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Abstract

Urban systems are composed of multiple interdependent subsystems, for example,
the traffic monitoring system, the air quality quality monitoring system or the
electricity distribution system. Each subsystem generates a different dataset that is
used for analyzing, monitoring, and controlling that particular component and the
overall system. The quantity and quality of the data is essential for the successful
applicability of the monitoring and control strategies. In practical settings, the
sensing and communication infrastructures are prone to introduce telemetry errors
that generate incomplete datasets. In this context, recovering missing data is
paramount for ensuring the resilience of the urban system.

First, the missing data from each subsystem is recovered using only the available
observations from that subsystem. The fundamental limits of the missing data
recovery problem are characterized by defining the optimal performance theoretically
attainable by any estimator. The performance of a standard matrix-completion based
algorithm and the linear minimum mean squared error estimator are benchmarked
using real data from a low voltage distribution system. The comparison with the
fundamental limit highlights the drawbacks of both methods in a practical setting.
A new recovery method that combines the optimality of the Bayesian estimation
with the matrix completion-based recovery is proposed. Numerical simulations show
that the novel approach provides robust performance in realistic scenarios.

Secondly, the correlation that results from the interdependence between the
subsystems of an urban system is exploited in a joint recovery setting. To that
end, the available observations from two interconnected components of an urban
system are aggregated into a data matrix that is used for the recovery process. The
fundamental limits of the joint recovery of two datasets are theoretically derived. In
addition, when the locations of the missing entries from each dataset are uniformly
distributed, theoretical bounds for the probability of recovery are established and used
to minimize the acquisition cost. The numerical analysis shows that the proposed
algorithm outperforms the standard matrix completion-based recovery in various
noise and sampling regimes within the joint recovery setting.
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Notations

In this thesis, matrices are denoted with uppercase bold letters, i.e., M, and vectors
are denoted with lowercase bold letters, i.e., m. The superscript T stands for
transposition. For matrix M, tr(M) denotes its trace and rank(M) denotes its rank.
The Frobenius norm is denoted by ∥M∥F and ∥M∥∗ denotes the nuclear norm of the
matrix M. The Euclidean inner product between the matrices A and M is denoted
by ⟨A,M⟩. The logarithm function is assumed to be in base 2 unless specified
otherwise.
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Chapter 1

Introduction

1.1 Background and motivation

The United Nation Population Division reported in 2009 that the total number of
people living in urban and metropolitan areas exceeded that of those living in rural
areas [1] and [2]. In addition, 66% of the world’s population will live in urban areas
[3] by 2050, which gives rise to challenges regarding air quality, congestion, waste
management and human health [4]. In an attempt to tackle these challenges, the
interest in the smart city concept has seen a significant growth [5]. This is manifested
through a high number of smart city initiatives on city implementation projects or
jointly funded public research projects. In [6] it is reported that in 2012 there were
143 ongoing smart city projects of which 47 in Europe and 30 in the USA.

The concept of a smart city is defined in [7] as an instrumented, interconnected
and intelligent city. Instrumentation enables the collection of real-world data through
the use of sensors, meters, personal devices, cameras, the web and other data-
acquisition systems. Interconnection refers to the integration of all types of data into
a computing platform that allows the communication between different city services.
Finally, intelligence means the use of data analysis tools, modeling and optimization
techniques that provide additional insight for the decision makes [7]. In view of this,
a smart city relies, among others, on a collection of computing technologies applied to
infrastructure components [8]. To facilitate that, datasets are produced automatically
and routinely from sensors and other data-acquisition systems [9]. The use of data
analysis tools, modeling and optimization techniques relies on the quantity and the
quality of the data collected by the sensing infrastructures of the city. Ensuring
timely and accurate measurements is key for the managing and controlling the urban
system.

For example, the lack of data quality in power systems contributed towards
several large-scale blackouts [10] such as the 2003 U.S.-Canadian blackout [11], the
2003 Italy blackout [12], the 2011 Arizona-southern California blackout [13], and the
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2012 Indian blackout [14], which resulted in significant economic losses and social
impacts. Therefore, it is crucial to ensure the quality of the datasets produced by
the sensing infrastructures covering urban areas.

In [15], the quality of the data is influenced by three factors:

• precision of the data collection devices,

• quality of the data communication infrastructure,

• granularity of the measurements in both spatial and temporal dimensions.

In addition to the limitations imposed by the hardware technology used in the
acquisition process, the quality of the data is affected by external factors like false
data injection attacks or missing data. In false data injection attacks an adversary
hacks the readings of multiple sensors to mislead the decision making process [16].
For the electricity grid, the problem of estimating the state of the system under
data injection attacks is studied in [17] and [18]. On the other hand, missing data is
caused by lost measurements in the acquisition process. Sensor failures, unreliable
communication or data storage issues are some of the causes for incomplete sets
of observations [19]. As a consequence, the state of the system is not perfectly
known and data analysis tools, modeling and optimization techniques are difficult
to implement. For instance, accurate measurements are necessary to implement a
centralized control scheme for voltage regulation in distribution systems [20]. In
view of this, it is vital to develop estimation procedures for the missing data using
the available observations. Note that in a missing data recovery framework, the
quality of the available observations is affected by the three factors identified in [15].
Therefore, the data recovery techniques need to be robust to noise in the available
observations, sampling patterns and mismatch in any prior knowledge incorporated.

Characterizing the fundamental limits of the missing data recovery problem
is essential for understanding the trade offs between different recovery techniques.
Moreover, when the performance of the state-of-the-art recovery methods is largely
suboptimal compared to the theoretical limit or the assumptions are not feasible in
a realistic scenario, new recovery strategies need to be developed to overcome those
limitations. In the smart grid context, the problem of estimating the state of the
system from partial observations is addressed in [21], [19] and [22].

Urban systems are typically modelled as a set of interacting subsystems [23].
One of the consequences of the interaction between different subsystems is that
there is correlation between the datasets generated by each component. In view
of this, the missing data recovery performance for one subsystem can be enhanced
by using available observations collected by other interacting components of the
urban system. A joint estimation framework enables the recovery when the number
of available observations from one dataset is not sufficient by compensating with
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an increased number of observations from the other datasets. The joint recovery
paradigm supports an additional type of correlation to be exploited in the recovery
process. Specifically, the interaction between different components of the urban
system gives rise to correlation between the datasets collected by each sensing
infrastructure. To decide when is beneficial to do joint missing data recovery for
multiple datasets, it is vital to characterize the fundamental limits. On the practical
side, the recovery algorithms need to be robust to different sampling regimes in the
datasets combined.

To sum up, the main challenges faced by the missing data recovery strategies are:

• uncertainty in the quality of the available observations,

• randomness in the number and the location of the missing data,

• mismatch in any prior knowledge incorporated.

In view of this, developing robust recovery methods is paramount for ensuring the
quality and quantity of the data in urban systems.

1.2 Overview of the thesis

The rest of the thesis addresses the problem of recovering missing data from datasets
generated in urban systems.

• Chapter 2 presents a review of the state-of-the-art techniques for recover-
ing missing data particularly focusing on a new research field called matrix
completion.

• Chapter 3 defines a framework for comparing the recovery performance of
different estimation methods using real data collected from a low voltage dis-
tribution system. Moreover, the fundamental limits of the recovery process are
characterized when the optimal performance theoretically attainable is defined
within an information theoretic framework. A standard matrix-completion-
based algorithm is compared with the linear minimum mean squared error
estimator in a practical setting. The performance limitations of both recovery
methods relative to the fundamental limit are identified. The findings of this
chapter are published in [19].

• Chapter 4 introduces a novel algorithm for recovering missing data that ad-
dresses the key performance limitations of the methods compared in Chapter 3.
The numerical analysis demonstrates the improved accuracy and the robustness
of the proposed approach with respect to noise in the available observations,
non-uniform sampling patterns and mismatch in the prior knowledge. The
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results in this chapter are published in the IEEE Trans. Smart Grid paper
[22].

• In Chapter 5, a joint estimation framework for recovering missing data in
urban systems is introduced. Specifically, the interaction between different
components of the urban system gives rise to another type of correlation
that is exploited in this setting. The theoretical conditions under which
the joint recovery of two datasets requires fewer observations compared with
the independent recovery of both datasets are characterized within a matrix
completion framework. Moreover, when each dataset is sampled uniformly at
random, lower bounds for the probability of recovery are provided for both the
independent and the joint recovery of two datasets. The probability bounds are
then used to optimize the sampling process in order to minimize the acquisition
cost for the observations used in the recovery process. Numerical studies to
benchmark the performance of different algorithms that exploit the additional
type of correlation are also presented. The numerical results demonstrate that
new algorithm proposed in Chapter 4 outperforms the matrix completion-based
recovery in a joint recovery setting. Moreover, the novel approach is robust to
different sampling regimes in the datasets combined.



Chapter 2

Overview of theory and algorithms
for missing data recovery

This chapter presents a review of the state-of-the-art theoretical results and algorithms
for addressing the missing data recovery problem.

In the following, Section 2.1 presents an overview of different approaches for
addressing the missing data problem. Section 2.2 summarizes the key theoretical
results in the matrix completion area and shows the main application domains for
this type of methods. In addition, the main algorithmic approaches are presented.
The conclusions are presented in Section 2.3 and a standard matrix completion-based
algorithm is adopted for benchmarking purposes using real data collected in an urban
system.

2.1 Missing data recovery methods

The recent advances in both sensing and communication technologies facilitated
the deployment of large sensing networks across different components of the urban
system [9]. The significant boost in the sensing capabilities of the urban system
gives rise to new challenges for the data acquisition and data processing tools [15].
In particular, the large number of sensors deployed provides measurements over
vast geographical areas and long periods of time which results in high-dimensional
datasets. The measurements are used as inputs for data analysis tools, or modeling
and optimization techniques which help the operator in the process of controlling and
managing the system as well as in the decision making process [15]. However, timely
and accurate observations are necessary for the data processing tools to achieve their
goal. In practice, measurements are lost in the acquisition process, and therefore,
the practical reach of the data processing techniques is limited. Consequently, the
missing data problem needs to be addressed at the acquisition stage.
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Assuming the data is organized in matrix form, one approach to deal with missing
data is the listwise deletion in which the rows or the columns that contain missing
values are deleted [24], [25] and [26]. This approach is easy to implement but leads to
a decrease in the size of the dataset and loss of information. To avoid this scenario it
is necessary to estimate the missing values based on the available observations. The
methods for estimating missing data can be grouped in three main categories [27]:
Imputation-based methods, Matrix-based methods, and Statistics-based methods.
These are reviewed in more detail in the following sections.

2.1.1 Imputation-based methods

Imputation is the process of replacing a missing entry with a statistical prediction
[28]. The main aim of this type of methods is to fill the gaps in the matrix without
introducing a large amount of bias. Depending on the number of imputations required
for each missing entry, this type of methods are further divided into two categories:

1. Single imputation methods replace the missing values with the mean of other
values in the dataset. In [29] and [25] the mean is calculated using a fixed
number of neighbor entries. The main advantage of this approach is that
no information is removed from the dataset. On the other hand, the main
disadvantage is that the output depends on the number of neighbor entries
considered which creates bias in the dataset [24].

2. Multiple imputation methods generate m datasets by estimating the missing
values m times. The final value is obtained by averaging the imputed values for
the same data point in all the datasets generated [30], [31] and [32]. This type of
methods aim to generate unbiased datasets and to provide confidence coefficient
values to show the reliability of the estimated values [27]. Guidelines for
selecting the number of datasets are proposed in [33] and [34]. The complexity
that arises from processing multiple datasets is one of the main limitations of
this type of methods. In addition, the multiple imputation-based estimation
generates non-deterministic results [27].

2.1.2 Matrix-based methods

Matrix-based methods operate under the assumption that the entries contained in the
data matrix are correlated, and consequently, the resulting data matrix is low rank
or approximately low rank. In this context, the recovery of the missing entries of low
rank matrices is feasible in a convex optimization context provided that a sufficient
fraction of the entries is observed [35], [36], [37], and [38]. In [29] a mixture between
imputation-based methods and matrix-based methods is used to replace missing
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entries with the row average and then compute the most significant eigenvalues and
the corresponding eigenvectors. The missing values are estimated using a linear
regression of the obtained eigenvectors. A more computationally efficient method
is proposed in [39]. Therein, the Singular Value Thresholding (SVT) algorithm
obtains the matrix with minimum rank that fits the observations by minimizing the
nuclear norm, i.e. the sum of the singular values of the matrix. Matrix completion
approaches have been successfully applied in a wide range of practical settings. For
instance, the performance of the matrix completion approaches in recovering missing
data for an electricity distribution system is studied in [21], [19] and [22]. A review
of the techniques used to estimate the state of the electricity distribution system is
presented in [40]. In addition, low rank minimization tools are used for electricity
price forecasting in [41].

2.1.3 Statistics-based methods

This type of methods exploit the statistical properties of the dataset in order to
estimate the missing values. Specifically, a recovery method that exploits the hierar-
chical relationship between time series data to apply a locally weighted regression is
proposed in [42]. In [43], a local least squares recovery method that estimates the
missing data as a linear combination of similar genes is presented. The similar genes
are selected based on the absolute value of the Pearson correlation coefficients [44].
For the cases in which not all the observations are correlated, in [45] the authors
apply a locally weighted regression only on the locally correlated observations. The
selection of the observations is done using the Least Absolute Shrinkage and Selection
Operator (LASSO). However, due to the multiple steps required for selection and
validation for each missing entry, this approach has a large computational cost.
Moreover, there are no guidelines for choosing the optimal number of nearest neigh-
bors [27]. Alternatively, the statistical properties of the voltage data collected from
the electricity distribution grid are exploited in a Bayesian framework to recover
missing data in [19]. The main disadvantage of this approach is that it requires
prior knowledge about the second order statistics of the dataset. In addition, the
performance of the recovery varies significantly when the prior knowledge is not
accurate.

A more in depth description of the matrix-based methods for recovering missing
data follows.

2.2 Matrix completion

Matrix completion is a relatively new research area that emerged in 2009 when Candès
and Recht proposed in [35] a convex relaxation of the NP-hard problem of finding
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the matrix with the minimum rank that fits the available observations. This type of
recovery exploits the low rank structure typically found on datasets with correlated
entries. Respectively, correlated datasets give rise to low rank or approximately low
rank data matrices. The missing entries are recovered by computing the matrix
with the minimum rank that fits the available observations. Therefore, the matrix
completion recovery method is formulated as

minimize
X

rank(X)

subject to PΩ(X) = PΩ(M),
(2.1)

where X is the optimization variable, M is the matrix that needs to be estimated, Ω
is the set containing positions of the available observations in the matrix M, and
PΩ is the orthogonal projector into the subspace of matrices that vanish outside of
Ω. Unfortunately, the rank minimization problem in (2.1) is NP-hard and all the
algorithms achieving the exact solution require time at least doubly exponential
in the dimension of the matrix [46]. Favorably, in [35] it is shown that when the
entries on Ω are sampled uniformly at random, the solution of the rank minimization
problem in (2.1) is obtained with high probability by solving the following convex
relaxation

minimize
X

∥X∥∗

subject to PΩ(X) = PΩ(M),
(2.2)

where ∥X∥∗ denotes the nuclear norm of the matrix X. However, not any matrix
can be recovered from a subset of the entries. To better understand the limits of the
matrix completion framework, the main results in [35] are summarized below.

A matrix M of size M×N and rank r is recovered with probability 1−cN−3logN
by solving the optimization problem in (2.2) when the following conditions are
satisfied:

1. the matrix M is sampled from the random orthogonal model,

2. the locations of the missing entries are sampled uniformly at random,

3. the number of entries in M that are observed obeys

k ≥ C N1.25 r logN, (2.3)

where C and c are constants and N = max{M,N}.

To define the random orthogonal model, let us consider the singular value decompo-
sition of the matrix M

M =
r∑

j=1
σjujvT

j , (2.4)
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where uj and vj for j = {1, 2, ..., r} are the left and right singular vectors and σj

are the singular values. In this context, a generic low rank matrix is sampled from
the random orthogonal model if the families {uj}1≤j≤r and {vj}1≤j≤r are sampled
uniformly at random among all collections of r orthonormal vectors independently
of each other. Note that the results not only define the conditions in which there
exists a low rank solution that is consistent with the available observation but it also
shows that the convex relaxation in (2.2) achieves the same solution as the NP-hard
problem in (2.1).

Since the applicability of this result is limited to the class of matrices that belong
to the random orthogonal model, a more general result that covers a larger class
of matrices M is also presented in [35]. A matrix M of size M × N with rank r

is recovered with probability at least 1 − cN−β when the following conditions are
satisfied:

1. the matrix M obeys A0 and A1,

2. the locations of the missing entries are sampled uniformly at random,

3. the number of entries in M that are observed obeys

k ≥ C max{µ2
1, µ

1/2
0 µ1, µ0N

1/4}N r β logN, (2.5)

where C and c are constants, β > 2, N = max{M,N} and µ0 and µ1 are
defined in the following.

Let U be a subspace of RN of dimension r and PU be the orthogonal projection
onto U . Then the coherence of U (vis-a-vis the standard basis (ei)) is defined to be

µ(U) ≡ N

r
max

1≤i≤N
∥PUei∥2, (2.6)

where ei is a vector with 1 on the i-th position and zero in rest.
Let USVT be the singular value decomposition of matrix M. Where S is r × r,

U is M × r, V is N × r and r is the rank of M. In this context, the two assumptions
are
A0: there exists µ0 > 0 such that max{µ(U), µ(V)} ≤ µ0.

A1: there exists µ1 > 0 such that µ1 ≡
max

1≤i≤M,1≤j≤N
(UVT

i,j)
√

r/(MN)
.

In other words, the original problem is equivalent to minimizing the number of
nonvanishing singular values while the convex relaxation minimizes the sum of the
singular values. The fact that the nuclear norm minimization problem produces a
low rank solution is observed in [47], [48], and [49] but the first theoretical guarantee
is provided in [35]. The bounds for the minimum number of entries required are
subsequently improved in [36] and in [50]. Another significant contribution is
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presented in [51] where the bound for the number of entries required is optimized
up to a small numerical constant and a logarithmic factor. The main result in [51]
follows.

A matrix M of size M × N with rank r is recovered with probability at least
1 − 6 log(N)(M + N)2−2β − N2−2β1/2 by solving the optimization problem in (2.2)
when the following conditions are satisfied:

1. the matrix M obeys A0 and A1,

2. the locations of the missing entries are sampled uniformly at random,

3. the number of entries in M that are observed obeys

k ≥ 32 max{µ2
1, µ0} r(M +N) β log2(2N), (2.7)

where β > 1 and M ≤ N .

The results above are of limited applicability in practical settings because it is
assumed that the available observations are noise free. Matrix completion approaches
to missing data recovery from noisy observations are studied in [38], [37], [52], [53],
[54], [55], [56], [57], and [58]. Interestingly, Theorem 7 in [38] shows that the matrix
completion framework is robust to noise. Specifically, when the matrix M satisfies
the conditions for perfect recovery in the noiseless setting, the recovery is also feasible
using a noisy subset of observations. Moreover, the recovery error is proportional to
the noise level [38].

An information-theoretic characterization of the fundamental limits is provided
in [59], where it is shown that low rank matrices are recovered from k linear mea-
surements when

k > (M +N − r)r. (2.8)

The linear measurements are in the form of

y = (⟨B1,M⟩, . . . , ⟨Bk,M⟩)T ∈ Rk, (2.9)

where Bi ∈ RM×N denotes the measurement matrices with i ∈ {1, 2, . . . , k} and ⟨·, ·⟩
denotes the trace inner product between matrices in RM×N . One of the strengths of
the result in [59] is that the linear measurements model allows for more flexibility
in the sampling process compared to the uniform sampling model. In addition, the
recovery limits are characterized for an ensemble of matrices described by their
probability, and therefore, linking matrix completion to a Bayesian formulation.

Matrix completion has applications in various domains. A few examples are
provided in [38] and include:
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1. Collaborative filtering: to make predictions about the interests of an user based
on information from many other users [60]. One example of such a problem is
the Netflix recommendation system in which the objective is to make rating
predictions about unseen movies [35].

2. Global positioning: to find the position in the Euclidean space from a local or
partial set of pairwise distances. This type of problems arise in sensor networks
[61], [62], and [63].

3. System identification: to fit a discrete-time linear time-invariant state-space
model to a sequence of inputs and outputs [64], [49], [48], [65], and [66].

4. Remote sensing: to determine the direction of arrival of incident signals in a
coherent ratio-frequency environment [67], and [38].

5. Structure-from-motion: to recover a scene and infer the camera motion from a
sequence of images [68], and [69].

6. Multiclass learning in data analysis [70], [71], and [72].

The joint recovery problem for different datasets is addressed within a rank
minimization framework. Specifically, matrix completion results are extended to
the tensor case in [73] by defining the trace norm for tensors. Motivated by the
matrix completion case, the tensor completion is formulated as a convex optimization
problem for which several recovery algorithms are proposed in [73]. An alternative
approach to tensor completion is presented in [74] using Riemannian optimization
techniques. The singular value decomposition is also extended to the tensor case in
[75] which leads to the development of a tensor nuclear norm penalized algorithm
in [76]. A weighted tensor low-rank regularization approach that exploits spatial,
spectral and temporal information for recovering images in remote sensing is presented
in [77]. In addition to the tensor recovery problem, a collective matrix completion
framework is proposed in [78] and [79] to exploit the correlation between different
datasets.

Matrix completion algorithms that solve the rank minimization problem can be
divided in two categories:

1. Convex optimization-based algorithms: find the matrix with the mini-
mum rank by solving the nuclear norm minimization problem proposed in [35].
Note that the convex relaxation only works under certain sampling conditions.
The computational time is polynomial in the matrix dimension. Also, this type
of algorithms can be further grouped into two main categories depending on
the complexity and the computational costs:
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(a) Interior-point methods are implemented using general semidefinite pro-
gramming solvers such as SDPT3 [80] or SeDuMI [81] provide high nu-
merical accuracy. However, the trade-off is a high computational cost and
high memory requirements. In fact, SDPT3 can only handle matrices with
sizes up to one hundred. In [64] the structure of the problem is exploited
to reduce the memory requirements and increase the matrix size up to
350.

(b) First-order methods have a lower computational cost per iteration and are
more flexible for specific structures of semidefinite programs [82]. The list
of such algorithms includes: accelerated proximal gradient (APG) descent
[83] which is based on the fast iterative shrinkage-thresholding algorithm
(FISTA) for matrix completion [84], conditional gradient with enhancement
and truncation (CoGENT) [85], alternating descent conditional gradient
(ADCG) [86], augmented Lagrangian multiplier methods [87], Frank-Wolfe
[88], [89], [90], and the singular value thresholding (SVT) [39].

2. Nonconvex optimization-based algorithms: solve the original nonconvex
rank minimization problem at a significantly reduced computational cost
compared to that of the convex optimization-based methods. The key idea
for this type of methods is to use the Burer-Monteiro factorization [91] that
enforces the low-rank constraint through a low rank factorization of the objective
matrix. Consequently, the objective function becomes a function of the two
factor variables. In [82], this type of methods are divided into three classes of
iterative schemes:

(a) Projected gradient descent methods run gradient descent directly of the
objective function with respect to the factor variables [91], [92] and [93].

(b) Alternating minimization methods optimize the cost function alternatively
over one factor while fixing the other [94], [95].

(c) Singular value projection methods perform a gradient descent step of the
cost function on the M ×N matrix space and then project back to the
factor space using the singular value decomposition [96], [97], [98].

2.3 Conclusions

This chapter presented an overview of different methods used for estimating missing
data. The main approaches are categorized based on their complexity and the under-
lying assumptions required for the recovery process. A relatively new research area,
i.e., matrix completion, is explored in more detail to verify if the main assumptions
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are satisfied in urban high-dimensional datasets. The main application domains for
matrix completion-based methods are presented and an overview of the different
algorithmic approaches is included. In this context, one of the algorithms is selected
for numerical evaluation using real data from an urban system. A low computational
cost is key for the applicability of the algorithm in the high-dimensional urban
datasets.

The SVT algorithm proposed in [39] is a first-order method that solves the nuclear
norm minimization problem. In addition, the structure of the problem is exploited
to further reduce the computational cost and the memory requirements. To that end,
capitalizing on the sparsity and the low rank properties of the matrices computed at
each iteration allows the SVT algorithm to recover matrices with close to a billion
entries in 17 minutes on a computer with 1.86GHz and 3 GB of memory [39]. In
addition, theoretical guarantees for the convergence of the algorithm are provided in
[39]. For this reasons, the SVT is adopted for benchmarking purposes in this thesis.
However, the main limitation of the SVT algorithm is that it requires parameter
tuning and there are no guidelines for optimizing the value for different recovery
scenarios. A more in depth description of the SVT approach is presented in Section
3.3.

Robust recovery methods are required to guarantee the availability and reliability
of monitoring data in urban settings. Therefore, the limitation of the SVT algorithm
is addressed to increase the resilience of the monitoring process to missing data.
For that reason, when the missing data cannot be recovered because the number
of available entries is not sufficient, alternative strategies need to be considered.
Since this problem is not currently considered in the literature, a joint estimation
framework for multiple datasets is presented. The proposed estimation process
leverages the correlation between different data sources to jointly recover the missing
data from datasets with insufficient observations. However, the joint estimation of
two or more datasets is not always advantageous. To identify the conditions that
yield beneficial joint recovery, the fundamental limits of the joint recovery setting
are derived in order to provide guidelines for combining different types of data.

In the following chapter, the numerical performance of the SVT algorithm
is benchmarked against other recovery strategies and the optimal performance
theoretically attainable. The comparison with the fundamental limit determines
the scenarios in which the performance of the state of the art algorithms is largely
suboptimal and demonstrates the need for a novel recovery method that addresses
the limitation of the SVT approach.





Chapter 3

A performance evaluation
framework for missing data
recovery methods

3.1 Introduction

This chapter provides a framework for analyzing and comparing the performance of
different estimation methods for the recovery of missing data in high-dimensional
datasets. In addition, the fundamental limits of missing data recovery from noisy
observations are characterized using information theoretic results. In particular, the
proposed framework is demonstrated using data from a low voltage distribution grid.
This dataset is an example of data collected in the urban setting, is high-dimensional
and highly correlated with other areas of human activity and urban processes. The
availability of real data enables benchmarking different estimation methods in a
practical setting.

In the following, Section 3.2 formulates the missing data recovery problem in
mathematical terms and introduces a model for the real data collected from an
electricity distribution system. Section 3.3 presents the SVT algorithm that is used
for benchmarking purposes. In Section 3.4, the Linear Minimum Mean Squared
Error (LMMSE) estimator is introduced as it provides optimal recovery for the
model presented in Section 3.2. In addition, the fundamental limits of the data
recovery problem are characterized by defining the optimal performance theoretically
attainable by any estimator. A numerical comparison using real data is presented
in Section 3.5 and the limitations of the state-of-the-art estimation methods are
identified. Finally, the conclusions are presented in Section 3.6.
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3.2 System model

This section defines the missing data recovery problem in a mathematical framework.
Consider a low voltage (LV) distribution system with N feeders. Each feeder includes
a sensing unit that measures the electrical magnitudes of operational interest at
predetermined time instants. These measurements include phase active power, phase
reactive power and phase voltage and support the operator in controlling, monitoring,
and managing the network. In practice, due to telemetry errors, the acquisition
process provides the operator with a noisy and incomplete set of measurements. For
that reason, the operator needs to recover the missing LV data using the available
observations.

3.2.1 Data Source Model

For a given electrical magnitude s, let m(s)
i,j be the corresponding value at feeder

i ∈ {1, 2, ..., N} at time j ∈ {1, 2, ...,M}. The matrix with measurements for
magnitude s, denoted by M(s) ∈ RM×N , contains the aggregated measurement
vectors from all feeders

M(s) ∆= [m(s)
1 ,m(s)

2 , ...,m(s)
N ], (3.1)

where the measurement vectors are given by

m(s)
i = [m(s)

i,1 ,m
(s)
i,2 , ...,m

(s)
i,M ]T , (3.2)

and m(s)
i ∈ RM . Without loss of generality the analysis is carried out for a particular

electrical magnitude i.e., phase voltage, and therefore, the index s is dropped. The
resulting data matrix M contains the phase voltage measurements at time instants
1, 2, ...,M for all N feeders.

