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Abstract

This thesis describes the further development of an existing facility for performing

electron spectroscopy, and its application to the study of organic/semiconductor and

organic/oxide interfaces. A monochromated x-ray source has been installed on the

system to allow x-ray photoelectron spectroscopy (XPS) to be performed in addition

to ultraviolet photoelectron spectroscopy (UPS) and the uncommon technique of

metastable de-excitation spectroscopy (MDS). The resulting instrument is the first

of its kind in the world, allowing XPS, UPS, and MDS to all be performed on the

same surface, revealing detailed and complementary information on the electronic,

magnetic, and chemical properties of the sample.

To test the instrument and gain experience in XPS, a detailed study of the carbon

chemistry of graphene oxide prepared under different conditions was conducted.

Additional experience in the application of spin-polarised MDS, obtained during a

three-month visit to the National Institute for Materials Science (NIMS) in Tsukuba,

Japan, is described culminating in a study of Fe/Fe3O4 interfaces. It is shown that

the two layers in this system are ferromagnetically coupled which leads to potential

applications as a synthetic antiferromagnet in a spintronics device. The ability to

grow high-quality Fe3O4 thin films on the York system is also demonstrated.

The final chapters of the thesis describe the study of interfaces formed from C60

deposited on a Si(111) substrate and a La0.66Sr0.33MnO3 (LSMO) substrate. The

former study was conducted to gain experience in the preparation of organic inter-

faces but revealed important details on the nature of this technologically-relevant

interface. It also demonstrates the power of MDS in revealing intramolecular elec-

tronic structure that is not observable using UPS. Similarly, the study of C60/LSMO

interfaces is relevant to the development of organic spintronics devices. However, it

is shown that C60 adsorbs on LSMO in clusters at low coverage with a flat film only

forming at coverages of 25 monolayers and above. These findings will help in the

effort to incorporate these materials in future organic devices.
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7.13 Graph of XPS data taken after various depositions coverages and after
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Chapter 1

Introduction

No longer constrained to the laboratories of academic research, organic electronics

is now a multi-billion dollar industry that is still continuing to grow [1]. Organic

devices have been incorporated into everyday technology such as smartphones and

TVs, where the use of organic light emitting diodes (OLEDs) [2] dominates as the

basis for their displays. These developments are the most impactful outcome of

the field of organic semiconductor (OSC) research with associated devices present-

ing a number of advantages over their traditional inorganic counterparts in cheaper

production costs, increased versatility, compatibility with flexible substrates, trans-

parency etc. [3, 4, 5]. These advantages allow the application of OSCs to a wide

variety of fields beyond consumer goods, such as energy (generation/storage) and

biomedical [6, 7]. Although OLEDs may be ahead of other OSCs in commercialisa-

tion, with its clear and very much realised applications, many other OSCs have also

been the focus of intense research, such as organic field effect transistors (OFETs)

[8, 9] and organic photovoltaics [10, 11]. These have all exhibited their own unique

properties, such as low spin-orbit coupling, that can give them an edge over conven-

tional electronics devices.

Further opportunities for the application (such as organic spin-valves and organic

magnetic tunnel junctions) of OSCs lie in the newfield of organic spintronics [12, 13,

14, 15]. This aims to use the intrinsic spin of electrons as a carrier of information

instead of, or in addition, to the use of electric charge. The transport of a spin signal

has a distinct advantage over a movement of charge in that no net electrical current

is necessary, which is much more power efficient, as no heat is generated. The
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potential of organic materials in spintronics devices has been acknowledged since

the early experiments of spin-polarised electron injection [16] and the observation

of organic magnetoresistance [17]. For these applications, many of the advantages

of OSCs also apply and in addition to this, organic materials also generally exhibit

low spin-orbit coupling as a result of often being made of lighter elements (such

as carbon, the key building block for organic molecules). This extends the spin

relaxation times in the material, although low electron mobility when compared to

better conducting materials limits the spin diffusion length [13, 15]. Over the last

one and half decade, an increasing amount of research has been directed into organic

spintronics, and there has been considerable success in making spin-based devices,

such as magnetic tunnel junctions [18, 19] and spin valves [17, 20, 21].

Despite their various attractive properties, there are limitations to OSCs that stand

in the way of even further industrial use. A property common to many OSCs is that

they generally have lower electron mobility through the material when compared to

conventional inorganic semiconductors [22]. This reduces the efficiency in electronics

applications and the transport length in spintronics devices. Due to this, even

though many devices have been made in research environments that function, there is

a struggle to make them compete on an industrial level. Thankfully, the versatility of

OSCs allow innumerable ways of engineering the components of an organic device, as

well as great flexibility in the methods used in their construction [23]. However, much

of the research methodology in the field still revolves around trial and error, even in

the relative mature field of OLEDs [24], i.e. a “top-down” approach of constructing

devices and measuring their properties to find optimal combinations. With a near

infinite number of combinations, a “bottom-up” approach could accelerate the rate

which commercial competitive devices are realised, by developing targeted designs

based in scientific theory [25].

An element common to all organic devices (and in fact electronic devices in general)

is the existence of interfaces between different materials. With a combination of the

surface properties of each material (which are often different to the bulk) and the

interaction between two different species, much of the most complex physics can be

found at the interface [26, 27, 28, 29]. This is especially so for organic/inorganic

interfaces, as the materials on either side have very different properties. The mech-

anisms for the interaction at the interface also depend on a wide range of factors

such as preparation conditions, morphology and adsorption mode [27, 30, 31]. With
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highly variable characteristics and incompatible morphologies, the organic/inorganic

interface is often a limiting factor in the performance of organic devices [26, 23].

Therefore, the engineering of more favourable interfaces is a promising route to

more efficient device operation [32, 26], and can be achieved through a better un-

derstanding of the science behind the processes that occur at the interface. Indeed,

the importance of the interface in determining the efficiency of spin injection and

operating performance of an organic spintronic device has led to the widely-used

term “spinterface” [33, 34].

An established method of studying interfaces is photoemission spectroscopy. This

uses the energy of ultraviolet and x-ray photons to induce the emission of electrons

from a surface. The result of this is a kinetic energy spectrum that contains fea-

tures reflecting the electronic and chemical properties of the sample. With different

frequencies (and therefore energies) of photons, both the core and valence electronic

states of a material can be measured [35]. By studying the changes to the electronic

structure as a layer of organic molecules is introduced to the surface, a wealth of

knowledge regarding the interfacial properties can be gained. To facilitate the unim-

peded detection of emitted electrons, these experiments have to be undertaken in

ultra high vacuum (UHV) conditions, and a goal of this project was to construct an

UHV system capable of both core and valence level spectroscopy measurements.

A lesser known electron spectroscopy technique involves the use of the energy as-

sociated with metastable helium atoms to induce the emission of an electron from

the surface [36]. This is known as metastable de-excitation spectroscopy (MDS) and

produces a kinetic energy spectrum much like valence level photoemission. A more

detailed explanation of the technique will be outlined in Chapter 3. The helium

atoms do not penetrate into the surface, and this makes the technique incredibly

surface sensitive. While conventional photoemission spectroscopy is also very sur-

face sensitive, there is always some level of penetration into the sample and therefore

includes a mixing of the contributions from the bulk and surface states. With MDS,

the signal from the topmost layer can be isolated from the rest of the sample and this

complementary data can contain crucial information not available in photoemission.

The extraction and interpretation of this extra information obtained from organic

interfaces is one of the primary aims of this project.

The electron spectroscopy techniques listed above are all surface analysis techniques

23



and therefore are sensitive to contamination of samples exposed to air. To com-

bat this, the UHV system is equipped with a preparation chamber for the growth

and cleaning of samples to be measured in-situ. With the apparatus in place, or-

ganic/inorganic interfaces for study need to be chosen. For a “bottom-up” approach

to probe the electronic properties at the interface, the constituent materials should

be well studied and relatively simple to allow easier interpretation of results, both

as a test to the new UHV system and to build a foundation for further research.

For these reasons, the molecule chosen for study was carbon-60 (C60), also known as

buckminsterfullerene. Although technically not an organic molecule, this allotrope

of carbon is well studied, possesses many useful properties and is one of the mate-

rials used in the first organic photovoltaics [37]. On the other side of the interface,

inorganic substrates paired with C60 in this project were silicon, the ubiquitous

semiconducting material, and La1−xSrxMnO3 (LSMO), a ferromagnetic oxide used

in the earliest organic spintronics devices [16]. The use of MDS to probe the C60/Si

and C60/LSMO interface is an entirely new endeavour and it is one that yielded

interesting results which will be revealed in the following thesis.

1.1 Thesis Overview

Chapter 2 covers a general overview of the background literature on organic in-

terfaces, with a focus on the concepts relevant to the experiments carried out in

this project. This will begin by introducing organic semiconductors, followed by a

discussion of the factors that affect the interaction at organic interfaces.

Chapter 3 is focussed on the technique of metastable de-excitation spectroscopy. The

theory behind it will be described, including the available scattering mechanisms.

The apparatus used in the MDS beamline is then described, which covers He beam

generation, collimation and spin polarisation.

Chapter 4 contains a description of the UHV system built for this project. The

chapter starts with a description of the chambers and pumping arrangements. The

individual measurement techniques used are then described (apart from MDS which

is covered in the previous chapter). Special focus is given to x-ray photoemission

spectroscopy (XPS) as XPS studies undertaken in collaboration during this project

had contributed to publications.
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Chapter 5 starts with a growth study of magnetite. This was partly used to test

the capabilities of the preparation chamber, and also finds a way to reliably grow a

complex magnetic oxide surface that is both well studied and has many applications.

The latter part of the chapter details results of a study into the Fe/Fe3O4 interface

with MDS.

Chapter 6 covers the first organic interface studied: C60/Si(111) 7×7. A brief outline

of the existing literature on this interface is first included. This is followed by the

details of the experiment and then the results obtained. Discussion of the results

are placed at the end.

Chapter 7 covers the second organic interface studied: C60/LSMO. This also includes

a brief outline of the relevant literature followed by results and discussions.

Finally, some suggestions are given for possible directions to take for further work

building on the results obtained in this project.
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Chapter 2

Organic Interfaces

2.1 Organic Semiconductors (OSCs)

Many properties of organic compounds make them attractive for use in electronic

and spintronic devices. These include various characteristics that improve the prac-

ticality of their use, such as cost and compatibility with flexible substrates [8, 3].

Chemically, the lack of dangling bonds make organics generally quite stable at room

temperature, and molecular properties can be approximately designed based on the

molecular moiety, which stems from little intermolecular overlap of orbital wave-

functions as a result of weak Van der Waals forces [38]. From this property, there

is a huge number of possible configurations to try out, with designs tailor-made for

purpose [23]. Certain organic dyes also display incredibly high absorption coeffi-

cients in the visible range, making them ideal for photodetector and photovoltaic

applications [39]. This is compounded by a strong red-shift in the emission of certain

dyes, reducing re-absorption in light emitting devices [40].

OSCs also display low spin-orbit interaction, where electron spin is coupled to its

orbital motion around a nucleus. In the rest frame of the electron, it experiences a

magnetic field due to the charge of the nucleus and the relative motion. This can

cause irreversible changes to the spin polarisation over time and the strength of the

spin-orbit interaction is greater for heavier atoms (more charged nuclei), approxi-

mately proportional to Z4 [13]. Carbon-based molecules are made from very light

elements, mostly C, H, N and O and there is very little spin-orbit coupling in organic

materials. Elements such as C and N also have relatively low nuclear magnetic dipole
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moments (although somewhat offset in many OSCs by the high magnetic moment

of the H nucleus), which reduces the hyperfine interaction between the nuclear and

electronic magnetic moments. Therefore OSCs have long spin relaxation times that

far exceed most metals and semiconductors [12, 33], making them an interesting

option for spintronics applications, such as spin valves and tunnel junctions [17, 18]

2.1.1 Molecular Orbitals

The spn nomenclature for orbital hybridisation in molecules arises from the linear

combination of atomic orbitals (LCAO) method of describing bonds between atoms,

where orbitals are constructed from a linear combination of the basis set of atomic

orbitals. For carbon, the hybrid orbitals formed are sp, sp2 and sp3, which are

formed from a combination of the valence orbitals of carbon (2s, 2px, 2py and 2pz).

In sp3 hybridisation, all four valence orbitals hybridise to form four equivalent hy-

brid orbitals. These form four σ bonds with neighbouring atoms in a tetrahedral

arrangement, leading to the diamond structure. sp2 hybridisation is responsible for

many structures such as graphene and fullerenes, as well as the conduction proper-

ties in organic semiconductors. sp2 is a result of the 2s orbital hybridising with the

2px and 2py orbitals of carbon. These form three σ orbitals in a planar configuration

with the remaining 2pz orbital forming a π orbital lying perpendicular to the plane.

While the electrons in the σ orbitals are localised in the bonds, the electron in the π

orbital can propagate throughout the molecule, which is the origin of conduction in

organics. sp hybridisation results in linear molecular structures. Two π orbitals are

formed from the hybridisation of two 2s orbitals with two 2p orbitals which then

leaves the remaining 2p orbitals in a linear configuration. sp hybridisation occurs

in triple bond structures such as ethyne. A diagram of the different hybridisation

orbitals is shown in figure 2.1.

2.1.2 Charge Injection and Intermolecular Hopping

Electrical carriers in OSCs are provided by external electrodes as the density of

intrinsic charge carriers in them is very low, on the order of 10−4 to 10−5 per site

in PPV based polymers used in OLED applications [15, 42]. Charge is injected into

the OSCs at the interface with the inorganic conductor and is easily accepted by
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Figure 2.1: Schematic taken from [41] of the spn hybridised orbitals in carbon.

molecules. Charge carriers in OSCs generally propagate via hopping between nearest

neighbour atomic sites (though other mechanisms are possible, such as variable

range hopping in low temperature C60 FETs [43]) and the direction is guided by

the potential applied at the electrodes. Transport properties depend heavily on

the order of the molecules and structural defects [15]. Thermal energy is required

to overcome the barriers for hopping to occur. The conductivity σ in an organic

material is therefore dependent on all of these factors and in the case of low charge

carrier concentration in OSCs, the Mott formula can be applied [44]:

σ ∝ e(T0/T )
− 1

4 (2.1)

Where T is the temperature and T0 is Mott’s temperature and is inversely propor-

tional to the localisation length (raised power of three for the number of dimensions),

and is therefore dependent on the level of disorder in the system. The −1
4

exponent

on the temperature arises from the dimensionality of the system (i.e. the exponent

generalises to 1
d+1

for d dimensions). Due to the hopping transport process the

electron mobility in OSCs is much lower than inorganic semiconductors.

The physics behind charge injection and transport in organic devices add to the

complexity of the systems, as the charge transport between molecules is heavily

affected by the weak intermolecular interaction. This complexity could lead to

the transport performance being space-charge-limited (due to an abundane of in-

jected charge carriers causing charge carrier mobility to become the limiting factor),

injection-limited (due to energy barriers at the interface causing charge carrier den-

sity to become the limiting factor) or trap-limited (due to defects/impurities) [31];

28



and which limiting factor becomes dominant is dependent on the experimental con-

ditions and applied fields. Therefore, only taking measurements of the transport

(such as simple current-voltage data) will lead to difficulties in pinpointing the ex-

act origins and mechanisms of the bottleneck in the device. To fully understand the

electronic structure and thus the injection barriers, an isolation of the interface is

necessary. An avenue for these studies is the combination of photoemission spec-

troscopy (PES) and inverse photoemission spectroscopy (IPES), the former of which

is the central family of experimental techniques used in this project.

2.1.3 C60 Buckminsterfullerene

A majority of the results presented in this thesis are directed towards investigating

organic-electronic interfaces using C60 as the “organic” component. C60 has found

widespread use in organic electronics applications due to a multitude of useful prop-

erties. C60 has a high electron affinity of 2.65 eV (attributed to a reduction in the

strain energy when an electron is added) and is easily reduced, with the molecule able

to accept up to six electrons to form the C6−
60 anion [45, 46]. This, when combined

with the low HOMO-LUMO gap of 1.68 eV [47], makes C60 an excellent electron

acceptor with a relative low-lying LUMO. In addition, C60 has a reasonable electron

mobility value of 11 cm2/(Vs). These properties have resulted in the use of C60 as a

charge carrier in a number of organic devices such as organic photovoltaics [48] and

organic field effect transistors [49].

C60 molecules also share other organic semiconductors’ advantage of low spin orbit

coupling, and therefore long spin lifetimes, which stems from the small atomic num-

ber of carbon [13]. Different to other OSCs, C60 is comprised only of carbon, with

no hydrogen, and therefore avoids a major mechanism in spin scattering: hyperfine

interaction with the proton in the hydrogen nuclei (which has a large nuclear mag-

netic moment) [50]. In addition, the most common isotope C, 12C (other isotopes are

very rare naturally, with 13C having a natural abundance of less than 2%), only has

a spin singlet in the nuclei and therefore no hyperfine interaction. These properties

result in a long spin lifetime in C60 films and, when combined with a relatively high

electron mobility of 11 cm2/Vs [51], give a long spin diffusion length, which is at

the order of 100 nm at room temperature [52].

29



More recently, there has been a revival of interest in C60/ferromagnetic interfaces.

C60 molecules have been found to become ferromagnetic due to spin doping at the

interface with Co, and a loss of majority spin electrons result in a weakened magnetic

moment in the ferromagnet [51]. Also, the deposition of C60 on Cu and Mn, normally

non-ferromagnetic materials, can cause ferromagnetic states to appear in the metal

[53], which is attributed to charge transfer at the interface. From these results it

can be seen that the deposition of organics can affect the magnetic properties at

the interface and that C60 is an excellent candidate for these spinterface engineering

purposes.

Figure 2.2: Left: Schematic of the C60 cage. Right: Diagram of calculated C60

HOMO (top) and LUMO (bottom), taken from [54].

C60, or buckminsterfullerene or buckyballs, was first synthesised and characterised

by Kroto, Curl and Smalley in 1985 [55], for which they won the Nobel Prize for

chemistry in 1996. They discovered the formation of this remarkably stable carbon

molecule after vaporising graphite and allowing clusters to form. The name buck-

minsterfullerene was given due to the similarity to the geodesic domes designed by

Buckminster Fuller. The structure of C60 is a truncated icosahedron formed by 60

carbon atoms at the vertices each bonded to three others in a spherical structure

with 20 hexagonal and 12 pentagonal faces and can be found in figure 2.2. In order

for all four valence band electrons to be used in forming covalent bonds, each carbon

atom is connected on average by two single bonds and one double bond, giving a

total of 60 single bonds and 30 double bonds. In the lowest energy configuration,
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the bonds between a pentagon and hexagonal face, or [5, 6], are single bonds, and

those between two hexagonal faces, or [6, 6], are double bonds. The double bonds

are shorter, with a length of 1.40 Å and the single bonds 1.45 Å[56]. The resulting

diameter of the molecule in its gas phase is 7.1 Å[57]. The lack of hydrogen in the

C60 molecule means that it is technically not an organic compound, but it does share

many important properties with other OSCs and therefore shares many of the same

applications.

The formation of sp2 hybridised orbitals in C60 results in an average of one π orbital

per carbon atom. With 60 π electrons in the molecule, there are a huge number

of individual possible resonance structures, and therefore the electrons can be delo-

calised over the C60 cage. By considering the π electrons as particles delocalised on a

sphere, it is possible to build a simple electronic structure of the valence band of the

molecule, with two quantum numbers l and ml (corresponding to the two degrees of

freedom when moving on a sphere). However, filling up the electronic states in this

manner according to Pauli’s exclusion principle starting from l = 0 with −l 6 ml 6 l

yields 10 unpaired electrons in the L = 5 states, which would be a paramagnetic

material, as it contains unpaired electrons. Instead, due to the lower symmetry of

the truncated icosahedron structure [58], the degeneracy is broken at the higher

energy states, and the L = 5 states are split into three separate levels. The lowest

energy state is the five-fold degenerate hu state, which is fully filled, resulting in

a diamagnetic molecule [59, 51]. A schematic of this simple model involving only

the π electrons is shown in figure 2.3 alongside an image of the calculated energy

levels in gaseous C60 molecules involving all 360 electrons inside the buckyball [59].

From the comparison, it can be seen that near the Fermi energy, the simple model

is a decent approximation to the full electronic structure. The calculated band gap

of the isolated molecule is 1.7 - 1.9 eV between the hu and t1u states (figure 2.3)

[59, 60].

Progressing from isolated molecules to the bulk, C60 crystallises into a FCC config-

uration as a structural transition occurs to form a single crystal just below room

temperature [61]. Assuming a weak Van der Waals interaction, at the interface to

a surface, C60 molecules form a 2D close packed hexagonal structure [62, 63] and

has a nearest neighbour distance of 9.5 to 10 Å [64]. DFT calculations have found

that for this configuration at room temperature, the C60 molecules on the surface

can fluctuate in all degrees of freedom (translational and rotational) and there is no
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Figure 2.3: Left: simple model of the electronic structure in the valence band of a

C60 molecule modelled as 60 delocalised electrons in the truncated icosahedral cage.

Right: calculated C60 electronic structure taken from [59]. The simple model makes a

reasonable prediction for the occupation and symmetry of the highest occupied states.

preferred orientation [54]. The same calculations have shown that these fluctuations

do not affect the stability of the 2D layer until a temperature of 600 K is reached,

and that, for a non-infinite film, the 2D configuration is stable for temperatures

below 150 K. Above these temperatures, a 3D cluster is formed [54].

2.2 Interface Engineering

A variety of factors affect the performance of organic devices. These include (but

are not exclusive to) the choice of organic and electrode material, the preparation

conditions, the morphology and the device configuration [65, 9, 30, 23, 31]. A

common element of the device affected by all of these properties is the interface

between the electrode and the organic. The interfaces are key to the injection and

transport properties in a device and are often the bottlenecks that limit performance

[31, 66]. Many of the results in the literature are related to or can be explained

by effects of or differences in the interfaces inside a device. For instance, it has
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been found that in organic field effect transistors (OFETs), placing the gate and

source/drain contacts on different sides of the semiconducting organic layer generally

produces better performance than placing them on the same side [9], which has been

attributed to the better contact between OSC and electrodes in these configurations

[67]. There is a wealth of literature on the fundamental physics of these interfaces,

often with specific applications in mind, such as for OFETs [68, 69], light emitting

devices [70, 71] and photovoltaics [65]. It is important to understand the mechanisms

behind the interaction at the surface in order to design higher performance devices.

2.2.1 Interfacial Dipole and Energy-Level Alignment

The simplest assumption when building a picture of the energy levels at an interface

is to follow the rule of vacuum level alignment, also known as the Schottky-Mott

limit. This allows a calculation of the hole or electron injection barrier from the

work function of the electrode surface, the electron affinity of the organic and the

ionisation energy of the HOMO [31]. A schematic of this is shown in figure 2.4.

While this may seem valid for molecular interfaces where no strong interactions

occur, evidence against vacuum level alignment very quickly began to appear in the

literature [71, 26]. A dipole barrier forms at the interface and offsets the electronic

structure of the two materials. An example of this is the interface between a Au

surface and α-NPD molecules, where the Schottky-Mott predicts hole injection into

the HOMO; but the vacuum level offset causes the hole barrier to rise from 0.2 -

0.3 eV to 1.4 eV, changing the nature of the interaction at the interface. This effect

is present to some extent in the majority of organic-metal interfaces and the dipole

can be positive or negative. The formation of the dipole can be attributed to three

factors [31]: charge transfer across the interface, dependent on the work function

of the substrate, as well as the electron affinity and the ionisation energy of the

organic; formation of a chemical (covalent) bond and gap states which pins EF at

the interface; and changes induced by the proximity of the molecule to the electron

density that tails into the vacuum from the metal surface.

When the work function of the substrate is less than the electron affinity of the

organic, such as the case with PTCBI on Ag [72], a transfer of electrons from the

metal into the LUMO of the molecule can occur. The dipole barrier that results

from this is an upwards step in the vacuum level going from the metal to the organic.
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Figure 2.4: a) Diagram illustrating the electronic structure at an organic interface

following the Shottky-Mott rule with values of interest labelled. b) Diagram showing

the effect of a dipole barrier on the energy level alignment. In this case the alignment

is caused by charge transfer due to the surface work function being lower than the

electron affinity of the molecule.

A diagram of this can be found in figure 2.4b. This raises the energy level until the

net transfer of charge is stopped. The electrons in the now partially occupied LUMO

are now at an energy within the band gap and forms a state between the new LUMO

and the Fermi energy. This charge is localised at the interface since photoemission

measurements show the attenuation of the gap state emission signal with further

layers of deposition [72]. The “step-up” dipole of the interface is also seen in other

interfaces such as Fe16CuPc/Mg, which can be attributed to the charge transfer

mechanism as described above, but the formation of covalent bonds also plays a role

in the interfacial electronic structure.

For the case of covalent bond formation, the interfacial alignment is controlled by the

formation of a chemisorption induced electronic state. One example is the interface

between Alq3 and Mg, where the Mg work function falls inside the band gap of the

Alq3 and therefore there is little drive for charge transfer. However, a dipole barrier
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nevertheless forms with a “downward” magnitude of 0.5 eV [73]. Investigations into

the core levels of this interface [74] and first principles dynamics calculations [75]

uncovered the formation of a three-dimensional organometallic complex involving

the bonding of an Mg atom to two Alq3 molecules through the formation of Mg-O

and Mg-C bonds. The appearance of such chemisorption induced states in the gap

leads to the pinning of the Fermi level at that energy. In order to align the Fermi

levels, charge transfer is required to create the necessary dipole barrier. This charge

originates from the interface state and in the case of Alq3/Mg, the charge flows into

the metal surface to create a negative dipole barrier.

Figure 2.5: Diagram showing the steps leading to the formation of a dipole barrier

due to a covalent bond between the surface and the molecule. The interface bond-

ing states (where σ and σ∗ in the diagram represent the bonding and anti-bonding

orbitals) pin the Fermi level (i.e. force alignment of Fermi levels) and this forces a

transfer of electrons that introduces a dipole barrier.

In a number of interfaces, such as TPD and α-NPD on Au, a lowering of the metal

work function is observed upon adsorption of the molecules [40, 76, 77]. This re-

sults in the formation of an apparent dipole barrier, with an effect localised to the

interfacial layer and is typical of physisorptive systems such as molecules on noble

metals. The work function of a material is dependent on its bulk chemical potential

as well as a surface dipole effect [78]. The surface dipole effect is dependent on the

surface structure and the configuration of atomic orbital “tails” which point into

the vacuum. When an adsorbate, such as a molecule is introduced, the repulsion

between the molecular orbitals and the surface compresses these electron tails. This

causes a reorganisation of the electron density tailing away from the surface in order
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to accommodate a molecule in proximity, as though the molecule “sinks” in, caus-

ing an indent in the “pillow” of electrons. This is known as the “pillow” effect and

lowers the work function of the surface [79]. This then in turn causes a drop in the

molecular energy levels and therefore an increase between the HOMO and the Fermi

level in the surface, increasing the hole injection barrier but reducing the electron

injection barrier into the LUMO. The magnitude of this effect is dependent on the

work function of the surface and for low work function surfaces, such as Sm (Φ = 2.7

eV) [80], the resultant interface dipole is relatively small (0.2 eV for pentacene/Sm

[81]).

Overall, alignment of the electronic structure at the organic/substrate interface

takes place with a variety of mechanisms dependent on the nature of the inter-

action between the molecules and the surface. The presence of the dipole barrier in

both chemisorbed (including ionic- and covalent-natured bonding) and physisorbed

regimes contributes to the transport properties across the interface. It is therefore

important to identify the interaction at the surface and understand the underlying

mechanisms in order to find avenues of engineering more desirable properties.

2.2.2 Morphology and Interface Contacts

The effect of morphology of a sample on the interface properties is dependent on

the materials used. One way of directly observing the effect morphology has on an

interface is by comparing the difference between an interface where the organic is

deposited on an inorganic substrate and where the inorganic is deposited on the

organic. With the same materials used, the main difference is in the morphology at

the contacts.

Early investigations of this manner were performed on the Alq3/Mg and Mg/Alq3

system. Although initial results found an overwhelming advantage of having an Mg

top electrode [82], this was quickly found to be due to the contamination of a bottom

Mg electrode under non-UHV conditions (10−6 - 10−7 mbar) rather than a proper

comparison [83]. The same experiment performed under UHV [31] found that the

photoemission data and therefore the gap states, core state shifts, HOMO position

relative to the Fermi energy and the electronic barriers were all the same regardless

of whether the Mg electrode was on top [74]. However, the morphology was quite
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different between the two configurations. In the case of a bottom Mg electrode, the

interface was abrupt, corresponding to the flat Mg substrate, while when Mg was

deposited on the organic, the metal atoms penetrated quite deeply into the organic.

However, this does not hold true for all systems, an instance of which is the Fe16CuPc

/Au interface [84]. In this case, the substrate is very inert and there is no strong

interaction between the molecule and the Au. When Au is evaporate onto the

Fe16CuPc film, the Au atoms diffuse into the organic lattice and there is a decrease

in the Fermi energy of 0.5 - 0.6 eV compared to Fe16CuPc on Au. The origin of this

lies in the different interactions that take place at each interface. For Fe16CuPc on

Au, there is an abrupt interface where the interaction is controlled by the relative

work functions (the pillowing effect is minimised due to similarity of the Au work

function to the Fe16CuPc electron affinity). Whereas in the reverse case, there is a

doping effect as the Au atoms that diffuse into the organic act as p-type dopants

that affect the balance of charges [84].

