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Abstract

Despite considerable advances in missing data imputation techniques over

the last three decades, research and data analysis across many fields are

still affected by inferior techniques of imputation. Incorrect imputation can

lead to bias, over confident intervals, and inaccurate conclusions. Many

techniques have emerged in the literature as candidate solutions, including

the traditional and modern methods such as listwise, regression, stochas-

tic, maximum likelihood and multiple imputation and others. While these

methods may have value in improving the data set, most of the traditional

methods do introduce some level of bias but, more importantly, none of

the traditional methods have been proved to be useful for handling miss-

ing data in nonlinear systems, dynamic systems and multivariate time se-

ries data sets. This thesis contributes by first, conducting a comparative

study of traditional and modern classifications by highlighting the differ-

ences in their performance. Second, an algorithm to enhance the predic-

tion of values to be used for data imputation with nonlinear models is

presented. Third, a novel algorithm model selection to enhance prediction

performance in the presence of missing data is presented. It includes an

overview of nonlinear model selection with complete data, and provides

summary descriptions of Box-Tidwell and fractional polynomial methods

for model selection. In particular, it focuses on the fractional polynomial

method for nonlinear modelling in cases of missing data. An analysis ex-

ample is presented to illustrate the performance of this method.

Another novel technique for dealing with missing data in multivariate

time series is also presented and studied. The new algorithm utilises a
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vector autoregressive model (VAR) to handle missing data by combining

a prediction error minimization (PEM) routine with an expectation maxi-

mization (EM) algorithm. As shown in a simulation study, the proposed

algorithm produces better estimates than traditional and modern methods

such as listwise deletion, imputation by using sample means and variances.

It also outperforms the naive approach of conducting linear regression on

time series while ignoring the time dependency (i.e., treating observations

at different time points as independent), K-nearest neighbour (KNN), Mul-

tivariate Autoregressive State-Space Modelling package (MARSS) and EM

algorithms. An empirical example demonstrates the use of the new method

showing the advantages and limitations of the proposed method. Lastly,

empirical results obtained using real data provide a valuable and promis-

ing insight to the problem of missing data. Thus, this thesis has uniquely

opened the doors of research to this area.



Contents

List of Figures xiii

List of Tables xv

Nomenclature xvi

Acronyms xviii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 List of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review of Missing Data Analysis in Static and Dynamic

Data Sets 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Missing Data Mechanisms . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Missing Data at Random . . . . . . . . . . . . . . . . . 11

2.2.2 Missing Data Completely at Random . . . . . . . . . . 12

2.2.3 Missing Data Not at Random . . . . . . . . . . . . . . 15

2.3 Approaches to Deal with Missing Data . . . . . . . . . . . . . 15

v



vi Contents

2.3.1 Traditional Missing-Data Techniques . . . . . . . . . . 16

2.3.1.1 Listwise Deletion . . . . . . . . . . . . . . . . 16

2.3.1.2 Pairwise Deletion . . . . . . . . . . . . . . . . 16

2.3.1.3 Imputation Methods . . . . . . . . . . . . . . 19

2.3.2 Modern Missing Data Techniques . . . . . . . . . . . . 23

2.3.2.1 Maximum Likelihood . . . . . . . . . . . . . . 24

2.3.2.2 A general Case for Multivariable Estimation 28

2.3.2.3 Multiple Imputation (MI) . . . . . . . . . . . . 28

2.3.2.4 Expectation and Maximization Algorithm . . 32

2.4 Multivariable Missing Data Analysis . . . . . . . . . . . . . . . 44

2.5 Overview of Stationary Multivariate Time Series . . . . . . . . 46

2.5.1 Covariance and Correlation for Multivariate Time Se-

ries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.2 Filtering of Multivariate Time Series . . . . . . . . . . . 49

2.6 Multivariate Time Series Linear Models . . . . . . . . . . . . . 50

2.6.1 Wold Representation . . . . . . . . . . . . . . . . . . . . 50

2.6.2 The Vector Autoregressive Moving Average Model . . 52

2.7 Multivariate Time Series and Forecasting . . . . . . . . . . . . 57

2.7.1 Minimum Mean Square Error Forecasting . . . . . . . 57

2.7.2 Forecasts Computation for ARMA(p, q) Model . . . 59

2.8 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.8.1 Granger Causality . . . . . . . . . . . . . . . . . . . . . 62

2.8.2 Granger Causality in the Context of VARMA(p, q) . 64

3 Using Nonlinear Models to Enhance Prediction Performance with

Incomplete Data 67

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



Contents vii

3.2 Gauss-Newton Algorithm . . . . . . . . . . . . . . . . . . . . . 69

3.3 Gauss-Newton Algorithm for Missing Data . . . . . . . . . . . 70

3.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 Box-Tidwell Method . . . . . . . . . . . . . . . . . . . . 81

3.4.2 Fractional Polynomial Model Estimation . . . . . . . . 82

3.4.3 Missing Data and Model Selection . . . . . . . . . . . . 84

3.4.4 Goodness of Model Fit . . . . . . . . . . . . . . . . . . . 87

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Handling Missing Data in Multivariate Time Series Using a Vec-

tor Autoregressive Model-Imputation 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Vector Autoregressive Model (VAR) . . . . . . . . . . . . . . . 93

4.3 The VAR Model for Stationary Time Series . . . . . . . . . . . 94

4.3.1 VAR (p) Model Estimation . . . . . . . . . . . . . . . . 94

4.3.2 Model Order Selection . . . . . . . . . . . . . . . . . . 96

4.4 Forecasting with VAR (p) Model . . . . . . . . . . . . . . . . . 98

4.5 Goodness of VAR (p) Model . . . . . . . . . . . . . . . . . . . 101

4.6 Granger Causality with VAR (p) Model . . . . . . . . . . . . . 102

4.7 Modified Listwise Deletion . . . . . . . . . . . . . . . . . . . . 104

4.7.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . 105

4.8 Vector Autoregressive Imputation Algorithm (VAR-IM) . . . . 115

4.8.1 Numerical Example . . . . . . . . . . . . . . . . . . . . 118

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Case Studies of the Application of VAR− IM Algorithm for Deal-

ing with Missing Values to Space Weather and ECG Data. 123



viii Contents

5.1 Space Weather Data . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.1 VAR− IM Algorithm for Solar Wind Data . . . . . . . 125

5.1.2 Selecting and Fitting Models . . . . . . . . . . . . . . . 129

5.1.3 Data Forecasts . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1.4 Case Study on the Incomplete Data 2 . . . . . . . . . . 138

5.2 ECG Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.1 Heart Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.2 QRS Waves . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.3 VAR− IM Versus Modern Method . . . . . . . . . . . 153

5.2.3.1 Multivariate Auto-Regressive State-Space . . 153

5.2.3.2 K-nearest neighbour . . . . . . . . . . . . . . . 154

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusions and Future work 163

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography 171



List of Figures

2.1 Complete-data scatterplot of the proportion of available chlo-

rine in a certain quantity of chlorine solution. . . . . . . . . . 18

2.2 Deletion approaches scatterplot of the proportion of avail-

able chlorine in a certain quantity of chlorine solution (MAR) 18

2.3 Mean imputation scatterplot of the proportion of available

chlorine in a certain quantity of chlorine solution (MAR). . . 21

2.4 Linear regression imputation scatterplot of the proportion of

available chlorine in a certain quantity of chlorine solution

(MAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Stochastic imputation scatterplot of the proportion of avail-

able chlorine in a certain quantity of chlorine solution (MAR). 22

3.1 Nonlinear scatterplot of the proportion of available chlorine

in a certain quantity of chlorine solution (MAR). . . . . . . . . 71

3.2 Complete Concentration/Strength data scatterplot. . . . . . . 74

3.3 Linear regression model of Concentration/Strength data in

case of 21% (MCAR) scatterplot. . . . . . . . . . . . . . . . . . 74

3.4 Noninear regression model of Concentration/Strength data

in case of 21% (MCAR) scatterplot. . . . . . . . . . . . . . . . . 75

ix



x List of Figures

3.5 (Linear regression model) residual (e) versus predicted val-

ues scatterplot in case of 21% (MCAR). . . . . . . . . . . . . . 75

3.6 (Nonlinear regression model) residual (e) versus predicted

values scatterplot in case of 21% (MCAR). . . . . . . . . . . . 76

3.7 Linear regression model of Concentration/Strength data in

case of 26% (MCAR) scatterplot. . . . . . . . . . . . . . . . . . 77

3.8 (Linear regression model) residual (e) versus predicted val-

ues scatterplot in case of 26% (MCAR). . . . . . . . . . . . . . 77

3.9 Noninear regression model of Concentration/Strength data

in case of 26% (MCAR) scatterplot. . . . . . . . . . . . . . . . . 78

3.10 (Nonlinear regression model) residual (e) versus predicted

values scatterplot in case of 26% (MCAR). . . . . . . . . . . . 78

3.11 Linear regression model of Concentration/Strength data in

case of 37% (MCAR) scatterplot. . . . . . . . . . . . . . . . . . 79

3.12 (Linear regression model) residual (e) versus predicted val-

ues scatterplot in case of 37% (MCAR). . . . . . . . . . . . . . 79

3.13 Noninear regression model of Concentration/Strength data

in case of 37% (MCAR) scatterplot. . . . . . . . . . . . . . . . . 80

3.14 (Nonlinear regression model) residual (e) versus predicted

values scatterplot in case of 37% (MCAR). . . . . . . . . . . . 80

3.15 Fitted lines for models in case of 10% MCAR imputed miss-

ing data and real values. . . . . . . . . . . . . . . . . . . . . . . 85

3.16 Fitted lines for models in case of 20% MCAR imputed miss-

ing data and real values. . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Time series with complete data. . . . . . . . . . . . . . . . . . . 105



List of Figures xi

4.2 10-step predicted response compared to measured data (com-

plete data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 10-step predicted response compared to measured data (MLD

10% missing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 10-step predicted response compared to measured data (Mean

Imputation 10% missing). . . . . . . . . . . . . . . . . . . . . . 111

4.5 10-step predicted response compared to measured data (List-

wise deletion 10% missing). . . . . . . . . . . . . . . . . . . . . 111

4.6 10-step predicted response compared to measured data (MLD

15% missing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.7 10-step predicted response compared to measured data (Mean

imputation 15% missing). . . . . . . . . . . . . . . . . . . . . . 112

4.8 10-step predicted response compared to measured data (List-

wise deletion 15% missing). . . . . . . . . . . . . . . . . . . . . 113

4.9 10-step predicted response compared to measured data (MLD

25% missing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.10 10-step predicted response compared to measured data (Mean

Imputation 25% missing). . . . . . . . . . . . . . . . . . . . . . 114

4.11 Measured and imputed data in 10%, 15% and 25% missing. . 115

4.12 VAR− IM algorithm flow chart. . . . . . . . . . . . . . . . . . 117

4.13 Generated time series. . . . . . . . . . . . . . . . . . . . . . . . 119

4.14 Measured and imputed data in 15%, 20% and 30% missing. . 121

5.1 The solar wind magnetic field time series with missing values.128

5.2 The solar wind magnetic field time series with imputed data. 128

5.3 The proposed models of the solar wind system with com-

plete data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



xii List of Figures

5.4 The proposed models of the solar wind system with imputed

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5 The par plot of sum of squares of four proposed models for

complete data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 The par plot of sum of squares of four proposed models for

imputed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.7 Forecasts with forecast period data of complete data. . . . . . 136

5.8 Forecasts with forecast period data of imputed data. . . . . . 136

5.9 Predictions 50 hours into the future for complete data. . . . . 137

5.10 Predictions 50 hours into the future for imputed data. . . . . 137

5.11 The par plot of sum of squares of four proposed models for

imputed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.12 Forecasts with forecast period data of imputed data set. . . . 140

5.13 Predictions 50 hours into the future for imputed data. . . . . 141

5.14 QRS wave properties in case of Mean-sub imputed data (10%

MCAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.15 QRS wave properties in case of Linear-reg imputed data (10%)

MCAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.16 QRS wave properties in case of VAR-IM imputed data (20%

MCAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.17 QRS wave properties in case of Mean-sub imputed data (20%

MCAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.18 QRS wave properties in case of VAR-IM imputed data (20%

MCAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.19 QRS wave properties in case of VAR-IM imputed data (20%

MCAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



List of Figures xiii

5.20 QRS wave properties in case of Mean-sub imputed data (20%

MCAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



List of Tables

2.1 The proportion of chlorine and length of time in weeks with

different missing data mechanism [32]. . . . . . . . . . . . . . 13

2.2 First Expectation step calculations . . . . . . . . . . . . . . . . 40

2.3 The Sufficient Statistics for first Expectation step iteration. . . 41

2.4 Second Expectation step calculations . . . . . . . . . . . . . . . 42

2.5 The Sufficient Statistics for second Expectation step iteration. 43

2.6 Output log-likelihood function. . . . . . . . . . . . . . . . . . . 43

3.1 The input and output of the system in MCAR with missing

percentage [84]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 The effect of linear and nonlinear models on the system in

different MCAR missing percentage. . . . . . . . . . . . . . . . 76

3.3 Proposed models and goodness fit statistics. . . . . . . . . . . 87

3.4 F-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Granger Causality test. . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Statistical test result. . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Statistical test result (R2 and adjusted R2) . . . . . . . . . . . . 109

4.4 VAR Model order selection. . . . . . . . . . . . . . . . . . . . . 120

4.5 VAR Mean and MSE for the imputed data. . . . . . . . . . . . 120

xiv



List of Tables xv

5.1 The estimated specification structures for the best models. . . 131

5.2 The parameters values for selected models. . . . . . . . . . . . 132

5.3 The parameters values for lag 4 models. . . . . . . . . . . . . . 133

5.4 The parameters values for lag 4 models. . . . . . . . . . . . . . 139

5.5 Proposed methods for Heart-rate 10% MCAR. . . . . . . . . . 144

5.6 Proposed methods for Heart-rate 20% MCAR. . . . . . . . . . 145

5.7 Q-R-S wave properties in case of 10% MCAR. . . . . . . . . . 148

5.8 Q-R-S wave properties in case of 20% MCAR. . . . . . . . . . 149

5.9 Proposed methods for Heart-rate 10% MCAR. . . . . . . . . . 156

5.10 Proposed methods for Heart-rate 20% MCAR. . . . . . . . . . 157

5.11 Q-R-S wave properties in case of 10% MCAR. . . . . . . . . . 158

5.12 Q-R-S wave properties in case of 20% MCAR. . . . . . . . . . 159



Nomenclature

A list of the variables and notation used in this thesis is defined below. The

definitions and conventions set here will be observed throughout unless

otherwise stated. For a list of acronyms, please consult page xvii.

el likelihood estimation error

φ Regression matrix

Γ Multivariate covariance matrix

∑ Univariate Covariance matrix

µ Mean

Q Average of squared error

σ Standard deviation

ε White noise

ϕ Indexed value

J Jacobian matrix

L Back shift operator

xvi



xvii Nomenclature

logL Log likelihood

R2 Squares sum of residual

ST Penalty function

SE Total standard error

αk Parameters bias

δ Threshold value

β̂k Estimated parameters

Q̂k Squared standard error

φm(x, p) Fractional polynomial model



xviii Acronyms

Acronyms

ACE Advance composition explorer

AIC Akaik’s information criteria

ARMA Autoregressive moving average

BT Box-Tidwell

CCA Complete case analysis

corr Correlation

DF Degree of freedom

ECG Electrocardiograph

ECG Electrocardiograph

EEG Electroencephalograph

EM Expectation maximization

E-step Expectation-step

FMRI Functional magnetic resonance image

FP Fractional polynomial

FPE Final prediction error

HQ Hannan-Quinn

I-step Imputation-step

KNN K nearest neighbour



xix Acronyms

LR Likelihood ratio

MA Moving average

MAR Missing at random

MARSS Multivariate autoregressive state space

MCAR Missing completely at random

MI Multiple imputation

ML Maximum likelihood

MMSE Minimum mean square error

MNAR Missing not at random

M-step Maximization-step

PEM Prediction error minimization

P-step Posterior-step

SC Schwarz criteria

SPSS Statistical Package for the Social Sciences

var Variance

VAR Vector autoregressive

VAR-IM Vector autoregressive - Imputation

VARMA Vector autoregressive moving average





Chapter 1

Introduction

1.1 Background

Virtually all scientific and research fields have suffered from data sets that

are incomplete. These missing values can have tremendous impacts on the

conclusions and recommendations that are made from the study. Nowhere

is this more apparent than in the medical field where it is not possible to

make a decision without full information about the case. Examples include

certain regions of a gene microarray that may fail to yield measurements

of the underlying gene expressions due to scratches, fingerprints, dust, or

manufacturing defects. Also, participants in a clinical study may simply

drop out during the course of the study leading to missing observations at

critical time points. Similarly, a doctor may not order all applicable tests

while diagnosing a patient resulting in the absence of potentially useful

data. These varied reasons for missing data are sometimes referred to as

the missing data mechanism.

The analysis of missing data processes leads to a theory of missing data

in terms of its impact on learning, inference, and prediction [36]. This the-

1



2 1.1. Background

ory draws a distinction between three fundamental categories of missing

data: missing completely at random (MCAR), missing at random (MAR)

and missing not at random (MNAR). An easy way to understand these

categories is to look at a study of diabetic patients in which N participants

are recorded in months X and Y. In the first month (X), all of the partic-

ipants accomplished the test but only some of the participants continued

the testing into the next month (Y).

If the missing data does not result from the measurements themselves

such as a patient moving away from the study location, then this is the first

category MCAR. However, if the missing data depends on observed mea-

surements such as if, a patient drops out of a study due to poor discipline

then this is MAR. And if the missing data can’t be categorized into either

of these categories then MNAR is used.

For example, suppose diabetes measurements for N participants are

recorded in two months X and Y. In the first month X, all of the participants

did the test but some of them (n) have a test in the second month and

others do not. In the first category, the n participants in month Y were

randomly selected from those participants in month X; this mechanism

is missing completely at random (MCAR). In the second scenario, those

who returned in Y measurements exceeded a normal level in month X; this

is missing at random (MAR) but not missing completely at random. In

the third category, those recorded in month Y were those whose month

Y measurements exceeded normal level this mechanism is not missing at

random (MNAR) [48], more details can be found in chapter 2.

The main question is: can the behaviour of the system be predicted

when data sets have some missing values. Missing data problems are
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deeply related to statistical issues because most analytical methods depend

on statistical theory. That means all imputed values for the missing data

are depend on types of estimated models. This has made some researchers

to consider missing data analysis problems to be the most significant issue

within many real data analyses problems and applications [9]. In simple

missing data situations, more often than not, the missing values are ar-

bitrarily removed or the missing data value itself is simply replaced by

its mean value. However, for cases where there are a significant num-

ber of missing data values, these strategies do not work well [12]. Recent

research regarding modern methods of data imputation has concentrated

on areas such as maximum likelihood estimators and multiple imputation

techniques. These methods can produce good results for most applica-

tions [12, 35, 48, 105, 107]. Although the uses of these modern approaches

still has greater interest in the literature, especially in case of static data set,

there is insufficient knowledge to know if these methods can produce good

results when applied to dynamic missing data set [11, 120].

1.2 Overview of the Thesis

• Chapter 2 explores the various methods for analysing data with missing

observations. Each method is explained as to how it works math-

ematically and a discussion of its limitations and advantages. Also

represents an overview of multivariate time series. Some notions on

multivariate time series analysis in time domains are succinctly intro-

duced. Tools and conventions used herein are presented. They are

essential to appreciate the contributions later in the thesis. Although

they are widely available in textbooks, they have been adapted ap-
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propriately to suit this thesis.

• Chapter 3 applies a Gauss-Newton method for nonlinear parametric es-

timation for the case of missing data. The primary aim is to introduce

a nonlinear modelling technique for missing data analysis. Also, solv-

ing the model selection problem with missing data and providing

accessible descriptions of nonlinear parametric with missing data is

addressed.

• Chapter 4 introduces improved method and a novel algorithm for han-

dling missing values in multiple time series. An algorithm is intro-

duced for handling missing data in multivariate time series based

on a vector autoregressive (VAR) model. This is accomplished by

combining an expectation and minimization (EM) algorithm with the

prediction error minimization (PEM) method. A case study was con-

ducted to compare the proposed algorithm with traditional and mod-

ern methods for imputing missing data.

• Chapter 5 conducts two cases studies: one for space weather data and

another for electrocardiogram (ECG) data. These case studies com-

pare the VAR − IM algorithm with different methods for imputing

missing data. Missing data analysis, multivariate time series, and

vector autoregressive models have been introduced for forecasting the

electric flux from solar wind real data at geosynchronous orbit. Nu-

merical results show that the proposed vector autoregressive models

estimated by using the imputed data can produce promising predic-

tion results for the relativistic electron flux. The ECG data set was

used as a benchmark to test the performance and limitations of dif-
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ferent missing data analysis methods.

• Chapter 6 summarises the thesis conclusions and presents areas recom-

mended for further research.

1.3 Publications

The author’s publications with relevance to this thesis are outlined below:

• A. A. Bashir F. and Wei H. (2015). Using Nonlinear Models to Enhance

Prediction Performance with Incomplete Data. In Proceedings of the

International Conference on Pattern Recognition Applications and

Methods ISBN 978-989-758-076-5, pages 141-148. DOI: 10.5220/00051

57201410148.

• Bashir, F. Wei, H.L. and Benomair, A., 2015, August. Model selection

to enhance prediction performance in the presence of missing data.

In 2015, 20th International Conference on Methods and Models in

Automation and Robotics (MMAR) (pp. 846-850). IEEE.

• Bashir, F. and Wei, H.L., 2015, October. Parametric and non-parametric

methods to enhance prediction performance in the presence of miss-

ing data. In 2015, 19th International Conference on System Theory,

Control and Computing (ICSTCC) (pp. 337-342). IEEE.

• Benomair, A.M., Bashir, F. and Tokhi, M.O., 2015, August. Optimal con-

trol based LQR-feedback linearization for magnetic levitation using

improved spiral dynamic algorithm. In 2015, 20th International Con-

ference on (pp.558-562). IEEE.
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• Bashir, F. and Wei, H.L. 2016. Handling missing data in multivariate

time series using a vector autoregressive model based imputation

(VAR-IM) algorithm Part I: VAR-IM algorithm versus traditional meth-

ods. In 2016, 24th Mediterranean Conference on Control and Au-

tomation (MED). IEEE.

• Bashir, F. and Wei, H.L. (2016, August). Handling missing data in mul-

tivariate time series using a vector autoregressive model based impu-

tation (VAR-IM) algorithm Part II: VAR-IM algorithm versus modern

methods. In 2016, 19th International Conference on Computational

Science and Engineering (CSE). IEEE.

• Bashir, F. and Wei, H.L., 2017. Handling missing data in multivariate

time series using a vector autoregressive model-imputation (VAR-IM)

algorithm. Neurocomputing. (in press)

• Bashir, F. and Wei, H.L., 2018. Missing Data Imputation on Independent

Variables within Classification Models. : (To be submitted.)

1.4 List of Contributions

The contributions coming from the thesis are:

• Introducing a Gauss-Newton method for nonlinear parametric estima-

tion to handling missing data. The primary aim is to introduce a

nonlinear modelling technique for missing data imputation. Solving

a model selection problem with missing data and providing new al-

gorithm for missing data imputation (Chapter 3).
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• A new method (MLD) for handling missing values in multiple time se-

ries is presented in (Chapter 4).

• A novel algorithm (VAR-MI) based on vector autoregressive (VAR) model

to handling the missing values in multivariate time series introduced

in (Chapter 4)

• A novel method was used to addressing and solving the incomplete data

problems in space weather data and in ECG data. Comparing a novel

method with different traditional and modern methods for imputing

missing values in these data sets (Chapter 5).





Chapter 2

Literature Review of Missing Data

Analysis in Static and Dynamic

Data Sets

2.1 Introduction

This chapter discusses the concept of what missing data values are, miss-

ing data mechanisms, reviews important missing data patterns and mech-

anisms. Finally, a simple example to introduce and discuss the various

methods that have been proposed to handle missing data in the literature

is presented. Note that the first part of this chapter is limited to static data

sets, and the review of dynamic data will be given later in this chapter.

