal variation of emissions which effect PM10

concentrations at Zürich-Stampfenbachstrasse spans 10 µgm−3, and this in-

dicates that the seasonal effect is important to consider. When Julian day

was removed from the RF models, the dependence on air temperature and

boundary layer height did not change and this shows that the models were

able to differentiate the different processes correctly despite their collinear-

ity.

The back trajectory cluster variable was important for many PM10 moni-

toring sites including Zürich-Stampfenbachstrasse (Figure 5.4 and 5.8). The

decoded clusters’ descriptions displayed in Figure 5.8 can be found in Ta-

ble 5.4 but the two most polluted air masses, 5 and 6 represented a local flow

from south west Switzerland and a strong north east flow from Poland and

southern Germany respectively (Figure 5.9). This indicates that air masses

from surrounding European states can cause polluted PM10 conditions in

Zürich, as can periods of calm and localised flows.

Table 5.4: The six decoded HYSPLIT back trajectory clusters. The integer

cluster key was used in the random forest models and the decoded cluster

was determined after the cluster analysis.

Cluster Decoded cluster

1 Strong northerly flow from north sea

2 Very strong north west flow from Atlantic Ocean

3 Westerly flow from Atlantic Ocean

4 South west flow from France and western Switzerland

5 Local flow from south west Switzerland

6 Strong north east flow from Poland and southern Germany

The partial dependence plots indicate that most monitoring sites ex-

perience their minimum PM10 concentrations when the boundary layer is

≈ 1000 metres high, but concentrations increase again once the boundary

layer increases over 2000 metres (Figure 5.8). This is an interesting phe-

nomenon and it suggests that there are two regimes in Switzerland which
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Figure 5.9: The six back trajectory clusters for the Zürich receptor location

between 1997 and 2016 which were used by the random forest PM10 mod-

els. The clusters are decoded in Table 5.4 and the percentages indicate the

frequency of occurrence.
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drive elevated PM10 concentrations. The first is the obvious (and expected)

combination of low temperatures, low boundary heights, and high rates of

surface-based emissions during wintertime. These factors combine to cre-

ate a poor dispersive environment which leads to high pollutant concen-

trations. The second regime which causes elevated PM10 concentrations is

active when temperatures are above 20◦C and the boundary layer is above

2000 metres (Figure 5.8). These conditions occur with every air mass clus-

ter and under all synoptic weather patterns which are experienced at these

higher temperatures. Therefore, this regime is associated with warm, dry,

dusty, and deep convective boundary layer conditions which favour trans-

portation of PM10 from other locations and the generation of secondary

aerosol and other processes driven by photochemistry. Daily sulfur (in

PM10) observations are available at the Payerne monitoring site and SO2−
4

concentrations do indeed increase at higher boundary layer heights while

primary pollutants such as NOx do not (Figure 5.10). These results are con-

sistent with enhanced sulphate formation in summertime when the forma-

tion of sulphate through photochemistry is most important. By contrast,

the concentration of primary pollutants such as NOx tend to decrease with

increasing boundary layer height due to increased mixing.

The partial dependence plots of the seasonal and trend components also

demonstrate that while the trend component decreased between 1997 and

2016, the seasonal component also decreased at some of the Swiss PM10

monitoring sites. The best example of this was demonstrated at Magadino-

Cadenazzo, a rural site in Ticino in the south of Switzerland (Table 5.1 and

Figure 5.2). The decrease in the seasonal component was especially true af-

ter 2006 and during early winter at Magadino-Cadenazzo (December; Fig-

ure 5.11(a)). As discussed above, this further validates air pollutant emis-

sion controls and interventions because both the background concentration

and the local loading of PM10 during winter is decreasing simultaneously.

There is evidence however that the wintertime loading has plateaued since

approximately 2014 at this monitoring site (Figure 5.11(b)).
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Figure 5.10: Mean normalised concentrations of SO2−
4 , a secondary PM

species and NOx for binned boundary layer heights (bin was set at 50 me-

tres) at Payerne between 1997 and 2016.
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Figure 5.11: (a) PM10 partial dependence on trend and seasonal components

(Date and Julian day respectively) and (b) annual predicted seasonal com-

ponent at Magadino-Cadenazzo where dots represent the mean and lines

indicate the amplitude of the seasonal component.
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The rural mountain Chaumont and Rigi-Seebodenalp monitoring sites

have low PM10 concentrations when compared to the other Swiss sites and

site types (Figure 5.5 and Figure 5.6). Both of these locations are isolated

and are located above 1000 metres of elevation (Table 5.1 and Figure 5.2).

Therefore, these two monitoring sites represent pristine locations. The PM10

concentrations at both locations decreased at ≈ -0.45 µgm−3 year−1 between

1997 and 2016 indicating a wider-scale European reduction in PM10 and

its precursors.[13] Interestingly, the normalised trend at Rigi-Seebodenalp

showed an additional PM10 loading between April 8 and 26, 2010 due to

the Eyjafjallajökull Icelandic volcanic eruption[60,61] but at Chaumont, this

was not discernible (not shown). This demonstrates that the two sites do

behave differently and are exposed to different processes at times. The dif-

ferences between the two sites are not clear in the concentration data alone

and demonstrates a potentially useful side effect of the technique where it

can be used to investigate abnormal events.

The RF models for these two rural and mountainous locations also demon-

strated different processes compared to other site types. The most interest-

ing feature was that the relationship between air temperature and boundary

layer height with PM10 concentrations differed from the other Swiss mon-

itoring sites. The two mountainous sites experienced their highest PM10

concentrations at high temperatures (Chaumont shown in Figure 5.12(a)).

This difference in dependence was due to these monitoring locations being

intermittently above the boundary layer, which was also confirmed with

the boundary layer height partial dependence plots (Figure 5.12(b)). When

these elevated sites were within the boundary layer during warmer peri-

ods, the relatively well mixed PM10 influenced the monitoring locations,

but during cooler times, the sites were located in the free troposphere de-

coupled from surface based emissions. This generally resulted in the ele-

vated monitoring sites experiencing lower concentrations of PM10 during

cooler periods which was not the case for monitoring sites located at lower

elevations, for example, Basel-St-Johann, an urban background site located
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at 260 metres of elevation (Figure 5.12).
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Figure 5.12: Partial dependence of PM10 concentrations on (a) air temper-

ature and (b) boundary layer height at two monitoring sites with different

site type classifications.