In the following, actual LV data is used to model the statistical structure of
the data generated in a LV electricity distribution system. The actual LV dataset
under consideration contains values from 200 residential secondary substations across
the North West of England collected from June 2013 to January 2014. The data
collection is part of the “Low Voltage Network Solutions" project run by Electricity
North West Limited [99]. Each substation creates a daily file with measurements
including minimum, maximum and mean values for the voltage, current and power
levels on all three phases (A, B, C). The measurements are collected every minute.

Using the dataset shared by ENWL, a matrix M is constructed such that M =
N = 500, where M is the number of minutes and N corresponds to the number
combinations between feeders and days. Note that the feeders and the dates are
randomly selected.
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Figure 3.1. Quantile-Quantile plot for the distribution of the phase A mean voltage
data provided by ENWL versus a Normal distribution.

In this context, each entry of the matrix M is a value that describes the state
of the grid in phase A for a given feeder and day when averaged over a one minute
period. The data collection and storage is managed by ENWL and no pre-processing
of the voltage measurements is required before the recovery process. The test matrix
M is obtained by randomly extracting a complete set of measurements from the data
files provided by ENWL. Hence, there are no missing entries in the test matrix M.
The rationale for this is to randomly discard some of the entries and then benchmark
the performance of different recovery strategies against the actual measurements.

The analysis that follows pertains to the extracted data matrix M with phase A
mean voltage measurements but the results apply to the data matrices containing
the observations from phases B and C, and therefore, the analysis is provided for
phase A without loss of generality.

The comparison depicted in Figure 3.1, between two columns of the matrix M
and the corresponding normal distributions highlights that the distribution of the
phase A mean voltage data is approximately Gaussian with a slight deviation on the
tails. Hence, the distribution of the real data is well approximated by a Gaussian
distribution.

Moreover, the sample covariance matrix of the matrix containing phase A mean
voltage measurements is presented in Figure 3.2. In is worth noting that the covariance
matrix exhibits a structure that is approximately Toeplitz. Because the voltage data
is correlated, the covariance matrix displays a high correlation across feeders and
time instants. The Toeplitz model resembles a physical temporal correlation where
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Figure 3.2. Sample covariance matrix of the phase A mean voltage data provided by
ENWL.

the correlation decreases as the temporal distance increases. This implies that the
correlation between two voltage measurements in the same feeder depends on their
separation in time.

Assuming the data is stationary, the LV data is modelled as a multivariate
Gaussian distribution with a Toeplitz covariance matrix. The rationale for this
assumption is backed by the Gaussianity of the data in different feeders observed in
Figure 3.1 and the structure of the sample covariance matrix depicted in Figure 3.2.
An analysis of the distribution and sample covariance matrix of the same voltage
measurements is presented in [19]. Therein, it is shown that voltage measurements
can be modelled as a multivariate Gaussian random process, more specifically for all
i ∈ {1, 2, ..., N}, it is assumed that

mi∼N (µ,Σ), (3.3)

and mi is a sequence of independent and identically distributed random variables.
Consequently, M is a realization of the random process describing the value of the
voltage measurements across the grid.

Another consequence of the correlation across feeders and time instants displayed
in the covariance matrix, is that the singular value decomposition of the matrix M
has a large condition number [100]. In other words, the ratio of the largest to smallest
singular value is large. Figure 3.3 shows the singular values of the matrix M in
decreasing order. Remarkably, there are a few singular values that concentrate most
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Figure 3.3. Singular values of the matrix M containing actual voltage measurements,
when M = N = 500, compared to a low-rank approximation of the same matrix
when the rank is one hundred.

of the norm of the matrix. Precisely, the first five singular values in decreasing order
concentrate 98.78% of the matrix nuclear norm while the first thirty singular values
concentrate 99.4% of the matrix nuclear norm. That being the case, the truncated
low-rank approximation of the matrix obtained by setting the rank(M) − L smallest
singular values to zero does not introduce a significant approximation error for some
values of L. Therefore, the matrix M can be modelled as approximately low rank, see
[35], [36], and [38]. In this context, the problem of estimating the matrix M can be
posed as a rank minimization problem. However, in this case, the performance of the
rank minimization based algorithm is lower bounded by the low rank approximation
error. This is caused by the fact that the matrix M is approximately low rank
and therefore the recovery error between M and any low rank approximation of M
produced by a rank minimization based algorithm is bounded by the NMSE depicted
in Figure 3.4.

The voltage measurements aggregated in the matrix M describe the state of
the LV grid during M time instants. However, in practice, the operator does not
have access to the actual measurements describing the grid. Instead, part of the
observations collected by the monitoring system are missing and the ones that are
available are corrupted by noise.

Figure 3.5 describes the distribution system monitoring model. In this setting, the
voltage measurements describing the state of the system are modelled as a random
process that generates a realization M ∈ RM×N every M time instants. The state
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Figure 3.5. Block diagram describing the system model.

of the grid is fully described by the entries of the matrix M. It is assumed that
data is lost in the acquisition process so that only a subset of the complete set of
observations is available. Moreover, the observations that are available are corrupted
by noise originating in the sensing infrastructure from different types of noise sources
such as thermal or electromagnetic. In this context, the aim of the estimation process
is twofold: to denoise the available observations and to recover the missing entries.

3.2.2 Acquisition

The voltage measurements are assumed to be corrupted by additive white Gaussian
noise (AWGN) such that the resulting observations are given by

R = M + N, (3.4)

where
(N)i,j ∼ N (0, σ2

N), (3.5)
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where (N)i,j denotes the entry in row i and column j of the matrix N and i ∈
{1, 2, ...,M} and j ∈ {1, 2, ..., N}. Moreover, it is also assumed that only a fraction
of the complete set of measurements (entries in R) are communicated to the operator.
Denote by Ω the subset of observed entries, i.e., Ω ⊆ {1, 2, ...M} × {1, 2., ..., N}. By
definition it follows that Ω is given by

Ω ∆= {(i, j) : (R)i,j is observed}. (3.6)

Formally, the acquisition process is modelled by the function f : RM×N → R|Ω| with
f(M) = PΩ(R) where

PΩ(R) = (R)Ω, (3.7)

and |Ω| denotes the cardinality of Ω. The observations given by (3.7) describe all
the data that is available to the operator for estimation purposes and therefore, the
recovery of the missing data is performed from the observations PΩ(R).

3.2.3 Estimation

The estimation process of the complete matrix of measurements based on the
available observations is modelled by the function g : R|Ω| → RM×N . The estimate
M̂ = g(f(M)) is obtained by solving an optimization problem based on an optimality
criterion. For this work, the optimality criterion is the normalized mean square error
(NMSE) given by

NMSE (M; g) = E [∥M − g(f(M))∥2
F ]

∥M∥2
F

, (3.8)

where ∥ · ∥F denotes the Frobenius norm. It is worth noting that the NMSE is
proportional to the mean square error (MSE) for a fixed matrix M as it satisfies

MSE (M; g) = NMSE (M; g) ∥M∥2
F

MN
. (3.9)

To summarize, the actual state of the LV distribution system is described by
the set of measurements aggregated in the matrix M. However, in the acquisition
process some of the measurements are lost and the observations that are available
are corrupted by AWGN. The estimation step produces an estimate M̂ based on the
noisy subset of entries that is available. The performance of the estimation procedure
is evaluated based on the NMSE.

3.3 Singular Value Thresholding

SVT is a matrix completion-based algorithm [39] which produces a sequence of
matrices X(k) that converges to the unique solution of the following optimization
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problem:
minimize

X
τ∥X∥∗ + 1

2∥X∥2
F

subject to PΩ(X) = PΩ(M),
(3.10)

where ∥X∥∗ is the nuclear norm of the matrix X and (k) denotes the iteration index.
Note that when τ → ∞, the optimization problem in (3.10) converges to the nuclear
norm minimization problem proposed in [35]

minimize
X

∥X∥∗

subject to PΩ(X) = PΩ(M).
(3.11)

For large values of τ , the SVT algorithm provides the solution to the nuclear
norm minimization problem.

The main steps of the SVT algorithm are:X(k) = Dτ (Y(k−1)),
Y(k) = Y(k−1) + δs

(
PΩ(M) − PΩ(X(k))

)
,

(3.12)

where Y(0) = 0, δs is the step size that obeys 0 < δs < 2, and the soft-thresholding
operator, Dτ , applies a soft-thresholding rule to the singular values of Y(k−1), shrink-
ing these towards zero. For a matrix Y ∈ RM×N of rank r with singular value
decomposition given by

Y = USVT , S = diag({σi(Y)}1≤i≤r), (3.13)

where U and V are unitary matrices of size M × r and N × r, respectively, and σi(Y)
are the singular values of the matrix Y, the soft-thresholding operator is defined as

Dτ (Y) ∆= UDτ (S)VT , with Dτ (S) = diag({(σi(Y) − τ)+}), (3.14)

where t+ = max{0, t}. Interestingly, the choice of τ is important to guarantee a
successful recovery, since large values guarantee a low-rank matrix estimate but for
values larger than max

i
(σi(Y)) all the singular values vanish. In [39], the proposed

threshold is τ = 5N . However, simulation results presented in [19] show that τ = 5N
gives suboptimal performance when the number of missing entries is large. The choice
of τ governs the performance trade-off between the high and low sampling regimes.
Large values of τ yield a good performance when a small number of observations
is available. Conversely, smaller values of τ yield a good performance when a large
number of observations is available. Compared to alternatives like SeDuMi [81] or
SDPT3 [80], SVT features a lower computational cost per iteration. This is achieved
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by exploiting the sparsity of Y(k) and the low-rank property of X(k) to reduce storage
requirements.

3.4 Performance limits

This section introduces two comparison terms for the performance of the matrix
completion based recovery. First, the Linear Minimum Mean Squared Error estimator
is introduced because it guarantees optimal recovery in this framework when the
second order statistics are available. Precisely, the LMMSE estimator achieves the
optimal performance in the recovery of missing data when:

1. the data is generated by a multivariate Gaussian source,

2. the optimality criteria is the MSE,

3. a subset of the entries is observed,

4. prior knowledge in the form of second order statistics is available.

For the estimation problem formulated in Section 3.2, the first three requirements
for the optimality of the LMMSE estimator are satisfied. However, in practical
applications, the actual second order statistics are not available. Instead, postulated
statistics which are mismatched with respect to the actual ones, are available for
estimation purposes. In this context, the performance degradation when mismatched
statistics are available is studied in the Numerical results section.

The second benchmarking criteria presented in this section is the Optimal Perfor-
mance Theoretically Attainable (OPTA) by any estimator when the data follows a
multivariate Gaussian distribution. Precisely, the Rate-Distortion function which
determines the achievable distortion for a given number of observations. This is an
information theoretic limit and the optimal distortion is calculated based on the
capacity of the AWGN channel that models the data acquisition process.

3.4.1 Linear Minimum Mean Squared Error estimator

MMSE estimation achieves the optimal performance in the recovery of missing data
for a given set of observations Ω when the data is generated by a multivariate
Gaussian source and the optimality criteria is the MSE. However, this estimation
procedure relies on access to second order statistics of the state variables. The
optimal estimate of the missing data given by the MMSE estimate is

M̂MMSE = E[M|f(M),Σ], (3.15)
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where Σ ∈ RM×M is the covariance matrix defined in (3.3). In this framework, the
sampling function f is linear and is characterized by the set of matrices Ai such that

Aimi = PΩ(mi), (3.16)

where mi is the column i of the matrix M, with i ∈ {1, 2, ..., N}. The set of matrices
Ai define a linear sampling operator that achieves the same set of observed entries
as PΩ. Consequently, the MMSE estimation is identical with the Linear MMSE
estimation.

In contrast with the matrix completion-based recovery, where all the matrix
entries are estimated simultaneously, the LMMSE estimator operates for each col-
umn individually. For a matrix M ∈ RM×N , each of the N columns is estimated
independently.

The available entries from the column i of the matrix R are given by

PΩ(ri) = Ai(mi + ni), (3.17)

where ni is the column i of the matrix N and i ∈ {1, 2, ..., N}. Therefore, the
LMMSE estimate for each column of the matrix is given by

m̂i = µ + Γi(PΩ(ri) − Aiµ), (3.18)

where µ is presented in (3.3) and

Γi = ΣAT
i (AiΣAT

i + σ2I)−1, (3.19)

where Σ is the covariance matrix presented in (3.3) and i ∈ {1, 2, ..., N}. In order
to compare the performance of the LMMSE estimation with the matrix completion
based approach, the estimates mi for i ∈ {1, 2, ..., N} are aggregated in the matrix

M̂LMMSE = [m̂1, m̂2, ..., m̂N ]. (3.20)

Note that the estimates m̂i defined in (3.18) depend on the covariance matrix Σ.
Therefore, obtaining the optimal estimate M̂LMMSE requires knowledge of the proba-
bility distribution describing the data. If the data follows a Gaussian distribution
it is equivalent to the knowledge of the second order moments, i.e. the covariance
matrix Σ which needs to be known prior to the estimation process. In practice,
the operator relies on postulated statistics that typically do not match the actual
statistics. Consequently, the accuracy of the estimate is a function of the difference
between the real and the postulated statistics.
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3.4.2 Optimal Performance Theoretically Attainable

In order to assess the performance of the missing data recovery techniques in absolute
terms, this section introduces the optimal performance theoretically attainable by
an estimator g when the data follows a multivariate Gaussian distribution.

Before introducing the fundamental limit for recovery of missing data, some key
information theoretic [101] definitions that are necessary for the understanding of
the Rate-Distortion [102] result are presented.

Let X be a random variable with alphabet X and cumulative distribution function
F (x) = Pr[X ≤ x], x ∈ X . When F (x) is continuous, the random variable X is
also said to be continuous. Moreover, if the derivative of F (x) is defined with
f(x) = F ′(x), and

∫∞
−∞ f(x) = 1, then f(x) is called the probability density function

for X. The set where f(x) > 0 is called the support set of X.

Definition 1. The differential entropy h(X) of the continuous random variable X
with probability density function f(x) is defined by

h(X) = −
∫

SX

f(x) log f(x) dx, (3.21)

where SX is the support set of the random variable X.

Note that the entropy is a measure of the average uncertainty in the random
variable, and therefore, is equivalent to the average number of bits required to
describe it. The following definitions extend the notion of differential entropy to
more than one random variable.

Definition 2. The differential entropy of the vector of random variables X1, X2, ..., Xn

with probability density function f(x) is given by

h(X1, X2, ..., Xn) = −
∫
f(x) log f(x) dx. (3.22)

Definition 3. The conditional differential entropy h(X|Y ) of a pair of random
variables with joint probability density function f(x, y) and conditional probability
density function f(x|y) is given by

h(X|Y ) = −
∫
f(x, y) log f(x|y) dx dy. (3.23)

The conditional entropy measures the amount of information required to describe
the outcome of the random variable X given that the value of random variable Y is
available in the recovery process.

The following definition introduces mutual information which measures the
amount of information that one random variable contains about another random
variable.
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Definition 4. Given two random variables X and Y with probability density functions
fX(x) and fY (y), respectively, and joint probability density function f(x, y) the
mutual information I(X;Y ) between the two random variables is defined by

I(X;Y ) =
∫
f(x, y) log f(x, y)

fX(x) fY (y) dx dy. (3.24)

In other words, the mutual information measures the reduction in the uncertainty
of the random variable X given that the value of random variable Y is available in
the recovery process.

The Rate-Distortion function [102] of an i.i.d. source with probability density
function f(x) and squared-error distortion function d(x, x̂) is given by

R(D) = min
f(x̂|x):E[X̂−X]≤D

I(X; X̂), (3.25)

where the distortion d(x, x̂) of a symbol x ∈ X is a measure of the cost of replacing
the symbol x with x̂, R is the rate and D is the distortion limit. Based on equation
(3.25), the Rate-Distortion determines the minimum number of bits per symbol that
should be communicated over a channel such that the message can be reconstructed
with a distortion upper bounded by D.

In the electricity distribution setting described above, the measurements are
corrupted by additive white Gaussian noise which determines the finite rate at which
information about the state of the grid is obtained from the observations.

Consider a Gaussian channel with input Xi and output Yi given by

Yi = Xi + Zi, (3.26)

where
Zi ∼ N (0, σ2

Y ). (3.27)

Then for a power constraint 1
n

∑n
i=1 x

2
i ≤ P , the capacity of the Gaussian channel

with bandwidth W is given by [102]

C = W log
(

1 + P

σ2
Y

)
, (3.28)

where the bandwidth is measured in hertz and the capacity in measured in bits per
second. Consequently, in the electricity distribution setting, the optimal performance
is bounded by the capacity of the AWGN channel that models the acquisition process,
i.e.,

R(D) < C, (3.29)
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where R(D) is the rate at which the source needs to be observed to achieve distortion
D. In view of this, the OPTA for a multivariate Gaussian source is given by

R(D) ≤ |Ω|
2MN

log(1 + snr), (3.30)

where the signal to noise ratio, denoted by snr, is defined as

snr ∆=
1

M
Tr(Σ)
σ2

N
, (3.31)

where σ2
N is the variance of the white Gaussian noise, defined in (3.5). The Rate-

Distortion function of a multivariate Gaussian process is computed using the following
parametric equations [103]R(θ) = 1

M

∑M−1
i=0 max{0, 1

2 log λi

θ
}

D(θ) = 1
M

∑M−1
i=0 min{θ, λi},

(3.32)

where R is the source rate in bits/symbol, D is the mean square error distortion
per entry, λi is the i th largest eigenvalue of Σ, and θ is a parameter. The NMSE
theoretically attainable, NMSE(M; OPTA), is given by

NMSE(M; OPTA) = D
MN

∥M∥2
F

. (3.33)

3.5 Numerical results

This section presents a comparison for the missing data recovery performance of the
LMMSE estimator and the SVT algorithm, and the theoretical limit, OPTA, using
real data collected from a LV grid. To this end, a data matrix M is constructed using
a complete set of voltage measurements from a LV distribution system. An analysis
of the properties of such a matrix is presented in Section 3.2. The second step is to
sample the matrix in order to decide which set of entries is available and which is
missing. The missing entries are then estimated using both recovery methods and
the performance is benchmarked against the theoretical limit given by the OPTA.

The test matrix, M, is a square matrix of size 500, i.e. M = N = 500, and
contains voltage measurements covering the state of the grid for a period of 2 hours.
Each column is a vector that contains measurements describing the state of the grid
on a different day and for a different feeder. The specific days and feeder to be
included in the data matrix M are selected at random. However, selection criteria
based on the geographic location or the past energy consumption behavior should
increase the correlation in the matrix and therefore lead to better recovery using the
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matrix completion based approach. The data selection problem is not addressed in
this work.

For a given matrix M, the variance of the AWGN is determined based on the
SNR

SNR ∆= 10 log10snr, (3.34)

where snr is defined in (3.31).
The resulting data matrix is sampled uniformly at random in order to decide

which set of entries is available and which is estimated. The sampling probability is
given by

Pr[(i, j) ∈ Ω] = 1
MN

E[|Ω|]. (3.35)

The sampling probability for each entry of the matrix is a function of the expected
number of available entries. Let γ be the expected value of the proportion of missing
entries for the matrix M, that is:

γ
∆= 1 − 1

MN
|Ω|. (3.36)

In this framework, the different sampling regimes are evaluated by changing the value
of γ. For small values of γ the number of available entries is large while for large
values of γ most of the entries are missing and need to be estimated. The random
nature of the sampling process might result in different recovery performance for
the same value of γ. In view of this, numerical simulations evaluate the recovery
performance on multiple realizations of Ω for the same proportion of missing entries.

The performance of the two estimation methods is compared in terms of the
NMSE given by

NMSE(M; SVT) = ∥M − M̂SVT∥2
F

∥M∥2
F

, (3.37)

where M̂SVT is the SVT estimate of M based on PΩ(R), and

NMSE(M; LMMSE) = ∥M − M̂LMMSE∥2
F

∥M∥2
F

. (3.38)

where M̂LMMSE is the output of the LMMSE estimation. Moreover, the numerical
results below show an average NMSE that is calculated over 100 realizations of Ω for
each value of γ. The rationale for this is to avoid the situation in which a particular
sampling pattern benefits one of the algorithms in terms of the recovery performance.
The average NMSE describes the expected recovery performance for each estimation
method.

In the following, the performance of the SVT algorithm is compared with the
LMMSE estimation and the OPTA when SNR = 20 dB. However, it is noted in [19]
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Figure 3.6. LV data recovery error measured by NMSE versus the proportion
of missing entries, i.e., γ, using SVT, LMMSE estimation, and the OPTA, when
SNR = 20 dB.

that the performance of SVT recovery depends on the choice for the threshold τ . In
view of this, a performance comparison for different values of τ is also included. On
the other hand, the performance of the LMMSE estimator relies on access to accurate
second order statistics. In practice, postulated statistics which are mismatched with
respect to the real ones, are available. A mismatched covariance matrix model is
introduced to facilitate a comparison for the recovery performance of the LMMSE
estimation in different mismatch regimes. In this context, a performance comparison
between SVT and LMMSE estimation for different levels of mismatch is presented
across different noise regimes.

3.5.1 Comparison with the performance limits

This section presents a comparison between the SVT algorithm, the LMMSE esti-
mation and the OPTA for a signal to noise ratio value of SNR= 20 dB. Figure 3.6
shows the performance, measured by NMSE, for the SVT-based recovery compared
to the performance of the LMMSE estimator with access to perfect second order
statistics, and to the theoretical limit given by the OPTA. As expected, the LMMSE
estimation outperforms the SVT algorithm across all sampling regimes. However, the
comparison with the OPTA highlights the sampling regimes in which the difference
in recovery performance is larger. Precisely, for small values of γ, the difference
between the SVT recovery and the OPTA is larger than in the case when γ is large.
Consequently, the performance of SVT is closer to the optimal recovery when the
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Figure 3.7. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT with different values of τ , when SNR = 20 dB.

number of missing entries is large. In contrast, the difference between the LMMSE
estimation and the SVT algorithm is relatively constant across all sampling regimes.
Note that in comparison with SVT, the LMMSE estimation requires prior knowledge,
i.e., the covariance matrix. In Figure 3.6, the numerical results for the LMMSE
estimation assume that perfect second order statistics are available. In practice,
this assumption is difficult to satisfy. For the SVT algorithm, it is noted in [19]
that the value of the threshold τ significantly impacts the recovery performance
across different sampling regimes. In view of this, the following section presents a
performance comparison for the SVT recovery with different values of τ .

3.5.2 Impact of τ on the recovery performance

A performance comparison for the SVT recovery with different values of the threshold
is presented in this section. As presented in [38] and [19], the value of τ = 5N is
not optimal. In [38] the value of the threshold is tuned via numerical optimization.
Moreover, numerical results presented in [19] show that the optimal value for τ
depends on the sampling regime. Large values of τ yield a good performance when
a small number of observations is available. Conversely, smaller values of τ yield a
good performance when a large number of observations is available.

Figure 3.7 shows the performance of the SVT recovery for different values of
τ when SNR = 20 dB. The value of τ impacts the recovery performance across
all sampling regimes and induces a performance trade-off. For instance, the value
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τ = 5N suggested in [39] exhibits a compromise between the recovery performance on
the high sampling regime and the low sampling regime. By changing the value of τ ,
the recovery can be improved on a particular regime but at the expense of decreasing
the performance on another sampling regime. This is discussed in [19] where it is
noted that optimizing τ for a particular dataset is hard in general. Consequently, it
is difficult to obtain the optimal SVT recovery in a practical setting. However, the
same limitation applies to the LMMSE estimation because the optimal recovery is
guaranteed only when access to perfect second order statistics is available. When the
available statistics are mismatched with respect to the actual ones, the performance
of the LMMSE recovery is suboptimal.

3.5.3 Impact of mismatched statistics on the recovery per-
formance

This section presents a numerical comparison of the recovery performance of the
LMMSE estimator when the perfect second order statistics are not available. The
case in which the LMMSE estimator is optimal is also included for benchmarking
purposes.

Since the performance of the LMMSE estimator depends on the covariance matrix
Σ, a mismatched covariance matrix model [104] and [105] is introduced to account
for the difference between the postulated and actual statistics. Specifically, the
postulated covariance matrix is given by

Σ∗ = Σ + 1
SMR

∥Σ∥2
F

∥∆∥2
F

∆, (3.39)

where Σ is the actual covariance matrix in (3.3), ∆ = HHT with H ∈ RM×M any
matrix whose entries are distributed as N (0, 1). The strength of the mismatch is
determined by the signal to mismatch ratio (SMR). Note that the SMR is defined
such that for SMR = 1 the norm of the mismatch is equal to the norm of the real
covariance matrix

∥Σ∥2
F =

∥∥∥∥∥ 1
SMR

∥Σ∥2
F

∥∆∥2
F

∆
∥∥∥∥∥

2

F

. (3.40)

As depicted in Figure 3.8, the LMMSE estimator gives better recovery performance
when SMR ≥ 100. However, when SMR=10 and γ ≤ 0.55 the SVT algorithm
outperforms the LMMSE estimator. Moreover, the SVT provides a better recovery
for SMR=1 for almost all values of γ. In view of this, the LMMSE estimation requires
accurate second order statistics which is an unrealistic assumption in a practical
scenario. Numerical results in Figure 3.8 assume a signal to noise ratio of 20 dB.
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Figure 3.8. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT and LMMSE estimation, for different levels of
mismatch, when SNR = 20 dB.

The following section presents a recovery performance comparison for different SNR
regimes.

3.5.4 Performance comparison for different SNR regimes

Numerical results presented up to this point assume a high SNR regime, i.e., SNR = 20
dB. In the following, a comparison between the SVT algorithm and the LMMSE
estimation with and without access to perfect second order statistics is illustrated
for other SNR regimes, i.e., the low SNR regime (0 dB), the medium SNR regime
(10 dB) and the approximately noiseless case in which SNR = 50 dB.

Figure 3.9 depicts the recovery performance comparison for the SVT algorithm
and the LMMSE estimation for different levels of mismatch, in the low SNR regime.
The performance of the optimal LMMSE estimation is also included. In comparison
to the high SNR regime i.e., SNR = 20 dB, the difference in performance between the
optimal LMMSE estimator and SVT is larger. Moreover, the impact of mismatched
statistics is not as significant as before. For a value of SMR = 100, the recovery
performance is close to the optimal case. It is also interesting to notice when the
number of missing entries is small, the impact of the mismatched statistics is more
significant than in the case when γ is large. This observation holds for both SNR
values with a even more significant impact in the high SNR regime.

The performance comparison between SVT and LMMSE estimation in the medium
SNR regime is depicted in Figure 3.10. Similarly to the low SNR regime, the LMMSE
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Figure 3.9. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT and LMMSE estimation for different levels of
mismatch, when SNR = 0 dB.
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Figure 3.10. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT and LMMSE estimation for different levels of
mismatch, when SNR = 10 dB.

estimation outperforms the SVT recovery for τ = 5N even when mismatched
statistics are available. However, the difference in performance is smaller in the
medium SNR regime compared to the low SNR regime. In fact, the performance of
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Figure 3.11. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT and LMMSE estimation for different levels of
mismatch, when SNR = 50 dB.

the SVT algorithm is closer to the optimal LMMSE estimation when the noise level
is lower. This is expected because the SVT recovery is designed for the noiseless
case [39]. Unfortunately, the recovery in the noiseless case is not possible using the
LMMSE estimation because the covariance matrix is singular. In order overcome this
limitation, a value of SNR = 50 dB is analyzed. The recovery performance of SVT
and LMMSE estimation in the approximately noiseless case is depicted in Figure
3.11. Different levels of mismatch are considered for the LMMSE estimation.

Interestingly, the SVT based recovery outperforms the LMMSE estimation for a
SMR value of 10 in most of the sampling regimes. Moreover, for 0.1 ≤ γ ≤ 0.55 the
matrix completion based recovery performs better than LMMSE with SMR=100.
As expected, the LMMSE estimator with access to perfect second order statistics is
the optimal recovery method in all sampling regimes.

Comparing the impact of the mismatched statistics across different SNR regimes
it is interesting to notice that the lower the level of noise the more important is the
precision of the postulated statistics. The difference between the optimal LMMSE
and the mismatched cases increases with the value of SNR. In the same time, the
precision of the SVT-based recovery increases with the value of SNR. Therefore, the
matrix completion based recovery is an alternative to LMMSE estimation on high
SNR regimes when the postulated statistics are not accurate. In a practical setting,
the level of mismatch between the postulated statistics and the actual ones is hard
to determine. As a consequence, the precision of the LMMSE estimate based on the
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postulated statistics is unknown. In contrast, the performance of the SVT recovery,
for a value of τ = 5N , depends only on the SNR regime. In a realistic scenario, the
value of the SNR depends on the quality of the sensors. High precision sensors and
good communication infrastructure determines a high SNR value. In contrast, low
quality sensors and a noisy communication channel result in a low SNR regime.