Missing values, (incomplete data) simply means that observed data is

not available for the output for the current response. Generally, missing

data can be divided into three types: special numeric, numeric and charac-

ter.

9
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In practice, several reasons may lead to an unobserved response. For

example, individuals responding to a survey sometimes fail to answer spe-

cific questions. In a measurement test, a sensor may fail to record data in

some automatic process. Alternatively, the problem may be related to the

output itself and some information may be purposely omitted or ignored

during the work or in recording of the results [119].

Frequently researchers may be able to determine a systemic cause as to

why data are missing. Typically, however the information is insufficient to

give the main reasons for missing data. The ideal approach to abstain from

missing information problems is to have a decent system (model) which

minimizes the missing data [113].

2.2 Missing Data Mechanisms

It is important to classify the mechanisms of ”missing data” because this

would determine which missing data handling strategies would be used

for specific problems. There are three important patterns of missing data

which are MAR (missing at random), MCAR (missing completely at ran-

dom) and MNAR (missing not at random) [72].

These patterns explain the relationships between the inputs and outputs

of the system and the probability density function of missing values. In

more detail, these mechanisms of missing values give the reasons why

these values are missing or unobserved. For each pattern, a conceptual

explanation will be given in the next paragraph, and for more details on

missing data mechanisms, see [48, 105].
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2.2.1 Missing Data at Random

Values are missing at random (MAR) when the probability of a missing

value on an output Y (dependent variable) is related to the input (or in-

puts) X in the system but not to the response of the output Y itself. In

other words, the probability of the missing values depends on the relation

between the output Y and input (or inputs) X, that means there is no direct

relationship between the probability of the missing values on Y and the

values of Y variable itself [36]. MAR does not mean the value is missed

in a random way. In fact, missing at random means that the probability of

a missing value depends on a relationship between the output value and

the input value for that variable. To give more detail, consider the data in

Table 2.1 [32]. In this example, the dependent variable (Y) is the propor-

tion of available chlorine in a certain quantity of chlorine solution and the

independent variable (X) is the length of time in weeks since the product

was produced. When the product is produced, the proportion of chlorine

is 0.50. During the 8 weeks it takes to reach the consumer, the proportion

declines to 0.49.

The first two columns in Table 2.1 show the complete values for the

two variables (input X and output Y). The remaining columns represent

the amount of Y, which appear in hypothetical missing data caused by

three mechanisms. In the third column (”MAR”), the probability of miss-

ing values has a direct relationship with the variable X, where the values

started missing after 30 weeks (X > 28). This mechanism is missing at ran-

dom (MAR). In fact, there are many hypothetical MAR cases that can be

generated from this example, depending on the probability function of the

missing data. For example, if the proportion of available chlorine is un-
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known during the periods from 12 to 18 weeks or after 18 weeks, then the

mechanism is MAR. As noted previously all missing cases occurred con-

tinuously and happened randomly. In fact there are no specific methods

can prove that the probability function of values which is missed on the

output Y is only a function of input X [36]. This is considered a signif-

icant problem in practice for analysing missing data because most of the

modern techniques, such as multiple imputation and maximum likelihood

approaches, assume the that the data is missing at random when it may be

missed due to another mechanism [36].

2.2.2 Missing Data Completely at Random

The data missing completely at random (MCAR) that is what most fields

consider as ”purely randomly” missing. The basic property of MCAR is

the probability density function of missing values for an output Y does not

have a direct relationship with other outputs of the system or the values

of the output itself. To some extent, it is similar to the MAR mechanism.

On the other hand, with comparing MAR and MCAR, the latter has more

restrictive random values because missing cases occur in a discrete form

without considering the missing rate.

With regard to the data set of the proportion of available chlorine in

Table 2.1 to mimic the MCAR case, the data was deleted or missed hypo-

thetically in a random way. This random missing is not correlated with the

output Y itself but it does have indirect relationship with the input X and It

can be noted that the missing data were not isolated to a specific position

in the response of the system.
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Table 2.1: The proportion of chlorine and length of time in weeks with different
missing data mechanism [32].

Y

X Complete MAR MCAR MNAR
8 0.49 0.49 0.49 0.49
8 0.49 0.49 0.49 0.49

10 0.48 0.48 0.48 0.48
10 0.47 0.47 -* 0.47
10 0.48 0.48 0.48 0.48
10 0.47 0.47 0.47 0.47
12 0.46 0.46 - 0.46
12 0.46 0.46 0.46 0.46
12 0.45 0.45 - 0.45
12 0.43 0.43 - 0.43
14 0.45 0.45 0.45 0.45
14 0.43 0.43 - 0.43
14 0.43 0.43 0.43 0.43
16 0.44 0.44 0.44 0.44
16 0.43 0.43 0.43 0.43
16 0.43 0.43 0.43 0.43
18 0.46 0.46 0.46 0.46
18 0.45 0.45 0.45 0.45
20 0.42 0.42 0.42 0.42
20 0.43 0.43 - 0.43
20 0.41 0.41 0.41 0.41
22 0.41 0.41 0.41 0.41
22 0.4 0.4 0.4 -
22 0.42 0.42 0.42 0.42
24 0.4 0.4 - -
24 0.4 0.4 0.4 -
24 0.41 0.41 - 0.41
26 0.4 0.4 0.4 -
26 0.41 0.41 0.41 0.41
26 0.41 0.41 0.41 0.41
28 0.4 0.4 0.4 -
28 0.4 0.4 0.4 -
30 0.4 - - -
30 0.38 - 0.38 0.38
30 0.41 - 0.41 0.41
32 0.4 - - -
32 0.4 - 0.4 -
34 0.4 - 0.4 -
36 0.41 - 0.41 0.41
36 0.38 - - 0.38
38 0.4 - 0.4 -
38 0.4 - 0.4 -
40 0.39 - 0.39 0.39
42 0.39 - 0.39 0.39
*Dashes indicate missing values.
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For example, there are 11 measured values randomly selected from

those were measured in 42 weeks; which means each missing data value is

affected by the value of X, this method is MCAR but not MAR. By recon-

sidering the same data in Table 2.1, the basic meaning of MCAR is that, the

missing values which are missed randomly from the measured data with a

probability function is correlated with the input. This means that the cases

with observed output Y has an input with average similar to the average of

input that correlated to this missed output values. By testing the missing

mechanism, it is possible to identify whether the values are missing com-

pletely at random or just at random [36] , more detailed information for

the basic logic for such a test can be found in [101]. To apply this test, first,

the missing and complete data should be separated and the mean of the

data is determined for each case. If the mean for both cases has a small

difference, then the data are missing completely at random. Also, the in-

put variable should have the same mean value. To explain this, the input

may be classified into two groups: observed and missing by dependence

on the missing mechanism (MCAR or MAR) and comparing the mean of

the groups. For example, consider a case where the mean of the observed

data has an input of 22.85, and the missing data sample has a mean of

20.55. There is similarity between the group means, suggesting that the

missing mechanism for the two groups is equivalent, giving evidence that

the output Y is MCAR. As a contrast, the same procedure for the input in

the MAR case could be done to check the contrast. The full-observed data

input mean is 17.56, and the mean of incomplete cases is 34.83. This big

difference shows that the missing values occur continually within a specific

period. This is evidence for the MAR.
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2.2.3 Missing Data Not at Random

The third missing mechanism is missing not at random (MNAR), that is,

the values are missing not at random when the probability of a missing

value on an output Y depends on Y itself but not on the input (or inputs)

X. To illustrate, consider the previous data in Table 2.1. Values which equal

to 0.40 (Y = 0.40) were unobserved, and there is not a clear direct relation

between the input variable X and the missing values in the output Y. In

other words, the probability of missing values depends on the variable

Y only. This represents the category of MNAR. The same data set may

have many different cases of this mechanism, which is determined by the

probability function of missing values.

For example, if the system has missing values when the output Y< 0.40,

then the missing value depends on the output Y itself, as in the case where

Y > 0.40. Unlike the previous mechanism, no specific test available to check

if data are MNAR without predicting the relation between the missing data

and its variable [36].

2.3 Approaches to Deal with Missing Data

There are many missing data analysis methods. In general, these meth-

ods are divided into two groups: traditional and modern techniques [48].

Basically the traditional techniques can be relatively easily implemented

without difficulty. On the other hand, modern methods require a high per-

formance computer and powerful software. Both traditional and modern

methods have advantages and disadvantages [36, 101, 103].
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2.3.1 Traditional Missing-Data Techniques

Many missing data analysis methods are abundant throughout the liter-

ature. In this chapter, a limited selection of the widely used approaches

is presented. Readers are referred to [36, 93, 104] for additional detailed

information concerning missing data techniques.

2.3.1.1 Listwise Deletion

Listwise deletion simply discards data whose information is insufficient.

This means that if any variable of the data is missing, then the entire record

is thrown out. Listwise deletion is also known as filtering approaches and

complete case analysis (CCA). This method is used in many missing data

problems, but its implementation depends on the type of data mechanism

[12]. If the data missing mechanism is MCAR, this technique would gener-

ate an unbiased estimation if the number of removed data records is small,

but with a large number of removed data this is not true [37]. That means

after applying CCA the data analysis process can deal with cases that have

full observed values only. For example, in any estimation process when cal-

culating a mean and variance for a variable Y, CCA discards any records,

which have missing values on the variable Y and that may lead to a biased

parametric estimation [6]. Furthermore, by omitting the missing values, a

direct dramatic reduction in data size may result in data sets with large

sample size.

2.3.1.2 Pairwise Deletion

Pairwise deletion is one of the commonly used missing data analysis meth-

ods (available case analysis) [6]. With this approach, the missing data are
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removed with an analysis by analysis principle that means any observed

case may be used for some analyses but not all analyses. For example, ev-

ery value in a parameters vector and matrix depends on the observed cases

in each variable. Predominantly this method gives better results as com-

pared with filtering approaches because it reduces the number of omitted

cases in the observed data. In contrast, this method still works under the

same central restriction as complete case analysis. Thus the data mecha-

nism should be MCAR. Similar to filtering approaches, this technique leads

to biased estimates when the data have different mechanism from MCAR

[93].

To explain the principles of these deletion approaches, consider the data

set in Table 2.1 for the proportion of available chlorine and length of time

in weeks. A scatter plot of the complete data is shown in Figure 2.1. The

negative correlation between the input X and the output Y (-0.86) means

that the low proportion of available chlorine would have acquired high

length of time in weeks. Figure 2.2 shows a scatter plot of the deletion

approaches for the case of MAR, because there are only two variables; the

scatter plot of available case analysis method is same as to that of complete

case analysis [12].

This section will focus on the MAR mechanism to show how these ap-

proaches effect on the bias of parameters estimation. Because deletion ap-

proaches keep the case with full observed values of the variable Y, it sys-

tematically ignores the values from 28 weeks and on the plot also shows

that there is weak nonlinear variation association between Y and X (linear

relationship between X and Y). In the complete data set, the estimated value

of the variable Y (mean value) is 0.425, whereas for the deletion approaches,
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analysis give an estimated value of 0.435. Similarly, the estimated value of

the variable X is 22.27 for complete data and 17.56 for deletion methods.

Even with taking the standard deviation into consideration, the proportion

of available chlorine has a standard deviation 0.03053 for the complete case,

as contrasted to the deletion methods yield a standard deviation of 0.02907.
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Figure 2.1: Complete-data scatterplot of the proportion of available chlo-
rine in a certain quantity of chlorine solution.
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Figure 2.2: Deletion approaches scatterplot of the proportion of available
chlorine in a certain quantity of chlorine solution (MAR)
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2.3.1.3 Imputation Methods

Imputation represents a group of common traditional methods where the

estimator imputes (changes) the missing values with appropriate values

[102]. In fact, there are many imputation approaches [12], but this study

will concentrate on three of the most common methods: mean substitution

imputation, linear regression imputation, and stochastic (random) regres-

sion imputation. The simplest method is mean imputation. This method

imputes the missing values with the mean of the observed data [5, 35]. For

example, for the data in Table 2.1 for the MAR mechanism case, the ex-

pected value of the observed output is 0.435, this value is substituted for

the missing values in all records. Figure 2.3 shows that the imputed data

from using mean substitution imputation are horizontally linear across the

Y-axis at 0.435 with a zero slope.

In this case, the correlation between the input X and the output Y is

equal to zero because the imputation of the missing data depends only on

the output Y. Focusing on more features of mean imputation method, the

cross correlation between the imputed output Ŷ and input X is -0.497, in

contrast to the complete data correlation is -0.86, the negative sign repre-

sents the opposite relation between the input and the output (as the input

increase the output decrease). The data variability may not appear when

the missing values are replaced by the average of observed data (a constant

value). Considering the mean and standard deviation the mean imputation

method produces a mean and standard deviation to be 0.435 and 0.025, re-

spectively.

Regression imputation is a technique that fills missing values with ex-
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pected value by using a regression model [1]. In this method, observed

data of the output Y are used to estimate a regression model, which is

used to impute the values of missing data.

Take the data in Table 2.1 as an example. In MAR mechanism, there

are 12 unobserved values and 32 observed cases. The observed data of

output Y (variable with missing data) are used with observed data on input

X (variable with complete data) to impute the missing cases on output

Y. In this case, linear regression model: Ŷ = 0.509 − 0.0042X has been

used. Applying the input X (complete data) on the regression model yields

estimated output (Ŷ), and these estimated values impute the missing data

of the output Y.

The basic idea of the regression imputation depends on a technique

of borrowing information from the observed data of the output variable.

This method also leads to a biased estimation, as shown in Figure 2.4.

Notice that the linear regression imputation yields a correlation equal to

-0.97 between the output Y and input X, in contrast with the correlation

of -0.86 for the complete data case. Because the imputed data values are

generated by a linear function, there are no fluctuations for the imputed

values. Consequently, the imputation process will attenuate the variability

of the imputed values. For example, the standard deviation estimation of

the output Y from linear regression is 0.042, whereas it is equal to 0.025

in the case of complete data. Although linear regression yields a biased

estimation of standard deviation and correlation for the MCAR or MAR

data mechanism, it does yield unbiased estimates for the average value.
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Figure 2.3: Mean imputation scatterplot of the proportion of available
chlorine in a certain quantity of chlorine solution (MAR).
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Figure 2.4: Linear regression imputation scatterplot of the proportion of
available chlorine in a certain quantity of chlorine solution (MAR).

Mean substitution imputation and linear imputation lead to a bias es-

timation, especially of correlating the standard deviation of both MAR

and MCAR [48, 103]. Stochastic linear regression imputation can elimi-

nate these biased estimates, it is similar to a standard regression imputa-

tion technique and it uses same regression model for imputing the missing



22 2.3. Approaches to Deal with Missing Data

data [12]. Stochastic linear regression is a linear regression method such

that to each imputed value a random error is added. This random value is

generated from a normal distribution with a variance equal to the residual

variance and a mean of zero, estimated from the linear regression imputa-

tion model [5, 48, 102, 103].

Recall the data in Table 2.1, where the regression of the output Y on

input X yields a residual variance of 0.000162. Then, the new random

error is produced randomly from a normal distribution with a variance of

0.000162 and a mean of zero. These new error terms can then be added

to the estimated output Ŷ, which is predicted from the linear regression

model. Figure 2.5 shows the scatterplot of the imputed values of available

chlorine data obtained from a stochastic linear imputation model.
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Figure 2.5: Stochastic imputation scatterplot of the proportion of available
chlorine in a certain quantity of chlorine solution (MAR).
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Because there is a random error added to each imputed value, the im-

puted data do not represent a straight line, as that generated from a stan-

dard linear regression imputation model. Comparing Figure 2.2 with Fig-

ure 2.5 it is clear that the stochastic regression model produces a much

better result. This slight adjustment to the regression model yields an un-

biased parameter estimation in the case of MAR mechanisms. However,

stochastic regression imputation may not be able to determine the actual

error between the real and imputed values because it depends on random

error values.

2.3.2 Modern Missing Data Techniques

The revolution of modern missing data techniques began in 1987 when

two statisticians, Little and Rubin, published two books, Statistical Anal-

ysis with Missing Data [72], and Multiple Imputation for Nonresponse in

Surveys [102]. Although some important articles were previously pub-

lished e.g. [29, 59, 101], these two books for the first time represented a

full background for missing data. There is powerful software coupled with

these books, but new, more robust software is still needed today. Also

a good book coupled with powerful software implemented with different

programming languages was published by [103]: Analysis of Incomplete

Multivariate Data. In addition, there are many useful articles were pub-

lished recently which gave good background on the modern methods and

software for missing data imputation [48, 64, 70]. The two modern missing

data analysis approaches that have been suggested as the best techniques

are: multiple imputation and maximum likelihood. These methods are

considered better than traditional approaches because they need less as-
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sumptions and can handle most data types [5, 12, 35, 48, 103].

2.3.2.1 Maximum Likelihood

Missing data analysis with a maximum likelihood technique (sometimes

referred to as ”direct maximum likelihood” and ”full information maxi-

mum likelihood”) is an old procedure. Fifty-five years ago [33, 76], this

method was applied to specific applications (e.g., bivariate time series with

incomplete data) until the 1970s when statisticians developed cooperative

techniques, which opened new windows for many applications of this

method [29, 42, 101]. As mentioned previously, this modern routine has

only been available in robust software packages from the end of the 1980s.

Rather than dealing only with full observed cases, maximum likelihood

uses both observed and incomplete cases to calculate the values of pa-

rameters that meet the peak of the probability density function for these

parameters. Maximum likelihood estimation technique is implemented by

software packages that are widely available on the internet and they are

user-friendly and self-explanatory, therefore the mathematical procedures

behind the parameter estimation process will not be addressed in more

detail in this chapter. Unbiased estimation represents the main goal of

any estimation process, and this can be achieved if Maximum likelihood

is used for MAR mechanism cases [5, 103]. The following description is

focused on the case that gives the most accurate estimation, the MCAR

case, which needs additional assumptions is discussed later in this chapter.

The estimation process starts by using a log likelihood mathematical func-

tion to identify the highest probability density function of the parameters

population that are used to impute the missing values. The main goal of
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this method is to find the parameters that minimize the distance between

the imputed and real values. In fact, this technique is similar to linear

regression estimation, by using an ordinary least squares method, where

the goal is to identify the parameters of a linear model that minimizes the

distances between the real data (mean) and the estimated values. Apply-

ing the maximum likelihood estimation to a single variable case is simpler

than applying it to a multivariable case, but it is not possible to apply it

directly to a univariate or multivariate time series. To begin the process, the

likelihood function (l) for a specific number of n data points, used to char-

acterise the distribution of the data around the mean (µ) and the standard

deviation (σ) for specific case k is defined as:

lk =
1√

2πσ2
e−
(

yk−µ
σ

)2
/2 (2.1)

The logarithm of the likelihood function for a specific number of data

points (say n points) is:

logl =
n

∑
k=1

log

[
1√

2πσ2
e−
(

yk−µ
σ

)2
/2
]

(2.2)

So, the log likelihood is actually a summation of all the n individual

probabilities; each single probability just simply represents a specific case

of the normal distribution for the data. On the other hand, the log likeli-

hood for a single case in a complete data set with normal distribution of a

multivariate time series can be described as:

loglk = −0.5[mlog(2π) + log|Σ|+ (Yk − µ)TΣ−1(Yk − µ)] (2.3)

where m is the order of system, yk is the output vector at case k, µ repre-

sents the mean vector and Σ the covariance matrix of the observed values.

The part (yk − µ)TΣ−1(yk − µ) describes the distance value and is called

Mahalanobis formula [36]. This formula is the squared distance that iden-

tifies the standardized space between each output measurement and the
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centre of normal distribution for the data. In fact, this standard distance

represents the logarithm for the likelihood, which leads to produce a small

deviation between the output vector and the mean vector [36].

The estimation process starts by determining Mahalanobis formula in

equation (2.2) that gives the squared standardized distance for each mea-

sured value. The parameter values to determine this formula are the mean

(µ) and the covariance matrix (Σ). Substituting these parameter values into

equation (2.2) yields a squared distance that is in inverse proportion to the

log likelihood function (i.e.,larger log likelihood value and small squared

distance), this explains the theory of the maximization of likelihood func-

tion.

The main objective of this method is to calculate the exact values of the

parameters of interest to yield the maximum likelihood value for each pa-

rameter, and this can be achieved by using an iterative algorithm, using the

principle of substituting different mean and covariance values into the log

likelihood formula until it produces the maximum value of log likelihood

function. In other words, it estimates the parameters that minimize the

value of Mahalanobis formula to achieve the highest log likelihood value.

Returning to the previous example taken from [32], more details about

the maximum likelihood approach are given as follows, where the case

of the MAR mechanism is considered, by assuming that the mean and

variance values are µ = 0.42 and σ2 = .0008, respectively.

By substituting these parameter values in equation (2.3) for each ob-

served output value, it yields different values of log likelihood function.

Substituting by two different values, 0.47 and 0.43 in log likelihood function

equation (2.3) yields two different values of 1.084 and 2.584, respectively.
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It is clear that substituting a measured value of 0.47 gives a small log like-

lihood function compared with a value of 0.43. This is because the latter

value is closer to the mean value. In other words, the best result should

be the value that has a higher probability when the data represented by

normal distribution with variance of σ2 = 0.0008 and a mean of µ = 0.42.

Sometimes the value of the log likelihood function can give a negative re-

sult. In this case, the sign should be considered (the closed value to zero,

becomes closest to the mean value and therefore associated with the best

fit for parameter estimation).

In fact, when the parameters population of the system are unknown

and are required to be predicted from the measured system input and

output values, as mentioned before the estimation process depends on the

iteration process. The maximum likelihood method is a technique that uses

different values of parameters (mean and variance) to be substituted into

equation (2.2). The results for all measured output values are summed

to give the total log likelihood; this process is repeated until it finds the

optimum parameters, which gives the best estimation.

In summary, the maximum likelihood approach attempts trial solutions

using different parameter values to find which one gives the highest log

likelihood value or that meets the highest probability, and the above expla-

nation assumes the case of complete data analysis by maximum likelihood.

But this technique can be adapted to handle the missing data problem

for other cases as well. Fortunately, the maximum likelihood function can

work for incomplete data and it does not need full and complete observed

data.
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2.3.2.2 A general Case for Multivariable Estimation

With the MAR mechanism, the Mahalanobis formula can be determined

by using the available parameters and observed data. The best advan-

tage of this method is that it estimates the parameters that give a better fit

without discarding any part of the data. To explain how the multivariable

estimation can be implemented by using log likelihood function in case of

complete data, the same data taken from Table 2.1 [32] was considered. The

Mahalanobis formula for the incomplete case is determined as follows:

(Xk − µ)TΣ−1 (Xk − µ) = (42− µX)
Tρ−1

X (42− µX),

where ρ−1
X and µX (mean and variance, respectively) represent the unknown

parameters, of the input X (this input case is avoided in calculation if the

measured value is missed). As a multivariable estimation case, consider

another case that include full observed data, for example the first case that

has input value of 8 and output measured value of 0.49, so the resultant

Mahalanobis formula is determined as:

(Yk − µ)TΣ−1 (Yk − µ) =

([
8

0.49

]
−
[

µX
µY

]T
) [

σ2
x

σy,x

σx,y

σ2
y

]−1 ([
8

0.49

]
−
[

µX
µY

])

2.3.2.3 Multiple Imputation (MI)

A multiple imputation technique was proposed by Robin [101], which

is one of the most complicated methods among existing imputation ap-

proaches [5, 65, 102]. It depends on the iteration algorithms like the EM

algorithm (will be explained later), because it needs to improve the estima-

tion process in each iteration cycle to get the best parameters into several

data sets [2].

Different Copies of data require different regression models. The output

of these regression models are combined into one regression model to get



Chapter 2. Literature Review of Missing Data Analysis in Static and
Dynamic Data Sets 29

to the final step of the multiple imputation approach. These procedures

are divided into three main stages: imputation stage, analysis stage and

pooling stage. In the next section, a brief illustration of the three stages

will be discussed. More information may be found in [5, 36, 48, 50, 102–

104].

