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Abstract

Recent vehicular ad hoc networks research has been focusing on providing intelligent
transportation services by employing information and communication technologies
on road transport. It has been understood that advanced demands such as reliable
connectivity, high user throughput, and ultra-low latency required by these services

cannot be met using traditional communication technologies.

Consequently, this thesis reports on the application of artificial intelligence to user
association as a technology enabler in ultra-dense small cell vehicular networks. In
particular, the work focuses on mitigating mobility-related concerns and networking
issues at different mobility levels by employing diverse heuristic as well as reinforce-

ment learning (RL) methods.

Firstly, driven by rapid fluctuations in the network topology and the radio environment,
a conventional, three-step sequence user association policy is designed to highlight and
explore the impact of vehicle speed and different performance indicators on network
quality of service (QoS) and user experience. Secondly, inspired by control-theoretic
models and dynamic programming, a real-time controlled feedback user association
approach is proposed. The algorithm adapts to the changing vehicular environment
by employing derived network performance information as a heuristic, resulting in
improved network performance. Thirdly, a sequence of novel RL based user asso-
ciation algorithms are developed that employ variable learning rate, variable rewards
function and adaptation of the control feedback framework to improve the initial and
steady-state learning performance. Furthermore, to accelerate the learning process and
enhance the adaptability and robustness of the developed RL algorithms, heuristically

accelerated RL and case-based transfer learning methods are employed.

A comprehensive, two-tier, event-based, system level simulator which is an integration
of a dynamic vehicular network, a highway, and an ultra-dense small cell network is
developed. The model has enabled the analysis of user mobility effects on the network
performance across different mobility levels as well as served as a firm foundation for

the evaluation of the empirical properties of the investigated approaches.
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1.1 Background

Owing to the rapid growth of multimedia infotainment applications and increase in
the number of high-end devices, a sharp increase in the global mobile data traffic has
been witnessed in the past decade as outlined in the latest Cisco Visual Network Index
(VNI) report [1]. The report presents that global mobile traffic will increase nearly
threefold between 2016 and 2021, reaching 27.8 exabytes per month by 2021 as shown
in Figure 1.1, wherein 82% of the traffic will be video, indicated in Figure 1.2. This
requires increased wireless system capacity to provide high data rate whilst ensuring a

guaranteed quality of service (QoS).

250
200
Exabyte
per month 150
100
) I
0

2016 2017 2018 2019 2020 2021

Figure 1.1: The mobile data traffic per month in exabytes by 2021 as reported by Cisco
Visual Networking Index (VNI), redrawn from [1]
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Figure 1.2: Global internet protocol (IP) traffic by application category, wherein IP
video traffic will contributes 51% to the total traffic generated by 2021, redrawn from

[1]

4G mobile networks are designed to provide mobile broadband, wherein currently the
user experience relies on the infrastructure and varies significantly in response to the
varying wireless channel conditions, particularly from the cell edge to the centre of
the cell. The demand for highly reliable radio access network coverage is not only
limited within the home or office but is also an essential requirement of future ve-
hicular networks. It has therefore been collectively agreed by the researchers in the
field of communications that a paradigm shift is needed to meet the dramatic increas-
ing demands for mobile data services as incremental improvement in today’s wireless
broadband network that mainly consists of traditional cellular base stations cannot

meet the foreseeable future data demands [2]-[4].

The fifth generation mobile network is envisioned to support a diverse range of new
services and applications such as device-to-device communications, ultra-high def-
inition video streaming, mission-critical services, and intelligent transportation ser-
vices by providing high data rate and coverage, seamless mobility, and reduced end-
to-end latency compared to the current 4G LTE networks. Some of the key technology
enablers for the 5G communications as identified by the authors in [5] are massive
Multiple-input Multiple-output (MIMO), millimetre Wave (mmW), and dense hetero-
geneous networks (HetNets). Although it still remains unclear whether or not the
lightweight, low-powered small cell base stations (eNBs) will fully substitute the tra-
ditional macrocell networks, their progressive development has led towards the emer-
gence of different types of BSs, resulting in Heterogeneous networks (HetNet) and

Ultra-dense Small cell networks (UDN).
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In the context of vehicular networks, it is foreseen that the 5G vehicle-to-anything
(V2X) will enable safe and intelligent transportation services (ITS) by employing the
traditional macrocell network for greater coverage and deployment of low power nodes
to provide a better quality of service (QoS), quality of experience (QoE), ultra-high
data rate and low end-to-end latency especially in those areas where traffic demand
is high. Although further densification in a vehicular environment will assist in over-
coming increasing traffic demands of moving users, however the challenge in an ultra-
dense small cell environment is frequent user association to the most promising base

station.

User association relates to adapting a radio-link for the transmission of data depending
on the prevailing radio traffic environment. It is a critical element in communication
networks as it substantially affects the network performance [6]. The user association
decision in the existing LTE/LTE-A systems is taken by the radio admission control
entity located in the radio control layer of the protocol stack [7]. The decision depends
on the quality of service (QoS), priority level of the request and the availability of
the resources. In existing systems, a UE is associated with a BS depending upon the
measurement of the received signal strength (max-RSS) of neighbouring BSs, if the
association is initiated by the user [8, 9]. Alternatively, a UE may also associate with
a BS based upon signal quality, i.e. the maximum signal-to-interference-noise ratio
(max-SINR) rather than signal strength [10]. However, these approaches do not con-
sider the impact of vehicle mobility during the user association process. An association
algorithm that does not take mobility into account in a dense small-cell scenario during
scheduling may result in a higher handover frequency when compared to handovers in

a conventional cellular network.

Handover is defined as a process in which the ongoing transmission is transferred
from the current associated BS to a new target BS, depending on association poli-
cies [11][12]. The number of handovers per transmission is termed as handover fre-
quency in the presented thesis. In dynamic vehicular environments, the number of
handovers increases linearly with an increase in the vehicle speed, if the max-RSS
user association approach is considered [13]. This may further increase the switch-

ing and signalling load resulting in undesirable end-to-end delay and possibly dropped
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transmissions [11] [14] . Therefore, more sophisticated and intelligent user association
algorithms with the ability to consider the vehicular dynamics, thus, adapt to the envi-
ronment are needed in order to improve the handover rate whilst delivering guaranteed

network quality of service.

The key objective of the presented work is to apply known machine learning ap-
proaches to improve the handover rate in small cell dynamic vehicular environment.
The user association algorithms that have been developed are with consideration to
single base station association contrary to multi base station association. This is
because multi cell association incur redundant signalling overheads in establishing
and maintaining more than one association subsequently, in addition to intra-cellular
as well as inter-cellular handover resulting in more complex evaluation of handover
rate. Whereas, in single base station association no intra-cell handover is considered
thus enabling an accurate assessment of inter cell handover rate with respect to ve-
hicle speed. Moreover, in multi cell association geographically separated antennas
are employed to receive signals from the active users to significantly improve the cell
throughput whilst implementing scheduling decisions to control interference, as in the
case of CoMP Uplink. However, in the presented scenario, omnidirectional antennas
are employed that would lead to considerable interference if multiple cell association
is considered. In addition to this, the fundamental objective was to develop machine
learning inspired user association approaches that are able to adapt to the environ-
ment such that the handover rate is significantly reduced while delivering guaranteed

network QoS across all investigated vehicle speed.

1.2 Hypothesis

The following hypothesis guides the research work presented in this thesis:

“Appropriate exploitation of heuristic information through reinforcement learning for
user association in ultra-dense dynamic vehicular environments can significantly re-

duce the handover rate whilst delivering a guaranteed network quality of service.”

Reinforcement learning (RL) is foreseen to adapt to the spatial-temporal irregularities

of urban traffic flow in ultra-dense small cell scenarios enabling improvement in the
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network reliability, quality and latency by utilizing the heuristic information. The net-
work adaptability and evaluation of improvement with the RL approaches include the
amount of reduction in the number of handovers per transmission while delivering a
guaranteed Quality of Service (QoS) at different vehicle speed. This thesis, therefore,
focuses on developing intelligent user association schemes that effectively use radio
and vehicular traffic information for decision making to adapt to the challenging dy-
namic radio environment. The developed algorithms are assessed using large-scale
simulation on a highway scenario in an urban setting. The assessment could be ex-
tended to different network architectures or to additional aspects such as energy ef-
ficiency, user power consumption, and/or on-demand radio resource provisioning in

future.

1.3 Research Contributions

The contributions of the thesis are as enumerated below:

e An extensive vehicular-communication traffic framework that allows system as
well as user experiences to be modelled has been developed using MATLAB
software environment (version R2015b) in Chapter 3. The model assist to inves-
tigate and empirically assess a range of user association approaches at dynamic
urban traffic flow and constantly varying wireless channel conditions on overall

network performance in a dense small cell highway scenario.

e The three-step performance metric dependent user association approach pro-
posed in Chapter 4 selects an appropriate base station depending on desired
performance metric, thus, demonstrate the impact of different performance met-
ric on the overall network performance and user experience. The approach also
contributes towards the significance of association range and the necessity to
adapt to dynamic urban vehicular environment to deliver guaranteed network

QoS whilst reducing the handover rate across different vehicle speed.

e A range of reinforcement learning based intelligent user association algorithms
are proposed in Chapter 5 to adapt to the changing environmental conditions,

thus, adjust the user association decisions accordingly. The developed adaptive,
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model-free, online schemes exploit the state-of-the-art Q-learning framework to
achieve an effective and reliable solution only through trial-and-error iterations
in the considered multi-agent scenario. The schemes recursively reconstruct
the current policy making it difficult for the learning agent to converge to local

optimum, thus, encouraging to look for a better solution.

e The case-based reinforcement learning (CBRL) user association scheme pro-
posed in Chapter 6 combines case-based transfer learning (CBTL) and heuristi-
cally accelerated reinforcement learning (HARL) on a conventional Q-learning
framework to learn a reliable solution across different traffic conditions in dy-
namic environments. The scheme uses the network performance information to
enable the learning agents to adapt to the dynamically changing environment,
learn best association range, thus, stabilize their performance at different inves-

tigated vehicle speed.

1.4 Thesis Outline

The presented thesis is organised as follows:

e Chapter 2 provides a literature review to establish the background of presented
work. First, the fundamental concepts of HetNets and vehicular networks are
discussed, wherein small cell networks are envisioned as a promising solution to
improve cell edge performance as well as provide ubiquitous connectivity and
coverage for ultra-reliable low-latency services. Next, a comprehensive sum-
mary of the existing conventional user association strategies and a number of
machine learning methods based on state-of-the-art reinforcement learning for
user association is presented. Finally, in the last section of the chapter RL and
associated techniques that are widely used in the wireless and the artificial intel-

ligence domain are reviewed.

e Chapter 3 presents the scenario and the network architecture. Further, compre-
hensive explanation related to different modules and processes employed for the
development of the presented simulator is provided. The experimental method-

ology used for empirical evaluation of the different user association algorithms
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proposed in this thesis is discussed next.

Chapter 4 begins by introducing user association mechanism. It further dis-
cusses the conventional user association technique that has been used as the
baseline comparison scheme for the assessment of different proposed schemes
later in this thesis. Following this, the performance metric based user associa-
tion strategies that follow a three-step sequence for user association in vehicular
networks is proposed. The results provide insights into understanding the in-
fluence of individual performance metric on the network performance and user

experience.

Chapter 5 proposes a class of adaptive user association algorithms in the vehicu-
lar network. First, a real-time control feedback user association approach that is
a model-free computational algorithm, inspired by control-theoretic models and
dynamic programming is proposed. Subsequently, a user association algorithm
based on classical Q-learning technique is proposed. This scheme serves as a
baseline approach for the investigated learning technique. In addition to this,
the chapter introduces and employs the concept of variable learning rate and
variable reward function for developing adaptive user association algorithms.
Further, user association algorithms that integrate investigated RL techniques
to develop variable reward, quality aware Q-learning (VR-QAQL) approach is
proposed. This scheme significantly improves the network performance and
user experience compared to the baseline approaches. Finally, the results ob-
tained that evaluate the performance of the non-learning algorithms and other

investigated Q-learning algorithms are demonstrated.

Chapter 6 proposes a novel case-based reinforcement learning (CBRL) approach
for user association; an extension to the VR-QAQL approach that was proposed
in Chapter 5. The approach uses a combination of heuristically accelerated rein-
forcement learning (HARL) and case-based transfer learning (CBTL) technique
on a VR-QAQL framework to achieve the tradeoffs between handover frequency
and guaranteed network quality of service at all vehicle speeds in the considered
bi-directional flow, multi-lane, urban traffic scenario. The chapter also provides

an extensive review of the CBRL and HARL techniques and discusses their sig-
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nificance to accelerate and enhance the learning performance. Furthermore, the
performance of the developed CBRL techniques is assessed using a number of

simulations at different vehicle speed in the dynamically changing topology.

e Chapter 7 concludes the presented thesis, summarises the novel contributions

and provides the recommendation for further extension of the presented work.



22 Chapter 2. Literature Review

Chapter 2. Literature Review

Contents
21 Introduction . ..........c.o0 ittt unnneeenns 22
2.2 Dynamic Vehicular Networks . . . . . ... ... ......... 24
2.2.1 Vehicular Networks Overview . . . . ... ... .. .... 24
2.2.2  Vehicular Network Simulator . . . .. ... ... ..... 25
2.2.3 Mobility Model Framework . . . .. ... ... ... ... 27
2.3 Ultra-High Capacity Wireless Networks . . . . ... ....... 31
2.3.1 Ultra Dense Small Cell Networks . . . ... ... ..... 32
2.3.2 User Association Trends . . . . .. ... ... ....... 36
2.3.3 Emerging User Association Techniques . . . . . ... ... 38
2.34 Challenges and Limitations . . . . ... ... ... .... 41
24 MachineLearning . . . . . .. . ¢ .ottt vt ittt 43
2.4.1 Reinforcement Learning . . . . ... ... ... ...... 43
2.4.2 Model-Based Reinforcement Learning . . . . . . ... ... 46
2.4.3 Model-Free Reinforcement Learning . . . . .. ... ... 47
244 Multiagent Reinforcement Learning . . . . . ... ... .. 50
245 Transfer Learning. . . . . .. ... ... ... ....... 51
25 Conclusion .. ... ... ... e 53

2.1 Introduction

This chapter presents a review of the essential concepts, background information and
extensive studies in the ultra-dense wireless networks, vehicular networks and artifi-
cial intelligence that relates to the scope of intelligent user association in ultra-dense
small cell dynamic environments as per the hypothesis indicated in Chapter 1 of the

presented thesis.
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Due to the recent advancements in wireless technologies, vehicle infrastructure and
automobile industry, vehicular ad-hoc networking is envisioned as a key enabling
technology that has significant potential to ensure traffic safety, traffic management,
infotainment, and other mission-critical applications. However, these applications de-
mand reliable quality of communication that greatly depends on network architecture,

advanced vehicular networking, and desired performance.

Consequently, to meet these essential advanced requirements of the vehicular net-
works, the 5G cellular networks are envisaged to be an essential technology and infras-
tructure facilitator. The goals of 5G are extensive, but, include vital advanced require-
ments of the vehicular networks. The primary technologies and approaches identified
for 5G networks by [5] are heterogeneous networks (HetNets), massive MIMO, mm-
waves, device-to-device (D2D), full-duplex, beamforming, energy aware, cloud radio
access network (C-RAN), and virtualization of wireless resources. Among these tech-
nologies, heterogeneous networks (HetNets), massive MIMO, mm-waves have been
identified as the “big three” technologies of 5G [2]. The indispensable advantages of
the 5G cellular communications, therefore, appear to meet the advanced requirements
of the vehicular networks. A fundamental task performed to ensure the connectivity
of a user/user equipment (UE) to the network through a particular base station (eNB)
before it starts data transmission, regardless of the technology adopted, is user asso-
ciation. In the case of dense small cell networks with dynamic vehicle mobility, the
selection of an appropriate eNB for user association appears to be challenging due to
frequent handover, that may lead to challenges such as network coordination, configu-

ration and management [15].

One possible way to mitigate these challenges is the introduction of machine learning
and artificial intelligence algorithms in the network. The introduction of intelligence
to the network will assist the eNBs to self-adjust, synchronize and adapt to the changes
in the environment such that an ultra-reliable low latency wireless communication for
different vehicular applications is achieved [16]-[17]. The inherent advantages and
prevalence of the dense environments and machine learning techniques motivated for
the development of novel intelligent user association approaches for ultra-dense small

cell dynamic vehicular environments that are proposed in the presented thesis.
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The rest of this chapter is organised as follows: Section 2.2 reviews dynamic vehicular
networks and the need of a standardized vehicular-communication traffic simulator.
Next, an overview of the ultra-high capacity wireless networks is given in Section 2.3.
Following this, user association mechanism that does not include machine learning
techniques are discussed. Section 2.4 argues machine learning followed by an in-depth
review of reinforcement learning and associated algorithms as applied in wireless com-

munication domain. Finally, the chapter concludes in Section 2.5.

2.2 Dynamic Vehicular Networks

2.2.1. Vehicular Networks Overview

Vehicular networks is an emerging intelligent transportation system (ITS) technol-
ogy that integrates wireless communications to vehicles to enable diverse applications
related to road traffic [40]. The growing interests towards applicability of wireless
communication to vehicles have resulted in the formation of several government or-
ganizations, standardization bodies, dedicated short-range communication (DSRC) in
the US and the ITS-GS5 in Europe, has been set up, both based on IEEE 802.11p tech-
nology. Moreover, different consortia such as vehicle infrastructure integration (VII)
in the US, car-to-car communication consortia (C2C-CC) in Europe to formulate the
guiding principles, requirements, architecture, and protocols for data transmission be-
tween vehicle to vehicle (V2V) and vehicle to infrastructures (V2I) [60]. The goal is
to streamline the operation of vehicles as well as to support high mobile broadband
access for infotainment, to improve traffic efficiency, road safety and management ap-

plications.

The two main vehicular communication modes are: (a) communication among nearby
vehicles known as vehicle to vehicle communication, wherein, the data transmission
takes place between the vehicles either via single hop or multi-hop, and (b) communi-
cation between vehicle and road-side infrastructure known as the vehicle to infrastruc-
ture (V2I) communication, wherein, the data transmission is one-hop. V2V communi-

cation is as important as the V2I communication. Few of the associated V2V and V2I
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applications considering latency as key parameter may be broadly split into latency
tolerant and latency-intolerant applications. One of the examples of latency tolerant
application is software update over the air, wherein, the end-to-end latency may be
relaxed while a guaranteed network QoS is essential. On the contrary, real-time data
applications are latency intolerant, therefore, in such use cases provision of highly
reliable connectivity, ultra-low latency and guaranteed network quality of service is
exceptionally important. The presented research focuses on the development of user
association algorithms in the V2I scenario and disperses communication techniques

and user association mechanism in V2V scenarios.

Considering the potential impact of 5G wireless communication on the automotive
market, efforts to develop communication protocols, mobility models and network
simulators related to vehicular communications has significantly grown. This is due
to the importance and necessity to test, evaluate and analyze the performance of pro-
posed algorithms prior to their implementation on the real test bed. The next section
discusses the significance of mobility and network models to assess new algorithms
in the field of vehicular communication. Furthermore, a mobility model framework is
also argued that has been used as a guideline for the development of the comprehensive

vehicular communication simulator in Chapter 3.

2.2.2. Vehicular Network Simulator

The assessment, evaluation and implementation of new strategies on a computer-based
simulation are widely preferred in the research community over real test bed due to
logistic difficulties, economic issues and technology limitations [61]. However, the
key requirement for computer-based simulation is a standardized simulator. In the
case of vehicular networks, the simulator is a combination of the mobility model that
relates to the vehicle movement in the environment while the network model relates to

the evaluation of network communication performance.

There are several excellent contributions in the literature towards the development of
mobility models [77]-[82]. The authors in [61] presented an exceptional survey on

available mobility models, their usability, merits, demerits and challenges for vehicular
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networking. Similarly, an extensive overview of major ITS programs and projects con-
ducted in the USA, Europe and Japan is presented in [83]. This paper also discussed
the different networking architecture and protocols implemented in these projects. Few
of the mobile network operators and communication equipment vendors have devel-
oped their own proprietary simulators that are not open source or freely available [64]-
[66]. Whereas, some of the simulators developed in academic-industrial collaboration

are commercially available, but, lacks to provide the source code.

In [67], an LTE link-level simulator using MATLAB environment has been proposed.
The main highlighted features of the simulator are adaptive modulation and coding
(AMC), single and multiple user scenario, multiple input multiple output (MIMO)
technique, and flexibility to implement different scheduling schemes. Moreover, the
paper suggests that by employing parallel computing toolbox of MATLAB along with
the simulator to significantly reduce the simulation time. Similarly, in [68], a MAT-
LAB based system level simulator for LTE networks that employ the open loop spatial
multiplexing and transmission diversity modes to evaluate the performance of shared
channels of LTE SISO and MIMO networks in downlink flow is proposed. However,
both the proposed simulator lack some of the important aspects relevant for vehicular
communications such as a multi-cell environment, the uplink flow, dynamic vehicle

mobility, and a complete LTE protocol stack.

Recently, a hybrid approach has been extensively used to assess developed strategies
in vehicular networks. For example, Simulation of Urban Mobility (SUMO) is used to
generate the vehicle mobility traces. The traces obtained are supplied into a standard
network simulator, such as NS-2 or MATLAB to assess the proposed strategies. A
study performed by the authors in [62] investigates the most popular VANET simu-
lator between 2004 and 2007 at the ACM VANET workshop for vehicular network-
ing. It shows that 70% of the papers out of the 51 papers that used simulators for
accessing the proposed techniques, the most popular choice of network simulators
were NS-2 [69], QualNet [70], and SWANS [71] while the mobility simulators used
were SHIFT/SmartAHS [72], CORSIM [73], VanetMobiSim [74], VISSIM [75], and
SUMO [76]. On the contrary, 16% of the researchers used a self-developed simula-

tor. Despite the contrary, to the best of the authors’ knowledge, at the present time,
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no standard, open source, integrated vehicular-radio network simulator which may
serve as a common reference simulator for the comparison of results presented by dif-
ferent research groups is available [62, 63]. Therefore, one of the integral elements
of the presented research work is the developed comprehensive, integrated vehicular-
network simulator. It is exploited to assess the different user association strategies in
this thesis. An in-depth discussion on the vehicular simulator is provided in Chapter
3. The next section discusses the mobility model framework that serves as a guideline

for the integrated model.

2.2.3. Mobility Model Framework

Road traffic is a complex multi-agent system in which the agents i.e., the vehicles may
or may not interact with each other. The way these agents move depends on different
aspects of traffic flow operations, network topology as well as traffic flow modelling.

In Figure 2.1 a mobility model framework is presented.
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Figure 2.1: Mobility modelling taxonomy structure

One of the key factors while developing a mobility model is the modelling level. Con-
sidering the level of detail with which the vehicular flow is described, traffic modelling

is characterized on the basis of time-spatial behaviour of individual vehicles under the
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influence of vehicles in proximity (microscopic models), the behaviour of individual
vehicle without considerations of their time-space behaviour (mesoscopic models) or

from a collective, vehicular flow viewpoint (macroscopic models) [90].

A microscopic model is a more detailed traffic flow modelling. The model captures in-
dividual vehicle location, trajectory, velocity, acceleration and architecture parameters
such as the number of lanes, number of intersection and traffic light timings. The car
following model by Wiedemann is an example of a microscopic model [90]. A meso-
scopic model is a medium detail traffic model and defines the probabilistic behaviour
of an individual agent. Whereas, a macroscopic level model is regarded as a low de-
tail traffic model. It provides a viewpoint of collective vehicular flow and captures
parameters such as the rate of traffic flow, mean speed, time headway and occupancy
of traffic on the street. Although this is low detailed modelling, it is generally quick.
The drawback of the macroscopic traffic model is its inability to record the behaviour
of every single vehicle. An example of the macroscopic level is the cell transmission

model that demonstrates the static density-flow relation [91] [92].

