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Abstract 

The resin swelling of Merrifield and HypoGel™200 resins in different volume/volume 

ratios of binary solvents was investigated. The results show that there is usually not 

a linear variation of resin swelling on changing the ratio of two solvents. High, 

medium and low swelling regions for each resin can be determined within the 

Hansen solubility parameter (HSP) 3D space model. If the line connecting two 

solvents goes through the high resin swelling region in HSP space, then there will be 

mixtures of the two solvents that will make the resin swell more than either pure 

solvent.  

 

To illustrate the significance of this effect, binary mixtures of two green solvents were 

predicted which could replace the traditional organic solvents used in solid-phase 

peptide synthesis. The experimental results confirm that appropriate ratios of the 

solvent mixtures give better synthetic results than either pure solvent. In another 

application of this model, binary solvents were used to dissolve polystyrene. 

Generally, mixtures of two solvents at an appropriate ratio were found to more 

rapidly dissolve polystyrene than the parent solvents. Comparison of the resin 

swelling results obtained on the same resin backbone with different functional groups 

show that the functionality does not influence the magnitude of resin swelling. 

However, it could influence the optimised ratio of two solvents needed to optimally 

swell the resin. In addition, the resin swelling experiments demonstrate that some 

binary mixtures of two solvents have strong solvent-solvent interactions which 

prevent the mixed solvent from interacting with the resin matrix. 
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1.      Introduction 

1.1. The significance of green chemistry 

In our recent industrial past, vast quantities of pollutants have been released into the 

air, land and water upon which our ecosystems and we ourselves depend.1 A variety 

of industrial sectors are to blame for this pollution, with chemical manufacturing 

being amongst the worst offenders.1  As issues such as air pollution, water pollution, 

and climate change are drawing increasing attention, more legislation is being 

enacted to attempt to mitigate pollution and problematic aspects of chemical 

processing.1 Inevitably, the chemical industry will need to continue , as it is a 

necessary part of science and its advancement impels the progress of society. 

Hence the field of “Green Chemistry” has arisen over recent decades as chemists 

and manufacturers of chemical products begin to think about the use of more 

sustainable and environmentally benign methods and materials to reduce 

environmental impact and keep pace with a changing regulatory framework.1  

 

Since the 1990s, creative and innovative chemists have focused on new methods 

which not only address environmental problems, but also have high chemical yields. 

By using a lot of data from previous experience, chemists can avoid toxic substances, 

and choose more environmentally-friendly reagents and solvents which have fewer 

effects on human health and fewer ecological impacts. On the other hand, by 

analysis of the synthetic route and calculating the atom efficiency, chemists can 

rapidly evaluate the potential waste of a given reaction and get alternative, more 

efficient, routes to their target products.2 Simply stated, green chemistry is about 

using more benign techniques and methodologies to reduce or eliminate hazards 
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from chemical processes resulting in positive effects upon the environment whilst 

increasing atom utilization to get high yields of products with reduced waste.1 In 

1998, Paul Anastas first stated the 12 principle of green chemistry, and these 

principles have become basic criteria for green chemistry, especially when we 

design reactions or during chemical processes:3  

1. Waste prevention is much more significant than waste management when a 

chemical reaction is carried out.  

2.  When a chemical synthetic method is designed, the atom utilization should be 

maximised. 

3. Fewer or no hazards should be generated wherever chemical syntheses occur.  

4. Chemicals should be designed with less toxicity and appropriate function. 

5. Auxiliary substances should be avoided during chemical processes if possible, 

and if needed should have little or no toxicity. 

6. Try to minimize energy use and it is better to carry out chemical reactions at 

ambient temperature and pressure if possible.  

7. It is a priority to choose renewable raw materials rather than use non-

renewable resources.   

8. Minimize or avoid derivatives such as unnecessary intermediate products, 

protecting groups and by-products. 

9. Give preference to catalysts rather than use of stoichiometric concentrations of 

compounds.  

10.  Chemical products should have the desired function and be degradable.  

11.  Use instantaneous analysis including real-time monitoring and control in the 

development of chemical operation aiming to reduce or prevent pollutants and 

toxicants. 
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12.  When choosing chemical substances to be used in chemical reactions, select 

the ones which are less volatile, less explosive and less flammable to avoid 

chemical accidents.  

By integrating these 12 principles, green chemistry aims at designing more benign 

ways for chemical production.  

 

1.2. The urgent need for greener solvents 

Alternative solvents as an important part of green chemistry, have been investigated 

for about 50 years, but “Green Chemistry” emerged as a subject only since 1998 

when Paul Anastas set out the foundational principles for it.3 The term ‘green 

solvents’ means those that are less toxic; have reduced environmental impact, 

including impacts from their disposal; or derive from bio-based feedstocks which 

have a reduced environmental and especially greenhouse-gas footprint associated 

with their production.1 Although it is difficult to select greener solvents, there are still 

a lot of chemists developing some guides on the basis of safety, health, 

environmental quality and industrial constraints. Following these guides and 

advice,4,5,6 chemists can select a “green” or sustainable solvent.  

 

In traditional organic chemistry, solvents play a crucial role. In pharmaceutical and in 

fine chemical processing, solvents typically make up 80-90% of the total mass of the 

reaction mixture.7 Furthermore, organic solvents are also extensively used in a 

variety of industrial processes such as paint manufacturing, spray painting, shoe 

making and clothes production.8 Many conventional solvents are not 

environmentally-friendly and are known to be reprotoxic. For example, before the 
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late 1980s, carbon tetrachloride was widely used in cleaning and degreasing 

processes because it can evaporate quickly and dissolve large amounts of organic 

compounds, as well as having low flammability and good stability; but later its use 

was phased out under the Montreal Protocol to prevent damage to the ozone layer.9 

Also, according to a lot of studies, carbon tetrachloride damages the liver in humans 

and animals.10 Dichloromethane is a widely used chlorinated solvent in laboratories, 

chemical production and the pharmaceutical industry. However, since the 1980s, 

studies have shown that it has potential carcinogenicity, tumorigenicity and 

genotoxicity for people exposed to it.11 Even more seriously, benzene was used in 

cosmetics before it was assessed to have carcinogenicity.12  

 

Conventional solvents used in solid-peptide synthesis such as dimethylformamide 

(DMF) are also regarded as being highly toxic.6,13 Many other traditional solvents 

(like diethyl ether) have high volatility, high flammability, low boiling points and strong 

odours, which may pose more issues.13 Solvents or chemicals which are used in 

lacquer, acrylic and marker removers have even been found in the fresh water 

systems which are essential for human beings and animals to survive, and these 

chemicals do permanent damage to aquatic organisms.14 Therefore, there is an 

obvious need for “greener” alternatives.  

 

1.3. The development of resins which are used as a solid-phase in 

organic synthesis 

Since 1963,15 solid phase synthesis has been an option for chemists. Solid 

(polymers) supported methods are used in peptide synthesis during which the 
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peptide chain is attached onto the solid-phase during the synthetic process. Or in 

other areas, enzymes or catalysts, for example, are immobilized on a solid-phase16 

(Figure 1-1 and Figure 1-2). Although conventional solution phase synthesis has 

developed over many years, it needs a lot of complicated and time-consuming 

processes, such as distillations, recrystallizations, and many complex purifications.17 

A series of these procedures could give low yields of products and generate multiple 

hazards. Compared to synthesis carried out in solution, solid-phase synthesis has 

apparent advantages. For instance, solid-phase organic synthesis has simple and 

rapid purification and often an easier work-up. In addition, Wei Zhang and Berkeley 

W. Cue stated in 2012 that solid-supported catalysts are vital for most flow synthetic 

processes as they can accelerate syntheses and purifications.18  

 

Figure 1-1: Conceptual figure of solid-phase organic synthesis 
 
 

 

Figure 1-2: Conceptual figure of solid-supported catalysts for organic synthesis 
 

 

There have been many significant contributions to the development of solid-phase 

organic synthesis. Professor R. Bruce Merrifield17 at Rockefeller University and 
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Professor Robert Letsinger19 developed the solid supports simultaneously. Resins, 

which means polymers which can be utilized as solid supports, have different 

backbones and functionalities. For use as a solid-support in solid-phase peptide 

synthesis (a peptide, by definition, is a polymer or oligomer made up of a sequence 

of amino acids.16), resins should be insoluble in all solvents which are to be used in 

reactions, while they have to contain reactive functionalities which could be used to 

attach amino acids by a covalent bond.17 For example, in 1963, a chloromethylated 

copolymer of styrene and divinylbenzene was found which could meet these two 

requirements and work very well.15 Now it is called Merrifield′s peptide resin and is 

used extensively in solid-peptide synthesis. However, products obtained by this 

technique are, in general, difficult to purify, and the resin is not applicable to all 

synthetic peptides.20 For example, when peptide synthesis is carried out between 

aspartic acid and glutamic acid, there is a transesterification side reaction which 

generates toxic side products (imides).20 Thus, although in some cases the efficiency 

of purification for peptides could be increased by using complicated and time-

consuming  techniques, such as selective proteolysis21 or affinity chromatography,22 

a new resin needed to be developed. Based on the work of R. B. Merrifield, another 

new resin, which is p-alkoxybenzyl alcohol resin (HOCH2C6H4OCH2C6H4 resin),  was 

developed by Su-Sun Wang, it is called Wang resin and gave more satisfactory 

results in the formation of peptides with a C-terminal carboxylic acid.23 The general 

schemes of solid-phase peptide synthesis are shown in Scheme 1 and Scheme 2, 

with the peptide chain growing on the solid-phase.  
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Scheme 1: The general scheme of peptide synthesis 
 

 

Scheme 2: General mechanism of solid-phase peptide synthesis; amino acids are usually protected with 

protecting groups, such as N-α-(9-fluorenylmethyl)oxycarbonyl (Fmoc, in solid-phase peptide synthesis)， 

t-butyloxy-carbonyl (t-Boc in solution-phase peptide synthesis) and the carboxyl group of one amino 
acid needs to be activated for forming the peptide bond. 
 

As Merrifield resin and Wang resin are both polystyrene-based resins, they are both 

hydrophobic, and this is a limitation for solid-phase organic synthesis because it will 

prevent polar solvents from entering into the polymer matrix.24 This limitation 

impelled chemists to design more hydrophilic resins which have polyethylene glycol-

polystyrene backbones.24 Many PEG-PS resins which have different lengths of the 

PEG chains are now commercially available.24 Owing to the combination of 

hydrophobic polystyrene and hydrophilic polyethylene glycol and the differing lengths 

of the PEG chains in different resins, these resins can perform very well in both polar 

and nonpolar solvents.24 However, they also have some drawbacks: for example, 

TentaGel, which was developed by Bayer and Rapp25, is usually synthesized by 

reacting the oligooxyethylene units with p-aminomethylated polystyrene: 1% 

divinylbenzene copolymer beads or by grafting the polyethylene glycol-polymer to 

polystyrene beads. It has been shown that proteins would be immobilised on the 
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surface of it during peptide synthesis because it is polyporous. In addition, at most 

15% of the functional groups are on the surface so that some amino acids may not 

access to all of the reactive groups, resulting in the peptide sequence being 

truncated.26 Another resin was developed which has five polyethylene glycol units on 

the PEG-PS backbone, terminating with carboxylic acid functionalities, and it was 

named HypoGel™200-COOH resin.27 When it was applied in peptide synthesis, it 

was reported that the coupling efficiency went down compared to other PEG-PS 

resins.26 A totally PEG resin was developed by Meldal28,29 and Andreu30, and named 

as ChemMatrix resin. By comparison to PEG-PS resins, it has a lot of advantages, 

such as  helicity of its structure, both hydrophilicity and hydrophobicity and it can be 

swollen in most polar and nonpolar solvents.24 （Table 1-1） 

Table 1-1: Chemical architectures of different resins 

Resin name Year Structural formula 

Merrifield resin 1963 

 

Wang resin 1972 

 

Wang-ChemMatrix® resin 1996 

 

TentaGel® resins 1997 

 

X: different functionalities 

HypoGel™200 resin 2008 
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When discussing solid-phase organic synthesis, the most important thing which 

needs to be considered is resin swelling. Due to the resin’s reactive functionalities 

which are always blocked within its polymer matrix, it should be swollen to provide 

access to the reactive functionalities.31 Thus, it is crucial to find a good solvent to 

swell a specific resin as poor solvents result in poor accessibility and will diminish 

reaction rates and yields.32 

 

1.4. Greener solvents for resin swelling used in SPOS/SPPS 

Due to the growing need for more sustainable, less hazardous solvents, more and 

more greener solvents are being applied to different aspects of organic synthesis 

including solid phase synthesis.33  Water has drawn the attention of chemists in 

synthetic chemistry.34  However, water is difficult to use, especially in SPPS, 

because many protecting groups are insoluble in it and there can be issues with 

hydrolysis.34 Acetonitrile has been studied by Jad et al. as an alternative to 

DMF/NMP in peptide synthesis and was shown to give good yield and purity with 

reduced environmental impact.35 However, it still has defects in that twenty percent 

(v/v) of piperidine in DMF was used to do deprotections of Fmoc groups and 

acetonitrile is not considered to be very “green” as it is toxic, not bio-based, and has 

an unreliable supply.34 

 

Recently in our own group, Lawrenson evaluated more sustainable solvents for use 

in solid phase peptide synthesis.31 For instance, cyclic carbonates, especially 

propylene carbonate, which may be produced with 100% atom economy by the 

reaction of epoxides with carbon dioxide, have been investigated as replacements 
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for conventional polar aprotic solvents. It was also shown that cyclic carbonates 

could be used in solid-phase peptide synthesis.13  Also, Lawrenson et al. studied the 

ability of 25 common “green” solvents and conventional solvents (DMF, NMP and 

DCM) to swell nine resins that were commonly used in solid-phase peptide synthesis, 

which helps inform the search for more suitable sustainable solvents that could be 

applied in peptide synthesis.31 Three categories of solvents are classified by the 

rough guideline: swelling below 2 mL g-1 is a poor solvent, between 2 mL g-1 to 4 mL 

g-1 is a moderate solvent and higher than 4 mL g-1 is a good solvent.32 For example, 

2-methyltetrahydrofuran, which is derived from a sustainable resource, could replace 

tetrahydrofuran.36 It shows good swelling ability for polystyrene-based resins.31 

Cyclopentanone, which is assessed with a high score in the GSK green solvents 

guide4, can also swell the nine resins studied in his project.31 Other solvents, such as 

CPME and anisole, are also regarded as good solvents in some resin swelling 

experiments.31 

 

It is common to see solvent blends in chemical procedures. For example, column 

chromatography needs to use an eluent, such as mixtures of ethyl acetate and 

petroleum ether.37 Mixed solvents extensively exist in the natural world, such as 

petroleum.37 In recent years, people began to study the different properties of mixed 

solvents because researches have shown that a mixture of solvents could perform 

better in some chemical and physical properties than pure solvents.37  

 

Due to environmental effects, the use of volatile solvents needs to reduce.38  

Benjamin Laux et al. owned a patent that used a non-volatile solvent mixture 
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composed of glycol ether and petroleum distillate  to remove grease and oil and 

make them  emulsify into water then give a clean aqueous solvent system with high 

efficiency.38 Mixed solvents are also applicable in our common life elsewhere. As we 

know, graffiti is a problem affecting the beauty of a city. Therefore, it is very useful to 

have graffiti removal systems which are less toxic and highly efficient. Robinson and 

Tonawanda have developed a more benign and faster graffiti removal system which 

can also be used in general surface cleaning applications.14  This removal system 

was composed of different percentages of propylene carbonate, soy methyl ester 

and ethoxylated alcohols C9-11 and different proportions of the solvent mixture are 

applied in different pH ranges.14 Mixed solvent systems have also found applications 

in lithographic printing and blanket washes39  and in extraction of natural products, 

such as a mixture of n-hexane and methanol which was used for extracting the oil 

and separating the resin from Calophyllum seeds.40 

 

In summary, binary solvent mixtures often allow access to solvent properties that are 

either not accessible with a pure solvent or allow replacement of pure solvents that 

are problematic. 

 

1.5. Hansen solubility parameters of solvents and HSPiP Software 

Hansen solubility parameters (HSP) define solvent properties in terms of the 

dispersion forces between molecules, the energy from the dipolar intermolecular 

force between molecules, and the energy from hydrogen bonds between molecules, 

using δD, δP, and δH respectively.41 In 1967, a book written by Charles M. Hansen 

set out this method of calculating the three dimensional solubility parameter.42 The 
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HSP model is widely used in the polymer chemistry and solvent fields.41 The 

advantage of the use of HSP is that the HSP of a mixed solvent system can be 

calculated by using weighted averages for each component, allowing mixed solvent 

systems to be optimised and plotted in three dimensional HSP space. This can 

permit mixtures of “green” solvents to be suggested as replacements for undesirable 

conventional solvents where no single “green” replacement exists.41 HSP can also 

be combined with cutting edge methodologies in the industries of relevance to 

solvents and polymers as a powerful way to help chemists and technologists to 

understand, predict and even solve problems in these areas, such as solubility, 

compatibility, stability, efficacy and dispersibility.43  When we want to use the HSPiP 

software to predict the optimal HSP for a polymer, we should set one to six different 

scores on the basis of the solubility.43 The scores are input into the HSPiP software 

so that the software can help us to generate the round surface for this target 

polymer.43 Also, other solvents or solvent mixtures which have good locations in 

HSP-3D space can help to confirm a clearer boundary.43 By this means, the distance 

between poor or good solvents and the target polymer can be determined. What is 

more, HSPiP software has a variety of methods that can be used to calculate and 

predict other properties including, sedimentation, dissolution and ODC tests.43 

Previously, chemists needed to prepare a few samples before using the software to 

do modelling. However, when there is a large quantity of samples needed to test, 

this is a tough task. Recently, Sander van Loon combined HSP with high-throughput 

methods, which can test hundreds of samples quickly, to predict formulations which 

may contain more than 10 ingredients.43  
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In the work of Stefan Lawrenson et al.,31 green solvents as well as DMF, NMP and 

dichloromethane were chosen as a set to establish the modelling of HSP.31 These 18 

solvents were divided into 4 to 6 groups by their ability to swell each resin, then the 

HSPiP software predicted the optimised HSP of each polymer.31 Also, he used this 

software to predict the optimised ratio of solvents blends.31 However, there are some 

drawbacks of HSPiP software. Firstly, its prediction is based on a set of experimental 

results. Unfortunately, scientists and technologists usually focus on the solvents they 

are interested in and they could not do a lot of basic experiments. This means that 

the prediction of this software may sometimes be incorrect. Also, the values are 

changed by classifying solvents into different groups. Furthermore, the spherical 

model predicted by this software is not always valid, especially for copolymers or 

resins with surface functionalities. Thus, a lot of experiments had to be done to get 

the data for HSPiP modelling, and then the predictive results of this software had to 

be proven or not by more practical experiments. 

 

Figure 1-3: 3D plot for Merrifield resin using 5 solvent groups taken from the literature.31 The green ball 

shows the predicted area of the polymer, blue balls show good solvents, and red balls show poor 
solvents. 
 

 



14 
 

1.6. Coupling agents used in solid-phase peptide synthesis 

Peptides, which are formed by peptide linkages between amino acids, are crucial for 

life. For example, proteins are components of the cytoskeletons of all eukaryotic cells 

and a few prokaryotic cells, and so are essential components for all life. Likewise, 

biological enzymes that are the catalysts in metabolic reactions are proteins. 

Furthermore, peptides are increasingly widely used in multifarious medications, like 

antihypertensives, antidepressants, contraceptives and antibiotics.44 In view of this 

importance, peptide synthesis has been an interesting research field for chemists for 

many years. Compared to isolating natural proteins, synthesising the peptide has 

many merits, because chemists can design the peptide chain structure in advance 

and evaluate the bioactivity or pharmacological effect of this peptide.45   

 

Referring to peptide synthesis, the most important things to consider are coupling 

reagents. However, it is not enough to use only coupling reagents because of the 

risk of losing stereochemical purity when activating the amino acid. Thus, another 

chemical called a coupling additive is used to allow formation of a good yield whilst 

maintaining the configuration of each activated amino acid, i.e. minimizing 

racemization.45 

 

Benzotriazol-l-yl-oxy-tris-(dimethylamino)phosphonium hexafluorophosphate (BOP) 

was the first coupling reagent developed for solid-phase peptide synthesis; it had a 

lot of advantages compared to DCC, which was usually used in solution phase 

synthesis. However, the side production of extremely toxic 

hexamethylphosphorotriamide makes this reagent problematic. Thus, it should be 
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substituted by other reagents. HBTU (3-[bis(dimethylamino)methyliumyl]-3H-

benzotriazol-1-oxide hexafluorophosphate) which was first used in solid-phase 

peptide synthesis in 1989, shows excellent properties as a coupling agent.46 In 

addition, HOBt (1-hydroxybenzotriazole) could be used together with HBTU to 

reduce the racemization and make the peptide synthesis process smoother as the 

byproducts are harmless and soluble in water or organic solvents.46 There are also 

other coupling reagents which show good abilities for peptide synthesis, such as 

TDBTU, but it has a dangerous side reaction to generate 2-azido-benzoic acid.46  

 

N-(1-H-benzotriazol)dimethylamino)methylene]N-methylmethanaminium 

tetrafluoroborate N-oxide (TBTU) is another coupling reagent which is suitable for 

solid-phase peptide synthesis.46 For the coupling additives, 3-hydroxy-4-oxo-3,4-

dihydro-1,2,3-benzotriazine (HODhbt) shows better ability than HOBt, and it is 

possible to judge if the acylation is completed by the change of colour.45 However, it 

has a series side reactions.44 Another common coupling additive is ethyl 2-cyano-2-

(hydroxyimino)acetate (OxymaPure). In the synthesis of α-ketoamides, which are 

interesting compounds in organic chemistry and pharmaceuticals, OxymaPure/DIC 

gave better purity and yield than HOBt/DIC or carbodiimide alone.47 These chemicals’ 

structural formula are shown in Table 1-2. 
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Table 1-2: Structural formula of common coupling reagents and additives 

Abbreviation  Structure  

BOP 

 
DCC 

 
HBTU 

 
HOBt 

 
TDBTU 

 
TBTU 

 
HODhbt/HOOBT 

 
Oxymapure 

 
DIC 

 
 

There are many coupling agents, and they have different advantages and 

disadvantages. For different peptide synthesis, they have shown different purities 

and yields. For example, HBTU/HOBt is one of the popular coupling agents used in 

solid-phase peptide synthesis, but solubility is a big problem for HBTU. HBTU can 
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dissolve in some conventional organic solvents such as DMF and DCM very well. In 

recent years, more chemists are focusing on using greener solvents to replace these 

traditional solvents for peptide synthesis. HBTU does not dissolve in greener 

solvents such as ethyl acetate and TMO (2,2,5,5-tetramethyloxolane). Thus, there is 

a need to study the purity and yields of different coupling agents in greener solvents, 

and the first step is to test the solubility of coupling agents in different greener 

solvents.  

 

1.7. Solute–solvent and solvent–solvent interactions in mixed 

binary solvents 

As discussed above, in recent years, binary solvents have been found to be superior 

to pure solvents in some chemical or physical properties. For mixed solvents, there 

are more complex interactions between solvent and solvent and between solute and 

solvent than in pure solvents. For chemical processes occurring in solution, the 

polarity of solvents affects them strongly.48 In 1994, Yizhak Marcus used multiple 

chemical probes to explore the polarity and hydrogen bonding of mixed non-aqueous 

solvents.37 It was a novel way to measure the chemical properties of solvent blends. 

However, this method may not be correct in some cases as it usually converted the 

practical data to another quantity to describe the polarity37 and the parameters are 

not only influenced by preferential solvation, but also the interaction of the probes 

and solvents. Thus, it is very hard to choose probes  which  have little interaction 

with each component in the binary solvent, similar parameters, aggregation, and no 

interference in the solvents, mutual interaction whilst also having extensive 

applicability in other solvent systems.37 Following this study, he also studied using 
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the chemical probes in aqueous solvent mixtures.49 As aqueous solvents are totally 

different from the non-aqueous solvents, the measuring methods of parameters, 

such as Kamlet-Taft dipolarity-polarizability, hydrogen bond accepting parameter, etc. 

were also different. In the aqueous solvents study, Yizhak Marcus compared the 

different values of these parameters from those reported by other researchers.49 

Finally, he thought out an optimal calculation for these values and the preferential 

solvation.49 A preferential solvation model can be used to explain the polarity  in 

binary dipolar hydrogen bond acceptor solvents.50 In 1995, Rosés et al.  used the 

preferential solvation of solvatochromic indicators to test the interaction between 

solute and solvent and also between solvent and solvent.50 2,6-Diphenyl-4-(2,4,6-

triphenyl-l -pyridinio)-1-phenolate (or ET(30) dye) is an extensively used 

solvatochromic indicator.48 In general, this indicator could analyse the preferential 

solvation of solute by any of the studied mixed solvents.50 On the other hand, the 

results were also influenced by solvent-solvent interactions.50 However, this model 

only used one solvation parameter and did not take into account hydrogen bonding 

in the solvation shell so that it could not explain the polarity variation well.50 

 

Another study was for the influence of changing temperature on the ET(30) 

parameters of mixed solvents of dipolar hydrogen-bond acceptor solvents such as 

alcohols and water to mix with excellent hydrogen-bond donor solvents like dimethyl 

sulfoxide, acetonitrile and nitromethane.51 According to the results of this study, there 

was a very strong synergism of these binary mixtures, which means binary solvents 

are usually more polar than their pure solvents, and this synergism would decrease 

on increasing temperature because temperature had a huge impact on the hydrogen 

bonding between the two pure solvents.51  Dimethyl sulfoxide and water could be the 
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most extraordinary example as they were influenced by temperature much more 

than other binary solvents that could form hydrogen-bonded complexes (in alcohol 

and water).51  

 

In addition, some research showed that the liquid structure of water could be 

enhanced by adding a small amount of alcohol into it, e.g. 2-methylpropan-2-ol, 

propan2-ol, ethanol or methanol because water had a tendency to aggregate around 

the hydrophobic groups of these alcohols to form low entropy structures and get 

longer forming hydrogen bonding when the solvents had low concentrations of 

alcohols.52 By rearranging these hydrogen bonds to enhance the structure of water, 

these binary solvents showed growing polarizability and acidity and declining 

basicity.52  The longer the carbon chain of the alcohol, the lower its enhancing ability 

for water.52 Moreover, solvent blends of formamides (formamide, N-methylformamide 

and N,N-dimethylformamide) and hydroxylic solvents (water, methanol, propan-2-ol, 

2-methylpropan-2-ol) have been studied.53 By analysis of experimental results, the  

solvatochromic indicator was preferentially solvated less in each solvent mixture with 

less amide, but generally it was strongly solvated by the hydrogen-bonded 

complexes formed by amides and alcohols, and also the synergism and polarity 

were similar in these mixtures.53 

 

For solvation,  the essence is the interplay of solute-solvent and solvent-solvent 

interactions, and the solute-solvent interaction is the most important.54  The solubility 

has been proved to be associated with solute-solvent interactions. Then based on 

the measured solubility, the Hildebrand solubility parameter (solvent-solvent 
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interaction) and also HSP for solvents can be caculated.55 The Gibbs free energy 

varies depending on the how many solvent molecules there are around the solute.55 

Nevertheless, the interaction of solute and solvent in binary solvents is different from 

that in the pure solvent, and for binary solvents they usually have different 

preferential solvation ability for the solute compared to the average ability of the pure 

solvents.56 

 

In conclusion, some binary solvents have superior physical chemistry properties and 

are significant to study. Due to the toxicity and hazards of some traditional solvents, 

it is very significant to try to avoid them and adopt much greener solvents. However, 

pure greener solvents often perform worse than traditional organic solvents to some 

extent. For this reason, it is worthwhile to explore the different properties and abilities 

of binary mixtures of greener solvents. 

