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ABSTRACT 
 
 Rare earth elements (REE) are considered indispensable and non-replaceable in many 

optical, electronic, catalytic and magnetic applications. Indeed they are viewed as critical 

metals due to the monopoly China has over their supply chain and to their ever increasing 

demand. Ion adsorption-type deposits (IAD) have attracted much attention in recent years as 

the relative ease of REE recovery makes these deposits economically significant. At present 

IAD are only mined in China, which has led to considerable environmental damage. 

 
 This study considers an IAD in NW Madagascar which is under active exploration. The 

research aim was to develop a numerical modelling approach to simulate the mobilisation of 

REE from IAD. To achieve this, REE exchange reactions with Madagascar IAD minerals in 

batch reactor tests were modelled, and thermodynamic equilibrium constants were estimated 

for these reactions. Reactive transport modelling of flow-through laboratory column 

experiments was undertaken to test the estimated REE exchange constants.  

 
 A single exchange constant of log K 2.29 ± 0.5 (experimental standard deviation) was 

able to describe all the REE exchange reactions with the Madagascar IAD in both batch and 

column datasets. Exchange constants were also estimated for each individual REE to account 

for any variation in REE behaviour (e.g. due to the lanthanide contraction). The determined 

constant only varied to 2 decimal places and the difference between the objective functions for 

individual log K model (5.71 x 10-11) and for the single log K model (5.72 x 10-11) was minimal.  

 
 Without further application to different IAD and different sample materials from 

Madagascar, the exchange constants estimated in this study should not be considered as the 

standard equilibrium constants for all IAD-REE exchange reactions. 
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 CHAPTER 1 
 

INTRODUCTION  
 
1.1 Motivation 

 
 The rare earth elements (REE) are a coherent group of trace elements with regard to 

their physical, chemical and structural properties (i.e. ionic radius, charge, and mineral site 

coordination). They comprise the fifteen lanthanides, yttrium and scandium. The REE are 

considered ‘critical’ metals because of their extensive applications in the technological sector 

and China’s control over all aspects of the supply chain (EC, 2014; Massari & Ruberti, 2013).  

 
 Today, at least 80 % of the global supply of REE comes from China (USGS, 2018), where 

mining and processing has been concentrated since other large players started leaving the 

market in the late 1990s. Changes to Chinese industrial policies in the early 2010s led to 

decreases in their export quota (Mancheri, 2015; Wübbeke, 2013), in turn this led to a surge 

in global REE exploration activities (Paulick, & Machacek, 2017). 

 
 A number of recent exploration projects in Madagascar and Brazil focus on ion 

adsorption type REE deposits (IAD). These lateritic1 soils are only commercially processed in 

China, where they represent the world’s main source of heavy REE (HREE). IAD are 

characterised by the relative ease of REE recovery using a salt solution to mobilise the 

exchangeable REE cations adsorbed onto the surfaces of clay minerals (Chi & Tian, 2008). 

 
 The mining practices associated with REE recovery from IAD (e.g. heap leaching) have 

led to severe environmental consequences in China, for example soil excavation (Yang et al., 

2013). Alternative environmentally focused mining approaches should be considered to 

develop newly discovered IAD (e.g. in Madagascar) but, prior to this, it is important to 

understand the mechanism of REE mobilisation during mining, and model this.  

 
 A relatively good conceptual understanding of the cation exchange mechanism by which 

the REE are mobilised from IAD when in contact with a concentrated salt solution (during 

mining), can be found in the literature (e.g. Coppin et al., 2002). However, the absence of 

thermodynamic equilibrium constants in the literature (for all the REE) which need to be used 

to model REE exchange reactions with the minerals in the IAD presents a problem.   

                                                
1 Laterite soils are highly weathered tropical or subtropical residual soil, when REE in laterites adsorb 
onto the surfaces of clay minerals they form IAD. 
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1.2 Aim 

 
 The aim of this research was therefore to develop a numerical modelling approach 

that will simulate the mobilisation of the REE from ion adsorption deposits during 

mining. This will also involve the consideration of a more environmentally focused extraction 

method than the techniques currently employed. 

 
1.2.1 Objectives  

 

 Measure the cation exchange capacity of the Madagascar lateritic soil. 

 Develop a mathematical modelling approach to determine thermodynamic equilibrium 

constants using batch reactor experimental data for REE exchange reactions with the 

Madagascar IAD minerals.   

 Determine whether the REE exchange constants can represent REE breakthrough 

curves from soil column experiments. 

 Apply reactive transport modelling at site scale to assess the applicability of an 

environmentally focused mining approach to recover REE from the Madagascar IAD. 

 
1.3 Madagascar Study Area  

 
 

 A laterite deposit under active exploration was chosen as the study area. This deposit 

was known as the Tantalus rare earths project and was fully owned by Tantalus Rare Earths 

AG at the start of this research. As of December 2015, Tantalus Rare Earths AG no longer 

owns the primary share of the deposit, it will henceforth be termed the Madagascar IAD.  

 
 The Madagascar IAD is located on the Ampasindava Peninsula, in the Antsiranana 

Province in north western Madagascar (see Fig. 1.1). The study area encompasses 283 km2. 

The geology comprises a sequence of mainly Jurassic mudstones and siltstones, intruded by 

the Tertiary alkaline igneous rocks named the Ambohimirahavavy igneous complex.  

 
 The Ambohimirahavavy igneous complex is associated with a variety of mineralised 

rocks: alkaline volcanics; syenitic ring-dykes and late peralkaline granitic and pegmatitic dykes. 

Two types of REE mineralisation occur in the IAD. REE are hosted by peralkaline rocks in the 

bedrock and ion adsorption-type REE are present in the overlying laterite profile (SRK, 2013). 
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Fig. 1.1 Study area in NW Madagascar (from Kathryn Goodenough). 
 
 

  A typical laterite profile in the Madagascar study area is shown in Fig. 1.2. The minerals 

present in the profile were identified from a technical report about the Madagascar deposit 

undertaken by SRK (2013), and from XRD analysis that was performed by SoS Rare project 

colleagues at Brighton University on samples from a number of localities around the site.   
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Fig. 1.2 Typical REE-enriched laterite profile in NW Madagascar (adapted from Plummer et al., 1991). 
 

1.3.1 Pit Logging  

 
 Fieldwork on the Madagascar study area was carried out in 2016 by SoS RARE project 

colleagues from BGS and Brighton University. This involved sample collection from five pits at 

different localities on the Ambohimirahavavy igneous complex. The sampling approach is 

described in this section.  

 
 

 The five pits sampled on the Ambohimirahavavy complex are shown in the upper right 

diagram of Fig. 1.1. The pits are located on a microsyenite/rhyolite hill (1), in a river valley (2), 

on a ridge (3), and on the seaward slope (4, 5). Each pit had a width of 1 m with vertical depths 

ranging from 1 - 6.5 m.   

 
 Bulk samples (2 – 3 kg) from each horizon and smaller 500 g samples at 25 – 30 cm 

intervals were collected from each pit. Pans were used to scoop the displaced material into 

bags, during which some mixing would have occurred. Collection began at the lowermost 

interval to minimise contamination.  

 
 All samples were stored in sealed plastic bags and shipped to BGS. The sample material 

used in this study was collected from pit 3, which was located in a secondary forest (ca. 20 
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years old) on top of a syenite ring dyke. The pit was excavated manually to a depth of 4.5 m 

(bottom right diagram in Fig. 1.1).  

 
 The bulk sample (593) collected between 3 - 4 m depth in the lower pedolith was chosen 

for experimental work because it was where the REE were thought to be most concentrated 

based on the weathering profile development model by Sanematsu & Watanabe (2016). Total 

REE content in sample 593 is ~ 200 ppm2.  

 
 Within this lateritic section (sample 593), the disturbed material is a fine clayey soil that 

is brownish-orange in colour and is interspersed with white saprolite patches. There are a few 

soft chunks present that can be easily broken with a pestle. Some detrital organic materials 

(i.e. remnants of plants, roots etc.) are also present.  

 
 Table 1.1 shows XRD analysis of the pit 3 weathered profile3. Kaolinite is observed to be 

the dominant clay mineral in the IAD. Halloysite is also thought to occur but, because the 

diffraction signature is very similar to that of kaolinite, it is difficult to differentiate between the 

two, thus the quantity is unknown. 

 
Table 1.1 XRD analysis of 500 g samples in pit 3 (performed at Brighton University). 

500 g 
Sample 

Depth 
[m] 

Kaolinite 
[%] 

Halloysite 
[%] 

Gibbsite 
[%] 

Quartz 
[%] 

578 0.3 78 - 22 - 

581 0.9 73 - 27 - 

584 1.5 78 - 22 - 

589 2.5 62 - 20 18 

592 3.2 85 - - 15 

595 3.9 68 - - 32 

597 4.2 26 - 7 67 

 
  

                                                
2 Determined from Na2O2 fusion with an ICP-MS finish by Michael Watt and BGS laboratory staff. 
3 This analysis was performed by SoS RARE project colleagues at Brighton University. 
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1.4 Thesis Structure 

 
 This thesis includes a literature chapter which summarises the prior research underlying 

this study and a methods chapter where the different analytical techniques are described. 

Subsequent chapters present data, each being broadly split into the modelling approach and 

modelling outcomes. The structure of this thesis is as follows: 

 

 CHAPTER 2: Theoretical Background 

 Provides a detailed description of the REE and IAD. 

 Identifies approaches to mathematically model fluid-rock interactions. 

 Introduces REE sorption mechanisms and literature pertaining to this subject.  

 CHAPTER 3: Experimental Investigation  

 Describes the column and batch experiments undertaken to achieve the 

research aim and objectives. 

 CHAPTER 4: Results and Discussion 

 Reports and discusses the outcomes of the experimental investigation described 

in CHAPTER 3. 

 CHAPTER 5: Modelling 

 Uses the experimental REE dataset described in CHAPTER 4 to estimate REE 

exchange constants. 

 CHAPTER 6: Alternative Mining Applications  

 Reports the results of generic simulations of water flow and solute transport 

through lateritic soil profiles.  

 CHAPTER 7: Conclusion 

 Summarises the key outcomes of this research and discusses future work. 
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CHAPTER 2 
 

2 THEORETICAL BACKGROUND 
 
 This chapter provides the fundamental background knowledge for each of the systems 

considered in this research:  

 

[1] Rare Earth Elements (REE) 

 Introduces the importance of the REE in the technological sector. 

[2] Ion Adsorption Deposits (IAD) 

 Discusses the importance of IAD as chemically easily leachable deposits. 

 Highlights the current challenges associated with mining IAD. 

 Discusses the application of environmentally focused mining approaches. 

[3] Modelling Fluid-Rock Interactions  

 Introduces the thermodynamic equilibrium approach to model ion exchange 

reactions with the Madagascar IAD. 

 Provides an overview of the reactive transport and flow modelling concepts used 

to simulate the Madagascar IAD system. 

[4] REE Sorption Processes 

 Introduces the sorption mechanisms occurring during REE mobilisation from 

IAD. 

[5] Sorption Studies  

 Summarises literature studies for REE sorption onto common IAD minerals. 

 

2.1 Rare Earth Elements  

 
 The REE are a set of seventeen trace metals in the periodic table, including the fifteen 

lanthanides, yttrium and scandium. Promethium and scandium are excluded from this study 

because promethium is a radioactive element and scandium behaves considerably differently 

to the rest of the REE. This leaves a total of fifteen elements.  

 
 The term rare earth does not refer to the elements crustal abundances, rather the scarcity 

of economically concentrated ore deposits. The REE are grouped together because they 

exhibit similar chemical behaviour. As a result, they tend to occur together in nature and are 

difficult to separate from one another (Paulick & Machacek, 2017).  
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The REE are often classified further into light REE (LREE) and heavy REE (HREE): 
 

 LREE:   La, Ce, Pr, Nd, Pm, Sm, Eu  

 HREE:   Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y  

 
The chemical properties of Sc are not similar enough to classify it as either a LREE or HREE 

(Gupta & Krishnamurthy, 1992; Jordens et al., 2013). 

 
 This division is somewhat arbitrary, but has assisted in the mineral exploitation process 

(Schoeller & Powell, 1995) as REE-bearing minerals tend to preferentiate towards either the 

lower or higher atomic numbers (Henderson, 1984). Typically, natural REE ores are dominated 

by La, Ce and Nd with lower concentrations of the HREE. The HREE are scarcer than LREE 

because of their low crustal abundances (Table 2.1) and limited reserves (Simandl, 2014). 

 
2.1.1 Chemical and Physical Characteristics  

 
 REE are characterised by their chemical similarity. This is related to the occupancy of 

the 4f electron shell. Electrons are successively added to the 4f sub-shell which lies deep within 

the 6s sub-shell. La, Gd, Lu and Y are the exceptions which accommodate 1 electron in the 

5d shell and 4d shell, respectively. As a result, the 6s shell is filled and the 4f electrons are so 

well shielded that the REE chemical properties are almost identical (Clark, 1984). 

 
 REE chemical similarities allow the trivalent species (REE3+) to occur in an array of 

minerals (McLennan & Taylor, 2012). The +3 oxidation state is particularly stable. Two of REE 

can occur in alternate oxidation states in natural systems (Platt, 2012). Ce4+ can form under 

oxidising conditions and Eu2+ can form under reducing conditions. Different oxidation states for 

Sm, Tm and Yb are known, but are rarely seen in nature (Henderson, 1984). 

 
 The lanthanide contraction is the main difference between the REE, where the 

systematic decrease in ionic radii with increasing atomic number is observed. The lanthanide 

contraction is the result of unit increases in nuclear charge on transition to greater atomic 

numbers and incomplete shielding by the f orbitals. The importance of this occurrence is 

reflected in the greater chemical affinity for hydrolysis from La to Lu (Aide & Aide, 2012). 

 
 The relative abundance of the REE varies considerably in nature. However, the REE 

frequently obey the Oddo-Harkins rule. In this regard, elements with an even atomic number 

will be more abundant than their adjacent odd numbered counterparts (Allaby, 2008). In the 

Earth’s crust, this effect is combined with the general trend of decreasing REE abundance with 

increasing atomic number. Table 2.1 shows properties of the REE. 
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Table 2.1 Selected properties of the REE (from Gupta & Krishnamurthy, 2005). 

Element Symbol 
Atomic 
Number 

Ground state 
configuration 

Crustal 
Abundance 

[ppm] 

Radii1 
[nm] 

Charge 

Scandium Sc 21 3d14s2 25 0.76 +3 
Yttrium Y 39 4d15s2 24 0.88 +3 

Lanthanum La 57 5d16s2 30 1.06 +3 
Cerium Ce 58 4f15d16s2 60 1.03 +3, +4 

Praseodymium Pr 59 4f36s2 6.7 1.01 +3 
Neodymium Nd 60 4f46s2 27 1.00 +3 
Promethium2 Pm 61 4f56s2  0.98 +3  

Samarium Sm 62 4f66s2 5.3 0.96 +2, +3 
Europium Eu 63 4f76s2 1.3 0.95 +2, +3 

Gadolinium Gd 64 4f75d16s2 4 0.94 +3 
Terbium Tb 65 4f96s2 0.7 0.92 +3 

Dysprosium Dy 66 4f106s2 3.8 0.91 +3 
Holmium Ho 67 4f116s2 0.8 0.90 +3 
Erbium Er 68 4f126s2 2.1 0.88 +3 
Thulium Tm 69 4f136s2 0.3 0.87 +2, +3 

Ytterbium Yb 70 4f146s2 2.0 0.86 +2, +3 
Lutetium Lu 71 4f145d16s2 0.4 0.85 +3 

1Ionic radii of the M3+ ion. 2Promethium has no natural abundance.  
 

 The physical characteristics of the REE are very diverse making them particularly useful 

in a wide range of applications. The 4f shell determines the optical and electrical properties of 

the REE. For example, some REE (e.g. La) have sharply defined energy states which can be 

efficiently used in lighting and laser applications (Ter-Mikirtychev & Ter-Mikirtychev, 2014). 

 
 The magnetic properties of the REE originate from the angular momentum of the 4f 

electrons. REE typically have electrons with magnetic moments4 occupying the shielded 4f 

sub-shell (Abaka-Wood et al., 2016). This results in some of the REE (e.g. Nd) having some 

degree of magnetism and a large magnetic anisotropy5 (Baczewski et al., 1993). 

 
2.1.2 Mineralogy   

 
 The chemical similarities of the REE i.e. the shielding of the 4f electrons, is the reason 

that the REE are always found as associated groups in minerals and rocks (Clark, 1984). In 

nature, the REE do not occur in their pure native form as metallic elements, instead they occur 

either with other REE as accessories in other minerals or as REE minerals. 

 
 The REE occur in a range of mineral types including silicates, halides, carbonates, 

oxides and phosphates. High REE concentrations are required to form their own minerals (e.g. 

                                                
4 The magnetic moment of an object is a measure of the object's tendency to align with a magnetic field. 
5 Magnetic anisotropy is the dependence of a materials magnetic properties on direction. 
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synchysite-(Ce); Möller, 1986). REE-bearing minerals (e.g. carbonates) usually contain most 

of the REE in varying concentrations, and are often enriched in either the LREE or HREE.  

 
 REE mineral deposits occur in an array of metamorphic, sedimentary and igneous rocks. 

The distribution and concentration of the REE in mineral deposits is primarily influenced by the 

genetic conditions under which the minerals form such as REE enrichment in magmatic or 

hydrothermal fluids (Clark, 1984; Murata et al., 1959; Neumann et al., 1966).  

 
 Environments in which REE are enriched are broadly classified into primary deposits 

formed by hydrothermal and magmatic processes and secondary deposits formed by 

weathering and sedimentary processes. These two groups are further subdivided on the basis 

of their occurrence, mineralogy and genetic association (Walters et al., 2011): 

 

 Primary deposits 

   carbonatite-associated deposits  

   alkaline igneous rocks  

   iron-REE deposits 

   hydrothermal deposits 

 

 Secondary deposits 

   placers   

   laterites  

   bauxites 

   ion adsorption deposits  

 
 Despite there being around 200 potential REE ore minerals, there are only a few that are 

considered economically viable, and even fewer that have been successfully processed and 

the REE extracted (Jordens et al., 2013). The most commercially significant sources are found 

in bastnäsite, monazite, xenotime and ion adsorption deposits (Golev et al., 2014). 

 
2.1.3 Importance of the REE 

 
 The unique chemical and physical properties of the REE have rendered them 

indispensable in the hi-tech industry, in low carbon technologies, in electronic devices, and in 

military and defence applications. As a result of increasing demand in these sectors, the annual 

global production of rare earth oxides6 (REO) has grown from c. 72,200 tonnes [t]  in 1995 to 

about 130,000 t in 2017 (USGS, 1996, 2018). 

                                                
6 Rare earth oxides are the main way the REE are purchased. 
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 Today, more than 80% of the global REE supply originates from China (USGS, 2018). 

Mining and processing have been concentrated in China since the late 1990s, where REO 

production has increased from around 30,000 t in 1995 to a peak of about 130,000 t in 2010 

(USGS, 1996, 2011). In the early 2010s, changes were made to Chinese policies limiting REE 

export quota (Mancheri, 2015; Wübbeke, 2013). 

 
 Increasing demand for the REE in modern industrial applications in correlation with 

China’s monopoly over all aspects of the supply chain, the difficulties of substituting the REE 

for other elements and the low recycling rates, has led to global concerns over the security and 

supply of these metals. Thus, the REE are considered ‘critical’ metals (Barteková & Kemp, 

2016; Buijs & Sievers, 2011; EC, 2014; Massari, & Ruberti, 2013; Wall, 2014).  

 
 Following this designation and the Chinese decreasing their export quota, global 

exploration activity for REE-bearing mineral deposits surged and by 2012, more than 400 

exploration projects were pursuing new prospects with the aim of discovering and developing 

REE resources (Hatch, 2012). Among the strategies being considered in these projects is the 

development of processing (i.e. refining, alloying) infrastructure (Humphries, 2013).  

 
2.2 Ion Adsorption Deposits   

 
 The term laterite or lateritic soils are used to describe highly weathered tropical or 

subtropical residual soil, which is rich in clay minerals and usually coated with sesquioxide rich 

concretions (i.e. Al- and Fe-oxides; Gidigasu, 1972). The colour of these may vary from rusty 

red to liver brown (Oyelami & Van Rooy, 2016). 

 
 The high temperatures and abundant rainfalls found in the tropics and sub-tropics allow 

laterite weathering profiles to develop in these localities. Laterites are formed when rainwater 

washes out the bases and the silicic acid, and enriches the soil with aluminium silicates, 

hydrosilicates and iron (hydr-) oxides (Maji et al., 2007).  

 
 When laterites develop on igneous bedrock that includes REE, the REE can be mobilised 

(and fractionated) into secondary minerals that accumulate within the profile (Berger et al., 

2014; Goodenough et al., 2018). In a few specific localities, REE in laterites adsorb onto the 

surfaces of clay minerals to form an IAD.  

 
 A deposit that contains ≥ 50% ion-exchangeable REE adsorbed onto clay mineral 

surfaces is termed an IAD (Chi et al., 2005; Wu et al., 1990, 1995). An IAD is characterised by 
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the relative ease of REE extraction (i.e. near the surface and unconsolidated) using a reagent 

such as ammonium sulphate to mobilise the exchangeable REE into solution.  

 
The stoichiometric ion exchange reaction is shown in Eq. (2.1):  

 
(2.1)  2(Clay)3−REE3+ + 3(NH4)2

1+SO4
2- → 2(Clay)3−(NH4)3

1+ + REE2
3+(SO4)3

2− 

 
where the exchange site is 2(Clay)3− and the exchangeable ions  are REE3+ and (NH4)3

1+. 

Because of this relatively simple mechanism of REE recovery, IAD are considered 

economically significant (Zhang, 1990; Sanematsu et al., 2015).  

 
 Fig. 2.1 depicts the genesis of an ion adsorption ore. The weathering profile can be 

broadly divided into the humic layer, the REE leached zone, the REE accumulation zone, the 

poorly weathered granite and the parent granite. Common IAD minerals include kaolinite, 

halloysite, gibbsite, goethite, hematite and amorphous iron oxyhydroxides. 

 

 
 

Fig. 2.1 Typical laterite profile depicting the genesis of ion adsorption ore (adapted from Plummer et al., 1991). 
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 The majority of IAD occur in areas underlain by granites. Weathering of the granite can 

release REE-bearing primary magmatic minerals (e.g. allanite) and secondary minerals (e.g. 

flurorocarbonates) (Aubert et al., 2001). Acidic soil water at shallow levels in the profile can 

alter and dissolve the REE-bearing minerals released from the weathered granites. Decay of 

organic material at the surface results in CO2(g) and its dissolution forms the acidic soil water.  

 
 Mobile REE in the soil water are transported down the profile either as trivalent cations 

or by forming aqueous complexes with humic substances, carbonate and bi-carbonate ions 

(Tang & Johannesson, 2003). The REE are commonly removed from solution by adsorption 

onto the surfaces of kaolinite and halloysite, which are abundant, to form an IAD. The 

amorphous materials present in the IAD are also capable of exchanging REE.   