Mobility Models

As seen in the figure above, the mobility models for vehicular networking may be

developed based on four main categories [61]. These categories are discussed next.

e Synthetic models: These models are based on mathematical models that have
an ability to reflect a realistic mobility effect. According to the authors in [85],
the synthetic models may further be classified into five subcategories such as
stochastic models, traffic stream model, car following models, queue models,

and behavioural models.

e Survey-based models: These models are developed by gathering the mobility
information in real scenarios through surveys conducted by different govern-
ment organizations. For example, the UDel Mobility Model [86] and Agenda-
based Mobility model [87] are developed by the collaborative survey conducted

by government and other research institutes in the US.

e Trace-based models: These models generate the mobility patterns based on

real mobility traces. The mobility traces is gathered through various measure-
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ment campaigns. Some of the developed trace-based models reported in [61] are
DieselNet, the Cabspotting project and a collaborative model developed by the
members of the Fleetnet project, the Network on Wheels project and the HWGui

project.

e Traffic Simulators-based Models: These models are developed by refining
synthetic models and verifying the outcome using real traces or behavioural sur-
veys. Some of the popular traffic simulators-based models are PARAMICS [88],
VISSIM [75], TRANSSIM [89] and SUMO [76].

The mobility traces generated by utilizing any of the above mobility model methods
is fed into a network simulator using an interface for the further investigation of the

proposed algorithm performance.

Simulator Interaction Types

The previous sections discusses the different methods to develop mobility model that
are adapted to vehicular networks. However, to be used by the network community,
the two models, mobility model and the wireless communication model, are required
to interact with each other. The different interaction approaches are isolated approach,
embedded approach and/or federated approach [61]. In the isolated approach, the two
models are required to be generated prior to the simulation and translated by the sim-
ulator according to a predefined trace format for further processing and analyzing.
Moreover, there is no interaction between the two models during the simulation. The
embedded approach, integrates networking capabilities along with generation of ve-
hicular mobility traces in a unique model. A bi-directional interaction between the
vehicle mobility model and network simulator model persists. An example of em-
bedded mobility model is MoVes [94]. Subsequently, the federated approach display
potential of providing significantly advanced vehicular motion modeling and network-
ing capabilities. Few of the examples of federated models are (a) TraNS that employ
SUMO for mobility model and federating the ns-2 for networking capabilities [95] (b)
VGrid project that integrates SWANS as network simulator and synthetic traffic model
for vehicle mobility [96]. A comprehensive overview of the different interaction ap-

proaches as well as models under the three categories is presented in [61].
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Functional Blocks

Another building block that substantially impacts the mobility model is the functional
block that relates to the traffic flow. The traffic flow may be distinguished under three
qualitatively distinct states. These are (a) free flow, for example, traffic flow on an
unrestricted highway, (b) synchronized flow i.e., traffic flow in an urban scenario with
traffic lights at intersections, and (c) restricted flow such as at traffic jams. The overall
network performance is substantially affected by the traffic flow pattern as an instanta-
neous change in traffic flow significantly varies the communication traffic load on an
associated eNB. However, the traffic flow pattern depends on different factors such as
the network topology, time and day of the week, roadside infrastructure, traffic rules
as well as technical restrictions imposed by the vehicle. Therefore, designing and de-
veloping a vehicular model requires careful planning and an ability to predict essential
network traffic characteristics. Decisions based on poor predictions may adversely
affect the network. The next section introduces some of the widely used mobility

simulators.

Simulator Availability

Traffic simulators play an important role in vehicular communications research. They
enable traffic flow simulation with the flexibility to make necessary changes in the road
network, vehicle flow or vehicle density. CORSIM, VISSIM, TRANSSIM are few of
the commercially available traffic simulators that require a purchase of license which
in some cases may be quite expensive. On the contrary, some of the popular open
source mobility models are SUMO, CARISMA and SHIFT. Some of the real-world

test beds considered for developing the traffic simulator are presented in [93]- [99].

The next section overviews the second essential entity of the presented research work,
the ultra-high capacity wireless networks that play an important role to provide con-

nectivity and coverage to meet the advanced requirement of the vehicular networks.
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2.3 Ultra-High Capacity Wireless Networks

The exponential rise in multimedia infotainment applications and high-end devices
serves as a major driving force towards high data rate networks [18]. Some of the
popular traffic-intensive applications that require high data rate include high definition
video, wearable devices, virtual gaming, augmented reality, connected vehicles, etc.
In order to meet the intensifying data requirements from these applications advanced
technologies such as carrier aggregation (CA), multiple input multiple output (MIMO),
and coordinated multipoint (CoMP) were introduced by the LTE-A standardization
[19]. Despite these advanced technologies, the spectrum efficiency of the air interface
in homogeneous networks has been reaching its capacity limit due to the increasing
data traffic and user density [20] [21]. It was therefore agreed that a paradigm shift is
essential for the emerging fifth generation mobile networks [7]. The goals of 5G are
broad. Some of the notable key performance indicators (KPIs) envisioned by 5G-PPP
for IMT-2020 are shown in Figure 2.2.
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Figure 2.2: The key notable performance indicators envisioned by 5G-PPP for IMT-
2020, directly reproduced from [23]
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Among the highlighted KPIs in Figure 2.2, the KPIs that relates to the presented work
are latency, mobility, user experience, data rate and the area spectral efficiency. The
area spectral efficiency is defined as the information rate that can be transmitted over
a given bandwidth per cell per unit area. It, therefore, depends on three key elements,
which are data rate [in bps], available bandwidth [Hz/cell] and cell density [cell/area].
The challenges due to the data rate and available bandwidth, in the last decade, have
been extensively addressed by implementing efficient modulation and coding schemes,
employing multi-antenna techniques or adding new radio spectrum. However, the
users at the cell-edge or at hotspot area still experience a low quality of service due
to the distance between the eNB and bad channel conditions [24]. To mitigate this,
one of the key enabling technologies envisioned by 3GPP in Release 12 and beyond is

network densification, discussed next.

2.3.1. Ultra Dense Small Cell Networks

Network densification relates to the dense deployment of low power nodes also re-
ferred as small cells, in the existing macrocellular network. The objective is to reduce
the distance between the base station and the active user to improve system throughput,
spectrum efficiency and network performance especially in those areas where traffic

demand is high [25]. An example of network densification is shown in Figure 2.3.

Network Densification

Figure 2.3: An overview of ultra-dense small cell network

A comprehensive survey on network densification is provided in [20], [26], [30], [31].
The authors in [26] defined ultra-dense networks as a network where the number of
base stations per unit area is greater than the active user density. Subsequently, in [27],

a quantitative analysis of the cell density per unit area for a network to be an ultra-
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dense network has been presented. In [28], an upper bound for the active user density
in dense urban networks was evaluated. Nevertheless, the authors in [29], addressed
the issues related to the fundamental limits of network densification as the network
densification cannot expand indefinitely. However, further investigations are needed

to further understand the fundamental limits explicitly.

Node Types

The small cells are categorized into two categories: (a) fully-functional base stations
such as femtocell and picocell, and (b) extension access points such as relays or remote
radio head. The fully functional base stations have the ability to perform all the macro
base station functions with a limited transmission power. On the contrary, relays and
remote radio heads are employed to effectively increase the signal coverage range.
The different node types that contribute to the formation of heterogeneous networks

are discussed next.

e Picocells are operator deployed small base stations with reduced transmission
power and reduced cell size. They are able to perform all the functionalities of
the macro base station. They are generally deployed at hotspots or at cell edge
area to serve tens of users by offloading their traffic from the macro base station
to improve the network capacity. The coverage range of a picocell is to a max-
imum of 100 meters. In the case of indoor deployment, the transmission power
of a typical picocell is less than 100 mW, however, for outdoor deployment, it

ranges from 250 mW to about 2 W [30].

e Femtocells belong to the fully-functioning base stations class and are usually
deployed indoors by the users depending on individual requirements. The ob-
jective of a femtocell is similar to that of the picocell, i.e., to improve spectral
efficiency. The coverage range of femtocell is between 10 m to 30 m and the
transmission range is less than 100 mW. They are connected to Digital Sub-
scriber Line (DSL), cable or fibre to provide backhaul [31]. Femtocell provides
coverage to a small set of users. The users may access the network in three dif-
ferent modes; open, closed or hybrid [21]. The open femto access mode grants

access to all the users in the coverage area. However, in the close access sce-
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nario, only a defined group of users could access the network. In the hybrid
scenario, few of the users are given higher priorities within the specified sub-

scriber group.

Relays are operator deployed, particularly at cell edge or areas with low or no
coverage to improve the signal coverage range. Here, an in-band or an out-of-
band air interface spectrum is employed to provide the backhaul for the trans-
mission and reception of the user data from the macro base station. The coverage
area, transmission power as well as the access scenario of a relay is similar to

that of a picocell.

Remote Radio Heads (RRHs) are radio frequency units that have similar func-
tionality as relays. However, unlike relays, they are connected to the central
base station using a fibre or microwave link [32]. RRHs could be deployed in
a planned pattern to form centralized densification that may be an alternative to

the distributed densification provided by picocells or femtocells.

Network Architecture

The small cell nodes may be deployed in the macrocellular networks following two

different architectures; distributed and centralized. Figure 2.4 demonstrates the two

different network architectures.
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Figure 2.4: Distributed and centralized small cell architecture overview, directly re-
produced from [23]
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In the distributed network architecture, there is no central unit or controller. The users
and the base stations interact with each other using the air interface and are allowed
to make autonomous decisions related to network coordination, cooperation and man-
agement. Owing to the benefits due to distributed control such as reduced implemen-
tation complexity and the signalling overhead, the distributed architecture is suitable
for large networks, especially networks involving autonomous nodes [26]. The radio
frequency module, power amplifier and antenna module for each base stations in this
configuration are located close to its baseband unit for the transmission and reception
of signals within its coverage area. A notable example of the distributed architecture

is the current Long Term Evolution Advanced (LTE-A) system.

Despite the advantages of distributed architecture, the dense deployment of small cell
nodes requires a large infrastructure investment as well as operational expenditure to
manage and maintain the network, resulting in high capital expenditure (CAPEX) and
operational expenditure (OPEX). Moreover, as the users and the base stations are al-
lowed to make autonomous decisions, effective radio resource management techniques
would be required to address the critical issue of interference management. An alter-

native to the distributed network architecture is the centralized network architecture.

In the centralized network architecture, a central entity or controller governs the net-
work responsibility of coordination, cooperation and management of the base stations
under its coverage area. The information related to channel quality, interference level
and channel demand is transmitted to the central unit before performing operations
related to radio resource management or mobility management [26]. The centralized
control based on the comprehensive traffic information has the ability to provide reli-
able network decisions, hence, resulting in quick convergence and better performance.
The baseband unit in the centralized configuration is placed near the central controller.
Moreover, a lower value for capital expenditure and operational expenditure in central-
ized network architecture are expected compared to its counterpart due to the reduced
deployment of radio frequency module, power amplifier and antenna module for each
base stations in the network. Cloud Radio Access Network (C-RAN) is an example of

the centralized network architecture.
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2.3.2. User Association Trends

User association is the fundamental mechanism in wireless networks that relate to the
association of a user equipment to an appropriate base station for the transmission and
reception of data. The user association mechanism with respect to traditional as well as
heterogeneous networks has been extensively studied in the last decade [4] [33]-[37].
A comprehensive review of user association algorithms in 5G networks, specifically
related to HetNets, massive multiple input multiple output networks (Massive MIMO),
millimetre wave networks (mm-wave), and energy harvesting networks is performed
by the authors in [7]. In [26], the authors presented an in-depth review of user asso-
ciation techniques in ultra-dense networks (UDN). This paper also discussed different
driving factors for UDN along with a diverse range of modelling and interference
management techniques. In [34] optimal user association for delay-power trade-off in
HetNet with hybrid energy resources is provided. Likewise, energy-efficient user as-
sociation for heterogeneous cloud cellular networks is provided in [35]. In [36], tech-
niques for optimal user-cell association for massive MIMO networks are proposed. In
[37], a comprehensive downlink SINR analysis for flexible user association in HetNet
is performed. Whereas, [38] studies user association techniques for load balancing in

HetNet.

In traditional cellular networks, user association is performed depending on the mea-
surement of the received signal strength, max-RSS approach. An active mobile device
search among the neighbouring base stations for the highest received signal power
value using the cell selection criteria, thereafter clamps to the base station from which
it receives the max-RSS value [4]. Alternately, user association may also be performed
based on the signal quality, max-SINR, as in [33]. In this approach, the UE associates
with a base station with the maximum SINR value. This approach is complex to em-
ploy in dynamic environments as the interference level varies constantly due to the
frequent changes in network due to the changes in temporal-spatial vehicular distri-
bution and active communication traffic load per base station, therefore, evaluation of
accurate SINR level becomes uncertain. In addition to this, a problem that closely
relates due to vehicle mobility in small cell dense environment is the handover. It is

defined as a mechanism in which an ongoing transmission is transferred from one base
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station to another appropriate base station, as the vehicle moves along the path from
the coverage area on one cell into the subsequent cell [11]. The number of handovers
per transmission is directly proportional to the size and the number of the small cell
deployed and the speed with which the vehicle moves. A vehicle moving at a mod-
erate or high speed in an ultra-dense network will suffer a higher handover frequency
compared to conventional macrocellular networks if the conventional max-RSS user
association approach is employed [39]. The 3GPP technical report in [39] presents
that the handover performance in case of a macrocellular network is significantly bet-

ter than in HetNet.

A comprehensive survey on mobility and handoff management in vehicular networks
is presented in [40]. This survey paper begins by presenting an overview of vehicular
networks. Further, the two different mobility management protocols for V2I com-
munications, namely Mobile Internet Protocol version 6 (IPv6) and network mobility
(NeMo) are discussed. In [11], an extensive review of the trends in handover design is
presented. Similarly, [41] and [42] discusses different handoff strategies and consid-
erations in microcellular systems. A notable work addressing the control of handover
initiations in microcellular networks is presented in [43]. A parametric model based
on the vehicular traffic theory results for urban and suburban microcellular networks
has been proposed in [44]. This model offers an insight into the teletraffic modelling
for microcellular environments. Further, in [45], the authors analyzed the impact of
user mobility and base station density on the handover rate in a multi-tier HetNet un-
der stationary as well as dynamic conditions. Moreover, a speed-dependent bias factor
user association approach to effectively improve the system performance has also been
proposed. Nevertheless, the significance of user association in vehicular networks was
not highlighted in these works. The development of user association approaches in
UDN considering dynamic vehicle mobility is therefore extremely important as user
association directly relates to handoff decisions. The classic max-RSS user associa-
tion approach that is employed for user association in LTE-A is chosen as a baseline
approach in the presented work and is discussed in detail in Chapter 4. This research
proposes a series of user association approaches in vehicular networks in later chapters
of this thesis. The performance metric based user association approaches are proposed

in Chapter 4 followed by intelligent user association techniques in Chapter 5 and 6.
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2.3.3. Emerging User Association Techniques

Cell Range Expansion

HetNet comprises of a diverse range of access nodes with different transmission power
and coverage. Considering the conventional max-RSS user association approach most
of the active users will associate with the macrocell base station as the signal associ-
ated with the macro base station is significantly stronger than the signal strength from
eNB, yielding considerable load imbalance, hence resulting in inefficiency of small
cell deployment [46]. To overcome this transmission power imbalance drawback, a
load based user association approach is introduced in [47]. This approach is known as

cell range expansion (CRE) or biasing - a preferred industry and 3GPP method.

CRE is a sub-optimal technique to increase the system capacity and improve the cell-
edge throughput. In this technique, the association of the active users to eNB is
achieved by adding an external bias value to the signal strength of an eNB. This bias
value depends on a number of parameters such as initial eNB transmit power, the cov-
erage range, the node type, the density of the active mobile users in the area as well as

the desired network quality of service.

The authors in [48] investigated the downlink performance of HetNet by employing the
CRE approach with a diverse range of bias values under three different combinations
of users and eNBs. In this, a lightly loaded control channel transmission subframe
technique was used to address the control channel interference issue due to inter-cell
interference coordination (ICIC). The simulation results demonstrate that by adding a
moderate bias SINR value to small cell base station the user throughput was improved.
In [38], a low-complexity distributed algorithm that uses the load-aware user associa-
tion approach to evaluates the impact of base station density and transmit power on the
biasing factor is proposed to improve the throughput gain for cell-edge users. The au-
thors in [49] employed distributed Q-learning algorithm to learn the optimal bias value
for the cell range expansion. In this paper, each UE uses its past experience to learn
an optimal bias value that would minimize the number of UE outages. The simulation
results exhibit a marginal reduction in the number of UE outage, however, the network

throughput improved by about 20%.
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Coordinated Multipoint Processing

Coordinated Multipoint Processing (CoMP) is a 3GPP standardized user association
approach that relates to coordinated transmission or reception of information between
an active user and the base station to mitigate inter channel interference, improve
throughput and cell edge performance. An extensive survey on coordinated multi-
point is presented in [50] [51]. In the downlink, a number of BSs provide coordi-
nated transmission to a single active user employing three different approaches that
are (a) Joint Transmission, (b) Dynamic Point Selection and (c) Coordinated Schedul-

ing/Beamforming.

The technique to transmit data by more than one base station using the same fre-
quency and the subframe is termed as Joint Transmission. This approach improves the
throughput as well as cell edge performance at the expense of high backhaul band-
width and low latency requirement. Meanwhile, if the transmission from different
base stations is scheduled at the different subframe, the technique is called Dynamic
Point Selection. In this approach, the data is transmitted from the same eNB, how-
ever, depending on the availability of the resource and the current channel conditions,
the serving eNB changes dynamically. In the Coordinated Scheduling/Beamforming
(CB/CS) approach, only the the channel state information (CSI) is shared among the
cooperating eNBs. The CB/CS technique reduces multi-user and multi-cell interfer-

ence and requires lower bandwidth compared to joint transmission.

Coordinated Scheduling/Beamforming and Joint Reception are the CoMP approaches
for Uplink [52]. Here, the active user is associated with multiple eNBs in the cluster
leading to multi-cell association. The user scheduling and processing is performed
jointly by the multiple coordinating eNB, however, only one eNB receives the user
data. A comprehensive survey on CoMP clustering schemes is presented in [52]. The
authors in [53] proposed a low-complexity joint reception CoMP algorithm combined
with an effective antenna selection technique to improve cell-edge gain. Further, a
comparative performance analysis of intra-site joint reception CoMP for LTE-A sys-
tem with single-cell single user and multi-user MIMO for an uplink was performed.
The disadvantage of the CoMP approach for uplink is increased complexity, high back-

haul bandwidth and low latency requirements.
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Dual Connectivity

Dual connectivity (DC) user association approach is introduced by the 3GPP in release
12 [54]-[56]. The objective is to increase the per-user throughput and improve the
mobility performance in HetNet, by allowing the users to simultaneously associate
with a macro BS and multiple eNBs. The macro BS and eNBs is connected together
through the X2 interface and operate at different carrier frequencies. In this approach
of user association, the control plane and the user plane are split. The control plane
is responsible for the system information transmission and handles user connectivity.
Whereas, the user plane manages the user data. Figure 2.5 presents dual connectivity

architecture for HetNet.

Carrierl (1)
Carrier2 (f2)

Secondary
eNB (SeNB

Non-ldeal
Backhaul (X2)

Figure 2.5: The dual connectivity architecture, directly reproduced from [57]

In [57], the authors present a detailed overview of dual connectivity in LTE. Further,
potential benefits of dual connectivity in uplink and downlink such as an increase in
per-user throughput, load balancing, better resource utilization, and mobility manage-
ment were discussed. Moreover, in [58], a low-complexity user association model with
dual connectivity and constrained backhaul was proposed to maximize the sum-rate of
all the users. The benefits of DC are two folds: (a) the user is able to use the radio
resources across the two base stations that lead to an improved spectrum efficiency (b)
the mobility resilience is improved as a user does not has to initiate handover until it

is in the coverage area of the associated macro base station.
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2.3.4. Challenges and Limitations

Section 2.3 addresses network densification as one of the major breakthroughs for 5G
cellular networks that would likely address the limitations of coverage, capacity, high
data rate and low latency to the end users. However, new challenges due to hetero-

geneity and dynamic node mobility will emerge; some of them are now discussed.

Mobility Management - One of the dominant challenge associated with dynamic en-
vironments is mobility. The mobility management in traditional wireless networks
depends on the base station location areas that are statistically configured. However,
in the case of an ultra-dense network defining the cell boundary for different vehicle
speed becomes difficult. Thus, it is crucial to modify the current static planning to
dynamic cooperation so as to gain the neighbourhood knowledge for better user asso-
ciation. Chapter 4 proposes a three-step sequence user association approach wherein
few nearest neighbours to the moving active user are identified. Following this, the
proposed scheme, depending on diverse performance metrics, provide user-centric ser-
vices such as adaptive user association, resource management, mobility and handover

management.

Interference Management - Network densification significantly increases the inter-
ference level compared to a macro-cellular network. This is due to the presence of
greater number of interference sources, such as eNB and active user equipment per
unit area, as well as significantly strong interference from line of sight component.
Interference management in ultra-dense dynamic environments is indispensable as it
substantially affects the network performance and user experience. Therefore, the pre-
sented research work proposes advanced, machine learning inspired algorithms with
distributed control for user association in dynamic environments that demonstrate abil-
ity to strike a trade-off between interference level and network performance at different

traffic conditions.

Backhauling - It relates to the transmission of data from an eNB to the core network,
either through a wired optical fibre link or by a wireless link. The provisioning of an

ideal backhaul in a dense small cell environment in a rapidly changing radio environ-
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ment appears to be quite challenging. The wireless backhauling techniques including
the mm-Waves link, relay link and massive MIMO link appears to be a more popular
alternative to wired backhauling in densely deployed networks [58] [59]. In the pre-
sented work, perfect backhauling is considered. However, there should be considerable
investigation that should be done on backhaul configuration for vehicular networks as

it predominantly impact the access network performance.

Network Configuration, Co-ordination and Management - In HetNets, enormous
amount of data will be collected by each eNB to monitor the network performance
and maintain network stability. This will intensify the complexity to configure and
maintain the wireless networks. In the conventional 4G LTE network architecture,
services such as service control and mobility management function are centralized
in the core network. However, a centralized control in HetNet will lead to higher
signalling load and a longer end-to-end delay. Therefore, it is essential to develop
intelligent, distributed algorithms, as proposed in Chapter 5 and Chapter 6, to perform

flexible networking thus support high throughput, network QoS and resource utility.

Energy Efficiency - Despite the deployment of low powered eNB, the aggregate
power of an ultra-dense small cell network may be extremely large, resulting in a
high operational expenditure. Energy efficiency relates to the number of transmitted
bits per unit area. The variation in energy efficiency directly impacts the interference
level, the link quality and eventually the overall network QoS. Therefore, the develop-
ment of self-organizing energy efficient algorithms that considers user experience and

network performance in dense networks would yield interesting results.