 

1.8. Polystyrene dissolving and recycling 

Polystyrene is a polymer made up of the monomer styrene.57 It is a thermoplastic 

polymer with a glassy solid state at room temperature, but it can be solid or foamed 

as needed for applications in our common life. Hence it is widely used in plastics, 

packages, disposable cutlery and making models that produce millions of tonnes of 

waste every year.58-59 As a result of the slow biodegradation of polymers such as 

polystyrene, which are harmful to the environment, some plastic bags are even 

found in the bellies of Marine life.60 Thus, it is very urgent to take action to prevent or 

reduce polystyrene use. There are some laws about restricting plastics, and many 

countries have begun to ban them or force consumers to pay for them.61 However, 
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these countries focus on plastic bags mostly, another serious problem is caused by 

polystyrene foam (including expanded polystyrene (EPS) and extruded polystyrene 

(XPS)) which also requires more attention.62 Polystyrene foam waste is extremely 

prevalent in fast food restaurants, cafeterias, supermarkets and as packaging for 

protecting household appliances or other fragile goods in transit.62 

 

In recent years, chemists and environmentalists have started to think about methods 

to recycle polystyrene foam. Polystyrene recycling is very meaningful because the 

recycled polystyrene can be reused in manufacture and other applications such as: 

plant pots, plastic bags, and modelling materials.62 At the same time, the pollution of 

the environment including fossil fuel consumption and greenhouse gas emissions 

from landfill can be reduced. There are many ways to recycle polystyrene including: 

mechanically, pulverizing; chemically, solvent dissolving; and thermally (Figure 

1-4).63 

 

For mechanical recovery, Shino, et. al. invented a machine to process and separate 

polystyrene from mixed or contaminated waste such as paper.62 The recycling 

process was that polystyrene foam waste was milled into small particles, then a 

rotary trommel and air classifier were used to screen out the different sizes of  

polystyrene and paper particles, then the mixture went through water to remove the 

paper so that finally only foamed polystyrene was left.62 Although this method is 

novel, polystyrene foam has a large volume and a low density. If we adopt this 

method, we need to spend a lot of human, energy and financial resources to 

transport and recycle it. 
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Figure 1-4: Concept for different recycling methods for polystyrene foam 

 

For thermal treatment, in Sapporo, Japan, the municipal waste plastics are put into 

an apparatus at 430 ℃ and at atmospheric pressure to decompose thermally.64 In a 

laboratory or pilot plant scale, a fluidized bed is usually used to test large scale 

thermal cracking.65,66  However, many factors such as heterogeneity of plastic 

materials, the synergy of different compositions in cracking and restricted transfer of 

heat and mass influence the kinetics of pyrolysis, so accurate values of the kinetics 

cannot be obtained. Heating can also reduce the physical properties, and this is why 

cracking the plastic waste is not able to be applied into industry.66 In the meantime, 

using pyrolysis does not give either polystyrene or monomer back.67 
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Since mechanical and thermal recycling have limitations, chemical methods are 

being considered more by chemists and environmentalists. Using a catalyst to 

promote the degradation of polystyrene has been studied for many years.68 This 

method is superior because the monomer styrene can be obtained at low 

temperature with a high selectivity.68 There are many catalysts used in degrading 

polystyrene, such as Fe-base catalysts, MgO, CaO,  BaO, K2O, SiO2/Al2O3, several 

solid acids and  active carbonate catalysts.63  Other studies showed that supercritical 

solvents could also disassemble the polystyrene into styrene monomers efficiently.69 

 

The chemical methods above are all converting polystyrene into styrene monomer. 

However, there is a better recycling method that not only can maintain the polymer 

state, but also reduce the volume of the polystyrene foam: it is polystyrene dissolving 

using organic solvents. Another advantage of using solvents to dissolve the 

polystyrene is that it does not make the physical properties deteriorate.70  A lot of 

solvents have been used to dissolve polystyrene. For example, the traditional 

organic solvents, benzene, toluene, tetrahydrofuran and chloroform have particularly 

good abilities to dissolve polystyrene foam, but we try to avoid these solvents as they 

are extremely toxic and do harm to the bodies of the people who use them and the 

environment.71  In consequence, more chemists are begining to explore greener 

solvents to take the places of these traditional solvents. D-Limonene, which is 

extracted from citrus, has shown excellent ability to dissolve polystyrene foam. 

However, due to its very strong citrus odour, volatility, low flash point as well as its 

instability with respect to transformation into para-cymene, it is not good for the 

environment.70 Glycol ethers (diethylene glycol dimethyl ether, diethylene glycol 

diethyl ether and dipropylene glycol dimethyl ether ) have high flash points over 100 ℃ 
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and good dissolving abilities for polystyrene foam. There is an innovative feature that 

adding water into them makes the solution become non-flammable.70 One drawback 

for this method is the price of glycol ethers which are so expensive that they cannot 

be applied in industry. Dissolving polystyrene foam can decrease its volume and 

make it easier to transport.  

 

These thermal, mechanical and chemical methods are combined with each other 

during a recycling process. However, solvents are usually used in pre-treatment 

processes or reactions for these three methods. Thus, looking for alternative greener 

solvents to dissolve polystyrene foam is interesting and meaningful research work.  

 

1.9. Project aims 

In this project, we will explore the swellings of two different resins used in peptide 

synthesis: Wang resin, which is polystyrene based resin, and Hypogel™200 resin, 

which is a mixed system containing both polystyrene and polyethylene glycol 

components. We will then compare the differences by using 3D plots. Through resin 

swelling experiments with different mixed solvent systems, we hope to map the 

swelling of these resins in four dimensions, using three dimensional HSP space plus 

extent of swelling data, to arrive at a robust and predictive understanding of what 

solvent properties swell these resins and how they differ based on their different 

structural and chemical motifs. Furthermore, the model could potentially be used to 

predict which pairs of green solvents have a maximum resin swelling capability when 

they mix together and to predict the optimised ratio of green solvents pairs. 
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Once this has been adequately established, we aim to validate our model by 

choosing suitable mixtures of green solvents to apply in solid-phase peptide 

synthesis. Prior work of Lawrenson in our group detailed  the synthesis of the 

peptide TFA·H-Leu-Ala-Phe-OH in propylene carbonate on ChemMatrix resin,31 and 

this tripeptide will be used as our case study using the same coupling reagents and 

similar conditions. However, to take full advantage of our solvent modelling work, we 

will use Wang resin, which was shown to swell poorly in some single suitable “green” 

solvents. We will choose two moderate or poor solvents to mix with each other and 

optimise their ratio to perform the tripeptide synthesis. Then, by comparing the 

synthetic results of using two pure solvents and their optimised ratio mixture, it may 

prove that our solvent modelling will allow a suitable mixed solvent system to be 

chosen for peptide synthesis. 

 

Polystyrene foam recycling attracts more attention by chemists recently. Once we 

have succeeded to use binary greener solvents in solid-phase peptide synthesis, we 

aim to make this model more meaningful by predicting the greener binary solvents to 

apply in polystyrene dissolution.  

 

Thus, in this project, not only the modelling of the high swelling area in HSP space 

for Wang and HypoGel™200 resins will be investigated, but also the different 

applications of the modelling will be explored.  
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2. Results and discussion 

2.1. Investigating the high swelling area for Merrifield and 

HypoGel™200 resins 

2.1.1. Repeating resin swelling experiments from the literature 

In the prior work of Stefan Lawrenson et al., nine resins were selected to predict the 

optimised ratio of two mixed solvents. Solvent swelling experimental results indicated 

that some mixtures might have a maximum, some blends might have a minimum, 

and other mixtures had no significant change at the optimised ratio.31 Thus, it 

became apparent that the simple software predictions of mixed solvent systems for 

resin swelling were inadequate.  

Table 2-1: The predicted optimised ratio of four resins. The data are from the literature. 31 

 
 Predicted   

Resin Structural formula Solvent 1 (%) Solvent 2 (%) 

Merrifieid  2-MeTHF (52) CPME  (48) 

ParaMax  

dimethyl isosorbide 
(95) ethylene carbonate(5) 

HypoGel™2-
00  cyclopenetanone(9-1) Water (9) 

ChemMatrix  Cyrene  (80) 
dimethyl isosorbide 
(20) 

 

The predictions31 for the four resins (Merrifield, ParaMax, HypoGel™200 and 

ChemMatrix) were interesting so that they required further study. Thus, the swelling 

of these four resins in mixtures of the specified solvents (miscibility may be an issue 

in some cases) would be studied using ten percent (or smaller if necessary) steps 
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around the solvent ratio that gives maximum or minimum swelling in order to 

investigate the trend of resin swelling in these mixed solvent systems. 

 

It is believed that this prediction arises from the assumption made by the HSPiP 

software of a spherical region of high swelling in HSP space for different polymers. 

This approximation is usually valid for small molecular solutes, but due to the 

inhomogeneity of crosslinked resins, which contain surface functionality, a variety of 

monomers, and may have a core-shell architecture, the spherical assumption breaks 

down for polymeric resins. Thus, in this project, the relevance of HSP to resin 

swelling was investigated in more detail than in previous work.  
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Figure 2-1: Repeat of literature experiments31 for Merrifield resin (Wang linker) was swollen in 4 green 
solvents; solvent 1: dimethyl isosorbide, solvent 2: 2-methyltetrahydrofuran, solvent 3: propylene 
carbonate and solvent 4: D-limonene; the supporting information seen in Appendix A (Table 5-1). 

 

In order to verify the resin-swelling methodology, one commercially available resin-

Merrifield resin (Wang linker) was swollen using various green solvents previously 

reported with this resin and the results were compared with those obtained in the 
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prior work.31 The results are shown in Figure 2-1 with the green bars showing the 

results obtained in this project, and the black bars representing the literature data. In 

each case, the experimental observation was judged to be acceptably close to the 

previously published values,31 and the swelling proved reproducible upon repetition. 

These experimental results established the foundation to implement this project. 

 

2.1.2. Background to this project and the modelling methodology  

Two commercially available resins have been chosen for this study; Merrifield’s 

crosslinked polystyrene resin functionalised with the Wang linker (4-hydroxybenzyl 

alcohol),23 and HypoGel™200 resin with a backbone of polystyrene glycol grafted 

onto polyethylene, functionalised with carboxylic acid groups.26 These two resins 

were chosen because they have contrasting backbones and functionalities. Thus, by 

studying these two resins, we could obtain more detailed insight into the relationship 

between resin swelling, resin structure and solvent HSP values.  

 

HSPiP 41 is a software which can establish a 3D model for a polymer on the basis of 

a large number of solubility experiments and then help scientists to predict good 

solvents for this polymer. According to the modelling, we can know the location of 

good solvents and poor solvents for this polymer in HSP-3D space. Therefore, in 

order to attempt to understand more details of the resin swelling properties in HSP-

3D space, δD, δP, δH were set as X, Y, Z to draw 3D scatter graphs, with points for 

each pure solvent and binary solvent with data points colour coded to represent the 

degree of swelling. Three categories of solvents are defined by the rough guidelines: 

swelling below 2 mL g-1 is a poor solvent, between 2 mL g-1 to 4 mL g-1 is a moderate 
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solvent and higher than 4 mL g-1 is a good solvent.32 This guideline provided the 

scale for the colour map in 3D graphs. The swelling data and HSP (δD, δP, δH) for 

all the solvents used in Lawrenson’s work,31 except for the ionic liquid, are presented 

in Table 5-2 in Appendix A. The values of δD, δP and δH of cyrene could not be 

found using the HSPiP database, so they were determined by the Y-MB method.72 

From Figure 2-2 it is apparent that the single-solvent swelling data obtained 

previously hints at regions of high and low swelling, but by necessity such discrete 

and separate data points lack resolution. Therefore, the use of more solvents, and 

especially mixed solvent systems, was proposed. The mixed solvents’ HSP 

calculation principle is set out in the HSPiP software guidebook.41  

   

Figure 2-2: 3D graph of Merrifield resin and HypoGel™200 resin, showing swelling data obtained 
previously by Lawrenson31 and plotted according to the Hansen solubility parameters of 27 solvents. The 
black, green, blue (Merrifield) or red, yellow and blue (HypoGel™200) points represent the resin swelling 
below 2 mL g-1, between 2 mL g-1 to 4 mL g-1 and beyond 4 mL g-1 respectively. 

 

Therefore, to find the shape and edge of the high swelling region for each resin, all 

binary mixtures of two parent solvents were chosen such that their connecting line 

passed through regions of HSP-3D space for which data from single solvents were 

lacking, and the resin swelling properties of mixtures at several different ratios for 

each pair were tested. In most cases, in addition to the parent solvents, ratios of 
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25:75 (v/v), 50:50 (v/v), and 75:25 (v/v) were initially evaluated, with additional data 

points being selected on a case by case basis to clarify the trends. By inspection of 

the data presented in Figure 2-2, high swelling areas for HypoGel™200 and 

Merrifield resins do seem to exist in HSP space. Clearly, the extent and shape of this 

high swelling region is important both practically; as high swelling is a prerequisite for 

successful SPOS, and theoretically; as a study into the relationship between resin 

structure and/or functionality and the properties of the solvents requires insight into 

swelling. 

Table 2-2: 21 pairs of solvents chosen for HypoGel™200 resin 

Solvent 1 Solvent 2 

cyclopentanone water 

propylene carbonate ethanol 

propylene carbonate diethyl carbonate 

propylene carbonate dimethyl carbonate 

propylene carbonate isopropanol 

propylene carbonate methanol 

propylene carbonate ethyl acetate 

propylene carbonate isobutyl acetate 

propylene carbonate cyclopentyl methyl ether 

methanol isobutyl acetate 

methanol dimethyl isosorbide 

1,2-dichlorobenzene dichloromethane 

1,2-dichlorobenzene dimethylformamide 

acetonitrile toluene 

propylene carbonate 1,2-dichlorobenzene 

1,2-dichlorobenzene heptane 

propylene carbonate acetonitrile 

isopropyl acetate acetonitrile 

furfuryl alcohol cyclopentanone 

water dimethylformamide 
TMO cyclopentanone 

 

Thus, pairs of solvents were chosen for which the connecting line could go across 

the putative high swelling area and define its boundaries. Initially, for HypoGel™200 

resin, several pairs of solvents were selected and their swelling data plotted, after 
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which further binary pairs were selected to complete the emerging picture of the 

high-swelling boundary. One pair of solvents chosen initially was cyclopentanone 

and water, but these were found to be only fully miscible in certain ratios. In order to 

fill the gap (δD=17-19, δP=5-15, δH >20) where cyclopentanone and water did not 

mix, two additional pairs of solvents were chosen. They were cyclopentanone and 

furfuryl alcohol; and water and DMF. 2,2,5,5-Tetramethyloxolane (TMO),73 which is 

an emerging green solvent, was also chosen to mix with cyclopentanone to test if the 

mixture would have a maximum resin swelling ratio. In the end, 21 pairs of solvents 

were chosen for resin swelling experiments and they are shown in Table 2-2. The 

same methodology and calculating principle were applied to find the high resin 

swelling area for Merrifield resin. In this case, 20 pairs of solvents were used for 

swelling experiments and they are given in Table 2-3. 

Table 2-3: 20 pairs of solvents chosen for Merrifield resin 

Solvent 1 Solvent 2 

2-MeTHF CPME 

ethanol cyclopentanone 

propylene carbonate dimethyl carbonate 

propylene carbonate ethyl acetate 

cyclopentanone methanol 

cyclopentanone isopropanol 

1,2-dichlorobenzene dichloromethane 

1,2-dichlorobenzene dimethylformamide 

acetonitrile toluene 

propylene carbonate 1,2-dichlorobenzene 

1,2-dichlorobenzene heptane 

propylene carbonate acetonitrile 

isopropyl acetate acetonitrile 

furfuryl alcohol cyclopentanone 

water dimethylformamide 

TMO cyclopentanone 

propylene carbonate TMO 

propylene carbonate D-limonene 

propylene carbonate acetone 

propylene carbonate isopropyl acetate 
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The chosen pairs of solvents for these two resins were slightly different. The values 

of δD, δP, δH of the pure solvents were obtained from the HSPiP software database 

except cyrene and TMO because cyrene and TMO are not included in this database. 

The parameters of cyrene were calculated by the Y-MB method,72 and values of 

TMO were determined by the work of Fergal Byrne.73 All values of δD, δP, δH of 

pure solvents, their solvent blends and the corresponding resin swelling are shown in 

Table 5-4, Table 5-5 and Table 5-6 in the Appendix A. 

 

Figure 2-3: Structures of solvents used in this project; 1. cyclopentanone; 2. water; 3. propylene 
carbonate; 4. ethanol; 5. diethyl carbonate; 6. dimethyl carbonate; 7. Isopropanol; 8. methanol; 9. ethyl 
acetate; 10. isobutyl acetate; 11. cyclopentyl methyl ether; 12. 1,2-dichlorobenzene; 13. dichloromethane; 
14. Dimethylformamide; 15. acetonitrile; 16. toluene; 17. heptane; 18. isopropyl acetate; 19. furfuryl 
alcohol; 20. 2,2,5,5-tetramethyloxolane (TMO); 21. 2-Methyltetrahydrofuran; 22. D-limonene; 23. acetone; 
24. dimethyl isosorbide; 25. carbon disulphide; 26. chlorobenzene  
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The resin swelling performances of mixed solvent systems were classed into four 

types: Type 1 (including Type 1a where the solvents cannot mix together at all ratios) 

means that the solvent mixtures have a better swelling ability at some ratios than 

their pure solvents; Type 2 systems show a steadily increasing or decreasing line 

which does not go through a maximum and where no mixture has better resin 

swelling than either parent solvents; Type 3 are flat because the swelling ability of 

the two solvents are similar and there is no significant increase or decrease in 

swelling upon using mixed systems; and Type S represents some special cases for 

these two resins, but these situations only appeared once. Schematic graphs 

corresponding to each of these mixed solvent types are presented below (Figure 

2-4). 

 

Figure 2-4: Schematic graphs of three types of mixed solvent systems for Merrifield and HypoGel™200 
resin swelling  
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2.1.3.  Resin swelling in green binary solvents and the high swelling area in 

HSP-3D Plots 

2.1.3.1. High resin swelling area for Merrifield and HypoGel™200 resins 

For Merrifield resin and HypoGel™200 resins, the solvent blends’ HSP calculation 

principle is followed based on the percentage contribution of each component.41 All 

values are presented in Table 5-4 and Table 5-5 in Appendix A and all error bars of 

resin swelling were +/- 0.3 mL g-1. Using all these values to draw graphs, the high 

resin swelling area for each resin can be visualised. To fill the gaps in the corners 

and confirm the boundary of the high swelling area, other solvents, such as carbon 

disulphide (δD=20.2, δP=0, δ=0.6) and chlorobenzene (δD=19, δP=4.3, δH=2) were 

also chosen because of their good positions in HSP space. Using different colours to 

represent different degrees of resin swelling, different visual methods were adopted 

to make the high resin swelling area clearer. A high resin swelling area for these two 

resins became apparent as shown in Figure 2-5 and Figure 2-6. For the 3D scatter 

graph of Merrifield and HypoGel™200 resin, the axes are δD: the energy from 

dispersion forces between molecules as X; δP: the energy from dipolar 

intermolecular force between molecules as Y; and δH: the energy from hydrogen 

bonds between molecules as Z. The values of the axes are: X: δD= 14.7~20; Y: 

δP=0~21.7; and Z: δH=0~42.3. 
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Figure 2-5: 3D scatter graph and Teas plot74 of Merrifield-Wang-OH resin. Resin swelling data of 22 mixed 
solvent systems and a few pure solvents, with swelling depicted by colour coding, plotted according to 
solvent Hansen solubility parameters in the 3D scatter graph or fractional parameters for Teas plot. The 
black, green and blue colours represent resin swelling below 2 mL g-1, between 2 mL g-1 to 4 mL g-1 and 
beyond 4 mL g-1 respectively. 
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Figure 2-6: 3D scatter graph and Teas plot74 of HypoGel™200 resin. Resin swelling data of 20 mixed 
solvent systems and a few pure solvents, with swelling depicted by colour coding, plotted according to 
solvent Hansen solubility parameters in the 3D scatter graph or fractional parameters for Teas plot. For 
better identification, for HypoGel™200 resin another colour scale was chosen, red, yellow and blue. 

 

In order to improve clarity when the data is presented on paper where the 3D scatter 

plots cannot be rotated and observed from multiple angles, a ternary graph, also 

called a Teas plot, was also generated as it can show the correlation of HSP 

parameters in 2D.74 The ternary graph is different to the 3D scatter graph due to its 

use of fractional parameters (fd, fp and fh) as axes rather than straight HSP 

parameters. The formulae for the generation of fd, fp and fh are as below: 
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fd =
δd

δd+δp+δh
          fp =

δp

δd+δp+δh
     fh =

δh

δd+δp+δh
  ················ Equation 1 

fd + fp + fh = 100   ················ Equation 2 

The triangular graph was used first by Jean P. Teas in 1968,74 the fractional 

parameters are calculated from the three Hansen solubility parameters and they 

show the percentage contribution of these three parameters to the whole Hildebrand 

value. Adding fd, fp and fh together will equal 100.  The Hansen solubility 

parameters are also related to the Hildebrand solubility parameter as shown in 

Equation 3: 

δt2 = δd2 + δp2+δh2 ················ Equation 3 

δt2 = total Hildebrand parameter squared 

δd2 = dispersion force squared 

δp2 = dispersion force squared 

δh2 = hydrogen bonding squared 

 

Thus, a ternary graph can help to identify the relationship of resin swelling to Hansen 

solubility parameters rather than to Hildebrand parameters. All fractional parameters 

of solvents for these two resins are given in Table 5-3, Table 5-4, Table 5-5 and 

Table 5-6 in the Appendix A. It must be noted that the assumption that the fractional 

contributions add up to a uniform total that is the same for different solvents has no 

genuine physical basis and is an approximation necessary for 2-dimensional 

visualisation of 3D data. Therefore, whilst Teas plots are a very helpful visual aid, 

conclusions must not be drawn directly from the Teas plot without confirming any 
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correlation by close inspection of the corresponding 3D scatter plot. It is impossible 

to reduce the dimensionality of data without loss of information, and in this case this 

is justified for visual clarity on paper on the understanding that Teas plots are strictly 

illustrative rather than accurate.  

 

Additionally, as can be seen in Figure 2-5 and Figure 2-6, the boundaries of the high 

swelling region (containing all the blue points) have been established, with the 

exception of impractical regions requiring self-contradictory solvent properties. The 

essentially complete three-dimensional model of these data is shown in Figure 2-5 

and Figure 2-6, where swelling defined as “good” has been coded in blue for clarity. 

The results for Merrifield resin and HypoGel™200 resin are distinct areas, 

corresponding to the different properties of these two resins. It is worth noting that in 

these plots, some “impossible” areas exist, especially corresponding to solvents 

which have low polarity, are highly dispersive, and have a large degree of hydrogen 

bonding. Clearly such properties are mutually exclusive, at least in practical solvents, 

so an absence of data in such a region is to be expected. In the 3D scatter graph of 

Figure 2-6 for HypoGel™200 resin, we can see that there was a good solvent 

system well above all the others. This is the mixture of cyclopentanone: water=31: 69 

(v/v). It is a special case which will be discussed in detail later. 
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2.1.3.2. More visualisations to investigate the high swelling area for 

Merrifield resin 
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Figure 2-7: 3D scatter graph and ternary graph of different regions for Merrifield resin; resin swelling 
coded by different colours 
 

Additional visualisations were helpful to analyse the high swelling area of Merrifield 

resin. 3D scatter graphs and ternary plots were drawn for each resin swelling range.  
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As is evident from Figure 2-7,  the two graphs of solvents that result in resin swelling 

of no more than 2 mL g-1 identify that poor solvents are usually located in high 

hydrogen bonding (>10), lower dispersion force (<16), and higher polarity (>15). 

Spatially these comprise a shell scattered outside the boundaries of the high swelling 

area. However, moderate solvents in which the resin swelling is between 2 mL g-1 to 

4 mL g-1 appear closer to the blue area. Thus, the high swelling area is relatively well 

defined in HSP space, and its boundaries are clear enough to allow the possibility of 

closely predicting which ratio of an unknown pair of solvents will swell the resin best. 

 

Additionally, by comparing the 3D scatter graph of resin swelling between 2 mL g-1 

and 4 mL g-1 with that of resin swelling above 4 mL g-1 in Figure 2-7, we can see that 

the green points seem to intermingle with the blue points because most green 

solvents are mixtures. The resin swelling scales were set as smaller values which 

could help to observe this more clearly in Figure 2-8. Propylene carbonate (δD=20, 

δP=18, δH=4.1, swelling=1.80 mL g-1) is commercially available and has a good 

location in HSP-3D space so that we often chose propylene carbonate in the bottom 

right corner of Figure 2-8 to mix with a moderate solvent on the opposite side of the 

high resin swelling area. Thus, their mixtures could be located in the blue area. All 

these solvent systems have a maximum resin swelling (they are Type 1) and details 

can be seen in Table 5-4 in Appendix A. Figure 2-8 also shows that the blue points 

gather very closely together, and the yellow, green and black points are outside of 

the blue area. 
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Figure 2-8: 3D scatter graph for Merrifield resin; the resin swelling scales are: black: resin swelling below 
2.5 mL g-1; green: resin swelling between 2.5 mL g-1 and 3.5 mL g-1; yellow: resin swelling between 3.5 mL 
g-1 and 4.5 mL g-1; and blue: resin swelling above 4.5 mL g-1 

 

The 3D scatter graphs and ternary graphs both have disadvantages. For example, it 

is difficult to see some detailed properties of this 3D model in 3D scatter graphs 

viewed on 2D paper or screens. The ternary graphs distort the Hansen parameters 

as they are put into the two-dimensional graph so that they are not ideal to learn 

about the relationship between resin swelling and HSP parameters of a solvent. 

Therefore, to enable the high resin swelling area for Merrifield resin to be visualised 

more clearly, another plot type was used. This is a contour graph which could show 

more details by cutting the whole 3D model into slices. According to analyses of the 

3D scatter graphs and ternary graphs of Merrifield resin, it is apparent that almost all 

solvents with high hydrogen bonding will be poor solvents for this resin. Therefore, 

hydrogen bonding will have only a slight contribution to the resin swelling. Hence, the 

contour graphs were plotted by different ranges of hydrogen bonding as presented in 

Figure 2-9. 



41 
 

16 17 18 19 20
0

2

4

6

8

10

12

14

16

18
d

P

dD

2.000

4.000

Graph A

dH: 0~5

Swelling(mL g-1)

15 16 17 18 19 20
0

2

4

6

8

10

12

14

16

18

20

d
P

dD

2.000

4.000

Graph B 

dH: 5~10 

Swelling(mL g-1)

 

15 16 17 18 19 20
0

5

10

15

20

d
P

dD

2.000

4.000

Graph C

dH: 10~15

Swelling(mL g-1)

 

15 16 17 18 19 20
0

5

10

15

20

d
P

dD

2.000

4.000

Graph D

dH: 15~20

Swelling(mL g-1)

 

15 16 17 18 19 20
0

5

10

15

20

d
P

dD

2.000

4.000

Graph E

dH >20

Swelling(mL g-1)

 

Figure 2-9 Contour graphs of Merrifield resin divided by different range of hydrogen bonding 
 
 

In the HSPiP software solvent database, all solvents are in the range of: δD: 

10.6~26.0, δP: 0~ 36.2 and δH: 0~23.5. Inspection of Figure 2-9 shows that the high 

swelling area was located in regions with medium dispersion force (15~20), low to 

medium polar force (0~14) and low hydrogen bonding (0~15). 
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To be specific, in graph A: at hydrogen bonding parameter between 0 and 5, the blue 

zone occupies the largest area of this graph, and this illustrates that the high resin 

swelling area is more concentrated in the area where the hydrogen bonding is below 

5. Out of the blue zone, the black zone is where the moderate solvents are located. 

Outside of the black zone, the grey zone represents the poor solvents area. In graph 

B, compared to graph A, the blue area remarkably decreases to half the area. When 

hydrogen bonding increases to between 10 and 15, the high swelling area declines 

steeply and disappears when the hydrogen bonding parameter is over 15. According 

to these contour graphs, this high swelling region is definitely not spherical. This 

validates the practicability of the visualisation methods we use to investigate the high 

resin swelling area rather than just using HSPiP software to predict a maximum 

based on its spherical assumption.  
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2.1.3.3. More visualisations to investigate the high swelling area for 

HypoGel™200 resin 

To explore more details of the high resin swelling area of HypoGel™200 resin, the 

same visualisations as for Merrifield resin were used. The first was to draw the 3D 

graphs and ternary graphs for different ranges of resin swelling. Based on the values 

of the HSP for all the solvents used, the axes’ ranges for HypoGel™200 resin plots 

are: X: δD =14.7~20.2, Y: δP=0~21.7, Z: δH=0~42.3. 

