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ABSTRACT 

A fundamental theme in macroevolution is understanding the origin and drivers 

behind the accumulation of phenotypic diversity in deep-time. Specifically, we want 

to describe and explain the mode (how) and tempo (at what speed) of 

morphological differentiation between species. Here, I investigate the patterns and 

correlates of ecomorphological diversification across the most diverse radiation 

among the tetrapods - birds. First, I investigated how variation in evolutionary rates 

impacts inferences from models of trait evolution. I show that rate-static models can 

produce spurious interpretations regarding the process of trait evolution in the 

presence of rate-heterogeneity, whereas robust conclusions can be drawn by co-

utilizing rate-variable approaches and tests for absolute model adequacy. Second, I 

use a multipredictor approach to investigate correlates for the tempo of beak shape 

evolution across more than a half of bird species. I find high rates of evolution in 

morphologically-distinct clades as well as in species-rich groups, showing that 

ecological opportunity and species-packing impact the tempo of ecomorphological 

diversification in deep-time. Thirdly, I apply trait evolutionary models with 

competition alongside ecologically-neutral models to investigate the mode of beak 

shape, beak size and body mass evolution across birds. I show that models with 

species-interactions are not uncommonly the best fit for the data in clades, and thus 

ecological selection pressures can impact the accumulation of morphological 

diversity at deep-time scales. Lastly, I investigated how competition affects the 

process of ecomorphological evolution in sympatric avian granivorous assemblages. 

I find that species-interactions contribute to increased morphological diversity 

across the globe, however, the strength of competition signal is mediated by the 

negative association with the tempo of trait evolution. Taken together, these results 

explore how key ecological processes (the presence and absence of ecological 

opportunity, niche packing, the strength and resolution of competition) can explain 

variation in how biodiversity accumulates in deep time.   
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CHAPTER 1 

 

General introduction 

 

 

GENERAL BACKGROUND  

In its broadest sense, biodiversity describes the whole spectrum of life on Earth. In 

macroevolutionary biology, biodiversity is predominantly measured at or above the 

species levels, and generally, the two axes of biodiversity considered are species’ 

numbers and species’ phenotypes (Simpson, 1953). One of the central themes in 

macroevolution is to understand why life is so diverse (Benton, 2015; Benton & 

Emerson, 2007; Darwin, 1859; Futuyma, 2015; Simpson, 1953) and to (1) describe 

patterns of biodiversity at large scales, (2) understand the mechanisms underlying 

the patterns we see, and (3) predict future levels of biodiversity. Total species 

richness and morphological disparity at any given point in time are generally 

determined by how species originate and die out (Alfaro et al., 2009; Benton, 1995; 

Rolland et al., 2014), by how species differentiate in their phenotypes (Carroll, 2001; 

Foote, 1997; Roy & Foote, 1997), and also by universal constraints to total 

biodiversity (Moen & Morlon, 2014; Oyston et al., 2015). Limits in the accumulation 

of biodiversity because of internal (e.g. developmental, Gerber, 2014) or external 

(e.g. ecological, Rabosky, 2009) constraints have been assessed in a wide range of 

comparative datasets. Therefore, a key component to understanding the diversity of 

life is to investigate the patterns, correlates and consequences for the tempo and 

mode of diversification and trait evolution across the tree of life. Here, I address 

these issues with specific focus on trait evolution. 
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The fossil record shows that trait evolution can happen at exceptionally rapid rates, 

or conversely, extremely slowly. The explosive increase in tooth complexity in 

Microtus rodents (late Pliocene and Pleistocene, Hibbard, 1959) and Equidae 

species (late Miocene, Simpson, 1953) are two well-preserved examples of 

spectacular, rapid phenotypic diversification. Conversely, some groups such as 

Ptilocercus threeshrews (Li & Ni, 2016), or Metrarabdotos bryozoans (Cheetham, 

1987) have experienced very little morphological change over extensive deep-time 

scales. Additionally, studies on extant taxa have also described morphological 

differentiation over very short evolutionary time scales (e.g. the exceptionally rapid 

evolution of beak morphology in Darwin’s finches, Grant & Grant, 2006, or limb 

morphology in anoles, Stuart et al., 2014), in striking contrast with observations of 

“living fossils” (i.e. extant species that experienced little change since their 

origination), such as Latimeria coelacanths (Cavin & Guinot, 2014) or the Ginkgo 

tree (Zhou & Zheng, 2003). In the past decades, the tempo of evolution across a 

wide range of taxa and time-scales has been inferred with the use of phylogenetic 

comparative methods, revealing various patterns of rate heterogeneity. Specifically, 

we have examples of clades in which morphological variation accumulates 

proportionally with time, but also evidence of dramatic morphological differentiation 

at the split of two groups (e.g. the change from a broad to a thin and elongated beak 

shape when swifts split from hummingbirds, Cooney et al., 2017), rapid directional 

evolution within lineages (e.g. the impressive increase in flower size in 

Rafflesiaceae, Davis, 2008), and bursts of morphological differentiations across 

whole clades (e.g. Hawaiian honeycreepers, Lovette et al., 2002, or Madagascan 

vangas, Reddy et al., 2012). Further, macroevolutionary models have been applied 

on phylogenetic and phenotypic data for entire taxonomic classes (e.g. Cooney et 

al., 2017; Igea et al., 2017; Rabosky et al., 2013; Venditti et al., 2011), showing that 

rate heterogeneity in its various forms is a central part of phenotypic accumulation 
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across deep-time scales, and understanding its patterns and predictors is essential 

to understanding the origin and maintenance of present day biodiversity. 

 

There is an abundance of factors that can influence variation in macroevolutionary 

rates of trait evolution. For example, we see elevated rates of body size evolution in 

birds and mammals across low-temperature periods in the Cenozoic (Clavel & 

Morlon, 2017), and in general, biodiversity patterns are intuitively linked with deep-

time fluctuations in the abiotic conditions (Brombacher et al., 2018; Ezard et al., 

2011; Jaramillo et al., 2006). Moreover, extreme events have drastic impacts on 

morphological accumulation, particularly when they associate with mass extinctions. 

Specifically, the extinction of large clades of species creates free ecological niches 

in which surviving groups can radiate, as shown for example by rapid evolution 

across eutherians or neognathes after the K-Pg boundary (Brusatte et al., 2015; 

Halliday et al., 2016). After clades invade new niches, the potential for subsequent 

evolution is tightly linked with species’ packing. Specifically, rates of evolution 

intuitively decrease as confamilial species accumulate and thus limit the available 

pool of ecological opportunities (Gavrilets & Losos, 2009; Weir & Mursleen, 2013). 

Conversely, at more confined geographical and phylogenetic scales, the 

accumulation of species can increase rates of morphological differentiation. Iconic 

radiations such as Darwin’s finches (Grant & Grant, 2006), or anole lizards (Stuart 

et al., 2014) are textbook examples of assemblages in which rapid phenotypic 

evolution occurred to avoid detrimental competitive interactions. We thus have a 

broad sample of abiotic and biotic drivers for variation in evolutionary rates, 

however, understanding the relative contribution of these candidate factors in 

predicting slow and rapid phenotypic evolution across global radiations is still 

ongoing. 
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The tempo of evolution acts in concert with the mode i.e. the way or manner of 

morphological accumulation, to determine global phenotypic diversity (Simpson, 

1953). The simplest hypothesis is that morphological variance accumulates 

gradually in time, and so differences in phenotypic disparity between groups are a 

product of their relative ages (Cavalli-Sforza & Edwards, 1967). However, this 

simplistic scenario is not universal, as various constraints and selection pressures 

act to change the way in which morphological evolution unfolds. For example, the 

evolution of climatic niches in diprodonts is constrained by the environmental 

extremes across their distribution (Boucher & Demery, 2016), variation in the speed 

at which the avian cranial vault evolves seems limited by integration with the 

evolution of the brain (Felice & Goswami, 2018), and articuliform body plan 

evolution shows a pattern of diffusion in an ecologically constrained adaptive zone 

(Wright, 2017). These examples thus show that, rather than being infinite, the 

possible trait space that species can explore is likely bounded. Further, traits can 

also be confined to a narrow set of values generally interpreted as adaptive optima, 

as seen for example in the evolution of pterosaur body size through-out the Triassic 

and Jurassic (Benson et al., 2014), or chelonian body size evolution across marine 

and freshwater habitats (Jaffe et al., 2011). In time, such modes of morphological 

evolution under constraints result in reduced phenotypic diversity within groups 

(Butler & King, 2004; Martins & Hansen, 1997). Conversely, extensive divergence in 

traits may be promoted at the onset of adaptive radiations, generally associated with 

increased ecological opportunities in newly invaded niches (Agrawal et al., 2009; 

Jønsson et al., 2012; Losos & Ricklefs, 2009; Yoder et al., 2010), but also when 

selective pressures from antagonistic biotic interactions drive morphological 

differentiation between species (e.g. MacArthur, 1958). These various modes of 

phenotypic evolution contribute different amounts to total morphological disparity at 

any moment in time and space. Understanding how often and why each of these 
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processes of evolution dominates across a wide range of taxa essentially enables 

us to explain the accumulation of modern day morphological diversity.  

 

The Darwinian view places a central role of the balance of biotic selection pressures 

on the evolution of species (Darwin, 1859), and competition in particular has been 

described as one of the core processes shaping the diversity of life (Mittelbach et 

al., 2007; Schemske et al., 2009; Thompson, 1999; Van Valen, 1973). The most 

well-known impact of competition is to increase morphological diversification 

between sympatric competing species, as famously shown in Darwin’s finches 

(Grant & Grant, 2006), but also across other taxa (Brown & Wilson, 1956; 

MacArthur, 1958; Schluter, 2000; Stuart et al., 2014). However, interference 

competition can also lead to phenotypic convergence, for example when signalling 

traits are associated with recognizing competitors (Grether et al., 2009; Tobias et 

al., 2014). Further, biotic interactions can act as a barrier to secondary contact 

(Lovette & Hochachka, 2006; Pigot & Tobias, 2013), resulting in pattern of trait 

overdispersion in assemblages of species (e.g. Barnagaud et al., 2014). 

Additionally, competition has also led to a pattern of parallel evolution across 

multiple geographic transects (e.g. head shape evolution in salamanders, Adams, 

2010). In deep-time, biotic interactions are similarly associated with elevated rates 

of trait evolution and total disparity (Davies et al., 2007; Freeman, 2015). The 

presence of bounds on the morphospace available to species has been associated 

with a decrease in rates of evolution with the accumulation of species (Agrawal et 

al., 2009; Weir & Mursleen, 2013). However, biotic interactions are considered an 

ever-changing selection force that create dynamic landscapes (Thompson, 1999), 

and so they can also leave a signal of increased rates of evolution without increased 

total disparity in clades evolving in a constrained morphospace. Recently, a lot of 

attention has been directed towards describing and understanding patterns of 

macroevolution with ecology (Ezard & Purvis, 2016; Jablonski, 2008; Voje et al., 



 

16 
 

2015; Weber et al., 2016), but we lack a clear understanding of how prevalent and 

impactful are modes of evolution with competition compared to other processes in 

shaping biodiversity accumulation across deep-time scales. 

 

For a long time the general consensus was that stasis (i.e. long periods of time with 

little morphological change) is the dominant process of trait evolution across the tree 

of life, an argument supported by the fossil record (Estes & Arnold, 2007; Hunt, 

2007). However, extensive meta-analyses that contrast the fit of various models of 

trait evolution across broad scale comparative datasets showed that other patterns 

(modes and tempos) of evolution are not only possible, but also frequent (Harmon 

et al., 2010; Hunt, 2007; Landis & Schraiber, 2017; Uyeda et al., 2011). For 

example, a recent study using over 8,000 vertebrate species found evidence of 

pulses of rapid change in body size evolution in a third of the clades included 

(Landis & Schraiber, 2017). In general, evolution towards adaptive optima and 

random-walk patterns has also been often preferred across studies, as opposed to 

directional evolution or models of early acceleration, followed by a deceleration in 

rates (Harmon et al., 2010; Hunt, 2007). Across the largest family of songbirds, 

traits involved in resource acquisition were found to evolve predominantly away 

from each other, as expected under selection pressures from phenotypic-driven 

interactions (Drury et al., 2018). The accumulation of extensive, high-quality 

phylogenetic and phenotypic data, alongside the development of more complex trait 

evolutionary models enabled us to gradually build a broad-scale perspective of the 

tempo and mode of biodiversity accumulation. However, there are still many gaps in 

our understanding of trait macroevolution, as highlighted in recent comprehensive 

reviews of the field (e.g. Benton, 2015; Futuyma, 2015; Oyston et al., 2015). In the 

next section, I describe the aim and outline of this thesis, in which I address several 

questions regarding how and at what rate key ecomorphological traits evolve across 

a global radiation (birds).   
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OUTLINE OF THESIS 

The aim of this thesis is to advance our understanding on patterns, correlates and 

consequences for the tempo and mode of phenotypic evolution. To do this, I have 

focused on the evolution of ecomorphological traits across the avian radiation. I 

used extensive datasets of beak morphology (shape and size), as well as body 

mass (Wilman et al., 2014), as these represent important ecological traits, often 

integrative components of adaptive radiations in birds. Furthermore, birds also 

benefit from high quality phylogenetic datasets (Jetz et al., 2012; Prum et al., 2015), 

and detailed aspects of their ecology are described for many taxa, making them a 

good study-system for understanding the processes responsible for generating and 

maintaining biodiversity at macroevolutionary scales. In the next section, I will briefly 

outline the main topics I focused on in my thesis. 

 

How accurately do single-process models describe the process of evolution 

in the face of heterogeneity in rates of trait change? 

Despite the knowledge that rate heterogeneity is a major component of phenotypic 

accumulation across macroevolutionary scales (O'Meara, 2012; Simpson, 1953), 

many single-process trait evolutionary models rely on the assumption of rate 

homogeneity (Cavalli-Sforza & Edwards, 1967; Martins & Hansen, 1997) or assume 

a simplistic scenario of rate variation (e.g. a constant deceleration of rates in time; 

Blomberg et al., 2003). Such models are by definition bound to underestimate the 

extent of rate variation in a given dataset, however, we need to understand the 

extent to which rate heterogeneity causes spurious interpretations regarding the 

process of phenotypic evolution. For example, using a PGLS approach to test for 

the correlation between traits of interest has been shown to suffer from type 1 error 

if the assumption of rate heterogeneity is violated (Mazel et al., 2016). An obvious 

solution to account for rate variation is to fit available rate-variable models (e.g. 

Eastman et al., 2011; Rabosky, 2014; Venditti et al., 2011). However, while we 
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expect such approaches to have improved relative fit, we also need to evaluate 

whether variable-rates models fit the data well overall. Therefore, a systematic test 

on how various forms of rate heterogeneity influence the interpretation of trait 

evolutionary models and the implementation of adequacy tests to correct for 

potential misinterpretations is needed in order to describe the patterns of phenotypic 

accumulation robustly and reduce the chances of model misspecification.  

 

In chapter 2, I asked whether heterogeneity in trait evolutionary rates within clades 

is common, and further, whether and how it affects our interpretation of single-

process evolutionary models. To do this, I applied rate-static and rate-variable 

evolutionary models to body mass data across 88 bird clades, as well as to data 

simulated under a range of rate heterogeneity scenarios. I furthered assessed the 

relative and absolute fit of phylogenetic models by using standard model selection 

criteria, as well as various parametric tests of absolute model adequacy.  

 

What predicts rates of phenotypic macroevolution? 

While there are multiple candidate factors that might explain variation in the rate of 

morphological differentiation, we still lack a comprehensive understanding of 

predictors for rapid and slow evolution across global radiations. The eco-space 

model proposed by Simpson (Simpson, 1953) puts a central role on the dynamics of 

ecological opportunity as a driver of variation in evolutionary rates. Under this 

hypothesis, the accumulation of phenotypic diversity is linked with the invasion of 

new eco-morphological spaces and the processes of species packing into these 

spaces. However, trait evolution has also been linked more generally with episodes 

of revolution in species’ genetic make-up (Futuyma, 2015), as well as with the levels 

of genetic variability within populations (Simpson, 1953). These theories thus 

emphasize the role of mutagenic agents (e.g. increased UVB exposure, Rhode, 

1992) and drivers of errors in the DNA (e.g. faster turn-over of generations, Thomas 
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et al., 2010) in predicting evolutionary rates. These factors likely act 

interdependently, and also their relative contribution will depend on the scale of 

analyses. Thus, a comprehensive test of multiple hypotheses that explain variation 

in the rate of evolution across both recent and deep time scale is needed in order to 

understand which and to what extent candidate factors shaped the accumulation of 

present-day morphological diversity.    

 

In chapter 3, I tested for predictors of trait evolutionary rates across global 

radiations, focusing on factors generally associated with variation in the rate of 

molecular evolution (e.g. life-history and climatic variables), and also on aspects of 

species’ ecologies (island residency, range size, and proxies of ecological 

opportunity and competition strength). I estimated species-level and clade-level 

evolutionary rates by using an extensive 3D dataset of bird beaks for over 5,000 

species and multivariate variable-rates evolutionary models. I then correlated 

evolutionary rates with candidate factors using phylogenetic regressions. 

 

How frequent do we find patterns of trait divergence consistent with the 

presence of ecological selection pressures at macroevolutionary scales? 

Despite the pervasive view that competition for shared resources is a powerful 

selection force (Schluter, 2000; Thompson, 1999; Voje et al., 2015), its impact on 

morphological differentiation has mostly been associated with recent-scale 

radiations (Benton, 2009). Therefore, whether and how species interactions affect 

trait evolution at macroevolutionay scales is less clear. Competitive interactions 

have been considered as drivers of clade displacement episodes (Sepkoski et al., 

2000; Silvestro et al., 2015), and further the extinction of competitors is thought to 

drive radiations in surviving lineages (e.g. Benson et al., 2014; Halliday et al., 2016). 

Diversity-dependent models have also been applied to show that the accumulation 

of species into niches can result in declining evolutionary rates (Weir & Mursleen, 
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2013). Additionally, methods of trait-driven interactions between lineages have also 

found evidence of competition signature in some radiations, as well as showing an 

effect of increased morphological diversification as species likely specialize to avoid 

foraging on the same resources (Clarke et al., 2017; Drury et al., 2016). However, it 

is unclear whether such examples are common across broad comparative datasets. 

We therefore need an extensive survey of patterns of trait divergence consistent 

with the presence of biotic interactions to understand to what extent ecological 

selection pressures can contribute to macroevolutionary morphological diversity.  

 

In chapter 4, I focused on the potential importance of ecological selection pressures 

in driving the mode of phenotypic evolution. Specifically, I test for evidence that trait 

evolution within clades is influenced by competitive selection forces, or conversely, 

whether trait evolution is mostly ecologically-neutral at macroevolutionary scales. To 

do this, I used a more complete set of 3D beak scans to quantify changes in beak 

shape and size, alongside body mass data for over 7,500 bird species. I then 

contrasted the fit of ecologically-neutral and novel models that incorporate the effect 

of competition within well-recognized clades of species to provide a survey for the 

prevalence of trait evolution patterns that are consistent with an effect of species 

interactions on trait evolution across the bird tree. 

 

What is the geographical distribution of competition signature across the 

globe, and how does it associate with the process of trait evolution in 

assemblages of species?  

A long-standing hypothesis in macroecology is that biotic interactions are more 

prevalent at lower latitudes (Dobzhansky, 1950), and could thus potentially 

contribute to variation in diversity levels across a latitudinal gradient (Mittelbach et 

al., 2007; Schemske et al., 2009). However, we lack empirical support for the 

distribution of species-interactions signal across the world, as well as for whether 
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and how interactions link with hotspots of biodiversity. Competition in particular has 

received much attention as a potential selective force for phenotypic evolution within 

assemblages of species. Specifically, the resolution of competition has been 

associated with extensive character differentiation (Grant & Grant, 2006; MacArthur, 

1958), or phylogenetic overdispersion (Barnagaud et al., 2014), if antagonistic 

interactions prevent the invasion of closely related species in local communities 

(Pigot & Tobias, 2013). These patterns have been observed in several communities, 

but we lack an implementation of eco-evolutionary models in assemblages globally. 

Such an approach would allow mapping the signal of competition, testing for factors 

that facilitate intensive species interactions, obtain a global perspective on how 

competition relates to the process of evolution, and lastly, determine whether and 

how much competitive interactions contribute to variation in morphological diversity 

between assemblages of species. 

 

In chapter 5, I tested the correlates and consequences of competition signal in 

species assemblages across the globe. To do this, I used beak shape, beak size 

and body mass data for almost 90% of avian granivorous species. I then applied 

ecologically-neutral trait evolutionary models alongside methods that look for a 

mode of evolution consistent with species interactions in over 10,000 equal-area 

grid cell assemblages across the globe. This way, I described the geographical 

variation in the signature competition across the globe. I further used spatial 

autoregression models to (1) correlate the strength and signal for competition with 

environmental variables, as well as with the tempo of trait evolution within 

assemblages, and (2) estimate the relative contribution of competition to 

morphological disparity within assemblages. 
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The impact of rate heterogeneity on inference of phylogenetic models 

of trait evolution 
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ABSTRACT 

Rates of trait evolution are known to vary across phylogenies; however, standard 

evolutionary models assume a homogeneous process of trait change. These simple 

methods are widely applied in small-scale phylogenetic studies, whereas models of 

rate heterogeneity are not, so the preva- lence and patterns of potential rate 

variation in groups up to hundreds of species remain unclear. The extent to which 

trait evolution is modelled accurately on a given phylogeny is also largely unknown 

because studies typically lack absolute model fit tests. We investigated these issues 

by applying both rate-static and variable-rates methods on (i) body mass data for 88 

avian clades of 10–318 species, and (ii) data simulated under a range of rate-

heterogeneity scenarios. Our results show that rate heterogeneity is present across 

small-scaled avian clades, and consequently applying only standard single-process 

models prompts inaccurate inferences about the generating evolutionary process. 

Specifically, these approaches underestimate rate variation, and systematically 

mislabel temporal trends in trait evolution. Conversely, variable-rates approaches 

have superior relative fit (they are the best model) and absolute fit (they describe 

the data well). We show that rate changes such as single internal branch variations, 

rate decreases and early bursts are hard to detect, even by variable-rates models. 

We also use recently developed absolute adequacy tests to highlight misleading 

conclusions based on relative fit alone (e.g. a consistent preference for constrained 

evolution when isolated terminal branch rate increases are present). This work 

highlights the potential for robust inferences about trait evolution when fitting flexible 

models in conjunction with tests for absolute model fit.  
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INTRODUCTION 

Phenotypic diversity represents a fundamental axis of biodiversity, alongside 

variation in species richness. Species diversify into a multitude of forms, and 

significant differences in the magnitude and disparity of phenotypic traits occur 

across the tree of life. The speed at which traits change (i.e. the rate of evolution) 

may vary in numerous ways, including between groups of species (e.g. Hawaiian 

honeycreepers versus Hawaiian thrushes, Lovette et al., 2002), across habitats 

(e.g. reef versus nonreef, Price et al., 2011), and between distinct speciation 

regimes (Hipsley et al., 2014; Rabosky & Adams, 2012). Evolutionary rate 

heterogeneity has been attributed to a multitude of factors that are often taxon and/ 

or trait specific; for example, piscivorus sunfishes experience higher rates of 

evolution in jaw morphology than nonpiscivorous relatives (Centrarchidae, Collar et 

al., 2009), forests promote faster rates of avian song divergence compared to open 

grassland areas (Weir et al., 2012), and among shorebirds, offspring developmental 

mode is associated with increased rates of evolution for parental care and mating 

systems (Thomas et al., 2006). At broader scales, geographic distributions (e.g. 

islands versus mainland, Thomas et al., 2009; temperate versus tropical areas, 

Martin et al., 2010) and geologic events (impacts of the K-Pg mass extinction, 

Slater, 2013) have also been shown to influence evolutionary rates. 

 

Although it is clear that rates of trait evolution vary across phylogenetic, temporal 

and spatial contexts, the prevalence of different forms of heterogeneity, especially 

within small clades, is not known. The most commonly used models on clades up to 

hundreds of species assume that trait evolution can be described by a single 

process across the whole group of interest. The earliest and most straightforward 

such approach is the Brownian motion or random walk model (BM) of trait evolution. 

Under the BM process, evolutionary rates are constant, the mean expected trait 

change is 0, and variance accumulates linearly in time (Figure 2.1a, Cavalli-Sforza 
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& Edwards, 1967; Felsenstein, 1985). The BM model can describe processes 

including both genetic drift and adaptation (Hansen & Martins, 1996). Several other 

approaches build on the BM model, with added parameters aimed to capture the 

complexities of trait evolution (i.e. deviations from a simple BM process). The 

Ornstein–Uhlenbeck (OU) model accounts for constrained trait evolution and non-

independence between trait changes at each node in the phylogeny of interest (e.g. 

when species share similar selection regimes, Butler & King, 2004). Under the 

simplest version of the OU model (the single stationary peak model), evolutionary 

rates are constant, but traits are always pulled towards a single optimum value, so 

that, in time, the phenotype is constrained (Figure 2.1b). Other models relax the 

assumption of a constant rate of evolution, for example by allowing trait change to 

accelerate or decelerate through time across the whole phylogeny (e.g. ACDC 

method, Blomberg et al., 2003 and δ, Pagel, 1999). The most frequently used 

ACDC approach is the early burst (EB) model, which is a derivation of the BM 

approach with an extra parameter that models a constant rate-decrease through 

time. Under an early burst model, evolution peaks early in the phylogenetic history 

of the group of interest, after which the mean trait change exponentially decreases 

(e.g. expected across adaptive radiations, Harmon et al., 2010, Figure 2.1c).  

 

If evolutionary rate heterogeneity is prevalent, and potentially unpredictable across 

phylogenies, can we still use single-process approaches to make inferences about 

the underlying tempo of evolutionary processes for a specific trait? The 

interpretation of single-process models of evolution is apparently appealing and 

straightforward, but fitting only these models may mask complexity and may not 

adequately describe variation in the data. The prevailing current approach when 

studying trait evolution is to fit several models to the data, and then choose the best  
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relative fit based on maximum likelihood or Akaike information criterion (AIC,

Burnham & Anderson, 2004). As the absolute adequacy of models is not accounted

for, one cannot detect whether all alternative models are deficient. Further, models

cannot always differentiate between alternative processes leading to the same trait

distribution at the end of the phylogeny (Boettiger et al., 2012, Kaliontzopoulou &

Adams, 2016). Therefore, the pattern of trait evolution can easily be misidentified.

Figure 2.1. Tree transformations showing how trait evolution is modelled by

single-process approaches: the (a) Brownian Motion (BM), (b) Ornstein–

Uhlenbeck (OU), and (c) Early Burst (EB; exemplified by a constant rate-

deceleration process from root to tips) models. The equations describe the

process of trait change inferred by models, where represents the change

in the trait of interest, 𝜎 is the rate of change, quantifies random noise by

time t , 𝛼 represents the “rubber-band” parameter acting to pull back the trait

values to an optimum phenotype 𝜃 (OU-specific), 𝜎0 is the initial rate of trait

change, and r is the constant rate of rate decrease (EB-specific). Hypothetical

rate-heterogeneity scenarios captured by variable-rates models: rate changes (d)

on a single, internal branch, (e) across a whole clade, and (f) on isolated tip

branches.

𝑑𝑋	(𝑡)

𝑑𝐵	(𝑡) 
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This problem has been recognised (e.g. Freckleton and Harvey 2006, Pennell et al. 

2015), and more recently, models have been developed that account for 

heterogeneity in the tempo of evolution in flexible ways. Several approaches, 

including Eastman et al. (2011) and Venditti et al. (2011), use reversible-jump 

MCMC to search rate shifts across the phylogeny of interest, assuming a BM mode 

of evolution between potential transitions (Huelsenbeck et al., 2001), whereas 

others use parametric methods to model distributions of rates (e.g. Elliot & Mooers, 

2014). Such methods reveal that rate changes can occur on isolated branches 

(Figure 2.1d), throughout the phylogeny or across whole clades (e.g. Figure 2.1e-f; 

also Baker et al., 2016). Changes in the rate of trait evolution can also be modelled 

as heterogeneity in rate-regimes that are temporally variable, as implemented in the 

Bayesian Analysis of Macroevolutionary Mixture model (BAMM, Grundler & 

Rabosky, 2014; Rabosky, 2014; Rabosky et al., 2014a; Rabosky et al., 2013; Shi & 

Rabosky, 2015).  

 

Although the use of single process models has tended to focus on smaller scales 

(e.g. clade size in Harmon et al., 2010 ranges from 6 to 179 species), to date most 

applications of rate variable models have been at relatively large scales on 

phylogenies including thousands of species (e.g. Venditti et al., 2011, Baker et al., 

2015; Rabosky et al., 2013). Consequently, the prevalence of rate heterogeneity 

and its potential role in misleading single-process models inferences on trees of the 

order of hundreds of species is unknown. The aim of this study was to address this 

knowledge gap by resolving the following issues: (i) how prevalent is rate 

heterogeneity at relatively small phylogenetic scales, (ii) does the form of rate 

heterogeneity lead to predictable biases in favour of particular single-process 

evolutionary models, and (iii) does accounting for rate heterogeneity improve model 

fit and provide an ade- quate description for the data?  
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To address the first question, we use single-process and variable-rates approaches 

to examine body mass evolution within 88 bird groups, summing up to a total of over 

6,500 species. Heterogeneity in the rate of evolution for several traits has been 

previously recorded between avian clades (e.g. Lovette et al., 2002) and sister-

species (Martin et al., 2010; Weir & Wheatcroft, 2011). Early bursts of rapid 

evolution have also been identified in some groups such as ovenbirds (Derryberry et 

al., 2011), vangas (Reddy et al., 2012), and Hawaiian honeycreepers (Lovette et al., 

2002). Avian phylogeny is resolved at the species level (Jetz et al., 2012; recent 

discussions also in Jarvis et al., 2014, Prum et al., 2015); moreover, body mass 

data are readily available for most species (Dunning, 2008; Wilman et al., 2014), 

making this system appealing when investigating the prevalence of rate 

heterogeneity. We further investigate in more detail when and how different forms of 

rate heterogeneity incapacitate evolutionary models, using simulated rate-variation 

scenarios informed by empirical observations. We anticipate that the extent and 

form of evolutionary rate variability will mislead the patterns of trait evolution 

quantified by single-process methods and model choice, leading to spurious 

inferences of macroevolutionary processes. Conversely, variable-rates approaches 

should perform better both in relative fit and in absolute adequacy. 

 

MATERIALS AND METHODS 

Models of trait evolution 

We used the BM (Cavalli-Sforza & Edwards, 1967), OU (Butler & King, 2004) and 

EB (Harmon et al., 2010) models as representatives of popular single-process 

approaches. The models were fitted using fitContinous() in the R package GEIGER 

(Pennell et al., 2014), using 100 iterations. For some clades (the accentors, olive 

warbler, and woodpeckers in the empirical analyses), the likelihood surface for the 

OU alpha parameter consisted of a flat ridge (similar to Harmon et al., 2010) and 

could not be estimated reliably; therefore we excluded the OU-analyses on these 
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clades. The relative fit of models was determined using the AICw selection criteria 

(Burnham & Anderson, 2004). We are aware that AIC can be biased towards 

models with increasing number of parameters and provide a flawed relative 

hierarchy between nested methods (e.g. Kaliontzopoulou & Adams, 2016); 

however, our objective was to replicate and assess the common approach when 

studying trait evolution, and for the BM, OU and EB models, the number of 

parameters differs by a maximum of 1. 

 

The Variable Rates Model for Continuous Traits in BayesTraits V2 (further referred 

to as BayesTraits for simplicity; http://www.evolution.rdg.ac.uk/BayesTraits.html) 

was used as a first representative of variable-rates models. BayesTraits implements 

changes in the rate of evolution using two scaling mechanisms that can be added at 

any location in the tree: a singlebranch modification (modifies the rate on a target 

branch) and a clade modification  (adjusts a target branch and all its descendants; 

Venditti et al., 2011). The model outputs posterior configurations of rate shifts that 

best predict the tip trait data on the phylogeny of interest. Uniform (default) priors 

with no restrictions were used for alpha (phylogenetic mean) and sigma (Brownian 

variance) parameters. Four chains were run to ensure convergence between 

independent runs. Within- and between-chains convergence was assessed using 

trace and auto-correlation plots, effective sample size and the Gelman–Rubin 

diagnostic, all tested in the R package CODA  (details in the supporting information; 

Plummer et al., 2006). We further used BAMM version 2.3.0 (http://bamm-

project.org/) as a second example of methods allowing for variation in the rate of 

trait evolution. Under BAMM, the process of rate change is dependent on time, 

following: 

𝜎 𝑡 = 𝜎0exp  𝑧𝑡 , 

where 𝜎 𝑡  represents the rate of gradual trait change in time 𝑡, 𝑡 is the 

elapsed time from the start of the regime, 𝜎0 is the initial regime-rate, and 𝑧 is a rate 

http://bamm-project.org/
http://bamm-project.org/
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parameter that controls for the magnitude of trait change in time. BAMM thus 

models multiple time-dependent, gradual rate changes, giving an approximation of 

continuous rate-variation processes with occasional jumps. For each tree and 

associated tip data, the priors for the Poisson rate (in BAMM 2.5.0, this is equivalent 

with the inverse of the expected number of shifts), initial evolutionary rate and rate-

change parameter in each regime were calculated in R, using the function 

setBAMMpriors (Rabosky et al., 2014b). Throughout, the function set the 

poissonRatePrior = 1, whereas values for the betaInitPrior and betaShiftPrior varied 

between trees. The model also put a uniform prior density on the distribution of 

ancestral states, with bounds depending on the range of the observed data 

(useObservedMinMaxAsTraitPriors = 1). BAMM offers the possibility to switch 

between time-constant and time-varying processes of trait evolution when modelling 

rate variation via the time-flip proposal. We performed BAMM analyses: (i) with the 

time-flip proposal to allow both time-varying and time-constant processes 

(betaIsTimeVariablePrior = 0.5 and updateRate BetaTimeMode = 1), and (ii) limiting 

the model to timevarying rate-heterogeneity processes (betaIsTimeVariablePrior = 1 

and updateRateBetaTimeMode = 0, the default in BAMM 2.3.0). Four chains were 

run and convergence between and within chains was assessed in CODA (details in 

the supporting information). 