 
 The REE are retained from the aqueous phase due to the adsorption and ion exchange 

properties of the secondary clay minerals and amorphous materials (§ 2.4.1; Zhao et al., 2001). 

During weathering, Ce is rarely scavenged from the leached zone, thus fractionation occurs 

between Ce and the other REE. Fractionation of the LREE and HREE can also occur during 

weathering and precipitation of secondary minerals (Sanematsu & Watanabe, 2016). 

 
2.2.1 Global Ion Adsorption Deposits 

 
 IAD are only commercially processed in China. They account for 35% of world REE 

production (Yang et al., 2013). IAD have been discovered in a few other localities, in 

Madagascar (this study area, § 1.3), Malawi (Le Couteur, 2011), Brazil (Rocha et al., 2013) 

and Southeast Asia (Mentani et al., 2010; Sanematsu et al., 2013). However, none of these 

deposits is enriched in HREE to the extent of some of the Chinese deposits. 

 
 REE abundances in rocks and sediments are often normalised to another REE pattern 

to eliminate the complexities of the Oddo-Harkins effect. The most commonly used normalising 

values are from chondritic meteorites which represent the bulk earth (Wilson, 2007). There is 

little variation in the relative distributions of REE in estimates of average chondrites (apart from 

absolute abundances). Therefore, no uniform set of chondrite values is used. 

 
 Chondrite normalised REE distribution patterns in the bedrock or weathered profile are 

often used to describe the fractionation of the LREE and/or the HREE during adsorption. These 

patterns can be interpreted as being enriched or depleted in the LREE/HREE. Positive or 

negative anomalies, where one REE is depleted or enriched relative to the other REE, are also 

prevalent in distribution patterns. 
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 Fig. 2.2 shows chondrite normalised REE patterns of granitic rocks and their weathered 

profiles from different IAD localities in China (Bao & Zhao, 2008), Laos (Sanematsu et al., 

2009), and Thailand (Sanematsu et al., 2013). For comparison normalised REE leach data 

from the pit 3 laterite profile in Madagascar is shown (carried out by project colleagues at 

Brighton University). The data for these plots is provided in Appendix A. 

 

 
Fig. 2.2 REE distribution patterns from four IAD normalised to chondrite values from Anders & Grevesse (1989) 
multiplied by a factor of 1.36.  Increasing sample numbers correspond to increasing depth. 
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 It is evident from the four distribution patterns that only the Chinese deposit is enriched 

in the HREE. In addition to their enrichment of the more valuable HREE, Chinese deposits 

often contain greater REE contents of between 140-6500 ppm (Sanematsu & Wantanabe, 

2016) compared to 40-340 ppm (Sanematsu et al., 2009), 170-1100 ppm (Sanematsu et al., 

2013), 130-720 ppm in Laos, Thailand and Madagascar, respectively. 

 
 Common anomalies (i.e. positive Ce and negative Eu anomalies) are also observed in 

the REE patterns. These anomalies are not removed by chondrite normalisation. They are the 

result of the different oxidation states that Ce and Eu can be found in, under certain redox 

conditions (§ 2.1.1; Borges et al., 2008; Braun et al., 1998; Fryer, 1977; Graf, 1978; Tostevin 

et al., 2016; Van Kranendonk et al., 2003). 

 
2.2.2 Mining and Processing IAD  

 
 There are three important challenges associated with mining and processing of IAD that 

will be described in this section. These are: 

 

[1] China’s monopoly; 

[2] Environmental Impacts, and 

[3] Economic costs. 

 
 The main challenge associated with IAD is that no commercial processing is undertaken 

outside of China, despite the existence of deposits across the globe (§ 2.2.1). However, the 

implementation of an export quota by the Chinese government forced other countries to 

develop their own deposits (e.g. in Madagascar) and invest in new extraction technologies.  

 
 Significant environmental consequences are associated with traditional IAD mining and 

processing technologies (Yang et al., 2013). For example, it is estimated that for every t of 

REO produced from IAD using surface mining and heap leaching (Yang et al., 2013): 

 

 300 m2 of vegetation and topsoil are removed; 

 1000 t of wastewater containing concentrated (NH4)2SO4 and heavy metals are 

produced, and 

 2000 t tailings are disposed into adjacent valleys and streams. 

 
 For two decades (~1990-2010) surface mining of IAD was the dominant driver of land-

use change and degradation in southern China (Yang et al., 2013). This has led to permanent 

ecological, environmental and health problems. An example of these damages is observed in 
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the Ganzhou region, where REE mining has left 153 km2 of destroyed forests, 302 abandoned 

mines and 191 million tonnes of tailings (Guo, 2012; Yang et al., 2013). 

 
 Economic issues with developing IAD include a large leach residue (tailings), 

overexploitation and significant environmental restoration costs (e.g. reclamation of Ganzhou’s 

REE mines cost an estimated $5.8 billion; Ding, 2012; Yang et al., 2013). In addition, grade 

and tonnages of IAD have been steadily decreasing. This has led to greater extraction costs 

because more reagent is required to recover the REE (Tian et al., 2013).  

 
2.2.3 REE Extraction  

 
 It is widely accepted that commercial production of REO from many conventional REE 

ore deposits (such as carbonatites) is far from environmentally sustainable. This is because 

large amounts of material and energy are required along with the generation of significant 

quantities of solid waste, and air/water emissions (Navarro & Zhao, 2014; Vahidi et al., 2016). 

IAD are unique in the relative ease of REE extraction.  

 
 Surface mining is the primary method of REE extraction for IAD because of their near 

surface nature. This type of mining is generally considered safer and more economic than 

operation of underground mines (Palmer et al., 2010). In most cases, this method involves 

removing the overburden (including topsoil and vegetation), digging or blasting the ore and 

then removing it for further processing (Walters et al., 2011).  

 
 REE in IAD mainly occur in the exchangeable phase (60 - 90%) as adsorbed species on 

clay mineral surfaces, where they can be easily mobilised into solution with a chemical cation 

exchange reagent (Eq. (2.1)); Chi et al., 2006; Jun et al., 2010). This makes processing of IAD 

fairly simple. The remaining 10 - 40% are not recovered to date because more aggressive 

leaching conditions are required (Voβenkaul et al., 2015). 

 
 The different processing methods that have been implemented in China over the last 50 

years include heap and tank/pool leaching and in-situ recovery (Yang et al., 2013). Heap 

leaching involves heaping the ore into a pile on an impermeable layer. A reagent that is 

sprayed at the surface seeps downward solubilising the REE. The enriched solution is then 

collected in a solution sump (Papangelakis & Moldoveanu, 2014).  

 
 Tank leaching is quite similar to heap leaching except the material mined from the IAD 

is placed in a tank and soaked with a reagent (Zhao et al., 2001). Formerly, tank and heap 

leaching were the widely most used methods to process IAD. However, the related 

environmental impact (ground clearance, tailings discharge, and ground water contamination) 
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is one of the main reasons cited by the Chinese government for imposing an export quota 

(Vahidi et al., 2016).  

 
 In addition to the export quota, the government enforced a ban on surface mining and 

tank/heap leaching while implementing in situ recovery (ISR) to develop IAD (Anonymous cited 

in Yang et al., 2013). ISR is now the dominating technology, because there is minimal surface 

disturbance associated since surface mining is not required beforehand and the process can 

be performed on site (Schüler et al., 2011).  

 
 The economic and environmental advantages and disadvantages of ISR over traditional 

heap or tank leaching approaches are outlined in Table 2.2.  

 
 

Advantages Disadvantages 

 ISR can achieve extraction efficiencies 

greater than 90%, with final products of 

purity 90–92% (Roskill, 2007). 

 

 Chemical reagents contaminating 

groundwater and surface water 

(Zhu et al., 2011). 

 No ore beneficiation (extraction purely 

through hydrometallurgical processes). 

 

 High power demand for ISR site 

(in the 100 kW range (Li, 2011). 

 One fifth less top soil and vegetation is 

removed (Yang et al., 2013) 

 One third of top soil removed 

(Navarro & Zhao, 2014). 

Table 2.2 Advantages and disadvantages of ISR compared to heap/tank leaching. 
 
 It is evident that ISR is advantageous over heap/tank leaching from an environmental 

standpoint. However, current ISR operations are still associated with some environmental and 

economic issues (see Table 2.2). Therefore the implementation of ISR to tackle environmental 

problems (i.e. ground clearance and ammonium sulphate contamination of water bodies) 

associated with REE mining and extraction remains highly contentious (Li et al., 2010).  

 
2.2.4 Standard Application of In situ Recovery 

 
 For the reasons stated in § 2.2.3, this study will focus on ISR. Implementation of ISR 

involves setting up a wellfield of vertical injection and extraction wells that span the breadth of 

the ore body. A reagent is injected into the ore body under saturated conditions, it flows through 

the pores of the deposit, mobilising the exchangeable REE into solution. The REE-enriched 

solution is then pumped to the surface for additional processing via extraction wells (Fig. 2.3).  

 



 18 

 

Fig. 2.3 Application of ISR to selectively mobilise REE from ion adsorption ore (from Nicolai et al., 2017). 
 

The main features of ISR are illustrated in Fig. 2.3: 

 

 Injection and extraction wells are distributed throughout the mine site. Spacing 

between the wells and depth of the wells is primarily dependent on the deposit 

conditions. A sufficient groundwater head is required to maintain the productivity of the 

operating pumps. 

 Well houses disseminate the injection solution to the injection wells at a specified 

injection pressure/flow rate. 

 The trunk line network consists of two pipe systems: one to transport the reagent (and 

for fresh water flushing at the end of mining) and the other to transport the enriched 

solution pumped to the surface for further processing.  

 The main operating costs are energy consumption for the pumps (E) and chemical 

requirements (C). 

 
 A number of different salts ((NH4)2SO4, Na2SO4, NH4Cl, NaCl) can be used to mobilise 

the REE (Moldoveanu & Papangelakis, 2012; Navarro & Zhao, 2014). The most commonly 

used is ammonium sulphate, although NaCl (seawater) is considered the most environmentally 

viable. Following leaching (after 150 – 400 days), fresh water is injected to flush out the 

remaining REE-bearing solution and to minimise groundwater contamination.  

 
 To recover the REE from solution, precipitation is carried out with oxalic acid (H2C2O4) 

or ammonium bicarbonate (NH4HCO3) (Jun et al., 2011; Yu et al., 1990). The precipitate is 

then pressed to remove water and then calcined at 750–850 °C to produce REO. If required 

the REO can be separated into individual REE by dissolution in hydrochloric acid (HCl) and 

fractional solvent extraction (Walters et al., 2011). 
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2.2.4.1 Feasibility Criteria for ISR application 

 
 An IAD must meet certain criteria before ISR can be considered at a mine site (Fig. 2.4). 

This includes (Mudd, 2001; Nicolai et al., 2017; Sarangi & Beri, 2000): 

 

 Ore body hosted in a porous, permeable rock formation; 

 Confinement of ore body, below by continuous impermeable strata; 

 Deposit located below the water table and therefore saturated with naturally occurring 

groundwater (ensures hydraulic head for extraction wells); 

 Ore body in a geological formation with little to no irregularities (i.e. tectonic faults), to 

minimise the potential for migration of the reactive solution; 

 Minimal heterogeneities with regard to the hydrological and mineralogical/geochemical 

conditions; 

 Deposit has suitable mineral matrix i.e. sufficient REE content with little to no 

interfering minerals. 

 
 Therefore, as part of the feasibility study, geophysical surveying and drilling/borehole 

logging should be undertaken to determine the ore morphology and the hydrogeology of the 

deposit, in addition to core drilling and assay to determine the chemical and mineralogical 

aspects of the deposit (Vahidi et al., 2016).  

 
 Wellfield design and the performance concept are the two most important aspects of an 

efficient ISR operation (see Fig. 2.4; Nicolai et al., 2017):  

 

 Part I: Hydrology 

 Establishing optimum contact (interface) between the reagent and the ore body. 

 The wellfield design determines the achievable flow rate Q, usually quantified with 

reference to the effective pore volume VP. 

 The pore volume exchange (PVE) rate is defined by q = Q/VP. 

 Reagent flow includes transport of the solution into the orebody and transport of REE-

enriched solution out of the ore body.  

 Part II: Desorption Chemistry and Kinetics 

 Setup of the most effective desorption chemistry relies on definition of the chemical 

conditions, pH, redox, and reagent composition, particularly to optimise leaching 

kinetics for maximum productivity. 

 
 Both the PVE rate (q) and the kinetic rate of desorption (r) determine the achievable 

production rate (product of flow rate and REE concentration in the enriched solution) as a 

function of wellfield operation time (Fig. 2.4). 
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 The determination and optimisation of the wellfield design and desorption chemistry 

parameters are subject to reactive transport simulations. These simulations should be based 

on laboratory and field tests at local and regional scale. Advanced feasibility studies can be 

used to link the assessment of feasibility criteria to economic models (e.g. OPEX and CAPEX).  
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Fig. 2.4 Feasibility criteria for the application of ISR and the corresponding conditions for wellfield design and performance (from Nicolai et al., 2017). 
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2.2.5 Potential for In Situ Recovery in Madagascar  

 
 One objective of this study was to apply reactive transport modelling at site scale to 

assess the applicability of an environmentally focused mining approach (e.g. ISR) to develop 

the Madagascar IAD. This was related to the commercial driver of this research, to develop a 

conceptual model of the geochemical reactive transport processes in ISR of IAD and to 

consider environmental improvements to implement at sites (e.g. Madagascar).  

 
 A simplified ISR approach to the standard application (Fig. 2.3) is shown in Fig. 2.5, 

where the wellfield is installed close to a hillslope. The reagent is injected into the ore body, 

the REE-enriched solution is then transported along a collection tunnel in the lower levels of 

the profile. The solubilised REE accumulate in collection pools built close to the hillside and 

organised in terraces which is then channelled into tanks for further processing.  

 

 
Fig. 2.5 In situ recovery on a hillslope (adapted from Vahidi et al., 2016).  
 

 Bearing in mind the environmental and economic challenges outlined in § 2.2.2, it is clear 

that the responsible development of any IAD project would need to meet much stricter 

environmental regulations for mining and restoration. This should involve comprehensive risk 

assessments, geophysical surveys and reactive transport modelling being undertaken prior to 

the mining and processing stage (Goodenough et al., 2018). 

 
2.3 Modelling Fluid-Rock Interactions 

 
 Simplified and practical models are often implemented to deal with the complexity of 

fluid-rock systems. Early studies adopted a primarily thermodynamic approach focusing on 

geochemical reactions without consideration of transport processes (e.g. Thompson, 1959), 

with the implicit or explicit assumption of equilibrium between the fluid and the rock. As a result, 

these early models were fundamentally static rather than dynamic in nature. 
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 Helgeson (1968) introduced the concept of an irreversible reaction path which, in addition 

to treating the reaction network as a dynamically evolving system, allowed for the consideration 

of a multicomponent geochemical system where multiple minerals and species appear as both 

reactants and products. A kinetic basis was given to the approach in subsequent studies 

(including the introduction of real time) (Aagaard & Helgeson, 1982). 

 
 Thermodynamic models for fluid-rock interactions have been more extensively 

developed than kinetic models because they require fewer parameters (Stumm & Morgan, 

2012). Nevertheless, thermodynamic models are powerful tools in which Gibbs free energies 

(chemical potentials) are used to describe the thermodynamically stable state and characterise 

the direction and extent of processes approaching equilibrium. 

 
 In the last three decades, kinetic and empirical equilibrium models have been applied 

with varying degrees of success to describe REE transport in soil environments. These models 

include retention and release reactions (i.e. ion exchange, adsorption/desorption) for REE 

species (Selim, 2012). The next section provides an overview of the modelling concepts used 

in this research to simulate the flow, transport and reaction processes in the Madagascar IAD. 

 
2.3.1 The Thermodynamic Approach   

 
 Ion exchange is thought to be the most important mechanism of REE mobilisation from 

the Madagascar IAD. In this study, the approach used to model ion exchange is based on 

equilibrium thermodynamics (Appelo, 1994; Helfferich, 1995). 

 
 The law of mass action and electroneutrality allow the calculation of activities of 

exchangeable cations from a given solution when the equilibrium constant (K) is known (e.g. 

Fletcher & Sposito, 1989). For a reaction of the generalised type:  

 

(2.2)  aA + bB ↔ cC + dD  
 

the distribution at equilibrium of the species on the both sides of the reaction is given by: 

 

(2.3)           K = 
[C]

c
[D]

d

[A]
a
[B]

b
   

 

where the bracketed quantities denote activities (also known as effective concentrations, the 

units are noted below).  
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 The law of mass action is only valid for the activity of ions, which is the measured total 

concentration corrected for the effects of electrostatic shielding and for the presence of 

aqueous complexes (Appelo & Postma, 2005).  

 
 The activity in the law of mass action is a measure of the effective concentration of the 

species, which can indicate how, for example, an Al3+ ion would behave when there are no 

interactions with other ions in solution, i.e. at infinite dilution.  

 
 In thermodynamics, the activity of gases, adsorbed ions and solutes are expressed as a 

fraction relative to a standard state, and as a fraction, the activity is always dimensionless. The 

standard state for a solid is a pure solid, similarly for gases it is a pure gas phase at 1 atm.  

 
 The standard state for an ion exchanger is an exchanger filled by a single ion and for 

aqueous solutes the standard state is defined as an ideal solution with a solute concentration 

of 1 mol/kg H2O = 1 molal, where ‘ideal’ means a 1 M solute behaving as at infinite dilution. 

 
 The activity is related to the molal concentration by an activity coefficient which corrects 

for non-ideal behaviour. For aqueous solutes, the relation is:  

 

(2.4)  [i] = γi ∙ mi / mi
0 ≡ γ

i
 ∙ mi  

 

where [i] is the activity of ion i (dimensionless), γi is the activity coefficient (dimensionless), 

mi is the molality [mol/kg H2O], mi
0 is the standard state i.e. 1 mol/kg H2O.  

 
 Activity coefficients may vary, but if ion i is present at trace concentration, and no other 

ions are present, then γi → 1. Activity coefficients for solutes are calculated using the Debye-

Hückel theory, which defines the ionic strength7 I as: 

 

(2.5)  I = 1
2⁄  ∑ (mi/mi

0 ∙ zi
2) ≡ 1

2⁄ ∑ mi ∙ zi
2 

 

where zi is the charge number of ion i, and mi is the molality of i. Similar to the definition of 

activity, the ionic strength becomes dimensionless by division with the standard state mi
0. 

 

  

                                                
7 The ionic strength describes the number of electrical charges in the solution. 
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 For dilute electrolyte solutes, I < 0.1, the Debye-Hückel equation describes the 

electrostatic interaction as: 

 

(2.6)           log γi = 
Azi

2
 √I 

1 + Båi √I 
   

 

where A and B are temperature dependent constants: at 25 oC A = 0.5085 and B = 0.3285 x 

1010/m and åi is the empirical ion-size parameter. 

 
 Various equations have been proposed to derive activity coefficients at ionic strength 

values greater than 0.1 (Davies, 1962; Langmuir, 1997; Nordstrom & Munoz, 1994; Parkhurst, 

1990; Truesdell & Jones, 1974). The Davies equation can apply up to an ionic strength of 0.5: 

 

(2.7)           γi = Azi
2

(
√I

1 + √I
 −  0.3I )  

 

where A is the same temperature dependent coefficient as in Eq. (2.6). 

 
 The Truesdell-Jones equation is a reasonable approximation up to ionic strength values 

of about 2 in dominantly chloride solutions  

 

(2.8)           log γi = 
Azi

2
 √I 

1 + Bai √I 
 + biI  

 

where A and B are the temperature dependent coefficient from Eq. (2.6) and ai and bi are ion-

specific fit parameters. 

 
 In order to calculate mass action constants for the reaction in Eq. (2.2): 

 

(2.9)           ∆Gr = ∆Gr
0
+ RT ln  

[C]
c
[D]

d

[A]
a
[B]

b
 

 

where ∆Gr is the change in Gibbs free energy [kJ/mol] of the reaction, ∆Gr
0
 is the standard 

Gibbs free energy of the reaction and equal to ∆Gr when each product or reactant is present 

at unit activity (so that the log term becomes zero) at a specified standard state (25 °C 1 atm), 

R is the gas constant [8.314 x 10-3 kJ/mol/deg] and T is the absolute temperature [Kelvin]. 
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 The direction in which the reaction will proceed is indicated by ∆Gr. In the case of 

equilibrium Eq. (2.9) reduces to:  

 

(2.10)         ∆Gr
0
 =  -RT ln 

[C]
c
[D]

d

[A]
a
[B]

b
 

 

The activity product in the last term is equal to the mass action constant K (Eq. (2.3): 

 

(2.11)          ∆Gr
0
 = -RT ln  K   

 

Back substitution of Eq. (2.10) in ((2.9) results in 

 

(2.12)         ∆Gr
0
 =  -RT ln K + RT ln 

[C]
c
[D]

d

[A]
a
[B]

b
 

 

In Eq. (2.12) the distance from equilibrium is expressed in terms of the mass action constant. 

 

2.3.2 Transport Processes 

 
 Later models clarified the application of reaction path models to water-rock interactions 

involving transport by demonstrating that they could be used to describe pure advective 

transport through a porous medium (Lichtner, 1988).  

 
 Transport is essential in the fluid interaction process because: 

 

 It provides the driving force for many of the reactions that take place by continuously 

introducing fluid out of equilibrium with respect to the reactive solid phase and, 

 It provides a characteristic time scale that can be compared with the rates of reaction. 

 
 Advection involves the translation in space of dissolved or suspended material at the rate 

of movement of the bulk fluid phase. The advective flux, Jadv, of a dissolved species in porous 

media can be described mathematically as: 

 
(2.13)         Jadv = ∅vCi 
 

where ∅ is the porosity, v is the average linear velocity [m/s] in the media and Ci is the 

concentration of the ith species.  
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 The fluid velocity in porous and fractured media is usually described with Darcy’s Law 

(Darcy, 1856), which states that the volumetric flux of water [m3
fluid/m2

medium/s], q, is a vector 

proportional to the gradient in the hydraulic head: 

 

(2.14)         q = ∅v  = -K∇h   
 

where h is the hydraulic head [L] and K is the hydraulic conductivity [m/s].  

 
 The hydraulic conductivity is defined as: 

 

(2.15)         K = 
kρg

μ
 

 

where k is the permeability [m2], g is the acceleration due to gravity [9.81 m/s2] and μ is the 

dynamic viscosity [Pa·s]. Darcy’s Law can also be written in terms of the fluid pressure by 

defining the hydraulic head as:  

 

(2.16)         h = z + 
P

ρg
 

 

where z is the depth [L] P is the fluid pressure [Pa] and p is the fluid density [kg/m3]. The 

gradient in hydraulic head can be defined as:  

 

(2.17)         ∇h = 
dh

dl
 = 

h1 - h2

length
 

 

where ∇h is the gradient in hydraulic head [dimensionless], dh is the difference between two 

hydraulic heads [L] and dl is the flow path between the two piezometers [L].  