5.5 Conclusions

This paper presented a meteorological normalised PM10 trend analysis us-

ing daily data from Switzerland. Random forest (RF) predictive models

which were used to explain variation of PM10 concentrations using surface

meteorology, synoptic scale weather patterns, boundary layer height, back

trajectory clusters, and time variables. The models were then used to pre-

pare the PM10 time series to create a meteorological normalised trend which

was suitable for formal trend analysis.

The RF performed well for the 31 monitoring sites with R2 values up

to 71 %. Wind speed, Julian day (the seasonal component), and back tra-

jectory cluster were generally the most important predictors for PM10 con-

centration. For 29 of the 31 monitoring sites analysed, PM10 concentra-

tions were found to be significantly decreasing at rates between -0.09 and
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-1.16 µgm−3 year−1 and on average, urban traffic sites demonstrated the

greatest decrease of -0.77 µgm−3 year−1. The RF models’ learning pro-

cess was interpreted with partial dependence plots to explain the trends

observed. There was evidence of a decrease in the seasonal component at

some sites, i.e., the wintertime loading has decreased, and the monitoring

sites above 1000 metres of elevation showed interesting dependences on air

temperature which were not demonstrated at other sites because they are

intermittently located above the boundary layer. The models also indicated

that across Switzerland, elevated PM10 concentrations occur in poor disper-

sion conditions as well as at high temperatures with a deep boundary layers

due to high rates secondary PM generation resulting from photochemical

processes.

The meteorological normalisation technique using RF was found to be

helpful in the PM10 trend analysis conducted and resulted in more negative

and less uncertain trend estimates compared to another standard analysis

method. The predictive modelling framework and technique was found to

be easy to implement and user friendly because RF does not need to con-

form to strict parametric assumptions. The technique described could be

used in many air quality exploratory data analysis applications.
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Chapter 6

Exploring air quality

interventions

This work was originally published in Science of the Total Environment on

October 25, 2018.†

6.1 Abstract

Interventions used to improve air quality are often difficult to detect in air

quality time series due to the complex nature of the atmosphere. Meteoro-

logical normalisation is a technique which controls for meteorology/weather

over time in an air quality time series so intervention exploration (and trend

analysis) can be assessed in a robust way. A meteorological normalisa-

tion technique, based on the random forest machine learning algorithm

was applied to routinely collected observations from two locations where

known interventions were imposed on transportation activities which were

expected to change ambient pollutant concentrations. The application of

progressively stringent limits on the content of sulfur in marine fuels was

very clearly represented in ambient sulfur dioxide (SO2) monitoring data

in Dover, a port city in the South East of England. When the technique

was applied to the oxides of nitrogen (NOx and NO2) time series at London

†https://doi.org/10.1016/j.scitotenv.2018.10.344
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Marylebone Road (a Central London monitoring site located in a complex

urban environment), the normalised time series highlighted clear changes

in NO2 and NOx which were linked to changes in primary (directly emit-

ted) NO2 emissions at the location. The clear features in the time series

were illuminated by the meteorological normalisation procedure and were

not observable in the raw concentration data alone. The lack of a need for

specialised inputs, and the efficient handling of collinearity and interaction

effects makes the technique flexible and suitable for a range of potential

applications for air quality intervention exploration.

6.2 Graphical abstract

Acquire and load 
observations

Model with
random forest

Clearly detect and 
explain interventions

Intervention 
detected

Pre-intervention

Post-intervention

Figure 6.1: Graphical abstract. Table and tree icons are from freepik.com

[1].

6.3 Introduction

Across all spatial and temporal scales, weather influences concentrations

of atmospheric pollutants and in turn ambient air quality.[2,3] The effects

of weather (or meteorology) on air quality are often much greater than

intervention or management efforts to control air pollution and therefore

intervention events can be very difficult to detect and quantify within an
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observational record.[4] Similarly, when considering trends in ambient air

pollution, it can be difficult to know whether a change in concentration is

due to meteorology or a change in emission source strength. Meteorological

variation can therefore frustrate the analysis of trends in different pollu-

tant species. If meteorology is not controlled or accounted for, the changes

in pollutant concentrations observed may be contaminated with meteoro-

logical variation rather than emission or chemically induced perturbations

which can lead to erroneous conclusions concerning the efficacy of air qual-

ity management strategies.[5,6] This issue is often acknowledged, but infre-

quently addressed.

Meteorological normalisation is one technique which can be used to con-

trol for meteorology over time in air quality time series. The central phi-

losophy of meteorological normalisation is to reduce variability in an air

quality time series with statistical modelling. The reduction of variability

is achieved by training a model which can explain some of the variation

of pollutant concentrations through a number of independent variables.

The independent variables used are typically surface-based meteorological

observations and time variables which act as proxies for regular emission

patterns such as hour of day and season.[7] However, in practice, any in-

dependent variable which could explain variations in pollutant concentra-

tions could be used. Once the model has been trained and it is found that

it can explain an adequate amount of the dependent variable’s variation,

the model can be used to remove the influence the independent variables

have on the dependent variable by sampling and predicting. The time se-

ries which results can then be exposed to further exploratory data analysis

(EDA) techniques such as formal trend analysis and/or intervention explo-

ration.[8] The normalised time series is in the pollutant’s original units and

can be thought of as concentrations in “average” or invariant weather con-

ditions.

There has been some air quality research conducted which uses the idea

of change-point analysis to investigate changes in atmospheric pollutant
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concentrations, for example Carslaw et al. [9] and Carslaw and Carslaw

[10]. Methods such as these rely on regime changes where a time series

abruptly shifts from one regime to another.[11] In the air quality domain,

this rarely happens, since changes are usually nuanced and occur progres-

sively with much variability which makes the generality of this approach

for investigating intervention efforts poor. Meteorological normalisation is

potentially a more general approach which enables its use in a greater range

of applications.

Atmospheric processes are complex, non-linear, and observations com-

monly record collinearity with other observations. These attributes make

the process of statistical modelling very challenging, especially so with para-

metric methods.[12] With the rise of machine learning algorithms, these at-

tributes can be much more easily accommodated due to the non-parametric

and robust nature of these techniques.[13] The meteorological normalisation

technique used here uses random forest, an ensemble decision tree machine

learning method as the modelling algorithm.