One possible way to mitigate these challenges is the introduction of intelligence in
the network. This will enable the network not only to take autonomous decisions but
also to learn and improve the network performance based on previous decisions. The
next section provides an overview of machine learning, in particular, reinforcement
learning. Following this, a range of reinforcement learning techniques that are widely
used in both the wireless and artificial intelligence domain are discussed. Furthermore,
these machine learning approaches are employed to develop intelligent user associa-

tion approaches that are proposed later in this thesis.
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2.4 Machine Learning

Machine learning (ML) is a field of artificial intelligence concerned with the devel-
opment of algorithms that converge to an optimal solution and improves the system
performance without any human intervention. The ML paradigm is broadly classified
into three different categories; supervised, unsupervised and reinforcement learning
[15] [100]-[102]. Supervised learning relates to learning from training sets, exam-
ples and/or instances provided by an external knowledgeable source. The objective of
supervised learning is to train the model such that it is able to generalize or map its
responses correctly in situations other than situations in the training set. Few popu-
lar supervised learning techniques are Baye’s theory, k-nearest neighbour (k-NN), and
neural network (NN). In the case of unsupervised learning, the learning agent has to
uncover the correct behaviour, pattern or hidden structure in the collection of unla-
belled data. K-Means, self-organizing maps (SON), feedback and fuzzy controllers
are few examples of unsupervised learning. Lastly, reinforcement learning (RL) is a
goal-directed learning technique wherein the decisions are learnt by recursively in-
teracting with the environment whilst the reward mechanism is employed. The most
widely used reinforcement learning techniques in artificial intelligence domain as well

as in wireless networks are Q-learning and state-action-reward-state-action (SARSA).

2.4.1. Reinforcement Learning

Reinforcement learning (RL) is a branch of artificial intelligence, a class of machine
learning, that employs a reward and punishment policy to enable an agent to learn a
solution to a decision problem by interacting with its environment purely through trial-
and-error such that the overall reward value is maximized [100]-[102]. Unlike other
learning techniques, RL focuses on a goal-directed learning, therefore, depending on
the consequences of the learnt action a reward is awarded to the learning agent in case
of successful attempts else it is punished. The key merit of RL is its ability to learn a
solution without any prior knowledge of the environment or the reward function. How-
ever, one of the challenges in RL is the trade-off between exploration and exploitation.

A learning agent aims to maximize the reward by effectively employing an action that



44 Chapter 2. Literature Review

has proven promising in the past. But, to discover such an action, the learning agent
has to try each available action. Therefore, the task of a learning agent is to explore
all the available actions in order to learn and subsequently exploit the most efficient

action in the future.

Figure 2.6 shows a basic diagram of the RL. The four key elements of RL identified in

the literature are a) a policy, b) a reward function, c) a value function, and d) a model.

> Agent
(Learner & Decision maker)
reward: state: action:
TtER St eES atEA(St)

1 St+1

_N_ . .
—— Environment states (S) <
1 T4

Figure 2.6: A fundamental block diagram of reinforcement learning [100]

e A policy relates to a learning agent’s way to map the perceived state of the
environments to action that should be taken in them at a given time. This is
also termed as policy function. The RL agent interacts with its environment
in discrete time steps. At each learning time step, the agent is in some state
without having any information about the environment and selects an action
purely through a trial-and-error approach to move to the next state. The outcome

assists to formulate or to reconstruct the current policy.

e For each learnt action, a learning agent receives a reward depending on the con-
sequence. A reward value received by an agent assists it to access the current
choice of action and understand whether the action learnt was good or bad. The
objective is to maximize the total reward it receives over the long run, therefore,
if a low reward is received for the learnt action the learning agent reconstructs its
current policy accordingly such that an appropriate action that leads to a higher

reward is selected in that state in future.
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e The value function indicates what may be an appropriate action in the long run,
unlike, a reward function that assesses and informs the nature of a learnt action
at every time step. The value of a state or a state-action pair represents the total
amount of the reward an agent may expect to receive over the future if it starts
from that state. The value function plays a substantial role during the learning
process as it attempts to learn an action with maximum value rather than an
action with the highest reward. The value function is also referred to as value
table. However, in the case of Q-learning, it is termed as Q-table or Q-value.

The value of a particular action a in state s is evaluated using the equation below

+o0
V7T(s,a) = Ew{ Z’Ykrt+k+1|5t = 5,0t = a} (2.1)
k=0

where, 7,111 1S the reward received, 7y is the discount factor in the range [0,1]
and E; is the total expected reward under the policy 7 for the considered state-

action pair.

e Lastly, a model is the representation of environment dynamics. It presents the
correlation between the different RL elements that include state, action, reward
and transition probabilities between state, action and future state. The class of
RL that requires well developed mathematical model demonstrating an accurate
and complete relationship between different elements is classified as model-
based RL. This category of RL problems involves validation of results using
the popular Bellman optimality equation. An example of model-based RL is
the Dynamic Programming [103]. The inherent disadvantage of model-based
learning is the growth in computational requirement which increases exponen-
tially with an increase in the number of state variables; however, it is one of the
most widely used techniques for solving conventional stochastic optimal control
problems. Alternatively, the Monte Carlo RL and the Temporal Difference RL
method do not require a model to evaluate the policy and are referred to as the

model-free RL method.
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2.4.2. Model-Based Reinforcement Learning

Model-based RL is an approach to solving the RL problem in order to compute optimal
policy or a solution, given transition probability matrix (TPM) and transition reward
matrix (TRM). The role of TPM is to specify the probability of being in a certain
state, execute a particular action and progress to another state. While, TRM express
the current or immediate reward received after a particular state-action transition is
performed. The learning agent attempts to construct the model of the environment,
by including a collection of RL elements such as state, action, reward and transition
probability. The model of the environment usually presents a finite Markov decision
process (MDP). Based on the transition taken by the learning agent from the current
state to a future state, a probabilistic reward is received. A policy is then computed
using dynamic programming (DP) algorithm to select the most appropriate action in
the current state of the environment. In dynamic programming algorithms, an optimal
policy is learnt after performing a series of policy iteration and policy improvement
on the current policy. Policy evaluation relates to the assessment of the current policy,
whereas, policy improvement reconstructs the current policy depending on the assess-
ment. The primary objective of dynamic programming is the use of value function to

learn good policies by solving the recursive Bellman optimality equation, given below:

Q*(s,a) = Z P(s,a,8)[R(s,a,s") + ymax Q*(s',a’)] (2.2)

where Q*(s, a) is the cumulative reward of taking an action a in state s. P(s,a,s’)
is the probability of transition from current state s to a future state s’ after select-
ing an action a. R(s,a,s’) is the expected immediate reward. -~y is the discount fac-
tor that controls the importance of future rewards with respect to immediate rewards.
max, Q*(s',a’) is the maximum Q-value which maximizes the reward for each state-

action pair. It is derived by employing the greedy policy as follows:

7(s) = argmax Q*s, a (2.3)
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2.4.3. Model-Free Reinforcement Learning

An alternative to model-based learning is the model-free RL [100]. In this technique, a
learning agent without any prior knowledge of the transitional probabilities or reward
function learns a policy directly from the raw experience gained through recursively
interacting with the environment. Monte Carlo (MC) methods and temporal difference
(TD) learning are the two classes of methods under model-free RL. The Monte Carlo
(MC) method updates the value functions episode-by-episode rather than step-by-step
i.e., the value is updated only after an episode ends. The value function at a particular

state is updated using the equation below:

V(s') <= V(s) + alGr — V(s)] 24

where, V (s') is the new value estimate, V() is the old value estimate, « is a constant
learning rate, (; is the actual return received after the episode ends at time ¢. More-
over, an optimal policy is learnt by recursively performing policy evaluation and policy

improvement to a fixed arbitrary policy 7 as:

BEo' L2 h . L b (2.5)

where = denotes policy evaluation and Lis policy improvement; making the policy
greedy with respect to the current value function. The initial policy and Q-value are

presented by 7% and Q™ whereas 7* and Q* relates to the optimal policy and Q-value.

Another classification for solving an RL problem is TD learning. It is a combination
of DP and MC method. The TD methods (a) does not require any prior knowledge
of the model of environments dynamics or reward function to learn the solution to a
problem, similar to MC methods, and (b) the learning agent utilizes the value update
rule every time step to learn a policy in order to select its next action to reach the goal

state, as in DP. The value at a particular state is evaluated by using the equation below:

V(") < V(s) + afrir + V(") = V(s)] (2.6)
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where V' (s) is the new value estimate, V'(s) is the old value estimate, « is a small
positive value known as the learning rate which influences the learning process. Since
the learning is based on the difference of values, i.e., [V (s') — V(s)], therefore this
technique is also referred to as temporal-difference learning method. The TD learning
methods are further classified as on-policy and off-policy TD control methods. The
most widely used on-policy TD method is SARSA [104] while Q-learning [105] is the
most popular off-policy TD method.

SARSA: On-policy TD Control

The objective of an on-policy TD control method is to learn an action-value function
rather than a state-value function. In particular, the learning agent estimates the value
following a policy for the chosen state and action at every transition in time. It then
recursively updates the current policy towards an optimal policy by performing policy
evaluation and policy improvement. As seen in Figure 2.7, the algorithm follows a
particular sequence of RL elements (state, action, reward, state, action), to learn a
policy or value function, giving rise to its name SARSA. The value function, under the
current policy 7 in SARSA is updated at every time step using the following update

equation:

Q(s,a) < Q(s,a) + alr +7Q'(s', a) — Q(s, a)] (2.7)

where, (Q(s,a) corresponds to the Q-value of the current state-action pair, « is the
learning rate, +y is the discount factor, 7 is the reward received at each instance of time,
and Q)'(s', a’) is the Q-value of the previous state-action pair. The general framework

of SARSA algorithm is shown in Figure 2.7

Figure 2.7: Work flow diagram presenting different stages in SARSA learning ap-
proach, redrawn from [140]
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Q-learning: Off-policy TD Control

Q-learning (QL) proposed by Watkin is one of the most popular RL techniques in
widespread use in wireless and artificial intelligence domain [105]. Moreover, it has
been predominantly employed to develop the proposed intelligent user association
techniques in the presented research work. The learning agent recursively interacts
with the environment purely through trial-and-error iterations to gather the information
related to the environment and learn the most appropriate solution. The key difference
between Q-learning and SARSA is the action selection. In Q-learning, the learning
agent in a particular state chooses an action based on greedy policy i.e., it selects the
action with maximum Q-value. However, in the case of SARSA, the action selection
depends on the current policy. The policy is improved gradually by performing pol-
icy evaluation and policy improvement repeatedly, thus, leading to the selection of an

optimal action.

The learning agent in Q-learning uses a learning policy, such the e-greedy policy, to
learn an action with maximum value. Subsequently, the Q-value associated with each

action is recursively updated using the following update equation:

Q(s,a) + Q(s,a) + afr + 7y max Q'(s',d") — Q(s,a)] (2.8)

where, a is the action taken in the current state s, s’ is the next state, @’ is the action
that can be taken in the next state s, (s, a) corresponds to the Q-value of the current
state-action pair. The learning rate parameter, o € [0, 1] controls the convergence rate.
The discount factor v € [0, 1] controls the importance of future rewards with respect to
immediate rewards. 7 represents the reward value that is awarded for the learnt action,
and max, Q'(s',a’) is the maximum Q-value among the available actions in the next

state s'.

In some of the learning problems the environment need not be represented by different
states. The objective is to learn an appropriate action value by following a policy
m. These learning problems are categorized as stateless learning or 1-dimensional
learning problems [106] [107] . The Q-value associated with each action in stateless

learning is updated using the following equation:
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Qa) + (1 —)Q(a) + afr + 7 max Q' ()] (2.9)

where, a is the action taken, ()(a) corresponds to the Q-value of the current action.
The learning rate parameter, « € [0, 1] controls the convergence rate. r is the reward
awarded for the learnt action a. The discount factor v € [0, 1] controls the importance
of future rewards with respect to immediate rewards. max, Q’(a’) is the maximum

Q-value among the available actions in the action space.

2.4.4. Multiagent Reinforcement Learning

Multiagent RL (MARL) is an extension to the traditional RL and relates to learning
with multiple independent agents in the same environment. One of the prominent ap-
plications for multiagent systems is stochastic games [108] - [110]. Individual learn-
ing agents, within a similar task, co-operate and share experiences to learn faster and
a better decision policy. The authors in [111] provide a taxonomy of MARL algo-
rithms based on different types of stochastic games such as fully cooperative, fully
competitive and mixed. Although due to the availability of more resource and the joint
reward maximization, multiagent learning outperforms single agent learning, however,
the need of coordination between the individual agents and growth of state-action pair

for each new agent increases the computational complexity exponentially [112].

A popular way to specify a MARL goal and learn an optimal policy in the MARL
environment is by the use of Nash equilibrium. Nash equilibrium is defined as a stable
state of a system wherein multiple agents interact and update their individual policies
such that the stability, convergence and reliability of a learnt solution in static as well
as in stochastic game environments are maintained [113]. In [114], the authors inves-
tigated the reinforcement learning policy in the framework of stochastic games using
the variable learning rate policy. The proposed approach demonstrated to overcome
both of the shortcoming, rationality and convergence that were presented by conven-
tional learning approaches in a multiagent environment. Moreover, the influence of
learning rate variations on algorithms performance is also presented. Similarly, in

[115], the authors proposed a model-free, distributed Q-learning algorithm for coop-
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erative multi-agent decision processes. Experimental results show that the proposed
technique was able to learn a rational policy based on the value function update in

addition to coordination between the agents in the environment.

A recent noticeable contribution of application of reinforcement learning in a multia-
gent vehicular environment is presented by the authors in [116]. The authors proposed
a distributed resource allocation approach for a vehicle to vehicle (V2V) communica-
tion by employing deep reinforcement learning. The preliminary results demonstrate
the benefits of deep reinforcement learning to learn optimal spectrum and power for
transmission whilst minimizing the end-to-end latency on V2V links and the interfer-
ence to the vehicle to infrastructure (V2I) link. Another challenging application of
multiagent reinforcement learning in vehicular networks is performed in [117]. The
authors employed a conventional Q-learning approach in combination with a feed-
forward neural network for scheduling traffic signals on a five intersection traffic net-
work scenario. The results demonstrated minimization in the average queue delay

across the intersections and reduced congestion in high traffic scenarios.

In traditional machine learning, the learning agent uses the same set of input features
and data distribution to incrementally learn an appropriate policy. However, in certain
scenarios where the learning domain changes, the learning agent rebuild its knowledge
base from the beginning using the trial-and-error interaction process. This process of
rebuilding the knowledge base is time-consuming, inefficient and expensive. There-
fore, the state-of-the-art transfer learning techniques, discussed next, seeks to leverage
previously learned knowledge from one domain into another domain thus improving

the learner’s performance.

2.4.5. Transfer Learning

Transfer learning is a machine learning approach that aims to employ the learnt knowl-
edge from a source domain to a target domain in order to improve the learning per-
formance of the target learner [118]. Transfer learning has proven to be a promising
technique in cellular systems for topology management [121]-[123], caching [124],

radio resource management [125], load and energy optimization [126]. An extensive
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Figure 2.8: Figure demonstrating the traditional reinforcement learning and transfer
learning procedure

survey of transfer learning techniques and their application to different real-world ap-
plications is presented in [118]-[120]. In [121], the authors investigated the use of
transfer learning for topology management in a 5G aerial-terrestrial broadband access
networks. The knowledge gained using conventional RL technique at link level for
spectrum assignment was transferred using TL approach to build the knowledge base
for user association. The system level simulation result demonstrated that the transfer
learning-based user association approach was able to improve the energy consumption
by (30 - 60) % compared to conventional max-RSS user association or QoS aware user
association technique. Figure 2.8 demonstrates the two different learning processes;

traditional reinforcement learning and case-based transfer learning.

The authors in [124] proposed a transfer learning algorithm to strategically cache con-
textual information at the network edge in 5G wireless networks. The contextual
knowledge such as user’s content viewing history, social browsing, etc. was gath-
ered during device-to-device interaction and was regarded to as source domain knowl-
edge. This gained knowledge was transferred at each small cell eNB to optimally
cache strategic content. The results showed a significant gain in user QoE and back-
haul offloading. Likewise, in [125], the authors propose transfer learning based radio
resource management approach, wherein, by sharing the macro users scheduling infor-
mation between small cell eNBs the excessive interference generated for macro users
in future instances in a multi-user OFDMA networks was minimized. In [126], transfer

learning is employed for cell selection to improve QoS, load balancing and energy effi-
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ciency in an opportunistic mobile broadband network by utilizing the knowledge learnt
from resource allocation using conventional Q-learning approach. System-level simu-
lations show that application of transfer learning to cluster UEs on selected eNB with
better QoS reduces the energy consumption at medium traffic level. Transfer learning
approach is exploited in Chapter 6 to improve the user association in vehicular com-
munications. It has been demonstrated through a series of simulation experiments that
the learning agent learns faster, converge to a better, consistent and a reliable solution

with the application of transfer learning.

2.5 Conclusion

User association is a fundamental task in the wireless networks. It plays a substantial
role to improve the spectral efficiency, end-to-end latency and overall network QoS in
vehicular networks. The conventional max-RSS user association techniques associates
the active user with the maximum signal strength base station. However, if employed
in ultra-dense dynamic vehicular networks, it will lead to a range of challenges related
to mobility, poor network performance and significantly high switching and signalling
load. To reinforce and strengthen this argument, this chapter began with an overview of
vehicular networks followed by an in-depth discussion of the role of mobility and net-
work simulator that are essential for accessing the developed algorithms empirically.
Moreover, current mobility and network simulators were introduced. A comprehen-
sive description on mobility model framework that has been used as a guideline to
develop the vehicular simulator in this work was presented thereafter. Next, a detailed
overview of ultra-high capacity wireless networks with emphasis on dense small cell
networks, conventional and emerging user association techniques was provided. Sub-
sequently, the challenges related with dense deployment of small cells in vehicular
environments were highlighted. This chapter also provided an overview of a range of
single-agent and multi-agent reinforcement learning techniques that are found in liter-
ature specifically those employed in the wireless communication. Further, the chapter
highlights the significance of intelligent user association techniques in regards with

network performance and user experience in dynamic environments.
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3.1 Introduction

This thesis proposes a number of intelligent user association approaches that aim to
strike a balance between the number of handovers per transmission and system per-
formance metrics whilst a guaranteed network quality of service (QoS) is delivered.
In order to evaluate the empirical properties of the proposed approaches, a model that
could accurately represent an ultra-dense small cell vehicular network is absolutely
important. This chapter presents the modelling techniques used to develop the simula-

tion model and key performance metrics utilized for assessment of these policies.
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Considerable effort has been made to develop a sufficiently complex event-based sys-
tem level simulator. It is an integration of a dynamic vehicular network, a highway,
and an ultra-dense small cell network. It considers relevant aspects of LTE simulation,
such as multi-cell environments with uplink flows, user mobility, handover procedures,
cell planning, scheduling, interference calculation, and QoS management in a dynamic
environment. Moreover, the developed simulator enables the analysis of the influence

of user mobility on network performance across different mobility levels.

The simulator has been written in MATLAB, as it provides powerful matrix calcu-
lation functions as well as effective ways to produce graphical results. Moreover,
programming and step-by-step debugging functionality in MATLAB provides more
transparency and flexibility to model the environment at a system level. The other
network simulators that could be used potentially include OPNET, NS2, NS3 for net-
work communication and SUMO to obtain vehicular traces, as discussed in Chapter
2. However, these simulators are domain specific modelling simulators developed by
domain experts, therefore, require careful integration to provide effective ways to eval-

uate proposed protocols and overall system performance.

The developed simulation model allows system and user experience to be modelled
and serves as the firm foundation for the main research problem. At the beginning
of a simulation, the event list is generated that includes the arrival time of vehicles
(UEs) and data packets (files). During the simulation experiment, the event list is
populated with more events such as vehicle mobility, vehicle location update, cell
association, link performance evaluation, resource assignment, handover scheduling,
etc. The events in the event list are sorted in an ascending order according to their

timestamps, for an accurate and absolute execution.

The developed framework with multi-users, constantly varying radio environment and
rapidly changing spatial-temporal vehicle distribution established an extremely com-
plex scenario to be evaluated analytically. Therefore, extensive system modelling tasks
are performed to assess and validate the proposed algorithms statistically. The next

section presents the scenario and the network architecture.
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3.2 Scenario and Network Architecture

The scenario is illustrated in Figure 3.1. Here, an ultra-dense small cell network is
deployed over a linear urban stretch, a highway, to provide the UE on the move with
ultra-reliable low latency communications as well as high capacity density. A user
associates with the most appropriate base station for data transmission based on a

variety of association strategies.

Small cell eNB

()

Figure 3.1: Ultra dense small cell vehicular scenario

Figure 3.2 illustrates the system architecture of the ultra-dense small cell vehicular
network. It comprises two networks, a dynamic vehicular network with vehicles mov-
ing along the highway in a dedicated direction and an ultra-dense small cell network

deployed over the service area in order to deliver improved coverage and capacity.
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Figure 3.2: Ultra-dense small cell vehicular network architecture
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3.3 System Models

This section presents the different modules employed in developing the simulation
model that is exploited to empirically assess the adaptability and robustness of the
proposed user association algorithms. As shown in Figure 3.3, the first is the archi-
tecture module. This includes the system scenario and the network architecture that
reflects the distribution of the transmitters (UEs in the moving vehicles) and receivers
(stationary eNBs) in an ultra-dense small cell network. The next is the traffic module
that represents the traffic characteristics that relate to vehicle mobility as well as the

radio communication traffic.

The radio propagation and mobility management module evaluates the attenuation of
the radio signals and selects an appropriate link accordingly. The link module includes
the radio resource allocation model as well as the channel capacity evaluation model.
The radio resource allocation model is responsible for resource assignment to UEs
for data transmission. The channel quality and channel capacity are evaluated in the

channel capacity evaluation module for link level performance.

Architecture Module

Network Model
Architecture Parameters

Traffic Module

V;hl(;;lar Network (data)
rathe Traffic

-—— - - T TTT T 1

1| Radio Propagation & Mobility Management Module] 1

1 1

: Propagation Link Machine 4 Us?r . :

1 Model Selection Learning SO 1

1

e . B

Link Module
Radio Channel

Resource Capacity
Allocation Evaluation

Figure 3.3: A reference model of the developed simulator
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3.3.1. Architecture Module

Ultra-Dense Small Cell Model

The access network is constructed using a dense deployment of small cell BSs (eNBs)
below the rooftop level of the surrounding buildings on roadside infrastructure such as
on lamp posts, with omnidirectional antennas implemented. These lamp posts are as-
sumed to be uniformly distributed on both sides of the street with an inter-site distance

of approximately 30 m and height of 10 m.

The system architecture is derived from the FP7 BuNGee project architecture that
aimed to provide a capacity density of 1 Gbit/s/km? in an urban area, as proposed in
[128]. The eNBs are portable, low powered, light-weight devices that can be densely
deployed as well as easily managed. The main goal of the ultra-dense deployment
is to provide an extremely high data rate and ultra-low latency communication net-
work to users on the move at all mobility levels. In the next section, a comprehensive

description of the dynamic vehicular network model is presented.