• Imputation phases Various iterative algorithms can be used in the first

phase but the data augmentation approach is still the best if the data

is distributed normally [12]. The imputation process in this algo-

rithm is divided into two procedures: the imputation procedure and

the posterior procedure (I and P).

The imputation procedure (I-procedure) produces a number of data

sets; each one contains different prediction of missing data. The num-

ber of data sets varies between 15 and 20 [104]. It resembles a data

augmentation algorithm in the same way as in the stochastic impu-

tation technique in that it uses a covariance matrix and mean vector

to construct regression models. Missing data are imputed by the es-

timated values from these models. Normally, values of the residual

matrix, with zero mean and a constant variance, are added to the new

imputed values (the variability process).

The imputation step leads to the next imputation phase, that is, the

posterior procedure (P-step), this step depends on the Bayesian esti-

mation method to estimate the parameters of a regression model (the

unknown mean vector and the covariance matrix for these estimated

values). Conceptually, the posterior step determines the parameter

estimates from the data that imputed from the previous step, and

then adds a residual variation to each of the estimated values. This



30 2.3. Approaches to Deal with Missing Data

step generates a new set of parameters values that differs from the pa-

rameters that were used to impute the missing data in the previous

imputation step. Using a new mean vector and covariance matrix val-

ues that resulted from the last posterior step to produce a new block

of regression models in the next imputation procedure produces a

new set data. This new data set has values differ from those at the

previous imputation step. By iterating these two procedures up to a

hundred of times, creates a specific number of copies of the data set.

Sometimes 10 data sets are quite enough [72].

The ultimate purpose of the first phase is to generate a specific num-

ber of data sets. Each data set consists of values that differ from

the other data sets values. The variation between these data sets is

caused from the addition of a random error value to each imputed

case. However, there is an autocorrelation between these I steps, so

the first phase becomes more difficult to implement especially with a

large number of missing data. For example, in an imputation phase

that needs to generate 15 data sets, if the I step and P step iterated

200 times, then the hall process needs to iterate 3000 times taking ex-

tra time to process. This problem makes the multiple imputation less

desirable to be used in commercial environments [93].

• Analysis phase After the generating the required number of data sets,

statistical methods are used to analyse each data set. This process

is called the analysis phase. It is considered the simplest among the

multiple imputation phases. The main goal of this phase is to analyse

the data sets that are generated from the imputation phase to be ready

for to the next phase [36].
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• Pooling phase This phase is sometimes known as the averaging step

[93]. The pooling phase combines the average of the parameter es-

timates and their standard errors into a single data set. Formulas

exist to determine the average and standard errors of the estimated

parameters [102], and the pooling phase consists of three basic steps:

1. Averaging the squared standard errors for all of copies of the

data sets.

Q =
1
m

m

∑
k=1

Q̂k (2.4)

where Q̂k is is the squared standard errors from the kth data set and

m is the total number of data sets.

1. Calculate the parameter variance of the data sets.

σβ =
1

m− 1

m

∑
k=1

(β̂k − β)
2

(2.5)

where σβ is the parameters variance, β̂k is the parameter estimation

for kth data set and β represents mean of the parameters of the system.

1. Calculate the total standard error of the system

SE =
√

Q + σβ + σβ/m (2.6)

Although the multiple imputation phases can be tiresome, powerful

software packages are available to facilitate, this step. They exist in

different programming languages and can be used to perform these

calculations quickly and accurately.
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2.3.2.4 Expectation and Maximization Algorithm

Anderson proposed the basic idea of the maximum likelihood function and

outlined it in simple steps [7]. If there are two different systems A and B,

both having the same observed input data X. System A has complete output

data Y and system B misses all of the output data. To estimate the missing

data on the system B first, determine the average and variance value of

the input X for system A and B. Use the observed data of the output Y of

system A to estimate the parameters of the system B, considered as linear

system. By using these estimated parameters, the missing data in system B

can be predicted. The work accomplished by Anderson [7], assumed that

the data has a single variable normal monotone pattern. However, in the

general case these steps do require an iteration algorithm [104]. Dempster

gave a good solution for the general case of missing data problem [29],

he proposed an iterative algorithm called ”Expectation and maximization”

(EM) algorithm, the main idea of this algorithm is to estimate the system

parameters needed to predict the missing data, this approach performs it-

eratively to obtain a solution by determining the best mean and variance

among the parameters population. In fact, this method has been updated

in recent years, and detailed discussions may be found in the open litera-

ture for example [72, 82]. Most of applications of the EM algorithm have

concentrated on the missing data problem, by estimating the system pa-

rameters (mean and covariance) to predict the missing value. However

some researchers have used this algorithm to solve difficult problems for

complete data set cases. For example, structural equation model, multilevel

linear models and finite mixture [8, 71, 87, 89, 95]. The following section

describes the linear regression model estimation based on mean vector and



Chapter 2. Literature Review of Missing Data Analysis in Static and
Dynamic Data Sets 33

variance estimation by using EM.

The expectation maximization algorithm is an iterative method consisting

of two steps: an expectation step (”E-step”) and a maximization step (”M-

step”), the iterative procedures require initial values to initiate the process

of estimation, the parameters vector and matrix of the measured data are

used for these initial values, and they can be determined by traditional

missing data techniques including those that were previously discussed.

The expectation step starts by using the initial mean vector and covariance

matrix to construct the linear regression model that estimates the missing

values from observed data. The maximization step is a procedure that

comes after the expectation step to produce new parameter values for the

estimated data. The EM algorithm stores the last mean vector and covari-

ance matrix to determine the next expectation step, where it uses the result

to build a new regression model that estimates new missing values. The

maximization step subsequently runs again by using the updated estimates

to determine the new parameters. The algorithm iterates these steps until

the mean vector and the covariance matrix converge to some constant val-

ues or no longer change, where the converged value of the EM algorithm

is the same as that of the maximum likelihood estimates [19, 82, 88].

In the optimization technique, the aim of estimation is to arrive at the max-

imum value of the log-likelihood (i.e., locate the maximum of the curve

of log-likelihood function) where the required parameter estimates are set-

tled. In the analysis of the optimization algorithm (EM), the starting point

of the log likelihood curve represents the initial values of guessed parame-

ters (e.g. mean vector and covariance matrix), and every iteration step (ex-

pectation step and maximization step) moves the parameter values closer
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towards the top of the curve. In other words, the aim of each single step is

to set the mean and variance values in the right path which maximizes the

value of log-likelihood function to make the estimated parameters move

vertically. The expectation step is just a calculation process of the points

that lie on the curve of the log likelihood function. Each maximization step

maximizes the distance between the old and new parameters as it gener-

ates a next log-likelihood point which is large than previous value. The

closer the parameters value approach the top of the curve, the distance

between the coordinates, mean and variance value, becomes very small

and the change of the log-likelihood values are very small. The iteration

continues until the difference between parameters value is less than some

small-specified number called the convergence number. In the literature,

EM algorithm is known as maximum likelihood method because it searches

for parameters that maximize the log-likelihood function.

The above illustration of the EM algorithm focused on the physical mean-

ing of the process and ignored the conceptual meaning of the mathematical

process. The description below provides details for mathematical concep-

tion, especially for the two main steps, the expectation and maximization

step.

To explain the EM algorithm mechanism, a single variable analysis data

case is considered in this illustration. Let U represent the input of the sys-

tem with complete data, and Y is the output with incomplete data. To

simplify the description, this system is considered with small number of

data points with single input/output variables (single variable case). In

case of missing data, the following formulas are used to determine the

parameters, with the maximum likelihood approach [36].
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µU =
1
N

N

∑
i=1

Ui (2.7)

σ2
U =

1
N

 N

∑
i=1

U2
i −

(
∑N

i=1 Ui

)2

N

 (2.8)

µY =
1
N

n

∑
i=1

Yi (2.9)

σ2
Y =

1
N

 N

∑
i=1

Y2
i −

(
∑N

i=1 Yi

)2

N

 (2.10)

σU,Y =
1
N

(
N

∑
i=1

UiYi −
∑N

i=1 Ui ∑N
i=1 Yi

N

)
(2.11)

These equations consist of five sufficient statistics: the input and output

data average (i.e., ∑N
i=1 Ui and ∑n

i=1 Yi), the squared sum of the input and

output data (i.e., ∑N
i=1 U2

i and ∑N
i=1 Y2

i ), and the cross product of the input

and output data (i.e., ∑N
i=1 Ui ∑N

i=1 Yi) [36]. These sufficient statistics are the

basic data points to determine the model parameters, and are considered

as a significant part in the expectation step.

The process of estimation starts with the expectation step, which im-

putes the missing data by using the initial conditions. After that the max-

imization step, these imputed values are substituted in (2.7) to (2.11) to

estimate the new values for the parameters. The expectation step uses the

new parameters values, to build the linear model equations which impute

the missing values by using the observed input data. In the case of single

variable data that has missing data on output Y, the formulas that used to

build the linear model are:

Ŷ = β0 + β1U (2.12)
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β1 =
σU,Y

σ2
U

(2.13)

β0 = µY − β1µU (2.14)

σ2
U,Y = σ2

Y − β2
1σ2

U (2.15)

Equation (2.12) is a simple linear model, where Ŷ is the predicted output

value, β0 and β1 represent the linear coefficients of the model, and the

parameter σ2
U,Y is the variance of the residual between the input U and

output Y.

For missing data, this imputation procedure is not straightforward, be-

cause of difficulty in computing the sufficient statistics [29]. The Expecta-

tion step overcomes this difficulty by using the available observed data to

determine the initial conditions that can be used initially to calculate the

sufficient statistics. In fact, the EM algorithm depends on the borrowing

of information from the observed data to predict the missing data. This is

called conditional expectation. Further, depending on the mean of output

data and the cross product of the input and output data terms ∑n
i=1 Yi and

∑N
i=1 Ui ∑N

i=1 Yi, respectively, the predicted output values are determined

from equation (2.12). Then the expectation step uses these predicted val-

ues to determine the sufficient statistics. A small adjustment is then added

to the squared sum of the output data by way of

N

∑
i=1

Y2
i =

N

∑
i=1

(
Ŷ2

i + σ2
U,Y

)
(2.16)

where Ŷ2
i represents the predicted squared output data. The expectation

step replaces the squared sum of the output data in equation (2.10) with

the result of (2.16).
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To further clarify the EM algorithm mechanism, assume a single vari-

able case through the data taken from [32], where U represents the length

of time in weeks and Y represents the proportion of available chlorine. The

first step of EM is to estimate the initial values of the model parameters,

mean vector and covariance matrix, and these initial values can be deter-

mined by other simple approaches such as regression imputation and com-

plete data analysis [36, 72]. In this example the initial parameters values

are estimated by using a listwise deletion technique as follows:

µ0 =

 µU

µY

 =

 22.27

0.435



Σ0 =

 σ2
U σU,Y

σY,U σ2
Y

 =

 93.13 0

0 0.00093


In the first iteration, the algorithm borrows the initial values from the

parameters vector and matrix to construct a linear model. This model then

imputes the missing output data (the proportion of available chlorine) by

using the complete input data (the length of time in weeks). Substituting

the initial parameters values from mean vector (µ0) and covariance matrix

(∑0) into parameters equations result the following parameter values:

β1 =
0

93.13
=⇒ β1 = 0

β0 = 0.435− (0)µU =⇒ β0 = 0.435

σ2
U,Y = 0.00093− (0)σ2

U =⇒ σ2
U,Y = 0.00093

In this case all of the imputed values (Ŷ) are equal to the mean value Ŷ =

0.435 The main aim of the expectation step is to impute the missing data

of the output Y to determine the sufficient statistic terms ∑N
i=1 Yi , ∑N

i=1 Y2
i ,
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∑N
i=1 Ui ∑N

i=1 Yi and the squared output data Y2
i :

Y2
i =Ŷ

2
i + σ2

U,Y = 0.4352 + 0.00093 = 0.19007

The first iteration of the expectation step calculations are shown in Table

2.2. Each expectation step is followed by a maximization step; using the

results from the expectation step (Sufficient Statistics) in Table 2.2 to gener-

ate the new parameters of linear model. It substitutes the results of Table

2.3 through equations (2.12) and (2.16).

µ1 =

 µU

µY

 =

 22.27

0.435



Σ1 =

 σ2
U σU,Y

σY,U σ2
Y

 =

 91.02 −0.1157

−0.1157 0.00083


Nevertheless, the imputed values of the output Y remain equal to the

mean value, this is because the intersection parameter equals to the mean

of the incomplete data. On the other hand, the variance of the output Y

did changed a bit, even though, the missing values were imputed, and

this was caused from the sufficient statistics equations itself, because in the

generation of the variance most of statistical laws use (N − 1), but in this

case the sufficient statistics equations uses only (N). After the first iteration,

the next expectation step starts again by using the new mean vector and

covariance matrix elements, and a new linear regression model is produced

in next maximization step.

The same procedures that were done in the previous expectation step

are repeated. By substituting the new parameters values in the sufficient

statistics equations, the following results are obtained:
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β1 =
−0.1157

91.02
=⇒ β1 = −0.0013

β0 = 0.435− (−0.1157)µU =⇒ β0 = 0.463

σ2
U,Y = 0.00083− (−0.0013)2σ2

U =⇒ σ2
U,Y = 0.00068

In this case, all of the predicted values (Ŷ) do not equal the mean value,

because the parameter β1 has a non-zero value. Results of second expecta-

tion step are shown in Table 2.4. As before, the expectation step is followed

by the maximization step. The Sufficient Statistics that yielded from the ex-

pectation step is shown in Table 2.5. The maximization step uses this result

to predict new values of the mean vector and covariance value as follows.

µ2 =

 µU

µY

 =

 22.27

0.4306



Σ2 =

 σ2
U σU,Y

σY,U σ2
Y

 =

 91.02 −0.1758

−0.1758 0.00084


In case of full observed data, the parameters values settled after the

first iteration step because the parameters of the model enabled the log-

likelihood function to reach the top of the curve. In contrast, in case of

incomplete data the mean vector and covariance matrix for the output did

not settle even in the second iteration. The reason for this is that the ex-

istence of missing data on the output Y, taking several iterations for the

parameters values to reach the settling value. However, the number of it-

erations depends on the size of data set and number of missing values. In

this example, the EM algorithm iterated 27 times to settle at the following
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mean vector and covariance matrix values:

Table 2.2: First Expectation step calculations
Ui U2

i Yi U2
i UiYi

8 64 0.49 0.2401 3.92
8 64 0.49 0.2401 3.92

10 100 0.48 0.2304 4.8
10 100 0.47 0.2209 4.7
10 100 0.48 0.2304 4.8
10 100 0.47 0.2209 4.7
12 144 0.46 0.2116 5.52
12 144 0.46 0.2116 5.52
12 144 0.45 0.2025 5.4
12 144 0.43 0.1849 5.16
14 196 0.45 0.2025 6.3
14 196 0.43 0.1849 6.02
14 196 0.43 0.1849 6.02
16 256 0.44 0.1936 7.04
16 256 0.43 0.1849 6.88
16 256 0.43 0.1849 6.88
18 324 0.46 0.2116 8.28
18 324 0.45 0.2025 8.1
20 400 0.42 0.1764 8.4
20 400 0.43 0.1849 8.6
20 400 0.41 0.1681 8.2
22 484 0.41 0.1681 9.02
22 484 0.4 0.16 8.8
22 484 0.42 0.1764 9.24
24 576 0.4 0.16 9.6
24 576 0.4 0.16 9.6
24 576 0.41 0.1681 9.84
26 676 0.4 0.16 10.4
26 676 0.41 0.1681 10.66
26 676 0.41 0.1681 10.66
28 784 0.4 0.16 11.2
28 784 0.4 0.16 11.2
30 900 0.435 0.19007 13.05
30 900 0.435 0.19007 13.05
30 900 0.435 0.19007 13.05
32 1024 0.435 0.19007 13.92
32 1024 0.435 0.19007 13.92
34 1156 0.435 0.19007 14.79
36 1296 0.435 0.19007 15.66
36 1296 0.435 0.19007 15.66
38 1444 0.435 0.19007 16.53
38 1444 0.435 0.19007 16.53
40 1600 0.435 0.19007 17.4
42 1764 0.435 0.19007 18.27
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Table 2.3: The Sufficient Statistics for first Expectation step iteration.
∑N

i=1 Ui ∑N
i=1 U2

i ∑n
i=1 Yi ∑N

i=1 Y2
i ∑N

i=1 UiYi
980 25832 19.14 8.3622 421.21

µ3 =

 µU

µY

 =

 22.27

0.415



Σ3 =

 σ2
U σU,Y

σY,U σ2
Y

 =

 91.02 −0.3815

−0.3815 0.0018


The previous description is an illustration about the basics of the ex-

pectation step and maximization step and is not intended to be a detailed

description of the EM algorithm method. As mentioned so far, the EM

algorithm is similar to the maximum likelihood method.

To explain how an EM algorithm tracks the curve of log-likelihood func-

tion, another example is considered. The EM algorithm does not compute

the log-likelihood function that is why the log likelihood does not appear

in the calculation [36]. Further, substituting the initial values of mean vec-

tor, covariance matrix and the predicted output data in the log likelihood

function is defined by equation (2.3). It gives the log-likelihood value of

99.73833.

Identically, in the second iteration step, substituting the new parameter

values in log likelihood function and continue until the result settles or has

only a small change. The log likelihood function for the output data is

shown in Table 2.6. Notice that, as likelihood function nears to a final log-

likelihood value, the difference between the current value and the previous

one becomes smaller. The same thing happens in EM algorithm estimation.
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Table 2.4: Second Expectation step calculations
Ui U2

i Yi U2
i UiYi

8 64 0.49 0.2401 3.92
8 64 0.49 0.2401 3.92

10 100 0.48 0.2304 4.8
10 100 0.47 0.2209 4.7
10 100 0.48 0.2304 4.8
10 100 0.47 0.2209 4.7
12 144 0.46 0.2116 5.52
12 144 0.46 0.2116 5.52
12 144 0.45 0.2025 5.4
12 144 0.43 0.1849 5.16
14 196 0.45 0.2025 6.3
14 196 0.43 0.1849 6.02
14 196 0.43 0.1849 6.02
16 256 0.44 0.1936 7.04
16 256 0.43 0.1849 6.88
16 256 0.43 0.1849 6.88
18 324 0.46 0.2116 8.28
18 324 0.45 0.2025 8.1
20 400 0.42 0.1764 8.4
20 400 0.43 0.1849 8.6
20 400 0.41 0.1681 8.2
22 484 0.41 0.1681 9.02
22 484 0.4 0.16 8.8
22 484 0.42 0.1764 9.24
24 576 0.4 0.16 9.6
24 576 0.4 0.16 9.6
24 576 0.41 0.1681 9.84
26 676 0.4 0.16 10.4
26 676 0.41 0.1681 10.66
26 676 0.41 0.1681 10.66
28 784 0.4 0.16 11.2
28 784 0.4 0.16 11.2
30 900 0.435 0.19007 13.05
30 900 0.435 0.19007 13.05
30 900 0.435 0.19007 13.05
32 1024 0.435 0.19007 13.92
32 1024 0.435 0.19007 13.92
34 1156 0.435 0.19007 14.79
36 1296 0.435 0.19007 15.66
36 1296 0.435 0.19007 15.66
38 1444 0.435 0.19007 16.53
38 1444 0.435 0.19007 16.53
40 1600 0.435 0.19007 17.4
42 1764 0.435 0.19007 18.27
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It is clear from the log-likelihood function that, as the value approaches

the top of the curve, the curve becomes smoother, making the change in

the results smaller.

Table 2.5: The Sufficient Statistics for second Expectation step iteration.
∑N

i=1 Ui ∑N
i=1 U2

i ∑n
i=1 Yi ∑N

i=1 Y2
i ∑N

i=1 UiYi
980 25832 18.95 8.1969 414.298

Table 2.6: Output log-likelihood function.
Iteration logLi µY σ2

Y σU,Y
1 99.73833 0.435 0.000845 0
2 97.84869 0.435 0.000826 -0.11568
3 93.51322 0.430646 0.000838 -0.17579
4 88.86392 0.427196 0.00091 -0.22194
5 85.02352 0.424518 0.001014 -0.25774
6 82.09372 0.422441 0.001128 -0.28551
7 79.89264 0.420829 0.001236 -0.30706
8 78.23475 0.419578 0.001333 -0.32378
9 76.97863 0.418608 0.001415 -0.33675
10 76.02173 0.417855 0.001484 -0.34681
11 75.28959 0.417271 0.00154 -0.35462
12 74.72758 0.416818 0.001585 -0.36068
13 74.29508 0.416466 0.001621 -0.36538
. . . . . . . . . . . . . . .
38 72.82354 0.415251 0.001752 -0.38162
39 72.82297 0.415251 0.001752 -0.38163
40 72.82252 0.41525 0.001752 -0.38163
41 72.82218 0.41525 0.001752 -0.38164
42 72.82191 0.41525 0.001752 -0.38164
43 72.8217 0.41525 0.001752 -0.38164
44 72.82154 0.41525 0.001752 -0.38164
45 72.82142 0.41525 0.001752 -0.38164
46 72.82132 0.415249 0.001752 -0.38165
47 72.82124 0.415249 0.001752 -0.38165
48 72.82119 0.415249 0.001752 -0.38165
49 72.82114 0.415249 0.001752 -0.38165
50 72.82111 0.415249 0.001752 -0.38165
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2.4 Multivariable Missing Data Analysis

To some extent, the previous analysis is simple because the missing values

occurred on just one variable (single variable). Using the EM algorithm

to analyze missing data of multivariable data set is more complex because

in each expectation step a different regression equation is needed for each

variable that has missing values. Nevertheless, the basic idea of the algo-

rithm remains the same and needs just a few modifications. To explain this

addition, let us assume there are two dependent variables Y1 and Y2, which

are related to a single input U. In this case, the algorithm will deal with

three variables (U, Y1 and Y2) rather than two. The following additions for

the sufficient statistics are required for output Y1 and Y2:

µY1 =
1
N

n

∑
i=1

Y1i (2.17)

σ2
Y1 =

1
N

 N

∑
i=1

Y2
2i −

(
∑N

i=1 Y2i

)2

N

 (2.18)

σU,Y1 =
1
N

(
N

∑
i=1

UiY2i −
∑N

i=1 Ui ∑N
i=1 Y2i

N

)
(2.19)

µY2 =
1
N

n

∑
i=1

Y2i (2.20)

σ2
Y2 =

1
N

 N

∑
i=1

Y2
2i −

(
∑N

i=1 Y2i

)2

N

 (2.21)

σU,Y2 =
1
N

(
N

∑
i=1

UiY2i −
∑N

i=1 Ui ∑N
i=1 Y2i

N

)
(2.22)
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σY1,Y2 =
1
N

(
N

∑
i=1

Y1iY2i −
∑N

i=1 Y1i ∑N
i=1 Y2i

N

)
(2.23)

These equations consist of several sufficient statistics, namely the input

and output data average (∑N
i=1 Ui , ∑n

i=1 Y1i and ∑n
i=1 Y2i), the squared sum

of the input and output data (∑N
i=1 U2

i , ∑N
i=1 Y2

1i and ∑N
i=1 Y2

2i), and the cross

product of the input and output data ( ∑N
i=1 Ui ∑N

i=1 Y1i , ∑N
i=1 Ui ∑N

i=1 Y2i ,

and ∑N
i=1 Y1i ∑N

i=1 Y2i).

These sufficient statistics represent basic information to determine the

model parameters.

In this case, there is one linear model with two regression equations for

both predicted outputs Y1 and Y2.