Random forest has been described very well and in depth elsewhere (see

Grange et al. [8], Friedman et al. [13], Breiman [14], Tong et al. [15], Ziegler

and König [16], and Jones and Linder [17]). However in brief, a single de-

cision tree is formed from a series of binary splits which results in homolo-

gous or “pure” groups. The splitting process is recursive which means split-

ting occurs until purity is achieved if the tree is allowed to grow to its max-

imum depth. Decision trees make no assumptions on the input data struc-

ture (they are non-parametric), allow for interaction and collinearity among

variables, and will ignore variables which are irrelevant to the dependant

variable.[16] Decision trees are fast to train, fast to make predictions, and are

conceptually simple to understand. However, they suffer heavily from over-

fitting, an issue where the model represents the training set well, but does

not generalise to sets which were not used for training.[17] Using a model

which predicts pollutant concentrations and suffers from overfitting would

result in the model being contaminated with noise from the training set and
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unreliable predictions would impede analyses.

Random forest is an algorithm which controls for the tendency of deci-

sion trees to overfit. The algorithm achieves this by sampling (with replace-

ment) the training set with a process called bagging (bootstrap aggrega-

tion).[18] In modern usage, sampling of the independent variables is usually

done during bagging too. Bagging results in a new, sampled set called out-

of-bag (OOB) data. A decision tree is then grown on the OOB data. The

bagging-then-tree growth is repeated, generally a few hundred times. Be-

cause OOB data is sampled, all the decision trees are grown on differing

observations and independent variables which leads to a “forest” of decor-

related trees. After training, all the individual trees within the forest are

used to predict, but their predictions are aggregated as a mean (or the mode

for categorical dependent variables) and that forms the single ensemble pre-

diction for the model.

The meteorological normalisation technique is pragmatic in respect to

the input variables required for many common applications. Generally,

routinely accessible surface meteorological variables are very effective for

the process and specialised or obscure variables are generally not necessary

for the technique to be applied. Although traffic counts, upper air data, and

outputs from weather models will usually strengthen a model’s explanatory

power, the existence or access to such variables is not a prerequisite, an at-

tribute which is very useful for most situations where such inputs are not

available. For pollutants which are primarily controlled by regional scale

processes, most notably particulate matter (PM) and ozone (O3), additional

variables such as boundary layer height, air mass cluster, or back trajectory

information would however be beneficial to include if possible and exam-

ples can be found elsewhere, for example Grange et al. [8].

The temporal variables used as independent variables in the meteoro-

logical normalisation models: Julian day, weekday, and hour of day are in-

cluded not for their direct influence on atmospheric concentrations, but be-

cause they act as proxies for cyclical emission patterns. Hour of day for ex-
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ample offers a term to explain emissions with a diurnal cycle such as traffic-

related rush hour emissions or domestic heating phases, while Julian day is

a seasonal term which represents emissions or atmospheric chemistry which

varies seasonally. These processes are generally strong drivers of concentra-

tions of most atmospheric pollutants.[19] Random forest’s ability to handle

collinearity and interaction between these and the other independent vari-

ables used and the lack of need of specialised or exotic inputs results in a

flexible tool kit for probing the influences of interventions on air quality

time series.

6.4 Objectives

The primary objective of this paper is to apply a meteorological normali-

sation technique based on random forest, a machine learning algorithm to

detect interventions in air quality monitoring data. This is done to gain un-

derstanding of what physical and chemical processes are driving ambient

pollutant concentrations and highlight the suitability and potential of the

technique to other applications.

Two case studies are presented using routine data sets in Dover, South

East England where sulfur fuel limits of ships were imposed and changes

in ambient sulfur dioxide (SO2) concentrations are expected and in Central

London where congestion charging and local bus fleet management has per-

turbed oxides of nitrogen (NOx) emission sources. The changes in concen-

trations and emissions are then explained in respect to implementation of

policy which would be difficult to detect with other EDA techniques where

no meteorological normalisation is performed.
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6.5 Methods

6.5.1 Data

6.5.1.1 Port of Dover SO2

Hourly SO2 concentrations were analysed from the Port of Dover, a major

port located in Kent in the South East of England. Two air quality moni-

toring sites, Dover Docks and Dover Langdon Cliff’s SO2 data were queried

from the Kent Air Quality database.[20] A nearby meteorological site, Lang-

don Bay located to the west of the port was used to provide surface mete-

orological observations and were accessed from NOAA’s Integrated Surface

Database (ISD) (Figure 6.2(a)).[21] The monitoring sites had different com-

missioning and decommissioning dates and neither site is still operating

(Table 6.1). SO2 observations are available between March 2001 and De-

cember 2012. The data capture rates for SO2 at Dover Langdon Cliff and

Dover Docks for their online period were 92 and 82 % respectively. These

monitoring sites are of interest because marine fuels in British and Euro-

pean waters have been subject to a series of sulfur content fuel limits. The

introduction and continued enforcement of these sulfur fuel limits were

expected to influence ambient SO2 concentrations. The details of these in-

terventions are discussed further in Section 6.6.1.2.

Table 6.1: Details of the air quality monitoring sites in Dover and London

used in this analysis.
Location Site name Site type Latitude Longitude Elevation Date start

Dover Langdon Bay Meteorological 51.133 1.350 117 1973-03-08

Dover Dover Langdon Cliff Urban background 51.132 1.339 98 2001-03-17

Dover Dover Docks Urban industrial 51.127 1.336 6 2006-11-17

London London Heathrow Meteorological 51.478 -0.461 25 1948-12-01

London London Marylebone Road Traffic 51.523 -0.155 35 1997-01-01
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Figure 6.2: Maps of the study sites with a United Kingdom insert for

country-scale context. The Port of Dover complex is displayed in (a) and

the internal lines indicate roads and Greater London is shown in (b), with

the London Boroughs and City of London indicated with internal polygons.
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6.5.1.2 London Marylebone Road NO2 and NOx

Hourly NO2 and NOx data from London’s Marylebone Road air quality

monitoring site were accessed from smonitor Europe, a European database

containing the observations and metadata from the AirBase and Air Quality

e-Reporting (AQER) repositories.[22,23] NOx concentrations have been mon-

itored since July 1997 and the final year of reporting sourced from the Euro-

pean data repositories used was 2016. Data capture rates for NOx and NO2

for the analysis period were 97 %. London Heathrow, a large airport located

at the far west of Greater London was used for surface meteorological ob-

servations sourced from NOAA’s ISD (Figure 6.2(b)). London Marylebone

Road is situated in a complicated central urban environment. The site is

located one metre south of the kerb on the A501 trunk road and sits within

an irregularly shaped street canyon. London Marylebone Road is a promi-

nent and often analysed site due to its long observational record and diverse

suite of pollutants which are monitored at the site.[24]

NOx and NO2 concentrations across European cities are a significant is-

sue and many member states are non-compliant to the legal European am-

bient air quality limits.[25,26] Almost all locations which are non-compliant

are classified as roadside (or “traffic-influenced”).[27] London has some of

the highest roadside concentrations of NOx and NO2 in Europe and London

Marylebone Road (Figure 6.2(b)) is an often referenced monitoring site for

its high concentrations.