Dynamic Vehicular Model

Road traffic is a complex multi-agent system in which the agents, vehicles, may or
may not interact with each other. The way these agents move depends on different
aspects of traffic flow operations, network topology as well as traffic flow modelling.
A comprehensive review of vehicular mobility models and traffic flow is provided
in Section 2.3.2. In the presented work, a multiple lane, highway model with a bi-
directional vehicular flow is considered as the vehicular traffic model. The maximum
number of vehicles in the system is assumed to be 60% of the maximum density at
a particular mobility level. This is because the communication system saturates on
assuming higher percentages. To understand the influence of vehicular mobility on
network performance, all vehicles move at a constant speed whilst maintaining a safety
distance from the vehicle in front [129]. This safety distance is assumed to be the
maximum of the distance travelled by a vehicle in 2s, or 1m. The length of all vehicles

is assumed to be 5m and the highway is 1020 m long. Vehicle speed ranges from 10
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Table 3.1: Vehicular traffic model parameters

Parameters Value

Grid layout Linear

Simulation area 20x1020 m

Number of Base station 68

Number of lanes 6

Lane width 3m

Pavement width I m

Cell size 30 m

Vehicle length Sm

Vehicle width 2m

Base station height 10 m

Mobile station height 1.5m

Vehicle arrival rate \, 6 vehicle/s

Vehicle speed [10-60] km/hr

Safety distance max(2srule, 1m)

Vehicular traffic model Poisson distribution with neg-
ative exponential inter arrival
time

Number of vehicles 60% of the max capacity at a

particular mobility level

km/hr up to 60 km/hr. Furthermore, only one UE per vehicle is assumed. The different

roadway physical characteristics as in [130] are listed in Table 3.1.

A vehicle arrival is modelled as a Poisson process with a constant mean arrival rate
of )\, (vehicle per second) and inter-arrival time following a negative exponential dis-
tribution. Upon vehicle generation, a lane is selected based on a random uniform
distribution. Corresponding to each lane is a specific mobility direction. As seen in
Figure 3.2, vehicles in lanes 1, 2, and 3 moves in a northerly direction while those in
lanes 4, 5, and 6 travel south. Vehicle locations are constantly updated every ¢ seconds
using:

pos;(t + 1) = pos;(t) + vi(t) x (3.1)

The index i is the i'" user, pos;(t + 1) is the updated vehicle position. This depends on
pos;(t), the current position of a vehicle and the distance travelled by it in ¢ seconds.
v;(t) is the speed of i’ vehicle at time ¢. The value of ¢ is assumed to be equal to the
time taken to traverse a distance equal to one-tenth of the cell size. The dynamic time

update assists in maintaining consistency while updating the vehicle location leading to
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an appropriate evaluation of the number of handovers per transmission using different
approaches. For example, if a static update time equal to 2s is assumed, then the next
updated location for a vehicle moving at 60 km/hr would be two cells from the current
cell which would result in a miscalculated number of handovers per transmission. A
static update time assumption in the considered scenario will hinder the understanding
of the influence of vehicle mobility on the system performance as well as affects the

network performance evaluation.

To avoid border effects due to a limited simulated area, vehicles select a new lane
following the uniform distribution to wrap around at the edges of the simulation area,
i.e., a vehicle that leaves the service area from one edge of the model re-enters it
from a randomly selected lane. The wrapping model ensures that the mobility pattern
observed at the border cells is similar to that in the middle of the street. The flowchart
in Figure 3.4 illustrates the vehicle generation, mobility pattern, and wrapping process

in the considered scenario.

Vehicle generates (at boundary)

Y

Chooses Lane

Moves forward <
- A
|
Y Any vehicle in front with
inter vehicle distance < safety distance?
v N
N
Reaches boundary?
Y

Vehicle wraps

Figure 3.4: Flowchart presenting vehicle generation, mobility pattern and wrapping
processes
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3.3.2. Traffic Module

This module relates to the traffic characteristics of the network and models the be-
haviour of the traffic across the wireless network. Here, the mobility traffic is gener-
ated as explained in Section 3.3.1, whereas, the wireless traffic can be modelled as a
call based service (circuit switching) or internet data at a session, burst or packet level.
The file arrival is modelled as a Poisson process with a constant mean arrival rate of ¢
(files per second) and a fixed file size of 2MB. The inter-arrival time follows a negative
exponential distribution [131]. The random traffic generated in bursts thus reflects the
typical behaviour of mobile network traffic. The service time of each transmission de-
pends on the channel quality. It is calculated by dividing the file size by the achieved

link throughput.

3.3.3. Radio Propagation Module

The radio propagation model relates to the attenuation of radio signals. Radio signals,
which propagate over a wireless channel, usually experience deterioration in signal
strength due to three main effects: path loss, shadowing and multipath fading. The
path loss is the attenuation of the transmitted power and is directly proportional to the
distance between the transmitter and the receiver. Shadowing is the attenuation due
to phenomena such as reflection and diffraction. Multipath fading is the fluctuation
in received signal strength as a result of the transmitted signal arriving at the receiver
through different paths with different attenuation and delay. Path loss and shadowing
are large-scale effects and remain constant over time. Multipath fading and Doppler
effect relates to small scale fading and changes quickly with time. To reduce complex-

ity the small scale fading effect is not considered in the simulation.

Here, the communication traffic simulation uses a 20 MHz LTE channel in the fre-
quency band of 2.6 GHz. The 20 MHz bandwidth is divided into 100 resource blocks,
each having a bandwidth of 180 kHz [135]. According to LTE Type 0 resource alloca-
tion standardization, four consecutive resource blocks are grouped to form a resource
group. The transmission bandwidth of each resource group is 720 kHz. A resource

group is also frequently and interchangeably termed a channel in the current work. All
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the simulation reported focuses solely on uplink transmission i.e., from a user equip-

ment to the base station.

The model used to calculate the path loss is the WINNER II B1 line-of-sight model
proposed in [132] since the small cell radius is much smaller than micro-cells [133].
It is characterized by high vehicular speed of less than 20 ms~! in an outdoor environ-
ment such as a local, metropolitan area with high user density. The frequency range
is between 2-6 GHz, whereas, the height of the antenna at the eNB and at the MS is
assumed to be below the rooftop of the surrounding buildings. The UE in the moving
vehicle uses a fixed transmit power of 23 dBm. The UEs have line of sight (LOS) con-
nection to the nearest base station with the possible exceptions of cases where the line
of sight is blocked by traffic and the communication link becomes non-line of sight
(NLOS). The breakpoint distance, also known as the critical distance is an important
parameter as a dual slope propagation model is used for path loss calculation. The

breakpoint distance is computed as:

dgp = 4h335h/MS% (3.2)
where, dj;p is the effective breakpoint distance, h g = hps — 1.0 mand Ry, g = hyss —
1.0 m are the effective height of base station and mobile station antenna. The actual
antenna height, hps and h;;g are assumed to be 10 m and 1.5 m respectively above
the ground. The effective environment height in urban environments is assumed to be
equal to 1.0 m. f, is the centre frequency in Hz, and c is the propagation velocity in

free space. The following equation is used to determine the LOS path loss between the

base station and the user equipment.

22.71log,,(d)+41.0+201og,,(0.2f.) +SFL, 10m <d < dgp
PL =19 40.0log,,(d) + 9.45 — 17.3logighgg — dgp<d<5km  (3.3)
17.3logyo hyss + 2.7logyy L& + SFL,

where P L is the path loss in dB, d is the distance between the BS and the UE in meters,
fe 1s the carrier frequency in GHz and S F'L is the log-normal shadow fading loss with

a standard deviation of the 3dB mean.
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3.3.4. Link Module

The fundamental metric to determine the link quality is the signal-to-interference-plus-
noise ratio (SINR). SINR is defined as the ratio of the received signal power to the sum
of the received power from interfering transmitters together with noise power. The

SINR on a particular resource group is calculated as follows

PEGEGRPL; !

SINR = —— LT R
> i PrGEGRPL; + Py

(3.4)

where PF is the transmit power from transmitter k, G% and G% are the respective
transmitter and receiver gain equal to 0 dBi, as omnidirectional antenna is used, P Ly,
is the propagation loss between transmitter k£ and the receiver, calculated using Eq.3.3,
N7y is the number of interfering transmitters on the same channel, and Pl is the receiver

noise floor calculated using Eq.3.5 below.

Py = 10logyo(kTB) + N (3.5)

In this equation, Py is the noise power in dBW, k is the Boltzmann constant; k£ =
1.38 x 10723m2kgs—2K !, T is the noise temperature in K; 7' = 290, B is the channel
bandwidth in Hz; B = 20 x 10°% and N is the noise figure in dB; N = 7. The noise
floor calculated using the equation is equals to -124 dBW, later converted into W, for

SINR calculation.

A Truncated Shannon Bound model, proposed in [134], is used to determine the link

throughput using Eq.3.6 below:

0, SINR < SINR,;,
Throughput = aBlogs(1+ SINR), SINR,;, < SINR < SINR,,4.
aBlogy(1 + SIN Ryaz), SINR > SINR,4.
3.6)
where o = 0.65 is the attenuation factor, B is the link bandwidth, SN R is the calcu-

lated signal-to-interference-plus-noise ratio at the receiver, SIN R,,,;, = 1.8 dB is the
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minimum SINR threshold to maintain a data transmission, and SINR,,,,., = 21 dB is

the SINR level that corresponds to the maximum link throughput.

3.3.5. Resource Allocation Module

A centralized radio resource assignment module is assumed for the allocation of the
resources for data transmission depending on the channel quality information (CQI).
The channel information changes rapidly with changes in the environment. There-
fore, it is essential to evaluate the channel quality as the vehicle moves. Here, the
central controller assigns the resource using the maximum SINR resource allocation
approach. Adjacent channel interference is assumed to be negligible. The minimum
SINR for accepting a transmission is 5 dB and the transmission is dropped if the SINR
falls below 1.8 dB [131]. An ongoing transmission is assumed to occupy an assigned
resource until it is dropped or handed over to a new BS. Moreover, a transmission is

continuous until it is completed.

3.3.6. User Association Module

User association is a critical element in communication networks and substantially
affects network performance. It relates generally to selecting a radio-link for the trans-
mission of data depending on the prevailing radio traffic environment. The user asso-
ciation decision in the existing LTE/LTE-A systems is taken by the radio admission
control entity located in the radio control layer of the protocol stack [7]. The decision
depends on the quality of service (QoS), the priority level of the request and the avail-
ability of resources. Upon the arrival of each file transmission request, a UE associates
with a BS using a defined scheduling strategy. For example, the UE may associate with
a) the minimum distance BS to reduce end-to-end latency [136]; b) the maximum load
BS for energy efficiency [38]; or ¢) the maximum distance BS to reduce the handover
rate due to vehicle mobility [137]. It is assumed that a file is associated with only one
BS i.e., a single-BS association is considered. However, the user association is based
on different scheduling schemes such as maximum radio signal strength (max-RSS),

minimum load or maximum distance BS depending on desired network performance.
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3.4 Empirical Evaluation

To perform an empirical evaluation of the quality of service achieved employing the
proposed user association schemes in ultra-dense small cell vehicular networks, dif-

ferent performance metrics that are used in this thesis are discussed now.

3.4.1. Performance Metrics

The key metrics used to evaluate the network performance in this thesis are the proba-
bility of blocking, the probability of dropping, the probability of retransmission, end-
to-end latency, and the number of handovers per transmission. The probabilities of
blocking and dropping are conventional parameters used for measuring the quality of
service on a call based network, whereas, in a packet-based network, the probability

of retransmission is used. The probability of blocking is defined as

B Nt:c

Pg (3.7)

where Pp is the probability of blocking, N represents the total number of blocked
transmissions, and Ny, is the total number of transmissions in the system. Similarly,

the dropping probability is defined as

Np
Pp=—2__ .
D= NN, (3.8)

where Pp is the probability of dropping, Np represents the total number of dropped
transmissions, and N, is the total number of transmissions in the system. The proba-

bility of successful transmissions could be evaluated using Eq.3.9 below.

P

(1—-Pg)(1— Pp) (3.9)

The probability of retransmission is the measure of a transmission being blocked or

interrupted at least once. It is calculated using the following equation:
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Nretm
Prex = 3.10
¢ N (3.10)

where P,.;, is the probability of retransmission, V.. is the number of retransmis-
sions and Vg, is the total number of transmissions in the system. The total number of
transmissions is the summation of the number of retransmissions and the number of
successful transmissions. The number of retransmission represents the transmissions
which are interrupted at least once. In the case of an interrupted transmission, only the

remaining part of the transmission that has not been transmitted is rescheduled.

The end-to-end delay comprises the transmission delay and the back off delay. The
transmission delay depends on the link quality and is defined as the time taken to
transmit a file across the wireless link. The back off delay follows a random exponen-
tial distribution and is defined as the time consumed by a file before a retransmission is

scheduled. The average end-to-end delay of a file is calculated by the equation below:

Ntz Ntz

1 Nyizs (i ,
Delay = EZ(“T(Z>+ZD,,(J)) (3.11)
z i=1

=1

The number of handovers per transmission is defined as the total number of times a

transmission is handed to a new eNB before it finishes.

3.4.2. Statistical Validation of Results

In order to ensure the validity of the results reported in this thesis, the following tech-

niques are applied

e The data points for each performance measurements are plotted against the ve-
hicle speed because it is the most effective way to demonstrate the behaviour of
the system under different traffic conditions. These data points are obtained by

averaging over 25 separate simulations with different random seeds.

e The results also include error bars showing the minimum and maximum value
from the different simulation run for a particular data point. Error bars are used

as a graphical representation of the variability of data.
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3.5 Conclusion

This chapter provided a comprehensive overview related to the development of the
integrated simulator model as well as described the methodology used for the empirical
evaluation of a range of heuristic as well as learning based user association approaches,
with respect to different performance metrics, that are proposed later in this thesis. A
highway scenario, that involves dynamic vehicular traffic and an ultra-dense small
cellular network, is used as the basis for the detailed system-level simulation model.
The developed model served as a firm basis to understand the influence of mobility on
network performance in an ultra-dense small cell scenario. The MATLAB software
environment (version R2015b) has been used to develop the integrated model, while,
the Monte Carlo approach was employed to generate statistically important results.
Further, the key metrics that are used to evaluate the performance of the developed
user association approaches are explained. The chapter concludes by presenting a

discussion on statistically validating the results.
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4.1 Introduction

As described in the previous chapters, user association relates to adapting a radio link
for data transmission depending on the prevailing radio traffic environment. The user
association decision in existing LTE/LTE-A systems is managed by the radio admis-
sion control entity located in the radio control layer of the protocol stack [7]. The
decision depends on the quality of service (QoS), the priority level of the request and

the availability of resources.

In the 3GPP Release 9 and later, when a UE is switched on for the first time it performs
a cell selection procedure that involves searching and association with the strongest
received signal strength eNB [4] [138]. This approach is the conventional user as-

sociation approach referred to as the maximum radio signal strength (max-RSS) user
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association approach. In order to remain associated with an eNB, the channel quality
criteria must be fulfilled. However, as UE moves along the street from the coverage
area of one eNB into other, a cell reselection or handover results if the cell selection
criterion is fulfilled. The cell selection criterion for LTE as specified in [139] is ful-

filled when:

Sm:lev >0 (41)

Where:

erlev = RSRPcandidate + OffSet (42)

where ;... 1S the cell selection receiver level value in dB, RS RP.,didate 1S the mea-
sured reference signal received power of the target eNB. Whereas, the offset is a com-
bination of different hysteresis such as minimum required receiver level in the cell,
offset to the signalled minimum required receiver level, maximum transmission power

level and maximum radio frequency output power of UE.

In the case of ultra-dense small cell environments, due to cell densification, the dis-
tance between a UE and eNBs reduces significantly compared to a conventional micro
or macrocell deployment scenario. A possible small cell scenario in a real network on

a highway is shown in Figure 4.1.
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Figure 4.1: Ambiguity in eNB selection for user association in ultra-dense small cell
vehicular environments
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This distance between a UE and eNBs is termed as radio link length or association
range, in the presented work. A decrease in radio link length results in acceptable
radio signal strength from more than one eNB in the vicinity of the moving UE. This
leads to an increase in the number of eNBs that may simultaneously satisfy the con-
ventional user association criteria. Moreover, due to the dynamic vehicular traffic flow,
frequent variations in the interference level may cause an unpredictable radio environ-
ment. Employing the conventional user association policy to associate moving UE to
appropriate eNB such that a balance between different system performance metrics
is established whilst providing a guaranteed network QoS in a continuously changing

environment, is therefore extremely challenging.

This chapter, therefore, investigates several user association approaches depending
on different performance metrics to understand the influence of individual metric on
network performance in an ultra-dense small cell vehicular environment. In Section
4.2, heuristic user association schemes, max-RSS, that is used for baseline comparison,
is presented. A performance metric based user association approach that employs a
three-step sequence approach is proposed in Section 4.3. A range of results obtained
by employing different user association techniques across different mobility level is

shown in Section 4.4. Conclusion and future directions are provided in Section 4.5.

4.2 A Heuristic Scheme for Baseline Comparison

4.2.1. User Association based on Signal Strength

This section overviews maximum received signal strength user association approach.
This scheme associates a UE to an eNB with the maximum received signal strength
[4] [138]. In the following presented work, it has been assumed that all the UEs
transmit at the same power level, and the cell size of each small cell is the same.
The maximum received signal strength eNB to which the moving UE associates is the
closest eNB among all the eNBs in its vicinity. Therefore, is also referred to as the
minimum distance eNB. A detailed flowchart illustrating the user association and data

transmission using the conventional user association approach is shown in Fig 4.2.
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The UE association status is defined by the association matrix as follows

UE! =

1 if UE is associated with e N B?
4.3)

0 otherwise

where UE! is the i UE associated to j*" eNB.

On associating with target eNB, the link quality of all the idle resources on this eNB
is calculated using Eq. 3.4. A radio resource for data transmission is then assigned or

denied, accordingly. If the channel quality of the assigned resource on an associated
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eNB drops below the minimum SINR threshold, then a new resource on the same eNB
is identified and assigned to the ongoing transmission. If no resource with link quality
above a threshold is available, then the transmission interrupts. So, a transmission
is interrupted if a) there is no available resource on the associated BS; b) if the link
quality of all the available resources is below the assumed threshold of 1.8 dB or c) if

the new transmission is likely to drop an ongoing transmission in the system.

In the case of an interrupted transmission, a retransmission attempt takes place after a
random exponential backoff time [8]. Furthermore, a maximum of 5 re-transmission
attempts is performed before a file is categorized as an unsuccessful transmission and
thereafter eliminated from the system. The received signal strength, the link quality,
and the service time of the ongoing transmission is updated with an update in vehicle

location.

Figure 4.4 illustrates contour plots at relatively low (40%), medium (60%) and high
(80%) vehicular traffic levels using a minimum distance user association scheme. Fig-
ure 4.3 shows that at low traffic loads, association with even the farthest eNB delivers

guaranteed network QoS.
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(a) Vehicular traffic: 40%, Communication traffic: 0.17 - 0.45 Gbps

Figure 4.3: Probability of retransmission using minimum distance user association
approach at low offered traffic levels with a range of vehicle mobility level on a multi-
lane bi-directional vehicle flow ultra-dense small cell highway scenario
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However, at high traffic loads the communication system saturates even when the UE
is associated with the closest eNB, thus a completely opposite pattern at high offered
traffic is seen in Figure 4.4(b). Whereas, Figure 4.4(a) shows that at medium traffic
load the network performance lies in a region between the two extremes. The three
contour plots, therefore, demonstrate the influence of association range across different
vehicle speed and offered traffic levels in dense dynamic environments. The results re-
lating to minimum distance user association approach have been performed assuming

medium offered traffic as explained in Chapter 3.
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Figure 4.4: Probability of retransmission using minimum distance user association
approach at medium and high offered traffic levels with a range of vehicle mobility
level and number of neighbouring eNBs on a multi-lane bi-directional vehicle flow
ultra-dense small cell highway scenario
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4.3 Three-Step Sequence Scheme for User Association

This section investigates the selection of an appropriate base station for user associa-
tion in a mobility-aware ultra-dense small cell vehicular environment. The proposed
scheme is formulated as a search algorithm that aims to (a) identify and select the most
appropriate eNB for the association and (b) to understand the influence of individual
performance metric based user association on the network performance in ultra-dense,

dynamic vehicular speed environments.

The eNB selection is based on different attributes such as (a) performance metric, (b)
temporal-spatial distribution of moving UEs, (c) geographical location of eNBs, (d)
user mobility level, (e) mobility direction, (f) number of neighbouring eNBs, repre-
sented by parameter %, and (g) the inclination and the azimuthal angle formed by the
moving UE to prospective eNBs. The three steps followed to identify an appropriate

eNB are enumerated below.
1. Shortlist k-nearest neighbouring eNBs in the vicinity of moving UE.
2. Select eNBs in the direction of vehicle mobility from the shortlisted list.

3. Choose most appropriate eNB from selected list based on performance metric.
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Figure 4.5: A three-step sequence rule for performance metric based user association
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Step I: Shortlist k-nearest neighbouring eNBs in the vicinity of moving UE.

The first step involves constructing a list of eNBs in the vicinity of the moving UE
by employing the k-Nearest Neighbour (£-NN) search algorithm. The k-NN approach
belongs to the non-parametric instance-base learning methods category as it constructs
a hypothesis directly from the input parameters [140]. Here, the input parameter, £,
defines the neighbourhood range i.e., the number of eNBs that will populate the k-NN

list.

Conventionally, the £ value is manually configured depending on received signal strength
[141]. However, it can also be learnt online [142] [143]. Chapter 5 and Chapter 6 in-
vestigates intelligent schemes that possess the ability to learn an appropriate £ value
to automatically self-configure the £-NN list as well as continuously self-optimize it

by utilizing vehicle mobility level and network performance.

In this chapter, the value of £ is fixed across all mobility levels. However, it is not the
same for every performance metric i.e, the k value assumed for spectral efficiency is
1, i.e., only the closest eNB to the moving UE will form the £-NN list, whereas in the
case of network load balancing and handover optimization, k = 4. These values are
assumed on the basis of results obtained in Section 4.2. As the vehicle moves along
the path, the eNBs in the constructed £-NN list updates accordingly. Algorithm 1

describes the first step of the proposed user association scheme.

Algorithm 1 Three-Step Sequence User Association Approach - Step I

1: Input:
The UE and eNBs location.
The neighbourhood range, % value.

2: Output:
Shortlisted k£-NN list.

3: Step I: Construct the nearest neighbour eNB list
Employ the k-Nearest Neighbour rule.
Shortlist the closest £ eNBs around the UE.
Construct the shortlisted k-NN list.

The utilization of the k-NN rule, therefore, leads to the selection of prospective eNBs
from among the eNBs in the neighbourhood of the moving vehicle. Moreover, short-
listing of eNBs appears to reduce the processing time, enhance the processing speed

as well as enhance the device battery life during the user association process.
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Step I1: Select candidate eNBs in the direction of vehicle mobility.

In the second step, shortlisted eNBs are categorized based on the direction of vehicle
mobility. The eNBs in the direction of vehicle mobility is subsequently selected, omit-
ting the options that are in the opposite direction of mobility. This is performed by
calculating the inclination and the azimuth angle formed by the moving UE to all the
shortlisted eNBs in the £-NN list. The motivation is to maximize UE dwell time per

cell whilst delivering best-effort network performance.

In order to calculate the inclination and the azimuth angle, the vehicle is chosen as
the datum point. A datum line is drawn from this datum point. The datum line is a
perpendicular drawn from the vehicle mobility direction towards the left, as shown in
Figure 4.6. The inclination and azimuthal angle to all the shortlisted eNBs from the

vehicle is thereafter calculated using appropriate trigonometric formulae.

Direction of I
vehicle mobility

(BSXL" BSYL')
Datum line
l > L -
Vehicle as A Base station
datum point Movine UE
o Moving
(VoY)

Figure 4.6: Classifying eNBs based on vehicle mobility direction, shortlisted eNBs
location and azimuth angle

The eNBs that make an azimuth angle within the range [0, ] with the UE are identified
as the eNBs in the direction of mobility. The remaining eNBs are removed from the

k-NN list that was constructed in Step 1.