The issue of morphology is perhaps more crucial in the case of organic-organic inter-

faces [30]. Photoinduced electron transport between MEH-PPV (poly[2-methoxy-5-

(2’-ethylhexyloxy)-p-phenylene vinylene]) and C60 kick-started the field of polymer

solar cells [37] and organic photovoltaics soon adopted the bulk heterojunction con-

cept [48, 85]. Naturally in these cases the morphology was important as a key

advantage of bulk heterojunction is in the increased surface area, but at the same

time, a greater complexity is present in the 3D structure in the bulk heterojunction.

A general idea of an optimal morphology is present from theoretical calculations

[86], involving a strongly intermixed blend of electron donors and acceptors while

maintaining a network of paths to each electrode. But since the morphology is

dependent on a great number of actors, such as blend composition, solution concen-

tration, annealing and the structure of the materials [30], creating an optimal self

assembled configuration is a great challenge. Since the samples under study for this

project are 2D organic/inorganic interfaces, the author will not include too many

details here.
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2.2.3 Preparation Conditions

In the earlier example regarding the Alq3/Mg interface, it was found that contam-

ination plays a large role in the performance of devices [83]. This is a point of

note in that the preparation conditions can also affect the final device performance.

Given that the final goal is in widespread industrial applications, where the use of

an UHV system is not available (due to cost, practicality and expertise available),

some level of contamination of reactive surfaces is unavoidable. It has been shown

that electron injection is much lower in cases where the substrate is somewhat con-

taminated (10−6 Torr) [83]. Therefore this could have an impact on the selection

of electrode materials as many elemental metals are very reactive when compared

to noble metals or oxides. It also limits time frame for experimentation, even when

taking measurements in UHV conditions.

2.3 Organic Spintronics

The above discussion has mostly been limited to charge transport across organic

interfaces. While these are still relevant for spintronic devices, there are a number

of transport mechanisms that are applicable specifically for electronic spin.

2.3.1 Spin-dependent tunnelling

Tunnelling is a quantum mechanical effect arising from the wave nature of electrons.

As the electron wavefunctions do not vanish at a conductor/insulator interface,

there is a finite possibility for an electron to move across a narrow gap between two

conducting layers when a potential is applied. This process is dependent on the

density of states of both electrodes at any particular energy.

Spin-dependent tunnelling occurs across two ferromagnetic electrodes separated by

a thin insulator layer, also known as a magnetic tunnel junction. In this case, the

charge carriers are spin-polarised and the resistance across the junction is depen-

dent on the relative orientations of magnetisation between the two ferromagnetic

layers. More specifically, the conductivity is increased when the magnetisations are

aligned parallel compared to when they are aligned anti-parallel [18]. This effect is
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known as tunnelling magnetoresistance (TMR) and was first observed in the 1970s

[87]. The cause of this phenomenon is the spin-dependent density of states and the

conservation of spin. Since electrons from one spin sub-band in one electrode can

only tunnel to the same spin sub-band in the other electrode, we can consider the

total tunnelling current as two separate currents for each spin state. This is known

as Mott’s two current model, shown in figure 2.6. From this, it can be seen that

the tunnelling current is proportional to the product of the density of states of each

spin sub-band in the two electrodes creating a difference in the resistances of the

two configurations.

Figure 2.6: Diagram showing the Mott two current model for the parallel (top) and

anti parallel (bottom) configurations.

The tunnel magneto-resistance is defined as the ratio of difference between the re-

sistance in the antiparallel and parallel alignments to the resistance of the parallel

configuration, i.e.:

TMR =
RAP −RP

RP

(2.2)

Where RAP and RP are the resistances of the antiparallel and parallel configurations
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respectively. This can be rearranged into a function of the spin polarisation of the

two ferromagnetic layers at the Fermi level using the expression for spin polarisation

of each layer:

P =
N↑(EF )−N↓(EF )

N↑(EF ) +N↓(EF )
(2.3)

Where N↑(EF ) and N↓(EF ) are the density of states at the Fermi level of the up and

down spin channels respectively. Then using the relationship between the density

of states in each spin channel to the resistance, an expression in terms of the spin

polarisation of each layer is obtained:

TMR =
2P1P2

1− P1P2

(2.4)

Where P1 and P2 are the spin polarisations of the two layers. Which allows a simple

prediction of the TMR of a particular tunnel junction from the properties of the two

magnetic layers. If the values for P1 and P2 both approach unity, i.e. the surface

is fully spin polarised, the TMR of the junction goes to infinity. This was used to

show half metallicity in LSMO through the measurement of the TMR in a LSMO -

SrTiO3 - LSMO junction [88].

The ability to control electrical resistance in a device through its magnetisation is

used in many applications. In spin valves, the magnetic orientation of one ferro-

magnetic layer is pinned using an antiferromagnetic material through exchange bias

[89]. The resistance of the device can then be controlled with the magnetisation of

the other, free ferromagnetic layer. Due to this, the development of spin valves had

a transformative effect on applications such as magnetic recording and memory, and

helped to launch the field of spintronics [17].

2.3.2 Organic Spinterfaces

The above discussions into spintronics applications are relevant for both inorganic

and organic devices. There are, however, some properties that are only present at

organic interfaces. Examples include: a strongly spin polarised state was found in

the HOMO-LUMO gap of the Fe/Alq3 interface [90]; spin polarised STM found that

the placement of one H2Pc phthalocyanine molecule on Fe was enough to reverse

the local spin polarisation [91]; and the spin doping and formation of ferromagnetic

states in non-magnetic metal due to charge transfer into C60 molecules mentioned

earlier [51, 53]. These unusual properties are unique to organic spinterfaces and have
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allowed them to become competitive to their inorganic counterparts [34]. Therefore,

understanding the mechanism underlying processes at the interface is crucial to the

further development of the field.
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Chapter 3

Metastable De-excitation

Spectroscopy

A key electron spectroscopy technique used in this project is metastable de-excitation

spectroscopy (MDS). This is a novel technique which uses excitation from a metastable

noble gas atom to supply the energy required to eject an electron from a material’s

surface [36]. This technique has also been referred to in the literature as metastable

atom electron spectroscopy (MAES), metastable quenching spectroscopy (MQS) and

metastable impact electron spectroscopy (MIES). It should also be noted that there

are also techniques which use ions to bombard the surface, such as Penning ioni-

sation electron spectroscopy (PIES) and ion neutralisation spectroscopy (INS) and

that the use of ions rather than metastable atoms change the de-excitation processes

which occur. Since MDS is employed by very few researchers and is thus not well

known, this chapter will try to give a review of its advantages, the theory of opera-

tion and how the technique can be modified to probe spin-polarised materials (spin

polarised metastable de-excitation spectroscopy, or SPMDS).

3.1 Advantages of MDS

When a metastable noble gas atom approaches a sample surface to within a few

Ångströms, an overlap of the surface and atomic orbitals allows electrons to tunnel

from one to the other. This induces a transition into the ground state and the

released energy liberates an electron from either the sample surface or the metastable
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atom. The emitted electrons have a range of kinetic energies and the spectrum of

intensity against kinetic energy can be analysed to obtain information regarding

the density of states in the sample valence band. This is similar in principle to

conventional valence band photoemission techniques (e.g. ultraviolet photoemission

spectroscopy).

In contrast to photoemission techniques, the metastable atoms have zero penetration

into the bulk and therefore probe only the outermost layer while other techniques

provide information averaged over multiple atomic layers on the surface. This surface

sensitivity allows MDS to be used for the study of a variety of surface and inter-

face systems. Due to no contribution from the bulk material, MDS is well suited

to studying adsorbed molecules and can observe the orientation of such molecules

[92] and therefore MDS is a useful method for scrutinising the electronic states as-

sociated with changes at organic/metal and organic/semiconductor interfaces [36].

The technique is also non-destructive, as the kinetic energy associated with an atom

travelling at thermal-velocities is small (A helium 23S atom travelling at 1000 ms−1

has an associated kinetic energy of 21 meV). This allows MDS to be used for the

study of biomaterials [93]. The helium beam can also be spin polarised and the re-

sulting beam can be used to probe magnetic systems, such as the organic/magnetic

oxide samples grown for this project.

3.2 The Metastable Helium Atom

A suitable metastable atom needs to be selected for use in MDS. Noble gas atoms

are typically used for their inert nature and suitability for use in vacuum systems.

The metastable species also needs to be relatively stable, i.e. it needs to stay in the

excited state for a relatively long period of time.

The excited 23S 1 state of helium (from here also referred to as the 23S state or

the triplet state) is chosen for its suitability. The de-excitation from this metastable

state into the ground state releases an energy of 19.8196 eV [94], which is the highest

of all rare gas atoms. In this state, one electron occupies the helium 1s state and

the other the helium 2s state, and the two electrons have the same spin angular

momentum (both spin-up or both spin-down). Transitions from this state into the

11S 0 ground state, which is also the only lower state, is forbidden by selection rules.
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Figure 3.1: Illustration showing a schematic (left) and energy diagram(right) of the

ground state of a helium atom and the 23S1 metastable state with an excitation energy

of 19.82 eV. The metastable state has a long half life due to the doubly forbidden

nature of the transition down into the ground state.

Since the ground state consists of a spin-up and a spin-down electron in the ground

state due to Pauli’s exclusion principle, the transition would have to have an integer

change in the total spin from +1 to 0, which is forbidden as ∆S must equal 0. In

addition, the total orbital angular momentum is the same in both states (l = 0)

and the selection rules for LS coupling state that any transitions must change this

quantum number by +1 or -1.

The doubly forbidden transition causes the 23S state to have an extremely long

half life of 8000 - 9000 s [94, 95]. Decay to the ground state requires a two-photon

process, which in turn requires the emission of radiation from a source such as an

oscillating magnetic dipole. An illustration of the metastable and ground states

are provided in figure 3.1. There is also an undesired singlet 21S state with the

same electron occupation, with a similar energy of 20.62 eV and a half life of only

approximately 20 ms [95].

The 23S atom is suitable for MDS in many ways. There is only one state with lower
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energy, and therefore the energy released from induced de-excitation is constant. The

long half life mentioned above means that the majority of the metastable atoms are

able to reach the sample still in an excited state. The energy stored in the transition

is also large when compared to that of other noble gases, allowing a broader range

of energies to be probed, comparable to the 21.22 eV used in He (I) UPS. The spin

states of the metastable can also be flipped via optical pumping tuned to a transition

frequency of helium. This property allows the helium beam to be polarised and is

crucial to the development of spin-polarised metastable de-excitation spectroscopy

(SPMDS).

However, due to the same limitations on the transition de-excitation, the 23S metastable

state cannot be easily achieved using optical pumping. Electrical discharge at an en-

ergy higher than the excitation energy is used instead to create a source of metastable

helium. This is a simple process, but has the disadvantage of also possibly promoting

the helium atoms into a different excited state with the same electron occupation.

The 21S singlet state also has one electron in each of the helium 1s and 2s states,

but the two electrons are of opposite spin (parahelium). It has an energy of 20.62

eV and a half life of approximately 20 ms [95]. While this state is less likely to be

produced (1:10 ratio) and has a much lower half life when compared to the 23S state,

there is a contribution to the ejected electron energy spectra due to the creation of

a second species of metastable atoms. Also, since the 21S contains one spin up

and one spin down electron, it cannot be spin polarised. The final energy spectrum

obtained will therefore be a combination of the spectra due to the two states, with

the 23S metastable providing the dominant part. To prevent the convolution of

features arising from 21S and 23S atoms, it is desirable to remove the former from

the helium beam. A laser cooling technique to selectively collimate only the desired

triplet state metastable helium atoms is used in the laboratory at York in order to

increase the proportion of the 23S atoms that reach the sample surface [96].

3.3 De-excitation Mechanisms

Unlike photoemission techniques, different electron tunnelling processes can occur

when a metastable atom approaches a sample surface. This is dependent on the

work function, Φ, of the surface and the energy distribution of surface orbitals.
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In the case of most metal and semiconductor surfaces, the dominant mechanism

is de-excitation though resonant ionisation (RI) followed by Auger neutralisation

(AN). For insulating materials, Penning ionisation (PI) is more likely to occur when

probing atoms or molecules, which is also referred to as Auger de-excitation (AD)

when the sample is a solid surfaces.

The electron yield of these de-excitation events varies depending on the material

and surfaces under investigation, but are typically between 0.3-0.95 electrons per

metastable incident on the sample surface [94].

3.3.1 Penning Ionisation

Penning ionisation occurs when a metastable atom approaches another atom or

molecule. This is a basic process where the collision will ionise the target species as

described below:

M +He∗ −→M+ +He+ e− (3.1)

where M is the target atom or molecule. As the metastable approaches from infinity,

the interaction is initially dominated by Van der Waals forces; and as the distance

shortens, the Pauli repulsion term between them becomes a more significant factor.

The overall interaction can be described by a Lennard-Jones (or 6-12) potential. The

Pauli repulsion forces at close proximity occur due to an overlapping of molecular

orbitals, and this allows an electron to tunnel from the target into the 1s state of

the metastable. Energy is released from this transition, which is transferred to the

excited 2s electron in the helium which is then ejected in an Auger-type process. The

probability of this transition occurring is dependent on the separation distance, and

there is an approximately inverse exponential relationship between the transition

probability and the separation[36].

3.3.2 Auger De-excitation

Auger de-excitation occurs between a metastable atom and a solid surface. The

mechanisms are similar to Penning ionisation, but with subtle differences due to

the broadening of electronic states in solids into bands. This process takes place

when the surface Fermi level is at a higher energy than the excitation energy of the
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metastable atom. The sample material therefore either has a relatively small work

function or a large band gap. And since the Fermi level is higher than the energy

of the excited electron, there are no empty states in the surface near that energy

for the electron to tunnel into. Therefore Auger de-excitation occurs only when

the metastable is relatively close to the sample, at around 3-5 Å [97], i.e. when

there is a direct overlap of an occupied state with the 1s hole of the helium atom.

When probing samples made from an insulating material, the primary de-excitation

mechanism is Auger de-excitation since the work functions are generally small or

band-gaps are present at the Fermi level.

The resulting mechanism is much like that of Penning ionisation - an electron tunnels

from the sample surface into the metastable 1s which releases energy and liberates

the electron from the He 2s state. The de-excitation process is illustrated in figure

3.2. With enough energy, the electron can reach the vacuum level and the remaining

energy will be converted into kinetic energy Ek, which can be calculated by:

Ek = E
′

i − α− β (3.2)

where E
′
i is the effective ionisation potential of the He atom in its ground state;

α is the energy difference between the vacuum level and the initial state of the

tunnelling electron; and β is the energy required to promote the He 2s electron up

to the vacuum level (as labelled in figure 3.2). Since the initial state of the emitted

electron is constant, we can write:

E
′

i − β ≈ 19.82 eV (3.3)

where 19.82 eV is approximately the excitation energy of the metastable helium

state. The term α can be substituted as the sum of the binding energy Eb of the

tunnelling electron’s initial state and the surface work function Φ. This gives (and

rearranging for the binding energy):

Ek ≈ 19.82 eV − Eb − Φ (3.4)

Eb ≈ 19.82 eV − Ek − Φ (3.5)

This is a simple expression directly relating the kinetic energy of the ejected electron

and the binding energy of the electron in the sample as the other terms for constants

for a given sample. As a quasi-one-electron process (the emitted electron is always

from the He 2s, and is therefore has constant initial energy), this produces sharp
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Figure 3.2: Illustration showing the Auger de-excitation process. An electron located

at an energy EB below the Fermi level (and at an energy α below the vacuum level)

tunnels from the sample surface into the 1s of the approaching metastable helium

atom. The electron in the He 2s state gains energy from this transition and is

ejected. Φ is the work function of the sample surface, β is the energy required to

promote the He 2s electron to the vacuum level and E’i is the effective ionisation

potential of the helium atom. The kinetic energy Ek of the emitted electron can be

calculated by Ei − α− β

features that are directly comparable to valence band photoemission, though with

some broadening inherent to the Auger process [98].

3.3.3 Resonance Ionisation and Auger Neutralisation

When the Fermi level of a sample surface lies energetically below the excited level

of an approaching metastable atom (2s state for helium), there are empty states at
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a similar energy in the surface for the excited electron to tunnel into (provided the

band gap of the sample is not too large). This process is called resonance ionisation

(RI) and is the first step of a two-stage de-excitation process involving resonance

ionisation and Auger neutralisation (AN). This process is illustrated in figure 3.3.

Figure 3.3: Illustration showing the two-step resonance ionisation + Auger neutral-

isation process. An electron tunnels from the 2s state of the approaching metastable

helium atom into an empty state at the sample surface in the resonance ionisation

step. This is followed by Auger neutralisation, where an electron tunnels from the

sample into the 1s hole of the helium ion and another electron is simultaneously

ejected from the valence band. Φ is the work function of the sample surface, α and

β are the energies required to promote the neutralising and emitted electron to the

vacuum level from their initial states and E’i is the effective ionisation potential of

the helium atom.

Resonance ionisation takes place at around 9 Å from the surface and results in the

formation of a He+ ion which continues to approach the sample surface [99]. After

reaching a particular distance (typically around 5 Å[97]), an electron will tunnel

from the surface into the helium 1s state, neutralising the helium ion into a helium

atom in its ground state. This is the Auger neutralisation step. The energy released

is equal to E ′i − α where E ′i is the effective ionisation energy of helium, and α is

the initial energy of the neutralising electron. This energy then transfers to another
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electron in the solid, and can cause the emission of an electron provided there is

sufficient energy and direction of motion. The emitted electron will have a kinetic

energy equal to the difference between the effective ionisation energy and the sum

of the initial energies of the two electrons: E ′k = E ′i − α− β. The maximum kinetic

energy is acquired by an emitted electron when both electrons originate from the

Fermi level of the solid (α = β = Φ):

Ek,max = E ′i − 2Φ (3.6)

The spectrum of kinetic energies obtained from the emitted electron will contain

information about the density of states at the surface, much like in photoemission

spectroscopy. However, since the two electrons do not originate from a set energy,

there are two variables in the kinetic energy and the initial energy of the emitted

electron cannot be directly calculated. Since both electrons originate from the same

solid surface, the result is a self-convoluted spectrum which can be described by the

self-convoluted integral:

F (ε) ∝
∫ ε

−ε
|Hfi|2N(ε−∆ε)N(ε+ ∆ε)d(∆ε) (3.7)

where F(ε) is the transition probability (i.e. the intensity of the spectrum at a

particular energy, ε), Hfi is the matrix element of the transition and N(ε) is the

local density of states. This results in spectral features that are “smeared out” when

compared to standard photoemission spectra.

The RI + AN de-excitation takes precedence over Auger de-excitation if there are

empty states near the energy level of the He 2s state, since it takes place at a greater

distance from the sample surface, and will, if possible, occur before the approaching

metastable helium atom reaches the range needed for Auger de-excitation. The

probability of occurrence is inversely proportional to the exponential of the distance.

It is possible for both mechanisms to occur at the same time if a saturation point is

reached with the RI + AN process and metastables are allowed to approach to the

3-4 Å distance needed for Auger de-excitation.
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Image Potential

The interpretation of the kinetic energy spectra obtained in MDS experiments relies

on knowledge of the effective ionisation potential E
′
i of the helium atom. In the case

of Auger neutralisation, E
′
i is dependent on the image charge potential felt by the

approaching He+ ion, which is a function of the distance between it and the surface.

In the gas phase, the value of E
′
i for a He+ ion is 24.6 eV. As the ion approaches a

surface, it experiences a force due to its image charge which reduces the value of E
′
i :

∆Ei = − 3.6

R− d
(3.8)

where ∆Ei is the change in the ionisation potential, R is the distance from the centre

of the ion to the surface measured in Å and d is a corrective distance to account for

the image force (approximately 0.6 Å) [100]. Therefore, when Auger neutralisation

occurs at a greater distance from the surface, the change in the ionisation potential

will be smaller and emitted electrons will be ejected with greater kinetic energy.

Resonance Neutralisation

Resonance neutralisation is a competing process where an electron from the surface

tunnels into the excited state of the helium ion in the neutralisation step after

resonance ionisation. This can occur if the Fermi level of the surface is higher

than the empty excited state of the He+ ion and is a competing process to Auger

neutralisation. The resulting metastable atom can then undergo Auger de-excitation

to induce emission. This has a low probability of occurring and is unlikely to play

a significant role in the majority of systems under study.

3.4 The Metastable Helium Beamline

3.4.1 Metastable Helium Source

Efficient generation of metastable helium atoms to produce a high-flux beam is cru-

cial to achieving the best signal-to-noise ratios in MDS data acquisition. Metastable

atom beams have been developed for research applications such as scattering cross-

section measurements [101] and crossed molecular beam experiments [102]. The
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most common method is via direct current (DC) discharge through electron colli-

sions, which is both relatively simple and can achieve good intensities of up to 1014

atoms s−1sr−1 [103]. There are other approaches such as collisions with a coaxial

electron beam [104, 105], but these cases are neither easier to implement nor pro-

duce higher beam intensities. The helium source used at York is a cold cathode DC

discharge source based on the one developed by Swanson et al. at the Australian

National University [106].

Figure 3.4: A schematic of the helium source used to generate metastable helium.

Ground state He gas is injected at the rear of the cooled tubular Cu cathode. A dis-

charge is struck and maintained by voltages on the two anodes. A skimmer separates

the source and the flight chamber.

The helium used for MDS is supplied by 99.999% (i.e. grade He 5.0) He gas fed

into the system from a regulated gas bottle through a leak valve. The cathode is

a hollow cylindrical copper tube (length 60 mm, diameter 20 mm, inside diameter

10 mm), shown in figure 3.4. This is mounted on a copper cold finger cooled via a

connected dewar outside the beamline filled with liquid nitrogen (LN2). The cooled

cathode slows the atoms exiting the source to 1000 ms−1, allowing better beam

manipulation and less impact on sample surfaces. A hollow design has advantages

over a needle cathode due to its greater surface area (which allows lower pressure),

stability and cooling efficiency. One end of the cathode is fitted with a boron nitride

exit aperture with a diameter of 0.3 mm and thickness 12 mm. Boron nitride is

used for its durable nature, allowing a longer lifetime on the aperture even under

repeated electron bombardment. It also has good thermal conductivity for better
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velocity control of exiting helium atoms. A polyamide cap is screwed on the end

of the cathode to provide insulation from the anodes. Two anodes are fitted: the

first is an ignition anode made from a piece of wire used to start the discharge; the

second is a ring anode used to maintain a stable discharge and draw the discharge

away from the source. A skimmer is placed approximately 20 mm from the source,

and is used to reduce the profile of the discharge such that only a relatively narrow

beam directed at the sample exits the source.

3.4.2 Beamline Operation and Apparatus

A discharge is struck in the source by applying 5.0 kV to the ignition anode, 1.4

kV to the loop anode and -500 V to the skimmer. Helium gas is then allowed

into the source until discharge strikes. The ignition anode is current limited to ∼3

mA at this point (voltage reduces to ∼600 V) to reduce photon generation and

unnecessary heating. A high helium pressure >60 mbar is required to strike the

source, but is not necessary to maintain the discharge. A compromise is required

as too low a pressure cannot maintain a discharge but too high a pressure causes

collisions between meatstable atoms that cause them to de-excite before reaching

the sample. The relationship of this driving pressure with the resulting metastable

beam flux is a log-normal function, with a maxima flux occurring at 11-12 mbar as

determined by previous experiments in the group [96].

The gas pressures used at the source to strike the discharge are very high, but a low

pressure is required in the beamline to maximise the number of metastable helium

atoms reaching the sample by reducing collisions (and therefore de-excitation events)

of the metastable atoms with themselves and other gases. A Varian NRC diffusion

pump with a pumping speed of 4000 ls−1 is placed behind the source to deal with

the gas load when the beam is under operation. The beamline itself is pumped with

two turbomolecular pumps: an Edwards EXT 250 with a pumping speed of 240 ls−1

and a Leybold Turbovac 360 CSV, with a pumping speed of 345 ls−1. These are

placed at roughly evenly spaced locations on the long flight chamber and both are

backed by a large two-stage Edwards M40 rotary pump. A diagram of the beamline

is shown in figure 3.5. A less permanent fixture of the MDS setup is the connection

between the beamline and the analysis chamber, which is removed during bakeouts

of the analysis/preparation chamber system. This is made from a four-way CF
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connector of appropriate length in one direction with a bellows section to allow

some flexibility. It is pumped by its own small Leybold Turbovac 50 turbomolecular

pump with pumping speed of 33 ls−1, which is backed by an Edwards RV12 rotary

pump, and can reach a pressure in the 10−7 mbar range. As the pressure in this

tube (and the rest of the beamline) is not at UHV, there is a small 2 mm aperture

(drilled into a solid copper gasket) between the tube and the analysis chamber. This

serves the purpose of both limiting the profile of the incident helium beam as well

as reducing the effect on the base pressure in the analysis chamber.

Figure 3.5: A schematic of the MDS beamline. The connection section to the analysis

chamber is not shown. The beamline hangs from a supporting frame which reduces

vibrations from the pumps affecting the optical table below.

When the beamline is not in use, the pressure in the flight chamber of the beamline

is in the order of 10−7 mbar, and the large pneumatic gate valve that separates the

diffusion pump from the source stays closed. Before starting operation, the valve is

opened to allow the diffusion pump to pump away the high gas load. The skimmer

acts as an aperture to the rest of the beamline and the pressure in the flight chamber

is kept below 10−5 mbar when the source is being struck. Since the initial burst of

helium required to strike the discharge causes a high pressure in the source and an

accompanying increase in the photons produced, the source is allowed to stabilise for

at least 10 minutes prior to experiments and reach an equilibrium. The pressure in

the flight chamber recovers down into the 10−7 mbar range during normal operation.
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The beamline also includes a simple Faraday cup apparatus, which can be wound

into the path of the He beam via a rotational drive. This is placed at the end of

the flight chamber and is used to monitor the intensity of metastable atoms via a

current created from de-excitation events against the cup. Collimation apparatus

will be discussed separately in the next section. To isolate the collimation optical

apparatus from the vibrations of the pumps, the beamline hangs from a support

frame instead of being supported from below, eliminating contact with the optical

table entirely.

3.4.3 Collimation

Under normal conditions, metastable helium atoms created via DC discharge expand

outwards from the source, yielding a 1/r2 relationship between the intensity and

the distance r between the source and the sample. This reduction in intensity is

prevented using a collimation technique on the beamline here at the University

of York that utilises laser cooling principles and the spontaneous force [96]. The

technique also results in an improved purity of He 23S atoms impinging on the

sample, as He 21S atoms are not collimated.

Spontaneous Force

He in the 23S state can be excited into the 23P2 state through illumination by light

with a wavelength corresponding to the energy of the transition, in this case ∼1083

nm, corresponding to a transition of 1.147 eV (section 3.1). The 23P2 then decays

quickly back into the 23S state due to its short half life (98.8 ns) and a photon

of the same energy is emitted in a random direction. If the incident photons all

originate from a particular direction and the emitted photons all radiate in random

directions, a net momentum will be imparted onto the helium atom over multiple

absorption/emission events. This resulting force is referred to as the spontaneous

force and this principle is applied in laser cooling and atom trapping applications

[107]. This illumination can be provided by a laser, and each photon will give a

change in momentum ∆p:

∆p = ~k =
h

λ
= m∆v (3.9)
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Where k is the magnitude of the wave vector and λ is the frequency of the photon.

Rearranging for the change in momentum ∆v and substituting in the relevant values

for this He 23S to 23P2 gives a velocity change of 9.2 cms−1. Changes in the velocity

induced by the photons will induce a Doppler shift in the frequency felt by the

atom, and therefore affect the force imparted by the laser. This follows a Lorentzian

function of the atom’s velocity and therefore the effect is only present over a certain

velocity range and decays rapidly. This issue can be solved by detuning the laser so

that the maximum force is always felt by the atoms as they change in velocity in

the direction of laser propagation. To achieve this, four curved mirrors are placed

along the path of the propagating helium beam. In each direction, a laser beam

is reflected multiple times to form a network of counter-propagating laser pairs,

which will force deviating atoms onto a straight path by reducing their transverse

momentum. The curvature of the mirror changes the angle at which the laser hits

the beam. Near the source the laser hits the beam at an angle and is therefore

detuned to (i.e. perpendicular to the direction of motion of) atoms with a relatively

large transverse velocity. As the mirror curves the laser is detuned to atoms with

smaller deviations in their direction of motion. This has the effect of gradually

collimating the metastable helium beam. An illustration of this set-up is shown in

figure 3.6.

Figure 3.6: A diagram showing how collimation of the helium beam is achieved in

the MDS beamline. The curvature of the mirror slowly changes the angle of the laser

and therefore the laser is resonant with atoms with different transverse velocities.