To combat the issue of traffic congestion, Greater London authorities

imposed the Congestion Charge Zone (CCZ), which was first enforced in

February 2003.[28] Since that time, the London Low Emission Zone (LEZ),

and the Emissions Surcharge (better known as the T-Charge) have also been

implemented to combat air pollution.[29] The details and start dates of these

various measures are displayed in Table 6.2. All these interventions are

significant investments with large amounts of planning and resources to

execute and maintain.
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Table 6.2: Details of interventions within Greater London to counter traffic

congestion.
Name Abbreviation Start date Area covered Operation

Congestion Charge Zone CCZ 2003-02-17 Central London 07:00–18:00 Mo-Fr

London Low Emission Zone (first phase) LEZ 2008-02-04 Greater London 24/7

London Low Emission Zone (second phase) LEZ 2012-01-03 Greater London 24/7

Emissions Surcharge T-Charge 2017-10-23 Central London 07:00–18:00 Mo-Fr

Ultra Low Emission Zone (planned) ULEZ 2019-04-08 Central London 24/7

6.5.2 Modelling and the hyperparameters

For both examples, the meteorological normalisation procedure was con-

ducted in the same way and the rmweather R package (version 0.1.2) was

used for this process.[30,31] The number of trees for the random forest mod-

els was fixed at 300, the minimal node size was five, and the number of vari-

ables split at each node was the default for regression mode: the rounded

down square root of the number of independent variables which in these ex-

amples was three (rmweather’s function arguments n_trees, min_node_size,

and mtry respectively). The independent variables used were: Unix date

(number of seconds since 1970-01-01) as the trend term, Julian day as the

seasonal term, weekday, hour of day, air temperature, relative humidity,

wind direction, wind speed, and atmospheric pressure. Training was only

conducted on observations which had non-missing wind speed and the pol-

lutant being modelled. Three hundred predictions were used to calculate

the meteorologically normalised trend. The normalised trends were aggre-

gated to monthly resolution for presentation in Section 6.6. A conceptual

representation of the meteorological normalisation processes is displayed

in Figure 6.3.

For the Dover SO2 examples, models were calculated using the full ob-

servational set, but after investigating the models (discussed in Section 6.6.1.1),

the observations were filtered to wind directions which were sourced from

the port and these models are the ones which were used for the time series

analysis (Section 6.6.1.2). For observations at London Marylebone Road, no

filtering was undertaken. In the case of London Marylebone Road, there are
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Figure 6.3: The framework for the meteorological normalisation technique.

The training and validation phase is iterative to ensure the model does not

overfit and adequate performance is achieved. After the technique has been

completed, other analyses are conducted on the normalised time series.
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a large number of potential events which could influence pollutant concen-

trations and emissions. To objectively identify events, the meteorologically

normalised time series were tested for breakpoints or changes in structure.

The structural change algorithm is described in Zeileis et al. [32, 33] and

was implemented with the strucchange R package.

The random forest algorithm does not directly offer the ability to deter-

mine error or uncertainty of estimates. However, uncertainty is important

to consider in many situations. To enable uncertainty to be evaluated for the

case studies, 50 random forest models were grown for each example with

the hyperparameters described above, but with randomly sampled (boot-

strapped) input sets. The bootstrapping of the observational data ensured

the models were grown on different training sets. The importance values

(a measure of the variables’ strength or influence on prediction), partial

dependencies, and predictions for each of the 50 models were then sum-

marised. The importance measure used was variable permutation differ-

ence which is not subjected to a scaling procedure.[34] The summaries used

from the “ensemble of the ensembles” were the mean, and the 2.5 % and

97.5 % quantiles of the 50 estimates i.e. a range that spans the 95 % confi-

dence interval in the mean. The model performance statistics for the four

sets of models are displayed in Table 6.3.

Table 6.3: Mean random forest model performance statistics four the four

sets of models grown for the analysis.

Location Model n R2

Dover Dover Docks SO2 34224 0.67

Dover Dover Langdon Cliff SO2 53535 0.63

London London Marylebone Road NO2 131677 0.82

London London Marylebone Road NOx 131677 0.83
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6.6 Results and discussion

6.6.1 Port of Dover SO2

6.6.1.1 Models

The random forest models grown for SO2 at the two Dover sites had R2 val-

ues of 63 and 67 % (Table 6.3), therefore, the models had moderate explana-

tory ability for Dover’s SO2 concentrations. However, it should be noted

that predicting concentrations over such short time periods with intermit-

tent source strength is challenging and data capture was less than ideal for

these monitoring sites. The moderate performance can be explained by SO2

at this location containing large amounts of variation due to ship move-

ments and if winds were in a favourable direction to transport emissions

from the port complex to the monitoring sites (southerlies). Indeed, wind

direction was the most important variable for SO2 explanation for the ran-

dom forest models (Figure 6.4).

Partial dependence plots of decision tree models allow the learning pro-

cess to be interpreted and a data user to examine how variables are being

handled in the predictive model. Figure 6.5 demonstrates a two-way par-

tial dependence plot for SO2 concentrations at Dover Landon Cliff using

wind direction and date (the trend term) as the independent variables. The

feature which is most clear is the band of increased SO2 dependence be-

tween 150 and 210 degrees. Outside of this band of southerly winds, there

were low levels of dependence on SO2 concentrations. The Dover Landon

Cliff monitoring site was located north of the Port of Dover docks and very

slightly to the east (Figure 6.2(a)). The partial dependence on wind direc-

tion is consistent with this location and indicates that wind direction was

handled sensibly in the random forest model. This observation can be con-

firmed further with a bivariate polar plot of mean SO2 concentrations by

wind direction and speed at the monitoring site (Figure 6.6). The first sul-

fur content fuel change in mid-August 2006 can also be seen in the two-way
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Figure 6.4: Variable importance plot for SO2 at Dover Langdon Cliff be-

tween 2001 and 2010 calculated by 50 random forest models.
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partial dependence plot as a clear reduction in SO2 dependence when winds

were sourced from the port (the south; discussed further in Section 6.6.1.2;

Figure 6.5).
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Figure 6.5: Partial dependence of wind direction and date on SO2 concen-

trations at Dover Landon Cliff between 2001 and 2010. The Dover Landon

Cliff monitoring site was located north of the Port of Dover (Figure 6.2(a)).