 
 In addition to flow, molecular diffusion should be taken into account, if transport through 

low porosity and permeability material is to be considered (Steefel & Maher, 2009). Molecular 

diffusion is often described in terms of Fick’s First Law, which states that the diffusive flux 

(shown only for a single coordinate direction x) is proportional to the concentration gradient: 

 

(2.18)         Ji = -Di 
δCi

δx
 

 

Di is referred to as the diffusion coefficient and is specific to the chemical component 

considered as indicated by the subscript i.  

 
 Fluid-rock interactions typically take place in porous media, thus it is important to account 

for the effect of tortuosity. Tortuosity TL is defined as: 
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(2.19)         TL = (
L

Le

)
2

 

 

where L is path length the solute would follow in water alone and Le  is the tortuous path length 

the solute would follow in porous media. 

 
 In this definition of tortuosity, its value is always < 1 (Bear, 1972). The effective diffusion 

coefficient in porous media is obtained by multiplying the tortuosity by the diffusion coefficient 

for the solute in pure water. Using this formulation, the diffusion coefficient is given by:  

 

(2.20)         Di
*
= TLDi 

 

The diffusive flux is then given by 

 

(2.21)         Jj
diff

  = -∅DjTL 
δCj

δx
 = -∅Dj

*
  

δCj

δx
 

 

where Cj is the concentration of the jth species.  

 
 The spreading of the solute mass as a result of dispersion is a diffusion-like process that 

has led to the use of Fick’s First Law to describe the process in one dimension as:  

 

(2.22)         Jj
disp

  = -Dh 
δCj

δx
  

 

where Dh is the hydrodynamic dispersion coefficient. The coefficient of hydrodynamic 

dispersion is defined as the sum of a molecular diffusion and mechanical dispersion (Eq. 

(2.23), since these effects are not separable where flow is involved (Bear, 1972). 

 

(2.23)         Dh= D
*
+ D 

 

2.3.3 Reactive Transport Modelling  

 
 This section outlines the basics of reactive transport models, which combine the 

transport processes (described in § 2.3.2) with the expressions for kinetically controlled 

geochemical reactions (Mayer et al., 2002; Prommer et al., 2003; Walter et al., 1994).  

 
 For a system with transport of a non-reactive tracer, an expression for the conservation 

of solute mass can be derived by accounting for the flux of solute across the faces a volume 

element. For a 1-D system (fluxes in the Y and Z directions = 0), the net flux is obtained from: 
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(2.24)         
δJi

δx
 = lim

∆x→0
 
Ji Ix+∆x - Ji Ix

∆x
 

 

 In a multidimensional system involving porous media, the accumulation of solute mass 

is given by the difference of the fluxes summed over all of the faces of the element: 

 

(2.25)        
δ(∅C

i
)

δt
 = - ∇ ∙ Ji  =  - ( 

δJi

δx
 + 

δJi

δy
+ 

δJi

δz
 )   

 

where Ji is the flux vector. Substitution of Eq.(2.13) and (2.18) into Eq. (2.25) yields: 
 

(2.26)        
δ(∅C

i
)

δt
 = - ∇(∅vCi) + (∅Di

*∇Ci) 

 

 To include reactions, the 1-D version of the advection-dispersion equation is shown in 

Eq. (2.26). For a constant porosity, tortuosity and flow system characterised by first-order 

precipitation and dissolution reaction that can be described in terms of a single chemical 

component, the advection-dispersion equation becomes: 

 

(2.27)         ∅
δC

δt
 = - ∅v

δC

δx
 + D

*
 
δ

2
C

δx2
 +  Ak (1-

C

Ceq

) 

 

where k is the rate constant [moles m-2s-1], A is the reactive surface area of the mineral [m2m-

3] and Ceq is the solubility of the mineral [moles m-3]. 

 
 Reactive transport models have evolved considerably as diagnostic and prognostic tools, 

and make a significant contribution to elucidating the inherently complex dynamics of 

engineered and natural environments (Appelo, 1994; Steefel et al., 2005; Han et al., 2010).  

 
2.3.3.1 Soil-Column Studies  

 
 Soil column experiments have been widely used to determine the fate and migration of 

metals through soils (Camobreco et al., 1996; Dontsova et al., 2006; Masipan et al., 2016). 

Thus, reactive transport models are often based on laboratory or field-site investigations.  

 
 Soil columns are also a good way to characterise ion exchange reactions, in which a 

solution is passed through a fixed bed of ion exchange material, and its composition is changed 

either by ion exchange or sorption.  

 
 The time at which the cations first appear in the effluent is termed the breakthrough point. 

The breakthrough curve and the breakthrough point depend on the composition of the injected 

solution, the operating conditions and the ion exchanger properties (Helfferich, 1995). 
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 One factor that has been shown to greatly increase the mobility and velocity of solute 

movement to the groundwater is preferential flow (Steenhuis et al., 1995). The term preferential 

flow implies that, infiltrating water does not have sufficient time to equilibrate with slowly moving 

groundwater in the bulk of the soil matrix (Jarvis, 1998). 

 
 Different forms exist. In fine soils, high conductivity paths form the network for 

preferential flow. In unstructured sandy soils, preferential flow is caused by sloping textural 

interfaces (Kung, 1990) or by instability at the wetting front (Glass et al., 1989). Thus physical 

nonequilibrium conditions can occur in many soil types (Flurry et al., 1994). 

 
 Water added to the soil can rapidly flow through this preferential network, bypassing most 

of the soil matrix. In soil column experiments, where a homogenous mixture has been ensured 

by experimental design, preferential flow has still been observed to increase metal movement 

(Masipan et al., 2016; Seyfried & Rao, 1987).  

 
 There are a number of simulation models that have been developed to account for 

preferential water flow and solute transport, such as the dual/single porosity models (Gerke & 

van Genuchten, 1993; Saxena et al., 1994; Šimůnek et al., 2003). The single porosity model 

considers one only pore domain, the mobile water region. 

 
 The dual porosity approach assumes that the porous medium consists of two regions, 

one associated with the macropore or fracture network (known as the mobile water region) and 

the other with a less permeable pore system of soil aggregates or rock matrix blocks (known 

as the stagnant water region) (Gerke & van Genuchten, 1993).  

 
 Each pore domain is characterised by a porosity, a water content and a solute 

concentration. Vertical water and solute transport are calculated in each domain, with mass 

exchange between domains treated as source/sink terms in the model. The mass exchange is 

calculated using approximate first-order equations (Gerke & van Genuchten, 1993).  

 
2.4 REE Sorption Processes  

 
 The aim of this research was to model REE mobilisation from the Madagascar IAD during 

mining processes. Because the mobility of the REE once released from geological deposits is 

largely controlled by sorption processes, it was important to gain a comprehensive 

understanding of REE behaviour in the soil matrix.  

 
 This section provides an overview of REE sorption processes and the oxide and clay 

minerals involved in REE sorption in IAD systems. Sorption describes the uptake of an ion or 
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compound onto a contiguous mineral surface. The term includes any retention mechanism that 

controls availability and mobility.  

 
 Sorption can be divided into adsorption, absorption and ion exchange. Adsorption 

describes the binding of solutes or ions to solid surfaces to form complexes, absorption 

describes the incorporation of a solute into the solid and ion exchange describes the 

stoichiometric replacement of ions on a surface (Fig. 2.6; Postma & Appelo, 2005). 

 
 Ion exchange and adsorption reactions are related in that one ionic solute species may 

replace another ionic solute species already on the surface site and may form a surface 

complex. In practice, it is difficult to distinguish between these processes as they often occur 

simultaneously. Thus, the general term sorption is applied when the mechanism is unknown. 

 
 Ion exchange at clay mineral surfaces accounts for a part of trace metal sorption in soil 

systems. However, adsorption of trace metals at the variable charge surfaces of phyllosilicates, 

metal (hydr)oxides, and humic substances, is thought to account for the majority of sorption in 

natural environments (Appelo & Postma, 2005). 

 

 
Fig. 2.6 Sorption processes at the mineral-water interface (adapted from Appelo & Postma, 2005). 
 

 Mineral surface interactions lead to different adsorptive behaviours involving electrostatic 

attraction of charged aqueous species or chemical binding. In the presence of water, the 

surfaces of silicates and oxides are covered by different surface hydroxyl groups, which are 

coordinated to one or more metal atoms (terminal hydroxyls) in the crystal lattice.  
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 Ions in solution may become attached as aqueous complexes. Inner-sphere 

complexation involves terminal hydroxyl groups, which behave as Lewis bases8 and interact 

with Lewis acids such as metal ions. The direct coordination of the metal ion to the surface 

hydroxyl groups leads to the release of water molecules from the ion’s hydration sphere. 

 
 Outer-sphere complex formation occurs when charged aqueous species attach to 

surface hydroxyl groups of opposite charge (Del Nero et al., 2004). The inner-/outer-sphere 

state is gradual and fluctuates in time (Stumm & Morgan, 2012). Fig. 2.7 shows inner- and 

outer-sphere complex formation at the mineral surface. 

 

 
Fig. 2.7 Inner- and outer-sphere complex formation at the solid surface. 
 

2.4.1 Sorption at Mineral Surfaces 

 
2.4.1.1 Clay Minerals 

 
 Clay minerals are formed at the earth’s surface by diagenetic and hydrothermal 

alteration of silicate minerals. They are characterised by their ability to absorb certain ions 

and retain them in an exchangeable state. The most common exchangeable cations in order 

of relative abundance, are Ca2+, Mg2+, H+, K+, NH4
+, Na+ (Grim, 1968).  

 
 Structurally, the clay minerals are composed of planes of cations, arranged in sheets, 

which may be tetrahedrally or octahedrally coordinated with oxygen and hydroxyl. These 

sheets are in turn arranged into layers (Hillier, 2003). Clays can be classified according to 

the type of layer structure. These are shown in Fig. 2.8.  

 

                                                
8 In the Lewis theory of acid-base reactions, bases donate pairs of electrons and acids accept pairs of 

electrons.  
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Fig. 2.8 Classification of the 1:1, 2:1 and 2:1:1 clay mineral structure. 
 

 Clay minerals can acquire a surface charge when they are in contact with an aqueous 

phase. This produces an electrical imbalance at the solid-solution interface influencing the 

distribution of neighbouring ions. Clay minerals can develop a surface charge in two ways:  

 

[1] From chemical reactions at the solid surface, where ionisable functional groups (i.e. 

–OH) are present and charge depends on solution pH, and 

[2] Isomorphic substitution (of Al3+ for Mg2+ or Si4+ for Al3+) within the lattice and lattice 

imperfections at the solid surface resulting in a permanent negative surface charge. 

 
 As a result, clays exhibit two different site types on their surfaces: interlayer sites and 

edge sites (Stumm & Morgan, 1996). The literature suggests that exchange reactions 

dominate at interlayer sites while surface complexation (SC) mechanisms dominate at edge 

sites (e.g. Coppin et al., 2002). This will be discussed further in § 2.4. 

 
 Fig. 2.9 shows the development of a surface charge on kaolinite when in contact with 

the aqueous phase. A permanent negative charge develops on the T faces due to isomorphic 

substitution of Si4+ for Al3+ or Al3+ for Mg2+ and a pH-dependent charge develops on the edges 

and O face OH groups due to surface protolytic reactions. 
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Fig. 2.9 Development of surface charge on kaolinite when in contact with an aqueous phase (atom arrangement in 
silica tetrahedral (T) and alumina octahedral (O) layers). 
 

 The total charge and the sites responsible for charge development depend on the 

structure of the clay mineral. Table 2.3 shows the charge characteristics of common clay and 

oxide minerals, including the cation exchange capacity (CEC). The CEC defines the extent to 

which a mineral can hold exchangeable cations on their negative charge sites. 

 
  Cation exchange sites are found primarily on clay minerals and organic matter surfaces. 

The CEC has two origins described in [1] and [2] at sites where a negative surface charge 

develops. The interlayer part of the CEC is considered to be constant since it is insensitive to 

the pH of the system. The CEC at the edge sites is pH dependent because the acidity of the 

aluminol groups is weak and the edge charges depend on pH (Lagaly, 1981). 2:1 clays have 

a higher net negative charge than 1:1 clays, as a result they have a greater CEC. 
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 Some clay and oxide minerals can have an anion exchange capacity (AEC) in addition 

to a CEC (Ma & Eggleton, 1999). The AEC is the degree to which a soil can adsorb and 

exchange anions. The CEC is relatively low in 1:1 clays, and the influence of the AEC is 

consequentially more significant (see Fig. 2.10). 

 
 Anion exchange arises from the protonation of hydroxyl groups on the edge sites of 

minerals. The AEC is pH dependent and increases with decreasing pH. This is because at low 

pH an additional hydrogen ion is associated with the hydroxyl group, leaving a net positive 

charge (Pansu & Gautheyrou, 2007). 

 
 Fig. 2.10 relates the charge characteristics of aluminosilicate soils to weathering 

intensity. Less weathered soils will have a CEC under acidic, neutral and basic conditions, but 

no AEC. Whereas highly weathered will develop a CEC under neutral and basic conditions or 

an AEC under acidic conditions (Brady & Weil, 2002). 

 
Table 2.3 Charge characteristics of colloids (from Brady & Weil, 2002). 

Colloid 
Charge at 

pH 71 
Constant1 Variable1 Variable2 CEC 

 [meq/100g] [%] [%] [meq/100g] [meq/100g] 

Kaolinite 8 65 35 2 3 - 15 
Smectite 100 95 5 0 80 - 150 

Vermiculite 150 95 5 0 100 - 150 
Chlorite 30 80 20 0 10 - 40 
Gibbsite 4 0 100 5 4 
Goethite 4 0 100 5 up to 100 
Quartz 0 0 0 0 0 

1 = negative, 2 = positive 
 
Fig. 2.10 Clay charge characteristics related to their weathering intensity (adapted from Brady & Weil, 2002). 
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 Kaolinite (Al2Si2O5(OH)4) has a 1:1 layered structure (Fig. 2.11). Repeating layers of the 

mineral are joined together by hydrogen bonds and weak Van der Waals forces9 (Bear, 1965). 

The hydrogen bonds are the main source of the cohesive energy between layers. They are 

also the reason for the absence of layer charge and the low CEC (Ma & Eggleton, 1999; 

Miranda-Trevino & Coles, 2003; Uddin, 2017).   

 
 It is widely accepted that the variable charges on the edges of kaolinite particles is due 

to protonation or deprotonation of exposed hydroxyl groups and therefore dependent on 

solution pH. On the other hand the basal siloxane surfaces carry a constant (negative) 

structural charge due to isomorphic substitution of Si4+ for Al3+ (McBride, 1976; Rand & Melton, 

1977; van Olphen, 1977; Williams & Williams, 1978).  

 

 

Fig. 2.11 Left: structure of kaolinite. Right: surface hydroxyl groups covering the octahedral sheet 
 

2.4.1.2 Metal Oxide Minerals   

 
 The oxide minerals typically present in soils comprise oxides, hydroxides, oxyhydroxides, 

and hydrated oxides of Si, Fe, Mn, Al, and Ti. Oxides of Fe, Mn, and Al may exhibit a high 

surface area, with reactive surface sites which strongly bind oxyanions and metal cations, 

thereby impacting the mobility of trace metals (Hillel & Hatfield, 2005).  

 
 Many hydrous metal oxides contain ionisable functional groups at their surfaces (Smith, 

1999). A surface charge can develop as a result of dissociation of these functional groups. 

Inner- and outer-sphere complexation reactions can occur between ionised functional groups 

and the ions in solution (see Fig. 2.7).  

                                                
9 Van der Waals forces are relatively weak electric forces that attract neutral molecules to one another.  
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 Proton exchange reactions for surface functional groups of oxides are expressed as:  

 
(2.28) >XOH2

+  = >XOH  +  H+ 

(2.29) >XOH  = >XO-  +  H+  

 
where >XOH is a surface-binding site, and >XOH2

+ and >XO- are proton-exchange surface 

complexes.  

 
 The charge at the oxide mineral surface depends on the pH of the surrounding solution. 

In general, neutral or alkaline pH conditions will result in a net negatively charged surface, 

while under acidic pH conditions an excess of protons are retained at the surface yielding a 

net positively charged surface:  

 

(2.30) >XOH2
+  ↔  >XOH  ↔ >XO-  

  (low pH)         (high pH) 
 

 The net surface charge can be zero when the surface oxygens are protonated just 

enough to compensate broken bonds and a small internal charge (Appelo & Postma, 2005). 

This point is termed the point of zero charge (PZC): 

 
(2.31) [>XOH2

+]  =  [>XO-] 
 

The PZC for several minerals is shown in Table 2.4.  
 
Table 2.4 PZC for a variety of minerals (from Smith, 1999). 

Mineral pHPZC
10 

Hydrous ferric oxide (amorphous) 8.1 
Goethite 6-7 
Hematite 4.2-6.9 

Gibbsite 10 
SiO2 (amorphous) 3.5 

Kaolinite 4.6 
Montmorillonite 2.5 

 

 Surface charge can affect the distribution of neighbouring solutes, since a decrease in 

the pH of the surrounding water will attract anionic species from solution. Conversely, 

increasing the pH will attract cationic species from solution (Smith, 1999). 

 
 Fig. 2.12 shows oxide surfaces changing their charge with pH due to ionisable water 

molecules bound on the surface metal sites. The upper diagram highlights dissociation of the 

                                                
10 These values were determined by different researchers using different methods and electrolyte 
solutions (Smith, 1999). 
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hydroxyl group in an aqueous solution and point of zero charge and the lower diagram shows 

the formation process of hydroxyl group on a metal oxide. 

 

  
Fig. 2.12 pH-dependent variable charge sites at oxide solid surfaces. 
 

 Amorphous iron oxyhydroxide is commonly found in natural aqueous systems as a 

discrete mineral phase and as a surface coating on particulate matter (Davies et al., 1978). It 

is thought to play a significant role in sequestering elements because of its large surface area 

and strong affinity for many elements (Jenne, 1968; Singh et al., 1984). 

 
 Amorphous materials are capable of exchanging REE because they have permanent 

charge and/or pH-dependent surface charge, which can be expressed as the PZC. The 

surfaces of minerals and amorphous materials are more positively charged below their own 

PZC, and they are more negatively charged above the PZC (Sanematsu & Watanabe, 2016). 

 
 Gibbsite (α-Al(OH)3) is formed by weathering of aluminous minerals, thus it is common 

in lateritic soils. Gibbsite also forms in low temperature hydrothermal and metamorphic 

environments, replacing aluminous minerals (Saalfeld & Wedde, 1974). Similar to most 

hydrous metal oxides, gibbsite can adsorb metal ions, anions and ligands onto its surface.  

 
 The basic structure forms stacked sheets of linked octahedrons of aluminium hydroxide 

held together by weak residual bonds (Fig. 2.13). The octahedrons comprise of aluminium ions 

bonded to six octahedrally coordinated hydroxides. Each OH- is bonded to two Al3+ atoms 

leaving a third of the octahedrons vacant a central Al3+ atom (Parfitt et al., 1977). The result is 

a neutral sheet (no charge between sheets). 
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Fig. 2.13 Dioctahedral gibbsite Al(OH)3. 
 

 Goethite (α-FeOOH) is one of the most widespread forms of iron oxyhydroxides in 

terrestrial soils, sediments and ore deposits. Goethite forms from the weathering of other iron-

rich minerals, and thus is commonly found in laterite soils. The mineral has a high specific 

surface area in excess of 200 m2/g and as a result is able to adsorb large amounts of metal 

cation and anions onto its surface (Tunega, 2012).  

 
 The crystal structure of goethite is orthorhombic and consists of edge sharing FeO3(OH)3 

octahedra (Cornell & Schwertmann, 2003). The octahedral units are arranged in double rows 

separated by empty sites. Each Fe3+ cation is surrounded by three O2- and three OH- anions 

in a distorted octahedral configuration. This distortion is enhanced by the formation of 

intrastructural hydrogen bonds (Tunega, 2012). 

 
2.5 Sorption Studies  

 
 Many literature studies have investigated REE sorption interactions. This is due to their 

importance as chemical analogues for the trivalent actinides within the framework of strategies 

for radioactive waste disposal and because of their role as geochemical tracers (e.g. the 

degree of REE fractionation in a mineral can indicate its genesis).  

 
 A summary of the REE sorption studies on common IAD minerals such as kaolinite, 

goethite, hematite and amorphous materials is presented in this section. No REE-gibbsite or 

REE-halloysite sorption studies were found in the literature. 

 
 Numerous mechanistic sorption studies on clay minerals (Aja, 1998; Coppin et al., 2002; 

Stumpf et al., 2002; Tertre et al., 2006a, 2006b, 2008; Xiangke et al., 2001) point to the 

existence of two kinds of fundamental processes taking place:  

 

 Cation exchange with pre-existing cations linked to the surface by electrostatic bonds 

on interlayer sites, and 

 Surface complexation with hydrolysed edge sites such as silanol (>SiOH), ferrinol 

(>FeOH) and aluminol (>AlOH). 
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 These conclusions are based on macroscopic properties (distribution coefficients) and 

acidity–basicity, as well as spectroscopic studies. These observations correspond with the 

permanent and variable surface charges sites attributed to clay surfaces (see § 2.4.1.1).  

 
 Given the complexity of sorption processes, it is important to understand the 

mechanisms which can influence REE patterns. In solution, trace metals such as the REE can 

be influenced by complexation reactions, by anionic ligands, the dissolution and/or 

precipitation of minerals containing or incorporating REE into their structure, as well as by 

redox reactions and adsorption onto mineral or organic solid phases.  

 
 The presence of competing metals has been observed to significantly affect REE 

sorption (Kookana & Naidu, 1998; McBride, 1994). For example, in the presence of Ca2+, Mg2+ 

and Al3+ the sorption of Eu3+/Gd3+ onto kaolinite decreased significantly, whereas in their 

absence sorption is almost 100 % (Kautenburger & Beck, 2010). Verma & Mohapatra (2016) 

also observed this effect for Eu3+ sorption on kaolinite in the presence and absence of Na+. 

 
 Competitive sorption can lead to fractionation of the REE during particle-solution 

interactions (Piper, 1974). This is governed by the chemical properties of the REE and the 

solid surface. A number of studies have observed the selective retention of the HREE to clay 

surfaces at high ionic strength and neutral pH (Aagard, 1974; Bonnot-Courtois & Jaffrezic-

Renault, 1982; Byrne & Kim, 1990; Coppin et al., 2002; Tertre et al., 2005).  

 
 Early studies interpreted this trend as being due to decrease of the ionic radius with 

increasing atomic number (i.e. the lanthanide contraction) (Aagard, 1974; Bonnot-Courtois & 

Jaffrezic-Renault, 1982). Coppin et al. (2002) suggest that the concentration of cations in 

solution interferes with this phenomenon (i.e. the salt effect). Two possible explanations are 

offered that take into account the salt effect: 

 

[1] The presence of concentrated Na+ at the particle surface inhibits sorption of 

competitors with a larger ionic radius, as observed with the LREE when compared to 

the HREE (lanthanide contraction).  

[2] Sorption at the variable charge sites at the edges of the clay is occurring, indicating 

desolvation of cations to form inner-sphere complexes. Fractionation reflects the 

variation in desolvation energy with the atomic number of the REE.  