Frequency Locking of the Diode Laser

The frequency of the diode laser used to drive the 23S1 - 23P2 transition can drift due

to thermal fluctuation. The linewidth of the transition is 1.6 MHz, the linewidth of
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the laser is 1.0 MHz and the thermal drift can be up to 100 MHzK−1. Therefore the

frequency of the laser needs to be locked for stable operation. This is also necessary

for the spin polarisation of the beam via optical pumping. To do this, a saturated

absorption spectroscopy set-up using a helium discharge cell was utilised [108]. A

schematic of the discharge cell apparatus is shown in figure 3.7.

Figure 3.7: A schematic of the saturated absorption spectroscopy apparatus. The

frequency of the laser is scanned around the 23S1 - 23P2 transition to create a satu-

rated absorption signal at the transition frequency. This is fed into the laser diode

control system to stabilise the frequency.

A helium discharge cell was pumped using a 50 ls−1 turbomolecular pump and baked

to reduce the amount of other gases inside the the cell before filling with He gas. The

1 litre expansion volume also served to increase the amount of He gas and reduce the

proportion of contaminants. The cell is filled up to 0.9 mbar of He and a discharge

is struck through the tungsten needle anode and a grounded cathode with a voltage

of 600 V. The pressure used is a compromise between maintaining the discharge and

reducing pressure broadening effects. A hollow design for the titanium cathode was

used to maximise surface and allow operation at low pressures. The cell excites the

He atom into the 23S metastable states through collisions with electrons, much like
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the metastable beam source.

A lock-on signal is generated using this set-up to tune the laser to the exact frequency

of the transition. The narrow linewidth of the transition makes this difficult to do

with current and temperature controls alone, and therefore the frequency of the

laser is scanned using a piezoelectric transducer element attached to the diffraction

grating of the laser diode. The laser beam is circularly polarised and passed through

the discharge cell, and as it does so, photons with frequency corresponding to the

23S1 - 23P2 transition are absorbed to drive the transition. Thermal distribution of

velocities of He atoms in the cell cause a range of frequencies to be absorbed, due

to Doppler shifting of the resonant frequency. This manifests itself as a broadened

feature in the absorption frequency spectrum of the laser.

Figure 3.8: Graph taken from [96] showing the saturated absorption spectrum. The

small peaks inside the larger troughs correspond to the transitions. The transition

from the 23S1 to both the 23P1 and 23P2 states can be seen due to the large scan

amplitude.

However, the signal from the single absorption spectrum is too broad for the purpose

of frequency locking. To obtain a more defined frequency, the laser is reflected back

through the discharge cell. Atoms that move in the direction parallel to the initial

beam are moving in the opposite direction to the returning beam and therefore the

Doppler shift is reversed. Therefore, the returning beam will interact again with the

atoms moving in the opposite direction, increasing the absorption signal. For atoms
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that have no component of velocity in the direction of the laser, there is no Doppler

shift and both the initial beam and the returning beam can interact with these

atoms. However, since the lifetime of the 23P2 state is much longer than the time it

takes for the laser beam to reflect off the mirror and return, the atoms excited by

the initial beam will still be in their excited state when the returning beam passes

through. Therefore at this frequency the returning beam cannot interact with as

many of the He atoms and there is a narrow peak at the exact position of the non-

shifted transition in the frequency corresponding to a drop in the absorption. An

example of this is shown in figure 3.8. The width of this saturated peak is given by

[109]:

Γs = (Γn + Γc)
√

1 + s0 (3.10)

Where Γn is the natural linewidth, Γc is a collisional broadening parameter and

s0 is the saturation parameter. The returning laser beam is then directed into a

photodiode and the saturated absorption signal is used by the lock-in regulator of

the Toptica Photonics diode laser system to lock the frequency to the transition

using a phase-locked feedback loop.

3.5 Spin Polarised Metastable De-excitation Spec-

troscopy (SPMDS)

One the aims of this project was to create a spin-polarised MDS set-up similar to the

one used by the group of Y. Yamauchi and M. Kurahashi at the National Institute of

Materials Science (NIMS) in Tsukuba, Japan. The author gathered some expertise

with the apparatus there while working at NIMS for 3 months in order to replicate

it in York. The section below will outline the principles behind spin-polarising the

helium beam and the theory of SPMDS. Extra parts of the experimental apparatus

constructed for this purpose will be described later in Chapter 4.

3.5.1 Spin Polarisation of the Helium Beam

The metastable helium source produces helium atoms in the 23S state with electrons

in both the spin up and spin down configurations. In order to perform SPMDS, the

helium atoms in the beam must all be in either the spin up (S = 1) or spin down
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(S = −1) state. This is performed by optically pumping the helium with polarised

light tuned to the 23S - 23P2 transition.

For the case of excitation due to an incident photon, only transitions with ∆m =

−1,+1 are allowed as photons are massless (∆m 6= 0). The angular momentum

eigenstates of the photon are σ+ (mj = +1) and σ− (mj = −1 which correspond to

right circularly polarised and left circularly light respectively. Therefore illumination

of atoms via right circularly polarised light tuned to the correct resonant frequency

will only induce transitions with ∆m = +1 due to selection rules.

Figure 3.9: A diagram showing the transitions between the different He sub-level

induced by irradiation of right circularly polarised light. The dotted lines represent

possible decaying transitions. Repeated absorption/decay events eventually lead to

occupation of the mj = +1 state.

By applying a weak magnetic field, the degeneracy in the 23P2 state is lifted with the

levels ordered by the quantum number mj. 23S - 23P2 transitions induced by right

circularly polarised light will cause ∆m = +1 while decays are occur with all allowed

transitions ∆m = +1, 0,−1. Over many excitation/decay cycles, the electron will

move to the state with the highest mj. In the case of metastable helium this is the

mj = 1 level of the 23S1 state, which has a total spin S = 1. At this point the beam

is polarised in the direction of the weak magnetic field. A diagram of this is shown

in figure 3.9. The reverse occurs with left circularly polarised light, which pumps

the helium atoms into the mj = −1 state.
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3.5.2 Spin-Polarised Measurements

The spin-resolved density of states is not symmetric in many materials, i.e. the

density of states in each spin channel is not equal, leading to majority and minority

spin states. This occurs in ferromagnetic materials (due to the exchange interaction),

which are often metallic and de-excite through the two stage process of resonance

ionisation followed by Auger neutralisation. As described in section 3.3.3, in the

second AN stage, an electron tunnels from the surface of the material into the He 1s

state to create an atom in its ground state. Due to Pauli’s Exclusion Principle, this

electron can only have spin opposite to that of the electron already present in the

He+ ion. With a spin-polarised metastable helium beam, the neutralising electrons

must therefore all originate from states with spin opposite to the polarisation of the

beam.

The neutralisation step is accompanied by the emission of an electron. While this

electron can originate from any state, it has been observed that the emitted and

neutralising electrons are more likely to have anti-parallel spins [110]. Aside from

a possible contribution from the Auger de-excitation process, the proposed expla-

nation for this is that a two-hole singlet state is preferred in the surface, which is

consistent with Pauli’s Exclusion principle and the effect is stronger when the sur-

face electrons probed are close to the Fermi energy [111, 112]. The likelihood of this

differs depending on the surface and varies with energy. A diagram showing the

process is shown in figure 3.10.

However, this is not a desirable characteristic. As mentioned in section 3.3.3, the

resulting spectrum from RI+AN is a convolution of the states from which the neu-

tralising and emitted electrons originate. When the two electrons originate from

the same spin state, the spectrum will be a self-convolution of the density of states

for that one spin state. But if the electrons originate from different spin states, the

spectrum will be a convolution of both and therefore contain no useful information

distinguishing the spin-resolved density of states. Both cases occur in practice, and

although the two electrons involved are more likely to have anti-parallel spins, there

will be a contribution from emitted electrons with the same spin and some informa-

tion is retained regarding the spin asymmetry in the surface. Following from this,

the spin asymmetry values calculated from any results are less than the actual asym-

metry and the proportion of the spin resolved contribution varies with the material.
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Figure 3.10: A diagram showing the resonance ionisation + Auger neutralisation

process for a spin polarised helium beam probing a magnetic sample (where the ma-

jority spin at the Fermi level is in the spin down channel). The emitted electron is

depicted as originating from a spin state opposite to that of the neutralising electron,

which is more likely to occur.

Therefore only qualitative information is obtained in the cases where the He beam

de-excites via RI+AN.

For insulating magnetic materials, the de-excitation mechanism is Auger de-excitation.

This is more relevant for studying the spin polarisation of organic molecules de-

posited on the ferromagnetic surface. The only surface electron involved is the one

that tunnels into the He 1s state, which will have anti-parallel spin to the one al-

ready present. A spin polarised helium beam will only probe the spin states opposite

to that the beam polarisation and will yield a greater intensity when the majority

spin state is anti-parallel to the beam. In theory, when the beam polarisation is

aligned to the magnetisation of the sample, only the opposite state will be probed

and the electron released from the metastable will all have the same spin polarisa-

tion, yielding a reliable representation of the the spin-resolved states. In practice,

the secondary electron released means this is not entirely the case [112]. This will

lead a slight variation in the measure spin asymmetry parameter, but the value

is much closer to the actual asymmetry than in the case of metallic ferromagnetic

surfaces.
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Figure 3.11: A diagram showing the Auger de-excitation process for a spin polarised

helium beam probing a mostly insulating magnetic sample. The electron that tunnels

in the He 1s state must have opposite spin to the electrons in the helium atom.

The spin asymmetry parameter, A, measured by the beam can be calculated using

the proportion of spin up and spin down electrons collected by the analyser:

A =
1

|Pz|
N(E) ↑ −N(E) ↓
N(E) ↑ +N(E) ↓

(3.11)

Where Pz is the polarisation of the beam:

Pz± =
R ↑ ∓R ↓

R ↑ +R0 +R ↓
(3.12)

N(E) ↑ and N(E) ↓ are the numbers of electrons collected by the analyser when the

helium beam is polarised to the spin up and spin down configurations respectively.

R ↑ and R ↓ are the count rates for the helium atoms in each respective polarisation

state while R0 is the rate for the unpolarised atoms (21S).
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Chapter 4

Experimental Methods

4.1 The Vacuum System

The UHV electron spectroscopy facility that was developed during this PhD is

the only one in the world capable of performing metastable de-excitation spec-

troscopy (MDS), ultraviolet photoemission spectroscopy (UPS) and x-ray photoe-

mission spectroscopy (XPS) all on the same system. This allows a huge amount of

information to be gathered in a reasonably short span of time from the same sample,

revealing complementary information on its electronic, magnetic and chemical prop-

erties, as demonstrated later in this thesis. The system consists of two connected

chambers seated on the same table top: a preparation chamber to clean substrates

and grow films; and an analysis chamber to take measurements using spectroscopy

techniques. The setting up of a UHV system is a significant undertaking and there-

fore was a major part of the PhD project.

As well as the aforementioned UHV chambers, the beamline which generates the

metastable helium atoms needed for MDS is also connected to the analysis chamber.

A fast entry lock for the transfer of fresh samples is connected to the preparation

chamber. A detailed schematic of the system is shown in figure 4.1, and in the

following chapter, key components of the system will be described in detail and fur-

ther explained where necessary. Pumping arrangements for the individual chambers

are described in the relevant sections and those for the analysis and preparation

chambers are shown in figure 4.2.

64



Figure 4.1: Schematic of the vacuum chamber built to grow and analyse samples,

including the main instruments attached.
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Figure 4.2: Schematic of the pumping arrangement underneath the table of the anal-

ysis and preparation chambers. Two extra smaller turbomolecular pumps for the UPS

source and the fast entry lock are not pictured for clarity. The figure is a view of

the arrangement from the side opposite to the MDS beamline.

4.1.1 Preparation Chamber

The components in the sample preparation chamber are mostly placed on two dis-

tinct vertical levels. Samples are moved between the two levels with a manipulator

that allows for large vertical movement and rotations around the vertical axis. The

sample holder is an Omicron GA02-1661-2 sample stage with e-beam heater and

direct current heating capabilities when used with standardised Omicron sample

plates. A thermocouple feedthrough is available on the preparation chamber ma-

nipulator, however, for the purposes of sample growth/preparation, more accurate

readings are taken with an infra-red pyrometer instead. A quartz crystal microbal-

ance is fixed at the top of the sample stage to monitor the deposition rate of films

prepared in the prep chamber, see section 4.4.2.

The preparation chamber is connected to the fast entry lock (FEL) via a 38 mm CF
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flange with a gate valve. The connection through to the analysis chamber is made

through a larger 152 mm flange with a large gate valve. The preparation chamber

can accommodate multiple deposition sources through 38 mm CF flanges and for

the majority of this project, an Omicron EFM3 source was used for the deposition

of Fe films and a MBE-Komponenten NTEZ low temperature effusion cell was used

for depositing organic molecules. A retractable gas doser was attached to allow a gas

inlet to approach at very close proximity to the sample, which can then create higher

local gas pressures near the sample without compromising the base pressure of the

whole preparation chamber. A more detailed description of deposition processes for

the samples prepared will be discussed in the relevant chapters later in this thesis.

A second gas inlet valve is also attached to the chamber for venting the chamber

and handling gases needed at a lower pressure. An SmartLAB residual gas analyser

was also attached to the preparation chamber to monitor the partial pressures of

remnant gases in the chamber.

The preparation chamber is also equipped with an Omicron SPECTALEED low

energy electron diffraction (LEED) apparatus to check the surface reconstruction

of samples after they are prepared. A brief description of the technique is given in

section 4.4.1. Magnetic samples can also be magnetised with a pulsed magnet set-up

in the preparation chamber.

The pumping arrangement for the prep chamber hangs underneath the table on

which it sits. The chamber connects to a T-piece via a 203 mm flange on the bottom.

On one end of this, another T-piece re-purposed into a titanium sublimation pump

(TSP) is connected directly underneath the prep chamber. The other end of the

T-piece is connected to a pipe bend, which in turn is connected to a Seiko Seiki

STP-400 turbomolecular pump with a pumping rate of 420 ls−1. The backing for

the turbomolecular pump is provided by an Edwards RV3 rotary pump. The backing

pressure is monitored by a pirani gauge and the chamber pressure via an ion gauge

connected to a 38 mm flange on the chamber. The base pressure in the preparation

chamber is 8×10−10 mbar and the backing pressure is kept at 1×10−2 mbar or lower.
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4.1.2 Analysis Chamber

The analysis chamber is equipped with a variety of electron spectroscopy techniques

for the surface analysis of samples transferred in through the preparation chamber.

Sample position can be changed with multiple degrees of freedom via the sample

manipulator. It is equipped to move the sample in all three of the x, y and z

directions as well as rotations around the vertical axis and the sample normal axis.

The manipulator is also equipped with feedthroughs for direct current and electron

beam capabilities when holding standardised Omicron sample plates. A pyrolytic

boron nitride (PBN) heater is also attached to the sample stage to allow more

gentle heating (when compared to direct current or e-beam heating) of samples up

to 200 ◦C. A thermocouple is attached to the end of the sample stage to monitor the

temperature. The use of an infra-red pyrometer is difficult due to the need for lead

lining on all windows in order to use x-rays in the analysis chamber. Because of this,

and to preserve the pressure as much as possible in the analysis chamber, cleaning

procedures with the need to monitor and control the temperature of the sample at

higher temperatures (for example flashing silicon) are not performed in the analysis

chamber. The sample stage can also be cooled via liquid nitrogen through a pipe

running down the manipulator.

An Omicron EA 125 hemispherical energy analyser is used to take data measure-

ments for the various spectroscopic techniques connected to the analysis cham-

ber. The theory of operation for the analyser will be covered briefly in the sec-

tion focussing on electron spectroscopy (specifically section 4.2.1). The analyser is

equipped with a 7-channel detector with a reported energy resolution of better than

10 meV over a range of up to 2000 eV, and a maximum count rate of 107 s−1. This

allows it to be used for both XPS (high energy range) as well as UPS/MDS (high

count rate) with great precision.

The monochromated x-ray source is connected perpendicular to the analyser through

a 152 mm CF flange (see figure 4.1). An adapter piece with a 5◦ offset is used to

connect the monochromator to stop the x-ray source from physically impinging on

the analysis chamber. X-ray radiation is generated via bombarding an aluminium

anode with electrons emitted from one of two filaments. The power dissipated in

standard operating conditions can be up to 300 W; therefore the source is cooled with

a recirculating temperature controlled cooling system driven by a ATC KT1 chiller
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pumping deionised water at 18 ◦C. De-ionised water is used to reduce leakage current.

The x-rays emitted are aligned via the port aligner, redirected onto the quartz

crystal in the monochromator and the resulting monochromated beam is focussed

towards the sample stage. The theory behind monochromated x-ray generation will

be discussed in further detail in a later section 4.2.3. Due to pumping difficulties

arising from long tubular sections with many corners, an extra set of bellows were

used to connect a 38 mm flange near the x-ray source to a flange on the analysis

chamber. This allows quicker pumping of gas near the source and port aligner.

The ultraviolet source for UPS is connected to the analysis chamber though a 38

mm flange at 45◦ to the analyser and monochromator. Helium I α photons (21.22

eV) are produced via cold cathode capillary discharge. Helium gas is introduced into

the source near its end through a needle valve. This part of the source is connected

to the chamber through a thin glass capillary, and thus the pumping throughput

is highly inadequate when using only the main turbomolecular pump under the

analysis chamber. A smaller Leybold Turbovac 50 turbomolecular pump, with a

pumping speed of 33 ls−1 was added to pump the UV source to remedy this. A

roughing line was also connected to the source to pump away excess helium during

normal operation. This pumping is done by a Edwards RV12 rotary pump. This

rotary pump is also used when flushing out the helium line after bakeouts. The UV

source is cooled by running tap water through a cooling shroud built around the

source.

The pumping arrangement for the analysis chamber is also located underneath the

table. Below the analysis chamber is a large gate valve (203 mm nominal tubular

diameter), which can separate the chamber above the table from the the pumping

arrangement and is used to preserve some measure of cleanliness when the pumps

have to be stopped for alterations and power outages. Monitoring the pressure

reading after cutting off the chamber from the pumping is also a method of checking

for leaks. Below the gate valve hangs an eight-way 203 mm CF connector section.

An Edwards nEXT 400 turbomolecular pump with a pumping speed of 400 ls−1

is connected to the flange directly underneath the chamber and is protected from

falling samples by a mesh above the pump. The backing to the turbomolecular pump

is provided by an Edwards RV3 rotary pump similar to the preparation chamber.

The pumping arrangement also includes a titanium sublimation pump, which is

again made from a 203 mm CF T-piece repurposed into a small chamber for the
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titanium sublimation pump (TSP) to fire in. The TSP chamber is connected to

one of the horizontal connections on the eight-way connector. The base pressure of

the analysis chamber is 2×10−10 mbar and the backing line is kept at a pressure

of 1×10−2 mbar or lower. When the chamber is opened to the MDS beamline and

when UPS is under operation, the pressure rises above 1×10−8 mbar. But since the

gas causing this pressure rise is helium in both cases, it is pumped away quickly and

does not easily adsorb and the chamber recovers rapidly after use.

4.1.3 Bakeout

Bakeout is required for vacuum systems to reach UHV pressure ranges of 10−9 mbar

and below within a reasonable time frame. This is due to the adsorption of water

onto the chamber walls when the vacuum system is vented. The vapour pressure

of water is high in the chamber as a result due to a the slow rate of desorption of

water. With no leaks, the pressure would eventually drop into UHV levels but a

long time would be needed. Baking the system accelerates this process.

The bakeout apparatus was specially designed for the vacuum chambers and con-

structed in the departmental workshop. This consists of a series of bakeout panels

which are affixed to a cuboid shaped frame made from KJN aluminium profile. The

frame also houses a set of coils designed to function as Helmholtz coils to control

the magnetic field around the chamber, mainly to cancel out the earth’s magnetic

field. More details regarding the Helmholtz coils will be outlined in section 4.4.4.

The panels are made of aluminium and are hollow for better heat insulation. A hole

is present in the appropriate panel to allow for the transfer arm between the prepa-

ration and analysis chambers, which was heated using a separate heating sheath.

The inside of the bakeout “oven” is heated using two heaters fixed to the panels,

with fans attached to allow air circulation and more even heating. The pumping

arrangements underneath the table are heated via heating tapes. The heating tapes

provide less even heating compared to bakeout “oven” above the table, but since

the pumps below the table cannot be baked, the tapes were used as an alternative.

The bakeout procedure involves baking the system at 130 °C for 24 hours. The

temperature limited by the quartz crystal housing in the x-ray monochromator,

which cannot be heated above this for extended periods of time. Prior to bakeout,
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the chamber is allowed to pump down to the low 10−7 mbar range, where the pressure

drop slows down due to water vapour. After the heaters are switched off, the TSP

filaments are degassed and fired while the chamber is still hot to obtain a better

base pressure after the chamber cools down.

4.2 Electron Spectroscopy Techniques

The theory behind photoemission spectroscopy techniques lies in Einstein’s photo-

electric effect, where irradiation with photons of sufficient frequency on a surface

induces the emission of electrons. The emitted photoelectrons will have a range

of kinetic energies as they are emitted from various electronic states with different

binding energies. In the case of an photoelectron ejected from a state with binding

energy Eb, the process can be described by the following equation:

Ek = hν − Eb − φs (4.1)

Where Ek is the kinetic energy of the emitted photoelectron, hν is the energy of the

photon and φs is the work function of the sample material. The kinetic energies of the

photoelectrons therefore form a spectrum with high intensity peaks corresponding

to the discrete energy states from which they are ejected. The maximum kinetic

energy is determined by the energy of the photon and the work function of the

surface.

4.2.1 Hemispherical Energy Analyser

Before diving into the explanations regarding the various electron spectroscopy tech-

niques available, it is instructive to first mention a common element between them:

the hemispherical energy analyser used to collect the data.

At the entrance to the analyser, an electrostatic input is used to collect electrons

from a larger solid angle and to change the energy of the beam with respect to the

pass energy of the analyser. The lens consists of a series of cylindrical electrodes

held at different potentials. Potential gradients are located at the gaps between

the cylindrical electrodes, which refract charged particles passing through the lens,

a simple diagram of this shown in figure 4.3. It is possible to accelerate or slow
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down the electrons without changing the focussing properties by using a system of 3

electrodes. The acceleration and deceleration of electrons is controlled by the ratio

of the potentials between the front and end lenses and the relative magnitude of

the potentials between them. The middle lens controls the focus. The profile of

the beam is controlled by an input aperture, which is chosen from a set of built-

in choices (of which the most commonly used in experiments are the 1 mm and 6

mm diameter circular apertures). The exit apertures are automatically set in the

instrument depending on the entrance aperture used.

Figure 4.3: Trajectories of electrons passing through 2 cylindrical electrodes in the

analyser lens. The potential gradient in the gap between the electrodes deflects the

electron.

The electrons are then deflected through two hemispherical shells with a voltage

applied between them. A schematic of this is shown in figure 4.4. Electrons of

a particular pass energy are deflected around the shells along a semi-circular path

with radius close to the mean radius of the two shells, and into a detector. A large

semi-circular path is used, as the error in the pass energy is proportional to the ratio

between the detector size to the radius of the passing electrons, and therefore the

energy resolution ∆E of the instrument is improved with a larger radius. Specifically,

the relationship can be described by the following equation:

∆E = Ep(
d

2R0

) (4.2)

Where d is the diameter of the exit aperture, R0 is the mean radius of the two hemi-

spherical shells and Ep is the pass energy. There is also another term proportional

to the square of the solid angle of electrons passing through the entrance aperture,

but this is much smaller than the exit aperture and therefore can be neglected. The

Omicron EA 125 analyser used has an R0 value of 125 mm and the exit aperture

of width 2 mm was chosen for experiments. With a pass energy setting of 10.00 eV
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(for valence band spectra), the resolution of the instrument is 0.08 eV, and for a

pass energy setting of 50.0 eV (for core state spectra), the instrument resolution is

0.4 eV (i.e. the resolution is 0.8

Figure 4.4: Figure showing the trajectories of electrons passing deflected around the

hemispherical shells in the analyser.

The detectors used in the analyser are channeltron electron multipliers. When an

electron is incident on the channeltrons, secondary electrons are generated and ac-

celerated further into the detector with a voltage bias. These then progress and

produce additional electrons until a cascade of 107 to 108 electrons reach the out-

put, which produces a sufficiently large current to be detected. Since this process

takes a finite amount of time, the detector has a maximum count rate which can be

exceeded if the bias voltage or incident electron intensity is too high. The instru-

ment used has 7 detector channels, which are placed at different positions in the

exit plane. This multiplies the count rate by a factor of 7.

4.2.2 Ultraviolet Photoemission Spectroscopy

Ultraviolet photoemission spectroscopy (UPS) is a technique used to probe the oc-

cupied density of states in the valence band of a material’s surface. The UV photons

are generated with a cold cathode discharge source which operates by filling a glass

capillary with He gas and then inducing breakdown by applying a high voltage (1

kV). The discharge source used generates He I α photons with an energy of 21.22
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eV, which are directed at the sample under investigation. The low energy of the

photons means that the core levels of the atoms in the sample material are not

accessible and the spectrum is limited to the valence band region. A schematic of

the photoemission process in UPS is shown in figure 4.5. The intensity spectrum of

the emitted electrons at different kinetic energies will match the density of states at

corresponding binding energies and therefore the spectrum provides a measurement

of the density of states in the valence band.

The induced photoemission is also composed of electrons with low kinetic energy,

which in turn results in a low inelastic mean free path. Therefore the ”information

depth” of UPS is relatively shallow as only electrons near the surface can escape

and be detected. This results in UPS exhibiting high surface sensitivity, doubly so

because of the especially low energy of the He I α discharge line when compared

to others such as He II α (40.81 eV). However, there will still be some level of

penetration in the bulk and therefore some bulk electronic states will also be probed

as well as the surface states.

Figure 4.5: Schematic of ultraviolet photo-emission spectroscopy. The UPS spectrum

gives a direct measurement of the density of states in the valence band up to a binding

energy maximum dictated by the photon energy and the surface work function.

The UV photon energy used in the laboratory is close to the excitation energy

of the metastable helium atoms used in MDS. This allows UPS to become a useful
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complementary technique in conjunction with MDS, since the UPS and MDS spectra

probe a very similar range of energies. Depending on the de-excitation mechanism

of the metastable atoms (which is in turn dependent on the sample surface), the

two spectra can exhibit corresponding features for comparison.

Another useful aspect of UPS is the ability to use the spectrum to measure the

sample work function. The electronic work function of a material is the difference in

energy between the Fermi level and the vacuum level, and is an important property

for the development of devices in cases such as when valence band matching is a

concern. The work function is sensitive to the surface structure and therefore this

could be used to probe changes in the surface due to surface preparation procedures

and deposition. UPS is able to measure the surface work function with a single

spectrum by measuring the difference between the Fermi level and the low kinetic

energy cut off in the spectrum and subtracting this from the total energy of the UV

photon (21.22 eV). To deconvolute the sample work function from the internal work

function of the analyser, we bias the sample to 15 V, and therefore raise the sample

electron emission to a higher kinetic energy.

During data collection,samples are placed directly facing the analyser (-45° to the

UV source. Because of the high intensity irradiation from the UV source (and

therefore high intensity photoemission), the smallest circular entrance aperture is

used on the analyser (1 mm diameter). This is so the channel electron multipliers

are not saturated from the number of incident photoelectrons.

4.2.3 X-ray Photoemission Spectroscopy

The XPS instrument was installed on the UHV system near the beginning of this

project. Unlike UPS and MDS, there was no prior experience in the research group

with this technique and therefore it was necessary to dedicate much time to test its

capabilities. XPS was central to much of the earlier work in this project, before the

preparation chamber was added to grow samples in situ. A publication following

a XPS study as a part of a collaboration will be discussed later in the chapter.

Compared to UPS, more quantitative data can be obtained from XPS and details

of the technique will be outlined in the following section.
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Figure 4.6: Diagram illustrating how to calculate a sample’s surface work function

using UPS. The spectrum depicted is obtained from a sample held at a negative volt-

age to isolate the sample work function from the analyser - leading to high secondary

electron emission and a sharp kinetic energy cutoff. The cutoff energy is the lowest

possible kinetic energy of the emitted electrons - on a unbiased sample, where the

emitted electrons are not accelerated away from the surface, the kinetic energy would

be zero.

Theory of XPS

Illuminating a surface with photons of higher energy will allow electrons to be lib-

erated from more strongly bound states. X-ray photons with energies above 1 keV

are used in XPS, which is used to probe the core states of atoms on a surface, as

shown in figure 4.7. Unlike the valence bands probed by UPS, the atomic orbitals

of core states do not overlap with their neighbours and form quantised states with

distinct energies corresponding to each element. Therefore, by comparing spectra

taken with known peak positions for specific elements, XPS can be used identify the

composition of a surface.

Just identifying the elements present is only a small part of the capabilities of XPS.

Information regarding the relative abundance of each element component of the

surface can also be gleaned from the spectra. To calculate this, we can consider

the variables which affect the amount of emission from a particular state, i.e. the
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Figure 4.7: Schematic of x-ray photo-emission spectroscopy. The XPS shows peaks

in emission at binding energies where core states lies in the sample.

formula for the intensity Ii of a peak i in an XPS spectrum:

Ii ∝ Niσiλi (4.3)

where Ni is the average concentration of the element responsible for peak i in the

sample surface; σi is the photoionisation cross section for the state i ; and λi is the

inelastic mean free path for the emitted electron. Other factors which may affect

the intensity of detected electrons are generally constant for samples taken under

the same experimental conditions, such as angle of emission, analyser transmission

function and vacuum chamber pressure. Therefore XPS can measure not only the

elements present, but also their relative compositions.