Another clear feature isolated by the partial dependence plots was that

SO2 concentrations increased with increasing air temperature at the Dover

monitoring sites (Figure 6.7). This relationship was an unexpected out-

come because generally, pollutant concentrations are inversely related to air

temperature because emissions are more efficiently diluted during warmer

periods owing to increased thermal turbulence. For some sources such as

heating, emissions are greater at lower temperatures, but when considering
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Figure 6.6: Bivariate polar plot of mean hourly SO2 concentrations at Dover

Landon Cliff between 2001 and 2010. The Dover Landon Cliff monitoring

site was located north of the Port of Dover (for a location map, see Fig-

ure 6.2(a)).
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shipping emissions, this would be negligible. At Dover, the SO2 relationship

between concentrations and air temperatures was indicative of convective

thermal mixing being an important physical process which resulted in SO2

emitted by ships to be mixed towards the measurement site at the cliff top.

This turbulent mixing at high temperatures resulted in high SO2 concentra-

tions at the surface and this feature cannot be easily observed in the hourly

observational data. The illumination of such physical processes is a ma-

jor advantage of the random forest algorithm compared to other machine

learning methods such as support vector machines (SVM) or artificial neu-

ral networks (ANNs) because they do not offer the same amount of model

legibility.
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Figure 6.7: Partial dependence of SO2 on air temperature at Dover Landon

Cliff between 2001 and 2010 calculated by 50 random forest models.
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6.6.1.2 Influence of sulfur fuel limits on SO2 concentrations

Since the early 2000s, there has been a number of increasingly stringent

sulfur based fuel limits imposed on ships operating in British and Euro-

pean Union (EU) waters due to their status as Sulfur Emission Control Ar-

eas (SECAs) or Emission Control Areas (ECAs). The most important events

for sulfur control were implemented on August 11, 2006 and January 1,

2010. In August 2006, the MARPOL Annex IV regulations were applied

which introduced a 1.5 % sulfur limit on fuel oils used by vessels moving

between EU ports.[35] The pre-August 2006 sulfur content for British vessels

has been estimated at 2.7 % which represents a reduction in sulfur content

of 44 %.[36] At the start of 2010 an additional limit was imposed for all

vessels at berth where such vessels were required to be operated with max-

imum fuel sulfur content of 1 %. These changes should be evident in the

SO2 time series of the nearby ambient monitoring sites. However, if a time

series is plotted, the influence of these changes are subtle and not clear due

to the high amounts of variation within SO2 concentrations (Figure 6.8).

The meteorologically normalised SO2 time series for the Dover sites are

displayed in Figure 6.9, after the observations were filtered to wind direc-

tions which came for the port, hence the tight 95 % confidence intervals.

The dates when changes in sulfur fuel content were implemented are dis-

played as vertical lines in Figure 6.9 and the influence of sulfur fuel changes

are clear (compared with Figure 6.8).

At Dover Langdon Cliff, the monitoring site which was online during the

MARPOL 1.5 % fuel sulfur limit transition during August 2001 shows the

shift in ambient SO2 very clearly (Figure 6.9). The mean meteorologically

normalised SO2 concentrations for the pre- and post-fuel change periods

were 48 and 26µgm−3 respectively. This difference represented in percent-

age change is 45 % and the corresponding estimated change in sulfur fuel

content was 44 %. This extremely good agreement between sulfur content

fuel changes and normalised ambient SO2 concentrations suggests that the

Port of Dover activities and ship movements remained constant during the
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Figure 6.8: Daily SO2 concentrations at two monitoring sites in Dover be-

tween 2001 and 2012.

transition phase and the source of SO2 at this location was almost exclu-

sively from the port.

The second sulfur fuel content change was implemented on January 1,

2010 and this intervention is also clearly displayed in the meteorologically

normalised SO2 concentrations of the Dover Docks monitoring site (Fig-

ure 6.9). The percentage change in fuel sulfur content was 33 % and the per-

centage change in ambient SO2 concentrations was 32 %. Like the previous

intervention, these two percentage changes match almost exactly, which is

somewhat surprising because the intervention was applied only to berthed

vessels which would only make up a component of the Port of Dover activ-

ities.
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Figure 6.9: Meteorologically normalised SO2 concentrations at two moni-

toring sites in Dover between 2001 and 2012 as calculated by 50 random

forest models. The vertical lines show the start dates of when changes in

marine sulfur fuel content were implemented.
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6.6.2 London Marylebone Road NOx

6.6.2.1 Models

The random forest models of NOx and NO2 at London Marylebone Road

performed well and had R2 values of 82 and 83 % respectively (Table 6.3).

This good performance can be explained by hour of day being a very good

predictor for traffic flows and therefore traffic-sourced pollutants (Figure 6.10).

The performance of the random forest models would be rather difficult to

achieve with dispersion or deterministic models in such a complicated lo-

cation. For example, the dispersion models evaluated in Carslaw et al. [37]

struggled to represent the street canyon environment, even when traffic in-

formation was taken into account. The importance plots for the London

Marylebone Road models also show that wind direction is the most impor-

tant variable to predict NO2 and NOx concentrations. London Marylebone

Road is located in a street canyon and is subjected to complex flows, includ-

ing ventilation, vortices, and leeward accumulation of pollutants, (primar-

ily) dependent on wind direction.[10,38] This complexity is demonstrated in

the importance of wind direction in explaining NOx and NO2 concentra-

tions (Figure 6.10) and this has been noted before at this location.[39,40]

6.6.2.2 Changes in primary NO2

Using the predictive models for meteorological normalisation results in very

clear and almost noiseless meteorologically normalised trends shown in

Figure 6.11. It is immediately clear that NOx and NO2 are not behaving

the same way at this monitoring location. This is because of changes in

vehicular primary (directly emitted) NO2 during the analysis period (1997–

2016).[26,41,42] The vertical lines on Figure 6.11 show the breakpoints iden-

tified by structural change analysis after the meteorological normalisation

procedure.