 

Comparing the graphs of  shows that poor solvents gather around the high hydrogen 

bonding and low dispersive force area. However, moderate solvents were the major 

solvents for HypoGel200 resin, and surrounded the small blue area. The other 

visualisation method was use of contour graph plots to analyse the high resin 

swelling area as shown in Figure 2-11. Since the hydrogen bonding force does not 

contribute much to the resin swelling, the map plot was again categorized by 

different ranges of hydrogen bonding force. The ranges are: δH=0~5, δH=5~10, 

δH=10~15, δH=15~20 and δH >20. 
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Figure 2-10: 3D scatter graph and ternary graph of different regions of resin swelling for HypoGel™200 
resin 
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Figure 2-11: Contour graphs of HypoGel™200 resin divided into different ranges of hydrogen bonding 
 
 

Compared to Merrifield resin, HypoGel™200 resin has fewer poor solvents, and 

moderate solvents are the majority. However, HypoGel™200 resin has good 

solvents located on the δH > 15 slice whilst there was no high swelling area in this 

slice for Merrifield resin. Merrifield resin for which the backbone is polystyrene only 

swells well in moderately polar and low hydrogen bonding solvents, such as 2-
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methyl-THF, anisole, dimethyl isosorbide and cyclopentyl methyl ether, etc.31 

However, HypoGel™200 resin26 is composed of PEG grafted onto polystyrene and 

also has good swelling in 2-methyl-THF and anisole, but also swells better in higher 

hydrogen bonding solvents than Merrifield resin. In the previous literature study, it 

was shown that resin swelling was dependent on the backbone of the resin not the 

linker.31 That means that it is the PEG of the backbone for HypoGel™200 resin that 

helps it to swell in higher hydrogen bonding solvents as PEG chains can make the 

resin more hydrophilic. 

 

These experiments have defined a distinct high-swelling region in HSP space for 

each resin. Now that this is known it is possible to predict mixtures of solvents which 

will swell the resins even if the pure solvents do not, with a high degree of 

confidence. This vastly expands the library of solvents available for use in solid 

phase (peptide) synthesis with these resins to include many more “green” solvents 

than would be possible without this information. 

 

2.1.3.4. Resin swelling in green binary solvents for Merrifield resin 

For Merrifield resin, the mixed systems of Type 1 all had a maximum at a particular 

ratio. The two mixed systems of cyclopentanone with methanol, and ethyl acetate 

with propylene carbonate are representative and are shown in Figure 2-12 and 

Figure 2-13. The line graphs were drawn so that the X-axis is the volume/volume 

ratio of the two solvents and the Y-axis is the resin swelling. Dotted lines were used 

to help compare the resin swelling tendency achieved by changing the 

volume/volume ratios. 
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Figure 2-12: Line graph and 3D trajectory graph of the solvent system of cyclopentanone & methanol for 
Merrifield resin. Line graph is the resin swelling at various cyclopentanone: methanol (v/v) ratios; 3D 
trajectory graph shows that the cyclopentanone (CPTN) & methanol (MeOH) solvent system is connected 
by a black line in 3D space 

 

Figure 2-13: Line graph and 3D trajectory graph of the solvent system of propylene carbonate & ethyl 
acetate for Merrifield resin. Line graph is the resin swelling at various propylene carbonate: ethyl acetate 
(v/v) ratios; 3D trajectory graph shows that the propylene carbonate (PC) & ethyl acetate (EtOAc) solvent 
system is connected by a black line in 3D space 
 

As detailed in Figure 2-12 and Figure 2-13, both of these solvent pairs serve as good 

examples of Type 1 swelling behaviour, with maxima for a certain mixture that 

exceeds the swelling for either parent solvent. There is a marked rise from pure 

cyclopentanone (swelling=5.80 mL g-1) to cyclopentanone:MeOH=90:10 

(swelling=6.80 mL g-1). At the point of cyclopentanone:MeOH= 90: 10, a maximum 

value appears. Then the swelling decreases to pure MeOH (swelling=1.80 mL g-1). In 

Figure 2-12, we can see that the line of MeOH and cyclopentanone from the high 

resin swelling area (cyclopentanone) to poor resin swelling area (methanol) of 
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Merrifield resin. From a lot of experimental results, almost every set of 

cyclopentanone and an alcohol could have maximum value as all the connecting 

lines of them went through this high swelling area. 

 

Similarly, propylene carbonate is itself a poor solvent (swelling=1.80 mL g-1) and is 

outside the blue area whilst ethyl acetate is a moderate solvent (swelling=3.80 mL g-

1) and is also outside the high swelling area. When connecting them by a black line 

as shown in Figure 2-13, this line goes right through the high swelling area, 

predicting that a certain mixture would give resin swelling above 4 mL g-1. From 

Figure 2-13, we can see that the optimised ratio is at propylene carbonate:ethyl 

acetate=10:90 (swelling=4.61 mL g-1). This indicates that the resin swelling will 

increase when the mixtures’ positions are close to the core of the blue area. 

 

For Type 2 and Type 3 solvent mixtures, although they have different line graphs 

(Type 2 has increasing or decreasing trend and Type 3 is flat), they are all indicative 

that their mixed solvents have no resin swelling over their pure solvents. The line of 

Type 2 will go from outside of the high resin swelling area to inside of this area. Type 

3 will not change the resin swelling region. Although Type 2 and Type 3 cases did 

not have  maximum resin swelling for Merrifield resin that exceeded their parent 

solvents, they are beneficial to determine the boundaries of the high swelling area. 

1,2-Dichlorobenzene with DMF, and propylene carbonate with 1,2-dicholorobenzene 

exemplify these solvent types. 
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Figure 2-14: Line graph and 3D trajectory graph of the solvent system of propylene carbonate & 1,2-
dichlorobenzene for Merrifield resin. Line graph is the resin at various propylene carbonate: 1,2-
dichlorobenzene (v/v) ratios; 3D trajectory graph shows that the propylene carbonate (PC) & 1,2-
dichlorobenzene (1,2-DCB) solvent system is connected by a black line in 3D space 

  

Figure 2-15: Line graph and 3D trajectory graph of the solvent system of DMF (dimethylformamide) & 1,2-
dichlorobenzene for Merrifield resin. Line graph is the resin swelling at various DMF: 1,2-
dichlorobenzene (v/v) ratios; 3D trajectory graph shows that the DMF & 1,2-dichlorobenzene (1,2-DCB) 
solvent system is connected by a black line in 3D space 
 

As indicated in Figure 2-14, propylene carbonate was a poor solvent for Merrifield 

resin, but 1,2-dichlorobenzene was a good solvent. This solvent system provides 

useful information about the exact boundary of the high resin swelling region along a 

particular vector in HSP space, even though it does not include a maximum with 

greater swelling than 1,2-dichlorobenzene itself. Figure 2-15 illustrates that the 

swelling ability of 1,2-dichlorobenzene, DMF and their mixture solvents (75:25, 50:50, 

25:75) are similar for Merrifield resin so that the line presents as flat. As shown in 
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Figure 2-15, this set of solvents fits within the blue high swelling area and this 

establishes that, within this region at least, no significant maximum swelling exists. 

 

2.1.3.5. Resin swelling in green binary solvents for HypolGel™200 resin 

To show the generality of our approach, HypolGel™200 resin in which the backbone 

consists of polyethylene glycol grafted onto polystyrene, with a carboxylic acid linker 

as discussed previously, was also chosen to study using the same methodology as 

the Merrifield resin.  

 

As discussed above for Merrifield resin, Type 1 solvent mixtures have a maximum 

swelling mixture. Propylene carbonate with cyclopentyl methyl ether; and toluene 

with acetonitrile are examples of Type 1 solvent mixtures for HypoGel™200 resin. 

These solvent pairs are meaningful, because not only do their mixtures go through 

the high resin swelling area, but also their mixtures become good solvents (swelling 

beyond 4 mL g-1). The graphs for these solvents are presented in Figure 2-16 and 

Figure 2-17. 

 

It can be seen from Figure 2-16 that propylene carbonate and cyclopentyl methyl 

ether are moderate solvents for HypoGel200 resin giving resin swellings of 2.20 mL 

g-1 and 2.80 mL g-1 respectively. However, their mixtures become good solvents at 

ratios between PC:CPME = 40:60 and PC:CPME= 85:15. At the optimised ratio, the 

swelling has markedly increased to 4.71 mL g-1. Propylene carbonate, cyclopentyl 

methyl ether and their mixtures are connected by a black line in the 3D trajectory 

graph.  
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Figure 2-16:  Line graph and 3D trajectory graph of the solvent system of cyclopentyl methyl ether & 
propylene carbonate for HypoGel™200 resin. Line graph is the resin swelling at various propylene 
carbonate: cyclopentyl methyl ether (v/v) ratios; 3D trajectory graph shows that the cyclopentyl methyl 
ether (CPME) & propylene carbonate (PC) solvent system is connected by a black line in 3D space 
 

 

Figure 2-17: Line graph and 3D trajectory graph of the solvent system of acetonitrile & toluene for 
HypoGel™200 resin. Line graph is the resin swelling at various acetonitrile: toluene (v/v) ratios; 3D 
trajectory graph shows that the acetonitrile (MeCN) & toluene solvent system is connected by a black line 
in 3D space 
 

As a second example, along a very different vector in HSP space to the CPME/PC 

solvent mixtures discussed above, toluene and acetonitrile also showed Type 1 

behaviour, with their swelling going through a maximum (acetonitrile:toluene=40:60 

(v/v), swelling=5.01 mL g-1) significantly higher than either toluene or acetonitrile 

alone (2.94 mL g-1and 3.87 mL g-1  respectively) (Figure 2-17) 
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Figure 2-18: Line graph and 3D trajectory graph of the solvent system of heptane & 1,2-dichlorobenzene 
for HypoGel™200 resin. Line graph is the resin swelling at various 1,2-dichlorobenzene: heptane (v/v) 
ratios; 3D trajectory graph shows that the heptane & 1,2-dichlorobenzene (1,2-DCB) solvent system is 

connected by a black line in 3D space 
 

 

Figure 2-19: Line graph and 3D trajectory graph of the solvent system of dimethylformamide & 1, 2-
dichlorobenzene for HypoGel™200 resin. Line graph is the resin swelling at various dimethylformamide: 
1,2-dichlorobenzene (v/v) ratios; 3D trajectory graph shows that the dimethylformamide (DMF) & 1,2-
dichlorobenzene (1,2-DCB) solvent system is connected by a black line in 3D space 

 

For this resin, the solvent system of heptane with 1,2-dichlorobenzene is 

representative of a Type 2 solvent system and DMF with 1,2-dichlorobenzene 

represents Type 3. There is no evident maximum to the curve for a mixture of 1,2-

dichlorobenzene and heptane as can be seen in Figure 2-18, because this pair of 

solvents does not go right across the high resin swelling area. The 1,2-

dichlorobenzene and DMF system is shown in Figure 2-19. Although there is slightly 

more swelling at 50: 50 (v/v), it is still regarded as flat and all points are in the high 

resin swelling area. Similarly, these pairs of solvents are advantageous to get the 
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boundary of high swelling area. Even if DMF, heptane and 1,2-dichlorobenzene are 

not perfect solvents in green chemistry, they are common organic solvents and they 

can be helpful to explore the high resin swelling area. 

 

2.1.4. Special cases of resin swelling  

2.1.4.1. Solvent system of cyclopentanone and water for HypoGel™200 resin 

As cyclopentanone and water are only miscible in certain ratios, the use of this 

solvent system created an interesting special case for resin swelling. As shown in 

Figure 2-20, there is a blue ball which is far away from the main blue area; this is one 

of the mixtures of cyclopentanone and water. The limits of cyclopentanone and water 

miscibility were found to be up to 14% water (v/v) in cyclopentanone or up to 31% 

cyclopentanone in water at room temperature. Cyclopentanone and water are not 

miscible between this gap.  Therefore, some solvents whose positions are in the gap 

area (δD=17-19, δP=5-15, δH>20) were searched for in the database of the HSPiP 

software to fill the gap. Unfortunately, there were no suitable candidates. All 

suggested chemicals either had high melting points or were extremely expensive. 

 

Resin swelling is high for pure cyclopentanone, and this does not change 

significantly on addition of small quantities of water. However, starting from pure 

water, as the limit of miscibility is approached by adding cyclopentanone to water, 

swelling increases rapidly, with 31% cyclopentanone in water having a swelling value 

of 4.48 mL g-1.  As can be seen in Figure 2-20, this high swelling behaviour is 

anomalously far away from the main high-swelling region in HSP space. From the 

prediction of Stefan Lawrenson, et al., cyclopentanone and water had an optimised 
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swelling ratio at 91: 9 (v/v).31 It was suspected that this effect is the result of the resin 

preferentially capturing cyclopentanone out of the solvent mixture, giving swelling 

behaviour more similar to cyclopentanone than the ratio of the mixture would indicate.  

 

Figure 2-20: Solvent system of cyclopentanone and water for HypoGel™200 resin; the red cycle is the 
cyclopentanone: water=69: 31 mixture 
 
 
 
1H NMR spectroscopy with an internal standard method was chosen to prove the 

ability of HypoGel™200 resin to selectively capture cyclopentanone from a water & 

cyclopentanone mixture. Mesitylene was employed as internal standard because it 

has only two peaks in its 1H NMR spectrum which do not overlap the signals for 

cyclopentanone. The methodology was: spectra were recorded of pure 

cyclopentanone, pure mesitylene, the mixed solvent before resin swelling and the 

mixed solvent remaining above the swollen beads after resin swelling. A known 

volume of mesitylene was added to mixed solvent samples taken before and after 

resin swellings as an internal standard to allow calculation of how the  

cyclopentanone:water ratio changes. The standard was added to the aliquots taken 

for NMR only, it was not present for the swelling experiment itself. For full spectra, 

see Appendix C.  
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Table 2-4 gives the test results and the mesitylene: cyclopentanone ratio is 

determined by dividing the mesitylene aromatic CH integral by 3, then summing the 

integrals for the two cyclopentanone signals between 1.88 and 2.20 ppm and 

dividing the sum by 8. The amount of mesitylene added as an internal reference was 

identical for entries 1 and 2, and for entries 3 and 4 respectively. A water: 

cyclopentanone=30:70 (v/v) mixture was used initially as this was known to swell the 

HypoGel™200 resin. The 1H NMR data were: mesitylene (1,3,5-trimethylbenzene): 

6.81-6.71 and 2.50 ppm; cyclopentanone: 2.20-2.09 and 2.00-1.88 ppm; water: 1.61 

ppm. A peak at 4.85-4.77 ppm was due to PEG from the HypoGel™200 resin. As 

can be seen from Table 2-4, the concentration of cyclopentanone in the residual 

solvent relative to the mesitylene standard was reduced after swelling, indicating that 

the resin has preferentially taken up cyclopentanone over water in the mixture.  

Table 2-4: 1H NMR analysis of cyclopentanone: water mixtures before and after swelling of HypoGelTM200 
resin. The 1H NMR spectra are in Appendix C 

Entry 
Initial cyclopentanone to 

water ratio (v/v) 

Before / after 
swelling of 

resin 

Mesitylene to 
cyclopentanone ratio 

1 30:70 before 1:0.40 

2 30:70 after 1:0.28 

3 90:10 before 1:0.14 

4 90:10 after 1:0.06 

 

To confirm this result, another solvent ratio: cyclopentane: water=90:10 (v/v) was 

also chosen to do the same test, and the results are also displayed in Table 2-4.  By 

comparison of the mesitylene to cyclopentanone ratio before and after swelling it 

again shows the removal of cyclopentanone from the solvent after resin swelling. 

However, the degree of decrease of concentration of cyclopentanone in the 90:10 

solvent blend is considerably more than in the 30:70 solvent blend as the 90:10 
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(resin swelling=4.9 mL g-1) is a better solvent for HypoGel™200 resin than the 30: 70 

(resin swelling= 4.48 mL g-1). These results have shown that in the solvent system of 

cyclopentanone and water only cyclopentanone swells the HypoGel™200 resin. 

 

2.1.4.2. Solvent system of DMF and water for HypoGel™ 200 and Merrifield 

resins 

The DMF and water system was chosen to fill a gap at δD=17-19, δP=5-15, δH >20.  

Although DMF is not a green solvent, it is commercially available and miscible with 

water. Water is a poor solvent for these two resins while DMF is good solvent for 

these two resins, therefore, it was hoped that this data set would establish the 

boundary of the high swelling region along this vector (Figure 2-22).  Line graphs of 

swelling against solvent composition are shown in Figure 2-21. As is shown in these 

two figures, there is no significant increase or decrease in swelling from 100% water 

to water:DMF= 20:80.  However, beyond water:DMF= 20:80, the amount of swelling 

has a dramatic growth for HypoGel™200 resin. But for Merrifield resin, addition of 

even 10% water reduces the swelling of the resin to the same level observed using 

pure water. In the area (δD=17-19, δP=5-15, δH >20) which can be seen in the full 

3D graphs (Figure 2-22) of these two resins, the mixtures of DMF and water are 

black points for Merrifield resin and red points for HypoGel™200 resin which means 

they give poor swelling. As DMF was in a high swelling area, these results can help 

to get a clearer definition of the high swelling area. In the middle area of this 3D 

graph, other solvents (such as furfuryl alcohol) are also poor solvents which means 

that all solvents in this area were not good solvents.  
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Figure 2-21: Solvent system of dimethylformamide (DMF) and water for Merrifield resin and 
HypoGel™200 resin; the first line graph is belong to Merrifield resin and the second ling graph is belong 
to HypoGel™200 resin 

 

Figure 2-22: 3D trajectory graph of the solvent system of DMF and water for Merrifield resin and 
HypoGel™200;  the first 3D trajectory graph is belong to Merrifield resin and the second 3D trajectory 
graph is belong to HypoGel™200 resin 
 

Dimethylformamide is polar and a good acceptor of hydrogen bonds, and water is 

dipolar and a good donor of hydrogen bonds. When dimethylformamide mixes with 

water, this solvent system will form hydrogen-bonded complexes by the interaction of 

the amide and hydroxylic cosolvents.75  For this reason, the interaction of solvent 

and solvent is very large, and prevents DMF from swelling the resin. However, when 

the percentage of DMF exceeded 80%, only part of the DMF combined with water to 

form hydrogen-bonded complexes and the remaining part of the DMF can swell the 

HypoGel™200 resin as it is more hydrophilic than Merrifield resin. This is the reason 

why the line graphs of dimethylformamide (DMF) and water for Merrifield and 

HypoGel™200 resins have an unusual shape. 
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2.1.4.3. Solvent system of 2-MeTHF and cyclopentyl methyl ether for 

Merrifield resin 

Another special case is 2-MeTHF and cyclopentyl methyl ether for Merrifield resin 

(Figure 2-23). In the study of Lawrenson, HSPiP software predicted that the 

optimised ratio for these two solvents was 2-MeTHF:CPME=52:48 (v/v).31 In this 

study, we found that 52% 2-MeTHF (swelling of 6.27 mL g-1) mixed with 48% CPME 

(swelling of 5.67 mL g-1) gave swelling of 5.33 mL g-1, lower than either pure solvent. 

The Hansen solubility parameters of 2-MeTHF (δD=16.9, δP= 5, δH=4.3) and CPME 

(δD=16.7, δP= 4.3, δH=4.3) are very similar which means that their positions in 3D 

space are very close. In Figure 2-23, the circle in red encompasses all this solvent 

system: both pure solvents and their mixtures are located in the high resin swelling 

area. This solvent system is a case of solvent system which has a minimum resin 

swelling, and it indicates that the solvent-solvent interactions may not only have 

positive synergy (maximum resin swelling) but can also have negative synergy 

(minimum resin swelling). This phenomenon needs further investigation.  

  

Figure 2-23: Solvent system of 2-methyltetrahydrofuran (2-MeTHF) and cyclopentyl methyl ether (CPME) 
for Merrifield resin (circled in red) 
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2.1.4.4. Solvent system of propylene carbonate and TMO for Merrifield resin 

The solvent system of propylene carbonate and TMO is another special case for 

Merrifield resin because they are immiscible from PC:TMO=65:35 (v/v) to 

PC:TMO=10:90 (v/v) at room temperature, which is shown as a gap in Figure 2-24. 

However, data from the 3D graph in Figure 2-24 indicate that the solvent system of 

TMO and propylene carbonate goes through the high swelling area (the blue area) of 

Merrifield resin. In the line graph of Figure 2-24, their miscible mixtures (black points) 

show the ability to make Merrifield resin swell beyond 2 mL g-1 and even close to 4 

mL g-1 though propylene carbonate and TMO are both poor solvents with resin 

swelling below 2 mL g-1. It was apparent that the PC:TMO=10:90 (v/v) mixture has a 

maximum resin swelling (3.82 mL g-1). To investigate this further, other ratios (red 

points) which cannot be mixed together were also used to swell Merrifield resin, and 

gave similar results in terms of resin swelling. These systems formed two layers and 

gas chromatography (GC) was used to analyse each layer to determine their 

mol/mol ratio. The results are presented in Table 2-6. 

    

Figure 2-24: Solvent system of propylene carbonate and TMO for Merrifield resin 
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GC is a widely used chromatography in analytical chemistry, and it can separate 

components of a mixture by the different time of peak elution. According to Appendix 

D, acetone was used as blank and eluted at 1.186 min in the chromatogram, 

followed by TMO and propylene carbonate  at 1.765 min and 2.819 min respectively. 

A miscible mixture of these two solvents (PC:TMO=80:20 (v/v)) was chosen as a 

calibrant, then other mixtures were calibrated using the same response factor (Rf) to 

get the mol/mol ratio of each blend. The results varied depending on which GC 

instrument was used. The calibration results are given in Table 2-5. The formula 

used is below: 

𝑃𝐶(𝑚𝑜𝑙%)

𝑇𝑀𝑂(𝑚𝑜𝑙%)
= Rf

𝑃𝐶(𝐴𝑟𝑒𝑎)

𝑇𝑀𝑂(𝐴𝑟𝑒𝑎)
   ·········· Equation 4 

Table 2-5: Calculating response factors (Rf) from different gas chromatography instruments  

Machine  PC (v%) PC (V%) PC (mol%) TMO (mol%) PC  Area ( PA *s) TMO Area (pA *s) Rf 

1 80 20 88.30% 11.70% 12669 4808.9043 2.863453 

2 80 20 88.30% 11.70% 7926.79492 3153.14453 3.000769 

 

After the GC calibration, the real mol/mol ratio was determined. Data in Table 2-6 

suggest that for immiscible blends, more TMO existed in the top layer and more 

propylene carbonate was present in the bottom layer. At the same time, we can also 

observe that the top layers of PC:TMO=20:80, 30:70, 40:60, 50:50 and 60:40 (v/v) 

contained 14-16 mol% propylene carbonate and 84-86 mol% TMO which are similar 

to the composition of the PC:TMO=10:90 (v/v) solvent blend. Correspondingly, the 

bottom layers of all the immiscible mixtures contained 76-77 mol% propylene 

carbonate and 23-24 mol% TMO which matches the molar composition of the 65:35 

(v/v) mixture. This suggested that it was the top layer of the immiscible mixtures 

which was responsible for the resin swelling. 
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Table 2-6: The results of propylene carbonate and TMO mixtures for Merrifield resin after GC calibration  

          GC results 

Testing Part 
PC(
v%) 

TMO(v
%) 

PC(mol
%) 

TMO(mol
%) 

PC(Area 
pA*s) 

TMO(Area 
pA*s) Rf 

PC(mol
%) 

TMO(mol
%) 

Suspension 10 90 17.32% 82.68% 478.39 7800.95 2.86 14.94% 85.06% 

Top 20 80 32.04% 67.96% 1059.21 17904.60 2.86 14.49% 85.51% 

Bottom 20 80 32.04% 67.96% 7666.45 6605.79 2.86 76.87% 23.13% 

Top 30 70 44.70% 55.30% 1110.32 19194.10 2.86 14.21% 85.79% 

Bottom 30 70 44.70% 55.30% 7524.83 6504.19 2.86 76.81% 23.19% 

Top 40 60 55.70% 44.30% 951.05 16372.00 2.86 14.26% 85.74% 

Bottom 40 60 55.70% 44.30% 7823.83 6719.13 2.86 76.93% 23.07% 

Top 50 50 65.35% 34.65% 703.28 11937.90 2.86 14.43% 85.57% 

Bottom 50 50 65.35% 34.65% 7750.32 6669.02 2.86 76.89% 23.11% 

Top 60 40 73.88% 26.12% 701.40 11041.80 3.00 16.01% 83.99% 

Bottom 60 40 73.88% 26.12% 8900.46 8179.28 2.86 75.70% 24.30% 

Suspension 65 35 77.79% 22.21% 7216.28 5964.92 2.86 77.60% 22.40% 

Miscible 68 32 80.03% 19.97% 10061.40 7796.25 2.86 78.70% 21.30% 

Miscible 70 30 81.48% 18.52% 7775.30 5246.31 2.86 80.93% 19.07% 

Miscible 80 20 88.30% 11.70% 12669.00 4808.90 2.86 88.30% 11.70% 

Miscible 90 10 94.44% 5.56% 12072.70 2089.69 2.86 94.30% 5.70% 

 

To confirm this interpretation, the immiscible solvent blends of PC:TMO=20:80 (v/v) 

and PC:TMO=50:50 (v/v) were selected to test the swelling ability of their top and 

bottom layers. The experimental method was to separate the top layers and bottom 

layers of these two solvent blends and test them separately. GC was applied to 

analyse the variation of mol/mol percentage of the top and bottom layers before and 

after resin swelling so as to investigate which layer swelled Merrifield resin as well as 

which solvent swelled the resin, and results are displayed in Table 2-7. 

Table 2-7: GC to test the capturing ability of Merrifield resin in PC+TMO solvent system 

  Solvent(v/v) Solvent(mol/mol) GC results 

Test 
P
C TMO PC TMO 

PC Area ( pA 
*s) 

TMO Area (pA 
*s) 

PC 
(mol%) 

TMO 
(mol%) 

Top before swelling  

20 80 
32.04

% 
67.96

% 

850.88269 14269.3 15.18% 84.82% 

Top after swelling 419.04117 15715.8 7.41% 92.59% 

Bottom before 
swelling 6117.58105 5335.81836 77.48% 22.52% 

Bottom after swelling 6432.0791 3397.47363 85.03% 14.97% 

Top before swelling  

50 50 
65.35

% 
34.65

% 

764.07281 13117.6 14.88% 85.12% 

Top after swelling 751.15051 14505.5 13.45% 86.55% 

Bottom before 
swelling 6104.40283 5112.06445 78.18% 21.82% 

Bottom after swelling 7147.79297 3625.61133 85.54% 14.46% 
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As can be seen from Table 2-7 for these two solvent mixtures, both of their top 

layers after swelling have an evidently decreased percentage of propylene carbonate 

and increased TMO compared to the percentage of propylene carbonate and TMO 

before swelling. On the contrary, the percentage of propylene carbonate goes up 

sharply and TMO reduces in their bottom layers after swelling by contrast with the 

percentage before swelling. Therefore, using this method can identify that both the 

top and bottom layer of the mixtures have swelling abilities for Merrifield resin. 

However, the top layers have better abilities than the bottom layers to swell the resin. 

In other words, in the immiscible solvents, the solvents of the top layers go into the 

interface of the resin faster. Thus, Merrifield resin prefers to swell in a propylene 

carbonate:TMO mixture which contains more TMO than is present in the bottom 

layer and which corresponds to that found in the top layer.  