3.6 Conclusions

This chapter presented a numerical simulation study in which the performance of
the SVT algorithm is compared with the LMMSE estimation under different SNR
regimes and different levels of mismatch in the postulated statistics. Moreover, the
optimal performance theoretically attainable by any estimator is defined using the
Rate-Distortion theory for a multivariate Gaussian source. The numerical comparison
with the OPTA depicted in Figure 3.6 shows that the performance recovery of both
methods is largely suboptimal when the number of available entries is large and it is
closer to the theoretical limit when most of the entries are missing.

For the SVT algorithm, the recommended value of the threshold τ represents a
compromise between different sampling regimes. One the other side, when mismatch
is considered for the second order statistics available, the performance of the LMMSE
estimation decreases significantly. As an example, in the almost noiseless case the
SVT aglorithm outperforms the LMMSE with SMR=100 for 0.15 ≤ γ ≤ 0.55. The
impact of mismatched statistics for the performance of the LMMSE estimator is
more significant when the noise level is low. In contrast, for values of SNR< 20 dB
the LMMSE based recovery outperforms the SVT algorithm even for SMR= 10. In
view of this, the SVT recovery is a better alternative for recovering missing data
when the noise level is low, while the LMMSE estimator performs better for high
levels of noise in the available observations.

Note that while the numerical results presented in this chapter use real data from
a distribution system, the applicability of both estimation methods is not limited
to this type of data. In fact, the applicability of the SVT algorithm extends to any
dataset that generates a low rank or approximately low rank matrix. Furthermore,
the LMMSE estimator is the best linear unbiased estimator and it gives optimal
recovery when the data follows a Gaussian distribution.

The main limitation of the SVT recovery is the lack of guidelines for tuning the
value of τ depending on the noise level and the sampling regime. On the other hand,
the performance of the LMMSE estimator varies significantly with the quality of
the prior knowledge. Therefore, the LMMSE estimator is not robust to imperfect
prior knowledge and has limited applicability in a practical setting for the recovery
of missing data.
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In this context, the following chapter introduces a novel algorithm for recovering
missing data. The proposed approach is a modified version of the SVT algorithm that
optimizes the threshold τ at each iteration based on the prior knowledge incorporated
in the structure of the algorithm.



Chapter 4

A novel algorithm for robust
recovery of missing data

4.1 Introduction

This chapter introduces a new algorithm for recovering missing data in high-
dimensional datasets. The proposed algorithm is referred to as Bayesian SVT (BSVT).
Numerical results presented in Section 3.5 emphasize the limitations imposed by
the two state-of-the-art missing data recovery algorithms studied. Specifically, for
the SVT algorithm the optimization of the threshold τ is difficult and therefore the
recovery performance is suboptimal across different sampling regimes. In practice,
the value of τ is obtained by trial and error [38]. In the case of the LMMSE estimator,
the recovery performance relies on accurate prior knowledge which is not available in
a practical setting.

The proposed algorithm addresses the limitations of both approaches (SVT
and LMMSE). In particular, the new recovery method is a modified version of the
SVT algorithm which incorporates an optimization step for the threshold τ at each
iteration that exploits the same prior knowledge as the LMMSE estimator.

The performance of the BSVT algorithm is tested through numerical simulations.
Both the convergence speed and the recovery performance are assessed in different
noise and sampling regimes. Moreover, practical settings in which the prior knowledge
is not accurate and the sampling pattern is non-uniform are also evaluated. In view of
this, the proposed recovery method provides robust performance in realistic scenarios.

In the following, the system model is identical to the one used in Chapter 3, which
is described in Section 3.2. The new recovery algorithm is introduced in Section 4.2
and theoretical guarantees for convergence are provided in Section 4.3. A numerical
comparison between SVT and the novel approach is presented in Section 4.4. To
that end, a non-uniform sampling model is introduced in Section 4.4 to account
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for structure in the observation pattern. Finally, the conclusions are presented in
Section 4.5.

4.2 The Bayesian Singular Value Thresholding Al-
gorithm

This section introduces a novel algorithm for recovering missing data that incorporates
prior knowledge in the form of the second order statistics. Precisely, the new approach
is a modified version of the SVT algorithm that optimizes the threshold τ at each
iteration based on additional prior knowledge. The numerical simulation results
presented in [19] and in Section 3.5.2 show that the recommended threshold for the
SVT algorithm, i.e., τ = 5N , performs poorly when the number of missing entries is
large. The choice of τ governs the performance trade-off between the high and low
sampling regimes. Large values of τ yield a good performance when a small number
of observations is available. Conversely, smaller values of τ yield a good performance
when a large number of observations is available. Unfortunately, finding the optimal
threshold for the SVT algorithm is still an open problem because the input matrix
for the soft-thresholding step is sparse. In general, the value of the threshold for
soft-thresholding based recovery algorithms is obtained via numerical optimization
in [19] and [38].

4.2.1 Soft-thresholding parameter

The main shortcoming of the SVT algorithm is the lack of guidelines for tuning the
threshold τ . Numerical results in Section 3.5.2 show that the 5N value proposed
in [39] is not optimal for every scenario. In order to provide better recovery it is
essential to tune the value of τ for each iteration of the algorithm. In SVT the
soft-thresholding operator is applied on a sparse matrix for which there are no
guidelines for the tuning process. However, the same soft-thresholding operator, Dτ ,
is used in a different framework for denoising in [38], [106], and [107]. The main
difference between the two frameworks is that for denoising the soft-thresholding
operator is applied on a complete matrix.

In general, measuring the performance of the soft-thresholding operator for
different values of τ , in the MSE sense, requires access to the true matrix M.
However, for the denoising framework, an unbiased estimator for the MSE, namely
Stein's unbiased risk estimate (SURE) is presented in [108]. Moreover, a closed-form
expression for SURE is presented in [109] for the soft-thresholding operator which
facilitates the optimization of τ in a denoising framework. In order to calculate
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SURE in the recovery setting, the missing entries are initially estimated using the
prior knowledge incorporated in the structure of the new algorithm.

4.2.2 Exploiting second order statistics

In order to overcome the limitation imposed by the sparse structure of the matrix Y(k),
the proposed algorithm estimates the missing entries prior to the soft-thresholding
step using the second order statistics incorporated as prior knowledge. Thus, the
available prior knowledge is exploited to produce an estimate of the entries not
contained in Ω. In this case, at each iteration k of the proposed algorithm the matrix
Z(k) is computed as

Z(k) = Y(k) + L(k), (4.1)

where Y(k) is defined as in the SVT algorithm and L(k) is the LMMSE estimate
given by

L(k) = PΩc(µ) + Σ∗
ΩcΩΣ∗−1

ΩΩ(PΩ(Y(k)) − PΩ(µ)), (4.2)

where Ω is the set of observed entries, Ωc is the set of missing entries, Σ∗
ΩcΩ is the

covariance matrix between the entries in Ωc and the entries in Ω and Σ∗
ΩΩ is the

covariance matrix of the entries in Ω. Therefore, the unknown entries are estimated
using the LMMSE-based recovery at each iteration k. The result is a complete matrix
Z(k) for which the optimization of the threshold τ is feasible.

4.2.3 Optimization of thresholding parameter

The closed-form expression for the risk estimator provided in [109] is incorporated into
the proposed algorithm to facilitate the optimization of the thresholding parameter.
The use of SURE is made possible by the addition of the LMMSE step, which
provides a linear estimate for the entries in Ωc. This ensures that the matrix provided
as input to the soft-thresholding step is complete and the optimization of τ is solvable
as a denoising problem. In this context, the performance of the soft-thresholding
operator can be estimated when the input matrix Z accepts the following model
[109]

Z = M + W, (4.3)

where the entries of W are
(W)i,j

iid∼ N (0, σ2
Z), (4.4)
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where σ2
Z is the variance of the (W)i,j entries with i ∈ {1, 2, . . . ,M} and j ∈

{1, 2, . . . , N}. In this setting, the SURE [108] is given by

SURE(Dτ )(Z) = −MNσ2
Z +

min{M,N}∑
i=1

min{τ 2, σ2
i (Z)}

+ 2σ2
Zdiv(Dτ (Z)),

(4.5)

where σi(Z) is the i-th singular value of Z for i ∈ {1, 2, . . . , N}. A closed-form
expression for the divergence of this estimator is obtained in [109]. For the case in
which Z ∈ RM×N the divergence is given by

div(Dτ (Z)) =
min{M,N}∑

i=1

[
1(σi(Z) > τ) + |M −N |(σi(Z) − τ)+

σi(Z)

]

+ 2
min{M,N}∑
i ̸=j,i,j=1

σi(Z)(σi(Z) − τ)+

σ2
i (Z) − σ2

j (Z) ,

(4.6)

when Z has no repeated singular values and is zero otherwise, where 1(·) denotes
the indicator function defined as

1(σi(Z) > τ) =

 1, if σi(Z) > τ,

0, if σi(Z) ≤ τ.
(4.7)

Therefore, combining (4.5) and (4.6) gives a closed-form expression for the perfor-
mance of the soft-thresholding operator for different values of τ and σ2

Z.
The proposed algorithm approximates σ2

Z with the weighted sum of the noise in
Ω and in Ωc, i.e., σ2

Z(k) is calculated as

σ2
Z(k) = ∥Y(k) − PΩ(M)∥2

F + |Ωc|DLMMSE

MN
, (4.8)

where DLMMSE represents the average noise per entry in Ωc and is given by

DLMMSE = tr(Σ∗
ΩcΩc − (Σ∗

ΩcΩΣ∗−1
ΩΩΣ∗

ΩΩc))
|Ωc|

. (4.9)

The optimal threshold for the matrix Z(k) is denoted by τ (k) and it is calculated
using

τ (k) = arg min
τ

SURE(Dτ )(Z(k)), (4.10)

where σ2
Z(k) is given by (4.8).

Note that the cost function in (4.10) is quasiconvex and is solved using standard
optimization tools [109] over a predefined interval [τmin, τmax].
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Therefore, the iterations of the proposed algorithm are


X(k) = Dτ (k−1)(Z(k−1)),
Y(k) = Y(k−1) + δb

(
PΩ(M) − PΩ(X(k))

)
,

Z(k) = Y(k) + L(k),

τ (k) = arg min
τ

SURE(Dτ )(Z(k)),

(4.11)

where the Dτ is defined by (3.14) and the step size δb is similar to the step size δs in
the SVT algorithm. The initial conditions are Z(0) = 0, Y(0) = 0 and τ (0) = 0. The
stopping criteria is the same as that of the SVT algorithm, namely

∥PΩ(X(k)) − PΩ(M)∥F

∥PΩ(M)∥F

≤ ϵ. (4.12)

A more detailed description of the proposed algorithm is presented in Algorithm 1.

Algorithm 1 Bayesian Singular Value Thresholding
Require: set of observations Ω, observed entries PΩ(R), mean µ, covariance matrix

Σ∗, step size δb, tolerance ϵ and maximum iteration count kmax
Ensure: M̂BSVT

1: Set Y0 = 0
2: Set Z0 = 0
3: Set τ = 0
4: Set Ωc = {1, 2, ...,M} × {1, 2, ..., N} \ Ω
5: for k = 1 to kmax do
6: Compute [U,S,V] = svd(Z(k−1))
7: Set X(k) = ∑min{M,N}

j=1 max{0, σj(Z(k−1)) − τ (k−1)}ujvj

8: if ∥PΩ(X(k)) − PΩ(R)∥F/∥PΩ(R)∥F ≤ ϵ then break
9: end if

10: Set Y(k) = Y(k−1) + δb

(
PΩ(R) − PΩ(X(k))

)
11: Set L(k) = PΩc(µ) + Σ∗

ΩcΩΣ∗−1
ΩΩ(Y(k) − PΩ(µ))

12: Set Z(k) = Y(k) + L(k)

13: Set σ2
Z(k) = (∥Y(k) − PΩ(R)∥2

F + |Ωc|DLMMSE)/MN
14: Set τ (k) = arg min

τ
SURE(Dτ )(Z(k))

15: end for
16: Set M̂BSVT = X(k)

The main advantage of the new algorithm is that the threshold is optimized at
each iteration facilitated by the prior knowledge incorporated into the structure of
the algorithm, i.e., the covariance matrix. First, an initial guess of the unavailable
entries is formed at each iteration k based on Y(k) and the available covariance
matrix Σ∗. The results are aggregated in the matrix Z(k) which is approximated
by the model in (4.3). In this case, an estimate of the noise level, σ2

Z(k) , is needed
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to compute SURE. The optimal value of τ (k) for Z(k) is obtained by minimizing
SURE(Dτ )(Z(k)) in (4.5). Admittedly, the optimization of the threshold requires a
priori knowledge of the second order statistics. Therefore, the new approach requires
additional knowledge that is not necessary when using the SVT algorithm. That
being said, the SVT algorithm requires setting the value for the threshold which in
general is difficult to tune. The same amount of prior knowledge, i.e., covariance
matrix, is required by the LMMSE estimator. Numerical results presented in Section
3.5.4 show that when the postulated statistics are not accurate, the estimation error
(NMSE) for the LMMSE-based recovery increases by an order of magnitude. For the
proposed algorithm, the trade-off between the performance and the accuracy of the
prior knowledge is studied in Section 4.4.3. Moreover, the following section provides
theoretical guarantees for the proposed algorithm to outperform the SVT recovery.

4.3 Theoretical guarantees for convergence of the
BSVT algorithm

This section presents theoretical guarantees for the convergence of the BSVT algo-
rithm. Moreover, the theoretical analysis in this section compares the performance of
the BSVT and SVT algorithms, presented in Section 4.2 and Section 3.3 respectively,
and provides conditions for which the proposed algorithm theoretically outperforms
the SVT recovery at each iteration.

Theorem 1. Let X(k)
b be the estimate produced by the BSVT algorithm at iteration

k and X(k)
s be the estimate produced by the SVT algorithm at iteration k with L(k)

denoting the LMMSE estimation output at iteration k as defined in (4.2). If the
following holds:

tr
(
X(k)

b MT
)

≥ tr
(
X(k)

s MT
)
, (4.13)

and
lim

k→∞
σmin(L(k)) = 0, (4.14)

then
∥X(k)

b − M∥2
F ≤ ∥X(k)

s − M∥2
F . (4.15)

Proof. See Appendix A.

Corollary 1.1. Let ks be the last iteration of the SVT algorithm and denote by X(ks)
s

the output of the SVT algorithm. For the case in which X(k)
b MT and X(k)

s MT are
Hermitian, the condition (4.13) is equivalent to

0 ≤ σmax(Lks)(∥Xks
s ∥∗ + ε) +

min{M,N}∑
i=1

σi(Xks
s )(σmin{M,N}−i+1(Xks

s ) − σi(Xks
s ) + ε),

(4.16)
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where ε is a small numerical constant, σi(X(ks)
s ) denotes the ith singular value of

the matrix X(ks)
s and σmax(L(ks)) denotes the maximum singular value of the matrix

L(ks).

Proof. See Appendix A.

Note that in Corollary 1.1 when the rank of the matrix X(ks)
s , denoted by rs,

satisfies rs <
min{M,N}

2 , σmin{M,N}−i+1(Xs) = 0 for i ∈ {1, 2, ...,min{M,N}} and
(4.16) becomes

0 ≤
rs∑

i=1
σi(Xks

s )
(
σmax(Lks) − σi(Xks

s )
)

+
(
∥Xks

s ∥∗ + σmax(Lks)
)
ε, (4.17)

where ε is a small numerical constant.
Theorem 1 provides a condition for the optimality of the BSVT recovery compared

to that of the SVT algorithm. Another consequence of Theorem 1 is that when
the inequality in (4.13) is satisfied and the SVT algorithm converges, the proposed
algorithm also converges and more importantly, it provides a better approximation.
In addition, when the recovery error of the BSVT algorithm lower bounds the
recovery error of the SVT approach, the proposed algorithm converges under milder
conditions than those of SVT. This phenomenon is observable in all the numerical
results presented in the following section for the cases in which the proportion of
missing entries is larger than 0.9.

When the matrices X(k)
b MT and X(k)

s MT are Hermitian, the inequality in (4.13)
is equivalent to the inequality in (4.16). This inequality does not depend on the
matrix M, and therefore the condition is decoupled from particular data realizations.

The following section provides a numerical comparison between the BSVT and
the SVT algorithms in terms of recovery error, number of iterations and computation
time required. In addition, practical scenarios are addressed for the cases in which
the prior knowledge is not accurate and the locations of the missing entries are not
uniformly distributed.

4.4 Numerical Analysis

This section evaluates the performance of the BSVT algorithm using the LV dataset
presented in Section 3.2 consisting of the 500 × 500 data matrix M, containing the
voltage measurements from the electricity distribution system. In this context, the
data matrix is sampled uniformly at random in order to decide which set of entries
is available and which is estimated. The sampling probability is given by

Pr[(i, j) ∈ Ω] = 1
MN

E[|Ω|]. (4.18)
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The sampling probability for each entry of the matrix is a function of the expected
number of available entries. Let γ be the expected value of the proportion of missing
entries for the matrix M, that is:

γ
∆= 1 − 1

MN
|Ω|. (4.19)

The performance of the algorithms is measured in terms of NMSE given by

NMSE = ∥M − M̂∥2
F

∥M∥2
F

, (4.20)

where M̂ is the output of the recovery algorithm. The performance of each recovery
technique is averaged over one hundred realizations of Ω for each proportion of
missing entries.

The performance of the proposed algorithm is evaluated numerically using four
criteria: convergence speed, performance gain for the optimized threshold, robustness
to imperfect prior knowledge and performance using non-uniform sampling.

The convergence speed is analyzed in Section 4.4.1 where a comparison in terms
of number of iterations and computation time is presented for the BSVT algorithm
and the SVT-based recovery.

The performance gain for the optimized threshold is assessed in Section 4.4.2
where the SVT-based recovery is compared with the BSVT algorithm when accurate
second order statistics are available.

The robustness of the BSVT recovery to imperfect prior knowledge is also
evaluated. A comparison between the SVT algorithm, the LMMSE estimator and
the BSVT recovery is presented for different values of SMR in Section 4.4.3. The
case in which perfect second-order statistics are available is also included.

The robustness of the BSVT recovery to different sampling patterns is evaluated
using Markov-chain-based sampling. The numerical performance of the new algorithm
is compared to the SVT algorithm in a practical scenario in which the positions of
the missing entries are not uniformly distributed and the postulated statistics are
not accurate in Section 4.4.4.

Moreover, all the aspects are tested across different SNR regimes: the almost
noiseless case (SNR= 50 dB), the high SNR regime (SNR= 20 dB), the medium
SNR regime (SNR= 10 dB) and the low SNR regime (SNR= 0 dB).

4.4.1 Numerical convergence comparison

In this section, the computational effort required by BSVT and SVT is compared.
Based on the description of the algorithm, the computational cost per iteration
increases in the case of the proposed algorithm when compared with that of SVT.



4.4 Numerical Analysis 45

Table 4.1. Convergence performance comparison for the Uniform sampling case

SNR γ
#Iters Time(s)

BSVT SVT BSVT SVT

0
0.15 2 51 17.32 68.24
0.85 4 30 32.06 53.62

10
0.15 4 191 52.38 111.59
0.85 2 32 6 19.54

20
0.15 2 365 15.89 169.92
0.85 2 92 13.8 84.17

50
0.15 18 485 271.47 100.42
0.85 2 145 8.67 69.16

Table 4.2. Convergence performance comparison for the Markovian sampling case

SNR γ
#Iters Time(s)

BSVT SVT BSVT SVT

0
0.15 6 53 133.71 60.86
0.85 2 20 17.1 22.89

10
0.15 13 175 293.74 104.08
0.85 2 43 15.89 30.77

20
0.15 9 329 156.44 172.46
0.85 2 80 16.59 12.6

50
0.15 9 446 152.96 72.72
0.85 2 30 16.73 2.04

However, the additional LMMSE step and the computation of the optimal threshold
τ significantly impact the speed of convergence.

Table 4.1 shows a convergence performance comparison between BSVT and SVT
in terms of number of iterations and computation time for different values of SNR and
different values of γ. The computational platform used is the Iceberg HPC cluster at
The University of Sheffield. The results are averaged over ten realizations of Ω. The
column #Iters shows the minimum number of iterations required by each algorithm
to achieve the corresponding NMSE values depicted in Figures 4.6, 4.7, 4.8 and
4.5. Time(s) denotes the time, measured in seconds, required to recover the missing
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Figure 4.1. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT and BSVT, when SNR = 50 dB.

entries in the matrix M for each case. A similar comparison for the Markovian
sampling case is presented in Table 4.2. As expected, BSVT converges in fewer
iterations but incurs in a higher computational cost per iteration when compared
to SVT. Interestingly, the Markovian sampling case requires a larger number of
iteration in most of the cases compared to the uniform sampling scenario. Moreover,
BSVT requires fewer computation time in comparison to SVT in most of the cases
with a large number of missing entries.

4.4.2 Performance of the optimized threshold

In this section, the performance of the new algorithm is compared to the SVT-based
recovery using the same data matrix M and the same sets of available entries Ω, for
a particular proportion of missing entries γ as defined in (4.19). The positions of the
missing entries are sampled uniformly at random from the set of all entries.

Figure 4.1 shows the performance of the BSVT and SVT algorithms for recovering
real LV data in the almost noiseless case. Not surprisingly, the SVT approach
outperforms the proposed algorithm in this scenario because it is designed for the
noiseless case. However, when the number of available entries is limited, i.e., γ ≥ 0.8,
the BSVT recovery performs better than the SVT algorithm. In addition, the
problem of optimizing τ in the SVT recovery remains.

Figure 4.2 depicts the performance of both algorithms when applied in identical
scenarios and SNR = 20 dB. Clearly, the optimized threshold and the Bayesian



4.4 Numerical Analysis 47

0 0.2 0.4 0.6 0.8 1
10-3

10-2

10-1

Figure 4.2. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT and BSVT, when SNR = 20 dB.

estimation step increase the performance of the proposed algorithm in the high SNR
regime when accurate second order statistics are available. When the postulated
statistics, i.e., those available to the operator are identical to the real statistics,
the BSVT algorithm provides a better performance for all values of γ. The gain
in performance is larger when the proportion of missing entries is smaller than 0.4.
Interestingly, the boost in performance is substantial in the region in which SVT is
least efficient when compared to the fundamental limit that is presented in Section
3.5.1.

In Figure 4.3 the performance of the proposed algorithm is compared with the SVT
recovery in the medium SNR regime. Interestingly, the BSVT approach outperforms
the SVT algorithm by almost an order of magnitude in the NMSE. Also, the boost
in performance is more significant when the proportion of missing entries is small
and the SVT is least efficient compared to the theoretical limit.

The low SNR regime is depicted in Figure 4.4 and the new algorithm outperforms
the SVT recovery by more than one order of magnitude in the NMSE. Note that the
case in which γ = 0.05 is not included in Figure 4.4 because neither SVT nor BSVT
converge to a low rank matrix in the experiments carried out.

In view of this, the BSVT recovery is suitable for the scenarios in which the
observed entries are noisy. Moreover, the difference in recovery performance between
SVT and BSVT increases as the level of noise increases. While in the almost noiseless
case SVT performs better is most of the missing data regimes, as the value of SNR
decreases the proposed algorithm outperforms the SVT recovery for all values of γ.
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Figure 4.3. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT and BSVT, when SNR = 10 dB.
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Figure 4.4. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT and BSVT, when SNR = 0 dB.

It is worth noting that the fast degradation with respect to observation noise of SVT
reported in [39] is also corroborated by the simulations in this work.

However, numerical results in this section assume that the prior knowledge
available is accurate. In practical scenarios the postulated and actual statistics are
different. The impact of mismatched statistics is considered in the following section.
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Figure 4.5. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT, LMMSE estimation and BSVT for different levels
of mismatch, when SNR = 50 dB.

4.4.3 Performance using mismatched statistics

To address the problem of missing data recovery in a realistic scenario, a level of
mismatch between the real covariance matrix and the one available to the operator
is considered. The mismatch covariance matrix model presented in Section 3.5.3
is also used in this section to assess the sensibility of the proposed algorithm to
inaccurate prior knowledge. Hence, the LMMSE estimator and the BSVT algorithm
are compared in the no-mismatch regime and for a SMR value of 100 and 10. The
performance of the SVT-based recovery is included as a benchmark for comparing
rank minimization-based approaches.

A comparison between SVT, BSVT and the LMMSE estimator for different values
of mismatch is presented in Figure 4.5 when SNR = 50 dB. In the almost noiseless
case, SVT outperforms BSVT which highlights that SVT is well suited for noiseless
problems. This is also noted in the numerical results presented in Figure 4.1. On the
other hand, the mismatched statistics have a significant impact on the recovery error
for the LMMSE approach. Specifically, for a value of SMR=100 the performance of
the LMMSE estimator decreases by more than an order of magnitude in the NMSE
compared with the no mismatch case. In contrast, the decrease in performance
is less significant for the BSVT recovery for the same level of mismatch. In fact,
when γ ≥ 0.8 the performance of the new algorithm is not affected by the mismatch
introduced in the prior knowledge and for γ < 0.8 the decrease in performance is less
significant compared to the LMMSE-based recovery. In view of this, the proposed
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Figure 4.6. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT, LMMSE estimation and BSVT for different levels
of mismatch, when SNR = 20 dB.

approach is more robust to mismatched statistics compared to the LMMSE estimator
in the almost noiseless case.

Figure 4.6 depicts the performance of the SVT, BSVT, and the LMMSE esti-
mator when mismatched second order statistics are available and SNR = 20 dB. In
comparison with the almost noiseless case, in the high SNR regime, the mismatched
statistics have less impact on the recovery error. However, the proposed algorithm is
still robust to mismatch in the second order statistics while the performance of the
LMMSE estimator decreases by an order of magnitude. In contrast, the performance
of the BSVT algorithm does not change significantly when mismatch occurs. In
fact, the BSVT algorithm gives better recovery than the SVT-based recovery in
all mismatch regimes throughout the range of γ. In comparison with the LMMSE
estimation, the BSVT algorithm performs better for SMR = 100 when γ ≤ 0.65.
Furthermore, for SMR = 10 the proposed approach is the best performing recovery
method for almost all values of γ.

Figure 4.7 depicts the performance of the SVT, BSVT, and the LMMSE estimator
for different values of mismatch, when SNR = 10 dB. Remarkably, the optimization
of τ boosts the performance of the new algorithm in the medium SNR regime. The
impact of the mismatch statistics is almost insignificant for the proposed algorithm
while for the LMMSE estimator the decrease in performance is up to one order of
magnitude in the NMSE. Also, the BSVT recovery outperforms the SVT algorithm
in all sampling regimes. It is also worth noting that for both the LMMSE and the
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Figure 4.7. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT, LMMSE estimation and BSVT for different levels
of mismatch, when SNR = 10 dB.
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Figure 4.8. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, using SVT, LMMSE estimation and BSVT for different levels
of mismatch, when SNR = 0 dB.

BSVT recovery the impact of mismatched statistics is less significant in the medium
SNR regime compared with the high SNR regime. However, the robustness of the
new approach holds regardless of the noise regime.
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Figure 4.9. State diagram for the Markovian sampling model.

Figure 4.8 shows the performance of the SVT, BSVT, and LMMSE estimator
for different levels of mismatch in the low SNR regime. Note that the case in which
γ = 0.05 is not included in Figure 4.8 because neither SVT nor BSVT converge to a
solution in the experiments carried out. However, for γ ≥ 0.15 the new algorithm
outperforms SVT by an order of magnitude regardless of the mismatch regime. In
comparison with the LMMSE recovery, the proposed approach is again, robust to
imperfect prior knowledge.

In practical scenarios, when the mismatch and noise regimes are difficult to assess,
the choice between LMMSE and SVT is difficult to make. However, the BSVT
algorithm provides robust recovery across all mismatch regimes for various noise
levels. In view of this, the proposed recovery methods is a better alternative to
state-of-the-art recovery methods.

It is worth noting that the impact of imperfect second order statistics for both
LMMSE and BSVT is more significant for low levels of noise. Still, the change in
recovery performance is less significant for the new algorithm in comparison with
the LMMSE estimator.

Numerical results in this section assume that the locations of the missing entries
are uniformly distributed. In practice, the set of missing entries might not satisfy
this assumption. To account for structure in the observation pattern, the following
section introduces a non-uniform sampling method.