The inelastic mean free path (IMFP) of the electron also determines the sampling

depth of the technique. The IMFP λ of an electron with a particular kinetic energy

in a material and the intensity I of said electrons escaping from a depth d inside

the surface in a direction normal to the surface is related by the Beer-Lambert law:

I = I0e
−d/λ (4.4)

More than 95% of electrons are emitted within 3λ of the surface and this is considered

the sampling depth of XPS. For most materials λ falls in the range of 1 - 3.5 nm for

electron emission due to x-ray photoemission [113]. Therefore the sampling depth, or
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“information depth”, of XPS is approximately 3 - 10 nm, making it still a relatively

surface sensitive technique, but probes more of the bulk than UPS or MDS.

The binding energy of the core states of an atom is affected by electrostatic shielding

of the nuclear charge, which is contributed to by all electrons, including those in the

valence band. Addition and subtraction of electrons due to bonding will alter this

shielding effect and cause a change in the binding energy. More specifically, removal

of electrons (oxidation) will lead to less shielding and increase in the binding energy,

and vice versa. Therefore, the bonding environment for elements present in a sample

can also be inferred from shifts in the XPS spectrum.

Figure 4.8: XPS spectra of an Fe-rich iron oxide film as desposited and after anneal-

ing in oxygen. The sharp edge at 706.5 eV associated with elemental iron disappears

after the surface is oxidised and the spectrum moves to a higher binding energy.
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An example of this is shown in figure 4.8. The black line is the XPS of the Fe 2p

peak for a Fe-rich iron oxide film. The red and green lines are the XPS spectra for

the same sample after successive annealing in oxygen. The as-deposited spectrum

shows a sharp peak at around 706.5 eV, which is associated with elemental Fe. As

the sample is oxidised, there is a loss of electrons in the Fe atoms and the shielding

reduces, increasing the binding energy. The spectrum after oxygen roasts therefore

loses this elemental Fe feature as Fe atoms becomes oxidised and the core state

becomes dominated by a broad feature at around 710 eV.

The above features described are all associated with the initial state of atoms on

the sample prior to the emission of an electron. Emission is also affected by the

response of the atom to the creation of the hole/photoelectron and these “final

state” effects lead to extra features on the spectrum intrinsic to the photoemission

process. Extrinsic losses such as energy loss during transport and plasmon excitation

can also cause changes in the spectrum. These effects do not directly correspond

to the structure and bonding configuration of sample (although information can

nevertheless still be garnered from these features), and therefore will not be covered

at length here. Theory behind them are well understood and, if interested, the

reader is directed to textbooks for further reading, such as the one by Feuerbacher,

Fitton and Willis [35], from which the author has gleaned much knowledge.

X-Ray Sources and the Monochromator

Two x-ray sources are fitted on the analysis chamber. The first is a dual anode

x-ray source, fitted with two x-ray anodes capable of generating x-ray radiation

with frequency corresponding to the Mg Kα and Al Kα spectral lines with photon

energies equal to 1253.6 (±0.70) and 1486.6 (±0.85) eV respectively (wavelengths

of 0.9890±0.0002 and 0.8340±0.0002 nm). These particularly wavelengths have

suitable energies for inducing core level emission whilst also having relatively low

line widths. The anodes consist of a thin layer of Mg and Al placed side by side

at the end of a conducting substrate rod. A thoriated tungsten filament is placed

in front of each anode. During operation, a current flows through the filament,

which heats up and emits electrons. These electrons are then accelerated towards

the nearest anode by a high voltage. The irradiation of the anode material with

electrons of sufficient energy generates x-rays at the characteristic frequency, which
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travels to the sample through an aluminium window, used to reduce contamination

and contain the electric fields in the source. The dual anode source is mounted on

a linear drive and can be placed very close to the sample, allowing a high count

rate. However, this also exposes the sample to the full range of radiation, including

high energy Bremsstrahlung rays which are potentially destructive for the sample.

Another issue is the presence of both Kα1 and Kα2 (and other) spectral lines, which

causes a broadening of the spectral resolution with extra features. Therefore, the

dual anode source was mostly only used before the monochromated source was fitted.

Figure 4.9: XPS spectra of the Ag 3d peak taken from [114] showing the improve-

ments due to a x-ray monochromator on the spectrum obtained.

The x-ray source for monochromated XPS generates x-rays in much the same way

as the dual anode source. An aluminium anode is used for this purpose, as the

wavelength corresponding to the lattice spacing of quartz crystal acting as a “grat-

ing” in the monochromator. The x-ray radiation is directed towards a quartz crystal

back plane and is diffracted, with constructive interference occurring according to

Bragg’s law:

nλ = 2dsin(θ) (4.5)

Where lambda is the wavelength of the x-ray, d is the crystal spacing and theta

is the angle between the incident ray and the plane, or the Bragg angle. This

constrains the wavelength of diffracted radiation using the crystal spacing in the

quartz crystal, which matches the Al Kα spectral line [115]. Only radiation in a
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narrow band can satisfy this condition and the line width of the x-ray is reduced

to 0.25 eV, improving the energy resolution. This also eliminates other unwanted

radiation such as ghost lines, Al Kβ and Bremsstrahlung. The quartz crystal is also

curved to better focus the diffracted x-rays to a smaller spot on the sample, allowing

better control of photoemission source on smaller samples. The apparatus at York

was calibrated (by moving the quartz crystal using dials on the monochromator and

seeing the effect on the fluorescent sample) such that a spot of size < 5 mm was

achieved at the sample position. A graph showing how these improvements manifest

on the spectrum is shown in figure 4.9.

4.3 XPS Study of Graphene Oxide

A good example of an in-depth XPS study demonstrating the capabilities of the

technique was carried out in collaboration with the group of Rahul Nair from the

University of Manchester. The data contributed to one publication [38] and another

pending review at the time of writing [116]. The study revolved around the per-

meation and molecular sieving properties of graphene oxide (GO) films and XPS

was used to probe the surface stochiometry and bonding environments present in

graphene oxide flakes prepared under different conditions.

4.3.1 Permeation of Organic Solvents Through

Graphene Oxide Membranes

Efficient separation processes utilising partially permeable membranes have impor-

tant applications such as water purification and green energy [117, 118]. Graphene

oxide has been shown to possess the potential to develop into a useful material for

these applications [119, 120], and has displayed useful properties such as tunable

pore size [121] and ultimate permeance [122]. It is also a fairly robust material and

therefore practical for industrial use [119, 120].

While graphene oxide has been shown to be highly permeable to water, previous

literature have reported the membrane to be impermeable to organic solutions [123,

119], thus limiting its use in pharmaceutical applications [124]. The purpose of

this particular study by Nair and colleagues aimed to create a GO laminate which
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was permeable to organic solvents, and this was achieved with ultrathin, highly

laminated membranes where organic filtration occurred through capillaries forming

in the film [38]. The XPS apparatus here at York was used to study differences in

the chemistry of the sample through detailed deconvolution of the C 1s peak. This

supplied knowledge of the changes in the bonding environments, which allows a

better understanding of the mechanisms that facilitated the improved permeability.

XPS Spectra

The first set of XPS studies performed involved comparisons between graphene

oxide films prepared in different ways - a conventional GO film (CGO) and a highly

laminated film (HLGO). The detailed preparation methods can be found in [38].

The main difference in the preparation is that the HLGO flakes underwent a 3

minute ultrasonic exfoliation with a stepwise separation method, while the CGO

flakes were exfoliated for 24 hours in the ultrasonic bath. The HLGO exhibits a

superior laminar structure [38] with better aligned layers and a stronger interlayer

interaction [125]. This would also serve to reduce the wrinkles found in CGO [119],

and therefore improve the formation of 2D capillaries in the membrane.

Samples were provided as flakes of varying sizes. These were cut down to an appro-

priate size (approximately 8×8 mm in size) and stuck to a 10×10 mm piece of Ta

foil using an Ag epoxy adhesive. The Ag base adhesive is both vacuum compatible

and conducting, reducing charging effects in the sample. The Ta foil holding the

sample is then affixed into a modified Omicron sample plate using clips spot welded

onto the plate. The Ag epoxy is allowed to fully dry (>4 hours) before the sample

is transferred into the UHV system.

Survey scans were first taken to ensure that the sample only has carbon and oxygen

present, mainly to check that the Ag epoxy had not migrated onto the surface

(not shown). The C 1s spectra taken for the CGO and HLGO are shown in figure

4.10. The peak was deconvoluted into four components corresponding to the main

bonding environments found in graphene oxide: C-C (284.5-284.8 eV), C-O (285.2-

285.4 eV), C=O (286.8-287.2 eV), and C(=O)-(OH) (288.1-289.1 eV) [123]. The

areas underneath the fitted peaks were used to calculate the proportion of carbon in

each bonding environment and from that C:O ratios in the membranes. This found

a C:O ratio of 3.3±0.3 and 3.6±0.3 for the HLGO and CGO respectively - the two
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Figure 4.10: C 1s XPS spectra for CGO (a) and HLGO (b) samples, taken from

[38]. There is a clear change in the bonding environment due to different preparation

methods, even though the overall change in the O:C ratio was largely unchanged.

are the same within error. This gave an oxygen ratio of 23±2% and 22±2% for the

two films and is consistent with previous findings that the exfoliation time is not

correlated with the oxygen content [126]. There is, however, a shift in the relative

proportions of the carbon environments. For the CGO, the C-C, C-O, C=O and

CO(OH) have areas of 61±3%, 13±2%, 22±2% and 4±1% respectively; and for the

HLGO, the C-C, C-O, C=O and CO(OH) have areas of 58±3%, 14±2%, 25±2%

and 3±1% respectively. The difference in proportions are within error - there is no

difference between the two, which is expected as the bonding configurations do not

change much. However, there is a visible change in the overall shape of the C 1s

peak and this is indicative of a difference in the width of the peaks (for each carbon

bonding environment) and their positions. This can be attributed to the difference in

the interlayer interactions between the HLGO and CGO causing minute changes in

the energies of the core levels of the carbon atoms, while the bonding configurations

remain the same.
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4.3.2 Electrically Controlled Water Permeation

The second study performed in collaboration with Nair and colleagues involved

research into the reversible control of water permeability through graphene oxide

membranes. This naturally has applications to life sciences and is a significant boost

to the versatility of inorganic membranes [116]. Previous attempts to modulate

the water permeation properties of membranes involved varying conditions such as

the pH and temperature to induce a physical response in the structure [127, 128].

Manipulation of permeation through electrical fields is more tricky, but allow faster

response times and much easier integration into control systems. The use of graphene

oxide for this purpose was studied and XPS was again used to check the bonding

environment of the carbon atoms, this time between a pristine GO flake and one

treated with an electric field, in order to check that changes in the GO flake are

reversible and cause little to no chemical changes. This was contrasted to the effect

of heat treating, which also affects the water permeability, but at the cost of causing

irreversible chemical changes.

Samples supplied as flakes and prepared in the same way as described in the previous

section. After taking the XPS spectrum of an as-inserted sample, the sample is

heat treated at gradually increasing temperatures using the PBN heater (50, 75,

100 and 150 °C). XPS spectra were taken after each heat treatment and the C 1s

peaks were deconvoluted. The peak positions used for this were: hydrogenated (sp2)

carbon (C=C/C-C/C-H, 284.6-285.1 eV), hydroxyl groups (C-OH, 285.9 eV), epoxy

groups (C-O-C, 286.9 eV), carbonyl groups (C=O, 288.2 eV), and carboxyl groups

(C=O(OH), 289.3 eV) according to literature [129]. An extra feature is observed in

the spectra post 150 °C anneal, which was attributed to π − π∗ shake up satellites.

As before, survey scans were also taken to ensure no migration of the Ag epoxy onto

the surface, which is not shown here.

C 1s XPS spectra are shown in figure 4.11, with the pristine GO spectrum on the

left and the electric field treated samples on the right. The figure shows the spectra

for the room temperature as inserted samples (bottom) and for the post final 150 °C

anneal (top). The inset of Figure 4.11 shows the relative number of sp2 C, C-OH,

and C-O-C bonds present in each sample as calculated from the integrated spectral

intensities of each peak weighted according to their stoichiometry. The amount of

sp2-bonded C is very similar for pristine GO and for GO after exposure to an electric
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Figure 4.11: C 1s XPS spectra for pristine GO (a) and electric field treated samples

(b), with the graphs for the as inserted samples at the bottom and the 150 °C annealed

data at the top. The inset shows the evolution of the contribution attributed to each

peak as the annealing temperature is increased.

field with both displaying a content of 57±3% at room temperature rising to 66±3%

at 150 °C, the onset of thermal reduction. At 150 °C, a much greater number of

proportion of sp2 bonds are present and this corresponds to the desorption of water

and would mean greater electrical conduction properties.

At room temperature, the sample exposed to an electric field has a much larger

C-O-C content (31%) relative to C-OH (6%) when compared to pristine GO (16%

and 19%, respectively). This suggests that the application of the electric field stim-

ulates dehydrogenation of the C-OH bonds allowing the subsequent formation of

C-O-C bonds. This in turn results in a change in chemical environment with a

slight reduction in the sample, which could correspond to the formation of conduct-
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ing channels in the flakes as an electric field was applied [116]. This would cause a

rearrangement in the membrane but no chemical changes as drastic as heat treat-

ment. Overall, lingering effects of the electric field remains in the graphene oxide

membranes, but does not affect them as much as heat treatment up to 150 °C. The

lack of a drastic change suggests that the effects of this electric field treatment may

be reversible (unlike heat treatment) and therefore could potentially facilitate the

control of other properties that are changed by an electric field treatment(such as

permeability) through an external field.

4.4 Other instruments

Many of the instruments (other than the apparatus for electron spectroscopy) were

mentioned in passing in the description of the vacuum chamber at the beginning

of the chapter. However, many of these are used just as often and a few merit

some extra details regarding their theory and operation, which will be covered in

the following section.

4.4.1 Low Energy Electron Diffraction (LEED)

Low energy electron diffraction (LEED) is a technique used to investigate the sur-

face structure of a material. The surface reconstruction of a sample is crucial to

its properties, varies greatly depending on the stoichiometry and preparation condi-

tions and is often characteristic of the material. Therefore LEED is another way to

check the growth process of samples, which is quicker than XPS and provides com-

plementary data to the electron spectroscopy techniques. This is advantageous as

although UHV conditions slows the degradation of samples, some material surfaces,

such as Si(111) and elemental metals, are highly reactively and relatively fast ways

to check the sample are necessary.

LEED was first used by Davisson and Germer in 1927 to demonstrate the wave

nature of electrons [130]. Electrons have a de Broglie wavelength dependent on

their momentum and therefore their kinetic energy, given by the expression:

λ =
h√

2mEk
(4.6)
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Electrons with kinetic energy in the range of 20 - 400 eV have wavelengths cor-

responding to atomic spacings, and therefore diffraction effects can occur upon an

electron beam illuminating a well ordered sample similar to when light illuminates a

grating of appropriate spacing. The diffraction pattern formed shows the reciprocal

lattice of the sample surface. Since the penetration of these low energy electron

is low, within tens of monolayers for many materials, the technique is very surface

sensitive, as illustrated in the graph of penetration depth against electron energy in

figure 4.12 [113].

Figure 4.12: Left: a schematic of the LEED instrument. Right: Plot shown the

relationship between electron penetration depth for a large number of materials. The

electrons between the 10-100 eV kinetic energy range are especially surface sensitive.

Graph adapted from [113]

In the LEED instrument, an electron beam is generated via thermionic emission from

a thoriated tungsten filament and projected towards the sample with a relatively

low kinetic energy (up to 250 eV in the SPECTALEED instrument). The beam

is diffracted at the surface and some are backscattered towards a phosphor screen.

The inelastically scattered electrons are screened out using a series of grids, and

the elastically backscattered electrons form a diffraction pattern on the screen. A

diagram illustrating the set-up is shown in figure4.12

The surface overlay structures as interpreted by the diffraction patterns are classified

by Wood’s notation [131]. This is valid for cases where the overlayer structure and

bulk planar structure have the same symmetry; more specifically, the angles between
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the lattice vectors of the surface unit cell in the bulk, a1 and a2 are equal to the

angle between the same for the overlayer b1 and b2. The first part of the notation

specifies to the length of the overlayer lattice vectors in terms of the bulk vectors,

i.e. | b1 | / | a1 | and | b2 | / | a2 |. For example, the Si(111) 7×7 reconstruction has

| b1 |= 7 | a1 | and | b2 |= 7 | a2 | . Rotations in the overlay cell relative to the bulk

are specified after the length notation. For example, for the Fe3O4(001) surface, the

reconstruction is (2×2)R45°, signifying a rotation in the surface unit cell of 45° from

the bulk (as well as an increase in the size).

4.4.2 Quartz Crystal Microbalance

The deposition rate for all samples deposited was measured using the quartz crystal

microbalance (QCM) in the preparation chamber. Since the quartz crystal used

in the laboratory for these experiments was fresh with only a small amount of

deposition (< 2

∆f = − 2f 2
0

A
√
ρqµq

∆m (4.7)

Where the change in oscillation frequency of the crystal (∆f) changes linearly with

the change in deposited mass (∆m) and the constants ρq, µq and f0 are the density

and shear modulus of quartz and the resonant frequency of the crystal respectively.

Since the oscillation frequency of the crystal used was >5.8 MHz and the resonant

frequency is 6 MHz with zero load, the condition ∆f/f0 < 0.02 is satisfied and the

Sauerbrey Equation can be used. A tooling factor was not needed as the QCM is

mount just above the sample stage and can be moved into the same spot as the

sample when calibrating deposition rate.

When the assumptions for the Sauerbrey equation fail, the film thickness can be

calculated with the Z-match equation:

∆m

A
=

Nqρq
πZfL

arctan[Z · tan(π
fU − fL
fU

)] (4.8)

Where fU and fL are the unloaded and loaded frequencies, Nq is a frequency constant

for AT-cut quartz (1.668×1012 Hz·nm). Z, also known as the Z-factor, is equal to
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√
ρqµq
ρfµf

, where ρf and µf are the density and shear modulus of the film material

respectively.

The Sycon Instruments STM-100 QCM crystal driver used is equipped with the

means to calculate the deposition rate automatically. However, the deposition rate

is monitored with low precision (0.1 Ås−1), which is unsuitable for the purpose many

samples grown in the project - in these cases the growth rate is better calibrated by

calculating the thickness change corresponding to a particular change in frequency.

A final point of note is that these calculations, irrespective of the method, require cer-

tain parameters, such as the material density, which may differ greatly between the

bulk structure and a thin film. This is especially the case for many large molecules,

where the first monolayer (and beyond) may arrange themselves in ways dissimilar to

the bulk configuration. The bulk values are used in deposition rate calibration in all

cases to avoid making unfounded assumptions about the adsorption characteristics

- discrepancies with the actual thickness deposited are likely to arise.

4.4.3 Stern-Gerlach Analyser

The polarisation of the helium beam must be confirmed before use in SPMDS. This

was done using apparatus applying the principles of the Stern-Gerlach experiment in

1922. This was a landmark experiment in quantum physics which showed that silver

atoms directed through an inhomogeneous magnetic field are split into 2 beams,

therefore confirming the quantisation of the direction of angular momentum. Using

the same principles, we can direct the helium beam through an inhomogeneous

magnetic field and expect to see the deflection of the beam according to its spin

polarisation.

A Stern-Gerlach analyser was added to the system in order to assess the polarisation

of the helium beam. This was added to the analysis chamber, on the opposite side

to the beam line and in direct line of sight to the helium source. The apparatus was

aligned such that the helium will first pass through a narrow vertical rectangular

aperture upon exiting the analysis chamber. The helium atoms will then continue

through a narrow rectangular flight tube of 300 mm in length, where it will be subject

to a non-uniform magnetic field. This will be applied via a horseshoe magnet with

magnetically soft Fe pole pieces as illustrated in figure 4.13. The inhomogeneous
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magnetic field causes a splitting of the helium beam along the direction of the field

gradient according to the spin of the atoms. The incoming atoms are detected via

a micro-channel plate held at a potential of 3 kV. The micro-channel plate requires

a working pressure of <10−7 mbar and therefore it is housed inside a small vacuum

chamber made from a CF collar piece and it is pumped via a Pfeiffer TPU 060

turbomolecular pump with a pumping speed of 56 ls−1.

Figure 4.13: a) A schematic of the Stern-Gerlach apparatus. a) A top down view of

the flight tube and chamber. b) An illustration of how an inhomogeneous mangetic

field was applied using a horseshoe magnet.

The phosphorescence from the microchannel plate is captured using a computer

interfaced CCD camera. This was mounted just outside the small Stern-Gerlach

chamber in front of the microchannel plate. By polarising the helium beam and

reversing the polarisation, a shift in the glow on the phosphor screen can be observed.

4.4.4 Controlling the Ambient Magnetic Field

When an atom with spin, such as in the case of the He 23S state with total spin

S = 1, moves through a magnetic field, the spin will precess around the direction

of the magnetic field and quickly align with it. The magnetic field of the earth

is therefore enough to affect the direction of the spin in the metastable helium

beam. In order for SPMDS to only probe the majority spin state in a sample, the
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spin polarisation of the helium beam needs to align with magnetisation axis of the

sample. A way to ensure this is to create a magnetic field in the vicinity of the

sample, which will cancel out the earth’s magnetic field as well as generating a net

field (>0.1 Gauss) in the direction of the sample magnetisation. To this end, a set

of coils were designed and made to fit around the UHV system. While these coils

do not make Helmholtz pairs, they will nevertheless henceforth be referred to as the

“Helmholtz” coils for want of a better name.

To make the “Helmholtz” coils as unintrusive as possible, they were fitted inside

the bakeout frame (inside the inner channels of the KJN aluminium frame). Three

pairs of coils were wound, with for each rectangular face of the frame, with sizes

corresponding to the size of the frames, which is 158 × 166 × 140 cm. Due to

the position of the frame, the coils roughly centre on the analysis chamber, and

therefore the sample position is quite central within the coils. Since the net field

applied only needs to be reasonably constant over a small vicinity around the sample

when compared to the large size of the coils, the inhomogeneity of the field due to

having a square coil in non-optimal positions becomes less of an issue.

However, one important property of the coils that needs to be satisfied is its ability

to overcome the earth’s magnetic field and apply a net field around the sample.

Due to the size of the channels in the frame, the number of turns in the coil was

severely limited. Insulated copper wire with diameter 0.8 mm was used, which had

a maximum current rating of 5 A, but since the wires are wound in a tight bundle a

maximum working current of 3 A was assumed as it displayed no significant warming.

30 loops of the coils were fitted in each face of the frame. To calculate whether the

field generated is sufficient, consider the field in one of the directions acted on a pair

of coils as the field generated by 8 lengths of straight wire, each applying a field:

B =
µ0I

2πr
(4.9)

Where r is the radial distance from each wire. The greatest radial distance is just

under 115 mm, using this to calculate a lower bound the field generated gives a field

of 1.26 Gauss. Given that the earth’s magnetic field is <0.7 Gauss at the surface,

the minimum field generated by the coil is enough to overcome the earth’s magnetic

field and apply a field >.1 Gauss in the vicinity of the sample as required.
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Chapter 5

Growth and Characterisation of

Fe3O4 Thin Films and Interfaces

5.1 Background

Magnetite, or Fe3O4, is the oldest mangetic material known to man. It is a naturally

occurring magnet, with stable room temperature magnetic properties facilitated by

a high Curie temperature and, in theory, has 100 % spin polarisation at the Fermi

level in the bulk. However, even though it is a well known and well studied mate-

rial, atempts to use it in spintronic devices have been met with limited success [132],

which has been attributed to surface effects. The surface preparation of Fe3O4 has

been well studied but obtaining the correct reconstruction is nevertheless still a chal-

lenge, making this an appropriate system to test the capabilities of the preparation

chamber developed during this project.

5.1.1 Crystalline and Electronic Structure of Fe3O4

Fe3O4 is a metal oxide that crystalises into the Spinel structure, which is based on an

FCC lattice of O2− anions. In a normal Spinel structure, with a formula of AB2O4,

the A2+ ions occupy 1/8 of the tetrahedral interstices and the B3+ ions occupy 1/2

of the octahedral interstices. In the case of Fe3O4, the A2+ cation has a large crystal

field stabilisation energy [133] and the material forms what is known as an ”inverse”

Spinel structure, where the Fe2+ cations take up half of the octahedral interstitial
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sites and the Fe3+ cations displaced by these occupy the tetrahedral interstitial sites.

Many of the material’s properties stem from the presence of both Fe2+ and Fe3+ in

the octahedral sites [132]. The Curie temperature of Fe3O4 is very high, at 858

K [134]. At a temperature of 125 K the crystal transitions to a monoclinic phase,

as well as a shift in the magnetic easy axis from 〈111〉 to 〈001〉. These changes

are accompanied by a sudden drop in the conductivity by 2 orders of magnitude

[135] and is known as the Verwey transition. The Verwey transition is a defining

characteristic of magnetite and is one of the main reasons that the material is so

well studied. However, since the present project is not particularly related to this

or low temperature measurements, the 70+ years of literature will not be covered

here and the reader is directed to a summary by Walz [136] for more details.

Though initially classified as a ferromagnet, in 1948, Néel proposed that the tetrahe-

dral and octahedral sublattices are aligned antiferromangetically [137] and therefore

the Fe3+ ions cancel out, leaving the Fe2+ responsible for the net magnetic moment.

This gives a net magnetic moment of +4 µB per formula unit, which is in agreement

with experimental results of 4.07 µB [138]. The origin of this can be explained using

a simple model of the d electrons in the Fe ions. A simple schematic can be found

in figure 5.1. An exchange splitting of ≈3.5 eV is present between the majority and

minority spin states [139]. The energy levels are further split in each band by the

crystal field, which leads to 3 degenerate t2g and 2 degenerate eg bands. In the case

of the Fe2+ ion, which is responsible for net magnetic moment, there are 6 electrons

and the majority spin states are filled with 1 electron in the minority spin state.

This results in a net moment of 4 µB as expected. The partially filled minority spin

band is also responsible for the conduction properties in the material. For the Fe3+

ion, there are 5 electrons and no occupation of the minority spin states, leaving a

net magnetic moment of 5 µB.

From the electronic structure described above, there is a band gap in the majority

spin states at the Fermi energy of the Fe2+, and a partially occupied band that

crosses the Fermi energy in the minority spin channel [140]. This property, where

the material is 100% spin polarised at the Fermi level is called half metallicity. And

as a predicted half-metallic ferrimagnet [141, 142], Fe3O4 is an attractive material

for use in spintronics devices as a source of spin polarised current [143]. However,

the devices made using magnetite have not displayed performance that matches a

fully spin polarised electrode [144]. The origin of this has been attributed to effects
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Figure 5.1: Schematic taken from [139] of the energy levels in the d state of Fe2+

ions in magnetite. The majority and minority states are split by the exchange energy

and these are further split by the crystal field into the t2g and eg levels.

at the surface, and it has been found that the spin polarisation as measured by

spin-polarised photoemission (which is relatively surface sensitive) is worst for the

(100) surface (at approximately 50% compared to 80% for the (111) face) [145, 146],

as distortions from the surface reconstruction stretches many layers into the bulk.

However, photoemission still nevertheless penetrates the sample to an extent, cause

a mixing of the bulk and surface signals. SPMDS measures have been taken of Fe3O4

surfaces by Pratt, Yamauchi and colleagues [147]. They found that the (111) surface

was positively spin polarised rather than the strong negative polarisation expected

in the bulk, and that the (100) surface exhibited a weak negative spin polarisation.

This could be attributed to the difference in surface sensitivity compared to photoe-

mission, and that the outermost layer was very different to the bulk. SPMDS studies

also found an enhancement of spin polarisation from 5% to 50% when the surface

was treated with atomic hydrogen by exposure to cracked hydrogen molecules in a

vacuum; which was attributed to the adsorbate-induced elimination of surface dan-

gling bonds [148]. Similar effects were also found for benzene [146] and boron [149]

as well as being predicted for other group IV elements [150]. Overall, the surface
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effects of the material are crucial to its properties and performance in devices. SP-

MDS is an excellent tool for understanding the mechanisms at the surface and for

exploring new avenues for engineering better surface properties.

5.1.2 The Fe3O4(100) Surface

The model of the Fe3O4(100) (
√

2×
√

2)R45° reconstruction has been developed over

time in the literature. A number of early models were eventually dismissed due to not

being consistent with all properties of the surface [151, 152, 153, 154]. The distorted

bulk truncation (DBT) model was proposed by Pentcheva et. al. which suggests

that the reconstruction originates from a lattice distortion that is coupled to the

subsurface charge order [155, 156]. This model gave a good qualitative explanation

for undulating rows observed in STM, and was in general agreement with LEED-IV

and SXRD measurements [156, 132], which gave a better fit than other competing

models at the time [155].