NOx concentrations decreased after the introduction of a bus lane adja-

cent to the monitoring site in 2001 but have remained near constant since
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Figure 6.10: Variable importance plot for 50 NO2 random forest models for

London Marylebone Road. The uncertainty among the importances of the

50 models was very small and therefore the quantiles are not shown. The

importances for the NOx models were very similar.
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Figure 6.11: Meteorologically normalised NOx and NO2 at London Maryle-

bone Road between 1997 and 2016 as calculated by 50 random forest mod-

els (for each pollutant). The vertical lines on show the breakpoints identi-

fied by structural change analysis.
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the introduction of the CCZ in February 2003 (Figure 6.11 and Table 6.2).

Despite the progressively stringent vehicular emission controls being ap-

plied across Europe between 2003 and 2016 (the last year of data in anal-

ysis), they have had little effect to NOx at London Marylebone Road. This

observation could be, at least partly, explained by the disconnect between

laboratory testing and real-world emissions of NOx which become a public

issue after the diesel emission scandal in September 2015.[43,44] However,

heavy duty vehicles are also very important to consider alongside passen-

ger vehicles at this Central London location.[45,46]

NO2 concentrations at London Marylebone Road have increased since

1997 and were at their maximum between 2002 and 2008 (Figure 6.11).

The changes observed can be explained by changes to the vehicle fleet using

the adjacent A501 road resulting from the introduction of congestion charg-

ing, London’s Low Emission Zone, and evolution of the local bus fleet. The

rapid increase of NO2 concentrations was observed in the meteorologically

normalised time series between July 2002 and July 2003 (Figure 6.11). The

CCZ was introduced in mid-February 2002; right in the middle of the pe-

riod of increasing NO2 and within six months of the suggested breakpoint

(October 2012). The increase in NO2 concentrations was due to increased

primary NO2 because no change in the meteorologically normalised NOx

was observed at the same time.

The implementation of the CCZ was accompanied with a retrofitting

programme of Euro III local buses with continuously regenerating diesel

particulate filters (CRDPF, also known by their commercial name: CRT fil-

ters). CRDPF are passive devices and have two components: an upstream

oxidation catalyst and a particulate matter (PM) filter. The oxidation cat-

alyst oxidises NO within the exhaust stream to NO2 and this NO2 is then

used as a PM oxidant in the filter-proper. The observations show that these

retrofitted passive devices were not optimised because much of the gener-

ated NO2 was not reduced within the PM filter and was therefore emitted

into the roadside atmosphere and thus significantly increased ambient NO2
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concentrations (Figure 6.11).

NO2 concentrations remained approximately stable until February 2008

when London’s Low Emission Zone (LEZ) was introduced and NO2 con-

centrations began to decrease (Figure 6.11). The second NO2 breakpoint

was detected for February 2008 giving some evidence that the LEZ reduced

NO2 concentrations at London Marylebone Road (although no correspond-

ing change in NOx was observed). However, during this period the local bus

fleets were also being progressively replaced with newer buses compliant to

the later Euro IV, V, and VI heavy vehicle emission standards (Finn Coyle,

Tom Cunnington, and Gabrielle Bowden (Transport for London), personal

communication, March 2018) as well of natural vehicle turnover remov-

ing older and more polluting vehicles from the in-service fleet. The third

NO2 breakpoint identified coincided with route 18, the bus route with the

highest peak vehicle requirements (PVR), shifting from Euro III to Euro V

vehicles in late 2010 (Figure 6.11). After 2011, NO2 concentrations contin-

ued to decline with the introduction of Euro VI and hybrid buses servicing

the 453, 27, and 205 routes. By the end of 2016, NO2 had declined to almost

pre-CCZ concentrations. The features displayed in the normalised time se-

ries were not clear in the raw concentration data (displayed in Figure 6.12)

and the breakpoints identified were unable to be resolved without the me-

teorological normalisation technique.

The tandem use of the meteorological normalisation procedure and break-

point analysis is powerful and can reveal many changes, but in many cases

there may not be sufficient information or metadata to help explain the

changes observed. In this Central London example, many of the factors

driving pollutant concentrations are known due to the site’s prominence.

London Marylebone Road also monitors ozone (O3), something which

is rare for roadside monitoring locations in Europe. The NO2, NOx, and O3

complement allows for the estimation of primary NO2 with an independent

method by determining the total oxidant (OX; NO2 + O3) within NOx.[47,48]

Figure 6.13 shows monthly estimates of the primary NO2 fraction at London
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Figure 6.12: Daily NO2 and NOx concentrations at London Marylebone

Road between 1997 and 2016.
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Marylebone Road with robust linear regression. Figure 6.13 is consistent

with Figure 6.11 with a rapid increase in primary NO2 during 2002 and

a reduction, but at a slower rate after 2008 thus further confirming and

validating that the trends observed in Figure 6.11 are driven by changes in

primary NO2 emissions. The reason why the trend is similar in Figure 6.13

and Figure 6.11 is that at this particular site increased emissions of primary

NO2 were sufficient to have a measurable effect on ambient concentrations.

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●
●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

Error bars are SE

of slope estimate

10.0%

20.0%

30.0%

2000 2005 2010 2015

Date

M
on

th
ly

 O
X

N
O

x s
lo

pe

Figure 6.13: Monthly total oxidant (OX; NO2 + O3)/NOx slope at London

Marylebone Road between 1997 and 2016. Slope and errors were calculated

with robust linear regression.

6.7 Conclusions

Controlling for changes of meteorology is an important component to con-

sider when conducting air quality data analysis over time. A meteoro-

logical normalisation technique using random forest was used to investi-

gate interventions in routine air quality monitoring data from two areas.

The interventions applied to marine fuel content changes were explored

in Dover, a port city in the South East of England and the interventions
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were represented in the meteorologically normalised time series almost ex-

actly. The non-black box nature of the random forest models was used to

investigate the dependence of pollutant concentrations on meteorological

variables such as air temperature and wind direction which highlighted the

benefit of the technique where physical and chemical atmospheric processes

can be illuminated, understood, and explained.