4.4.4 Performance with non-uniform sampling

This section addresses the problem of recovering missing data when the subset of
missing entries is not uniformly sampled. In practical scenarios, a sensor failure
or a downtime in the communication line provides the operator with a number of
consecutive unavailable measurements in the state variable vectors. Let L0 be the
number of consecutive missing entries. The expected value of L0 varies depending
on the reliability of the sensing infrastructure. In the uniform sampling model this
scenario is not possible, and thus, a more general sampling procedure is introduced.

The proposed sampling model is based on a two-state Markov chain. In this
setting, for each entry (M)i,j of the matrix M, the finite state machine depicted
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in Figure 4.9, is either in state S1 in which case the entry (i, j) is available to the
operator, or in state S2 in which case the entry is not available. As before, the set
Ω contains all the entries from the matrix M that are available to the operator. In
Figure 4.9, p1 is the transition probability from state S1 to S2 and p2 is the transition
probability from S2 to S1. Hence, the expected value of the proportion of missing
entries is given by the steady state probability of being in S2.

The steady state probabilities for the Markov chain in Figure 4.9 are the solutions
of the following equation

wΠ = w, (4.21)

where the steady state vector w is

w =
[
w1 w2

]
, (4.22)

and w1 is the steady state probability of being in state S1 and w2 is the steady state
probability of being in state S2. In equation (4.21), Π is the transition matrix and
for the model depicted in Figure 4.9 has the following expression

Π =
1 − p1 p1

p2 1 − p2

 . (4.23)

Solving (4.21) leads to
w =

[ p2

p1 + p2

p1

p1 + p2

]
. (4.24)

Consequently, the expected value of the proportion of missing entries for the Markov
chain sampling model is given by

E[γ] = p1

p1 + p2
. (4.25)

The expected number of consecutive missing entries, i.e., E[L0], can be computed
using

E[L0] =
n∑

l=0
lw2(1 − p2)l. (4.26)

Solving (4.26) for n → ∞ and combining with (4.25) leads to

E[L0] = 1 − E[γ]
p2

2
(1 − p2). (4.27)

Therefore, for any given γ and L0, using (4.25) and (4.27), p1 and p2 are identified
such that on average the sampling model in Figure 4.9 has a proportion of missing
entries γ and the length of the vectors with consecutive missing entries L0. Note
that the case E[L0] = 1 reduces to the uniform sampling model with probability
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Figure 4.10. Positions of the observed entries, Ω, generated by the Markovian model
for a 100 × 100 matrix, when E[L0] = M and E[γ] = 0.8.

Pr[(i, j) ∈ Ω] = 1 − γ. In this framework, a comparison between the SVT and the
BSVT-based recoveries is presented for the case in which the sampling pattern is not
uniform. With the aim of considering the case in which a particular feeder does not
provide any measurements, the expected length of the vectors with missing data is
selected to be equal to the length of the state variable vectors, i.e., E[L0] = M . Figure
4.10 shows an example of a sampling pattern generated by the Markov-chain-based
model, when E[L0] = M and E[γ] = 0.8.

Figure 4.11 compares the performance of the SVT-based recovery with the
BSVT-based recovery for the case in which the matrix M is sampled using the
Markov-chain-based sampling model with E[L0] = M . Different levels of mismatch
are introduced to assess the robustness of the new algorithm to mismatched prior
knowledge when the sampling pattern is not uniform. Remarkably, the performance of
the proposed approach is not significantly affected by the amount of prior knowledge
in any of the missing data regimes. Moreover, BSVT performs better than SVT when
the sampling pattern is not uniform. A significant gain in performance is observed
for small values of γ. Consider the following example for the sake of discussion,
for a fixed tolerance of 10−2 in NMSE, the SVT algorithm recovers up to 4% of
the entries of the matrix M while BSVT recovers 40% (See Figure 4.11). The
improvement in the data recovering performance for the same level of tolerance is
significant. Numerical results in this section show that BSVT is not only providing
better performance than SVT when the entries are not uniformly sampled but it is
also robust to mismatched statistics. The robustness of the new algorithm extends to
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Figure 4.11. LV data recovery error measured by NMSE versus the proportion of
missing entries, i.e., γ, for the Markov-chain-based sampling model, using SVT and
BSVT for different levels of mismatch, when E[L0] = M and SNR = 20 dB.

different sampling patterns. In view of this, BSVT represents a better alternative for
recovering missing LV data in practical scenarios than SVT and LMMSE estimation.

4.5 Conclusions

This chapter introduced BSVT, a novel algorithm for recovering missing data in
datasets that admit a low rank description. The proposed approach, combines
the low computational cost of SVT with the optimality of the LMMSE estimator
when the data source is modelled as a multivariate Gaussian random process and
second order statistics are available. BSVT addresses some of the limitations of
the SVT and LMMSE-based recoveries. In respect to the SVT algorithm the new
approach addresses the issue of choosing the value of τ by calculating the optimal
threshold at each iteration. As a consequence, the number of iterations required for
the proposed algorithm is fewer than that of the SVT algorithm. Compared with the
standard LMMSE estimator, BSVT is robust to inaccurate second order statistics.
Interestingly, the impact of mismatch in the second order statistics across different
noise regimes is similar for both LMMSE and BSVT. Specifically, for the same level
of mismatch the performance degradation is more significant in the almost noiseless
recovery for both estimation methods and decreases with the value of SNR. However,
the change in performance for the BSVT algorithm is less significant compared to
the LMMSE estimator.
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The robustness of the new algorithm on both mismatched statistics and non-
uniform sampling patterns is demonstrated through numerical simulations. The
gain in performance compared to SVT is noticeable for both uniform and non-
uniform sampling models regardless of the mismatch introduced in the second order
statistics. Ultimately, the proposed algorithm is shown to provide a robust and low
complexity method to recover missing data in high-dimensional datasets that follow
a multivariate Gaussian distribution.



Chapter 5

Joint recovery of missing data in
multiple datasets

5.1 Introduction

An urban system contains a set of interacting subsystems such as the traffic monitoring
system, the air quality monitoring system or the low voltage distribution system.
The interdependencies between the different components of the urban system give
rise to correlation between the dataset produced by each subsystem.

The analysis presented in Chapter 3 and Chapter 4 pertains to the independent
recovery of the missing data from each subsystem. However, when the recovery of
missing data is performed independently for each dataset the interaction between
the urban subsystems is not captured. In the following, a joint estimation framework
is proposed to enable the use of the additional type of correlation in a missing data
recovery setting.

As an example consider the problem of recovering missing data collected by the
traffic monitoring system. Due to issues with the sensing infrastructure, the number
of observations available is usually not sufficient for recovery in practical settings.
In the joint recovery case, the data collected by the pollution monitoring system is
used to enable the recovery of missing data in the traffic monitoring system. This is
achieved by combining the traffic and air quality data matrices into a single matrix.
As a result, the combined matrix contains sufficient entries to facilitate the recovery
using matrix completion-based techniques.

It is worth noting that in the joint recovery case, the are two types of correlation
between the entries of the combined matrix. First, the intra-correlation that refers
to the correlation between the entries within each dataset. This is the type of
correlation that is exploited in the independent recovery scenario. Second, the cross-
correlation is defined as the correlation between the data points from two different
datasets. In this example considered above, this is the correlation between the traffic
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level and the air quality data. In contrast to the independent recovery case, the
joint recovery case exploits both types of correlation. Interestingly, exploiting the
cross-correlation between datasets facilitates the recovery of both datasets when the
number of available entries is not sufficient for independent recovery.

In the following, Section 5.2 introduces the system model and the fundamental
limits of the joint recovery problem using two datasets are presented in Section 5.3.
In particular, the conditions in which the joint recovery of two datasets requires fewer
entries compared to the independent case are identified. Based on the fundamental
limits, Section 5.4 presents a lower bound for the probability of recovery when the
locations of the missing entries are uniformly distributed in each dataset. Furthermore,
in Section 5.5 the bounds are used to minimize the sampling complexity for the
recovery of two datasets. A numerical analysis for joint recovery performance using
the SVT and BSVT algorithms is presented in Section 5.6. Finally, the conclusions
are presented in Section 5.7.

5.2 System model

Consider two sensing infrastructures that aggregate observations in the matrices
M1 ∈ RM×N and M2 ∈ RM×N , respectively. To simplify the analysis, both matrices
are of the same size. Following with the introduction example, M1 contains traffic
flow data and M2 contains measurements of the CO2 level over the same section of
the road. When the data from each sensing infrastructure is correlated the matrices
M1 and M2 are low rank or approximately low rank. Without loss of generality, we
assume that both matrices are low rank. The case in which both are approximately
low rank is treated as in Section 3.2. Therefore, the following holds

rank(M1) = r1, (5.1)

and
rank(M2) = r2. (5.2)

Let us aggregate the data from M1 and M2 such that the resulting matrix M ∈
R2M×N is given by

M =
 M1

M2

 , (5.3)

and denote the rank of the resulting matrix by

rank(M) = r. (5.4)
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Consequently, the following inequalities hold

1 ≤r1 ≤ min{M,N}
1 ≤r2 ≤ min{M,N}.

(5.5)

Within this setting, the following section derives for the first time theoretical
bounds for the joint estimation of missing entries in the two matrices M1 and M2

and establishes theoretical guarantees. The joint recovery of the two matrices is said
to be beneficial when the minimum number of observations needed to recover the
missing entries of the combined matrix is fewer than the number of entries required
to perform independent recovery of each matrix. To that end, the following section
provides upper and lower bounds on the rank of the combined matrix, i.e. rank(M),
as a function of the rank of the two matrices. Rank conditions that ensure the
recovery of the matrix M is beneficial compared to the independent recovery of the
two matrices M1 and M2 are derived.

5.3 Rank conditions for the joint recovery to be
beneficial

This section investigates the theoretical guarantees for the joint recovery of two
matrices to be beneficial, that is when it requires fewer entries than what is necessary
to perform the independent recovery of each matrix. In general, the minimum number
of entries required for the recovery of one dataset is a function of the rank and the
size of the matrix. The rank of the matrix varies depending on the level of correlation
between the measurements contained in the matrix. In the following, the correlation
between measurements from the same dataset is referred to as intra-correlation.
In this setting, the rank of the matrix and the number of entries required for the
independent recovery of one dataset depends on the level of intra-correlation between
the state variables contained in the dataset. In the joint recovery case another type
of correlation arises. The term cross-correlation refers to the correlation between
the two datasets combined. As an example consider the case in which the matrix
M1 contains traffic flow density data and the matrix M2 contains CO2 emission
measurements. In addition to the correlation between state variables within the same
dataset, there exists a correlation between the entries in M1 and the entries in M2.
In this particular example this is caused by the fact that car emissions are one of the
main sources of CO2. A larger number of cars results in a higher concentration of
CO2 and vice versa.

The combination of the datasets into a single matrix increases the size of the
matrix, and therefore, the joint recovery is beneficial depending on the trade-off
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between the size and the rank of the combined matrix. Note that the rank of the
combined matrix depends on both the intra and the cross-correlation. In order to
benefit from the joint recovery the rank of the combined matrix needs to compensate
for the increase on the matrix size.

In the following, rank conditions for benefiting from the joint recovery of two
datasets are characterized. To that end, upper and lower bounds on the rank of the
combined matrix are provided in the following section.

5.3.1 Bounds on the rank of the combined matrix

This section assesses the impact of both intra and cross-correlation on the rank of
the combined matrix. The following lemma provides lower and upper bounds for the
rank of the combined matrix based on the individual rank of the matrices M1 and
M2.

Lemma 1. Let M1 ∈ RM×N and M2 ∈ RM×N . Define the combined matrix M = M1

M2

 ∈ R2M×N . Then, the following holds:

max{rank(M1), rank(M2)} ≤ rank(M) ≤ rank(M1) + rank(M2). (5.6)

Proof. See Appendix A.

The intra-correlation determines the rank of the matrices M1 and M2 which
define the minimum and maximum possible value for r. A smaller value of intra-
correlation in one of the datasets results in an increase on the lower bound for r. On
the other hand, the cross-correlation governs the value of r within the limits defined
by Lemma 1. Indeed, a larger value of cross-correlation results in a value of r that
is closer to the lower bound while a smaller value of cross-correlation generates a
combined matrix with a rank that is close to the upper bound. In other words, the
intra-correlation defines the limits of r and the cross-correlation governs the value of
r within the limits.

A description of the bounds for the rank of the combined matrix in Lemma 1, in
terms of the intersection of the row subspaces of the two matrices follows. The rank
of the matrix M is determined by (3.23(a) in [100])

r = r1 + r2 − d, (5.7)

where d is the dimension of the intersection of the row subspaces of the matrices M1

and M2 given by
d = dim[C(MT

1 ) ∩ C(MT
2 )], (5.8)
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where C(MT
1 ) denotes the column subspace of the matrix MT

1 . Consequently, the
rank of the combined matrix is equal to r∗ when the dimension of the intersection of
the row subspaces is [100]

dim[C(MT
1 ) ∩ C(MT

2 )] = r1 + r2 − r∗. (5.9)

A larger dimension of the intersection of the two row subspaces results in a smaller
rank for the combined matrix. In contrast, a larger value of r is obtained when
the dimension of the intersection of the row subspaces is smaller, and similarly, the
same effect on the rank is observed for the level of cross-correlation. In particular,
a higher level of cross-correlation results in a lower combined rank and vice versa.
Therefore, in the context of determining the rank of the combined matrix, the
dimension of the intersection of the row subspaces exhibits a similar effect to the
level of cross-correlation.

In the matrix completion-based recovery setting, the minimum number of entries
required depends on the rank of the matrix [35] and [59]. In the following section,
theoretical guarantees for the joint recovery of two matrices to be beneficial are
characterized. Specifically, necessary and sufficient conditions are derived such that
the joint recovery requires fewer entries than in the independent case.

5.3.2 Theoretical guarantees for the joint recovery of two
datasets to be beneficial

Lemma 1 shows the relationship between the two types of correlation and the rank
of the combined matrix. The following analyzes the link between the rank of the
combined matrix and the recovery guarantees in a matrix completion framework. In
particular, a necessary condition depending on the rank and the size of the combined
matrices and a sufficient condition depending on the rank of the combined matrix
are presented. Both results are stated in Theorem 2 which provides a necessary and
sufficient condition for the joint recovery of two datasets to be beneficial.

To facilitate the analysis for the joint recovery of two datasets, let us recall the
theoretical limits for the recovery of one dataset presented in [59]. To this end, the
following definitions are necessary [59]:

Definition 5. Given a random matrix X ∈ RM×N of arbitrary distribution, an
(M ×N, k) code consists of

1. linear observations (⟨A1, ·⟩, · · · , ⟨Ak, ·⟩)T : RM×N → Rk;

2. a measurable decoder g : Rk → RM×N .
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For given observation matrices Ai, the decoder g achieves error probability ε if

Pr[g
(
(⟨A1, ·⟩, · · · , ⟨Ak, ·⟩)T

)
̸= X] ≤ ε.

Definition 6. For ε ≥ 0, S ⊆ RM×N is an ε-support set of the random matrix
X ∈ RM×N if it is a nonempty bounded set and Pr[X ∈ S ] ≤ 1 − ε.

In view of this, Remark 2 in [59] states that given a random matrix X ∈ RM×N

with rank(X) = r, for every ε > 0, there exists a decoder that achieves error
probability ε for almost all Lebesgue observation matrices Ai, i ∈ {1, · · · , k}, if
k > (M + N − r)r. Moreover, the same result holds when the matrices Ai are
rank-one observation matrices with i ∈ {1, · · · , k}.

Using the analysis in [59] the low rank matrices M1 and M2 can be successfully
recovered when the number of observations for the first matrix satisfies

k1 > (M +N − r1)r1, (5.10)

and the number of available observations for the second matrix obeys

k2 > (M +N − r2)r2. (5.11)

This result is based on the assumption that for the random matrices M1 and M2

there exist a σ-measure µM1 and a σ-measure µM2 and that both measures admit a
Lebesgue decomposition. For the combined matrix M, the σ-measure is obtained as
the product of the measures of M1 and M2 [110]

µM = µM1 × µM2 . (5.12)

Moreover, since µM is a σ-measure it also admits a Lebesgue decomposition [111]
and [112]. Hence, the result in [59] applies for the combined matrix M without any
additional assumptions

k > (2M +N − r)r, (5.13)

where k is the number of the available observations for the joint recovery case. Note
that in this framework, the number of observations for the matrix M is equal to

k = k1 + k2. (5.14)

Therefore, the inequality in (5.13) is equivalent to

k1 + k2 > (2M +N − r)r. (5.15)
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It is also worth noting that the recovery guarantees presented in [59] and extended
here to a joint recovery framework, are achievability results using linear observations
where the recovery method is not known. Denote the lower bound on the number
of observations required for the recovery of the matrix M1 by k1. Therefore, k1 is
given by

k1 = (M +N − r1)r1. (5.16)

Similarly, denote by k2 the lower bound on the number of observations required for
the recovery of the matrix M2, then

k2 = (M +N − r2)r2. (5.17)

Moreover, for the joint recovery, the lower bound on the number of observations
required is given by

k = (2M +N − r)r. (5.18)

In view of this, the joint recovery of two datasets requires fewer observations compared
to the independent recovery case when

k < k1 + k2. (5.19)

The joint recovery of the matrices M1 and M2 is beneficial when the recovery of
M requires a smaller number of observations in comparison with the independent
recovery of both matrices. When M1 and M2 are recovered independently, the
minimum number of observations is given by the sum of k1 and k2.

Figure 5.1 depicts a graphical representation of the inequalities in (5.10), (5.11)
and (5.13) that describe the lower bound on the number of entries required to recover
the matrices M1, M2 and M, respectively. When the joint recovery is beneficial, the
three inequalities divide the (k1, k2) ∈ N2 plane in seven regions.

R1 is given by

R1 =
{
(k1, k2) ∈ N2 : k1 ≤ k1, k2 ≤ k2, k1 + k2 ≤ k

}
, (5.20)

and contains all the pairs (k1,k2) for which the recovery of the matrices M1, M2

and M is not feasible. In other words, none of the inequalities is satisfied which
means that there are not enough observations to recovery either of the three matrices.
Following with the introduction example, R1 corresponds to the case in which the
number of observations from both the traffic monitoring system and the air quality
monitoring system does not suffice for either the independent nor the joint recovery
of the two datasets.
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Figure 5.1. Recovery regions for the matrices M1, M2 and M, for a large value of
cross-correlation when r2/r1 is small.

The second region, R2 is given by

R2 =
{
(k1, k2) ∈ N2 : k1 > k1, k2 ≤ k2, k1 + k2 ≤ k

}
, (5.21)

and contains all the pairs (k1,k2) for which the matrix M1 is recovered but the recovery
of M2 and M is not feasible. Precisely, only the inequality in (5.10) is satisfied and
the other two are not. In the introduction example, R2 is equivalent to the case
in which the number of traffic flow observations is sufficient for the independent
recovery of the data collected from the traffic monitoring system. However, because
the number of CO2 level observations is small, both the independent recovery of
the data from the air quality monitoring system and the joint recovery of the two
datasets are not feasible.

Region R3 is defined by

R3 =
{
(k1, k2) ∈ N2 : k1 > k1, k2 ≤ k2, k1 + k2 > k

}
, (5.22)

and contains all the pairs (k1,k2) for which the matrices M1 and M are recovered
but the recovery of M2 is not feasible. In this case, the joint recovery is possible
because there is a large number of available entries in M1. In other words, the
cross-correlation between M1 and M2 allows the recovery of the second matrix with
a limited number of observations by exploiting the larger number of observations
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from the first matrix. Coming back to the example presented in the introduction, R3

corresponds to the case in which the number of traffic flow observations is sufficient
for the independent recovery of the data collected from the traffic monitoring system
but the number of CO2 level observations is not enough for the independent recovery
of the data from the air quality monitoring system. However, the cross-correlation
between the two datasets facilitates the recovery of both types of data in a joint
recovery framework. Specifically, the total number of observations is sufficient for
the recovery of the combined matrix M.

Region R4 is given by

R4 =
{
(k1, k2) ∈ N2 : k1 > k1, k2 > k2, k1 + k2 > k

}
, (5.23)

and contains all the pairs (k1,k2) for which all three matrices are recovered. The
number of observations is large enough for both the independent and the joint recovery.
Precisely, all three inequalities (5.10), (5.11) and (5.13) are satisfied. Following with
the introduction example, R4 resembles the case in which the number of observations
from both the traffic monitoring system and the air quality monitoring system is
sufficient for both the independent and the joint recovery of the two types of data.

Region R5 is defined by

R5 =
{
(k1, k2) ∈ N2 : k1 ≤ k1, k2 > k2, k1 + k2 > k

}
, (5.24)

and contains all the pairs (k1,k2) for which the matrices M2 and M are recovered
but the recovery of M1 is not feasible. In this case, the cross-correlation between M1

and M2 allows the recovery of the first matrix with a limited number of observations
by exploiting the larger number of observations from the second matrix. In the
example presented in the introduction section, R5 corresponds to the case in which
the number of observations from the traffic monitoring system is not enough for
the independent recovery of the traffic data. However, the number of observations
from the air quality monitoring system is large enough that it facilitates both the
independent recovery of the CO2 level data and the joint recovery of both datasets.
Similar to the region R3, in this case a larger number of observations from one
of the datasets enables the joint recovery of both types of data. In contrast, in
the independent recovery paradigm, only the dataset with the larger number of
observations could be recovered.

Region R6 is given by

R6 =
{
(k1, k2) ∈ N2 : k1 ≤ k1, k2 > k2, k1 + k2 ≤ k

}
, (5.25)
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and contains all the pairs (k1,k2) for which the matrix M2 is recovered and the
recovery of M and M1 is not feasible. In this case, only the inequality in (5.11) is
satisfied while the other two are not. Coming back to the example presented in the
introduction, R6 resembles the case in which the number of traffic flow observations
is not sufficient for the independent recovery of the traffic data. On the other hand,
the air quality monitoring system collected enough observations to facilitate the
recovery of CO2 level data. However, the joint recovery is not possible because the
total number of observations from both datasets is not sufficient.

Finally, Region R7 is given by

R7 =
{
(k1, k2) ∈ N2 : k1 ≤ k1, k2 ≤ k2, k1 + k2 > k

}
, (5.26)

and contains all the pairs (k1,k2) for which the matrix M is recovered and the
independent recovery of M1 and M2 is not feasible. In other words, the independent
recovery of the two datasets is not possible but by combining them in a joint matrix,
the cross-correlation facilitates the recovery of both types of data in a joint recovery
paradigm. In the introduction example, R7 is equivalent to the case in which the
number of observations from the traffic monitoring system is not enough for the
recovery of the traffic flow data. Similarly, the number of data points collected by
the air quality monitoring system does not suffice for the independent recovery of
the CO2 level data. However, in a joint recovery context, the missing data from both
datasets is successfully recovered. In addition, the existence of region R7 guarantees
that the joint recovery is beneficial for some pairs (k1,k2). In the following, the
theoretical guarantees for the joint recovery of two datasets to be beneficial are
obtained by verifying the existence of region R7.

Coming back to the example presented in the introduction, the traffic flow
data and the CO2 level data can be independently recovered only when the pair
(k1,k2) satisfies the conditions of region R4. On the other hand, in a joint recovery
framework the data from both the traffic monitoring system and the air quality
system is recovered when the pair (k1,k2) is located in region R3, R4, R5 or R7.

Moreover, the existence of region R7 shows that there are cases in which neither of
the two datasets is recovered independently but the joint recovery is viable. Motivated
by this observation the following definition captures the notion of beneficial joint
recovery

Definition 7. The joint recovery of two matrices, M1, M2 ∈ RM×N of rank r1 and
r2, respectively, is beneficial if there exists (k1, k2) ∈ R7 given by

R7 =
{
(k1, k2) ∈ N2 : k1 ≤ (M +N − r1)r1, k2 ≤ (M +N − r2)r2,

k1 + k2 > (2M +N − r)r
}
.

(5.27)



5.3 Rank conditions for the joint recovery to be beneficial 67

Figure 5.2. Recovery regions for the matrices M1, M2 and M for a moderate value
of cross-correlation when r2/r1 is small.

Is it worth noting that the geometry of the recovery regions changes depending
on the rank of the matrices. Specifically, the size and shape of the regions R1 and
R4 depend on k1 and k2 which are a function of the rank and the size of the matrices
M1 and M2. On the other hand, the size and shape of the regions R2, R3, R5

R6 and R7 vary with the value of k which ultimately depends on the matrix M.
Since the matrix M is obtained by combining M1 and M2, the level of correlation
between the two datasets dictates the rank and ultimately the minimum number of
observations required for the recovery of the combined matrix. In this context, for
different values of correlation the geometry of the recovery regions is changing.

Figure 5.2 depicts the theoretical bounds for the minimum number of entries
required for independent and joint recovery for datasets with a moderate level of
cross-correlation. In contrast to Figure 5.1, the rank of the combined matrix, i.e. r,
is larger which results in a larger number of entries required for the joint recovery.
Therefore, for a particular value of r the intersection between the line described by
k = k1 + k2 and R4 is a single point. This value of r represents the minimum value
for which the set defined by the region seven is empty. In other words, the joint
recovery is beneficial when the rank of the combined matrix is smaller than the r for
which the intersection between the line k = k1 + k2 and R4 is a single point. On the
other hand, for larger values of r, Figure 5.3 shows that the intersection between
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Figure 5.3. Recovery regions for the matrices M1, M2 and M for a small value of
cross-correlation when r2/r1 is small.

the boundary defined by k = k1 + k2 and R4 enlarges beyond a single point and R7

becomes an empty set.
Based on the above discussion, a necessary condition for the joint recovery to be

beneficial is that k = k1 + k2 and R4 do not intersect. However, R4 is determined
by the rank of the two matrices. In contrast, the line k = k1 + k2 depends on the
rank of the combined matrix. As a result of Lemma 1, it follows that the value of r
is bounded by

max{r1, r2} ≤ r ≤ r1 + r2. (5.28)

In addition, for large values of cross-correlation, the value of r is closer to the lower
bound while for smaller values of cross-correlation the value of r is closer to the
upper bound. As expected, the graphical representations in Figure 5.1 and 5.3 show
that the joint recovery is beneficial for large values of cross-correlation. However,
there exists cases in which a large value of cross-correlation does not guarantee a
joint recovery that is advantageous.

Figure 5.4 depicts the same set of inequalities given by (5.10), (5.11) and (5.13)
when the value of cross-correlation is large and the ratio between the rank of the two
datasets is large. Interestingly, Figure 5.4 shows that the conditions under which
the joint recovery is beneficial depend on both the value of cross-correlation and the
ratio between r2 and r1. This is due to the fact that the lower bound on the rank of
the combined matrix is given by the maximum rank. In this case, the maximum rank
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Figure 5.4. Recovery regions for the matrices M1, M2 and M for a large value of
cross-correlation when r2/r1 is large.

becomes the governing factor in the joint recovery setting and does not allow the
recovery using fewer entries compared to the independent case. Therefore, when the
ratio between r2 and r1 is large, the line described by k = k1 + k2 and R4 intersect
in at least one point which is equivalent to the joint recovery not being beneficial
regardless of the rank of the combined matrix. In this context, the following lemma
provides a condition for the joint recovery to be beneficial when the value of r is
minimized. When the condition in Lemma 2 is not satisfied, the joint recovery is not
advantageous.

Lemma 2. (Necessary condition for the joint recovery to be beneficial) Let M1,M2 ∈
RM×N with rank r1 and r2 respectively, there exists a value of r for which the joint
recovery is beneficial if

M
(
min{r1, r2} − max{r1, r2}

)
> min{r1, r2}

(
min{r1, r2} −N

)
. (5.29)

Proof. See Appendix A.

In other words, when the condition in Lemma 2 is not satisfied, regardless of the
rank of the combined matrix, the joint recovery of the two datasets is not beneficial.
On the other hand, when the condition in Lemma 2 is satisfied the value of the
cross-correlation dictates if the joint recovery is beneficial. When the inequality in
(5.29) is not satisfied, the ratio between r2 and r1 is too large and the joint recovery
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is not beneficial. In the example presented in the introduction section, where the
matrices M1 and M2 contain traffic flow and CO2 level data, respectively, Lemma
2 provides a condition for verifying the compatibility of the two types of data in a
joint recovery context. Specifically, based on the size and the rank of the traffic data
and air quality data matrices, Lemma 2 evaluates the possibility benefiting from
combining the traffic flow data and the CO2 level data into a larger matrix. Based
on the observation presented in Figure 5.4, when there is a considerable difference
between the rank of the two matrices combined, the joint recovery is not beneficial.
In view of this, the inequality in (5.29) verifies if the ratio between the rank of the
traffic data matrix and the rank of the air quality data matrix is small enough to
facilitate the possibility of benefiting from the joint recovery. When Lemma 2 is
satisfied, the rank of the combined matrix dictates if the joint recovery is beneficial
or not. It is also worth noting that the condition in Lemma 2 does not depend on
the combined matrix M. The following theorem provides an additional constraint on
the rank of the combined matrix to guarantee that the joint recovery is beneficial.