However, issues with the DBT model arose upon investigations into metal adatoms

on Fe3O4. Au atoms deposited at room temperature displayed a preference for one

of two available tetragonal Fe sites [157], which was not reproducible with DFT+U

calculations [158]. Co atoms deposited at room temperature display a similar pref-

erence, but also quickly incorporate themselves into the lattice [159]. This indicates

the existence of vacancies in the cation lattice. All surface cations are visible in

STM and therefore the vacancies must be below the surface. The deposition of 1 Co

atom per unit cell also causes the (
√

2×
√

2)R45° spots to disappear from the LEED

pattern [159], suggesting a filling of the vacancy that leads to a bulk truncation-like

structure.

These results led to the development of the subsurface cation vacancy (SCV) model

of the surface [158]. This is consistent with experimental observations and has an

improved Pendry R-factor from LEED experiments (0.125) when compared to the

DBT model (0.34) [132]. The SCV model involves a rearrangement of atoms in the

subsurface layers, involving an extra tetragonal site Fe in the second layer replacing

two octahedral site Fe ions in the third layer. This results in the net loss of one cation

per unit cell. This extra interstitial Fe ion blocks the adsorption of metal atoms on

the tetragonal bulk continuation sites, which explains the preferential adsorption
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displayed by Au and Co [157, 159]. The surface stoichiometry of the octahedral site

Fe and O ions is maintained in the SCV model, but the structure is distorted to

form the undulations seen in STM [132]. The goal of the sample growth procedure

outlined later in this chapter is a surface with octahedral Fe termination and the

SCV structure.

Other reconstructions of the Fe3O4 (100) surface are possible, dependent on the

preparation conditions. An array of bright oval shaped protrusions become visible

when a natural mangetite sample is argon ion sputtered and subsequently annealed

in UHV [160]. These were seen in early STM images and have been resolved further

into pairs of protrusions between the octahedral Fe rows [161]. This is known as

the Fe dimer surface, and they form as a result of non-stoichiometry in the film

after sputter anneal cycles, which preferentially remove oxygen [154]. Despite being

called as such, there is no evidence of an actual Fe-Fe bond between the two Fe

adatoms [132]. As the surface is reduced further, from sputter-anneal cycles without

oxygen or deposition of Fe on the surface, the Fe dimer structures will become more

abundant. These structures will contain an increase in the number of Fe2+ cations,

which should be apparent in XPS. The ultimate limit for this will be an Fe1−xO-

like film [161] which is highly defective. Overall, there is a dependence of the film

termination on both the growth conditions in thin films and the annealing conditions

in post deposition heat treatment. Therefore, sample growth methods suitable for

the UHV chamber are required to produce good quality Fe3O4 surfaces.

5.2 Fe3O4 Growth and Preparation

5.2.1 Fe3O4 Single Crystal

The surface preparation and characterisation of a Fe3O4 crystal cleaved along the

(001) plane was carried out prior to the thin film growth. This served as a compar-

ison for the growth data which can be used to check the quality of the films. The

preparation method for these single crystals have been well studied and a procedure

outlined in [132] will be followed in order to obtain a good octahedral Fe termination

with the SCV structure.
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Surface Cleaning and LEED

The surface termination of stoichiometric Fe3O4 (001) single crystal samples depend

greatly on the in-situ preparation method used [132]. In order to prepare a clean

surface, the Fe3O4 single crystal first underwent cycles of Ar ion sputtering followed

by annealing. The Omicron ISE 10 ion sputter gun was set to operate at a beam

energy of 1000 V, a focus voltage of 840 V and an emission current of 10 mA. Ar

gas with a purity >99.999% was was let into the sputter gun until the pressure in

the preparation chamber read 3.0×10−6 mbar. This yields a broad and relatively

low powered ion beam profile according to the manufacturer’s test sheet, and was

used to reduce the adverse effect on the crystal surface as repeated sputter/anneal

cycles introduces roughness over time [132, 162]. Each sputter-anneal cycle involves

sputtering at the aforementioned settings for 15 minutes followed by an anneal at

600 °C for 20 minutes. Initial anneal attempts with lower annealing temperatures

yielded poor LEED patterns with very weak spots, which shows little improvement

over the as-inserted crystal with no pattern at all (shown in figure 5.2). 3-4 anneal-

sputter cycles are needed to clean a fresh single crystal.

Figure 5.2: LEED patterns taken at 90 eV for various stages of Fe3O4 single crystal

preparation. A: after sputter-anneal at 350 °C, B: after sputter-anneal at 450 °C, C:

after sputter-anneal at 600 °C, D: after heating in oxygen with sample held at 500

°C and E: after oxygen roast with final annealing without oxygen at 500 °C.

The sputter-anneal cycle results in an Fe-rich termination as the Ar ion sputtering

preferentially removes oxygen ions [158, 157]. The ideal subsurface cation vacancy
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(SCV) structure can then be produced by a final anneal in oxygen to oxidise the

reduced surface [162]. The oxygen doser was advanced to within 1 cm of the sample

for this and oxygen was introduced to the chamber until the chamber pressure read

5×10−8 mbar, which yields a higher local pressure around 1×10−6 mbar needed for

the oxygen anneal as stated in the literature [132]. The sample was held at 500 °C for

the oxygen anneal. In order to obtain the optimal surface reconstruction, an extra

15 minute anneal at 500 °C was added at the end in accordance to the literature

[146], although the effect is not clear in the LEED patterns obtained. This yielded

a LEED pattern where the (
√

2×
√

2)R45° spots are rather weak (figure 5.2, which

suggests a reduced surface where the cation vacancies are filled[132], but the overall

LEED pattern is quite clear.

Spectroscopy Data

XPS, UPS and MDS spectra were taken at several points during the preparation

of the Fe3O4 single crystal surface. XPS scans over a large binding energy range

(1000 to 0 eV) were taken first. These ”survey scans” on the sample are used to

check that any adventitious carbon on the surface of the as-inserted sample is been

cleaned away with the sputter-anneal cycle. An eradication of the C 1s peak was

observed (figure 5.3), along with an overall increase in intensity for the Fe 2p and

O 1s peaks as the surface contamination layer is removed.

XPS provides a further check of whether the SCV structure has been obtained by

comparing the relative magnitude of the contributions from the Fe2+ and Fe3+ ions

to the spectrum. The reduced Fe “dimer” structure described in section 5.1.2 has a

greater proportion of Fe2+ ions near the surface, and the corresponding features in

the XPS spectrum are enhanced. The XPS spectra in figure 5.4 for the Fe 2p peaks

show a visible increase in intensity for the Fe2+ satellite feature at a binding energy of

716 eV for the sample post sputter-anneal cycles when compared to the as-inserted

crystal; and a decrease in the satellite peak for Fe3+ ions at 718.5 eV. The as-inserted

sample is expected to have more Fe3+ ions as the surface is heavily oxidised from

being exposed to air for a prolonged period of time. The shake-up satellites are

used to distinguish the different surfaces as the changes are much more pronounced

than those for the Fe2+ and Fe3+ peaks at 709 and 711.4 eV. The spectrum for the

sample after the final oxygen anneal shows a decrease in the Fe2+ shake-up satellite
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Figure 5.3: XPS survey spectra over a binding energy range of 0-1000 eV. The C 1s

peak disappears after the sputter-anneal cycles and the Fe 2p and O 1s peaks increase

in intensity.

as expected after the surface is oxidised. The SCV structure has been shown to be

Fe3+ rich at the surface by angular resolved XPS measurements [158], as the Fe3+

satellite feature is enhanced when spectra are taken from emission at glancing angles

to the sample surface. The spectrum taken after the oxygen anneal agrees with the

spectrum for the SCV structure taken at 45°, where the contributions from the Fe2+

and Fe3+ features form a relatively symmetric region between the Fe 2p1/2 and Fe

2p3/2 peaks.

XPS spectra for the oxygen 1s peak were also taken at the same points, also shown

in figure 5.4. Although the oxygen peaks are very similar in shape before and after

the oxygen anneal, there is a small but perceptible shift in the binding energy to a

slightly higher energy after the anneal, which also been seen in the literature [132].

UPS and MDS spectra were taken after sputter-anneal cycles, initial oxygen anneal

and the final preparation step figure 5.5. Spectra were not taken for the as-inserted

samples as the sample surface were likely too contaminated before cleaning to obtain

a reasonable spectrum. The UPS spectra taken are very similar, peaking at 4.8 eV
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Figure 5.4: XPS spectra for the Fe 2p (left) and O 1s (right) peaks for the as-

inserted sample, the sample post sputter-anneal cycles and after the final oxygen

roast. The increase and decrease in relative contributions from the Fe2+ and Fe3+

satellite features suggests the formation of a Fe-rich termination prior to annealing

in oxygen. A small shift is visible in the oxygen spectra.

below the Fermi energy and a broad feature is visible at 2.8 eV with very weak

Auger features at approximately 10.5 eV and 12.5 eV. These agree well with Fe3O4

UPS spectra in the literature [163]. The one clear difference between the spectra is

for the post anneal sample, the Fermi Edge is sharper than the later spectra, which

is also indicative of an Fe rich surface, where there are more Fe 3d band electrons

present near the Fermi energy.

The MDS spectral features (also found in 5.5) are present at kinetic energies of 7.0

eV, 9.0 eV, 14.2 eV and 16.0 eV. Comparing these to the UPS peaks, the MDS peaks

at kinetic energies of 16.0 and 14.2 eV correspond to the UPS peaks at 2.8 eV and

4.8 eV below the Fermi level; and the MDS peaks at kinetic energies of 9.0 eV and

7.0 eV correspond to the two UPS peaks at 10.5 eV and 12.5 eV below the Fermi

level. While it is difficult to pinpoint the exact contributions, there is a very clear
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Figure 5.5: UPS and MDS spectra for the Fe3O4 Single Crystal at various stages of

sample preparation. UPS spectra shapes are all very similar, with minute changes,

but the MDS spectrum shows very prominent changes at each step in the features at

7 and 9 eV.

change from a dominant peak at 7.0 eV for the sputter-annealed surface to a more

intense peak at 9.0 eV for the oxygen-annealed and final surfaces. This presents an

interesting contrast to the UPS spectrum, where the features are not very sensitive

to the difference in the Fe “dimer” and the SCV terminations. Therefore the MDS

spectrum of a prepared Fe3O4 surface could be used to further check for subtle

differences in the surface preparation.

However, the presence of features at all is a point of concern. Since the de-excitation

mechanism on the Fe3O4 surface should be the two electron process of resonance

ionisation and Auger neutralisation, the spectrum will be a convolution of the elec-

tronic states of the two electrons involved in the process. This should lead to very

broadened and weakened features in the Fe3O4 spectrum [146], whereas the most

prominent feature at 14.2 eV is still quite clear. This could be an indication of

some contribution of the Auger de-excitation mechanism, which suggests that the
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surface is more insulating. This could result from issues with the stoichiometry at

the surface as well as defects. The SCV structure is terminated with a layer of octa-

hedral site Fe cations, with a mix of 2+ and 3+ charge. Incorrect termination and

increased oxidation could reduce the proportion of 2+ cations which are responsible

for conduction.

Sputter-anneal-oxygen roast cycles have helped to clean the surface, which has af-

fected the photoemission data. But the MDS could indicate that the surface may

not be as pristine as possible (and is supported by the LEED pattern), which may

stem from the fact that the crystal is not cleaved inside the vacuum, but inserted

into the UHV system and then cleaned, and therefore has been exposed to heavy

contamination (such as carbon particulates and oxygen in the air) and has a less

controlled history than films grown in-situ.

5.2.2 Fe3O4 on MgO (001)

Growth

A co-deposition method for growth of Fe3O4 on MgO(001) substrates was also used

to prepare a magnetic surface on top of which organic molecules could be grown.

This has an advantage over Fe3O4 single crystals as the repeated cleaning of single

crystal samples can cause surface roughness and the growth of Fe2O3 regions from

dislocations [132], therefore the use of newly grown samples eliminates the effects of

the sample history on the properties of the organic-ferromagnetic interface. There-

fore, the experiments described later in this chapter were all performed on samples

using thin film Fe3O4 grown in-situ. The analysis of the single crystal was still a

necessary step, however, to verify the results of surface preparation steps taken for

the thin film; to ensure that clean, stoichiometric Fe3O4 samples were grown to a

satisfactory standard.

MgO (001) was chosen as its lattice constant (0.42 nm) is almost exactly half of that

of Fe3O4 (0.84 nm). This allows smooth epitaxial growth in the Frank-van der Merwe

(FM) mode. However, because the Fe3O4 growth is equally as likely to nucleate on

sites with integer or half integer lattice constant lengths apart, domains form as the

film covers the surface, which greatly affects its magnetic properties [132]. MgO is

also an insulating material, and given that many of the techniques used to probe
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the sample involves the bombardment or loss of electrons, charging effects on the

data become an issue. This problem was alleviated by affixing the sample onto the

OMICRON sample plates via a firm conducting contact on the top surface, which

will form a path to ground for the magnetic film, when the conducting Fe3O4 film

is deposited on both the substrate and the contact. Although there are issues with

its use, MgO is nevertheless still a prime substrate candidate for the preparation of

a clean Fe3O4 (
√

2×
√

2)R45° surface as the preparation of magnetite films on the

substrate is relatively simple and reliable.

MgO(001) substrates measuring 10 × 10 mm were affixed onto Omicron sample

plates for e-beam heating, where a hole in the centre of the plate is present at the

sample location (such that the e-beam can reach the sample being heated more

directly). The MgO substrate can then be cleaned in-situ by an oxygen anneal. The

oxygen doser is advanced to within 1 cm of the sample and O2 gas allowed into the

chamber until the chamber pressure reads 5 × 10−8 mbar. The sample is then heated

to 750 °C for 45 minutes to obtain a clean surface. The surface is then checked with

LEED (figure 5.6). Unfortunately, as the MgO surface is insulating, any attempts

to verify that all residues of carbon had disappeared from the sample with in-situ

XPS shows unmanageable amounts of charging effects and the results are entirely

inconclusive for their purpose. An electron gun to neutralise the sample during the

process would be able to help, but nothing was available on hand to allow this.

Fe3O4 is then grown on the MgO substrate via co-deposition, or reactive sputtering.

This is done through sputtering Fe onto the sample while exposing the sample to

oxygen. An oxygen pressure of 1 × 10 −7 mbar is required and the oxygen doser

was advanced to within 1 cm of the sample to allow a high local pressure. Iron was

deposited using an Omicron EFM3 source. The deposition rate of iron was calibrated

to 1 Åmin−1 using a QCM and the rate was maintained by intermittently advancing

the iron rod to keep a constant sample flux reading on the source controller. The

deposition rate was checked mid-way and at the end with the QCM to ensure that it

had stayed constant. 90-minute depositions were used to grow approximately 13.7

nm of Fe3O4, accounting for the increase of film thickness per unit mass of iron

between Fe3O4 from pure Fe due to a lower density (5.17 g/cm3 when compared to

7.87 g/cm3 of iron) and the addition of oxygen atoms. Sample is held at 350 °C

throughout the deposition procedure, which was chosen as the surface reconstruction

is unstable with prolonged exposure above this temperature [132].
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Figure 5.6: LEED images of the cleaned MgO surface (A) and the deposited Fe3O4

film (B) after annealing in oxygen. The
√

2 ×
√

2 spots are clearly visible for the

Fe3O4 film, and is much clearer than that of the single crystal. A higher LEED

energy was required to view the LEED pattern compared to the single crystal, as

charging effects due to the insulating substrate affected the LEED pattern.

Spectroscopy Data

XPS spectra taken immediately after deposition show an iron-rich surface, with a

pronounced Fe 2+ feature in the Fe 2p core peak, including an indistinct iron feature

at a binding energy of approximately 706 eV. The LEED pattern is also quite poor,

with quite diffuse spots. This was rectified by further annealing in oxygen at 350 °C

for 45 minutes. Clear improvements show after anneal, with the (
√

2×
√

2)R45° spots

becoming more visible (figure 5.6). In the XPS, the Fe edge disappears entirely and

the balance of the Fe 2+ and Fe 3+ peaks become similar to that of the magnetite

single crystal. However, the overall shape of the spectrum between the Fe 2p 1/2

and Fe 2p 3/2 peaks is a little more similar to that of the Fe “dimer” structure than

the SCV, suggesting that even after annealing, the surface still has a relatively Fe

rich termination when compared to the single crystal samples, albeit the difference

is minor. A comparison of the Fe 2p XPS spectra with that of the single crystal can

be found in figure 5.7

While the issue of an initial iron-rich surface could be taken as an indication that the

deposition rate of iron was set too high relative to the oxygen pressure (or the tem-
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Figure 5.7: A comparison of the Fe 2p XPS spectra for the deposited Fe3O4 film and

the single crystal. The spectra are largely similar, with a slight shift in the weighting

of the 2+ and 3+ satellites, signifying a small change in the stoichiometry.

perature), further samples prepared with a considerably lower iron deposition rate

still showed a similar iron-rich spectrum immediately after the deposition (though

the effect is less pronounced). The final LEED images and XPS spectra can be

taken as a good indication of a well prepared Fe3O4 (
√

2 ×
√

2)R45° surface. In

fact, the
√

2 ×
√

2 spots in the LEED are much more visible than those from the

single crystal, indicating a surface reconstruction that is more in line with the SCV

reconstruction described earlier, which is an advantage of the sample being prepared

in-situ.

UPS and MDS spectra comparing the Fe3O4 film to the single crystal are displayed

in figure 5.8. There are visible differences in both. The UPS spectrum for the film

shows a large peak consisting of two features at 4.5 and 5.5 eV from EF , with the

stronger feature at 5.5 eV. A very weak features is seen at approximately 2.4 - 2.8

eV. The positions of these are not too far removed from those of the single crystal

spectrum, but there is a shift in the relative intensities of these peaks. The peak at

4.5 eV is stronger than the one at 5.5 eV in the single crystal but is vice versa in

the film and the feature at 2.8 eV is much stronger in the single crystal. There is
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Figure 5.8: A comparison of the UPS and MDS spectra for the Fe3O4 film and the

single crystal.

also a considerably less sharp edge at EF . While the features on the UPS spectrum

for the single crystal match well to those in the literature for similar samples [163],

there is also valence level photoemission data on magnetite films that is similar to

the film grown here [164], specifically for the relative intensity of the features at 4.5

and 5.5 eV and the size of the shoulder at 2.5-3.0 eV. And since it is difficult to

extract good quantitative data from UPS and the overall similarity of the peaks, a

clear conclusion cannot be drawn from the UPS alone.

The MDS spectrum shows very clear changes. The spectrum is largely featureless,

aside from a peak at a kinetic energy of 8.3 eV and a broadened feature near the

maximum kinetic energy at approximately 18 eV. Compared to the single crystal

spectum, this is much more in-line with expectations due to the de-excitation mech-

anism and better agrees with previous MDS spectrum taken of Fe3O4(001), where

there are no clear features at around 14 eV [146]. This is compounded by the clear

LEED pattern showing the
√

2×
√

2 R45 reconstruction. The UPS and XPS spectra

both displayed discrepancies to that of the single crystal, which may indicate, to an

extent, issues with the surface; but these are difficult to quantify and are markedly

less distinct than the changes in the MDS and LEED data that suggest a better sur-
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face has been prepared using in-situ growth. Overall, from the spectroscopy study

presented, it is reasonable to conclude that a decent Fe3O4(001) film was grown

in the UHV chamber built here at York and the replication of the co-deposition

technique is a success.

5.3 Antiferromagnetic coupling at the Fe/Fe3O4

interface

Exchange coupling between magnetic multilayers is one of the key mechanisms for

controlling magnetization alignment in device structures at the heart of magnetic

recording, sensing, and MRAM technologies [165]. If the interlayer exchange cou-

pling (IEC) is strong enough, adjacent ferromagnetic layers may align antiferromag-

netically leading to a reduction in detrimental stray fields due to a suppression of

magnetostatic energy. This is made use of in synthetic antiferromagnets (SAF),

often used as a reference layer in magnetic tunnel junctions (MTJs) and typically

consisting of two ferromagnetic (FM) layers separated by a non-magnetic layer [166].

Dipolar coupling between the FM layers leads to an antiparallel alignment of their

magnetization directions thereby reducing the interaction with the free layer of a

device when compared to magnetically hard-pinned layers [2]. SAF-based devices

also produce a more symmetric reversal of a free layer and a reduced shift in the

free-layer hysteresis loop allowing two stable resistance states at zero field [167]. As

such, SAF-based devices are better, not only for in-plane MTJs, but also for MRAM

using perpendicular magnetic anisotropy.

Yanagihara et al. previously showed that the exchange coupling between Fe and

Fe3O4 in Fe/MgO/Fe3O4 tri-layer structures is antiferromagnetic (AFM) and in-

creases as the thickness of the MgO spacer layer decreases [168] (see Fig. 5.9). For

no MgO layer at all, an exchange coupling as strong as -2.2 ergcm−2 was measured

which compares favourably to that of Co/Ru/Co structures typically used as SAFs

in MTJ stacks [165]. First-principles band structure calculations for Fe/Fe3O4(001)

junctions suggested an extrinsic mechanism for antiparallel magnetization align-

ment that is mediated by impurity-like states of Fe atoms at the interface [169].

The observed AFM coupling was attributed to direct exchange between Fe atoms in

neighbouring Fe(001) and Fe3O4(001) with superexchange via oxygen ions ruled out
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Figure 5.9: (a) Experimental methodology employed by Yanagihara et al. [168] in

probing exchange coupling in epitaxial MgO(001)/γ-Fe2O3/MgO/Fe(001) multilay-

ers with different MgO spacer layer thicknesses. For similar experiments with Fe3O4,

it was found that the exchange coupling between Fe and Fe3O4 was maximum when

no MgO layer was present at all (b). The two layers are antiferromagnetically cou-

pled, as indicated by the negative value of J.

based on the assumption that the interfacial electronic structure of Fe3O4(001) is

bulk-like [170]. However, as we have previously shown, relaxation and reconstruction

at the surface of Fe3O4 leads to the appearance of significant electron density in the

previously-empty majority band gap meaning that the Fermi-level spin polarisation

of Fe3O4, predicted to be -100% in the bulk, is drastically reduced [171]. As such, a

much more detailed understanding of this system is needed in order to address its

potential use as a synthetic antiferromagnet in spintronic device structures.

5.3.1 Spin-polarised metastable de-excitation spectroscopy

study of Fe/Fe3O4 interfaces

To address the formation and properties of the Fe/Fe3O4 interface, spin-polarised

metastable de-excitation spectroscopy (SPMDS) experiments were performed at the

National Institute for Materials Science (NIMS) in Tsukuba, Japan using a growth

procedure similar to that described earlier in this chapter. The SPMDS set-up

employed at NIMS to obtain the following results was similar in principle to the

arrangement at York with some key differences. To produce the He 23S beam, a

pulsed nozzle-skimmer discharge source was used with the kinetic energy of emitted

electrons measured using a simple retarding field analyzer. He atoms were spin

polarised through optical pumping of the 23S1–23P2 transition at 1083 nm and a
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quantization axis was then imposed on these atoms to align them either parallel or

antiparallel to the in-plane sample magnetization direction. See Ref. [172] for full

details of the He 23S beamline used at NIMS.

Samples were prepared in an ultrahigh vacuum system with a base pressure of

< 3 × 10−10 mbar by first growing Fe3O4 thin films approximately 20 nm thick

on clean MgO(001) single crystal substrates through electron beam evaporation of

99.99% pure Fe in an elevated O2 pressure of ∼3×10−6 mbar. The growth proce-

dure followed, as shown in earlier in this chapter, is known to produce high-quality

Fe3O4 films in the modified B orientation which has a surface terminated with

a (
√

2 ×
√

2)R45◦ structure as verified in the previous section using low energy

LEED and elsewhere using Auger electron spectroscopy [172]. Fe3O4(001)/Fe(001)

interfaces were then formed by sequentially depositing further amounts of Fe in an

oxygen-free environment. The samples were then pulse magnetized in the in-plane

direction before the acquisition of SPMDS spectra. Spin asymmetry was calculated

using equation 2.3.

Figure 5.10(a) shows the spin-summed MDS spectra obtained from a clean Fe3O4(001)

surface and after subsequent deposition of Fe up to a coverage of 1 monolayer (ML)

at which point the spectra saturate. The featureless spectrum of the clean surface

is characteristic of the RI+AN de-excitation mechanism and reflects emission from

the high kinetic energy features corresponding to the O 2p and Fe(B) 3d states,

located in the (
√

2×
√

2)R45◦ reconstruction [174, 171]. Adsorption of just a small

coverage (0.05 nm) of Fe leads to marked changes in the MDS spectrum with a clear

peak present at ∼8.5 eV and stronger emission at higher kinetic energies. O 2p

and Fe 3d states, centred at kinetic energies of ≈9 and 13 eV respectively, are now

much clearer possibly suggesting that the de-excitation mechanism has switched to

the one-electron process of Auger de-excitation which occurs for insulating surfaces.

The strength of the oxygen peak is somewhat unexpected given that additional iron

has been deposited and is possibly due to the segregation of excess oxygen atoms

from the Fe3O4(001) surface to form an insulating FeO precursor layer. Further

deposition of iron reduces the sharpness of both the O and Fe features until the

spectra saturate at a coverage of approximately one monolayer, or somewhere be-

tween 0.15 and 0.20 nm. For higher coverages, the spectra are relatively featureless,

indicating that RI+AN is again the dominant de-excitation mechanism as expected

for transition metal surfaces.
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Figure 5.10: (a) Spin-summed MDS spectra from a clean Fe3O4(001) surface and

for coverages of Fe up to 2.0 nm. A one monolayer Fe coverage corresponds to

approximately 0.15-0.20 nm after which point the features in the spectra remain

consistent. (b) A figure reproduced from Ref. [173] showing MDS spectra for a clean

Fe(001) film before and after exposure to small amounts of oxygen, expressed in units

of Langmuirs (L), which is equal to 1 second of exposure at 1×10−6 torr.

It is notable in the MDS spectra for higher iron coverages that emission at high

kinetic energies, i.e. close to the Fermi energy, is lower than would be expected given

the density of 3d states near to EF . This is especially apparent when comparing

the spectra obtained here to previous MDS data from clean iron films, where the

there is a much stronger peak at higher kinetic energy, an example of which is shown

in the bottom plot of Fig. 5.10(b), taken from a study by Moroni et al. [173]. In

that study, the authors exposed the clean Fe(001) film to small doses of oxygen,

as indicated in the series of spectra in Fig. 5.10 (b). Note that the kinetic energy

scale used in this figure is over a smaller range than presented with our data in

Fig. 5.10(a). Comparing the two sets of data, it is apparent that the spectra for

iron coverages of 1 ML (0.15 nm) and above in Fig. 5.10(a) are very similar to the

spectra in Fig. 5.10 (b) for an iron film exposed to between 1.0 and 1.6 Langmuirs of

oxygen. This strongly suggests that the ‘clean’ Fe films grown in this study actually
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have a very small amount of oxygen present at the surface. This is an interesting

finding and leads to the questioning the origin of the oxygen. Despite the reactivity

of iron, previous studies of the growth of iron films in the same system on different

substrates to Fe3O4(001) show strong emission close to the Fermi energy, indicative

of a clean Fe surface [172]. Hence, contamination of the analysis chamber or the

helium beamline as being the source of oxygen can be ruled out. It is therefore

probable that the small amount of oxygen present on the Fe films originates from

the Fe3O4(001) substrate, always remaining at the topmost surface even as more

and more Fe is deposited. In other words, oxygen is acting as a surfactant in the

growth of Fe/Fe3O4(001) interfaces. The driving mechanisms behind this effect need

further investigation and it is sufficient for the purposes of this study to state that

Fe films of a certain thickness have been prepared on Fe3O4(001) which allows us to

discuss the spin polarisation of this system.