 
 The assumption that the REE are sorbed as inner sphere-complexes at the variably 

charged surfaces of metal oxides (e.g. hematite) is well documented (Bau, 1999; Kawabe et 

al., 1999; Rabung et al., 1998). In contrast, the steric effects of Na+ was negligible in the 

experiments conducted at low ionic strength and all the REE were sorbed to the same extent.  
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 A number of REE sorption studies onto metal oxides observed the opposite fractionation, 

where the LREE are preferentially retained over the HREE (Koeppenkastrop et al., 1991; 

Koeppenkastrop & De Carlo, 1992). This trend could be explained by a stronger complexation 

of HREE with carbonate ions than the LREE (Cantrell & Byrne, 1987). 

 
2.5.1 Distribution Coefficients  

 
 Sorption can be expressed in terms of a distribution coefficient (Kd), which combines the 

effects of various processes determining the reversible partitioning between the solid surface 

and the aqueous phases, including surface complexation and ion exchange (Payne et al., 

2013). The distribution coefficient is defined as: 

 

(2.32)         Kd  =  
amount of adsorbed metal

amount of metal in solution
   

 

where Kd typically has units such as mL/g or L/kg and the amount of metal in both the 

numerator and denominator can be expressed in convenient units (such as moles). 

 
 Kd values are determined in batch sorption experiments, where a solution containing a 

known quantity of a REE is in contact with the mineral phase of interest under controlled 

conditions. The concentration of the REE adsorbed on the mineral surface can be determined 

by measurement of the REE concentration remaining in the aqueous phase.  

 
 The experimental results can be converted to a Kd value: 
 

(2.33)         Kd  =  
Ci  -  Ceq

Ceq

 ∙ 
V

m
  

 

where Ci and Ceq denote the initial and equilibrium concentrations of the metal ion and V and 

m are the volume of the aqueous phase and the mass of the mineral, respectively.  

 
 High values of Kd indicate that the metal has been retained by the solid through sorption 

reactions, while low values of Kd indicate that most of the metal remains in solution where it is 

available for transport and geochemical reactions (Anderson & Christensen, 1988). Table 2.5 

summarises Kd values reported for REE sorption onto common IAD minerals.  
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Table 2.5 Distribution coefficients reported for REE sorption onto common IAD minerals. 

Mineral REE 
Temp 
[°C] 

log Kd 

[mL/g] 
pH 

Background 
electrolyte 

Reference 

Kaolinite 

Nd 25 3.75 - 6.22 1.20 - 2.74 none Aja (1998) 

Nd 25 4.48 ± 0.03 8.14 ± 0.03 none Aja (1998) 

Nd 25 3.69 -  6.37 4.02 – 6.02 
0.7 M  
NaCl 

Aja (1998) 

Eu 25 2.85 - 5.32 2.65 - 11.32 
0.1 M  

NaClO4 
Bradbury & 

Baeyens (2009) 

Ho 25 1.83 - 4.23 3.03 - 7.12 
0.5 M  

NaClO4 
Coppin et al. 

(2002) 

Ho 25 2.65 - 4.71 3.07 - 6.96 
0.025 M 
NaClO4 

Coppin et al. 
(2002) 

Sm 25 1.43 - 4.31 4.27 - 6.88 
0.5 M  

NaClO4 
Coppin et al. 

(2003) 

Sm 25 3.41 - 4.47 4.22 - 6.50 
0.025 M 
NaClO4 

Coppin et al. 
(2003) 

Eu 25 1.60 - 4.91 2.50 - 9.50 
0.5 M  

NaClO4 
Tertre et al. 

(2006a) 

Eu 40 1.10 - 8.00 2.50 - 9.50 
0.5 M  

NaClO4 
Tertre et al. 

(2006a) 

Eu 80 1.88 - 5.12 2.50 - 9.50 
0.5 M  

NaClO4 
Tertre et al. 

(2006a) 

Eu 150 1.62 - 4.97 2.50 - 9.50 
0.5 M  

NaClO4 
Tertre et al. 

(2006a) 

Eu 25 1.16 - 6.54 2.77 - 10.41 
0.1 M  

NaClO4 
Huittenen et al. 

(2010) 

Eu 25 1.78 - 4.31 5.0 ± 0.02 
0.01 M  
NaClO4 

Kautenberger & 
Beck (2010) 

Gd 25 1.82 - 4.48 5.0 ± 0.02 
0.01 M  
NaClO4 

Kautenberger & 
Beck (2010 

Eu 25 2.52 4.2 ± 0.1 
1 M  

NaCl 
Xiangke et al. 

(2001) 

Goethite 
(cr) 

REE 25 6.0 7.8 seawater 
Koeppenkastrap 

& De Carlo 
(1992) 

Goethite 
(am) 

REE 25 6.0 7.8 seawater 
Koeppenkastrap 

& De Carlo 
(1992) 

Hematite Eu 25 
-2.45 - 
0.65 

3.66 - 5.81 0.1 M NaClO4 
Rabung et al. 

(1998) 

 

 Kd values are only applicable under specific conditions where sorption and desorption 

are the dominant partitioning mechanism (i.e. dilute solutions), in contrast to the controlling 

partitioning mechanism being the aqueous saturation of a species with respect to a specific 

mineral phase or congruent dissolution (Meeussen et al., 2009). 
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 Kd values are linear extrapolations of an empirical value applicable to specific 

experimental conditions. They are not mechanistic except in the Henry’s Law regime11 (i.e. 

dilute solutions) (Payne et al., 2013). Thus, their application to aqueous concentrations and 

conditions beyond their initial definition should be performed with care. 

 
2.5.2 Sorption Isotherms 

 
 An isotherm is a curve that describes the retention of a substance onto a solid at various 

concentrations. The remaining solute concentration of a compound C [mol L-1 or kg L-1] can be 

compared with the concentration of this compound retained on solid particles Q [mol kg-1 or kg 

kg-1]. The relationship Q = f(C) is termed the sorption isotherm. 

 
There are four main types of isotherms (Giles et al., 1974): 

[1] The C isotherm 

 The curve is a line of zero-origin, this means that the ratio between the 

concentration of the compound remaining in solution and adsorbed on the solid is 

the same at any concentration. 

 This ratio is usually termed the distribution coefficient. 

 The C isotherm is often a simple approximation for a narrow range of 

concentrations. 

[2] The L isotherm 

 The ratio between the concentration of the compound remaining in solution and 

adsorbed on the solid decreases when the solution concentration increases, 

providing a concave curve. 

 This curve suggests progressive saturation of the solid. 

[3] The H isotherm 

 This is a particular case of the L isotherm, where the initial slope is very high.  

[4] The S isotherm 

 The curve is sigmoidal and thus has got a point of inflection. 

 This type of isotherm is always the result of at least two opposite mechanisms. 

  

                                                
11 Henry’s Law states that the amount of dissolved gas is proportional to its partial pressure in the gas 
phase. 
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 The concave isotherm (L or H isotherms) is the most widely met isotherm. An example 

is the Freundlich (1909) model, which is empirical and is based on the following relation:  

 
(2.34) Q = FCn 
 

where F [L kg-1] and n [dimensionless] are two constants (n<1).  

 
Eq. (2.34) Q = FCn is easily linearisable: 

 
(2.35) log Q = log F + n log C 
 

In accordance with the Freundlich equation, the isotherm does not reach a plateau as C 

increases. 

 
 Another example is the Langmuir (1918) model, which is based on reaction hypotheses. 

The solid is assumed to have a limited adsorption capacity Qmax. All the adsorption sites (i) are 

sterically independent of the adsorbed quantity, (ii) each site retains one molecule of the given 

compounds and (iii) all sites are assumed to be identical (Limousin et al., 2007). 

 
 The reaction, free site + solute ↔ surface complex, is then considered. The law of mass 

action cannot be directly applied to this reaction because the activities of the adsorbed species 

are not clearly defined (thermodynamically). Nevertheless, the surface activity coefficients are 

assumed equal to unity and the activities are calculated with conditional stability constants: 

 

(2.36)         L = 
[surface complex]

[solute][free site]
 = 

Qmax

C(Qmax - Q)
  

 

where Q is the solid concentration of the retain compound on the solid and Qmax – Q is the 

solid concentration of the free adsorptive site.  

 
Therefore the Langmuir isotherm is:  

 

(2.37)         Q = Qmax  
LC

1 + LC
   

 

Eq. (2.37) can be linearised by Eq. (2.38): 

 

(2.38)          
Q

C
 = Qmax L - LQ  

 

where the constant L corresponds to the affinity of the compound for the solid, while Qmax 

corresponds to the adsorption capacity of the solid.  
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 According to the initial assumption, the isotherm reaches a plateau Qmax. The constant 

QmaxL is the initial slope of the isotherm and is often used as the Kd when the concentrations 

are low enough to justify this approximation (Limousin et al., 2007). 

 
 In cases where the concentration of the studied compound is higher than a trace 

concentration, more complicated models than the Freundlich or the Langmuir must be applied 

(Kinniburgh, 1986). Hinz (2001) proposed an equation to describe any type of isotherm: 

 

(2.39)           Q = Qmax ∑ fi ∏ (
Ai,jC

pi,j

1 + Bi,jC
qi,j

)

ri,j𝜏𝑖

j=1

ω

i=1

   

 

where fi is the fraction of sites of type i, ω is the total number of different site types, Qmax is the 

asymptotic amount of adsorption at high concentrations, 𝜏𝑖 gives the number of interaction 

terms between different site types. Ai,j and Bi,j are empirical affinity constants and pi,j, qi,j and 

ri,j are dimensionless empirical parameters. 

 
 Despite the fact that Eq. (2.39) is fully empirical, and includes many fitting parameters, it 

has the advantage of reducing any isotherm into different site types. Sorption isotherms do not 

have an intrinsic thermodynamic definition, their significance depends entirely on the 

experimental conditions from which they were obtained. This means that the measurement 

method has a strong influence on the results. 

 
 Sorption isotherms are a well-established approach to describe a range of 

retention/release phenomena. This is very useful in the prediction and comprehension of the 

mobility of sorbing substances in the environment. However, these isotherms are empirical 

and macroscopic. Hence, this does not on its own make clear the complex mechanisms 

involved (Ho, 2004; Limousin et al., 2007). 

 
2.5.3 Surface Complexation Models  

 
 Quantitative modelling of sorption by advanced surface complexation models (SCM) has 

been widely implemented to gain a fundamental understanding of sorption processes at 

mineral surfaces (Bradbury et al., 2005; Bradbury & Baeyens, 2002, 2005 2009, 2011; Kulik 

et al., 2000; Marmier et al., 1994, 1997; Quinn et al., 2006a, 2006b; Rabung et al., 2000; Tang 

& Johannesson, 2005; Tertre et al., 2006a, 2006b, 2008). 

 
 SCM are based on thermodynamic principles. They provide a mechanistic interpretation 

of sorption processes. Because sorption processes are better defined using specific surface 
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complexes and charge and mass balanced chemical reactions (Sposito, 1983), SCM are 

considered advantageous over empirical adsorption models (e.g. sorption isotherms). 

 
 These models generally consider two sorption mechanisms to be taking place on clay 

mineral surfaces at: 

 

 permanent sites   sub model: ion exchange 

 variable charge sites  sub model: surface complexation 

 
where the permanent sites account for the majority of sites for clays (Table 2.3). This study will 

only implement the ion exchange model, although a literature study with an example of a 

surface complexation model will be discussed in this section. 

 
 Surface complexation models require a significant number of parameters, some need 

to be fitted (e.g. formation constants), but many must be constrained by physical 

measurements (e.g. the surface potential of the mineral). In practice, however, surface 

complexation parameters are rarely derived from experiments due the difficultly in producing 

reliable and accurate results. Therefore, there are large gaps in the thermodynamic dataset.   

 
 Models based on ion exchange are considered much more robust than those based on 

surface complexation. Parameterisation requires the determination of an exchange constant 

(log K) from experimental measurement (Eq. (2.3)). A number of exchange constants for 

species such as AlX3 are present in standard thermodynamic databases (see § 5.1.1.1). There 

are however no databases that contain REE exchange constants.   

 
2.5.3.1 Thermodynamics  

 
 Sorption involves two effects: a chemical bond between the ion and the surface atoms, 

and an electrostatic effect that depends on the surface charge. These yield two terms in the 

equation for the Gibbs free energy of surface complexation: 

 
(2.40) ΔG = ΔGintr + ΔGcoul 
 

where ΔGintr  is the intrinsic energy at zero surface charge and ΔGcoul  is the coulombic term12 

defined as: 

 

(2.41) ΔGcoul = FψS  
 

                                                
12 The Coulombic terms reflects the electrical work required to move ions away from a charged surface 



47 
 

where F is the Faraday constant [96,485 C/mol] and ψS is the surface potential [V]. The 

relationship between the Gibbs free energy and the equilibrium constant (K): 

 
(2.42) ΔG = -RT ln K 
 

can be used to transform Eq. (2.42) to 

 

(2.43)  log K = log Kintr
 - 

FψS

2.3 ∙RT
 

 

where R is the gas constant [8.31 J/mol/K0], T is the temperature [K] and Kintr is the intrinsic 

equilibrium constant that enters the thermodynamic database as the log K value.  

 
 The diffuse double layer model (Dzombak & Morel, 1990; Stumm et al., 1970) has been 

implemented in the literature to describe REE sorption on kaolinite (Tertre et al., 2006a). This 

model considers the charged surface to be balanced by a parallel layer of counter ions.  

 
 According to the Gouy Chapman theory (for a symmetrical electrolyte with valence Z), 

the surface charge density [σ, in C/m2] is related to the ψS by: 

 

(2.44) σ = (8000 RTεε0c)
1

2 ∙ sinh (
ZψSF

2 RT
)  

 

where ε is the dielectric constant of water [dimensionless], ε0 is the permittivity of free space 

[8.854 x 10-12 C/V∙m] and c is the molar electrolyte concentration [mol/L]. At low potential, Eq 

(2.44) can be linearised as: 

 
(2.45) σ = εε0κψS 

 
where the double layer thickness 1/k [metres] is defined by: 

 

(2.46) k2 = 
2F

2
I x 10

3

εε0RT
 

 

 The ionic strength I [mol/L] is defined as: 

 

(2.47) I = 0.5 ∑(Zi
2
∙ ci)  

 

At 25 °C [T = 298 K], the dielectric constant of water is 78.5 and Eq. (2.44) and (2.45) become: 

 

(2.48) σ = 0.1174c1/2 sinh(ZψS ∙ 19.46)  

(2.49) σ = 2.5I1/2ψS 

 



48 
 

 In the case of an asymmetrical electrolyte, a different charge-potential relationship is 

involved but, except for very low potentials, it is approximately the same as that for a 

symmetrical electrolyte which has the valence of the counter ion (Hunter, 1981). The double 

layer model cannot be used for high ionic strength > 0.1 M (Hayes et al., 1991).  

 
2.5.3.2 Diffuse Layer Model 

  
 Sorption of Eu3+ onto kaolinite from 25 to 150 °C was interpreted by Tertre et al. (2006a) 

using the diffuse layer model (DLM) formalism. The CEC of the pure kaolinite was 3.7 

meq/100g13. The experimental and spectroscopic analyses indicated that two types of reactive 

sites should be considered, implying the existence of two distinct mechanisms, an exchange 

reaction with the compensating Na+ cations described by:  

 
(2.50) 3>XNa + Eu3+ = >X3Eu + 3Na+  (Kex) 

 
and a surface complexation reaction on the amphoteric aluminol sites described by: 

 
(2.51) >AlOH + Eu3+ = >AlOEu2+ + H+  (Kedge) 

 
 A number of inputs were required to parameterise the DLM for it to be able to describe 

sorption of Eu3+ onto kaolinite. These include: (1) exchange constants over the entire range of 

ionic strength; (2) values of the site densities (aluminol sites and structural negative sites), and 

(3) values of the acid/base constants for the aluminol sites and exchange reactions at the 

studied temperatures (Tertre et al., 2006a). 

 
 Time resolved laser induced fluorescence spectroscopy (TRLFS) was used to constrain 

the number of Eu complexes and the stoichiometry of reactions. The acidity constants of the 

amphoteric aluminol sites were taken from Tertre et al. (2006b). Potentiometric titrations (at 25 

and 60 °C in 0.025 – 0.5 M NaClO4 solutions) were used to quantify the influence of the 

negative structural charge on the acid/base surface chemistry of kaolinite.  

 
 The acid/base model considers one negative exchange site and two edges, to take into 

account the crystalline structure of kaolinite (Tertre et al., 2006b). The negative exchange site, 

>X-, can react with both H+ and Na+ according to the reactions: 

 
(2.52) >X- + H+ = >XH 

(2.53) >X- + Na+ = >XNa 

 

                                                
13 The method used to calculate the CEC was not included in the paper. 
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 For the edge sites, the assumption was made that kaolinite possesses silanol [>SiOH] 

and aluminol [>AlOH] sites. In correlation with the literature data, the aluminol sites were 

considered to be amphoteric (Brady, 1994; Tombacz et al., 2004) whereas the silanol sites 

were considered to be neutral or negative in the studied range of pH (Brady et al., 1996). As a 

result, three reactions are taken into account: 

 
(2.54) >AlOH + H+ = >AlOH2

+ 

(2.55) >AlOH = >AlO- + H+ 

(2.56) >SiOH = >SiO- + H+ 

 
The experimental results were then fitted to the model, with the parameters used in the 

acid/base model (Table 2.6).  

 
Table 2.6 Sorption constants used to model Eu3+ sorption onto kaolinite (from Tertre et al., 2006a). 

Kaolinite 
log K 

25 - 150 ºC 25 ºC 40 ºC 80 ºC 150 ºC 

Sorption reactions      

3>XNa + Eu3+ = >X3Eu + 3Na+ 11.0 ± 0.4  -   

>AlOH + Eu3+ = >AlOEu2+ + H+ - 
-2.3 ± 

0.3 
-1.4 ± 

0.2 
0.2 ± 0.2 2.7 ± 0.4 

Reactions of the acid/base model      

>X- + H+ = >XH -2.2  -   

>X- + H+ = >XNa 5.1  -   

>AlOH + H+ = >AlOH2
+ - 

4.8 ± 
0.3 

   

>AlOH = >AlO- + H+ - 
-6.1 ± 

0.3 
   

>SiOH = >SiO- + H+ - 
-7.7 ± 

0.3 
   

Total site densities (in μmol/m2): AlOH = 0.83; SiOH = 0.83; X-
 = 3.7. 

 

 The numerical values of intrinsic sorption constants used for modelling Eu3+ sorption onto 

kaolinite are shown in Table 2.6 (Tertre et al., 2006a). The exchange mechanism for Eu3+ 

sorption reactions was assumed to be temperature independent, whereas the complexation 

constant increases from log K = -2.3 at 25 ºC to 2.7 at 150 ºC. The exchange constant for the 

Na/Eu reaction on kaolinite was log K = 11.0 ± 0.4.   
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2.6 Summary 

 
 This chapter describes the prior research that motivated this study, and is divided into 

sections that focus on: 

 

 The significance of the REE in the high-tech industry and their geochemistry; 

 The importance of IAD and the application of more environmentally responsible 

mining technologies to recover the REE; 

 The application of thermodynamic equilibrium and reactive transport models to 

describe solute transport, water flow and geochemical reactions in complex systems;  

 The REE sorption mechanisms associated with common IAD minerals, and 

 Literature studies that determine REE exchange constants with kaolinite. 

 
 The REE are a coherent group of 17 trace metals. Their unique physical and chemical 

behaviour has made them indispensable in many aspects of the technological industry. 

However, the growing demand for these elements poses considerable technical and economic 

challenges to the preservation of a reliable and affordable supply for present and future use. 

 
 A laterite deposit containing > 50% ion exchangeable REE adsorbed onto clay mineral 

surfaces is termed an IAD. The importance of this type of REE-bearing ore stems from the 

chemical ease of REE extraction. China is the only country to commercially process IAD. 

Nonetheless, active exploration projects are underway for IAD in Madagascar and Brazil.  

 
 Several environmental concerns are associated with mining IAD using surface mining 

and heap leaching (e.g. groundwater contamination, vegetation clearance and soil 

excavation). ISR is now implemented in China because it is considered more environmentally 

acceptable. However, ground clearance and (NH4)2SO4 contamination is still linked with ISR. 

 
 This highlights the need to consider environmental improvements before ISR should be 

implemented for potential deposits such as the Madagascar IAD. In addition, the Madagascar 

IAD must meet certain feasibility criteria (§ 2.2.4.1). Reactive transport modelling in addition to 

laboratory and field tests should be undertaken to determine deposit suitability.  

 
 1-D reactive transport models are capable of simulating solute transport, ion exchange 

reactions and water flow through dynamic natural environments such as the Madagascar IAD 

system. Soil column experiments have been widely used to evaluate reactive transport models 

and determine the fate of trace metals through soils.  

 
 REE sorption on the common IAD minerals such as kaolinite and amorphous materials 

are capable of exchanging and adsorbing REE because they have permanent (negative) 
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charge sites and/or pH dependent charge sites. Fractionation is commonly observed during 

REE-mineral sorption, this reflects the variation in desolvation energy with atomic number.    

 
 There are a number of empirical and mechanistic approaches that have been used to 

investigate REE sorption on mineral surfaces. Distribution coefficients and sorption isotherms 

have been widely used to understand the mobility of sorbing substances. However, their 

significance depends entirely on the experimental conditions on which they are based.  

 
 Surface complexation models provide a more complete, mechanistic understanding of 

sorption processes. However, many surface complexation parameters are required in these 

models. Some of these parameters are difficult to constrain by physical measurements, 

therefore there is limited amount of accurate thermodynamic data.   

 
 REE exchange reactions in ion exchange models are described by thermodynamic 

equilibrium constants (log K). There are no databases which contain REE exchange constants. 

In the literature, a log K is reported for the Eu exchange reaction with pure kaolinite (Tertre et 

al., 2006a). No literature studies with exchange constants for all the REE were found. 
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CHAPTER 3 
 

3 EXPERIMENTAL INVESTIGATION 
 
 This chapter considers the experimental procedures that were carried out in order to 

model REE mobilisation from the Madagascar IAD.  

 
Three types of experiments were performed: 

 

 CEC determination of the Madagascar IAD    model input 

 Batch tests to determine log K for REE-IAD exchange  model input 

 Column tests         log K verification 

 
 In preparation for the batch and column tests the disturbed subsamples (introduced in § 

1.3.1) were weighed and placed onto trays. The material was left to air dry for 14 days (it was 

not oven-dried at 40 °C, because it was thought that high drying temperatures could alter the 

material characteristics). Once dry, the samples were weighed again to determine the moisture 

content. The dried samples were then ground manually with a mortar and pestle.  

 
 The reagents used in this research are of analytical grade obtained from VWRTM. 

Solutions were prepared using ultrapure water. The vessels used were rinsed with ultrapure 

water before use to remove possible contamination sources. The sample preparation, 

experimental work, and analyses were performed under normal room conditions of pressure 

(1 atm) and the temperature was kept constant within a measured range of 20 °C to 23 °C. 

 
 Each experiment was performed in duplicate or triplicate to provide a measure of the 

experimental variance. Two blank solutions for each of the reactive solutions used in the 

experiments were prepared following the relevant experimental procedure. The blank solutions 

were analysed in addition to the replicates to measure for interference during spectral analysis 

and to trace sources of artificially introduced contamination. 