Theorem 2. (Necessary and sufficient condition for benefiting from the joint recov-
ery) Let M1,M2 ∈ RM×N , with rank r1 and r2, the joint recovery of the two matrices
requires fewer observations than the independent recovery if

M
(
min{r1, r2} − max{r1, r2}

)
> min{r1, r2}

(
min{r1, r2} −N

)
, (5.30)

and the rank of the combined matrix satisfies

r <
2M +N −

√
(2M +N)2 − 4(M +N)(r1 + r2) + 4r2

1 + 4r2
2

2 . (5.31)

Proof. See Appendix A.

Note that the necessary condition from Theorem 2, that is (5.30), is the same as
in Lemma 2 and that the inequality depends only on the matrices M1 and M2 and
not on the combined matrix M. In contrast, the sufficient condition in (5.31) provides
an upper bound for the rank of the combined matrix such that the total number of
observations required for the joint recovery is fewer compared to the independent
recovery case. Theorem 2 provides a necessary and sufficient condition for the joint
recovery of two matrices to be beneficial. In practice, the number of available entries
depends on the sampling pattern considered. However, the achievability results
presented in this section do not assume any sampling strategy. Typically, recovery
guarantees for matrix completion assume that the locations of the missing entries
are sampled uniformly at random from the set with all the entries [35], [36], [50]
and [51]. In this context, the next section introduces a probabilistic framework
in which the probabilities of independent and joint recovery are characterized for
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an uniform sampling pattern. Although the applicability of uniform sampling in a
realistic scenario is limited, the analysis is more tractable.

5.4 Recovery guarantees under random uniform
sampling

In the following we address the joint recovery problem in a probabilistic framework.
The probability of the recovery in the independent and joint case are characterized
depending on the sampling structure considered. This is a particular case of the
fundamental limits presented in Section 5.3.2. In the uniform sampling case considered
in this section, the locations of the available observations are uniformly distributed
in the matrix. In the following, the entries in M1 are sampled uniformly at random
with probability p1 and the entries in M2 are sampled uniformly at random with
probability p2.

In a practical setting the values of p1 and p2 depend on the reliability of the
sensing infrastructure of the first and second subsystem, respectively. In the uniform
sampling scenario, each sensor provides the same degree of reliability in the sensing
infrastructure that is part of. In other words, the number of observations obtained
from each sensor over a period of time is approximately the same for all sensors.
Moreover, the observations from each sensor are uniformly distributed in the temporal
dimension. Within this setting, the number of observations for the matrix Mi with
i ∈ {1, 2} follows a binomial distribution with parameters MN and pi.

The set of available entries for joint recovery is the union of the sets of available
entries for M1 and M2. Note that for the combined matrix the sampling pattern is
not uniform unless p1 = p2. The probability of sampling the matrix M is given by

p(j) =

p1, if 1 ≤ j ≤ MN

p2, if MN + 1 ≤ j ≤ 2MN.
(5.32)

In other words, the first MN entries which correspond to the matrix M1 are sampled
with probability p1 and the rest of the entries corresponding to the matrix M2 are
sampled with probability p2. Consequently, the number of observations for the matrix
M follows a Poisson binomial distribution with parameters 2MN and p.

However, the successful recovery of the matrices M1, M2 and M depends on
the number of available entries for each matrix. In this framework, the number
of available entries for M1 and M2 is a random variable generated by a binomial
distribution with parameters MN and p1, and MN and p2 respectively. Let us
denote the number of available entries for the first dataset by K1 and the number of
available entries for the second dataset by K2. Note that K1 and K2 are random
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Table 5.1. Rank values considered in the numerical simulations and the fundamental
limit.

r1 r2 r
Fundamental limit

imposed by Theorem 2
6 6 6

9.05
6 6 9
6 6 10
6 6 12
6 9 10

11.3
6 9 11
6 9 12
6 9 14
6 18 19

17.78
6 18 22

variables that depend on the size of the matrices and the sampling probabilities p1

and p2. In this context, the number of observations for the matrix M is the sum of
the random variables K1 and K2. Moreover, the sum K1 +K2 is a random variable
distributed as a Poisson binomial with parameters 2MN and p [113], where p is
defined in (5.32).

In this context define by E1 the event in which the matrix M1 is recovered.
Therefore, E1 is given by

E1 : {K1 > (M +N − r1)r1}. (5.33)

Similarly, E2 denotes the event in which the matrix M2 is recovered, is given by

E2 : {K2 > (M +N − r2)r2}. (5.34)

Finally, denote by E3 the event in which the matrix M is recovered

E3 : {K1 +K2 > (2M +N − r)r}. (5.35)

Theorem 3. Let M1 ∈ RM×N and M2 ∈ RM×N , with rank(M1) = r1 and rank(M2) =
r2. When the locations of the missing entries are sampled uniformly at random with
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probability p1 and p2 respectively, the probability of recovery is bounded by

Pr[Ei] ≥

1 − e−2
(MNpi−ki)2

MN , for pi >
ki

MN

0, for pi ≤ ki

MN
,

(5.36)

where Ei is the event in which the matrix Mi is recovered and i ∈ {1, 2}.

Proof. See Appendix A.

In view of this, the probability of recovering both matrices M1 and M2 indepen-
dently is given by

Pr[E1 ∧ E2] =

(1 − e−2
(MNp1−k1)2

MN )(1 − e−2
(MNp2−k2)2

MN ), for pi >
ki

MN
, i ∈ {1, 2}

0, otherwise.
(5.37)

Theorem 4. Let M1 ∈ RM×N and M2 ∈ RM×N , with rank(M1) = r1 and rank(M2) =
r2. Given the combined matrix M = [MT

1 MT
2 ]T of rank r, when the missing en-

tries from M1 and M2 are sampled uniformly at random with probability p1 and p2,
respectively, the probability of recovering the matrix M is bounded by

Pr[E3] ≥

1 − e− (MN(p1+p2)−k)2
MN , for p1 + p2 >

k
MN

0, for p1 + p2 ≤ k
MN

,
(5.38)

where E3 is the event in which the matrix M is recovered and is defined in (5.35).

Proof. See Appendix A.

A numerical comparison of the two recovery probabilities follows.

5.4.1 Numerical evaluation of the recovery probabilities

This section provides a numerical comparison for the independent and joint recovery
probabilities for different rank values. In particular, the size of the matrices is fixed
to M = 50 and N = 100 and the rank values considered are depicted in Table 5.1.

Figure 5.5a shows the probability of recovering both datasets independently
depending on the sampling probabilities of the two matrices, when all three rank
values are equal to 6. Note that the sampling is uniformly at random with probability
p1 for the entries M1 and probability p2 for the entries in M2. Interestingly, in
the probabilistic framework there is a smooth transition between the region with
probability one and the region in which the recovery is not possible. It is also worth
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(a) Independent recovery probability (b) Joint recovery probability

Figure 5.5. Recovery probability as a function of p1 and p2 when r1 = 6, r2 = 6 and
r = 6.

mentioning that the transition between regions is fast. The probability of recovery
increases rapidly to one as the sampling probabilities increase.

The probability of the joint recovery is depicted in Figure 5.5b when all three
rank values are equal to 6. Interestingly, the shape of the region with probability
one is the same as in Figure 5.1. It is also worth noting that the transition between
the no recovery region and the probability one region is fast.

Comparing Figures 5.5a and 5.5b, it is interesting to note that the number of cases
in which the joint recovery is possible is much larger compared to the independent
recovery case. In particular, when r1 = 6, r2 = 6 and r = 6 the area with probability
one is smaller in the independent case compared to the joint recovery case. Using
Definition 7, the existence of beneficial joint recovery depends on the existence of the
region in which the joint recovery requires fewer entries compared to the independent
case.

Figure 5.6a shows the transition between the region with probability zero and the
region with probability one for the independent recovery event when r1 = 6, r2 = 6
and r = 6. Interestingly, when p1 ≤ 0.19 the probability of the independent recovery
never converges to one regardless of the number of observations from the second
dataset. In is also worth noting that the probability increases exponential from zero
to one for p1 > 0.19. In fact, the width of the transition region is 0.02 in sampling
probability for both datasets.

Figure 5.6b depicts the transition between the region with probability zero and
the region with probability one for the joint recovery event when r1 = 6, r2 = 6
and r = 6. In contrast with the independent recovery case, the probability always
converges to one as one of the sampling probability increases. It is worth noting that
the increase in recovery probability is exponential and the width of the transition
region is approximately 0.02 in sampling probability.
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(a) Independent recovery probability

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

(b) Joint recovery probability

Figure 5.6. Recovery probability bound as a function of p2 when p1 is fixed and
r1 = 6, r2 = 6 and r = 6.

(a) r1 = 6, r2 = 6 and r = 6 (b) r1 = 6, r2 = 6 and r = 8

Figure 5.7. Probability of the event in which the joint recovery is beneficial as a
function of p1 and p2 for different values of rank.

Figure 5.7a depicts the probability of the event in which the joint recovery requires
fewer entries compared to the independent recovery. Interestingly, the shape of the
region with probability one is similar to R7. The same triangle shape is observed in
the probabilistic framework. Also, the transition between the 0 and the 1 probability
areas is fast.

As expected, when the rank of the combined matrix increases, the size of the
region in which the joint recovery requires fewer entries compared to the independent
recovery decreases. For instance, Figure 5.8a depicts the probability of the event in
which the joint recovery is beneficial when r1 = 6, r2 = 6 and r = 9. In comparison
to Figure 5.7a, the increase of r from 6 to 9 vanished the region with probability
one. However, since the value r = 9 is smaller than the threshold in Theorem 2 the
probability of the event in which the joint recovery is beneficial is not always zero.
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(a) r1 = 6, r2 = 6 and r = 9 (b) r1 = 6, r2 = 6 and r = 10

Figure 5.8. Probability of the event in which the joint recovery is beneficial as a
function of p1 and p2 for different values of rank.

(a) Independent recovery probability (b) Joint recovery probability

Figure 5.9. Recovery probability as a function of p1 and p2 when r1 = 6, r2 = 6 and
r = 9.

However, for r1 = 6, r2 = 6 and values of r greater than the threshold in Theorem
2, i.e., r > 9.05, the probability of the event in which the joint recovery is beneficial
is zero. Figure 5.8b shows the probability of the event in which the joint recovery is
beneficial for r = 10. As expected, when the rank of the condition in Theorem 2 is
not satisfied, the joint recovery is not advantageous.

Figure 5.9a depicts the probability of independent recovery of the two matrices
when r1 = 6, r2 = 6 and r = 9. Not surprisingly, the probability is the same as in
Figure 5.5a since the independent recovery depends only on the individual rank of
the two matrices. However, the probability of the joint recovery is different since the
rank of the combined matrix is different.

Figure 5.9b shows the probability of the joint recovery event as a function of the
sampling probabilities for the two datasets. In comparison to Figure 5.5b, the area



5.4 Recovery guarantees under random uniform sampling 77

(a) Independent recovery probability (b) Joint recovery probability

Figure 5.10. Recovery probability as a function of p1 and p2 when r1 = 6, r2 = 9
and r = 10.

with probability one is smaller. As expected, when the rank of the combined matrix
increases, the number of cases in which the joint recovery is possible decreases.

In addition to the rank of the combined matrix, the probability of the event in
which the joint recovery is beneficial depends on the ratio between the rank of the
two matrices combined. This observation also is mentioned in Section 5.3.2. To
assess the impact of different rank ratios in the probabilistic framework, different
values of r1 and r2 are considered.

Figure 5.10a depicts the probability of the independent recovery of M1 and M2

when r1 = 6, r2 = 9 and r = 10. As expected, the region with probability one is
similar to R4 in Figure 5.4. In comparison to Figure 5.5a where the region with
probability one is square, in Figure 5.10a the region is rectangular. In fact, the shape
of region R4 is given by the ratio between k1 and k2 which ultimately depends on
the ratio between r2 and r1. However, the transition between the zero probability
and the probability one region is still fast.

Figure 5.10b shows the probability of the joint recovery when r1 = 6, r2 = 9
and r = 10. As expected, the probability of joint recovery is similar to Figure 5.9b
because it only depends on the value of r. Regardless of the values of r1 and r2

for the same value of r the probability of joint recovery is the same. However, the
probability of the event in which the joint recovery is beneficial depends on all three
rank values. To showcase this, Figure 5.11a and Figure 5.8b depict the probability
of the event in which the joint recovery is beneficial for the same value of rank for
the combined matrix but different rank values for M1 and M2. In contrast to the
other case, when r1 = 6 and r2 = 9 the conditions of Theorem 2 are satisfied and
the joint recovery is beneficial. Moreover, the same triangle shape is observed for
the region with probability one for the event in which the joint recovery is beneficial.
Interestingly, the transition between the probability one region and the region with
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(a) r1 = 6, r2 = 9 and r = 10 (b) r1 = 6, r2 = 9 and r = 12

Figure 5.11. Probability of the event in which the joint recovery is beneficial as a
function of p1 and p2 for different values of rank.

probability zero is faster along the hypotenuse and slower along the catheti. This
suggests that when sampling probabilities are increased to boost the probability
of recovery it is more efficient to increase both sampling probabilities rather than
having a more substantial increase in only one of them.

In addition, similar to the case in which r1 and r2 are equal, the size of the
triangle decreases as the rank of the combined matrix increases. Figure 5.11b shows
the probability of the event in which the joint recovery is beneficial when r1 = 6,
r2 = 9 and r = 12. Note that the probability converges to zero when the rank of the
combined matrix becomes larger that the threshold in Theorem 2.

Since the probability of the event in which the joint recovery is beneficial also
depends on the ratio between r2 and r1, it is expected that for a large enough ratio
the probability will converge to zero. In this context, the following set of results
consider r1 = 6 and r2 = 18.

Figure 5.12a depicts the probability of the independent recovery when r1 = 6,
r2 = 18 and r = 19. As expected, the shape of the region with probability one is
rectangular. Also the area is smaller compared to the previous cases.

For the joint recovery, Figure 5.12b shows the probability for the same rank
values. It is worth mentioning that even in this case the area with probability one is
larger in the joint recovery case compared to the independent recovery case. However,
as suggested by the results in Table 5.1, the joint recovery is not beneficial. This is
because the rank upper bound in Theorem 2 is larger than the lower bound for r.

Interestingly, the figures with the probability of recovery present similar charac-
teristics with the corresponding diagrams presented in Section 5.3.2. In addition, the
numerical results are consistent with the sufficient condition for the joint recovery
to be beneficial in Theorem 2. Specifically, when the rank of the combined matrix
is larger than the threshold, the probability of the joint recovery event converges
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(a) Independent recovery probability (b) Joint recovery probability

Figure 5.12. Recovery probability as a function of p1 and p2 when r1 = 6, r2 = 18
and r = 19.

to zero (see Figure 5.8b). The next section exploits the probabilistic bounds in an
analytical framework for optimizing the sampling process.

5.5 Sample complexity minimization for joint re-
covery of multiple datasets

This section analyses the problem of minimizing the cost of recovering missing data
from two datasets. Consider, two datasets described by the matrices M1 and M2

respectively. In general, the cost induced by the acquisition process is different for
each monitoring system. Typically, the acquisition cost depends on the type of the
sensors used, the cost of maintaining the sensors, etc. Therefore, different types of
data have different acquisition costs.

Coming back to the example presented in the introduction, traffic flow data
can be collected using the Motorway Incident Detection and Automatic Signalling
(MIDAS) system which consists of induction loops spaced at 500 meter intervals in
the road [114]. Moreover, the cost for installing MIDAS are in the order of £210, 000
per km [114]. Assuming that there are three lanes on each way, for 1 km of road
there are 12 induction loops. Consequently, the average cost per sensor is of £17, 500.
On the other hand, the advances in air quality monitoring tools lead to a cost of
£2, 000 per sensor [115]. In this context, the ratio between the cost of a CO2 level
observation and the traffic flow observation is 0.114. In other words, the acquisition
cost for traffic flow data is 8.75 times higher than that of air quality data. Given the
significant difference between the two sampling costs, it makes sense to optimize the
total sampling cost for the recovery of both types of data.



80 Joint recovery of missing data in multiple datasets

In the two datasets case under consideration, denote by α1 the cost of acquiring
one observation from the first dataset and by α2 the cost of acquiring one observation
from the second dataset. Since not all the entries in M1 and M2 are available, the
expected cost of sampling the two matrices, denoted by β, and is given by

β = α1p1 + α2p2, (5.39)

where p1 is the probability of sampling the entries from M1 and p2 is the probability
of sampling the entries from M2. Note that the cost β depends on the acquisition
costs for both datasets but also on the sampling probabilities. In this section, the
sampling of the two datasets is assumed to be uniformly distributed. This facilitates
the use of the bounds derived for the probabilities of independent (5.37) and joint
(5.38) recovery in Section 5.4.

The minimum sampling cost depends on the probability of recovery. The objective
is to determine the minimum cost β that allows the recovery of both matrices M1

and M2 with a given probability of recovery q. Note that the two matrices can be
recovered independently or jointly. In this context, the optimization parameters are
the two sampling probabilities p1 and p2. The solution of the optimization problem
depends on the sampling costs of each dataset and on the recovery probability.

5.5.1 Independent recovery

The problem of minimizing the cost of recovering both matrices independently is
formulated as

minimize
p1,p2

α1p1 + α2p2

subject to Pr[E1] ≥ q1

Pr[E2] ≥ q2,

(5.40)

where E1 and E2 are the events in which the matrices M1 and M2 are recovered as
defined in (5.33) and (5.34), respectively. Moreover, the probabilities of the events
E1 and E2 are lower bounded in (A.137). The following lemma uses the result in
(A.137) to bound the sampling probabilities based on the probability of recovery.

Lemma 3. Matrix Mi ∈ RM×N with rank(Mi) = ri is recovered with probability at
least qi if the sampling is uniformly at random with probability pi bounded by

pi ≥
2MN(M +N − ri)ri +

√
−2M3N3 ln(1 − qi)

2M2N2 , (5.41)

for i ∈ {1, 2}.

Proof. See Appendix A.
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In other words, Lemma 3 bounds the sampling probability based on the probability
of recovering the matrix. Using Lemma 3, the optimization problem in (5.40) can be
recast as

minimize
p1,p2

α1p1 + α2p2

subject to p1 ≥
2MN(M +N − r1)r1 +

√
−2M3N3 ln(1 − q1)

2M2N2

p2 ≥
2MN(M +N − r2)r2 +

√
−2M3N3 ln(1 − q2)

2M2N2 .

(5.42)

Note that because the samping costs α1 and α2 are positive, β is a monotonically
increasing function on p1 and p2. Therefore minimizing the sampling cost β is equiv-
alent to minimizing the sampling probabilities p1 and p2. Based on this observation,
the problem in (5.42) is equivalent to

minimize p1, p2

subject to p1 ≥
2MN(M +N − r1)r1 +

√
−2M3N3 ln(1 − q1)

2M2N2

p2 ≥
2MN(M +N − r2)r2 +

√
−2M3N3 ln(1 − q2)

2M2N2 .

(5.43)

Interestingly, when q1 ∈ (0, 1) and q2 ∈ (0, 1) the lower bounds for p1 and p2 are
monotonically increasing functions in q1 and q2 respectively. In this case, the solution
to the problem in (5.43) is given by

 p1 = 2MN(M+N−r1)r1+
√

−2M3N3 ln(1−q1)
2M2N2 ,

p2 = 2MN(M+N−r2)r2+
√

−2M3N3 ln(1−q2)
2M2N2 .

(5.44)

Consequently, this is also the solution to the initial problem in (5.40). Denote by
βi the minimum sampling cost for the independent recovery of the matrix M1 with
probability at least q1 and the matrix M1 with probability at least q2. The index i
for the cost βi refers to the independent recovery case. Using the solution obtained
in (5.44), the minimum cost for the independent recovery case is given by

βi =α1
2MN(M +N − r1)r1 +

√
−2M3N3 ln(1 − q1)

2M2N2 +

α2
2MN(M +N − r2)r2 +

√
−2M3N3 ln(1 − q2)

2M2N2 .

(5.45)

As expected, the minimum sampling cost for the independent recovery depends on
the sampling costs α1 and α2 and the minimum sampling probabilities that guarantee
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the recovery of M1 with probability at least q1 and M2 with probability at least
q2. To assess the benefit of joint recovery the next section analyses the minimum
sampling cost for recovering the matrix M.

5.5.2 Joint recovery

Using the formulation in (5.40) the problem of minimizing the sampling cost of
recovering both matrices jointly is defined as

minimize
p1,p2

α1p1 + α2p2

subject to Pr[E3] ≥ q,
(5.46)

where E3 is defined in (5.35) and denotes the event in which the matrix M =[
MT

1 MT
2

]T
is recovered. In addition, the probability of the event E3 is bounded

based on the sampling probabilities of the matrices M1 and M2 in (5.38). The
following lemma bounds the sampling probabilities such that the matrix M is
recovered with probability at least q.

Lemma 4. Matrix M =
 M1

M2

 ∈ R2M×N with rank(M) = r is recovered with

probability at least q if the matrices M1 and M2 are sampled uniformly at random
with probabilities p1 and p2, respectively, and the sampling probabilities satisfy

p1 + p2 ≥
2MN(M +N − r)r +

√
−4M3N3 ln(1 − q)

2M2N2 . (5.47)

Proof. See Appendix A.

Lemma 4 bounds the sampling probabilities for M1 and M2 based on the proba-
bility of recovering the matrices jointly. Using Lemma 4, the optimization problem
in (5.46) becomes

minimize
p1,p2

α1p1 + α2p2

subject to p1 + p2 ≥
2MN(M +N − r)r +

√
−4M3N3 ln(1 − q)

2M2N2 .

(5.48)

Note that when the sampling costs α1 and α2 are positive, the total cost is a
monotonically increasing function on p1 and p2. Therefore, minimizing the sampling
cost is equivalent to minimizing the sampling probabilities p1 and p2 subject to the
constraints imposed by the fundamental limit. Thus, the optimization problem in
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(5.48) is equivalent to

minimize p1, p2

subject to p1 + p2 ≥
2MN(M +N − r)r +

√
−4M3N3 ln(1 − q)

2M2N2 .
(5.49)

Moreover, when q ∈ (0, 1), the lower bound for p1 + p2 is a monotonically increasing
function on q, and therefore, the solution to the optimization problem in (5.49)
satisfies

p1 + p2 =
2MN(M +N − r)r +

√
−4M3N3 ln(1 − q)

2M2N2 . (5.50)

In contrast to the independent recovery case, for the joint recovery case there is an
infinite number of values of p1 and p2 that satisfy the constraint in (5.50). However,
the total sampling cost for the joint recovery case is not minimized for all values of p1

and p2 that satisfy (5.50). Note that the cost β is also a function of the independent
sampling costs of the two datasets. Therefore, in the cost minimization problem
presented in (5.46) and (5.49), the choice of p1 and p2 that satisfy (5.50) is governed
by the values of α1 and α2.

Denote by βj the minimum sampling cost achievable when recovering the missing
entries in a joint setting. In other words, βj is the solution to the optimization
problems in (5.46) and (5.49). Therefore, βj is given by

βj =

α1
2MN(M+N−r)r+

√
−4M3N3 ln(1−q)

2M2N2 , for α1 ≤ α2

α2
2MN(M+N−r)r+

√
−4M3N3 ln(1−q)

2M2N2 , for α1 > α2.
(5.51)

The minimum cost is achieved by sampling only the dataset with the smaller sampling
cost. For the independent recovery, the pair (p1,p2) that satisfies the conditions to
recover the two matrices is unique. In contrast, for the joint recovery there exists
an infinite number of pairs (p1,p2) that satisfy the condition on the probability of
recovering the matrix M. The flexibility induced by the joint recovery framework
facilitates the use of asymmetric sampling strategies for the datasets combined. A
numerical comparison of the minimum sampling costs induced by the independent
and joint recovery follows.

5.5.3 Numerical comparison for the minimum sampling cost

This section provides a numerical comparison for the minimum sampling cost achiev-
able in the independent and joint recovery cases. In particular, the optimization
problems in (5.40) and (5.46) for the independent and joint recovery respectively,
are solved for the rank values depicted in Table 5.1 when M = 50 and N = 100.
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For convenience, the solutions for the two optimization problems are recalled in this
section. The minimum sampling cost for the independent recovery, denoted by βi, is
given by

βi =α1
2MN(M +N − r1)r1 +

√
−2M3N3 ln(1 − q1)

2M2N2 +

α2
2MN(M +N − r2)r2 +

√
−2M3N3 ln(1 − q2)

2M2N2 ,

(5.52)

where qi is the minimum probability of recovering the matrix Mi, with i ∈ {1, 2}.
Also, the minimum sampling cost for the joint recovery, denoted by βj, is

βj =

α1
2MN(M+N−r)r+

√
−4M3N3 ln(1−q)

2M2N2 , for α1 ≤ α2

α2
2MN(M+N−r)r+

√
−4M3N3 ln(1−q)

2M2N2 , for α1 > α2,
(5.53)

where q is the minimum probability of recovering the matrix M.
Note that dividing the expected cost in equation (5.39) by α1 yields

1
α1
β = p1 + α2

α1
p2. (5.54)

Given that the sampling cost α1 is assumed to be constant for a given dataset,
minimizing the expected cost is equivalent to minimizing the term 1

α1
β. Therefore,

the minimum expected cost depends on the ratio between the two sampling costs. A
numerical evaluation of both the independent and the joint recovery costs is presented
below for different ratios of α1 and α2.

Figure 5.13 depicts a numerical comparison between the minimum sampling costs
for the independent and joint recovery, when r1 = 6 and r2 = 6, and for different
values of r. Interestingly, when the difference between the two sampling costs is
significant, the minimum cost for the joint recovery is strictly smaller than the
minimum cost for the independent recovery. In contrast, when the ratio between the
two sampling costs is close to one, the difference between βi and βj is smaller. It is
also worth mentioning that when the value of r is smaller than the threshold given
by Theorem 2, the joint recovery costs less than the independent recovery of the two
matrices. On the other hand, for values of r greater that the limit given by Theorem
2, there are cases in which recovering the two matrices independently is cheaper. In
addition, the number of cases in which the joint recovery costs more increases as the
rank of the combined matrix increases. In other words, the less correlated the two
datasets are the less advantageous is to recover them jointly.

Figure 5.14 compares for the minimum sampling costs when r1 = 6 and r2 = 9
and r varies according to Table 5.1. Similar to the case in which r1 = 6 and r2 = 6,
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Figure 5.13. Numerical comparison of the minimum sampling cost for the independent
and joint recovery depending on the ratio between the sampling costs, when r1 = 6
and r2 = 6, and for different values of r.
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Figure 5.14. Numerical comparison of the minimum sampling cost for the independent
and joint recovery depending on the ratio between the sampling costs, when r1 = 6
and r2 = 9, and for different values of r.

the joint recovery costs less when the difference between the two sampling costs is
larger. However, when the ratio between the two sampling costs is close to one the
cheapest option depends on the value of r . Precisely, when r is smaller than the
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Figure 5.15. Numerical comparison of the minimum sampling cost for the independent
and joint recovery depending on the ratio between the sampling costs, when r1 = 6
and r2 = 18, and for different values of r.

threshold in Theorem 2, the joint recovery always costs less. On the other hand, the
independent recovery is advantageous when r is larger than the limit in Theorem 2
and the ratio between the two sampling costs is close to one. Based on the numerical
results depicted in Figures 5.13 and 5.14, the joint recovery costs less than the
independent recovery when the conditions for the joint recovery to be beneficial are
satisfied.

Figure 5.15 shows the minimum sampling cost for the independent and joint
recovery when r1 = 6 and r2 = 18, and for different values of r. Note that for this
case, the joint recovery is not beneficial as the upper bound given by Theorem 2 is
smaller than the lower possible value for r. Therefore, the minimum cost of the joint
recovery is not always smaller than the minimum cost for the independent recovery.
However, consistent with the other results in this section, the joint recovery induces
a smaller sampling cost when the difference between the two sampling costs is large.