In the example of the implementation of congestion charging in Central

London, very clear changes in primary NO2 emissions were displayed in the

meteorologically normalised time series. The performance of these roadside

models was high due to the models’ ability to use wind direction and hour

of day very effectively, something which dispersion or deterministic models

struggle with when used for modelling street canyon environments. The

case studies presented are both examples where there is significant ability

to cross check the observed features with available information on changes

in the sites’ local environments to validate the outputs.

The meteorological normalisation technique is very relevant for explor-

ing the influence of interventions or management activities on local air

quality. The combination of a non-parametric method, the lack of need

for specialised measurements, and the effective use of proxy variables lends

the technique to a wide range of air quality data analysis applications.
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Chapter 7

Summary and conclusions

Poor air quality is the leading environmental cause of premature death and

exposure to poor air quality is a global issue with 91 % of the human pop-

ulation being exposed to polluted air. Continuous air quality monitoring

networks began to be commissioned in the mid-twentieth century to help

understand air quality and what gives rise to polluted conditions. Air qual-

ity monitoring networks have now generated a very large, and continuously

growing observational record. However, this “routine” data has tradition-

ally been underutilised with the primary use being one of simple summaries

to check if areas are compliant to legal or guideline values. Undoubtedly a

much greater amount of information is contained in these data sets which

should be leveraged to improve understanding of this prominent environ-

mental issue. This idea has motivated the work presented in this thesis.

This thesis presents four related research components with the overar-

ching theme of further leveraging air quality monitoring data to develop

novel data analytic approaches. These novel approaches aid with extracting

additional information on air pollutant emission sources and the physical

and chemical atmospheric processes which give rise to elevated pollutant

concentrations. All the research presented in this thesis used data from Eu-

rope and therefore has a strong focus on transportation activities because

these are the activities which dominate air quality issues in the European

context.
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7.1 Contributions

Chapter 2 presents the development of a new method to extend the es-

tablished bivariate polar plot visualisations in the openair R package with

pair-wise statistics. This development was motivated by the need to have

readily available tools to be able to extract specific source information in

situations where complex source behaviours are present. In these complex

situations, emission processes often compete with one another which makes

analysis difficult. However, the new technique using wind speed, wind di-

rection and the relationships between two pollutants together was shown to

aid source apportionment. Examples of use were given using central Lon-

don locations using 2013 as the analysis year. The examples demonstrated

the utility of the synergy between bivariate polar plots and pair-wise statis-

tics for illuminating black carbon (BC) and particulate matter (PM10 and

PM2.5) sources, with a particular emphasis of partitioning natural and an-

thropogenic contributions. Using the new approach, the road traffic con-

tribution to PM2.5 loading in a complex street canyon central London en-

vironment was achieved. Furthermore, the amount of black carbon (BC)

composing the PM2.5 fraction was quantified. Such an approach is useful

in many other environments. These changes have been incorporated in the

openair package and have seen use by others in other studies.

To allow for productive and standardised data analysis, the smonitor

Europe database was designed and commissioned (Chapter 3). This database

became the primary data source for the other data analysis activities for

this thesis. smonitor Europe was populated primarily with data sourced

from the European AirBase and Air Quality e-Reporting (AQER) reposito-

ries with supplementary meteorological data from NOAA’s Integrated Sur-

face Database (ISD). The database proved to scale well and in 2018, it con-

tained 4.1×109 air quality observations for 12800 monitoring sites. This

database has also seen use in other research activities outside this thesis.

It is likely that a public API (application programming interface) will be
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developed in the future to enable others to have the same access to the ob-

servations presented in this thesis.

Arguably the most important contribution of this thesis was the analysis

of European primary NO2 in the form of roadside NO2/NOx emission ratios

(Chapter 4). The pan-European analysis of roadside observations demon-

strated for the first time that directly emitted NO2 from road vehicles is

decreasing Europe-wide. This offers an optimistic outlook for NO2 concen-

trations at European roadside environments when compared to currently

used and established emission inventory-based models and emission fac-

tors. This approach is unique and suggests that compliance to European

NO2 ambient air quality standards will be achieved faster than expected.

This finding is potentially a very important because many European coun-

tries and urban areas are debating whether or not to impose very disruptive

and expensive low emission zones or similar interventions to reduce road-

side NO2 concentrations. The investment required for such management

may not be justified because the observations suggest that the outlook for

roadside NO2 is better than thought and the European passenger vehicle

market has shifted post-diesel emission scandal. Both of these factors will

most likely combine and result in significantly reduced NO2 concentrations

across Europe’s roadside environments without needing to resort to the in-

troduction of low emission zones.

When interventions like low emission zones are implemented, under-

standing their efficacy for improving air quality is of principal interest. The

quantification of a change due to an intervention is however very difficult

due to the complex nature of the atmospheric processes and is a general

issue across the atmospheric sciences. Methods to robustly detect changes

caused by management and intervention activities need to be improved.

To address this issue, a machine learning modelling framework called me-

teorological normalisation was developed (Chapter 5 and 6). Meteorolog-

ical normalisation allows the use of generally available surface meteoro-

logical observations to produce a trend component which displays pollu-
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tion concentrations in “average” weather conditions. An R package called

rmweather was developed containing these tools and is available on R’s

central repositories (CRAN) with an open source licence.

The meteorological normalisation method allowed for PM10 concentra-

tions across Switzerland to undergo a formal trend analysis to investigate

if the management of PM has been effective at reducing PM10 concentra-

tions (Chapter 5). The technique also suggested two regimes which operate

in Switzerland giving rise to elevated PM10 concentrations: the first during

stagnant, cold, and high emission wintertime conditions, and the second in

warm, deep boundary layer conditions where rates of secondary generation

of PM were high. However, more interesting was the method’s ability in

robustly detecting and quantifying changes in air pollutant concentrations.

Changes in SO2 concentrations near a major British port (Port of Dover)

were represented almost exactly by changes in the allowed sulfur content

in marine fuels (Chapter 6). With an analysis related to the European road-

side primary NO2 study, changes in the NO2/NOx emission ratio were very

clearly identified at Central London’s prominent London Marylebone Road

monitoring site (Chapter 6). The features identified at London Marylebone

Road outlined issues with retrofitting heavy vehicles (buses) with poorly

optimised emission control technology where additional primary NO2 was

directly emitted into the roadside atmosphere. However, despite London’s

efforts and the tightening of the Euro vehicular emissions standards, NOx

concentrations have remained stable since 2001 at the London Marylebone

Road site.