Ŷ1 = β0 + β1U (2.24)

Ŷ2 = β2 + β3U (2.25)

In the case of single input/multi output data set, the maximization step

does not require a modification because it depends on the data that is

estimated from the expectation step. Therefore the modification occurs in

the sufficient statistics formula. On the other hand, the maximization step

requires additional modification when the data set has multi input/single

output. For example, a system with two inputs U1 and U2 and single

output Y needs residual covariance and regression equation as follows:

Ŷ1 = β0 + β1U1 + β2U2 (2.26)

σ2
Y1|U1,U2

= σ2
Y − β1β2σ2

U1,U2
(2.27)

N

∑
i=1

Y2
1i =

N

∑
i=1

(
Ŷ2

1i + σ2
Y1|U1,U2

)
(2.28)

Compared with other algorithms, the EM algorithm is simple, useful,
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and does not require derivatives. Even with large data, it takes less time

to implement with a software package [57, 77, 83]. On the other hand,

the basic idea of the maximum likelihood method depends on a differen-

tial process however; the EM algorithm is able to skip this step [23, 117].

When extending the EM algorithm applications to multivariable missing

data analyses, it becomes more complex as the number of independent

and response variables increase. The increase in the number of inputs and

outputs means an increase in difficulty of determination of expectation and

maximization step. However, this difficulty can be overcome with modern

powerful software packages [114].

2.5 Overview of Stationary Multivariate Time Se-

ries

A time series dataset is a set of measured values arranged by their sequen-

tial time order. A time series may be a collection of observations produced

from a discrete time process, or a collection of discretized values gathered

from a continuous time system, or any other time ordered sequence of data

measurements.

Multivariate time series processes are of considerable interest in a va-

riety of fields of engineering, sciences, and medicine. By studying many

related variables together, rather than a single variable, a better under-

standing of the observed process may be obtained. Nowadays, improved

data collection methods permit large amounts of time series multivariate

data to be collected from various application domains.

For n time series x1t, x2t, . . . .,xnt, let Xt denote a multivariate time series
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for an n-dimensional time series vector, where each xit time series repre-

sents ith raw of Xt vector, that is, for any time t, Xt = {Xt1, Xt2, . . . , Xtk }.

One of the fundamental objectives of multivariate time series analysis of

Xt is to fit the data to a mathematical model to demonstrate the dynamic

relationships among the univariate time series elements. The selection of a

time series model encompassing Xt, depends on the dynamic interrelation-

ships between these time series variables, and this relationship is further

described by time lags between the data points for each time series.

The multivariate time series data set Xt , is a stationary time series, if

at arbitrary time intervals t1, t2, . . . , tk, the probability distributions of the

component time series variables Xt1, Xt2, . . . , Xtk and Xt1−p, . . . , Xtk−p

are the same. Here k is the number of measured values, while p represents

the lag. That means cross time intervals t1, t2, . . . , tk, throughout the sta-

tionary multivariate time series has a random probability distribution of

the observed data points with respect to the time lags. Consequently, any

stationary multivariate time series should have the same mean value (M)

at any time interval :

M = E (Xt) =



m1

m2

...

m3


(2.29)

In addition, the covariance matrix, ∑X of a stationary time series Xt, is

a constant matrix [108]:

∑X = E[(Xt −M) (Xt −M)T].
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2.5.1 Covariance and Correlation for Multivariate Time Se-

ries

For the stationary multivariate time series Xt, the covariance matrix be-

tween Xit and Xj,−p does not rely on the time t, for (i, j) = 1, . . . .., n.

Rather it is a function of lag p.

where

Cov
(
Xit, Xj,t−p

)
= E

[
(Xit −Mi)

(
Xj,t−p −Mj

)T
]
= γij(p)

with the n× n cross-covariance matrix expressed as:

Γ (p) = E
[
(Xt −M)

(
Xt−p −M

)T
]
=



γ11(p) γ12(p) · · · γ1n(p)

γ21(p) γ22(p) · · · γ2n(p)
...

...
...

...

γn1(p) γn2(p) · · · γnn(p)


(2.30)

and the n× n cross-correlation matrix at lag p becomes:

ρ (p) = U−1/2Γ (p)U−1/2 =



ρ11(p) ρ12(p) · · · ρ1n(p)

ρ21(p) ρ22(p) · · · ρ2n(p)
...

...
...

...

ρn1(p) ρn2(p) · · · ρnn(p)


(2.31)

For p = 0, 1, 2, . . . . . . . , the square root of the diagonal of the cross-

covariance’s matrix represents U vector:

U−1/2 = Diag{ 1√
γ11 (0)

, . . . ..,
1√

γnn (0)
}

ρij (p) = Corr
(
Xit, Xj,t−p

)
= γij(p)/

√
[γii(0)γjj(0)] (2.32)

with γii (0) = Var(Xit). Thus, for i = j, ρii (p) = ρii (−p) denotes the
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autocorrelation function of the ith time series Xit, and for i 6= j, ρij (p) =

ρji (−p) denotes the cross-correlation function between the series Xit and

Xjt. Note that γij (p) = γji(−p), so

 Γ (p)T = Γ (−p)

ρ (p)T = ρ (−p) ,
(2.33)

In addition, the cross-covariance matrices Γ (p) and cross-correlation ma-

trices ρ (p), have the property of non-negative definiteness, in the sense

that
n

∑
i=1

n

∑
j=1

bT
i Γ (i− j) bj ≥ 0 (2.34)

and
n

∑
i=1

n

∑
j=1

bT
i ρ (i− j) bj ≥ 0 (2.35)

For all positive integers k and all n-dimensional vectors b1, . . . , bk, which

follows since Var(∑n
j=1 bT

i Xt−i) ≥ 0.

2.5.2 Filtering of Multivariate Time Series

A multivariate linear filter relating an l dimensional input series Ut to n-

dimensional output series Yt is often formulated as:

Yt =
∞

∑
N=−∞

BNUt−N (2.36)

where BN are n× l matrices. The filter is physically realizable or causal

if BN= 0 for N < 0, leading to Yt = ∑∞
N=−∞ BNUt−N which means that Yt

can be characterized by past values of the input Ut. The filter is said to

be stable if ∑∞
N=−∞ ‖BN‖<∞ . Under the stability condition, together with

an assumption that the input random vectors Ut have uniformly bounded
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second moments, the output random vector Yt defined by (2.36), exists

uniquely and represents the limit:

lim
r→∞

r

∑
N=−r

BNUt−N

Such that as r → ∞

Yt= E

(Yt−
r

∑
N=−r

BNUt−N

)(
Yt−

r

∑
N=−r

BNUt−N

)T


When the filter is stable and the input series Ut is stationary with cross-

covariance matrices Γu (p), the equation (2.36) is a stationary process [96].

The cross-covariance matrices of the stationary process Yt are then

given by:

Γu (p) = Cov
(
Yt, Yt−p

)
=

∞

∑
i=−∞

∞

∑
j=−∞

BiΓu (p + i− j) BT
j

2.6 Multivariate Time Series Linear Models

2.6.1 Wold Representation

Modelling of multivariate time series are useful processes for many types of

data analysis, applications and forecasting. These processes require knowl-

edge of the dynamic interrelationships between different kinds of variables

and will provide useful information about their behaviour.

White noise εt, is an dimensional vector εt = [ε1t, . . . . . . ., εnt] having

a normal distribution with zero mean and constant variance σ, that satisfy

the relationship E(εt) = 0 and E(εtεt
T) = 0.

E
[
εtε

T
t−p

]
=

 ∑X p = 0,

0 p 6= 0,
(2.37)
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εt plays a special role in the analysis of linear models of stationary

multivariate time series [47].

For the stationary multivariate time series X = {Xt}with invariant mean

M, current values can be estimated by using the previous values. Under

particular and specific conditions it can be proven that, the multivariate

time series {Xt} can expressed as function of {εt}.

Xt =
∞

∑
j=0

Gjεt−j + M (2.38)

where Gj are n× n dimensional matrices (coefficient matrices) and G0 is n×

n identity matrices . Equation (2.38) is known as “Wold Representation”

[96].

As mentioned above, white noise plays an important role in modelling

of multivariate time series. This is because the size of the εt vector affects

the property states within the function.

The multivariate time series {Xt} can be represented by a moving aver-

age model (MA) expressed as:

Xt = εt + G1εt−1 + G2εt−2 + · · ·+ M

Ẋt = Xt −M = εt + G1εt−1 + G2εt−2 + . . .

Ẋt =
∞

∑
j=0

GjLjεt

Ẋt = G(L)εt, (2.39)

where L is the backshift operator εt−j = Ljεt and G (L) = ∑∞
j=0 GjLj [47].

Consider Gj =
[
grq,j

]
, r = 1, 2, . . . , n and q = 1, 2, . . . , n, where grq (L) =

∑∞
j=0 grq,jLj. This can be rewritten as: G (L) = [grq(L)] then

grq,j =

 1 r = q,

0 r 6= q,
(2.40)

For a stationary multivariate time series, the coefficient matrices Gj need
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to satisfy the relationship ∑∞
j=0
(

grq,j
)2

< ∞, for r = 1, 2, . . . , n and q =

1, 2, . . . , n. This results in the expectation of a mean of zero.

E

(Ẋt −
s

∑
q=0

Gqεt−q

)(
Ẋt −

s

∑
q=0

Gqεt−q

)T
 −→

as s →∞
0 (2.41)

2.6.2 The Vector Autoregressive Moving Average Model

The vector autoregressive moving average model for multivariate time se-

ries VARMA(p, q) has the formula:

Ap (L) Ẋt = Bq (L) εt, (2.42)

Ap (L) = A0 − A1L− A2L2 − · · · − ApLp

Bq (L) = B0 − B1L− B2L2 − · · · − BqLq

where Ap (L) and Bq (L) represent the polynomials of order p and q for

the two parts, autoregressive and moving average, respectively. A0 and B0

are n× n invertible matrices.

As a particular case, it can be assumed that A0 = B0 = I, where I is

n× n identity matrix. For p = 0, the vector autoregressive moving average

model VARMA(0, q) represents a moving average model MA(q),

Ẋt = εt − B1εt−1 − B2εt−2 − · · · − Bqεt−q,

For q = 0 the vector autoregressive moving average model VARMA(p, 0)

represents a vector autoregressive model VAR(p),

Ẋt=A1Ẋt−1+ A2Ẋt−2+ · · ·+ ApẊt−p+ εt

If the roots of Ap (L) of the vector autoregressive moving average model

is outside the unit circle, then the process is stationary. If the roots of the

Bq (L) , are outside the unit circle, then the model is invertible [115].

Similarly, in the multivariate time series modelling VARMA(p, q), to
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guarantee the unique function representation, the inevitability terms must

be fulfilled. In other words, the selection of the VARMA(p, q) model is

specified by the values of p and q and the coefficient matrices Ap (L) and

Bp (L) which are function in the covariance matrices of Xt.

The problem of the model selection for multivariate time models was

first introduced by Wouter J. Den Haan in 1979. He stated that, to apply

the model selection procedures for the stationary multivariate time series,

it must fulfil the following conditions:

• For the coefficient matrices, Ap (L) and Bq (L) , if Ap (L) = α(L)β(L)

and Bq (L) = α(L)γ(L), then the determinant of |α(L)| should not

equal zero , where α (L) , β(L) and γ(L) are non-singular arbitrary

matrices.

• The roots of the polynomials Ap (L) and Bq (L) must lie outside the

unit circle.

Additional details for the multivariate time series model selection will

be presented later in chapter 4.

VARMA(1, 1) Model

From equation (2.42), the first order VARMA(1, 1) model for the uni-

variate time series system Ẋt (n = 1), can be written as:

[I − A1 (L)] Ẋt = [I − B1 (L)] εt (2.43)

Ẋt = A1Ẋt−1 − B1εt−1 + εt (2.44)

Similarly the VARMA(1, 1) model for the multivariate time series sys-

tem Ẋt (n = 2), can be written as:

[I − A1 (L)]

 Ẋ1,t

Ẋ2,t

 = [I − B1 (L)]

 ε1,t

ε2,t


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 Ẋ1,t

Ẋ2,t

−
 A11 A12

A21 A22


 Ẋ1,t−1

Ẋ2,t−1

 =

 ε1,t

ε2,t

−
 B11 B12

B21 B22


 ε1,t−1

ε2,t−1



Ẋ1,t = A11Ẋ1,t−1 + A12Ẋ2,t−1−B11ε1,t−1 − B12ε2,t−1 + ε1,t (2.45a)

Ẋ2,t = A21Ẋ1,t−1 + A22Ẋ2,t−1−B21ε1,t−1 − B22ε2,t−1 + ε2,t (2.45b)

In case of the univariate time series modelling, each time series Ẋn,t

depends only on lagged values of the time series itself and the current and

past values of the white noise. However, in the multivariate time series

modelling, each time series is a function of the other lagged time series

values and the current and previous values of εt. This dependability of each

time series on the lagged values of other variables gives more advantages

for multivariate than univariate modelling. For example, if Ẋ1,t and Ẋ2,t

are the blood pressure and heart rate for a patient at time t, then from

equation (2.45), the current blood pressure value depends not only on the

previous blood pressure values, but also on the heart rate at that previous

time period. Moreover, the heart rate will also be affected by the blood

pressure measurements at the last period.

Model Average First Order Model MA(1)

From the equation (2.42) the moving average model MA(1) for multi-

variate time series (two time series Ẋ1,t and Ẋ2,t) can be represented by:

Ẋt = (I − B1(L))εt

 Ẋ1,t

Ẋ2,t

 =

 1 0

0 1


 ε1,t

ε2,t

−
 B11 B12

B21 B22


 ε1,t−1

ε2,t−1

 ,
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The covariance matrix for Ẋt is

Γ (p) = E
(

ẊtẊT
t−p

)
= E([(I − B1 (L)) εt]

[
(I − B1 (L)) εt−p

]T
)

= E([(εt − B1εt−1)]
[(

εt−p − B1εt−p−1
)]T

)

Γ (p) = ∑ B1 ∑ B1
T (2.46)

where εt is 2× 1 vector with normal distribution of zero mean and covari-

ance matrix ∑.

Transfer Function Model for VARMA(p, q)

By assuming A12(L) = 0 in equation (2.45), then

 Ẋ1,t

Ẋ2,t

−
 A11 0

A21 A22


 Ẋ1,t−1

Ẋ2,t−1

 =

 ε1,t

ε2,t

−
 B11 B12

B21 B22


 ε1,t−1

ε2,t−1


 1− A11(L) 0

−A21(L) 1−A22(L)


 Ẋ1,t

Ẋ2,t

 =

 ε1,t

ε2,t

−
 B11(L) B12(L)

B21(L) B22(L)


 ε1,t

ε2,t


 1− A11(L) 0

−A21(L) 1−A22(L)


 Ẋ1,t

Ẋ2,t

 =

 1− B11(L) 0

−B21(L) 1−B22(L)


 ε1,t

ε2,t



To avoid the correlated noise, assume B1 (L) = 0, then

 Ẋ1,t

Ẋ2,t

 =

 1− A11(L) 0

−A21(L) 1−A22(L)


−1  ε1,t

ε2,t


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Ẋ1,t =
1

1− A11(L)
ε1,t (2.47a)

Ẋ2,t =
−A21(L)

(1− A11 (L))(1−A22(L))
ε1,t +

1
1−A22(L)

ε2,t (2.47b)

For a causal transfer function model, the noise series ε1,t must not be

correlated as input to the output time series Ẋ2,t (with lagged A21 coeffi-

cient matrix). Equation (2.47) to be a causal model, the covariance matrix

between ε1,t and ε2,t must be zero’s on the diagonal. Thus,

∑=

 s11 s12

s21 s22


would have s12 = s21 = 0

VARMA(1, 1) Model Fitting

As discussed in the first part of this chapter, the maximum likelihood

method, for the invariant case, can be generalized to estimate the associ-

ated parameter matrices for a VARMA(p, q) model, A =
(

A1, . . ., Aq
)

,

B =
(

B1, . . ., Bq
)

and the covariance matrices ∑. For the multivariate time

series set X = (X1, X2, . . ., Xn), the maximum likelihood log function is

represented by:

logL
(

A, B, ∑ |X
)
= −n

2

(
mlog2π + log

∣∣∑∣∣ + n

∑
i=1

εt
T∑−1

εt

)
,

where εt = Xt − A1Xt−1 − . . .− ApXt−p + B1εt−1 + . . . + Bqεt−q

and the residual sum of squares errors is R = (A, B) = ∑ εtεt
T, then

logL
(

A, B, ∑ |X
)
= −n

2

(
mlog2π + log

∣∣∑∣∣ + tr∑−1R
)

[55, 90] introduced the maximum likelihood estimation for multivariate

time series with different scenarios. Most researchers agree that the esti-

mation method is quite difficult to implement and very slow to reach the
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convergence state [55]. [21] recommended using the least squares estima-

tion in the case of complete data rather than the maximum likelihood.

2.7 Multivariate Time Series and Forecasting

Most of recent multivariate time series literature uses the term “forecast-

ing” rather than the term “prediction”. The basic tenets of the linear

forecasting theories for multivariate time series were first introduced by

[69, 116, 118]. They stated that the forecasting process represents one of the

most important objectives in the analysis of multivariate time series. The

multivariate modelling usually depends on forecasting, even if the main

objective was for the control of the system. Forecasting of multivariate au-

toregressive models is a general case of univariate autoregressive models.

To simplify the approach, the forecasting will be illustrated in univariate

autoregressive process as a first step.

2.7.1 Minimum Mean Square Error Forecasting

The main aim of the forecasting process is to reach the optimum forecast-

ing case and this occurs when the mean value of the error is at minimum.

That fulfils the theorem of the least mean squares error forecasting. By sat-

isfying this theory, the forecasting process can achieve the optimum future

prediction.

For the stationary univariate time series Xt, ARMA(p, q) model is:

Ap(L)Xt = Bp(L)εt

and the univariate MA(q) model is:

Xt = Bq(L)εt
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Xt = εt − B1εt−1 − B2εt−2 − · · · − Bqεt−q (2.48)

where B0 (L) = 1, and for t = T + n. Then

XT+n =
∞

∑
j=0

BjεT+n−j

where n is called the origin point of the forecasting. If {Xn, Xn−1, Xn−2, . . . .}

are the observations at time t = n, then to predict Tth step in the future

XT+n as function of the observations Xn, Xn−1, Xn−2, . . . .

The least mean square error forecasting X̂n(T) of XT+n can be expressed

from equation (2.48) as:

X̂n (T) = B∗Tεn − B∗T+1εn−1 − B∗T+2εn−2 − . . .

where the coefficient matrix of B∗q is to be calculated. The average of

squared errors of the prediction is:

E(XT+n − X̂n (T))
2
= MSE

The main aim of the forecasting model is to drive the process leads close

to each other, XT+n ≈ X̂n (T) , resulting in MSE ≈ 0.

During the forecasting process, the predicted noise should satisfy:

E
(
εn+j

∣∣ Xn, Xn−1, . . .
)
=

 0 j > 0

εn+j j ≤ 0
where

E (Xn+T | Xn, Xn−1, . . . ) = B1εn − BT+1εn−1 − BT+2εn−2 − . . .

and the forecasting values of Xn+T when MSE ≈ 0 is:

X̂n+T = E (Xn+T | Xn, Xn−1, . . . ) (2.49)

Where X̂n+T is the T-step ahead of the forecast of Xn+T at the origin

point and the forecasting error is expressed as:

zn (T) = Xn+T − X̂n+T =

 0 t ≤ n

MSE t > n
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For the stationary univariate time series 95% forecast limits are:

X̂n+T ± 1.96

s

√√√√1 +
T−1

∑
j=1

B2
j


where s is the standard deviation.

2.7.2 Forecasts Computation for ARMA(p, q) Model

The first step of the predictions can be initiated by using the condition

expectation formula shown in equation (2.49).

For ARMA(p, q)model:

Ap(L)Xt = Bp(L)εt

(1−A1 (L)−A2 (L)−· · ·−Ap (L))Xt = (1− B1 (L)− B2 (L)−· · ·−Bp (L))εt

For t = n + T, Xt can be written as:

Xn+T = A1Xn+T−1 + A2Xn+T−2 + · · · + ApXn+T−p + εn+T − B1εn+T−1 −

B2εn+T−2 − · · · − Bpεn+T−q

By applying the conditional expectation at the origin point n, X̂n (T)

becomes:

X̂n (T) = A1X̂n(T− 1)+ A2X̂n(T− 2)+ · · ·+ ApX̂n(T− p)+ ε̂n(T)− B1ε̂n(T−

1)− B2ε̂n(T − 1)− · · · − Bp ε̂n(T − q)

Where

X̂n (T) =

 Xn+j j ≤ 0

E
(
Xn+j

∣∣ Xn, Xn−1, . . .
)

j > 0
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and

ε̂n (T) =

 0 j > 0

εn(j) j ≤ 0

For ARMA(1, 1)model:

(1− A1 (L)) Xt = (1− B1 (L))εt

Xn+T = A1Xn+T−1 − B1εn+T−1 + εn+T

and

X̂n (T) = A1X̂n(T − 1)− B1ε̂n(T − 1) + ε̂n(T)

X̂n (T) = A1
TX̂n − B1

T ε̂n

X̂n (1) = A1X̂n − B1ε̂n

X̂n (2) = A1
2X̂n − B1

2ε̂n

Numerical example:

To clarify the concepts of the forecasting process, consider the first order

autoregressive model AR(1):

(1− A1 (L)) (Xt − 5) = εt

The standard deviation of the distributed data is 0.2, the coefficient

A1 = 0.4 and the observations of Xt are X30 = 5, X31 = 4.5, X32 =

4, X30 = 5.4. Using a forecast confidence limit of 95%, the forecast for

3-steps ahead of Xt is:

Xt = A1 (Xt − 5) + 5 + εt

For j > 0, ε j = 0, and from equation (2.49) :

X̂n (T) = A1(X̂n (T − 1)− 5) + 5

X̂n (T) = A1
T(Xn − 5) + 5

X̂34 (1) = 0.41(Xn − 5) + 5 = 5.16
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X̂35 (2) = 0.42(Xn − 5) + 5 = 5.06

X̂36 (3) = 0.43(Xn − 5) + 5 = 5.03

and 95% confidence intervals for the forecasts values are:

X̂34 (1)± 1.96 ∗ 0.2
√

1 + (0)→ 4.6 < X34 > 5.71

X̂35 (2)± 1.96 ∗ 0.2
√

1 + (0.4)2 → 4.64 < X35 > 4.48

X̂36 (3)± 1.96 ∗ 0.2
√

1 + (0.4)3 → 4.6 < X36 > 5.45

The software programs for modelling and forecasting VARMA models

are not widely available. One identified by Scientific Computing Associates

(SCA) is their multivariate time series package (MTC) [66], SAS program.

Unfortunately, these software programs work under restricted conditions

and are not easy to be implemented for the VARMA model tasking. For

these reasons, these models will not be further addressed.

2.8 Causality

In considering the design of multivariate time series models, a structure is

required for representing both the behaviour of each time series separately,

and to address cross connections among the multivariate time series. The

objective for displaying and analysing the time series together is to compre-

hend the dynamic connections among the time series over time. In addi-

tion, another benefit is the ability to enhance the predictions for each time

series by using extra information available from the dynamic relationships

among these time series. In view of these targets, the class of multivari-

ate time series modelling (e.g. (p, q) ) is designed and its properties are

analysed [69, 116, 118].
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The concept of the causality is not specified in general system identifica-

tion procedure. It is particularly relying on the cause and effect relationship

between the time series elements themselves.

Consider that X = {X1t, X2t} are stationary time series, being restively

linked with each other. Under specific circumstances, it can be assumed

that series X1t causes X2t this type of assumption is significant, especially

when planning system behaviour, analysis or modelling [97].

In multivariate time series modelling, most methods dealing with causal

inferences are based on the concepts of forecasting. Among these methods,

the approaches developed by [51–53] are considered as the most useful and

generally accepted technique in practice.

2.8.1 Granger Causality

The main notion of the Granger causality test relies on the statistical prin-

ciple of specifying if one or more time series from multivariate set Xt can

have an effect on the forecasting values of a specified time series Xnt. Gen-

erally, the correlation in regression process indicates the relationships be-

tween variables in the periodicity of measuring time (observed data). In

contrast, Granger discussed that the cause and effect in multivariate time

series can be determined by testing the ability to forecast the next values

of the time series at time (t + T) by using the observed values of other time

series.