In the example presented in the introduction, the ratio between the acquisition
cost for the CO2 level data and the traffic flow data is α12 = 0.114. In view of this,
regardless of the ratio between the rank of the two matrices, the joint recovery of
the two datasets induces a smaller total sampling cost.

The numerical results presented in this section address the problem of minimizing
the sampling cost for the recovery of two datasets. In particular, the minimum
sampling cost achievable in the independent recovery is compared with the minimum
sampling cost for the joint recovery. Based on the numerical results presented, the
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joint recovery costs less when the difference between the two sampling costs is large.
In contrast, when the ratio between the two sampling costs is close to one, the joint
recovery induces a smaller sampling costs when the conditions in Theorem 2 are
satisfied.

5.6 Numerical analysis

This section presents a numerical evaluation of the joint recovery performance for
two datasets. The size of the matrices M1 and M2 is fixed such that M = 50 and
N = 100. Consequently, the joint matrix M is a square matrix of size 100. In this
context, different values of rank are assessed.

Table 5.1 contains the values of rank under consideration throughout the section.
The range of rank values selected aims to characterize the joint recovery in three
scenarios:

• when the two combined matrices have the same rank

r2

r1
= 1, (5.55)

• when the ratio between the two rank values is small

1 < r2

r1
≤ 2, (5.56)

• when the ratio between the two rank values is large

r2

r1
> 2. (5.57)

Consequently, the ratios between the rank of the combined matrices considered are
r2/r1 = 1, r2/r1 = 1.5 and r2/r1 = 3. As noted in Section 5.3.2, the ratio the two
rank values is one of the important factors for guaranteeing that the joint recovery
is beneficial. When the ratio between the rank of the first and the second matrix is
large, the rank condition in (5.31) from Theorem 2 is not satisfied. Indeed, Table
5.1 shows that when r1 = 6 and r2 = 18, the upper bound given by Theorem 2, i.e.,
17.78, is smaller than the lower bound for the rank of the combined matrix, i.e., 18.
In this case, the joint recovery is not beneficial due to the large ratio between the
two rank values. In contrast, when the two rank values are equal, i.e., r1 = 6 and
r2 = 6, the rank condition in Theorem 2 is satisfied in most of the rank possibilities
for r. Notably, the joint recovery is beneficial in four cases out of the total of seven
possible values for r. As the ratio between r2 and r1 increases, the limit in Theorem
2 shifts towards the lower bound for the rank of the combined matrices. Therefore,
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the number of cases in which the joint recovery is beneficial decreases. In particular,
when r1 = 6 and r2 = 9, out of the seven possible values for the rank for the combined
matrix, the joint recovery is beneficial in only three cases. Note the decrease in the
number of cases compared to the scenario in which r1 = r2.

The numerical results in this section are obtained by simulating the recovery
with synthetic data. The following section describes the model used to generate the
datasets used for the recovery performance comparison. The choice for synthetic
data rather that real data is mainly motivated by the flexibility of having datasets
with the rank values described in Table 5.1. Therefore, the use of synthetic generated
datasets facilitates the comparison between SVT and BSVT-based recovery for all
rank values in Table 5.1. However, not all the numerical results are included in this
section. To avoid redundancy, only numerical results that provide additional insight
into the joint recovery performance are included.

5.6.1 Simulation framework

A mathematical description of the model used to generate synthetic correlated
datasets follows. The combined state variable matrix is defined as

M = [m1,m2, ...,mN ], (5.58)

where each state variable vector mi ∈ R2M for i ∈ {1, 2, ..., N} is generated by a
multivariate Gaussian process with 0 mean and covariance matrix Σ.

mi∼N (0,Σ). (5.59)

The covariance matrix Σ is a block matrix in which block Σii is a Toeplitz matrix
describing the covariance matrix of the dataset i. The resulting covariance matrix is
given by

Σ =
 Σ11 Σ12

Σ21 Σ22

 , (5.60)

where Σml ∈ RM×M for m, l ∈ {1, 2}. In this framework, the elements of Σml are
defined as

(Σml)i,j = ρ
1

ζml
|i−j|

, (5.61)

where ρ ∈ (0, 1). Therefore, the values on the diagonals of the Toeplitz matrix Σml

are exponentially decreasing from 1 to υml where

υml = ρ
1

ζml
(M−1)

. (5.62)
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Precisely, the matrix Σml is given by

Σml =


1 ρ

1
ζml · · · ρ

1
ζml

(M−1)

ρ
1

ζml 1 · · · ρ
1

ζml
(M−2)

. . .
ρ

1
ζml

(M−1)
ρ

1
ζml

(M−2) · · · 1

 . (5.63)

The parameter υml uniquely determines the value of ζml. In order to guarantee
that the covariance matrix is symmetric and positive semi-definite, the following
constrains are applied to the model

Σ12 = Σ21 = ψΣ11, (5.64)

where 0 ≤ ψ ≤ 1. Consequently, the covariance matrix used in the numerical
simulations is

Σ =
 Σ11 ψΣ11

ψΣ11 Σ22

 . (5.65)

In this context, the intra-correlation between the state variables in M1 is modelled by
the υ11 parameter, the intra-correlation between the state variables in M2 is modelled
by the υ22 parameter and the cross-correlation between M1 and M2 modelled by
ψ. Numerical analysis shows that a larger value of υ11 results in a more correlated
matrix M1. Moreover, the cross-correlation between M1 and M2 increases with the
value of ψ. The following lemma shows that that Σ is positive semi-definite when
υ11 = υ22.

Lemma 5. Let ψ ∈ [0, 1] and A ∈ SM
+ , then the matrix Σ =

 A ψA
ψA A

 ∈ S2M
+ .

However, when υ11 = υ22 the model generates matrices for which the rank of the
combined matrices are equal. To be able to generate matrices for all the rank cases
in Table 5.1, the model in (5.65) is used.

Note that for the model in (5.65) Lemma 5 does not apply and consequently, for
some values of υ11,υ22 and ψ the resulting matrix Σ is not positive semi-definite. It
is worth noting that this constraint does not affect the capability of the model to
generate matrices for all the rank values of interest.

Furthermore, the matrix M generated using the model in (5.65) is not exactly
low rank. Instead, it can be well approximated by a low rank matrix. Consider the
singular value decomposition of the matrix M given by

M = USVT , (5.66)
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where

S = diag{σ1, σ2, ..., σmin{2M,N}}, (5.67)

where σi, for i ∈ {1, 2, ...,min{2M,N}} are the singular values of M in descending
order.

Let us denote by M̃(r) the low rank approximation for the matrix M of rank r.
Consequently, M̃(r) : RM×N → RM×N , where M̃(r) is given by

M̃(r) = USrVT , (5.68)

with

Sr = diag{σ1, σ2, ..., σr}. (5.69)

In the following, r is defined as the minimum value for which the normalized
error between the matrix M and the low rank approximation of rank r, i.e., M̃(r),
is below 10−3, i.e.,

∥M − M̃(r)∥2
2

∥M∥2
2

≤ 10−3. (5.70)

Consequently, the model in (5.65) is used to generate data matrices M such that
the low rank approximations M̃1(r1), M̃2(r2) and M̃(r) are of rank values depicted in
Table 5.1. Moreover, the low rank approximation of the combined matrix, i.e.,M̃(r),
is used to evaluate the numerical performance of both BSVT and SVT in exploiting
the correlation between the two datasets.

Recall that k1, k2 and k denote the number of available entries for the matrices
M1, M2 and M respectively. Therefore, k and is given by

k = k1 + k2. (5.71)

The locations of the available entries are sampled uniformly at random in each
dataset. Note that while the recovery is done for the matrix M̃(r), the sampling is
done independently for M1 and M2.

In the following, the numerical results for the joint recovery of two datasets
are divided in three sections depending on the noise regime considered: the almost
noiseless regime (SNR=50 dB), the high SNR regime (SNR=20 dB), and the medium
SNR regime (SNR=10 dB). Note that the low SNR regime, i.e., SNR=0 dB, is
not included as it does not provide additional insight and it increases the size of
the numerical section considerably. Moreover, for each SNR regime, three ratios



5.6 Numerical analysis 91

between the rank of the matrices combined are considered: the equal rank scenario
(r1 = 6, r2 = 6), the small ratio case (r1 = 6, r2 = 9) and the large ratio scenario
(r1 = 6, r2 = 18). For each rank combination a high cross-correlation and a low
cross-correlation case is considered. Also, the performance for each case is averaged
over 20 realizations of Ω.

For each noise regime, the following scenarios are addressed:

1. Equal rank: r1 = 6 and r2 = 6

(a) High cross-correlation: r = 9

(b) Low cross-correlation: r = 12

2. Small rank ratio: r1 = 6 and r2 = 9

(a) High cross-correlation: r = 10

(b) Low cross-correlation: r = 14

3. Large rank ratio: r1 = 6 and r2 = 18

(a) High cross-correlation: r = 19

(b) Low cross-correlation: r = 22

The following numerical results present a joint recovery performance comparison
between the SVT algorithm and the BSVT approach. The objective is to assess how
efficient are the two algorithms in exploiting cross-correlation.

5.6.2 Joint recovery performance in the almost noiseless
regime

This section compares the numerical recovery performance for the SVT and BSVT
algorithms in the almost noiseless regime in which SNR=50 dB. To that end, three
ratios between the rank of the combined matrices are considered and for each ratio a
highly correlated and a slightly correlated scenario is analyzed. The following section,
presents the numerical results for the case in which the values of the rank for the
two matrices are equal.

Equal rank

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 6 and SNR=50 dB. Moreover, a high cross-
correlation case is modelled using a value of r below the threshold given by Theorem
2, i.e., r = 9 and a low cross-correlation scenario is analyzed when the value of r
does not satisfy the conditions of Theorem 2, i.e., r = 12.
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.16. Joint recovery error measured by NMSE, when r1 = 6, r2 = 6, r = 9
and SNR=50 dB.

Figure 5.16a depicts the performance of the BSVT algorithm when r1 = 6, r2 = 6,
r = 9 and SNR=50 dB. As expected, the recovery error decreases as the number of
available entries increases. Moreover, the performance does not change significantly
when the ratio between the number of entries in the first matrix and the number
of available entries in the second matrix increases. Interestingly, the contour lines
for the 10−4 and 10−3 recovery error exhibit a similar shape to the line depicted by
k = k1+k2 in Figure 5.1. This suggests that the BSVT algorithm successfully exploits
the cross-correlation in that region and obtains a similar performance when the
number of observations from one dataset varies significantly. In contrast, the contour
line for 10−2 recovery error has a similar shape with the region R4 in Figure 5.1.
This shape is equivalent to a change in recovery performance when the total number
of observation is constant but the ratio between k1 and k2 varies. In other words,
the recovery algorithm is not able to fully compensate for the lack of observations
from one dataset. It is worth mentioning that in the almost noiseless scenario the
BSVT algorithm is able to exploit the cross-correlation more efficiently when the
ratio of observed entries is larger that 0.5.

Figure 5.16b shows the recovery performance of the SVT algorithm when r1 = 6,
r2 = 6, r = 9 and SNR=50 dB. Note that both Figure 5.16a and Figure 5.16b have
the same color map which enables a direct comparison for the recovery performance.
In view of this, the BSVT algorithm outperforms the SVT algorithm when a large
number of observations is available. Moreover, for the SVT algorithm the contour
lines for 10−3, 10−2 and 10−1 recovery error exhibit a similar shape to the region R4

in Figure 5.1. This suggest that the algorithm does not exploit the cross-correlation
efficiently as the recovery error changes with the ratio between k1 and k2 for a fixed
number of observations. It is worth noting that for the SVT recovery the area with
recovery error above 10−3 is larger compared with the BSVT recovery. Specifically,
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.17. Joint recovery error measured by NMSE, when r1 = 6, r2 = 6, r = 12
and SNR=50 dB.

when k1, k2 ∈ [1500, 2500] the SVT performs better while the BSVT achieves a
smaller recovery error in the rest of the cases.

Figure 5.17a depicts the performance of the BSVT algorithm when r1 = 6, r2 = 6,
r = 12 and SNR=50 dB. Note that the in comparison to Figure 5.16a, the contour
lines are shifted towards the right side. This shows a decrease in recovery performance
due to the low level of cross-correlation. As a consequence, the area with recovery
error below 10−3 is smaller compared to the case in which r = 9. However, the shape
of the contour lines is similar to the case depicted in Figure 5.16a, which suggests
that BSVT algorithm is still able to obtain similar recovery performance for different
ratios between k1 and k2 when the ratio of observed entries is above 0.6.

Figure 5.17b shows the performance of the SVT algorithm when r1 = 6, r2 = 6,
r = 12 and SNR=50 dB. Similar to the BSVT recovery, a decrease in performance
is observed for the SVT algorithm in comparison to the high cross-correlation case.
Specifically, the contour lines are shifted towards larger values of k1 which shows
a decrease in performance caused by the lack of cross-correlation between the two
datasets. The shape of the contour lines is similar to the shape of region R4 in
Figure 5.1 which suggests that the SVT algorithm is not efficient in exploiting
cross-correlation in this case. As a consequence, the recovery performance changes
significantly when the ratio between k1 and k2 varies.

Figure 5.18a depicts the cases in which the two algorithms obtain a recovery error
below 10−2 while the red line represents the theoretical limit for the joint recovery of
the two datasets. Interestingly, the region that contains all the points has a similar
shape to the region with probability one in Figure 5.9b. Also, the numerical results
are close to the theoretical limit with the SVT algorithm performing better closer to
the limit.
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(a) r1 = 6 and r2 = 6 and r = 9
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(b) r1 = 6 and r2 = 6 and r = 12

Figure 5.18. Successful joint recovery scenarios using SVT and BSVT for the equal
rank case, when SNR=50 dB.

Figure 5.18b depicts the successful recovery cases in which the recovery error
is below 10−2 for each algorithm. The red line represents the theoretical limit for
the joint recovery of the two datasets in this particular case. Similar to the case
depicted in Figure 5.18a, the region that contains all the points has a similar shape
to the region with probability one in Figure 5.9b. It is worth noting that as the
theoretical limit shifts towards right due to the smaller value of cross-correlation, the
successful recovery cases exhibit a similar behavior. Comparing Figure 5.18b with
Figure 5.18a suggests that there is a constant distance between the theoretical limit
and the numerical results for the successful recovery of two datasets.

Small rank ratio

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 9 and SNR=50 dB. A large value of cross-
correlation is modelled using a value of r below the threshold given by Theorem 2,
i.e. r = 10 and a small value of cross-correlation is analyzed when the value of r
does not satisfy the conditions of Theorem 2, i.e. r = 14.

Figure 5.19a depicts the performance of the BSVT algorithm when r1 = 6, r2 = 9,
r = 10 and SNR=50 dB. As expected, the error decreases as the number of available
entries increases. Interestingly, the contour lines for the 10−4 and 10−3 recovery
error exhibit a similar shape to the line depicted by k = k1 + k2 in Figure 5.1. This
suggests that the BSVT algorithm is able to exploit the cross-correlation in that
region and obtain a similar performance when the number of observations from one
dataset varies significantly. In contrast, the contour line for 10−2 recovery error has
a similar shape with the region R4 in Figure 5.1 with a slight deviation on the right
side. However, with the exception of a few extreme cases the recovery error does not
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.19. Joint recovery error measured by NMSE, when r1 = 6, r2 = 9, r = 10
and SNR=50 dB.

(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.20. Joint recovery error measured by NMSE, when r1 = 6, r2 = 9, r = 14
and SNR=50 dB.

change significantly when the total number of observations is constant but the ratio
between k1 and k2 varies. In view of this, the BSVT algorithm is able to exploit the
cross-correlation in the small rank ratio case.

In Figure 5.19b the performance of the SVT algorithm is depicted for the case in
which r1 = 6, r2 = 9, r = 10 and SNR=50 dB. Similar to the equal rank case, the
BSVT algorithm outperforms the SVT-based recovery for most of the values of k1

and k2 considered. Also, the shape of the contour lines for 10−3 and 10−2 recovery
error is similar to the shape of region R4 in Figure 5.1 which suggests that the SVT
algorithm is not efficient in exploiting cross-correlation.

Figure 5.20a shows the performance of the BSVT algorithm when r1 = 6, r2 = 9,
r = 14 and SNR=50 dB. In comparison with the case in which r = 10, the area
with recovery error below 10−3 is smaller. This suggests a decrease in recovery
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(a) r1 = 6 and r2 = 9 and r = 10
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(b) r1 = 6 and r2 = 9 and r = 14

Figure 5.21. Successful joint recovery scenarios using SVT and BSVT for the small
rank ratio case, when SNR=50 dB.

performance due to the small value of cross-correlation modelled in this scenario. In
addition, the shape of the contour line for 10−2 recovery error suggests that for some
ratios between k1 and k2, a decrease in recovery performance is observed compared
to the highly correlated case in which r = 10.

Figure 5.20b depicts the performance of the SVT algorithm when r1 = 6, r2 = 9,
r = 14 and SNR=50 dB. In comparison with the BSVT algorithm there is a significant
decrease in recovery performance for the cases in which the number of observations
from one dataset is below 1000. Also, the shape of the contour lines indicates that
the SVT approach is not able to exploit the cross-correlation in this case.

Figure 5.21a shows the successful recovery cases in which the error is below 10−2

for each of the two algorithms. Also, the red line depicts the theoretical limit for the
joint recovery of the two datasets in this particular case. Interestingly, the numerical
results in this case are close to the theoretical limit.

Figure 5.21b shows the successful recovery cases in which the error is below 10−2

for each of the two algorithms. The red line depicts the theoretical limit for the joint
recovery of the two datasets in this particular case. Similar to the highly correlated
case depicted in Figure 5.21a, the numerical results in this case are close to the
theoretical limit. Moreover, the shift towards the right side of the theoretical limit is
observed in the numerical results as well.

Large rank ratio

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 18 and SNR=50 dB. The high cross-correlation
case is modelled using r = 19 and the low cross-correlation scenario is analyzed when
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.22. Joint recovery error measured by NMSE, when r1 = 6, r2 = 18, r = 19
and SNR=50 dB.

r = 22. Note that the conditions of Theorem 2 are not satisfied even for the highly
correlated datasets scenario.

Figure 5.22a shows the recovery performance for the BSVT algorithm when
r1 = 6, r2 = 18, r = 19 and SNR=50 dB. In comparison with the other highly
correlated scenarios depicted in Figure 5.16a and Figure 5.19a the area with recovery
error below 10−3 is smaller. Not surprisingly, the ratio between the rank of the
matrices combined has a significant impact on the rank of the combined matrix and
ultimately on the joint recovery performance. However, the shape of the contour lines
for 10−4 and 10−3 recovery error suggests there is no significant change in recovery
performance for different ratios between k1 and k2 when a larger proportion of the
entries are available. In contrast, when the number of observations from the second
dataset is below 2500, the recovery error is always above 10−2. This is because the
rank of the second matrix is significantly larger compared to the rank of the first
matrix.

Figure 5.22b depicts the recovery performance of the SVT algorithm when r1 = 6,
r2 = 18, r = 19 and SNR=50 dB. In comparison with the BSVT recovery depicted
in Figure 5.22a, the area with recovery error below 10−3 is significantly smaller while
the area with recovery error below 10−2 is the same. Also, when the number of
observations from the second dataset is below 2500, the recovery error is always
above 10−2 which shows the impact of the rank of the second matrix.

Figure 5.23a illustrates the recovery error for the BSVT algorithm when r1 = 6,
r2 = 18, r = 22 and SNR=50 dB. As expected, a decrease in the area with recovery
error below 10−3 is observed compared to the highly correlated case depicted in Figure
5.22a. This observation is consistent with the other numerical results presented in
this section.
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.23. Joint recovery error measured by NMSE, when r1 = 6, r2 = 18, r = 22
and SNR=50 dB.
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(b) r1 = 6 and r2 = 18 and r = 22

Figure 5.24. Successful joint recovery scenarios using SVT and BSVT for the large
rank ratio case, when SNR=50 dB.

Figure 5.23b depicts the performance of the SVT algorithm when r1 = 6, r2 = 18,
r = 22 and SNR=50 dB. A decrease in performance is also observed in this case
compared to the highly correlated case depicted in Figure 5.22b. Specifically, when
the number of available entries from the second dataset is below 2500 the recovery
error increases above 10−1. In contrast to the BSVT approach, the SVT algorithm is
not able to achieve a recovery error below 10−3 in this case.

Figure 5.24a illustrates a comparison between the theoretical limit and the
numerical results using SVT and BSVT. Interestingly, the two recovery algorithm
are able to perform close to the theoretical limit in the almost noiseless scenario.
This observation is consistent with the previous results presented in this section.
Also, the shape of the region that contains all the cases with successful recovery is
similar to the region with probability one depicted in Figure 5.12b.
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.25. Joint recovery error measured by NMSE, when r1 = 6, r2 = 6, r = 9
and SNR=20 dB.

Figure 5.24b shows the cases in which the recovery performance is below 10−2 for
each algorithm. Admirably, both approaches perform close to the theoretical limit
represented by the red line. It is also worth noting that as the rank of the combined
matrix increases and the theoretical limit shifts towards right, the numerical results
exhibit the same behavior.

5.6.3 Joint Recovery performance in the high SNR regime

This section shows the numerical recovery performance for the SVT and BSVT
algorithms in the high SNR regime in which SNR=20 dB. Similar to the almost
noiseless case, three ratios between the rank of the combined matrices are considered
and for each ratio a highly correlated and a slightly correlated scenario is illustrated.
The following section, presents the numerical results for the case in which the values
of the rank for the two matrices are equal.

Equal rank

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 6 and SNR=20 dB. Moreover, a large value of
cross-correlation is modelled by r = 9 and a small value of cross-correlation scenario
is analyzed when r = 12.

Figure 5.25a depicts the BSVT recovery performance when r1 = 6, r2 = 6, r = 9
and SNR=20 dB. A significant decrease in performance is observed compared to
the almost noiseless case illustrated in Figure 5.16a. However, this is expected and
consisted with the numerical results presented in Section 4.4. Similar to the SNR=50
dB scenario, the recovery performance does not change significantly with the ratio
between k1 and k2 when more than half of the observations are available. On the
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.26. Joint recovery error measured by NMSE, when r1 = 6, r2 = 6, r = 12
and SNR=20 dB.

other hand, the shape of the contour lines for recovery error 10−2 and 10−1 suggests
that when less than half of the observations are available, the performance changes
with the ratio between k1 and k2.

Figure 5.25b shows the SVT recovery performance when r1 = 6, r2 = 6, r = 9
and SNR=20 dB. Comparing Figure 5.25a and Figure 5.25b shows that the BSVT
algorithm outperforms the SVT recovery in this particular case. However, the contour
line for recovery error of 10−2 suggests that when the ratio of observed entries is
above 0.6, the performance does not change significantly with the ratio between k1

and k2.
Figure 5.26a depicts the BSVT recovery performance when r1 = 6, r2 = 6,

r = 12 and SNR=20 dB. In comparison to the case in which r = 9 the area with
recovery error below 10−2 is smaller. Also, the recovery performance does not change
significantly with the ratio between k1 and k2 when more than half of the observations
are available.

Figure 5.26b shows the SVT recovery performance when r1 = 6, r2 = 6, r = 12
and SNR=20 dB. A decrease in performance is observed in this case compared to
the case in which r = 9 depicted in Figure 5.25b. In particular, the loss in recovery
performance is observed for the cases in which less than half of the entries are
observed. As expected, the BSVT algorithm outperforms the SVT recovery for this
particular case as well. In terms of exploiting the cross-correlation, the recovery error
does not change significantly when the ratio of observed entries is above 0.6.

Figure 5.27a illustrates the cases in which the recovery performance is below 10−2

for each algorithm when r1 = 6, r2 = 6, r = 9 and SNR=20 dB. In contrast to the
almost noiseless regime, only the BSVT approach performs close to the theoretical
limit depicted by the red line. It is worth noting that for each algorithm the shape
of the region that contains all the cases with successful recovery is similar to the
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(b) r1 = 6 and r2 = 6 and r = 12

Figure 5.27. Successful joint recovery scenarios using SVT and BSVT for the equal
rank case, when SNR=20 dB.

region of probability one in Figure 5.9b. However, the area corresponding to the
BSVT algorithm is considerable larger than that of the SVT approach and it is also
closer the the theoretical limit.

Figure 5.27b shows the successful recovery cases for SVT and BSVT when r1 = 6,
r2 = 6, r = 12 and SNR=20 dB. The smaller value of cross-correlation in this case
shifts the theoretical limit in this case towards the right side. Interestingly, the save
behavior is observed for points corresponding to the cases in which the recovery is
successful. Also, the BSVT algorithm performs close to the theoretical limit in this.
This observation is consistent with the numerical results depicted in Figure 5.27a.

Small rank ratio

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 9 and SNR=20 dB. Moreover, a large value of
cross-correlation is modelled by r = 10 and a small value of cross-correlation scenario
is analyzed when r = 14.

Figure 5.28a shows the recovery error measured for the BSVT algorithm when
r1 = 6, r2 = 9, r = 10 and SNR=20 dB. Interestingly, the shape of the contour line
with recovery of 10−2 suggests that when less than half of the entries are observed the
performance changes with the ratio between k1 and k2. This observation is consistent
with the numerical results presented above. In contrast, when more than half of the
observations are available, the recovery performance does not change significantly.

Figure 5.28b depicts the performance of the SVT algorithm when r1 = 6, r2 = 9,
r = 10 and SNR=20 dB. A decrease in recovery performance is observed when
compared with the BSVT recovery. However, the shape of the contour line with
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.28. Joint recovery error measured by NMSE, when r1 = 6, r2 = 9, r = 10
and SNR=20 dB.

(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.29. Joint recovery error measured by NMSE, when r1 = 6, r2 = 9, r = 14
and SNR=20 dB.

recovery error of 10−2 suggests that the SVT algorithm is able to exploit the cross-
correlation when the ratio of the observed entries is above 0.55.

Figure 5.29a shows the performance of the BSVT approach when r1 = 6, r2 = 9,
r = 14 and SNR=20 dB. A decrease in recovery performance is observed in comparison
to the case in which the rank of the combined matrix is 10. Precisely, in this case
there exists a region with recovery error above 10−1 and the area with recovery error
below 10−2 is smaller. However, the BSVT algorithm is still able to exploit the
cross-correlation when more than half of the entries are observed.

In Figure 5.29b the performance of the SVT algorithm is depicted for the case in
which r1 = 6, r2 = 9, r = 14 and SNR=20 dB. As expected, the SVT approach is
outperformed by the BSVT algorithm in the high SNR regime. A decrease in the
number of cases for which the performance does not change with the ratio between
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(b) r1 = 6 and r2 = 9 and r = 14

Figure 5.30. Successful joint recovery scenarios using SVT and BSVT for the small
rank ratio case, when SNR=20 dB.

k1 and k2 is also observed compared with the BSVT recovery. In addition, when
the number of available observation from one of the datasets is below 1000 the
performance of the SVT recovery decreases significantly in this case.

Figure 5.30a illustrates the successful recovery cases for SVT and BSVT when
r1 = 6, r2 = 6, r = 10 and SNR=20 dB. Similar to the numerical results for equal
rank values, the BSVT algorithm performs closer to the theoretical limit compared
with the SVT approach.

Figure 5.30b depicts the successful recovery cases for SVT and BSVT when
r1 = 6, r2 = 6, r = 14 and SNR=20 dB. In comparison with the highly correlated
case depicted in Figure 5.30a, a shift towards right for both the theoretical limit and
the numerical results is observed. Also, the BSVT recovery performs closed to the
theoretical limit compared with the SVT approach.

Large rank ratio

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 18 and SNR=20 dB. Moreover, a large value of
cross-correlation is modelled by r = 19 and a small value of cross-correlation scenario
is analyzed when r = 22. Note that the conditions of Theorem 2 are not satisfied
even for the highly correlated datasets scenario.

Figure 5.31a shows the recovery performance for the BSVT algorithm when
r1 = 6, r2 = 18, r = 19 and SNR=20 dB. Interestingly, the large value for the rank of
the second matrix significantly impacts the performance of the algorithm when the
number of observations from the second dataset is below 2500. This is also observed
in the corresponding numerical results for the almost noiseless regime. The shape of
the contour line for recovery error of 10−2 suggests that the cross-correlation is not
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.31. Joint recovery error measured by NMSE, when r1 = 6, r2 = 18, r = 19
and SNR=20 dB.