Figure 5.11: (a) Spin asymmetry data for a clean Fe3O4(100) surface and after

exposure to increasing amounts of Fe, up to the formation of a film approximately 1

ML thick. (b) A figure reproduced from Ref. [173] showing spin asymmetry data for a

clean Fe(001) film before and after exposure to small amounts of oxygen, expressed in

units of Langmuirs (L). Note the anticorrelation between the features in the 0.20 nm

spectrum in (a) and the 1.0 L spectrum in (b)
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Figure 5.11(a) shows the spin asymmetry calculated from the spin-resolved spectra

that were combined in Fig. 5.10(a). The spin asymmetry of the clean Fe3O4(001)

is slightly negative at high kinetic energies where emission is mainly due to states

around the Fermi level. A negative spin asymmetry in SPMDS implies a positive

spin polarisation in the surface density of states of Fe3O4(001) due to the dynamics

of the spin-dependent de-excitation process, which must satisfy Pauli’s exclusion

principle. A small positive spin polarisation in the surface DOS of Fe3O4(001) is

in sharp contrast to predictions of a Fermi-level spin polarisation of -100% for this

material and the origin of this change has been attributed by Pratt et al. to the

presence of oxygen dangling bond surface states appearing in the bulk majority band

gap [171]. A very small amount (0.05 nm) of Fe deposition leads to the disappearance

of spin asymmetry altogether. The formation of a magnetically-dead layer supports

the assertion that an FeO-like structure has formed. Spin asymmetry returns for

higher coverages of Fe with strong features emerging for a coverage of approximately

one monolayer (0.20 nm). Two negative ‘dips’ in spin asymmetry are observed at

kinetic energies of approximately 7 eV and 13 eV separated by a positive peak at

10 eV. To make sense of these features, comparison is again made to the study by

Moroni et al. who presented spin asymmetry data for the same oxygen-exposed Fe

on Ag system for which MDS data are shown in Fig. 5.10(b). Fig. 5.11(b) shows this

asymmetry data. A large positive asymmetry is observed around the Fermi level for

the clean Fe surface, expected as minority spin states dominate in the spin-resolved

band structure of Fe close to EF . When the Fe film is exposed to small amounts of

oxygen, the spin asymmetry changes such that two clear positive peaks are present

for an oxygen dose of 1.0 L separated by a negative dip. The energetic positions

of these features align very closely to those for the Fe film grown on Fe3O4(001),

as shown in Fig. 5.11(a) again suggesting that the films grown in this study have a

trace level of oxygen present at their surface. Interestingly though, the polarity of

the features is reversed. For example, the negative dip at 13 eV for the 0.20 nm Fe

film on Fe3O4(001) appears as a positive peak at 13 eV for the 1.0 L spectrum from

the oxygen-exposed Fe study. But the spectra in Fig. 5.11 for the clean Fe3O4(001)

and Fe surfaces have the same respective polarisation, this striking anti-correlation

can be taken to mean that the majority spins of the Fe film grown here are aligned in

the opposite direction to the underlying Fe3O4(001) substrate. In other words, the

Fe and Fe3O4(001) layers either side of the Fe/Fe3O4(001) are antiferromagnetically

coupled. This interesting observation supports the earlier work of Yanagihara et al.,
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described above, which only observed bulk magnetisation effects.

Further work is needed to clarify the exact origin of this exchange coupling effect but

it would seem that the formation of the insulating, and magnetically-dead, FeO pre-

cursor layer is key. Previously, Kida et al. noted that frustration effects at such an

insulating interface would prevent intrinsic exchange coupling between Fe atoms in

the two layers and most ferromagnetic bilayers display ferromagnetic coupling [169].

Hence, in keeping with the unique and interesting properties of Fe3O4, a more in-

tricate mechanism must account for the observed AFM coupling. Clarification of

this mechanism is likely to require theoretical support to the experimental data pre-

sented here, specifically, density-functional theory (DFT) calculations that build on

earlier work for the clean Fe3O4 surface [171, 175].
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Chapter 6

The C60/Si(111) 7×7 Interface

6.1 Introduction

The C60 on Si organic-semiconductor interface was selected to test the character-

isation techniques described in the previous chapters. As the quintessential semi-

conductor material, silicon was a natural choice of substrate with its well studied

surface reconstructions and ease of preparation. On the organic side, C60 was the

first fullerene molecule to be discovered and is a good electron acceptor for use in

charge transfer applications such as organic electronic devices. Together, the C60-Si

system can be considered an “archetypal” organic-semiconductor interface on which

to test the capabilities of the new vacuum system.

Naturally, such an organic-semiconductor combination will be well studied, and

there is in fact a great amount of research that has been carried out, starting in the

early 1990s, not long after the discovery of the C60 molecule in 1985 [55]. However,

there has been great debate with regards to the nature of the interfacial bonding

and, even now, some of the underlying mechanisms are still not entirely understood

[176]. Evidence both for and against exists concerning whether there is charge

transfer from the silicon surface into the C60 cage. It is important to resolve this

issue in order to gain a better understanding and engineer organic electronics in-

terfaces with enhanced efficiency and more control over transport properties for use

in organic electronic devices. For example, low charge mobility and extraction in

organic photovoltaics can be improved with easier transport across organic/organic

and organic/electrode interfaces [177]. The MDS technique offers a novel way to di-
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rectly characterise the electronic structure of the C60 cage, while being more surface

sensitive than conventional valence band photoemission using UPS. The literature

concerning the C60-Si(111) 7×7 interface will be examined at the start of this chap-

ter, followed by presentation and discussion of the results obtained.

6.2 Background

6.2.1 Deposition, structure and STM

Initial studies of C60 deposited on the Si(111) 7×7 reconstruction were conducted

using STM [178, 179]. Individual fullerene molecules adsorbed on the surface were

found to stay isolated and showed no evidence of island formation, unlike what

was previously observed for C60 on metal surfaces such as Au(111) [180]. This

suggested that there was a strong interaction and provided initial evidence that the

C60 molecules bind strongly to the Si surface[178]. Changes in the appearance at

different sample/tip biases show the presence of different bonding configurations and

the apparent heights of the molecule change depending on the adsorption site, with

the molecule having “sunk” deepest at the corner hole sites and overall showing

lower apparent height than the diameter of the C60 molecule [178, 179, 181]. At

sub-monolayer coverages, no obvious preferred bonding site can be seen. An STM

image taken from the literature [179] at sub-monolayer coverage is shown in figure

6.1. Statistical analyses of the STM images have yielded mixed results [179, 181],

which could be attributed to difficulties in precisely determining the adsorption site

of such a large molecule from STM images alone, as well as discrepancies arising

from changes in preferred site as coverage increases towards 1 ML.

An ordered structure emerges when a full monolayer is deposited [182, 181], with the

C60 molecules adsorbed on two sites: the corner hole site (where the molecule sits

above the corner hole of the reconstruction) and at sites bridging a centre adatom

and corner adatom (where the molecule sits in the “triangle” between three corner

holes). It was proposed that pinning of fullerene molecules adsorbed at the corner

site, where it “sinks” into the hole, forced the ordered structure as the coverage

increased [181]. Given two sets of equivalent adatom bridge sites available on the

Si(111) 7×7 reconstruction, two different domains are present on the surface with
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Figure 6.1: (a) STM image of C60 on Si(111) at sub-monolayer coverage. (b) Image

illustrating the “large” and “small” molecules observed, where the “small” molecules

are intially theorised as due to being sunk inside a corner hole site, and (c) a plot

showing the scan across the molecules along the line drawn in (b). Images taken

from [179].

an offset of approximately 22° from each other [182] and, in Wood notation, the

description is
√

7×
√

7 R19.1° [183]. A schematic of this structure is shown in figure

6.2.

6.2.2 Adsorption character

The observations described above suggest the presence of significant bonding be-

tween the carbon and silicon atoms. At low coverages, valence level photoemission

spectra show a clear broadening or splitting of peaks when compared to the spectra

of bulk fullerite [184, 185]. This was attributed to a change in bonding nature of the

C60 molecule to the surface by eliminating other possibilities [184]: STM images did

not show dimerisation or polymerisation of the C60 [182]; high-resolution electron

energy loss spectroscopy (HREELS) data did not find vibrational modes correspond-

ing to C60 dimers; and the energies measured of > 1.50 eV from the Fermi level are

rather higher value than that of a filled C60 LUMO when bonded to an alkali metal

[186]. In this framework, the origin of a splitting in valence band photoemission,

as in the literature and later in this chapter, could be due to both a breaking of

symmetry in the molecule when covalently bonded, and the formation of a bonding

orbital [184]. By comparing to the valence level spectra of C60 dimers, it can be seen
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Figure 6.2: Schematic of the two different domains’ arrangements of an epitaxial C60

film grown on Si(111) taken from [183]. The open circles represent C60 molecules

while the black and grey dots represent the adatoms and rest atoms of Si respectively.

that the split HOMO due to a change in symmetry only yields a small shoulder on

the HOMO peak [187, 188], and therefore the formation of a bonding state is more

likely the main contributor. More specifically, the sp2-like hybridisation is changed

to a sp3-like character when a carbon double bond is broken to form an Si-C bond

with the surface. A reasonably straightforward DFT calculation of C60 molecules

bonded to SiH3 groups yields very similar predictions for the valence band spectra

of C60 on Si [189], which show the formation of Si-C bonds.

After establishing that Si-C bonds exist between the C60 molecules and the Si(111)

surface, a point of controversy arose from the debate over whether the molecules

are all chemisorbed on the surface or only partially so. Initial photoemission data

in the literature over a range of coverages up to 1 ML showed a change in the line

shape of the HOMO and HOMO-1 peaks: the peaks, which at low sub-monolayer

coverages showed a high degree of splitting, became more symmetrical [190]. This

led to the conclusion that, at 1 ML, many of the molecules are physisorbed on the

Si surface, since the presence of the Si-C bonding state has diminished. A mixed

physisorbed-chemisorbed state was also used to explain differences in individual C60

molecules observed in STM [191] - where the more weakly adsorbed molecules seem

larger in the STM images (as seen in figure 6.1) due to more molecular movement

(induced by tip proximity). After annealing at 600 °C, the larger molecules in the
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STM image, corresponding to weak bonding, evolved into smaller ones [191], which

indicates that they have become more strongly bound.

However, later work called into question the deposition coverage as calibrated by

the quartz crystal microbalance (QCM) [176]. A comparison of the UPS spectra for

1.0 ML deposited as calibrated by QCM shows a striking resemblance to the spectra

for bulk fullerite, or very thick films, with the peaks being much more symmetrical

and the “valley” between the HOMO and HOMO-1 peaks having depth of a similar

size to the peak heights. As well as this, from STM studies, it has been found

that annealing the sample to 300 oC does not cause the first monolayer to desorb

[181], but merely for the molecules to migrate on the surface. This means that by

annealing, one can return to a coverage of 1.0 ML after a large amount of deposition,

and doing so yielded a spectrum that was similar to that of sub-monolayer coverages

obtained from QCM calibrated data [185]; with a more split HOMO peak and a less

distinct separation between the HOMO and HOMO-1 peaks. From this data, the

conclusion is that the C60 molecules are in fact all chemisorbed upon deposition onto

the Si(111) surface. Later work combining STM and valence level photoemission on

annealed samples also confirmed this conclusion, which is now generally accepted

[189].

First principles calculations of C60 on Si(111) were performed to find the adsorption

geometries of C60 at the interface [192, 193]. The results found no evidence for a

physisorbed precursor state, but instead explained the ‘large’ and ‘small’ molecules

observed in STM (shown in figure 6.1) as being bound with different numbers of

Si-C bonds [192]. In this interpretation, less strongly adsorbed C60 molecules are

chemisorbed via just a few covalent bonds, while for strongly adsorbed molecules,

silicon adatom bonds to the surface are broken to form additional Si-C bonds if

given enough energy to overcome a kinetic barrier, such as when the sample is

annealed. A diagram illustrating this is shown in figure 6.3. These findings support

the consensus that, at 1 ML and below, all C60 molecules adsorbed on the Si(111)

surface are chemisorbed upon deposition.
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Figure 6.3: Schematic of C60 molecule adsorption on Si(111) for weakly (a, b)

and strongly (c) adsorbed states taken from [192]. Additional bonds are formed be-

tween C60 molecules and Si adatoms when energy is supplied to break bonds between

adatoms and the surface.

6.2.3 Charge transfer

In addition to the disputes over the type of adsorption at the interface, the nature of

the chemical bond formed is also the subject of conflicting theories. The possibility of

charge transfer across the interface (from the Si dangling bonds into the LUMO of the

C60) has been the subject of heated debate in the literature [176]. Electron donation

from the dangling bonds has been proposed since the first STM studies of C60

deposition onto Si(111) [179, 181]. In those STM images, the adatoms neighbouring

C60 adsorption sites appear darker than adatoms elsewhere on the surface. This

darkening is caused by a reduction in filled electronic density of states in those

adatoms, and was attributed to the donation of charge into the C60 LUMO. A more

direct measurement of this charge transfer was taken with HREELS [194, 195] and
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an estimate of the amount of charge transferred across the interface was obtained.

Specifically, the estimate was carried out by using a method proposed earlier for

alkali-metal-doped C60 [196], where a linear softening effect in the T1u mode of a

AxC60 molecule (where A is the alkali metal) is predicted to be proportional to

x. The initial results of this calculation predicted stronger charge transfer at sub-

monolayer coverages (approximately 0.25 ML) with 3±1 electrons per C60 molecule

[195] and a smaller amount at 1.0 ML with approximately 1±1 electrons. These

initial results depict a very unrealistic picture and, naturally, further evidence for

charge transfer has been pursued in the literature with other measurements.

The most direct measurement of the density of states is with photoemission spec-

troscopy. If electrons are transferred into the C60 LUMO, then this should be ob-

servable as an extra occupied state near the Fermi level. However, valence level

photoemission spectroscopy taken using ultraviolet photons yielded no observable

density of states near the Fermi level [197, 184]. Initially, this was attributed to

the fact that the >100 eV photons used [197] were at too high an energy [185],

but later experiments with UV photons generated with the He I spectral line (21.2

eV) showed similar results [184]. This new data also drove renewed discussion into

the validity of the interpretation of previous HREELS data [190, 184, 185], and a

new conclusion was reached: that due to covalent bonding at the surface, the C60

would be more strongly distorted, which would in turn affect the vibrational modes

of the molecule on the surface. This would mean that the method used to estimate

the amount of charge transferred for C60 - alkali metal interfaces can no longer be

reliably applied.

However, probing the core electronic states using XPS paints a contradictory picture.

After sub-monolayer deposition and subsequent annealing, a shift to a lower binding

energy is observed for the C 1s peak. This has been attributed to a final-state

screening effect from charging as electrons move from the Si surface into the C60

LUMO [184]. The proportion of contribution from image charge screening and

charge transfer screening is difficult to separate from XPS data alone, but the data

gives evidence of charge transfer across the interface. One theory put forward to

reconcile the opposing evidence for charge transfer is that the injected charge is

not uniformly distributed in the C60 cage [198, 192]- more specifically, the electrons

are localised to the carbon atoms closest to the Si surface. In this case, there

would be a charge redistribution over the C60 cage that photoemission measurements
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are not sensitive to due to the signal being averaged over a finite depth. MDS

could provide a possible avenue to probe these subtle changes. Another crucial

point is that the charge transferred does not occupy the LUMO states, but instead

arises from hybridisation of the molecule with the surface [192]. While this is more

consistent with the valence band photoemission measurements, it is yet to be verified

experimentally and theoretical calculations still predict a measure of ionic character

in the chemical bonds [199, 193]. The issue of charge transfer is still unresolved for

the C60-Si(111) 7×7 interface.

6.2.4 Si(111) 7×7 surface

Si(111) 7×7 was the substrate chosen for the initial experiments with C60 deposi-

tion. It is well studied and is an easy-to-prepare surface used extensively in a variety

of research fields. When a silicon crystal is cleaved across the (111) plane, a 2×1

structure is produced. When heated above 873 K, the surface irreversibly recon-

structs into the 7×7 structure [200]. The surface reconstruction is explained by the

dimer-adatom-stacking-fault (DAS) model, which is shown in figure 6.4. The key

features of the reconstruction are the dimers along the dotted line in the diagram;

the adatoms, which are the largest circles; and the corner hole sites where the bulk

silicon is exposed. The unit cell also has a faulted and an unfaulted side, where on

the faulted side there is a stacking fault in the atomic layers.

The dangling bonds and back bonds of the surface form electronic states in the

band gap of bulk silicon. There surface states are only localised at the surface and

have been studied by UPS and AES [201, 202]. UPS and MDS spectra of the clean

Si(111) surface will be included with the results for the C60/Si(111) 7×7 interface.

6.3 Experimental and Results

6.3.1 Si surface preparation and growth of C60

The Si(111) 7×7 reconstruction was prepared inside the vacuum system by an es-

tablished procedure of flashing the sample using direct current heating. Sample

strips approximately 12×5 mm2 were cut from a 0.5 mm thick n-type Si wafer and
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Figure 6.4: Diagram of the Si(111) 7×7 reconstruction, the unit cell is marked by the

dotted line. Large circles are the adatoms. The pairs of small circles, such as those

on the dotted line, are the dimers. The dots distinguish the faulted and unfaulted

sides of the unit cell.

mounted in an Omicron direct current heating sample plate. Samples were then de-

gassed at a temperature of approximately 500 °C for several hours, usually overnight.

Samples were brought to 900 °C for 10 minutes before flashing three times to 1200

°C, allowing the chamber pressure to recover down to the low 10−9 mbar range be-

tween each flash. This was followed by ten more minutes at 900 °C. Finally samples

underwent slow cooling down to room temperature at a rate of roughly 1 °Cs−1. The

surface cleaning procedure was carried out prior to all measurements and deposition

involving Si samples.

The resulting 7×7 surface reconstruction was then checked with LEED and UPS

to ensure a good quality surface. Examples of the 7×7 LEED pattern and UPS

spectrum for clean Si are shown in figure 6.5. In the UPS spectrum, three Si surface

states are present at -0.2 eV, -0.8 eV and -1.8 eV, which correspond to the dangling

bonds of the adatoms, the rest atoms and the backbonds of the adatoms respectively

[203]. If a clear LEED pattern or surface state peaks were not observed, then the

sample would be flashed again until a satisfactory clean substrate was obtained.
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Figure 6.5: Left: LEED pattern of the Si(111) 7×7 surface taken at a beam energy

of 65 eV. Right: UPS spectrum of the clean Si(111)7×7 surface. The surface states

labelled S1, S2 and S3 correspond to the dangling bonds, underlying free atom/corner

hole sites and back bonds respectively.

C60 films were then sputtered onto prepared substrates by heating the C60 powder

(with a purity of 99.8%) using the MBE-Komponenten NTEZ low temperature

effusion cell. The deposition rate was monitored using a quartz crystal microbalance.

An ideal deposition rate of 0.2 nm per minute was aimed for, since this has previously

been shown to form no islands on the surface for a 1.0 ML film [176]. A suitable

deposition temperature of approximately 350 °C, as measured by the thermocouple

attached to the crucible of the instrument, was determined after calibration using

the QCM. From the QCM measurements, the C60 sublimation in the cell seems to

start around this temperature as a drop of only 10 °C below causes no appreciable

deposition even over long periods of time. Since the deposition rate is very sensitive

to small changes in temperature at around 350 °C, calibration is carried out prior

to all deposition.

After growth in the preparation chamber, the samples are transferred into the anal-

ysis chamber for measurement. For UPS and MDS, samples are placed normal to

the analyser (45° to the UPS source and the MDS beamline). For XPS, the sample

is placed 45° to both the monochromated x-ray source and the analyser as the best

compromise. The largest circular analyser entrance aperture is used (6 mm) for
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XPS and MDS measurements to maximise count rate and a smaller, 1 mm circular

aperture is used for the UPS due to saturation of the channel electron multipliers.

6.3.2 Core and valence level photoemission

UPS

Valence level photoemission data were taken via UPS for a range of nominal C60

coverages - from 0.2 ML to 1.0 ML in 0.2 ML increments. The spectra obtained are

displayed in figure 6.6. The peaks corresponding to the molecular orbitals of the

C60 immediately becomes dominant on deposition, even at low coverages. The peak

at -2.0 eV from the Fermi energy is assigned to the HOMO, the peak at -3.2 eV to

the HOMO-1. Further peaks appear at -5.1, -5.5, -6.8 and -8.0 eV from the Fermi

energy. These values are in line with values reported in the literature [184]. The

surface states of the substrate are visible at low coverages but disappear completely

by 0.6 ML, contrary to C60 deposited on metal surfaces, where substrate electronic

states can be observed at 1 ML [204, 205]. The disappearance of the surface states

shows interaction of the C60 with the Si dangling bonds.

The form of the molecular orbitals also changes with deposition. At low coverages,

the HOMO peak is initially broad and, from the shape, it is clearly split into two (or

more) peaks. As the coverage increases, the HOMO peak narrows into a symmet-

rical, single peak. The “valley” between the HOMO and HOMO-1 also inceases in

depth to a size comparable to the peaks themselves. As mentioned in the previous

section, this peak form is more similar in shape to the spectrum for bulk fullerite

[176]. Therefore the nominal coverages fall under suspicion, as the 1.0 ML spectrum

is close to that of others in the literature where the QCM calibration has fallen under

scrutiny. This is further strengthened by the consensus that all C60 molecules in the

first monolayer are chemisorbed on deposition, but a strong chemical interaction of

the C60 with the Si would cause a large breaking of symmetry in the molecules and

cause a splitting in the peaks [190]. This is observed only until a nominal cover-

age of 0.4 ML and indicates that above this, the coverage extends beyond the first

monolayer.

Therefore, another way to be sure that 1 ML of C60 has been deposited is desirable.

By taking advantage of the fact that the first monolayer of molecules (which are
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Figure 6.6: UPS spectra of C60 grown on Si(111) taken at different nominal sub-

monolayer C60 coverages. Lines are drawn at rough maxima positions as a guide to

better see the shifts.

chemisorbed) do not desorb on annealing [181], samples with many layers of C60

can reliably return to a coverage of 1 ML by heating the sample up to a suitable

temperature. However, heating can introduce possible changes in the film, shown

in figure 6.3, and these changes should be noted. Thick C60 films (>1 ML nominal)

were grown on clean Si substrates and then subsequently annealed. UPS spectra

were taken after annealing at 550 K, 650 K, 750 K and 1100 K for 10 minutes

each. The data are plotted in figure 6.7. After the initial anneal at 550 K, the

size of the C60 molecular orbital peaks falls drastically and a visible shift of around

0.3 eV is observed in all peaks. The HOMO peak also splits, indicating a breaking

of symmetry [190]. This is expected as the physisorbed upper layers of C60 desorb

125



by 550 K, leaving only molecules that strongly interact with the Si surface [176].

As the annealing temperature rises to 750 K, there is little-to-no change in peak

positions. There is, however, a slight but perceptible shift in the split HOMO

peak: the weight of the peak shifts towards a higher binding energy with the higher

temperature anneal. This could indicate that additional chemical bonds have formed

between the C60 molecules and the Si adatoms as more energy was supplied [192].

Furthermore, the shift towards a higher binding energy occurs mostly between 650 K

and 750 K, rather than uniformly across the whole range, which suggests that an

energy barrier was overcome by 750 K to give a discrete change in the bonding

configuration, which could correspond to the breaking of Si-Si bonds to form more

bonds with the C60. Finally, at 1100 K, the spectrum changes drastically as the C60

molecular orbitals disappear. At this temperature, the C60 cage has been broken.

New peaks are observed at -2.1, -5.2 and -7.6 eV relative to the Fermi energy and

these have similarities to an Si-rich 3C-SiC(001)-(2×1) surface [184].

Comparing these results to the graph shown in figure 6.6, the UPS spectrum taken

post anneal (and therefore corresponding to a ML coverage) best matches the spec-

trum taken at 0.4 ML of nominal coverage in terms of relative peak size. While

the HOMO peak shape is more similar in the case of 0.2 ML nominal coverage, the

remnant presence of Si surface states indicates that the coverage is sub-monolayer.

Therefore a tentative conclusion can be drawn that QCM calibration overestimated

the deposition rate by 2-3 times. This can be attributed to the incompatibility of C60

films with the assumptions made for the QCM calibrations, specifically linear vis-

coelasticity, and large differences in the density of an ultrathin C60 when compared

to the bulk value used in the calculations. There are however, subtle differences

between the results. The splitting of the HOMO peak is more visible in the UPS

spectra taken post anneal and crucially, the HOMO peak of the as-deposited sample

is weighted more towards a lower binding energy. This suggests a stronger interac-

tion at a similar coverage, which is in line with the results of DFT calculations that

showed a greater number of covalent bonds forming between C60 and the Si adatoms

when given a suitable activation energy (corresponding to annealing at temperatures

of 670 - 879 K) [192]. Overall, the UPS data agrees well with the literature and gives

confidence in the prepared 1 ML C60 on Si(111) samples.
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Figure 6.7: UPS spectra of C60 grown on Si(111) taken after annealing at a range

of temperatures. Lines are drawn at rough maxima positions as a guide to better see

the shifts.

XPS

Core level spectra were also taken with XPS to study changes in the chemical envi-

ronment due to annealing. XPS spectra for C 1s and Si 2p peaks before and after

annealing are shown in figure 6.8. The peaks were fitted using Voigt profiles - a

Gaussian-Lorentzian convolution. Initially, the as-deposited C 1s peak is located at

284.9 eV, and shows a single, relatively symmetric peak. The line profile changes

on annealing, and an extra feature appears at a lower binding energy at 283.1 eV.

The “main” peak also shifts slightly towards a lower binding energy of 284.5 eV.

Since the annealing process caused outer layers of C60 to desorb, a corresponding
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reduction in the size of the C 1s is also observed.

The Si 2s peak shows less pronounced changes before and after annealing. In both

there is a main component feature and a tail at +3 eV. There is a general shift

of the Si 2s peak to a lower binding energy, much like the C 1s and UPS peaks.

This slight global change of the binding energy in the XPS towards the Fermi level

could suggest a change in the surface work function induced due to band bending

at the interface, but the core levels of a 1 ML C60 film (where all molecules are

chemisorbed) on metallic surfaces are always situated lower than that of a thick

film [204, 205]. So a dependence on the work function can be ruled out. It is also

possible that a thicker C60 film causes a charge accumulation effect due to its higher

resistivity, but this can be mostly ruled out due to a conducting substrate, only still

having a very thin film and the reasonable electron mobility of C60. The peaks were

only crudely fitted due to the high noise and relatively low intensity, and qualitative

conclusions are more reliable than the small quantitative changes in the Si 2s peak.

The relatively small changes in the Si is in contrast to the larger changes in the C

1s, but since the information depth of XPS is quite high, the spectra are averaged

over multiple layers and therefore any changes to the surface would be averaged out.

The results taken here are largely in line with core level XPS spectra in the literature

[184, 176]. The extra feature observed at 283.1 eV suggests a change in the bonding

environment. This would be an initial state effect, caused by the hybridisation of

the atoms in the C60 cage that interact with Si adatoms. A lower binding energy

implies a gain in electrons, as the screening of the nucleus increases. The presence of

this feature also reinforces the theoretical calculations predicting a localised transfer

of charge [192], since not all of the C atoms are affected. An overall shift of 0.5 eV

in the remaining “main” peak could be explained by a non-localised image charge

screening effect, which would indicate a small amount of charge transfer into the

unoccupied states of the molecule. The de-convolution of initial and final state

effects is a difficult task that is dependent on the system studied [206] and was

not performed here. However, considering the possibilities, the changes in the XPS

spectra can be interpreted as pointing towards some amount of charge transfer into

the unoccupied states in the C60.
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Figure 6.8: XPS spectra of C60 grown on Si(111) taken before and after annealing

at 750 K for 10 minutes. (a) As deposited C 1s, (b) Annealed C 1s, (c) As deposited

Si 2s and (d) Annealed Si 2s

6.3.3 MDS spectra

To possibly shed more light on the nature of the adsorption, MDS spectra were taken.

As MDS would only probe the topmost atoms on the topmost layer of molecules,

effects that diminish in UPS due to averaging over the entirety of the C60 cage are

likely to be detected. MDS spectra were taken for a range of nominal sub-monolayer

coverages with the spectra taken shown in figure 6.9. As a semiconductor with a high

work function, the two-electron de-excitation process of resonance ionisation followed

by Auger neutralisation occurs and a convolved spectrum is obtained. The three

separate surface state peaks observed in the UPS spectra are replaced with two broad

features located at kinetic energies of 17.2 eV and 15.2 eV. The higher kinetic energy

peak is attributed to the Si surface state peaks s1, s2, s3 [207] mentioned earlier in

the chapter and the overall form of the spectrum is similar to that of INS and core-

valence-valence Auger spectroscopy [208, 209]. These features remain dominant at

a nominal coverage of 0.2 ML, which is in contrast to the UPS at the same thickness
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where the peaks for the C60 molecular orbitals are more visible. Since the two step

process is favoured, there are states present at the surface for the metastable 2s

electron of the He 23S atom to tunnel into. This therefore confirms that there are

still significant portions of the substrate exposed and a QCM-calibrated nominal

thickness of 0.2 ML is below full monolayer coverage.

Figure 6.9: MDS spectra of C60 grown on Si(111) taken at different nominal sub-

monolayer C60 coverages. Lines are drawn at very approximate positions due to the

large broadening/splitting effects.

The form of the spectrum changes from a nominal coverage of 0.4 ML onwards. Two

broad features are visible at approximately -2.1 eV and -3.2 eV from the maximum

kinetic energy and can be attributed to the HOMO and HOMO-1 molecular orbitals
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respectively. Although the exact positions are much harder to estimate due to the

spectrum displaying much stronger splitting, the overall peak positions correspond

well to the UPS spectra. This suggests a change in the de-excitation process when

compared to the Si surface, from a two-electron scheme to the one electron Auger

de-excitation mechanism. Therefore at this point the surface is likely covered in C60

molecules and further confirms the suspicion that a QCM-calibrated coverage of 0.4

ML is already close to a full monolayer of C60.

While the MDS features are broadened in general when compared to the UPS peaks,

splitting of the HOMO peak clearly exceeds this and suggests a lifting of the degener-

acy in the hu states in the C60. Interestingly, unlike the UPS spectrum, the splitting

in the MDS increases with greater coverage. For UPS, which probes the entirety of

the atom, a splitting at low coverages is seen due to symmetry breaking effects at

the interface such as dipole formation (breaking the symmetry in the molecule) as

well as electrons becoming located in bonding states. However for MDS, since much

of these effects are localised at the bottom of the molecules, the molecular orbitals

at the top are less affected and there is little impact from this on the spectrum.