 

In summary, propylene carbonate and TMO are poor solvents for Merrifield resin, but 

their mixture can become moderate solvent. This means that it is a synergistic effect 

of propylene carbonate and TMO that makes the resin swell. However, the case of 

propylene carbonate and TMO illustrates that although two solvents are poor 

solvents and are well separated in HSP-3D space, when their mixture can be located 

in the high resin swelling area, their mixture would have better swelling ability than 

either pure solvent. This situation was also apparent for the mixture of propylene 

carbonate and D-limonene, which is perhaps unsurprising as D-limonene (δD=17.2, 

δP=1.8, δH=4.3) has very similar Hansen solubility parameters to TMO (δD=15.4, 

δP=2.4, δH=2.1). 
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2.1.5. Miscibility tests of potential solvent pairs for Merrifield resin 

Based on the 3D graphs, various other pairs of solvents whose mixtures will pass 

through the high resin swelling area of Merrifield resin can be predicted. However, in 

view of the above results, the miscibility of these solvent pairs was investigated. 

Table 2-8 shows the miscibility of solvent A and solvent B when their volume to 

volume ratio is 50 to 50.  DMF and water is a special case for Merrifield resin and 

HypoGel™200 resin because they can form hydrogen-bonded complexes as 

discussed previously. Usually, when chemists test the miscibility of two solvents, the 

ratio v/v=50/50 is chosen. From the solvent system of propylene carbonate and TMO, 

however, we know that sometimes even though they cannot mix at v/v=50/50, they 

still can be miscible at some ratios which are usually close to pure solvent A or pure 

solvent B.  

Table 2-8: Miscibility tests of potential solvent pairs which would have maximum swelling for Merrifield 
resin 

Solvent A Solvent B A: B=50: 50(v/v) 

dimethylformamide water + 

dimethyl sulfoxide TMO - 

ethylene carbonate TMO - 

acetonitrile carbon disulfide - 

cyclopentanone TMO + 

cyclopentanone water - 

propylene carbonate TMO - 

propylene carbonate  heptane - 

propylene carbonate D-limonene - 

propylene carbonate p-cymene - 

propylene carbonate dimethyl carbonate + 

propylene carbonate acetone + 

propylene carbonate isopropyl acetate + 

propylene carbonate diethyl carbonate + 

propylene carbonate isobutyl acetate + 
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2.1.6. Conclusions for resin swelling in greener binary solvents for Merrifield 

and HypoGel™200 resins 

At this stage of this project, two commercially available resins: Merrifield resin with 

Wang linker and HypoGel™200 resin with different backbones and linkers had been 

studied. This project started with the study of Lawrenson in our group. Hundreds of 

resin swelling experiments have defined that high resin swelling areas exist in HSP-

3D space for both HypoGel™200 resin and Merrifield resin. Additional studies 

investigated interesting special cases for non-miscible solvent mixtures 

(water/cyclopentanone and PC/TMO), or a mixture with very large solvent-solvent 

interactions (water/DMF). This now provides a robust, predictive model for selection 

of binary mixed solvent systems for solid phase peptide synthesis using either of 

these resins, as well as giving some insight into the fundamental resin-solvent 

interaction in each case. Next, to make these models be of more significance, their 

applications were taken into consideration. Thus, some greener binary solvents were 

selected to study if they could be applied in solid phase peptide synthesis. 
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2.2. Solid-phase peptide synthesis in greener binary solvent 

mixtures  

2.2.1. Background of greener binary solvents and repeated literature 

experiments: a tripeptide prepared in propylene carabonate on Wang-

ChemMatrix®resin 

Peptides are important in the pharmaceutical industry as therapeutic peptides have 

high efficiencies as antihypertensives, antidepressants, contraceptives and 

antibiotics.45 As they have large economic and practical values, peptide synthesis is 

a crucial step for the manufacture of these drugs.45  

 

Solution-phase peptide synthesis is a common reaction in chemistry, but it is 

gradually being discarded due to disadvantages such as difficult purification and low 

yield. Solid-phase peptide synthesis has been adopted by industry as it is a quick 

and easy procedure.17 Traditional organic solvents like DMF are usually used in 

solid-phase peptide synthesis as they have good swelling abilities for commercially 

available resins.17 However, there is an urgent need to find alternative solvents 

which are more environmentally friendly. 

 

In Chapter of 2.1 of this thesis, two common resins, Merrifield resin and 

HypoGel™200 resin were investigated to determine if they had high swelling areas 

in HSP-3D space. This hypothesis was confirmed and their 3D models were almost 

fully established. Thus, it was appropriate to think about the application of these two 

models. As this project started with greener solvents which could potentially be 

applied in SPPS,13  SPPS was used as a target to test if the models were useful.  
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Propylene carbonate is a green solvent synthesized from carbon dioxide and 

propylene oxide.76 Recently, Lawrenson studied the use of propylene carbonate in 

solid-phase peptide synthesis and it performed well.13  The tripeptide (H-Leu-Ala-

Phe-OH) was used as a target and the synthesis was started with preloaded H-Phe-

HMPB-ChemMatrix® resin, adding Fmoc-Ala-OH and Fmoc-Leu-OH in sequence.13 

However, to date, using solvent blends to do peptide synthesis had not been 

investigated. In this project, greener solvent blends were hence applied in solid-

phase peptide synthesis. Use of Merrifield resin was set as the research objective 

because Merrifield resin is more prevalent in solid-phase peptide synthesis than 

HypoGel™200 resin. The tripeptide, H-Leu-Ala-Phe-OH was again used as the 

target peptide chain to test if greener binary solvents could also work well in solid-

phase peptide synthesis. As detailed in Chapter 2.1.3.4, many green binary solvents 

have been shown to have maximum resin swellings for Merrifield resin at optimised 

ratios. Thus, two pairs of solvents: ethyl acetate and propylene carbonate, TMO and 

propylene carbonate, whose mixtures have better swelling than each pure solvent, 

were selected to apply in the synthesis of this tripeptide. 

 

Figure 2-25: The first chemical structure is the tripeptide (H-Leu-Ala-Phe-OH), the second chemical 
structure is this tripeptide as its trifluoroacetate salt 
 

 

The synthesis of H-Leu-Ala-Phe-OH in propylene carbonate on Wang-ChemMatrix® 

resin was repeated to prove the reproducibility of the literature synthesis,13 and the 
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product characterizations are shown in Figure 2-26 to Figure 2-28. Compared with 

the literature data,13 Figure 2-26 is an identical 1H NMR spectrum. The spectrum of 

H-Leu-Ala-Phe-OH was recorded in TFA-d NMR solvent, TFA-d: δ = 7.26-7.16 (m, 

3H, ArH), 7.14-7.08 (m, 2H, ArH), 5.01-4.96 (m, 1H, Phe-NCH), 4.71-4.61 (m, 1H, 

Ala-NCH), 4.31-4.24 (m, 1H, Leu-NCH), 3.30 (dd J 14.3, 4.3 Hz, 1H, CH2Ph), 3.09 

(dd J 14.3, 8.5 Hz, 1H, CH2Ph), 1.80-1.60 (m, 3H, Leu-CH2CHMe2), 1.39 (d J 6.3 Hz, 

3H, NCHCH3), 0.93 (t J 6.0 Hz, 6H, CH(CH3)2). In Figure 2-27, the mass spectrum 

shows [M+H]+ at 350.2070 [M+H]+ and [M+Na]+ at 372.1889. The HPLC trace in 

Figure 2-28 illustrates that this tripeptide elutes at 14.122 min, and the purity is ≥ 

98%. The sample was a white solid.  

 

 
Figure 2-26: 1H NMR spectrum (TFA-d) of TFA∙H-Leu-Ala-Phe-OH synthesized in propylene carbonate on 
ChemMatrix resin 
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Figure 2-27: Mass spectrum of TFA∙H-Leu-Ala-Phe-OH synthesized in propylene carbonate on 
ChemMatrix resin 
 

 

HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 14.122 MM 0.3245 8463.95215 434.72705 98.891 

2 16.513 MM 0.111 48.222 7.23913 0.5634 

3 17.105 MM 0.1062 46.68384 7.32693 0.5454 

 
Figure 2-28: HPLC trace of TFA∙H-Leu-Ala-Phe-OH synthesized in propylene carbonate on ChemMatrix 
resin 
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2.2.2. Tripeptide synthesis in propylene carbonate & ethyl acetate solvent 

system with Merrifield resin (HBTU/HOBt) 

As the peptide synthesis had been repeated successfully, Merrifield resin with Wang 

linker (also just called Wang resin) was used as the solid-phase to synthesize the 

same tripeptide, following the sequence in Figure 2-29. In this project, H-Leu-Ala-

Phe-OH was set as the target peptide to test if binary solvents could be applied in 

solid-phase peptide synthesis as well as if they could work better than their pure 

solvents. As reported before, the solvent system of propylene carbonate (PC) 

(swelling=1.80 mL g-1) and ethyl acetate (EA) (swelling=3.80 mL g-1) has a maximum 

Merrifield resin swelling at a ratio of PC:EA=10:90 (v/v) (swelling=4.61 mL g-1). Thus, 

the tripeptide was synthesized in propylene carbonate, ethyl acetate and a 

PC:EA=10:90 mixture on Wang resin to compare which solvent was better for solid-

phase peptide synthesis. The synthetic method mainly followed literature,13 but some 

processes were changed (Figure 2-29), as peptide synthesis was started with Fmoc-

Phe-Wang resin (Figure 2-30). Firstly, a freshly prepared 20% (v/v) solution of 

piperidine in pure solvents or binary solvent was used for deprotection. Three 

equivalents of HBTU/HOBt (3-[bis(dimethylamino)methyliumyl]-3H-benzotriazol-1-

oxide hexafluorophosphate/hydroxybenzotriazole) as the coupling agents and six 

equivalents of DIPEA (diisopropylethylamine) were dissolved in 5 mL of solvent to 

pre-activate three equivalents of Fmoc-amino acid. Coupling reactions were 

performed at ambient temperature for 1 hour. A mixture of TFA (trifluoroacetic acid), 

TIPS (triisopropylsilane) and H2O with the ratio at 95:2.5:2.5 (v/v/v) was adopted to 

cleave the peptide chain from the resin and it was then precipitated with cold diethyl 

ether. The last step was to use vacuum to dry the peptide. All syntheses were 

repeated twice and gave the same results. After each step, the resin was washed 
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with the chosen solvent three times, hence no other organic solvents were used in 

the synthetic processes.  

 

Figure 2-29: The synthetic sequence for the synthesis of the tripeptide (H-Leu-Ala-Phe-OH) 
 
 

 

Figure 2-30: Structural formula of Fmoc-Phe-Wang resin; 0.4-0.8 mmol/g loading 

 

2.2.2.1. Tripeptide prepared in pure propylene carbonate 

Peptide synthesis in propylene carbonate on Wang resin was tested first. As Chapter 

2.1.3.4 discussed, propylene carbonate is a poor solvent for Wang resin as it gives 

resin swelling below 2 mL g-1 (1.80 mL g-1). In theory, it should not be a suitable 

solvent for successful peptide synthesis. However, in order to prove the correctness 

of this theory and also to compare with the peptide synthesis in ethyl acetate and 

their binary solvent, it was still necessary for this control to be carried out. The 

results of 1H NMR spectroscopy, mass spectroscopy and HPLC chromatography on 
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this sample are shown in Figure 2-31, Figure 2-32 and Figure 2-33. The 1H NMR 

spectrum shows only that phenylalanine (δ=7.70-7.00) exists in this sample and 

Figure 2-34 shows that no product precipitated in diethyl ether. However, the mass 

spectrum shows that there is some H-Leu-Ala-Phe-OH in the sample (m/z: 350.2068 

[M+H]+). The HPLC chromatogram also shows product eluting at 14.318 min, but the 

content of it in the sample is very low (around 3%). According to analysis of these 

results, although propylene carbonate is a poor solvent for Wang resin, it still has a 

little swelling ability for this resin and allows a small amount of peptide synthesis to 

occur. 

 

Figure 2-31: 1H NMR spectrum (TFA-d) of TFA∙H-Leu-Ala-Phe-OH in synthesized in propylene carbonate 
on Wang resin 
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Figure 2-32: Mass spectrum of TFA∙H-Leu-Ala-Phe-OH synthesized in propylene carbonate on Wang resin 
 
 

 

HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 4.319 BB 0.2882 463.74301 20.79243 32.608 

2 14.318 BB 0.1358 44.72331 4.42886 3.1447 

3 18.806 BV 0.2444 239.16025 11.75478 16.8165 

4 19.403 VB 0.2378 674.54858 37.86259 47.4308 
Figure 2-33: HPLC trace of TFA∙H-Leu-Ala-Phe-OH synthesized in propylene carbonate on Wang resin 
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Figure 2-34: Picture of peptide prepared in propylene carbonate on Wang resin, not precipitating in cold 
diethyl ether 
 

 

2.2.2.2. Tripeptide prepared in pure ethyl acetate 

The resin swelling of Wang resin in ethyl acetate was reported before, it is a 

moderate solvent (swelling=3.80 mL g-1) for this resin because its swelling was 

between 2 mL g-1 to 4 mL g-1. This means that peptide synthesis should be possible, 

but not optimal in ethyl acetate. The 1H NMR spectrum of TFA·H-Leu-Ala-Phe-OH 

prepared in ethyl acetate on Wang resin (Figure 2-35) is similar to the 1H NMR 

spectrum of it prepared in propylene carbonate on ChemMatrix resin (Figure 2-26). 

The mass spectrum (Figure 2-36) shows a very high intensity peak at m/z: 350.2073 

[M+H]+ and also a peak at m/z: 372.1889 [M+Na]+. HPLC (Figure 2-37) indicates that 

there is a high purity (96%) of tripeptide in this sample with a peak at 14.119 min. 

The precipitation in cold diethyl ether (Figure 2-38) gave a white solid. 
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Figure 2-35: 1H NMR spectrum (TFA-d) of TFA∙H-Leu-Ala-Phe-OH synthesized in ethyl acetate on Wang 
resin 
 
 

 

Figure 2-36: Mass spectrum of TFA.H-Leu-Ala-Phe-OH synthesized in ethyl acetate on Wang resin 
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HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 14.118 VV R 0.1827 5696.5957 455.2377 96.9384 

2 15.661 BV 0.1138 28.18783 3.05198 0.4797 

3 15.866 VB 0.1814 151.73021 10.45145 2.582 

Figure 2-37: HPLC trace of TFA.H-Leu-Ala-Phe-OH synthesized in ethyl acetate on Wang resin 

 

 

Figure 2-38: Picture of peptide prepared in ethyl acetate on Wang resin and precipitated in cold diethyl 
ether 
 

 

2.2.2.3. Tripeptide prepared in the PC:EA=10:90 (v/v) 

Finally, the solvent blend (PC:EA=10:90) was chosen to perform the same peptide 

synthesis. It can swell Wang resin up 4.61 mL g-1 and is a good solvent (swelling > 4 

mL g-1). As the solvent blend has a considerably higher swelling than each of the 

pure solvents, theoretically, it would be expected to generate more peptide than 

synthesis in either pure solvent.  The results are displayed from to Figure 2-42. The 



76 
 

1H NMR spectrum of TFA·H-Leu-Ala-Phe-OH (Figure 2-39) prepared in this mixture 

is the same as the sample prepared in PC on ChemMatrix resin (Figure 2-26) or in 

EA (Figure 2-35) on Wang resin. The sample also shows high intensity at m/z: 

350.2069 [M+H]+ and has m/z: 372.1888 [M+Na]+ (Figure 2-40). HPLC shows its 

purity is 95% (Figure 2-41). Thus, tripeptide prepared in an EA & PC mixture or in 

pure ethyl acetate have almost the same purity as each other (95% and 96% 

respectively).  However, the precipitate in cold diethyl ether (Figure 2-42) shows that 

more sample was prepared in the mixture than was obtained in pure ethyl acetate.  

 

Figure 2-39: 1H NMR spectrum (TFA-d) of TFA∙H-Leu-Ala-Phe-OH synthesized in propylene 
carbonate:ethyl acetate=10:90 (v/v) on Wang resin 
 

 

Figure 2-40: Mass spectrum of TFA·H-Leu-Ala-Phe-OH synthesized in propylene carbonate: ethyl acetate 
=10:90 (v/v) on Wang resin 
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HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 14.062 MF 0.3112 885.58167 47.42891 4.754 

2 14.168 FM 0.3399 1.77E+04 869.89368 95.246 

Figure 2-41: HPLC trace of TFA.H-Leu-Ala-Phe-OH synthesized in propylene carbonate: ethyl 
acetate=10:90 (v/v) on Wang resin 
 
 

 
Figure 2-42: Picture of peptide prepared in propylene carbonate, ethyl acetate and propylene 
carbonate:ethyl acetate=10:90 (v/v) on Wang resin then precipitated in cold diethyl ether 

 

The % yields of these samples cannot be calculated accurately as the loading of 

Fmoc-Phe-resin was only specified as 0.4-0.8 mmol/g. Thus, yields (mg/g) were 

used as a substitute shown in Table 2-9. It shows that more peptide is formed in the 

mixture than in either propylene carbonate or ethyl acetate.  

Table 2-9: Yields of peptide synthesized in propylene carbonate & ethyl acetate solvent systems using 
HBTU/HOBt 

Solvent Yield (mg/g) 

propylene carbonate 7.52 

ethyl acetate 291.73 

PC:EA=10:90 306.86 
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2.2.2.4. The swelling of Wang resin with attached Fmoc-amino acid or 

peptide 

At the same time that peptide synthesis was carried out in pure solvents and their 

mixture, the swelling of the Wang resin attached to Fmoc-groups or peptide in the 

binary solvent mixture was also investigated to see what changes occurred during 

peptide synthesis. The swelling results are shown in Figure 2-43. Each bar 

represents a stage of peptide synthesis on Wang resin. In general, the swelling of 

the resin with no attached protecting group or peptide was above 4 mL g-1, otherwise 

it was under 4 mL g-1 but above 3 mL g-1. These data showed that the attached 

Fmoc group and attached peptide would slightly negatively influence the resin 

swelling. 

Figure 2-43: Resin swelling attached with peptide, supporting information seen in Appendix E (Table 5-48) 
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2.2.2.5. Conclusion of PC & EA binary solvent used in SPPS 

The experimental results of peptide synthesis in propylene carbonate, ethyl acetate 

and PC:EA=10:90 (v/v) on Wang resin respectively imply that the binary solvent has 

better applicability for peptide synthesis than either pure solvent. These results 

indicate that the HSP-3D space model could be potentially applied to predict the 

binary solvents to apply in solid-phase peptide synthesis (SPPS). However, the 

available data show small differences in yields and purities from this solvent pair 

which are not enough to declare that the 3D model can help to predict the binary 

solvents potentially useful in SPPS. Thus, another solvent pair which can make the 

yields and purities from pure solvents and their mixtures fully differentiated should be 

chosen to apply in the tripeptide synthesis. 

 

2.2.3. Tripeptide synthesis in propylene carbonate & TMO solvent system with 

Merrifield resin using HBTU/HOBt 

Another solvent system (propylene carbonate and TMO) was chosen to do the same 

peptide synthesis on Wang resin as well.  All steps were the same and just solvents 

changed. Peptide synthesis in propylene carbonate on Wang resin was discussed 

before so only peptide synthesis carried out in pure TMO and their mixtures 

(PC:TMO=10:90 (v/v), PC:TMO=70:30 (v/v) and PC:TMO =60:40 (v/v)) are reported. 

The propylene carbonate & TMO solvent system was discussed in Chapter 2.1.4.4; 

both PC and TMO are poor solvents for Wang resin as resin swellings are less than 

2 mL g-1. Although they are only partially miscible, their mixtures show swelling 

ability and are moderate solvents for Wang resin. The mixture of PC:TMO=10:90 (v/v) 

has resin swelling=3.81 mL g-1, but it cannot dissolve the HBTU/HOBt coupling 

agents. The mixture of PC:TMO=70:30 (v/v) can dissolve the HBTU/HOBt but the 
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resin swelling is only 2.92 mL g-1. The blend of PC:TMO=60:40 (v/v) is immiscible, 

but it can dissolve the coupling agents and the resin swelling is 3.81 mL g-1. Thus, 

these three mixtures were chosen for comparison to the two pure solvents for SPPS. 

 

2.2.3.1. Tripeptide synthesised in pure TMO 

TMO is a new green solvent (swelling=1.78 mL g-1), first prepared by Fergal Byrne in 

the GCCE.73 After finishing the sequence of peptide synthesis, the figures below 

(Figure 2-44, Figure 2-45  and Figure 2-46) illustrate that there is no H-Leu-Ala-Phe-

OH peptide in this sample and there was no precipitate in cold diethyl ether. 

However, two reasons are possible for this result: one is because TMO is a poor 

solvent for Wang resin and has no ability to swell Wang resin. As discussed above, 

propylene carbonate is also a poor solvent for Wang resin, but the mass spectrum 

and HPLC chromatogram indicated there was still a little tripeptide in the sample 

prepared in it. Thus, another reason could be due to the insolubility of the coupling 

agents (HBTU/HOBt) in TMO. Later, another pair of coupling agents which can 

dissolve in TMO were chosen to do the peptide synthesis to investigate this further 

(see Chapter 2.2.4).  

 

Figure 2-44: 1H NMR spectrum of attempted preparation of TFA∙H-Leu-Ala-Phe-OH on Wang resin in TMO 
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Figure 2-45: Mass spectrum of attempted preparation of TFA∙H-Leu-Ala-Phe-OH on Wang resin in TMO.  
 

 

HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 6.765 BV 0.1887 2.41E+04 1538.38391 29.9242 

2 6.8 VV 0.023 2601.34326 1549.18835 3.2321 

3 6.815 VV 0.0237 2489 1550.07446 3.0925 

4 6.851 VV 0.0608 7323.12158 1557.75269 9.0987 

5 6.917 VB 0.3467 3.12E+04 1501.20691 38.8045 

6 8.226 BB 0.2768 8456.4707 401.40015 10.5069 

7 23.137 BV R 0.2316 4298.79346 255.65021 5.3411 

Figure 2-46: HPLC trace of attempted preparation of TFA∙H-Leu-Ala-Phe-OH on Wang resin in TMO 
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2.2.3.2. Tripeptide prepared in PC:TMO=10:90 (v/v), PC:TMO=70:30 (v/v), 

PC:TMO=60:40 (v/v)  

It was reported in Chapter 2.1.4.4 that only some ratios of PC & TMO can mix with 

each other and these mixtures have better swelling abilities for Merrifield resin than 

either pure solvents. Therefore, the miscible solvent mixtures: PC:TMO=10:90 (v/v) 

(resin swelling= 3.82 mL g-1) and PC:TMO=70:30 (v/v) (resin swelling= 2.92 mL g-1); 

and the immiscible solvent mixture: PC:TMO=60:40 (v/v) (resin swelling= 3.81 mL g-1) 

were chosen to study if they could be used in this peptide synthesis. The results for 

the PC:TMO=10:90 (v/v) solvent mixture are shown in Figure 2-47 to Figure 2-50. In 

the 1H NMR spectrum shown in Figure 2-47, there are peaks belonging to the 

tripeptide. The picture in Figure 2-50 shows that white solid forms in cold diethyl 

ether. The mass spectrum (Figure 2-48) and HPLC trace (Figure 2-49) show that 

there is indeed tripeptide in this sample. 

 

Figure 2-47: 1H NMR spectrum of TFA·H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=10:90 
(v/v) on Wang resin; diethyl ether: δ=3.55 (q, 4H, CH2), δ=1.25 (t, 6H, CH3) 
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Figure 2-48: Mass spectrum of TFA·H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=10:90 
(v/v) on Wang resin 
 

 

HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 14.221 BV R 0.2356 5483.11279 311.19736 100 

 
Figure 2-49: HPLC trace of TFA·H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=10:90 (v/v) 
on Wang resin 

 

Figure 2-50: Picture of peptide prepared in propylene carbonate:TMO=10:90 (v/v) on Wang resin then 
precipitated in cold diethyl ether   
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The experimental result obtained with PC:TMO=10:90 was not perfect as this 

mixture cannot dissolve all coupling agents. Thus, another two mixtures of this 

solvent system which can dissolve all coupling agents were chosen to do same kind 

of peptide synthesis. These were PC:TMO=70:30 (v/v) and PC:TMO=60:40 (v/v).  

The characterisations of the peptide are displayed from Figure 2-51 to Figure 2-58. 

As can be seen from Figure 2-51 to Figure 2-54, the end result of peptide synthesis 

in PC:TMO=70:30 (v/v) is significantly better than that in PC:TMO=10:90 (v/v). The 

purity is up to 97%. The mixture of PC:TMO=60:40 (v/v) was also employed in this 

peptide synthesis and gave excellent results which are shown from Figure 2-55 to 

Figure 2-58. 

 

Figure 2-51: 1H NMR spectrum of TFA.H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=70:30 
(v/v) on Wang resin 
 

 

Figure 2-52: Mass spectrum of TFA.H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=70:30 
(v/v) on Wang resin 
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HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 4.165 BV R 0.1963 379.02905 27.07874 2.4528 

2 13.925 BV R 0.2497 1.49E+04 816.17743 96.7402 

3 18.003 BV R 0.1647 124.70232 9.85079 0.807 

Figure 2-53: HPLC trace of TFA.H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=70:30 (v/v) 
on Wang resin 
 
 

 

Figure 2-54: Picture of peptide prepared in propylene carbonate:TMO=70:30 (v/v) on Wang resin then 
precipitated in cold diethyl ether 

 

 

Figure 2-55: 1H NMR spectrum of TFA.H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=60:40 
(v/v) on Wang resin 
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Figure 2-56: Mass spectrum of TFA.H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=60:40 
(v/v) on Wang resin 
 
 

 

HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 14.013 VV E 0.2744 617.03644 26.92216 5.8172 

2 14.3 VB R 0.194 9989.98535 687.10449 94.1828 

Figure 2-57: HPLC trace of TFA.H-Leu-Ala-Phe-OH synthesised in propylene carbonate:TMO=60:40 (v/v) 
on Wang resin 
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Figure 2-58: Pictures of peptide prepared in propylene carbonate, TMO, propylene carbonate:TMO=10:90 
(v/v), propylene carbonate:TMO=70:30 (v/v) and propylene carbonate:TMO=60:40 (v/v) on Wang resin 
then precipitated in cold diethyl ether 
 

The purity of the tripeptide prepared in PC:TMO=70:30 (v/v) (97%) and 

PC:TMO=60:40 (v/v) (94%) are similar. However, the PC:TMO=60:40 (v/v) solvent 

system seems to give more precipitate than the PC:TMO =70:30 (v/v) solvent system 

(Figure 2-58). As HBTU/HOBt can dissolve in these two mixtures, the swelling ability 

of the binary solvent influences how much peptide is obtained. The yields are shown 

in Table 2-10. The immiscible mixture of PC:TMO=60:40 has much better synthetic 

ability than other two mixtures. 

Table 2-10: Yields of peptide synthesized in propylene carbonate & TMO solvent systems using 
HBTU/HOBt 

Solvent Yield (mg/g) 

propylene carbonate 7.52 

TMO 0.00 

PC:TMO=10:90 124.32 

PC:TMO=70:30 132.15 

PC:TMO=60:40 199.95 
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2.2.3.3. Conclusion of PC & TMO binary solvent used in SPPS using 

HBTU/HOBt 

SPPS in mixtures of propylene carbonate and TMO is successful even though both 

pure solvents are poor solvents for Wang resin. However, their mixtures can achieve 

good results and their mixtures’ synthetic ability is nearly equal to a good solvent.  

 

2.2.4. Tripeptide synthesis in propylene carbonate & TMO solvent system on 

Wang resin using Oxymapure/EDC 

It was mentioned earlier that the coupling agents: HBTU/HOBt cannot dissolve at all 

in TMO or PC:TMO=10:90 (v/v). To eliminate the interference of insolubility of 

coupling agents in the peptide synthesis results, another pair of coupling agents 

needed to be applied in this peptide synthesis. Six coupling reagents were chosen to 

test their solubility: Oxymapure, K-Oxyma, Oxyma-B, COMU, TOTU and Pyoxim. 

After testing, only Oxymapure was found to be soluble in TMO, and all could dissolve 

in propylene carbonate. Thus, Oxymapure/EDC was selected to use in peptide 

synthesis in the PC/TMO solvent systems. 