(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.32. Joint recovery error measured by NMSE, when r1 = 6, r2 = 18, r = 22
and SNR=20 dB.

exploited in most of the cases. In fact, the recovery error does not change with the
ratio between k1 and k2 only when more than 70% of the observations are available.

Figure 5.31b depicts the performance of the SVT approach when r1 = 6, r2 = 18,
r = 19 and SNR=20 dB. A decrease in recovery performance is observed compared to
the BSVT algorithm. However, the number of cases in which the performance does
not change with the ratio between k1 and k2 is the same for both recovery methods.

Figure 5.32a shows the recovery performance for the BSVT algorithm when
r1 = 6, r2 = 18, r = 22 and SNR=20 dB. A decrease in recovery performance is
observed in this case compared with the one depicted in Figure 5.31a. Precisely, for
a smaller value of cross-correlation there exists a region with recovery error above
10−1.
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(b) r1 = 6 and r2 = 18 and r = 22

Figure 5.33. Successful joint recovery scenarios using SVT and BSVT for the large
rank ratio case, when SNR=20 dB.

Figure 5.32b illustrates the performance of the SVT algorithm in the high SNR
regime when r1 = 6, r2 = 18 and r = 22. In comparison to the highly correlated case
depicted in Figure 5.31b, the recovery error increased significantly when the number
of observations from the second dataset is below 2500.

Figure 5.33a illustrates the cases in which the recovery error is below 10−2 for
both the SVT and the BSVT recovery when r1 = 6, r2 = 18, r = 19 and SNR=20 dB.
Consistent with the previous results in this section, the BSVT algorithm performs
closer to the theoretical limit than the SVT approach.

Figure 5.33b depicts the cases in which the recovery error is below 10−2 for both
the SVT and the BSVT recovery when r1 = 6, r2 = 18, r = 22 and SNR=20 dB.
A shift towards right is observed compared to the highly correlated case in which
r = 19. The BSVT algorithm is performing closed to the theoretical limit when
compared with the SVT recovery.

5.6.4 Joint Recovery performance in the medium SNR regime

This section shows the numerical recovery performance for the SVT and BSVT
algorithms in the medium SNR regime in which SNR=10 dB. Similar to the previous
noise regimes, three ratios between the rank of the combined matrices are considered
and for each ratio a highly correlated and a slightly correlated scenario is illustrated.
The following section, presents the numerical results for the case in which the values
of the rank for the two matrices are equal.

Equal rank

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 6 and SNR=10 dB. Moreover, a large value of
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.34. Joint recovery error measured by NMSE, when r1 = 6, r2 = 6, r = 9
and SNR=10 dB.

cross-correlation is modelled by r = 9 and a small value of cross-correlation scenario
is analyzed when r = 12.

Figure 5.34a depicts the BSVT recovery performance when r1 = 6, r2 = 6, r = 9
and SNR=10 dB. The shape of the contour line for the recovery error of 10−1 suggests
that when less than half of the entries are observed, the performance varies with the
ratio between k1 and k2. In contrast, when the ratio of observed entries is above 0.5,
the recovery performance does not change significantly with the ratio between the
number of available entries from the two datasets.

Figure 5.34b shows the SVT recovery performance when r1 = 6, r2 = 6, r = 9
and SNR=10 dB. Clearly, the SVT algorithm is outperformed by the BSVT recovery
in this case. This observation is consistent with the analysis in Chapter 4. Also the
ratio of observed entries above which the performance does not change with the ratio
between k1 and k2 is 0.6 for the SVT recovery. This suggests that the SVT is not
as efficient as the BSVT approach in exploiting the cross-correlation in this noise
regime.

Figure 5.35a depicts the BSVT recovery performance when r1 = 6, r2 = 6, r = 12
and SNR=10 dB. In comparison with the highly correlated depicted in Figure 5.34a,
a decrease in recovery performance is noticeable due to the shift towards right of the
contour line.

Figure 5.35b shows the SVT recovery performance when r1 = 6, r2 = 6, r = 12
and SNR=10 dB. Similar to the high SNR regime, the performance of the recovery
is decreases significantly when less than half of the entries are available. Also, the
ratio of observed entries above which the performance does not change with the ratio
between k1 and k2 is 0.6 for the SVT recovery while for the BSVT algorithm is 0.5.

Figure 5.36a illustrates the cases in which the recovery error is below 3 × 10−2 for
both the SVT and the BSVT recovery when r1 = 6, r2 = 6, r = 9 and SNR=10 dB.
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.35. Joint recovery error measured by NMSE, when r1 = 6, r2 = 6, r = 12
and SNR=10 dB.
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(b) r1 = 6 and r2 = 6 and r = 12

Figure 5.36. Successful joint recovery scenarios using SVT and BSVT for the equal
rank case, when SNR=10 dB.

Interestingly, only the BSVT algorithm is able to successfully recovery the missing
data in the medium SNR regime. However the performance of the BSVT approach
is not as close to the theoretical limit as in the almost noiseless regime.

Figure 5.36b illustrates the cases in which the recovery error is below 3 × 10−2 for
both the SVT and the BSVT recovery when r1 = 6, r2 = 6, r = 12 and SNR=10 dB.
Similar to the highly correlated case, only the BSVT algorithm is able to successfully
recovery the missing data in the medium SNR regime. A decrease in the number
of cases with successful recovery is observed compared with the results depicted in
Figure 5.36a.
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.37. Joint recovery error measured by NMSE, when r1 = 6, r2 = 9, r = 10
and SNR=10 dB.

Small rank ratio

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 9 and SNR=10 dB. Moreover, a large value of
cross-correlation is modelled by r = 10 and a small value of cross-correlation scenario
is analyzed when r = 14.

Figure 5.37a depicts the performance of the BSVT algorithm when r1 = 6, r2 = 9,
r = 10 and SNR=10 dB. Interestingly, the recovery performance is below 10−1 for
almost all the cases as shown by the contour line. Also, the performance does not
change significantly as the ratio between k1 and k2 varies for the same total number
of observed entries.

Figure 5.37b shows the recovery performance for the SVT algorithm when r1 = 6,
r2 = 9, r = 10 and SNR=10 dB. Clearly, the BSVT algorithm outperforms the SVT
recovery in this scenario. Also, the contour line shows that the SVT algorithm is not
robust and the recovery performance varies significantly for a small change in the
number of observed entries.

Figure 5.38a describes the recovery error for the BSVT algorithm when r1 = 6,
r2 = 9, r = 14 and SNR=10 dB. Interestingly, the performance in this case is similar
to the high SNR regime depicted in Figure 5.29a. The lower level of cross-correlation
modeled through a larger value of r affects the recovery performance especially in
the cases in which the ratio between k1 and k2 is large.

Figure 5.38b shows the recovery performance for the SVT algorithm when r1 = 6,
r2 = 9, r = 14 and SNR=10 dB. A significant decrease in performance is observed
in comparison with the BSVT recovery especially for the cases in which the ratio
between k1 and k2 is large. This suggests that the SVT algorithm is not able to
exploit the cross-correlation in a medium SNR regime.
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.38. Joint recovery error measured by NMSE, when r1 = 6, r2 = 9, r = 14
and SNR=10 dB.
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(b) r1 = 6 and r2 = 9 and r = 14

Figure 5.39. Successful joint recovery scenarios using SVT and BSVT for the small
rank ratio case, when SNR=10 dB.

Figure 5.39a illustrates the cases in which the recovery error is below 3 × 10−2 for
both the SVT and the BSVT recovery when r1 = 6, r2 = 9, r = 10 and SNR=10 dB.
Similar to the previous results in the medium SNR regime, only the BSVT algorithm
is able to successfully recover the missing entries.

Figure 5.39b illustrates the cases in which the recovery error is below 3 × 10−2 for
both the SVT and the BSVT recovery when r1 = 6, r2 = 9, r = 14 and SNR=10 dB.
A decrease in the number of cases with successful recovery is noticeable compared
with the highly correlated case depicted in Figure 5.39a. Still, only the BSVT
algorithm is able to provide a recovery error below the threshold.
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.40. Joint recovery error measured by NMSE, when r1 = 6, r2 = 18, r = 19
and SNR=10 dB.

Large rank ratio

This section compares the numerical recovery performance for the SVT and BSVT
algorithms, when r1 = 6 and r2 = 18 and SNR=10 dB. Moreover, a large value of
cross-correlation is modelled by r = 19 and a small value of cross-correlation scenario
is analyzed when r = 22. Note that the conditions of Theorem 2 are not satisfied
even for the highly correlated datasets scenario.

Figure 5.40a depicts the performance of the BSVT algorithm in the medium
SNR regime when r1 = 6, r2 = 18 and r = 19. Interestingly, the distribution of the
recovery error in this case is similar to the one in the high SNR regime. Note that
the color map varies across different noise regimes. However, the decrease in recovery
performance when less than 2500 observations are available from the second dataset
is noticeable across all noise regimes.

Figure 5.40b shows the recovery performance for the SVT approach when r1 = 6,
r2 = 18, r = 19 and SNR=10 dB. As expected the BSVT algorithm outperforms
the SVT recovery in the medium SNR regime. In addition, the same decrease in
performance for values of k2 below 2500 is observed in this case.

Figure 5.41a shows the recovery performance for the BSVT approach when r1 = 6,
r2 = 18, r = 22 and SNR=10 dB. The distribution of the recovery error in this case
is similar to the corresponding results for the high SNR regime. Also, a decrease
in the recovery performance is observed compared with the highly correlated case
in Figure 5.40a. For the SVT recovery depicted in Figure 5.41b a more noteworthy
decrease in performance is observed when the number of observed entries from the
second dataset in below 2500. This suggests that the SVT algorithm is less efficient
in exploiting cross-correlation in the medium SNR regime.
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(a) Recovery performance using BSVT (b) Recovery performance using SVT

Figure 5.41. Joint recovery error measured by NMSE, when r1 = 6, r2 = 18, r = 22
and SNR=10 dB.
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(b) r1 = 6 and r2 = 18 and r = 22

Figure 5.42. Successful joint recovery scenarios using SVT and BSVT for the large
rank ratio case, when SNR=10 dB.

Figure 5.42a illustrates the cases in which the recovery error is below 3 × 10−2 for
both the SVT and the BSVT recovery when r1 = 6, r2 = 18, r = 19 and SNR=10 dB.
Similar to the previous results in the medium SNR regime, only the BSVT algorithm
is able to successfully recover the missing entries and the performance is not as close
to the theoretical limit as in the almost noiseless regime.

Figure 5.42b illustrates the cases in which the recovery error is below 3 × 10−2 for
both the SVT and the BSVT recovery when r1 = 6, r2 = 19, r = 22 and SNR=10 dB.
A decrease in the number of cases with successful recovery is noticeable compared
with the highly correlated case depicted in Figure 5.42a. Still, only the BSVT
algorithm is able to provide a recovery error below the threshold.
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5.7 Conclusions

The fundamental limits for joint recovery of multiple matrices with missing entries
have been characterized in terms of the individual and combined rank. Precisely,
when two datasets are jointly recovered the rank of the combined matrix is bounded
based on the individual rank of the two components. Theoretical conditions under
which the number of observations required by the joint recovery is smaller than what
is necessary for the independent recovery are derived. A graphical representation of
the recovery regions for the independent and joint settings is included to highlight
the larger number of cases in which the joint recovery is feasible.

For datasets that are sampled uniformly, the probability of joint recovery is char-
acterized and compared to the probability of recovery in the independent case. Using
the new probabilistic description of the joint recovery, the problem of minimizing the
sampling cost is formulated as an optimization problem for both the independent
and the joint recovery cases. The numerical comparison shows that in most of the
cases the joint recovery induces a smaller cost for the acquisition process than that
achieved by the independent recovery of two datasets.

To facilitate the numerical analysis of the joint recovery performance, a mathe-
matical model for generating correlated datasets is proposed. In this setting, different
rank values are assessed using synthetic data and the performance of both SVT and
BSVT algorithms is numerically evaluated.

Numerical results show that the cross-correlation between different datasets can
be successfully exploited in a missing data recovery context. Moreover, when the
number of available entries from one dataset is small, the joint recovery successfully
estimates the missing entries by leveraging the information provided by the dataset
with fewer missing entries. The BSVT algorithm outperforms the SVT approach in
the joint recovery context. Remarkably, the performance of BSVT recovery matches
the geometry of the regions depicted by the fundamental limits which suggests that
BSVT is indeed better suited to exploit the cross-correlation between datasets. In
addition, BSVT is more robust across different sampling regimes for the datasets
combined when compared to the SVT algorithm. In view of this, the robustness of
the new algorithm proposed in Chapter 4 extends to the joint recovery setting.



Chapter 6

Conclusions and future work

This thesis addressed the problem of recovering missing data in high-dimensional
datasets generated by different subsystems of an urban system. These components
include the traffic monitoring system, the low voltage electricity grid or the air quality
monitoring system, among others, and their efficient management requires timely
and accurate data.

For the low voltage distribution system, information theoretic results are used to
characterize the fundamental limits of the recovery process by defining the optimal
performance theoretically attainable by any missing data estimator. This enables
the benchmarking of different state-of-the-art recovery methods and identifies the
scenarios in which their performance is largely suboptimal. In this context, the
LMMSE estimator and the SVT algorithm are evaluated and their shortcomings are
identified in a practical setting. Since the applicability of these methods is limited in
realistic scenarios, a new algorithm is proposed to address their shortcomings.

The new algorithm combines Bayesian estimation with the SVT algorithm to en-
able the optimization of the soft-thresholding parameter at each iteration. Moreover,
the low computational cost of the SVT algorithm and the optimality of the LMMSE
estimator for datasets that follow a multivariate Gaussian distribution boosts the
performance of the proposed approach in practical settings. A theoretical analysis
of the BSVT iteration steps describes the conditions under which the proposed
method converges and outperforms the SVT-based recovery. Despite the fact that
the computational cost per iteration is larger for the new algorithm, the speed of
convergence is significantly increased which results in a similar computation time
when compared to the SVT algorithm. The numerical experiments presented show
that the BSVT algorithm provides robust recovery in realistic scenarios that include
noisy observations, mismatched prior knowledge, and non-uniform sampling patterns.
In view of this, the new recovery method proposed in this thesis is more suitable to
address the challenges posed by the electricity distribution system. It is also worth
mentioning that the applicability of the new algorithm is not limited to recovering
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missing data in the low voltage electricity grid i.e., BSVT has been used to forecast
the traffic levels on the motorway using MIDAS data.

A comprehensive approach to the missing data problem in urban systems is
proposed for joint recovery of datasets generated by different subsystems. The novel
approach to missing data recovery exploits the correlation that arises as a consequence
of the interdependence between the different urban subsystems. Moreover, the joint
recovery setting supports more flexibility in the number of observations required
from each subsystem. The fundamental limits of the joint recovery of two datasets
are studied to provide theoretical guarantees for the joint recovery to require fewer
observations compared to the independent case in a matrix completion framework.
The description of the recovery regions shows that the joint recovery setting boosts
the resilience of the urban system by enabling the recovery of missing data in cases
in which it would not be possible in the independent setting.

Furthermore, when the locations of the missing entries are uniformly distributed in
each dataset, the probability of recovery is characterized for both the independent and
the joint recovery. This result enables the minimization of the sampling complexity
for the recovery of two datasets in both the independent and joint recovery setting.
Numerical simulations show that the acquisition cost is smaller for the joint recovery
in most of the cases compared to the independent case.

In addition, the numerical performance of the BSVT and SVT algorithms is
evaluated in the joint setting using synthetic data for different values of intra
and cross-correlation. To that end, a new mathematical model that generates
correlated datasets is introduced. The performance in exploiting the cross-correlation
is evaluated by comparing the numerical results with the fundamental limit. The
numerical analysis shows that the BSVT algorithm provides robust recovery in a
wider range of sampling regimes in the datasets combined when compared to the
SVT-based recovery. Remarkably, the numerical performance of BSVT recovery
matches the geometry of the regions described by the fundamental limits which
suggests that BSVT is indeed better suited than SVT to exploit the cross-correlation
between the combined datasets. In view of this, the BSVT algorithm is a robust
alternative to state-of-the-art recovery methods with various applications in the
urban setting.

6.1 Future work

This section presents several possible extensions to the results presented in this
thesis.

1. Provide probabilistic convergence guarantees for BSVT. This can be
tackled by extending the results in Theorem 1 in a probabilistic framework
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using Random Matrix theory. The conditions in Theorem 1 can be relaxed in
a probabilistic setting which will provide convergence guarantees for BSVT
using a wider range of data matrices.

2. Optimize the computational effort required by the BSVT algorithm.
In comparison to SVT, the BSVT algorithm has an increased computational
cost per iteration due to the Bayesian estimation step incorporated. However,
the number of iterations required is smaller for the new algorithm which
leads to relatively similar computational cost for both methods. The SVT
algorithm exploits the sparsity of the matrix Y to compute the singular value
decomposition faster. In contrast, for the BSVT algortihm the corresponding
matrix i.e., Z, is not sparse and new techniques for optimizing the computational
effort for the singular value decomposition step are required.

3. Evaluate the numerical performance of the BSVT algorithm for non-
Gaussian low rank data matrices. The numerical results presented in this
thesis pertain to matrices that are low rank (or approximately low rank)
and that follow a multivariate Gaussian distribution. In fact, the LMMSE
estimation step incorporated into the new algorithm is optimal in this context.
However, the applicability of the novel approach is not restricted to this type
of matrices. Evaluating the performance of BSVT using non-Gaussian low
rank data matrices would provide additional insight into the performance of
the proposed algorithm in realistic scenarios.

4. Extend probability recovery bounds to Markovian sampling models.
In this thesis, lower bounds for the probability of recovery for both the inde-
pendent and the joint recovery are presented for the case in which the locations
of the missing entries from each dataset are sampled uniformly at random.
However, this type of sampling has limited applicability in a realistic scenario.
In practice, a sensor failure or a downtime in the communication line leads to
number of consecutive missing observations. This scenario cannot be modelled
using the uniform sampling strategy. In this context, Chapter 4 introduces
a non-uniform sampling strategy that is based on a two state Markov chain.
Providing recovery guarantees under the Markovian sampling model would
provide more insight into the challenges faced by the data acquisition systems
in practical settings.

5. Extend the joint recovery framework to more than two datasets. In
Chapter 5 the joint recovery problem is studied when only two datasets are
combined. However, the number of subsystems in an urban setting is signifi-
cantly larger. That being the case, the joint estimation setting is envisioned
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to integrate a larger number subsystems in the recovery framework. The first
step would to reproduce the results in Chapter 5 using three datasets with the
final objective of generalizing the results for n datasets.
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Appendix A

Proofs

Proofs for Chapter 4

In the following we present two auxiliary lemmas that are instrumental in the proof
of Theorem 1. To that end, let us recall the iterations steps of the SVT algorithm:X(k)

s = Dτ (Y(k−1)
s ),

Y(k)
s = Y(k−1)

s + δsPΩ(M − X(k)
s ),

(A.1)

where the initialization point is chosen as Y(0)
s = 0, δs is the step size that obeys

0 ≤ δs ≤ 2, and the soft-thresholding operator, Dτ , is defined in the following.
For a matrix X ∈ RM×N of rank r with singular value decomposition given by

X = USVT , S = diag({σi(X)}1≤i≤r), (A.2)

where U and V are matrices with orthogonal columns of size M×r and N×r, respec-
tively, and σi(·) denotes the ith singular value of the matrix, the soft-thresholding
operator is defined as

Dτ (X) := UDτ (S)VT , Dτ (S) = diag({(σi(X) − τ)+}), (A.3)

where t+ = max{0, t}.
For the proposed approach, i.e., BSVT, the iterations of the algorithm are


X(k)

b = Dτ (Z(k−1)),
Y(k)

b = Y(k−1)
b + δbPΩ(M − X(k)

b ),
Z(k) = Y(k)

b + L(k),

(A.4)

where the initialization point is chosen as Y(0)
b = 0 and Z(0) = 0, δb is the step size,

the soft-thresholding operator, Dτ , is defined in (A.3), and L(k) is defined in (4.2).
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Using the singular value inequalities in 6.72b(iii) in [100] for the matrix Z(k) gives

σi(Z(k)) ≤ σi(Y(k)
b ) + σmax(L(k)), (A.5)

and
σi(Y(k)

b ) + σmin(L(k)) ≤ σi(Z(k)), (A.6)

which leads to
σi(Y(k)

b ) ≤ σi(Z(k)), (A.7)

where σi(·) denotes the ith singular value, σmax(·) denotes the maximum singular
value and σmin(·) denotes the minimum singular value.

Lemma 6. Given the BSVT iteration steps defined in (A.4), the following singular
value inequality holds

σi(X(k)
b ) ≤ σi(Dτ (Y(k−1)

b )) + σmax(L(k−1)), (A.8)

for every iteration k.

Proof. Given the definition of the matrix X(k)
b in (A.4), the singular values of X(k)

b

are given by
σi(X(k)

b ) = (σi(Z(k−1)) − τ)+. (A.9)

Using the inequality from (A.5), leads to

(σi(Z(k−1)) − τ)+ ≤ (σi(Y(k−1)
b ) + σmax(L(k−1)) − τ)+, (A.10)

which can be further extended as

(σi(Y(k−1)
b ) + σmax(L(k−1)) − τ)+ ≤ (σi(Y(k−1)

b ) − τ)+ + σmax(L(k−1)). (A.11)

Combining (A.10) and (A.11) gives

(σi(Z(k−1)) − τ)+ ≤ (σi(Y(k−1)
b ) − τ)+ + σmax(L(k−1)), (A.12)

which concludes the proof.

Lemma 7. Given the BSVT iteration steps defined in (A.4), there exists a step size
δb such that

σi(Y(k)
b ) ≤ σi(Y(k)

s ), (A.13)

for every iteration k.



129

Proof. Note that for the first iteration, i.e. k = 1, we have that

Y(1)
s = δsPΩ(M), (A.14)

and
Y(1)

b = δbPΩ(M). (A.15)

It can be shown that σi(Y(1)
b ) ≤ σi(Y(1)

s ) when δb ≤ δs. Therefore, there exists a
value of δb such that

σi(Y(1)
b ) ≤ σi(Y(1)

s ). (A.16)

Suppose that for iteration k the following inequality is satisfied

σi(Y(k)
b ) ≤ σi(Y(k)

s ). (A.17)

We proceed by induction and show that

σi(Y(k+1)
b ) ≤ σi(Y(k+1)

s ). (A.18)

Given the iterations of the SVT algorithm in (A.1), the matrix Ys at iteration (k+1)
is given by

Y(k+1)
s = Y(k)

s + δsPΩ(M − X(k+1)
s ). (A.19)

Using the singular value inequalities in 6.72b(iii) in [100] for the matrix Y(k+1)
s yields

σi(Y(k+1)
s ) ≥ σi(Y(k)

s ) + σmin(δsPΩ(M − X(k+1)
s )). (A.20)

For the BSVT algorithm, Yb at iteration k + 1 is defined as

Y(k+1)
b = Y(k)

b + δbPΩ(M − X(k+1)
b ), (A.21)

and using the singular value inequalities in 6.72b(iii) in [100] for the matrix Y(k+1)
b

gives
σi(Y(k+1)

b ) ≤ σi(Y(k)
b ) + σmax(δbPΩ(M − X(k+1)

b )). (A.22)

Combining (A.20) and (A.22) with (A.17) results in the claim (A.18) being equivalent
to

σmax(δbPΩ(M − X(k+1)
b )) ≤ σmin(δsPΩ(M − X(k+1)

s )), (A.23)

which is equivalent to

δb

δs

σmax(PΩ(M − X(k+1)
b )) ≤ σmin(PΩ(M − X(k+1)

s )). (A.24)
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Since σmin(PΩ(M − X(k+1)
s ) ≥ 0, there exists a value for δb for which the inequality

is satisfied. To guarantee that the inequality is satisfied at each iteration k, the
value of δb is the minimum value that satisfies the inequality in (A.24) for k ∈
{1, 2, ..., kmax}.

Theorem 1. Let X(k)
b be the estimate produced by the BSVT algorithm at iteration

k and X(k)
s be the estimate produced by the SVT algorithm at iteration k with L(k)

denoting the LMMSE estimation output at iteration k as defined in (4.2). If the
following holds:

tr
(
X(k)

b MT
)

≥ tr
(
X(k)

s MT
)
, (A.25)

and
lim

k→∞
σmin(L(k)) = 0, (A.26)

then
∥X(k)

b − M∥2
F ≤ ∥X(k)

s − M∥2
F . (A.27)

Proof. The inequality in (A.27) can be expanded as

tr((X(k)
b − M)(X(k)

b − M)T ) ≤ tr((X(k)
s − M)(X(k)

s − M)T ), (A.28)

which is equivalent to

∥X(k)
b ∥2

F + ∥M∥2
F − 2tr

(
X(k)

b MT
)

≤ ∥X(k)
s ∥2

F + ∥M∥2
F − 2tr

(
X(k)

s MT
)
, (A.29)

where ∥M∥2
F can be subtracted from both sides resulting in

∥X(k)
b ∥2

F − 2tr
(
X(k)

b MT
)

≤ ∥X(k)
s ∥2

F − 2tr
(
X(k)

s MT
)
. (A.30)

Note that
∥X(k)

b ∥2
F =

n∑
i=1

σ2
i (X(k)

b ), (A.31)

where
σi(X(k)

b ) = (σi(Z(k−1)) − τ)+, (A.32)

and n denotes the number of singular values of the matrix X(k)
b . Using 6.72b(iii) in

[100] for the matrix X(k)
b gives

σi(X(k)
b ) ≥ (σi(Y(k−1)

b ) + σmin(L(k−1)) − τ)+, (A.33)
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where

(σi(Y(k−1)
b ) + σmin(L(k−1)) − τ)+ =

(σi(Y(k−1)
b ) − τ)+ + σmin(L(k−1)), for σi(Y(k−1)

b ) ≥ τ

σi(Y(k−1)
b ) + σmin(L(k−1)) − τ, for

σi(Y(k−1)
b ) < τ

σi(Y(k−1)
b ) + σmin(L(k−1)) > τ

0, otherwise.

(A.34)

Without loss of generality, assume that the singular values of the matrix Y(k−1)
b are

ordered such that σi(Y(k−1)
b ) ≥ σj(Y(k−1)

b ) for i ≤ j (i.e., descending order) and define
n1 and n2 such that σi(Y(k−1)

b ) ≥ τ for i = 1, n1 and σi(Y(k−1)
b ) + σmin(L(k−1)) > τ

for i = n1 + 1, n2. Therefore

∥X(k)
b ∥2

F =
n1∑
i=1

σ2
i (X(k)

b ) +
n2∑

i=n1+1
σ2

i (X(k)
b ) +

n∑
i=n2+1

σ2
i (X(k)

b ), (A.35)

which leads to

∥X(k)
b ∥2

F ≥
n1∑
i=1

(
(σi(Y(k−1)

b ) − τ)+ + σmin(L(k−1))
)2

+

n2∑
i=n1+1

(
σi(Y(k−1)

b ) + σmin(L(k−1)) − τ
)2
,

(A.36)

that is equivalent with

∥X(k)
b ∥2

F ≥∥Dτ (Y(k−1)
b )∥2

F + 2
n1∑
i=1

σi(Dτ (Y(k−1)
b ))σmin(L(k−1)) + n1σ

2
min(L(k−1))+

n2∑
i=n1+1

(σi(Y(k−1)
b ) + σmin(L(k−1)) − τ)2.

(A.37)

Combining (A.30) with (A.37) gives

∥Dτ (Y(k−1)
b )∥2

F + n1σ
2
min(L(k−1)) + 2

n1∑
i=1

σi(Dτ (Y(k−1)
b ))σmin(L(k−1))+

n2∑
i=n1+1

(σi(Y(k−1)
b ) + σmin(L(k−1)) − τ)2 ≤ ∥Dτ (Y(k−1)

s )∥2
F +

2tr
(
X(k)

b MT
)

− 2tr
(
Dτ (Y(k−1)

s )MT
)
.

(A.38)

Using Lemma 7, the following inequality holds

∥Dτ (Y(k−1)
b )∥2

F ≤ ∥Dτ (Y(k−1)
s )∥2

F , (A.39)
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which implies that the inequality in (A.38) is satisfied if

n1σ
2
min(L(k−1)) + 2

n1∑
i=1

σi(Dτ (Y(k−1)
b ))σmin(L(k−1))

+
n2∑

i=n1+1
(σi(Y(k−1)

b ) + σmin(L(k−1)) − τ)2 ≤ 2tr
(
X(k)

b MT
)

− 2tr
(
X(k)

s MT
)
.