 

Empirical data 

We used maximum clade credibility trees for 88 avian clades from the Jetz et al., 

2012 stage 1 distribution (trees include genetic data only; accessed via 

Birdtree.org). Tree size ranged from 10 to 318 species, covering a total of 6,656 

extant bird species. Bird body mass data was taken from EltonTraits 1.0 (Wilman et 

al., 2014). EltonTraits comprises specific body estimates based on (i) the geometric 

mean of average values for both sexes from Dunning (2008), and (ii) genus average 

from other sources. Body mass estimates (in grams) for each species were log-
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transformed. We calculated the median scaled trees from the outputs of BayesTraits 

and BAMM, in which each branch length is stretched and shortened proportional to 

the median rate of evolution across the posterior scaled tree distribution for that 

particular branch. Posterior scaled trees are readily available in the output of 

BayesTraits. For BAMM, we modified the function getMeanBranchLengthTree() in R 

(package BAMMtools, Rabosky et al., 2014b), so that it computed the per-branch 

median rates across the posterior tree distribution (instead of the mean; code 

deposited at doi: 10.5061/dryad.qj367). Median scaled trees were used to visualize 

and describe patterns of trait evolution, and further as input for absolute model fit 

analyses (across both the empirical and simulated data). For the avian data sets, 

we also compared the fit of alternative models with various number of supported 

shifts given by BAMMflip using BayesFactors (calculated with 

computeBayesFactors() in BAMMtools, Rabosky et al., 2014b).  

 

Simulations 

We simulated trees with 100 tips under a pure birth model using TreeSim (Stadler, 

2011), with a speciation rate set to 1. We chose this specific tree size because 

standard trait evolutionary models are typically applied on relatively small 

phylogenies with 50–200 tips. The root-to-tip distance was standardized to 1 in all 

trees. Rate-heterogeneity scenarios were simulated by changing the length for 

specific branches of interest (discrete shifts), or by generating gradual processes 

using the function rescale() in GEIGER. Brownian motion trait evolution with a 

variance rate of 1 was further simulated on these transformed trees. The original 

tree and the simulated trait data were used as input data for alternative models of 

trait evolution. We simulated rate variation as (i) a single, internal branch shift not 

passed to descendants (Figure 2.1d), (ii) a clade event, in which all members of a 

particular group record a change in the rate of evolution (Figure 2.1e), (iii) rate shifts 

on nonclustered terminal branches (Figure 2.1f), (iv) a constant ratedeceleration 
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process from the root to tips (Figure 2.1c) and (v) a case when a single clade goes 

through an initial increase in the rate of evolution (95) followed by a constant-rate 

decay (same process as Figure 2.1c, but constrained to a clade). The number of 

terminal branches and the size of clades that recorded rate shifts were set to 15–30 

species.  Combinations of the first three scenarios were also added. All code used 

for the simulations is deposited at doi: 10.5061/dryad.qj367. Parameter choices for 

the simulations were informed by the rate-heterogeneity patterns observed on the 

empirical data, and also by inference to the literature (discrete branch shifts: Revell 

et al., 2012; Venditti et al., 2011, Puttick et al., 2014; Thomas & Freckleton, 2012, 

Baker et al., 2016; gradual rate-decreases: Harmon et al., 2010, Rabosky et al., 

2014a; Slater & Pennell, 2014). Discrete shifts were given magnitudes of 90.05, 

90.1, 90.2, 90.5, 92, 95, 910 and 920. Gradual rate decreases were set under a 

rate-deceleration parameter (a) of ln (0.5), ln(0.2), ln(0.1) and ln(0.05). Each 

heterogeneity scenario with its respective magnitude was simulated on 100 trees, 

resulting in a total of 6,400 trees and trait data. We used an additional 1000 

constant-rate trees, that is trees with a simulated BM process of trait evolution, and 

associated tip data, to assess model fit in the absence of rate heterogeneity. We 

also investigated whether the size of trees influences the ability of variable-rates 

models (BayesTraits and BAMM-flip) to detect heterogeneity. To do this, we 

simulated additional 400 trees with 25, 50, 100 and 200 tips (100 trees for each 

size), and we repeated the discrete ratevariation scenarios. The size of clades and 

number of terminal branches that recorded rate changes were set to 10–15, in order 

to accommodate for trees of only 25 tips.  

 

The probability of internal branch shifts, clade events and terminal branch shifts to 

be detected by models was also quantified using the simulated data. We fitted the 

BM model: (i) on the simulated trees, that is trees with incorporated rate 

heterogeneity, alongside the simulated trait data, and (ii) on trees before applying 
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rate changes, alongside the simulated trait data. The differences in log-likelihood 

between (ii) and (i) were calculated; small differences in log-likelihood indicate that a 

particular heterogeneity scenario does not leave much signal in the tip data.  

 

Absolute model fit 

Freckleton and Harvey (2006) proposed bootstrapping approaches to assess the 

adequacy of the Brownian model as a descriptor of the data. More recently, Pennell 

et al. (2015) extended this approach with a series of parametric tests of the absolute 

adequacy of models of trait evolution implemented in the R package ARBUTUS 

(Pennell et al., 2015). Briefly, the algorithm works as follows: (i) an evolutionary 

model is fitted to the data, (ii) a unit tree is built by transforming the original tree 

according to the model parameters, (iii) Felsenstein’s independent contrasts 

(Felsenstein, 1985) are calculated on this unit tree, making up the 'observed data', 

(iv) trait evolution is simulated on the unit tree, following a BM process with variance 

= 1, and the contrasts are calculated again (i.e. the 'simulated data'), and (iv) the 

observed and simulated distribution of contrasts are compared. ARBUTUS takes a 

phylogeny and the associated tip-trait distribution as input; therefore, for the 

variable-rates models, a BM model was run on the median scaled tree at step (i), 

and the unit tree was built according to the BM parameters on the scaled tree.  

 

ARBUTUS provides six diagnostics that test model fit: (1) the coefficient of variation 

of the absolute value of contrasts (C.VAR) tests whether the candidate model 

underestimates (C.VARobs > C.VARsim) or overestimates (C.VARobs < C.VARsim) total 

rate-heterogeneity, (2) the mean of the squared contrasts (M.SIG) assesses model 

ability to quantify the overall rate of evolution, (3) the D statistic (Kolmolgorov-

Smirnov test) compares the distribution of the contrasts with the expected 

𝑋 ~ 𝑁 0, 𝜎2 ; D.CDF tests for deviations from the expected normal distribution of 

contrasts. The last three diagnostics represent the slopes of several linear models 
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fitted to the absolute value of contrasts (iv) against node heights (S.HGT), which 

assesses model ability to account for temporal variation (positive slopes show rate 

overestimations late in the phylogeny and underestimations early on), (v) against 

the variances of contrasts (S.VAR), signalling if models account for variation related 

to branch lengths (positive slopes show rate underestimation on long branches and 

overestimation on short ones), and (vi) against the weighted average values at each 

node (S.ASR), which tests whether the model accounts for variation related to 

ancestral states (positive slopes show overestimates at smaller nodes and 

underestimates at larger nodes). A candidate model is considered inadequate for a 

particular test when the observed and simulated test statistics are significantly 

different (P < 0.05). We used the P-values to calculate the frequency of inadequate 

trees and associated trait data (referred as inadequacy levels) given by each 

candidate model across our simulated scenarios. The ability of variable-rates 

models to detect rate shifts on simulated trees of different sizes was assessed by 

calculating (i) the posterior probability for the simulated branch and clade rate shifts 

(for BayesTraits), and (ii) the relative odds of a clade shift (i.e. marginal odds ratio) 

for BAMM-flip; currently, a protocol for assessing the probability of individual branch 

shifts is not formally described for this model.  

 

We used the simulated trees and data under various heterogeneity scenarios to 

compare the rate estimates from variable-rates models with the true, simulated 

ones. Specifically, for each branch where a rate change was simulated, we 

calculated the natural logarithm for the proportion between the estimated and true 

rate of evolution. Positive values indicated that models overestimated the 

evolutionary rate on branches. These differences were calculated for the branches 

without simulated rate changes as well. 
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We also used constant-rate trees and associated trait data to evaluate potential 

tendencies of variable-rates models to infer false rate heterogeneity. BayesTraits 

has revealed a wealth of rate changes in body mass evolution across the 

mammalian tree (Venditti et al., 2011); therefore we first calculated the prevalence 

of branch rate-changes inferred in constant-rate trees by BayesTraits that could 

potentially be interpreted as shifts in the rate of evolution. Secondly, BAMM has 

been used to identify time-varying evolution within clades (Grundler & Rabosky, 

2014; Rabosky et al., 2014a). We thus tested whether the default BAMM model 

(where all rate regimes are modelled as time-varying) infers false gradual rate-

changes processes, particularly early in the phylogeny. We further tested whether 

any such biases are alleviated by using BAMM’s time-flip proposal that allows both 

time varying and time constant rates to be modelled. We used the function 

getEventData() in BAMMtools to extract the rate-change parameter (β) for the root 

process. These β parameters should distribute normally around 0 if no rate change 

regime characterizes the root. We also plotted the β distribution for the simulations 

involving rate-discrete shifts, to test for a potential link between specific rate 

heterogeneity scenarios and falsely inferred gradual processes at the root.  

 

RESULTS 

Avian groups 

Heterogeneity in the rate of body mass evolution was prevalent across bird 

phylogenies (Figure 2.2, considering per-branch rate-changes more substantial than 

x2 or x0.5 as evidence for rate-variation), and the intensity and patterns of rate 

changes varied across clades. Several recurrent forms of rate-heterogeneity stood 

out (Figure 2.2): rate changes affecting whole clades (e.g. Paradoxornis genus, 

Figure S71; Geospiza and Camarhynchus genera, Figure S78; Cinclodes genus, 

Figure S84), rate increases on isolated terminal branches (e.g. Figure S76, S81, 

S83), and evolutionary rate increases on an internal branch not passed to 
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descendants (referred to as ‘single-lineage ancestral bursts’ in Venditti et al., 2011 

and Baker et al., 2016; e.g. Figure S99a). There was also evidence of time-

dependent declining rates of evolution within groups, and BAMM revealed fast rates 

early in the phylogeny followed by declining rates in few cases (e.g.  

Pachycephalidae Figure S36b; Procellariidae, Figure S99b). Further, BAMM 

detected 35 groups that had strong evidence for at least one regime shift (Bayes 

factors for one or more shifts relative to the null model > 20), and in 43 groups there 

was at least some effect for one or more rate regime changes (Bayes factors > 12; 

Table S5). Highest extents of rate-variation were typically inferred in the large 

clades, but there was no clear relationship between the prevalence of heterogeneity 

and clade size (Figure 2.2). Rate-shifts were found across small groups (e.g. 

pheasants, quail, guineafowl, 11 species, Figure S91; orioles, allies, 32 species, 

Figure S67), and also some larger clades had little to no rate-variation throughout 

(e.g. cuckoos, 128 species, Figure S53; buntings, American sparrows, 

brush−finches, 127 species, Figure S57). Typically rate shifts did not exceed a 30 

fold increase or a 5 fold decrease, but there were a limited number of exceptions 

(e.g. the Platysteiridae family undergoes a 14 fold decrease in the amount of body 

mass change relative to the length of the identical branch in the input phylogeny, 

Figure S100).  

 

Variable-rates models generally represented an adequate approach to model body 

mass evolution across avian clades (Figure 2.3). Conversely, single-process models 

underestimated the total amount of rate variation in almost 50% of the groups 

included in the analyses.  Further, the inadequacy of single-process approaches 

was predominant across phylogenies that showed high rate heterogeneity (as 

described by rate-variable models, Figure S15). Most important, variable-rates 

models were not just better at capturing the evolutionary process relative to single-

process approaches (expected, since absolute fit does not penalize complexity), but  
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they also recorded high levels of absolute adequacy. Therefore, such methods

provide robust descriptions of the statistical patterns in the data, whereas single-

process models frequently do not. BAMM and the EB model described the temporal

aspect of evolution best (best adequacy in the S.HGT diagnostic), as the rest of the

models tended to underestimate the rate of evolution early in the phylogeny, and/or

overestimate it towards the tips (positive S.HGT, Table S3). The BAMM version

constrained to time-varying processes typically produced stronger rate-deceleration

processes at the root compared to the BAMM-flip alternative (Figure S14), mostly in

small clades (less than 50 tips).

Figure 2.2. Patterns of rate-heterogeneity in avian body mass evolution given by

(a) BayesTraits, and (b) BAMM-flip, plotted against clade size. Rate-variation is

measured as: number of single-branch rate changes, number of clade events,

and proportion of isolated changes at the tips. Rate decreases and increases are

represented in blue and red, respectively.
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The BM model had highest AICw in 54% of trees (Figure S17-S63), followed by the 

OU (24%; Figure S64-S86), and EB models (22%; Figure S87-S104). The relative 

and absolute adequacies of single-process models were not tightly related. Rather  

the prevalence of highest AICw for the OU model increased as models missed more 

and more sources of variation (Figure 2.4). Thus often a superior relative fit of the 

OU model was not a result of best absolute fit, but of alternative evolutionary 

processes that were not accounted for by any of the single-process models 

included. We found 11 clades in which the OU model had over 90% support from 

the AICw over the BM and EB, but all three models had poor absolute adequacy 

(select Pellorneidae and Sylviidae, Figure 71c; Alaudidae, Figure S72c; select 

Anatidae, Figure S74c; Pycnonotidae, Figure S76c; Lari, Figure S77c; select 

Thraupidae, Figure S78c and Figure S81c; Psittacidae, Figure S79c; Fringillidae, 

Figure S80c; Muscicapidae, Figure S83c; Furnariidae, Figure S84c); within these 

groups, variable rates models typically identified rate increases late in the 

phylogeny, in the form of clade events and/or increases on isolated terminal 

branches. Absolute adequacy levels also helped distinguishing between the relative 

fit of models with similar AICw. We found 12 clades in which the BM and EB models 

were not clearly separated by their AICw, but were assigned different adequacy 

levels by ARBUTUS (Trogonidae, Figure S35c; select Acanthizinae, Figure S42c; 

Conopophagidae, Figure S87c; Melanocharitidae and Cnemophilidae, Figure S88c; 

Maluridae, Figure S90c; Petroicidae, Figure S92c; Cardinalidae, Figure S94c; 

Vireonidae, Figure S95; Procellaridae, Figure S99c; select Psittacidae, Figure 

S101c; Numididae, Figure S102c; Meliphagidae, Figure S103c). Within these 

groups, the BM (and BayesTraits) failed to account for temporal variation, and 

underestimated rates late in the phylogeny; conversely, the EB (and BAMM) was 

adequate across all diagnostics.  
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Model fit in the presence of simulated rate-heterogeneity

In the absence of rate-heterogeneity (constant-rate trees) all models perform

adequately. However, the single process models vary in their ability to capture

evolution on heterogeneous trees (Figure 2.5). Similar to results on the empirical

data, variable-rates models generally performed better than single process models,

and also recorded low levels of inadequacy overall. The magnitude of rate changes

affected the absolute fit of models consistently across all simulated rate

heterogeneity scenarios. Specifically, the fit of single-process models was better on

simulations involving decreases in the rate of evolution compared to rate-increases.

Figure 2.3. Inadequacy levels (quantified as the frequency of trees and

associated trait data where the focal model was inadequate) for evolutionary

models across avian clades, showing model inability to account for total variation

in the rate of evolution (C.VAR), variation related to branch lengths (S.VAR),

ancestral states (S.ASR), and node heights (S.HGT). D.CDF inadequacy refers

to deviations in the distribution of independent contrasts from the expected

normality under a BM. Single-process (BM, OU and EB) and variable-rates

models (BayesTraits and BAMM with time-flip proposal) are considered.
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On branches with simulated rate-changes, variable-rates models typically 

underestimated the magnitude of rate-changes (Figure 2.6; also Figure S3b). This 

effect was stronger with increasing magnitudes of rate-shifts, and ARBUTUS 

diagnostics also detected a poorer model fit as the magnitude of rate-shifts became 

bigger for both rate-increases and decreases (Figure 2.5). The mean of the squared 

contrasts (M.SIG) was very rarely inadequate across our analyses, and this 

particular diagnostic has been previously identified as having low power to detect 

model inadequacy (Pennell et al., 2015). We therefore do not report or discuss 

M.SIG further. Also, we did not specifically model directional trends of rate variation 

in relation to ancestral states or branch lengths. Accordingly, these ARBUTUS 

diagnostics do not reveal any specific problems related to the models fitted; rather, 

inadequacy levels follow the trends predicted by the tests related to temporal and 

total rate variation (Figure S1). 

 

Model ability to account for overall rate heterogeneity 

Single-process models recorded particularly high levels of inadequacy when 

heterogeneity is simulated as rate-increases on isolated terminal branches or on 

several branches forming a clade (Figure 2.5a). In addition, and as expected, the 

BM and OU models frequently fail to account for rate-deceleration processes across 

the whole tree. Although designed to model rate heterogeneity, BAMM also tended 

to underestimate total rate variation (mostly positive C.VAR differences, Figure 

S5a), and especially missed the rate-increases on isolated terminal branches. 

However, the inadequacy levels for BAMM were typically lower than the single 

process models. Further, the time-flip proposal improved absolute adequacy relative 

to the fixed time-varying prior in BAMM (Figure S4a). Overall, model adequacy in 

terms of capturing rate heterogeneity was highest for BayesTraits; however, it was 

also the only model that regularly overinflated estimates of the total rate variation      
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(negative C.VAR differences, Figure S5a; also slightly higher differences between

true and estimated rates of evolution compared to BAMM; Figure 2.6).

Model ability to account for temporal rate-variation

Not surprisingly, the BM and EB models described the temporal aspect of rate-

variation poorly when rate increases were simulated on terminal isolated branches

(Figure 2.5b), as they underestimated these late shifts (negative S.HGT, Figure

S5b). BAMM also showed a ubiquitous tendency to overestimate rates early on and

underestimate the late increases (all negative S.HGT; Figure S5). All models except

BAMM were unable to accurately account for rate-deceleration processes across

the whole phylogeny (Figure 2.5b), as they underestimate high initial rates and

Figure 2.4. Frequency of the best relative single-process model (highest AICw)

for increasing levels of inadequacy across avian clades. Inadequacy levels are

quantified as the number of model fit diagnostics failed across all three models

(from D0 – no adequacy tests failed, to D4.5.6 – four or more failed tests).
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overestimate terminal rates (all positive S.HGT, Table S1). The EB model 

performed better than the BM, OU models (as expected), and BayesTraits, but still 

tended to miss fast decelerating processes. Early bursts also led to the highest 

inadequacy levels for BayesTraits compared to all other heterogeneity scenarios 

(Figure 2.5, Figure 2.6). 

 

The influence of tree size on model ability to detect rate shifts; Tendency of 

variable-rates models to overfit; Likelihood Tests 

The ability of BayesTraits to detect a rate-shift on individual branches or across a 

whole-clade was not influenced by the size of the simulated trees (Figure S6, S7, 

S8). The ability of BAMM-flip to detect a clade rate shift did not differ between trees 

of different sizes although on average the model recovered rate increases better in 

bigger trees (Figure S9).  Further, the ability of BayesTraits to detect a clade-shift in 

trees of 100 tips was little influenced by the size of the heterogeneous clade (Figure 

S10). Similarly, BAMM-flip recovered clade rate-changes similarly well across 

different clade-sizes (Figure S11). Universally, the main factor affecting model ability 

to detect rate shifts was the shift magnitude, and models recovered big shifts better 

than smaller ones, both in respect of increases and decreases in the rate of 

evolution. 

 

BayesTraits commonly inferred rate increases up to two-fold when fitted on 

constant-rate trees and associated data (26–33% frequency of trees with rate 

shifts); however, the frequencies of trees with shifts dropped considerably when 

considering rate changes bigger than x5 (8.5%), x10 (0.5%) and x20 (0%, Table 

S2). Further, the vast majority of rate increases occurred on terminal branches. 

There was no clear tendency for BAMM to infer false early rate-decelerating 

processes when fitted on constant-rate trees and trait data, either using a time-flip 

proposal (β distributions average around a mean = - 0.14 ± 0.18 SD, and a median 
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= -0.08) or not (β mean = - 0.12 ± 0.43 SD, and a median = - 0.07, Figure S12). Per-

branch comparisons between the estimated and true rates of evolution across 

constant rate-trees also show no worrying amount of overfit from variable-rates 

models; however, rates inferred by BAMM-flip show more noise around the true 

values compared to BayesTraits (Figure S2).   

 

When considering the simulated data with single-branch, clade and terminal shifts, β 

values also distributed normally, but the central points and deviations differed 

across heterogeneity scenarios (Figure S13). When evolution was constrained to 

time-varying processes (Figure S13b), β distributions were slightly shifted right 

towards positive values for simulated rate-increases; that is BAMM infers processes 

of slight gradual rate increases at the root when some late rate-increases are 

present. This trend was, however, corrected by BAMM-flip (Figure S13a). Using the 

time-varying constrained BAMM alternative also resulted in many weak deceleration 

processes at the root, rectified by BAMM-flip (β much narrowly distributed along the 

0 line). Both BAMM versions approximated slightly steeper rate-deceleration 

processes as a response to discrete rate-decreases late in the clade (wider ranged  

β distributions). Per-branch differences between estimated and simulated rates of 

evolution also showed a small tendency for BAMM-flip to overestimate rates of 

evolution on non-changed branches as a response to big rate increases at the tips 

(Figure S2b). Conversely, BayesTraits underestimated rates on nonchanged 

branches in these trees (Figure S2a). 

 

As expected, single-branch shifts do not leave much signal in the tip data, whereas 

clade events and shifts on multiple isolated terminal branches have a high likelihood 

of being detected by models. Similarly, rate decreases are much less detectable 

compared with rate increases, and, as the magnitude of a shift increases, so does 

its signal in the tip data (Figure 2.7).  
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Absolute vs. relative model fit selection criteria in the presence of rate 

heterogeneity 

Across scenarios simulated under a BM process with discrete shifts (internal branch 

shift, clade event and terminal rate shifts), the BM model was expectedly most often 

favoured by model selection criteria, followed by the OU and EB processes (Figure 

2.8). Similar to the empirical data, the relative preference for the OU model was not 

spread randomly across the heterogeneity scenarios considered; rather, the OU 

model was particularly favoured in scenarios involving big rate increases on 

branches late in the phylogeny (Figure 2.8b). Further, relative model selection 

criteria did not reflect the absolute fit of models, and the cases in which the OU 

model was picked up as best across these simulations were clearly linked with a 

high inadequacy of all three single-process models fitted (Figure 2.9).  

 

DISCUSSION 

Patterns of rate heterogeneity in avian body mass evolution and 

consequences to model fit 

Generally, variable-rates models performed well in capturing the phylogenetic 

distribution of the data, as highlighted by their low levels of inadequacy across 

ARBUTUS diagnostics, on both simulated and empirical data sets. Allowing for rate 

heterogeneity when mod- elling trait evolution can thus provide a robust approach to 

understanding trait evolution, both in the presence and absence of variability in 

rates. Conversely, assuming a constant process can misguide the choice of best 

model and generate poor inferences about the evolutionary process across groups 

of interest. The intensity of body mass rate variation fluctuated across avian 

phylogenetic groups, but rate heterogeneity was prevalent. As a consequence, 

single-process models commonly gave poor estimates on the total amount of rate 

variation present in these data sets and were highly inadequate compared with the 

more flexible variable-rates approaches. 
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Figure 2.5a. Model inadequacy levels (quantified as the frequency of trees and

associated trait data where the focal model was inadequate) across a simulated

Brownian Motion process (no shifts i.e. shift magnitude = 1) and rate-heterogeneity

scenarios: internal branch shift; clade event; rate-changes on isolated, terminal

branches; rate-burst followed by gradual decreases within a clade, and constant rate-

deceleration process from root to tips. Single-process (BM, OU and EB) and variable-

rates models (BayesTraits and BAMM with time-flip proposal) are considered.

Inadequacy levels measure model ability to account for (a) total rate variation. Inadequacy is quantified

separately for rate increases (up-pointing triangles) and decreases (down-pointing triangles), and the exact

magnitude of each shift is highlighted by the blue-red colour scheme. For scenarios involving gradual rate-

changes, the natural logarithm of the shift magnitude represents the constant rate-change parameter.
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Figure 2.5b. Model inadequacy levels (quantified as the frequency of trees and

associated trait data where the focal model was inadequate) across a simulated

Brownian Motion process (no shifts i.e. shift magnitude = 1) and rate-heterogeneity

scenarios: internal branch shift; clade event; rate-changes on isolated, terminal

branches; rate-burst followed by gradual decreases within a clade, and constant rate-

deceleration process from root to tips. Single-process (BM, OU and EB) and variable-

rates models (BayesTraits and BAMM with time-flip proposal) are considered.

Inadequacy levels measure model ability to account for (b) temporal variation. Inadequacy is quantified

separately for rate increases (up-pointing triangles) and decreases (down-pointing triangles), and the exact

magnitude of each shift is highlighted by the blue-red colour scheme. For scenarios involving gradual rate-

changes, the natural logarithm of the shift magnitude represents the constant rate-change parameter.
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In general, evolutionary models recorded similar inadequacy tendencies across

simulated and empirical data sets, ruling out biases such as phylogenetic or

measurement error as determinants of inadequacy differences between models in

favour of rate heterogeneity. Observations on model inadequacy specific to the

empirical data sets likely signalled attributes of avian body mass evolution. Several

clades (e.g. albatrosses, shearwaters, petrels, Figure S99b; whistlers, Figure S36b)

showed a characteristic of high rates early in the phylogeny followed by rate

decelerating processes, identified by BAMM and the EB model. The simulation step

highlighted the tendency of BM, OU and BayesTraits to miss such patterns.

Therefore, where inferred, early bursts are likely an accurate description of body

mass evolution. Accordingly, the distribution of the BAMM rate-decay parameters at

the root (β) across the empirical data was fat-tailed, with the outliers signalling the

burst processes (Figure S14). BAMM without the time-flip algorithm recorded more

powerful decelerating processes at the root (i.e. smaller β values), alerting on a

potential bias for this strict time-varying alternative to infer false extreme early rate-

decay processes (especially in clades < 50 species).

Figure 2.7. Log-likelihood differences between runs on original and transformed

trees (with incorporated rate changes) for three rate-heterogeneity scenarios: (a)

internal branch shift, (b) clade event, and (c) multiple non-clustered rate-changes

at the tip. The magnitudes of shifts in each category are represented on the x-

axis.
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Additionally, variable-rates models identified rate-heterogeneity in the form of

branch rate decreases or increases that are not passed to descendants making up

a monophyletic group, recurrent whole-clade events, and changes on non-clustered,

terminal branches. Both BayesTraits and BAMM reveal a similar prevalence of rate-

variation in avian clades (Figure 2.2). We are aware that quantifying the extent of

this variation based on per-branch shifts is not particularly suitable for BAMM, as it

Figure 2.9. Frequency of the best relative single-process model (highest AICw)

for increasing levels of inadequacy across all simulated discrete rate-

heterogeneity scenarios. Inadequacy levels are quantified as the number of

model fit diagnostics failed across all three models (from D0 – no adequacy tests

failed, to D4.5.6 – four or more failed tests).
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can miss or misinterpret gradual processes. However, the algorithm was generally 

robust, and there was only one extreme case in our analyses: the fast rate-

deceleration process in albatrosses, shearwaters, petrels was quantified as a 

BAMM-flip output of 15 single-branch bursts (Figure 2.2b). Some of the avian clades 

identified in our analyses with a high degree of rate-heterogeneity in body mass 

evolution have also been associated with high diversification rates and rapid 

radiations (e.g. ovenbirds, select gulls, hummingbirds, ant birds and tyrants; Jetz et 

al., 2012). The forms of rate heterogeneity we report are most likely not a statistical 

artefact, given the high prevalence of consistent rate-variation patterns and the 

general low inadequacy levels of variable-rates models. Moreover, similar patterns 

have also been reported across a variety of phylogenetic groups: clade rate 

increases (Pacific minnows, Martin & Bonett, 2015) and decreases (Taphozous 

bats, Venditti et al., 2011), similar group events, but involving a basal shift, 

propagated then through-out the clade of interest (Ctenotus lizards, Rabosky et al., 

2014a), single-lineage internal bursts restricted to the branches leading to 

Hominidae (great apes), Chiroptera (bats, Venditti et al., 2011), or Mysticeti (baleen 

whales, Baker et al., 2016). Such phylogenetic distributions of rates reinforce the 

importance of allowing for lineage-specific rate changes when modelling trait 

evolution, in order to avoid inaccurate inferences about the evolutionary process. As 

presented, even for phylogenetic scales up to hundreds of species one could 

attribute differences in the rate of evolution between groups to a general clade event 

rather than to considerable changes on a single or restricted number of lineages.  

 

We used the output of variable-rates models in conjunction with adequacy checks to 

clarify the conclusions on the tempo of trait evolution in some problematic avian 

groups. For example, across tanagers and allies, the OU model had a clear superior 

relative fit. However, all single-process models were inadequate, and variablerates 

models further showed an exceptional burst of evolution within the clade consisting 



61 
 

of Galapagos finches (Figure S78). Thus based on relative fit only, an interpretation 

of constrained evolution could have been preferred to a completely different, limited 

island radiation hypothesis. We identified the same issue even when the number of 

radiating species was very small (like the case of steamer ducks, a genus of only 

four flightless ducks, Figure S74). Absolute adequacy checks also guided output 

interpretation for variable-rates models. For example, in the clade Procelariidae, 

BayesTraits inferred a single-branch shift increase ancestral to albatrosses, 

evolving towards a big body size (Figure S99a). BAMM however inferred this 

ancestral increase as part of an early burst process spanning across the whole 

phylogeny (Figure S99b). ARBUTUS signalled that BayesTraits inadequately 

described the temporal variation in this group and missed early fast rates, thus 

favouring the BAMM interpretation of rate variation on this tree. The EB model also 

modelled temporal heterogeneity accurately but missed the complexities of rate-

variation across the whole clade (positive C.VAR, Figure S99c). 

 

We only used trees containing species where sequence data was available, ruling 

out a potential over inflation of rate heterogeneity (especially towards the tips) or 

biased model preference towards an OU model due to incorporating species based 

on taxonomic information only (Rabosky, 2015). We did not, however, incorporate 

measurement error into our empirical analyses, which could potentially cause an 

overestimation of rate heterogeneity across the body mass data (Silvestro et al., 

2015). From the two variable-rate models included in our analyses, BayesTraits can 

account for measurement error by modelling many rate-increases on isolated 

terminal branches, but it cannot be distinguished whether the presence of such 

increases in the outputted scaled trees is caused by noisy data or real rate-changes 

at the tips. However, our analyses on simulated datasets showed that the model 

rarely gives false substantial rate-changes at the tips. Still, we argue that some rate-

variation across empirical datasets should be interpreted with caution, if at all, and 
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the above mentioned considerations led us to not take into account rate-shits 

smaller than x2 when quantifying patterns of avian trait evolution (Figure 2.2). 

 

Heterogeneity patterns that mislead models 

As a general rule, specific forms of heterogeneity and not the general complexity of 

rate variation caused problems for evolutionary models. That is, when a specific 

rateheterogeneity pattern caused a model to fit poorly, the effect occurred frequently 

across all simulations. For example, data simulated with a shift in rate across a 

whole clade led to poor performance of candidate models, regardless of whether 

other types of shifts were also simulated. Having simulated under a range of 

scenarios and magnitudes enabled us to mark how models approximate trait 

evolution in response to various heterogeneity cases, and also highlight which and 

to what extent rate-variation scenarios mislead model inference. 