 
A digital pH meter (inoLab Multi 9630) calibrated using a 3-point calibration and electrode 

(SenTix®980) was used to measure pH. A high precision electrical balance (Ohaus SP6000 

Scout Pro Portable Balance) was used for weighing. Ion Chromatography (Thermo Scientific 

ISQ EC Single Quadrupole) and Inductively Coupled Plasma Mass Spectroscopy (Perkin 

Elmer NexION 350x) were used to measure element concentrations. 
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3.1 Cation Exchange Capacity 

 
 The CEC of the Madagascar soil was derived using the approach of Hendershot & 

Duquette (1986). This provided a direct measure of the bulk soil CEC. Determination of the 

CEC was important when modelling REE mobilisation from the Madagascar IAD because the 

CEC provides the exchange composition14 of the laterite. 

 
 The permeant and variable charge sites on clay surfaces (§ 2.4.1.1) attract 

exchangeable ions (counterions) to form an exchange complex (Carter, 1993). The CEC 

method aims to saturate the exchange complex with a cation, forcing the exchangeable cations 

present on the charged surface into solution (law of mass action).  

 
 In the approach of Hendershot & Duquette (1986), a high solid-liquid ratio (SLR) was 

used with the assumption that all the exchangeable cations on the material would be mobilised 

into solution. In addition to the barium chloride reagent that Hendershot & Duquette (1986) 

used, this study performed two further CEC tests with two different reagents.  

 
The three reagents used are:  

 

[1] 0.5 M barium chloride (BaCl2)  

[2] 1 M ammonium chloride (NH4Cl)  

[3] 1 M ammonium acetate (NH4Ac) 

 
 

 The method involved transferring 4.0 g of air dried material to a 50 mL polyethylene tube. 

Forty mL of a reactive solution (1, 2 or 3) was then added to the tube, giving a 1:10 SLR. The 

SLR is defined by: 

 

(3.1)         SLR = 
m

V
   

 

where m is the mass [g] of the Madagascar sample and V is the volume [mL] of the reagent.  

 
 The pH of the initial solution was measured. The tube was placed in a rotary shaker and 

shaken at 11 rpm for 2 hours (the kinetics of exchange was investigated by UIT, where the 

reaction was found to reach completion within 5 minutes, 2 hours ensured the removal of all 

exchangeable cations from the material).  

 
 The tube was centrifuged at 1,000 rpm for 30 minutes. The final pH of the supernatant 

                                                
14 The exchange composition refers to the distribution of exchangeable cations on the deposit. 
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was recorded. The supernatant was then filtered through a 0.45 µm filter paper. The eluent 

was separated into two fractions. One fraction was analysed for cation concentrations with 

ICP-MS. This procedure was repeated twice for each of the three reagents to give duplicates.  

 
 The CEC [meq/100g] of the Madagascar IAD was calculated from this fraction as: 

 

(3.2)         CEC = [∑
i
 

Ci

Mi/zi

]  / 1000  

 

where Ci is the aqueous concentration [mg/L] of the ion i, Mi is the molar mass of i and z is the 

charge of i. The measured elements used to calculate the CEC were Na, K, Mg, Ca, Mn, Cu, 

Ni, Zn, Al, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Si15. 

 
 The other fraction was tested for colloids. Initially ICP-MS was used to determine the 

major element concentrations, then light scattering and ultracentrifugation were employed to 

separate any colloids. ICP-MS was repeated following separation to ascertain whether cation 

concentration changes indicated the presence of colloids in the non-centrifuged samples16. 

 
3.2 Batch Reaction Tests 

 
 Thermodynamic equilibrium constants to describe REE exchange reactions with the 

Madagascar IAD were estimated from batch tests. These tests were defined operationally as 

achieving chemical equilibrium during which pH was observed to become constant with time. 

The tests were performed at 9 SLR conditions which are shown in Table 3.1. 

 
Table 3.1 SLR conditions for 9 batch tests. 

 
 
 

 
 
 
 
 
 
 
 
 

 

 The experimental approach involved transferring the 0.5 M barium chloride solution to a 

50 mL polyethylene tube containing the Madagascar material, in one of the predefined SLR 

shown in Table 3.1. The pH of the initial solution was measured. The tube was shaken in a 

                                                
15 All the measured elements above the detection limit where used in the CEC equation. 
16 ICP-MS analysis showed the presence of colloids to be negligible. 

 
m 

[g] 
V  

[mL] 
SLR  

[g/mL] 

1 5 45 0.11 

2 7.5 42.5 0.18 

3 10 40 0.25 

4 12.5 37.5 0.33 

5 15 35 0.43 

6 17.5 32.5 0.54 

7 20 30 0.67 

8 22.5 27.5 0.82 
9 25 25 1.00 
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rotary shaker for 2 hours at 13 rpm; it was then centrifuged for 30 minutes at 1,000 rpm.  

 
 The final pH of the supernatant was recorded before it was filtered through a 0.45 µm 

filter, and separated into two fractions for analysis of the major element concentrations with 

ICP-MS and IC. This procedure was repeated three times for each SLR condition to give 

triplicates. Fig. 3.1 shows some of the batch tests in different SLR conditions. 

 

 
Fig. 3.1 Batch tests in different SLR conditions. 
 

 The use of 9 different SLR meant that each test would comprise a different exchangeable 

REE concentration. Thus, the CTOT [meq/L], which is defined in Eq. (3.3), varied.  

 

(3.3)         CTOT   = CEC ∙ 
m

V
 = CEC ∙ SLR  

 

 Different exchangeable species distributions in each SLR condition were important when 

extracting REE equilibrium constants from the batch dataset. This is because these different 

distributions ensured that all the exchange reactions with the Madagascar IAD in a range of 

experimental conditions were adequately described.  

 
3.3 Soil Columns 

 
 Soil column experiments were performed with the Madagascar material to test whether 

the REE equilibrium constants estimated from the batch tests (described in § 3.2) could 

describe reactive transport through the REE column breakthrough curves.  

 
 A continuous flow column transport system usually provides a better approximation of 

the field conditions. Thus, reactive transport calculations based on the soil columns were used 

in this study to model the field site, incorporating flow, transport and ion exchange reactions. 

 
 The protocol involved adding the air-dried sample to each column in 10 g portions. The 

sample was compressed between each addition to obtain a uniform bulk density. A porous 

plate with 8-12 μm filter was placed at either end of the column, allowing the solution but not 

the material to flow from the columns. The columns are shown during packing in Fig. 3.2. 
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Fig. 3.2 The columns during the packing procedure. 
 

 Each column had a length of L = 15 cm, an inside diameter of 4 cm (area A = 12.6 cm2) 

and a volume of 188 cm3. Once packed, the columns were installed in the column test facility 

(Fig. 3.4). Two column experiments were performed, each using a different reactive solution: 

 

[1] 0.05 M barium chloride (BaCl2)  

[2] 0.1 M ammonium chloride (NH4Cl)  

 
 For each solution, two columns in replicate were run in parallel. In the first experiment, 

de-ionised water was used to saturate the column for 7 days. This period was sufficient to allow 

equilibrium conditions to be attained (to ensure this, pH was measured frequently).  

 
 The material was then flushed with a barium chloride solution for 16 days. Preliminary 

reactive transport calculations suggest this amount of time was sufficient to elute all elements 

from the material.  The column flow conditions are shown in Fig. 3.3. 

 

 
Fig. 3.3 Column flow conditions. 
 

 Because the breakthrough curves in the first experiment indicated that not all the 

elements were completely eluted from the column, the methodology of second experiment was 

altered. In this de-ionised water was used to saturate the column for 8 days and then the 

column was flushed for 24 days with ammonium chloride.  
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Fig 3.4 Column Test Facility at UIT. 
 

The columns were operated with an upward flow of Q = 0.02 mL/min using a peristaltic 

pump. The flow rate was checked at least once a day and adjusted accordingly (the flow rate 

varied marginally in the range of 0.001 mL/min to 0.003 mL/min). Pressure within the test 

facility was monitored throughout the entire experiment and recorded every 5 hours. 

 
 Bulk density and porosity were determined gravimetrically by weighing the column before 

and after saturation: 

 
(3.4)  bulk density: ρb = 1.3 g/cm3 

(3.5)  porosity:  ε = 0.19 

 
 The eluates were collected approximately every 12 hours. pH and conductivity were 

measured immediately following sample collection. This was in addition to online pH and 

conductivity measurements recorded every five hours. The eluates were filtered through a 0.45 

µm filter before analysis of the major and trace element concentrations with ICP-MS and IC. 

 
 Numerous column experiments had been performed prior to the two experiments 

described in this section. This was to determine an optimum set of column pre-conditions (i.e. 

flow rate, packing procedure, concentration of the salt solution and length of solution injection) 

since it was not easy to maintain a flow through the clay-rich soil.  
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e. pH and conductivity probes
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3.4 Summary 

 
 This chapter describes the experimental investigation undertaken in this research. Three 

different types of experiments were performed with sample material from Madagascar to 

determine input parameters to be used to model REE mobilisation from the IAD. 

 
 Determination of the CEC using a number of reactive solutions was important for the 

modelling of REE ion exchange reactions because it provides the exchange composition of 

the Madagascar IAD (i.e. the concentration of exchangeable species).  

 
 Batch reaction tests were undertaken at 9 SLR conditions to provide a REE dataset from 

which to estimate REE exchange constants with the Madagascar IAD minerals. Cation 

exchange reactions in the tests were indicated by the fast equilibrium kinetics.  

 
 Column experiments with different reagents were carried out to determine whether the 

estimated exchange constants could also describe REE breakthough curves and to improve 

current understanding of solute transport and water flow through the Madagascar laterite.  
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CHAPTER 4 
 

4 RESULTS AND DISUCSSION 
 
 This chapter will present the results of the experimental investigation and provide a 

descriptive account of the key findings. In addition, the results will be interpreted to provide a 

basis for CHAPTER 5, which will use these results in reactive transport and equilibrium 

calculations to model REE mobilisation from the Madagascar IAD.  

 
4.1 CEC  

 
The Madagascar IAD in contact with three solutions leads to the following results: 

 

     0.5 M BaCl2   (initial pH 6.4)    CEC = 10.34 ± 0.07 meq/100g  (final pH 4.0) 

 1.0 M NH4Cl   (initial pH 5.0)    CEC = 10.25 ± 0.05 meq/100g  (final pH 4.1) 

 1.0 M NH4Ac  (initial pH 7.0)    CEC = ~10.28 ± 0.1217 meq/100g (final pH 6.5) 

 
 The analogous values indicate that the CEC was independent of pH (as expected, § 

2.4.1.1). A significant pH decrease was observed between the initial and final chloride solutions 

(BaCl2 and NH4Cl) but not in the acetate solution. A CEC of 10.3 meq/100g was used in 

subsequent model calculations (in CHAPTER 5). The CEC data is given in Appendix B. 

 
 Fig. 4.1 shows the exchangeable element solution composition in each CEC test. Most 

of the element concentrations were similar in each test, except for Al which was strongly 

influenced by the pH of the different reactive solutions. High exchangeable Al concentrations 

were present in the chloride solutions (at pH 4), but not in the acetate solution (at pH 6.5).  

 
 Equilibrium modelling of all the CEC experiments was undertaken in PHREEQC in the 

presence and absence of Al to gain a better understanding of the reason for the pH drop in the 

chloride solutions and for the low exchangeable Al concentration in the acetate solution. This 

modelling will be discussed in § 5.1.2. 

                                                
17 . The NH4Ac CEC value is estimated. This is based on modelling of the CEC experiment which is 

discussed in detail in § 5.1.2. 
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Fig. 4.1 Major aqueous element composition for 3 CEC tests. Error bars signify standard error of replicates.  
 

4.2 Batch Reaction Tests 

 
 The CTOT for each of the 9 SLR conditions is shown in Table 4.1 (calculated with Eq. 

(3.3)). CTOT will enter the equilibrium calculations (described in CHAPTER 5) as an important 

input parameter. For example, in case of SLR = 0.11 g/mL  

 

(4.1)          CTOT  ≡  10.3 
meq

100g
 ∙ 0.11

g

mL
 ∙ 10 = 11.3 

meq

L
 

 

The entire batch dataset is presented in Appendix B. 

  
Table 4.1 The CTOT values for each SLR condition. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 The exchangeable cation concentrations for Al3+, Ca2+, Mg2+ and Na+ following the ion 

exchange reaction are shown in Fig. 4.2 at 9 SLR conditions. The final pH for these tests 

decreased with increasing SLR, from pH 4.0 to 3.6.  Al and Mg illustrate the expected trend, 

where the exchangeable concentration increased with increasing SLR. This reflected an 

increasing number of exchange sites.  

 

 
m 

[g] 
V  

[mL] 
SLR  

[g/mL] 
CTOT  

[meq/L] 

1 5 45 0.11 11.3 

2 7.5 42.5 0.18 18.5 

3 10 40 0.25 25.8 

4 12.5 37.5 0.33 33.9 

5 15 35 0.43 44.3 

6 17.5 32.5 0.54 55.6 

7 20 30 0.67 69.0 

8 22.5 27.5 0.82 84.5 
9 25 25 1.00 103 
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Fig. 4.2 Exchangeable cation concentrations for 9 SLR conditions. Error bars signify standard error of triplicates. 
 

 Systematic differences observed between the batches, such as consistently higher Na, 

Ca, Mg concentrations in solution after the ion exchange reaction in batch 3 could demonstrate 

the natural variability in exchange surface composition within an IAD. This provides a possible 

explanation for the varied trend observed in the Ca and Na concentrations in Fig. 4.2. 

 
 In correlation with the CEC results, Al3+ was observed to be the major exchangeable 

cation on the Madagascar IAD with concentrations increasing from 2.4 mM to 14.6 mM as a 

function of SLR. This is in addition to its occurrence in kaolinite’s mineral structure (the 

dominant clay exchanger in the Madagascar sample; Table 1.1). 

 
 The exchangeable REE fraction mobilised into solution at 9 SLR conditions are shown 

in Fig. 4.3. For the most part the REE behaved as anticipated, the concentration of 

exchangeable REE mobilised into solution increased with increasing SLR. The reproducible 

nature of the dataset was supported by the similarity of the repeat tests (batch 1, 2 and 3).  

 
 The analytical data showed Sm and Eu behaving differently to the rest of the REE, where 

the exchangeable fraction decreased with increasing SLR (in each repeat test). The literature 

indicates that spectral interference during analysis could explain this trend (summarised in § 

4.2.1). Thus, the geochemical behaviour of the REE does not differ, the measured data does.  
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Fig. 4.3 Exchangeable REE concentrations for 9 SLR conditions. Error bars signify standard error of triplicates. 
 

4.2.1 Interferences during Spectral Analysis 

 
 Spectral interferences can occur when atomic- or polyatomic ion masses differ by less 

than 0.5 mass units from the analyte ion (Dams et al., 1995). These isobaric interferences are 

caused by the overlap of isotopes of different elements. Potential sources of spectral 

interference that arise in the presence of the REE and high Ba concentrations (during ICP-MS 
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analysis) will be discussed and used to interpret the Sm and Eu trend (Fig. 4.3).  

 
 Spectral overlap of polyatomic ions is caused by the production of ionised molecular 

species within the plasma (Jarvis et al., 1991). The polyatomic ions, BaO+ and BaOH+, were 

found to significantly affect the intensity of the middle REE isotopes from 146Nd through to 155Gd 

(Cao et al., 2001). Particular complexities arises from the formation of BaO+ which interferes 

with both 151Eu and 153Eu, leaving no Eu isotope entirely free from interference (Jarvis, 1989).  

 
 Both the LREE and Ba can form oxide species (between 0.2–1.2%; Gray & Williams, 

1987) during ICP-MS analysis. Under optimum operating conditions, oxide interference is 

typically low as the magnitude of interference is within accepted analytical precision (Jarvis, 

1988). However, samples that contain high levels of Ba and/or strong fractionation of the LREE 

relative to the HREE, are subject to substantial interference effects (Kent, 2005). 

 
The following results were observed in the batch dataset under discussion:  
 

 The exchangeable REE fraction was determined with a highly concentrated barium 

chloride solution, and  

 The material exhibited a strong fractionation of the LREE relative to the HREE. 

 
These results fulfil both of the criteria outlined above to cause a significant interference effect.  

 
 To further confirm the presence of spectral interference, Jarvis et al. (1989) recommends 

measuring the Ba concentration. Measurement of the Ba concentration in the batch tests 

following the ion exchange reaction were consistently higher than the initial concentration (500 

mM) in the 9 SLR conditions. That is values of 730 mM, 995 mM and 1473 mM were reported. 

The analysis was repeated several times with the same outcome18. 

 
 In addition, Sm and Eu concentrations in blanks of the concentrated BaCl2 solution, were 

an order of magnitude greater than the rest of the lanthanides (Fig. 4.4). This trend strongly 

suggests an interfering effect. Solvent extraction was considered to correct for interference by 

separating Ba from the analyte system prior to analysis. However, this approach was not 

carried out because it was limited by incomplete REE recovery (Shabani et al., 1990). 

                                                
18 Analysis with ICP-MS can lead to overestimated concentrations when highly concentrated solutions 
are being measured as in the batch tests. 
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Fig. 4.4 REE concentrations in blank 0.5 M BaCl2 solutions, in triplicate. Error bars = standard error of triplicates. 
 

4.3 Soil Column Experiments  

 
 Fig. 4.5 shows the breakthrough curves (effluent concentration vs time) for the major 

ions and the REE for the column experiments in which a barium chloride solution was used. 

The curves of the duplicate column were analogous (only one column is shown). The entire 

column dataset is shown in Appendix B. 

 
The important time points within the columns are:  

 

 start of column test with deionised water:    t0 = 0 

 0.05 M BaCl2 is added to solution reservoir:   t1 = 168 h (7 days)  

 BaCl2 enters column (after flowing through tubes):  t2 = 168 h + 100 h = 268 h   

 estimated Cl breakthrough (tracer) assuming ε19 = 0.19: t3 = 268 h + 30 h20 = 298 h  

 Al and REE breakthrough (measured):    t4 = 350 h 

 retarded Ba breakthrough (measured):    t5 = 400 h  

 

 Al and the REE breakthrough simultaneously. The breakthrough of Ba2+ was retarded 

because the cation was exchanging for the REE3+ and Al3+ on the IAD surface prior to 

breakthrough. The overall trend of the REE breakthrough curves was similar. Sm and Eu were 

the exceptions as their concentration steadily increased with time (explained in § 4.2.1).  

                                                
19 ε was determined at the start of the column experiment: ε = Vcolumn/Wcontent = 35.7 g / 188.5 cm3 = 0.19 
20 Time for 1 pore-volume exchange: PV = εV/Q = 0.19·188 mL / (1.2 mL/h) = 30 h. 
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Fig. 4.5 Elution behaviour of Ba, Cl, Al, (upper) and the REE (lower). Error bars signify standard error of replicates. 
 

 Breakthrough curves for the column in which an ammonium chloride solution was used 

to desorb elements are shown for the major ions and the REE in Fig. 4.6. The curves of the 

replica column were comparable, thus only one column is shown.  

 
Typical time points in the columns are: 

 

 start of column test with deionised water:    t0 = 0 

 0.1 M NH4Cl is injected into solution reservoir:   t1 = 192 h (8 days)  

 NH4Cl enters column (after flowing through tubes):  t2 = 192 h + 100 h = 292 h  

 estimated Cl breakthrough assuming ε = 0.19:   t3 = 292 h + 30 h = 322 h 

 Al and REE breakthrough (measured):    t4 = 400 h  
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Fig. 4.6 Elution behaviour of Cl, Al, (upper) and the REE (lower). Error bars signify standard error of replicates. 

 

 Ammonia concentrations could not be accurately resolved due to the well-known 

measurement difficulties (Harper, 2005). However, retardation of NH4
+ was expected as the 

cation substitutes for Al3+ and the REE3+ on the IAD. All the REE breakthrough curves behaved 

similarly. Preferential flow was indicated by the rapid breakthrough of the Cl tracer. 

 
4.4 Madagascar IAD Mineralogy 

 
 The minerals identified in the Madagascar sample material (pit 3) with XRD analysis were 

kaolinite, gibbsite and quartz (shown in Table 1.1). Kaolinite is identified as the dominant 

mineral and the principal exchanger surface. However, no wet chemistry analysis was 

performed to determine whether amorphous iron oxyhydroxides were also present. 

 
 Amorphous iron oxyhydroxides are commonly found in weathered laterites. They are 

also important exchangers of cations (§ 2.4.1.2). The extent to which the amorphous materials 

contribute to the deposit's exchange capacity is unknown. For this reason, it was important to 

consider the exchange capacity of the laterite profile as a whole.  

 
 Hence, the exchange constants estimated in this study will represent REE exchange 

reactions with all potential exchange surfaces in the Madagascar IAD (§ 5.1.3), rather than just 

for REE-kaolinite exchange reactions. 
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4.5 Key Conclusions  

 
There are two main outcomes of the CEC tests: 
 

[1] The CEC of Madagascar IAD is 10.34 ± 0.07 meq per 100g of dry soil.  

[2] The major exchangeable cation on the Madagascar IAD is Al3+ (in addition to its 

occurrence in the kaolinite’s mineral structure).  

 
 The main outcome of the batch equilibrium tests was that all the REE (incl. Sm and Eu) 

behave coherently when mobilised into solution by a reactive solution. Spectral interference 

during analysis was the only reason for the different measured behaviour of Sm and Eu.  

 
 Cation exchange reactions were observed in the soil column experiments by the 

retardation of the injected cation (Ba2+ or NH4
+) breakthrough, as the injected cation was 

exchanging for the REE3+, Al3+ and the other trace elements in the column. 

 
 Minerals commonly associated with IAD include: kaolinite, halloysite, gibbsite, and 

amorphous materials. The amorphous mineral content in the Madagascar IAD was not 

determined. But, in this study all potential REE exchanging minerals will be considered in the 

estimation of REE exchange constants with the Madagascar IAD. 
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CHAPTER 5 
 

5 MODELLING  
 
 This chapter outlines the modelling approach used to estimate REE exchange constants 

from the batch reaction dataset. Reactive transport modelling of the soil columns was also 

undertaken to test whether the estimated REE exchange constants could also describe the 

breakthrough curves. The results of these simulations are discussed and evaluated where 

relevant to the research aims of this study. The model inputs are shown in Appendix C. 

 
5.1 Modelling REE Exchange 

 
 Equilibrium calculations were performed in PHREEQC to model REE ion exchange with 

the Madagascar IAD minerals (§ 4.2) and to estimate exchange constants for these reactions 

from the experimental data and reaction stoichiometry. Cation exchange reactions in the CEC 

experiments (§ 4.1) with three reactive solutions were also modelled in PHREEQC to 

determine the role of aluminium in the Madagascar IAD.  

 
5.1.1 PHREEQC Model Description  

 
 PHREEQC version 3 (Parkhurst & Appelo, 2013) is a geochemical modelling code 

capable of performing a wide variety of aqueous geochemical calculations. The programme is 

based on the equilibrium chemistry of aqueous solutions interacting with other components 

such as ion exchange surfaces, sorbing surfaces, minerals, gases and solid solutions.  