(A.40)

Let lim
k→∞

σmin(L(k)) = 0 then

n1σ
2
min(L(k−1)) → 0. (A.41)

Moreover, it also holds that

2
n1∑
i=1

σi(Dτ (Y(k−1)
b ))σmin(L(k−1)) → 0, (A.42)

and since (σi(Yb) + σmin(L(k−1)) − τ) < σmin(L(k−1)) for n1 < i ≤ n2, then

n2∑
i=n1+1

(σi(Yb) + σmin(L(k−1)) − τ)2 → 0. (A.43)

Consequently, the inequality in (A.40) becomes

0 ≤ 2tr
(
X(k)

b MT
)

− 2tr
(
X(k)

s MT
)
, (A.44)

which concludes the proof.

Corollary 1.1. Let ks be the last iteration of the SVT algorithm and denote by X(ks)
s

the output of the SVT algorithm. For the case in which X(k)
b MT and X(k)

s MT are
Hermitian, the condition (A.25) is equivalent to

0 ≤ 2
rs∑

i=1
σi(X(ks)

s )
(
σmax(L(ks)) − σi(X(ks)

s )
)

+ 2
(
∥X(ks)

s ∥∗ + σmax(L(ks))
)
ε, (A.45)

where rs denotes the rank of the matrix X(ks)
s , σi(X(ks)

s ) denotes the ith singular
value of the matrix X(ks)

s and σmax(L(ks)) denotes the maximum singular value of the
matrix L(ks).

Proof. When the matrix X(k)
b MT is Hermitian, the trace term in (A.25) is given by

(6.57 in [100])

tr
(
X(k)

b MT
)

=
n∑

i=1
σi(X(k)

b )σp(i)(MT ), (A.46)

where p(i) is the ith element of a permutation of {1, 2, ..., n} and n denotes the
number of singular values.
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Using Lemma 6, (A.46) becomes

tr
(
X(k)

b MT
)

≤
n∑

i=1

(
σi(Dτ (Y(k−1)

b )) + σmax(L(k−1))
)
σp(i)(MT ), (A.47)

which leads to

tr
(
X(k)

b MT
)

≤
n∑

i=1
σi(Dτ (Y(k−1)

b ))σp(i)(MT ) + σmax(L(k−1))
n∑

i=1
σp(i)(MT ). (A.48)

This is equivalent to

tr
(
X(k)

b MT
)

≤
n∑

i=1
σi(Dτ (Y(k−1)

b ))σp(i)(M) + ∥M∥∗σmax(L(k−1)). (A.49)

Combining (A.49) with Lemma 7 leads to

tr
(
X(k)

b MT
)

≤
n∑

i=1
σi(Dτ (Y(k−1)

s ))σp(i)(M) + ∥M∥∗σmax(L(k−1)). (A.50)

For the second trace term in (A.25), when X(k)
s MT is Hermitian, the same result

in 6.57 in [100] gives

tr
(
X(k)

s MT
)

=
n∑

i=1
σi(X(k)

s )σq(i)(MT ), (A.51)

where q(i) is the ith element of a permutation of {1, 2, ..., n}.
Combining (A.25), (A.50) and (A.51) gives

0 ≤ ∥M∥∗σmax(L(k−1)) +
n∑

i=1
σi(X(k)

s )σp(i)(M) −
n∑

i=1
σi(X(k)

s )σq(i)(M). (A.52)

Therefore (A.52) is equivalent to

0 ≤ ∥M∥∗σmax(L(k−1)) + β, (A.53)

with
β =

n∑
i=1

σi(Xk
s)σp(i)(M) −

n∑
i=1

σi(Xk
s)σq(i)(M), (A.54)

where p(i) is the ith element of a permutation of {1, 2, ..., n} and q(i) is the ith
element of a permutation of {1, 2, ..., n}.

Lemma 8. Given the definition of β in (A.54), the minimum value of β is given by
min

p,q
β = ∑n

i=1 σi(X(k)
s )σn−i+1(M) −∑n

i=1 σi(X(k)
s )σi(M), when the singular values of

both matrices are ordered in descending order.
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Proof. We proceed to prove the result by contradiction. Since β is defined as the
subtraction of two positive terms, the minimum is given by

min
p,q

β = min
p

n∑
i=1

σi(X(k)
s )σp(i)(M) − max

q

n∑
i=1

σi(X(k)
s )σq(i)(M). (A.55)

Without loss of generality, consider that the singular values of X(k)
s are ordered in

descending order. Denote by

α =
n∑

i=1
σi(X(k)

s )σp(i)(M), (A.56)

where σi(X(k)
s ) are ordered in descending order and σp(i)(M) are ordered in ascending

order.
Assume that there is a permutation p′ in which positions i and j are switched such
that

α′ =
n∑

i=1
σi(X(k)

s )σp′(i)(M) (A.57)

satisfies α′ ≤ α. This is equivalent to

n∑
i=1

σi(X(k)
s )σp′(i)(M) ≤

n∑
i=1

σi(X(k)
s )σp(i)(M). (A.58)

After some algebraic manipulations, the inequality boils down to

σi(X(k)
s )

(
σp(j)(M) − σp(i)(M)

)
≤ σj(X(k)

s )
(
σp(j)(M) − σp(i)(M)

)
. (A.59)

But
σp(j)(M) ≥ σp(i)(M), (A.60)

and
σi(X(k)

s ) ≥ σj(X(k)
s ), (A.61)

which contradicts the assumption that α′ ≤ α.
Similarly to the minimum,

max
q

n∑
i=1

σi(X(k)
s )σq(i)(M) (A.62)

is obtained when both σi(X(k)
s ) and σq(i)(M) are ordered in descending order. There-

fore
min

p,q
β =

n∑
i=1

σi(X(k)
s )σn−i+1(M) −

n∑
i=1

σi(X(k)
s )σi(M), (A.63)

when σi(X(k)
s ) and σi(M) are ordered in descending order.
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Using Lemma 8, (A.53) becomes

0 ≤ 2∥M∥∗σmax(L(k−1)) + 2
n∑

i=1
σi(X(k)

s )σn−i+1(M) − 2
n∑

i=1
σi(X(k)

s )σi(M), (A.64)

where the singular values of X(k)
s and M are ordered in descending order.

Moreover, when the SVT recovery is successful the following equality is satisfied

σi(M) = σi(Xs) + εi, (A.65)

where εi is a small constant. This is equivalent to

∥M∥∗ = ∥Xs∥∗ + ε, (A.66)

where ε = ∑n
i=1 εi. Combining (A.65) and (A.66) with (A.64) for k = ks that is last

iteration of the SVT algorithm leads to

0 ≤ σmax(Lks)(∥Xks
s ∥∗ + ε) +

min{M,N}∑
i=1

σi(Xks
s )(σmin{M,N}−i+1(Xks

s ) − σi(Xks
s )+

εmin{M,N}−i+1 + εi),
(A.67)

where the singular values of X(k)
s and M are ordered in descending order.
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Proofs for Chapter 5

Lemma 1. Given two low rank matrices M1, M2 ∈ RM×N and the combined matrix

M =
 M1

M2

 ∈ R2M×N , the rank of M is bounded by

max{rank(M1), rank(M2)} ≤ rank(M) ≤ rank(M1) + rank(M2). (A.68)

Proof. The rank of the matrix M is defined as (3.23(a) in [100])

rank(M) = rank(M1) + rank(M2) − d, (A.69)

where d is the intersection of the row subspaces of the matrices M1 and M2 given by

d = dim[C(MT
1 ) ∩ C(MT

2 )]. (A.70)

Since, the intersection the two subspaces obeys

dim[C(MT
1 ) ∩ C(MT

2 )] ≥ 0, (A.71)

the rank of the matrix M satisfies

rank(M) ≤ rank(M1) + rank(M2). (A.72)

Moreover, based on (A.69), the rank can be lower bounded by

rank(M) ≥ rank(M1) + rank(M2) − max{d}, (A.73)

where max{d} denotes the maximum possible value for the intersection of the row
subspaces of M1 and M2. Note that

dim[C(MT
1 )] = r1, (A.74)

and
dim[C(MT

2 )] = r2. (A.75)

Therefore, the intersection of the two subspaces is upper bounded by

dim[C(MT
1 ) ∩ C(MT

2 )] ≤ min{r1, r2}. (A.76)

Consequently, the rank of M is lower bounded by

rank(M) ≥ r1 + r2 − min{r1, r2}, (A.77)
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which is equivalent to
rank(M) ≥ max{r1, r2}. (A.78)

Combining (A.72) and (A.78) gives

max{r1, r2} ≤ rank(M) ≤ r1 + r2. (A.79)

Lemma 2. (Necessary condition for beneficial joint recovery) Let M1,M2 ∈ RM×N

with rank r1 and r2 respectively, there exists a value of r for which the joint recovery
is beneficial if

M(min{r1, r2} − max{r1, r2}) > min{r1, r2}(min{r1, r2} −N). (A.80)

Proof. The inequality in (5.19) defines the beneficial joint recovery cases. This is
equivalent to

(2M +N − r)r < (M +N − r1)r1 + (M +N − r2)r2. (A.81)

Moving all the terms on the left side leads to

− r2 + (2M +N)r − (M +N)(r1 + r2) + r2
1 + r2

2 < 0. (A.82)

The term on the left side is a quadratic with the variable r given by

− r2 + (2M +N)r − (M +N)(r1 + r2) + r2
1 + r2

2 = 0. (A.83)

The sign of the function depends on ∆ where

∆ = (2M +N)2 + 4r2
1 + 4r2

2 − 4(M +N)(r1 + r2). (A.84)

Showing that ∆ > 0 is equivalent to

4M2 +N2 + 4MN + 4r2
1 + 4r2

2 − 4Mr1 + 4Mr2 − 4Nr1 − 4Nr2 > 0, (A.85)

where dividing both sides by 4 leads to

M2 + N2

4 +MN + r2
1 + r2

2 −Mr1 −Mr2 −Nr1 −Nr2 > 0. (A.86)

This is equivalent to

MN +M(M −N) + N2

4 +MN + r2
1 + r2

2 −Mr1 −Mr2 −Nr1 −Nr2 > 0, (A.87)
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which can be written as

r2(r2 −N) + r1(r1 −N) +M(N − r1) +M(N − r2) + N2

4 +M2 −MN > 0, (A.88)

leading to

(N − r2)(M − r2) + (N − r1)(M − r1) +
(
M − N

2

)2

> 0, (A.89)

which is a sum of positive terms when the inequalities in (5.5) are satisfied. Conse-
quently, equation (5.19) is satisfied when

r < ∇1 or r > ∇2, (A.90)

where

∇1 = (2M +N) −
√

∆
2 ,

∇2 = (2M +N) +
√

∆
2 ,

(A.91)

and ∆ is defined in equation (A.84). However, Lemma 1 bounds the rank r by

max{r1, r2} ≤ r ≤ r1 + r2. (A.92)

In the following, the idea is to show under which conditions the solution ∇1 is in
the interval

[
max{r1, r2}, r1 + r2

]
. Let us begin by proving the following inequality

∇1 < r1 + r2. (A.93)

This is equivalent to

2M +N −
√

(2M +N)2 − 4(M +N)(r1 + r2) + 4r2
1 + 4r2

2

2 < r1 + r2,
(A.94)

which can be written as

(2M +N − 2r1 − 2r2)2 < (2M +N)2 − 4(M +N)(r1 + r2) + 4r2
1 + 4r2

2. (A.95)

This leads to the following inequality

(2M +N)2 + (2r1 + 2r2)2 − 2(2M +N)(2r1 + 2r2) <
(2M +N)2 − 4(M +N)(r1 + r2) + 4r2

1 + 4r2
2.

(A.96)
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Subtracting the term (2M +N)2 from both sides gives

(2r1 + 2r2)2 − 4(2M +N)(r1 + r2) < −4(M +N)(r1 + r2) + 4r2
1 + 4r2

2, (A.97)

further expanding the term on the left sides gives

4r2
1 + 4r2

2 + 8r1r2 − 4(M +N)(r1 + r2) − 4M(r1 + r2) <
−4(M +N)(r1 + r2) + 4r2

1 + 4r2
2,

(A.98)

which after subtracting the term −4(M +N)(r1 + r2) + 4r2
1 + 4r2

2 from both sides
leads to

8r1r2 − 4M(r1 + r2) < 0. (A.99)

Dividing both sides by 4 gives

2r1r2 −M(r1 + r2) < 0, (A.100)

which can be written as

r1(r2 −M) + r2(r1 −M) < 0. (A.101)

When the inequalities in (5.5) are satisfied the term on the left side is always negative.
Therefore the inequality in (A.93) is satisfied. The second part is to show when

∇1 > max{r1, r2}, (A.102)

This is equivalent to

2M +N −
√

(2M +N)2 − 4(M +N)(r1 + r2) + 4r2
1 + 4r2

2

2 > max{r1, r2},

(A.103)

which leads to

2M +N − 2max{r1, r2} >
√

(2M +N)2 − 4(M +N)(r1 + r2) + 4r2
1 + 4r2

2.

(A.104)

Raising both sides to the power of two gives

(2M +N − 2max{r1, r2})2 > (2M +N)2 − 4(M +N)(r1 + r2) + 4r2
1 + 4r2

2,

(A.105)
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which is the same as

(2M +N)2 + 4(max{r1, r2})2 − 4(2M +N)max{r1, r2} >
(2M +N)2 − 4(M +N)(r1 + r2) + 4r2

1 + 4r2
2.

(A.106)

Subtracting (2M +N)2 from both sides gives

4(max{r1, r2})2 − 4(2M +N)max{r1, r2} > −4(M +N)(r1 + r2) + 4r2
1 + 4r2

2.

(A.107)

Dividing both sides of the last inequality by 4 leads to

(max{r1, r2})2 − (2M +N)max{r1, r2} > −(M +N)(r1 + r2) + r2
1 + r2

2, (A.108)

which is equivalent to

(max{r1, r2})2 − (M +N)max{r1, r2} −Mmax{r1, r2} >
−(M +N)(r1 + r2) + r2

1 + r2
2.

(A.109)

To simplify the analysis we divide the problem into two cases. Case 1, when

max{r1, r2} = r1. (A.110)

Making the substitution in (A.109) leads to

r2
1 − (M +N)r1 −Mr1 > −(M +N)(r1 + r2) + r2

1 + r2
2. (A.111)

Subtracting r2
1 − (M +N)r1 from both sides gives

−Mr1 > −(M +N)r2 + r2
2, (A.112)

which can be written as

Mr2 −Mr1 > r2
2 −Nr2. (A.113)

The last inequality is equivalent to

M(r2 − r1) > r2(r2 −N). (A.114)

Case 2:

max{r1, r2} = r2. (A.115)
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Making the substitution in (A.109) leads to

r2
2 − (M +N)r2 −Mr2 > −(M +N)(r1 + r2) + r2

1 + r2
2. (A.116)

Subtracting r2
2 − (M +N)r2 from both sides gives

−Mr2 > −(M +N)r1 + r2
1, (A.117)

which can be written as

Mr1 −Mr2 > r2
1 −Nr1. (A.118)

The last inequality is equivalent to

M(r1 − r2) > r1(r1 −N). (A.119)

Combining the results in Case 1 and Case 2 results in (A.102) being satisfied when
the following inequality holds

M(min{r1, r2} − max{r1, r2}) > min{r1, r2}(min{r1, r2} −N).

Theorem 2. (Necessary and sufficient condition for beneficial joint recovery) Given
two low rank matrices M1,M2 ∈ RM×N the joint recovery of the two matrices requires
less samples that the independent recovery when

M(min{r1, r2} − max{r1, r2}) > min{r1, r2}(min{r1, r2} −N), (A.120)

and the rank of the aggregated matrix satisfies

r <
2M +N −

√
(2M +N)2 − 4(M +N)(r1 + r2) + 4r2

1 + 4r2
2

2 . (A.121)

Proof. The first part of the theorem is included in the proof for Lemma 2. For the
second part, i.e., the rank inequality, the same ideas as in the proof for Lemma 2 is
followed. Recall that the beneficial joint recovery is defined when

k < k1 + k2. (A.122)

This is equivalent to

(2M +N − r)r < (M +N − r1)r1 + (M +N − r2)r2, (A.123)
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which is a quadratic inequality. In this context, Lemma 2 shows that when the
inequality in (5.30) is satisfied one of the solutions of the quadratic is in the feasible
interval for the rank of the combined matrix which is defined by Lemma 1 as

∇1 ∈
[
max{r1, r2}, r1 + r2

]
, (A.124)

where

∇1 = (2M +N) −
√

∆
2 . (A.125)

Therefore, the inequality for the beneficial joint recovery is satisfied when

r < ∇1, (A.126)

which is equivalent to

r <
2M +N −

√
(2M +N)2 − 4(M +N)(r1 + r2) + 4r2

1 + 4r2
2

2 .

Theorem 3. Let M1 ∈ RM×N and M2 ∈ RM×N , with rank(M1) = r1, and
rank(M2) = r2. When the locations of the missing entries are sampled uniformly at
random with probability p1 and p2 respectively, the probability of recovery is bounded
by

Pr[Ei] ≥

1 − e−2
(MNpi−ki)2

MN , for pi >
ki

MN

0, for pi ≤ ki

MN
,

(A.127)

where Ei is the event in which the matrix Mi is recovered and i ∈ {1, 2}.

Proof. When the entries in M1 and M2 are uniformly sampled with probability p1

and p2 respectively, the probability of the events E1 and E2 is given by

Pr[E1] =
MN∑

Kj=K1

(MN)!
Kj!(MN −Kj)!

p
Kj

1 (1 − p1)MN−Kj , (A.128)

and

Pr[E2] =
MN∑

Kj=K2

(MN)!
Kj!(MN −Kj)!

p
Kj

2 (1 − p2)MN−Kj , (A.129)

respectively. Using Hoeffding’s inequality for Bernoulli random variables gives

Pr[Ki ≤ (pi − ε)MN ] ≤ e−2ε2MN , (A.130)
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for ε > 0. Therefore, setting

ε = MNpi − ki

MN
, (A.131)

for i ∈ {1, 2} results in

Pr[Ki ≤ ki] ≤ e−2
(MNpi−ki)2

MN . (A.132)

Note that in order to satisfy ε > 0 the inequalities hold only for

pi >
ki

MN
, (A.133)

where i ∈ {1, 2}. Interestingly, the value pi = ki

MN
is the sampling probability that

on average generates a set of ki available observations from the matrix Mi. Also

Pr[Ki ≤ ki] + Pr[Ki > ki] = 1. (A.134)

Therefore, the second probability term is

Pr[Ki > ki] = 1 − Pr[Ki ≤ ki], (A.135)

which is bounded by (A.132) yielding

Pr[Ki > ki] ≥ 1 − e−2
(MNpi−ki)2

MN , (A.136)

for pi >
ki

MN
and i ∈ {1, 2}.

Therefore, the probability of recovering the matrix Mi when the entries are
sampled uniformly at random with probability pi is bounded by

Pr[Ei] ≥

1 − e−2
(MNpi−ki)2

MN , for pi >
ki

MN

0, for pi ≤ ki

MN
,

(A.137)

where i ∈ {1, 2}.

Theorem 4. Let M1 ∈ RM×N and M2 ∈ RM×N , with rank(M1) = r1, and
rank(M2) = r2. Given the combined matrix M = [MT

1 MT
2 ]T of rank r, when

the missing entries from M1 and M2 are sampled uniformly at random with proba-
bility p1 and p2, respectively, the probability of recovering the matrix M is bounded
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by

Pr[E3] ≥

1 − e− (MN(p1+p2)−k)2
MN , for p1 + p2 >

k
MN

0, for p1 + p2 ≤ k
MN

,
(A.138)

where E3 is the event in which the matrix M is recovered and is defined in (5.35).

Proof. For the joint recovery case, i.e., the event E3, the number of available entries
is K1 +K2 which is a random variable generated by a Poisson binomial distribution
with parameters 2MN and p [113], where p is defined in (5.32). In this framework,
Lemma 1 in [116] bounds the Poisson binomial cumulative distribution function
by the binomial cumulative distribution function with parameters 2MN and p1+p2

2 .
Therefore the following inequality holds

Pr[K1 +K2 ≤ k] ≤
2MN∑
Kj=k

(2MN)!
Kj!(2MN −Kj)!

(
p1 + p2

2

)Kj
(

1 − p1 + p2

2

)2MN−Kj

.

(A.139)

Using the Hoeffding’s inequality for binomial distributions with parameters 2MN

and p1+p2
2 yields

Pr[K1 +K2 ≤ k] ≤ e− (MN(p1+p2)−k)2
MN , (A.140)

for p1 + p2 >
k

MN
.

Moreover

Pr[K1 +K2 ≤ k] + Pr[K1 +K2 > k] = 1. (A.141)

Combining (A.140) and (A.141) leads to

Pr[K1 +K2 > k] ≥ 1 − e− (MN(p1+p2)−k)2
MN , (A.142)

for p1 + p2 >
k

MN
, which is equivalent to

Pr[E3] ≥ 1 − e− (MN(p1+p2)−k)2
MN , (A.143)

for p1 + p2 >
k

MN
.

Therefore, the probability of recovering the matrix M =
 M1

M2

 when the entries

in M1 are sampled uniformly at random with probability p1 and the entries in M2
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are sampled uniformly at random with probability p2 is bounded by

Pr[E3] ≥

1 − e− (MN(p1+p2)−k)2
MN , for p1 + p2 >

k
MN

0, for p1 + p2 ≤ k
MN

.
(A.144)

Lemma 3. Matrix Mi ∈ RM×N with rank(Mi) = ri is recovered with probability at
least qi if the sampling is uniformly at random with probability pi that is bounded by

pi ≥
2MN(M +N − ri)ri +

√
−2M3N3 ln(1 − qi)

2M2N2 , (A.145)

for i ∈ {1, 2}.

Proof. The probability of recovering the matrix Mi is bounded by

Pr[Ei] ≥ 1 − e−2
(MNpi−Ki)2

MN , (A.146)

when pi ≥ Ki

MN
, where Ki = (M +N − ri)ri. In this context, the claim is equivalent

to showing that

1 − e−2
(MNpi−Ki)2

MN ≥ qi, (A.147)

which is the same as

−2(MNpi −Ki)2

MN
≥ ln(1 − qi). (A.148)

Expanding the term on the left side and moving all terms to the left side leads to

M2N2p2
i − 2MNKipi +Ki

2 + 1
2MN ln(1 − q) ≥ 0. (A.149)

In this context, the value of ∆ for the quadratic is given by

∆ = 4M2N2Ki
2 − 4M2N2

(
Ki

2 + 1
2MN ln(1 − qi)

)
, (A.150)

which is further equal to

∆ = −2M3N3 ln(1 − qi). (A.151)

Note that for qi ∈ (0, 1) the log term is bounded by

−∞ < ln(1 − qi) < 0. (A.152)
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Consequently, ∆ is positive

∆ > 0. (A.153)

In this context, the inequality in (A.149) is satisfied when pi ≤ x1

pi ≥ x2,
(A.154)

where x1 and x2 are the two solutions of the quadratic and are given by

x1 =
2MNKi −

√
−2M3N3 ln(1 − qi)

2M2N2 , (A.155)

and

x2 =
2MNKi +

√
−2M3N3 ln(1 − qi)

2M2N2 . (A.156)

However, the probability pi is bounded by

pi ≥
Ki

MN
. (A.157)

The next step in the proof is to show that

x2 ≥
Ki

MN
. (A.158)

This yields

2MNKi +
√

−2M3N3 ln(1 − qi)
2M2N2 ≥

Ki

MN
, (A.159)

which is equivalent to

2M2N2Ki +
√

−2M4N4 ln(1 − qi) ≥ 2M2N2Ki. (A.160)

Subtracting the term 2M2N2Ki from both sides leads to

√
−2M4N4 ln(1 − qi) ≥ 0, (A.161)

which is true for qi ∈ (0, 1). Consequently, the inequality

x2 ≥
Ki

MN
, (A.162)
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is true for qi ∈ (0, 1). Moreover, we can show that the following inequality also holds

x1 <
Ki

MN
. (A.163)

This is equivalent to

2MNKi −
√

−2M3N3 ln(1 − qi)
2M2N2 <

Ki

MN
, (A.164)

which is the same as

2M2N2Ki −
√

−2M4N4 ln(1 − qi) < 2M2N2Ki. (A.165)

Subtracting 2M2N2Ki from both sides leads to

√
−2M4N4 ln(1 − qi) > 0, (A.166)

which is true for qi ∈ (0, 1). Combining (A.154) with (A.157), (A.162) and (A.163)
leads to the final solution given by

pi ≥
2MNKi +

√
−2M3N3ln(1 − qi)

2M2N2 .

Lemma 4. Matrix M =
 M1

M2

 ∈ R2M×N with rank(M) = r is recovered with

probability at least q if the matrices M1 and M2 are sampled uniformly at random
with probabilities p1 and p2, respectively, and the sampling probabilities satisfy

p1 + p2 ≥
2MN(M +N − r)r +

√
−4M3N3 ln(1 − q)

2M2N2 . (A.167)

Proof. The probability of recovering the matrix M is bounded by

Pr[E3] ≥ 1 − e− (MN(p1+p2)−K)2
MN , (A.168)

when p1 + p2 ≥ K
MN

, and K = (M +N − r)r. In this context, the claim is equivalent
to showing that

1 − e− (MN(p1+p2)−K)2
MN ≥ q, (A.169)
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which is the same as

−(MN(p1 + p2) −K)2

MN
≥ ln(1 − q). (A.170)

Denote by p3 the sum of the two probabilities of sampling i.e., p3 = p1 + p2. Then
the inequality is equivalent to

M2N2p2
3 − 2MNKp3 +K2 +MN ln(1 − q) ≥ 0. (A.171)

To determine the sign of the quadratic depending on the value of p3, the value of ∆
is analyzed

∆ = 4M2N2K2 − 4M2N2K2 − 4M3N3 ln(1 − q), (A.172)

which is equivalent to

∆ = −4M3N3 ln(1 − q). (A.173)

Consequently ∆ > 0 for q ∈ (0, 1). Therefore, the inequality in (A.171) is satisfied
when  p3 ≤ y1

p3 ≥ y2,
(A.174)

where

y1 =
2MNK −

√
−4M3N3 ln(1 − q)

2M2N2 , (A.175)

and

y2 =
2MNK +

√
−4M3N3 ln(1 − q)

2M2N2 . (A.176)

However, the probability p3 is bounded by

p3 ≥ K

MN
. (A.177)

In this context, the next step is to show that

y2 ≥ K

MN
. (A.178)



149

This is equivalent to

2MNK +
√

−4M3N3 ln(1 − q)
2M2N2 ≥ K

MN
, (A.179)

which can be written as

2M2N2K +
√

−4M4N4 ln(1 − q) ≥ 2M2N2K. (A.180)

Subtracting 2M2N2K from both sides leads to

√
−4M4N4 ln(1 − q) ≥ 0, (A.181)

which is true for q ∈ (0, 1). Moreover, the following inequality also holds

y1 <
K

MN
. (A.182)

This is equivalent to

2MNK −
√

−4M3N3 ln(1 − q)
2M2N2 <

K

MN
, (A.183)

which is the same as

2M2N2K −
√

−4M4N4 ln(1 − q) < 2M2N2K. (A.184)

Subtracting 2M2N2K from both sides leads to

√
−4M4N4 ln(1 − q) > 0, (A.185)

which is true for q ∈ (0, 1) and therefore the inequality in (A.182) holds. Combining
the solutions in (A.174) with the condition in (A.177) and the results in (A.178) and
(A.182) leads to the final solution given by

p3 ≥
2MNK +

√
−4M3N3 ln(1 − q)

2M2N2 . (A.186)

Coming back to the original notation gives

p1 + p2 ≥
2MNK +

√
−4M3N3 ln(1 − q)

2M2N2 .
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Lemma 5. Let ψ ∈ [0, 1] and A ∈ SM
+ , then the matrix Σ =

 A ψA
ψA A

 ∈ S2M
+ .

Proof. Using the Schur complement [117] the matrix Σ is positive semi-definite if
and only if the matrix A − ψAA−1ψA is positive semi-definite. Consequently, the
matrix Σ is positive semi-definite if and only if (1 − ψ2)A is positive semi-definite.
However, the matrix A is positive semi-definite and therefore, when ψ ∈ [0, 1], the
matrix (1 − ψ2)A is positive semi-definite.
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