 

2.2.4.1. Tripeptide prepared in pure PC 

The same sequence of peptide synthesis was carried out in pure propylene 

carbonate with Oxymapure/EDC on Wang resin. The characterisations are shown in 

Figure 2-59 to Figure 2-61. Although the mass spectrum (Figure 2-60) illustrates that 

there is tripeptide [m/z: [M+H]+: 350.2072] in the sample, the intensity is very low. In 

addition, the 1H NMR spectrum is not clear, and HPLC shows that there are many 
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impurities in this sample. Therefore, propylene carbonate is not a good solvent to 

use in peptide synthesis with Oxymapure/EDC on Wang resin. 

 

 

Figure 2-59: 1H NMR spectrum of TFA·H-Leu-Ala-Phe-OH synthesised in propylene carbonate on Wang 
resin using Oxymapure/EDC. 
 
 

 
Figure 2-60: Mass spectrum of TFA·H-Leu-Ala-Phe-OH TFA.H-Leu-Ala-Phe-OH synthesised in propylene 
carbonate on Wang resin using Oxymapure/EDC. 
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HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 4.145 MM 0.2594 5472.50977 351.63666 46.7813 

2 6.977 VVR 0.229 270.37256 14.2068 2.3113 

3 7.604 MM 0.2608 40.94433 2.61622 0.35 

4 12.545 VVR 0.0786 6.93328 1.08386 0.0593 

5 13.788 BV 0.1169 185.24144 22.54499 1.5835 

6 13.89 VB 0.0926 113.93326 17.81612 0.9739 

7 14.233 BV R 0.1249 671.52484 80.03242 5.7405 

8 14.431 VBE 0.0963 33.29334 4.5543 0.2846 

9 14.977 MM 0.3459 79.16998 3.81416 0.6768 

10 15.782 BV E 0.0931 11.51571 1.49058 0.0984 

11 16.054 VVR 0.1423 93.34281 8.29344 0.7979 

12 16.908 BVR 0.169 617.3443 52.95773 5.2773 

13 17.682 BV 0.1559 377.37726 30.39433 3.226 

14 17.952 VB 0.179 700.61804 53.77281 5.9892 

15 18.629 BVR 0.1833 2328.10767 184.45279 19.9016 

16 19.902 VVR 0.1303 51.91977 4.87132 0.4441 

17 22.682 MM 0.3943 181.0383 7.65295 1.5479 

18 23.397 MF 0.2277 168.52205 12.33295 1.4409 

19 23.634 FM 0.3059 294.35843 16.03775 2.5166 

Figure 2-61: HPLC trace of TFA·H-Leu-Ala-Phe-OH TFA.H-Leu-Ala-Phe-OH synthesised in propylene 
carbonate on Wang resin using Oxymapure/EDC. 
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2.2.4.2. Tripeptide prepared in pure TMO 

The tripeptide synthesis in pure TMO was also carried out. The results of 1H NMR 

(Figure 2-62), mass spectrum (Figure 2-63) and HPLC (Figure 2-64) indicate that 

there is no H-Leu-Ala-Phe-OH peptide in this sample. Thus, neat TMO cannot 

enable solid-phase peptide synthesis on Wang resin. 

 

Figure 2-62: 1H NMR spectrum of attempted synthesis of TFA·H-Leu-Ala-Phe-OH in TMO on Wang resin 
using Oxymapure/EDC 
 

Figure 2-63: Mass spectrum of attempted synthesis of TFA·H-Leu-Ala-Phe-OH in TMO on Wang resin 
using Oxymapure/EDC 
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HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 4.169 MM 0.2696 926.10773 57.25995 21.6513 

2 13.764 BV R 0.1301 354.07227 35.56868 8.2781 

3 16.911 BB 0.1576 419.85837 37.51313 9.8161 

4 17.981 VV R 0.2088 385.04617 25.54818 9.0022 

5 18.636 BB 0.1942 2192.38501 163.71407 51.2548 

Figure 2-64: HPLC trace of attempted synthesis of TFA·H-Leu-Ala-Phe-OH in TMO on Wang resin using 
Oxymapure/EDC 
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2.2.4.3. Tripeptide prepared in PC:TMO =30:70 (v/v) 

Although diethyl ether could not be totally removed, the 1H NMR spectrum (Figure 

2-65) still has the same peaks as the successful prepared peptide. The mass 

spectrum (Figure 2-66) and HPLC chromatogram (Figure 2-67) also show that there 

is H-Leu-Ala-Phe-OH in this sample. However, as it has not precipitated in cold 

diethyl ether, it has a lot of impurities in it.  

 

Figure 2-65: 1H NMR spectrum (TFA-d) of TFA·H-Leu-Ala-Phe-OH synthesized in propylene 
carbonate:TMO=30:70 (v/v) on Wang resin using Oxymapure/EDC 
 

 

Figure 2-66: Mass spectrum of TFA·H-Leu-Ala-Phe-OH synthesized in propylene carbonate:TMO=30:70 
(v/v) on Wang resin using Oxymapure/EDC 
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HPLC Chromatogram Report 

Peak RetTime Type Width Area Height Area 

# [min]   [min] [mAU*s] [mAU] % 

1 7.581 MM 0.3322 96.44475 4.83916 0.6402 

2 13.53 BV 0.2234 8103.23828 504.39413 53.7853 

3 14.242 VV R 0.1453 1096.17651 109.06481 7.2759 

4 14.429 VB E 0.0988 43.28137 6.33002 0.2873 

5 15.007 MM 0.2716 41.76323 1.81983 0.2772 

6 15.237 BB 0.1043 96.15948 13.96891 0.6383 

7 15.541 BV 0.0764 26.49823 4.95184 0.1759 

8 15.575 VV 0.0268 7.02085 4.36579 0.0466 

9 15.766  VV 0.1393 202.10127 19.59666 1.3414 

10 15.954 VV 0.1687 139.75645 10.74734 0.9276 

11 16.228 VB 0.1141 68.84862 68.84862 0.457 

12 16.917 BV R 0.1771 589.65283 589.65283 3.9138 

13 17.723 BV 0.1566 404.25067 404.25067 2.6832 

14 17.957 VB 0.1554 1027.07104 91.90141 6.8172 

15 18.649 MF 0.2211 2851.50146 2851.50146 18.9269 

16 19.017 FM 0.3817 121.15186 121.15186 0.8041 

17 20.384 VB 0.1096 29.34952 29.34952 0.1948 

18 20.801 BV R 0.1492 121.62337 121.62337 0.8073 

Figure 2-67: HPLC trace of TFA·H-Leu-Ala-Phe-OH synthesized in propylene carbonate:TMO=30:70 (v/v) 
on Wang resin using Oxymapure/EDC 
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The yields are shown in Table 2-11. Peptide synthesis carried out in the solvent 

blend has a slightly higher yield than that obtained in pure propylene carbonate. 

However, the yield of this mixture is far lower than the yield (132.15 mg/g, Table 2-10) 

using HBTU/HOBt. 

Table 2-11: Yields of peptide synthesized in propylene carbonate & TMO solvent systems using 
Oxymapure/EDC 

Solvent Yield (mg/g) 

propylene carbonate 13.43 

TMO 0.00 

PC:TMO=70:30 21.44 

 

 

2.2.5. Conclusions of propylene carbonate & TMO binary solvent used in 

SPPS 

According to this series of experiments, propylene carbonate is not a good solvent to 

do solid-phase peptide synthesis on Wang resin, and TMO cannot be a solvent for 

peptide synthesis. However, their mixtures (PC:TMO=30:70 (v/v) and 

PC:TMO=10:90 (v/v)) are moderate solvents and SPPS can be carried out in them. 

Additionally, HBTU/HOBt has better coupling ability than Oxymapure/EDC in these 

solvents. 
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2.3. Polystyrene dissolution in pure and binary solvents 

Since a 3D model of Merrifield resin has been established, the application of it is 

beginning to be investigated. To start with, we explored using the 3D model to 

predict binary solvents which could be used in peptide synthesis. Secondly, we 

investigated its application to predict binary solvents which would dissolve 

polystyrene. As the literature reported before,31 resin swelling depends on the 

backbone of the resins rather than their functionalities. Thus, we could continue the 

research by comparing the time required to dissolve polystyrene for pure solvents 

and their optimised binary solvents to identify which solvents had better dissolving 

ability. 

 

2.3.1. Polystyrene dissolution in poor, moderate and good swelling green 

solvents 

This dissolution experiment was carried out with one pellet of polystyrene (around 

0.02 g) in 1 mL of solvent. The data given in Table 2-12 correlate of polystyrene 

dissolving time and resin swelling ability of solvents. From these data, we can 

observe that all poor solvents cannot dissolve the polystyrene pellet but TMO can 

change the shape of it. Most moderate solvents (except acetonitrile and furfuryl 

alcohol) and good solvents can dissolve the polystyrene pellet totally. But in the main, 

good solvents are faster than moderate solvents. 
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Table 2-12: Polystyrene dissolving time in poor, moderate and good solvents for Merrifield resin swelling; 
the symbols: no dissolving:  -; a little dissolving: +; about 1/3 dissolving: ++; about 1/2 dissolving: +++; 
most part dissolving: ++++; total dissolving: O; shape changed: #. 

      Dissolving time 

Solvent 
Solvent 
Type 

Swelling (mL 
g-1) 

30 
min 

60 
min 

90 
min 

120 
min 

＞

120 

＞

24h 

propylene 
carbonate Poor 1.80 - - - - - - 

EtOH Poor 1.80 - - - - - - 

TMO Poor 1.78 - - - - - # 

water Poor 1.80 - - - - - - 

cyrene Poor 1.80 - - - - - - 

isopropanol Poor 1.80 - - - - - - 

1-heptanol Poor 1.80 - - - - - - 

MeOH Poor 1.80 - - - - - - 

heptane Poor 1.85 - - - - - - 

acetonitrile Moderate 2.43 - - - - - - 

D-limonene Moderate 2.70 + + +++ +++ O O 

furfuryl alcohol Moderate 2.99 - - - - - - 

diethyl carbonate Moderate 3.00 ++ +++ O O O O 

p-cymene Moderate 3.21 ++ +++ O O O O 

acetone Moderate 3.71 + ++ +++ +++ ++++ O 
dimethyl 

carbonate Moderate 3.77 ++ ++++ ++++ ++++ ++++ ++++ 

ethyl acetate Moderate 3.80 +++ O O O O O 

isopropyl acetate Good 4.24 +++ ++++ O O O O 

toluene Good 5.42 O O O O O O 

cyclopentanone Good 5.80 +++ O O O O O 

 

 

2.3.2. Polystyrene dissolution in green binary solvents 

Five solvent systems which have optimised ratios for resin swelling of Merrifield resin 

were chosen to study for polystyrene dissolution. By comparing the polystyrene 

dissolution time of pure solvents and their optimised mixtures, we found binary 

solvent mixtures that have better dissolving ability than pure solvents. The first 

solvent system is propylene carbonate and ethyl acetate. This system was 

previously chosen to use for solid-phase peptide synthesis. As can be seen from 

Table 2-13, although the binary solvent and ethyl acetate dissolve polystyrene totally 
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in the end, the binary solvent dissolves polystyrene slightly faster than pure ethyl 

acetate. 

 Table 2-13: Polystyrene dissolving time in propylene carbonate, ethyl acetate and propylene 
carbonate:ethyl acetate=10:90 (v/v) 

    Dissolving time (min) 

Solvent  Swelling (mL g-1) 10 20 30 60 

propylene carbonate 1.80 - - - - 

ethyl acetate  3.80  a little  1/3  1/2 total 

PC:EA=10:90 4.61 a little  1/2  2/3 total 

 
            
Table 2-14: Polystyrene dissolving time in propylene carbonate, TMO, propylene carbonate: TMO=70:30 
(miscible), propylene carbonate:TMO=68:32 (miscible) and propylene carbonate:TMO=60:40 (immiscible) 

    Dissolving time (h) 

Solvent  Swelling (mL g-1) >5h >24h 

propylene carbonate 1.80 - - 

TMO 1.78 - - 

PC:TMO=70:30 (miscible) 2.77  1/3  2/3 

PC:TMO=68:32 (miscible) 3.56  1/3  2/3 

PC:TMO=60:40 (immiscible) 3.81  2/3 total 

 

As discussed in the resin swelling section, both propylene carbonate and TMO are 

poor solvents for Merrifield resin, and their resin swelling performance are 

approximately equal. However, from solid-phase peptide synthesis research, 

propylene carbonate has been shown to have a little ability to support the synthesise 

of the peptide on Merrifield resin while TMO has no ability to do this. The evidence 

within Table 2-14 shows that each pure solvent cannot dissolve the polystyrene 

pellet. In contrast, all mixtures can almost dissolve the pellet. In addition, the 

immiscible mixture has better ability to dissolve the pellet than the miscible mixtures. 

The details can be seen from the discussion of the special case of propylene 

carbonate and TMO. 1H NMR spectroscopy was used to test if there was polystyrene 

dissolved in PC, TMO and their mixtures, details are given in Appendix F. 
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Table 2-15: Polystyrene dissolving time in propylene carbonate, D-limonene and propylene carbonate:D-
limonene=10:90 (v/v) (immiscible) 

    Dissolving time (min) 

Solvent  Swelling (mL g-1) 10 20 30 60 >120 >300 

propylene carbonate 1.80 - - - - - - 

D-limonene 2.73 a little a little  1/3  1/2 a little left total 

PC:D-limonene=10:90 (immiscible) 3.81 a little a little  1/2  2/3 total total 

 

The solvent system of propylene carbonate and D-limonene is very similar to the 

solvent system of PC and TMO because their mixtures are also miscible in some 

ratios, but herein the immiscible solvent mixture: PC:D-limonene=10:90 was used to 

prove that the phenomenon of the mixture of PC and TMO is not unique. It is very 

evident from Table 2-15 that the binary solvent has better ability to swell the resin as 

well as a faster dissolution ofthe polystyrene pellet. 

Table 2-16: Polystyrene dissolving time in methanol, cyclopentanone, and cyclopentanone: MeOH=90:10 
(v/v) 

    Dissolving time (min) 

Solvent  Swelling (mL g-1) 10 20 30 60 

MeOH 1.80 - - - - 

cyclopentanone 5.80  1/3  1/2  2/3 total 

cyclopentanone:MeOH=90:10 6.80  1/3  1/2  2/3 total 
 

Table 2-17: Polystyrene dissolving time in isopropanol, cyclopentanone and 
cyclopentanone:isopropanol=80:20 (v/v) 

    Dissolving time (min) 

Solvent  Swelling (mL g-1) 10 20 30 60 

isopropanol 1.80 - - - - 

cyclopentanone 5.80  1/3  1/2  2/3 total 

cyclopentanone:isopropanol=80:20 6.75  1/2  1/2  2/3 total 

 

For the systems of MeOH & cyclopentanone (Table 2-16) and isopropanol & 

cyclopentanone (Table 2-17), mixtures of each system show better swelling ability 

than each of their pure solvents. However, as cyclopentanone is a very good solvent 

for Merrifield resin, the difference of dissolving time of cyclopentanone and these two 
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mixtures is difficult to distinguish by eye. Thus, the dissolving time of cyclopentanone 

and the mixtures are very close.   

 

2.3.3. Comparing the abilities  of solvents to swell crosslinked polystyrene 

and Merrifield resin  

It had been reported in the literature that resin swelling depended on backbone 

structure rather than functionality.31 Thus, five solvent systems which have maximum 

resin swelling for Merrifield resin were used to also swell crosslinked polystyrene. If 

this is the case, then crosslinked polystyrene and Merrifield resin would have the 

same trends of resin swelling. Inspection of Figure 2-68 and Figure 2-69 shows that 

resin swelling of crosslinked polystyrene and Merrifield resin are virtually the same in 

solvent systems composed of propylene carbonate & ethyl acetate and propylene 

carbonate & TMO. However, as detailed in Figure 2-70, Figure 2-71 and Figure 2-72 

(ethanol & cyclopentanone, MeOH & cyclopentanone and isopropanol & 

cyclopentanone solvent systems), the crosslinked polystyrene has almost the same 

resin swelling in cyclopentanone and these three mixtures. The evidence points to 

the likelihood that even though the resin swelling mainly depends on the backbone, 

not the functionality, the functionality may possibly impact the optimised ratio in 

some solvent systems. The supporting information for these figures can be seen in 

Appendix F (Table 5-49 and Table 5-50). 
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Figure 2-68: Resin swelling of crosslinked polystyrene and Merrifield resin in solvent1: propylene 
carbonate, solvent 2: ethyl acetate and solvent 3: propylene carbonate ethyl acetate=10:90 (v/v) 
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Figure 2-69: Resin swelling of crosslinked polystyrene and Merrifield resin in solvent 1: propylene 
carbonate, solvent 2: TMO and solvent 3: propylene carbonate:TMO=60:40 (v/v) 
 

 

 

Figure 2-70: Resin swelling of crosslinked polystyrene and Merrifield resin in solvent 1: ethanol, solvent 
2: cyclopentanone and solvent 3: ethanol:cyclopentanone=15:85 (v/v) 
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Figure 2-71: Resin swelling of crosslinked polystyrene and Merrifield resin in solvent 1: methanol, 
solvent 2: cyclopentanone and solvent 3: MeOH:cyclopentanone=10:90 (v/v) 
 
 

 

Figure 2-72: Resin swelling of crosslinked polystyrene and Merrifield resin in solvent 1: isopropanol, 
solvent 2: cyclopentanone and solvent 3: isopropanol:cyclopentanone=20:80 (v/v) 
 

 

2.3.4. Conclusions for the use of different types of solvents in resin swelling 

and polystyrene dissolution 

The research upon polystyrene dissolution began with the idea to compare the 

solubilising abilities of pure solvents and solvent blends. The initial method was to 

add the polystyrene pellets one by one. However, in the end, all pellets became a 

sticky liquid in the solvent. Thus, it was very difficult to judge when the solvent 

became a saturated solution.  When the polymer dissolves in the solvent, it becomes 
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a polymer solution. Essentially, the polymer solution (also called a macromolecular 

solution) is a kind of colloidal solution. In the appropriate medium, macromolecular 

compounds can disperse into a homogeneous solution automatically. A polymer 

solution is a true solution as it is a homogeneous dispersion. Therefore, the solubility 

of polystyrene could not be determined in these solvents.  

 

Hence, another method was to study the kinetics of dissolution of single solvents and 

binary solvents. By comparing the dissolving times of different solvents, the 

dissolving abilities could be obtained. The dissolving results are divided into four 

parts as follows: poor solvents for Merrifield resin cannot dissolve polystyrene at all; 

most moderate solvents can dissolve all or a substantial amount of polystyrene; all 

good solvents can dissolve polystyrene totally. Generally, the dissolving speed 

follows: good solvent > moderate solvent > poor solvent. Additionally, resins with the 

same backbone have the same resin swellings in the same pure solvents, but the 

functionality may influence the optimised ratio for resin swelling in some binary 

solvent systems.  
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3. Materials and experimental methods 

3.1. Reagents and materials 

2-Methyltetrahydrofuran (≥99%), propylene carbonate (99.7%), d-limonene (97%), 

cyclopentanone (97%), cyclopen (97%), cyclopentanonean ( ≥ 9 (97%), 

cyclopentanonean ( ≥ 99%), propyl (98%), isopropyl acetate (98%), isopropyl 

acetate(≥99%) (99%),  mesitylene (98%), chloroform-D (99.8 atom% D), carbon 

disulfide (anhydrous, a99%), furfuryl alcohol (rfuryl alcohol, arbon dis (rfuryl alcohol, 

arbon  (anhydrous, 99.8%), acetone (for HPLC), Merrifield resin with Wang linker (or 

Wang resin, 0.6-1.0 mmol/g loading, matrix: crosslinked with 1% DVB, mesh: 200-

400), ChemMatrix resin (0.5-1.2 mmol/g loading, matrix: crosslinked PEG, mesh: 35-

100), H-Phe-HMPB-ChemMatrix® resin (0.30-0.65 mmol/g loading, 35-100 mesh 

(wet sieved)), Fmoc-Phe-Wang resin (0.4-0.8 mmol/g loading, polystyrene, 

crosslinked with 1% DVB, 100-200 mesh), piperidine (99%), Fmoc-Ala-OH (95%), 

Fmoc-Leu-OH (≥97.0%), EDC (N-ethyl-N-(3-dimethylaminopropyl)carbodiimide), 

≥97.0%), trifluoroacetic acid-d (99.5 atom%D), and γ-valerolactone (≥99%, FG) were 

purchased from Sigma-Aldrich and used as supplied.  

 

Cyclopentyl methyl ether was obtained from ZEON corporation. Dimethyl carbonate 

(99%), isopropanol (99%+, extra pure), and 1,2-dichlorobenzene (99%+, pure) were 

purchased from Acros Organics. Methanol (ACS), dichloromethane (for HPLC), 

acetonitrile (for HPLC) and toluene (ACS Reag.) were from VWR. Dimethyl 

isosorbide (or isosorbide dimethyl ether, 98%), anisole (99%), isobutyl acetate (98%) 

and gamavalerolactone (98+%) were obtained from Alfa Aesar. Dimethylformamide 

(laboratory reagent grade), heptane (HPLC grade), trifluoroacetic acid (HPLC grade) 
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and diethyl ether (analytical reagent grade) were from Fisher Chemicals. 

HypoGel™200-COOH (~0.8 mmol/g loading, mesh: 110-150) was bought from Fluka 

Chemika. HOBt (monohydrate), HBTU (O-benzotriazol-1-yl)-N,N,N’,N’-

tetramethyluronium hexafluorophosphate), DIPEA (N, N-diisopropylethylamine) and 

TIPS (triisopropylsilane) were available from FluoroChem.  Oxymapure, K-Oxyma, 

Oxuma-B, COMU, TOTU and Pyoxim were shipped by Luxembourg Bio 

Technologies Ltd. Water was deionised water. TMO was distilled three times and 

dried by molecular sieves (≥99.8%), and made by Dr. Fergal Byrne in the Green 

Chemistry Centre of Excellence, according to the procedure detailed in the 

literature.73 

 

3.2. Instrumentation 

Gas chromatograms were carried out on an Agilent 6890N GC-FID or an Agilent 

7890B GC-HP1. On the Agilent 6890N GC-FID, the following parameters were used: 

Restek Rxi-5HT column (diameter: 250.00 µm, length: 30.0 m, film thickness: 

0.25µm, void time: 1.204 min and maximum temperature: 400.0 °C) with initial flow 

rate: 2 mL min-1 and initial pressure: 20.2 psi; the oven: equilibration time: 1 min,  

initial temperature: 50 °C, initial time: 0.00 min, initial ramp rate at 30 °C min-1 until 

300 °C and final time: 5 min, post temperature: 50 °C, post time: 0 min, run time: 

13.33 min; front inlet: initial temperature: 300 °C , pressure: 20.2 psi, split ratio with 

30: 1, split flow: 60.0 mL min-1, saver flow: 20.0 mL min-1, saver time: 2 min, gas type: 

helium;  flow-rate 2.0 mL min-1; front detector: temperature: 340 °C, hydrogen flow: 

35 mL min-1, air flow: 350.0 mL min-1, makeup gas type: nitrogen; injection volume: 1 

µL. On the Agilent 7890B GC-HP1, the parameters were the same as the Agilent 

6890N GC-FID, except that the parameters of the front inlet and front detector were 
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slightly different: heater: 310 °C, split ratio: 50:1, split flow: 100 mL min-1; front 

detector: heater temperature: 340 °C. 

 

The method for all mass spectra was electrospray Ionisation (ESI) on a Bruker 

compact® time of flight mass spectrometer coupled to an Agilent 1260 Infinity series 

LC system. 

 

All 1HNMR spectra were obtained with a JEOL ECS 400MHz instrument. The NMR 

solvents and were referenced to the residual solvent peak. Coupling constants were 

analysed by the following nomenclature: d = doublet, dd = double doublet, t = triplet, 

m = multiplet. The spectrum of H-Leu-Ala-Phe-OH was recorded in TFA-d NMR 

solvent, TFA-d: δ = 7.26-7.16 (m, 3H, ArH), 7.14-7.08 (m, 2H, ArH), 5.01-4.96 (m, 

1H, Phe-NCH), 4.71-4.61 (m, 1H, Ala-NCH), 4.31-4.24 (m, 1H, Leu-NCH), 3.30 (dd J 

14.3, 4.3 Hz, 1H, CH2Ph), 3.09 (dd J 14.3, 8.5 Hz, 1H, CH2Ph), 1.80-1.60 (m, 3H, 

Leu-CH2CHMe2), 1.39 (d J 6.3 Hz, 3H, NCHCH3), 0.93 (t J 6.0 Hz, 6H, CH(CH3)2). 

 

All peptides prepared in different solvents and with different coupling agents were 

analysed by HPLC using an Agilent 1260 Infinity ‖ fitted with a C18 column (serial: 

autoID-14, product: 00G-4378-E0, length: 250.0 mm, diameter: 4.6 mm, void volume: 

60.0%, particle size: 5.0 µm, maximum pressure: 400.0 bar, maximum pH: 8.0, 

maximum temperature: 60.0 °C) eluted with a flow rate of 0.4 mL min-1 at 40 °C. 

Injection volume was 10 µL. The eluents were A (water + 0.1% formic acid) and B 

(acetonitrile + 0.1% formic acid) formic acid. In the initial 5 min, the solvent system 
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was 90% A and 10% B, the 50% A and 50% B in the next 15 minutes. After that, the 

percentage was gradually changed back to 90% A and 90% B from 20 min to 25 min.  

 

3.3. Typical resin swelling methodology 

Resin swelling experiments were carried out using the method developed by Santini 

et al.32 0.1 g of resin was weighed into a 2 mL syringe which had been fitted with a 

polystyrene frit at the bottom (the dead volume of the frit was 0.12 mL). The resin 

was washed three times with the chosen single solvent or solvent mixture. 2 mL of 

target solvent was added and the syringe was sealed with a syringe pressure cap 

and placed on a roller mixer to rotate for one hour at room temperature. Then the 

plunger of the syringe was compressed to remove excess solvent and fully loosened 

to allow the resin volume to be read. After recording the volume of the resin, the 

plunger was taken off and the resin was washed three times with dichloromethane to 

remove all target solvent. Next, the resin was dried using a vacuum set to pull air 

through it. This process was repeated three times to get the average resin swelling 

volume.  Swelling times longer than one hour were observed to have no impact on 

swelling. Solvents were divided into three categories: swelling below 2 mL g-1 was 

deemed a poor solvent, from 2 mL g-1 to 4 mL g-1  a moderate solvent and higher 

than 4 mL g-1  a good solvent.32 Resin swelling formula: 

Swelling (mL g-1) =
Measured Volume−Frit Volume

Weight
 ················ Equation 5 

Although some error might arise because visual observation was used to read the 

scale, an acceptable influence of the swelling changing trend of solvents blends was 

apparent.  
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3.4. Solvent mixtures & calculation of Hansen solubility 

parameters 

All ratios of binary solvents used in this project were volume to volume. Preparation 

of solvent mixtures: using a Gilson pipette to get accurate volumes (total volume=15 

mL), two solvents were mixed in a 15 mL screw-topped vial and shaken well. Some 

mixtures, such as cyclopentanone and water, were also sonicated to promote 

efficient mixing. Ethylene carbonate was melted in a heating bath at 35 °C before 

mixing with the appropriate co-solvent and gently heated to promote mixing. 

 

Determination of Hansen solubility parameters for mixed solvent systems: the mixed 

solvents’ HSP calculation principle in the HSPiP software guidebook was followed, 

the HSP parameters of solvent blends were simply the average (weighted for % 

contribution) of the individual components”.41 The formula is: 

δHSP (blends)=∑ δHSPi ∗ PCTin
i  ················ Equation 6 

 

δHSP stands for δD, δP or δH. δD: the value of dispersion forces, δP: the value of 

polarity forces or δH: the value of hydrogen bonding forces. PCT was percentage of 

each pure solvent in the binary solvent. 

 

3.5. General method for solid-phase peptide synthesis in green 

pure and binary mixed solvents 

200 mg Fmoc-Phe-Wang resin was weighed into a 6 mL filtration tube which had a 6 

mL polyethylene frit fixed so that the resin could be prevented from leaking out.  
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Before weighing, the filtration tube was wiped with a cloth soaked with distilled water 

with the purpose of reducing static. The weighed resin was first washed three times 

with the target solvent (single solvent or solvent blend, 3×5 mL).  Then the resin was 

swollen in 5 mL of this solvent for 1 h. A cap for a 6 mL SPE tube and syringe 

pressure cap were then used to seal the tube. After that, it was put on a roller mixer 

to allow it to swell.  