 
 PHREEQC is written in the C and C++ programming languages and implements several 

types of aqueous models. These include two ion-association aqueous models (the Lawrence 

Livermore National Laboratory model and WATEQ4F), the Specific ion Interaction Theory 

(SIT) aqueous model, and the Pitzer specific-ion-interaction aqueous model. 

 
Using any of these aqueous models, PHREEQC has capabilities for: 

 

[1] speciation and saturation index calculations; 

[2] batch-reaction and 1D transport calculations with reversible and irreversible reactions 

which include ion-exchange equilibria, surface complexation and kinetically controlled 

reactions, and  

[3] inverse modelling. 
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 In batch-reaction calculations, PHREEQC is oriented towards system equilibrium as 

opposed to just aqueous equilibrium. Thus, for an equilibrium calculation, all of the moles of 

each element in the system will be distributed among the aqueous, pure and gas phases, solid 

solutions, surface sites and exchange sites to attain system equilibrium.  

 
 Exchange reactions are modelled in PHREEQC as ion association reactions in the form 

of two half reactions. For example, the exchange of Na for REE is defined with the reaction: 

 
(5.1)  3NaX + REE3+ ↔ REEX3 + 3Na+ 
  

which is split into  

 
(5.2)  REE3+

 

+ 3X- = REEX3  log K 

(5.3)  Na+ + X- = NaX   log K 

 

where X- represents the exchanger.  

 
 Eq. (5.2) and (5.3) can be combined to provide the full exchange equation in Eq. (5.1) 

and corresponding thermodynamic constant. In the default database file, sodium (NaX) is used 

as the reference and the reaction Na+ + X- = NaX is given a log K of 0.0 (see also Eq.(5.7)). 

 
 The default ion exchange formulation assumes that the thermodynamic activity of the 

exchangeable species is equal to its equivalent fraction. The equivalent fraction E of an ion is 

the ratio of this ion equivalent concentration and the sum of equivalent concentrations of all 

present ions (Zagorodni, 2006): 

 

(5.4)           E
Ioni

=
zi[Ioni]

∑  zj[Ionj]
n
j=1

  0 ≤ E ≤1 

 

where zi and [Ioni] are charge and molar concentration of the ion number i. Optionally, the 

equivalent fraction can be multiplied by a Debye-Hückel activity coefficient to define the activity 

of an exchange species (Appelo, 1994). 

 
 Other formulations use other definitions of activity (e.g. mole fraction instead of 

equivalent fraction) and may be included in the database with appropriate rewriting of species 

or solid solutions. In most cases, modelling of ion exchange reactions requires experimental 

data on material from the study site for appropriate model application (e.g. Tertre et al., 2008). 
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5.1.1.1 Thermodynamic Databases 

 
 Reliable and consistent thermodynamic data form the basis for chemical and speciation 

modelling of equilibrium and reactive transport of constituents within complex systems 

(Meeussen et al., 2009). These data can consist of equilibrium constants (log K) for 

stoichiometric reactions that describe the:  

 

[1] Formation of dissolved species in aqueous solution; 

[2] Dissolution and precipitation of solid phases between aqueous and solid phases, and 

[3] Exchange of cations between aqueous and solid phases. 

 
 In practice, however, there are many instances where thermodynamic data are limited, 

have not been measured, or where it is not possible to provide accurate quantification of the 

equilibrium chemistry. 

 
 Nine thermodynamic databases are provided with PHREEQC, two of which are important 

in this research: llnl.dat and the wateq4f.dat. The llnl.dat (Johnson et al., 2000) uses 

thermodynamic data compiled from the Lawrence Livermore National Laboratory (LLNL). The 

LLNL aqueous model includes reliable data for a number of minerals and aqueous species in 

a temperature range of 0 to 300 °C.  

 
 The wateq4f.dat file is derived from WATEQ4F (Ball & Nordstrom, 1991). The database 

was developed by the U.S. Geological Survey and it contains most of the major and trace 

species, mineral phases and gas phases in natural water systems. It was developed to be 

used in a temperature range of 0 to 100 °C. All databases rely on different extensions of the 

Debye-Hückel expression (e.g. Davis; Eq. (2.6 – (2.8)) for the activity coefficient calculations. 

 
 One limitation of PHREEQC is the lack of internal consistency in the databases (Postma 

& Appelo, 2013). All of the databases are collections of log K and enthalpies of reactions from 

various literature sources. However, no systematic attempt has been made to determine the 

aqueous model used to develop the individual log K or the consistency of the aqueous models 

with the original experimental data. Thus, the databases should be thought of as preliminary.  

 
5.1.1.2 Exchange Constants for the Cation Exchange Model (IX model) 

 
 An objective of the thesis was to estimate REE exchange constants. The problems with 

existing databases that contain exchange constants such as WATEQ4F and LLNL are: there 

are no log K values for the REE; the log K for exchange species available should be considered 
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for montmorillonite only (according to Tournassat et al., 2007), and there are few or no 

references. 

 
 The equilibrium calculations based on the batch and CEC experimental datasets were 

implemented with exchange constants obtained from the WATEQ4F database. These are 

equivalent to those found in the LLNL database except for the exchange species AlX3 which 

has log K = 0.41 and the additional species AlOHX2 (which was added to wateq4f.dat). 

 

 The exchange reactions for the major and trace cations and the log K for the exchange 

reactions are:  

 

(5.5)  H+ + X- =  HX   log K = 1.0 

(5.6)  K+ + X- =  KX   log K = 0.7 

(5.7)  Na+ + X- =  NaX  log K = 0.0 

(5.8)  NH4
+ + X- =  NH4X  log K = 0.6 

(5.9)  Ca2+ + 2X- =  CaX2  log K = 0.8 

(5.10) Mg2+ + 2X- =  MgX2  log K = 0.6 

(5.11) Mn2+ + 2X- =  MnX2  log K = 0.52 

(5.12) Ba2+ + 2X- =  BaX2  log K = 0.91 

(5.13) Zn2+ + 2X- =  ZnX2  log K = 0.8 

(5.14) AlOH2+ + 2X-=  AlOHX2  log K = 0.89 

(5.15) Al3+ + 3X- =  AlX3  log K = 0.67 

(5.16) Fe3+ + 3X- =  FeX3  log K = 0.67 

 

 The log K values for the REE were determined using Eq. (5.17): 

 

 (5.17)        K  = 
[REEX3]

{REE
3+

} ∙ [X
3-

] 
  

 

where [REEX3] is the concentration of adsorbed species and {REE3+} is the activity of the 

aqueous REE species. 

 
 In the equilibrium calculations, activity corrections for all exchange species were 

considered using the parameter-free Davies formula in Eq. (2.7). This was due to the high ionic 

strength of the salt solution used in the experiments. 

 
5.1.2 Verification of the CEC Results  

 
 Equilibrium calculations are presented to elucidate the CEC findings (§ 4.1) and to 

establish an explanation for the varying aluminium concentration in the presence of different 
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reactive solutions. Two different equilibrium calculations with each reactive solution were 

considered in PHREEQC (based on the log K values in Eq (5.5) to (5.16)):  

 

 Case 1:   without Al adsorbed on the clay 

 Case 2:   with Al adsorbed on the clay (as the major species occupying 72 %) 

 

These two scenarios are shown to highlight the importance of Al in the Madagascar IAD. 

 
 In each calculation, the exchange composition of the IAD was taken from the CEC results 

shown in Appendix B. The initial load was put in equilibrium with each of the three solutions (in 

accordance with the experimental method) where the highly-concentrated cation, Ba2+/NH4
+, 

substituted for all other exchangeable cations on the clay. 

 
 The equilibrium calculations for both cases are shown in Fig 5.1, Fig 5.2 and Fig 5.3 with 

the BaCl2, NH4Cl and NH4Ac solutions, respectively. In the chloride solution calculations, the 

aqueous species distribution mirrored the initial exchangeable load on the clay in both cases 

(Fig 5.1 and Fig 5.2). The main difference was the final pH. 

 
 Only case 2, in the presence of exchangeable Al, could reproduce the experimentally 

recognised drop in pH to pH 4. This suggests that high concentrations of exchangeable Al 

being mobilised into solution by a highly-concentrated cation was the reason for the pH drop. 

This result also indicates that it is the major exchangeable species on the Madagascar IAD.  

 
 An additional effect was observed in the case 2 theoretical calculations with NH4Ac (Fig 

5.3). NH4
+ still replaces all the exchangeable cations on the clay (including Al), but, because 

the NH4Ac solution acts as a buffer, resisting a pH change, the exchangeable Al was instead 

precipitated as gibbsite. As a result, no exchangeable Al was mobilised into solution. 

 
 When other Al oxide phases such as amorphous Al(OH)3 were assumed to form, the 

model result did not agree with the measurement. This supported the assumption that the 

exchangeable Al precipitated in the form of gibbsite. However, this has not been confirmed by 

additional experimentation or analysis. 

 
 The NH4Ac CEC shown in § 4.1 is an estimated value. It was recalculated to include 

precipitated Al (the concentration added to the CEC calculation was approximately 2.8 mM in 

correlation with concentration of Al measured in BaCl2 and NH4Cl CEC tests). The theoretical 

findings provide an explanation for the near absence of measured Al in the NH4Ac CEC test 

(Fig. 4.1).  
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Fig 5.1 Chemical equilibrium calculations with a BaCl2 solution. 

 
 
Fig 5.2 Chemical equilibrium calculations with a NH4Cl solution. 
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Fig 5.3 Chemical equilibrium calculations with a NH4Ac solution. 

 
 

5.1.3 Modelling Approach to Estimate REE Exchange Constants 

 
 Equilibrium calculations were performed in PHREEQC to estimate the log K values that 

best fit the experimental data (in § 4.2) to describe REE exchange reactions with the 

Madagascar IAD. The modelling approach involved:  

 

 Parameter study  

 Test a variety of REE exchange constants (log K) to narrow the range within 

which to fit the parameter. 

 Determination of a single log K for all REE 

 The lanthanides have similar physicochemical properties, therefore, the 

assumption was made that one log K could describe REE-IAD exchange 

reactions. 

 Sensitivity study  

 Test the sensitivity of the exchange surface mineralogy by adjusting the 

exchange constants of the major cations.  

 Improve the fit of the log K 
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 Determine whether the log K fits the dataset better when a log K is estimated 

for each of the LREE and HREE and the REE.  

 
 The approach outlined above was used to estimate exchange constants for 13 of the 

REE (Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu). Exchange constants for Sm and 

Eu were estimated using a different approach (see § 4.2.1), which will be discussed in the 

following section (§ 5.1.4).  

 
 Equilibrium calculations were performed for each of the 13 REE. Because the modelled 

REE all showed the same trend, only 4 REE are shown in the figures in this section. La, Ce, 

Nd and Dy were chosen to represent the lanthanides because they are considered important 

in terms of their industrial applications and crustal abundance (§ 2.1.3). 

 
 Error bars that represent the standard deviation (SD) from triplicate batch tests are 

shown in all the figures for each of the 4 REE. The SD was included to represent the variance 

of the experimental dataset and thus the variance in the estimate exchange constants. The 

confidence intervals for La, Ce, Nd and Dy are ± 0.01, ± 0.1, ± 0.01 and ± 0.0003, respectively. 

 
5.1.3.1 Parameter Study 

 
 The experimental dataset comprises exchangeable REE concentrations at 9 SLR that 

were mobilised into the aqueous phase by a concentrated barium chloride solution. Different 

SLR conditions were used to ensure that a different exchange composition from the 

Madagascar IAD would be seen in each of the 9 SLR (Fig. 4.3).  

 
 The log K values estimated from this dataset using the modelling approach (outlined in 

§ 5.1.3) should therefore be able to describe REE exchange reactions in various experimental 

conditions. The dataset showed that the exchangeable REE concentration mobilised into 

solution increased with increasing SLR (the experimental dataset is shown in Appendix B). 

 
 A parameter study was undertaken to narrow the range within which to fit the REE 

exchange constants. It was assumed that one log K can describe ion exchange of all the REE. 

The modelling approach in PHREEQC was as follows: 

 

[1] Define the exchange composition of the Madagascar IAD for each SLR condition using 

the CTOT (Table 4.1; Eq. (5.18)); 

[2] Choose an initial seed value to use as the REE exchange constant;  



77 
 

[3] Run the PHREEQC simulation using the exchange composition in equilibrium with 0.5 

M BaCl2 solution (allowing exchange of REE3+ and major cations on clay for Ba2+) and 

the chosen log K for all the SLR conditions (see Appendix C for model inputs); 

[4] Compare the modelled exchangeable REE concentrations to measured 

concentrations, and  

[5] Repeat step (2) with another log K value until the best description of the REE batch 

reactor dataset was achieved. 

 
 For each SLR condition, the exchange composition of the Madagascar IAD is calculated 
by:  
 

(5.18)         CTOT  ≡  CEC 
meq

100g
 ∙ SLR 

g

mL
 ∙ 10  

 

The equivalent element fractions used to calculate the CEC with the barium chloride solution 

are shown in Table 5.1.  

 
Table 5.1 Equivalent element fraction used to calculate the CEC. 

 Element Charge Equivalent Fraction 
   [meq/100g] 

major 
and trace 
elements 

Na +1 0.47 
K +1 0.08 

Ca +2 0.63 
Mg +2 0.41 
Mn +2 0.01 
Zn +2 1.41 
Ni +2 0.00 
Cu +2 0.24 
Al +3 6.85 
Si +4 0.02 

REE 

Y +3 3.88E-03 
La +3 1.65E-02 
Ce +3 9.34E-02 
Pr +3 1.69E-03 
Nd +3 9.88E-03 
Sm +3 6.23E-02 
Eu +3 3.44E-02 
Gd +3 1.51E-04 
Tb +3 4.68E-05 
Dy +3 2.33E-04 
Ho +3 2.76E-05 
Er +3 7.46E-05 
Tm +3 1.78E-05 
Yb +3 1.73E-05 
Lu +3 1.82E-05 

CEC [meq/100g] 10.34 
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 The contribution of each exchange species in each SLR condition to the exchange 

composition of the Madagascar IAD was calculated by: 

 

(5.19)         Xe ≡ Ee 
meq

100g
 ∙ SLR 

g

mL
 ∙ 10 = Ex 

meq

L
         

 

where X is the exchange species of element e, E is the equivalent fraction of element e in the 

CEC experiment [meq/100g] and Ex is the equivalent fraction of the exchange species X 

contribution to the CTOT [meq/L].  

 
 For example, the major and trace exchange species in the 0.11 SLR condition are 

defined as: 

 

(5.20)         NaX ≡ 0.47 
meq

100g
 ∙ 0.11 

g

mL
 ∙ 10 = 0.52 

meq

L
         

 

(5.21)         KX ≡ 0.08 
meq

100g
 ∙ 0.11 

g

mL
 ∙ 10 = 0.09 

meq

L
        

 

(5.22)         CaX2 ≡ 0.63 
meq

100g
 ∙ 0.11 

g

mL
 ∙ 10 = 0.70 

meq

L
         

 

(5.23)         MgX2  ≡ 0.41 
meq

100g
 ∙ 0.11 

g

mL
 ∙ 10 = 0.45 

meq

L
    

 

(5.24)         MnX2 ≡ 0.01 
meq

100g
 ∙ 0.11 

g

mL
 ∙ 10 = 0.01 

meq

L
         

 

(5.25)         ZnX2 ≡ 1.41 
meq

100g
 ∙ 0.11 

g

mL
 ∙ 10 = 1.55 

meq

L
         

 

(5.26)         CuX2 ≡ 0.24 
meq

100g
 ∙ 0.11 

g

mL
 ∙ 10 = 0.27 

meq

L
         

 

(5.27)         AlX3 ≡ 6.85 
meq

100g
 ∙ 0.11 

g

mL
 ∙ 10 = 7.53 

meq

L
         

 

 Table 5.2 defines the entire exchange composition for SLR condition = 0.11. The cations 

Si4+ and Ni2+ are not included in the ion exchange modelling because there are no exchange 

constants for the species SiX4 and NiX2 in any of the PHREEQC databases. 
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Table 5.2 Input conditions that define the exchange composition for SLR condition = 0.11. 

 
IX species Reaction log K Equivalent Fraction 

   [meq/L] 

major 
and trace 
exchange 
species 

NaX Na+ + X- = NaX 0.0 0.52 
KX K+ + X- = KX 0.7 0.09 

CaX2 Ca2+ + 2X- = CaX2 0.8 0.70 
MgX2 Mg2+ + 2X- = MgX2 0.6 0.45 
MnX2 Mn2+ + 2X- = MnX2 0.52 0.01 
CuX2 Cu2+ + 2X- = CuX2 0.6 0.27 
ZnX2 Zn2+ + 2X- = ZnX2 0.8 1.55 

AlX3 Al3+ + 3X- = AlX3 0.67 7.53 

REE 

YX3 Y3+  + 3X- = YX3 2.29 4.27E-03 
LaX3 La3+ + 3X- = LaX3 2.29 1.81E-02 
CeX3 Ce3+ + 3X- = CeX3 2.29 1.03E-01 
PrX3 Pr3+ + 3X- = PrX3 2.29 1.86E-03 
NdX3 Nd3+ + 3X- = NdX3 2.29 1.09E-02 
GdX3 Gd3+ + 3X- = GdX3 2.29 1.67E-04 
TbX3 Tb3+ + 3X- = TbX3 2.29 5.15E-05 
DyX3 Dy3+ + 3X- = DyX3 2.29 2.56E-04 
HoX3 Ho3+ + 3X- = HoX3 2.29 3.04E-05 
ErX3 Er3+  + 3X- = ErX3 2.29 8.21E-05 
TmX3 Tm3+ + 3X- = TmX3 2.29 1.95E-05 
YbX3 Yb3+ + 3X- = YbX3 2.29 1.91E-05 
LuX3 Lu3+  3X- = LuX3 2.29 2.00E-05 

  CTOT [meq/L] 11.3 
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 Fig 5.4 illustrates an example from the parameter study, where calculated and measured 

REE concentrations are compared. For each SLR condition, three equilibrium calculations are 

shown that are based on three log K values:  

 

 log K = 1.3 

 log K = 2.3   best visual fit value 

 log K = 3.3  

 

 
Fig 5.4 Parameter study of different log K for all the REE. The error bars represent the standard deviation. 
 

 The model showed that increasing the log K decreased the exchangeable REE 

concentration mobilised into solution. This was because the REE were more strongly bound to 

the exchanger surface. Since there is only a literature source that contains an exchange 

constant describing Eu exchange reactions with kaolinite surfaces (Tertre et al., 2006a), the 

parameter study narrowed the range to fit the log K. 

 
 The results of the parameter study (in Fig 5.4) are also shown in Fig 5.5 for the major 

exchangeable cation (Al3+) on the Madagascar IAD, where the three equilibrium calculations 

for the REE are compared to calculated and measured Al concentrations. The equilibrium 

model in which a log K = 2.3 represents all REE exchange reactions with the Madagascar IAD 

was observed to best fit the Al dataset. 
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Fig 5.5 Exchangeable Al with different REE log K models. 
 

5.1.3.2 Determination of a Single log K value for all the REE  

 
 PEST (Doherty, 1994), a parameter optimisation tool, was used in conjunction with 

PHREEQC to extract the equilibrium constants from the REE experimental dataset that 

describe REE exchange reactions with the Madagascar IAD.  

 
 PEST was able to take control of the existing PHREEQC model (described in § 5.1.3.1). 

Parameter optimisation was achieved using the Guass-Marquardt-Levenberg method for 

which the discrepancies between the model-generated numbers and the corresponding 

measured data were reduced to a minimum in the weighted least squares sense. 

 
 A single equilibrium constant was assumed to describe all REE exchange reactions with 

the Madagascar IAD. The equilibrium model that best described the REE dataset with 

PHREEQC (visual fit) and PEST (least squares fit) are shown in Fig 5.6. The best fit log K 

value for all of the REE was: 

 
(5.28) REE3+ + 3X- = REEX3 log K = 2.30 ± standard deviation   in PHREEQC 

(5.29) REE3+ + 3X- = REEX3 log K = 2.29 ± standard deviation  in PEST 
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Fig 5.6 PEST and PHREEQC equilibrium calculations compared to the measured REE dataset. 
 

 PEST produces an objective function value for each model calculation. The objective 

function of a linear programming problem is to minimise or to maximise a numerical value. In 

the case of optimisation in PEST, the objective function to be minimised is the difference 

between the experimental data and the corresponding model generated numbers.  

 
 The objective function takes the following general form: 

(5.30)         minimise or maximise Z = ∑ ci Xi

n

i = t

 

 
where ci is the objective function coefficient corresponding to the ith variable, and Xi is ith the 

decision variable.  

 
 The objective function was also determined for the PHREEQC calculation using Eq 

(5.30). The PEST calculation leads to a lower objective function (5.724 x 10-11) than the 

PHREEQC calculation (9.281 x 10-11). Thus the log K in Eq. (5.29) provides a better fit. 

 
 PEST produces 95% confidence upper and lower limits, thus the log K value becomes: 

 
(5.31) REE3+ + 3X- = REEX3 log K = 2.290 ± 0.005   
 

-1.0E-04

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

0
.1

1

0
.1

8

0
.2

5

0
.3

3

0
.4

3

0
.5

4

0
.6

7

0
.8

2

1
.0

0

 exp
 log K 2.29 (PEST)
 log K 2.30 (PHREEQC)

-5.0E-03

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

0
.1

1

0
.1

8

0
.2

5

0
.3

3

0
.4

3

0
.5

4

0
.6

7

0
.8

2

1
.0

0

 exp
 log K 2.29 (PEST)
 log K 2.30 (PHREEQC)

-5.0E-02

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

0
.1

1

0
.1

8

0
.2

5

0
.3

3

0
.4

3

0
.5

4

0
.6

7

0
.8

2

1
.0

0
 exp
 log K 2.29 (PEST)
 log K 2.30 (PHREEQC)

-5.0E-03

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

0
.1

1

0
.1

8

0
.2

5

0
.3

3

0
.4

3

0
.5

4

0
.6

7

0
.8

2

1
.0

0

 exp
 log K 2.29 (PEST)
 log K 2.30 (PHREEQC)

Nd

CeLa

Dy

L
a
 [
m

M
]

N
d

[m
M

]

D
y

[m
M

]
C

e
 [
m

M
]

SLR SLR

SLR SLR



83 
 

However this does not take into account the standard deviation of the experimental dataset. 

Therefore, the standard deviation was shown in Fig. 5.6 to signify the range within which the 

log K values could vary for each REE.  

 
5.1.3.3 Sensitivity Study  

 
 The log K values in Eq. (5.5) to (5.15) were used in all the model calculations shown in 

§ 5.1.3.1 and § 5.1.3.2. However, there are little to no references for these constants and they 

should be considered for montmorillonite only (Tournassat et al., 2007). 

 
 Therefore, it was important to consider whether adjusting the ion exchange constants for 

the major exchange species would be able to improve the model of the experimental REE 

dataset and thus be considered for kaolinite (Table 1.1). 