Subsequently, in addition to azimuth and inclination angle, active network load on the
selected eNBs is computed. The active communication traffic load per eNB assists

to choose an appropriate eNB for user association based on network load, in the last
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step of the proposed scheme. Algorithm 2 describes the second step of the three-step

sequence user association scheme.

Algorithm 2 Three-Step Sequence User Association Approach - Step 11

1: Input:
Shortlisted eNBs list.

2: Output:
Selected eNBs list.

3: Step II: Select candidate eNBs in the direction of vehicle mobility
Compute the azimuthal and elevation angle.
Identify eNBs in the direction of vehicle mobility.
Identify eNBs opposite to the direction of vehicle mobility.
Compute the active traffic load on each shortlisted eNBs.
Construct list of eNBs in the direction of mobility.

Step II1: Choose an appropriate eNB for user association or handover from selected

eNBs, depending on the desired performance metric.

In the final step, depending on the desired performance metrics, the most appropriate
eNB from selected k£-NN list is chosen. The different performance metrics investigated
include (a) spectral efficiency, (b) network load, and (c) handover frequency. The third

step of the proposed scheme is detailed below in Algorithm 3.

Algorithm 3 Three-Step Sequence User Association Approach - Step 111
1: Input:
Selected eNBs list.
The desired performance metric.
2: Output:
The appropriate eNB.
3: Step III: Select most appropriate eNB depending on distinctive attributes
Spectral Efficiency - Maximum SINR eNB.
Network Load - Minimum & Maximum load eNB.
Handover Rate - Maximum Distance eNB.
Forward Handover
Same Side eNB: Azimuth angle: [0, 7/2]
Opposite Side eNB: Azimuth angle: [7/2, 7]
Backward Handover
Same Side eNB: Azimuth angle: [37/2, 27]
Opposite Side eNB: Azimuth angle: [7, 37/2]

In the next section, user association based on the three distinct performance metrics

using the three-step sequence scheme is discussed.



78 Chapter 4. Performance Metric based User Association

4.3.1. User Association based on Spectrum Efficiency

Spectrum efficiency is defined as the maximum data that can be transmitted over a
given bandwidth in wireless networks. It can be quantified by parameters such as (a)
end-to-end delay (b) user throughput (c) radio signal quality, and (d) probability of
blocking/dropping. The maximum capacity i.e., the data rate at which the informa-
tion could be reliably transmitted over a given bandwidth can be calculated using the

Shannon capacity equation written below:

o { Blogy(1+ SNR) if interference is not considered 4d)
Blogy(1+ SINR) if interference is modelled '

where C'is the channel capacity in bits per second, B is the channel bandwidth in Hz,

SN R is the signal-to-noise ratio and SN R is the signal-to-interference-noise ratio.

A content-recommended proactive cell association framework focusing specifically
on multimedia data services is proposed by the authors in [144]. The collaborative
filtering approach exploits the user context information and predicts the QoE level a
UE-eNB association could deliver. The simulation results demonstrate 19% improve-
ment in spectrum saving compared to the conventional maximum SINR based user
association approach. Another contribution to the admission control and mobile as-
sociation optimization in dynamic vehicular environments is reported by the authors
in [145]. The overall system performance optimization was performed by utilizing a
Semi Markov Decision Process (SMDP) framework. Whereas, the authors in [146]
formulated the uplink user association problem as a college admission game, wherein
the eNBs seek to recruit the UEs. It is a distributed algorithm that combines the con-
cepts from matching theory and coalitional games. Depending on the packet success
rate, the end-to-end delay and coverage area of each eNB, UEs and eNBs rank each
other in order to optimize UEs utility whilst maintaining QoS. The simulation results
demonstrate that the average utility per user improves by 23% relative to the conven-
tional packet success rate algorithm. In the work presented, the three-step sequence
user association approach employs the minimum distance eNB to achieve maximum

spectral efficiency. The results obtained are shown in Section 4.4.
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4.3.2. User Association based on Network Load

Achieving a high spectral efficiency is one of the key performance indicators (KPI) of
the 5G and beyond wireless networks. User perceived data rate is the achieved instan-
taneous rate multiplied by a number of assigned resources. However, the number of
resources in case of the proportional fair, as well as round-robin scheduling schemes,
depends on the number of active users on the eNB, i.e. the active load on the associ-
ated eNB, which in case of dynamic environments varies both spatially and temporally.
Therefore, the perceived data rate in dynamic environments not only depends on the
channel quality but also on the active load on the associated eNB. Following this, user

association based on network load and its influence on QoS are now discussed.

Load balancing is defined as a distribution of network traffic load among the eNBs such
that the demand for radio resources is matched to the supply i.e., network capacity
[147]. The authors in [148] utilized the massive MIMO properties and operational
characteristics to develop practical load balancing methods to maximize the network-
wide utility metric by optimization of the UE-eNB pair activity factor. Moreover, in
[149] the authors utilized the stochastic geometry concept and the truncated channel
inversion power control method to model user association for uplink cellular networks.
The developed model is load aware and is based on per user power control scheme to
balance the network load among the eNBs as well as to improve the cell edge user
performance. The simulation results demonstrate that the proposed load aware model

outperformed in terms of overall SINR performance.

In [150], the authors proposed a context-aware user association algorithm. The associ-
ation problem was formulated in the framework of the matching theory. The different
parameters such as transmission service time, probability of handover failure and dif-
ferent QoS requirements of users were taken into account to differentiate between the
users while designing the user association algorithm. The simulation results demon-
strate a better network traffic load balance among eNBs whilst delivering guaranteed
QoS. A QoS aware user association approach with dual connectivity in heterogeneous
wireless networks for load balancing is proposed in [151]. The authors formulated

the user association problem as multi-objective optimization model and used the guar-
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anteed bit rate, probability of blocking and throughput of the cell edge users as the
performance metrics for performance evaluation of the proposed algorithm. Simula-
tion results demonstrate that the dual connectivity user association algorithm delivered

a better QoS compared to the max-SINR conventional approach.

The biased received power based user association also known as cell range expansion
is one of the commonly used approaches for load balancing, also discussed under
section 2.3.3. Under the biasing scheme a bias, i.e. an artificial value is added in the

RSSI to divert the UEs to associate with the lower tier eNBs using the equation below

k* =arg max B;P,,; 4.5)

j=1,2..n

where B; is the i tier bias and P, ; is the received power from tier . Thus, a UE
device is diverted toward a small cell eNB for association rather than a macrocell base
station. In order to achieve a high perceived data rate, load balancing is as important

as maintaining a high channel quality.

Here, the two scenarios considered are a) association of UE with a maximum loaded
eNB b) association of UE with minimum loaded eNB. The network load based user
association approach carefully identifies an appropriate eNB for UE association such
that the available resources on the deployed eNBs are successfully utilized whilst pro-

viding a guaranteed network QoS and user QoE.

The above-mentioned user association schemes do not consider the impact of user
mobility during association. A user association algorithm that does not consider mo-
bility into account in dense dynamic environments may result in higher handover rate
compared to conventional cellular networks. An increased handover rate may further
increase the switching and signalling load that may result in undesirable end-to-end
delay and possibly dropped transmissions [152, 153]. UE mobility is thus a critical
parameter which needs consideration while developing user association algorithms for
dynamic environments, as it substantially impacts the overall network and user perfor-

mance.
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4.3.3. User Association based on Handover Rate

In vehicular environments, as the UE moves along the street from the coverage area of
one eNB into other, user re-association also known as handover occurs, as discussed in
Section 4.1. At moderate or high vehicle speed, the dwell time per cell may be so small
that even before all the signalling and switching overhead signals were processed a UE
might have passed through the coverage area of a candidate cell into the subsequent
cell. Thus, multiple handovers within a very short time ensue. The dwell time per cell
is also known as sojourn time and is defined as the time a UE remains in a cell before
experiencing a handover. It depends on the UE velocity and the BS density. A vehicle
moving at high speed may exhibit a small sojourn time per cell compared to a vehicle

moving at low mobility level.

Moreover, there is a higher probability that a non-ideal eNB for handover in a small cell
scenario might be selected. A non-ideal eNB is defined as (a) an eNB with fluctuating
radio signal level that may cause the ping-pong effect, or b) results in a failed handover
either due to unavailability of resources or the desired channel quality. Therefore,
unacknowledged vehicle mobility will not only result in handover failure but also in
unnecessary handovers. An increased number of handovers, therefore, may result in
an increased number of interrupted transmissions, leading towards a poor network

performance.

A moving direction user association strategy is proposed in [154] that utilizes a one-
dimensional micro-cellular environment framework. Simulation results demonstrate
that the moving direction strategy provides a lower probability of forced termination
compared to nearest neighbour (NN), nearest neighbour+1 (NN+1) and fixed chan-
nel allocation schemes. In [153], vertical handover in an LTE-A multi-tier network
utilizing a mobility-aware network selection method is proposed. Simulation results
demonstrate an improvement by 20% in packet delivery ratio and about 14% in end-

to-end latency.

In [155] a sojourn time-based cell selection scheme is proposed. The proposed scheme
utilizes the user velocity and the BS density to determine the cumulative distribution

function of the sojourn time in heterogeneous networks. Further, the sojourn time
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is obtained by analyzing the radio link length and user trajectory in the coverage of
the associated eNB. Simulation results were compared with max-RSS cell selection
scheme in which the ping-pong rate reduced by 50%, the number of handovers by
60% and the handover failures by 30%.

In [156] sojourn time-dependent mobility-aware caching strategy in heterogeneous
networks is proposed. An upper bound for the mean download time of a transmission
was derived by using different parameters such as user mobility, sojourn time and BS
density. Similarly, in [152] the authors utilized the network topology, sojourn time and
cooperative communication among BS to skip the unnecessary handovers to maintain

the user QoS.

In [157] the authors use tools from stochastic geometry to analyze the mean handover
rate and sojourn time and derive an expression that provides design guidelines for
small cell deployment in 5G networks. The derived expression is a function of BS
density, UE mobility and transmission probability. The paper concludes by claiming
that the interruption ratio through the presented analysis is equal to the square root of

the macro and small cell BSs densities.

The authors in [45] obtained the UE handoff rate and derived the probability of cov-
erage in an irregular multi-tier heterogeneous network to analyze the impact of UE
mobility on the overall system performance. The user association was again based on
a biasing scheme in which maximizing the coverage is considered as the utility factor.
Later the authors claim that the proposed speed-dependent bias factor approach has
the ability to adjust the tier association parameter to improve the network coverage

and system performance.

In order to optimize the number of handovers per transmission, user association based
on maximum dwell time is employed. In this work, a UE associates, in the direction of
its mobility, with the maximum distance eNB among all the eNBs in its vicinity. The
eNBs in the direction of vehicle mobility are identified in Step II of the proposed three-
step sequence algorithm. After associating with an eNB, the maximum SINR resource
allocation policy is used to assign an appropriate resource to UE for data transmission.
The signal strength, channel quality and service time of the ongoing transmission is

continuously updated as the vehicle location updates.
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The flowchart in Figure 4.7 illustrates user association approach based on handover
rate. This approach is also referred to as maximum distance association approach in

this thesis.
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Figure 4.7: User association based on maximum distance approach

><_
>L

Figure 4.8 illustrates the number of handovers per transmission at different mobility
levels with a range of the number of nearest eNBs, £ value. It is seen that the number
of handovers per transmission is directly proportional to vehicle speed and inversely

proportional to the association range; k value.

The maximum distance user association policy used for handover optimization is also
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Figure 4.8: Number of handovers per transmission with a range of £ values at different
traffic level using maximum distance user association approach

tested based on the location of the eNB deployment at the roadside infrastructure. The
two test cases using the maximum distance location-based user association approach
are (a) Forward Handover - Near side (FH-NS) (b) Forward Handover - Far side (FH-
FS). In FH-NS approach, the UE associates with the maximum distance eNB on the
near side of the street while in FH-FS association with maximum distance eNB on the

far side of the street, in the direction of vehicle mobility is performed.

4.4 Results

This section discusses the results obtained during simulation experiments using the
investigated user association approaches. The results demonstrate the impact of each
performance metric on the network QoS, at different vehicle speeds. The network per-
formance is analyzed using the network throughput, the probability of retransmission,
end-to-end latency, and the number of handovers per transmission. All investigated
approaches were simulated at medium traffic level and using same file size. The num-
ber of neighbouring eNBs, £, is fixed, as explained in Section 4.3, to ensure a better
understanding of the influence of individual performance metric under the same envi-

ronmental setup.
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In order to deliver high spectral efficiency, the minimum distance user association
scheme; k=1 is employed. Whereas, to balance the spatially distributed network load
and to maintain a minimum number of handovers per transmission, the user associ-
ation scheme based on network load and the maximum distance is used respectively.
The maximum number of neighbouring eNB, £, in case of spectrum efficiency is 1,

whereas, for network load balancing and handover optimization is assumed as 4.

Figure 4.9 shows the overall network throughput achieved by employing different as-

sociation approaches at different vehicle speed.
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Figure 4.9: Network throughput response of the performance metric based user asso-
ciation technique at different vehicle speed and corresponding traffic load

It can be observed that the maximum distance user association scheme starts from
a lower throughput because it can hardly avoid the strong cross-interference from the
surrounding eNBs and delivers minimum network throughput compared to all the other
investigated approaches. On the other hand, the minimum distance user association
scheme shows to effectively control the interference due to a tight cell packing even at
high-density conditions. The other investigated association schemes achieved network
throughput between the upper and lower bounds due to the flexibility to identify and
choose appropriate eNB based on active network load and/or the location from among

the selected eNBs in Step III of the proposed algorithm.
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Figure 4.10 and Figure 4.11 show the impact of different user association approaches
on the probability of retransmission, and the probability of blocking respectively. In
Figure 4.10, irrespective of the user association approach employed, the probability of
retransmission decreases as the vehicle speed increases. This is due to the assumption
of number of active users in the system. As explained in section 3.3.1, the maximum
number of vehicles in the system is assumed to be 60% of the maximum density at a
particular mobility level as the communication system saturates on assuming higher
percentages, as seen in Figure 4.3 and Figure 4.4. Therefore, as the vehicle speed
increases, the number of active users in the network reduces, thus, reducing the offered

communication traffic load and probability of retransmission.

Alternately, drawing a comparison between different user association approaches, it
is evident that at low vehicle speed, a poor network performance results across all
mentioned approaches. This is due to the greater number of active users per unit area
that leads to an increased network load per eNB compared to the network load per
base station at high mobility levels. However, among the investigated approaches,
the minimum distance user association approach outperforms all other techniques by

providing the minimum probability of transmission.
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Figure 4.10: Average probability of retransmission response using the performance
metric based user association at different vehicle speed and corresponding traffic load
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In addition to this, as seen in Figure 4.11, employing the minimum distance and/or
minimum load approach, at low vehicle speeds i.e., high user density per cell, yields
better network performance compared to the other investigated approaches. This is be-
cause with minimum distance approach, a tight cell packing is observed that restrains
the interference level and the probability of interrupted transmissions, thus, a better
signal strength is delivered.In the case of minimum load, an improved channel qual-
ity results in better network performance. On the contrary, in the case of maximum
distance user association scheme, the distance between the base station and the active
user increases leading to a degraded signal quality hence a higher percentage of trans-
missions are interrupted compared to minimum distance approach, resulting in a poor

overall network performance.
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Figure 4.11: Probability of blocking response using performance metric user associa-
tion at different vehicle speed and corresponding traffic load

The total network delay is presented in Figure 4.12, is the accumulated average delay
of all the transmissions. At lower vehicle speed the communication network saturates
leading towards higher network delay compared to that at higher vehicle speed. Asso-
ciation with the nearest eNB by using the minimum distance user association approach
yet again outperformed the other investigated approaches, due to strong received signal

strength and lower number of interrupted transmissions.
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Figure 4.12: End-to-end delay response using performance metric user association at
different vehicle speed and corresponding traffic load

Figure 4.13 presents the influence of user association approaches on the number of
handovers per transmission at different vehicle speeds. The maximum distance user
association approach outperforms all the other investigated approaches as it chooses
the farthest eNB in the direction of its mobility. However, delivers a poor network
QoS. This is because user association with the farthest eNB cause a greater overlap
in the coverage range of each transmitting user, therefore, each user suffers from con-
siderably strong interference. On the contrary, the minimum distance user association
approach delivers the best network QoS, but, performs poorly to reduce the number of

handover per transmission.
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Figure 4.13: The number of handovers per transmission response using performance
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4.5 Conclusion

This chapter investigated the influence of performance metric dependent user associ-
ation approaches on the network performance at different vehicle speeds in mobility-
aware ultra-dense small cell environments. The chapter began with describing the user
association and the handover mechanism. Following this, a conventional LTE user
association approach, max-RSS has been discussed. This approach has been chosen
to serve as a baseline approach for comparison with the other investigated techniques.
Further, a novel user association approach, the three-step sequence is developed and
tested. This approach assists to discover the nearest neighbours, eNBs, around the
moving active user, thereafter, identify the most appropriate eNB for the association
depending on specific performance metric to be optimized. Subsequently, the results
presented assists to understand the influence of individual performance metric on the
network performance and user experience at various vehicle speed. It has been ob-
served that by employing max-RSS user association, i.e., the minimum distance user
association approach in an ultra-dense environment, a better QoS results at the ex-
pense of significantly high handover frequency per transmission. However, the other
technique such as the load based user association policy delivered better QoS with a
marginal compromise on the handover frequency. Meanwhile, the maximum distance
approach outperforms other investigated schemes in terms of handover optimization
as the active user associates with the farthest eNB in the cluster, but delivered unsat-
isfactory network QoS. The investigated work thus provides insights into the trends
related to user association based on different performance metrics in ultra-dense small

cell vehicular environments at different mobility levels.
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5.1 Introduction

In Chapter 4, the influence of three step sequence user association approach on net-
work performance, with fixed £ value assumption, across different vehicle speed was
investigated. Figure 4.10 and Figure 4.11 demonstrated that minimum distance user
association approach delivered an effective QoS across all mobility levels, but, at the
expense of high handover rate. Whereas, Figure 4.13 exhibit that the maximum dis-
tance user association approach outperformed all the other investigated schemes in
case of handover optimization. However, none of the approach was able to strike a bal-
ance between the number of handovers per transmission and network QoS. Moreover,

the investigated scheme was unable to adapt to the environment or learn appropriate k
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value, during the simulation, to self-configure and self-optimize the k£-NN list so as to

maintain an equilibrium between different performance metrics.

The purpose of this chapter is, therefore, to extend the three-step sequence user as-
sociation approach by integrating known machine learning approaches, discussed in
Chapter 2, to considerably reduce handover rate whilst network QoS is guaranteed
across the investigated vehicular and communication traffic load in the considered
ultra-dense dynamic vehicular environment. Furthermore, the developed intelligent
user association algorithms should be able to demonstrate the ability to learn appro-
priate k£ value to self-configure and self-optimize the k£-NN list by utilizing variation

in the radio environment.

The rest of this chapter is organized as follows: Section 5.2 address the motivation to
develop the intelligent user association approaches. Section 5.3 revisits the baseline
approach. Further, a real-time control feedback user association approach is proposed.
In Section 5.4, a series of intelligent user association approaches based on Q-learning
are proposed. The result comparisons are performed in Section 5.5. Finally, conclu-

sions and future directions are provided in Section 5.6.

5.2 Motivation

When considering vehicle mobility and potential for severe cross-interference in an
ultra-dense topology, the quality of decision for frequent association of UE to the most
promising eNB, as it moves along the street, is a significant metric. The quality of
decision is governed by an essential parameter, the number of nearest eNBs, k, that
populate the £ — N N list for the identification of an appropriate eNB. Conventionally,
k value is manually configured depending on received signal strength [141]. However,
in continuously changing environments it becomes absolutely challenging to config-
ure an optimum value of k, due to the rapid fluctuations in radio signal strength and
dynamic vehicle speed [45][159]. Considering a scenario in which a smaller £ value is
configured. Here, only a few eNBs in the neighbourhood of the moving UE will form
the £-NN list. The association with closest eNBs will result in an improved QoS. How-

ever, a linear increase in the handover frequency, as well as high switching overhead
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and signalling load due to vehicle mobility and short coverage area of small cells, is
monitored, as seen in Figure 5.1(a). On the contrary, if & is configured to be too large
then most of the eNBs in the neighbourhood of the moving UE will be included. How-
ever, as shown in Figure 5.1(b), the association with farthest eNB would significantly

reduce the handover frequency, but, at the expense of poor network QoS [6].
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Figure 5.1: Figure demonstrating the relationship between association range, handover
rate and network QoS in ultra-dense small cell highway scenario

An emerging state-of-the-art technique for intelligent user association for uncertain
environments is Reinforcement Learning (RL). There is evidence in the literature for
the application of RL in continuous environments. Particularly, Watkin’s Q-learning,
as proposed in [105], is one of the most widely used RL algorithms in both wireless
communication and other artificial intelligence domains [160]. However, there is no
evidence in the literature for using RL to learn the best k£ value for user association
in ultra-dense small cell dynamic vehicular environments, such that an equilibrium
between handover frequency and guaranteed network QoS across different mobility

levels may be achieved.
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The researchers in [161] presented a speed-dependent bias factor approach to address
the need for optimum cell association and hand-off management in a dynamic envi-
ronment. It has been claimed that, by using a multi-level threshold handoff scheme
that depends on the mobile velocity, a better performance could be achieved. The
results demonstrate the performance metrics obtained using different quantizer thresh-
olds. In [162], velocity adaptive algorithms for a micro-cellular scenario are investi-
gated. Subsequently, the researchers in [163] derived the probability of coverage and
co-operation between eNBs using cooperative transmission scheme. Moreover, vehi-
cle handoff rate and a vehicular overhead ratio are employed to evaluate the vehicular
mobility performance in a co-operative small cell environment. The paper concludes
by claiming that an optimal overhead ratio can be achieved by adjusting the cooper-
ative threshold. A common drawback of all of these schemes is that they lack the
capability to self-configure and self-optimize the current policy online. Thus, it is im-
perative to develop intelligent algorithms for user association in ultra-dense small cell
dynamic vehicular environments that have ability to continuously self-configure and
self-optimize the nearest neighbour list by utilizing variation in the radio environment
such that the numbers of handovers per transmission are significantly reduced whilst a

guaranteed network QoS is delivered.

5.3 Heuristic Approaches for User Association

This section briefly revisits the baseline approach; maximum distance user association
with a fixed £ value, in the LTE uplink, using the framework of an urban vehicular en-
vironment. Following this, a real-time controlled feedback user association approach

that is motivated by control-theoretic models and dynamic programming is discussed.