 

For all deprotections, a freshly prepared solution of 5 ml of 20% (v/v) piperidine in 

target solvent was used for 20 min. For couplings, Fmoc-amino acid (firstly Fmoc-

Ala-OH and then Fmoc-Leu-OH) (0.36 mmol, 3.0 eq.), HBTU (137 mg, 0.36 mmol, 

3.0 eq.), HOBt (49 mg, 0.36 mmol, 3.0 eq.) and DIPEA (125 μL, 0.72 mmol, 6.0 eq.) 

were weighed into a 5 mL vial which held 3.6 mL target solvent and stirred for 20 min 

to pre-activate the amino acid before adding this mixture to the resin. The coupling 

reactions were allowed to occur at room temperature for 1 h. After each step, the 

resin was washed three times. For the synthesis using propylene carbonate, the 

resin was washed with ethyl acetate for three times (5 mL × 3) to ensure removal of 

all PC. Then the peptide chain could be cleaved from the resin by 5 mL 

TFA:TIPS:H2O (95:2.5:2.5) for 2 h. When the cleaving process was finished, the 

solution could be separated from the resin by filtration, concentrated by rotary 

evaporation and the peptide precipitated in cold diethyl ether.  Finally, the peptide 

was washed with cold diethyl ether and dried under vacuum. For peptide synthesis 

using Oxymapure/EDC, all procedures were the same as synthesis using 

HBTU/HOBt, only the coupling agents were replaced by Oxymapure (51.2 mg, 0.36 

mmol, 3.0 eq.) and EDC (63.74 µL, 0.36 mmol, 3.0 eq.). 
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3.6. Methodology to study the selective interaction of resins with 

green binary mixed solvents 

The NMR internal standard methodology was: a known volume of mesitylene was 

added to mixed solvent samples taken before and after resin swellings as an internal 

standard to allow calculation of how the cyclopentanone:water ratio changes. The 

standard was added to the aliquots taken for NMR only, it was not present for the 

swelling experiment itself. By comparing the ratio of the integration for mesitylene 

and the solvent, that solvent was captured by the resin could be proved. The volume 

for each testing solvent mixture before and after swelling should be kept consistent. 

 

Another way for testing the selectivity was to use GC calibration. One miscible 

solvent was used to calculate the response factor (Rf). The formula below could be 

used in calculating the actual value for the immiscible mixture. GC was also used to 

detect the resin selective ability with binary solvents. The top and bottom layers of 

immiscible solvent were used to swell the resin separately. GC was used to detect 

the content variation of the solvents before and after swelling. The formula was: 

PC(mol%)

TMO(mol%)
=Rf

PC(Area)

TMO(Area)
  ················ Equation 7 

 

3.7. The method for dissolving polystyrene 

Some greener binary solvent systems were chosen on the basis of the previous 

resin swelling studies. One pellet of standard polystyrene (about 20 mg per pellet, 

Mw=~19,200), which was bought from Sigma-Aldrich, was dissolved in 1 mL pure or 

mixed solvent respectively. The dissolving time of each solvent was recorded and 
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compared. According to the comparison of the dissolving time, the dissolving ability 

of different pure and binary solvents was ranked.  

 

 

 

 

 

 

 

 

 

 

 

 

 



112 
 

4. Conclusion  

4.1. Relationship between the high swelling area and Hansen 

solubility parameters for Merrifield resin (PS-based resin) and 

HypoGel™200 resin (PS-PEG-based resin) 

To build the HSP-resin swelling model, all available swelling data31 were plotted as a 

3D scatter graph. Therefore, we moved from single solvent to mixed solvent systems 

chosen to systematically fill in gaps in swelling data and allow the boundaries of the 

high swelling area in HSP space to be fully mapped for Merrifield and HypoGel™200 

resins. In this way, the relationship of resin swelling and HSP was revealed as high 

resin swelling areas for each resin have been found. As the 3D plots are difficult to 

visualise on 2D paper, more visualisation methods were adopted such as Teas plots 

and contour graphs. In the meantime, the poor solvents areas, moderate solvents 

areas and good solvents areas were investigated. The results show the polystyrene-

based resin and PS-PEG-based resin have different high swelling areas in HSP-3D 

space. 

 

4.2. Swelling trends of different solvent systems 

According to this study, four types of resin swelling trends in binary solvent systems 

for these two resins have been found and they show that the resin swelling does not 

vary linearly on changing the ratio of two pure solvents. Type 1 and Type 1a are 

where there is a maximum resin swelling in the solvent system. Type 2 is that the 

resin swelling trend shows an increase or decrease with no maximum resin swelling 

in these solvent systems. Type 3 shows the swelling abilities of the two parent 

solvents are similar and there is no mixture that gives swelling beyond each pure 



113 
 

solvent. Type S stands for some special cases of solvent systems. One of the 

interesting solvent systems: cyclopentanone and water for HypoGel™200 resin was 

explored using NMR spectroscopy with an internal standard method to prove that 

only cyclopentanone can swell the resin in this solvent system. 2-MeTHF and 

cyclopentyl methyl ether have similar Hansen solubility parameters, but there is a 

minimum resin swelling in this solvent system for Merrifield resin. Dimethylformamide 

and water can form hydrogen-bonded complexes so that their mixtures cannot swell 

both these resins until the percentage of dimethyl formamide is more than 80%. In 

the propylene carbonate and TMO system, both are poor solvents for Merrifield resin 

and they are partially miscible, but their mixtures show swelling ability and the 

optimised ratio is PC:TMO=10:90 (v/v). 

 

4.3. The application of the HSP-3D graph: solid-phase peptide 

synthesis 

To prove the significance of the modelling, two solvent systems: propylene 

carbonate & ethyl acetate and propylene carbonate & TMO were chosen to apply in 

solid-phase peptide synthesis on Merrifield resin with Wang linker. The tripeptide: H-

Leu-Ala-Phe-OH was set as the target peptide chain. The results show that peptide 

synthesis in binary solvents is superior to synthesis in pure solvents. Additionally, the 

coupling agent HBTU/HOBt is better than Oxymapure/EDC in this peptide synthesis. 

 

4.4. The application of the HSP-3D graph: dissolving polystyrene 

In the study of dissolving polystyrene, generally, the dissolving speed correlated with 

resin swelling ability: good solvent > moderate solvent > poor solvent. In solvent 
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systems which have a maximum resin swelling, the optimised ratio of binary solvents 

dissolve polystyrene faster than their parent pure solvents. Resins which have the 

same backbones have the same resin swelling in pure solvents, but the different 

functionalities may influence the optimal ratio for mixed solvent systems.  

 

4.5. The significance and applications of this project 

In this project, the high swelling areas for these two resins in HSP-3D space were 

found. Following this methodology, the relevance of swelling and Hansen solubility 

parameters for more resins with different backbones and functionalities can be 

studied. Also, these models can be used to predict binary mixtures which may have 

optimal ratios, and then these binary solvents may be used for solid-phase peptide 

synthesis and polymer dissolving.  The methodology used here should have wide 

applicability to many other resins and polymers and can provide a general method 

for developing greener replacements for undesirable conventional solvents, based 

on the combination of two (or more) green solvents. 

 

4.6. Future work 

In this project, only the model of Merrifield resin was investigated for its applications. 

The established model would likewise reveal other properties for Merrifield resin. 

Thus, the HSP-3D plot needs to be explored by other visualisations. In the meantime, 

it is hoped to predict better greener binary solvents as alternatives to traditional 

organic solvents for peptide synthesis on Merrifield resin, polystyrene dissolution and 

other chemical processes. For HypoGel™200 resin, only the high swelling area was 

explored. It is significant to explore the relevant applications for the model of this 
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resin. Furthermore, only the high swelling areas for Merrifield and HypoGel™200 

resins were explored in this project. To confirm the feasibility of the methodology 

established in this project, more resins with different backbones and functionalities 

need to be fully investigated. Also, the applications of their models can be studied. 
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5. Appendices 

All literature data in all appendices are from reference 31. 

5.1. Appendix A 

5.1.1. Data supporting Chapter 2.1 

Table 5-1: Data to support Figure 2-1 

Resin swelling repetitive experiments for Merrifield resin 

Num
ber Solvent 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume 

(mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Swelling 
(ml g-1) 

Error 
(mL g-1) 

Litera
tura 

1 
dimethyl 

isosorbide 0.80 0.75 0.75 0.0997 0.16 6.08 0.33 5.90 

2 

2-
methyltetrahydr-

ofuran 0.80 0.80 0.80 0.1020 0.15 6.37 0.00 5.80 

3 
propylene 
carbonate  0.30 0.30 0.30 0.1017 0.10 1.97 0.00 1.80 

4 D-limonene 0.39 0.39 0.39 0.1000 0.16 2.30 0.00 1.80 

 
Table 5-2: Basic swelling data from literature31 and Hansen solubility parameters of pure solvents 

Solvent δD δP δH 

HypoGel200 resin Merrifield (Wang) resin 

Swelling (mL g-1) Swelling (mL g-1) 

ethylene carbonate 18 21.7 5.1 2.8 1.8 

propylene carbonate 20 18 4.1 2.2 1.8 

cyrene 18.8 10.5 7 3.2 1.8 

acetone 15.5 10.4 7 2.8 2.4 

butan-2-one 16 9 5.1 3.2 4.8 

4-methylpentan-2-one 15.3 6.1 4.1 2.8 3.5 

cyclopentanone 17.9 11.9 5.2 4.8 5.9 

ethyl acetate 15.8 5.3 7.2 2.8 3.8 

isopropyl acetate 14.9 4.5 8.2 2.2 3.4 

isobutyl acetate 15.1 3.7 6.3 2.8 3.8 

γ-valerolactone 16.9 11.5 6.3 3.2 3.2 

2-methyl-THF 16.9 5 4.3 4 5.8 

anisole 17.8 4.4 6.9 4.2 5.9 

dimethyl isosorbide 17.6 7.1 7.5 5.2 5.9 

cyclopentyl methyl ether 16.7 4.3 4.3 2.8 5.9 

dimethyl carbonate 15.5 8.6 9.7 2.8 2.6 

diethyl carbonate 15.1 6.3 3.5 2.6 3 

D-limonene 17.2 1.8 4.3 2.2 1.8 

p-cymene 17.3 2.4 2.4 1.8 1.8 

methanol 14.7 12.3 22.3 1.8 1.8 

ethanol 15.8 8.8 19.4 1.8 1.8 

isopropanol 15.8 6.1 16.4 1.8 1.8 

1-heptanol 16 5.3 11.7 1.8 1.8 
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Table 5-3: Basic fractional parameters and resin swelling for Merrifield resin and HypoGel™200 resin 
 

 
Table 5-4: Different types of solvent systems for Merrifield resin and values of each solvent’s Hansen 
solubility parameters and their corresponding fractional parameters 
 

Typ
e 

Solvent A 
(%) 

Solvent B 
(%) δD δP δH fd fp fh 

Swelling 
(mL g-1) 

S 

2-MeTHF 
(100) CPME (0) 16.9 5 4.3 64.50 19.08 16.41 6.27 

90 10 16.88 4.93 4.3 64.65 18.88 16.47 6.23 

80 20 16.86 4.86 4.3 64.80 18.68 16.53 6.18 

70 30 16.84 4.79 4.3 64.94 18.47 16.58 6.25 

60 40 16.82 4.72 4.3 65.09 18.27 16.64 5.78 

55 45 16.81 4.685 4.3 65.17 18.16 16.67 5.83 

water 15.5 16 42.3 1.8 1.8 

NMP 18 12.3 7.2 4.8 6.2 

DMF 17.4 13.7 11.3 4.5 4.8 

DCM 17 7.3 7.1 4.9 5.6 

    Merrifield resin  HypoGel™200 resin 

Solvent  fd fp fh Swelling (mL g-1) Swelling (mL g-1) 

ethylene carbonate 40.18 48.44 11.38 1.80 2.80 

propylene carbonate 47.51 42.76 9.74 1.80 2.20 

cyrene 51.79 28.93 19.28 1.80 3.20 

acetone 47.11 31.61 21.28 3.71 2.80 

butan-2-one 53.16 29.90 16.94 4.80 3.20 

4-methylpentan-2-one 60.00 23.92 16.08 3.50 2.80 

cyclopentanone 51.14 34.00 14.86 5.80 4.80 

ethyl acetate 55.83 18.73 25.44 3.80 2.80 

isopropyl acetate 53.99 16.30 29.71 4.24 2.20 

isobutyl acetate 60.16 14.74 25.10 3.80 2.80 

γ-valerolactone 48.70 33.14 18.16 5.73 3.20 

2-methyl-THF 64.50 19.08 16.41 5.80 4.00 

anisole 61.17 15.12 23.71 5.90 4.20 

dimethyl isosorbide 54.66 22.05 23.29 5.90 5.20 

cyclopentyl methyl ether 66.01 17.00 17.00 5.90 2.80 

dimethyl carbonate 45.86 25.44 28.70 3.77 2.80 

diethyl carbonate 60.64 25.30 14.06 3.00 2.60 

D-limonene 73.82 7.73 18.45 2.70 2.20 

p-cymene 78.28 10.86 10.86 3.21 1.80 

methanol 29.82 24.95 45.23 1.80 1.80 

ethanol 35.91 20.00 44.09 1.80 1.80 

isopropanol 41.25 15.93 42.82 1.80 1.80 

1-heptanol 48.48 16.06 35.45 1.80 1.80 

water 21.00 21.68 57.32 1.80 1.80 

NMP 48.00 32.80 19.20 6.20 4.80 

DMF 41.04 32.31 26.65 4.80 4.50 

DCM 54.14 23.25 22.61 5.60 4.90 
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52 48 16.804 4.664 4.3 65.21 18.10 16.69 5.33 

35 65 16.77 4.545 4.3 65.47 17.74 16.79 5.42 

30 70 16.76 4.51 4.3 65.55 17.64 16.82 5.33 

10 90 16.72 4.37 4.3 65.85 17.21 16.94 5.46 

0 100 16.7 4.3 4.3 66.01 17.00 17.00 5.67 

1 

ethanol 
(100) 

cyclopentan-
one (0) 15.8 8.8 19.4 35.91 20.00 44.09 1.80 

75 25 16.325 9.575 15.85 39.10 22.93 37.96 2.33 

50 50 16.85 10.35 12.3 42.66 26.20 31.14 4.40 

35 65 17.165 10.815 10.17 44.99 28.35 26.66 5.39 

25 75 17.375 11.125 8.75 46.64 29.87 23.49 5.97 

20 80 17.48 11.28 8.04 47.50 30.65 21.85 5.90 

15 85 17.585 11.435 7.33 48.38 31.46 20.17 6.31 

10 90 17.69 11.59 6.62 49.28 32.28 18.44 6.11 

0 100 17.9 11.9 5.2 51.14 34.00 14.86 5.80 

1 

propylene 
carbonate 

(100) 

dimethyl 
carbonate 

(0) 20 18 4.1 47.51 42.76 9.74 1.80 

85 15 19.325 16.59 4.94 47.30 40.61 12.09 1.80 

75 25 18.875 15.65 5.5 47.16 39.10 13.74 2.00 

70 30 18.65 15.18 5.78 47.08 38.32 14.59 2.37 

60 40 18.2 14.24 6.34 46.93 36.72 16.35 2.41 

50 50 17.75 13.3 6.9 46.77 35.05 18.18 2.39 

35 65 17.075 11.89 7.74 46.52 32.39 21.09 3.17 

25 75 16.625 10.95 8.3 46.34 30.52 23.14 2.60 

20 80 16.4 10.48 8.58 46.25 29.55 24.20 3.30 

10 90 15.95 9.54 9.14 46.06 27.55 26.39 3.57 

0 100 15.5 8.6 9.7 45.86 25.44 28.70 2.60 

1 

propylene 
carbonate 

(100) 
ethyl acetate 

(0) 20 18 4.1 47.51 42.76 9.74 1.80 

90 10 19.58 16.73 4.41 48.08 41.09 10.83 1.73 

70 30 18.74 14.19 5.03 49.37 37.38 13.25 2.79 

50 50 17.9 11.65 5.65 50.85 33.10 16.05 3.23 

30 70 17.06 9.11 6.27 52.59 28.08 19.33 3.45 

20 80 16.64 7.84 6.58 53.57 25.24 21.18 4.17 

10 90 16.22 6.57 6.89 54.65 22.14 23.21 4.61 

5 95 16.01 5.935 7.045 55.23 20.47 24.30 4.04 

0 100 15.8 5.3 7.2 55.83 18.73 25.44 3.80 

1 

cyclopenta-
none (100) methanol (0) 17.9 11.9 5.2 51.14 34.00 14.86 5.80 

95 5 17.74 11.92 6.055 49.67 33.38 16.95 5.77 

90 10 17.58 11.94 6.91 48.26 32.78 18.97 6.80 

85 15 17.42 11.96 7.765 46.90 32.20 20.90 6.76 

80 20 17.26 11.98 8.62 45.59 31.64 22.77 5.30 

70 30 16.94 12.02 10.33 43.12 30.59 26.29 5.41 

60 40 16.62 12.06 12.04 40.82 29.62 29.57 5.04 

40 60 15.98 12.14 15.46 36.67 27.86 35.47 3.02 

20 80 15.34 12.22 18.88 33.03 26.31 40.65 2.04 

0 100 14.7 12.3 22.3 29.82 24.95 45.23 1.80 
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1 

cyclopenta-
none (100) 

isopropanol 
(0) 17.9 11.9 5.2 51.14 34.00 14.86 5.80 

95 5 17.795 11.61 5.76 50.60 33.02 16.38 5.83 

90 10 17.69 11.32 6.32 50.07 32.04 17.89 6.56 

80 20 17.48 10.74 7.44 49.02 30.12 20.86 6.75 

70 30 17.27 10.16 8.56 47.99 28.23 23.78 5.81 

50 50 16.85 9 10.8 45.98 24.56 29.47 4.78 

30 70 16.43 7.84 13.04 44.04 21.01 34.95 2.98 

0 100 15.8 6.1 16.4 41.25 15.93 42.82 1.80 

2 

DCM (100) 

1,2-
dichlorobenz

-ene (0) 17 7.3 7.1 54.14 23.25 22.61 5.91 

75 25 17.55 7.05 6.15 57.07 22.93 20.00 5.84 

50 50 18.1 6.8 5.2 60.13 22.59 17.28 5.75 

25 75 18.65 6.55 4.25 63.33 22.24 14.43 5.58 

0 100 19.2 6.3 3.3 66.67 21.88 11.46 5.49 

3 

DMF (100) 

1,2-
dichlorobenz

-ene (0) 17.4 13.7 11.3 41.04 32.31 26.65 5.65 

75 25 17.85 11.85 9.3 45.77 30.38 23.85 5.72 

50 50 18.3 10 7.3 51.40 28.09 20.51 5.73 

25 75 18.75 8.15 5.3 58.23 25.31 16.46 5.70 

0 100 19.2 6.3 3.3 66.67 21.88 11.46 5.49 

1 

acetonitrile

（100） toluene（0） 15.3 18 6.1 38.83 45.69 15.48 2.43 

80 20 15.84 14.68 5.28 44.25 41.01 14.75 2.69 

60 40 16.38 11.36 4.46 50.87 35.28 13.85 4.12 

40 60 16.92 8.04 3.64 59.16 28.11 12.73 5.33 

20 80 17.46 4.72 2.82 69.84 18.88 11.28 5.64 

0 100 18 1.4 2 84.11 6.54 9.35 5.42 

2 

PC（100) 

1,2-
dichlorobenz

-ene (0)     20 18 4.1 47.51 42.76 9.74 1.80 

75 25 19.8 15.075 3.9 51.06 38.88 10.06 3.24 

50 50 19.6 12.15 3.7 55.29 34.27 10.44 3.94 

25 75 19.4 9.225 3.5 60.39 28.72 10.89 4.97 

0 100 19.2 6.3 3.3 66.67 21.88 11.46 5.49 

2 

1,2-
dichloroben
-zene (100) heptane (0) 19.2 6.3 3.3 66.67 21.88 11.46 5.49 

75 25 18.225 4.725 2.475 71.68 18.58 9.73 5.21 

59 41 17.25 3.15 1.65 78.23 14.29 7.48 4.13 

25 75 16.275 1.575 0.825 87.15 8.43 4.42 3.26 

0 100 15.3 0 0 
100.0

0 0.00 0.00 1.85 

1 

PC (100) 
acetonitrile 

(0) 20 18 4.1 47.51 42.76 9.74 1.80 

75 25 18.825 18 4.6 45.44 43.45 11.10 2.27 

50 50 17.65 18 5.1 43.31 44.17 12.52 3.11 

25 75 16.475 18 5.6 41.11 44.92 13.97 2.95 

0 100 15.3 18 6.1 38.83 45.69 15.48 2.43 

1 
isopropyl 
acetate 

acetonitrile 
(0) 14.9 4.5 8.2 53.99 16.30 29.71 4.24 
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(100) 

90 10 14.94 5.85 7.99 51.91 20.33 27.76 3.91 

80 20 14.98 7.2 7.78 50.00 24.03 25.97 3.84 

75 25 15 7.875 7.675 49.10 25.78 25.12 3.83 

70 30 15.02 8.55 7.57 48.23 27.46 24.31 3.61 

50 50 15.1 11.25 7.15 45.07 33.58 21.34 2.82 

25 75 15.2 14.625 6.625 41.70 40.12 18.18 2.86 

0 100 15.3 18 6.1 38.83 45.69 15.48 2.43 

1 

furfuryl 
alcohol 
(100) 

cyclopentan
e-one (0) 17.4 7.6 15.1 43.39 18.95 37.66 2.99 

70 30 17.55 8.89 12.13 45.50 23.05 31.45 4.49 

50 50 17.65 9.75 10.15 47.00 25.97 27.03 5.22 

30 70 17.75 10.61 8.17 48.59 29.04 22.37 6.09 

0 100 17.9 11.9 5.2 51.14 34.00 14.86 5.80 

S 

water (100) DMF (0) 15.5 16 42.3 21.00 21.68 57.32 1.80 

80 20 15.88 15.54 36.1 23.52 23.02 53.47 1.63 

60 40 16.26 15.08 29.9 26.55 24.62 48.82 1.75 

50 50 16.45 14.85 26.8 28.31 25.56 46.13 1.87 

40 60 16.64 14.62 23.7 30.28 26.60 43.12 1.76 

20 80 17.02 14.16 17.5 34.96 29.09 35.95 1.97 

10 90 17.21 13.93 14.4 37.79 30.59 31.62 1.97 

0 100 17.4 13.7 11.3 41.04 32.31 26.65 5.65 

1 

TMO (100) 
cyclopentan

e-one (0) 15.4 2.4 2.1 77.39 12.06 10.55 1.78 

90 10 15.65 3.35 2.41 73.10 15.65 11.26 3.95 

80 20 15.9 4.3 2.72 69.37 18.76 11.87 4.21 

70 30 16.15 5.25 3.03 66.11 21.49 12.40 5.02 

50 50 16.65 7.15 3.65 60.66 26.05 13.30 5.60 

40 60 16.9 8.1 3.96 58.36 27.97 13.67 5.71 

30 70 17.15 9.05 4.27 56.28 29.70 14.01 6.10 

20 80 17.4 10 4.58 54.41 31.27 14.32 6.12 

15 85 17.525 10.475 4.735 53.54 32.00 14.46 6.19 

10 90 17.65 10.95 4.89 52.70 32.70 14.60 6.25 

5 95 17.775 11.425 5.045 51.91 33.36 14.73 6.35 

0 100 17.9 11.9 5.2 51.14 34.00 14.86 5.80 

1 

propylene 
carbonate 

(100) TMO (0) 20 18 4.1 47.51 42.76 9.74 1.80 

90 10 19.54 16.44 3.9 49.00 41.22 9.78 2.14 

80 20 19.08 14.88 3.7 50.66 39.51 9.82 2.31 

70 30 18.62 13.32 3.5 52.54 37.58 9.88 2.92 

60 40 18.16 11.76 3.3 54.67 35.40 9.93 3.81 

50 50 17.7 10.2 3.1 57.10 32.90 10.00 3.74 

40 60 17.24 8.64 2.9 59.90 30.02 10.08 3.70 

30 70 16.78 7.08 2.7 63.18 26.66 10.17 3.77 

20 80 16.32 5.52 2.5 67.05 22.68 10.27 3.74 

10 90 15.86 3.96 2.3 71.70 17.90 10.40 3.82 

0 100 15.4 2.4 2.1 77.39 12.06 10.55 1.78 
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1 

propylene 
carbonate 

(100) 
D-limonene 

(0) 20 18 4.1 47.51 42.76 9.74 1.80 

90 10 19.72 16.38 4.12 49.03 40.73 10.24 2.65 

80 20 19.44 14.76 4.14 50.70 38.50 10.80 2.72 

70 30 19.16 13.14 4.16 52.55 36.04 11.41 2.77 

60 40 18.88 11.52 4.18 54.60 33.31 12.09 3.13 

50 50 18.6 9.9 4.2 56.88 30.28 12.84 2.92 

40 60 18.32 8.28 4.22 59.44 26.87 13.69 3.21 

30 70 18.04 6.66 4.24 62.34 23.01 14.65 3.63 

20 80 17.76 5.04 4.26 65.63 18.63 15.74 3.61 

10 90 17.48 3.42 4.28 69.42 13.58 17.00 3.81 

0 100 17.2 1.8 4.3 73.82 7.73 18.45 2.73 

2 

propylene 
carbonate 

(100) acetone (0) 20 18 4.1 47.51 42.76 9.74 1.80 

70 30 18.65 15.72 4.97 47.41 39.96 12.63 2.71 

50 50 17.75 14.2 5.55 47.33 37.87 14.80 3.14 

30 70 16.85 12.68 6.13 47.25 35.56 17.19 3.53 

0 100 15.5 10.4 7 47.11 31.61 21.28 3.71 

1 

propylene 
carbonate 

(100) 
isopropyl 

acetate (0) 20 18 4.1 47.51 42.76 9.74 1.80 

70 30 18.47 13.95 5.33 48.93 36.95 14.12 3.03 

50 50 17.45 11.25 6.15 50.07 32.28 17.65 3.71 

30 70 16.43 8.55 6.97 51.42 26.76 21.82 3.92 

20 80 15.92 7.2 7.38 52.20 23.61 24.20 4.40 

10 90 15.41 5.85 7.79 53.05 20.14 26.82 4.51 

0 100 14.9 4.5 8.2 53.99 16.30 29.71 4.24 

 

 
Table 5-5: Different types of solvent systems for HypoGel™200 resin and values of each solvent’s 
Hansen solubility parameters and their corresponding fractional parameters  

Type 
Solvent A 

(%) 
Solvent B 

(%) δD δP δH fd fp fh 
Swelling 
(mL g-1) 

S 

cyclopenta
-none 
(100) water (0) 17.9 11.9 5.2 51.14 34.00 14.86 5.02 

95 5 17.78 12.105 7.055 48.13 32.77 19.10 5.05 

86 14 17.564 12.474 10.394 43.44 30.85 25.71 5.13 

31 69 16.244 14.729 30.799 26.30 23.84 49.86 4.45 

25 75 16.1 14.975 33.025 25.12 23.36 51.52 3.82 

20 80 15.98 15.18 34.88 24.20 22.99 52.82 2.91 

15 85 15.86 15.385 36.735 23.33 22.63 54.04 2.51 

10 90 15.74 15.59 38.59 22.51 22.30 55.19 2.09 

5 95 15.62 15.795 40.445 21.74 21.98 56.28 2.04 

0 100 15.5 16 42.3 21.00 21.68 57.32 2.01 

1 

propylene 
carbonate 

(100) EtOH (0) 20 18 4.1 47.51 42.76 9.74 2.20 

90 10 19.58 17.08 5.63 46.30 40.39 13.31 3.30 

75 25 18.95 15.7 7.925 44.51 36.88 18.61 3.68 
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60 40 18.32 14.32 10.22 42.74 33.41 23.85 3.78 