 
 The log K values for the ion exchange reactions of the major cations (Ba2+ and Al3+) were 

varied in PHREEQC to test the sensitivity of the estimated REE exchange constants to 

exchange surface mineralogy by comparing different constants to those used in the database 

for montmorillonite.  

 
 Ba2+ was considered a major cation in addition to Al3+ because a highly concentrated 

barium chloride solution was used in the batch reactor tests to saturate the clay, where Ba2+ 

exchanged for all the cations on the clay.  

 
 Fig 5.7 compares calculated and measured exchangeable REE21 concentrations for nine 

SLR values. For each SLR three equilibrium models, each with different log K values for BaX2 

exchange species, are shown: 

 
(5.32) Ba2+ + 2X- = BaX2 log K = -0.09 

(5.33) Ba2+ + 2X- = BaX2 log K = 0.91    best visual fit value 

(5.34) Ba2+ + 2X- = BaX2 log K = 1.91 

 
In each model, LaX3 was given the standard value of log K = 2.29. 
 

                                                
21 La3+ represents the entire lanthanide series 
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Fig 5.7 Sensitivity study investigating the effect of Ba on the REE. 
 
 The log K for the BaX2 exchange species in Eq. (5.12) from the WATEQ4F 

thermodynamic database provides the best description of the experimental REE 

concentrations. The different models also highlight that the REE are very sensitive to changes 

in the log K value for BaX2 exchange species. 

 
 The log K of the REEX3 and BaX2 were also adjusted to determine whether further 

improvements to the parameter values of the estimated REE exchange constants were 

possible. Fig 5.8 shows a sensitivity study in which the log K values for BaX2 and the REEX3 

were varied. In each diagram, a single log K was assigned to all the REEX3: 

 
(5.35) La3+ + 3X- = LaX3  log K = 0.29 

(5.36) La3+ + 3X- = LaX3  log K = 1.29 

(5.37) La3+ + 3X- = LaX3  log K = 3.29 

 
Each diagram shows three equilibrium models where the log K of BaX2 was varied (see Eq. 

(5.32) to (5.34)). 
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Fig 5.8 Sensitivity study investigating the effect of Ba on the REE. 
 
 The model calculations in Fig 5.8 show that the calculated exchangeable REE 

concentration mobilised into solution was affected by changes to the log K values, especially 

when the log K for the REE was higher. However, a better description of the experimental 

dataset with the constants in Eq. (5.35) to (5.37) was not achieved. 
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 The experimental CEC results indicated that Al3+ was the major exchangeable cation on 

the Madagascar IAD (see § 4.1). Thus, changing the log K value for the AlX3 exchange species 

was expected to strongly affect the exchangeable REE concentration.  

 
 Fig 5.9 compares calculated and measured exchangeable REE concentrations for nine 

SLR conditions. For each SLR three equilibrium models each with different log K values for 

AlX3 exchange species are shown:  

 
(5.38) Al3+ + 3X- = AlX3  log K = -0.06 

(5.39) Al3+ + 3X- = AlX3  log K = 0.67    best visual fit value 

(5.40) Al3+ + 3X- = AlX3  log K = 1.67 

 
In each model, LaX3 was assigned the standard value of log K = 2.29. 

 

 
Fig 5.9 Sensitivity study investigating the effect of Al on the REE22. 
 

 It was apparent from the adjustments made to the log K value for AlX3 (each by an order 

of magnitude) and the minor variation in the exchangeable REE concentrations that the REE 

are relatively insensitive to Al. Thus, the log K value in Eq. (5.15) from the WATEQ4F database 

was found to best describe REE exchange with the Madagascar IAD.  

 
 The log K values of the REEX3 and AlX3 were adjusted. Fig 5.10 shows the results of a 

sensitivity study where the exchange constants for AlX3 and the REEX3 were varied. A single 

log K value was assigned to all the REE (see Eq. (5.35) to (5.37)). Each diagram shows three 

equilibrium models where the log K of AlX3 was varied (see Eq. (5.38) to (5.40)). 

 

                                                
22 The data points are not affected by changes to the log K of AlX3, thus they overlap. 
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Fig 5.10 Sensitivity study for Al and the REE23. 
 

 The equilibrium calculations indicate that the modelled REE and Al concentrations were 

unaffected by changes to the log K values. The only observed effect was seen when the log K 

for the REEX3 exchange species was varied. The different Al models did not influence the 

modelled REE concentrations.  

 
 The outcomes of the sensitivity study with the major exchangeable cations and REE 

support the model calculations in § 5.1.3.2, where the ion exchange reactions in the 

experimental REE dataset were best described by log K = 2.29 and log K values from the 

WATEQ4F database for minor and major cations (in Eq. (5.5) to (5.15)).  

                                                
23 The data points are not affected by changes to the log K of AlX3, thus they overlap. 
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 The study also indicates that the non-REE ions are not sensitive to the mineral exchange 

surface assuming that the exchange constants in the database are based on montmorillonite 

(stated in Tournassat et al., 2007). This because the model calculations above demonstrate 

the database values are consistent with observations on kaolinite.  

 
 Another interesting outcome of the log K = 2.29 model for all the REEX3

 exchange 

species implies that the REE are more strongly bound to the IAD exchanger surface than the 

other trivalent species, AlX3 and FeX3, in the WATEQ4F database, which both have a log K = 

0.67 (Eq. (5.15) and (5.16)).  

 
5.1.3.4 log K values for the LREE and HREE 

 
 Once the single log K for all REE was determined in § 5.1.3.2 and a sensitivity study 

supported the findings in § 5.1.3.3, improvements to the modelling approach were undertaken 

using the PEST optimiser.  

 
 Fractionation between the LREE and HREE was observed in Madagascar IAD (Fig. 2.2), 

where the HREE are more strongly bound than the LREE. Therefore, an equilibrium model 

was implemented, in which one log K value was assigned to the HREE and one to the LREE.  

 
 The model calculations for the LREE and HREE are compared to the experimental 

dataset in Fig 5.11. Optimisation in PEST indicated that:  

 
(5.41) log K = 2.289  for LREE (La, Ce, Pr and Nd) 

(5.42) log K = 2.283  for HREE (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) 

 
best described the measured REE concentrations. Very small differences between the log K 

value for the LREE and HREE (to 3 decimal places) were observed. 

 
 The least squares objective function for this calculation was 5.723 x 10-11 compared to 

5.724 x 10-11 in the single log K model. This indicates that a slightly better fit was observed 

when one log K was assigned to both the HREE and LREE rather than when a single exchange 

constant was used to describe all REE exchange reactions with the Madagascar IAD. 
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Fig 5.11 LREE and HREE log K parameter set compared to measured REE exchangeable concentrations. 
 

5.1.3.5 Individual log K values for REE  

 
 The REE are a chemically similar group of trace elements. However, there are small 

chemical differences between the REE (i.e. the decrease in ionic radii with increasing atomic 

number, § 2.1.1). These differences could be observed in their exchange behaviour.  

 
 Fine-tuning of the modelling approach showed that an individual log K for each REE (in 

PEST) would better be able to describe REE exchange reactions. Table 5.3 includes the 

individual equilibrium constants for REE exchange with the Madagascar IAD.  
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Table 5.3 Equilibrium constants for REE exchange reactions. 

IX Species Reactions log K ± SD 

YX3 Y3+ + 3X- = YX3 2.27978  ±  0.00174 

LaX3 La3+ + 3X- = LaX3 2.28539  ±  0.01141 

CeX3 Ce3+ + 3X- = CeX3 2.28987  ±  0.11344 

PrX3 Pr3+ + 3X- = PrX3 2.26463  ±  0.00208 

NdX3 Nd3+ + 3X- = NdX3 2.28198  ±   0.01245 

GdX3 Gd3+ + 3X- = GdX3 2.29588  ±  0.00053 

TbX3 Tb3+ + 3X- = TbX3 2.29588  ±  0.00005 

DyX3 Dy3+ + 3X- = DyX3 2.29793  ±  0.00028 

HoX3 Ho3+ + 3X- = HoX3 2.301131  ±  0.00003 

ErX3 Er3+ + 3X- = ErX3 2.28808  ±  0.00008 

TmX3 Tm3+ + 3X- = TmX3 2.28764  ±  0.00001 

YbX3 Yb3+ + 3X- = YbX3 2.29237  ±  0.00008 

LuX3 Lu3+ + 3X- = LuX3 2.29434  ±  0.00001 

 

 Fig 5.12 compares the single and individual log K best fit calculations to the measured 

REE dataset. The visible differences between the single log K model and the individual log K 

model were minimal. The objective function value reflects this, decreasing from 5.72 x 10-11 for 

the single log K model compared to 5.71 x 10-11 for the different log K model.  
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Fig 5.12 The single and individual log K best fit calculations are compared the measured REE dataset. 
 

5.1.4 Extrapolation of Exchange Constants for Sm and Eu 

 
 Sm and Eu could not be accurately resolved from the experimental dataset (see § 4.2.1). 

This meant that their exchange constants could not be determined using the modelling 

approach described in § 5.1.3. This section describes the modelling approach to estimate the 

equilibrium constants for Sm and Eu exchange with the Madagascar IAD.  

 
 Because the lanthanides are chemically similar in atomic structure, they also behave 

similarly in terms of chemical reaction properties including the free energy of ion exchange 

reactions and the corresponding thermodynamic constants (see § 2.1.1). Therefore, Sm and 

Eu were expected to behave as the rest of the REE did in the batch reactor dataset (§ 4.2). 

 
 The majority of the REE in the Madagascar IAD are bound to the clay mineral surface in 

the exchangeable position (Chi et al., 2006; Jun et al., 2010) and, when in contact with a 

concentrated salt solution, these exchangeable cations will be mobilised into solution. The 

batch and CEC experiments and PHREEQC equilibrium calculations support this assertion.  
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 The assumption was therefore made that the solid Sm and Eu concentrations measured 

for the IAD sample24 represent the total exchangeable amount of each species and 

experimental value for the 1:1 (1.00) SLR condition (i.e. where the highest exchangeable 

concentration was observed). The solid concentrations for the other 13 REE were also 

compared to the reliable experimental values for the 1:1 SLR condition and found to be similar. 

 
 The remaining 8 SLR conditions (0.11 – 0.82) were approximated from the exchangeable 

REE concentration differences between SLR 1.00 and SLR 0.82 to give a Sm and Eu values 

for the 0.82 SLR condition, then the exchangeable REE concentration differences between 

SLR 0.82 and 0.67 to provide values for the 0.67 SLR condition etc. Table 5.4 shows the 

expected Sm and Eu concentrations for the experimental dataset. 

 
Table 5.4 Estimated Sm and Eu concentrations. 

SLR  
[g/mL] 

Sm 
[mM] 

Eu 
[mM] 

0.11 0.00029 0.000037 
0.18 0.00042 0.000044 
0.25 0.00048 0.000049 
0.33 0.00052 0.000059 
0.43 0.00069 0.000084 
0.54 0.00086 0.000119 
0.67 0.00119 0.000145 
0.82 0.00173 0.000182 
1.00 0.00209 0.000231 

 

 Once the experimental dataset was defined, an equilibrium model was developed in 

PHREEQC and, in conjunction with PEST, a single exchange constant was calculated: 

 
(5.43) REE3+ + 3X- = REEX3  log K = 2.29     
 

This value correlates exactly with the previously calculated log K to describe all the REE 

exchange reactions with the Madagascar IAD with a single constant.  

 
 Fine-tuning of the modelling approach considered an individual log K for each REE: 

 
(5.44) Sm3+ + 3X- = SmX3 log K = 2.28164 ±  0.0005725 

(5.45) Eu3+ + 3X- = EuX3 log K = 2.28131 ±  0.00006 

 

                                                
24 BGS measured total element concentrations in sample 593 by Na2O2 fusion with an ICP-MS finish. Total Sm and 

Eu in the sample 593 was 2.08 mg/kg and 0.35 mg/kg, respectively.  
 
25 Estimated standard deviation of Sm and Eu. 



94 
 

In this model, the log K values for the 13 other lanthanides were given the estimated individual 

exchange constants reported in Table 5.3. 

 
  Fig 5.13 compares the single and individual log K best fit calculations to the measured 

Sm and Eu dataset. It is important to note that while the log K for SmX3 and EuX3 reflect the 

behaviour of the rest of REE (as expected) these values should be considered preliminary.  

 

 
Fig 5.13 The single and individual log K best fit calculations are compared to the extrapolated Sm and Eu dataset 
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5.2 Reactive Transport Modelling 

 
 Reactive transport calculations were performed in TRN (UIT’s in-house software) to 

simulate solute transport in IX columns (sorption/elution) by modelling REE breakthrough 

curves with the exchange constants that were estimated in § 5.1.3. The input files for the TRN 

models are shown in Appendix C. 

 
5.2.1 TRN Model Description  

 
 The reactive transport model, TRN (Kalka, 2018), combines transport with geochemical 

reactions (thermodynamics and kinetics) and comprises three main parts (see Fig 5.14). The 

model has a modular design consisting of groups of independent subroutines that carry out 

specific simulation tasks with PHREEQC version 3 (Parkhurst & Appelo, 2013).  

 

 
Fig 5.14 Modular structure of TRN (Kalka, 2018). 
 

 Reactive transport models that discretise the advection reaction dispersion (ARD) 

equation (Eq. (2.27)) may incur problems because small concentration variations are not 

apparent due to numerical dispersion. TRN adopted the ideas of Appelo & Postma (2013) and 

is free from numerical dispersion.  

 
 The time-spatial discretisation (Δx, Δt) for a numerical dispersion free simulation 

depends on the flow velocity, v (m/h)  

 

(5.46)         v  =  
∆x

∆t
 

 

No numerical dispersion means the calculated concentration fronts are only influenced by 

calculated effects of hydrodynamic dispersion as represented in the transport equation.  
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 The three components of the ARD equation are calculated sequentially in TRN for a 1D 

column or flowline. The column is divided into a number, N, of cells. Fig 5.15 illustrates the 

discretisation of the flowline in a number of cells. One timestep (also known as a shift in 

PHREEQC) moves the mobile cell contents into the next cell.  

 
 Subsequently, the reactions between the immobile entities (exchangers, minerals etc.) 

and the solution are calculated. Dispersion is then calculated for each timestep by mixing the 

contents of the adjacent cells. This is followed by calculating reactions between the mobile and 

immobile entities. During the next timestep, everything is repeated. 

 

 
Fig 5.15 Cell structure of a 1D reactive transport column (from Appelo & Postma, 2005). 
 

 There are two approaches that are often considered to describe flow and transport 

through columns: the dual porosity and the single porosity model (Arbogast et al., 1990; Gerke 

& van Genuchten, 1993; Jarvis, 1998; Larsson & Jarvis, 1999). TRN is able to implement both. 

Fig 5.16 shows a 1D reactive transport flow path with the dual porosity model.  

 
 The dual porosity model requires the porosity of the mobile, ɛF, and the stagnant regions, 

ɛP, and the mass exchange rate, α, between the two regions to be defined in TRN. It is also to 

possible in TRN to define where ion exchange takes place, either in the mobile water, in the 

stagnant water, or in both regions.  
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Fig 5.16 1-D reactive transport model using the dual porosity approach in TRN. 
 

5.2.2 Modelling Approach  

 
 TRN was used to simulate solute transport, thermodynamic reactions and ion exchange 

in the Madagascar IAD. The approach used to model reactive transport in the column 

experiments with both reagents (barium chloride and ammonium chloride) involved: 

 

 Adjustment of Column Hydraulics  

 Determine the column hydraulics by fitting the model to the chloride (tracer ion) 

breakthrough curve. 

 Ion Exchange in the Dual Porosity Model 

 Establish where ion exchange is taking place (i.e. in the mobile region, stagnant 

region or both) by comparing each model to the measured major cation 

breakthrough curves. 

 Major Element Breakthrough Curves  

 Determine whether the model can adequately describe the major element 

breakthroughs.  

 REE Breakthrough Curves  

 Determine whether the extracted log K values can model the measured REE 

breakthroughs.  

 
 Using Microsoft Excel, analysis of variance (ANOVA) and statistical methods were used 

to determine whether the model simulations differed significantly from measured breakthrough 

curves. The modelling approach and the results will be described in the following sections. 

 
5.2.1.1 Adjustment of Column Hydraulics 

 
 The reactive transport modelling was focused on the chemical processes triggered by 

the reagent injection. That is, the flushing period with deionised water was not considered. 

Hence, all models start at t2, the estimated point of reagent injection (see Fig. 4.5 and Fig. 4.6). 
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The equilibrium conditions achieved in the column with deionised water were used to simulate 

the initial column solution in the model. 

 
 A tracer (Cl-) was used to estimate the flow and storage properties of the Madagascar 

IAD. The chloride ion was assumed to act as a conservative tracer that did not undergo 

chemical reactions with exchange surfaces or aqueous species in the column.  

 
 The hydraulic properties of the columns could therefore be determined by fitting the 1-D 

reactive transport model to the measured chloride breakthrough curve in the absence of any 

calculated reactions involving Cl-. 

 
 The fixed geometric and hydraulic parameters of the model setup were: 

 
(5.47) column length  L = 0.15 m 

(5.48) cross section  A = 12.6 cm2 

(5.49) volumetric flow  Q = 1.2 mL/h 

 
The other inputs that were required in TRN to set up the reactive transport model to reproduce 

the column conditions were the fitted parameters. These included: 

 

 mobile porosity εF 

 immobile porosity εP 

 mass exchange rate α 

 longitudinal dispersivity aL 

 

Each of these parameters was varied in numerous simulations until the best representation of 

the Cl breakthrough curve was achieved, using both the single and dual porosity approaches.  

 

 Fig 5.17 displays some of the hydraulic parameter variations that were used to model 

the measured Cl breakthrough curve in both sets of column experiments:  

 

 1st diagram: single porosity ε  = 0.19 

 2nd diagram: dual porosity εF = 0.10,   α = 0.55,   εP = 0.10 

 3rd diagram: dual porosity εF = 0.10,   α = 0.55,   εP = 0.30 

 4th diagram: dual porosity εF = 0.10,   α = 0.55,   εP = 0.50   

 5th diagram: dual porosity εF = 0.10,   α = 0.55,   εP = 0.70  

 
Fig 5.18 presents the residual plots for the hydraulic parameter variation models in Fig 5.17. 

The R2 value for each of the residuals is shown in Table 5.5. 
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Fig 5.17 Parameter variation for the Cl breakthrough. Left: tracer curves in BaCl2 column. Right: tracer curves in NH4Cl column. Error bars signify standard error of replicates. 
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Fig 5.18 Residuals for modelling the Cl breakthrough. Left: in the BaCl2 column. Right: in the NH4Cl column. 

 
 
Table 5.5 R2 value for the corresponding Cl models. 

 Cl Model R2 

Barium 
chloride 
column 

single porosity (ɛ = 0:19) 0.540 
dual porosity (ɛP = 0.1) 0.527 
dual porosity (ɛP = 0.3) 0.793 
dual porosity (ɛP = 0.5) 0.947 
dual porosity (ɛP = 0.7) 0.921 

Ammonium 
chloride 
column 

single porosity (ɛ = 0:19) 0.817 
dual porosity (ɛP = 0.1) 0.694 
dual porosity (ɛP = 0.3) 0.786 
dual porosity (ɛP = 0.5) 0.821 
dual porosity (ɛP = 0.7) 0.611 
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 The uppermost diagrams in Fig 5.17 represent the single porosity approach, where the 

measured total porosity (ε = 0.19) was used to simulate the chloride breakthrough curve. 

However, the single porosity models in both columns were not able to accurately represent the 

tracer26. The R2 values and residuals agree with the visual interpretation. 

 

 Numerous simulations to account for the tracer behaviour show that the best description 

was achieved by the dual porosity approach and the 4th parameter set. The highest R2 values 

were observed for this model as were the lowest residual values. Thus, the column hydraulics 

could be described by:  

 

(5.50) mobile porosity  εF = 0.1    

(5.51) flow velocity  v = 0.095 m/h  (from Eq. (5.46) 

 
Assuming 10 cells in the column, this leads to the following discretisation: 

 
(5.52) number of cells  N = 10 

(5.53) cell length   Δx = L/N = 0.015 m 

(5.54) time bin   Δt = Δx/v = 0.158 h 

 
 In the dual porosity approach, longitudinal dispersivity aL is of less importance, thus it 

was given a value of aL = 0.001 m (i.e. 1/15-th of the cell length). The two dual-porosity 

parameters α and εP were adjusted to the Cl breakthrough curve: 

 
(5.55) mass-exchange rate α = 0.055 h-1 

(5.56) stagnant porosity  εP = 0.5 

 

During the different parameter variations, it was apparent that adjusting α has less effect on 

the shape of the breakthrough curve than adjusting εP. 

 
 Preferential flow was unavoidable when undertaking the column experiments due to the 

heterogeneous nature of the sample material and width of the soil columns. Preferential flow 

was indicated by the fast breakthrough of the tracer in the ammonium column (Fig. 4.6), when 

compared to the breakthrough in the barium chloride column (Fig. 4.5).  

 

 Preferential flow in the columns could not be completely characterised by the parameter 

set, despite use of the dual porosity model. However, the dual porosity model is considered to 

                                                
26 The measured porosity could not represent the tracer behaviour, therefore time was used along the x axis in all 

figures as opposed to the more commonly used pore volumes (which is calculated from total porosity).  
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be sufficiently accurate to model the tracer breakthrough. This is confirmed by the lowest 

residual values for the parameter set (Fig 5.18).  

 

5.2.1.2 Ion Exchange in the Dual Porosity Model 

 
 The precise simulation of ion exchange reactions through the soil columns was the main 

aim of this reactive transport modelling study. In the dual porosity model, the region where ion 

exchange is taking place can be defined either in the mobile region, the stagnant region or 

both regions (see Fig 5.16).  

 
 Neither stagnant nor mobile porosities for clays are available in the literature for the dual 

porosity model. As a result these parameters were fitted to the measured breakthrough curves. 

TRN simulations in which ion exchange occurred in the mobile region, in the stagnant regions, 

and in both regions of the column are shown in Fig 5.19.  

 
 The simulations are compared to the measured breakthroughs for the major cation in 

each column, and were based on the adjusted hydraulic parameter set in § 5.2.1.1. In the 

model calculations shown, no changes were made to the database values of the cation 

equilibrium constants for all the cation-clay exchange reactions (Eq. (5.5) to (5.15)).  

 
 The residual plots for the dual porosity models are shown in Fig 5.20. The R2 value for 

each of the residual plots is shown in Table 5.6. The model indicates that the best 

representation of measured breakthrough curves was observed when ion exchange reactions 

were taking place in both the mobile and stagnant phases.  

 
 The highest R2 values (0.76 for Ba; 0.89 for Al) were observed using the ‘both’ model as 

were the lowest residual values, this supports the visual representation. Therefore the ‘both’ 

model that considers ion exchange to be occurring in both the mobile and stagnant regions 

was used in further simulations to model the major cation and REE breakthrough curves. 
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Fig 5.19 Simulations varying IX. Left: Ba breakthrough in BaCl2 column. Right: Al breakthrough in NH4Cl column.  
 

 
Fig 5.20 Residual plots for ion exchange porosity models of Ba and Al. 
 