5.3.1. Maximum Distance Approach

A flowchart in Figure 5.2 illustrates the user association, re-association and resource
assignment mechanism using the fixed £ value. In the case of minimum distance
approach, the value of £ = 1. Meanwhile, for approaches such as minimum load,

maximum distance, etc. the value of k£ depends on the cluster size. In this approach,
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Figure 5.2: Flowchart of conventional user association approach.

upon arrival of a file, a £-NN list is configured. The number of eNBs that form the
k-NN list is fixed and/or pre-defined, therefore, this scheme is also referred to as the
fixed range user association approach. A three-step sequence algorithm utilizing the
maximum distance approach in Step III of the algorithm, that has been discussed in
detail in Chapter 4, is used to choose the most appropriate eNB for UE association as
this performance metric reduces the number of handovers per transmission consid-
erably compared to the minimum distance user association approach. UEs associate
with the farthest eNB among the selected eNBs in the direction of vehicle mobility.
This eNB may either assign a resource to start a new transmission or block it depend-
ing on the availability of ideal channel and channel quality. Equation 3.4 is used to

evaluate channel quality of all the available channels on associated eNB.
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As the UE moves along the street a) the £-NN list is continuously updated with new
eNBs b) it is recursively checked if the current eNB to which the UE is associated is
still an option in the k-NN list. If the current eNB is still one of the options in the
updated £-NN list, the UE remains associated with the same eNB. Consequently, fre-
quent handovers do not occur. Nevertheless, the channel parameters such as the SNR,
the SINR and the data rate are updated. If the SINR of the assigned resource on the
associated eNB drops below the threshold, then a new resource on the same eNB is
identified and assigned to the ongoing transmission. If no resource is available, then
the transmission interrupts. So, a transmission is interrupted if a) there is no available
resource on the associated eNB; b) if the link quality of all available resources is be-
low the assumed threshold of 1.8 dB or c) if the new transmission is likely to drop an
ongoing transmission in the system. An interrupted file will re-transmit following a
random exponential back-off time [132]. A maximum of five re-transmission attempts
is performed before a file is categorized as an unsuccessful transmission and there-
after eliminated from the system. However, if the previous eNB is not an option in
the £-NN list then a handover occurs. The ongoing transmission is handed over to a
newly identified eNB in the direction of vehicle mobility. If the vehicle reaches the
system boundary with no eNB in the direction of vehicle mobility, then the minimum
distance user association rule holds true. The drawback of the fixed £ user association
approach is that it lacks autonomy. It is unable to restructure its current policies in a
changing environment such that an equilibrium between different performance metrics
and guaranteed network QoS may be established. To address this problem, a real-time

control feedback user association approach is discussed next.

5.3.2. Real-time Control Feedback Approach

The distance-dependent path loss and the high attenuation due to the temporal-spatial
vehicle behaviour significantly affects £ value selection in dynamic interference-limited
vehicular environments. Therefore, using a fixed & value to provide guaranteed QoS
with minimum handover frequency per transmission at different mobility levels in such
environments is extremely challenging. The real-time control feedback policy is a

computational algorithm that does not need any prior network information for k£ value
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evaluation. It is a single-step input-output mechanism inspired by control-theoretic
models and dynamic programming [177]. In [168], it is suggested that dynamic pro-
gramming is more amenable to incremental planning as it considers only one action
at a time rather than the entire action space. Our approach, shown in Figure 5.3,
represents such a one-step input-output scheme. The algorithm derives the system
probability of re-transmission, P,.;,, as the input and produces the association range,

k, as the output.

QoS crror

QOS desired : k : > SyStem > QOS achieved

_———

Figure 5.3: Block diagram of the real-time control feedback approach

The system P, is chosen as the performance metric to control the k-value variation.
To compute an appropriate k-value, the P,.;, was measured continuously after every
successful transmission, P, and periodically over a batch of successful transmis-
sions, Ppeqn. The periodic P, calculated over a batch of successful transmissions
successfully eliminated the impact of short-term variations and computed a more ef-

fective k value.

Upon arrival of the first transmission in the system, a k-value is randomly selected
from the assumed action value set. The action value set is an array of an assumed
number of eNBs, wherein, the assumption is based on the results obtained in Chapter
4. Depending on the value selected, the neighbourhood of the moving UE is scanned
to construct the £-NN list. The UE associates with the maximum-distance eNB, in
the direction of vehicle mobility, as in the conventional maximum distance association
approach. A transmission retains the evaluated k-value until it finishes, irrespective of
the multiplicity handovers it may experience as the vehicle moves along. Algorithm 4
represents, in detail, the developed real-time control feedback approach to compute an

appropriate k-value for user association.
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Algorithm 4 Real-time control feedback approach for user association
1: Input: The probability of re-transmission threshold value, P eshora
2: Output: The computed SD range, k-value
3: while nowy;,. < endyjy,e do
4 for the first transmission do
5 Randomly select an action value £, from the assumed action space

6: end for

7

8

9

for all subsequent file transmission arrivals do
Exploit the computed k-value
: Associate UE to the k" eNB
10:  end for
11:  Calculate the overall network probability of re-transmission, P,..;;
12: if Prciy > Pinreshola then

13: Decrement the k-value by 1 towards the minimum assumed association range
14:  else

15: Increment the k-value by 1 towards the maximum assumed association range
16:  end if

17: end while

Although it is a computational algorithm rather than a learning one, it still accom-
plishes better system performance compared to the fixed SD range policy, across dif-
ferent traffic conditions, based on metrics such as minimum handover frequency and
a guaranteed QoS. An emerging state-of-the-art technique that even more effectively

addresses the problem is reinforcement learning.

5.4 Reinforcement Learning Approaches for User Asso-

ciation

A common disadvantage of heuristic user association algorithms, such as the fixed k-
value and the real-time control feedback approach is their inability to learn the best
k value as they lack autonomy. These schemes, therefore, are unable to construct
hypotheses directly from a changing environment. An emerging state-of-the-art tech-
nique for intelligent user association for such uncertain environments is Reinforcement

Learning (RL) [102].

RL is a branch of artificial intelligence: a class of machine learning that employs
a reward and punishment policy to enable an agent to reach a good solution during

its interaction with the environment through trial-and-error [100]-[102]. In our pre-
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sented multiagent environment, the task of RL is to learn an action, the & value, solely
through trial-and-error and with no prior knowledge of the network itself or of net-
work performance. All the agents in the environment are independent learners with
no coordination between each other, but with an aim to learn, jointly, a common best

k-value.

The four key elements of RL are a) the environment b) an action c) a state d) a reward

function. In this thesis, the following terms have the following specific meanings:
e Environment - The dynamic vehicular network.
e Action - The number of neighbouring base station, k value.
e State - Here we use a simplified, stateless Q-learning model.
e Reward - The positive or negative reinforcement signal.

One popular RL technique in widespread use is Q-learning (QL). Here, a centralized
array known as the Q-table is maintained. The values in the Q-table are called the
Q-values and are initialized to zero, allowing the agent to start to learn with an equal
choice among all available actions. The agent uses the learning policy to learn an
action, whereas, the update rule is employed to update the Q-value associated with
each action. The Q-table, therefore, presents an analysis of the choice of behaviour
of all the individual agents, whereas, the Q-value represents the expected cumulative

reward the agent receives by learning an action.

The learning policy: A learning agent adopts a policy or a value that guides it to
learn the best solution. A e-greedy exploration approach is used to learn the best
action among the available actions in the action space. The approach states that an
exploratory random action is picked with probability e otherwise a good policy action

(greedy) is selected with probability 1-¢. The greedy action is selected using Eq.5.1.

k = arg max(Q(k)) (5.1)

The learnt action, k, has the highest Q-value in the Q-table [169]. A persistent explo-
ration learning policy is assumed throughout the simulation experiment which helps

the learning agent to continuously update its policy in a changing environment.
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The update rule: A learning agent recursively updates the Q-value of each learnt

action k, using the stateless Q-learning update equation:

Qk)=(1-a)Q'(k) + ar (5.2)

k is the learnt action value from the action space. (k) corresponds to the updated
Q-value of the learnt action value k. Q' (k) is the previous Q-value of the action k. The
learning rate parameter, «, controls the convergence rate, and r is the reward awarded
to an action determined by the reward function. The discount factor -y is assumed as 0,

in this algorithm, therefore, the component is not included in Equation 5.2.

5.4.1. Conventional Q-Learning Approach

In this section, learning an appropriate association range k for user association using
the conventional QL approach is discussed. Being model-free, QL does not require
any prior information of the model or the reward function. The analysis of the action
selection k explicitly represents the influence of reward and action selection history
on future choices. The authors in [170] proposed a single-state QL scheme for the
dynamic resource management in a 5G high capacity density network. The scheme
utilizes spectrum access information through spectrum sensing to learn an optimal as-
signment decision. Their results demonstrate that, without any frequency planning, the
algorithm converged quickly towards an optimal solution, delivering improved quality
of service and system capacity. In [171], a case-based RL scheme is proposed for dy-
namic spectrum assignment in a cellular network. The scheme is a combination of RL
and case-based reasoning. It achieves improved temporal performance for each base
station as well as delivered an improved network QoS. The application of a classical
Q-learning approach to learning an effective k-value across different mobility levels in

an ultra-dense small cell dynamic vehicular environment is discussed next.

Upon arrival of a file, the learning agent performs e-greedy action selection strategy
to learn an action value from the available action space. The learnt action value is
utilized to scan the neighbourhood of the moving UE to form the £-NN list. The UE

then associates with the maximum distance eNB in the direction of vehicle mobility.
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The flowchart in Figure 5.4 outlines the learning process using classical Q-learning.

Mobile terminal
initiates transmission

Learn k-value using e-greedy scheme
Associate the UE with the k" base station
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Figure 5.4: A classical Q-learning approach to learn scanning diameter range for user
association in a small-cell vehicular environment

The Q-value of each learnt action is updated recursively using Eq. 5.2. The reward

function for the Q-value update is

{ +1 if a transmission is successful
’]" =

-1 if a transmission is not successful

The two key parameters in the stateless Q-learning update equation are the learning
rate « and the reward function 7. A comprehensive study on the relationship between
the different RL model parameters has been reported in [172]. The influence of rein-
forcement history on the choice behaviour was also discussed. In the next sections,
these two parameters are investigated discretely, as Win or Learn Fast Q-Learning
(WoLF-QL) and Variable Reward Q-Learning (VR-QL) approach, to understand their

impact individually on the learning process in the considered scenario.
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5.4.2. Win or Learn Fast Q-Learning Approach

The Win-or-Learn Fast Q-learning (WoLF-QL) is an agent-aware method to encour-
age learning convergence [173] [114]. The principle of “win or learn fast” states that,
with a variation of the learning parameter, o, an agent can learn quickly in case of a
learning trial failure and slowly when winning. The authors in [174] investigated the
WOoLF policy in a multi-agent learning problem environment. The two different prop-
erties examined were the rationality and convergence. The paper discussed how the RL
failed to simultaneously meet both the criteria. Therefore, proposing the WoLF policy
hill-climbing approach that proved to be rational and demonstrated convergence. The

WoLF-QL is a proven technique to achieve convergence in many stochastic games.

Here, upon arrival of a file, an agent learns a k-value using a low learning rate of av;,
if transmission is successful. To learn an effective k-value for user association across
a range of vehicle speeds, in the considered scenario, using the WoLF principle, the
learning rate is split into two parts v, and o;,s. ensuing the WoLF principle that is

Qyin < Uose-

{ 0.01 if transmission is successful
o =

0.05 if transmission is not successful

The authors in [175] presented a detailed explanation of the significance of choosing
the correct learning rate and its impact on convergence by presenting a performance
comparison and sensitivity analysis considering different values of learning rate. Their
simulation results demonstrate that using the WoLF variable learning rate algorithm, it
is possible to achieve a robust and consistent QoS using distributed QL when compared
with a conventional opportunistic spectrum sensing approach. The assumed learning

rate value for the presented research are assumed based on their work.

An action value is rewarded with an award r and learning rate equal to v, if a
transmission is successful. However, a learnt choice will be penalized if that results in
an interrupted transmission using «y,s. regardless of the system QoS that is calculated
after every successful transmission. The WoLF-QL approach in the presented scenario,
therefore, investigates the influence of the learning rate on the handover frequency and

the system performance whilst learning an appropriate k-value. The scheme learns
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an appropriate association range value that delivers successful transmissions rather
than learning the global optima. This is because the WoLF-QL approach is unable to
perceive continuously changing network performance information, hence converges to

a local optimum.

5.4.3. Variable Reward Q-Learning Approach

The impact of the reward function to learn the highest possible association range for
user association is investigated using variable reward Q-Learning (VR-QL) approach.
The approach is based on the High-risk, High-reward scheme. The reward value 7 in
the VR-QL approach is directly proportional to the learnt action value & i.e., if an agent
learns (k = 3) as an appropriate range for user association and the data transmission
with this learnt action value resulted in a success, then this learnt action is awarded
with a reward (r = +3). However, it is punished with a reward, (r = —3), if it results

in an interruption.

This scheme is also model free so a priori knowledge of the model or the reward
function is not essential. The authors in [176] proposed a variable reward approach to
solving a transfer learning problem to achieve faster learning in a task under hierarchi-
cal settings. An assumption of the different reward functions in a set of reward features
was made. Their simulation results demonstrate that the proposed scheme compactly
stores the optimal value functions for several Semi-Markov Decision Process (SMDP)

that were subsequently used to optimally initialize the new SMDP value function.

Here, upon arrival of a file, a e-greedy action selection approach is used during the
learning process. The Q-value of each learnt action is recursively updated using Eq.
5.2. If the learnt action delivers a successful transmission then the learnt action is
awarded a reward equal to the learnt action value. However, if the learnt action &
results in an interruption, then this action is penalized with a value equal to the learnt

action value; (r = —k). The reward function for the Q-value update is as follows

{ +k if transmission is successful
7" prn

-k if transmission is not successful
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A common drawback of the conventional QL, WoLF-QL and the VR-QL algorithm is
that they learn the k-value only through trial-and-error. To learn an appropriate solu-
tion in a model free, continuously changing environment takes a large number of trials,
a characteristic undesirable in real-time applications. Also, the investigated schemes
lack the ability to assure that the learnt action is the global optimal or not. To mitigate
this problem, the variable reward quality-aware Q-learning (VR-QAQL) algorithm for
user association in an ultra-dense small cell dynamic vehicular environment has been

proposed in the next section.

5.4.4. Variable Reward, Quality Aware Q-Learning Approach

The Variable Reward, Quality Aware Q-Learning (VR-QAQL) algorithm is a model
free, intelligent approach that follows learn-execute-evaluate-formulate-improve prin-
ciple to learn the best k value for user association. The proposed algorithm recursively
performs policy evaluation and policy improvement processes throughout the simula-
tion experiment. The policy evaluation is performed using the VR-QL approach while

the real-time control feedback scheme is utilized for policy improvement.

In [177], the authors proposed a heuristically accelerated Q-learning approach to im-
prove initial network performance, achieve quick convergence and enhance steady-
state performance during dynamic spectrum access in the LTE downlink. The pro-
posed scheme is an integration of distributed RL and standardized inter-cell interfer-
ence coordination signalling. The simulation results show that the heuristic informa-
tion guides the learning agent to deliver better QoS, support higher network throughput

densities and speed up convergence.

The key difference in VR-QAQL approach from the other investigated approaches
is in the action evaluation process. A learnt action is awarded a reward if both the
criterion is satisfied; a) the transmission is successful b) the overall network probability
of retransmission is less than the assumed threshold. The heuristic information, i.e.
the network probability of re-transmission, is computed after each transmission during
the simulation. This guides the evaluation function to evaluate every learnt action

with respect to the transmission status and network QoS. The flowchart in Figure 5.5
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demonstrate learning the best action value using the VR-QAQL approach.
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Figure 5.5: Variable reward quality aware Q-Learning approach to learn an appropriate
k value for user association in ultra-dense dynamic vehicular environments

The VR-QAQL approach, therefore, evaluates a learnt action as follows

e Punish the action learnt if it results in an interruption or it increases the overall

system P,..;, above a threshold.

e Do this, but award it if and only if a) the transmission is successful without any

interruption b) the overall system F,.;, is less than the assumed threshold of 5%.

In the proposed VR-QAQL user association approach, evaluating a learnt action based
on its transmission status as well as the overall network QoS pushes the learning agent
to improve its policy recursively and not to select an action value which might have
been proven to be promising in the early simulation phase. The Q-value of each learnt
action is updated using the stateless Q-learning at Eq.5.2. The strong correlation be-
tween the policy evaluation and policy improvement process results towards learning

the best action value i.e. the user association range.
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5.5 Simulation Results

In this section, performance comparison between the non-learning and Q-learning
based user association schemes are presented. The performance metrics used to eval-
uate the investigated algorithms are the probability of re-transmission, the end-to-end
delay, the learnt k-value, and the number of handovers per transmission. Results are
based on an average of 25 different random seed simulations to present a statistically
representative temporal response. Error bars show the maximum and the minimum
probability in those simulations. The UE in the moving vehicle employs the maxi-
mum distance approach to associate with an appropriate eNB for data transmission,
as in Section 5.3.1 it was seen that the scheme demonstrated to reduce the number of
handovers per transmission among other investigated association metrics. The two test
scenarios that are used to represent the baseline results for user association, using the

fixed k approach, in a vehicular environment are
1. UE association assuming fixed association range, k= 1.
2. UE association assuming fixed association range, k= 4.

In the first test case, when the k-value assumed is small (k=1), only one eNB is se-
lected. The aim is to achieve high spectral efficiency. This eNB is the closest eNB to
the moving user, therefore, may also be termed as the minimum distance eNB. Asso-
ciation with the minimum distance eNB results in a significant reduction in the path
loss and cross-interference level, leading to better QoS at the expense of a linear in-
crease in the number of handovers per transmission, as seen in Figure 5.6 and Figure
5.7 respectively. A linear increase in the handover frequency is due to the frequent
handovers experienced by the UE due to a short coverage area of the small cells and
increasing vehicle speed. The minimum distance approach, therefore, outperforms all
the other explored user association approaches in terms of QoS. However, in terms of

the number of handovers per transmission, it performs poorly.

On the contrary, a larger £ value is assumed, (k = 4), in view to decrease the number
of handovers per transmission. Here, the 4 nearest eNBs to the moving UE form the

k-NN list. On initiating a transmission, the UE associates with the farthest eNB in the
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k-NN set in the direction of its mobility. It remains associated with this eNB until it
is no longer one of the options in the A£-NN list. An increased k& value dramatically
reduces the handover frequency at the expense of increased cross-interference level
that results in a degraded network performance. The drawback of using a larger k-
value is that it fails to provide a guaranteed QoS across a majority of the mobility
level. This is because an increase in the association range increases the interference

level that results in an existing transmission being interrupted; consequently degrading

the network QoS.
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Meanwhile, in the case of real-time feedback approach, the k-value is not assumed,
but, computed during the simulation by using the current network QoS as heuristic.
The temporal variation in the k-value utilizing the real-time control feedback approach
is shown in Figure 5.8, while the CDF plot of learnt association range is presented in
Figure 5.9. At high mobility levels, the vehicle spatial distribution is sparse - the
vehicle density per cell is low as the safety distance between vehicles increases. This
reduces the cross-interference level resulting in better network QoS that guides the
learning agent to compute a higher k-value. However, learning a higher & value, causes
the network QoS to degrade due to strong interference. Therefore, a continuous P,
evaluation is performed that guides the algorithm to compute a smaller k-value such
that a guaranteed QoS is maintained. Likewise, at low mobility level a vice versa

procedure takes place.
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Figure 5.8: Temporal performance plot demonstrating & value variation.
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ciation approach.
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Figure 5.10 presents the £ value learnt across different vehicle speed under distinct
user association approaches. Here, the real-time control feedback approach depending
on the current network performance was able to successfully computed an operational
k-value such that a better network performance as well as reduced handover frequency
may be achieved. The advantage of the feedback approach over the fixed range method
is that it evaluates and reconstruct its association strategy recursively in accordance
with the changes in the environment. In addition to this, as seen in Figure 5.6, the
feedback algorithm across all the mobility levels demonstrated to deliver a guaranteed
QoS. Subsequently, the result in Figure 5.7 demonstrate that at a vehicle speed of 60
km/hr, the number of handovers per transmission reduced by 40-42% when compared

to the minimum distance user association; k=1.
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Figure 5.10: Comparisons of the investigated Q-learning approaches and the heuristic
algorithm on £ value learnt at different vehicle speed in an ultra-dense dynamic vehicle
environment

Meanwhile, the conventional-QL, the WoLF-QL and the VR-QL approach learn an
action value purely through trial-and-error interactions. As seen the conventional Q-
learning scheme especially at higher vehicle speed significantly reduces the number of
handovers per transmission, however, it fails to deliver a guaranteed QoS at low mo-
bility levels. This is because the scheme relies only on the status of the transmission

to learn the appropriate solution over a considerably high number of trials. It learns an
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action value that delivers successful transmissions but is unable to assure the reliabil-
ity of the learnt action value. The conventional-QL, therefore, fails to simultaneously
meet both criteria; i.e., to achieve minimum handover frequency and deliver a guar-
anteed network QoS. The WoLF approach, on the other hand, utilizes variation in the
learning parameter («) to learn the best k-value. The scheme successfully delivers bet-
ter network QoS, almost identical to the k=1 association approach, but fails to reduce
the handover frequency at the high mobility levels. This is because the WoLF algo-
rithm aims to guarantee a quick convergence rather than learning the highest possible

association range value.

The comparison of the VR-QAQL approach with these schemes is most appropriate.
It is evident from the obtained results that by utilizing additional heuristic information
to learn an effective k-value compared to the pure trial-and-error learning schemes,
the VR-QAQL approach significantly outperforms all the other algorithms by learning
a stable solution that reduces the number of handovers per transmission significantly
whilst delivering a guaranteed network QoS. Figure 5.11 presents the CDF plot of

learnt association range.
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Figure 5.11: Cumulative Distribution Function of learnt k£ value using VR-QAQL ap-
proach.

The temporal variation in the k-value utilizing the VR-QAQL user association ap-
proach in 5.12 demonstrates that the algorithm adapts to the dynamic environment

quickly by recursively reconstructing its policy, thus, is able to converge to a good so-
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lution in less than 500 sec from the start of the simulation across different investigated
vehicle speed. This is due to the derived additional network information, during the
simulation experiment, guides the exploration process to evaluate every learnt action
rationally; meanwhile the variable reward function forces the learning agent towards
the global best. On the contrary, as seen in Figure 5.8, the learning agent based on con-
trol feedback mechanism oscillates between the upper and lower bound, thus, is never
was able to learn a good solution as the approach computes an appropriate solution

depending on network dynamics.

{0 km/hr

| 20 km/hr
) 7 30 km/hr
£ | 40 km/hr
~ 6 50 km/hr
8 60 km/hr
| \
5
A 4f
2
23
= |
<
O
[9p]

1 1 1 1 1 1 1

500 1000 1500 2000 2500 3000 3500 4000
Time (sec)

Figure 5.12: Temporal variation in learnt k£ value using VR-QAQL approach.

5.6 Conclusion

In this chapter the significance of application of reinforcement learning approaches
for user association in vehicular networks was presented. Following this, the stateless
Q-learning, the Win-or-Learn-Fast Q-learning, Variable Reward Q-learning and the
variable reward quality aware Q-learning approach were introduced. The simulation
results demonstrated that integrating machine learning approaches with heuristic user
association algorithm resulted in significant reduction in the number of handovers per
transmission. Among the different learning techniques, the conventional Q-learning,
the WoLF-QL and the VR-QL approach learnt k-value purely through trial-and-error,
irrespective of the network QoS, therefore, were unable to learn an optimal solution.