Deductions of cause and effect relationships in multivariate time series

analysis rely mostly on the notion of Granger causality [51–53]. Unlike the

other causality tests, this technique does not depend on the correlation be-

tween the observed values of the time series, but it relies on investigation
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of cause and effect relationships in the prediction period. The general def-

inition of Granger causality test is based on two main basic assumptions:

• The causes in time-varying functions always proceeds the effect.

• The causal time series includes specific information about the affected

time series.

When the first occurrence of a cause within a process is fulfilled, and it

is usually considered as a primary principle driver for the other causality

test techniques. On the other hand, the second basic assumption is quite

difficult to be specified, as it needs provisionally unique information about

the affected time series. That requires knowledge of all prior information

about each time series to specifying the unique information for the affected

time series. To that situation, Granger divided the specification of the avail-

able information into two sets:

• f ∗ (t) is the available information set for the multivariate time series

set Xt∗ at specific time t∗.

• f ∗n (t) is the available information for all time series, except the af-

fected time series Xnt∗ at the same specific time t∗.

Given that all the available information about multivariate time series

at time t∗ are included in the information set f ∗ (t), if the time series X1t∗

cause time series X2t∗ , based on the above basic the conditional probability

distribution of X2t∗+1, then two different information set f ∗ (t) and f ∗n (t)

result [97].
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2.8.2 Granger Causality in the Context of VARMA(p, q)

In the case of VARMA model, the Granger causality test starts by separat-

ing the multivariate time series Xt in two parts of time series Zt and Yt,

then separating the VARMA model into two models, VAR(p) and MA(q).

Hence,

 A11(L) A12(L)

A21(L) A22(L)


 Zt

Yt

 =

 B11(L) B12(L)

B21(L) B22(L)


 ε1t

ε2t

 (2.50)

The multivariate time series Xt is assumed stationary, and then the model

equation (2.50) is both stable and invertible. The MA model canonical form

is  Zt

Yt

 =

 G11(L) G12(L)

G21(L) G22(L)


 ε1t

ε2t


For MA model, the multivariate time series Zt is Granger-affected by Yt if

and only if G12 (L) = 0 [79].

where

 G11(L) G12(L)

G21(L) G22(L)

 =

 A11(L) A12(L)

A21(L) A22(L)


−1  B11(L) B12(L)

B21(L) B22(L)



=

 A22(L)
A11(L)A22(L)−A21(L)A12(L)

−A12(L)
A11(L)A22(L)−A21(L)A12(L)

−A21(L)
A11(L)A22(L)−A21(L)A12(L)

A11(L)
A11(L)A22(L)−A21(L)A12(L)


For simplicity, assume

K (L) =
A22(L)

A11 (L) A22 (L)− A21(L)A12(L)
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 G11(L) G12(L)

G21(L) G22(L)

 =

 K(L) −K(L)A12(L)
A22(L)

−K(L)A21(L)
A22(L)

1
A22(L) +

K(L)A12(L)A21(L)
A22(L)2



From the Granger Causality test for MA model G12 (L) = 0 , if and only

if, Yt is not causal for Zt.

Then:

G12 (L) = K (L) B12 (L)−
K (L) A12 (L)

A22 (L)
= 0

Or

B12 (L) =
A12 (L)
A22 (L)

(2.51)

Equation (2.51) can be generalized for VARMA(p, q) model for simplic-

ity. Assume, for example, a first order VARMA(1, 1) model

 Zt

Yt

 =

 A11 A12

A21 A22


 Zt−1

Yt−1

−
 B11 B12

B21 B22


 ε1,t−1

ε2,t−1

+

 ε1t

ε2t



In this case equation (2.51) will be

B12 =
−A12(1 + B22)

1− A22

For Granger-causality test

B12 = −A12 = 0

Or (1 + B22) = (1− A22)





Chapter 3

Using Nonlinear Models to

Enhance Prediction Performance

with Incomplete Data

3.1 Introduction

Modern research on data imputation has concentrated on maximum like-

lihood methods such as the EM algorithm to deal with missing data prob-

lems. These methods can produce good results for most applications and

generally, these approaches are much improved as compared to traditional

methods. One benefit of these modern techniques is that in many particular

applications, the estimate of parameters is unbiased. However, these meth-

ods do not work well for nonlinear systems, especially those exhibiting

highly nonlinear behaviours. This chapter introduces nonlinear paramet-

ric imputation technique for the case of missing data. First, an overview

of biased and unbiased linear parametric estimation with missing data is

67
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presented followed by descriptions of the Gauss-Newton method. In par-

ticular, This chapter explores in detail the Gauss-Newton iteration method

for nonlinear parametric estimation in the case of missing data. However,

the Gauss-Newton method needs initial values that are hard to obtain for

missing data. To overcome this, The EM algorithm was used to estimate

the initial values.

In linear model identification, the general formula of the linear model

is known. It is only necessary to identify the key dependent and inde-

pendent variables to be included in the model. While generally a simple

and popular procedure in estimation process is to assume linear relation-

ship between the predictor and dependent variables, the assumption may

not always work well especially for severely nonlinear systems. For these

systems, researchers try using nonlinear analysis techniques, but they are

faced with a challenging problem, which is selecting the best model from

different candidate nonlinear models or desired nonlinear representations.

The form of the model needs to be specified, the parameters need to be

estimated in some iterative manner, with the initial values for those pa-

rameters being provided. There are many methods for nonlinear model

selection including the Box and Tidwell transformation technique [22], a

modified Box and Tidwell method [86] and fractional polynomial (FP) ap-

proach [98], where these methods work well only for complete data [100].

Consequently, the overarching purpose of this chapter is to introduce some

nonlinear model selection methods for incomplete data. Firstly, this chap-

ter will present a brief overview of nonlinear model selection approaches.

Then it illustrates the Box-Tidwell and fractional polynomial methods for

missing data. In some detail, this chapter will focus on fractional poly-
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nomial method for missing data analysis by using a maximum likelihood

and Gauss-Newton algorithm, this chapter also present analysis examples

to illustrate the performance of these methods. The last part of this chapter

focuses on the effect of missing data mechanism on nonlinear parametric

estimation in the presence of missing data.

3.2 Gauss-Newton Algorithm

The linearization technique for nonlinear regression is an approach widely

used in nonlinear regression model estimation [84]. The basic idea of non-

linear estimation by linearization method consists of two steps: the lin-

earization of the nonlinear system and the estimation of model parameters

[109]. Linearization can be implemented by a Taylor series expansion of the

nonlinear model at a specific operating point. For example, for a nonlinear

model f (X, β) consisting of a number of samples i and n parameters (X is

input and β is the estimated parameter vector) the linearization result with

respect to the operation point β0 is:

f (Xi, β) = f (Xi, β0) +
n

∑
k=1

[
∂ f (Xi, β)

∂βk

]
β=β0

(βk − βk0) (3.1)

f 0
i = f (Xi, β0)

α0
k = (βk − βk0) (3.2)

J0
ik =

[
∂ f (Xi,β)

∂βk

]
β=β0

is i× n jacobian matrix.

The residual between the estimated and real values is:

ei = Yi − f 0
i =

n

∑
k=1

α0
k J0

ik + εi (3.3)
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The linear model in equation (3.1) is assumed valid only around some

specific operating point. While ε is the assumed white noise with zero

mean and constant variance, and the initial value of parameter α0 can be

estimated by linear least squares method.

Y0 = J0α0 + ε (3.4)

α̂0 = (J
′
0 J0)

−1
J
′
0e (3.5)

From equation (3.2), β1 = α0 + β0. The next step is replacing β0 by β1

in equation (3.1), where β1 represents a new initial value for the system.

Repeat the same steps for [β2 β3 β4, . . . . . . .. βm], where m is the number

of required iterations to get the convergence. The number of iterations m

will terminate when the convergence ratio |(αk,m+1 − αkm)/αkm| < δ meets

some pre-specified threshold (specific small value for δ) for example when

the value less than 1.0× 10−6 [84].

3.3 Gauss-Newton Algorithm for Missing Data

The above procedures are called a Gauss-Newton iteration method for non-

linear regression. Unfortunately, this technique cannot be used to estimate

the parameters if the data contains missing values, because it depends on

the error between the estimated and measured values. If there is a miss-

ing value on the regression variable, it is not possible to estimate the error.

In this case, another optimization technique have been used to estimate

the error and taking it as an initial value in the Gauss-Newton iteration

technique. This approach shows that the combination of EM and Gauss-
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Newton produces better results in comparison with linear analysis meth-

ods. To illustrate this, consider the same example taken from Table 2.1

[32].
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Figure 3.1: Nonlinear scatterplot of the proportion of available chlorine in
a certain quantity of chlorine solution (MAR).

First, a nonlinear exponential growth model is used to fit the data

Ŷ = θ1(y1 − θ1)eθ2(X−x1),

where x1 and y1 represent the first two initial values in the data set . The

values generated by the estimated nonlinear model are shown in Figure 3.1.

Comparing Figure 3.1 with Figures 2.4 and 2.5, there is similarity between

the linear estimation and the nonlinear estimation. This slight modification

to the nonlinear algorithm for missing data yields an unbiased parameter

estimation in the MAR case. Notice that the nonlinear regression model

yields a correlation -0.86 between the output Ŷ and input X. In contrast

the correlation equals to -0.94 for the complete data case. Consequently,
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the nonlinear model produces less variability. For example, the standard

deviation of the output Ŷ estimated from the nonlinear model is 0.029,

whereas it is equal to 0.025 for the complete data case. Although the non-

linear regression model gives unbiased estimation of standard deviation

and correlation, it does produce biased estimates of the mean value. In

the above example, an exponential growth model was used to fit the data,

showing some disadvantage in comparison with linear models.

To expanding this, consider another data set as shown in Table 3.1

(taken from [84]). In this example, the dependent variable Ŷ is the ten-

sile strength of Kraft paper and the independent variable X is the hard-

wood concentration for pulp, which produces the paper. The data set in-

cludes the following missing data mechanism MCAR with 21%, 26% and

37% missing. Note that unlike the previous examples, the ultimate pur-

pose of this example is to compare the performance of the linear algorithm

(EM algorithm) and the nonlinear algorithm (modified Gauss-Newton al-

gorithm) in the presence of different percentages of missing data for a

MCAR mechanism in term of correlations, residuals, standard deviations,

and means. For illustration, the complete data is plotted in Figure 3.2. The

EM algorithm is applied to estimate the parameters of the linear model:

Ŷ = θ0 + θ1X.

The modified Gauss-Newton algorithm was applied to estimate the pa-

rameters of the polynomial model: Ŷ = θ0 + θ1X + θ1X2.

To begin the analysis, compare the imputed values generated by the

linear and nonlinear models in case of MCAR 21% missing data, with the

complete data, where the mean value for full-observed output Y is 34.184,

and mean value for the imputed values is 34.379 and 34.178, respectively.
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This result indicates that the nonlinear regression is just slightly better than

the linear model for mean value estimation. By inspecting Figure 3.3 and

Figure 3.4, the effect of missing values on the proposed algorithms can be

seen. In Figure 3.3, the imputed values from the linear model fall directly

on a straight line with a slope 1.73. The same happens with the nonlinear

model shown in Figure 3.4.

Table 3.1: The input and output of the system in MCAR with missing percentage
[84].

Strength of paper
Percentage of

hardwood Y
X Complete MCAR (21%) MCAR (26%) MCAR (37%)
1 6.3 6.3 6.3 6.3

1.5 11.1 11.1 11.1 11.1
2 20 - 20 -
3 24 24 24 24
4 26.1 26.1 26.1 26.1

4.5 30 - - -
5 33.8 33.8 33.8 33.8

5.5 34 - 34 -
6 38.1 38.1 - 38.1

6.5 39.9 39.9 39.9 -
7 42 42 - 42
8 46.1 46.1 46.1 -
9 53.1 53.1 53.1 -

10 52 52 - 52
11 52.5 52.5 52.5 52.5
12 48 48 - -
13 42.8 - 42.8 42.8
14 27.8 27.8 27.8 27.8
15 21.9 21.9 21.9 21.9

The imputed values with linear and nonlinear regression have a cor-

relation 0.54684 and 0.53117, respectively between the imputed output Ŷ

and input X whereas the case of complete data with a correlation 0.55261.

Figure 3.5 and Figure 3.6 show the effect of uncorrelated cases in terms
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of the residuals. For example, linear and nonlinear models give standard

deviation estimates of 14.00 and 13.61, respectively. Whereas the full ob-

served data standard deviation is 13.778. This is not surprising, because

the missing values are close to the linear region area.
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Figure 3.2: Complete Concentration/Strength data scatterplot.
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Figure 3.3: Linear regression model of Concentration/Strength data in
case of 21% (MCAR) scatterplot.



Chapter 3. Using Nonlinear Models to Enhance Prediction Performance
with Incomplete Data 75

Concentration (%)
0 5 10 15

S
tr

en
gt

h

5

10

15

20

25

30

35

40

45

50

55

Figure 3.4: Noninear regression model of Concentration/Strength data in
case of 21% (MCAR) scatterplot.
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Figure 3.5: (Linear regression model) residual (e) versus predicted values
scatterplot in case of 21% (MCAR).
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Figure 3.6: (Nonlinear regression model) residual (e) versus predicted
values scatterplot in case of 21% (MCAR).

Table 3.2, summarizes the effect of two other cases of missing data per-

centages (MCAR 26% and MCAR 37%) for the linear and nonlinear model.

Relevant results are graphically illustrated in Figures 3.7-3.14.

Table 3.2: The effect of linear and nonlinear models on the system in different
MCAR missing percentage.

Linear regression
MCAR 21% MCAR 26% MCAR 37%

Mean 34.379 31.744 31.106
Correlation 0.5468 0.543 0.5541

Standard deviation 13.61 13.778 13.778
Nonlinear regression

Mean 34.178 30.945 31.426
Correlation 0.5312 0.5148 0.5372

Standard deviation 14.01 12.438 12.356
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Figure 3.7: Linear regression model of Concentration/Strength data in
case of 26% (MCAR) scatterplot.
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Figure 3.8: (Linear regression model) residual (e) versus predicted values
scatterplot in case of 26% (MCAR).
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Figure 3.9: Noninear regression model of Concentration/Strength data in
case of 26% (MCAR) scatterplot.
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Figure 3.10: (Nonlinear regression model) residual (e) versus predicted
values scatterplot in case of 26% (MCAR).
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Figure 3.11: Linear regression model of Concentration/Strength data in
case of 37% (MCAR) scatterplot.
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Figure 3.12: (Linear regression model) residual (e) versus predicted values
scatterplot in case of 37% (MCAR).
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Figure 3.13: Noninear regression model of Concentration/Strength data
in case of 37% (MCAR) scatterplot.
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Figure 3.14: (Nonlinear regression model) residual (e) versus predicted
values scatterplot in case of 37% (MCAR).



Chapter 3. Using Nonlinear Models to Enhance Prediction Performance
with Incomplete Data 81

3.4 Model Selection

For linear model identification, the general formula of the linear model is

known. It is only necessary to identify the key dependent and independent

variables to be included in the model. While generally a simple and popu-

lar procedure for the estimation process is to assume a linear relationship

between the predictor and dependent variables, this assumption may not

always work well especially for severely nonlinear systems. To overcome

the weakness of this assumption, researchers typically try using nonlinear

analysis techniques, and this involves another challenging problem to se-

lect the best model from different candidate nonlinear models or desired

nonlinear representations. Here the form of the model needs to be spec-

ified and the parameters need to be estimated in some iterative manner.

Also, the initial values for those parameters must be provided [13, 16].

3.4.1 Box-Tidwell Method

Box and Tidwell introduced an iterative method for model selection [22]. It

is based on calculating the best power for the polynomial model.

For the model

Y = β0 + β1Xp + ε, (3.6)

where β0 and β1 are parameters to be estimated, p is the power that needs

to be determined and ε is uncorrelated white noise with zero mean and

constant variance.

The Box-Tidwell transformation for a positive independent variable X

in equation (3.6) is:



82 3.4. Model Selection

BT (X) =

 ln(X) p = 0

Xp p 6= 0
. (3.7)

The parameter p in equation (3.7) can be determined through an opti-

mization algorithm by expanding the polynomial model in equation (3.6)

using a Taylor series for p. The iteration process starts by calculating an

initial value p(1) and iterating until p(K) converges [22].

3.4.2 Fractional Polynomial Model Estimation

Nonlinear regression often suffers from serious drawbacks, such as less

flexibility in low order nonlinear systems (e.g. quadratic model), a lack of

waviness in higher order systems, and the difficulties with model selec-

tion in specifying the relation between the input and output variables of

the system [10, 81], the Fractional Polynomial (FP) method introduced by

Royston and Altman gives a good solution to polynomial regression [98],

and this can be achieved by finding the best model from a set of fractional

polynomial models that describe the relationship between the input X and

output Y. This section will illustrate the feature of this approach and how

it can be used for missing data analysis.

To some extent, the fractional polynomial approach is similar to conven-

tional polynomial based methods, where the polynomial regression has

only positive integer powers of predictor variables. On the other hand,

fractional polynomial methods allow non-positive integer powers, this per-

mits the use of negative and fractional bases [98]. In many cases, fractional

polynomial models give a better fit as compared with traditional polyno-

mial models [99], and it representation is similar to traditional polynomial
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models.

For example, if the degree of the model r = 1 or 2, the model can be

written, respectively as:

Y = β0 + β1Xp, (3.8)

Y = β0 + β1Xp1 + β2Xp2 , (3.9)

where p1 and p2 are powers of either integer or fractional values. The

fractional polynomial model with degree r and a power vector P is denoted

as φr (X, P). Normally, the vector of powers, is restricted to a predefined

set s as the following:

P = [p1, p2, p3, ....]

s = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}

This predefined set can adequately cover most practical models. This in-

cludes linear , quadratic , and cubic models, as well as other non-fractional

and fractional polynomial models of degree r.

In practice, fractional polynomial models with power values up to 2

are sufficient and can give good results that are better than conventional

polynomial models and the models with higher degrees are rarely used,

and this is because of sensitivity to noise and small changes in data [17, 98,

100]. For this reason, it will be better to use the model family of first and

second degrees φ1(X, P) and φ2(X, P).

An appropriate model can be selected from a predefined set of mod-

els {s}, and all models can be estimated by using a maximum likelihood
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method. Each model has a power vector P, which is associated with the

model and likelihood function, and the power vector is used to calculated

the deviance (D) for each model where

D = −2× logl

.

The gain (G) for model φm(X, P) is defined as [98]:

G = G (φm (X, P)) = D (φ1 (X, 1))− D(φm(X, P)), (3.10)

where D (φ1 (X, 1)) and D (φm (X, P)) are the deviance of linear fit and

fractional polynomial model, respectively.

The gain (G) of each model is calculated from the deviance D of the

model, defined as the difference of the deviance between the linear esti-

mated fit φ1(X, 1) and fractional polynomial model φm(X, P). There is an

opposite relationship between the values of D and G, the highest value of

gain G and the lowest value of D results in a better fit. In general, the final

procedure of model selection process depends on the appearance of the

relationship between the fitted curve and data [98, 100].

3.4.3 Missing Data and Model Selection

The aforementioned model selection procedures can be used for the com-

plete data case. Unfortunately, these techniques cannot be used directly

for nonlinear model selection for the case of missing data, this is because

model parameter estimation requires nonlinear least squares, and this would

need the error value between the model fitted values and the real observa-

tions. If there is a missing value on the dependent variables, it is impossible

to know this error directly. To overcome this problem, the combined EM-
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Gauss-Newton algorithm will be used.

As an example, consider a data set, which was taken from [78]. This

data represents the body mass index (BMI) which is the input X and per-

centage of body fat content which is the output Y, the total number of data

is 327 that were taken from three different countries [78].

In this data set, two different cases of MCAR missing data mechanisms

was proposed, 10% and 20% missing, respectively. The ultimate goal of this

example is to examine the performance of these model selection methods

in the presence of different percentages of missing data for a MCAR mech-

anism, and compare it with traditional models (linear, quadratic, cubic)

and the Box Tidwell model selection technique.
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Figure 3.15: Fitted lines for models in case of 10% MCAR imputed missing
data and real values.

By using Box Tidwell method for estimating the best fitting for the BMI

data, among the huge number of models, the model with power p=−0.84 is

the best one, having the form Y = β0 + β1X−0.84 . The best fit solution from
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the fractional polynomial method has model order (−2, −1), which has

the form Y = β0 + β1X−2+β2X−1, both of the two models were estimated

from complete data. On the other hand, in the case of missing data, the Box

Tidwell method gave two different models, with powers −0.62 and −0.5 for

both cases 10% and 20% MCAR, respectively, and the fractional polynomial

method generates models with power vectors (−1, 2), and (2,−1) for both

cases 10% and 20% MCAR, respectively.

For a clearer visualization, the imputed data in case of 10% and 20%

MCAR and real values are shown in Figures 3.15 and 3.16, respectively. The

change of the amount of missing data affected directly on the model order

in both model selection techniques, the imputed data from the proposed

models are similar but the models that are proposed by the model selection

techniques still have the best fit in both cases of missing data. The next

section will provide more evidence concerning this.
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Figure 3.16: Fitted lines for models in case of 20% MCAR imputed missing
data and real values.
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3.4.4 Goodness of Model Fit

To ensure the optimum model is selected, a goodness fit of the models

should be checked. There are many types of goodness fit tests that can be

used to check the model performance [40, 56]. In this section, two simple

and robust measures was used R2 and an F test. Table 3.3 summarizes the

comparison of the proposed models with three traditional models: cubic,

linear, and quadratic. In terms of fit goodness, the R2 values show little

difference between the traditional models (quadratic and cubic) and the se-

lected models of fractional polynomial and Box Tidwell.

Table 3.3: Proposed models and goodness fit statistics.

Model R2 (MCAR 10%) R2 (MCAR 20%)
Linear 0.8073 0.819

Fractional polynomial 0.8689 0.8781
Box Tidwell 0.8686 0.8779
Quadratic 0.8607 0.871

Cubic 0.867 0.8764

To implement the F test, first calculate the F-statistic, and this depends

on the degree of freedom for each model. The F statistic must be deter-

mined by one of two equations:

F− statistic1 =
RS1

RS2
(3.11)

F− statistic2 =
(RS1 − RS2) DF2
(DF1− DF2)RS2

(3.12)

If both models have the same degree of freedom, then equation (3.11)

is used. Otherwise equation (3.12) is used, where RS1 is the squares sum

of residual for the first model and RS2 is the squares sum of residual for

second model. DF1 and DF2 are the degree of freedom of the first and
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second models, respectively. After determining the F-statistic, the results

can be compared with F-distribution value to extract the probability value

(γ). If the (1− γ) value is less than 0.05 (Rejection-probability-value) then the

first model has a better fit of data, otherwise the second model is better.

Table 3.4 summarizes the results of the F-test for nonlinear models (Box

Tidwell, quadratic, fractional polynomial, cubic) for the two cases of miss-

ing percentages. The F-test results show that traditional models have low

F-distribution values in comparison with Box Tidwell and fractional poly-

nomial models. The F-test results indicate that Box Tidwell still gives a

better fit.
Table 3.4: F-test.