The observations from London Marylebone Road connects to the Euro-

pean roadside NO2 analysis. Although the features found at this particular

Central London monitoring site will not be typical for other European cities,

they do demonstrate processes which alter the roadside NO2/NOx emission

ratio over time. In the London example, despite the introduction of a low

emission zone, congestion charging, and the European-scale tightening of

the Euro vehicular emission standards, roadside NO2 and NOx concentra-
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tions have not significantly improved. Therefore, in respect to air quality

the returns on such interventions have been small which may also indicate

low emission zones are not a highly productive investment if the objective

is a significant improvement of roadside air quality.

The work presented here has been published in peer reviewed scientific

journals between 2016 and 2019. All articles, with the exception of the

recently published (three months before thesis submission) meteorological

normalisation intervention analysis have been cited by others. The earliest

polar plot enhancements paper has seen the greatest number of citations

while the European primary NO2 trends paper was reported in a number of

popular media sources at the time of publication and has since been cited in

a British parliamentary document, thus demonstrating public and political

interest. It is possible to partially count the number of downloads of the

rmweather R package and currently this package is seeing approximately

80 downloads a week. I hope the research presented is continued to be used

and improved upon in the future.

7.2 Future directions

The work presented here could be extended in the future in a number of

ways. In the case of the bivariate polar plots, a technique which has been

implemented, but not yet explored is quantile regression. Quantile regres-

sion is useful in determining how different components of distributions are

behaving and would most likely be another technique which can aid source

apportionment. There are a number of commercially available air quality

instruments which report tens or hundreds of variables, most notably metal

monitors and PM monitors which bin PM into a large number of size frac-

tions. Using the correlation statistic with polar plots for all variables in a

“polar plot correlation matrix” could offer an interesting visualisation for

those investigating large number of pollutants. Such a matrix could also be

combined with an unsupervised learning method such as clustering to sug-
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gest groupings of atmospheric pollutants and therefore illuminate different

emission sources. The clustering could identify pollutants with similar be-

haviours and could give very good evidence for specific emission sources.

Much of the research presented in this thesis relied on standardised ac-

cess to a collection of publicly available data sets. The importance of this

component needs to be emphasised because it allowed for efficient and pro-

ductive data analysis activities to be conducted. Air quality is a data in-

tensive domain and therefore careful thought was put into this process and

resulted in the smonitor Europe database (Chapter 3). The next step for

smonitor Europe is to create a publicly accessible API so others can benefit

from the same access which was available for this thesis’s research. This is

not a big task, but it does require a financial commitment to allow for the

set-up and maintenance of a publicly accessible web server.

The trends of the European roadside NO2/NOx emission ratio requires

more investigation to understand the mechanisms responsible to explain

why the peak emission ratio was experienced in 2010 and has subsequently

decreased. An effective way of addressing this uncertainty is to conduct

dedicated vehicle emissions measurements of NO and NO2 for a wide range

of vehicle types, ages, and engine sizes. Chapter 4 gives a number of rea-

sons to explain the features observed, but there is a lack of evidence for

many of these suggestions. The nature of the trend was consistent among

Europe’s urban areas however, and therefore the most important explana-

tions will most likely arise from activities at a European level such as the

Euro vehicular emission standards.

In the future, it is very likely that the trend will enter a new phase due

to the change of the European passenger vehicle market after the fallout by

the Volkswagen diesel emission scandal. Diesel-fuelled passenger vehicles

are no longer as popular as they once were in Europe and their decreas-

ing market share is predicted to continue with gasoline-powered, hybrid,

and plug-in hybrid vehicles growing in popularity to make up the shortfall.

Mazda also plans to put the first gasoline-fuelled homogeneous charge com-
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pression ignition (HCCI) engine in 2019 called Skyactiv-X, perhaps giving

rise to a revolution in the technology used for internal combustion engines

used in passenger cars which will influence roadside NOx (and other pollu-

tants) concentrations. Somewhat frustratingly, some European states such

as Belgium are no longer reporting NOx in their air quality data submis-

sions. This is because there is not a legal requirement to do so and have

taken the decision to only report the pollutants which are legally required

of them which could result in a future where the method used to calculate

the NO2/NOx emission ratio in Chapter 4 will be unable to be used.

The research presented in this thesis used surface based air quality mon-

itoring data but there are alternative or complementary data sources which

could be leveraged to help explore and understand air quality. Most no-

tably, are the vast data sets created by satellite remote sensing. There is

significant potential for the earth observation the air quality communities

to work together in the future to investigate the issues explored throughout

this thesis.

The meteorological normalisation technique presented in Chapter 5 and

6 lends itself to a large number of potential applications involving trend

analysis or intervention exploration, most notably exploring the efficacy of

low emission zones or congestion charging on improving air quality. This

is relevant for EU member states because many are developing such inter-

ventions to mitigate high concentrations of air pollutants, especially NO2.

Development in the machine learning domain is extremely rapid and it is

likely that new and better algorithms will become available in the future

which would allow the technique perform better. A major advantage of the

random forest algorithm is the non-black box nature of the method because

the ability to evaluate the learning process which can be used to investi-

gate physical and chemical atmospheric processes. The ability and methods

used to evaluate the learning process will also likely improve in the future.

Another application of the random forest models has come to light since

publication of the meteorological normalisation technique in the form of its
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use in air quality forecasting. Once a model has been trained, the result is a

predictive model which can explain pollutant concentrations at a particular

location based on meteorological and time variables. The explanatory abil-

ity of such models can be rather impressive and therefore, if high quality

weather forecast data is available, the models can be used to predict pollu-

tant concentrations into the future. This is a very worthy avenue of future

use of such models because it does not require the very large computing

resources needed to create “bottom-up” models for prediction. The same

philosophy could also see use in air quality time series interpolation where

missing observations due to instrument downtime could be filled with mod-

elled data for the purpose of ensuring a complete time series, something

which is often a prerequisite for modelling.

7.3 Final remarks

European air quality is improving over time in almost every respect. How-

ever, it seems that that because air pollutants have no threshold value where

their negative health effects are the same as a pollutant concentration of

zero, work must continue to decrease air pollutant concentrations to their

lowest possible levels. The work here contributes a few small components

towards this goal, but it is hoped that the research allows others to use rou-

tinely collected air quality monitoring data, from the past and the future, in

a more effective way to understand the issues surrounding air quality and

to reduce the negative effects of this prominent environmental issue.
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