On the contrary, the VR-QAQL algorithm outperforms all the other investigated user
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association approaches as it combines the variable reward approach with real-time
control feedback policy in a conventional Q-learning framework. The VR-QAQL user
association approach, thus, learnt an effective association range thereby reducing the
number of handovers per transmission significantly whilst delivering a guaranteed net-
work QoS across all mobility levels. Statistically, the VR-QAQL scheme reduced the
number of handovers per transmission by about 70-74% at 60 km/hr with marginal

compromise on the network QoS when compared with max-RSS approach.
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6.1 Introduction

The purpose of Chapter 5 was to investigate improvements to the conventional user
association approaches by employing intelligent Q-learning algorithms. The model-
free, offline learning-based user association learnt appropriate values corresponding to
different vehicle speed in the rapidly changing environment, but, lacks to provide an
assurance that the learnt action value is a reliable global solution. This was due to a
number of factors such as continuous variation in traffic, vehicular distribution, active
network load per eNB, fluctuating channel quality, rapidly changing network topology

that significantly limited the learnt solution reliability in dynamic environments.
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The self-organization and self-configuration of network architecture, as discussed in
Chapter 2, therefore is substantially important for an effective user association in dy-
namic networks. Few promising solutions to this issue, proposed in the artificial intel-
ligence domain, is case-based transfer learning (CBTL), and heuristically accelerated
reinforcement learning (HARL). In the definition given by Broad Agency Announce-
ment (BAA) 05-29 of Defense Advanced Research Projects Agency (DARPA) in 2005,
transfer learning aims to extract the knowledge from the source task and transfers the
gained knowledge to a target task with an aim to converge to a better, consistent and
a reliable solution [118]. Whereas, heuristics as defined in [180], is information that
is either provided externally or derived during the simulation experiment in order to

improve the learning agent performance.

The authors in [121] investigated the use of transfer learning for user association in a
5G aerial-terrestrial broadband access network. The scheme developed formulates a
user association solution from perceived spectrum assignment knowledge in order to
improve network QoS and reduce latency. Moreover, the authors in [181] proposed a
graph-based method motivated by transfer learning for the identification of previously
encountered games in order to automate domain mapping for value transfer function
and speed up the RL on the different variation of previously played games. In [182],
a Q-learning based network access selection scheme is proposed that uses a heuristic
approach motivated by the concepts of simulated annealing to provide maximum con-
vergence to mobile users, thereby, reach Nash equilibrium in dynamic environments.
A comprehensive survey on the theory of implementation in Nash equilibrium is pre-
sented in [183]. In [184], Q-learning based cell selection method is proposed that
utilizes past knowledge and behaviour of cells to predict their future behaviour, hence

reducing handover frequency.

However, in the context of user association in ultra-dense small cell dynamic vehic-
ular environments, there appears to be no evidence in the literature that implements
case-based reinforcement learning technique (CBRL); a combined CBTL and HARL
approach on a conventional Q-Learning framework, to self-configure and self-optimize
the nearest neighbour list for identification of an appropriate eNB, such that a balance

between different performance metrics whilst delivering guaranteed network QoS at
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different mobility levels may be achieved. This chapter, therefore, aims to exploit the
CBRL approach to learn a reliable solution for user association in ultra-dense dynamic

networks.

The rest of this chapter is organized as follows: In Section 6.2, the heuristically ac-
celerated reinforcement learning is discussed. Section 6.3 presents an overview of
case-based transfer learning and the motivation to implement it in the presented work.
Furthermore, novel user association approaches that employ CBTL and HARL to learn
the best £ value for user association in dynamic environments are discussed in Section
6.4. The results obtained using the proposed schemes are compared with the con-
ventional, max-RSS approach and other investigated RL schemes using some QoS
metrics, such as the probability of retransmission, the handover frequency and the

end-to-end delay in Section 6.5. Finally, in Section 6.6 conclusions are provided.

6.2 Heuristically Accelerated Q-Learning

The key elements of the heuristically accelerated Q-Learning (HAQL) approach are
derived heuristics, that influence the choice of action, and Q-learning technique. Heuris-
tics, as defined in [118], is an information that is either provided externally or derived
during the simulation experiment in order to improve the learning agent performance.
The heuristic information derived or extracted during the simulation experiment is
termed as Heuristic from Exploration by the authors in [181] [185]. In the presented
work, a policy is formulated and improved based on derived heuristic to accelerate
learning of a global optimum. This information is derived recursively after a batch of

successful transmissions using Eq.6.1.

Nretz
Ntx

Hy(s,a) = (6.1)

where, H,(s, a), is the heuristic information that relates to the probability of re-transmission,
N,ei 1S the number of retransmissions and NV, is the total number of transmissions
in the system. The number of retransmissions represents the transmissions which are

interrupted at least once. Whereas, the total number of transmissions is the summation



Chapter 6. Case-Based Reinforcement Learning for User Association 115

of the number of successful transmissions and number of retransmissions.

The authors in [186], have used the heuristic policy with learning algorithms in Ant
colony optimization to find solutions on symmetric travel salesman problem. The re-
sults obtained using this technique demonstrated to be at par to the results that would
have resulted from using specialized heuristic approaches based on neural networks or
local searches. The authors in [181] demonstrated that using a simple heuristic sig-
nificantly improve the performance of reinforcement learning algorithm. Similarly, in
[187], the authors use a case-based approach to transfer knowledge between differ-
ent domains to accelerate the RL process. This algorithm utilizes different heuristic
schemes to speed up the RL performance and build the knowledge base. The infor-
mation from the constructed knowledge base is then transferred to a target domain

resulting in a better network performance compared to traditional Q-learning.

Figure 6.1 shows the block diagram representation of HAQL. The top loop represents
the conventional Q-Learning scheme that assists an autonomous agent to learn an ac-
tion policy based on explicitly exploring its environment purely through trial-and-error
interactions. However, the network performance information derived during the sim-
ulation that is used as a heuristic for the policy evaluation and improvement assist to

evaluate the learnt action, therefore, reconstruct the current policy accordingly.

Choose Action Environment

Traditional Q-learning

\ 4
Analyse output
(Transmission status)

? |

Update Q-table |«

I v
Derive Policy (= — — — Derive Heuristic
\ (Policy Evaluation) Information /
\ /7
~ -

Heuristically accelerated Q-learning

Figure 6.1: Block diagram of heuristically accelerated reinforcement learning
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As emphasized in Chapter 5, a good policy 7 : S — A is learnt by observing action(s)
in a particular state, analyzing the outcome and updating Q-table for further iterations.
The improved policy, 7, (s, a), therefore depends on the heuristic derived. More-
over, a positive and negative reinforcement, (), (s, a) and Q_(s, a) is used to update

the policy using the following equation:

Tompr (5, 0) = { Qi(s,a), Hi(s,a) < P (threshold) 62)
p | Qi(s’ CZ), Ht(S, CL) > Pretx(t}”“eShOld)

As the heuristic information only influences the choice of action in a particular state,
therefore, the policy is different from the conventional Q-learning scheme that specif-
ically performs exploration by employing ¢ — greedy scheme for action selection.
However, it does not modify the conventional Q-learning characteristic, i.e, the algo-
rithm still exploits the free choice of training actions. The heuristic policy aims to
speed up the learning process and thus learn a good action, k&, that would not degrade

the network QoS. Algorithm 5 details the HAQL approach.

Algorithm 5 Heuristically accelerated Q-learning algorithm
1: Input: Q-table, Q(s,a)
2: Output: The learnt action, k-value
3: while nowy;,. < endg;,. do
4.  for the first transmission do

5: Select an action value £, from the assumed action space using the action-
choice rule, Eq.5.1
6: end for
7:  for all subsequent file transmission arrivals do
8: Select an action, a, using the action-choice rule, Eq.5.1
9: Analyze the outcome, receive the reinforcement, r(s,a)
10: Update the Q-table
11:  end for
12:  for number of successful transmissions > assumed batch size do
13: Update the value of H,(s, a) using Eq.6.1
14 Update the Q-table, (s, a) using Eq. 5.2
15:  end for

16: end while

The next section discusses the case-based transfer learning technique that learns a

solution based on previously gained knowledge.
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6.3 Case-Based Transfer Learning

Figure 6.2 demonstrates the two different learning processes; traditional reinforcement
learning and case-based transfer learning. A traditional reinforcement learning aims
at learning the best solution using a delayed reward process. However, the goal of
case-based transfer learning is to speed up the initial learning phase by transferring
some of the gained knowledge from the source action, previous situations or cases, to

a target action or case [188].

[ Different Tasks ]

/ | \ Source task Target task

CORCHRCH - !

Knowledge | Learning
Learning Learning Learning base solution
Solution 1 Solution 2 Solution 3
Learnt Learnt Learnt Learnt solution [€
Outcome 1 Outcome 2 Outcome3
(a) Traditional Reinforcement Learning (b) Transfer Learning

Figure 6.2: Figure demonstrating the difference between the traditional RL and the TL

In the case of the conventional RL scheme, as also discussed in previous chapters, the
learning agents usually have no or very limited information about the policy or the en-
vironment when they are initially activated. The learning agent learns the solution on
an almost random basis via trial-and-error iterations, as there is no concrete informa-
tion available. The goal is to learn policy or value that maximize the positive reward in
order to achieve global maxima, therefore by the principle of conventional RL, a good
action have continuously increasing Q-values whereas the action value that leads away
from the global optimum experience a decreasing Q-value. However, given a source
and target domain/task, a case-based transfer learning approach as proposed in [189]
[118] aims to accelerate the learning process by transferring some of the knowledge
achieved from source task to target task. The source and the target task in the presented

work are defined as the current and the prospective action value.
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The three main research issues while employing TL are: (1) When to transfer; (2)
What to transfer, and (3) How to transfer [118]. The first issue is addressed by the
situation identification, i.e., when is transferring skills required. What to transfer re-
lates to which part of the knowledge should be transferred across the domains/actions.
Whereas, the last issue of how to transfer relates to the development of appropriate
learning models that would be required to transfer the knowledge acquired. In the

presented work, the three issues are addressed as follows:

1. When to transfer: The heuristically accelerated reinforcement learning policy is
used to identify whether it is necessary to use transfer learning. If required, then
the gained information is transferred using case-based transfer learning after

periodic network performance assessment.

2. What to transfer: A conventional Q-learning approach is used to continuously
update the Q-table after each transmission to build the knowledge base that
guides towards learning an appropriate action value. The updated Q-table and

the learnt action value is transferred to an appropriate target action value accord-
ingly.

3. How to transfer: This relates to the development of models or algorithms to
transfer the gained knowledge. This is performed by splitting the development
process into two steps; value training method and value mapping method. The
value training method is the first step wherein a model is trained such that it
adapts to the environmental changes. Whereas, the value mapping method re-
lates to transfer of knowledge using case-based reasoning to achieve the global

maxima in the considered multi-agent, multi-action scenario.

The objective of case-based transfer learning is thus to accelerate the learning process
by appending the Q-table with the transferred Q-value such that the Q-value on the
good action is maximized whereas that on the bad actions is minimized. The learning
agent, therefore, experiences a lower impact from the dynamic environment and is
expected to learn a more adaptive, consistent and reliable solution. Moreover, a key
benefit of employing transfer learning is that it requires less memory for storing the

knowledge base as only one Q-table throughout the learning process is adequate.
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6.3.1. Value Training Method

A value training method is designed to train a learning agent to adapt to the dynamic
environments by constructing an initial knowledge base or source action. Here, the
source action is the current local action value that is learnt using the conventional
Q-learning and the target action is the global optima. From the perspective to learn
solution with varying spatial-temporal distribution of the vehicles and thus active of-
fered traffic load, a conventional Q-learning approach is used that continuously in-
teracts with the environment, purely through trial-and-error policy during the value
training loop to update the knowledge base; Q-table. A policy 7(s) that maximizes the

expected reward, represented by Eq.6.3.

m(s) = max Qo(s) (6.3)

Where 7(s) is the policy in state s for a learnt action a, s represents the vehicle speed,
Qp is the parametrised Q-function that could be a linear function in the context of
Q-learning or a non-linear parameter as in case of neural networks. In the presented
work, the parameter 6 is a linear parameter that represents the number of nearest eNBs.

Eq. 6.3 therefore transforms into

m(s) = max Qr(s) (6.4)

The framework of the transfer learning value training method is illustrated in Figure

6.3.

Agent 1 Agent 2 | reeeeeeee Agentn —
Analyse Network | % et
Performance v v v
v
Update Q-table Action
Target Action
Training

Figure 6.3: Block diagram of transfer learning value training method [190]
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A continuous policy evaluation is performed using HARL after every transmission to
monitor the network QoS. The heuristic obtained guides the learning agent to evaluate
the current policy more carefully. Moreover, a periodic policy evaluation is performed
after a batch of successful transmissions. The outcome of which determines whether
or not a policy improvement is required. If further improvement to the current policy
is needed then the value mapping loop is used to intelligently learn an appropriate
solution by transferring the knowledge gained from the source action to the target

action such that Qg is close to (0%, the optimal action value.

6.3.2. Value Mapping Method

The value mapping method is designed to map or transfer the knowledge gained during
the value training method to an appropriate target action. The method not only accel-
erates the initial process of identification of the optimal solution but also reduces the
impact of dynamic variations in the network performance due to temporal-spatial ve-
hicle distribution and frequent radio environment changes. The identification of local

maxima, £/, in the Q-table is performed using Equation 6.5.

q(a(k")) = max Qk(s) (6.5)

The obtained g-value is then mapped or transferred from source action, &’ to the target

action, k, using the equation below:

q(a(k)) = q(a(k)) (6.6)

where k is the prospective global maxima, g(a(k)) is the mapped g-value, £’ is the
action with maximum g-value, ¢(a(%’)), in the Q-table. The output is an updated Q-
table that learns the best solution for user association, in the considered scenario, under
the constantly changing environment. This updated table is used for learning during
the conventional Q-learning loop before the next transfer learning loop initiates. The
framework of value mapping method in the context of transfer learning is illustrated

in Fig 6.4.



Chapter 6. Case-Based Reinforcement Learning for User Association 121

Qin(0) T{Q,(0)}=0Q; (1 (2 i(3 out
o e @=am [ a@ s e g 220!

Figure 6.4: Block diagram of transfer learning value mapping method [190]

where, 0;(0) is the initial Q-table, t,, represents the number of iterations a policy
undergo before a learning agent learns an optimal value, P(t) represents the policy
evaluation and improvement process, 7(Q),(t,)) is the updated Q-table from the first
iteration that serves as source task for the next iteration, (), (t) is the final Q-table.

The action with the maximum q value in this table represents the optimal solution.

6.4 Case-Based Reinforcement Learning Approaches

In this section case-based reinforcement learning approaches for user association in
ultra-dense small cell networks are discussed. The algorithms combine the case-
based transfer learning approach and heuristically accelerated reinforcement learning
approach to learn the best solution. Figure 6.5 demonstrates the framework of the

case-based reinforcement learning algorithms that follow a three-stage process.

Model training, constructing Updated Q-table

knowledge base using Q-Learning

!

Deriving Heuristic, policy evaluation
and Policy improvement using HARL

\ 4

Knowledge transfer between multiple ————
action using TL

action Environment

Figure 6.5: Block diagram of case-based reinforcement learning

In the first stage, the model is trained using Q-learning with an aim of maximizing the

reward an agent receives during its interaction with the environment, thus, storing the
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values in a case base. In the next step, HARL is employed to derive the heuristics that
performs policy evaluation and improves the current policy leading towards a global
maximum. In the final step, the knowledge acquired in previous situations is used as
heuristics and transferred between appropriate actions using the value mapping scheme
of transfer learning following which the knowledge base, Q-table, is updated for future

iterations.

Here, the two algorithms developed using the case-based approach are heuristically
accelerated, variable reward, quality aware Q-Learning (HA-VR-QAQL) and heuristi-
cally accelerated, win or learn fast, quality aware Q-Learning (HA-WoLF-QAQL). The
key difference between the developed strategies is that in the case of HA-VR-QAQL
the reward function varies with the learnt action value while learning parameter, « is
kept constant. Whereas, in the case of HA-WoLF-QAQL, the learning parameter is

split into v, and q;,ss While the reward function is constant.

6.4.1. Heuristically Accelerated Variable-Reward Q-Learning

The heuristically accelerated, variable reward, quality aware Q-learning approach (HA-
VR-QAQL) employs the case-base transfer learning and heuristically accelerated re-
inforcement learning to learn an appropriate solution for user association in dynamic
environments. The model or reward function is not known to the learning agent; hence,
the learning algorithm is classified as model-free. Moreover, the system relates to a
multi-agent environment due to the co-existence of many independent learning agents
in the same environment that simultaneously contributes to learning a common goal;

an action value.

The concept of combining case-based reasoning to speed up RL by transferring some
of the knowledge gained in the previous case to a new case was proposed for the
first time by Drummond, [185]. The author emphasizes that extraction of heuristics
at some abstract level in a related task may reduce the extensive re-learning effort
and speed up the learning process. The heuristics obtained were used to formulate
functions/policies as well as construct case-based knowledge base to produce a close

approximation to the solution of a new task. The author concludes by stating that the
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combined function approximation algorithm produced a better solution compared to

the basic reinforcement learning.

The authors in [188], developed a case-based HARL, (CB-HARL) technique, an ex-
tension of HARL algorithm, to solve a problem in target domains which include the
3D mountain car and the RoboCup 3D soccer simulator. The developed approach first
identifies similarity in cases, a source and target case, based on a certain threshold prior
to deriving heuristics using case-based reasoning and thereafter transferring the knowl-
edge to learn a good solution. The heuristics were derived only when the similarity
was above an assumed similarity threshold. The results demonstrated that the devel-
oped scheme outperforms other investigated learning algorithms such as SARSA()),

TD(\), and the conventional Q-learning that was used as a baseline approach.

In [191], the authors proposed an algorithm that uses case-based learning and rein-
forcement learning to enable distributed learning of behaviour policies as heuristics in
a cooperative multiagent domain to learn a common goal without any communication
between the learning agent. The approach was developed and tested by a series of ex-
periments on a reactive job-shop scheduling domain. The outcome demonstrated that
employing case-based reasoning with reinforcement learning the developed approach

was able to produce a better solution.

Similarly, the concept of case-based reinforcement learning has been applied to the
wireless communication domain in [171]. The paper presents the significance of the
case-based reinforcement learning algorithm for spectrum assignment in a cognitive
cellular network with dynamic topologies. The problem is classified as a distributed
dynamic spectrum assignment with non-communicating eNB. This transforms the en-
vironment into a model-free, independent learning multi-agent environment. The de-
veloped learning based spectrum assignment algorithm was assessed empirically by
measuring performance metrics such as the network blocking and dropping proba-
bilities. The results demonstrated an improved temporal network performance when

compared to the fully distributed spectrum assignment scheme.

Figure 6.6 presents a detailed HA-VR-QAQL user association algorithm flowchart that
presents the integration of variable reward quality aware Q-learning approach and case

based transfer learning policy to learn the best association range in a highway scenario.



124 Chapter 6. Case-Based Reinforcement Learning for User Association

Mobile terminal
initiates transmission

k-NN selection : e-greedy scheme

VR-QAQL |
(every transmission) |

Successful
transmission ?