 

There was a clear difference between how models handled increases and 

decreases in the rate of evolution. Single-process models came out as more 

adequate in the presence of rate decreases compared with increases. This 

difference in model fit is probably a consequence of the small likelihood that discrete 

branch rate decreases leave any signal in the data (Figure 2.7). That is, single-

process approaches do not approximate rate decreases better; rather, this form of 

rate variation is hardly tractable in the data, and many different processes alongside 

rate shifts can theoretically lead to that particular tip trait distribution. Similar to rate 

decreases, single internal branch shifts were typically not flagged up as being 

inadequately described across models, because a single internal branch has little 

impact on the likelihood of the model  (except when the shifts have a large 

magnitude, Figure 2.7a). Variable rates methods also showed good absolute fit 

when ran on trees and tip-data simulated under single-branch shifts and rate-
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decreases scenarios; however, models estimated these rate-changes with a similar 

true accuracy as other heterogeneity scenarios (Figure 2.6). 

 

Multiple branch increases had a high negative impact on model adequacy. Isolated 

terminal increases were particularly troublesome compared with whole-clade 

events, potentially because single-process models accommodate rate variation by 

changing estimated r² on several branches adjacent to the ones presenting rate 

shifts. Thus, changes on non-clustered branches can cause a wide spread of falsely 

inferred rates. Similarly, BAMM shapes rate heterogeneity as a process across 

multiple branches, and it is less able to capture single-branch shifts (Rabosky & 

Huang, 2016). In BAMM, detection of single branch shifts requires two events (i.e. 

nested rate shifts with modelling of an increase at the start of a branch followed by a 

subsequent decrease). In contrast, BayesTraits explicitly allows changes on single 

branches with one event. Accordingly, BAMM had poorer ARBUTUS diagnostics in 

the presence of isolated tip increases (Figure 2.5), and overestimated rates of 

evolution on the untransformed branches in trees with simulated terminal rate-

changes (Figure S2). However, the method accurately described heterogeneity in 

the form of whole clade rate increases. Also, the accuracy of estimates improved 

when using the more flexible BAMM-flip version. 

 

The root to tip rate decelerating process caused most spurious results across all 

models except BAMM. Even the EB model missed these processes in almost 20% 

of cases, particularly when a steep decrease was involved (a = log(0.05) or 

log(0.1)). BayesTraits was also largely unable to describe early bursts (Figure 2.5, 

Figure 2.6). The lack of strength in modelling early bursts by models (expect BAMM) 

was highlighted in the empirical datasets as well, and the EB was often not 

separated clearly from the BM in terms of relative fit, despite its superior adequacy 

in modelling temporal rate variation. These results add to the body of ideas 
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advocating that early bursts are often not identified across datasets (Harmon et al., 

2010, Slater et al., 2010; Venditti et al., 2011, Alhajeri et al., 2015) not necessarily 

because such scenarios are scarce in nature, but because current models do not 

have the power to detect them, and early shifts leave little signal in the tip-data 

(Slater & Pennell, 2014).  

 

The size of simulated trees did not generally affect the ability of variable-rates 

models to recover rate shifts, and these methods were similarly robust for trees of 

25 to 200 species. The detectability of rate shifts was largely influenced by the shift 

magnitude, and by whether a shift was on isolated branches or as part of a clade 

(for BayesTraits, grouped events were more easily detected). These results hence 

mirror the patterns of absolute adequacy seen throughout the main analyses, and 

variable-rates models prove suitable for detecting heterogeneity even when the 

group of interest is fairly small. Similarly, we did not find the number of species 

involved in a clade event to affect the shift detectability; however, we only had data 

for clades ranging between 10 and 30 species. Conversely, the magnitude of the 

regime shift had a substantial effect on the model ability to recover the event, and 

most likely potential effects of a larger variability in clade sizes wane when the shift 

magnitude is taken into account; that is, small clades with a big magnitude shift will 

be successfully recovered by models (e.g. body mass evolution in the steamer 

ducks, Figure S74), but for small magnitudes, a bigger clade might be needed. Out 

of the two variable-rates models included, BAMM-flip showed some sensitivity to 

both tree and clade-size, specifically regarding its ability to detect the larger rate 

shifts. 

 

Other limitations of variable rate models 

BayesTraits generally approximated trait evolution with low inadequacy levels; 

however, the model did tend to overestimate total rate heterogeneity, mostly 



65 
 

because it inferred multiple false terminal rate increases. We repeated the 

adequacy analyses on the simulated heterogeneity scenarios using the mean 

(rather than the median) branch lengths to summarise the posterior scaled trees 

from the variable-rates models. Following this approach, BayesTraits clearly 

registered higher inadequacy levels (Table S4, Figure S16), mostly determined by 

cases of extreme terminal increases with a low probability in the posterior that 

caused additional untrue terminal branch shifts in the averaged scaled trees. 

Approaches such as BayesTraits have been accused of overinflating rate variation 

before (Ho et al., 2014), mainly because of the relaxed/permissive nature of 

(default) priors. Further, our analyses on trees and trait data simulated with no rate-

shifts showed that, while considerable rate-shifts (i.e. > five-fold) inferred using 

BayesTraits are probably supported by the data, more caution is needed when 

making inferences about smaller (< two-fold) rate changes at the tips.  

 

BAMM was prone to underestimations of total rate variation and an inability to 

account for isolated tip increases, expected since heterogeneity is modelled in a 

less flexible framework compared to BayesTraits (Rabosky & Huang, 2016). 

Allowing the model to flip between time-varying and time-constant processes did, 

however, improve fit in comparison to the constrained time-varying version (Figure 

S4a). Further, BAMM showed an inclination towards rate-decelerating processes, 

as shown by: (i) a negative S.HGT ubiquitously across the analyses, (ii) the 

distributions of the rate-change parameters governing the root regime (β), and (iii) 

the comparison between estimated and true rates on branches with no simulated 

rate-shifts. Therefore, BAMM tends to infer some false early bursts both in the 

presence and absence of rate heterogeneity, but the intensity and prevalence of 

these erroneous inferences is low. Using a BAMM-flip alternative also reduces the 

occurrence of false rate-bursts, however, BayesTraits still showed best true fit under 

the assumption of homogeneity in rates (Figure S2).  
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There are several other approaches to rate-heterogeneity in trait evolution, and a 

notable body of such models use parametric methods to model a distribution of 

evolutionary rates that allows jumps (e.g. Landis et al., 2013, Elliot & Mooers, 2014). 

Elliot and Mooers (2014) method is readily available in StableTraits, however, the 

outputted scaled tree (i.e. a tree with branches scaled by the rate of trait evolution) 

cannot be equated with a parameterized global transformation of the branch 

lengths. Hence, we could not use the output of StableTraits to build the unit tree in 

ARBUTUS. Pennell et al. (2015) also warn that jump methods are not (yet) 

compatible with the ARBUTUS framework. Further, BayesTraits is a non-parametric 

approach, and the single-lineage bursts are likely a good approximation of a rate 

jump. Thus, we believe that jump methods would produce similar patterns in the 

evolutionary process, and record similar adequacy levels with BayesTraits.  

 

Absolute vs. relative model fit in the presence of rate heterogeneity 

A relative preference for the OU model (and derivatives) over other single-process 

models is widespread in the literature (e.g. Collar et al., 2009, Harmon et al., 2010, 

Blackburn et al., 2013, Knope & Scales, 2013, Price & Hopkins, 2015), but there are 

many challenges attributed to estimation and interpretation of this model (Cooper et 

al., 2016; Ho et al., 2014). Pennell et al. (2015) found the OU method is largely 

inadequate even though it predominantly scored highest AICw over the BM and EB 

models on angiosperm datasets. Our adequacy analyses also linked high relative fit 

for OU methods with cases of high inadequacy for all single-process models 

included, both across simulated and empirical datasets. Particularly, when species 

record very high rates of evolution late in the phylogeny (especially nonclustered 

species), the OU model is favoured by relative selection criteria over other 

approaches. The link between inadequacy levels and model relative fit was stronger 

across the simulated compared with the empirical data, likely due to the existence of 
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other evolutionary processes besides rate shifts that affect relative fit across avian 

data sets. Nonetheless, often a high relative fit for the OU model was a 

consequence of rate heterogeneity, and not of body mass evolution under an OU-

type process. Not accounting for measurement error could have also caused a 

biased preference for the OU model across the empirical data sets (Silvestro et al., 

2015); however, the link between late rate heterogeneity and a bias for the OU 

model clearly emerges from the results on the simulated datasets, ruling out the 

possibility that measurement error is solely responsible for the biased selection 

criteria across the avian datasets. 

 

Evolutionary models continue to be developed to approximate the 

macroevolutionary process with a higher degree of realism, by dealing with 

increasingly complex deviations from a simple process. Here we used a large data 

set of avian body mass to show that variation in the rate at which traits change can 

be a common event in relatively small phylogenetic clades (up to hundreds of 

species). We further used both empirical data and simulated rate-heterogeneity 

scenarios to show that allowing rates of evolution to vary in the absence of a priori 

assumptions about the magnitude or location of shifts represents a reliable method 

to pattern trait evolution. Variable-rates approaches do have limitations; 

heterogeneity in the form of rate rate-decreases and single-branch changes is hard 

to detect, and generates poor method fit. Further, rate-increases on terminal 

branches can be poorly approximated even when allowing for rate-variation, and 

early bursts in particular are often misquantified by BayesTraits. However, we show 

that interpretation can be guided by the use of absolute adequacy tests. We also 

underline the potential for misleading inferences when using relative model 

selection criteria only e.g. missing early bursts or favouring OU-type processes 

when late rate-variation is present. This work does not invalidate the concepts 

behind standard single-process methods, rather we advise using the more flexible 
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applications of these approaches (e.g. implementation of EB and OU models in a 

Bayesian framework, Pennell et al., 2014, Uyeda & Harmon, 2014). 
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SUPPLEMENTARY MATERIAL 

Additional supporting information may be found online in the supporting information 

tab for this article (doi: 10.1111/jeb.12979). Supplementary material (jeb12979-sup-

0001-SupInfo.pdf) comprises of: 

Appendix S1: Implementation of BayesTraits and BAMM models (also reproduced 

in text below). 

Table S1: Model inadequacy levels across a simulated constant rate‐deceleration 

process from root to tips, and a simulated rate‐burst followed by a gradual decrease 

within a clade. 

Table S2: Frequency at which BayesTraits infers rate shifts in the absence of rate‐

heterogeneity (i.e. on trees and associated tip‐data simulated under a BM mode of 

evolution). 

Table S3: Frequency of positive significant differences (P < 0.05) between test 

statistics across key ARBUTUS diagnostics; results on the empirical data. 

Table S4: Model inadequacy levels across a simulated constant rate‐deceleration 

process from root to tips, and a simulated rate‐burst followed by a gradual decrease 

within a clade. Results when models are fitted using mean scaled trees. 

Table S5: BayesFactor (BF) evidence for alternative models with various numbers 

of rate‐shifts given by BAMM‐flip across the empirical datasets. 

Figures S1-S5: Model fit in the presence of simulated rate‐heterogeneity. Figure S2 

reproduced below. 

Figures S6-S11: The influence of tree size on model ability to detect rate shifts. 

Figures S12-S14: Tendency of variable‐rates models to overfit. Reproduced below. 

Figure S15: Rate heterogeneity and general absolute adequacy on empirical data. 

Figure S16: Absolute Adequacy on Simulated datasets – results on mean scaled 

trees. 
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Figures S17-S104: Avian trees scaled by the rate of body mass evolution as 

described by BayesTraits and BAMM. 

 

Appendix S1: Implementaiton of BayesTraits and BAMM models 

The Variable Rates model in BayesTraits was used with 25 million iterations, 

sampling every 20000 generations and discarding the 20% iterations as burn in. 

This left a sample of 1000 scaledtrees. MCMC chains were re-run if the effective 

sample size (ESS) for the likelihood, alpha, sigma or number of variable rates was 

smaller than 200. Further, trace and autocorrelation plots were visualised to ensure 

convergence. Lastly, we checked the multivariate and individual potential scale 

reduction factor for each variable, and values of psrf > 1.1 were taken as evidence 

that the runs had not mixed. Four independent chains were used for each tree, and, 

if converged, estimates from all four were put together. For BAMM, the MCMC chain 

was run with 30 million iterations, sampling every 15000 generations, so that 2000 

samples remained recorded. The burn in period was set for 25%. MCMC chains 

were re-run if the ESS for the number of shifts, logPrior, log likelihood, event or 

acceptance rates was under 200. In a limited number of simulated trees, within 

chain convergence was not successful even after four repeated runs; these trees 

were further discarded from the analyses (2 cases in the discrete simulations, 2 

cases for the gradual deceleration within a clade, and 1 case for the constant-rate 

deceleration process from root to tips). Similar to BayesTraits, between chain 

convergence was checked using the potential scale reduction factor, and, if the runs 

had successfully mixed, estimates for four independent chains were combined.    
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Figure S12. Frequency of rate-change parameters for the root 

process across constant-rate trees, estimated using BAMM with 

(red) and without (blue) a time-flip proposal. The expected mean 

for no rate-changes at the root is at x = 0.  
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Figure S14. Frequency of rate-change parameters for the root 

process across empirical datasets, estimated using BAMM with 

(red) and without (blue) a time-flip proposal. The expected mean 

for no rate-changes is at x = 0.  
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CHAPTER 3 

 

Correlates of rate heterogeneity in avian ecomorphological traits 
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ABSTRACT 

Heterogeneity in rates of trait evolution is widespread, but it is unclear which 

processes drive fast and slow character divergence across global radiations. Here, 

we test multiple hypotheses for explaining rate variation in an ecomorphological trait 

(beak shape) across a globally-distributed group (birds). We find low support that 

variation in evolutionary rates of species is correlated with life history, environmental 

mutagenic factors, range size, number of competitors, or living on islands. Indeed, 

after controlling for the negative effect of species’ age, 80% of variation in species-

specific evolutionary rates remains unexplained. At the clade level, high 

evolutionary rates are associated with unusual phenotypes or high species richness. 

Taken together, these results imply that macroevolutionary rates of 

ecomorphological traits are governed by both ecological opportunity in distinct 

adaptive zones and niche differentiation among closely related species. 

 

INTRODUCTION 

Phenotypic diversity accumulates via different mechanisms and at different speeds, 

and understanding which factors predict the tempo of phenotypic diversification 

represents a longstanding question in evolutionary biology (Pagel, 1999; Simpson, 

1953). Candidate drivers include predictors related to a general increase in the 

potential for genetic variability and fixation rates (mostly associated with rates of 

molecular evolution), but also predictors relevant only for specific types of traits e.g. 

diet links with the rate of jaw morphology evolution in Centrachidae (Collar et al., 

2009). Rates of ecomorphological trait evolution in particular have received 

considerable interest. The classic research on Darwin’s finches in the Galapagos 

has shown that fluctuations in resource availability, colonisation of islands, and 

interspecific competition can cause exceptionally rapid differentiation in beak size 

(Grant & Grant, 2003, 2006). Recently, studies addressed patterns of trait evolution 

for entire global radiations, involving thousands of species (Cooney et al., 2017; 
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Rabosky et al., 2013; Venditti et al., 2011), but whether it is possible to identify the 

factors that accelerate or constrain phenotypic evolution in ecological traits at broad 

taxonomic scales is unclear.  

 

The pace of evolution depends in part on factors that increase the potential for 

genetic variability in populations (Simpson, 1953). Aspects of species life history, 

such as faster turnover of generations and increased levels of fecundity increase 

the potential for copy error (Bromham, 2009, 2011; Bromham et al., 2015; Lanfear 

et al., 2010b). Similarly, species with shorter-life spans, smaller body sizes, and 

higher metabolic rates suffer from a less efficient DNA repair process (Galtier et al., 

2009). An increase in the total number of gene changes can be an important source 

of variation for selection to act on, and also a rapid turnover of generations should 

speed up the process of fixation under selection. However, the evidence that 

species life histories are linked with the rate of molecular evolution is mixed (Lanfear 

et al., 2010a; Mooers & Harvey, 1994; Smith & Donoghue, 2008; Thomas et al., 

2010; Thomson et al., 2014). The potential for genetic variability has also been 

linked to factors extrinsic to species. Specifically, it has been hypothesised that 

abiotic mutagenic factors such as increased temperatures and high UVB exposure 

can drive rapid evolution (Davies et al., 2004; Dowle et al., 2013; Gillman et al., 

2014; Rhode, 1992, but see Bromham & Cardillo, 2003). Drivers of molecular 

evolution can impact trait evolution (Davies & Savolainen, 2006), although it is not 

clear whether nor how rates of molecular and phenotypic change are related 

(Bromham et al., 2002). Indeed, few studies test the impacts of factors associated 

with increased genetic variability and fixation rates on trait macroevolutionary rates 

(but see Cooper & Purvis, 2009). 

 

In contrast, biotic interactions have received much attention, particularly as drivers 

of rate variation in ecomorphological traits (e.g. Drury et al., 2018). Antagonistic 
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interactions between species can accelerate trait evolution if lineages rapidly 

differentiate in key traits to avoid competition (Grant & Grant, 2006). Accordingly, 

secondary sympatry has been linked with high evolutionary rates via character 

displacement (Dayan & Simberloff, 2005; Pfennig & Pfennig, 2009; Voje et al., 

2015, but see Tobias et al., 2014). The absence of competitors is also thought to 

drive rapid evolution, as species diverge to exploit free resources. Indeed, isolated 

environments, especially islands, have long been hypothesised as drivers of rapid 

diversification and phenotypic evolution (Losos & Ricklefs, 2009).   

 

At deep-time scales, patterns of phenotypic accumulation have mostly been linked 

to the potential to explore novel ecological resources, and also to the feedbacks of 

species packing on morphological diversification (Hunter, 1998; Mahler et al., 2010; 

Rabosky & Adams, 2012; Weir & Mursleen, 2013). Heterogeneity in evolutionary 

rates has been described as a mixture of rapid evolutionary episodes generating 

large morphological differences between sister-clades, and phases of gradual, 

cumulative change as species diverge and adapt to the niche invaded by their 

common ancestor (Cooney et al., 2017; Landis & Schraiber, 2017; Simpson, 1953; 

Uyeda et al., 2011). It is debated how episodes of rapid evolution should affect 

subsequent evolution of descendants (recently reviewed in Rabosky, 2017). Bursts 

of evolution that mark clade-wide shifts towards unique morphologies are thought to 

associate with access to novel ecological resources and rapid evolution of 

descendants (Hunter, 1998; Losos, 2010; Losos & Mahler, 2010). Alternatively, 

evolution of morphologically distinct lineages might inhibit subsequent divergence 

when there are adaptive (Wright, 2017) or developmental (Felice & Goswami, 2018) 

constraints on phenotypic change, and also if distinctiveness links to specialisation 

to a narrow set of resources (Collar et al., 2009). The number of species 

accumulating within clades is also linked to phenotypic evolution and to the 

distinctiveness of ancestral phenotypes (Ricklefs, 2004; Schoener, 1965), and 
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morphological distinctiveness has been associated with species-poor clades 

(Ricklefs, 2005). Clade species richness impacts the rate of trait change because 

with more species, the potential for biotic interactions among closely related (and 

ecologically similar) species increases. Also, as the niche occupied by the ancestral 

phenotype fills with species and the potential for ecological opportunity declines, the 

rate of trait evolution is expected to slow down (Gavrilets & Losos, 2009). 

Alternatively, fast trait divergence is expected to expand clade morphological and 

ecological space (Hulsey et al., 2013; Weir & Mursleen, 2013), and thus enable high 

species richness (Jonsson et al., 2012; Rundle & Nosil, 2005; Schluter, 2001).  

 

Here, we test multiple hypotheses for explaining variation in rates of trait evolution 

at both deep and more recent taxonomic levels. We focus on avian beak shape, an 

ecologically relevant trait for which there is already evidence of high variability in 

rates of evolution (Cooney et al., 2017; Lovette et al., 2002; Reddy et al., 2012). We 

use an extensive dataset of 3D scans of beaks from 5,551 species and multivariate 

models to estimate rates of trait evolution. We predict that rapid beak shape 

evolution should be associated with aspects of species ecology (e.g. increased 

strength of resource competition and ecological opportunity), and with factors 

generally associated with rapid molecular evolution (fast life history cycles and living 

in highly mutagenic environments).  

 

MATERIALS AND METHODS 

Beak shape data  

We collected beak shape data for 5,551 species across 193 (out of 194) bird 

families, sampling at least 25% of species in each bird family (except Caprimulgidae 

and Rhipiduridae, where data was available for only 19% of the species in the 

family; the full list of species and proportion of species covered in each family can 

be found in Appendices S1 and S2). Our 3D scanning, landmarking, and geometric 
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morphometrics analyses follow protocols in Cooney et al. (2017). Briefly, we used 

study skins from the Natural History Museum (Tring) and from the Manchester 

Museum collections to measure one mature individual (preferentially male, reflecting 

sex biases in ornithological collections) for each species. For groups where the 

beak is obscured by feathers (obstructing the scanning of the beak, see below), and 

for species with no suitable specimens in the collections, skeletal material was used 

instead. 

 

We took 3D scans of bird beaks using white and blue structured light scanning 

(FlexScan3D). For each beak, we obtained 5-25 scans and used FlexScan3D (LMI 

Technologies, Vancouver, Canada) software to align and combine them. We used 

Geomagic Studio (3dSystems) to reduce each combined scan to 500,000 faces, 

and to remove any flaws (holes, feather excess, reversed normals, high aspect ratio 

spikes). The clean meshes were processed using landmark based geometric 

morphometrics analysis, which analyses geometric shape variation by placing 

homologous key points (landmarks) on Procrustes-aligned study surfaces (Adams 

et al., 2013). We define a total of four landmarks and 75 semilandmarks, which were 

slid to reduce bending energy (see Cooney et al., 2017 Extended Data Figure 3.1). 

The four landmarks were: (1) the tip of the upper beak, and the posterior margin of 

the upper beak on the (2) dorsal midline profile, (3) left, and (4) right tomial edges. 

The 75 sliding semi-landmarks constitute the dorsal profile (joining points 1 and 2), 

and the left and right tomial edges (curves joining point 1 to points 3 and 4 

respectively). Landmarking was performed by the authors (63% of total markups) 

and by members of the public on the MarkMyBird crowdsourcing website 

(http://www.markmybird.org). Each beak was marked by at least three independent 

users (over 20,000 markups in total). We used R scripts to quality control the data. 

A landmarking effort was considered unsuitable if: (i) the left and right tomial edges 

were inversed or placed asymmetrically, (2) the semi-landmarks along the left and 

http://www.markmybird.org/
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right tomial edges were placed in the incorrect order or did not correctly follow the 

curve of the beaks, and (3) there was a large discrepancy in the position of 

equivalent landmarks between different users (between-users Procrustes distance 

>=0.2). Using this crowd-sourcing approach for landmarking avian beaks produces 

reliable results, as landmarks show a high repeatability between users (Cooney et 

al., 2017). We used the R package Geomorph (Adams et al., 2017) to process the 

user-averaged beaks shape of each species via geometric morphometrics analysis. 

Here we focus on beak shape, as it represents a key axis of ecomorphological 

differentiation between major avian groups (Cooney et al., 2017). While size is also 

a major axis of ecomorphological differentiation, shape is more indicative of how a 

structure functions biomechanically and functionally, with size simply scaling that 

function. Furthermore, differences in size tend to overwhelm differences in shape, 

which is particularly problematic when shapes are highly disparate (as here) 

because dramatically different shapes may have the same centroid size (Zelditch et 

al., 2012). We therefore first removed the effects of size, translational, and rotational 

position on landmark configurations by performing a Generalized Procrustes 

Analysis. We then extracted the main axes of shape variation via a PCA and 

phylogenetic PCA analysis (pPCA, Revell, 2009). The latter is designed to account 

for potential biases in the PCA analysis resulting from the non-independence in 

phenotypes between species caused by shared ancestry (Polly et al., 2013; Revell, 

2009; Uyeda et al., 2015).  

 

Phylogenetic data 

To assess the impacts of phylogenetic uncertainty we used phylogenetic tree 

distributions from http://www.birdtree.org (Jetz et al., 2012) to generate consensus 

trees. We sampled 10,000 Hackett backbone (Hackett et al., 2008) ‘stage 1’ trees 

(i.e. trees including only species for which genetic data is available), and ‘stage 2’ 

trees (i.e. trees with all 9,993 species). We then pruned the sampled trees to 

http://www.birdtree.org/
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generate distributions for species in our dataset (5,551 species out of which 4,108 

species had genetic data). We used Tree-Annotator (Drummond et al., 2012) to 

generate maximum clade credibility trees and used two alternative methods to infer 

branch lengths by setting node heights (i) equal to “common ancestor” node 

heights, and (ii) equal to the heights of the target tree. Additionally, we used the 

recently published avian phylogeny from Prum et al. (2015) to build alternative 

consensus trees for our list of species. We followed Cooney et al. (2017) to merge 

the species level resolution of Jetz et al. (2012) to the backbone phylogeny derived 

from Prum et al. (2015) and build maximum clade credibility trees. A list of all 

alternative trees and datasets used to perform the multivariate rate analyses is 

given in Table S1. 

 

Rates of beak evolution 

We estimated rates of beak shape evolution using the variable rates model 

(VarRates command) in the software BayesTraits, version 2 (available from 

http://www.evolution.rdg.ac.uk/), which uses a single tree and allows for the analysis 

of multivariate traits. The model was run setting uniform (default) priors, with no 

restrictions for the phylogenetic mean (alpha) and Brownian variance (sigma), and 

allowing correlation between variables. While in principal PCs are orthogonal, hence 

uncorrelated multivariate runs would be justified (Cooney et al., 2017), we used a 

more flexible approach and allowed for correlation between variables as it could 

account for potentially weak correlations between the PCs that emerge due to 

phylogenetic history. Allowing for non-independence between variables, alongside 

the large ratio of species to target traits minimises potential biases in multivariate 

trait analyses (Adams & Collyer, 2018). Each run was set for least 2 billion iterations 

(running for ~ six months on a 2.30 GHz Linux machine), sampling every 100,000 

iterations, with a 50% post burn-in. For each tree, we ran the models with the PC 

and pPC axes (i.e. traits) that explained 99% variation in beak shape. Runs were 

http://www.evolution.rdg.ac.uk/
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set up at least once (Table S1), and a potential scale reduction factor smaller than 

1.1 was considered as an indicator of between-chains convergence (i.e. the 

Gelman-R diagnostic; R package CODA, Plummer et al., 2006). Within chain 

convergence was assessed using trace and auto-correlation plots, alongside 

effective sample size (values ≥ 200 were taken as indicators of chain convergence; 

Plummer et al., 2006). 

 

The multivariate variable rates model allows for heterogeneity in rates of evolution 

by scaling both single branches and a target branch plus its descendants at any 

location in the tree (Venditti et al., 2011). We summarise alternative configurations 

of rate scaled trees by calculating the median rate of evolution for each branch 

across the posterior. We used tip rates (i.e. rate values on the tip branches) as a 

measure of species-specific rates of beak shape evolution. We calculate rates of 

evolution using the number of PC and pPC axes that explained 99% of beak shape 

variation. 

 

In order to predict patterns of phenotypic accumulation across deep-time scales, we 

also calculated rates of evolution for well-defined, monophyletic groups of species 

(Jetz et al., 2012). We split the non-passerines into orders, and passerines into well-

supported families and superfamilies (Jetz et al., 2012). We pruned the consensus 

trees to include only species belonging to clades with at least five representatives 

and used transformPhylo.ML in the R package MOTMOT (Thomas & Freckleton, 

2012) to calculate multivariate relative clade rates of evolution. We report results 

from fitting multivariate models of trait evolution on the PC scores in the main text, 

and the results from the rate-analysis using pPC scores in the supplement (Table 

S5, Table S6). 
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Correlates for rates of beak shape evolution 

We used species body mass (g) from Elton Traits (Wilman et al., 2014). We used 

the average age of parents as an estimate of the turnover of generations, or 

generation length (BirdLife International (2018) IUCN Red List for birds. 

Downloaded from http://www.birdlife.org on 05/05/2017). We used species’ 

distribution maps from BirdLife International (BirdLife International and Handbook of 

the Birds of the World (2016) bird species distribution maps of the world. Version 

6.0. Available at http://datazone.birdlife.org/species/requestdis), considering only 

native species and also subsetting ranges to breeding areas where species are 

highly probable or known to occur. We used these maps to calculate: (i) species’ 

range sizes, (ii) the proportion of species’ ranges that occurs on islands, (iii) mean 

annual temperature (Hijmans et al., 2005), (iv) mean annual UVB levels (Beckmann 

et al., 2014), and (v) an index of potential competition. The index of potential 

competitors was calculated by dividing species’ distribution ranges into equal area 

grid cells (resolution of ~ 110 km), and counting the number of confamilial species 

that share diet and foraging strategy with the focal species in each grid cell (based 

on EltonTraits, Wilman et al., 2014). We then averaged these values across grid 

cells. The spatial data handling was done using the R packages letsR (Vilela et al., 

2015) and raster (Hijmans & von Etten, 2012). We controlled for species’ age by 

including the length of the branch leading to each species in the consensus tree. 

Lastly, we included the mean Procrustes distances between users marking each 

beak to account for user error (referred to as measurement error).  

 

Species level analyses  

We used PGLS analysis (Grafen, 1989; Martins & Hansen, 1997) in the R package 

caper (Orme et al., 2013) to correlate species-specific rates of evolution with the 

potential drivers for rate variation described above. We also ran the analyses with 

species’ clade included as an interaction term, in order to estimate whether and how 

http://www.birdlife.org/
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the relationship between rates and potential explanatory variables changes in 

specific clades. Furthermore, migratory birds will likely spend most of the annual 

cycle in their non-breeding ranges. To account for potential biases of using breeding 

ranges only, we also performed the analyses including migratory status as an 

interaction term (i.e. full migrant versus resident as described in BirdLife 

International (2018) IUCN Red List for birds. Downloaded from 

http://www.birdlife.org on 05/05/2017).  

 

Clade level analyses 

We measured the distinctiveness of each clade in beak shape morphospace by 

calculating the Euclidean distance between the centre of the clade and the overall 

centre of the morphospace using the PCs that explained up to 99% of beak shape 

variation (Figure S1). Longer distances imply more peripheral clades with greater 

potential ecological opportunity. We correlate this measure with clade rates of 

evolution, also considering species richness (the total number of species in each 

clade), an index of the potential strength of competition in the clade (by averaging 

the species-specific competition index estimated above), clade age (age of its most 

recent common ancestor), and controlling for the proportion of island species in 

each clade, and the average range size for species in the clade. We logged body 

mass, generation length, range size, number of competitors, beak distinctiveness, 

and age to ensure normal distribution of predictors. We used variance inflation 

factors to test the independency of predictors. 

 

RESULTS 

Patterns of beak shape evolutionary rates  

The first eight PC axes from the PCA analysis explained 99% of variation in beak 

shape, with almost half of this variation being explained by PC1 (variation from a 

long, narrow beak to a short, wide beak; Figure S2, Table S2). Some species and 

http://www.birdlife.org/
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clades of species show extreme PC values on one or two axes (e.g. Anseriformes, 

Bucerotiformes), while others consistently show extreme PC scores on multiple 

axes, marking major deviations from the general cone-like beak shape (e.g. 

Phoenicopteriformes, Apodiformes; Figure S2). 

 

We find evidence of extensive variation in evolutionary rates, both among tip and 

internal branches (Figure 3.1). Tip rates in particular show a high degree of 

skewness, and examples of exceptionally high species-specific rates are mostly 

associated with the evolution of very unusual beaks e.g. we see extreme PC and 

rate values for the laterally curved beaks of Anarhynchus frontalis (wrybill) and the 

Loxia genus (crossbills). We find several internal single-lineage high rates of 

evolution including several major shifts that were not detected by Cooney et al. 

(2017). These mark the evolution of lineages towards the periphery of the beak 

shape morphospace (e.g. Strigiformes, Bucerotiformes, Accipitriformes, 

Phoenicopteriformes, Psittaciformes), and can coincide with major differences in 

morphology between descendant sister-clades. Similar to species-specific 

evolutionary rates, we find great variation in evolutionary rates between broadly 

recognized clades of species (Figure 3.1). We see high rates of evolution in some 

large passerine groups with generally average beak types (e.g. Passeroidea, 

Sylvioidea, Corvoidea). Many non-passerines groups also have high rates of 

evolution, but most of these are clades with unique beak shapes, several of which 

are also species poor (e.g. Phoenicopteriformes; Figure S8b). 

 

Correlates of species-specific rates of evolution 

We find a strong negative effect of species’ age on species-specific rates of 

evolution, with age alone explaining 20% of variation in tip evolutionary rates (Figure 

3.2a). In addition to age, the full model identifies significant positive effects of 

proportion of range occurring on islands (Figure S3a), UVB levels (Figure S3b), and 
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measurement error (Figure S3c). However, the effect sizes and variation explained 

by these variables are small (Table 3.1). We find no effect of life history traits, range 

size, or number of competitors on tip rates of evolution (Table 3.1, Figure S4), and  

overall almost 80% of variation in species-specific evolutionary rates remained 

unexplained (Figure 3.2b). In resident species, both temperature and UVB levels 

have a weak, negative effect on evolutionary rates (Figure S6). There is no 

significant effect of climatic variables on rates of evolution for migratory species. 

When including clade as an interaction term in the model, we largely recover the 

same trends observed in the main model (Table S4, Figure S5). 