10% MCAR 20% MCAR
Model F-statistic F-statistic

Box Tidwell-FP 0.99984 0.99999
Box Tidwell-quadratic 1.00000 1.00000

Box Tidwell-cubic 1.00000 1.00000
Quadratic-FP 0.75243 0.85552

Quadratic-cubic 0.77245 0.81225
FP-cubic 1.00000 1.00000

3.5 Summary

Missing data analysis plays a key role in real life data based decision

making and related fields of research. The primary aim of this chapter

was to introduce a nonlinear modelling technique for missing data analy-

sis (static data). Comparative study on EM-Gauss-Newton approach has

been demonstrated, EM and Gauss-Newton algorithm are advantageous

over traditional approaches. In addition, in this chapter, the critical is-

sues in choosing the best models in case of missing data was introduced,
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where two most popular model selection methods for incomplete data are

illustrated, and the illustrations have been focused on single variable data

modelling for missing data. The basic idea however can be extended to

multivariable data analysis, but the modelling complexity is increasingly

difficult. The key aspects of the Box Tidwell transformation and fractional

polynomial methods was presented and applied these to model estimation

for missing data. The comparison of the effect of different missing data

mechanism (10% MCAR and 20% MCAR) on the fractional polynomial,

Box Tidwell and traditional models gave good indications about the use

of fractional polynomial and Box Tidwell methods. As evidenced by the

F-test, the cubic, Box Tidwell, and fractional polynomial models are better

and imputed the missing values about equally well, but the fractional poly-

nomial model still give the highest R2 value. However, complex models are

generally less tractable and are less robust than simple ones.





Chapter 4

Handling Missing Data in

Multivariate Time Series Using a

Vector Autoregressive

Model-Imputation

4.1 Introduction

Datasets involving multivariate time series are present in nearly every

scientific field. Examples include economic, engineering, medicine, sci-

ence, finance, and climatology [34, 44, 74]. Problems with missing data

routinely occur while conducting research in these fields especially with

large datasets. This is particularly apparent during the data acquisition

phase. However, modelling and analysis of most of multivariate time se-

ries datasets often require complete data. Therefore, missing data is a very

serious problem, especially those involving multivariate time series data

91
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modelling and analysis. To correct the problem, care must be taken to

impute missing data with reasonable and accurate values to ensure valid

models and accurate study results.

Within the research field of missing data analysis, traditional data impu-

tation methods can appropriately handle missing values for static data. Ap-

proaches such as multiple imputation (MI) and maximum likelihood (ML)

featured in standalone software (e.g., NORM; [49, 103]) or statistical pack-

ages (e.g., SPSS and MARSS) can easily impute good values for missing

data. However, imputing values into multivariate time series presents spe-

cial challenges, and these software packages cannot handle missing data for

dynamic systems modelling especially when the data is missing at random

[48], these packages have limitations or simply may not work for dynamic

systems modelling [73]. For example, many dynamic models involving au-

toregressive variables produce outputs that normally are linear or nonlin-

ear combinations of lagged variables, and the estimation of autoregressive

models requires that the data be fully observable. When these autoregres-

sive models have missing values present, estimation of the output is simply

not possible [104]. Most statistical packages either do not allow missing

data in time series analysis or only allow ad-hoc procedures limiting the

options available. Examples include: the MARSS Package (Multivariate

Autoregressive State Space) [61], and K-nearest neighbour method [18, 73].

Also, these methods often lead to bias in the output estimates.

Furthermore, most of these methods are used for static data sets and

become increasingly difficult to implement when both the dependent and

independent variables have missing information [5]. For this reason, it may

not be appropriate to directly apply these methods to deal with dynamic
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models. Until now, only a limited number of algorithms have been adapted

to be used for missing data imputation for cases of multivariate time series

[28]. While these methods can handle some situations of missing data

in multiple variable modelling (static data), they still lack robustness for

multivariate time series modelling tasks [85]. Therefore, there is a need to

address this issue, this chapter introduces a new methods to improve this

situation and presents a suitable solution for missing data imputation in

multivariate datasets.

4.2 Vector Autoregressive Model (VAR)

The vector autoregressive model (VAR) is a commonly used model for

the analysis of multivariate time series. In many applications, where the

variables of interest are linearly related to each other, the VAR model has

shown to be a good choice for representing and predicting the behaviour

of dynamic multivariate time series [121]. It primarily provides good fore-

casts as compared to models from univariate time series and others . The

forecasts from the VAR are relatively easy to derive because the model can

make conditions on the prediction paths of specified time series within

the model itself [121]. In addition to time series analysis and prediction,

the VAR model is additionally utilized for causality inference and strategy

investigation of the multiple time series. In causality analysis, specific hy-

potheses of the causality of the time series under analysis are assumed, and

the subsequent causal effects of each time series are outlined. This chapter

concentrates on the use of the VAR model to analyse stationary multiple

time series datasets with missing data.
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4.3 The VAR Model for Stationary Time Series

Let Xt = [x1t, x2t, . . ., xmt ]
T be an (m × 1) time series vector, a VAR(p)

model for the multiple time series can be represented by:

Xt = A0 + A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + εt,

Xt = A0 +
p

∑
i=1

AiXt−i + εt, (4.1)

where t = 1, . . . , T, Ai are (m × p) coefficient matrices and εt ∈ (0, Σ)

denotes an (m× 1) vector of white noise.

Equation (4.1) can be written in lagged notation:

Ap (L) Xt = A0 + εt,

where Ap (L) = Im− A1L− · · · − ApLp,

For a stationary multivariate time series the mean (M) satisfies:

M = inv(Im− A1− · · · − Ap)A0,

and the mean-adjusted form for VAR(p) model is:

Xt−M = A1 (Xt−1−M) + A2 (Xt−2−M) + · · ·+ Ap
(
Xt−p−M

)
,

The stability of the VAR model is dependent on the roots of equation (4.2),

and (z1, z2, z3, ...) are eigenvalues of A.

|A− zIm| = 0. (4.2)

4.3.1 VAR (p) Model Estimation

This section briefly reviews the least squares estimation technique for esti-

mating VAR(p) model coefficients in equation (4.1).

In many cases, the coefficients matrices A0, A1, A2, . . . , Ap are un-

known, and need to be estimated from the available multivariate data set.
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It is assumed that the entire time series x1t, x2t, . . . , xmt data set is avail-

able (no missing data). Hence, the sample size for the all-time series are

same: t = 1, . . . , T. Furthermore, the specified p lagged values for each

time series Xt−p are assumed to be exist.

For the m time series with sample length T (t = 1, . . . , T), the VAR(p)

model is written as [79]:

X̂ t = φA + e (4.3)

where e is error with covariance matrix σ2Im, φ is the regression matrix

and A is the coefficients matrix

A = (φT φ)
−1

φT X

Then,

X =



x1(p + 1) x2(p + 1) · · · xm(p + 1)

x1(p + 2) x2(p + 2)
... xm(p + 2)

...
...

...
...

x1(T) x1(T) · · · xm(T)


((T − p)×m)

A =



a01 a(11)1 · · · a(1m)p

a02 a(21)1
... a(2m)p

...
...

...
...

a0m a(m1)1 · · · a(mm)p


((mp + 1)×m)
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φ =



1 x1(p) · · · xm(p) x1(p− 1) · · · xm(p− 1)

1 x1(p + 1)
... xm(p + 1) x1(p)

... xm(p)
...

...
...

...
...

...
...

1 x1(T − 1) · · · xm(T − 1) x1(T − 2) · · · xm(T − 2)

x1(1) · · · xm(1)

x1(2)
... xm(2)

...
...

...

x1(T − p) · · · xm(T − p)


((T − p)× (mp + 1))

4.3.2 Model Order Selection

The VAR(p) model selection is usually accomplished by specifying the

model selection criteria. The basic idea is to identify models with different

lag values p = {0, 1, 2, . . . .., pmax} and select the p lag value that minimizes

the model selection criteria [79]. A commonly used model order selection

formula is represented by:

IC (p) = ln
∣∣∣∑̂ (p)

∣∣∣+ ST.ϕ(m, p)

where ∑̂ (p) = 1
T ∑T

t=1 ete
′
t is the covariance matrix of the residual error

e. ST is the indexed values sequence {1, . . . , T}, and the penalty function

ϕ(m, p) which impedes the large model’s order. The term ln
∣∣∣∑̂ (p)

∣∣∣ , is a

non-growing function while the ϕ(m, p) function grows with the order of

p, and the basic idea of the model order selection depends on balancing

these two functions.

There are five techniques for model order selection in the applied VAR(p)

model literature generally broadly utilized:
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• Akaike’s information criterion (AIC) [4].

AIC (p) = ln
∣∣∣∑̂ (p)

∣∣∣+ 2
T

pm2,

where the penalizing function ϕ (m, p) = pm2 and ST = 2
T .

• Schwarz criterion (SC) [106].

SC (p) = ln
∣∣∣∑̂ (p)

∣∣∣+ lnT
T

pm2,

where the penalizing function ϕ (m, p) = pm2 and ST = lnT
T .

• Hannan-Quinn criterion (HQ) [54].

SC (p) = ln
∣∣∣∑̂ (p)

∣∣∣+ 2ln(lnT)
T

pm2,

For which the penalizing function ϕ (m, p) = pm2 and ST = 2ln(lnT)
T .

For the previous three techniques, in each case the penalizing function

ϕ (m, p) has the same formula.

• Final Prediction Error (FPE) [3].

FBE (p) =
[

T + mp + 1
T −mp− 1

]m ∣∣∣∑̂ (p)
∣∣∣ ,

• Likelihood ratio test (LR test) [68].

LR (j) = m(ln
∣∣∣∑̂ (p− j)

∣∣∣− ln
∣∣∣∑̂ (p− j + 1)

∣∣∣),
where j = 1, 2, . . . , (p− 1)

Other techniques are within the literature. However, they were not men-

tioned here, because they are not widely used in the application of VAR

models, for more details, see [94].
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4.4 Forecasting with VAR (p) Model

Assume that there are two time series datasets with a length of sample data

T. The objective is to predict their values as {T + 1, T + 2, . . . , etc.}. For

simplicity, assume the first order VAR(1) model

x1 (t) = b10 + a(11)1x1 (t− 1) + a(12)1x2 (t− 1) + ε1t

x2 (t) = b20 + a(21)1x1 (t− 1) + a(22)1x2 (t− 1) + ε2t

For one step prediction value (t = T + 1), the VAR(1) model is

x1 (T + 1) = b10 + a(11)1x1 (T) + a(12)1x2 (T) + ε1(T+1)

x2 (T + 1) = b20 + a(21)1x1 (T) + a(22)1x2 (T) + ε2(T+1)

The conditional expectation value for both time series is

E
(

x1(T+1)

∣∣∣ x1(T), x2(T)

)
= b10 + a(11)1x1 (T) + a(12)1x2 (T)

+E
(

ε1(T+1)

∣∣∣ x1(T), x2(T)

) (4.4a)

E
(

x2(T+1)

∣∣∣ x1(T), x2(T)

)
= b20 + a(21)1x1 (T) + a(22)1x2 (T)

+E
(

ε2(T+1)

∣∣∣ x1(T), x2(T)

) (4.4b)

The expectation values E
(

ε1(T+1)

∣∣∣ x1(T), x2(T)

)
and E

(
ε2(T+1)

∣∣∣ x1(T), x2(T)

)
must be zero. In the forecasting process equation (4.4) become

F
(

x1(T+1)

∣∣∣ x1(T), x2(T)

)
≡ x̂1(T+1|T ) = b̂10 + â(11)1x1 (T) + â(12)1x2 (T)

(4.5a)

F
(

x2(T+1)

∣∣∣ x1(T), x2(T)

)
≡ x̂2(T+1|T ) = b̂20 + â(21)1x1 (T) + â(22)1x2 (T)

(4.5b)
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The most important term in equation (4.5) is the prediction error:

x1(T+1) − x̂1(T+1|T ) =
(

b10 − b̂10

)
+
(

a(11)1 − â(11)1

)
x1 (T) + (a(12)1 − â(12)1)x2 (T)

x1(T+1) − x̂2(T+1|T ) =
(

b10 − b̂10

)
+
(

a(21)1 − â(21)1

)
x1 (T) + (a(22)1 − â(22)1)x2 (T)

The prediction error is approximately zero if the estimated coefficients

in equation (4.5) are consistent and the white noise εt is uncorrelated. The

variance of the prediction error is [79]:

var
(

x1(T+1) − x̂1(T+1|T )

)
= σ2

ε1(t)

var
(

x1(T+1) − x̂2(T+1|T )

)
= σ2

ε2(t)

Similarly for two steps ahead (t = T + 2):

E
(

x1(T+2)

∣∣∣ x1(T+1), x2(T+1)

)
= b10 + a(11)1E

(
x1(T+1)

∣∣∣ x1(T), x2(T)

)
+ a(12)1E

(
x2(T+1)

∣∣∣ x1(T), x2(T)

)
E
(

x2(T+2)

∣∣∣ x1(T+1), x2(T+1)

)
= b20 + a(21)1E

(
x1(T+1)

∣∣∣ x1(T), x2(T)

)
+ a(22)1E

(
x2(T+1)

∣∣∣ x1(T), x2(T)

)

F
(

x1(T+2)

∣∣∣ x1(T), x2(T)

)
≡ x̂1(T+2|T ) = b̂10 + â(11)1x̂1(T+1|T )+ â(12)1x̂2(T+1|T )

F
(

x2(T+2)

∣∣∣ x1(T), x2(T)

)
≡ x̂2(T+2|T ) = b̂20 + â(21)1x̂1(T+1|T )+ â(22)1x̂2(T+1|T )
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var
(

x1(T+2) − x̂1(T+2|T )

)
=
(

1 + (a(11)1)
2
)

σ
2

ε1t

+(a(12)1)
2σ

2

ε2t
+ 2a(12)1a(11)1σ2

ε1,2t

(4.6a)

var
(

x2(T+1) − x̂2(T+2|T )

)
=
(

1 + (a(22)1)
2
)

σ
2

ε2t

+(a(21)1)
2σ

2

ε1t
+ 2a(21)1a(22)1σ2

ε1,2t

(4.6b)

For Xt multivariate time series data set and VAR(p) model, the n− step

predictions can be calculated utilizing the chain rule of prediction as;

X̂(T+n|T) = B̂0 + Â1X̂(T+n−1|T) + Â2X̂(T+n−2|T) + · · ·+ ÂpX̂(T+n−p|T),

and the n− step prediction errors can be written as

XT+n − X̂(T+n|T) =
n−1

∑
r=0

Ψrε(T+n−r)

With Ψ0 = Im and Âj = 0 for j > p, the Ψr matrices are calculating as

Ψr =
p−1

∑
j=1

Ψr−j Âj

where the expectation values for the prediction error is zero, the mean

squares error (MSE) matrix for the X̂(T+n|T) is

MSE
(

XT+n − X̂(T+n|T)

)
= Ψr =

n−1

∑
r=0

Ψr ∑ Ψ
′
r (4.7)

where ∑ is the covariance matrix.

It also can be seen that as the steps to prediction increases, the complex-

ity of calculating the variance also increases. Equation (4.7) becomes more

complex, if the number of time series (m) increases and the order of the

model (p) becomes larger. However, by using powerful modern software

packages such as Eviews, Stata and MATLAB, this task becomes straight-

forward.
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4.5 Goodness of VAR (p) Model

When a model has been developed to represent a multivariate time series

data set, its structure and parameters need to be validated by testing the

model behaviour, and testing the goodness of VAR(p) models can be im-

plemented through a wide range of techniques, forecasting accuracy is usu-

ally an intuitive method of validating a model. However, one-step-ahead

prediction techniques do not account for the accumulation of prediction

errors, therefore other prediction methods are needed to validate a model

[79].

A model is said to be good enough, if it can predict, not only the ob-

served data which is used for the estimation process, but also other unseen

experimental data. Therefore, when commencing a modelling task, it is

prudent to split the available experimental data into two sets: the training

data that is used for the estimation process and the test data, which is used

for the final assessment of the model estimation performance, this process

is called cross-validation.

For a more reliable cross-validation process, a simulation prediction is

used, where the mean of squared error (MSE) is computed to assess the

model performance (using (4.7)).

The other simple and useful method is using the R2 statistic, this method

measures the success of the regression in predicting the values of the de-

pendent variable within the sample. In standard settings, R2 may be inter-

preted as the fraction of the variance of the dependent variable explained

by the independent variables.

From equation (4.3), for multivariate time series Xt the R2 statistic is com-
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puted as:

R2 = 1− e
′
e

(X−X)
′
(X−X)

,

where

X = 1
T ∑T

t=1 X t,

One issue with using the R2 statistic as a test of the goodness of VAR(p)

models is that R2 will never reduce as more time series is added. In most

cases, by including as many time series as sample observations, then the

R2 statistic is always 100% [38]. The adjusted R2 , generally signified as R̂2,

penalizes the R2 for the addition of time series which do not contribute to

the explanatory power of the model [92]. The adjusted R2 is computed as:

R̂2 = 1− (1− R2)
T − 1
T −m

.

4.6 Granger Causality with VAR (p) Model

The VAR(p) model is considered to be one of the most convenient form-

works for testing the Granger causality. Based on the definition of Granger

causality from Chapter 2 and equation (4.6), the Granger causality only

implies prediction ability [121]. Now, assume two time series represented

by the VAR(p) model in equation (4.8), the first time series model, x1t, has

a linear relationship with its own previous measures and past measures of

x2t. x2t Granger causality x1t (x2t⇒x1t), if most of the past x2t measures

have non-zero impact: past x2t affects x1t depending on the impact of pre-

vious x1t. Examining the Granger causality in equation (4.8) relies on the
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values of the coefficients a(12)1 . . . . . . .a(12)p and a(21)1 . . . . . . . . . a(21)p.

x1 (t) = b10 + a(11)1x1 (t− 1) + · · ·+ a(11)px1 (t− p) + a(12)1x2 (t− 1) + . . .

+a(12)px2 (t− p) + ε1t

(4.8a)

x2 (t) = b20 + a(21)1x1 (t− 1) + · · ·+ a(21)px1 (t− p) + a(22)1x2 (t− 1) + . . .

+a(22)px2 (t− p) + ε2t

(4.8b)

Therefore x2t does not affect the Granger causality x1t (x2t;x1t) if:

a(12)1 = a(12)2= . . . . = a(12)p = 0

Similarly, x1t does not affect the Granger causality x2t (x1t;x2t) if:

a(21)1 = a(21)2= . . . . = a(21)p = 0

Non-diagonal coefficients can result from four types of Granger Causality

tests, as shown in Table 4.1.

Table 4.1: Granger Causality test.
a(21)1 = a(21)2 =
. . . . = a(21)p = 0
(Fail)

a(21)1 = a(21)2 =
. . . . = a(21)p = 0
(Pass)

a(12)1 = a(12)2 =
. . . . = a(12)p = 0
(Fail)

x1t;x2t
x2t;x1t

x1t;x2t
x2t⇒x1t

a(21)1 = a(21)2 =
. . . . = a(21)p = 0
(Pass)

x1t⇒x2t
x2t;x1t

x1t⇒x2t
x2t⇒x1t

Note that the diagonal coefficients restrictions implied by Granger causal-

ity may be examined utilizing the Wald test [79].

There are many techniques for examining Granger causality which pro-

duce various results. For a two time series’s VAR(p) model, if the order
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of the model p changed, then the Granger Causality test yields different

results and similarly, if the number of time series changes [80]. There are

many software packages that can be used to implement the Granger causal-

ity tests such as S-Plus, Stata, and Eveiws.

4.7 Modified Listwise Deletion

The basic idea of the listwise deletion method is based on dropping all val-

ues, if there is just a single unknown value in at least one of the specified

variables, this means that only cases with a complete data set can be used

in the analysis. For a dynamic data set, the application of listwise deletion

depends on ignoring time dependency, and this can lead to a significant

standard error value, because in dynamic data the current value directly

depends on the past value(s). The modified listwise deletion (MLD) tech-

nique is an extension of the listwise deletion technique, it aims to reduce

the time dependency error in missing data imputation for multivariate time

series. The application of the MLD is different from listwise deletion and

pairwise deletion, it considers the first encountered complete case as the

first measured case in the time series, without ignoring the cases that in-

clude missing values. That means MLD is a special case of the pairwise

deletion technique. MLD utilizes a selected VAR model and a moving

window approach to impute the missing values, based upon the previous

observed values [45]. As a first step, the method starts by scanning the full

data to specify the first case(s) with complete data at time t. Then uses the

available complete cases for selecting the appropriate VAR(P) model, the

VAR(P) model uses the observed data in the specified window [t, t − n]

, where n represents number of complete cases which are used to impute
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one-step-ahead imputations. To examine the utility of the MLD, a simula-

tion study was conducted to compare it with two other popular traditional

methods, the mean imputation and listwise deletion.

4.7.1 Simulation Study

To compare the three methods, two time series y2(t) and y2(t) as shown

in Figure 4.1 were simulated in MATLAB by using a first order VAR model

with the general formula as shown in equation 5.8. To satisfy the causality

conditions, the data sets were generated from a model with bidirectional

effect between the two time series.

The length of time series is 200 time points. Each 10 time points repre-

sent one hour. The MCAR mechanism was generated by randomly drop-

ping values with three different proportions being 10%, 15% and 25%.
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Figure 4.1: Time series with complete data.



106 4.7. Modified Listwise Deletion

To avoid the similarity of results, a different model other than the VAR

model, was used for data estimation to examine the performance of the

proposed technique, where this simulation study aimed to examine the

ability of the proposed techniques to handle the missing values in multi-

variate time series, it compared the effect of missing data imputation on the

behaviour of VARMA models. Model predictions were conducted in MAT-

LAB utilising autoregressive process in polynomial form that introduced

earlier in Chapter 2. For more details see [24, 30].

The general form of the VARMA model for the two time series y1(t)

and y2(t) is [111]:

A01(z)y1 (t) = A1(z)y2 (zt) + C1(z)e1(t)

A02(z)y2 (t) = A2(z)y1 (zt) + C2(z)e2(t)

The data are split into two parts, the first half was used for identifying

VARMA models and the second half was used to select model order and

to validate the prediction results. Table 5.2 summarizes the effect of im-

puted data by the three techniques on the behaviour of the model, four

metrics were used to measure the imputation performance: mean squared

error (MSE), percentage of the fit to estimation, final prediction error and

number of free parameters (model order). Among the three techniques,

MLD produced results that are closer to the complete data as compared

with the other two methods.

To validate the quality of the estimated models, the predicted responses

were compared to measured data, Figure 4.2 shows the behaviour of the

model for case of complete data, when 10 steps (1 hour) estimated response

compared to measured data. In time series y1(t), it is clear that there is no
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noticeable difference between the mean value of measured and estimated

data. On the other hand, for the time series y2(t), it is evident that the

difference in the means between the measured and estimated data is in-

significant. Generally, the model fits the data very well compared with the

measured data.

Figures 4.3 - 4.5 show the effect of missing data imputation, for the case

of 10% missing data. Among the three proposed techniques (MLD, mean

imputation and listwise deletion), MLD gave the best results to fit with the

measured data, when The proportion of missing data was increased from

10% to 15%, as shown in Figures 4.6 - 4.8.

For listwise deletion, there was a dramatic change in the behaviour. On

the other hand, the mean imputation produced different results, giving

a poor estimation for the first time series and a better estimate for the

second time series, and the MLD technique was affected slightly when the

proportion of missing data changed from 10% to 15%. Overall, for the

complete case, the MLD method had the best results.
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Table 4.2: Statistical test result.