Update

Q-table _— ~~o
., Prex>5% s Negative

S - .
"'"-I—"" reinforcement
N

-

T~y
~~~

Positive
Reinforcement

i Case-Based Transfer Learning
i (every X’ transmissions)

Max g-value Max g-value

action < 10 action > 1
Y i r
* Find max g-value action (k) Reward » Find min g-value action (k)
* g(k+1) = max g-value k™ value » g(highest k) = min g-value
* Reward (k+1)"action a=0.01 » Punish highest k action
a=0.01;r=+k r=+k a=0.01;r=—-k

Figure 6.6: A comprehensive flowchart presenting the HA-VR-QAQL approach to
learn the appropriate action value for user association in dynamic environments

In the first step of the developed algorithm, the variable reward Q-learning scheme
is employed that uses reward shaping also known as variable reward function, as dis-
cussed in Section 5.4.3. The scheme rewards or punishes a chosen action with a reward
equal to the action value depending on the success or failure of a transmission. An ac-
tion that degrades the overall network performance is punished harshly even if it has

been a promising solution during the initial learning phase.

The second step of implementing case-based transfer learning initiates after a batch
of successful transmissions. In this step, the HARL scheme performs policy evalua-
tion by deriving the heuristic information. The outcome is analyzed to identify and
decide whether the third step should be exploited to transfer or map the gained knowl-

edge between the actions using the value mapping method. The periodic evaluation of
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heuristics aims to improve the learning policy thus guiding the learning agent to learn
a good solution by reconstructing its current policy. The proposed HA-VR-QAQL al-
gorithm, therefore, aims to preserve the RL advantage of learning a good action policy
that maximizes the expected reward through trial-and-error interaction with its envi-

ronment as well as improves the stability and reliability of the learnt solution.

The third step relates to transferring a case base of heuristics using the value mapping
function of case-based transfer learning to influence the action choice, i.e., allowing the
retrieval and reuse of heuristic information from case-base between multiple actions.
Furthermore, in this step, the learning agent believes that the current learnt action is
a local maximum and that the immediate successor/predecessor action, depending on
the network QoS, is the global optimum. Therefore, as shown in Figure 6.7, the value
mapping function uses the g-value as heuristic and transfers the gained knowledge to

a target action during the policy evaluation and improvement process.

evaluation
V=V
T
starting v* 4
V n T* n—=greedy(V
improvement
- - - .
Policy evaluation Estimate v, .
Any policy evaluation algorithm .
Policy improvement Generate n’ > . «
Any policy improvement algorithm T a——=V

Figure 6.7: The policy evaluation and policy improvement procedure exploited in HA-
VR-QAQL approach, directly reproduced from [100]

6.4.2. Heuristically Accelerated WoLLF Q-Learning

Learning an optimal policy in dynamic multiagent vehicular environments is difficult
due to (a) the presence of other learning agents who simultaneously contribute towards

updating the knowledge base, and (b) the dynamic variations in the radio environment
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due to vehicle mobility. This section proposes a heuristically accelerated, Win or Learn
Fast, quality aware Q-learning approach, HA-WoLF-QAQL that combines the WoLLF
concept, the case-based transfer learning and the heuristically accelerated reinforce-
ment learning to learn a reliable solution across different traffic conditions in a dy-
namic environment. A detailed flowchart of the HA-WoLF-QAQL algorithm demon-
strating the learning dynamics achieved using the case-based reinforcement learning

is shown in Figure 6.8.
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Figure 6.8: A comprehensive flowchart presenting the HA-WoLF-QAQL approach to
learn the appropriate action value for user association in a dynamic environment

The developed scheme relates to a multi-agent environment similar to the HA-VR-
QAQL approach, in the previous section, and is also model free, i.e, the learning agent
is unaware about the environment or the reward function. The WoLF technique has
been explained in detail in Section 5.4.2. In this section, the concept of WoLF is

investigated to assess if the learning agent could adapt to the dynamics of vehicular
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as well as a wireless environment in a multi-agent environment to learn a reliable
solution for user association. The Q-table update rule in conventional Q-Learning is

as expressed in Chapter 5, re-written below:
Q(k) = (1 = )Q'(k) + ar (6.7)

where k is the learnt action value, (k) corresponds to the updated Q-value of the
learnt action value k. ()’ (k) is the previous Q-value of the action k. The learning rate
parameter, «, controls the convergence rate, and r is the reward awarded to an action
determined by the reward function. The discount factor ~ is assumed as 0, in this

algorithm, therefore, the component is not included in the Eq.6.7.

Applying the WoLF principle to Eq.6.7, i.e., splitting the learning rate into «,;, and

055, the equation transforms into:

Q(/{?) _ { (1 - O‘wm)Q <k> + Qpinr, T =1 6.8)
(1 - aloss)Q,(k) + QossTs T = —1

Equating the reward function (r = =+1) in the above equation and rearranging the

terms yields:

Q(k>:{ Q' (k) + awin(1 —Q'(k)), r=1 69)
Q' (k) — auoss(1 4+ Q'(k)), 7=—1 '

The magnitude of change in the Q-value AQ = Q;(k) — Q;—1(k) is given by

_awian(k) + Quin, T = 1
AQ| = { (6.10)
OﬂossQ/(k) + Qoss, T = -1
The above equation demonstrates a linear relationship between the Q-value and the
magnitude of its change. It can, therefore, be concluded that if v, < s, then
the output Q-value is negative, i.e., the learning agent learns quickly if it fails and

vice versa. This property of the WoLF technique assists the learning agent not to

quickly converge to a solution which would have proved promising in the initial learn-
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ing stages. The results obtained are in coherence with the in-depth validation provided
by the authors in [175]. The knowledge base developed is utilized by the learning
agent similarly as in HA-VR-QAQL algorithm.

One of the advantages of employing the WoLF approach to learn a good solution is
that the technique enables a thorough exploration during the initial phase of the learn-
ing. The knowledge base constructed is utilized by HARL, as in the previous learning
algorithm, to initiate the case-based transfer learning that leads the learning agent to-
wards learning a global solution. In conventional RL, an action is learnt irrespective
of the transmission status at equal learning rate. This varies the Q-value in the Q-
table considerably. However, in the case of WoLF if a learnt action results in several
successful transmissions then its Q-value will keep on increasing. This action will
be continuously used for future iterations due to the greedy action selection policy.
Meanwhile, if this learnt action starts to result in interrupted transmissions, the learn-
ing algorithm will take fewer failed trials compared to a constant learning rate policy,

thus, reconstructing its policies faster.

6.5 Results

6.5.1. Comparison of HA-VR-QAQL with other RL Approaches

This section presents the results obtained during a large-scale simulation experiment.
Based on the investigated user association schemes, performance metric results such
as the learnt £ value in Figure 6.9, the number of handovers per transmission in Figure
6.10, the probability of re-transmission in Figure 6.11 and the end-to-end delay in
Figure 6.12 are demonstrated. To present a more statistically valid temporal response,

graphs present the average of 25 different random seed simulations.

In Figure 6.9, the action learnt by employing different association algorithm is demon-
strated. The action value plotted at different traffic level represents an average of the
different learnt action value during the simulation experiment. The baseline compar-
ison approaches are the maximum-RSS, £ = 1, and the maximum distance, k = 4,

user association approach. The assumed k value remains constant throughout the sim-
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ulation experiment for all the vehicle speed. Under the max-RSS user association ap-
proach, the closest eNB to the user is selected. Associating with the minimum distance
eNB reduces the path attenuation, therefore, a minimum probability of retransmission
and end-to-end delay are achieved across all mobility levels. However, a linear in-
crease in the number of handovers per transmission as the vehicle speed increases is
monitored as shown in Figure 6.10. This is due to unnecessary handovers that oc-
cur at every cell boundary. On the contrary, with £ = 4, the UE associates with the
furthest eNB in the £-NN list, the signal propagation attenuation increases due to an
increase in the propagation range, resulting in poor QoS and end-to-end delay but with

a significant decrease in the handover frequency.
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Figure 6.9: Performance comparison based on learnt appropriate action, %k value, uti-
lizing different schemes at different vehicle mobility
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On the contrary, the learning schemes are adaptive, therefore, have the potential to
evaluate, improve and restructure their policies as soon as any change in the envi-
ronment is encountered. The classical Q-learning approach successfully learns an
appropriate action value, only through trial-and-error and performs better than the
non-learning user association schemes, especially at high mobility, but fails to deliver
guaranteed QoS at low speed, seen in Figure 6.11 and Figure 6.12. It is because the

scheme learns action based only upon the transmission status rather than the overall

system QoS.
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Figure 6.11: The probability of retransmission performance using different user asso-
ciation schemes across different vehicle speed
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Similarly, the VR-QAQL approach exhibits better performance with respect to overall
network QoS compared to the classical Q-learning approach. This is due to the in-
corporation of additional heuristic information which guides the exploration process
to evaluate a better-learnt action with a marginal compromise in handover frequency,
as seen in Figure 6.10. Despite learning an effective action value whilst providing a
guaranteed QoS, as seen in Figure 6.11, there is still an opportunity for enhancement.
The HA-VR-QAQL approach utilizes the variable reward function, heuristic informa-
tion and case-based transfer learning to learn best action value, achieve a minimum
number of handover per transmission and provide guaranteed QoS by (a) utilizing the
transfer learning mechanism on a variable reward Q-learning framework during the pe-
riodic action-value evaluation that forces the learning agent towards the best solution,
and (b) deriving heuristic information that guide the exploration function to carefully
evaluate the action value. The HA-VR-QAQL algorithm, therefore, outperforms all
the other association schemes because of the strong correlation between the action

selection process and the policy iteration process.

6.5.2. Comparison between Case-Based RL Approaches

The temporal response of the network in terms of the probability of retransmission at
varying offered traffic levels, using the case-based reinforcement learning approaches
for user association is compared in this section. The graph in Figure 6.13 shows the
average of 25 simulations with different random seeds in order to produce more sta-
tistically valid temporal results. Firstly, the graph shows that both the developed ap-
proaches deliver a guaranteed network QoS. Secondly, the developed schemes achieved
a significant improvement compared with the baseline technique; max-RSS approach
due to the guided exploration process of the case-based reinforcement learning that
demonstrated to be highly effective. The network quality of service achieved by the
HA-VR-QAQL algorithm in comparison with the max-RSS approach shows an im-

provement by a factor of 81-82% at a low mobility level of 10 km/hr.

In Figure 6.13 it is also seen that HA-WoLF-QAQL has a significantly lower proba-
bility of retransmission compared to the HA-VR-QAQL thus imply that it could adapt

to the frequent changes in the environment considerably faster. This characteristic is
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more desirable with time-varying traffic distributions wherein the motivation is only
to provide the best QoS with ultra-reliable low latency. However, the motivation of
the presented work is not only to provide a guaranteed QoS or ultra-low latency but
to learn the maximum association range for user association such that an equilibrium
between guaranteed network QoS and number of handovers per transmission at all
mobility levels are achieved. The results shown in Figure 6.14 presents the end-to-
end delay profile achieved using the two case-based RL schemes and correlates with
the result obtained in Figure 6.13. The graph demonstrates that the HA-WoLF-QAQL

approach outperforms the HA-VR-QAQL largely because of a variable learning rate.
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Figure 6.13: The probability of retransmission performance using different user asso-
ciation schemes across different vehicle speed
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However, from the graphs demonstrated in Fig 6.15 and Figure 6.16, it could be
concluded that the HA-VR-QAQL approach performed significantly better than HA-

WoLF-QAQL in the dynamic environment due to the use of variable reward function.
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Figure 6.15: The performance of a learning agent to learn an appropriate action utiliz-
ing different investigated schemes at different vehicle mobility

45 J’
4+ ..-i*--- Fixed SD; k=1 e
wo@o Fixed D k=4 e
35F HA-WoLF-QA-QL * “““ b

—f— HA-VR-QA-QL ’

08
ot
8
0
ot
S
0
o
3
-
o

Number of handovers per transmission

10 15 20 25 30 35 40 45 50 55 60
Vehicle speed (km/hr)

Figure 6.16: The handover frequency performance with different schemes

The obtained results collectively confirm that the HA-VR-QAQL technique outper-
formed all the other proposed user association techniques as it learns an optimal action

whilst achieving both of the initial set goals across different mobility levels.
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6.6 Conclusion

This chapter investigates the case-based reinforcement learning strategy to learn the
optimal action at different vehicle speed in a highly dense small-cell dynamic vehic-
ular environment. The proposed CBRL schemes have been tested across different
mobility levels in a bi-directional multiple-lane highway scenario. The large-scale
simulation results show that the HA-VR-QAQL scheme outperforms the baseline max-
RSS user association approach as well as other reinforcement learning approaches by
demonstrating the ability to strike a balance between handover frequency and system
performance whilst providing guaranteed network QoS. The HA-VR-QAQL approach
reduced the number of handovers per transmission by about 78-80% with marginal
compromise in the network QoS when compared to max-RSS user association ap-
proach at a vehicle speed of 60 km/hr. The results, therefore, provide valuable insights
into intelligent user association in dense dynamic environments as well as serve as a
guideline for the development of more advanced strategies related to the vehicle com-

munication optimization and topology management in future.
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7.1 Conclusions

This thesis has investigated the application of heuristic as well as intelligent learning
algorithms for user association in ultra-dense small cell vehicular network, in order
to mitigate the mobility-related concerns whilst achieve a guaranteed network perfor-
mance. It has been realized that the velocity and the density of vehicle nodes plays
a crucial role in network performance and user experience in densely deployed low
powered small cell networks. The two extreme cases identified in the presented thesis
were (a) high mobility scenario with characteristics such as short network lifetime,
few vehicle nodes, sparse vehicle distribution and low traffic congestion (b) low or
no mobility scenario with traffic congestion, high vehicle density, and longer network

lifetime.

Firstly, a conventional, performance metric based user association algorithm that fol-
lows a three-step sequence was proposed to understand the affect of individual metric
on network performance and user experience. Subsequently, the results motivated to
develop a real-time control feedback technique, an effective computing algorithm for
user association in dynamic environments. The results provided an insight into the
influence of vehicle speed on the network performance. Following this few reinforce-
ment learning based user association algorithms were developed to learn appropriate
solution purely through trial-and-error iterations regardless of the network topology

and/or traffic dynamics. The empirical assessment of the proposed algorithms have
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highlighted that the introduction of intelligence appears to be an essential require-
ment in order to mitigate the mobility-related concern, therefore, provide a reliable
and robust radio access network for a diverse range of use cases especially in rapidly

changing environments.

RL is one of the most popular and powerful approaches in both wireless networks
and other artificial domains due to its self-organizing and self-co-ordination abilities.
Moreover, it eliminates the need for manual intervention that is potentially challenging
and time-consuming to keep up with dynamic varying traffic load and network topolo-
gies. However, an inherent disadvantage of RL algorithms is the need for a longer
exploration phase, a characteristic that is undesirable in real-time applications. To
overcome this case-based reinforcement learning user association approach was pro-
posed in Chapter 6. The scheme combined case-based transfer learning with heuris-
tically accelerated RL to improve the reliability and adaptability of the developed RL
based user association algorithms in Chapter 5. The CBRL algorithm was able to im-
prove the initial as well as steady-state performance. Similar to other investigated RL
schemes, CBRL algorithms were also able to restructure their current policy to learn
reliable solution in a rapidly changing ultra-dense small cell vehicular environment
such that the varying demand for data coverage and capacity by the users on the move

are met.

A more detailed chapter-by-chapter discussion of the original contributions of this
thesis towards the traffic dynamics and adaptability of intelligent user association in

dynamic environments is given in the following subsection.

7.1.1. Original Contributions
Ultra-dense Small Cell Vehicular Network Simulator

In order to evaluate the empirical properties of the proposed user association ap-
proaches, a model that could accurately represent an ultra-dense small cell vehicu-
lar network was absolutely important. Considerable effort has been made to develop
a sufficiently complex event-based system level simulator. It is an integration of a

dynamic vehicular network, a highway, and an ultra-dense small cell network. The
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model considers relevant aspects of LTE simulation, such as multi-cell environments
with uplink flows, user mobility, handover procedures, cell planning, scheduling, inter-
ference calculation, and QoS management in a dynamic environment. Moreover, the
developed simulator enables the analysis of the influence of user mobility on network
performance across different mobility levels. Chapter 3 presents the modelling tech-
niques used to develop the simulation model and key performance metrics utilized for
assessment of these policies. The developed simulation model allows system and user
experience to be modelled, empirically assess the performance and reliability of the

proposed algorithms and serves as the firm foundation for the main research problem.

Performance Metric based Three-Step Sequence Approach

In Chapter 4, a conventional, performance metric based user association algorithm
that follows a three-step sequence to shortlist, select and choose an appropriate base
station for association was proposed. The scheme effectively determines a robust so-
lution on a diverse range of vehicle speed. The designed approach uses parameters
such as vehicle speed, the direction of vehicle flow, desired performance metric and
geographical locations of eNBs and vehicles to identify an appropriate eNB for the
association. The results provided insight into the influence of different performance
indicators such as spectrum efficiency, network load and dwell time per cell on the
network performance and the number of handovers at different traffic conditions that
relates to the mobility-related concerns. The simulation results obtained demonstrated
the equivalence between vehicular traffic and radio communication in an ultra-dense
small cell environment that was subsequently quantified and exploited to develop more

sophisticated user association schemes.

Variable Learning Rate and Reward Function Approach

In Chapter 5, few RL based user association schemes, using the Q-learning frame-
work, have been proposed to enhance the network performance and user experience.
Among them, the conventional Q-Learning approach learnt a solution which was able
to provide the guaranteed QoS but failed to assure that the learnt solution is the global

maximum. However, the WoLF-QL approach was developed by employing a variable
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learning rate to learn the best solution. The scheme guided the learning agent to learn
a solution slowly in case of winning and quickly in case of unsuccessful trials. The
algorithm performed better than the conventional Q-Learning; however, it converged
to a sub-optimal solution. On the contrary, motivated by the high-risk-high-return ap-
proach, the VR-QL algorithm was proposed for user association. The scheme learnt
the maximum association range by varying the reward function while the learning rate
remains constant. The conventional QL, WoLF-QL and the VR-QL algorithm learnt an
action value purely through trial-and-error iterations and were promising techniques to
achieve a single parameter optimization, i.e., the schemes either learnt an action value
that delivered a guaranteed network QoS or learnt the global maxima at the expense of

an extremely degraded network performance.

Variable Reward Quality-Aware Q-learning Approach

Later in Chapter 5, the variable reward quality-aware Q-learning (VR-QAQL) algo-
rithm was proposed with an aim to achieve multiple parameter optimization. VR-
QAQL followed learn-execute-evaluate-formulate-improve principle to learn the best
action value for user association. The algorithm recursively performed policy evalu-
ation and policy improvement processes, using the VR-QL and the real-time control
feedback approach, enabling the learning agent to learn a solution that might have not
been proven to be promising only in the early simulation phase. The strong correlation
between the policy evaluation and policy improvement process in the VR-QAQL algo-
rithm outperform the conventional max-RSS user association approach, the real-time
controlled feedback approach, as well as other developed RL approaches, by learn-
ing the best action value whilst delivering guaranteed network QoS across all vehicle

speeds in the considered vehicular scenario.

Case-Based Reinforcement Learning Approach

The novel case-based reinforcement learning (CBRL) technique proposed in Chapter
6 is an effective user association approach in ultra-dense dynamic environments. The
techniques combined the heuristically accelerated reinforcement learning and case-

based transfer learning using a variable reward function and variable learning rate
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respectively. The large-scale system level simulations of a highway network with a
rapidly changing temporal-spatial vehicular distribution show that augmenting classi-
cal distributed Q-learning with case-based transfer learning and variable reward func-
tion improves the reliability of the learnt solution significantly as well as learns the
maximum action value at different network conditions. The developed case-based re-
inforcement learning algorithms outperformed all the other user association techniques
investigated by exploiting the strong correlation between the classical Q-learning,
heuristically-accelerated reinforcement learning, transfer learning and variable reward

function, thus, achieving a consistent improvement in system QoS at all vehicle speed.

7.1.2. Hypothesis Revisited

The research has been guided by the following hypothesis as stated in Chapter 1.

“Appropriate exploitation of heuristic information through reinforcement learning for
user association in ultra-dense dynamic vehicular environments can significantly re-

duce the handover rate whilst delivering a guaranteed network quality of service.”

The hypothesis has indicated the need for designing learning-based user association
schemes to facilitate self-organization and self-management in ultra-dense dynamic
vehicular environments. In the context of the above hypothesis, the key contributions

of this thesis can be summarized as follows:

e The three-step sequence user association approach proposed in Chapter 4, demon-
strate the influence of individual performance metric on user experience and
network performance in the considered dynamic vehicular, ultra-dense environ-

ment.

e The WoLF-QL approach proposed in Chapter 5 uses the variable learning rate
policy to learn a reliable action, thus, increasing the adaptability of the conven-
tional RL based user association approach. The persistent exploration encour-
ages the learning agent to continuously reconstruct its current policy such that it

does not converge to local maxima.

e Similarly, the VR-QL approach, also proposed in Chapter 5, uses a variable
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reward function to learn an appropriate action value. The results of VR-QL and
real-time control feedback approach motivated us to combine both techniques
to form the VR-QAQL user association approach. The VR-QAQL algorithm
employs the high risk and high reward policy to learn the maximum action-value,
during the policy evaluation and policy improvement to improve the robustness

of the learnt solution.

e Chapter 6 proposes a case-based reinforcement learning user association ap-
proach. The scheme employs the merits of transfer learning and heuristic ac-
celeration on a VR-QAQL and WoLF-QAQL framework to enable the learning
agent to rationally evaluate and improve the current policy, thus, adapt to the

rapidly changing environment.

These contributions have been empirically evaluated in this thesis. The results show
dramatic improvements in the adaptability of the RL based user association methods

to vehicular networks, thus, proving the hypothesis of this research.

7.2 Recommendation for Future Work

This section provides recommendations for further work that includes extensions of

the ideas and potential application on the areas explored in this thesis.

Application of CBRL to Urban Intersection Scenario

The research work presented in Chapter 6 demonstrates the effectiveness of case-based
reinforcement learning user association specifically on a highway scenario, where the
vehicles move at a constant speed. Due to the variation in mobility pattern of users
at different vehicle speed, especially in a more complex dynamic scenario such as in
urban intersection with free-flow traffic and restricted-flow traffic more sophisticated
CBRL algorithms will be required to provide more advanced reliable communication
and stable QoS. It is therefore recommended to first investigate the feasibility and reli-
ability of the proposed CBRL algorithm, as well as other investigated RL approaches

on these scenarios before more advanced CBRL algorithms for these scenarios, are
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investigated. Some of the machine learning schemes such as density estimation, state-
action-reward-state-action (SARSA), semi-supervised learning, active learning, deci-
sion tree, and decision forest may be used to develop sophisticated handoff strategies
that may further enhance the stability and reliability of dynamic user association in
vehicular networks. Moreover, the results obtained in chapter 6 may be used as the

baseline results for comparison with more advanced user association algorithms.

Effect of Exploration on Agent’s Performance

In the considered dynamic vehicular scenario, due to the node mobility, frequent
changes in the network topology and radio network performance are experienced.
The learning strategies developed uses epsilon-greedy exploration, with a persistent
e value, to constantly simulate exploration, yet select an action value that performs
the best. The learning agent selects a greedy action with probability 1-¢, while uses
an exploratory approach with the probability of €. A persistent exploration thus up-
dates the current learning policy depending on the current environmental conditions.
However, the disadvantage of using persistent learning is that the learning agent con-
stantly explores other actions even when it has converged which may lead to learning
a sub-optimal action. Therefore, to understand the impact of exploration function
on learning agent’s performance in such uncertain environment, different exploration
strategies such as random exploration, greedy exploration, e-greedy exploration, de-
caying e-greedy exploration, and softmax exploration should be investigated. The re-
sults obtained may be compared in terms of reliability, adaptability and convergence to
provide a better understanding of the impact of exploration on learning optimal policy

in dynamic scenarios.

Employing Inverse Reinforcement Learning to Learn Reward Function

The learning algorithms investigated in the presented thesis used a constant reward
value to evaluate an action and learn an appropriate solution. In the case of traditional
Q-Learning and the WoLF-QL, the reward value is a constant; (r = +1). However,
in the case of VR-QL approach, the VR-QAQL approach, and HA-VR-QAQL ap-

proach, the reward function depends on the action chosen, i.e., an action is rewarded
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with a positive reward equal to the action value if a trail is successful else it is pun-
ished; (r = 4k). The simulation results assisted to understand the impact of reward
function on learning performance in a vehicular environment. However, the empirical
evaluation was not able to identify an optimal reward function that would generate a
straightforward desirable behaviour. An emerging technique to extract or optimize a
reward function based on an observed optimal behaviour is the Inverse Reinforcement
Learning (IRL). In the state-of-the-art Q-Learning, the purpose is to learn an optimal
policy by mapping states to action such that the overall reward is maximized. How-
ever, IRL intends to recover the reward value for each action learnt and use the values
to generate a desirable behaviour. The simulation results obtained in this thesis may

serve as heuristic information to identify the reward function using the IRL approach.

Traffic-aware Cell Management

One of the essential parameters to maximize the coverage and capacity provisioning
to the moving users and to improve the QoS on the access link is load balancing. It re-
lates to network load management, i.e., equalizing the offered network traffic between
neighbouring or overlaid cells. Chapter 4 discusses the influence of different perfor-
mance metrics based user association approaches on the network performance and user
experience. However, the later chapters of the thesis predominantly focus towards the
application of RL based approaches to mitigate the challenges due to user mobility in
the ultra-dense small cell environment. Therefore, it is highly recommended to first ex-
plore traditional load balancing techniques in vehicular networks and then develop re-
inforcement learning based load balancing approaches in vehicular environments that
enhance the network capacity and performance. Moreover, machine learning enabled
load balancing and load unbalancing approaches may also assist towards adaptive base
station switching on an off using traffic load as heuristic information, resulting in the

development of adaptive green frameworks.

Exploiting Clustering Techniques for User Association

Another possible direction to extend the research work to mitigate the uncertainty in

larger scenarios due to high node mobility and higher node-density is to group vehicles
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with similar properties. Clustering is a popular machine learning technique to classify
or group data with similar properties. In the context of vehicular networks, cluster-
ing of vehicles could be performed based on predefined parameters such as vehicle
density, velocity, the signal strength received, the direction of flow and/or geograph-
ical locations. The research should begin by grouping vehicle users using different
clustering schemes such that the cluster structure is maintained without any increase
in the communication overhead. The authors of [193] provides an extensive survey
of different clustering algorithms for wireless networks. The research should then fo-
cus to develop a machine learning based horizontal and vertical handoff strategies for
efficient communications. Further, the proposed algorithms should be assessed at dif-
ferent vehicle speed and vehicle density to analyze their adaptability and reliability in

dynamic environments.
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Glossary

BBU Baseband Unit
BS Base Station

CA Carrier Aggregation

CAPEX Capital Expenditure

CBR Case Based Reasoning

CBTL Case Based Transfer Learning

CB Coordinated Beamforming

CoMP Coordinated Multipoint

CS Coordinated Scheduling

C-RAN Cloud-RAN

CRE Cell Range Expansion

DP Dual Connectivity

DP Dynamic Programming

eNB Evolved Node B

FTP File Transfer Protocol

HARL Heuristically Accelerated Reinforcement Learning
HA-VR-QAQL Heuristically Accelerated Variable Reward Quality Aware Q-Learning

HA-WoLF-QAQL Heuristically Accelerated Win-or-Learn Fast Quality Aware Q-

Learning
HeTNet Heterogeneous Network
KPI Key Performance Indicator

LOS Line-of-Sight
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LTE Long Term Evolution

MDP Markov Decision Process

MIMO Multiple Input Multiple Output
NLOS Non-Line-of-Sight

MARL Multi-agent Reinforcement Learning
MS Mobile Station

OPEX Operational Expenditure

QoE Quality of Experience

QoS Quality of Service

QL Q-Learning

RAN Radio Access Network

RAT Radio Access Technology

RL Reinforcement Learning

RRH Remote Radio Head

RSS Radio Signal Strength

RSRQ Reference Signal Received Quality
RSRP Reference Signal Received Power
RSSI Reference Signal Strength Indicator
SARSA State action reward state action
SINR Signal-to-Interference plus Noise
SNR Signal-to-Noise Ratio

TL Transfer Learning

UDN Ultra dense Network

UE User Equipment
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Glossary

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

VNI Visual Network Index

VR-QL Variable Reward Q-Learning

VR-QAQL Variable Reward Quality Aware Q-Learning
WoLF Win-or-Learn-Fast

WoLF-QL Win-or-Learn-Fast Q-Learning
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