50 50 17.9 13.4 11.75 41.58 31.13 27.29 3.60 

40 60 17.48 12.48 13.28 40.43 28.86 30.71 3.76 

25 75 16.85 11.1 15.575 38.71 25.50 35.78 3.04 

10 90 16.22 9.72 17.87 37.02 22.19 40.79 2.27 

0 100 15.8 8.8 19.4 35.91 20.00 44.09 1.80 

1 

propylene 
carbonate 

(100) 

diethyl 
carbonate 

(0) 20 18 4.1 47.51 42.76 9.74 2.20 

90 10 19.51 16.83 4.04 48.32 41.68 10.00 2.51 

75 25 18.775 15.075 3.95 49.67 39.88 10.45 2.99 

60 40 18.04 13.32 3.86 51.22 37.82 10.96 3.38 

50 50 17.55 12.15 3.8 52.39 36.27 11.34 3.69 

40 60 17.06 10.98 3.74 53.68 34.55 11.77 3.72 

25 75 16.325 9.225 3.65 55.91 31.59 12.50 3.78 

10 90 15.59 7.47 3.56 58.56 28.06 13.37 3.25 

0 100 15.1 6.3 3.5 60.64 25.30 14.06 2.60 

1 

dimethyl 
carbonate 

(100) 

propylene 
carbonate 

(0) 15.5 8.6 9.7 45.86 25.44 28.70 2.80 

75 25 16.625 10.95 8.3 46.34 30.52 23.14 3.21 

60 40 17.3 12.36 7.46 46.61 33.30 20.10 3.28 

50 50 17.75 13.3 6.9 46.77 35.05 18.18 3.09 

40 60 18.2 14.24 6.34 46.93 36.72 16.35 3.23 

25 75 18.875 15.65 5.5 47.16 39.10 13.74 3.01 

0 100 20 18 4.1 47.51 42.76 9.74 2.20 

1 

Isopropano
-l (100) 

propylene 
carbonate 

(0) 15.8 6.1 16.4 41.25 15.93 42.82 1.80 

90 10 16.22 7.29 15.17 41.93 18.85 39.22 2.31 

80 20 16.64 8.48 13.94 42.60 21.71 35.69 2.94 

75 25 16.85 9.075 13.325 42.93 23.12 33.95 3.24 

50 50 17.9 12.05 10.25 44.53 29.98 25.50 3.79 

25 75 18.95 15.025 7.175 46.05 36.51 17.44 3.44 

20 80 19.16 15.62 6.56 46.35 37.78 15.87 3.41 

10 90 19.58 16.81 5.33 46.93 40.29 12.78 3.01 

0 100 20 18 4.1 47.51 42.76 9.74 2.20 

1 

methanol 
(100) 

propylene 
carbonate 

(0) 14.7 12.3 22.3 29.82 24.95 45.23 1.80 

90 10 15.23 12.87 20.48 31.35 26.49 42.16 2.91 

75 25 16.025 13.725 17.75 33.74 28.89 37.37 2.97 

60 40 16.82 14.58 15.02 36.23 31.41 32.36 3.41 

50 50 17.35 15.15 13.2 37.96 33.15 28.88 3.60 

40 60 17.88 15.72 11.38 39.75 34.95 25.30 3.87 

25 75 18.675 16.575 8.65 42.54 37.76 19.70 3.65 

10 90 19.47 17.43 5.92 45.47 40.71 13.83 3.23 

0 100 20 18 4.1 47.51 42.76 9.74 2.20 

1 
propylene 
carbonate 

(100) 
ethyl 

acetate (0) 20 18 4.1 47.51 42.76 9.74 2.20 
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80 20 19.16 15.46 4.72 48.70 39.30 12.00 3.00 

60 40 18.32 12.92 5.34 50.08 35.32 14.60 3.41 

40 60 17.48 10.38 5.96 51.69 30.69 17.62 3.98 

30 70 17.06 9.11 6.27 52.59 28.08 19.33 3.92 

20 80 16.64 7.84 6.58 53.57 25.24 21.18 3.64 

10 90 16.22 6.57 6.89 54.65 22.14 23.21 3.88 

0 100 15.8 5.3 7.2 55.83 18.73 25.44 2.80 

1 

propylene 
carbonate 

(100) 
isobutyl 

acetate (0) 20 18 4.1 47.51 42.76 9.74 2.20 

80 20 19.02 15.14 4.54 49.15 39.12 11.73 3.23 

60 40 18.04 12.28 4.98 51.10 34.79 14.11 3.61 

50 50 17.55 10.85 5.2 52.23 32.29 15.48 3.57 

40 60 17.06 9.42 5.42 53.48 29.53 16.99 3.74 

30 70 16.57 7.99 5.64 54.87 26.46 18.68 3.88 

20 80 16.08 6.56 5.86 56.42 23.02 20.56 3.38 

0 100 15.1 3.7 6.3 60.16 14.74 25.10 2.80 

1 

propylene 
carbonate 

(100) 

cyclopenyl 
methyl 

ether (0) 20 18 4.1 47.51 42.76 9.74 2.20 

80 20 19.34 15.26 4.14 49.92 39.39 10.69 3.40 

60 40 18.68 12.52 4.18 52.80 35.39 11.81 4.05 

40 60 18.02 9.78 4.22 56.28 30.54 13.18 4.71 

20 80 17.36 7.04 4.26 60.57 24.56 14.86 4.47 

10 90 17.03 5.67 4.28 63.12 21.02 15.86 3.81 

5 95 16.865 4.985 4.29 64.52 19.07 16.41 3.76 

0 100 16.7 4.3 4.3 66.01 17.00 17.00 2.80 

1 

methanol 
(100) 

isobutyl 
acetate (0) 14.7 12.3 22.3 29.82 24.95 45.23 1.80 

70 30 14.82 9.72 17.5 35.25 23.12 41.63 2.84 

50 50 14.9 8 14.3 40.05 21.51 38.44 2.81 

30 70 14.98 6.28 11.1 46.29 19.41 34.30 3.41 

10 90 15.06 4.56 7.9 54.72 16.57 28.71 3.38 

0 100 14.9 4.5 8.2 53.99 16.30 29.71 2.80 

3 

DCM (100) 

1,2-
dichlorobe-
nzene (0) 17 7.3 7.1 54.14 23.25 22.61 5.78 

75 25 17.55 7.05 6.15 57.07 22.93 20.00 5.77 

50 50 18.1 6.8 5.2 60.13 22.59 17.28 5.54 

25 75 18.65 6.55 4.25 63.33 22.24 14.43 5.36 

0 100 19.2 6.3 3.3 66.67 21.88 11.46 5.36 

1 

DMF (100) 

1,2-
dichlorobe-
nzene (0) 17.4 13.7 11.3 41.04 32.31 26.65 4.85 

75 25 17.85 11.85 9.3 45.77 30.38 23.85 5.07 

50 50 18.3 10 7.3 51.40 28.09 20.51 5.66 

25 75 18.75 8.15 5.3 58.23 25.31 16.46 5.30 

0 100 19.2 6.3 3.3 66.67 21.88 11.46 5.36 

1 

acetonitrile 
(100) toluene (0) 15.3 18 6.1 38.83 45.69 15.48 2.94 

80 20 15.84 14.68 5.28 44.25 41.01 14.75 3.89 
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60 40 16.38 11.36 4.46 50.87 35.28 13.85 4.76 

40 60 16.92 8.04 3.64 59.16 28.11 12.73 5.01 

20 80 17.46 4.72 2.82 69.84 18.88 11.28 4.81 

0 100 18 1.4 2 84.11 6.54 9.35 3.87 

2 

propylene 
carbonate 

(100) 

1,2-
dichlorobe-
nzene (0)      20 18 4.1 47.51 42.76 9.74 2.68 

75 25 19.8 15.075 3.9 51.06 38.88 10.06 3.45 

50 50 19.6 12.15 3.7 55.29 34.27 10.44 4.12 

25 75 19.4 9.225 3.5 60.39 28.72 10.89 4.94 

0 100 19.2 6.3 3.3 66.67 21.88 11.46 5.36 

2 

1,2-
dichlorobe-

nzene 
(100) 

heptane 
(0) 19.2 6.3 3.3 66.67 21.88 11.46 5.36 

75 25 18.225 4.725 2.475 71.68 18.58 9.73 4.87 

50 50 17.25 3.15 1.65 78.23 14.29 7.48 3.87 

25 75 16.275 1.575 0.825 87.15 8.43 4.42 3.03 

0 100 15.3 0 0 100.00 0.00 0.00 1.97 

1 

propylene 
carbonate 

(100) 
acetonitrile 

(0) 20 18 4.1 47.51 42.76 9.74 2.20 

75 25 18.825 18 4.6 45.44 43.45 11.10 2.85 

50 50 17.65 18 5.1 43.31 44.17 12.52 3.04 

25 75 16.475 18 5.6 41.11 44.92 13.97 2.97 

0 100 15.3 18 6.1 38.83 45.69 15.48 2.94 

1 

isopropyl 
acetate 
(100) 

acetonitrile 
(0) 14.9 4.5 8.2 53.99 16.30 29.71 2.20 

75 25 15 7.875 7.675 49.10 25.78 25.12 3.26 

50 50 15.1 11.25 7.15 45.07 33.58 21.34 3.59 

25 75 15.2 14.625 6.625 41.70 40.12 18.18 2.63 

0 100 15.3 18 6.1 38.83 45.69 15.48 2.94 

2 

furfuryl 
alcohol 
(100) 

cyclopenta
-none (0) 17.4 7.6 15.1 43.39 18.95 37.66 5.69 

70 30 17.55 8.89 12.13 45.50 23.05 31.45 5.33 

50 50 17.65 9.75 10.15 47.00 25.97 27.03 5.28 

30 70 17.75 10.61 8.17 48.59 29.04 22.37 5.34 

0 100 17.9 11.9 5.2 51.14 34.00 14.86 5.02 

S 

water (100) DMF (0) 15.5 16 42.3 21.00 21.68 57.32 2.01 

80 20 15.88 15.54 36.1 23.52 23.02 53.47 1.90 

60 40 16.26 15.08 29.9 26.55 24.62 48.82 1.86 

50 50 16.45 14.85 26.8 28.31 25.56 46.13 1.88 

40 60 16.64 14.62 23.7 30.28 26.60 43.12 1.93 

20 80 17.02 14.16 17.5 34.96 29.09 35.95 2.09 

10 90 17.21 13.93 14.4 37.79 30.59 31.62 2.86 

0 100 17.4 13.7 11.3 41.04 32.31 26.65 4.85 

2 
TMO (100) 

cyclopenta
-none (0) 15.4 2.4 2.1 77.39 12.06 10.55 2.12 

70 30 16.15 5.25 3.03 66.11 21.49 12.40 3.16 

50 50 16.65 7.15 3.65 60.66 26.05 13.30 4.15 
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30 70 17.15 9.05 4.27 56.28 29.70 14.01 4.74 

0 100 17.9 11.9 5.2 51.14 34.00 14.86 5.02 

2 

methanol 
(100) 

dimethyl 
isosorbide 

(0) 14.7 12.3 22.3 29.82 24.95 45.23 1.80 

70 30 15.57 10.74 17.86 35.25 24.32 40.43 3.46 

50 50 16.15 9.7 14.9 39.63 23.80 36.56 3.98 

30 70 16.73 8.66 11.94 44.82 23.20 31.98 4.45 

10 90 17.31 7.62 8.98 51.05 22.47 26.48 4.60 

0 100 17.6 7.1 7.5 54.66 22.05 23.29 5.20 

 

 
Table 5-6: Resin swelling results of pure solvents (carbon disulphide and chlorobenzene) and their 
Hansen solubility parameters 

Resin Solvent 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

Merrifield 
resin  

CS2 0.50 0.50 0.50 0.1016 0.10 3.94 0.00 
chloroben

-zene 0.71 0.70 0.70 0.1040 0.12 5.61 0.06 

HypoGel™
200 resin 

CS2 0.40 0.42 0.40 0.1020 0.11 2.91 0.13 

chloroben
-zene 0.59 0.59 0.60 0.1019 0.11 4.74 0.07 

 

Solvent dD dP dH fd fp fh 

CS2 20.2 0.00 0.60 97.12 0.00 2.88 

chlorobenzene 19 4.30 2.00 43.39 18.95 37.66 

 
 
 
 
 
 
 
 
 



126 
 

5.2. Appendix B 

5.2.1.  All line graphs of solvent systems for Merrifield resin 

 

 

Figure 5-1: Line graph showing the resin swelling changes by changing the 2-MeTHF and cyclopentyl 
methyl ether (CPME) (v/v) ratio 
 
Table 5-7: Resin swelling data used to construct Figure 5-1 

Merrifield resin in 2MeTHF and CPME 
%CP
ME 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.80 0.80 0.80 0.1020 0.16 6.27 0.00 

10 0.80 0.80 0.79 0.1022 0.16 6.23 0.07 

20 0.79 0.79 0.79 0.1020 0.16 6.18 0.00 

30 0.79 0.80 0.79 0.1014 0.16 6.25 0.07 

40 0.75 0.75 0.75 0.1020 0.16 5.78 0.00 

45 0.70 0.69 0.69 0.1017 0.10 5.83 0.07 

48 0.70 0.70 0.70 0.1014 0.16 5.33 0.00 

65 0.73 0.70 0.71 0.1020 0.16 5.42 0.16 

70 0.70 0.70 0.70 0.1014 0.16 5.33 0.00 

90 0.72 0.71 0.71 0.1014 0.16 5.46 0.07 

100 0.70 0.68 0.68 0.1000 0.12 5.67 0.13 
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Figure 5-2 Line graph showing the resin swelling changes by changing the ethanol (EtOH) and 
cyclopentanone (CPTN) (v/v) ratio 
 
Table 5-8: Resin swelling data used to construct Figure 5-2 
 

Merrifield resin in EtOH and cyclopentanone 
%cyclopent

anone 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 1.80 0.00 

25 0.40 0.39 0.40 0.1014 0.16 2.33 0.07 

50 0.60 0.62 0.61 0.1022 0.16 4.40 0.10 

65 0.71 0.71 0.71 0.1020 0.16 5.39 0.00 

75 0.71 0.72 0.72 0.1000 0.12 5.97 0.07 

80 0.70 0.70 0.70 0.1017 0.10 5.90 0.00 

85 0.80 0.80 0.80 0.1014 0.16 6.31 0.00 

90 0.78 0.79 0.78 0.1020 0.16 6.11 0.07 

100 Literature data 5.80 0.00 
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Figure 5-3: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and dimethyl carbonate (DMC) (v/v) ratio 
 
Table 5-9: Resin swelling data used to construct Figure 5-3 

Merrifield resin in PC and DMC 
%D
MC 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc volume 
(m

Swelling (ml 
g-1) 

Error (mL 
g-1) 

0 Literature data 1.80 0.00 

15 0.30 0.30 0.30 0.1000 0.12 1.80 0.00 

25 0.30 0.31 0.30 0.1017 0.10 2.00 0.07 

30 0.40 0.40 0.40 0.1014 0.16 2.37 0.00 

40 0.41 0.40 0.41 0.1022 0.16 2.41 0.07 

50 0.40 0.41 0.40 0.1020 0.16 2.39 0.07 

65 0.43 0.42 0.43 0.1022 0.10 3.17 0.07 

75 0.43 0.42 0.42 0.1014 0.16 2.60 0.07 

80 0.45 0.45 0.45 0.1000 0.12 3.30 0.00 

90 0.45 0.48 0.46 0.1018 0.10 3.57 0.16 

100 Literature data 2.60 0.00 
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Figure 5-4: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and ethyl acetate (EtOAc) (v/v) ratio 
 
Table 5-10: Resin swelling data used to construct Figure 5-4 

Merrifield resin in PC and EtOAc 
%EtO

Ac 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 Literature data 1.80 0.00 

10 0.33 0.35 0.33 0.1020 0.16 1.73 0.13 

30 0.40 0.39 0.36 0.1017 0.10 2.79 0.23 

50 0.49 0.49 0.49 0.1022 0.16 3.23 0.00 

70 0.51 0.51 0.51 0.1014 0.16 3.45 0.00 

80 0.55 0.54 0.52 0.1000 0.12 4.17 0.17 

90 0.58 0.58 0.58 0.0998 0.12 4.61 0.00 

95 0.58 0.56 0.57 0.1014 0.16 4.04 0.10 

100 Literature data 3.80 0.00 
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Figure 5-5: Line graph showing the resin swelling changes by changing the cyclopentanone (CPTN) and 
methanol (MeOH) (v/v) ratio 
 
Table 5-11: Resin swelling data used to construct Figure 5-5 

Merrifield resin in cyclopentanone and MeOH 
%Me
OH 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 Literature data 5.80 0.00 

5 0.69 0.69 0.66 0.1006 0.10 5.77 0.20 

10 0.80 0.80 0.80 0.1000 0.12 6.80 0.00 

15 0.81 0.80 0.79 0.1021 0.11 6.76 0.10 

20 0.65 0.63 0.62 0.1006 0.10 5.30 0.17 

30 0.72 0.72 0.70 0.1022 0.16 5.41 0.13 

40 0.60 0.61 0.63 0.1018 0.10 5.04 0.16 

60 0.42 0.43 0.43 0.1014 0.12 3.02 0.07 

80 0.35 0.35 0.40 0.1014 0.16 2.04 0.33 

100 Literature data 1.80 0.00 
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Figure 5-6: Line graph showing the resin swelling changes by changing the cyclopentanone (CPTN) and 
isopropanol (iPrOH) (v/v) ratio 
 
Table 5-12: Resin swelling data used to construct Figure 5-6 

Merrifield resin in cyclopentanone and iPrOH 
%iPr
OH 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling (ml 
g-1) 

Error (mL 
g-1) 

0 Literature data 5.80 0.00 

5 0.68 0.69 0.69 0.1006 0.10 5.83 0.07 

10 0.78 0.78 0.78 0.1021 0.11 6.56 0.00 

20 0.79 0.79 0.78 0.1018 0.10 6.75 0.07 

30 0.70 0.70 0.70 0.1016 0.11 5.81 0.00 

50 0.59 0.60 0.60 0.1019 0.11 4.78 0.07 

70 0.41 0.42 0.41 0.1019 0.11 2.98 0.07 

100 Literature data 1.80 0.00 
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Figure 5-7: Line graph showing the resin swelling changes by changing the dichloromethane (DCM) and 
1,2-dichlorobenzene (1,2-DCB) (v/v) ratio 
 
Table 5-13: Resin swelling data used to construct Figure 5-7 

Merrifield resin in dichloromethane and 1,2-dichlorobenzene 

%1,2-
dichlorobenzen

e 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit 
disc 

volume 
(m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.70 0.70 0.70 0.1016 0.10 5.91 0.00 

25 0.74 0.71 0.71 0.1028 0.12 5.84 0.19 

50 0.71 0.69 0.68 0.1014 0.11 5.75 0.16 

75 0.70 0.70 0.70 0.1040 0.12 5.58 0.00 

100 0.70 0.70 0.70 0.1002 0.15 5.49 0.00 
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Figure 5-8: Line graph showing the resin swelling changes by changing the dimethylformamide (DMF) 
and 1,2-dichlorobenzene (1,2-DCB) (v/v) ratio 
 
Table 5-14: Resin swelling data used to construct Figure 5-8 

Merrifield resin in DMF and 1,2-dichlorobenzene 
%1,2-

dichlorobenze
ne 

Run1 
(mL) 

Run2 
(mL) 

Run
3 

(mL) 
Weight 

(g) 
 Frit disc 

volume (m
Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 0.70 0.70 0.70 0.1009 0.13 5.65 0.00 

25 0.68 0.69 0.68 0.1003 0.11 5.72 0.07 

50 0.71 0.71 0.71 0.1029 0.12 5.73 0.00 

75 0.70 0.70 0.70 0.1018 0.12 5.70 0.00 

100 0.70 0.70 0.70 0.1002 0.15 5.49 0.00 
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Figure 5-9: Line graph showing the resin swelling changes by changing the acetonitrile (MeCN) and 
toluene (v/v) ratio 
 
Table 5-15: Resin swelling data used to construct Figure 5-9 

Merrifield resin in acetonitrile and toluene 
%tolue

ne 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.34 0.36 0.34 0.1016 0.10 2.43 0.13 

20 0.42 0.42 0.42 0.1002 0.15 2.69 0.00 

40 0.54 0.54 0.55 0.1028 0.12 4.12 0.06 

60 0.65 0.64 0.66 0.1014 0.11 5.33 0.10 

80 0.71 0.70 0.71 0.1040 0.12 5.64 0.06 

100 0.68 0.68 0.67 0.1009 0.13 5.42 0.07 
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Figure 5-10: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and 1,2-dichlorobenzene (1,2-DCB) (v/v) ratio 
 
Table 5-16: Resin swelling data used to construct Figure 5-10 

Merrifield resin in PC and 1,2-dichlorobenzene 

%1,2-
dichlorobenzen

e 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit 
disc 

volume 
(m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 Literature data 1.80 0.00 

25 0.46 0.45 0.45 0.1028 0.12 3.24 0.06 

50 0.51 0.51 0.51 0.1014 0.11 3.94 0.00 

75 0.65 0.62 0.64 0.1040 0.12 4.97 0.16 

100 0.70 0.70 0.70 0.1002 0.15 5.49 0.00 
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Figure 5-11: Line graph showing the resin swelling changes by changing the 1,2-dichlorobenzene (1,2-
DCB) and heptane (v/v) ratio 
 
Table 5-17: Resin swelling data used to construct Figure 5-11 

Merrifield resin in 1,2-dichlorobenzene and heptane 
%hept

ane 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.70 0.70 0.70 0.1002 0.15 5.49 0.00 

25 0.65 0.65 0.65 0.1018 0.12 5.21 0.00 

50 0.55 0.55 0.54 0.1009 0.13 4.13 0.07 

75 0.47 0.48 0.48 0.1002 0.15 3.26 0.07 

100 0.31 0.32 0.30 0.1029 0.12 1.85 0.10 
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Figure 5-12: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and acetonitrile (MeCN) (v/v) ratio 
 
Table 5-18: Resin swelling data used to construct Figure 5-12 
 

Merrifield resin in PC and MeCN 

%Me
CN 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 Literature data 1.80 0.00 

25 0.32 0.36 0.34 0.10 0.11 2.27 0.20 

50 0.44 0.44 0.45 0.10 0.12 3.11 0.06 

75 0.40 0.40 0.40 0.10 0.10 2.95 0.00 

100 0.34 0.36 0.34 0.10 0.10 2.43 0.13 
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Figure 5-13 Line graph showing the resin swelling changes by changing the isopropyl acetate (iPrOAc) 
and acetonitrile (MeCN) (v/v) ratio 
 
Table 5-19: Resin swelling data used to construct Figure 5-13 

Merrifield resin in iPrOAc and MeCN 
%Me
CN 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.55 0.53 0.55 0.0998 0.12 4.24 0.13 

10 0.51 0.51 0.52 0.1005 0.12 3.91 0.07 

20 0.50 0.51 0.50 0.0998 0.12 3.84 0.07 

25 0.51 0.51 0.51 0.1018 0.12 3.83 0.00 

30 0.48 0.49 0.48 0.1007 0.12 3.61 0.07 

50 0.41 0.41 0.41 0.1029 0.12 2.82 0.00 

75 0.39 0.40 0.40 0.1003 0.11 2.86 0.07 

100 0.34 0.36 0.34 0.1016 0.10 2.43 0.13 
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Figure 5-14: Line graph showing the resin swelling changes by changing the furfuryl alcohol and 
cyclopentanone (CPTN) (v/v) ratio 
 
Table 5-20: Resin swelling data used to construct Figure 5-14 

Merrifield resin in furfurylOH and cyclopentanone 
%cyclopent

anone 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 0.41 0.40 0.40 0.1016 0.10 2.99 0.07 

30 0.60 0.60 0.60 0.1002 0.15 4.49 0.00 

50 0.65 0.66 0.66 0.1028 0.12 5.22 0.06 

70 0.74 0.78 0.74 0.1040 0.12 6.09 0.26 

100 Literature data 5.80 0.00 
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Figure 5-15: Line graph showing the resin swelling changes by changing the water and 
dimethylformamide (DMF) (v/v) ratio 
 

Table 5-21: Resin swelling data used to construct Figure 5-15 
 

Merrifield resin in water and DMF 
%D
MF 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 Literature data 1.80 0.00 

20 0.32 0.31 0.31 0.1002 0.15 1.63 0.07 

40 0.30 0.30 0.30 0.1028 0.12 1.75 0.00 

50 0.30 0.30 0.30 0.1014 0.11 1.87 0.00 

60 0.31 0.30 0.30 0.1040 0.12 1.76 0.06 

80 0.30 0.30 0.30 0.1016 0.10 1.97 0.00 

90 0.32 0.32 0.32 0.1017 0.12 1.97 0.00 

100 0.70 0.70 0.70 0.1009 0.13 5.65 0.00 
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Figure 5-16: Line graph showing the resin swelling changes by changing the TMO and cyclopentanone 
(CPTN) (v/v) ratio 
 
Table 5-22: Resin swelling data used to construct Figure 5-16 

Merrifield resin in TMO and cyclopentanone 
%cyclopent

anone 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 0.32 0.30 0.31 0.1009 0.13 1.78 0.10 

10 0.52 0.52 0.52 0.1012 0.12 3.95 0.00 

20 0.55 0.53 0.55 0.1006 0.12 4.21 0.13 

30 0.62 0.62 0.62 0.0996 0.12 5.02 0.00 

50 0.70 0.69 0.70 0.1029 0.12 5.60 0.06 

60 0.69 0.72 0.71 0.1028 0.12 5.71 0.16 

70 0.72 0.71 0.75 0.1011 0.11 6.10 0.23 

80 0.76 0.76 0.75 0.1040 0.12 6.12 0.06 

85 0.75 0.76 0.76 0.1029 0.12 6.19 0.06 

90 0.73 0.76 0.72 0.1002 0.11 6.25 0.23 

95 0.76 0.76 0.78 0.1018 0.12 6.35 0.13 

100 Literature data 5.80 0.00 
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Figure 5-17: Line graph showing the resin swelling changes by changing the TMO and propylene 
carbonate (PC) (v/v) ratio 
 
Table 5-23: Resin swelling data used to construct Figure 5-17 

Merrifield resin in propylene carbonate and TMO 

Miscib
ility 

%T
MO 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

 0 Literature data  1.80 0.00 

 10 0.32 0.34 0.34 0.0996 0.12 2.14 0.13 

 20 0.34 0.36 0.36 0.1010 0.12 2.31 0.13 

 30 0.42 0.42 0.40 0.1006 0.12 2.92 0.13 

immis
cible 

40 0.49 0.50 0.51 0.0998 0.12 3.81 0.10 

50 0.49 0.49 0.50 0.0998 0.12 3.74 0.07 

60 0.49 0.49 0.50 0.1008 0.12 3.70 0.07 

70 0.49 0.50 0.51 0.1007 0.12 3.77 0.10 

80 0.51 0.49 0.49 0.1006 0.12 3.74 0.13 

 90 0.52 0.50 0.50 0.1012 0.12 3.82 0.13 

 100 0.32 0.30 0.31 0.1009 0.13 1.78 0.10 
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Figure 5-18: Line graph showing the resin swelling changes by changing the D-limonene and propylene 
carbonate (PC) (v/v) ratio 
Table 5-24: Resin swelling data used to construct Figure 5-18 
 

Merrifield resin in D-limonene and propylene carbonate 

Miscibi
lity 

%D-
limonene 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit 
disc 
volu
me 

(mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Swelling 
(ml g-1) 

Error 
(mL g-1) 

 0 Literature data 1.80 0.00 

immisc
ible 

10 0.40 0.38 0.38 0.1008 0.12 2.65 0.13 

20 0.39 0.39 0.40 0.1006 0.12 2.72 0.07 

30 0.40 0.40 0.40 0.1012 0.12 2.77 0.00 

40 0.45 0.43 0.43 0.1012 0.12 3.13 0.13 

50 0.40 0.43 0.41 0.1006 0.12 2.92 0.17 

60 0.44 0.44 0.45 0.1007 0.12 3.21 0.07 

70 0.48 0.49 0.48 0.1000 0.12 3.63 0.07 

80 0.48 0.49 0.48 0.1006 0.12 3.61 0.07 

90 0.50 0.50 0.50 0.0998 0.12 3.81 0.00 

 100 0.39 0.39 0.39 0.1200 0.12 2.73 0.00 
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Figure 5-19: Line graph showing the resin swelling changes by changing the acetone and propylene 
carbonate (PC) (v/v) ratio 
 