 

Correlates of clade rates of evolution 

Clade evolutionary rates were positively correlated with clade beak distinctiveness 

and species richness (Figure 3.3a, b, Table 3.2). We also find a weak negative 

effect of potential competition strength on evolutionary rates (Figure S7a). The 

number of species in clades relates negatively with the distinctiveness of their 

phenotype, and clades with distinct beaks are typically species poor (Figure S8). 

Together, these factors explain just above half of the variation in clade rates of 

evolution (Figure 3.3c). Clade age does not have a significant impact on rates. 

However, using a finer split of species in clades with more variability in clade age, 

we recover a negative impact of clade age, alongside the effects of beak 

distinctiveness and richness on clade rates (Figure S9, Figure S10, Table S7). The 

results we find at species and clade levels are generally robust to alternative avian 

phylogenies, methods for building a consensus tree, and the inclusion of species 

without genetic data (Table S3, Table S5, Table S6, Figure S11). 
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Table 3.1. Correlates of species-specific rates of evolution; λ = 0.626, d.f. = 9,3734, 

adjusted R-squared = 0.21.  

Predictor Slope ± SE t P 

Log species’ age -0.478 ± 0.010 -30.186 <0.001*** 

Log body mass 0.040 ± 0.022 1.794 0.073 

Log generation length 0.103 ± 0.080 1.294 0.196 

Mean annual temperature -0.002 ± 0.002 -0.669 0.504 

Mean annual UVB levels 0.000 ± 0.000 -2.195 0.028* 

Log range size -0.009 ± 0.006 -1.379 0.168 

Proportion of island range 0.115 ± 0.046 2.488 0.013* 

Log number of 

competitors 
0.004 ± 0.013 0.271 0.786 

Measurement error 0.917 ± 0.420 2.184 0.029* 

 

DISCUSSION 

Here, we describe heterogeneity in rates of avian beak shape evolution and find 

considerable variation in the rate of phenotypic change among both species and 

clades (Figure 3.1). We see several instances of rapid major morphological 

differentiation between sister-clades, consistent with Cooney et al. (2017). When 

such events place clades at the periphery of the eco-morphospace, we see 

subsequent high rates of evolution of descendants. Rapidly evolving groups are not 

necessarily distinct however, and several clades with average (i.e. non-peripheral) 

beak types also show high rates of evolution. We find that variation in species-

specific rates of ecomorphological traits evolution is difficult to predict, and after 

controlling for species age, the factors we considered associate weakly with 

evolutionary rates. Species’ age correlates negatively with rates of phenotypic 

change, as expected under speciational trait evolution followed by stasis. We note, 

however, that phylogenetic and/or measurement error can also cause an over-

inflation of trait evolutionary rates that is particularly prevalent for young species 

(Rabosky, 2015). 
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Table 3.2. Correlates for clade rates of evolution; λ = 1.000, d.f. = 6,33, adjusted R-

squared = 0.52.

Predictor Slope ± SE t P

Log clade age -0.077 ± 0.348 -0.221 0.827

Log clade beak

distinctiveness
0.881 ± 0.227 3.882 <0.001***

Log clade species

richness
0.501 ± 0.119 4.218 <0.001***

Log average range size -0.157 ± 0.081 -1.933 0.062

Proportion of island

species
-0.322 ± 0.841 -0.383 0.704

Log average number of

competitors
-0.376 ± 0.179 -2.097 0.044*

Figure 3.2. (a) The relationship between species-specific rates of evolution and

species’ age, p < 0.001, R-sq = 0.20. (b) The relationship between the observed

and predicted rate of evolution by the full PGLS model: adj. R-sq = 0.21. The

dashed line indicates the 1:1 line of predicted versus observed values.

a) b)
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We found little to no effect of life history, environmental mutagenic factors, or range

sizes on species-specific trait evolutionary rates (Table 3.1). UVB levels (and

temperature values for resident species only, Figure S6) weakly associate with

evolutionary rates (Figure S3b). However, the trend we note is negative i.e. opposite

to predictions based on the mutagenic effect of high temperatures and UVB levels

(Rhode, 1992). If anything, such a relationship might reflect the effect of

environmental instability on rates. That is, colder and UVB-poor environments (e.g.

at higher altitude or latitude) may be associated with high prevalence of fragmented

and unstable range sizes, further thought to inflate evolutionary rates (Flenley,

2011; Lawson & Weir, 2014; Liu et al., 2006; Martin et al., 2010). Thus overall, our

candidate factors associated with an increase in the potential for genetic variability

or speed of mutation fixation show little to no impact on ecomorphological rates of

evolution (but see Cooper & Purvis, 2009).

We also tested whether rates of evolution link to potential for competition. We find

that most species do not overlap geographically with close relatives that also share

foraging strategies and diet, and accordingly, we find no link between number of

Figure 3.3. The relationship between clade rates of evolution and (a) clade beak
distinctiveness, p < 0.001, (b) clade species richness, p < 0.001. (c) The
relationship between the observed and predicted clade rates of evolution by the
full PGLS model: adj. R-sq = 0.52. The dashed line indicates the 1:1 line of
predicted versus observed values.

a) b) c)



100 
 

potential competitors and evolutionary rates (Figure S4). Further, we recover high 

evolutionary rates in many famous insular radiations in beak shapes, including 

Galapagos finches, Hawaiian honeycreepers, birds of paradise, flowerpeckers, and 

also select parrots, white-eyes and starlings (Figure 3.1). In general, however, 

island species exhibit both slow and fast evolutionary rates, and within the same 

clade, mainland species can have similar rates to those on islands. Consequently, 

we find that the effect of islands on evolutionary rates is limited to several small-

scale exceptional radiations, and has a relatively small impact on the accumulation 

of phenotypic diversity across a global radiation such as Aves. Overall, our results 

imply that species-specific ecomorphological rates of evolution are likely contingent 

on chance events, and hence difficult to predict across global radiations. 

 

Rates of evolution were more predictable at the clade level. We found that the 

distinctiveness of clade phenotype and its species richness act additively to explain 

half of the variation in clade evolutionary rates. Specifically, we find that clades that 

occupy the periphery of the morphospace have high rates of evolution (Figure 3.3a), 

in agreement with the idea that adaptation to a novel set of ecological resources can 

drive rapid phenotypic differentiation (Martin & Wainwright, 2011; Price et al., 2010, 

but see Wright, 2017). The effect of evolution towards the periphery of the 

morphospace is analogous to Simpsonian jumps to new adaptive zones, also 

hypothesised to drive subsequent rapid evolution via increased ecological 

opportunity (Simpson, 1953). We also see a negative relationship between clade 

species richness and the distinctiveness of their beak shapes (Figure S8b), 

supporting the hypothesis that lineages that evolved to exploit specialised (and thus 

potentially limited) resources are not expected to proliferate (Ricklefs, 2005). These 

results imply that ecological opportunity in the form of evolution towards unique 

phenotypes is an important driver of rapid evolution, but the peculiarity of the 
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ancestral phenotype constrains the prospective number of, and disparity among, 

descendants. 

 

Species richness and trait evolutionary rates are, however, also positively linked 

(Figure 3.3b), and passerines in particular represent fast evolving, species-rich 

clades with generally average beak types. There is mixed evidence that trait 

evolutionary rates correlate with diversification and species richness (Adams et al., 

2009; Burbrink et al., 2012; Igea et al., 2017; Rabosky & Adams, 2012; Rabosky et 

al., 2013), and moreover the causality of these relationships is unclear. Species-rich 

clades are prone to intense competition for shared resources if clade members are 

sympatric, and could thus show fast phenotypic evolution via character 

displacement (Davies et al., 2007; Freeman, 2015; Grant & Grant, 2006; Martin et 

al., 2010). However, in our analyses, the vast majority of bird species show little 

range overlap with potential competitors (Figure S4), and species with similar 

ecologies seem to be geographically isolated (consistent with a species-sorting 

mechanism; Lovette & Hochachka, 2006; Pigot & Tobias, 2013). In clades where we 

do find a high proportion of species sharing ranges with ecologically similar relatives 

(e.g. Trochiliformes, Tyrannidae, Thamnophilidae, Sylvioidea), we find slower 

evolutionary rates (Figure S7a); this might reflect limitations to phenotypic evolution 

with more species sharing the same niche (Simpson, 1953). However, we interpret 

these results with caution, as when using a finer division of clades, the relationship 

is not statistically significant (Table 3.1, Table S7). Moreover, the negative effect 

between competitor numbers and evolutionary rates might be driven by 

multicollinearity with species richness (Table S8). We also note that our analyses 

focus on beak shape, but beak size (and associated allometry) is also an important 

axis of ecomorphological differentiation in birds, particularly within clades (Bright et 

al., 2016; Grant & Grant, 2006). Removing size from the analyses thus likely 

reduced our power to detect an effect of biotic interactions on evolutionary rates, as 
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in some clades competition would have been resolved by differentiation in beak size 

rather than shape. Overall, while species interactions can be a powerful driver of 

fast differentiation in (small) select radiations, our results suggest that they are 

unlikely to have a pervasive influence on the accumulation of beak shape variation 

across the global bird radiation. Recently developed methods that incorporate the 

effect of species interactions when modelling trait evolution will likely reveal more 

subtle effects of competition (Clarke et al., 2015; Drury et al., 2016), and give further 

insight into if and how biotic interactions link species richness with phenotypic 

evolution. Additionally, high rates of phenotypic evolution can expand the ecological 

space available for species, and thus rapidly evolving clades are expected to 

proliferate (Jonsson et al., 2012; Rundle & Nosil, 2005; Schluter, 2001, but see 

Claramunt et al., 2012; Dornburg et al., 2011). Our results cannot differentiate the 

causality and underlying mechanism for the relationship between species richness 

and trait evolutionary rates. 

 

Similar to our analyses at the species level, we account for age in our clade-level 

analyses. We consider very broad taxonomic groups with little variation in age, and 

unsurprisingly, we find no correlation between clade age and rates of evolution. 

However, age correlates negatively with evolutionary rates when using a finer 

division of species into clades (Table S7). These results could indicate a 

deceleration of evolutionary rates with the packing of species in time (Agrawal et al., 

2009; Harmon et al., 2010; Hughes et al., 2013; Lloyd et al., 2012; Mahler et al., 

2010), but could also reflect the effect of measurement and/or phylogenetic error to 

inflate evolutionary rates for younger clades. Similar to species-specific rates of 

evolution, we do not differentiate between these alternative hypotheses. 

 

In this study, we take a comprehensive approach to explain the accumulation of 

ecological diversity in a major global radiation. We find little to no evidence that 
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heterogeneity in recent evolutionary rates links to life history, environmental 

mutagenic factors, or the presence or absence of competitors. In fact, almost 80% 

of variation in evolutionary rates between species remains unexplained. However, 

half of the variation in clade evolutionary rates is predicted by the interplay between 

adaptation to novel ecological resources and the number of species packing within 

clades. Overall, our results show that increased ecological opportunity in distinct 

adaptive zones is an important driver of rapid evolution, although it constraints the 

number of species able to pack into clades. Furthermore, we find support for the 

hypothesized link between rates of trait evolution and species richness, implying 

that rapid trait diversification is also linked with high levels of niche differentiation 

between related species.  
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SUPPLEMENTARY MATERIAL 

Additional supporting information may be found online in the supporting information 

tab for this article (doi:10.1111/ele.13131). Supplementary material comprises of 

tables (ele13131-sup-0002-TableS1-S8.docx) and figures (ele13131-sup-0001-

FigS1-S11.pdf). 

Table S1. List of alternative runs used in the analyses. Trees were built using: (i) 

Jetz et al. (2012) and Prum et al. (2015) avian phylogenies, (ii) only species with 

genetic data (G) or full range of species (F), (iii) maximum clade credibility trees, 

setting node heights to “common ancestor heights” (CAH) or to heights in the target 

tree (HTT). We ran both phylogenetic (pPCA) and non-phylogenetic (PCA) principal 

components analysis on the data, and used a number of PC/pPC axes that covered 

95% and 99% of the beak shape variation (#PCs). The models were generally run 

twice (#Runs), but some trees and datasets were used only once due to time 

constraints. 

Table S2. The percentage of beak shape variation described (phylogenetic) PC 

axes across alternative phylogenies: (i) using Jetz et al. (2012) and Prum et al. 

(2015), (ii) using trees built including only species with genetic data (G) or the full 

range of species (F), (iii) using a maximum clade credibility tree with node heights 

set to “common ancestor heights” (CAH) or heights in the target tree (HTT). For 

each run, values adding up to 99% of beak shape variation are shown. 

Table S3. Pearson’s correlation between tip rates across alternative multivariate 

BayesTraits runs, using a number of (phylogenetic) PC axes that explain 99% of 

variation in beak shape. Alternative runs are built (i) using Jetz et al. (2012) and 

Prum et al. (2015), (ii) using trees built including only species with genetic data (G) 

or the full range of species (F), (iii) using a maximum clade credibility tree with node 

heights set to “common ancestor heights” (CAH) or heights in the target tree (HTT). 

Rate values were logged to ensure a normal distribution. Unless otherwise 

indicated, traits represent PC axes. 
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Table S4. Adjusted R-squared values when an interaction between clade names 

and individual predictors is included in the model. These analyses are run on a tree 

built using the Jetz et al (2012) phylogeny, including only species with genetic data, 

and using a maximum clade credibility tree with node heights set to “common 

ancestor heights”. Traits represent PC axes. 

Table S5. Correlates for species-specific rates of evolution. Results across 

alternative trees built (i) using using Jetz et al. (2012) and Prum et al. (2015), (ii) 

using trees built including only species with genetic data (G) or the full range of 

species (F), (iii) using a maximum clade credibility tree with node heights set to 

“common ancestor heights” (CAH) or heights in the target tree (HTT). We perform 

PGLS analyses only for the runs in which we used a number of PC/pPCs that 

covered 99% of variation in beak shape. Given the strong correlations between tip 

rates across alternative runs (Table S3), we only perform PGLS analyses on a 

subset of alternative trees and datasets. Unless otherwise indicated, traits represent 

PC axes. 

Table S6. Correlates for clade rates of evolution; results across alternative trees 

built (i) using using Jetz et al Jetz et al. 2012 and Prum et al Prum et al. 2015, (ii) 

using trees built including only species with genetic data (G) or the full range of 

species (F), (iii) using a maximum clade credibility tree with node heights set to 

“common ancestor heights” (CAH) or heights in the target tree (HTT). We perform 

PGLS analyses only for the runs in which we used a number of PC/pPCs that 

covered 99% of variation in beak shape. Given the strong correlations between 

evolutionary rates across alternative runs (Table S3), we only perform PGLS 

analyses on a subset of alternative trees and datasets. Unless otherwise indicated, 

traits represent PC axes. 

Table S7. Correlates for clade rates of evolution; d.f. = 6,90; adjusted R-squared = 

0.27. A finer division of clades (especially among the Passerines) is used. These 

analyses are run on a tree built using the Jetz et al (2012) phylogeny, including only 
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species with genetic data, and using a maximum clade credibility tree with node 

heights set to “common ancestor heights”. Traits represent PC axes. 

Table S8. Correlates for clade rates of evolution; d.f. = 5,34; adjusted R-squared = 

0.17. Species richness is excluded as a predictor. These analyses are run on a tree 

built using the Jetz et al (2012) phylogeny, including only species with genetic data, 

and using a maximum clade credibility tree with node heights set to “common 

ancestor heights”. Traits represent PC axes. 

 

Figure S1. Illustration of how clade beak distinctiveness is calculated for target 

clades (delimitated here by coloured convex hulls) i.e. the Euclidean distance 

between the centre of the clade and the overall centre of the morphospace. The 

absolute value of centred PC values is considered; in our analyses we consider the 

first eight axes of variation when measuring beak clade distinctiveness (i.e. we 

calculate Euclidean distances in an eightdimensional morphospace).  

Figure S2. Reproduced below. 

Figure S3. Reproduced below. 

Figure S4. Correlates for species-specific rates of evolution; none of the variables 

correlates significantly with evolutionary rates.  

Figure S5. Correlates for species-specific rates of evolution. Each line represents a 

monophyletic clade of species. Red lines mark slopes for which the confidence 

interval does not pass 0 . 

Figure S6. The relationship between species-specific evolution and (a) mean 

annual temperature, (b) mean annual UVB levels. Points are coloured by species’ 

migratory status: residents (red, negative trend) vs full migrants (black).  

Figure S7. (a) Reproduced below. (bcd) The relationship between clade rates of 

evolution and (b) proportion of  island species, (c) average range size, and (d) clade 

age. None of the variables  correlates significantly with evolutionary. 

Figure S8. Reproduced below. 
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Figure S9. The relationship between clade rates of evolution and (a) clade age, p = 

0.002, (b) clade beak distinctiveness, p <0.001. A finer division of clades (especially 

among the Passerines) is used. 

 Figure S10. (a) The relationship between clade rates of evolution and (a) clade 

species richness, p = 0.014. (b) The relationship between the observed and 

predicted clade rate of evolution by the full PGLS model (adj. R-sq = 0.27). The 

dashed line indicates the 1:1 line of predicted versus observed values. A finer 

division of clades (especially among the Passerines) is used.  

Figure S11. Multivariate rates of beak shape evolution for alternative trees built (i) 

using Jetz et al 2012 and Prum et al 2015, (ii) using trees built including only 

species with genetic data (G) or the full range of species (F), (iii) using a maximum 

clade credibility tree with node heights set to “common ancestor heights” (CAH) or 

heights in the target tree (HTT)  
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Figure S2a. Avian beak morphospace shown as a pairwise scatter plot of the 1st and 2nd PC axes (the proportion of variance explained by
each PC is indicated in brackets). Warps represent the change in beak shape along each axis (top and side views). The centroid of each
clade is shown, and the most distinct 10 clades on PC1 and PC2 are numbered on the plot. Centroid points are sized by the species
richness of clades, and coloured by clade distinctiveness values across the first eight PC axes. Clade distinctiveness and rate of evolution
are also shown in the legend.

1 Tinamiformes
2 Anseriformes
3 Galliformes
4 Caprimulgiformes
5 Apodiformes
6 Trochiliformes
7 Phoenicopteriformes
8 Podicipediformes
9 Columbiformes
10 Gruiformes
11 Otidiformes
12 Cuculiformes
13 Musophagiformes
14 Gaviiformes

15 Ciconiiformes
16 Suliformes
17 Pelecaniformes
18 Sphenisciformes
19 Procelariiformes
20 Charadriiformes
21 Accipitriformes
22 Strigiformes
23 Trogoniformes
24 Bucerotiformes
25 Coraciiformes
26 Piciformes
27 Falconiformes
28 Psittaciformes

29 Eurylaimides
30 Cotingidae
31 Tyrannidae
32 Thamnophilidae
33 Furnariidae
34 Ptilonorhynchoidea
35 Meliphagoidea
36 Corvoidea
37 Petroicidae
38 Sylvioidea
39 Muscicapoidea
40 Passeroidea

30

10

Figure S2b. Avian beak morphospace shown as a pairwise scatter plot of the 3rd and 4th PC axes (the proportion of variance explained by
each PC is indicated in brackets). Warps represent the change in beak shape along each axis (top and side views). The centroid of each
clade is shown, and the most distinct 10 clades on PC3 and PC4 are numbered on the plot. Centroid points are sized by the species
richness of clades, and coloured by clade distinctiveness values across the first eight PC axes. Clade distinctiveness and rate of evolution
are also shown in the legend. For a clearer visualisation, outstanding outlier species (i.e. PC3 > 1.5, five Loxia species and Anarhynchus
frontalis) were removed from the plot; full plot given in the top-left corner.
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Figure S2c. Avian beak morphospace shown as a pairwise scatter plot of the 1st and 2nd PC axes (the proportion of variance explained by
each PC is indicated in brackets). Warps represent the change in beak shape along each axis (top and side views). The centroid of each
clade is shown, and the most distinct 10 clades on PC5 and PC6 are numbered on the plot. Centroid points are sized by the species
richness of clades, and coloured by clade distinctiveness values across the first eight PC axes. Clade distinctiveness and rate of evolution
are also shown in the legend.

1 Tinamiformes
2 Anseriformes
3 Galliformes
4 Caprimulgiformes
5 Apodiformes
6 Trochiliformes
7 Phoenicopteriformes
8 Podicipediformes
9 Columbiformes
10 Gruiformes
11 Otidiformes
12 Cuculiformes
13 Musophagiformes
14 Gaviiformes

15 Ciconiiformes
16 Suliformes
17 Pelecaniformes
18 Sphenisciformes
19 Procelariiformes
20 Charadriiformes
21 Accipitriformes
22 Strigiformes
23 Trogoniformes
24 Bucerotiformes
25 Coraciiformes
26 Piciformes
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28 Psittaciformes

29 Eurylaimides
30 Cotingidae
31 Tyrannidae
32 Thamnophilidae
33 Furnariidae
34 Ptilonorhynchoidea
35 Meliphagoidea
36 Corvoidea
37 Petroicidae
38 Sylvioidea
39 Muscicapoidea
40 Passeroidea
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Figure S2d. Avian beak morphospace shown as a pairwise scatter plot of the 1st and 2nd PC axes (the proportion of variance explained by
each PC is indicated in brackets). Warps represent the change in beak shape along each axis (top and side views). The centroid of each
clade is shown, and the most distinct 10 clades on PC7 and PC8 are numbered on the plot. Centroid points are sized by the species
richness of clades, and coloured by clade distinctiveness values across the first eight PC axes. Clade distinctiveness and rate of evolution
are also shown in the legend.
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Figure S3. The relationship between species-specific rates of evolution and
(a) the proportion of island range, p = 0.013, (b) UVB levels, p = 0.028.

a) b)

Figure S3. (c) The relationship between species-specific rates of evolution
and measurement error (i.e. mean Procrustes distances between users
marking each bill), p = 0.029.

c)
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a)

Figure S7. (a) The relationship between clade rates of evolution and average
number of competitors for species in each clade, p = 0.044.

Figure S8. (a) The relationship between clade rate of evolution and clade beak
distinctiveness; points are coloured by clade species richness. (b) The relationship
between clade species richness and clade beak distinctiveness, p = 0.01. There is much
variation to this relationship: many clades with unusual beaks have rather intermediate
species richness values (e.g. Anseriformes, Accipitriformes, Apodiformes, Strigiformes),
and some distinctive beak shaped clades are also species rich (e.g. Psittacidae).

a) b)
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CHAPTER 4 

 

The signature of competition for shared resources across the avian 

tree 

 

 

ABSTRACT 

Biotic interactions such as competition have long been considered key factors 

affecting the evolution of biological diversity. However, the tempo and mode of 

phenotypic evolution has been mainly approached by using ecologically-neutral trait 

evolutionary models. Consequently, the role of ecology in driving deep-time 

macroevolutionary dynamics remains poorly understood. Here, we use methods 

that model phenotypic evolution with incorporating species interactions, to look for 

patterns in the distribution of traits consistent with a signal of competition across the 

evolution of avian ecomorphological traits. We find that while ecologically-neutral 

models are most frequently supported, ecological models are also preferred in many 

clades. Further, we find a more frequent signature of competition in the evolution of 

beak size and shape rather than body mass, and generally, a signal of competition 

is seen in the divergence of one, rather than multiple axes of morphological 

specialization. Additionally, the signature of competition is distributed randomly 

throughout the tree. Lastly, we see a stronger support for ecological models in more 

recent radiations, suggesting that ecological selection pressures have a stronger 

impact in compact groups in which species are more similar and likelier to interact. 

Overall, we find that using models with competition can explain the patterns of 

phenotypic accumulation better than ecologically-neutral models within an 

appreciable number of clades, and thus ecological selection on traits can leave a 

signal into long-term patterns of phenotypic diversification.  
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INTRODUCTION 

A fundamental topic of interest in evolutionary biology is understanding the tempo 

and mode underlying the accumulation of morphological diversity at 

macroevolutionary scales (Simpson, 1953). The standard statistical framework for 

modelling phenotypic differentiation between species while accounting for patterns 

of phylogenetic relatedness assumes lineages evolve independent from each other. 

However, ecologically neutral evolution is likely to be unrealistic in many (if not all) 

cases, and competition for shared resources in particular has been closely linked 

with patterns of trait diversification. For instance, the absence of competitors offers 

species access to a multitude of free niches, which can result in bursts of 

phenotypic diversification as shown for example in iconic island radiations (Grant & 

Grant, 2006; Losos & Ricklefs, 2009; Lovette et al., 2002). Alternatively, a high 

density of competitors can speed up trait divergence via character displacement 

(Dayan & Simberloff, 2005; Pfennig & Pfennig, 2009), or cause convergence in 

traits involved in competitor recognition (Grether et al., 2009; Tobias et al., 2014). 

Eventually, the accumulation of many competitors may limit trait evolution if niche 

spaces are bounded, and even cause the extinction of competitors (e.g. Connell, 

1961). But testing the prevalence of competition at macroevolutionary scales has 

been hindered by the difficulty of incorporating species interactions while modelling 

trait evolution. Hence, we do not know the importance of competition beyond 

several recent radiations, and thus whether competition impacts the process of trait 

evolution across global radiations. 

 

At deep-time scales, competitive interactions have been associated with several 

patterns and models of trait evolution. Diversity dependent models in particular have 

been used as a proxy for evidence of species interactions within clades, as the rate 

of evolution is modelled to change with the number of accumulating lineages 

(Mahler et al., 2010; Weir & Mursleen, 2013). These models can detect a pattern of 
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decreased evolutionary rates at high densities of species, which is consistent with a 

scenario of reduced potential for further evolution in niches saturated by competitors 

(Harmon et al., 2003 Agrawal et al., 2009; Mahler et al., 2010). Time-dependent 

models (in which the rate of evolution decreases linearly or exponentially through 

time, Blomberg et al., 2003), predict a similar outcome in tip-trait distributions, 

although they do not incorporate a role of species-interactions on evolution 

explicitly. Conversely, competitive interactions are also associated with fast trait 

diversification via character displacement, and thus positive diversity-dependence 

and observations of higher morphological disparity in groups with a higher degree of 

sympatric congeners are also patterns consistent with strong competitive 

interactions (Davies et al., 2007; Freeman, 2015). 

 

Recently, significant efforts have been made to further incorporate competitive 

selection pressures while modelling trait evolution (Nuismer & Harmon, 2015, Drury 

et al., 2016, Clarke et al., 2017). Novel methods are based on the equation of a 

random-walk model of evolution (Cavalli-Sforza & Edwards, 1967), to which terms 

that account for competition are added. The underlying assumption is that similarity 

in relevant traits (i.e. traits involved in the acquisition of limiting resources) between 

species enables competition, and so these models look for patterns of increased 

trait divergence between closely related lineages, as expected if species 

differentiate to avoid antagonistic competitive interactions. This role of 

morphological specialization to avoid competition is apparent from observations on 

localized, short-term radiations (Grant & Grant, 2006; Stuart et al., 2014a). In 

macroevolutionary models with biotic interactions, species can evolve away from 

the mean trait value among congeners (Drury et al., 2016), or more subtly, the 

amount of morphological divergence can be modelled for all pairs of species as a 

function of pairwise similarity in target traits (Clarke et al., 2017). Further, these 

methods offer the attractive option to control when and which species are allowed to 
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interact within clades, either by adding a time-delay after which species can interact 

(Clarke et al., 2017), or by incorporating spatial coexistence matrices (Drury et al., 

2016). By contrasting methods that model trait evolution under the assumptions of 

competition with ecologically-neutral evolutionary models, we can determine the 

relative importance of various hypotheses in shaping phenotypic evolution within 

clades. These methods have already been applied to a few radiations (Clarke et al., 

2017; Drury et al., 2018), but we lack a deep-time perspective on how often 

ecological processes like competition leave a signature in the dynamics of 

phenotypic accumulation.  

 

Here, we investigate how often we can detect patterns of trait divergence consistent 

with a signature of competition in the evolution of avian ecomorphological traits. We 

focus on avian beak shape and size, which are closely related to resource 

acquisition, as well as body mass. We contrast methods that look for trait-

dependent (species evolve to increase morphological differentiation among each 

other) or diversity-dependent evolution (rates of trait evolution are dependent on the 

accumulation of species) to ecologically-neutral models of evolution to describe the 

prevalence of a mode of evolution consistent with species interactions in avian 

clades. We apply trait evolutionary models in a mixture of well-supported orders and 

super-families, as well as to more recent radiations within those groups to obtain a 

comprehensive perspective of the signal of species interactions at various time-

scales.  

 

MATERIALS AND METHODS 

Morphological data 

We used 3D scans of bird beaks to collect beak shape and size measurements for 

7,776 avian species. A detailed account of the protocols used to extract this data is 

given in Cooney et al., 2017. Briefly, we used study skins from the Natural History 
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Museum in Tring and Manchester Museum, and scanned the beaks using white and 

blue structured light scanning (FlexScan3D, LMI Technologies, Vancouver, 

Canada). We further extracted information about variation in shape and size 

between scans using landmark based geometric morphometrics (Zelditch et al., 

2012). We chose four key points on the avian beak, which can be easily placed 

repeatedly in a similar position across specimens: (1) the tip of the beak, (2) the 

posterior margin of the beak on the dorsal midline, (3) the left, and (4) the right 

tomial edges. Furthermore, we had 75 semi-landmarks that unite (1) to (2), (3) and 

(4), forming the dorsal midline, and left and right tomial edges, respectively. The 

land marking process was performed via the crowdsourcing website 

http://www.markmybird.org. Both authors and members of the public used this 

platform to complete the landmarking process. Each 3D image was marked by at 

least three independent users, and unsuitable landmark efforts (either poor 

landmarking of individual scans or non-similarity in landmark position between 

users) were discarded following quality control protocols. Further, suitable landmark 

configurations were subjected to a generalized Procrustes analysis (to remove the 

effects of any geometric information unrelated to shape) and alignment (Adams et 

al., 2017), and we used PCA and phylogenetic PCA (pPCA) analyses (Polly et al., 

2013; Revell, 2009) on user-averaged landmarks to extract the main axes of beak 

shape variation. We performed PCA and pPCA both globally (i.e. including all 

species), as well as within well-known monophyletic clades of species (see below). 

Additionally, we used the square root of the sum of squared distances of landmarks 

from their centroid i.e. centroid size (Zelditch et al., 2012) as a measure of beak 

size, and extracted species body mass measurements from the EltonTraits 

database (Wilman et al., 2014).  

 

 

 

http://www.markmybird.org/


127 
 

Phylogenetic data 

We split our species into 95 well-supported monophyletic clades, as identified by 

Jetz et al. (2012). We only considered groups with at least 10 species. We sampled 

10,000 random trees from a 10,000 posterior distribution of “full” trees (i.e. trees 

with all 9,993 avian species) and “genetic” trees (i.e. trees including only species for 

which genetic data is available) accessed from http://www.birdtree.org (Jetz et al., 

2012). We then pruned them to generate tree distributions for species in each clade. 

We used TreeAnnotator (Drummond et al., 2012) to generate maximum clade 

credibility trees for all clades, setting branch lengths equal to common ancestor 

node heights. We then pruned the trees to contain only species for which we have 

beak shape and size data. We used both “full” and “genetic” trees to ensure that our 

results are robust to potential phylogenetic error associated with including branches 

with non-genetic data in the trees. Similarly, we also built a MCC tree for all species 

we have trait data for, and then collapse species from the same clade to obtain a 

phylogeny in which tip labels represent clades of interest. Lastly, in each individual 

clade, we put a time slice half way across the root-tip distance and extracted 

monophyletic clades with at least 10 members formed after the time slice. These 

clades (159 in total) represent recent radiations within each parent clade. 

 

Models of trait evolution 

We used a suite of ecologically neutral evolutionary models to test how trait diversity 

accumulates across avian clades: random walk trait divergence (or BM, Cavalli-

Sforza & Edwards, 1967), divergence towards a local adaptive optimum (or OU, 

Butler & King, 2004; Hansen & Martins, 1996), as well as time-dependent models, in 

which the rate of evolution decreases in time (Blomberg et al., 2003; Harmon et al., 

2010). We contrasted the fit of these models with diversity-dependent models, in 

which the rate of evolution varies linearly (DDlin) or exponential (DDexp) with the 

number of lineages (Weir & Mursleen, 2013). Both positive (positive r parameter) 

http://www.birdtree.org/
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and negative (negative r parameter) diversity-dependence can indicate competition, 

as the accumulation of species can speed up morphological differentiation as 

species evolve away from competitors (Grant & Grant, 2006; Stuart et al., 2014b) 

but also cause a slowdown in evolutionary rates as niches fill and ecological 

opportunity decreases (Mahler et al., 2010). Further, we also considered the 

recently developed matching-competition model (MC, Drury et al., 2016), in which 

key traits evolve away from the mean values of clade members. The application of 

these classes of methods essentially tests for evidence that selection pressures 

from biotic interactions have influenced the evolution of target traits across clades. 

We compared the Akaike weights (Burnham & Anderson, 2004) of the matching 

competition and diversity-dependent models against the weights of ecologically-

neutral models, following Drury et al., 2018: relative support for competition = 

max(MCwi, DDlinwi, DDexpwi) / (max(BMwi, OUwi, TDexpwi, TDlinwi)  + max(MCwi, 

DDlinwi, DDexpwi)). 