10% missing

MSE Fit percentage FPE Number of parameters

y1(t) y2(t)

Complete 0.0001192 90.68 98.02 1.85× 10−10 55

MLD 0.001224 71.03 92.97 1.49× 10−07 25

Mean-sub 0.007662 51.18 57.39 1.86× 10−05 22

List-wise 0.006396 63.69 60.59 1.05× 10−05 31

15% missing

MLD 0.001331 67.59 93.26 1.61× 10−07 37

Mean-sub 0.0375 22.15 -11.01 1.50× 10−05 40

List-wise 0.003482 69.57 79.54 2.73× 10−06 4

25% missing

MLD 0.001325 70.45 91.17 2.07× 10−07 25

Mean-sub 0.07308 16.57 -86.69 3.26× 10−05 25

List-wise - - - - -
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Table 4.3: Statistical test result (R2 and adjusted R2)

10% missing

R2 Adjusted R2

y1(t) y2(t) y1(t) y2(t)

Complete 0.976445 0.970733 0.975957 0.970126

MLD 0.977074 0.971677 0.976599 0.97109

Mean-sub 0.859839 0.814202 0.856935 0.810352

List-wise 0.973700 0.965533 0.626271 0.546798

15% missing

MLD 0.975974 0.968912 0.975476 0.968267

Mean-sub 0.764613 0.761644 0.759734 0.756704

List-wise 0.969716 0.962359 0.968845 0.968845

25% missing

MLD 0.974978 0.964713 0.974459 0.963981

Mean-sub 0.63386 0.556 0.626271 0.546798

List-wise 0.957184 0.93884 0.955569 0.936533

Lastly, the case for 25% of missing measured data was considered. The

Listwise deletion model reduced the model order dramatically, for that

reason no estimation result is shown, the mean imputation was affected

more when the missing proportion was increased to the quarter comparing

with last case, and again, the MLD affected slightly comparing with the

other two methods.
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Figure 4.2: 10-step predicted response compared to measured data (com-
plete data).
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Figure 4.3: 10-step predicted response compared to measured data (MLD
10% missing).
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Figure 4.4: 10-step predicted response compared to measured data (Mean
Imputation 10% missing).
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Figure 4.5: 10-step predicted response compared to measured data (List-
wise deletion 10% missing).
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Figure 4.6: 10-step predicted response compared to measured data (MLD
15% missing).
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Figure 4.7: 10-step predicted response compared to measured data (Mean
imputation 15% missing).
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Figure 4.8: 10-step predicted response compared to measured data (List-
wise deletion 15% missing).
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Figure 4.9: 10-step predicted response compared to measured data (MLD
25% missing).
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Figure 4.10: 10-step predicted response compared to measured data
(Mean Imputation 25% missing).

Figure 4.11 shows the comparison between the measured and imputed

values for MLD for three cases of missing data. Generally, the results from

the proposed method for the three cases were close to the real data, this

is because the MLD depends on an autoregression model (VAR model) to

impute the missing values, whereas the identification of the VAR model

depends on the availability of search windows where the specified search

windows need to include complete case of observed data.

This is not possible if the length of time intervals of missing values is

greater than the time interval of the search window. From Figure 4.11 it is

clear, when the proportion of missing data is increased the ability of MLD

in imputing the missing values decreased, that means the number of un-

imputed values will increase. To overcome these problems a new algorithm

was developed and proposed in next section.
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Figure 4.11: Measured and imputed data in 10%, 15% and 25% missing.

4.8 Vector Autoregressive Imputation Algorithm

(VAR-IM)

The proposed algorithm for imputing missing data into a multivariate time

series dataset is to use a Vector Autoregressive model combined with an

EM algorithm and a prediction error minimization (PEM) algorithm [75].

This method, based on a combination of these algorithms, can significantly

improve the imputation performance for dealing with missing data prob-

lems.

Specifically, in the first step, a traditional linear interpolation estimate

is performed as an initial guess of the missing data. Next a VAR(p) model

is estimated by selecting the best lag value p. Finally, the parameters of
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the VAR(p) model are estimated by alternatively using EM and PEM al-

gorithms resulting in an improved value for the data imputation.

Basically, the alternation of the two algorithms between imputing miss-

ing data and estimating models, improves the model performance by ap-

plying the PEM algorithm in a way similar to the EM algorithm. The flow

chart for the proposed VAR− IM algorithm is shown in Figure 4.12.

The VAR − IM technique formalizes an intuitive idea for identifying

the best VAR model for imputing missing data:

1. Calculate the initial values to start the algorithm.

2. Select the order of the identified VAR∗ Model.

3. Check the causality of time series.

4. Impute the missing values by using VAR∗.

5. Identify the new VAR model.

6. If convergence fails, return to step 4, otherwise, proceed to step 7.

7. Update the missing values with the PEM algorithm.

8. Impute the missing values.

For more details, assume that Xt represents a multivariate data set and

that a set of VAR models can simulate Xt with different lags p = 1, 2, 3, . . . .

and parameters Ap . If there are no missing values, then calculate the least

squares estimate of Ap based on equation (4.3).

Xt = φAp + E (4.9)
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Figure 4.12: VAR− IM algorithm flow chart.

For dynamic systems the auto-regression process depends on the past

values of the targeted data point, if the time series includes missing val-
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ues, then past values will also be missed and the auto-regression cannot

be applied in equation (4.9). In this case, the traditional approaches such

as listwise will not work, because ignoring the missing values will effect

the properties of the dynamic system. To begin the estimation process cor-

rectly, initial values are required, and the simple way to determine these

initial values is to use a simple traditional method such as linear interpola-

tion, this will be denoted by expressing Xt as (Xtmiss , Xt0), where Xtmiss

denotes the multivariate data set with missing values, and Xt0 represents

the multivariate data set with replaced missing values by initial values (im-

puted by interpolation technique [27]).

Consequently, equation (4.9) becomes:

X̂t = φk Apk
+ E⇒X̂t0 = φ0Ap0

+ E

Apk
= (φk

T φk)
−1

φk
T Xk Ap0

= (φ0
T φ0)

−1
φ0

T X0

Where φ0 is the initial regression matrix, k = 0, 1, 2, . . . . . . , and Ap0
is the

initial coefficient matrix of the select VAR(pk) model.

The order of the model pk is updated until the difference Apk
− Ap(k+N)

is

less than ξ, where ξ is a prescribed small value.

4.8.1 Numerical Example

Eight time series y1 (t), . . . . . . ., y8 (t) were created using the ‘timeseries’

function in MATLAB. Each time series consists of 173 time points to rep-

resent a variable in a stationary multivariate time series Yt as shown in

Figure 4.13. To simulate a real scenario of missing data, the MCAR mech-

anism was generated by randomly dropping measured values to simulate

three different proportions 15%, 20% and 30%.
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Figure 4.13: Generated time series.

This numerical example will examine the utility of the proposed al-

gorithm by comparing it with a popular modern algorithm for handling

missing data, the algorithm is a modified EM algorithm for dealing with

missing values in dynamic data set [63]. The first step of VAR − IM al-

gorithm is to select the appropriate VAR model for imputing the missing

values, where Table 4.4 shows the results of five tests of model selection cri-

teria, the model selection techniques produced similar results when miss-

ing data proportions were 15% and 20%, and this suggested VAR(1) model

as the best model for missing data imputation.

However, the LR criteria, suggested a model with lag three to be the

best model, when the missing data proportion was increased to more than

a quarter of the measured data, the model selection criteria produced dif-

ferent results and this time the selected model was VAR(2).

Statistical tests were applied to examine the performance of the pro-

posed algorithm, Table 4.5 shows MSE and mean values (M) for complete
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data and three cases of missing data. The VAR− IM produced closest re-

sults to complete data comparing with EM algorithm.

Table 4.4: VAR Model order selection.
10% Missing

Model order AIC SC LR HQ FPE
1* 2.08 2.7745 9.3144 2.3607 7.57×10−05

2 2.2914 3.5415 19.3114 2.7967 8.92×10−05

3 2.2475 4.0532 39.6084 2.9774 8.67×10−05

4 2.386 4.7473 23.2924 3.3405 9.72×10−05

15% Missing
1* 2.24 2.9879 10.0309 2.5423 8.20×10−05

2 2.4677 3.8139 20.7969 3.0118 9.60×10−05

3 2.4204 4.365 42.6552 3.2064 9.30×10−05

4 2.5696 5.1125 25.0841 3.5974 1.05×10−04

25% Missing
1 3.5201 4.6954 15.7628 3.9952 1.28×10−05

2* 1.9389 2.9967 15.3404 2.3664 7.54×10−05

3 2.9391 5.3004 51.7956 3.8935 1.13×10−04

4 2.386 4.7474 23.2924 3.3405 9.72×10−05

Table 4.5: VAR Mean and MSE for the imputed data.
15% missing 20% missing 30% missing
M MSE M MSE M MSE

(211.97) (205.85) (211.45)
VAR-IM 206.78 0.2701 194.4 0.2169 170.61 1.0066

EM 168.2 0.4403 161.29 0.4386 136.62 1.0554

Figure 4.14 shows a comparison between the measured and imputed

data for the VAR − IM and the EM algorithm. In three cases of missing

data, the VAR− IM algorithm still remained the best choice even with the

changes in proportion of missing data.
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Figure 4.14: Measured and imputed data in 15%, 20% and 30% missing.

There are several advantages of the VAR − IM technique. First, it is

straightforward and can handle different missing data mechanisms (e.g.

MAR and MCAR). Second, a steady fluctuation estimation is achieved as

the missing data percentage increases. Third, it is quite robust against

increasing percentages of missing data. In addition, VAR− IM is straight-

forward to apply to the complex structure of multivariate time series, for

more details the utility of this algorithm will be discussed more in Chapter

5.

4.9 Summary

Effectively handling multivariate observations containing missing data is

extremely important. This is especially true in medical research, which
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typically includes a great number of variables, and the outcome has sig-

nificant impacts to people’s health. The proposed MLD and VAR − IM

methods provide fast and accurate approaches to impute missing values

for multivariate time series datasets. It outperforms the commonly used

methods such as Listwise deletion, mean substitution and EM algorithm.

The positive results of the simulation study and analysis example discussed

in this paper demonstrate that the MLD and VAR− IM methods provide

an effective alternative for the imputation of missing values in multivariate

time series. When considering an increasing percentage of missing data,

the other proposed methods become less effective, while the VAR − IM

shows a smaller deterioration in performance. In addition, the VAR− IM

method is more robust than the other proposed techniques and performs

better on static and noisy data. However, the VAR− IM method does have

some limitations. Firstly, the validity of VAR− IM requires that the time

series must be stationary. Secondly, the VAR− IM method is less effective

when the percentage of missing data is quite low (less than 10%). . Finally,

the contained example only considered a scenario in which data were miss-

ing completely at random (MCAR). A less stringent assumption of missing

data mechanism, such as missing at random (MAR), may be more realistic

in practice. Despite these limitations, VAR − IM provides an important

alternative to existing methods for handling missing data in multivariate

time series. Furthermore, a part from this chapter was published as a jour-

nal paper in Neurocomputing journal [14]. Further extension of VAR− IM

to include other types of methods will be considered in the next chapter.



Chapter 5

Case Studies of the Application of

VAR− IM Algorithm for Dealing

with Missing Values to Space

Weather and ECG Data.

This chapter shows how the VAR− IM algorithm deals with missing data

in multivariate time series in real data sets. It presents the imputation

procedure for multivariate time series data of two different real data sets,

space weather and ECG data.

5.1 Space Weather Data

One of the important branches of aeronomy science is space weather con-

ditions that focus on time-variant variables inside the Copernican system.

This includes phenomena as solar wind, but typically pertains to the area

outside the atmosphere but surrounding the Earth, including conditions

123
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inside the three layers (thermosphere, magnetosphere and ionosphere),

where space weather conditions differ from the earthly atmosphere. “space

weather conditions” is considered to be primary employed in the 1950s,

however, it has become commonly used since the 1990s [26]. The solar

wind is a component of plasma particles released through the atmosphere

from the Sun. It includes generally energized electrons and protons varies

between 1.5 and 10 keV. The stream of particles varies in time with den-

sity, heat, and velocity as well as over solar longitude. Such particles can

breakout the Sun’s gravity, and it goes outward supersonically over huge

distances, covering an area referred to like the heliosphere, a huge bubble

shaped size flanked by the interstellar medium.

The solar wind is divided to two components, characterized the quiet

solar wind and the speedy solar wind. The of quiet solar wind is around

248 mile/s, a heat of 1.3− 1.5× 106 0C. Its composition closely matches

the solar corona. In comparison, the fast solar wind has a typical speed of

466 mile/s and a heat of 7.7× 106 0C. The speedy wind composition nearly

matches that of the Sun’s photosphere [41]. The quiet solar wind is double

as intensive and much more changing in strength compared to the speedy

wind. The quiet wind as well own much more complex composition, with

turbulent zones and great-scale structure [112].

The quit wind generally, seems to outward from the equatorial region

belt. Speedy wind is assumed to result from coronal holes that are funnel-

like parts of open field lines inside the magnetic field of the sun [58]. These

open lines are especially diffuse over the magnetic poles of the sun. The

plasma origin is short magnetic fields generated by convection cells inside

the solar weather. Such fields confine the plasma and carry it to the tight
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channels in the coronal centre that are existing 20, 000 kilometres above the

photosphere. The plasma is released to the centre when these magnetic

field lines reconnect [62].

Nowadays, a great deal of data for space weather and the solar wind

system can be acquired through satellites. Unfortunately, for various rea-

sons, much important data are lost during transmission to earth. Because

of this, much of the data become useless when performing relevant system

identification and information modelling tasks. Consequently, the over-

arching purpose of this part is to introduce the VAR− IM algorithm as a

solution to the space weather missing data problem. Hopefully, researchers

in the field of space weather modelling will benefit from this and be able

to employ this method in their own research.

Specifically, this section will explain the problem of missing data on

modelling space weather systems, with attention given to selecting and

fitting models, checking stability, and comparing forecasts with forecast

period data. In addition, examples are presented from the solar wind pa-

rameters rated real data measured from the NASA Advanced Composition

Explorer (ACE) satellite and wind spacecraft [110].

5.1.1 VAR− IM Algorithm for Solar Wind Data

With this part of the case study, this chapter will focus on the performance

of the new algorithm (VAR − IM algorithm), as proposed in chapter 4,

to handle missing values in solar wind data. Because this algorithm is

often simpler to implement than other modern methods and is suitable for

multivariate time series data, this section will benefit many researchers.

The VAR− IM algorithm will be compared with another technique, which



126 5.1. Space Weather Data

has been used before with similar a data set and yielded good results.

The data set is a sample of 8,664 samples extracted from the solar wind

parameters rated data measured from ACE and WIND spacecraft. (OMNI

Web Results FTPWeb Browser Results Listing for omni2 data set from

01/01/1995 to 01/01/1996). The data set contains information on solar

wind parameters, which is divided into 12 time series. This work will fo-

cus on three of these: the solar wind magnetic field, Bz, Bx, and By. Bx lies

along the Sun-Earth line, with Bz and By defining a vertical plane. Addi-

tional information about regarding this data set can be found in [67, 112].

One of the main difficulties in recovering missing solar wind parame-

ters, is related to the numerous long data numbers. As a result, only two

data intervals were used for missing data analysis. The two data sets are:

• Complete dataset 1: Consisting of 240 hours’ observations, from 05 to

15 Jan 1995.

• Real incomplete dataset 2: Consisting of 240 hours’ observations,

from 19 to 29 Jan 1995.

The dataset 1, containing the complete information, was used to verify

whether the imputed data is sensible or not. Here, some of the data were

intentionally deleted to mimic the MCAR mechanism and then imputed

it using available missing data methods then compare the results with the

real data.

Consequently, the best method can be applied on real incomplete data

and check the performance of the proposed models. The complete data set

is changed to the following incomplete variables: Bx (18% missing), By (14%

missing) and Bz (18% missing). All missing data mechanisms are assumed



Chapter 5. Case Studies of the Application of VAR− IM Algorithm for
Dealing with Missing Values to Space Weather and ECG Data. 127

as MCAR. The datasets are shown in Figure 5.1. The ultimate goal of this

analysis is to determine the performance of the proposed models in terms

of system stability, adequacy and forecasts. These performance parameters

will be a measure of the sensitivity of the different imputation methods to

the performance of the proposed model. First, a comparison of the imputed

values with real values is needed before applying the proposed methods

directly on real incomplete data.

Consider a comparison the proposed algorithm with the mean imputa-

tion method. The comparative results for both methods include the three

time series are shown in Figure 5.2. VAR − IM Algorithm usually per-

formed better than mean imputation (except for the statistic missing values

which have values closed to observed data), because the VAR− IM algo-

rithm based on the information that borrowed from the observed data to

impute the missing values.

On the other hand, the mean imputation method depends only on the

data distribution of each time series. That means the imputed values by

the mean imputation method will not automatically regressed (all imputed

values will constitute a straight line).

This can be seen in Figure 5.2. Note that, the curve of imputed data by

VAR− IM algorithm is closer to the curve of real values. For these reasons,

the use of mean imputation method will be ignored and all of remaining

analysis will based on using the VAR− IM algorithm.
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Figure 5.1: The solar wind magnetic field time series with missing values.

Figure 5.2: The solar wind magnetic field time series with imputed data.
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5.1.2 Selecting and Fitting Models

After imputing the missing values by the VAR − IM algorithm, the next

step is select a model to fit the data. The choice were suggested from the

model selection step in VAR − IM algorithm. In this case, four models

were arbitrarily chosen to be used for both the imputed data case and the

real data:

• VAR second order with diagonal form

• VAR second order with full form.

• VAR forth order with diagonal form

• VAR forth order with full form

To determine a model’s adequacy, a first step is to test the models for

stability and inevitability. The test results indicates that, in both the com-

plete case and the imputed case the predicted models are stable. The next

step for model selection, as introduced in Chapter four, is to apply the

likelihood ratio test and the Akaike information criterion.

To implement the likelihood ratio test, it is necessary to know the log

of likelihood values and the number of parameters for each model to use

them in comparing the AR models to their models using special MATLAB

code [15], where the test refuses or be unsuccessful to refuse the hypothesis

to show that the models with full form are suitable, for this test the results

for both cases of the datasets were similar.

The likelihood ratio test indicated that the VAR(4) models with diago-

nal and full form are rejected in favour of the corresponding VAR(4) mod-

els with diagonal and full form. Therefore, based on this test, the VAR(4)
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models with diagonal and full form are selected. The test did not refuse

the VAR(4) with diagonal form model in favour of the VAR(4) with full

form model.

The Akaike information criterion test requires the same inputs as the

Likelihood Ratio test. It checks the Akaike information criterion values,

where the models with smaller values are preferable.

The Akaike information criterion uses log likelihoods and model pa-

rameters, to determines values of Akaike information criteria. The model

with the lowest value of the Akaike information criterion can be chosen

as the most suitable model. To apply this test for the proposed models

the MATLAB function aicbic was used. This gave two different results for

complete and imputed data set, respectively.

• Complete data set: (2.4409 2.4309 2.4294 2.4278)× 103

• Imputed data: (2.3810 2.3806 2.3753 2.3867)× 103

According to this criteria, the best model is the VAR(4) model with

full form for the case of complete data set. For the case of imputed data,

the VAR(4) model with diagonal form has the lowest value, making it the

best model. Also of note, is that the VAR(4) model with diagonal form,

in the case of complete data, has lower Akaike information than either of

the other models. Based on this criteria, the VAR(4) model with diagonal

form is the best, and the VAR(4) with full form model stands next in line

preference. The estimated specification structures for the best models are

shown in Table 5.1.

Where the number of time series is specified by n, the number of model

lags is specified by nAR, nX represents the number of model lags cell
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array of n× n matrices of AR models and the covariance matrix Qsolve is

represented by n × n matrix. The parameters value for these models are

shown in Table 5.2. Generally, all models give a similar data fit that can be

seen in Figures 5.3 and 5.4.

Figures 5.5 and 5.6 indicate the sum of squares error between (SSE)

the estimates and the real data for the four proposed models for cases of

complete and imputed data set models, respectively. From the plots, the

predictive performance of the four models is different in both cases, and

the fourth proposed model appears to be the preferable and most powerful

fit in both cases, its models parameters are shown in Table 5.3.

Table 5.1: The estimated specification structures for the best models.
Complete data set Imputed data set

Model: 3-D VAR(4) with Additive
Constant

Series: {’Bx’ ’By’ ’Bz’}
n: 3
nAR: 4
nMA: 0
nX: 0
a: [0.0780314 0.254502 -0.0296171]
additive constants
asolve: [1 1 1 logical] additive
constant indicators
AR: {4x1 cell} stable autoregres-
sive process
ARsolve: {4x1 cell of logicals}
autoregressive lag indicators
Q: [3x3] covariance matrix
Qsolve: [3x3 logical] covariance
matrix indicators

Model: 3-D VAR(4) with Additive
Constant

Series: {’Bx’ ’By’ ’Bz’}
n: 3
nAR: 4
nMA: 0
nX: 0
a: [0.0566299 0.0654517 -0.0960825]
additive constants
asolve: [1 1 1 logical] additive
constant indicators
AR: {4x1 cell} stable autoregres-
sive process
ARsolve: {4x1 cell of logicals}
autoregressive lag indicators
Q: [3x3] covariance matrix
Qsolve: [3x3 logical] covariance
matrix indicators
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Table 5.2: The parameters values for selected models.
Complete data set Imputed data set

Constant =[
0.1169 0.2617 0.0445

]
VAR (1) = 0.7242 0.0398 0.0869
−0.1021 0.6194 −0.0920
−0.0673 0.0620 0.4986


VAR (2) = 0.1759 0.0440 −0.1289
−0.0296 −0.1312 0.0467
−0.0392 −0.0950 0.0967


VAR (3) = −0.1356 −0.2171 0.0653
−0.0100 0.2043 −0.0529
−0.2002 −0.0464 −0.0785


VAR (4) = 0.0785 −0.0303 −0.0840

0.0388 0.0361 0.0078
0.1333 0.1175 −0.0379



Constant =[
0.1438 0.2851 0.0731

]
VAR (1) = 0.7347 −0.0080 0.0361
−0.0881 0.6687 −0.1044
−0.0142 0.0692 0.4432


VAR (2) = 0.1209 0.0617 −0.0676
−0.0247 −0.1500 0.0396
−0.0576 −0.1329 0.1209


VAR (3) = −0.0895 −0.1688 0.0366

0.0310 0.1439 −0.0272
−0.1725 −0.0546 −0.0617


VAR (4) = 0.0636 −0.0531 −0.0831
−0.0370 0.0517 −0.0013
0.0821 0.1383 −0.0312



Figure 5.3: The proposed models of the solar wind system with complete
data.
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Figure 5.4: The proposed models of the solar wind system with imputed
data.

Table 5.3: The parameters values for lag 4 models.
Complete data set Imputed data set
Constant =[

0.0780 0.2545 −0.0296
]

VAR (1) = 0.6872 −0.0918 −0.0707
0.0368 0.6027 0.0853
0.0951 −0.1126 0.4950


VAR (2) = 0.1912 −0.0139 −0.0404

0.0422 −0.1104 −0.1176
−0.1301 0.0682 0.0843


VAR (3) = −0.1070 −0.0170 −0.2106
−0.2031 0.1992 −0.0391
0.0629 −0.0758 −0.1049


VAR (4) = 0.0910 0.0287 0.1053
−0.0373 0.0521 0.1243
−0.0768 0.0089 −0.0380



Constant =[
−0.2767 0.0998 0.0745

]
VAR (1) = 0.7726 0.1660 −0.0484

0.0301 0.7662 0.0351
0.0612 −0.0100 0.5860


VAR (2) = −0.1469 −0.0562 0.0153
−0.0948 −0.0018 0.0883
0.0029 −0.0011 0.0683763


VAR (3) = 0.1300 −0.1346 −0.0896

0.0391 0.1056 −0.0687
−0.1096 0.0779 −0.1749


VAR (4) = 0.0353 −0.0120 0.0874
−0.1059 −0.0878 −0.0343
0.0123 −0.0122 0.0820


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Figure 5.5: The par plot of sum of squares of four proposed models for
complete data.

Figure 5.6: The par plot of sum of squares of four proposed models for
imputed data.
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5.1.3 Data Forecasts

After the model parameters have been estimated, the predictions from the

models can be examined. MATLAB functions are used to match the fore-

casts of the selected models with the forecasted data [15], where these

functions return both a forecast of the average of time series, and an er-

ror covariance matrix which shows confidence band around the average

value.

Figures 5.7 and 5.8 illustrate the confidence bands overlayed on the fore-

casts in the shaded region to the right, for complete and imputed data set

models, respectively. The model predictions are within the confidence in-

tervals showing a good indication of the models.

It is clear, from the shaded region on the right hand side of the Figure

6.8; the fitted model for the imputed data is inside the confidence intervals

giving a good indication about the quality of the VAR− IM algorithm to

impute the missing data in these time series.

Figures 5.9 and 5.10 show predictions of 50 hours into the future for

complete and imputed data set, respectively. The dotted red line represents

the extrapolations, and the solid black line indicates the real data, exploring

the last few hours of these figures reveals a sense of how the forecasts relate

to the latest hours.