Table 5-25: Resin swelling data used to construct Figure 5-19 

Merrifield resin in PC and acetone 
%acet
one 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 Literature data 1.80 0.00 

30 0.4 0.39 0.39 0.101 0.12 2.71 0.07 

50 0.4 0.45 0.45 0.0998 0.12 3.14 0.33 

70 0.45 0.48 0.49 0.1 0.12 3.53 0.23 

100 0.5 0.5 0.48 0.1006 0.12 3.71 0.13 
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Figure 5-20: Line graph showing the resin swelling changes by changing the isopropyl acetate (iPrOAc) 
and propylene carbonate (PC) (v/v) ratio 
 
Table 5-26: Resin swelling data used to construct Figure 5-20 

Merrifield resin in PC and iPrOAc 
%iPrO

Ac 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 Literature data 1.80 0.00 

30 0.42 0.42 0.43 0.1000 0.12 3.03 0.07 

50 0.49 0.49 0.50 0.1006 0.12 3.71 0.07 

70 0.52 0.51 0.52 0.1012 0.12 3.92 0.07 

80 0.56 0.57 0.56 0.1007 0.12 4.40 0.07 

90 0.58 0.58 0.56 0.1006 0.12 4.51 0.13 

100 0.55 0.53 0.55 0.0998 0.12 4.24 0.13 
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5.2.2. All line graphs of solvent systems for HypoGel™200 resin 

 

Figure 5-21: Line graph showing the resin swelling changes by changing the cyclopentanone (CPTN) and 
water (v/v) ratio 
 
Table 5-27: Resin swelling data used to construct Figure 5-21 

HypoGel™200 resin in cyclopentanone and water 
%water 

(v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.60 0.60 0.60 0.0996 0.10 5.02 0.00 

5 0.61 0.60 0.60 0.0996 0.10 5.05 0.07 

14 0.61 0.64 0.62 0.1021 0.10 5.13 0.16 

69 0.61 0.60 0.60 0.0997 0.16 4.45 0.06 

75 0.48 0.48 0.48 0.0996 0.10 3.82 0.00 

80 0.45 0.45 0.45 0.0997 0.16 2.91 0.00 

85 0.36 0.36 0.35 0.1021 0.10 2.51 0.06 

90 0.38 0.36 0.36 0.1037 0.15 2.09 0.13 

95 0.34 0.32 0.32 0.1015 0.12 2.04 0.13 

100 0.30 0.30 0.30 0.0996 0.10 2.01 0.00 
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Figure 5-22: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and ethanol (EtOH) (v/v) ratio 
 
Table 5-28: Resin swelling data used to construct Figure 5-22 

HypoGel™200 resin in propylene carbonate and ethanol 
%ethanol 

(v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 Literature data 2.20 0.00 

10 0.44 0.44 0.44 0.1031 0.10 3.30 0.00 

25 0.50 0.49 0.49 0.1015 0.12 3.68 0.07 

40 0.50 0.50 0.50 0.1005 0.12 3.78 0.00 

50 0.53 0.52 0.52 0.1037 0.15 3.60 0.06 

60 0.48 0.48 0.48 0.1011 0.10 3.76 0.00 

75 0.41 0.41 0.41 0.1021 0.10 3.04 0.00 

90 0.35 0.35 0.35 0.1015 0.12 2.27 0.00 

100 Literature data 1.80 0.00 
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Figure 5-23: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and diethyl carbonate (DEC) (v/v) ratio 
 
Table 5-29: Resin swelling data used to construct Figure 5-23 

HypoGel™200 resin in propylene carbonate and diethyl carbonate 

%diethyl 
carbonate(v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume 

(mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature date 2.20 0.00 

10 0.40 0.42 0.41 0.0997 0.16 2.51 0.10 

25 0.42 0.42 0.42 0.1005 0.12 2.99 0.00 

40 0.50 0.50 0.50 0.1037 0.15 3.38 0.00 

50 0.49 0.48 0.48 0.1011 0.11 3.69 0.07 

60 0.48 0.48 0.48 0.1021 0.10 3.72 0.00 

75 0.49 0.49 0.49 0.1031 0.10 3.78 0.00 

90 0.43 0.42 0.42 0.0996 0.10 3.25 0.07 

100 Literature date 2.60 0.00 
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Figure 5-24: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and dimethyl carbonate (DMC) (v/v) ratio 
 
Table 5-30: Resin swelling data used to construct Figure 5-24 

HypoGel™200 resin in propylene carbonate and dimethyl carbonate 

%propylene 
carbonate (v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume 

(m
Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 2.80 0.00 

25 0.42 0.42 0.42 0.0996 0.10 3.21 0.00 

40 0.46 0.45 0.45 0.1015 0.12 3.28 0.07 

50 0.43 0.44 0.43 0.1015 0.12 3.09 0.07 

60 0.45 0.42 0.43 0.1031 0.10 3.23 0.16 

75 0.40 0.42 0.41 0.1031 0.10 3.01 0.10 

100 Literature data 2.20 0.00 
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Figure 5-25: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and isopropanol (iPrOH) (v/v) ratio 
 

Table 5-31: Resin swelling data used to construct Figure 5-25 

HypoGel™200 resin in propylene carbonate and isopropanol 

%propylene 
carbonate (v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit 
disc 

volum
e (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 1.80 0.00 

10 0.33 0.33 0.33 0.0996 0.10 2.31 0.00 

20 0.40 0.40 0.40 0.1021 0.10 2.94 0.00 

25 0.49 0.48 0.48 0.0997 0.16 3.24 0.07 

50 0.48 0.48 0.50 0.1021 0.10 3.79 0.13 

75 0.51 0.50 0.51 0.1037 0.15 3.44 0.06 

80 0.51 0.50 0.50 0.1037 0.15 3.41 0.06 

90 0.46 0.46 0.46 0.0997 0.16 3.01 0.00 

100 Literature data 2.20 0.00 
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Figure 5-26: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and methanol (MeOH) (v/v) ratio 
 

Table 5-32: Resing swelling data used to construct Figure 5-26 

HypoGel™200 resin in propylene carbonate and methanol 

%propylene 
carbonate (v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume 

(m

Swellin
g (ml 
g-1) 

Error (mL 
g-1) 

0 Literature data 1.80 0.00 

10 0.40 0.39 0.39 0.1015 0.10 2.91 0.05 

25 0.40 0.40 0.41 0.1021 0.10 2.97 0.07 

40 0.50 0.50 0.50 0.0997 0.16 3.41 0.00 

50 0.52 0.53 0.52 0.1037 0.15 3.60 0.06 

60 0.49 0.48 0.48 0.0996 0.10 3.87 0.06 

75 0.48 0.50 0.49 0.10 0.12 3.65 0.10 

90 0.49 0.48 0.48 0.1037 0.15 3.23 0.05 

100 Literature data 2.20 0.00 
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Figure 5-27: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and ethyl acetate (EA) (v/v) ratio 
 
Table 5-33: Resin swelling data used to construct Figure 5-27 

HypoGel™200 resin in propylene carbonate and ethyl acetate 
%ethyl 

acetate (v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 2.20 0.00 

20 0.41 0.40 0.41 0.1021 0.10 3.00 0.07 

40 0.50 0.50 0.50 0.0997 0.16 3.41 0.00 

60 0.50 0.49 0.50 0.0996 0.10 3.98 0.07 

70 0.50 0.50 0.50 0.1021 0.10 3.92 0.00 

80 0.51 0.54 0.52 0.0997 0.16 3.64 0.17 

90 0.49 0.49 0.48 0.10 0.10 3.88 0.07 

100 Literature data 2.80 0.00 
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Figure 5-28: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and isobutyl acetate (iBuAc) (v/v) ratio 
 
Table 5-34: Resin swelling data used to construct Figure 5-28 

HypoGel™200 resin in propylene carbonate and isobutyl acetate 

%isobutyl 
acetate (v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) Weight (g) 

 Frit disc 
volume 

(m
Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 2.20 0.00 

20 0.42 0.45 0.43 0.1031 0.10 3.23 0.16 

40 0.48 0.50 0.48 0.1015 0.12 3.61 0.13 

50 0.52 0.52 0.52 0.1037 0.15 3.57 0.00 

60 0.50 0.50 0.50 0.1015 0.12 3.74 0.00 

70 0.50 0.50 0.50 0.1031 0.10 3.88 0.00 

80 0.50 0.50 0.50 0.1037 0.15 3.38 0.00 

100 Literature data 2.80 0.00 
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Figure 5-29: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and cyclopentyl methyl ether (CPME) (v/v) ratio 

 

Table 5-35: Resin swelling dataata used to construct Figure 5-29 

HypoGel™200 resin in propylene carbonate and cyclopentyl methyl ether 

%cyclopentyl 
methyl ether (v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume 

(m
Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 2.20 0.00 

20 0.45 0.45 0.45 0.1000 0.11 3.40 0.00 

40 0.53 0.52 0.53 0.1005 0.12 4.05 0.07 

60 0.59 0.58 0.59 0.1011 0.11 4.71 0.07 

80 0.55 0.55 0.57 0.1000 0.11 4.47 0.13 

90 0.50 0.50 0.51 0.1005 0.12 3.81 0.07 

95 0.49 0.49 0.49 0.1011 0.11 3.76 0.00 

100 Literature data 2.80 0.00 
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Figure 5-30: Line graph showing the resin swelling changes by changing the methanol (MeOH) and 
isobutyl acetate (iBuAc) (v/v) ratio 
 

Table 5-36: Resin swelling data used to construct Figure 5-30 

HypoGel™200 resin in methanol and isobutyl acetate 
%isobutyl 

acetate (v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 1.80 0.00 

30 0.39 0.39 0.39 0.1021 0.10 2.84 0.00 

50 0.44 0.44 0.44 0.0997 0.16 2.81 0.00 

70 0.44 0.44 0.44 0.0996 0.10 3.41 0.00 

90 0.50 0.50 0.50 0.1037 0.15 3.38 0.00 

100 Literature data 2.80 0.00 
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Figure 5-31: Line graph showing the resin swelling changes by changing the 1,2-dichlorobenzene (1,2-
DCB) and dichloromethane (DCM) (v/v) ratio 
 
Table 5-37: Resin swelling data used to construct Figure 5-31 

HypoGel™200 resin in 1,2-dichlorobenzene and dichloromethane 

%1,2-
dichlorobenzene 

(v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit 
disc 

volum
e (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 0.70 0.70 0.70 0.1020 0.11 5.78 0.00 

25 0.70 0.70 0.70 0.1023 0.11 5.77 0.00 

50 0.68 0.65 0.68 0.1011 0.11 5.54 0.20 

75 0.66 0.65 0.66 0.1019 0.11 5.36 0.07 

100 0.65 0.65 0.64 0.1002 0.11 5.36 0.07 

 



157 
 

 

Figure 5-32: Line graph showing the resin swelling changes by changing the 1,2-dichlorobenzene (1,2-
DCB) and dimethylformamide (DMF) (v/v) ratio 
 

Table 5-38: Resin swelling data used to construct Figure 5-32 

HypoGel™200 resin in 1,2-dichlorobenzene and dimethylformamide 

%1,2-
dichlorobenzene 

(v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit 
disc 

volum
e (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 0.60 0.61 0.61 0.1024 0.11 4.85 0.07 

25 0.64 0.64 0.65 0.1013 0.13 5.07 0.07 

50 0.69 0.68 0.68 0.1013 0.11 5.66 0.07 

75 0.65 0.65 0.66 0.1006 0.12 5.30 0.07 

100 0.65 0.65 0.64 0.1002 0.11 5.36 0.07 
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Figure 5-33: Line graph showing the resin swelling changes by changing the acetonitrile (MeCN) and 
toluene (v/v) ratio 
 
Table 5-39: Resin swelling data used to construct Figure 5-33 

HypoGel™200 resin in acetonitrile and toluene 
%toluene 

(v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.42 0.41 0.40 0.1020 0.11 2.94 0.10 

20 0.50 0.50 0.50 0.1002 0.11 3.89 0.00 

40 0.60 0.60 0.59 0.1023 0.11 4.76 0.07 

60 0.62 0.62 0.61 0.1011 0.11 5.01 0.07 

80 0.60 0.60 0.60 0.1019 0.11 4.81 0.00 

100 0.50 0.51 0.51 0.1024 0.11 3.87 0.07 
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Figure 5-34: Line graph showing the resin swelling changes by changing the 1,2-dichlorobenzene (1,2-
DCB) and propylene carbonate (PC) (v/v) ratio 
 

Table 5-40: Resin swelling data used to construct Figure 5-34 

HypoGel™200 resin in propylene carbonate and 1,2-dichlorobenzene 

%1,2-
dichlorobenzene 

(v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit 
disc 

volum
e (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 0.38 0.39 0.38 0.1020 0.11 2.68 0.07 

25 0.48 0.45 0.46 0.1023 0.11 3.45 0.16 

50 0.53 0.53 0.52 0.1011 0.11 4.12 0.07 

75 0.62 0.61 0.61 0.1019 0.11 4.94 0.07 

100 0.65 0.65 0.64 0.1002 0.11 5.36 0.07 

 



160 
 

 

Figure 5-35: Line graph showing the resin swelling changes by changing the 1,2-dichlorobenzene (1,2-
DCB) and heptane (v/v) ratio 
 

Table 5-41: Resin swelling data used to construct Figure 5-35 

HypoGel™200 resin in heptane and 1,2-dichlorobenzene 
%heptane 

(v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.65 0.65 0.64 0.1002 0.11 5.36 0.07 

25 0.61 0.61 0.61 0.1006 0.12 4.87 0.00 

50 0.51 0.51 0.50 0.1024 0.11 3.87 0.07 

75 0.42 0.42 0.40 0.1002 0.11 3.03 0.13 

100 0.31 0.31 0.31 0.1013 0.11 1.97 0.00 
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Figure 5-36: Line graph showing the resin swelling changes by changing the propylene carbonate (PC) 
and acetonitrile (MeCN) (v/v) ratio 
 
Table 5-42: Resin swellingata used to construct Figure 5-36 

HypoGel™200 resin in propylene carbonate and acetonitrile 
%acetonitril

e (v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 2.20 0.00 

25 0.39 0.42 0.41 0.1003 0.12 2.85 0.17 

50 0.43 0.41 0.42 0.1019 0.11 3.04 0.10 

75 0.41 0.42 0.41 0.1020 0.11 2.97 0.07 

100 0.42 0.41 0.40 0.1020 0.11 2.94 0.10 
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Figure 5-37: Line graph showing the resin swelling changes by changing the isopropyl acetate (iPrOAc) 
and acetonitrile (MeCN) (v/v) ratio 
 
Table 5-43: Resin swelling data used to construct Figure 5-37 

HypoGel™200 resin in isopropyl acetate and acetonitrile 
%acetonitril

e (v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 2.20 0.00 

25 0.44 0.44 0.45 0.1024 0.11 3.26 0.07 

50 0.48 0.48 0.46 0.1013 0.11 3.59 0.13 

75 0.39 0.40 0.40 0.1013 0.13 2.63 0.07 

100 0.42 0.41 0.40 0.1020 0.11 2.94 0.10 
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Figure 5-38: Line graph showing the resin swelling changes by changing the furfuryl alcohol (furfurylOH) 
and cyclopentanone (CPTN) (v/v) ratio 
 
Table 5-44: Resin swelling data used to construct Figure 5-38 

HypoGel™200 resin in furfuryl alcohol and cyclopentanone 

%cyclopentan
one (v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume 

(m
Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 0.69 0.69 0.69 0.1020 0.11 5.69 0.00 

30 0.66 0.65 0.65 0.1019 0.11 5.33 0.07 

50 0.64 0.66 0.63 0.1011 0.11 5.28 0.16 

70 0.66 0.65 0.66 0.1023 0.11 5.34 0.07 

100 0.60 0.60 0.60 0.0996 0.10 5.02 0.00 
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Figure 5-39: Line graph showing the resin swelling changes by changing the water and 
dimethylformamide (DMF) (v/v) ratio 
 
Table 5-45: Resin swelling data used to construct Figure 5-39 

HypoGel™200 resin in water and dimethylformamide 
%DMF 
(v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Swelling 
(ml g-1) 

Error (mL 
g-1) 

0 0.30 0.30 0.30 0.0996 0.10 2.01 0.00 

20 0.30 0.30 0.30 0.1002 0.11 1.90 0.00 

40 0.30 0.30 0.30 0.1023 0.11 1.86 0.00 

50 0.30 0.30 0.30 0.1011 0.11 1.88 0.00 

60 0.32 0.30 0.30 0.1019 0.11 1.93 0.13 

80 0.33 0.32 0.32 0.1020 0.11 2.09 0.07 

90 0.41 0.41 0.41 0.1014 0.12 2.86 0.00 

100 0.60 0.61 0.61 0.1024 0.11 4.85 0.07 
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Figure 5-40: Line graph showing the resin swelling changes by changing the TMO and cyclopentanone 
(CPTN) (v/v) ratio 
 
Table 5-46: Resin swelling data used to construct Figure 5-40 

HypoGel™200 resin in TMO and cyclopentanone 

%cyclopentan
one (v/v) 

Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume 

(mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 0.34 0.32 0.32 0.1024 0.11 2.12 0.13 

30 0.44 0.46 0.45 0.1013 0.13 3.16 0.10 

50 0.52 0.55 0.52 0.1013 0.11 4.15 0.20 

70 0.60 0.59 0.60 0.1006 0.12 4.74 0.07 

100 0.60 0.60 0.60 0.0996 0.10 5.02 0.00 
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Figure 5-41: Line graph showing the resin swelling changes by changing the methanol (MeOH) and 
dimethyl isosorbide (v/v) ratio 
 
Table 5-47: Resin swelling data used to construct Figure 5-41 

HypoGel™200 resin in methanol and dimethyl isosorbide 
%dimethyl 
isosorbide 

(v/v) 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume 

(m
Swelling 
(ml g-1) 

Error 
(mL g-1) 

0 Literature data 1.80 0.00 

30 0.45 0.45 0.46 0.1021 0.10 3.46 0.07 

50 0.55 0.56 0.56 0.0997 0.16 3.98 0.07 

70 0.53 0.55 0.55 0.0996 0.10 4.45 0.13 

90 0.62 0.63 0.63 0.1037 0.15 4.60 0.06 

100 Literature data 5.20 0.00 
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5.3. Appendix C 

5.3.1. 1H NMR spectra supporting Table 2-4 in Chapter 2.1.4.1 

1H NMR spectra of cyclopentanone & water solvent system for HypoGel™200 

resin 

Figure 5-42: 1HNMR spectrum of pure mesitylene (1,3,5-trimethylbenzene). 1H NMR (400 MHz, CDCl3): δ = 
6.81-6.71 (m, 3H, ArH), 2.75-2.25 (dd, 9H, ArCH3). 

Figure 5-43: 1HNMR spectrum of pure cyclopentanone. 1H NMR (400 MHz, CDCl3): δ =2.20-2.09 (m, 4H, 
COCH2), 2.00-1.88 (m, 4H, COCH2CH2). 
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Figure 5-44: 1HNMR spectrum of example 1: solvent blend of cyclopentanone:water=30:70 before 
swelling 

Figure 5-45: 1HNMR spectrum of example 1: solvent blend of cyclopentanone:water=30:70 after swelling 
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Figure 5-46: 1HNMR spectrum of example 2: solvent blend of cyclopentanone:water=90:10 before 
swelling 

Figure 5-47: 1HNMR spectrum of example 2: solvent blend of cyclopentanone:water=90:10 after swelling 
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5.4. Appendix D 

5.4.1. GC data supporting Chapter 2.1.4.4 

 

Peak RetTime Sig Type Area Height Area 

# [min]   [pA*s] [pA] % 

1 1.124 1 BB 11.68075 14.57287 0.00762 

2 1.185 1 BB S 1.53E+05 1.64E+05 99.9884 

3 2.05 1 BB 6.10799 9.55428 0.00399 
Figure 5-48: Acetone was chosen as the background, and its retention time in GC chromatogram was 
1.185 min on the Agilent (5HT column). 

 

 

Peak RetTime Sig Type Area Height Area 

# [min]   [pA*s] [pA] % 

1 2.819 1 BB 5459.248 1167.178 1.00E+02 
Figure 5-49: The first strong peak was acetone, and propylene carbonate came out at 2.819 min on the 
Agilent (5HT column). 
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Peak RetTime Sig Type Area Height Area 

# [min]   [pA*s] [pA] % 

1 1.765 1 BB S 1.67E+04 1.83E+04 1.83E+04 
Figure 5-50: The first peak was acetone, TMO came out at 1.765 min on the Agilent (5HT column). 
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5.5. Appendix E 

5.5.1. Data supporting Figure 2-43 in Chapter 2.2.2.4 

Table 5-48: Data used to construct Figure 2-43 

Resin swelling in each peptide sequence for Wang resin in PC: EtOAc=10: 90 (v/v) 

Resin 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit 
disc 
volu
me 
(m

Swelling 
(ml g-1) 

Error 
(mL g-1) 

Wang resin 0.58 0.58 0.58 0.0998 0.12 4.61 0.00 
Fmoc-Phe-Wang 

resin 0.90 0.90 0.90 0.2005 0.12 3.89 0.00 

H-Phe-Wang resin 0.80 0.80 0.80 0.1788 0.12 3.80 0.00 
Fmoc-Ala-Phe-Wang 

resin 0.78 0.80 0.79 0.2091 0.12 3.20 0.05 
H-Ala-Phe-Wang 

resin 0.76 0.74 0.74 0.1875 0.12 3.34 0.07 
Fmoc-Leu-Ala-Phe-

Wang resin 0.89 0.88 0.88 0.2227 0.12 3.43 0.03 
H-Leu-Ala-Phe-

Wang resin 0.81 0.80 0.80 0.2011 0.12 3.40 0.03 
Wang resin (after 

cleave) 0.73 0.71 0.72 0.1411 0.12 4.25 0.07 
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5.6. Appendix F 

5.6.1. 1H NMR spectra supporting Chapter 2.3.2 

 

Figure 5-51: 1H NMR (chloroform-d, δ =7.26) of polystyrene dissolving in propylene carbonate, then 
adding 10 μL acetone; propylene carbonate: δ=4.85 (1H, OCHCH3), δ=4.56 (1H, OCH2), δ=4.04 (1H, OCH2), 
δ=1.50 (d, 3H, CH3); acetone: δ=2.16. It shows no polystyrene dissolved in propylene carbonate as there 
is no signal around 7 ppm 

 

 
Figure 5-52: 1H NMR (chloroform-d, δ =7.26) of polystyrene dissolving in TMO, then adding 10 μL acetone; 
TMO: δ=1.82 (4H, CH2), δ=1.22 (12H, CH3); acetone: δ=2.16. It shows no polystyrene dissolved in TMO as 
there is no signal around 7 ppm 
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Figure 5-53: 1H NMR (chloroform-d, δ =7.26) of polystyrene dissolving in a mixture of PC and TMO (PC: 
TMO=10: 90), then adding 10 μL acetone. It shows polystyrene dissolves in this mixture as δ=7.25-6.25 
corresponds to polystyrene units 
 
 
Table 5-49: Swelling for crosslinked polystyrene resin, data used to construct Figure 2-68, Figure 2-69,  
Figure 2-70, Figure 2-71 and Figure 2-72  

Swelling for crosslinked polystyrene resin 

Solvent 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

propylene carbonate 0.30 0.32 0.31 0.1004 0.12 1.89 0.10 

ethyl acetate 0.50 0.50 0.50 0.1004 0.12 3.78 0.00 

PC:EA=10:90 0.53 0.55 0.53 0.1003 0.12 4.15 0.13 

TMO 0.32 0.35 0.32 0.1006 0.12 2.09 0.20 

PC:TMO=60:40 0.48 0.48 0.49 0.1004 0.12 3.62 0.07 

ethanol 0.32 0.32 0.32 0.1004 0.12 1.99 0.00 

cyclopentanone 0.78 0.78 0.78 0.1004 0.12 6.57 0.00 
ethanol:cyclopentanone=1

5:85 0.80 0.78 0.78 0.1003 0.12 6.65 0.13 

MeOH 0.35 0.35 0.36 0.1006 0.12 2.32 0.07 
MeOH:cyclopentanone=1

0:90 0.80 0.80 0.80 0.1004 0.12 6.77 0.00 

isopropanol 0.30 0.33 0.33 0.1008 0.12 1.98 0.20 
isopropanol:cyclopentane-

one=20:80 0.78 0.78 0.78 0.0999 0.12 6.61 0.00 
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Table 5-50: Swelling for Wang resin, data used to construct Figure 2-68, Figure 2-69, Figure 2-70 , Figure 
2-71 and Figure 2-72; more swelling supporting information for Wang resin can be seen in Appendix B 
( All line graphs of solvent systems for Merrifield resin) 

Swelling for Wang resin 

Solvent 
Run1 
(mL) 

Run2 
(mL) 

Run3 
(mL) 

Weight 
(g) 

 Frit disc 
volume (m

Swelling 
(ml g-1) 

Error (mL 
g-1) 

propylene carbonate Literatura data 1.80 0.00 

ethyl acetate Literatura data 3.80 0.00 

PC:EA=10:90 0.58 0.58 0.58 0.0998 0.12 4.61 0.00 

TMO 0.32 0.30 0.31 0.1009 0.13 1.78 0.10 

PC:TMO=60:40 0.49 0.49 0.50 0.1008 0.12 3.70 0.07 

ethanol Literatura data 1.80 0.00 

cyclopentanone Literatura data 5.80 0.00 
ethanol:cyclopentanone=1

5:85 0.80 0.80 0.80 0.1014 0.16 6.31 0.00 

MeOH Literatura data 1.80 0.00 
MeOH:cyclopentanone=1

0:90 0.80 0.80 0.80 0.10 0.12 6.80 0.00 

isopropanol Literatura data 1.80 0.00 
isopropanol:cyclopentane-

one=20:80 0.79 0.79 0.78 0.1018 0.1 6.75 0.07 
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6.  Abbreviations 

BOP: (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate 

CPME: cyclopentyl methyl ether 

CPME ether: cyclopentyl methyl ether 

CPTN: cyclopentanone 

CS2: carbon disulphide 

CDCl3: chloroform-d 

DCC: N, N'-dicyclohexylcarbodiimide 

DIC: N, N′-Diisopropylcarbodiimide 

1,2-DCB: 1,2-dichlorobenzene 

DCM: dichloromethane 

DMF: dimethylformamide  

DIPEA: diisopropylethylamine 

EA/EtOAc: ethyl acetate 

EtOH: ethanol 

FurfurylOH: furfuryl alcohol 

HODhbt/HOOBT: 3-hydroxy-1,2,3-benzotriazin-4(3H)-one  

HBTU:3-[bis(dimethylamino)methyliumyl]-3H-benzotriazol-1-oxide 

hexafluorophosphate 

HOBt: hydroxybenzotriazole 
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IPrOAc: isopropyl acetate 

IPrOH: isopropanol 

MeCN: acetonitrile 

MeOH: methanol 

2-MeTHF: 2-methyl-THF, or 2-methyltetrohydrafuran 

OxymaPure: ethyl 2-cyano-2-(hydroxyimino)acetate 

PC: propylene carbonate 

SPPS: solid-phase peptide synthesis 

SPOS: solid-phase organic synthesis 

TDBTU: N,N,N',N'-Tetramethyl-O-(3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl)uronium 

tetrafluoroborate 

TBTU: O-(Benzotriazol-1-yl)-N, N, N′, N′-tetramethyluronium tetrafluoroborate 

TMO: 2,2,5,5-tetramethyltetrahydrofuran or 2,2,5,5-tetramethyloxolane 

TIPS: triisopropylsilane 

TFA: trifluoroacetic acid 

TFA-d: trifluoroacetic acid-d 
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