 

We separately modelled the evolution of body mass, beak size and beak shape. We 

quantified beak shape variation in two ways. First, we conducted global procrustes 

alignments of landmarks and extracted the first two PC and pPC axes across all 

species in our dataset. Second, we conducted within-clade procrustes alignments of 

landmarks and extracted the first two PC and pPC axes across each of these 

subsets of species. Across all species, the first two PC axes accounted for a total of 

80% (PCA) and 72% (pPCA) variation in beak shape (Figure S1), while across 

individual clades, variation explained by the first and second PC axes explained 

between 59 and 99% beak shape variation (Table S1). Additionally, we regressed 

beak size against body mass using PGLS within individual clades (Grafen, 1989; 

Martins & Hansen, 1997), and use the residuals as a proxy for beak size relative to 

body size in evolutionary models. Finally, we analysed the phylogenetic signal for 

relative support for competition across clades, using the D static (Fritz & Purvis, 
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2010) and the phylogeny with clades collapsed into branches. The D static generally 

takes values between 0 (the focal trait is dispersed as expected under a Brownian 

motion model) and 1 (focal trait is dispersed randomly across the phylogeny). 

Additionally, D static values outside these ranges can be recovered if the focal trait 

is extremely clumped (values <0) or overdispersed (values >1). We calculated 

phylogenetic signal for each trait separately (using as evidence for competition 

relative support values > 0.5), as well as overall across beak shape (global PC1 and 

PC2), relative beak size, and body mass (i.e. relative support values > 0.5 in any of 

the four focal traits is considered as evidence for competition). All analyses were 

performed using R packages (Morlon et al., 2016; Orne et al., 2013; Pennell et al., 

2014). We mainly focus on global PC axes, relative beak size and body mass in the 

main text, and report the results from the other traits in the supplementary material. 

 

RESULTS 

We find that the BM model is the best fitting model (minimum AICc) in 38 (out of 95) 

clades for global PC1, 25 for global PC2, 22 for relative beak size, and 51 for body 

mass (Figure 4.1a, Figure S2a). The OU model is also frequently preferred, 

particularly for global PC2 (38 clades), and relative beak size (50 clades). In 

comparison, the frequency of time-dependent models is small, but more prevalent in 

body mass (13 clades in total), compared to beak size (0 clades) and shape (10 and 

2 clades for global PC1 and PC2, respectively). Further, values higher than 50% for 

the relative support for competition are found in 14 clades (out of 95) for global PC1, 

30 for global PC2, 23 for relative beak size, and 14 for body mass (Figure 4.2a). 

Additionally, we see higher values for the relative support for competition in general 

across clades for beak traits, compared to body mass (Figure 4.1), and thus 

patterns of beak shape and size evolution are more consistent with a presence of 

competitive selection pressures compared to body mass divergence. When using 

“genetic” trees, similar to the analyses on the “full” trees, we only apply evolutionary 
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models in clades comprising of more than 10 species (total number = 83 clades). 

Across the “genetic trees”, we find values higher than 50% for the relative support 

for competition in 11 clades (out of 83) for global PC1, 30 for global PC2, 21 for 

relative beak size, and 6 for body mass. In terms of percentages, the prevalence of 

high (>50%) relative support for competition is similar between “full” and “genetic” 

trees for beak shape and size, however, support for competition is higher in “full” 

trees for body mass (15% compared to 7%). When diversity-dependent models are 

the best fit for the data, positive values for the r parameter are largely inferred i.e. an 

exponential increase in evolutionary rates with increasing number of species (Figure 

S4ab). We find similar results when we ran the analyses on the “genetic” trees 

(Figure S4c). We find that clades vary in their relative support for competition 

(Figure 4.3). We find very high relative support for competition (>95%) in some well-

known examples of high morphological specialization, such as hummingbirds (beak 

shape), or sunbirds and flowerpeckers (beak size relative to body mass). We also 

find high support for competition in several other clades: leafbirds, fairy-bluebirds, 

rollers, ground-rollers (global PC1), pheasants, quail, guineafowl and chats, Old 

World flycatchers (global PC2), falcons, caracaras (relative beak size), antpittas, 

tits, chickadees and penduline−tits (body mass). A few clades show high relative 

support for competition in more than one trait, e.g. chats and Old World flycatchers, 

sandgrouse, manakins, woodpeckers, cuckoo-shirkes, leafbirds and fairy-bluebirds. 

In general, however, clades tend to show high relative support for competition in 

one rather than many axes of ecomorphological specialization (Figure 4.3).  

 

We find no evidence for phylogenetic signal in the relative support of competition 

across deep-time or recent radiations for all the traits considered (Table 4.1, Table 

S2). Further, we see no phylogenetic signal when considering evidence of 

competition as high (>0.5) relative support in either beak shape, size or body mass. 

Our results thus show that variation in relative support for competition is dispersed 
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randomly across the avian tree. Similar results are obtained when running the

models on “genetic” trees (Table S1). Further, we see a higher preponderance of

diversity-dependent and matching-competition models (and accordingly relative

support for competition) in recent compared to deep-time radiations (Figure 4.1,

Figure 4.2, Figure S2, Figure S3).

DISCUSSION

Here we investigate the prevalence for a mode of evolution consistent with the

presence of competitive selection pressures in shaping the process of evolution for

key ecomorphological traits across the bird radiation. Specifically, we look for

negative or positive trait diversity-dependence, as well as patterns of increased trait

divergence among closely-related, morphologically similar species. We find a

signature for species interactions in multiple clades, showing that competition could

influence trait evolution beyond a few exceptional radiations and thus contribute to

shaping morphological diversity at macroevolutionary scales. The exponential

diversity-dependent model is most frequently the best fit of the data among the

Figure 4.1. Model support (proportion of times each model is chosen as best i.e.

smallest AICc values) across clades when modelling the evolution of various

ecomorphological traits. The models considered are: Brownian motion (BM), linear

(DDlin) and exponential (DDexp) diversity-dependent models, matching competition

(MC), Ornstein-Uhlenbeck (OU), linear (TDlin) and exponential (TDexp) time-dependent

models. Results across deep-time scales (a) and recent radiations (b).
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cuckoo-shirkes, leafbirds and fairy-bluebirds. In general, however, clades tend to

show high relative support for competition in one rather than many axes of

ecomorphological specialization (Figure 4.3).

We find no evidence for phylogenetic signal in the relative support of competition

across deep-time or recent radiations for all the traits considered (Table 4.1, Table

S2). Further, we see no phylogenetic signal when considering evidence of

competition as high (>0.5) relative support in either beak shape, size or body mass.

Our results thus show that variation in relative support for competition is dispersed

randomly across the avian tree. Further, we see a higher preponderance of

diversity-dependent and matching-competition models (and accordingly relative

support for competition) in recent compared to deep-time radiations (Figure 4.1,

Figure 4.2, Figure S2, Figure S3).

Figure 4.1. Model support (proportion of times each model is chosen as best i.e.

smallest AICc values) across clades when modelling the evolution of various

ecomorphological traits. The models considered are: Brownian motion (BM), linear

(DDlin) and exponential (DDexp) diversity-dependent models, matching competition

(MC), Ornstein-Uhlenbeck (OU), linear (TDlin) and exponential (TDexp) time-dependent

models. Results across deep-time scales (a) and recent radiations (b).

Body mass

Relative beak size

Global PC2

Global PC1

0.0 0.2 0.4 0.6 0.8 1.0

a)

Body mass

Relative beak size

Global PC2

Global PC1

0.0 0.2 0.4 0.6 0.8 1.0

b)



132 
 

models that assume a role of species-interactions on trait evolution. Further, we 

generally find an increase in rates of ecomorphological evolution with the packing of 

species (positive r parameters in exponential diversity-dependent models, Figure 

S4). A better fit of positive exponential diversity-dependent models over the 

matching competition model has been linked with a signal of both competition and 

bounded trait evolution occurring simultaneously (Drury et al., 2017), and thus our 

results also indicate that interactions between lineages could maintain a rapid 

phenotypic turnover even with the filling of niches (Thompson, 1999). Lastly, our 

results are not consistent with a scenario of competition limiting the potential for 

evolution once niches are being filled and ecological opportunity decreases (Weir & 

Mursleen, 2013).  

 

We found a stronger signal of competition when modelling beak shape and relative 

size, rather than body mass. These results uphold the tight link between beak 

attributes and resource acquisition (Foster et al., 2008; Jønsson et al., 2012; Olsen 

& Gremillet, 2017; Schondube & Martinez del Rio, 2003), and also indicate that if 

small changes in the beak produce substantial differences in the feeding ecology of 

species, beak change might represent a parsimonious route towards ecological 

differentiation (Grant & Grant, 2006; Grant, 1999; Weir & Mursleen, 2013). 

Conversely, body mass is associated with many aspects of species’ ecology and it 

is influenced by many selection forces, thus we can expect biotic interactions to play 

a smaller relative contribution to body mass evolution across the bird tree. Further, 

the allometric link between beak size and body size (here accounted for by using 

body mass) likely drives the smaller signal of competition we observe when using 

absolute values of beak size (Weir & Mursleen, 2013). 
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Table 4.1. Phylogenetic signal (D static) for the relative support for competition (a

value of 1 is considered for relative support values bigger than 0.5) across various

traits. D static values are compared to a Brownian expectation (i.e. evidence for

phylogenetic signal) and a random expectation (i.e. no phylogenetic signal). D static

values are reported for each trait separately, as well as for analyses scoring relative

support across all traits (i.e. a value of 1 is considered for relative support values

bigger than 0.5 in at least one of the four focal traits).

Trait D estimate

Difference

from 0

(Brownian

expectation)

Difference

from 1

(random

expectation)

#Clades

with support

> 0.5 (out of

95)

Global PC1 1.308 0.011 0.762 14

Global PC2 1.011 0.015 0.500 30

Relative beak size 0.923 0.048 0.374 23

Body mass 1.231 0.018 0.704 14

All traits 1.056 0.016 0.556 55

Figure 4.2. Frequency of clades in which the relative support for competition exceeds

50% (red) for various ecomorphological traits. The relative support of competition is

based on AICw for process-based models: linear and exponential diversity dependent

models, as well as the matching competition model. We consider both deep-time scales

(a) and recent radiation (b).
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Both relative beak size and shape are highly integrated in birds, particular with 

modules of the cranium (Bright et al., 2016; Felice & Goswami, 2018; Kulemeyer et 

al., 2009). Therefore, we can expect constraints to how labile these traits are in 

response to selection pressures, but we did not find a substantial difference in how 

prevalent relative beak size and shape change under competition. Overall, our 

results show moderate support for a difference in traits in respect to how likely they 

evolve under selection from competition, but further research is needed to explore 

and validate candidate mechanisms underlying these trends at a large scale.  

 

Additionally, we found that competitive selection pressures preferably act 

extensively on one axis of specialization, as generally, we did not see patterns of 

phenotypic divergence consistent with a strong effect of species-interactions across 

multiple traits. The target axis of morphological divergence likely depends on which 

traits are key to acquire the finite shared resources. For example, we detected a 

signal for competition in beak shape or relative size in several textbook examples of 

beak specialization such as hummingbirds (Temeles et al., 2009), flowerpiercers 

(Schondube & Martinez del Rio, 2003), or sunbirds (Lovette et al., 2002). Further, 

we recovered support for competition in body mass in groups where mass 

associates with foraging activity, such as diving depth in seabirds (e.g. Cormorants, 

Anhingas, Gannets, Frigatebirds, Cook et al., 2013). We did, however, also see a 

handful of clades in which multiple traits evolved consistent with expectations under 

competitive selection pressures. Most often, we detect a signature for competition 

across beak shape and relative size e.g. in woodpeckers, a group in which variation 

in both aspects of beak morphology is closely linked with specialization to foraging 

substrate (Carrascal et al., 1990; Spring, 1965). Overall, our results indicate that 

divergence in one trait may be enough to produce differences in the way species 

acquire various resources, and hence to minimize competition for shared resources. 

These findings also indicate that a potential signature of competition in the 
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distribution of extant species’ phenotypes can be missed if studies are restricted to 

single traits. 

 

We found that variation in the relative support for competition is distributed randomly 

with respect to the avian phylogeny, and hence phylogenetic relatedness cannot 

predict whether specific groups are prone to competition. These results are in 

agreement with studies linking the strength of species interactions and stochastic 

events, such as climatic changes and the associated fluctuations in resource 

availability (Grant & Grant, 2006; Klanderud, 2005), invasion episodes (Jackson, 

2015; Tennessen et al., 2016), and the extinction or conversely, increased 

abundance of competing clades (Benson et al., 2014). Our findings thus indicate 

that the distribution of a signature for competitive interactions as a selection force 

across global radiations is mostly contingent to chance (Thompson, 1999). Short-

time scales in particular are subject to high variability in selection pressures, 

(Benton, 2009; Losos & Ricklefs, 2009), and accordingly, we saw higher levels of 

relative support in recent compared to deep-time radiations. Moreover, recent 

radiations generally represent smaller groups of similar species that are likely to 

interact, as opposed to larger clades, where multiple processes act on trait 

evolution, and not all lineages will be involved in interactions. However, recent 

radiations are by definition younger and smaller than deep-time ones. And thus, a 

pattern of increased trait divergence with the accumulation of lineages or between 

morphologically similar, closely related species could also be explained by a biased 

preference for diversity-dependent and the matching competition models in trees 

with smaller ages and/or species-richness. Further, measurement and phylogenetic 

error for example can lead to false inference of positive r parameters in diversity-

dependent models (Drury et al., 2018). We did not differentiate here between 

alternative mechanisms underlying the patterns we observe. The analyses on “full” 

and “genetic” trees gave similar results regarding the prevalence for competition 
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signal across clades, the lack of phylogenetic signal in relative support for 

competition, as well as the dominance of positive diversity-dependence. Hence, 

error due to the incorporation of branches without genetic data in avian trees did not 

bias our results. We do, however, note higher evidence of a mode of evolution 

consistent with competition for body mass divergence in “full” compared to “genetic” 

trees, and therefore, it is possible that our results on competition signal in this trait 

are overestimated.  

 

Lastly, we acknowledge several caveats to these results. The use of phylogenetic 

and standard PC axes of variation in univariate trait evolutionary models has been 

criticised (Uyeda et al., 2015). Specifically, using only the first PC axes can bias 

model selection criteria towards time-dependent methods. We did not, however, find 

elevated support for such models in our dataset, and moreover, relative support for 

competition is high mostly in scenarios of increasing, rather than decreasing, 

evolutionary rates (as estimated by diversity-dependent models). The development 

of multivariate methods with competition in the future should limit the concerns 

associated with using only a subset of the total axes of shape variation (Clarke et 

al., 2017). Performing model adequacy tests to aid the interpretation of results 

based on model selection criteria alone (Pennell et al., 2015) would have also 

alleviated concerns related to biased model preference or overestimation of 

competition signal due to measurement or phylogenetic error. Trait evolutionary 

models that incorporate ecological selection pressure are, however, still novel, and 

therefore they are not yet integrated in current model adequacy frameworks. 

Additionally, our results likely underestimate the effect of competition, as in the 

current application of the models, we assume all species in clades are interacting, 

whereas in reality, many species will not be sympatric nor share the same diets, 

foraging strategy, diurnal activity patterns etc. Similarly, the development of the MC 

model that simultaneously accounts both divergence between species as a result of 
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competition, as well as evolving under constraints will likely increase the 

detectability of clades where species-interactions impact on trait evolution (Drury et 

al., 2017).  

 

Here we take a comprehensive approach to evaluate the prevalence of species-

interactions across long-term evolutionary scales by looking for patterns consistent 

with expectations under competitive selection pressures i.e. diversity-dependent 

and phenotypic evolution mediated by similarity in traits. We find that the signal for 

competition varies across the avian tree, but methods that assume a role of 

species-interactions on trait evolution are frequently preferred to ecologically-neutral 

models in many clades, including some putative examples of competition driven 

diversification. The prevalence of competitive interactions signature is not predicted 

by phylogenetic relatedness, and further, the signal of competition is more prevalent 

in recent groups (where species are more likely to interact) compared to deep-time 

radiations. Moreover, the signal of species-interactions (when diversity-dependent 

models fit best) is generally to increase rates of trait divergence with the 

accumulation of species, as expected under character displacement. Further, we 

find that a mode of evolution consistent with competition is preferentially detected 

on one rather than multiple axes of morphological differentiation (more so on beak 

morphology, rather than body mass), in agreement with the argument that 

ecological specialization under competition is usually achieved via the most 

parsimonious route. Taken together, our results suggest that incorporating 

ecological selection pressures when modelling trait evolution can improve model fit, 

and hence, ecology can shape patterns of biodiversity accumulation in deep-time. 

Our results, however, also imply that in large-scale radiations, the signal of 

competition can be mediated by a mode of evolution under constraints, as well as a 

reduced potential for meaningful interactions between species (e.g. spatial and 

foraging niche overlap). Further, as the current trait evolutionary models with 
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interactions are phenomenological, we cannot also rule out other factors that might 

produce patterns of trait divergence similar to competitive interactions, not least 

various types of errors in the data and/or flawed model selection criteria. 
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SUPPLEMENTARY MATERIAL

Figure S1. Avian morphospace shown as pairwise scatter plots of standard (a)

and phylogenetic (b) PCs 1 and 2. The proportion of variation accounted for by

each PC axis is indicated in brackets.

Figure S2. Model support (proportion of times each model is chosen as best i.e. smallest

AICc values) across clades when modelling the evolution of various ecomorphological

traits. The models considered are: Brownian motion (BM), linear (DDlin) and exponential

(DDexp) diversity-dependent models, matching competition (MC), Ornstein-Uhlenbeck

(OU), linear (TDlin) and exponential (TDexp) time-dependent models. Results across

deep-time (a) and recent scales (b).
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Figure S3. Frequency of clades in which the relative support for competition

exceeds 50% (red) for varioecomorphological traits. The relative support of

competition is based on AICw for process-based modelslinear and exponential

diversity dependent models, as well as the matching competition model. We

considered both deep-time (a) and recent (b) time scales.
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Figure S4. Rate parameter values for exponential diversity-dependent models,

applied across deep-time scales (a) and recent radiations (b).

  (c) Rate parameter values for exponential diversity-dependent models applied across
  genetic trees.
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Figure S5. Relative support for competition based on AICw of process based models (diversity dependent and the matching competition model) across clades. The following ecomorphological traits are considered: beak shape (global pPC1, pPC2, within-clades PC1, PC2, pPC1, pPC2), as well as beak size. A list of clade names is provided at the end of the supplementary material. 
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Table S.1. Phylogenetic signal (D static) for the relative support for competition (a 

value of 1 is considered for relative support values bigger than 0.5) across various 

traits. D static values are compared to a Brownian expectation (i.e. evidence for 

phylogenetic signal) and a random expectation (i.e. no phylogenetic signal). D static 

values are reported for each trait separately, as well as for analyses scoring relative 

support across all traits (i.e. a value of 1 is considered for relative support values 

bigger than 0.5 in at least one of the four focal traits). Results across the “genetic” 

trees. 

Trait D estimate 

Difference 

from 0 

(Brownian 

expectation) 

Difference 

from 1 

(random 

expectation) 

#Clades 

with support 

> 0.5 (out of 

95) 

Global PC1 2.041 0.000 0.987 11 

Global PC2 0.845 0.051 0.304 30 

Relative beak size 1.190 0.016 0.680 21 

Body mass 1.248 0.099 0.647 6 
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List of clades (top to bottom) in Figure 4.3 and Figure S5. 

Paleognaths, Paleognaths; Anserinae; Anatinae; Curassows, Chacalacas, Guans; 

Megapodes; New World quail; Pheasants, Quail, Guineafowl; Nightjars; 

Hummingbirds; Swifts, Treeswifts; Grebes; Pigeons, Doves; Sandgrouse; Cuckoos; 

Bustards; Rails, Finfoots; Cranes, Trumpeters, Limpkin; Turacos; Albatrosses, 

Shearwaters, Petrels; Penguins; Storks; Cormorants, Anhingas, Gannets, 

Frigatebirds; Ibises; Herons; Sandpipers, Jacanas, Seedsnipes, Allies; Waders, 

Allies; Buttonquails; Gulls, Terns, Auks, Crab Plover; Hawks, Eagles, Secretarybird; 

Owls; Trogons; Hornbills; Bee−eaters; Rollers, Ground−Rollers; Kingfishers, 

Motmots, Todies; Puffbirds; Jacamars; Toucans, Barbets; Woodpeckers; 

Honeyguides; Falcons, Caracaras; Parrots1; Parrots2; Cacatuidae; Broadbills, 

Pittas, Asities, Allies; Tyrant−Flycatchers, Cotingas, Allies; Manakins; Cotingas; 

Antbirds; Gnateaters, Allies; Antpittas; Tapaculos; Ovenbirds, Woodcreepers; 

Antthrushes; Australian Treecreepers, Bowerbirds; Honeyeaters; Thornbills, 

Gerygones; Berrypeckers, Satinbirds, Allies; Whistlers, Allies; Orioles, Allies; 

Shrikes, Monarchs, Drongos, Fantails, Birds Of Paradise, Crows, Jays, Allies; 

Shrike−Flycatchers, Helmetshrikes, Vangas, Butcherbirds, Woodswallows, Allies; 

Whipbirds, Quail−Thrushes, Allies; Vireos, Allies; Cuckoo−Shrikes; Australasian 

Robins; Tits, Chickadees, Penduline−Tits, Allies; African Warblers; Larks; Old World 

Warblers I; Leaf−Warblers, Bush−Warblers, Long−tailed Tits; Swallows, Martins; 

Bulbuls, Allies; Cisticolas, Allies; Whiteyes, Babblers I, Parrotbills; Babblers II, Old 

World Warblers II, Allies; Wrens, Gnatcatchers, Nuthatches, Wallcreeper, 

Treecreepers; Mockingbirds, Thrashers, Philippine Creepers, Starlings; Thrushes; 

Chats, Old World Flycatchers; Sunbirds, Flowerpeckers; Leafbirds, Fairy−Bluebirds; 

Accentors, Olive Warbler; Weavers, Allies; Waxbills, Allies; Sparrows, Snowfinches, 

Allies; Wagtails, Pipits; Finches, Allies; New World Warblers; Buntings, American 

Sparrows, Brush−Finches; New World Blackbirds; Cardinals, Allies; Tanagers I, 

Allies; Tanagers II, Flowerpiercers, Conebills, Seedeaters, Warbling−finches, Allies; 

Grosbeaks, Saltators, Allies. 
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CHAPTER 5 

 

Correlates and consequences of resource competition in avian 

granivorous assemblages across the globe 

 

 

ABSTRACT 

Interspecific competition for shared resources represents a powerful force of 

evolution that has driven spectacular phenotypic diversification in several iconic, 

small-scale radiations. However, we lack evidence on what factors facilitate 

competition within assemblages, and further, on whether and how competition 

contributes to global patterns of phenotypic disparity. Here, we address these 

issues by applying phenomenological models of trait evolution in over 10,000 avian 

granivorous assemblages across the globe, to investigate patterns of trait 

divergence consistent with the presence of competitive selection pressures. We first 

map the signature of competition globally, and further investigate the association 

between a potential presence of competitive interactions and the evolution of 

ecomorphological traits (beak shape and size, and body mass). We find that abiotic 

factors do not correlate strongly with a high prevalence for competition signal, and 

that hotspots for competition signal are scattered in several areas globally, rather 

than following an obvious spatial pattern (e.g. latitudinal gradient). Further, we find 

that higher rates of trait evolution are associated with lower levels of competition 

signal. These results are consistent with the idea that the role of biotic interactions 

in driving trait divergence may be limited if rapid trait divergence in allopatry reduces 

the degree of ecological similarity among species upon secondary contact. 

Moreover, we find a positive correlation between strong competition signal and 

morphological disparity within assemblages. Thus, our results show that species 
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interactions can contribute to increased ecomorphological diversity in assemblages 

of avian granivores across the globe. 

 

INTRODUCTION 

Competition for shared resources represents a powerful selective force that 

influences species diversity and morphological disparity (Brown & Wilson, 1956; 

Schluter, 2000; Thompson, 1999; Voje et al., 2015). On Daphe Major island in the 

Galapagos, competition with Geospiza magnirostris drove a decrease in beak size 

in G. fortis populations between consecutive years (Grant & Grant, 2006). Similarly, 

the invasion and competition with Anolis sagrei on several islands in Florida drove 

an arboreal shift and the evolution of larger toepads in A. carolinensis species within 

20 generations (Stuart et al., 2014). While these examples represent evidence that 

competition impacts the morphological differentiation between a few interacting 

species, it is less clear if and how competition shapes trait evolution in more 

complex species’ assemblages and over broader geographical scales. We might 

expect particularly strong biotic interactions in environments with a more relaxed 

abiotic selective pressure (e.g. at lower latitudes, Dobzhansky, 1950), and hence 

competition may be important in explaining the latitudinal diversity gradient (i.e. the 

tendency of higher species richness at the equator; Mittelbach et al., 2007; 

Schemske et al., 2009, but see Rabosky et al., 2018). However, we lack empirical 

evidence on both the patterns of competition distribution across the globe, and on 

how competition links with geographical hotspots of morphological diversification. 

Therefore, the outstanding question of how and when competition for shared 

resources shapes global patterns of trait evolution and total disparity remains 

unanswered (Weber et al., 2017; Wiens, 2011).  

 

In order to compete for shared resources species must overlap spatially. For groups 

speciating in allopatry, the potential for coexistence and thus competition is 
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dependent on the ability of species to come back to sympatry, and hence, on 

geographical barriers to secondary contact (e.g. topographical heterogeneity; Jetz 

et al., 2004), or the dispersal potential of species (Pigot & Tobias, 2014). Within 

assemblages, competition can be resolved via character displacement, as species 

evolve away from each other to exploit various resources (Dayan & Simberloff, 

2005; Pfennig & Pfennig, 2009). Conversely, competition can also act as a filter to 

secondary contact when assemblages of species are formed, so that only species 

that are dissimilar in relevant traits can coexist (or species-sorting; Lovette & 

Hochachka, 2006; Pigot & Tobias, 2013). Therefore, rapid trait divergence in 

allopatry could facilitate the resolution of competition prior to secondary sympatry 

(Drury et al., 2018). Additionally, with more species present, the potential for 

competitive interactions increases. Therefore, factors that generally enable high 

levels of coexistence might also link with the prevalence of competition. One such 

factor is environmental productivity, which provides multiple niches for species to 

diversify into under selection pressure from competition (Pianka, 1966), reduces the 

potential of local extinction due to niche saturation (Wright, 1983), and thus 

promotes high levels of stable coexistence between similar species (Pigot et al., 

2016). 

 

The relative importance of biotic interactions as a selective force is also related to 

the abiotic environment (Dobzhansky, 1950). Specifically, when environmental 

selection pressures are high (e.g. in cold, highly seasonal or historically climatic-

unstable environments), we expect patterns of convergence towards a limited set of 

adaptive optima or evolution towards generalized phenotypes (MacArthur, 1969; 

Pianka, 1966). Conversely, benign environments should allow for more flexibility in 

the way traits evolve, and therefore the potential for specialization and exploitation 

of various resources under competitive selection pressures is increased (e.g. 

Barnagaud et al., 2014; Bothwell et al., 2015). These ideas have also led to the 
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hypothesis that biotic interactions should follow a latitudinal gradient (Schemske et 

al., 2009). However, investigating the hypothesized links between environmental 

variables and the prevalence of competitive interactions requires large datasets, 

and unsurprisingly, empirical evidence on the generality and validity of these trends 

at a global scale is mostly lacking (Mittelbach et al., 2007; Schemske et al., 2009).  

 

Competitive selective pressures act on the phenotype of species, and hence impact 

on morphological diversity. If competition is resolved via character displacement, we 

can expect higher levels of interspecific diversity in ecomorphological traits (or 

disparity) as species specialize on different resources and foraging techniques 

(Davies et al., 2007; Freeman, 2015). Conversely, competing species can exclude 

one another from assemblages, and thus minimize the total variability in phenotypes 

within assemblages (Connell, 1961; Elton, 1946). Tests for detecting a potential 

signal for competition include comparing disparity between closely related (sister) 

species living in sympatry versus allopatry, while controlling for potential 

confounding factors (e.g. time since divergence, Tobias et al., 2014), or calculating 

the phylogenetic overdispersion or clustering of species in assemblages 

(Barnagaud et al., 2014). Further, phenomenological models looking for patterns of 

trait divergence consistent with competition have been developed (e.g. Drury et al., 

2016). These approaches are based on the assumption that similarity in traits used 

to acquire resources can lead to competitive interactions, and thus a signature of 

increased phenotypic differences between lineages in a clade or in a sympatric 

assemblage could be interpreted as a signature of interspecific competition.  

Therefore, the prevalence of competition is generally inferred indirectly based on the 

present distribution of species and traits in assemblages, and establishing the 

causality for the association between competition, trait and species diversity has so 

far been limited to study systems comprising of a pair or a small number of species 

(e.g. Grant & Grant, 2006).  
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Here, we apply a recent phylogenetic comparative method (the matching 

competition model, Drury et al., 2016) that incorporates the effect of species 

interactions while modelling phenotypic evolution, to understand the 

macroevolutionary correlates and consequences of resource competition in 

assemblages of avian granivores across the globe. We make use of a 

comprehensive dataset of beak morphology and body size for almost 90% of extant 

granivorous bird species sampled across over 10,000 grid cell assemblages. We 

contrast the fit of the matching competition model against alternative trait 

evolutionary models within grid cells to determine the likelihood that the present 

distribution of traits in assemblages was generated by processes akin to 

interspecific competition. We first show the geographical variation and prevalence 

for a signature of species interactions, and its impact in shaping ecomorphical 

disparity in avian assemblages at a global scale. We then link the prevalence and 

strength of competition with environmental variables, as well as with evolutionary 

rates. We expect a higher signal of competition in highly productive, less seasonal, 

and topographically homogenous environments (i.e. where the coexistence of many 

species is favoured). Additionally, we expect a signal of intense species interactions 

to be associated with rapid trait divergence via character displacement. Lastly, we 

test for the relationship between the signature of competition and morphological 

disparity (total variance of phenotypes) within assemblages of species.  

 

MATERIALS AND METHODS 

Morphological data 

We collected beak shape and size data for granivorous avian species following the 

protocols described in detail in Cooney et al., 2017. A species was considered 

granivorous if its diet consists of 50% or more seed material, as recorded in 

EltonTraits database (Wilman et al., 2014). Study skins were obtained from the 

Natural History Museum (Tring) and from the Manchester Museum collections. We 
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took 3D scans of bird beaks using white and blue structured light scanning 

(FlexScan3D, LMI Technologies, Vancouver, Canada), and further processed the 

scans using landmark based geometric morphometric analysis (Adams et al., 2013). 

We placed a total of four landmarks (i.e. homologous key points) and 75 semi-

landmarks on study surfaces. The landmarks define the tip of the upper beak and 

the posterior margins of: the midline profile, the left and the right tomial edges. The 

semi-landmarks join the landmarks to form the dorsal profile, left and right tomial 

edges. We used a crowdsourcing website (http://www.markmybird.org) to enable 

the landmarking process. Each beak was marked by at least three independent 

users (either experts or members of the public). Unsuitable landmarks were 

discarded following quality control of the data. We used the user-averaged landmark 

configurations to estimate species’ beak size and shape via geometric 

morphometric analyses (R package Geomorph; Adams et al., 2017). We considered 

the centroid size (i.e. the square root of the sum of squared distances of a set of 

landmarks from their centroid; Zelditch et al., 2012) as a proxy for species’ beak 

size. Our species sample includes granivorous species only, and so the chances for 

dramatic differences in beak shapes between species are reduced. Hence, the 

issues associated with the fact that very different beak shapes can have the same 

centroid size were minimized (Zelditch et al., 2012). In order to calculate beak 

shape, we performed a Generalized Procrustes Analysis on the landmark 

configurations that removes the effects of size, translational and rotational position 

(Zelditch et al., 2012), and further, extracted the main axes of shape variation using 

a PCA analysis. The first PC axis explained 71% of variation across granivorous 

species, largely showing changes from short, stout beaks to elongated ones (Figure 

S1). We used PC1 values in standard univariate models of trait evolution to 

investigate beak shape evolution within assemblages (see below). We used body 

mass data for each species from the EltonTraits database (Wilman et al., 2014). 

The data for centroid size and body mass were log-transformed. In total, we 

http://www.markmybird.org/
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collected data for 759 species, representing almost 90% of extant granivorous 

species (a complete list of species used in the analyses is given at the end of the 

supplementary material). The vast majority of these species (545 out of the total 

759) belong to seven well-supported monophyletic clades (a mix of families and 

superfamilies): (i) weavers (Ploceidae, select Passeridae), (ii) buntings, American 

sparrows and brush-finches (select Emberizidae, select Thraupidae), (iii) tanagers, 

flowerpiercers, conebills, seedeaters and warbling-finches (select Emberizidae, 

select Thraupidae), (iv) finches (Fringillidae, select Thraupidae), (v) pigeons and 

doves (Columbidae), (vi) parrots (Psittacidae), and (vii) waxbills (Viduidae, 

Estrildidae).  