The splitting of the MDS peaks at higher coverage can instead be explained via

orientation. The orientation of the C60 molecule is often ignored in spectroscopy

studies due to the high symmetry and electron mobility in the molecule allowing

it to be treated as a sphere. But as discussed in chapter 2, the difference between

the icosahedron and a sphere has a great impact on the electronic structure. For

MDS this is especially so, since at only the top of the molecule, there is a greater

variation possible in the geometry, i.e. the arrangement of pentagon/hexagon faces,

and would create large differences in the electronic states probed. Therefore the

narrow HOMO peaks in the MDS spectra at coverages up to 1.0 ML suggests good

ordering in the film, with set orientations, which is likely since C60 has preferred

bonding sites [183, 210] and site dependent orientations [199]. As the coverage in-

creases, the interaction of the molecule-molecule Van der Waals forces is weak and

therefore more orientations become possible due to thermal movement. This leads

to a greater variety of geometrical states at the top of the molecule probed by the

MDS and therefore a more pronounced splitting of the HOMO peak.

An extra feature not found in the UPS spectra is also present at a kinetic energy of

approximately 19.4 eV, or -0.4 eV from the maximum kinetic energy. This would

correspond to electron density at an energy level inside the HOMO-LUMO gap
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of C60 molecule. Such a peak is not observed in UPS. Electron density present

inside the HOMO-LUMO gap of the molecule has been theorised to exist in the

anti-bonding state arising from the hybridisation of the C60 molecules with the Si

surface [184]. However, there are several issues with this interpretation. Firstly, the

charge transferred in the hybrid orbitals would be localised to the C atoms closest

to the Si adatoms [192], and since the He* beam used in MDS has zero penetration

into the sample, it is unlikely for the electrons detected to originate from hybrid

orbitals located at the bottom of the molecule. Secondly, since the observed peak is

located at an energy level of 1.7 eV above the HOMO level, and the HOMO-LUMO

gap is close to this difference in energy (also 1.7 eV) [176], this electron density

is originating from the LUMO level of the molecule, rather than an anti-bonding

orbital at an energy slightly above the HOMO. Finally, the size of the extra peak

increases in intensity with deposition up to 1.0 ML of nominal coverage, which is

an estimated 2-3 ML of actual thickness. This suggests that the source of the extra

density of states is not due to the interaction between the molecule and the surface,

because the He* atoms would probe the physisorbed topmost layers only.

Another difference between the MDS and UPS spectra is in the shape of the HOMO

peak. In the UPS, at higher coverages when compared to a single monolayer, the

HOMO peak becomes narrower, taller and displays a single peak. On the other hand,

the MDS peak remains at roughly the same intensity but is split into a broader range

of peak energies. The source of discrepancy lies in the coverage of C60 for thicker

films. Above 1 ML, the C60 molecules are physisorbed onto the first layer and no

longer uniformly cover the surface [176], instead forming clusters. Although with

much more C60 molecules deposited the clusters will eventually cover the surface,

with the coverages shown here (<5 ML), much of the first monolayer will still be

exposed. In the case of the UPS, the spectra will be the result averaged between

all of the molecules probed by the UV light, which will overwhelmingly be the C60

in the physisorbed clusters. Therefore the spectrum shows a single, non-split peak

similar to that of bulk fullerite [211], as even though it will probe a greater number

of the molecules on the bottom layer, the signal from those will be averaged out by

that from the clusters. In the case of MDS, the He* atoms only probe the topmost

layer and therefore much of the first monolayer will still contribute to the spectrum,

as long as significant clustering occurs and the majority of the first monolayer is not

covered. The spectrum will then be a combination of the signal corresponding to
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the first monolayer that is still exposed and the signal from the top few molecules

in each cluster and the peak intensity will not increase by a large amount.

6.4 Discussion

6.4.1 Hybridisation-driven charge transfer

One theory put forward for the mechanism of charge transfer is via localised hybrid

interface states [176, 184]. When the C60 molecule approaches the Si(111) surface,

covalent bonds form: the molecular orbitals overlap with the dangling bonds of the

Si to form sp3 hybridised states. As the orbitals overlap, due to Pauli’s exclusion

principle forbidding the electrons from having the same quantum numbers, they

split into two bonding and anti-bonding orbitals. This is part of the contribution

to the splitting of HOMO peak in the UPS spectra for low coverages (along with

broken symmetry due to a dipole forming at the interface).

Partial filling of the LUMO can then come about due to hybridisation of the LUMO

with another dangling bond state. This creates a bonding state consisting of a filled

orbital which is brought below the Fermi level and an unfilled anti-bonding state.

A schematic of the proposed electronic structure is given in figure 6.10. This would

correspond to the softening of certain HREELS vibrational modes as the occupation

of the LUMO would soften C-C bonds [190] (i.e. the acceptance of electrons reduces

strain in the cage). This process would also create an occupied state at just below

the Fermi energy, which is at around the same energy as the extra peak in the MDS

spectrum. It is not seen on the UPS spectra as the cross-section for partially-filled

LUMO states is generally low, as seen in photoemission data for C60 on Au [212]

and CO on transition metals [213]. Due to the relatively large distance between

dangling bonds [184] (as a proportion of the radius of the C60 molecule), the hybrid

orbitals are not necessarily located at the bottom of the C60 cage, but on the side,

where the metastable helium atoms can reach.

There is, however, one major problem which is that the extra peak in the MDS is

present at far higher coverages of C60. In fact, the intensity of the peak increases

at greater coverage, which indicates that the peak is not due to an interface effect.

This does not invalidate the model for hybridisation driven charge transfer, but does
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Figure 6.10: Diagram of the proposed energy levels for an adsorbed C60 molecule on

the Si(111) surface adapted from [184]. A split occurs in the HOMO and the LUMO

states upon adsorption and parts hybridise with the dangling bond (DB) states on the

Si surface. B1, B2 are the bonding states and A1, A2 are the anti-bonding states.

Hybridisation of the LUMO with the DB states creates a filed bonding state B2 just

below the Fermi level and results in the partial filling of the LUMO.

mean that the origin of the extra peak in the MDS spectra likely lies elsewhere.

6.4.2 Physical effects of He* beam on C60

The presence of the extra peak in the MDS spectra near the Fermi level is not easily

explained by present models. If charge transfer is not used to explain the new peak,

then one can turn to the possibility that the He* beam is able to cause a physical

change in the C60 molecules. This change must be reversible, or only present in

the presence of the He* atoms as UPS spectra taken after the MDS do not show a

change. Therefore major changes to the shape and bonding of the cage can be ruled

out.

However, it is possible to reversibly and temporarily break individual bonds in the

cage with enough energy, which is a property used in the production of endohedral

fullerenes [214]. Any changes occurring due to the helium beam impinging on the

sample surface will have to be both reversible and short-lived, since UPS measure-

ments taken after do no detect the changes; as well as having a relatively low energy

barrier as the only energy available for such a change is the low kinetic energy of
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the helium atoms, which have thermal energies in the meV range. When comparing

to the experimental conditions used when creating endohedral fullerenes [215], the

probability of temporarily breaking C-C bonds at UHV and room temperature is

too low to have an appreciable effect on the spectra.

Nevertheless, it is prudent to confirm that no physical changes have taken place

due to the helium beam with an experiment. A simple experiment was carried

out to check this by performing UPS scans while the sample is subjected to the

metastable helium beam. The experimental conditions were identical to the separate

experiments, with the sample facing the analyser and positioned such that it can

be subject to both the ultraviolet radiation and the metastable helium beam. The

individual spectra were taken first in this position for comparison and then with

both beams on at the same time. Since the emission due to the ultraviolet light is

orders of magnitude greater than that of the helium beam, the resulting spectra can

be thought of as the UPS spectrum for a C60/Si sample under bombardment by a

metastable helium beam.

The results are presented in figure 6.11. The MDS spectrum in the figure has been

scaled with a multiplicative constant so it is visible on the graph for comparison.

It has also been shifted so that the maximum kinetic energy (19.81 eV) lines up

with that of the UPS (21.22 eV), i.e. lining up the Fermi level at 0 eV. From the

graph, the peaks in the MDS corresponding to the C60 molecular orbitals line up

nicely with those in the UPS spectrum. However, the key result is that the spectrum

taken with the metastable helium beam on shows little difference to that of normal

UPS. In particular, there is no presence of the extra peak near the Fermi level. This

immediately rules out the possibility of a physical change due to the metastable

helium beam.

6.4.3 Summary

The origin of the extra peak now has significantly fewer possibilities. First is an

unconsidered quantum mechanical interaction between C60 and He*, which causes

electrons to occupy a higher energy state. However, the dominant de-excitation

mechanism is one electron Auger de-excitation, since the overall spectrum shape

matches that of the UPS spectrum. In this case, further movement of electrons

135



Figure 6.11: Graph comparing the UPS and MDS spectra with the UPS spectrum

taken while the He* beam was impinging on a sample of a high coverage (nominally

3 ML) of C60 on Si(111). The MDS spectrum has been scaled up for clarity due to

a lower count rate when compared to UPS.

between the surface and He* atoms will result in a convoluted spectrum as more

electrons in the sample become involved, all originating from different energies in

the valence band. Electrostatic interactions are also ruled out since the He atom

does not form an ion at any point in the Auger de-excitation process.

Another possibility is that of contamination. A very thin layer would not be easily

detected by UPS, but the MDS spectrum could change drastically. This is very

unlikely due to the fact that all experiments were performed in situ inside a UHV
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system. While the Si surface is very reactive and will pick up contaminants not long

after cleaning, the probability of a C60 molecule doing the same is very low. The only

possible source of possible contamination would be through the deposition process,

if the source or evaporant was not sufficiently clean. But since this would yield a

layer of roughly constant thickness (with random variations) on top of the C60 film

after each deposition, and the peak in the MDS spectrum shows clear development

with more deposition, the effect of contamination can be ruled out.

Since the intensity of the extra peak rises with extra coverage, this suggests that

the peak is due to the C60 molecule itself, or an unknown interaction which occurs

just between the C60 and the metastable helium atoms. This is very interesting as

it seems to imply that there is somehow a filling of the LUMO band in thick C60

films at the surface. Interaction with the substrate also seems to affect this as the

peak intensity is lower at 1 ML. To look for the origin of this, the next step would

be to study a C60/substrate where the interaction is weak and the molecules are

chemisorbed. Despite not being able to pinpoint the origin of the extra feature in the

MDS spectrum, this data was able to complement UPS data regarding the electronic

structure and bonding at the surface. And due to the extreme surface sensitivity, the

MDS spectrum was able to pick up the differences between orientations of fullerene

molecules averaged over the sample, shown by the strongly split HOMO peak. This

can be attributed to the changes in the interaction of the molecule with the helium

atom, depending on the orientation of the molecule at the moment the metastable

atom arrives.
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Chapter 7

The C60/LSMO Interface

7.1 Background

As a ferromagnetic oxide used in the earliest organic spintronic devices [16], La1−xSrxMnO3,

or LSMO was chosen as the next substrate for C60 deposition. This material belongs

to the family of perovskite manganites that have been studied extensively since a

paper from Jonker and Van Santen in 1950 [216], which reported ferromagnetism in

several manganese oxides with the general chemical formula RE1−xMxMnO3, where

RE is a trivalent rare earth cation and M is a divalent alkaline cation. Initial interest

in these mixed valence manganites originally stemmed from their ability to display

colossal magnetoresistance (CMR), but the requirement of very large magnetic fields

(>1 T) vastly limited its practicality and widepread use. In 1998, Park et al. demon-

strated that La0.7Sr0.3MnO3 is a half-metallic material below its Curie temperature.

Since then, LSMO has been included in a wide range of spintronic devices. Early

organic spin valves made from LSMO and Co electrodes with an Alq3 organic spacer

layer reported high magnetoresistance (40%) at low temperatures [17]. And by de-

positing magnetic nanodots rather than individual atoms to reduce diffusion into

the spacer layer, the MR of these devices can be further enhanced to around 300%

[217]. Room temperature spintronic effects have also been demonstrated in organic

spin valves employing an LSMO electrode [218].

Naturally, with two promising materials, the combination of C60 and LSMO has

not gone unnoticed in the field, and a good amount of research has been funnelled

into organic devices using this interface. For example, C60-based organic spin valves
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using LSMO and Co as electrodes have demonstrated MR at room temperature [219].

However, the performance of these devices have been lackluster in comparison to

what their individual characteristics would suggest. Since hyperfine coupling has

been identified as a limit to spin transport, an increase in spin diffusion length

was expected with the use of C60 in organic devices, due to its minute hyperfine

interaction. This was not observed in C60 based spin-valves [21]. The cause for this

is not well understood and a variety of factors such as thickness and conductivity

mismatch can affect the interfacial properties crucial to performance. Morphology

induced disorders have also been found to affect the spin diffusion length in C60

films [220].

Therefore, in order to overcome the issues faced by the devices made thus, it is

important to further investigate the electronic properties of the interface. A recent

study performed photoemission measurements for C60 films ranging from 5 to 80

Ådeposited onto an LSMO substrate [221]. This study found a transition with in-

creasing thickness from an n-type to a p-type organic semiconductor as the HOMO

moves closer to the Fermi level for very thick films. An upwards band bending ef-

fect of 0.72 eV was found in the 80 Å film when compared to the 5 Å film, which

becomes a barrier for the electrons moving from the molecules near the interface to

the surface. Oxygen diffusion into the C60 film was also proposed, which explains a

reduction in the LSMO surface (despite C60 being an electron acceptor) [221]. Elec-

tron spectroscopy therefore has the ability to greatly improve understanding in this

field, but to study possible interfacial effects, a systematic study of the C60/LSMO

interface for lower coverages is required. To that end, UPS, XPS and MDS results

for C60 films with a range of thicknesses (including submonolayer coverages) will be

presented in the following sections.

7.2 La1−xSrxMnO3

7.2.1 Crystalline and Electronic Structure

As LSMO is a complex oxide system, it is useful to firstly summarise the structure

and key characteristics of the material in order to better understand and interpret

the data obtained. The crystalline structure of LSMO, like other manganites with
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formula RE1−xMxMnO3, has a structure close to that of standard cube perovskite

crystals (figure 7.1). The larger RE and M ions occupy the A sites, which form

the vertices of a cubic unit cell; the oxygen ions are located at the face centres of

the unit cell and surround the A ions with 12-fold coordination; and the smaller

Mn ions occupy the B sites, located at the centre of the unit cell, inside octahedral

oxygen interstices. In the case of stoichiometric RE1−xMxMnO3 oxide, the Mn3+ and

Mn4+ exist in the structure with proportion 1− x : x. For the case of manganites,

there is a sizeable deviation from the perfect cubic structure into a rhombohedral

or orthorhombic symmetry [222]. This is governed by a tolerance factor t = (rA +

rO)/
√

2(rB + rO), which is stable for 0.89 < t < 1.02, with t = 1 in the perfect cubic

case.

Figure 7.1: Diagram of the perfect cubic perovskite structure taken from [222] (left)

and of LaMnO3 (right) a diagram of the LSMO strcture, the system under study and

a typical example of rare earth manganites. Figure taken from [223]

To describe the electronic properties of LSMO, we consider the 3d electron config-

uration of the Mn ion. Compared to the isolated 3d ion, which has five degenerate

orbital states (l = 2), the octahedral MnO6 in a cubic lattice causes a lifting of the

degeneracy with three states at a lower energy level (dxy, dyz, dzx), referred to as t2g,

and two states at a higher level (dx2−y2 , d3z2−r2), referred to as eg [224, 225]. The en-

ergy splitting between the lowest t2g state and the highest eg state is approximately
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1.5 eV. Due to Hund’s coupling, the three t2g electrons are aligned parallel to form

a 3/2 state. In the case of Mn3+ ions, the remaining 3d electron is also coupled to

the t2g state electrons as the exchange interaction energy is approximately 2.5 eV,

much greater than the energy splitting [222]. In Mn4+, there is no electron in the

t2g states.

In a non cubic-configuration, the degeneracy is further lifted by a Jahn-Teller distor-

tion, caused by a coupling of the eg electron with the displacement of surrounding

oxygen ions, which further reduces the symmetry. Therefore, an abundance of Mn3+

ions will cause more elongation in the manganite crystal, the most extreme example

of which is the parent compound LaMnO3, which has its unit cell length approxi-

mately doubled. This is further enhanced as the individual effects from each Mn3+

ion are not independent from each other (cooperative Jahn-Teller effect). The crys-

tal distortion can be controlled by doping the manganite, which changes the relative

concentration of Mn3+ and Mn4+ ions. Alkaline metal dopants increase the number

of Mn4+ ions in the structure, which in turn means holes are created at the eg level.

These are free to move within the lattice and they play the role of charge carrier.

An illustration of the energy splitting relative to the distortion in the lattice is given

in figure 7.2.

The magnetic properties of LSMO are also dependent on the interaction between the

Mn ions’ spins. The interaction is strong for two ions separated by an oxygen atom

and is regulated by the overlap between the Mn 3d and O 2p orbitals. Generally,

Mn3+-O-Mn3+ interaction can be antiferromagnetic or ferromagnetic, Mn4+-O-Mn4+

is antiferromagnetic, while the Mn4+-O-Mn3+ can undergo an exchange in valence

through a double exchange mechanism [226] to create a strong ferromagnetic interac-

tion. Therefore, supposing the magnitude of the ferromagnetic (Mn4+-O-Mn3+) and

antiferromagnetic (Mn4+-O-Mn4+) interactions are of the same magnitude (Mn3+-

O-Mn3+ can be disregarded as it can be both), we can roughly calculate the doping

needed to aim for a ferromagnetic compound with highest TC :

TC ≈ 2x(1− x)− x2 (7.1)

which yields a maximum at x ≈ 1/3. La1−xSrxMnO3 has been extensively studied

due to its large TC value at 370 K for x ≈ 1/3. It is also relatively easy to de-

posit from a single crystal [222] and La0.7Sr0.3MnO3 has been shown to display half

metallic nature at room temperature.
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Figure 7.2: Illustration taken from [225] showing the splitting of the energy levels in

the crystal and the corresponding crystal structures.

7.2.2 Surface Termination of LSMO

Before studying the properties of an interface between an LSMO thin film and an

organic, the surface properties of the substrate need to be known. The surface

cleaning procedures for LSMO have been shown to greatly affect the termination

layer in manganites [13]. The stoichiometry of the surface can vary greatly from

the bulk [227, 228], which, as detailed in the previous subsection, is crucial to the

key magnetic properties of the material. It has been shown that the 100% spin-

polarisation at the surface breaks down easily at low temperatures, and therefore

causes the performance of devices employing LSMO to deteriorate even at room

temperature, which is far from its Curie temperature of 370 K [229].

Studies in the literature have found a Sr-rich termination after cleaning for a range

of oxygen pressures and temperatures [230, 231], mainly observed by x-ray photoe-

mission techniques. A comparison of the relative intensities of La and Sr spectra

at various emission angles shows an increase in the proportion of Sr at glancing

angles - an indication of a Sr rich surface [232, 231]. These spectra also show little
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change in the La 3d and Mn 2p peaks at different angles, while the Sr 3d peak

shows a shift attributed to an increased in a surface contribution, suggesting that

the surface segregation effect applies to the Sr ions only [232]. Figure 7.3 shows

a set of XPS spectra illustrating this. This trend is seen for other manganites of

the form LaxAyMnO3, where A = Ca, Pb [233, 234]. The extent to which the Sr

segregation occurs does decrease with increasing temperature and partial pressure

of oxygen [230], but the effect is still significant under all conditions and is seemingly

an unavoidable property of these oxide systems.

Figure 7.3: XPS spectra taken from [232] of the La 3d, Mn 2p, Sr 3d and O 1s peaks

for the LSMO surface at different angles. La and Mn peaks were largely unchanged.

For Sr and O data, top spectra were taken at normal emission and the bottom at

60°. A clear angle dependence is present and the component of the Sr peak attributed

to the surface increases at glancing angles.

The LSMO thin films used in the experiments described below were supplied by Dr.
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Ilaria Bergenti of the Institute for Nanostructured Materials at CNR-Bologna, as a

part of collaborative work on organic spinterfaces. These samples were La0.7Sr0.3MnO3

thin films with a thickness of 40 nm, grown on NGO(111) substrates via channel

spark ablation (CSA). The process involves ablation of a stoichiometric polycrys-

talline target with a pulsed electron beam in an oxygen partial pressure of 4 × 10−2

mbar. More specific details of the growth process can be found in [235]. Thin films

prepared using this method have demonstrated success as spin injection electrodes

in spintronic devices, such as magnetically enhanced memristors and spin valves

[236, 218]. AFM and XRD have been used to confirm the film thickness and shows

a surface root-mean-square roughness of around 0.6 nm.

7.3 Experimental

Prior to putting the substrate into the vacuum system, the sample was first cleaned

by sonication in acetone and ethanol for 5 minutes each. It was then gently heated

in UHV at 500 K for 30 minutes by the PBN heater before taking data. This

surface treatment method used to clean the surface has been shown to significantly

reduce contamination, validated with XPS measurements [237]. Monochromated

XPS measurements were taken before and after cleaning to verify that the process

has cleaned the surface as expected. A comparison of these spectra is shown in

figure 7.4. From the graphs, it is clear that the process of annealing has significantly

reduced the intensity of the C 1s peak (though some still remain) while the other

peaks of interest (La 3d, Sr 3d, Mn 2p, and O 1s) are mostly unchanged.

C60 molecules were then deposited onto the cleaned surface firstly for a range of

sub-monolayer coverages, and then thicker films. The deposition was performed

under the same conditions as for previous Si samples with the organic deposition

source: 350 °C, which is the lowest temperature at which deposition occurs, or

approximately 1.0 ML every 7 minutes. The deposition rate was calibrated using

the QCM. The organic film was deposited in steps of 0.25 ML up to 1.0 ML. The

thicknesses here were taken as half the nominal calculated values to reach a number

closer to the true thickness, as discussed in the deposition of C60 on Si(111). MDS

and UPS data was taken after each deposition and XPS was taken after reaching

a thickness of 1.0 ML. Further data was then collected at 2.0 ML, 5.0 ML and 25
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Figure 7.4: Graph comparing the XPS spectra of the LSMO substrate before and

after annealing at 500 K for 30 minutes. The C 1s shows a significant reduction in

intensity after annealing, while the other key features corresponding to elements in

the sample remain largely unaffected.

ML thick films. At the maximum thickness, the sample was exposed to increasing

amounts of oxygen gas (1, 10, 50 and 200 Langmuirs) and spectra obtained for each.

This was done to check whether features of the spectrum could be attributed to

oxygen migrating from the substrate into the organic layer. This oxygen exposure

was done by increasing the pressure in the preparation chamber to 1.3 × 10−7 mbar

(1 × 10−7 torr) for the appropriate amount of time (10 seconds per Langmuir). The

gas doser is retracted in this case to keep the inlet far from the sample.

7.4 Results

7.4.1 Sub-MonoLayer C60 Coverages

The UPS and MDS spectra taken for the clean LSMO surface and after each 0.25

ML C60 deposition are shown in figures 7.5 and 7.6. In the UPS spectrum of clean
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Figure 7.5: Graph of UPS spectra taken at various sub-monolayer deposition cov-

erages. The HOMO and HOMO-1 peaks are labelled and dash lines were placed at

the maxima of each peak in the 1.0 ML UPS spectrum. Inset: comparison of the

HOMO and HOMO-1 peaks between 4.5 and 2.0 eV from the Fermi level after back-

ground has been subtracted. The “valley” between the two peaks in the 0.25 ML case

is clearly shallower due to contribution from the broad LSMO peak, which causes

the “valley” between the two peaks in the low coverage case to never dip down to

background level.

LSMO, there are broad features at approximately 3.5 and 5.8 eV from the Fermi

level. With deposition of C60, the peaks corresponding to the HOMO and HOMO

- 1 of the C60 appear at 2.7 and 4.0 eV from the Fermi energy respectively. These

are located at a much higher binding energy than the same peaks for C60 deposited

on Si, indicating a weaker interaction. In addition, the “background” for the UPS
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spectra up to 1.0 ML shows a clear effect from the features of the clean LSMO

surface. The broad LSMO peak at 3.5 eV from the Fermi energy manifests itself

as a shoulder on the background between the HOMO and HOMO - 1 peaks; and

the feature of the LSMO spectrum at 5.8 eV causes a broadening in the HOMO -2

peak. The effect is still present at 1.0 ML (although it diminishes with increased

coverage), which indicates emission from LSMO and therefore incomplete coverage

of the surface.

Figure 7.6: Graph of MDS spectra taken at various sub-monolayer deposition cov-

erages. Only weak features are present, including the extra peak seen in the MDS

spectra of previous C60 films. Inset: the extra feature in the MDS spectrum close to

the kinetic energy maximum at 1.0 ML deposition.

Features are present in the MDS spectrum of clean LSMO at approximate kinetic

energies of 14.5 ± 0.3 and 15.8 ± 0.3 eV. These features are very weak, owing
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to the two-electron de-excitation mechanism that would occur on the manganite

surface (work function 4.8 eV). Features corresponding to the deposition of C60 do

not appear in the spectrum until 0.8 ML and above, located at approximately 17.2

± 0.2 and 15.7 ± 0.2 eV. These peaks are very weak and it is therefore difficult to

accurately pinpoint their locations, but the energies largely agree with the values

obtained in UPS when aligning maximum kinetic energies. The extra feature near

the Fermi level seen in earlier results is also present at a kinetic energy of 18.7 ± 0.2

eV (see inset on figure 7.6), although very weak. The weakness of the C60 features in

the MDS spectra also suggests incomplete coverage. Stronger peaks are expected as

the de-excitation process for C60 molecules is the one electron Auger de-excitation

mechanism, and a weak signal means very few C60 molecules are being probed. This

implies that the C60 molecules are forming clusters where only the top of the clusters

can be probed by the metastable helium atoms. Overall, these spectra suggest a

very weak interaction between the C60 molecules and LSMO surface, with the C60 -

C60 interactions being more dominant, forming clusters of molecules on the surface

and leaving much of the LSMO exposed.

Figure 7.7: AFM images of C60 deposited on LSMO with thicknesses of (a) 0.5 nm

and (b) 1.0 nm. Clustering is apparent at 1.0 nm which is above 1.0 ML in thickness.

Confirmation of this can be obtained through direct observation of the clustering of

C60 on the LSMO at these coverages with microscopy techniques. Atomic force mi-

croscopy (AFM) data shown in figure 7.7 were provided by the group of I. Bergenti.

These were performed on the same type of LSMO substrates (both synthesised by

them) under very similar deposition rates. At 1.0 nm thickness film (which cor-

responds to >1 ML coverage), the molecules still aggregate into clusters and the
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overall coverage of the surface is very low.

7.4.2 Thicker Films

The UPS and MDS spectra taken for C60 film coverages greater than (and including)

1.0 ML are shown in figures 7.8 and 7.9. At 2.0 ML, there is an significant change

in the overall shape of the UPS spectrum. The effects on the spectrum that can be

attributed to the LSMO surface largely disappear. There is also a perceptible shift

in both the HOMO and HOMO - 1 peaks of 0.1 eV towards the Fermi energy. This

suggests a much better coverage of C60 on the LSMO substrate. Judging from the

shape of the 5.0 ML spectrum, however, the surface is likely not fully covered at 5.0

ML as the C60 peaks are still quite far from saturation (when compared to 25 ML).

Most interestingly, at a 25 ML coverage, a small but clear feature is present close

to the Fermi level at 0.7-0.8 eV. This would correspond to the extra feature found

in the MDS at all coverages above 1.0 ML for this and previous samples.

The features on the MDS spectra are also much clearer from 2.0 ML onwards,

supporting the UPS data in indicating a better surface coverage. The HOMO and

HOMO - 1 peaks at 2.0 ML are located at 17.3 ± 0.3 and 15.5 ± 0.2 eV respectively.

These are shifted from the approximate positions of the 1.0 ML spectrum, but since

the features at 1.0 ML are faint and difficult to judge, it is hard to draw conclusions

from the comparison. Unlike in the UPS spectrum, the shape of the MDS features

clearly changes with deposition. The HOMO peak splits into a higher and lower

component. At 5.0 ML, the HOMO peak begins to broaden when compared to 2.0

ML and at 25 ML, two separate features appear at 17.1 ± 0.2 and 17.7 ± 0.2 eV,

with an overall intensity shift (and a shift of the HOMO onset) towards the Fermi

level. The HOMO - 1 also undergoes broadening: a small shoulder begins to appear

on the low binding energy side at 5.0 ML coverage (positioned at 15.8 eV), which

increases in intensity at 25 ML. This trend of intensity shifting towards the Fermi

level is also mirrored in the HOMO - 2 peak. Beyond that, there is a significant

increase in the secondary emission at higher coverages which makes peak positions

difficult to judge.