The forecast shows little increase in Bx, a slight decline in By, and Bz

remaining stable around zero. It is clear that because the models yield

similar results in both cases, that the VAR − IM algorithm recovers the

missing values perfectly.
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Figure 5.7: Forecasts with forecast period data of complete data.

Figure 5.8: Forecasts with forecast period data of imputed data.
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Figure 5.9: Predictions 50 hours into the future for complete data.

Figure 5.10: Predictions 50 hours into the future for imputed data.
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5.1.4 Case Study on the Incomplete Data 2

The work above was based on a virtual missing data situation. A part

of the data was deliberately removed to compare the performance of the

proposed missing data analysis method for multivariate time series. The

results shown by comparing the fitted models of the imputed and real val-

ues indicated that most of the models were acceptable, with only minor

variations in the performance of these models, in this part the attempt was

to apply the proposed method on a real data set and checked the perfor-

mance of the proposed models, where the same proposed models were

used for a real case of missing data (Incomplete data set 2). Stability and

inevitability tests indicated that the estimated models are stable and in-

vertible. The likelihood ratio test indicated that both models, VAR(2) and

VAR(4) with diagonal form, were rejected in favour of the corresponding

models, VAR(2) and VAR(4) with full form. Therefore, based on this test,

the models VAR(4) and VAR(2) with full form, are the best. However, the

test did not refuse the model VAR(2) with full form in favour of the model

VAR(4) with full form. (The nominated model is VAR(2) with full form as

a model VAR(4) with full form with restrictions in that the autoregression

matrices for models VAR(4) with diagonal and full form equals 0). Thus,

it shows that the model VAR(2) with full form will be the selected model.

The nominated model depending on the criterion of Akaike information is

the VAR(2) with full form. Notice, too, the model VAR(2) with full form

has higher value than either of the remaining models. Based on the re-

sults of the test, the VAR(4) model with diagonal form will be the selected

model, and the VAR(2) with full form coming next in preference. In this

case, one of the nominated models can be chosen, which is VAR(4) model
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with diagonal form and the model parameters are shown in Table 5.4.

• Imputed data set: (2.4319 2.4309 2.4307 2.4341) ×103

Figure 5.11 shows the par plot of SSE between the predictions and the

imputed data for the four proposed models. It can be noted that the of

the four models nearly have the same performance. The first and third

proposed models seem to be the best and most parsimonious fits. In this

case, the VAR(4) model with diagonal form will be chosen to be the best

model to fit the data.

Table 5.4: The parameters values for lag 4 models.
Imputed data set

Constant =
[
−0.343376 0.295209 0.190591

]
VAR (1) =

 0.791564 0 0
0 0.799212 0
0 0 0.617079


VAR (2) =

 −0.151809 0 0
0 −0.00458309 0
0 0 0.0607771


VAR (3) =

 −0.0861887 0 0
0 0.0995244 0
0 0 −0.207236


VAR (4) =

 0.0612202 0 0
0 −0.0794082 0
0 0 0.106987



Figure 5.12 shows the comparison of forecasts with forecast period data,

the forecasts in the shaded region to the right. The result shows that the

forecasts still fall in the error bands of the forecasts period data, which

give a good indication of the proposed algorithm in imputing the missing

values. Predictions 50 hours into the future are shown in Figure 5.13, the

extrapolations in dotted red, and the original data series in solid black.

By looking at the last few hours in this plot to get a sense of how the
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predictions relate to the latest data points, the forecast shows little growth

in Bx, a slight decline in By, and uncertainty about the direction of Bz.

Figure 5.11: The par plot of sum of squares of four proposed models for
imputed data.

Figure 5.12: Forecasts with forecast period data of imputed data set.
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Figure 5.13: Predictions 50 hours into the future for imputed data.

5.2 ECG Data

In medical field, effective modelling using multivariate time series data is

important. However, for various reasons the measured data may contain

instances of absent data occurring either during or after the data collec-

tion process. Therefore, an effective method of handling missing data is

important for this field. Especially in visual diagnosis, an effective process

addressing missing data is of utmost importance, where disease diagnosis

is typically based on measured data, which are represented by multivari-

ate time series. Examples include functional magnetic resonance imaging

(FMRI), Electroencephalography (EEG), Galvanic skin response and Elec-

trocardiography (GSR) and electrocardiogram (ECG).

A case study involving ECG data have been selected because of the

importance of handling missing data in this type of data sets, and this
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section is divided into two parts, in the first part; a review of the ECG data

and comparing the VAR − IM algorithm with three traditional methods

for imputing missing data: Mean substitution, list-wise deletion and linear

regression substitution. In the second part, the proposed algorithm method

is compared with more powerful modern techniques: MARSS Package,

nearest neighbor, and the modified EM algorithm.

To further examine the performance of the proposed algorithm with

its ability to deal with real world missing data problems, a complete real

dataset of ECG signals (without missing values) is considered and used

as a case study. The dataset is available at the Physionet website http :

//www.physionet.org/physbank/database/ptbdb. This data set includes

290 patients with 549 measured values (total population 290 patients: aged

between 17 and 87, mean 57.2; 209 men, and 81 women, mean age 61.6).

Each subject is represented by one to five measured values. There are no

patient numbered 124, 132, 134, or 161.

Each case contains 15 simultaneously records: the conventional 12 ECG

leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) together with three Frank

ECG leads (vx, vy, vz) [43]. Each signal is digitized at 1000 samples per

second, with 16-bit resolution over a range of 16.384 mV. On special request

to the contributors of the database, recordings may be available at sampling

rates up to 10 KHz. The diagnostic classes of the patients are divided into

nine types.

This case study considered signals from 12 ECG leads for two diagnostic

classes: myocardial infarction and healthy control, a more detailed discus-

sion is available at [20, 46]. Two cases of MCAR missing data mechanism

with two different percentages 10% and 20% were generated.
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5.2.1 Heart Rate

The diagnosis of various heart diseases has become easy, fast and efficient,

thanks to the development of the ECG technique, where one of the most im-

portant features of ECGs is heart rate. From the leads, a time series graph

showing significant heart rates can be measured to give good indications

about the condition of the patient. One of these rates is ventricular rate,

which can be measured by determining the number of QRS waves in each

period. Unfortunately, the measured values can be affected and miss some

important information, and that can be result from several conditions.

For instance, sometimes skin conductivity for electricity is insufficient

to allow the electrodes to pass the pure signal through the electrical circuit,

or the electrodes themselves lack the quality to sense the electrical signals.

Any of these reasons can lead to missing data, which causes distortion of

ECG signal [91].

A common problem in ECG signal processing is the removal of un-

wanted artefacts, noise and the appearance of missing values, and these

situations can lead to problems in process the ECG signal. Such as the pres-

ence of a low frequency component, an irregular distance between QRS

waves, or wave peaks appearing at irregular locations. Whereas one of the

basic tasks of ECG signal processing QRS peaks, it is not possible to record

pure ECG signal directly in existing of these problems.

Another concern is that the filtering process requires the removal of

impacted noise from the original signal, but it is not possible to apply the

filtering processing if there are missing values. As a basic step, after the

imputation of the missing values, a filter can be used to remove the noise

from the original signal. The VAR− IM method was used to impute 10%
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and 20% missing completely at random data from 38,400 samples for the

conventional 12 leads of a myocardial infarction patient.

Tables 5.5 and 5.6 show the effect of missing values imputation on the

heart rate in each of the 12 leads in both cases of missing data mechanism,

respectively. In both cases, the proposed method VAR − IM, shows an

improvement as compared with the other methods.
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5.2.2 QRS Waves

The ventricular depolarization effect can be represented by three waves in

ECG signal: Q, R and S waves, (known as QRS complexes). A QRS com-

plex with a measured duration (time interval) of between 0.08 and 0.1 sec-

onds is considered normal. While a QRS complex with an interval between

0.10 and 0.12 seconds is rated intermediate and abnormal if the interval is

more than 0.12 seconds, and the QRS has long duration when the electri-

cal signal needs more time to pass through ventricular myocardium, where

the amplitudes of QRS represent the polarization and depolarization of the

ventricular, and QRS duration is the required time for the signal to pass

[25].

The important QRS properties include rise level (Lr), fall level (L f ), rise

duration (Tr), and fall duration (T f ), these factors represent the quality of

a QRS wave in terms of specifying the ventricular depolarization. The rise

and fall levels represent length of edges of R peak on the right and left

hand side, respectively, where the rise and fall durations are the required

time to move from the Q peak to the R peak and from the R peak to the S

peak, respectively [39].

Lr = Amplitude R peak − Amplitude Q peak

L f = Amplitude S peak − Amplitude R peak

Tr = Time point R peak − Time point Q peak

T f = Time point R peak − Time point Q peak

Mean Error = mean (noisy− ECG (QRS locations) − (( f iltered (QRS locations))
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The performance of the VAR− IM method is first evaluated by compar-

ing the effectiveness of missing data imputation on QRS wave properties

using both cases of missing data (10% and 20% MCAR) and the complete

dataset. Furthermore, the efficacy of missing data imputation is considered

in the filtering processing. Figure 5.14 shows the QRS complex rise level,

fall level, rise time and fall time in the case of complete data. In compari-

son, Figures 5.15-5.17 show various results with respect to the case of 10%

MCAR. The three methods, namely mean substitution, linear regression

imputation and VAR− IM methods were applied to solve the missing data

problem here.

Clearly, the three methods obviously generated different results. The

mean substitution and VAR − IM methods can impute the missing data

with similar results, which are similar to the real data especially the QRS

peaks locations. On the other hand, linear regression imputation only gives

good results for Lr, Lf, Tr and Tf. List-wise deletion method was excluded

from the comparison because it reduces the number of peaks which makes

specifying QRS properties impossible.

Table 5.7 and 5.8 summarize the results of the effectiveness of missing

data imputation of the four methods for the QRS wave properties in both

cases of missing data 10% and 20%, respectively.

As the amount of the missing data is increased from 10% to 20%, the

proposed method (VAR− IM) gave the best results among all the methods.

To some extent as can be noted in both cases of missing data (MCAR 10%

and 20%) the mean substitution and linear regression imputation, have

similar results.
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Figure 5.14: QRS wave properties in case of Mean-sub imputed data (10%
MCAR).

Figure 5.15: QRS wave properties in case of Linear-reg imputed data (10%)
MCAR).
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Figure 5.16: QRS wave properties in case of VAR-IM imputed data (20%
MCAR).

Figure 5.17: QRS wave properties in case of Mean-sub imputed data (20%
MCAR).
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Figure 5.18: QRS wave properties in case of VAR-IM imputed data (20%
MCAR).

Figure 5.19: QRS wave properties in case of VAR-IM imputed data (20%
MCAR).
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Figure 5.20: QRS wave properties in case of Mean-sub imputed data (20%
MCAR).

5.2.3 VAR− IM Versus Modern Method

As a second part of this case study, is to examine the performance of the

proposed algorithm in terms of scalability and quality, an evaluation of its

effectiveness in recovering missing values is considered. The same dataset

of ECG signals as used previously is used, and the proposed algorithm is

compared with three modern methods: MARSS, EM, and K-nearest neigh-

bour (KNN).

5.2.3.1 Multivariate Auto-Regressive State-Space

The Multivariate Auto-Regressive State Space (MARSS) model was intro-

duced in 2012 as the first complete package for handling missing data in

multivariate time series data [62]. MARSS incorporates an expectation-

maximization (EM) algorithm. It is an R package employing a special for-
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mula of vector autoregressive state-space models to fit multivariate time

series with missing data via an EM algorithm. A MARSS model has the

following matrix structure:


xt = Atxt−1 + Btbt + εt

yt = Ctxt−1 + Dtdt + µt

(5.1)

where εt ∼ N (0, Qt), µt ∼ N (0, Rt)

and x1 ∼ N (π, Λ) or x0 ∼ N (0, Λ)

The state vector is represented by xt and the measured value is desig-

nated by yt.

Driven by data, the model evolves but it is possible that some value

may be missing when measuring y. The variables bt and dt are inputs

representing for example some indicators or exogenous variables. At, Bt,

Ct, and Dt are system matrices, εt and µt are process and non-process error,

respectively, Qt and Rt are m×m and n× n variance-covariance matrices,

respectively, where m is number of states and n the number of time series.

Compared with the traditional approaches, MARSS can generate better

results especially for multivariate time series modelling [60].

5.2.3.2 K-nearest neighbour

The K-nearest neighbour (KNN) imputation method for handling missing

values was introduced by [31]. KNN uses the observed values of near-
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est neighbour time series to fill the corresponding missing values in the

time series. The nearest neighbour time series is the closest time series in

Euclidean distance. The next nearest time series is utilized, if the corre-

sponding value from the nearest time series was also missing, that means

this method does not reduce the length of the time series, which results

in a decreased sample size, and does not need to estimate a model to im-

pute the missing value. In contrast, in multivariate time series modelling

in which the interaction and variation between data points is important,

KNN cannot maintain this property.

Despite these disadvantages, many researchers still extensively use this

technique, and in MATLAB, KNN is one of the best options for imputing

missing values when estimating dynamic models.

Tables 5.9 and 5.10 show the accuracy for recovering missing data in the

heart rate signal using different imputation methods. Table 5.9 shows the

10% MCAR and Table 5.10 shows 20% MCAR.

Tables 5.11 and 5.12 summarize the results of the performance in re-

covering the missing data using the four imputation methods for the QRS

wave properties for both cases of missing data, 10% and 20%, respectively.

In both cases, the proposed method VAR− IM gives better results as com-

pared with the other methods.
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5.3 Summary

This Chapter has examined using the VAR − IM algorithm with missing

data from multivariate time series datasets. The VAR− IM algorithm has

been introduced for forecasting the electric flux from solar wind real data

at geosynchronous orbit. Numerical results showed that the proposed al-

gorithm for the imputed missing data can produce promising prediction

results for the relativistic electron flux. A further extension to this study

would be to introduce a relatively complicated non- stationary multivariate

series models to improve forecasting performance. It is extremely impor-

tant to effectively handle multivariate datasets that contain missing values.

This is especially true for medical data, which could involve a great number

of critical variables that could adversely affect diagnosis of critical health

conditions.

The proposed VAR− IM method provides improvements to speed and

accuracy for imputing missing values of multivariate time series datasets.

It outperforms the commonly used methods such as list wise deletion, lin-

ear regression imputation, MARSS and EM algorithms. The results of the

case study show that the VAR− IM method provides an effective alterna-

tive for the imputation of missing values in multivariate time series. While

the other proposed traditional and modern methods become less effective

with the increase of the proportion of missing data, VAR− IM shows less

deterioration in performance with increasing percentages of missing en-

tries. In addition, the VAR − IM method is more robust than the other

proposed techniques when applied to the data types discussed in the case

study, and performed better on static and noisy data. Furthermore, a part
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from this chapter was published as a journal paper in Neurocomputing

journal [14].





Chapter 6

Conclusions and Future work

6.1 Conclusions

In conclusion, this work presented new algorithms for imputation and

analysis of missing data in static and dynamic formats for univariate and

multivariate time series datasets. The proposed methods are applicable to

solving missing data problems in many different fields such as medical

studies, financial applications, space weather forecast, and chemical pro-

cess modelling.

The missing data problem occur frequently requiring researchers to

handle on a regular basis. Numerous specialists sometimes neglect atten-

tion to missing values of time series datasets in their analysis. They revert

to ad-hoc techniques or even not considering the effect of the missing data

at all. Techniques for missing data analysis are widely available in the case

of static data (non- autoregression). On the other hand, methods for han-

dling missing data in dynamic systems are not widely available. This thesis

builds a statistical methodology to handle missing data in both cases: static

and dynamic data.
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This study has explained, introduced and explored particular techniques

for handling missing data in time series data sets. It began by reviewing

the available methods for dealing with missing values in static data. High-

lighting limitations of these methods over the other types of data sets. It

then developed and applied new algorithms on static data.

Many methods were presented and their advantages and disadvantages

were discussed. In the case of static data and from the literature review,

the maximum likelihood method was the preferable method. One of the

findings from the review is that there are many successful techniques for

handling missing data within static datasets. The basic idea behind my re-

search was to compare these techniques with the developed algorithms in

this thesis to verify, if indeed, the proposed methods can solve the problem

better. The contribution in my thesis was regarding to develop new algo-

rithms to deal with missing data problems in terms of nonlinear modelling,

model selection, parametric and non-parametric estimation. As mentioned

above, the main aim was to check the performance of the proposed tech-

niques. It was found that the proposed methods do have better ability to

solve the missing data problem involving different missing data mecha-

nisms (MAR and MCAR).

A preponderance of recent practical research on missing data analy-

sis has focused on model parameter estimation using modern statistical

methods such as maximum likelihood and multiple imputation. These ap-

proaches are superior to traditional methods, such as listwise deletion and

mean imputation methods. One benefit of these modern techniques is that

they can lead to unbiased parametric estimation in many particular appli-

cation cases. However, when applied to nonlinear systems, especially those
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with highly nonlinear behaviour, these methods do not work well. The

beginning of Chapter 3 explains the linear parametric estimation method

applied to missing data. The chapter includes an overview of biased and

unbiased linear parametric estimation with missing data. It also provides

accessible descriptions of expectation maximization (EM) algorithm and

the Gauss-Newton method. In particular, it was proposed to use a Gauss-

Newton method for nonlinear parametric estimation in the case of missing

data. Since the Gauss-Newton method needs initial values that are hard to

obtain in the presence of missing data, the EM algorithm is thus coupled

with Gauss-Newton method to estimate these initial values.

The primary aim of Chapter 3 was to introduce a nonlinear modelling

technique for missing data analysis. Comparative studies on both the EM

and Gauss-Newton approaches have been carried out. Although EM and

Gauss-Newton algorithms offer advantages over traditional approaches,

they produce different results specifically in systems exhibiting high non-

linearity with different missing data mechanism (i.e., MAR and different

MCAR cases). Most studies in the literature have focused on the use of lin-

ear techniques because of their simple assumptions and ease of implemen-

tation especially with computers. As mentioned previously, with systems

that have high nonlinearity, EM does not always give good results. On the

other hand, the Gauss-Newton does need initial values to start the iteration

process, and this is a disadvantage in terms of computing time.

Most nonlinear modelling approaches solve the model selection prob-

lem with complete data by incorporating nonlinear transforms such as Box-

Tidwell and fractional polynomial transformation. Often these approaches

can lead to models that are better than traditional models (for example, lo-
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gistic model and quadratic model). However, in the case of missing data, it

is not easy to predict the relationship between the independent and depen-

dent variables. The result is that traditional nonlinear models, as applied to

cases of missing data analysis, give poor results. The second part of Chap-

ter 3 explained nonlinear model selection techniques for missing data. It

presented the critical issues in choosing the best models for cases of miss-

ing data. Two of the most popular model selection methods for incomplete

data were illustrated. The illustrations were focused on single variable data

modelling for missing data. The basic idea, however, can be extended to

multivariable data analysis but the modelling complexity is increased. The

key aspects of the Box Tidwell transformation and fractional polynomial

methods have been presented and applied these to model estimation for

missing data. The comparison of the effect of different missing data mech-

anisms (10% MCAR and 20% MCAR) on the fractional polynomial, Box

Tidwell and traditional models give good indications about the use of frac-

tional polynomial and Box Tidwell methods. As evidenced by the F-test,

the cubic, Box Tidwell, and fractional polynomial models are all better, and

they imputed the missing values about equally well. The fractional poly-

nomial model did fare better by giving the highest R2 value. However,

complex models are generally less tractable and less robust than simple

ones [78, 98–100]

While excellent work has been done in missing data imputation, most

available approaches have focused on some particular applications, such as

static data and univariate time series. Another unique contribution of this

thesis was to develop new algorithms for handling missing data in multi-

variate time series datasets. An improved technique for handling missing
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values in multiple time series were presented in Chapter 4, and it intro-

duced an novel algorithms for handling missing data in multivariate time

series datasets based on a vector autoregressive (VAR) model by combining

an expectation and minimization (EM) algorithm with the prediction error

minimization (PEM) method. Case studies were conducted to compare the

proposed algorithm with traditional and modern methods for imputing

missing data.

The newly proposed VAR − IM method provides a fast and accurate

approach of imputing missing values for multivariate time series. The

VAR − IM approach outperforms the commonly used methods such as

mean substitution, list wise deletion and linear regression imputation. It

achieves this by taking advantage of the correlation structure of the data for

imputing missing values. From the results of the case study, the VAR− IM

method provides an effective alternative for the imputation of missing val-

ues in multivariate time series. While mean substitution, list wise deletion

and linear regression imputation methods can become less effective with

the increase of the proportion of missing data, VAR− IM shows less de-

terioration in performance with increasing percentages of missing entries.

In addition, the VAR − IM method is more robust than the other three

methods when applied to the data types discussed in the case studies, and

performed better on static and noisy data. However, there are some limita-

tions of the proposed method. First, Chapter 4 only considered the scenario

in which data were missing completely at random, that is, the cause of the

missing data was independent of both the observed and missing values.

A less stringent assumption of the missing data mechanism, missing at

random (MAR), may be more realistic in practice. Second, the validity of
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VAR− IM requires that the time series should be stationary. Finally, the

percentage of missing data has a significant impact on most missing data

analysis methods, VAR− IM does not have the priority to be used if the

percentage of missing data is quite low (say less 10%). Despite these lim-

itations, VAR− IM provides an important alternative to existing methods

for handling missing data in multivariate time series.

Two cases studies were conducted in Chapter 5: one for space weather

data and another for ECG data to compare the proposed algorithm with

different methods for imputing missing data. Missing data analysis, mul-

tivariate time series, and vector autoregressive models have been intro-

duced for forecasting the electric flux from solar wind real data at geosyn-

chronous orbit. Numerical results show that the proposed vector autore-

gressive models estimated by using the imputed data can produce promis-

ing prediction results for the relativistic electric flux. The ECG data set

was used as a benchmark to test the performance and limitations of the

proposed methods. For these case studies, the first decision is to determine

whether or not if data imputation is even necessary at all. If there is no

strong evidence that data imputation can improve the data analysis result,

then simply choose not to impute. Although imputed values are usually

well behaved and appear to be consistent with other attribute values, an

imputation procedure can be potentially harmful because even the most

advanced imputation method is only able to approximate the actual miss-

ing value. Missing data imputation should be carefully applied to reduce

the risk of oversimplifying the problem of missing data mechanism.
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6.2 Future work

This work has produced a significant contribution towards imputation of

missing data of static and dynamic systems. It also gives a starting point

for further work in the field. Although the contributions in this thesis can

be applied to many fields, there are still several important questions to be

answered.

• The missing data mechanisms were not completely covered. This the-

sis assumed the data to be missing at random and missing completely

at random. To what extent do these assumptions can affect the impu-

tation processes needs to be examined. In other words, if the missing

data mechanism were something other than missing at random or

missing completely at random, would the proposed algorithm pro-

vide benefit?

• The other extension can be concluded from chapter 3, where missing

data analysis for static data were used for model selection and para-

metric regression. The proposed algorithms need to be updated to be

used for the case of dynamic data, particularly with multivariate time

series.

• The primary aim in Chapter four was to present multivariate time se-

ries analysis for the case of incomplete data. The VAR(p) model was

nominated and chosen as the best model for missing data imputation

for that case. The use of the other models for missing data imputation

should be investigated.

• Chapter four introduces a new method for handling missing data in
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multivariate time series (VAR− IM). Although the VAR-IM approach

outperforms the commonly used methods and it provides an effective

alternative for the imputation of missing values in multivariate time

series, there are some challenges and limitation’s need to be over-

come. First, this thesis only considered the scenario in which data

were missing completely at random. A less stringent assumption of

missing data mechanism, such as missing at random, may be more

realistic in practice. Second, the validity of VAR− IM requires that

the time series should be stationary. Finally, while the percentage

of missing data has significant impact on most missing data analy-

sis methods, VAR− IM should have a low priority to be used if the

percentage of missing data is quite low (say less 10%).
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