 

Grid cell species pool 

To evaluate the presence or absence of species in each grid cell, we used species’ 

breeding ranges distribution maps (BirdLife International and Handbook of the Birds 

of the World (2016) Bird species distribution maps of the world. Version 6.0. 

Available at http://datazone.birdlife.org/species/requestdis). We split the world map 

into equal-area grid cells with the resolution of 110 km i.e. approximately 1° at the 

Equator (the coordinates of the map are longitude/latitude relative to the World 

Geodetic System 1984, or WGS84 datum). For each grid cell, we only recorded the 

presence of native species that are highly probable or known to occur (as scored in 

the range maps). We discarded grid cells for which we had trait data for less than 

85% of occurring species, as well as grid cells with a species pool smaller than 10 

species. The final number of grid cell assemblages was 10,698. 

 

Phylogenetic data 

We sampled 10,000 “full” trees (i.e. trees with all 9,993 species, including species 

for which there is no genetic data) from http://www.birdtree.org (Jetz et al., 2012). 

We pruned these trees to generate tree distributions for the 759 species in our 

http://datazone.birdlife.org/species/requestdis
http://www.birdtree.org/
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dataset, and further used TreeAnnotator (Drummond et al., 2012) to generate a 

consensus maximum clade credibility tree (setting node heights equal to  “common 

ancestor” node heights). Out of 759 species, 508 represent taxa for which genetic 

data is available. Finally, we subsetted the consensus tree to build phylogenies for 

the species pool in each grid cell. 

 

Environmental data 

We extracted the following environmental variables for 110km equal-area grid cells: 

(i) temperature and precipitation seasonality (annual range in temperature and 

precipitation; Fick & Hijmans, 2017), (ii) NPP (net primary productivity i.e. mean 

annual energy available to heterotrophs, taken from Pigot et al., 2016), and (iv) 

elevational range (GTOPO30, USGS 1996, data available from the U.S. Geological 

Survey). To do this, we used the R package “raster” (Hijmans & van Etten, 2012) to 

overlap the environmental maps over the maps of 110km equal-area assemblages 

and extract the average environmental variables for each grid-cell. A more detailed 

description of data is given at the end of the supplementary material. 

 

Estimating the signal of competition in grid cell assemblages 

We used the matching competition model (Drury et al., 2016; Drury et al., 2017; 

Nuismer & Harmon, 2015, implemented in the R package RPANDA, Morlon et al., 

2016) in order to estimate the signal for competition across grid cells. The matching 

competition method incorporates the effect of species interactions while modelling 

trait evolution, and can be used to test whether and to what extent the present trait 

distribution across a phylogeny has been influenced by species interactions. Under 

the matching competition model, trait divergence between competing lineages is 

modelled with the simplifying assumption that competitive interactions have similar 

outcomes across all members in the clade of interest. Each lineage thus evolves 

away from the mean clade trait value, and the model estimates the repelling force 
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as the strength of competitive interactions (S parameter, for which more negative 

values indicate increased competition strength). When the diverging effect of 

competitive interactions is 0, the model reduces to a random walk (i.e. BM model, 

Cavalli-Sforza & Edwards, 1967). In order to estimate whether there is evidence that 

competition between species has influenced the distribution of traits in each grid 

cell, we fitted the matching competition model alongside a suite of standard trait 

evolutionary models: Brownian motion (Cavalli-Sforza & Edwards, 1967), Ornstein–

Uhlenbeck (Butler & King, 2004; Hansen & Martins, 1996), linear and exponential 

time-dependent models (Blomberg et al., 2003; Harmon et al., 2010; Weir & 

Mursleen, 2013), linear and exponential diversity-dependent models (Mahler et al., 

2010; Weir & Mursleen, 2013). In each grid cell, we fitted the models to all the 

species present, and also to subsets of species belonging to the clades described 

above. We used AIC weights as evidence that competition has influenced the 

evolution of traits across occupant species (Burnham & Anderson, 2004). Where the 

matching competition model was the best-fitting model and had a ΔAICc  2 

compared to the BM model, we considered the S parameter values as a measure 

for the strength of species interactions within grid cells. When traits evolve under a 

BM model, the matching competition model is mostly not favoured by model 

selection criteria, and moreover, the S parameter values usually take values around 

0 (Drury et al., 2016). However, we take the more conservative approach and use 

the S values only when the matching competition model is sufficiently supported to 

minimize sources of uncertainty in the analyses. 

 

Estimates of disparity in grid cell assemblages 

Disparity within grid cells was estimated as the variance in target traits for species in 

assemblages. Species rich assemblages are expected to harbour higher 

morphological disparity. Hence we calculated estimates of standardized effect size 

of disparity (“sesDisparity”) i.e. how does the observed disparity in each grid cell 
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compare to the null expectation given that particular species richness (Swenson, 

2014). For each species richness value across grid cells, we drew random species 

from the total seed eater species pool, and calculated disparity as the variance of 

trait values from the random draws. We repeated the procedure 1,000 times to get a 

distribution of null disparity values for each species richness value. We then 

calculated sesDisparity values for each grid cell following the formula: sesDisparity 

= [obsDisparity – mean(nullDisparity)]/ sd(nullDisparity), where obsDisparity is the 

variance in traits for species in the focal assemblage, and nullDisparity is the 

distribution of variances for the equal-richness, randomly drawn assemblages. 

Positive values indicate that assemblage disparity is greater than expected for that 

particular species richness, while negative values indicate disparity values lower 

than expected for the number of species.  

 

Statistical analyses 

We tested whether the impact of species interactions on trait evolution across grid 

cells is correlated with environmental variables and rates of trait evolution. To 

calculate evolutionary rates, we fitted the BM model to species within assemblages, 

and extracted the sigma parameter. We also accounted for the number of species in 

assemblages, as well as for the age of the most recent common ancestor for co-

occurring species (as competition could be more prevalent in smaller, more recent 

radiations; Benton, 2009). We ran two sets of analyses, with the response variable 

set as (i) the degree of support for the matching competition model (AICw), and (ii) 

the strength of competition using the S parameter from the matching competition 

model. We then investigated the effect of competition on sesDisparity values in 

assemblages, alongside rates of trait evolution (using 2 calculated by applying the 

BM model to species within assemblages), and while accounting for assemblages’ 

species-richness and age of the most recent common ancestor for co-occurring 

species. We ran these analyses twice. Firstly, competition was measured as a 
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binary trait (1 if the matching competition model was selected as best in the 

assemblage and was more than two units away from the AICc values for the BM 

model). Secondly, we measured competition strength using the S parameter values 

estimated by the matching competition model.  

 

We used both linear models and simultaneous autoregressive models (SAR) to 

account for pseudo-replication in the data resultant from the likely similarity in 

predictors and response variables for neighbouring grid cells (Lagendre, 1993). We 

applied three SAR types (spatial error, lagged, and mixed), which differ in their 

assumption on whether the spatial autoregressive process occurs in the error term, 

response variable, or both in the explanatory and response variables (Kissling & 

Carl, 2007). To define neighbourhood affiliation for grid cells, we considered lag 

distances ranging from 50-500 km in 50 km increments, and also two extreme 

distances of 1,000 and 2,000 km, allowing neighbourhoods to extend largely within, 

but not across, continents. We used both binary and row standardization 

neighbourhood structures. The selection for the appropriate combination of SAR 

type, neighbourhood distance and structure was chosen based on three model 

selection criteria (Dormann et al., 2007; Kissling & Carl, 2007): (i) minimisation of 

spatial autocorrelation from the residuals, (ii) highest pseudo-R2 (calculated as the 

squared Pearson correlation between observed and predicted values), and (iii) AIC. 

For analyses within individual clades, we only considered groups for which we had 

data for more than 50 grid cells (i.e. there were more than 50 assemblages in which 

there were at least 10 species from that particular clade). Statistical analyses were 

performed using the SPDEP package in R (Bivand, 2006). We logged values for 

species richness, rates of trait evolution, and age of the most recent common 

ancestor for co-occurring species, and squared the values for AICw and elevation 

ranges. We fitted the spatial autoregressive and linear models separately for beak 

size, beak shape, and body mass data. 
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RESULTS 

Global distribution of competition signal 

The matching competition model provided the best fit to the data (smallest AICc 

values) in 10% of grid cells for beak shape, 3% for beak size, and 14% for body 

mass (Figure S2a). When considering all traits together, we saw evidence of 

competition in 24% of assemblages (i.e. in 24% of assemblages, the matching 

competition model was the best fitted model in any of the three focal ecological 

traits). In general, the BM model was dominant in assemblages (79% best fit for 

beak shape, 75% for beak size, and 70% for body mass, Figure S2a). The matching 

competition model was the second most frequently favoured model for beak shape 

and body mass analyses (after the BM model), and the third for beak size analyses 

(after BM and the Ornstein–Uhlenbeck models). Most S parameter values fell within 

-0.08 and 0, showing variation in the strength of competition impact across grid 

cells. Under the current equation behind the matching competition model, rates of 

trait evolution get higher as species evolve further away from the average group 

phenotype, and hence high S values are not expected (Drury et al 2016). Hence, we 

removed outlier S values (one order of magnitude difference) from our spatial 

analyses (one grid removed for beak shape analyses and five for beak size 

analyses). When modelling trait evolution within clades, we found that, across all 

families, the matching competition model was preferred at a frequency of 4% for 

beak shape, 11% for beak size, and 8% for body mass (Figure S2b). Particular 

clades, however, showed high prevalence for a best fit from the matching 

competition model, especially for body mass and beak size e.g. finches, buntings, 

American sparrows and brush-finches, pigeons and doves, and parrots (Figure 

S2c).  
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The global distribution of elevated support for the matching competition model 

showed localized high support in a few key areas (Figure 5.1): (i) Northern Asia and 

(particularly northern) Australia for beak shape, (ii) small isolated areas in South 

America, West-Central Asia, and Indonesia for beak size, and (iii) sub-Saharan 

Africa, select areas across Central Asia, Arabian Peninsula and Indonesia for body 

mass. We found no support that these patterns are driven by the presence of 

particular clades, as there seemed to be no obvious link between the prevalence of 

competition signal in assemblages, and the presence of specific families (Figure 

S3). The distribution of S parameter values (i.e. the strength for the impact of 

species interactions on trait evolution) was also scattered globally (Figure S7), and 

thus our results do not show an obvious spatial pattern (e.g. latitudinal gradient) for 

the signal of competition across assemblages (Figure 5.1). 

 

We performed spatial autoregressive and linear regressions for three different 

ecological traits: beak shape, size, and body mass. Generally, we found that using 

SAR models minimized spatial autocorrelation and improved model fit (higher 

pseudo R-squared and lower AIC values) compared to linear models (Tables 1-2, 

Tables S1-S2). SAR error and mixed type models, with row standardization 

neighbourhood structure, and neighbouring distances between 150 and 350 km, 

were generally favoured. Parameter estimates were largely similar for linear and 

spatial models. However, several correlations were significant only when analysed 

in a non-spatial framework, confirming that not accounting for spatial autocorrelation 

can inflate type 1 errors (Lennon, 2000, Dormann, 2007). 

 

Correlates of competition signal in assemblages 

The support for the matching competition model (AICw) was negatively correlated 

with species richness and evolutionary rates of beak shape and body mass 

evolution (Figure S4a, Table S1). Conversely, when modelling beak size evolution, 
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we saw a positive relationship between rates and support for competition. Further, 

the AICw for the matching competition model correlated negatively with the age of 

the most recent common ancestor of co-occurring species when considering beak 

size and body mass evolution, but the reverse was true when modelling beak 

shape. Lastly, we saw higher support for the matching competition model in more 

productive and less seasonal environments (temperature) when modelling beak 

size, and also a higher support for the matching competition model in 

topographically heterogeneous environments in the models of beak size and body 

mass evolution (Figure S4, Table S1). The effect sizes of the relationship between 

environmental predictors and support for competition were, however, very small. 

Overall, although we saw several significant relationships between candidate factors 

and matching competition model support, the significance of relationships observed 

was likely driven by the high number of data points (over 10,000 grid cell 

assemblages of species). When restricting the models to species from the same 

clade, we also found several significant relationships between our candidate factors 

and the support for the matching competition model, but there was moderate 

consensus for the strength and direction of correlations across clades and traits 

(Table S3). However, in general, the support for the matching competition model 

correlated negatively with species richness, age of the most recent common 

ancestor of co-occurring species, and elevational range, and positively with 

temperature seasonality.  

 

We found a stronger signal of competition (more negative S parameter values) in 

assemblages with fewer species, lower rates of evolution, and smaller values for the 

age of the most recent common ancestor of co-occurring species (Table 5.1, Figure 

5.2). These results were consistent across all three morphological traits considered. 

In addition, we found a stronger signal for competition in grid cell with higher levels 

of temperature seasonality when modelling beak shape. 
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Also, we saw a stronger signature of competition in less productive, topographically 

homogenous environments, and with high temperature seasonality in models of 

beak size evolution (Table 5.1, Figure S5). However, the effect sizes for 

environmental predictors were very small. The effect of predictors is generally in 

agreement between multi- and single-predictor SAR models, although some 

predictors lost significance in the multipredictor model (as also noted in Mittelbach 

et al., 2007). Further, the support for the matching competition model (AICw) and 

the strength of competition signal (S values) were not higher in assemblages where 

the percentage of species with genetic data was lower (Figure S8). We did not test 

for correlations between candidate factors and S values for individual clades, 

because, per clade, there were insufficient (<50) grid cells where the matching 

competition model was chosen as best by model selection criteria.  

 

The relationship between competition signal and morphological disparity in 

assemblages 

The distribution of standardized effect size disparity (sesDisparity) levels within 

assemblages varied across the globe for beak shape, size, and body mass (Figure 

5.3). We found a positive effect of rates of trait evolution and age of the most recent 

ancestor of co-occurring species on sesDisparity. We also saw higher sesDisparity 

values in assemblages where the matching competition model was selected as best 

(and sufficiently distinct from the BM model), and, in agreement, S values were 

negatively correlated with morphological sesDisparity. Lastly, sesDisparity levels 

were negatively correlated with species richness in assemblages. These results 

were consistent across models for the three traits considered (Table 5.2, Table S2, 

Figure 5.4, Figure S6), and when performing analyses for individual clades within 

assemblages (Table S4). The rate of evolution, strength of competition signal, and 

species richness had the same effect in both multi- and single-predictor models. 

However, when using S values as a predictor, the age of the most recent ancestor 
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of co-occurring species as not significantly correlated with sesDisparity in single-

predictor models (Table 5.2).  

 

DISCUSSION 

Here, we investigate the links between a signature of competition and the evolution 

of ecomorphological traits in granivorous assemblages across the globe. The 

distribution for the evidence of competition does not follow an obvious spatial 

pattern (e.g. latitudinal gradient, Figure 5.1), and generally, we do not find strong 

and consistent links between environmental variables and the strength of 

competition signal. However, after controlling for assemblage species richness and 

age of the most recent common ancestor of co-occurring species, we find that the 

strength of competition in assemblages correlates negatively with trait evolutionary 

rates, contrary to the prediction of faster trait divergence in ecomorphological traits 

under competition. We suggest that our results support the hypothesis that fast trait 

divergence in allopatry reduces the potential for competition upon secondary 

contact within assemblages (Drury et al., 2018; McEntee et al., 2018; Pigot & 

Tobias, 2013). Further, despite the negative link between the signature of 

competitive interactions and rates of evolution, we find that competition signal 

correlates positively with morphological disparity (total variance) within 

assemblages, providing support for the hypothesized link between ecological 

selection pressures and patterns of trait disparity. We found that a BM model of 

evolution dominated in assemblages, and in comparison, all the other models of 

evolution fit the data in small proportions (Figure S2). Thus, when analysing each 

trait individually, we found little evidence for modes of evolution alternative to a 

random walk in granivorous assemblages. The matching competition model was, 

however, chosen often compared to other models of evolution apart from the BM 

model; moreover, it provided the best fit for the data in almost a quarter of 

assemblages when looking across all traits. Diversity-dependent models too imply 
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that trait evolution is influenced by the accumulation of species (Weir & Mursleen, 

2013), but these were also not chosen in great proportions across assemblages 

(Figure S2). Here, we considered sympatric species that belong to the same feeding 

guild, however, species might also partition resources by differentiating in time of 

feeding, foraging strata etc. (e.g. MacArthur, 1958), and so, we likely 

underestimated the signal for competition in assemblages. Alternatively, the 

prevalence of competition as the dominant driver of ecomorphological evolution 

over a random walk process might not be globally ubiquitous across granivores 

(Drury et al., 2018), or its effects might only persist over very short time-scales 

(Benton, 2009). Further, we found that the signature for competition for shared 

resources in avian granivorous assemblages (AICw of the matching competition 

model) is scattered in several locations across the globe, which differ depending on 

the trait of interest (Figure 5.1). As a generality, we found higher signals for 

competition in Eurasian assemblages (also sub-Saharan Africa for body mass, 

Northern Australia for beak shape). However, these patterns are likely a 

consequence of a high presence of avian granivorous assemblages in Eurasia, 

rather than a difference in the prevalence of competition signal between continents. 

When we applied evolutionary models to subsets of species (belonging to the same 

family) within assemblages, we saw high levels of competition signal in particular 

clades (Figure S2c), indicating that high levels of relatedness in assemblages can 

link with a strong signature for competition, but the effect is not universal across 

groups. A pattern of trait divergence consistent with the presence of competition 

between related taxa was more prevalent in body mass and beak size rather than 

beak shape (Figure S2c), in agreement with studies showing that size-related traits 

represent key axes of beak differentiation within clades (Bright et al., 2016). We did 

not find evidence, however, that the presence of specific families drives the 

observed spatial distribution of competition signal in assemblages (Figure S3). 
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Figure 5.2. Correlations between candidate factors and the strength of 

competition when modelling (a) beak shape (PC1), (b) body mass, and (c) beak 

size (centroid size) evolution. S values are considered only in grids where the 

MC model has smallest AIC values and the AICc difference from the BM model > 

2. All relationships are significant in a multipredictor SAR. Lines indicate 

significant slopes. The age of the most recent common ancestor in assemblages 

is referred to as “tip-root distance” i.e. the distance from root to tips for species in 

assemblages.   
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Table 5.1. The relationship between S values (i.e. strength of the signal for 

competition) and candidate predictors across assemblages. Details on model 

selection criteria is given in Appendix 1. 

 

Predictor SAR slope SAR p OLS slope OLS p 

(a) beak shape (PC1) 

Log SR 0.011 0.000 0.014 0.000 
Log BM rate 0.009 0.000 0.007 0.000 

Mean NPP 0.000 0.963 0.000 0.817 
Temperature 
seasonality 

0.000 0.000 0.000 0.000 

Precipitation 
seasonality 

0.000 0.269 0.000 0.709 

Sqrt (elevation 
range) 

0.000 0.342 0.000 0.000 

Log (age MRCA) 0.017 0.000 0.017 0.000 

(b) beak size      
Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.011 0.000 0.019 0.000 
Log BM rate 0.004 0.030 0.002 0.538 
Mean NPP 0.000 0.015 0.000 0.928 

Temperature 
seasonality 0.000 0.001 0.000 0.589 
Precipitation 
seasonality 0.000 0.245 0.000 0.289 

Sqrt (elevation 
range) 0.000 0.004 0.000 0.000 

Log (age MRCA) 0.016 0.001 0.049 0.000 

(c) body mass     
Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.011 0.000 0.014 0.000 
Log BM rate 0.005 0.000 -0.001 0.284 
Mean NPP 0.000 0.548 0.000 0.000 

Temperature 
seasonality 0.000 0.633 0.000 0.000 
Precipitation 
seasonality 0.000 0.868 0.000 0.006 

Sqrt (elevation 
range) 0.000 0.443 0.000 0.000 

Log (age MRCA) 0.018 0.000 0.035 0.000 
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Table 5.2. The relationship between sesDisparity and candidate predictors across 

assemblages. The slope and p-values (significant in bold) for each predictor are 

reported. Traits considered: (a) beak shape (PC1). Details on model selection 

criteria is given in Appendix 1. 

Predictor SAR slope SAR p OLS slope OLS p 

(a) beak shape (PC1)     

Log SR -0.839 0.000 1.040 0.000 
Log BM rate 0.415 0.000 3.260 0.000 

S values -24.324 0.000 -205.926 0.000 
Log (age MRCA) 1.203 0.000 2.341 0.003 

(b) beak size      
Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.447 0.000 -1.226 0.000 
Log BM rate 0.755 0.000 0.538 0.000 

S values -24.121 0.000 -2.593 0.486 
Log (age MRCA) 1.375 0.000 2.269 0.000 

(c) body mass     
Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.367 0.000 -0.161 0.065 
Log BM rate 1.102 0.000 0.985 0.000 

S values -15.011 0.000 -23.048 0.000 
Log (age MRCA) 0.838 0.000 1.223 0.000 

 

Furthermore, we found that variation in the signature for competition in 

assemblages (the AICw for the matching competition model) is hard to predict. The 

relationships between predictor and response variables were not consistent across 

the traits considered, and moreover, the effect sizes of these relationships were 

small. Within families, there was moderate consensus over how the support for the 

competition model correlated with candidate factors. In general, we found a 

signature for competition in more seasonal and more homogenous environments, 

as well as in assemblages with less species and smaller values for the age of the 

most recent common ancestor of co-occurring species. We further studied variation 

in the strength of competition signal (S parameter values) in relation to candidate 

factors. First, we saw a stronger signal of competition for beak size in environments 

with high temperature seasonality and low productivity. Temperature seasonality 

also related positively with competition signal for body mass and beak shape in 

single-predictor models, but the relationship lost significance (or reversed trend for 
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beak shape) in the multi-predictor model. Therefore, we did not find support for the 

hypothesis that a signal for biotic interactions is more prevalent in environments with 

reduced abiotic selection pressures (Dobzhansky, 1950) or with more potential for 

niche specialization (in line with findings in Gainsbury & Meiri, 2017). Conversely, 

our results might indicate that faster rates of coming back into sympatry seen at 

higher latitudes with seasonal and less productive environments facilitate stronger 

signatures for competition (Martin et al., 2010; Weir & Price, 2011). We also found a 

lower signal for competition in beak size in topographically heterogenous 

environments, in agreement with the expectation that geographical barriers to 

dispersal reduce the potential for secondary contact, and hence the potential for 

species interactions signatures. The effect sizes of these relationships were, 

however, very small. Thus overall, although our results bring some support for the 

ability of environmental variables to determine the prevalence and strength of 

competition signal, we do not find that abiotic factors have a strong role in predicting 

global patterns of species-interactions signal.  

 

Secondly, we found that faster trait divergence is negatively associated with the 

strength of competition signal. Competition can impact negatively on trait evolution if 

niche space is bounded, and so with the accumulation of species, the available 

niche space for evolution decreases (Simpson, 1953). However, our results more 

likely reflect an interaction between the mode of speciation, rates of evolution, and 

the potential for competitive interactions. Specifically, birds are thought to speciate 

primarily in allopatry, and generally experience a protracted delay until coming back 

to sympatry (Phillimore et al., 2008; Pigot & Tobias, 2013). If trait diversification is 

fast, closely related species will be morphologically (and thus ecologically) dissimilar 

when their ranges eventually overlap, and subsequent competition and its 

associated signature of trait character displacement will be minimized. Therefore, 

our results support the notion that when allopatric speciation is the norm, faster trait 
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divergence reduces the potential for competition because it increases dissimilarity 

between species upon secondary contact (Drury et al., 2018). However, interpreting 

patterns of trait divergence consistent with competitive interactions is difficult. As 

mentioned, a lot of phenotypic variability in birds assemblages actually accumulates 

in allopatry rather than sympatry (Phillimore et al., 2008). Hence, alternative 

processes related to divergence in allopatry followed by community filtering, could 

also be responsible for the current patterns in phenotypic distribution within 

assemblages. These hypotheses are difficult to disentangle without determining the 

history of sympatry-allopatry dynamics in assemblages. 

 

Additionally, we accounted for assemblage species richness and age of the most 

recent common ancestor for co-occurring species. We saw a stronger signal for 

competition in smaller assemblages, as well as assemblages with small values for 

the age of the most recent common ancestor of co-occurring species. We saw 

similar trends when using the AICw as a response variable in the analyses within 

individual clades. These results support the idea that a signature for competition is 

mostly detectable across recent, small scale radiations, but its signal is lost over 

longer time scales (Losos & Ricklefs, 2009). Moreover, exclusion or extinction of the 

lesser competitors within assemblages could also create a negative link between 

the strength of competition and species richness (Connell, 1961; Lovette & 

Hochachka, 2006). However, several caveats limit the biological interpretation of 

these results. Uncertainty in S values estimates increases with decreasing species-

pool size (Drury et al., 2016), and hence by chance more negative values can 

appear in species-poor assemblages. Moreover, a high prevalence of short 

branches throughout the trees can be expected in assemblages with small values 

for the age of the most recent common ancestor for co-occurring species, which 

inflates measurement error estimates (Rabosky, 2015). An inflated variance in trait 

values caused by error could create a false impression of morphological 
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overdispersion via character displacement, and thus exaggerate the effect of 

competition in assemblages.  

 

When testing the link between competition signal and levels of morphological 

disparity in assemblages we found that, as expected, disparity links positively with 

trait evolutionary rates, and also with the age of the most recent common ancestor 

for co-occurring species (as, in time, more variance is allowed to accumulate). 

Further, sesDisparity levels correlated negatively with species richness, potentially 

indicating that after accounting for the expected increase in disparity with species 

richness, the accumulation of more species in assemblages is redundant with 

respect to disparity levels. We found that the presence (binary variable) and 

strength (S values) of a signature for competition correlated positively with disparity 

levels, despite the negative association of competition signal with evolutionary rates 

and the age of the most recent common ancestor of co-occurring species. 

Therefore, our results show that a link between a competition signature and global 

levels of disparity can be observed, however, the detectability of such associations 

is likely moderated by the negative feedback between competition signal and 

stronger predictors of disparity (like evolutionary rates). We encountered similar 

patterns in our family-level analyses (Table S4). Further, the observed relationships 

were consistent across all the traits we consider, expected given that beak shape, 

beak size and body mass are all ecomorphological traits, predicted to diverge via 

character displacement under competitive selection pressures (Bothwell et al., 

2015; Davies et al., 2007; Grant & Grant, 2006).  

 

Lastly, we acknowledge the limitation of using univariate models, hence for a 

complex trait like the beak shape for example, we miss the potential impact of 

competitive selection pressures on biologically important variation unexplained by 

PC1. Moreover, using only one PC axis of variation can impact on model selection 
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criteria (Uyeda et al., 2015). Using phylogenetic PCA (Polly et al., 2013; Revell, 

2009) has been proposed to reduce this issue, however, recent studies have 

reported that, when the model used to calculate phylogenetic axes of variation is 

misspecified, the method suffers from the same biases as standard PCA (Uyeda et 

al., 2015). An infallible solution to this problem is so far lacking. Also, in our dataset, 

PC1 represents the transition from stout and wide to elongated beaks, an axis of 

ecomorphological separation between species generally linked to resource 

acquisition. Hence the issues associated with PC1 being a biased subset of the 

whole PC axes distribution should be reduced (Uyeda et al., 2015). We do not find a 

stronger signal of competition (AICw and S parameter values from the matching 

competition model) in assemblages with lower percentages of species with genetic 

data (Figure S8). These results indicate that error caused by uncertainty in 

phylogenetic relationships between species in assemblages due to lack of genetic 

data is not likely to cause biased preference for a signal of competition. 

Nevertheless, we cannot rule out the possibility that the patterns of trait divergence 

consistent with competition can also be overemphasised as a result of various forms 

of measurement and phylogenetic error. 

 

Here, we take a comprehensive approach in describing the correlates and 

consequences of potential signatures of competition for shared resources in avian 

granivorous assemblages across the globe. We use phenomenological models of 

trait evolution that look for patterns of trait divergence consistent with the presence 

of ecological selection pressures to determine the distribution of competition signal 

in avian assemblages. We find moderate support for the role of abiotic factors in 

predicting competition signal, and when significant, the prevalence of competition 

signal is associated with less productive and more seasonal environments (in 

opposition with the hypothesis of stronger biotic selection pressures at lower 

latitudes). However, our analyses are restricted to seed-eater assemblages, and the 
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incorporation of other dietary guilds might reveal different spatial patterns. 

Furthermore, after accounting for the effect of species richness and the age of the 

most recent common ancestor of co-occurring species (both negative effects), we 

see that rates of evolution link negatively with the strength of competition signature. 

Hence, our findings indicate that species diverging fast in allopatry can minimize 

competition upon secondary contact. However, the evolutionary dynamics of 

sympatry and allopatry between interacting lineages is difficult to determine from 

present-date data, and hence alternative processes related to phenotypic 

differentiation in allopatry and/or subsequent filtering could also produce similar 

distribution of present phenotypes. Further, we find that competition signal links with 

increased morphological disparity in assemblages, and thus our results show that 

species interactions could contribute to shaping global patterns of morphological 

disparity. However, the strength of competition as a selection force and our ability to 

detect its signal is limited by negative feedbacks with the tempo of evolution. 
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Figure S1. Avian granivorous morphospace shown as pairwise scatter plots of

the PCs 1 and 2, and PCs 3 and 4. The proportion of variation accounted for by

each PC axis is indicated in brackets.
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List of clades in figure S2c (next page) (top to bottom): (1) weavers, allies, (2)

waxbills, allies, (3) tanagers, flowerpiercers, conebills, seedeaters, warbling-finches,

allies, (4) parrots, (5) finches, allies, (6) pigeons, doves, (7) buntings, American

sparrows, brush-finches.

Beak
shape

Beak
size

Body
mass

Figure S2. (a) Model support (proportion of times each model is chosen as best

i.e. smallest AICc values) across assemblages when modelling beak shape,

beak size, and body mass evolution. (b) Model support (proportion of times each

model is chosen as best i.e. smallest AICc values) across individual clades

within assemblages when modelling beak shape, beak size, and body mass

evolution. The models considered are: Brownian motion (BM), linear (DDlin) and

exponential (DDexp) diversity-dependent models, matching competition (MC),

Ornstein-Uhlenbeck (OU), linear (TDlin) and exponential (TDexp) time-

dependent models.
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Figure S3a. Relationship between the support for the MC model (on beak

shape) and the proportion of species in particular clades within assemblages.
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Figure S3b. Relationship between the support for the MC model (on beak size)

and the proportion of species in particular clades within assemblages.
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Figure S3c. Relationship between the support for the MC model (on body mass)

and the proportion of species in particular clades within assemblages.
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Figure S4a. Correlations between candidate factors and the support for

competition (MC AICw) when modelling (a) beak shape (PC1), (b) beak size

(centroid size), and (c) body mass evolution. Lines indicate significant slopes.

The age of the most recent common ancestor in assemblages is referred to as

“tip-root distance” i.e. the distance from root to tips for species in assemblages.
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Figure S4a. Correlations between candidate factors and the support for

competition (MC AICw) when modelling (a) beak shape (PC1), (b) body mass,

and (c) beak size (centroid size) evolution. Lines indicate significant slopes. The

age of the most recent common ancestor in assemblages is referred to as “tip-

root distance” i.e. the distance from root to tips for species in assemblages.
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Figure S8. Relationship between the support (sqrt AICw of the matching

competition model) and strength (S parameter values) of competition signal and

the percentage of species with genetic data in assemblages. Relationships for

(a) beak shape (PC1), (b) beak size, and (c) body mass.
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Appendix 1.  

Table 5.1. The relationship between S values (i.e. strength of the signal for 

competition) and candidate predictors across assemblages. The slope and p-values 

(significant in bold) for each predictor are reported. Traits considered: (a) beak 

shape (PC1). A SAR error type model with row standardization neighbourhood 

structure and a lag distance of 250km is selected as best among SAR models. SAR 

pseudo R-sq = 0.91, AIC = -4105, minRSA = 1.72. OLS adj. R-sq = 0.78, AIC = -

3774, minRSA = 3.91. (b) beak size (centroid size). A SAR mixed type model with 

row standardization neighbourhood structure and a lag distance of 200km is 

selected as best among SAR models. SAR pseudo R-sq = 0.94, AIC = -1303, 

minRSA = 2.60. OLS adj. R-sq = 0.63, AIC = -1074, minRSA = 3.98. (c) body mass. 