A possible avenue for the splitting in the MDS spectrum is the average distribution

of orientations of the C60 molecule. The orientation is largely not considered in pho-
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Figure 7.8: Graph of UPS spectra taken at various deposition coverages greater than

1.0 ML. Dashed lines were placed at the peak maxima points in the 1.0 ML UPS

spectrum. An extra feature has appeared in the UPS spectrum close to the Fermi

level (approximately 0.7 eV from EF ). Inset: an extra peak in the UPS spectrum

close to the Fermi energy, which could correspond to the extra feature seen in the

MDS.

toemission studies involving C60 due to its high symmetry and is generally treated

as a spherical molecule. But as discussed in the case with C60 on Si, the surface

sensitive nature of MDS means that the top face of the molecule is likely to have an

effect. The final broadened features, much like in the case of C60 on Si, would be

dependent on the orientation of the molecule at the moment when the interaction

between the molecule and the helium atom occurs. Although we cannot identify

any specific orientation as the molecule can rotate freely due to thermal energy [54],

this is a possible contributor towards a more broadened peak in the MDS spectrum
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Figure 7.9: Graph of MDS spectra taken at various deposition coverages greater than

1.0 ML. Dashed lines placed at the peak maxima of the 2.0 ML MDS spectrum (1.0

ML features were too weak to accurately place).

as the helium atoms are probing a range of orientations at any given moment.

A confirmation of the coverage can once again be provided through AFM. AFM

images for C60 film thicknesses on LSMO of up to 30 nm were provided by the

group of I. Bergenti and are shown in figure 7.10. These show continued clustering

of the C60 molecules up to 15 nm, which is greater than 5 ML. However at 30 nm,

a continuous and relatively flat film is formed. This signifies that the formation of

a regular bulk fullerite-like structure has become energetically favourable, and has

overcome the amorphous aggregation. While the 25 ML coverage is less than 30

nm in thickness, the AFM images can be taken as confirmation that at very high

coverages, a flat film is formed and this would agree with the changes in the MDS

spectrum at 25 ML.
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Figure 7.10: AFM images of C60 deposited on LSMO with thicknesses of (a) 2.0 nm

and (b) 5.0 nm (c) 15 nm and (d) 30 nm. The surface is not fully covered even at

15 nm (approximately 20 ML) of deposition. At 30 nm, a relatively flat film of C60

is formed.

7.4.3 Oxygen Exposure

The UPS and MDS spectra of the thick C60 film taken for a range of oxygen exposures

are shown in figures 7.11 and 7.12. In the UPS spectrum, there is also a slight but

perceptible shift towards the Fermi energy at up to 10 L, and this increases to a

bigger 0.1 eV shift at 50 and 200 L. This trend is mirrored in the HOMO - 1.

Although there is a drop in the overall intensity, the peak shapes are largely the

same. In the MDS spectrum, the exposure of oxygen caused an enhancement of the

existing features. This effect is apparent at 1 L of oxygen and becomes very clear

at 10 L and 50 L. Unlike the 25 ML spectrum, where the splitting of the HOMO is

very vague, at 50 L of O2 exposure, the HOMO is clearly resolved into two separate

components. The HOMO - 1 peak is likewise enhanced relative to the background.
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However, in contrast to the UPS, where there is an overall shift towards the Fermi

level, the increase in intensity for the MDS features are more skewed towards a

higher binding energy. The parts of the HOMO and HOMO - 1 peaks at 17.1 and

15.5 eV (as seen in figure 7.12) are more enhanced than the parts at 17.7 and 15.8

eV. This in turn means there is an overall shift in intensity away from the Fermi

level. The extra peak is also enhanced with oxygen exposure, but no visible shift

occurs. The trend in the MDS reverses at 200 L. There is a drop in the overall

intensity of the features from 50 L of exposure. In addition, the intensity in the

peaks shifts back towards the Fermi level. In the HOMO peak, the proportion of

the 17.7 eV component increases visibly and in the HOMO - 1, there is a shift in

the maxima accompanying an increase in the component at 15.8 eV.

Figure 7.11: Graph of UPS spectra taken after different amounts of exposure to oxy-

gen. Dashed lines were placed at the peak maxima points in the 25 ML spectra. The

peaks show a perceptible shift towards the Fermi level as oxygen exposure increases.
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Unlike photoemission scattering cross sections, the probability of a de-excitation

event occurring when a metastable helium approaches a sample is unity. This seems

to indicate that an enhancement in the signal has somehow caused an increase

in the number of C60 molecules available for probing via MDS. One possibility to

consider is that the exposure to oxygen has changed the morphology of the surface.

An increase in the surface roughness would increase the surface area available for

probing. However, since all atoms in the helium beam travel in roughly the same

direction at the sample and the overall sample size has not increased, the greater

surface area would not result in a noticeable increase in the yield as the solid angle

of the beam which impinges on the sample has not increased.

Another possibility is that the yield has increased not because of more de-excitation

events, but the number of electrons that reach the analyser has increased. The

only possible avenue for this would be a change in the angular dependence of the

emission due to Auger de-excitation. Any electrostatic effects due to an oxygen-

doping related accumulated charge to dipole can be ruled out since that would cause

an acceleration of the emitted electron and therefore a shift in the peak position,

which is not present. Given that both the helium atom and the C60 molecules

are fairly spherically symmetric species, the probability of an angular preference is

rather unlikely and these effects would create an increase in the overall intensity

rather than enhance the features.

A final consideration is the removal of contaminants on the surface from exposure

to the oxygen gas. If there was some level of very thin and incomplete coverage of

contamination on the surface of the deposited samples, that would attenuate the

signal from the C60 molecules. If the contaminant layer is able to react with oxygen

gas and then be carried away then it would explain the change. The most likely

source of contamination is the deposition process, where the sample was exposed to

the highest pressure. While this is the best explanation, there is no way to check it

since previous XPS data did not indicate the existence and therefore there is only a

trace amount; taking the sample out of the UHV system for other techniques would

immediately subject it to much heavier contamination.

The dip in the feature sharpness at 200 L breaks the trend. While the shorter and

broadened HOMO peak seems to suggest a reversal of previous oxygen exposure

effects, upon closer inspection, the higher binding energy peaks are not less defined,
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Figure 7.12: Graph of MDS spectra taken after different amounts of exposure to

oxygen. Oxygen gas is allowed into the chamber at a pressure of 5 × 10−8 mbar

and exposure of the sample to the oxygen is timed to the desired amount. The above

graph shows MDS spectra taken after increasing amounts of oxygen dosage at various

points from 1 Langmuir to 200 Langmuirs. The spectrum shows a change in peak

shapes accompanied by an enhancement in the peak intensities.

such as in for the HOMO - 2 and HOMO - 3 peaks. The effect of the long oxygen

exposure is therefore a change in the electronic structure rather than a diminuation

of the overall signal. Since the oxygen molecules can diffuse between the gaps in the

C60 lattice from the LSMO surface [221], then naturally one can assume that the

reverse can also occur. The increased oxygen exposure could cause a build up of

oxygen in the film and cause a doping effect that reduces the occupation of the least

bound states. This would explain the clear diminishing in the HOMO and extra

peaks, which is not shared by the peaks corresponding to the more tightly bound

155



states. If this were the case, a level of relatively permanent oxygen concentration in

the sample would be required, which may be probed with XPS.

7.4.4 XPS Spectra

A graph of the XPS spectra taken for this system is shown in figure 7.13. As the

thickness of the film increases, the signal from the La 3d, Mn 2p and O 1s peaks

corresponding to the LSMO surface diminish. The C 1s peak naturally increases in

intensity as the amount of C60 increases. The features from the LSMO elements are

still visible at 5 ML, which confirms the AFM images earlier that there is clustering

in the surface and some of the LSMO surface is still exposed. At 25 ML all peaks

except the C 1s peak disappear, signifying that a complete thick film has formed,

and that there is nothing else within the information depth of the XPS that is able

to be probed. After 200 L of oxygen exposure, there is no evidence of the presence

of oxygen at the surface, which disagrees with the suggestion that there is oxygen

doping at or near the surface.

The results from the graph are largely as expected and agree with the UPS, MDS

and AFM data described above. However, the spectrum taken after 200 L of oxygen

exposure comes as a surprise. The change in the MDS spectrum would suggest

enough oxygen is present to cause a shift in the surface electronic structure but the

XPS shows nothing. This indicates only a trace amount of oxygen is present at

the surface. It is possible that the accumulation of oxygen decays over time and

the presence of the oxygen is negligible by the time the XPS data was taken (the

data was taken in the order of most-to-least surface sensitive: MDS, UPS then XPS).

However, MDS also takes a fairly significant amount of time, and since decay through

random processes is expected to follow an inverse exponential function against time,

the MDS spectrum should visibly change over time. However, an examination of

the spectra (15 total scans in series) shows that there was little-to-no change.

This leaves the possibilities of either the oxygen exposure causing irreversible phys-

ical changes to the sample, or trace oxygen on the surface being enough to cause a

sufficiently strong interaction to alter the MDS. The former is somewhat unlikely as

the oxygen pressure was not changed from the 50 L exposure, merely increasing the

time. For the other possibility, it is somewhat supported by an almost imperceptible
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Figure 7.13: Graph of XPS data taken after various depositions coverages and after

long oxygen exposure. The peaks of interest are marked. It is clear that at 25 ML

deposition, there is a thick film of C60 on the surface with little else. After deposition

to 25 ML, the sample is exposed to 200 Langmuirs of oxygen gas. No oxygen is

present in the XPS spectrum even at 200 L of oxygen exposure.

shift in the UPS spectrum away from the Fermi energy, suggesting a more strongly

bound state, which could come about from a loss of electrons from the C60.

7.4.5 Extra Peak

The presence of the extra peak in the weakly C60/LSMO interface conclusively rules

out the theory that the feature is due to the formation of a hybridised orbital in

the C60/Si system. With a charge injection barrier of 0.61 eV [221], charge injection

into the C60 from the LSMO is highly unlikely. If the sharpening of the MDS
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spectrum after oxygen exposure is due to the removal of contaminants as discussed

above, then the possibility of the peak being a result of contamination can also be

excluded. From the discussion in the previous chapter, the remaining idea is that of

partial LUMO occupation at the surface of the C60 film.

The results from the C60/LSMO interface adds an interesting point to this discussion.

There is an appearance of a very weak feature at the corresponding energy (to

the extra peak) in the UPS spectrum for very high coverages (25 ML). Since the

scattering cross section for partially filled LUMO states is very low [212], this small

feature would correspond to a much bigger peak observed in the MDS spectrum, as

the scattering cross section for surface states is unity for MDS. In the MDS spectrum

after the 200 L oxygen exposure, the size of this feature falls visibly along with

the intensity of the HOMO, while the more tightly bound states are less affected.

This could indicate that the feature corresponds to real density of states in the

sample, with a response to the high oxygen exposure, rather than a byproduct of

the metastable de-excitation process. However, with no clear source of energy or

extra charge, the author is unable to explain how the electrons are promoted into

the LUMO of the C60.

7.5 Summary

The electron spectroscopy and AFM results of the C60/LSMO interface has shown

that the C60 molecules do not form a uniform film at the surface even up to depo-

sitions significantly greater than 1 ML. This indicates that the interaction between

the C60 molecules is stronger than between the C60 and the LSMO surface. Only at

deposition up to 25 ML does a flat film appear. This could be a rather disappoint-

ing result for the potential performance of the interface in devices as the coupling

between the magnetic surface and the molecule is poor.

The presence of the extra peak near the Fermi energy in the MDS spectrum of

C60/LSMO ruled out certain possibilities discussed in the previous chapter. The

data points to the existence of a partially filled LUMO state at the surface of the

C60 film, although with the data on hand it is difficult to pinpoint the origin of the

charge and energy needed if this is the case.

158



The MDS data again demonstrates that the technique is able to probe differences

in the rotational orientations of the C60 cage. The single HOMO peak from the

corresponding UPS is resolved into multiple peaks in the MDS spectra, which can

be assigned to different “sides” of the C60 cage pointing into vacuum. Oxygen

exposure was found to enhance the features in the MDS spectrum but no evidence

of lingering oxygen could be found in the XPS data.
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Chapter 8

Conclusions and Further Work

8.1 Conclusions

This thesis describes the development and extension of an advanced facility for per-

forming electron spectroscopy and its application to the study of various materials

relevant to organic electronics and spintronics. Adding a monochromated x-ray

photoelectron spectroscopy (XPS) source to pre-existing capabilities for performing

ultraviolet photoelectron spectroscopy (UPS) and metastable de-excitation spec-

troscopy (MDS) has resulted in the only system in the world in which these three

surface analysis techniques are combined on the same instrument. As demonstrated

in the later chapters of this thesis, this approach allows a huge amount of data on

the electronic, magnetic and chemical properties of a material to be obtained in a

relatively short space of time from the same sample surface.

To validate the installation of the monochromated XPS source and gain experience in

the technique, a dedicated study of graphene oxide samples prepared under different

conditions and before and after the application of an electric field was performed, as

described in Chapter 4. The results demonstrated the power of XPS in determining

the rich carbon chemistry of graphene oxide and its sensitivity to chemical shifts of

core electronic states. Determining the C/O ratio of various graphene oxide films,

and whether they changed after different treatments, was an essential contribution

to demonstrating the efficacy of this material in the filtration of organic solvents

[38] and electric-field controlled water permeation [116].
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As described in Chapter 3, the technique of MDS is extremely surface sensitive and

therefore ideal for probing the adsorption of molecules on different substrates. De-

spite this applicability to materials systems relevant to the development of organic

electronic and organic spintronic devices, MDS and spin-polarised MDS are not com-

mon techniques, largely due to the complexity in their operation and interpretation

of the associated data. Indeed, the system developed at York is the only instrument

for performing MDS in the U.K. and one of only a handful around the world. It

has therefore been both novel and timely to apply it to the study of C60 on both

semiconducting (Chapter 6) and ferromagnetic substrates (Chapter 7).

To gain experience in spin-polarised MDS (SPMDS), work was conducted in the

Spin Characterisation Group of Dr. Yasushi Yamauchi at the National Institute

for Materials Science (NIMS) in Tsukuba, Japan. As outlined in Chapter 5, a co-

deposition growth method for producing high-quality Fe3O4(100) films was estab-

lished and used to prepare substrates for the study of Fe/Fe3O4 interfaces. SPMDS

confirmed results from earlier studies which showed that the two ferromagnetic lay-

ers in these interfaces are antiferromagnetically coupled, suggesting their potential

use as synthetic antiferromagnets in spintronic devices. The surface sensitive nature

of SPMDS also revealed an interesting ‘surfactant’ effect in which a residual oxygen

layer, presumably originating from the Fe3O4 substrate, is always present at the top

of an Fe film growing on this substrate. Following this work at NIMS, the growth

protocol was implemented in York allowing the production of high-quality Fe3O4

films, as verified using XPS, UPS, and MDS.

To test the growth and study of organic semiconductor interfaces, a study of C60

on Si(111) was performed. This system was chosen as a prototype for testing the

developed instrument due to its ease of preparation and various uncertainties that

still exist regarding its properties, for example the nature of charge transfer from

Si to C60. A systematic MDS study of sub-monolayer and multilayer C60 films on

Si(111) revealed the presence of an extra feature close to the Fermi energy that

is barely observable using UPS. This has been tentatively attributed to the filling

of the C60 LUMO band although the exact origin of this effect requires further

investigation. Additionally, the HOMO state was observed to split into multiple

components using MDS becoming more pronounced with thicker coverages of C60.

Whereas the HOMO state in UPS splits due to the broken symmetry associated

with adsorption of C60 at the Si(111) surface, the splitting in MDS is attributed
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to resolution of states appearing on the different pentagonal and hexagonal faces of

the C60 molecule. Distinction of these states is a very interesting observation that

highlights the power of MDS in probing outermost molecule orbitals. It will help in

efforts to understand and control the structure of C60 through functionalization for

various applications.

Finally, C60 was deposited onto LSMO, one of the more device-relevant substrates

available and a material that has attracted particular attention in the field of organic

spintronics. The combination of electron spectroscopy techniques used, in addition

to complementary scanning probe microscopy images, revealed that C60 grows in

clusters on the LSMO surface suggesting that it is not suitable for use in organic

spintronic devices. Only at relatively thick coverages of approximately 25-30 nm

does a C60 film appear to form more uniform layers on LSMO. Such findings are

significant as much attention has been paid to both C60 and LSMO and their possible

combination in a device structure.

As a whole, this thesis demonstrates the need for complementary electron spec-

troscopy studies of technologically-relevant materials and interfaces in order to un-

derstand the critical relationship between properties and device performance.

8.2 Further Work

There are still further developments to the UHV chamber that need to be carried

out in order for the system to work to its full capabilities. First and foremost is

the completion of the SPMDS apparatus. In order for the technique to be fully

functional, the spin polarisation of the helium beam needs to be optimised with a

clear signal observed on the Stern-Gerlach analyser. The operating conditions of the

technique will then need to be calibrated, which includes the finding optimal current

settings for the Helmholtz coils and checking that the pulse magnet is producing a

sufficiently strong field.

Another improvement on the existing UHV system would be the adding of the

Mott polarimeter. The Mott polarimeter is used to measure the spin polarisation of

emitted photoelectrons and therefore would add spin-polarised UPS capabilities to

the system. As well as obtaining magnetic data on its own, this would also be used
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to verify the findings from SPMDS.

For experiments, with an operational SPMDS, the spin-resolved data for C60/LSMO

would be the next step. The project covered the study of C60 molecules on a strongly

interacting semiconductor substrate and a weakly interacting ferromagnetic sub-

strate. A possible step forwards is to study interface between C60 a ferromagnetic

3d transition metal, such as Fe or Co to contrast with the weakly interacting LSMO

substrate.

Moving beyond C60. Next steps could include functionalised C60 molecules, with

a radical group designed to enhance the interaction between the surface and the

molecule. There is also a myriad of other OSCs that make good candidates for

study. Flat molecules such as phthalocyanines and porphyrins could exhibit strong

interactions with substrates if they lie flat on the surface. Conjugated polymers and

aromatics, such as T6 (sexithiophene), have also been used in various electronic and

spintronic applications. More exotic choices are also available, such as double decker

molecules (e.g. TbPc2).
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[88] M. Bowen, A. Barthélémy, M. Bibes, E. Jacquet, J. Contour, A. Fert, D. Wort-
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ger, and S. Blügel, “Design of the local spin polarization at the organic-

ferromagnetic interface,” Physical Review Letters, vol. 105, no. 6, 2010.

[92] K. Ohno, H. Mutoh, and Y. Harada, “Study of electron distributions of

molecular orbitals by penning ionization electron spectroscopy,” Journal of

the American Chemical Society, vol. 105, no. 14, pp. 4555–4561, 1983.

[93] B. Heinz and H. Morgner, “A metastable induced electron spectroscopy study

of graphite: the k-vector dependence of the ionization probability,” Surface

science, vol. 405, no. 1, pp. 104–111, 1998.

[94] F. B. Dunning and R. G. Hulet, Atomic, molecular, and optical physics: Atoms

and molecules. Academic Press, 1996.

173



[95] H. Morgner, “Advances in atomic, molecular, and optical physics,” 2000.

[96] A. Pratt, A. Roskoss, H. Ménard, and M. Jacka, “Improved metastable de-

excitation spectrometer using laser-cooling techniques,” Review of Scientific

Instruments, vol. 76, no. 5, p. 053102, 2005.

[97] W. Sesselmann, B. Woratschek, J. Küppers, G. Ertl, and H. Haberland, “In-
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[157] Z. Novotný, G. Argentero, Z. Wang, M. Schmid, U. Diebold, and G. S.

Parkinson, “Ordered array of single adatoms with remarkable thermal

stability:Au/Fe3O4(001),” Physical Review Letters, vol. 108, may 2012.

[158] R. Bliem, E. McDermott, P. Ferstl, M. Setvin, O. Gamba, J. Pavelec, M. A.

Schneider, M. Schmid, U. Diebold, P. Blaha, L. Hammer, and G. S. Parkin-

son, “Subsurface cation vacancy stabilization of the magnetite (001) surface,”

Science, vol. 346, pp. 1215–1218, dec 2014.

179



[159] R. Bliem, J. Pavelec, O. Gamba, E. McDermott, Z. Wang, S. Gerhold, M. Wag-

ner, J. Osiecki, K. Schulte, M. Schmid, P. Blaha, U. Diebold, and G. S.

Parkinson, “Adsorption and incorporation of transition metals at the mag-

netite Fe3O4(001) surface,” Physical Review B, vol. 92, aug 2015.

[160] G. Tarrach, D. Bürgler, T. Schaub, R. Wiesendanger, and H.-J. Güntherodt,

“Atomic surface structure of Fe3O4 (001) in different preparation stages stud-

ied by scanning tunneling microscopy,” Surface science, vol. 285, no. 1-2, pp. 1–

14, 1993.

[161] J. Gaines, J. Kohlhepp, J. Van Eemeren, R. Elfrink, F. Roozeboom, and

W. De Jonge, “The (001) surface of Fe3O4 grown epitaxially on mgo and

characterized by scanning tunneling microscopy.,” MRS Online Proceedings

Library Archive, vol. 474, 1997.

[162] S. Nie, E. Starodub, M. Monti, D. A. Siegel, L. Vergara, F. E. Gabaly, N. C.

Bartelt, J. de la Figuera, and K. F. McCarty, “Insight into magnetite’s redox

catalysis from observing surface morphology during oxidation,” Journal of the

American Chemical Society, vol. 135, no. 27, pp. 10091–10098, 2013.

[163] D. Schrupp, M. Sing, M. Tsunekawa, H. Fujiwara, S. Kasai, A. Sekiyama,

S. Suga, T. Muro, V. A. M. Brabers, and R. Claessen, “High-energy photoe-

mission on Fe3O4: Small polaron physics and the verwey transition,” Euro-

physics Letters (EPL), vol. 70, pp. 789–795, jun 2005.

[164] C. Brundle, T. Chuang, and K. Wandelt, “Core and valence level photoemis-

sion studies of iron oxide surfaces and the oxidation of iron,” Surface Science,

vol. 68, pp. 459–468, nov 1977.

[165] K. Li, Y. Wu, Z. Guo, Y. Zheng, G. Han, J. Qiu, P. Luo, L. An, and T. Zhou,

“Exchange coupling and its applications in magnetic data storage,” Journal

of nanoscience and nanotechnology, vol. 7, no. 1, pp. 13–45, 2007.

[166] H. Sato, T. Yamamoto, M. Yamanouchi, S. Ikeda, S. Fukami, K. Kinoshita,

F. Matsukura, N. Kasai, and H. Ohno, “Comprehensive study of CoFeB-MgO

magnetic tunnel junction characteristics with single- and double-interface scal-

ing down to 1x nm,” in 2013 IEEE International Electron Devices Meeting,

IEEE, dec 2013.

180



[167] S. Bandiera, R. C. Sousa, Y. Dahmane, C. Ducruet, C. Portemont, V. Baltz,

S. Auffret, I. L. Prejbeanu, and B. Dieny, “Comparison of synthetic anti-

ferromagnets and hard ferromagnets as reference layer in magnetic tunnel

junctions with perpendicular magnetic anisotropy,” IEEE Magnetics Letters,

vol. 1, pp. 3000204–3000204, 2010.

[168] H. Yanagihara, Y. Toyoda, and E. Kita, “Antiferromagnetic coupling between

spinel ferrite and alpha-Fe layers in Fe3−δO4 /MgO/Fe(0 0 1) epitaxial films,”

Journal of Physics D: Applied Physics, vol. 44, p. 064011, jan 2011.

[169] T. Kida, S. Honda, H. Itoh, J. Inoue, H. Yanagihara, E. Kita, and K. Mibu,

“Electronic and magnetic structure at the Fe/Fe3O4interface,” Physical Re-

view B, vol. 84, sep 2011.

[170] H. Yanagihara, Y. Toyoda, A. Ohnishi, and E. Kita, “Antiferromagnetic cou-

pling at the interface between Fe and Fe3O4(001) epitaxial films,” Applied

Physics Express, vol. 1, p. 111303, oct 2008.

[171] A. Pratt, M. Kurahashi, X. Sun, D. Gilks, and Y. Yamauchi, “Direct observa-

tion of a positive spin polarization at the (111) surface of magnetite,” Physical

Review B, vol. 85, may 2012.

[172] Y. Yamauchi and M. Kurahashi, “Spin-polarized metastable deexcitation spec-

troscopy study of iron films,” Applied Surface Science, vol. 169-170, pp. 236–

240, jan 2001.

[173] R. Moroni, F. Bisio, M. Canepa, and L. Mattera, “Oxygen adsorption on

a Fe/MgO(1 0 0) film: a surface magnetism investigation,” Applied Surface

Science, vol. 175-176, pp. 797–801, may 2001.

[174] A. Pratt, M. Kurahashi, X. Sun, and Y. Yamauchi, “Adsorbate-induced spin-

polarization enhancement of Fe3O4(0 0 1),” Journal of Physics D: Applied

Physics, vol. 44, p. 064010, jan 2011.

[175] X. Sun, S. D. Li, B. Wang, M. Kurahashi, A. Pratt, and Y. Yamauchi, “Sig-

nificant variation of surface spin polarization through group IV atom (c, si,

ge, sn) adsorption on Fe3O4(100),” Phys. Chem. Chem. Phys., vol. 16, no. 1,

pp. 95–102, 2014.

181



[176] P. J. Moriarty, “Fullerene adsorption on semiconductor surfaces,” Surface Sci-

ence Reports, vol. 65, no. 7, pp. 175–227, 2010.

[177] Y. Lin, Y. Li, and X. Zhan, “Small molecule semiconductors for high-efficiency

organic photovoltaics,” Chemical Society Reviews, vol. 41, no. 11, pp. 4245–

4272, 2012.

[178] Y. Li, M. Chander, J. Patrin, J. Weaver, L. Chibante, and R. Smalley, “Ad-

sorption of individual C60 molecules on Si (111),” Physical Review B, vol. 45,

no. 23, p. 13837, 1992.

[179] X.-D. Wang, T. Hashizume, H. Shinohara, Y. Saito, Y. Nishina, and T. Saku-

rai, “Scanning tunneling microscopy of C60 on the Si (111) 7× 7 surface,”

Japanese journal of applied physics, vol. 31, no. 7B, p. L983, 1992.

[180] R. Wilson, G. Meijer, D. S. Bethune, R. Johnson, D. Chambliss, M. Devries,

H. Hunziker, and H. Wendt, “Imaging C60 clusters on a surface using a scan-

ning tunneling microscope,” Nature, vol. 348, pp. 621–622, 1990.

[181] D. Chen, J. Chen, and D. Sarid, “Single-monolayer ordered phases of C60

molecules on Si(111)-(7Ö7) surfaces,” Phys. Rev. B, vol. 50, pp. 10905–10909,

1994.

[182] H. Xu, D. Chen, and W. Creager, “Double domain solid C60 on Si (111) 7×
7,” Physical review letters, vol. 70, no. 12, p. 1850, 1993.

[183] K.-i. Iizumi, K. Saiki, and A. Koma, “Investigation of the interaction between

a C60 epitaxial film and a Si (111)-7× 7 surface by electron energy loss spec-

troscopy,” Surface science, vol. 518, no. 1-2, pp. 126–132, 2002.

[184] K. Sakamoto, D. Kondo, Y. Ushimi, M. Harada, A. Kimura, A. Kakizaki,

and S. Suto, “Temperature dependence of the electronic structure of C60 films

adsorbed on Si (001)-(2× 1) and Si (111)-(7× 7) surfaces,” Physical Review

B, vol. 60, no. 4, p. 2579, 1999.

[185] C. Cepek, P. Schiavuta, M. Sancrotti, and M. Pedio, “Photoemission study of

C60/Si(111) adsorption as a function of coverage and annealing temperature,”

Phys. Rev. B, vol. 60, pp. 2068–2073, 1999.

182



[186] C. Chen, L. Tjeng, P. Rudolf, G. Meigs, J. Rowe, J. Chen, J. McCauley Jr,

A. Smith III, A. McGhie, W. Romanow, et al., “Electronic states and phases

of KxC60 from photoemission and x-ray absorption spectroscopy,” Nature,

vol. 352, no. 6336, p. 603, 1991.

[187] B. Itchkawitz, J. Long, T. Schedel-Niedrig, M. Kabler, A. Bradshaw,

R. Schlögl, and W. Hunter, “Photoemission and C 1s near-edge absorption

from photopolymerized C60 films,” Chemical Physics Letters, vol. 243, no. 3,

pp. 211 – 216, 1995.

[188] G. B. Adams, J. B. Page, O. F. Sankey, and M. O?Keeffe, “Polymerized C60

studied by first-principles molecular dynamics,” Physical Review B, vol. 50,

no. 23, p. 17471, 1994.

[189] S. Gangopadhyay, R. Woolley, R. Danza, M. Phillips, K. Schulte, L. Wang,

V. Dhanak, and P. Moriarty, “C60 submonolayers on the Si (1 1 1)-(7× 7)

surface: Does a mixture of physisorbed and chemisorbed states exist?,” Surface

Science, vol. 603, no. 18, pp. 2896–2901, 2009.

[190] K. Sakamoto, M. Harada, D. Kondo, A. Kimura, A. Kakizaki, and S. Suto,

“Bonding state of the C60 molecule adsorbed on a Si (111)-(7× 7) surface,”

Physical Review B, vol. 58, no. 20, p. 13951, 1998.

[191] J. Pascual, J. Gómez-Herrero, C. Rogero, A. Baró, D. Sánchez-Portal, E. Ar-
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