A SAR error type model with row standardization neighbourhood structure and a lag 

distance of 150km is selected as best among SAR models.  SAR pseudo R-sq = 

0.86, AIC = -8382, minRSA = 1.02. OLS adj. R-sq = 0.73, AIC = -7858, minRSA = 

3.15. Results from single-predictor models are also given below. 

Predictor 
SAR single 

slope 
SAR single p 

OLS single 
slope 

OLS single p 

(a) beak shape (PC1) 
Log SR 0.014 0.000 0.017 0.000 

Log BM rate 0.010 0.000 0.010 0.000 
Mean NPP 0.000 0.306 0.000 0.000 

Temperature 
seasonality 

0.000 0.000 0.000 0.000 

Precipitation 
seasonality 

0.000 0.005 0.000 0.000 

Sqrt (elevation 
range) 

0.000 0.029 0.000 0.000 

Log (age MRCA) 0.025 0.000 0.024 0.000 

(b) beak size      

Predictor 
SAR single 

slope 
SAR single p 

OLS single 
slope 

OLS single p 

Log SR 0.015 0.000 0.022 0.000 
Log BM rate 0.006 0.061 0.018 0.000 
Mean NPP 0.000 0.000 0.000 0.681 

Temperature 
seasonality 0.000 0.000 0.000 0.002 
Precipitation 
seasonality 0.000 0.314 0.000 0.022 

Sqrt (elevation 
range) 0.000 0.904 0.000 0.000 

Log (age MRCA) 0.045 0.000 0.082 0.000 

(c) body mass     

Predictor 
SAR single 

slope 
SAR single p 

OLS single 
slope 

OLS single p 

Log SR 0.014 0.000 0.020 0.000 
Log BM rate 0.002 0.011 -0.008 0.000 
Mean NPP 0.000 0.066 0.000 0.000 

Temperature 
seasonality 0.000 0.000 0.000 0.000 
Precipitation 
seasonality 0.000 0.051 0.000 0.000 

Sqrt (elevation 
range) 0.000 0.000 0.000 0.000 

Log (age MRCA) 0.033 0.000 0.048 0.000 
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Table 5.2. The relationship between sesDisparity and candidate predictors across 

assemblages. The slope and p-values (significant in bold) for each predictor are 

reported. Traits considered: (a) beak shape (PC1). A SAR mixed type model with 

row standardization neighbourhood structure and a lag distance of 450km is 

selected as best among SAR models. SAR pseudo R-sq = 0.95, AIC = 638, 

minRSA = 0.92. OLS adj. R-sq = 0.56, AIC = 1598, minRSA = 8.84. (b) beak size 

(centroid size). A SAR mixed type model with row standardization neighbourhood 

structure and a lag distance of 300km is selected as best among SAR models. SAR 

pseudo R-sq = 0.9, AIC = 22.48, minRSA = 2.48. OLS adj. R-sq = 0.55, AIC = 222, 

minRSA = 10.53. (c) body mass. A SAR error type model with row standardization 

neighbourhood structure and a lag distance of 350km is selected as best among 

SAR models. SAR pseudo R-sq = 0.87, AIC = 569, minRSA = 1.07. OLS adj. R-sq = 

0.24, AIC = 2131, minRSA = 8.83. Results from single-predictor models are also 

given below. 

Predictor 
SAR single 

slope 
SAR single 

p 
OLS single 

slope 
OLS single 

p 

(a) beak shape (PC1)     

Log SR -1.004 0.000 0.591 0.004 
Log BM rate 0.037 0.417 1.668 0.000 

S values -29.601 0.000 -21.324 0.035 
Log (age MRCA) -0.378 0.115 -6.182 0.000 

(b) beak size      

Predictor 
SAR single 

slope 
SAR single 

p 
OLS single 

slope 
OLS single 

p 

Log SR -0.706 0.000 -0.940 0.000 
Log BM rate 0.493 0.002 0.073 0.683 

S values -23.817 0.000 -12.741 0.000 
Log (age MRCA) 0.012 0.953 0.577 0.224 

(c) body mass     

Predictor 
SAR single 

slope 
SAR single 

p 
OLS single 

slope 
OLS single 

p 

Log SR -0.518 0.000 -0.682 0.000 
Log BM rate 1.113 0.000 1.272 0.000 

S values -13.459 0.000 -22.889 0.000 
Log (age MRCA) 0.306 0.074 0.091 0.649 
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Table S1. The relationship between support for competition (i.e. AICw of MC model) 

and candidate predictors across assemblages. The slope and p-values (significant 

in bold) for each predictor are reported. Traits considered: (a) beak shape (PC1). A 

SAR error type model with row standardization neighbourhood structure and a lag 

distance of 200km is selected as best among SAR models. SAR pseudo R-sq = 

0.69, AIC = -16649, minRSA = 0.76. OLS adj. R-sq = 0.17, AIC = -8158, minRSA = 

3.6.84. (b) beak size (centroid size). A SAR error type model with row 

standardization neighbourhood structure and a lag distance of 200km is selected as 

best among SAR models. SAR pseudo R-sq = 0.62, AIC = -19160, minRSA = 0.67. 

OLS adj. R-sq = 0.10, AIC = -11996, minRSA = 5.63. (c) body mass. A SAR mixed 

type model with row standardization neighbourhood structure and a lag distance of 

200km is selected as best among SAR models.  SAR pseudo R-sq = 0.70, AIC = -

14155, minRSA = 0.73. OLS adj. R-sq = 0.18, AIC = -5439, minRSA = 7.21. 

Predictor SAR slope SAR p OLS slope OLS p 

(a) beak shape (PC1)     

Log SR -0.124 0.000 -0.110 0.000 
Log BM rate -0.055 0.000 -0.087 0.000 
Mean NPP 0.000 0.245 0.000 0.907 

Temperature 
seasonality 0.000 0.831 0.000 0.000 
Precipitation 
seasonality 0.000 0.312 0.000 0.030 

Sqrt (elevation range) 0.000 0.233 -0.002 0.000 
Log (age MRCA) -0.039 0.020 -0.083 0.000 

(b) beak size      
Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.112 0.000 -0.108 0.000 
Log BM rate 0.040 0.000 0.022 0.000 
Mean NPP 0.000 0.013 0.000 0.000 

Temperature 
seasonality 0.000 0.000 0.000 0.000 
Precipitation 
seasonality 0.000 0.998 0.000 0.470 

Sqrt (elevation range) 0.000 0.003 0.000 0.000 
Log (age MRCA) 0.041 0.005 0.042 0.000 

(c) body mass     
Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.178 0.000 -0.211 0.000 
Log BM rate -0.036 0.000 -0.005 0.447 
Mean NPP 0.000 0.748 0.000 0.000 

Temperature 
seasonality 0.000 0.998 0.000 0.000 
Precipitation 
seasonality 0.000 0.160 0.001 0.000 

Sqrt (elevation range) 0.000 0.034 0.001 0.000 
Log (age MRCA) 0.083 0.000 0.031 0.005 
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Table S2. The relationship between sesDisparity and candidate predictors across 

assemblages. The slope and p-values (significant in bold) for each predictor are 

reported. Traits considered: (a) beak shape (PC1). A SAR error type model with row 

standardization neighbourhood structure and a lag distance of 150km is selected as 

best among SAR models. SAR pseudo R-sq = 0.98, AIC = 5332, minRSA = 0.54. 

OLS adj. R-sq = 0.31, AIC = 38977, minRSA = 13.93. (b) beak size (centroid size). 

A SAR error type model with row standardization neighbourhood structure and a lag 

distance of 150km is selected as best among SAR models. SAR pseudo R-sq = 

0.94, AIC = -5353.88, minRSA = 0.94. OLS adj. R-sq = 0.52, AIC = 13547, minRSA 

= 12.17. (c) body mass. A SAR mixed type model with row standardization 

neighbourhood structure and a lag distance of 150km is selected as best among 

SAR models. SAR pseudo R-sq = 0.93, AIC = 2880, minRSA = 0.80. OLS adj. R-sq 

= 0.35, AIC = 23952, minRSA = 11.58.  

Predictor SAR slope SAR p OLS slope OLS p 

(a) beak shape 
(PC1) 

    

Log SR -0.645 0.000 -0.087 0.036 
Log BM rate 0.406 0.000 2.050 0.000 

Competition 0/1 0.038 0.026 0.956 0.000 
Log (age MRCA) 0.231 0.000 1.756 0.000 

(b) beak size      
Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.481 0.000 -0.544 0.000 
Log BM rate 0.735 0.000 0.765 0.000 

Competition 0/1 0.095 0.000 0.458 0.000 
Log (age MRCA) 0.478 0.000 0.710 0.000 

(c) body mass     
Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.423 0.000 -0.292 0.000 
Log BM rate 0.878 0.000 1.243 0.000 

Competition 0/1 0.126 0.000 0.733 0.000 
Log (age MRCA) 0.988 0.000 1.494 0.000 
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Table S3. The relationship between support for competition (i.e. AICw of MC model) 

and candidate predictors across assemblages. The slope and p-values (significant 

in bold) for each predictor are reported. Traits considered: (a) beak shape (PC1), (b) 

beak size (centroid size), and (c) body mass. Relationships are done separately for 

each family in the community. NA values appear for predictors with extremely low to 

no variability in values. 

 

(a) Beak shape (PC1) 

 

Buntings, American sparrows, Brush finches 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.087 0.762 0.173 0.636 
Log BM rate -0.072 0.457 0.081 0.296 
Mean NPP 0.000 0.711 0.000 0.035 

Temperature seasonality -0.103 0.425 0.000 0.022 
Precipitation seasonality -0.001 0.049 0.002 0.042 

Sqrt (elevation range) -0.005 0.003 -0.003 0.024 
Log (age MRCA) -1.011 0.017 -1.078 0.003 

Predictor SAR slope SAR p OLS slope OLS p 

Doves, Pigeons 

Log SR -0.184 0.034 -0.092 0.444 
Log BM rate 0.063 0.013 0.053 0.118 
Mean NPP 0.000 0.666 0.000 0.101 

Temperature seasonality 0.025 0.342 0.000 0.445 
Precipitation seasonality 0.001 0.396 -0.001 0.236 

Sqrt (elevation range) -0.002 0.025 -0.002 0.005 
Log (age MRCA) NA NA NA NA 

Finches, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.191 0.001 -0.253 0.000 
Log BM rate -0.104 0.000 -0.136 0.000 
Mean NPP 0.000 0.002 0.000 0.013 

Temperature seasonality 0.091 0.005 0.000 0.221 
Precipitation seasonality 0.000 0.571 0.000 0.851 

Sqrt (elevation range) 0.002 0.001 0.002 0.000 
Log (age MRCA) -0.297 0.000 -0.146 0.023 

Tanagers, Flowerpiercers, Conebills, Seedeaters, Warbling finches, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.047 0.184 0.024 0.525 
Log BM rate 0.002 0.881 -0.032 0.011 
Mean NPP 0.000 0.001 0.000 0.000 

Temperature seasonality 0.005 0.804 0.000 0.186 
Precipitation seasonality 0.001 0.006 0.000 0.297 

Sqrt (elevation range) 0.001 0.115 0.002 0.000 
Log (age MRCA) -0.372 0.000 -0.363 0.000 

Waxbills, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.126 0.000 -0.146 0.000 
Log BM rate -0.075 0.000 -0.112 0.000 
Mean NPP 0.000 0.927 0.000 0.568 

Temperature seasonality -0.010 0.642 0.000 0.906 
Precipitation seasonality 0.001 0.007 0.002 0.000 

Sqrt (elevation range) 0.003 0.000 0.004 0.000 
Log (age MRCA) -0.427 0.005 -0.008 0.935 
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Weavers, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.166 0.003 -0.191 0.000 
Log BM rate 0.041 0.121 0.044 0.044 
Mean NPP 0.000 0.009 0.000 0.001 

Temperature seasonality 0.000 0.994 0.000 0.246 
Precipitation seasonality 0.000 0.805 0.000 0.827 

Sqrt (elevation range) -0.001 0.391 -0.001 0.167 
Log (age MRCA) 0.065 0.458 0.191 0.022 

 

(b) Beak size (centroid size) 

 

Buntings, American sparrows, Brush finches 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.242 0.042 -0.511 0.008 
Log BM rate 0.121 0.012 0.142 0.002 
Mean NPP 0.000 0.239 0.000 0.024 

Temperature seasonality -0.080 0.054 0.000 0.032 
Precipitation seasonality -0.001 0.073 -0.001 0.029 

Sqrt (elevation range) -0.003 0.000 -0.002 0.003 
Log (age MRCA) 0.514 0.011 1.609 0.000 

Predictor SAR slope SAR p OLS slope OLS p 

Doves, Pigeons 

Log SR -0.166 0.343 -0.263 0.019 
Log BM rate 0.143 0.000 0.194 0.000 
Mean NPP 0.000 0.055 0.000 0.000 

Temperature seasonality -0.005 0.925 0.000 0.000 
Precipitation seasonality -0.002 0.051 -0.003 0.000 

Sqrt (elevation range) -0.001 0.567 0.000 0.900 
Log (age MRCA) -0.023 0.953 NA NA 

Finches, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.233 0.174 0.319 0.057 
Log BM rate 0.041 0.636 -0.187 0.009 
Mean NPP 0.000 0.041 0.000 0.589 

Temperature seasonality -0.045 0.665 -0.001 0.009 
Precipitation seasonality 0.001 0.462 0.001 0.262 

Sqrt (elevation range) -0.001 0.366 -0.006 0.001 
Log (age MRCA) 0.741 0.002 1.043 0.000 

Tanagers, Flowerpiercers, Conebills, Seedeaters, Warbling finches, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.091 0.077 -0.100 0.047 
Log BM rate -0.037 0.067 -0.046 0.002 
Mean NPP 0.000 0.504 0.000 0.038 

Temperature seasonality -0.063 0.090 0.000 0.000 
Precipitation seasonality 0.002 0.000 -0.002 0.000 

Sqrt (elevation range) 0.001 0.528 0.000 0.419 
Log (age MRCA) -0.153 0.028 -0.146 0.081 

Waxbills, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.009 0.746 -0.071 0.000 
Log BM rate -0.041 0.008 -0.017 0.141 
Mean NPP 0.000 0.348 0.000 0.000 

Temperature seasonality -0.006 0.808 0.000 0.000 



203 
 

Precipitation seasonality 0.000 0.401 0.002 0.000 
Sqrt (elevation range) 0.000 0.643 0.002 0.000 

Log (age MRCA) -0.240 0.077 -0.078 0.311 
Weavers, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.074 0.082 -0.059 0.130 
Log BM rate 0.042 0.106 0.034 0.116 
Mean NPP 0.000 0.819 0.000 0.610 

Temperature seasonality -0.015 0.547 0.000 0.157 
Precipitation seasonality -0.001 0.177 0.000 0.411 

Sqrt (elevation range) -0.002 0.008 -0.002 0.000 
Log (age MRCA) -0.146 0.024 -0.197 0.002 

 

(c) Body mass 

 

Buntings, American sparrows, Brush finches 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.318 0.147 0.216 0.675 
Log BM rate -0.343 0.000 0.202 0.014 
Mean NPP 0.000 0.054 -0.002 0.000 

Temperature seasonality -0.076 0.550 0.000 0.720 
Precipitation seasonality -0.002 0.005 0.000 0.861 

Sqrt (elevation range) -0.001 0.577 0.001 0.639 
Log (age MRCA) 0.370 0.336 0.482 0.339 

Predictor SAR slope SAR p OLS slope OLS p 

Doves, Pigeons 

Log SR -0.334 0.000 -0.457 0.000 
Log BM rate 0.052 0.206 0.243 0.000 
Mean NPP 0.000 0.945 0.000 0.000 

Temperature seasonality 0.047 0.005 0.001 0.000 
Precipitation seasonality 0.000 0.545 0.000 0.951 

Sqrt (elevation range) -0.002 0.003 -0.003 0.000 
Log (age MRCA) NA NA NA NA 

Finches, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.922 0.000 0.647 0.001 
Log BM rate -0.352 0.096 -0.296 0.024 
Mean NPP -0.001 0.004 0.000 0.053 

Temperature seasonality -0.185 0.277 0.000 0.530 
Precipitation seasonality -0.001 0.526 -0.003 0.050 

Sqrt (elevation range) -0.003 0.137 -0.003 0.166 
Log (age MRCA) 0.914 0.082 0.742 0.001 

Tanagers, Flowerpiercers, Conebills, Seedeaters, Warbling finches, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.168 0.001 -0.219 0.000 
Log BM rate -0.019 0.511 -0.071 0.001 
Mean NPP 0.000 0.027 0.000 0.037 

Temperature seasonality 0.048 0.153 -0.001 0.000 
Precipitation seasonality 0.001 0.028 0.000 0.476 

Sqrt (elevation range) 0.000 0.731 0.001 0.014 
Log (age MRCA) -0.167 0.017 -0.234 0.011 

Waxbills, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.096 0.007 -0.157 0.000 
Log BM rate 0.033 0.261 0.047 0.027 



204 
 

Mean NPP 0.000 0.037 0.000 0.276 
Temperature seasonality -0.012 0.803 0.001 0.000 
Precipitation seasonality 0.001 0.207 0.001 0.000 

Sqrt (elevation range) 0.001 0.528 0.003 0.000 
Log (age MRCA) 0.005 0.929 0.067 0.521 

Weavers, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.111 0.005 -0.009 0.794 
Log BM rate 0.106 0.000 0.025 0.110 
Mean NPP 0.000 0.112 0.000 0.069 

Temperature seasonality 0.060 0.086 0.000 0.313 
Precipitation seasonality 0.000 0.488 0.000 0.220 

Sqrt (elevation range) -0.002 0.002 -0.001 0.025 
Log (age MRCA) -0.061 0.236 -0.209 0.000 

 

Table S4. The relationship between sesDisparity and candidate predictors across 

assemblages. Multipredictor SAR and OLS models are considered, and the slope 

and p-values (significant in bold) for each predictor are reported. Traits considered: 

(a) beak shape (PC1), (b) beak size (centroid size), and (c) body mass. 

Relationships are done separately for each family in the community. NA values 

appear for predictors with extremely low to no variability in values. 

(a) Beak shape 

Buntings, American sparrows, Brush finches 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.315 0.351 -0.126 0.932 
Log BM rate 1.448 0.000 2.091 0.000 

Competition 0/1 1.975 0.001 NA NA 
Log (age MRCA) NA NA 2.390 0.079 

Doves, Pigeons     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.321 0.056 2.092 0.000 
Log BM rate 0.104 0.046 0.065 0.496 

Competition 0/1 0.111 0.169 0.122 0.377 
Log (age MRCA) 0.913 0.000 NA NA 

Finches, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.888 0.000 -0.888 0.001 
Log BM rate 1.340 0.000 2.111 0.000 

Competition 0/1 1.651 0.000 NA NA 
Log (age MRCA) 0.776 0.005 1.960 0.000 

Tanagers, Flowerpiercers, Conebills, Seedeaters, Warbling finches, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.468 0.002 1.268 0.000 
Log BM rate 0.844 0.000 0.416 0.000 

Competition 0/1 0.305 0.184 0.319 0.439 
Log (age MRCA) 0.134 0.513 0.594 0.188 

Waxbills, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.518 0.000 -0.528 0.000 
Log BM rate 0.304 0.000 0.351 0.000 

Competition 0/1 0.053 0.497 0.133 0.246 
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Log (age MRCA) 2.877 0.000 2.345 0.000 

     

Weavers, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.473 0.018 1.637 0.000 
Log BM rate 0.631 0.000 0.683 0.000 

Competition 0/1 0.177 0.386 0.324 0.297 
Log (age MRCA) -0.705 0.013 -3.466 0.000 

 

(b) Beak size (centroid size) 

 

Buntings, American sparrows, Brush finches 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.325 0.555 -1.359 0.164 
Log BM rate 2.733 0.000 1.996 0.000 

Competition 0/1 6.483 0.000 NA NA 
Log (age MRCA) -2.402 0.037 11.295 0.000 

Doves, Pigeons     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.204 0.001 0.289 0.056 
Log BM rate 0.322 0.000 0.417 0.000 

Competition 0/1 -0.042 0.003 -0.189 0.000 
Log (age MRCA) NA NA NA NA 

Finches, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.886 0.000 -0.813 0.000 
Log BM rate 1.179 0.000 1.296 0.000 

Competition 0/1 0.017 0.599 -0.057 0.188 
Log (age MRCA) 1.222 0.000 1.797 0.000 

Tanagers, Flowerpiercers, Conebills, Seedeaters, Warbling finches, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.134 0.310 0.209 0.334 
Log BM rate 1.430 0.000 1.514 0.000 

Competition 0/1 -0.009 0.930 -0.425 0.072 
Log (age MRCA) 0.259 0.157 -0.268 0.521 

Waxbills, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.268 0.000 -0.420 0.000 
Log BM rate 2.292 0.000 2.815 0.000 

Competition 0/1 0.009 0.938 0.009 0.963 
Log (age MRCA) -0.381 0.488 -1.505 0.000 

     

Weavers, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.087 0.587 0.268 0.119 
Log BM rate 1.069 0.000 1.850 0.000 

Competition 0/1 -0.436 0.020 -0.381 0.326 
Log (age MRCA) 0.683 0.005 1.885 0.000 
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(c) Body mass 

Buntings, American sparrows, Brush finches 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.431 0.391 -1.277 0.102 
Log BM rate 2.028 0.000 2.252 0.000 

Competition 0/1 -0.036 0.605 -0.220 0.032 
Log (age MRCA) 0.922 0.229 5.472 0.000 

Doves, Pigeons     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.298 0.000 0.728 0.000 
Log BM rate 1.291 0.000 1.555 0.000 

Competition 0/1 0.291 0.007 0.469 0.007 
Log (age MRCA) -0.005 0.967 NA NA 

Finches, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.655 0.000 -0.408 0.031 
Log BM rate 1.526 0.000 1.402 0.000 

Competition 0/1 0.046 0.195 -0.022 0.650 
Log (age MRCA) 3.288 0.000 1.442 0.000 

Tanagers, Flowerpiercers, Conebills, Seedeaters, Warbling finches, allies 

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.453 0.000 0.060 0.607 
Log BM rate 0.599 0.000 0.805 0.000 

Competition 0/1 0.074 0.381 0.023 0.869 
Log (age MRCA) 0.026 0.801 0.005 0.982 

Waxbills, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR 0.506 0.000 0.276 0.001 
Log BM rate 2.129 0.000 2.587 0.000 

Competition 0/1 0.081 0.345 0.348 0.021 
Log (age MRCA) 1.948 0.000 -0.831 0.051 

     

Weavers, allies     

Predictor SAR slope SAR p OLS slope OLS p 

Log SR -0.231 0.252 -0.472 0.016 
Log BM rate 1.687 0.000 2.596 0.000 

Competition 0/1 -3.063 0.000 -3.908 0.000 
Log (age MRCA) 1.827 0.000 2.478 0.000 
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List of granivorous species used in the analyses:  

Taoniscus_nanus, Crypturellus_parvirostris, Crypturellus_obsoletus, 

Odontophorus_hyperythrus, Odontophorus_strophium, Colinus_cristatus, 

Colinus_nigrogularis, Colinus_leucopogon, Colinus_virginianus, 

Callipepla_californica, Philortyx_fasciatus, Tympanuchus_cupido, 

Syrmaticus_soemmerringii, Perdix_hodgsoniae, Lophophorus_sclateri, 

Tragopan_caboti, Perdicula_argoondah, Perdicula_asiatica, Francolinus_nobilis, 

Francolinus_castaneicollis, Coturnix_delegorguei, Coturnix_coromandelica, 

Coturnix_coturnix, Coturnix_pectoralis, Dendrocygna_guttata, Aix_sponsa, 

Netta_erythrophthalma, Aythya_innotata, Turnix_castanotus, Turnix_tanki, 

Turnix_suscitator, Turnix_pyrrhothorax, Turnix_olivii, Turnix_nigricollis, 

Turnix_velox, Ortyxelos_meiffrenii, Neophema_petrophila, Neophema_splendida, 

Neophema_elegans, Neophema_chrysostoma, Neopsephotus_bourkii, 

Cyclopsitta_gulielmitertii, Melopsittacus_undulatus, Psittacella_madaraszi, 

Psittacella_picta, Psittacella_modesta, Platycercus_venustus, 

Psephotus_chrysopterygius, Psephotus_varius, Psephotus_dissimilis, 

Purpureicephalus_spurius, Pezoporus_wallicus, Pezoporus_occidentalis, 

Agapornis_pullarius, Agapornis_taranta, Agapornis_canus, Agapornis_roseicollis, 

Agapornis_nigrigenis, Agapornis_personatus, Agapornis_fischeri, 

Polytelis_alexandrae, Polytelis_swainsonii, Alisterus_chloropterus, 

Geoffroyus_simplex, Psittinus_cyanurus, Psittacula_derbiana, 

Psittacula_longicauda, Tanygnathus_lucionensis, Poicephalus_crassus, 

Poicephalus_rufiventris, Psittacus_erithacus, Forpus_cyanopygius, 

Forpus_xanthopterygius, Forpus_coelestis, Forpus_modestus, Diopsittaca_nobilis, 

Leptosittaca_branickii, Primolius_maracana, Primolius_auricollis, Ara_ambiguus, 

Ara_severus, Ara_rubrogenys, Aratinga_auricapillus, Aratinga_wagleri, 

Aratinga_mitrata, Aratinga_acuticaudata, Aratinga_canicularis, Pyrrhura_hoffmanni, 

Pyrrhura_cruentata, Rhynchopsitta_terrisi, Rhynchopsitta_pachyrhyncha, 

Pionites_leucogaster, Brotogeris_versicolurus, Ognorhynchus_icterotis, 

Hapalopsittaca_amazonina, Pyrilia_barrabandi, Pyrilia_caica, Pionus_maximiliani, 

Pionus_senilis, Alipiopsitta_xanthops, Amazona_ventralis, Amazona_albifrons, 

Amazona_finschi, Amazona_dufresniana, Amazona_aestiva, 

Bolborhynchus_orbygnesius, Bolborhynchus_ferrugineifrons, Touit_stictopterus, 

Nymphicus_hollandicus, Cacatua_roseicapilla, Cacatua_sulphurea, 

Cacatua_pastinator, Cacatua_haematuropygia, Cacatua_tenuirostris, 

Cacatua_leadbeateri, Calyptorhynchus_lathami, Calyptorhynchus_latirostris, 
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Calyptorhynchus_funereus, Calyptorhynchus_banksii, Calyptorhynchus_baudinii, 

Asthenes_huancavelicae, Asthenes_arequipae, Asthenes_dorbignyi, 

Geositta_punensis, Geositta_antarctica, Grallaria_przewalskii, Amytornis_striatus, 

Amytornis_goyderi, Amytornis_housei, Amytornis_barbatus, Dasyornis_longirostris, 

Pyrrholaemus_brunneus, Aphelocephala_leucopsis, Psophodes_cristatus, 

Dendrocitta_occipitalis, Cyanocorax_mystacalis, Nucifraga_columbiana, 

Nucifraga_caryocatactes, Iole_indica, Babax_lanceolatus, Garrulax_austeni, 

Gypsophila_crispifrons, Pnoepyga_albiventer, Pnoepyga_formosana, 

Paradoxornis_gularis, Paradoxornis_flavirostris, Paradoxornis_margaritae, 

Ammomanes_phoenicura, Ammomanes_deserti, Ammomanes_cinctura, 

Eremopterix_australis, Eremopterix_leucotis, Eremopterix_griseus, 

Eremopterix_signatus, Eremopterix_leucopareia, Eremopterix_nigriceps, 

Eremopterix_verticalis, Ammomanes_grayi, Mirafra_williamsi, Mirafra_passerina, 

Mirafra_africanoides, Mirafra_rufa, Mirafra_assamica, Mirafra_cheniana, 

Mirafra_hova, Mirafra_microptera, Mirafra_erythrocephala, Mirafra_cordofanica, 

Mirafra_cantillans, Mirafra_affinis, Mirafra_erythroptera, 

Melanocorypha_yeltoniensis, Melanocorypha_leucoptera, 

Melanocorypha_mongolica, Melanocorypha_bimaculata, Chersophilus_duponti, 

Galerida_malabarica, Galerida_modesta, Galerida_magnirostris, Galerida_deva, 

Alauda_gulgula, Pseudalaemon_fremantlii, Spizocorys_fringillaris, 

Spizocorys_conirostris, Spizocorys_personata, Spizocorys_sclateri, 

Eremalauda_starki, Eremalauda_dunni, Calandrella_acutirostris, 

Calandrella_cinerea, Eremophila_alpestris, Eremophila_bilopha, 

Onychognathus_fulgidus, Brachypteryx_stellata, Sitta_neumayer, Sitta_krueperi, 

Sitta_canadensis, Sitta_whiteheadi, Sitta_villosa, Sitta_carolinensis, 

Prunella_modularis, Prunella_rubeculoides, Pseudonigrita_arnaudi, 

Pseudonigrita_cabanisi, Euplectes_afer, Euplectes_diadematus, 

Euplectes_hordeaceus, Euplectes_nigroventris, Euplectes_orix, 

Euplectes_franciscanus, Euplectes_gierowii, Euplectes_jacksoni, 

Euplectes_psammocromius, Euplectes_progne, Euplectes_axillaris, 

Euplectes_albonotatus, Euplectes_macroura, Euplectes_capensis, 

Euplectes_aureus, Foudia_madagascariensis, Quelea_cardinalis, Quelea_quelea, 

Quelea_erythrops, Ploceus_aurantius, Ploceus_luteolus, Ploceus_subaureus, 

Ploceus_pelzelni, Ploceus_melanocephalus, Ploceus_taeniopterus, 

Ploceus_superciliosus, Ploceus_olivaceiceps, Ploceus_spekei, 

Ploceus_megarhynchus, Ploceus_castanops, Ploceus_reichardi, 

Ploceus_katangae, Ploceus_sakalava, Ploceus_bojeri, Ploceus_badius, 
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Ploceus_rubiginosus, Ploceus_jacksoni, Ploceus_subpersonatus, 

Ploceus_dichrocephalus, Ploceus_philippinus, Ploceus_manyar, Ploceus_bertrandi, 

Ploceus_hypoxanthus, Ploceus_castaneiceps, Ploceus_galbula, 

Ploceus_spekeoides, Ploceus_benghalensis, Bubalornis_niger, 

Sporopipes_frontalis, Sporopipes_squamifrons, Dinemellia_dinemelli, 

Brachycope_anomala, Plocepasser_superciliosus, Plocepasser_rufoscapulatus, 

Plocepasser_mahali, Plocepasser_donaldsoni, Amadina_erythrocephala, 

Amadina_fasciata, Euschistospiza_dybowskii, Euschistospiza_cinereovinacea, 

Hypargos_margaritatus, Hypargos_niveoguttatus, Pytilia_melba, Pytilia_afra, 

Pytilia_phoenicoptera, Pytilia_hypogrammica, Pytilia_lineata, Clytospiza_monteiri, 

Lagonosticta_rhodopareia, Lagonosticta_virata, Lagonosticta_larvata, 

Lagonosticta_senegala, Lagonosticta_rufopicta, Lagonosticta_nitidula, 

Uraeginthus_cyanocephalus, Uraeginthus_bengalus, Uraeginthus_angolensis, 

Uraeginthus_ianthinogaster, Spermophaga_poliogenys, Spermophaga_ruficapilla, 

Pyrenestes_minor, Pyrenestes_ostrinus, Pyrenestes_sanguineus, 

Mandingoa_nitidula, Cryptospiza_jacksoni, Cryptospiza_reichenovii, 

Cryptospiza_salvadorii, Cryptospiza_shelleyi, Estrilda_thomensis, 

Estrilda_charmosyna, Estrilda_melpoda, Estrilda_paludicola, Estrilda_troglodytes, 

Estrilda_rufibarba, Estrilda_nonnula, Estrilda_astrild, Nesocharis_capistrata, 

Estrilda_erythronotos, Estrilda_caerulescens, Estrilda_perreini, 

Nesocharis_shelleyi, Nesocharis_ansorgei, Estrilda_quartinia, Estrilda_melanotis, 

Estrilda_poliopareia, Heteromunia_pectoralis, Ortygospiza_locustella, 

Erythrura_prasina, Erythrura_hyperythra, Erythrura_viridifacies, Erythrura_tricolor, 

Erythrura_trichroa, Erythrura_coloria, Erythrura_gouldiae, Padda_oryzivora, 

Padda_fuscata, Lonchura_monticola, Lonchura_fringilloides, Lonchura_ferruginosa, 

Lonchura_tristissima, Lonchura_fuscans, Lonchura_griseicapilla, 

Lonchura_leucogastra, Lonchura_leucogastroides, Lonchura_striata, 

Lonchura_kelaarti, Lonchura_pallida, Lonchura_maja, Lonchura_atricapilla, 

Lonchura_malacca, Lonchura_nevermanni, Lonchura_castaneothorax, 

Lonchura_quinticolor, Lonchura_punctulata, Lonchura_spectabilis, Lonchura_nana, 

Lonchura_molucca, Lonchura_caniceps, Lonchura_malabarica, Lonchura_cantans, 

Lonchura_flaviprymna, Lonchura_grandis, Stagonopleura_bella, 

Stagonopleura_guttata, Stagonopleura_oculata, Taeniopygia_guttata, 

Taeniopygia_bichenovii, Oreostruthus_fuliginosus, Emblema_pictum, 

Poephila_personata, Poephila_cincta, Poephila_acuticauda, Neochmia_ruficauda, 

Neochmia_modesta, Neochmia_temporalis, Neochmia_phaeton, 

Amandava_amandava, Amandava_subflava, Amandava_formosa, Vidua_orientalis, 
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Vidua_interjecta, Vidua_obtusa, Vidua_paradisaea, Vidua_macroura, 

Vidua_hypocherina, Vidua_togoensis, Vidua_codringtoni, Vidua_funerea, 

Vidua_regia, Vidua_raricola, Vidua_chalybeata, Vidua_purpurascens, 

Vidua_nigeriae, Vidua_wilsoni, Vidua_camerunensis, Vidua_fischeri, 

Anomalospiza_imberbis, Anthus_bogotensis, Mycerobas_affinis, 

Eophona_migratoria, Eophona_personata, Pyrrhula_erythrocephala, 

Carpodacus_edwardsii, Carpodacus_rubicilloides, Carpodacus_vinaceus, 

Carpodacus_rodochroa, Carpodacus_pulcherrimus, Carpodacus_roseus, 

Carpodacus_trifasciatus, Carpodacus_roborowskii, Carpodacus_eos, 

Carpodacus_rodopeplus, Carpodacus_rubescens, Leucosticte_australis, 

Leucosticte_atrata, Leucosticte_brandti, Leucosticte_nemoricola, 

Neospiza_concolor, Eremopsaltria_mongolicus, Loxia_scotica, 

Loxia_pytyopsittacus, Carduelis_atriceps, Linurgus_olivaceus, Carduelis_johannis, 

Serinus_buchanani, Serinus_tristriatus, Serinus_pusillus, Serinus_rothschildi, 

Serinus_menachensis, Serinus_alario, Serinus_flavivertex, Serinus_canicollis, 

Serinus_thibetanus, Serinus_serinus, Serinus_xanthopygius, Serinus_reichardi, 

Serinus_xantholaemus, Serinus_sulphuratus, Serinus_syriacus, 

Serinus_melanochrous, Serinus_donaldsoni, Serinus_koliensis, Serinus_burtoni, 

Serinus_mozambicus, Serinus_dorsostriatus, Serinus_citrinipectus, 

Serinus_nigriceps, Serinus_frontalis, Serinus_atrogularis, Serinus_leucopygius, 

Serinus_hypostictus, Serinus_citrinelloides, Serinus_capistratus, 

Carduelis_cannabina, Carduelis_dominicensis, Carduelis_tristis, 

Carduelis_lawrencei, Carduelis_yemenensis, Carduelis_pinus, 

Carduelis_monguilloti, Carduelis_atrata, Carduelis_xanthogastra, 

Carduelis_cucullata, Carduelis_yarrellii, Carduelis_siemiradzkii, Carduelis_barbata, 

Carduelis_uropygialis, Carduelis_spinescens, Carduelis_notata, Carduelis_chloris, 

Carduelis_ambigua, Carduelis_spinoides, Carduelis_sinica, 

Calamospiza_melanocorys, Chondestes_grammacus, Spizella_arborea, 

Zonotrichia_capensis, Zonotrichia_albicollis, Zonotrichia_querula, 

Zonotrichia_leucophrys, Zonotrichia_atricapilla, Junco_hyemalis, 

Aimophila_ruficeps, Pipilo_crissalis, Pipilo_fuscus, Pooecetes_gramineus, 

Ammodramus_nelsoni, Ammodramus_leconteii, Melospiza_lincolnii, 

Ammodramus_bairdii, Spizella_atrogularis, Spizella_wortheni, Spizella_breweri, 

Spizella_pusilla, Spizella_passerina, Spizella_pallida, Amphispiza_bilineata, 

Aimophila_carpalis, Ammodramus_humeralis, Ammodramus_aurifrons, 

Emberiza_impetuani, Emberiza_tahapisi, Emberiza_striolata, Emberiza_cabanisi, 

Emberiza_flaviventris, Miliaria_calandra, Emberiza_caesia, Emberiza_buchanani, 
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Emberiza_cirlus, Emberiza_citrinella, Emberiza_leucocephalos, Emberiza_stewarti, 

Emberiza_godlewskii, Emberiza_cia, Emberiza_cioides, Emberiza_jankowskii, 

Emberiza_bruniceps, Emberiza_melanocephala, Melophus_lathami, 

Emberiza_yessoensis, Emberiza_pallasi, Emberiza_schoeniclus, Emberiza_rustica, 

Emberiza_poliopleura, Emberiza_aureola, Emberiza_sulphurata, Emberiza_affinis, 

Emberiza_fucata, Emberiza_pusilla, Emberiza_cineracea, Emberiza_variabilis, 

Emberiza_tristrami, Emberiza_chrysophrys, Emberiza_elegans, Agelaius_assimilis, 

Agelaius_phoeniceus, Agelaius_humeralis, Molothrus_rufoaxillaris, Molothrus_ater, 

Quiscalus_nicaraguensis, Quiscalus_niger, Agelasticus_cyanopus, 

Agelasticus_thilius, Chrysomus_icterocephalus, Chrysomus_ruficapillus, 

Sturnella_loyca, Sturnella_neglecta, Spiza_americana, Passerina_amoena, 

Passerina_rositae, Passerina_ciris, Passerina_leclancherii, Passerina_cyanea, 

Rhodothraupis_celaeno, Cardinalis_sinuatus, Tiaris_obscurus, Tiaris_fuliginosus, 

Tiaris_canorus, Tiaris_bicolor, Tiaris_olivaceus, Buthraupis_eximia, Diuca_diuca, 

Diuca_speculifera, Gubernatrix_cristata, Phrygilus_alaudinus, Phrygilus_fruticeti, 

Phrygilus_punensis, Coryphospingus_pileatus, Coryphospingus_cucullatus, 

Conirostrum_sitticolor, Phrygilus_dorsalis, Phrygilus_erythronotus, 

Haplospiza_rustica, Haplospiza_unicolor, Phrygilus_plebejus, Phrygilus_unicolor, 

Catamenia_inornata, Catamenia_homochroa, Catamenia_analis, 

Melanodera_melanodera, Melanodera_xanthogramma, Phrygilus_gayi, 

Phrygilus_patagonicus, Phrygilus_atriceps, Sicalis_citrina, Sicalis_raimondii, 

Sicalis_columbiana, Sicalis_uropygialis, Sicalis_flaveola, Sicalis_luteola, 

Sicalis_auriventris, Sicalis_luteocephala, Sicalis_lebruni, Sicalis_taczanowskii, 

Sicalis_lutea, Sicalis_olivascens, Oryzoborus_funereus, Oryzoborus_angolensis, 

Oryzoborus_nuttingi, Oryzoborus_crassirostris, Oryzoborus_maximiliani, 

Sporophila_americana, Sporophila_corvina, Sporophila_intermedia, 

Sporophila_murallae, Sporophila_simplex, Sporophila_leucoptera, 

Sporophila_luctuosa, Sporophila_peruviana, Sporophila_caerulescens, 

Sporophila_nigricollis, Sporophila_torqueola, Sporophila_schistacea, 

Sporophila_lineola, Sporophila_collaris, Sporophila_bouvronides, 

Sporophila_albogularis, Sporophila_plumbea, Sporophila_frontalis, 

Sporophila_cinnamomea, Sporophila_nigrorufa, Sporophila_palustris, 

Sporophila_ruficollis, Sporophila_bouvreuil, Sporophila_hypoxantha, 

Sporophila_minuta, Sporophila_telasco, Sporophila_castaneiventris, 

Calcarius_mccownii, Calcarius_lapponicus, Calcarius_pictus, Calcarius_ornatus, 

Petronia_dentata, Passer_griseus, Passer_rufocinctus, Passer_melanurus, 

Passer_motitensis, Passer_ammodendri, Passer_cordofanicus, 
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Passer_hispaniolensis, Passer_domesticus, Passer_montanus, Passer_suahelicus, 

Passer_flaveolus, Passer_luteus, Passer_eminibey, Passer_simplex, 

Passer_shelleyi, Passer_moabiticus, Passer_gongonensis, Passer_pyrrhonotus, 

Passer_swainsonii, Passer_castanopterus, Passer_rutilans, Passer_euchlorus, 

Montifringilla_taczanowskii, Montifringilla_adamsi, Montifringilla_nivalis, 

Montifringilla_theresae, Montifringilla_ruficollis, Montifringilla_davidiana, 

Montifringilla_blanfordi, Petronia_brachydactyla, Aethopyga_christinae, 

Urocynchramus_pylzowi, Celeus_torquatus, Veniliornis_mixtus, 

Melanerpes_formicivorus, Porphyrio_flavirostris, Coturnicops_notatus, 

Coturnicops_exquisitus, Amaurornis_akool, Rougetius_rougetii, Sarothrura_boehmi, 

Sarothrura_lugens, Sarothrura_insularis, Grus_virgo, Columbina_cruziana, 

Columbina_picui, Columbina_minuta, Columbina_talpacoti, Columbina_passerina, 

Columbina_inca, Columbina_squammata, Uropelia_campestris, 

Claravis_mondetoura, Claravis_pretiosa, Claravis_godefrida, Geophaps_scripta, 

Geophaps_smithii, Geophaps_plumifera, Petrophassa_rufipennis, 

Petrophassa_albipennis, Phaps_histrionica, Phaps_chalcoptera, Phaps_elegans, 

Ocyphaps_lophotes, Geopelia_striata, Geopelia_maugeus, Geopelia_placida, 

Geopelia_cuneata, Gallicolumba_tristigmata, Phapitreron_amethystinus, 

Phapitreron_brunneiceps, Turtur_tympanistria, Turtur_afer, Turtur_chalcospilos, 

Turtur_abyssinicus, Turtur_brehmeri, Oena_capensis, Chalcophaps_stephani, 

Trugon_terrestris, Caloenas_nicobarica, Goura_cristata, Otidiphaps_nobilis, 

Leptotila_battyi, Leptotila_cassini, Leptotila_plumbeiceps, Leptotila_rufaxilla, 

Leptotila_pallida, Leptotila_jamaicensis, Leptotila_verreauxi, Zenaida_auriculata, 

Zenaida_macroura, Zenaida_asiatica, Zenaida_meloda, Geotrygon_caniceps, 

Geotrygon_violacea, Geotrygon_linearis, Geotrygon_albifacies, Geotrygon_frenata, 

Geotrygon_saphirina, Geotrygon_montana, Starnoenas_cyanocephala, 

Geotrygon_goldmani, Macropygia_nigrirostris, Macropygia_ruficeps, 

Macropygia_phasianella, Macropygia_amboinensis, Reinwardtoena_reinwardtsi, 

Nesoenas_picturata, Stigmatopelia_senegalensis, Stigmatopelia_chinensis, 

Streptopelia_tranquebarica, Streptopelia_hypopyrrha, Streptopelia_turtur, 

Streptopelia_bitorquata, Streptopelia_roseogrisea, Streptopelia_decipiens, 

Columba_eversmanni, Columba_livia, Columba_rupestris, Columba_leuconota, 

Columba_guinea, Columba_oliviae, Columba_albitorques, Patagioenas_fasciata, 

Patagioenas_plumbea, Patagioenas_maculosa, Pterocles_exustus, 

Pterocles_bicinctus, Pterocles_quadricinctus, Pterocles_namaqua, 

Pterocles_burchelli, Pterocles_coronatus, Pterocles_senegallus, Pterocles_alchata, 

Pterocles_decoratus, Pterocles_lichtensteinii, Pterocles_indicus, 
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Pterocles_orientalis, Pterocles_personatus, Pterocles_gutturalis, 

Syrrhaptes_tibetanus, Syrrhaptes_paradoxus. 

 

Environmental data description: 

Variable Description 

Temperature seasonality 
Annual range in temperature - standard 

deviation *100 

Precipitation seasonality 
Annual range in precipitation - coefficient of 

variation 

Net primary productivity 

Mean annual energy available to heterotrophs 

gCM-2, 30′ resolution, reflected and square-root-

transformed 

Elevational range 
range in elevation with 30′ resolution, square-

root-transformed 
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CHAPTER 6 

 

General discussion 

 

GENERAL DISCUSSION 

In this thesis I investigate patterns and correlates for ecomorphological 

diversification across the global radiation of birds. In chapters 2 and 3, I focused on 

the tempo of evolution. Specifically, I investigated the ability of single-process trait 

evolutionary models to describe the temporal patterns of evolution in the face of rate 

heterogeneity using both simulated and empirical datasets. Secondly, I used 

variable-rates models of evolution to describe the patterns of beak shape rate 

variation across over 5,000 bird species, and further, to test for multiple candidate 

drivers for the tempo of evolution at both recent and deep-time scales. In chapters 4 

and 5, I focused more broadly on the mode of evolution, with specific focus on the 

potential impact of ecological selection pressures on the evolution of 

ecomorphological traits. I first investigated whether patterns of trait divergence 

consistent with the presence of competitive selection pressures are prevalent 

across the bird radiation (using beak shape, beak size and body mass data for over 

8,000 bird species). Further, I mapped the geographical variation in the strength of 

competition signal in over 10,000 avian granivorous assemblages distributed 

globally, and investigated the association between competition signal and the 

process of ecomorphological differentiation (rate and total disparity) in 

assemblages. In the next section, I will discuss the main findings of this work, with 

focus on how my results provide insights into our understanding of the tempo and 

mode of phenotypic accumulation at macroevolutionary scales. 
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How accurately do single-process models describe the process of evolution 

in the face of heterogeneity in rates of trait change? 

In chapter 2, I first showed that variation in the tempo of body mass evolution is 

prevalent across both small (20-30 species) and larger (100+ species) bird clades. 

At these phylogenetic scales, however, single-process models of evolution are 

typically applied. Therefore, I applied both rate-static and rate-variable trait 

evolutionary models on simulated and empirical datasets, and further used absolute 

adequacy tests to describe the extent to which the conclusions we draw from trait 

evolutionary models are misled by the presence of rate heterogeneity. I showed that 

rate-static models commonly mislabel temporal variation in rates, and thus can lead 

to spurious inferences about the process of trait evolution. For example, if one 

lineage within a clade shows rapid evolution, a rate-static model estimates general 

high rates of evolution for all clade members, which can further be erroneously 

interpreted as evidence for a clade wide radiation (as exemplified in mammals also 

by Venditti et al., 2011 vs Cooper & Purvis, 2010 or Slater et al., 2010). Further, my 

results add to the argument that absolute and relative fit are not necessarily linked 

(e.g. Kaliontzopoulou & Adams, 2016; Pennell et al., 2015), and testing for absolute 

model adequacy can correct systematic biases in the process of model selection 

criteria in the presence of rate heterogeneity. For example, rapid morphological 

differentiation at the tips of the phylogeny consistently results in a high preference 

for a single stationary peak model, which represents a clear shift in interpretation 

from isolated radiations within a clade to constrained evolution across the whole 

group. Variable-rates models are also not infallible, and for example early-burst 

processes are easily missed. However, absolute adequacy tests can pick-up that 

misspecification of the temporal pattern of evolution, and thus correct the conclusion 

that rate accelerations and decelerations are uncommon (an issue also recognized 

in Slater & Pennell, 2014). 
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More broadly, the results of chapter 2 show that efforts to add complexity in 

evolutionary models are rewarding, especially when accounting for a common 

feature of evolution, such as rate heterogeneity. Through-out my analyses, I found 

that variable-rate models are robust and describe the data well, which highlights the 

potential for accurate conclusions on the process of trait evolution in clades up to 

hundreds of species when more flexible approaches are used. Further, the 

extension of these models to other common comparative analyses, such as 

correlation between traits (Mazel et al., 2016) or between rates of disparification and 

diversification (e.g. Rabosky et al., 2013) is a useful direction to a better 

understanding of macroevolutionary morphological differentiation. The findings also 

highlight the importance of co-utilizing relative and absolute fit when modelling trait 

evolution and thus argue for developing adequacy tools further in the future, for 

example, by extending the existing absolute fit framework to other models of trait 

evolution (diversity-dependent models, Weir & Mursleen, 2013, jump models, 

Landis & Schraiber, 2017 etc.). 

 

What predicts rates of phenotypic macroevolution? 

In chapter 2, I found a high prevalence of variation in the speed at which body mass 

evolves within avian clades. In chapter 3, I explored the potential for rate 

heterogeneity more broadly across the bird radiation, and I found frequent episodes 

of rapid evolution in beak shape across both recent (i.e. species level) and deep-

time (clade level) scales. I further showed that species-specific rates of evolution 

are not impacted by factors associated with the overall genetic variability in 

populations, or mutation and fixation rates (e.g. life history traits, the climatic 

environment, or range sizes, Gillman et al., 2014; Lanfear et al., 2014; Thomas et 

al., 2010; Thomson et al., 2014). Although I found localized effects for some factors 

related to species’ ecologies (e.g. evidence of rapid evolution in some island-

dwelling clades), the ecological predictors in the analyses also failed to explain 
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significant amounts of variation in evolutionary rates. More broadly, these results 

imply that the underlining mechanisms behind patterns of morphological 

differentiation between species are complex and their effects are inconsistent. 

Consequently, heterogeneity in rates of evolution between species across global 

radiations is hard to predict.  

 

In contrast to species-level trends, deep-time patterns of rate heterogeneity are 

more tightly and consistently linked with a few key ecological processes. 

Specifically, I found rapid rates of evolution in clades evolving at the periphery of the 

morphospace, as well as in species-rich clades. Further, I found that species 

richness and morphological distinctiveness are negatively correlated (in agreement 

with Ricklefs, 2005), and so overall, my results highlight two distinct routes to rapid 

trait evolution. First, the evolution of “odd”, specialised beaks frees species from 

competitors by enabling them to tap into new ecological resources, similar to 

Simpsonian ideas that “jumps” in the phenotypic space allow species to invade new 

adaptive zones with increased ecological opportunity and thus potential for rapid 

interspecific differentiation (Simpson, 1953, Hunter, 1998; Losos, 2010; Losos & 

Mahler, 2010; Rabosky, 2017). Alternatively, species with average-typed beaks 

evolving in species-rich clades likely access a limited number of ecological niches. 

Finding high rates of evolution in such groups suggests a potential role of biotic 

interactions in creating dynamic adaptive landscapes that facilitate a fast turnover of 

phenotypic traits via ecological character displacement (Schluter, 2001; Thompson, 

1999).  

 

How frequent do we find patterns of trait divergence consistent with the 

presence of ecological selection pressures at macroevolutionary scales? 

In chapter 4, I surveyed the signal of species-interactions across the bird radiation, 

and so I took a first step in exploring whether biotic interactions could be a potential 
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mechanism behind macroevolutionary trends such as the positive link between 

species richness and trait evolutionary rates revealed in chapter 3. To do this, I 

applied models with species interactions i.e. trait-dependent methods, in which 

phenotypic evolution is influenced by similarity in trait values (Drury et al., 2016) as 

well as diversity-dependent methods, in which phenotypic evolution is influenced by 

the accumulation of species (Weir & Mursleen, 2013) in 95 avian clades (over 8,000 

species in total). I showed that a mode of evolution consistent with the presence of 

biotic interactions is not ubiquitous, but also not uncommon at macroevolutionary 

scales, and I found support for competition signal in 15% up to 30% of bird groups 

(depending on the trait of interest). Also, I found stronger signals of competition in 

recent radiations, adding to the argument that the effect and detectability of species-

interactions signals at broad scales are mediated by conditions such as the requisite 

of species to share similar foraging niches or to overlap extensively to allow 

meaningful interactions (Arthur, 1982; Grant, 1972). Overall, these results imply a 

middle ground between hypotheses arguing that competition is one of the core 

drivers of global phenotypic diversity (Darwin, 1859; Thompson, 1999; Van Valen, 

1973) and ideas that argue for a small to null importance of biotic interactions in 

deep-time compared to other selection pressures (e.g. abiotic, Benton, 2009). 

However, we acknowledge that the patterns of trait divergence we see could also 

arise from processes alternative to ecological selection pressures (not the least the 

presence of measurement and/or phylogenetic error in the data).   

 

Further, in clades with high support for competition signal, the models showed 

increased rates of evolution with high densities of species, in agreement with my 

previous results of high rates of beak shape evolution in species-rich clades 

(chapter 3), and with the observations across recent time scales that competition 

accelerates morphological differentiation as species partition the trait space (Grant 

& Grant, 2006; Stuart et al., 2014). However, my results also show a preference for 
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diversity-dependent models over trait-dependent methods, a trend that has been 

interpreted as a signature of character displacement occurring simultaneously with 

bounded evolution (Drury et al., 2018). Hence these results imply that, while 

competition can leave a signal at macroevolutionary scales, the impact on deep-

time phenotypic accumulation might be mediated by factors such as evolution under 

constraints (Drury et al., 2018). Additionally, I found that competitive selective 

pressures do not leave a signal in the mode of evolution across random, multiple 

traits. Rather, the most parsimonious route to ecological specialization (i.e. change 

in a single key trait linked to resource acquisition, Grant, 1999; Weir & Mursleen, 

2013) is most often selected for. Therefore, we expect species interactions to 

impact global patterns of biodiversity to a lesser extent than factors driving 

extensive diversification across multiple traits simultaneously.  

 

What is the geographical distribution of competition signature across the 

globe, and how does it associate with the process of trait evolution in 

assemblages of species? 

In chapter 5, I applied models of trait evolution with competition in assemblages of 

granivorous birds in order to map the geographical variation in patterns of trait 

divergence consistent with the presence of competitive interactions globally. I 

further linked the signature for competition with the process of phenotypic evolution 

(rate and disparity). Focusing on sympatric assemblages of species sharing the 

same dietary guild should increase the potential for meaningful interactions in target 

species pools (Grant, 1972). Therefore, the concerns about not detecting a signal of 

competition when looking across entire avian clades (chapter 4) should be to some 

extent alleviated. I showed that, across granivorous birds, a mode of evolution 

consistent with competition for ecomorphological traits does not follow an obvious 

spatial pattern (e.g. latitudinal gradient, Dobzhansky, 1950). Rather, areas of high 

support for competition are scattered in a few areas around the globe. Moreover, I 
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found moderate to little support for environmental predictors of the strength of biotic 

interactions signal. Hence overall, my results suggest a low predictability for the 

global distribution of evolution consistent with competition. These findings are also 

in agreement with the idea that strong biotic interactions are triggered by 

unpredictable events (e.g. irregular resource shortage episodes or increases in 

number of competitors, e.g. Grant & Grant, 2006), and thus represent an 

unpredictable, dynamic selective force, potentially capable of creating rapidly 

changing adaptive landscapes (Thompson, 1999).  

 

I showed that the prevalence and strength of a signature of species-interactions 

associate negatively with trait evolutionary rates, implying that most often the 

resolution of competition in granivorous birds happens prior to secondary contact 

(similar to other studies in birds, Drury et al., 2018; McEntee et al., 2018). 

Specifically, when phenotypic evolution is rapid, by the time diverging species come 

back to sympatry they will be ecologically sufficiently distinct and competition will be 

reduced or annulled. This interpretation is also supported by the fact that avian 

species speciate predominantly in allopatry (Phillimore et al., 2008), and further the 

role of trait dissimilarity to enable secondary contact has been shown (Pigot & 

Tobias, 2013). More broadly, these results imply that the predicted trend of rapid 

character displacement under competition (as exemplified by iconic radiations such 

as Darwin’s finches, Grant & Grant, 2006) can be difficult to detect at global scales. 

Moreover, the potential for secondary contact when speciation is allopatric can 

create a pattern of negative association between rates of evolution and competition. 

Because the evolutionary history of allopatric-symaptric dynamics between 

interacting species is difficult to determine, we are also cautious of the fact that 

divergence in allopatry can be extensive in birds, and hence the patterns of trait 

divergence we detect could result mainly from phenotypic differentiation in allopatry, 

rather than when species co-occur. Nonetheless, we found that competition signal is 
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associated with higher levels of disparity in assemblages, and thus, despite the 

constraints on the potential for strong competitive selection pressures in sympatry, 

the resolution of competition seems to leave a signal of increased phenotypic 

biodiversity globally.  

 

IMPLICATIONS 

In this thesis I focused on the accumulation of diversity in ecomorphological traits 

across birds. I show that the dynamics between two key components of biodiversity 

- rates of trait diversification and species richness, can be influenced by ecological 

opportunities and constraints of the eco-morphospace. Specifically, invading 

peripheral niches enables subsequent rapid trait evolution, but the confined nature 

of specialized phenotypes limits diversity in terms of number of species (similar to 

Ricklefs, 2005). Conversely, central areas of the morphospace accommodate high 

density of species and also facilitate rapid evolutionary rates. The analyses in 

chapter 4 also reveal a signal of positive diversity-dependence in beak shape, size, 

and body mass in many avian clades. The positive coupling between the speed of 

trait evolution and total number of species does not bring support to the hypothesis 

that a reduction in niche availability with increased diversity necessarily drives a 

deceleration in trait evolutionary rates (e.g. Gavrilets & Losos, 2009, Mahler et al., 

2010 but see Claramunt et al., 2012). A pattern of high rates of evolution with high 

density of species can be, however, attributed to interspecific competition, which 

represents a dynamic selection pressure that could regularly drive rapid phenotypic 

differentiation between species (Schluter, 2001; Thompson, 1999). More broadly, 

these findings imply that competition could maintain rapid rates of phenotypic 

turnover between species even with limited availability of ecological niches. 

However, it has been suggested that competition contributes little to patterns of 

morphological diversification in deep-time (Benton, 2009). Conversely, my results 

suggest that, although not ubiquitous, a mode of evolution consistent with 
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competition is not uncommon across avian clades, and therefore, biotic interactions 

could influence the dynamics of trait evolution at macroevolutionary scales. 

 

If a high density of species facilitates higher rates of trait evolution via rapid 

character displacement, we expect to see a positive relationship between the 

strength of species interactions signal, trait evolutionary rates, and also phenotypic 

disparity i.e. we expect competition to be a driver of increased biodiversity. Such a 

relationship has been shown already in a few iconic sympatric recent radiations 

(Grant & Grant, 2006; Stuart et al., 2014). Conversely, I found that high levels of 

competition signal are associated with slow evolutionary rates in granivores 

assemblages (Figure 6.1 is an overall representation of how competition signal, 

rates and total disparity are inter-linked). I interpreted this trend as a by-product of 

the resolution of competition prior to secondary contact in birds, and so my results 

cannot infer on how competition signal links with the rate of morphological 

Figure 6.1. Overview of relationships between competition signal, rates of evolution, 

disparity, species richness, and age of most recent common ancestor of focal species 

(based largely on results in chapter 5). A signature of competition appears negatively 

correlated with rates of evolution, as well as species richness in assemblages, however 

these relationship likely indicate the resolution of competition in allopatry, as well as 

issues related to sample size. With increasingly old assemblages, the signal of 

competition is also likely to decay. Competition signal is also coincident with increased 

disparity in assemblages, despite the negative links with evolutionary rates, number of 

species, and ancestor age of species – factors that impact positively on disparity. 
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differentiation when lineages evolve in sympatry through-out their evolutionary 

history. Further, extensive trait differentiation in allopatry, also followed by filtering 

could also contribute to the distribution of present-day trait values across lineages. 

Overall, my findings are in agreement with a positive association between species 

richness and trait evolutionary rates due to competition within clades. Within 

assemblages of species, however, the findings imply that the resolution of 

competition in allopatry could leave an unintuitive pattern of negative association 

between rapid morphological differentiation and competition signal. Nonetheless, I 

found that strong competition signal coincides with increased disparity in 

assemblages, in agreement with the predictions that lineages differentiate 

extensively under competition, and thus competitive selection pressures can shape 

biodiversity in terms of morphological disparity across the globe. 

 

LIMITATIONS AND FURTHER WORK 

Several caveats of the work presented here are discussed in detail in each data 

chapter. I will, however, reiterate some key points that relate more generally to 

findings through-out the thesis. First, in chapter 2, I highlight the potential 

improvements in the interpretation of trait evolutionary models when absolute fit is 

taken into account. However, an absolute adequacy framework is not readily 

available for models of evolution with competition. In my analyses, co-utilizing 

absolute and relative fit would reduce the concerns about overinflated best fit for 

exponential positive diversity-dependent models in the presence of measurement 

error (Drury et al., 2018), but also inform when relative support for competition is 

underestimated, e.g. if falsely inflated inter-tip variability increases preference for 

single stationary peak methods (as shown in chapter 2). Further, the development 

of multivariate models of evolution with competition (e.g. Clarke et al., 2017) could 

provide a better approximation on how competition acts on complex traits, e.g. if the 

resolution of competition implies changes on multiple PC axes of variation in beak 
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shape. The same logic could be extended to including multiple traits into models, 

however, given that my results imply that species interactions impacts preferentially 

on a single axis of morphological variation, modelling multiple distinct traits in 

multivariate models is probably of less interest.  

 

Additionally, several developments would extend the findings from chapters 4 and 5. 

First, in the current implementation of models in chapter 4, I assume that all species 

in a clade interact through-out their evolutionary history. However, this assumption 

is likely often false, particularly in birds where allopatric speciation is dominant 

(Phillimore et al., 2008), and even more so when rates to secondary contact are 

slow (e.g. in Furnariidae, Pigot & Tobias, 2014). The potential for interaction (and 

thus competition) between species also requires overlap in method of resource 

acquisition, as well as a shortage of shared resources (Arthur, 1982; Grant, 1972). 

My results thus likely underestimate the signal of biotic interactions within clades, 

and would benefit from restricting the pool of potential interacting lineages by 

incorporating data on foraging strata, dietary guild (e.g. from Wilman et al., 2014), 

and range overlap. The latter is, however, difficult to achieve because of the issues 

related to ancestral range reconstruction, though cruder estimates could be 

obtained by restricting interactions between lineages that reside in the same broad 

ecoregion (e.g. Drury et al., 2018). These concerns are illustrated by examples of 

clades where I find a lack of support for competition when applying models to the 

whole clade, but moderate to strong support within sympatric assemblages (e.g. 

Finches). Similar improvements could also be implemented in chapter 5 (e.g. 

include information on the percentage of overall range overlap between species co-

occurring in grid cells). Further, an obvious expansion to this chapter would be to 

increase the phylogenetic breadth of the analyses by incorporating phenotypic data 

across other dietary guilds.  
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Lastly, the findings of this thesis point out to some additional questions to be 

answered. For example, the debate over the relationship between the process of 

morphological and species diversification is ongoing (Adams et al., 2009; Burbrink 

et al., 2012; Rabosky & Adams, 2012; Rabosky et al., 2013). In chapter 3, I found 

high rates of evolution in species-rich clades, but I did not further explore the 

underlying mechanism or causality of this relationship. Further, I do not differentiate 

between biological and statistical (type 1 or type 2 errors) explanations behind 

several trends I find in the thesis, including the negative relationship between age 

and evolutionary rates (chapter 3), the negative relationship between competition 

signal and species richness in sympatric assemblages (chapter 5), or the trend of 

increased strength of competition signal at more recent time-scales (chapters 4 and 

5). While these relationships deserve further attention, in this thesis I mostly focused 

on richness and age as cofounding factors (e.g. as variables accounting for sample 

size). Additionally, through-out this thesis, I highlight several avian groups with 

striking rapid evolutionary rates (e.g. flamigos, ducks, shore birds) or extremely high 

signal for species interactions (e.g. tits, chickadees and penduline−tits, sandgrouse, 

antpittas). Given the macroevolutionary scale of my work, I do not focus on these 

individual clades further, but these analyses highlight potentially interesting study-

systems beyond the few well-known adaptive radiations for understanding more fine 

details on the tempo and mode of evolution. 

 

GENERAL CONCLUSION 

In this thesis, I took a comprehensive approach to investigate the evolution of 

ecomorphological traits across the bird radiation with the aim of understanding the 

patterns, correlates and consequences for the tempo and mode of trait evolution at 

macroevolutionary scales. I found evidence for extensive rate heterogeneity when 

modelling body mass and beak shape evolution across birds, supporting the 

hypothesis that variation in the tempo of phenotypic evolution is widespread 
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(Rabosky et al., 2013; Simpson, 1953; Venditti et al., 2011). Further, I found that 

while the tempo of evolution at recent phylogenetic scales can be hard to predict, 

variation in clade rates of evolution is tightly linked with the potential for ecological 

opportunity as well as the process of niche filling. I also explored the predictability of 

evolutionary modes, and I found that a mode of evolution consistent with 

competition seems contingent on chance at both large-scale phylogenetic scales, 

and in sympatric assemblages of species across the globe. Additionally, I explored 

the consequences of ecological processes on the accumulation of ecomorphological 

diversity. I found that an increase in ecological opportunity associated with invasion 

of unoccupied, peripheral areas of the morphospace can drive subsequent rapid 

evolutionary rates, but it also causes reduced biodiversity in terms of species 

richness. Rapid morphological differentiation is also associated with species-rich, 

central areas of the morphospace, implying that species-interactions could 

potentially maintain a rapid turnover in phenotypes despite the reduced availability 

for ecological niches in species-rich clades. However, I found a negative link 

between evolutionary rates and competition strength in assemblages around the 

globe. This trend is likely caused by high levels of allopatric speciation and trait-

dependent filtering for secondary contact in birds, and generally, these results imply 

that unexpected apparent relationships between signatures of biotic interactions in 

trait divergence and rates of evolution can emerge at broad scales. Furthermore, I 

found that a signal for species-interactions coincided with increased morphological 

disparity within assemblages, supporting the hypothesis that ecological selection 

pressures can act as generators of biodiversity. Taken together, the results of this 

thesis highlight how the potential for ecological opportunities, the process of niche 

filling, and the resolution of competition concurrently shape the accumulation of 

morphological biodiversity at broad temporal and spatial scales, and thus shed light 

on some underlying mechanisms of present-day diversity of life.   
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