 
 
 
 
 
 
 
 
 

Table 5.6 R2 value for the corresponding Ba and Al models. 
 

5.2.1.3 Major Element Breakthrough Curves 

 
 An important indicator of whether or not the TRN model can accurately represent reactive 

transport through the columns is how well the model characterises the breakthrough curves of 

the major elements. 

 
 TRN simulations for the major elements (Ba, Al) are compared with the measured outflow 

concentrations in the barium chloride column (Fig 5.21). The simulations were based on the 

adjusted hydraulic parameter set in § 5.2.1.1. The cation equilibrium constants for all the 

cation-clay exchange reactions used in the model calculations are found in Eq. (5.5) to (5.15). 
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Fig 5.21 Calculated and measured element concentrations in the outflow solution of the barium chloride column 
 

 
Fig 5.22 Residuals for the calculated and measured element breakthrough curves in the barium chloride column. 
 

 The residuals for the modelled and measured breakthrough curves in the barium chloride 

column are shown in Fig 5.22. The low residual values indicate the model can adequately 

represent the major elements.  

 
 Fig 5.23 shows the TRN model for the major element (Al) in the ammonium chloride 

column compared to the measured outflow concentrations. The residuals for the model are 

also displayed in Fig 5.23. Again, the low residuals indicate that a relatively good 

representation of the column breakthrough curve is given by the model.  

 

 
Fig 5.23 Left: calculated and measured Al breakthrough in the NH4Cl column. Right: residual plot of the Al model. 
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5.2.1.4 REE Breakthrough Curves 

 
The main reason for modelling the column experiments was to determine whether the 

REE equilibrium constants estimated from the batch tests (described in § 5.1.3) could account 

for reactive transport through the column breakthrough curves. 

 
 TRN calculations for all REE are compared with the measured outflow concentrations in 

both sets of column tests (based on the hydraulic parameters in § 5.2.1.1). Four simulations 

are shown in Fig 5.24 and Fig 5.26, each representing a different log K value: 

 

 log K = 2.19 

 log K = 2.29    best fit value 

 log K = 2.39 

 log K = 2.49 

 
 Different log K values were simulated to highlight the sensitivity of the REE to small 

changes in the equilibrium constant. The exchange constants for all major and minor cations 

were taken from the WATEQ4F database (see Eq. (5.5) to (5.15)). 

 
 Residual plots for the four models in both columns are displayed in Fig 5.25 and Fig 5.27. 

The R2 value for each of the residual plots is shown in Table 5.7. 

 
Table 5.7 R2 values for the corresponding REE models. 

 Model 
R2 in barium 

chloride column 
R2 in ammonium 
chloride column 

La 

log K 2.19 0.659 0.898 
log K 2.29 0.705 0.903 
log K 2.39 0.683 0.902 
log K 2.49 0.652 0.901 

Ce 

log K 2.19 0.619 0.897 
log K 2.29 0.685 0.904 
log K 2.39 0.669 0.903 
log K 2.49 0.648 0.901 

Nd 

log K 2.19 0.630 0.889 
log K 2.29 0.690 0.908 
log K 2.39 0.676 0.906 
log K 2.49 0.625 0.904 

Dy 

log K 2.19 0.718 0.890 
log K 2.29 0.749 0.896 
log K 2.39 0.743 0.893 
log K 2.49 0.733 0.894 
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Fig 5.24 Calculated and measured REE concentrations in the outflow solution of the barium chloride column. 
 

 
Fig 5.25 Residuals of the calculated and measured REE breakthrough curves in the barium chloride column. 
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Fig 5.26 Calculated and measured REE concentrations in the outflow solution of the ammonium chloride column. 
 

 
Fig 5.27 Residuals of the calculated and measured REE breakthrough curves in the ammonium chloride column. 
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 The model does not perfectly represent the REE breakthrough curves in the columns. 

This is because the column experiments, unlike the batch tests, may be subject to kinetic 

processes as well as thermodynamic mechanisms and subject to preferential flow pathways 

that are not captured by the dual porosity hydraulic model. 

 
 The log K that best represented all the REE breakthrough curves was: 

 

(5.57) REE3+ + 3X- = REEX3  log K = 2.29 ± 0.5  
 

The best fit model was supported by the residual plots which showed the lowest values for the 

log K 2.29 simulation (Fig 5.25 and Fig 5.27) and by the R2 values (Table 5.7) which were the 

highest for this model.  

 
5.2.3 Literature REE Equilibrium Exchange Constants 

 
 There is one only literature study (Tertre et al., 2006a) that has determined equilibrium 

constants for REE exchange reactions with kaolinite (i.e. the main exchanger in the study 

material; Table 1.1). Moreover, this study only determined a log K value for one of the REE. 

 
 The experimental Eu dataset was obtained from batch sorption experiments with the 

pure mineral kaolinite and the Eu exchange reaction was modelled with the diffuse double 

layer surface complexation model (see full description of the model in § 2.5.3.2).  

 
 Tertre et al. (2006a) determined the equilibrium constant: 

 
(5.58) 3NaX + Eu3+ ↔ EuX3 + 3Na+  log K = 11.0 ± 0.4   
 

for the Na/Eu exchange reaction on a pure kaolinite mineral. 

 
 In this study, REE exchange reactions with the Madagascar IAD in the batch reactor 

dataset could be represented by a single equilibrium constant: 

 
(5.59) 3NaX + REE3+ ↔ REEX3 + 3Na+ log K = 2.29 ± 0.3 (SD)  
 

or individual constants for each REE (which offered a very slight improvement).  

 
 Here, the equilibrium constant for all the REE was nine orders of magnitude smaller than 

the literature constant. However, thermodynamic equilibrium constants are fundamental 

quantities that should be independent of any site or application.  
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 A possible reason for the difference could be related to the different modelling 

approaches used. This study considered only the ion exchange model to describe REE 

exchange because: 

 

 The Madagascar IAD was characterised on the basis that the deposit contains ≥ 50 % 

ion-exchangeable REE, which are adsorbed onto clay mineral surfaces (Chi et al., 2005; 

Wu et al., 1990, 1995), and 

 The kaolinite fraction makes up 85% of the sample material, thus it is the main ion 

exchanger in the deposit. 

 
 The different materials could also account for the order of magnitude difference between 

the equilibrium constants because the Madagascar IAD is a complex material comprising 

different minerals while the literature study used a pure mineral phase. 

 
 Another important consideration is that the REE exchange constants estimated in this 

study have only been fitted to a dataset from a single sample from the Madagascar IAD.  

 
5.3 Fundamental Outcomes 

 
Modelling of CEC experiments indicated that:  

 

[1] The major exchangeable cation on the Madagascar IAD is Al3+ (in addition to its 

occurrence in the clay’s mineral structure).  

[2] The pH drop from near neutral to pH 4 in the non-buffered chloride solutions was the 

result of high concentrations of exchangeable Al3+ being mobilised into the aqueous 

phase. 

 
 Modelling of the batch reaction dataset revealed that a single thermodynamic equilibrium 

constant for the reaction:  

 

(5.60) log K = 3NaX + REE3+ ↔ REEX3 + 3Na+  
 
where the log K 

 

 log K = 2.29 ± 0.3 (SD)    best fit for REE dataset in batch reaction tests 

 log K = 2.29 ± 0.5 (SD)   best fit for REE dataset in all soil columns 

 
was able to describe all REE exchange reactions with the Madagascar IAD. 

 
 In addition, exchange constants were calculated for each individual REE to determine 

whether a better description of the REE dataset could be achieved. The individual log K dataset 
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only varied after 2 decimal places and the difference between the two models in terms of the 

objective function was: 

 

 objective function = 5.71 x 10-11    for the different log K model  

 objective function = 5.72 x 10-11   for the single log K model 

 
Tertre et al. (2006a) was the only study to report a REE exchange constant (for Eu):  

 

 log K = 11.0 ± 0.4   on pure kaolinite 

 
 The significant order of magnitude differences could be explained by the different 

modelling approaches used or by the different complexities of the materials. The exact reason 

for the order of magnitude variance is not known. 

 
 An important consideration for the REE exchange constants derived from equilibrium 

modelling is that these log K have only been fitted to a dataset from one sample from the 

Madagascar IAD. Therefore, these constants cannot be considered the equilibrium constants 

for all IAD-REE exchange reactions. 

 
  



111 
  

CHAPTER 6 
 

6 ENVIRONMENTALLY FOCUSED MINING APPLICATION  
 
 One of the objectives of this study was to investigate whether a more environmentally 

sustainable mining approach, such as ISR, could be used to recover REE from the 

Madagascar IAD. In this regard, generic water flow and solute transport simulations were 

undertaken in HYDRUS-1D using existing site and literature data, to develop a conceptual 

model for ISR of the Madagascar IAD.  

 
6.1 HYDRUS 1-D Model Description 

 
 HYDRUS-1D version 4.16 (Šimůnek et al., 2008) is a public domain software package 

that simulates the one-dimensional movement of water, heat and solutes in the unsaturated 

zone between the soil surface and the groundwater table. In addition to the HYDRUS code, 

the software package includes an interactive graphics-based user interface module. This 

module consists of a project manager with a unit for pre processing and post processing. 

 
 The programme uses finite elements to numerically solve the Richards equation for 

saturated-unsaturated water flow and Fickian-based advection dispersion equations for heat 

and solute transport. The transport equations also include provisions for non-linear and/or non-

equilibrium reaction between the solid and aqueous phases, linear equilibrium reactions 

between the aqueous and gaseous phases and zero-order reactions27 (Šimůnek et al., 2006).  

 
 One-dimensional uniform water movement in a partially saturated rigid porous medium 

is described by a modified form of the Richards equation:  

 

(6.1)         
δθ

δt
 = 

δ

δx
 [K (

δh

δx
 + cos α)]  - S 

 

where h is the water pressure head [L], θ is the volumetric water content [L3L-3], t is time [T], x 

is the spatial coordinate [L], S is the sink term [L3L-3T-1], α is the angle between the flow 

direction and the vertical axis, and K is the unsaturated hydraulic conductivity [LT-1]. 

 
 The unsaturated hydraulic conductivity is defined as (Šimůnek et al., 2005): 

 
(6.2)         K (h,x) = Ks(x)Kr(h,x) 
 

                                                
27 A zero-order reaction has a rate that is independent of the concentration of the reactant(s). 
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where Ks is the saturated hydraulic conductivity [LT-1] and Kr is the relative hydraulic 

conductivity.  

 
 The sink term (S), defined as the volume of water removed from the soil per unit of time 

due to plant water uptake, can be described as  

 
(6.3)         S (h) = α(h) Sp 

 

where Sp is the potential water uptake [T-1] and α(h) the given dimensionless function of the 

soil water pressure head (0 ≤ α ≤ 1). 

 
 A few capabilities of the HYDRUS-1D model include:  

 

 Dual-porosity water flow with solute transport and two-site sorption in the mobile 

zone; 

 Dual-permeability type water flow and solute transport, and 

 Coupled water, vapour and energy transport. 

 
The programme can be used to analyse water and solute movement in unsaturated, partially 

saturated or fully saturated porous media. 

 
 The unsaturated soil hydraulic properties (the constitutive relationships) are described 

using Brooks & Corey (1964), Durner (1994), Kosugi (1996) and van Genuchten (1980) type 

analytical functions. Modified van Genuchten type functions that improve the description of 

the hydraulic properties near saturation were implemented by Durner (1994). Hysteresis can 

also be optionally considered (Šimůnek et al., 2005). 

 
 The HYDRUS 1-D software package also includes the HP1 module. HYDRUS 1-D 

version 2 (Šimůnek et al., 1998) was coupled with PHREEQC version 2 (Parkhurst & Appelo, 

1999) to form the comprehensive simulation tool, HP1 (Jacques et al., 2003, 2006; Jacques & 

Šimůnek, 2005; Šimůnek et al., 2006, 2008). HP1 is a significant expansion of the individual 

codes due to the preservation of most of their original features and capabilities. 

 
 HP1 still uses the Richards equation for variably-saturated water and convection–

dispersion type equations for heat and solute transport. However, the code can now simulate 

a broad range of low temperature biogeochemical reactions in groundwater systems, including 

interactions with exchangers, minerals and sorption surfaces based on equilibrium, kinetic or 

mixed equilibrium-kinetic reactions (see Fig. 6.1). 

 



113 
  

 
Fig. 6.1 Schematic of the modelling approach of the coupled HP1 model (from Jacques & Šimůnek, 2005). 
 
6.2 Conceptual Model: Flow and Transport through the Madagascar Laterite 

 
 A number of generic properties about the Madagascar study area have been described 

in a technical report of the site (SRK, 2013) and in a hydrogeological mapping study of north-

central Madagascar (Davies, 2009). In this research, these properties were considered 

applicable to the entire site. They include: 

 

 Elevation ranges from 0 – 713 m; 

 Very hilly, heterogeneous terrain;  

 Average annual rainfall is 2000 mm;  
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 Average annual temperature is 25 °C, and 

 Depth of water table varies between 1 -13 m. 

 
 A conceptual model based on these generic properties was used to represent the 

infiltration, flow and transport processes occurring at the Madagascar site, under natural 

hydraulic conditions and under in situ mining conditions (Fig. 6.2).  

 

 
Fig. 6.2 Conceptual model of the infiltration, flow and transport processes at the Madagascar site. Left: under 
natural hydraulic conditions. Right: under in situ mining conditions. 
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 The conceptual model developed for in situ mining processes, uses the hilly terrain at 

the Madagascar site to consider a hillslope wellfield operation. In addition, the entire laterite 

section was considered to be well above the water table, consequently HYDRUS-1D was used 

to simulate water flow and solute transport through unsaturated porous media.  

 
6.3 Modelling Approach 

 
 The HYDRUS-1D and HP1 codes were used to define preliminary hydraulic properties 

of the Madagascar IAD and to simulate the flow and transport processes shown in the ISR 

conceptual model (Fig. 6.2). The modelling approach involved consideration of: 

 

 Water flow 

 Simulate the movement of water through a generic laterite profile with varying 

depths. 

 Determine the effect of the single and dual porosity flow models on water 

infiltration. 

 Water flow and solute transport 

 Simulate the movement of water and REE through a generic laterite profile using 

an environmentally viable reactive solution. 

 
The modelling procedure and the results will be described in more detail in the following 

sections. The input parameters for the HYDRUS-1D models are shown in Appendix C. 

 
6.3.1 Water Flow  

 
 HYDRUS-1D requires a number of input parameters before water flow through the 

Madagascar IAD can be considered. These include the soil hydraulic properties:  

 

 residual soil water content θr 

 saturated water content θs 

 parameter α in the soil water retention function [L-1] 

 parameter n in the soil water retention function  

 saturated hydraulic conductivity Ks [LT-1] 

 tortuosity parameter in the conductivity function l 

 
 Since the hydraulic properties of the Madagascar soil could not be determined in this 

study, the values had to be estimated. Hence, these simulations represent generalised 

infiltration conditions through the laterite profile. 
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 SRK (2013) provide a broad description of each of the layers within the Madagascar 

weathered profile. The layers include the top soil, ferruginuous layer, ion adsorption ore, 

weathered granite and the bedrock layer.  

 
 Based on this information and the literature values for the hydraulic properties of the 

different soil textural classes (Carsel & Parrish, 1988), the Madagascar soil hydraulic properties 

were defined on a preliminary basis. These parameters are presented in Table 6.1. 

 
Table 6.1 The soil hydraulic parameters properties used in the HYDRUS-1D model. 

Soil layer Texture 
θr 

[m3 m-3] 
θs 

[m3 m-3] 
α 

[m-1] 
n l 

Ks 
[m d-1] 

Top soil 
Loamy 
Sand 

0.057 0.41 12.4 2.28 0.5 3.502 

Ferruginous 
layer 

Sandy 
loam 

0.065 0.41 7.5 1.89 0.5 1.061 

Ion 
adsorption 

ore 

Sandy 
clay loam 

0.1 0.39 5.9 1.48 0.5 0.3144 

Weathered 
granite 

Clay loam 0.095 0.41 1.9 1.31 0.5 0.0624 

Bedrock 
Silty Clay 

Loam 
0.089 0.43 1 1.23 0.5 0.0168 

 

 The remaining inputs to simulate water flow are the: 

 Geometry information 

 Number of soil layers and soil type for each and total depth of soil profile. 

 Time information 

 Time discretisation and the time-variable boundary conditions.  

 Soil hydraulic model 

 Soil hydraulic model (single porosity, dual porosity/dual permeability) and 

hysteresis. 

 Water flow boundary conditions (BC). 

 At the upper and lower boundaries.  

 
6.3.1.1 Model Conditions 

 
 Soil water movement in the soil profile was described in HYDRUS-1D as: 

 

(6.4)         
δθ(h,t)

δt
 = 

δ

δz
 [K(h) (

δh

δz
 + 1)]   

 

where z is the vertical coordinate with the origin at the soil surface (positive upward). S was 

not considered because no plants are considered in this system. 
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 Three five-layered soil profiles of differing depths (6 m, 10 m and 30 m) were used as 

input data for HYDRUS-1D. These thicknesses were chosen in accordance with the findings 

of Sanematsu & Watanabe, (2016), that suggest the thickness of laterite weathering profiles 

generally ranges from 6 to 10 m but can be as much as 30 m. 

 
 According to various literature sources, standard application of the in-situ mining process 

(outlined in § 2.2.4) can take up to 400 days (Papangelakis & Moldoveanu, 2014; Vahidi et al., 

2016; Yang et al., 2013). Therefore, 400 days was used as the total simulation time.  

 
 The single porosity van Genuchten-Mualem model was first used for hydraulic model 

simulations, and then the dual porosity flow model (based on mass transport differences in the 

soil water pressure head) was implemented, to account for the effect of preferential flow (which 

was observed in the column breakthrough curves in § 3.3). 

 
 The dual porosity formulation for water flow is based on a mixed formation of the 

Richards equation to describe water flow in the macropores (mobile water region) and a mass 

balance equation to describe moisture dynamics in the matrix (immobile water region): 

 

(6.5)         
δθm

δt
 = 

δ

δz
 [K(h) (

δh

δz
 + 1)]  -Sm-Tw  

 

(6.6)         
δθm

δt
 = Sim + Tw  

 

where the subscripts m and im refer to the mobile and immobile water regions, respectively, 

θ = θm+ θim is the volumetric moisture content [-], Sim and Sm are sink terms for both regions 

[T-1], and Tw is the transfer rate for water exchange between macropores and matrix [T-1].  

 
 In the dual porosity flow model based on mass transfer driven by differences in soil water 

pressure head, the exchange rate of water between the macropores and matrix regions, Tw, is 

assumed to be proportional to the difference in pressure heads between the two pore regions 

(Gerke & van Genuchten, 1993; Šimůnek et al., 2003):  

 
(6.7)         Tω = (hm - him) 
 

where ω is a first-order mass transfer coefficient [L-1 T-1].  
 
 Pressure heads are needed for both pore regions in the dual porosity model. Thus, soil 

hydraulic properties are described by six parameters for macropores (θr, θs α, n, Ks, l), four 

parameters for the matrix (θr-im, θs-im, αim, nim), and a parameter (ω) for mass transfer between 

the two zones (Ma et al., 2015; Šimůnek et al., 2003).  
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 The default HYDRUS values for the soil textural classes (Carsel & Parrish, 1988) were 

used for the additional water flow parameters. These are shown in Table 6.2.  

 
Table 6.2 The additional soil hydraulic parameters for the dual porosity model. 

Soil layer Texture 
θr-im 

[m3 m-3] 
θs-im 

[m3 m-3] 
αim 

[m-1] 
nim 

Top soil 
Loamy 
Sand 

0 0.1 1.5 1.5 

Ferruginous 
layer 

Sandy 
loam 

0 0.1 1.5 1.5 

Ion adsorption 
ore 

Sandy 
clay loam 

0 0.1 1.5 1.5 

Weathered 
granite 

Clay loam 0 0.1 1.5 1.5 

Bedrock 
Silty Clay 

Loam 
0 0.1 1.5 1.5 

 

 The hydraulic parameters for the macropores are shown in Table 6.1. The boundary 

conditions used in this model are the constant pressure head for the upper BC and free 

drainage as the lower BC: 

 

(6.8)         
δh

δz
= 0 

 

The inputs for the water infiltration simulations at different soil depths are shown in Table 6.3. 

 
Table 6.3 Summary of the inputs for the water flow simulations. 

Input Value 

Number of Soil Materials 5 
Depth of the Soil Profile 

[m] 
z = 6, 10, 30 

Boundary Condition (top) Constant Pressure Head 
Boundary Condition 

(bottom) 
Free Drainage 

Hysteresis none 

Hydraulic model 
van Genuchten-Mualem and 

Dual-porosity (head mass 
transfer) 

Total Model Time [days] 400 

 

 HYDRUS 1-D produces a number of graphs to aid in the visualisation of the simulation 

results. Water content simulations with the single and dual-porosity models in a 6 m, 10 m and 

30 m generic Madagascar laterite profile are shown in Fig. 6.3. In each profile, water content 

increased with increasing depth from 0.09 m3m-3 at 0 m to 0.4 m3m-3 at 6 m, 10 m and 30 m.  
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 In addition, distinct plateaus in the water content trend are observed between each of 

the different soil layers (Fig. 6.3). Water content was also observed to decrease (shift to the 

left) with increasing simulation time. The residence time of infiltrating water to reach the bottom 

of the profile was < 40 days at 6 m, 10 m and 30 m.  

 
 The soil water retention properties in a 6 m, 10 m and 30 m generic Madagascar laterite 

profile are shown in Fig. 6.4, using the single and dual-porosity flow models. The soil water 

retention was clearly observed to increasing with depth (as in Fig. 6.3). The simulations were 

not influenced by the use of the different porosity models. 

 
 Fig. 6.5 shows cumulative infiltration simulated with HYDRUS 1-D over the 400 days, in 

6 m, 10 m and 30 m soil profiles using the single and dual-porosity flow models. Cumulative 

infiltration appears to have decreased with soil profile depth from 0.0035 m in the 6 m profile 

to 0.013 m in the 30 m profile, after 400 days.   
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Fig. 6.3 Comparison of water contents [m3m-3] predicted using the single and dual-porosity flow models in a 6 m, 10 m and 30 m soil profile. 
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Fig. 6.4 Soil water retention simulated using the single and dual-porosity flow models in a 6 m, 10 m and 30 m soil profile. H is hydraulic head [m]. 
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Fig. 6.5 Cumulative I0 infiltration rates [m] simulated using the single and dual-porosity flow models in a 6 m, 10m and 30 m soil profile. 
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6.3.2 Water Flow and Solute Transport  

 
 In addition to the input parameters outlined in § 6.3.1.1 HP1 requires a number of other 

parameters in order to consider solute transport and steady state water flow through the 

Madagascar laterite. These include the soil specific parameters:  

 

 bulk density ρb 

 longitudinal dispersivity al 

 dimensionless fraction of adsorption sites 

 immobile water content28 

 
 Longitudinal dispersivity is usually determined in the field (Ružičić et al., 2013). This was 

not possible at the Madagascar site and literature standards could not be found, therefore al 

was adjusted to give physically realistic model results and was finally assigned a value of 1 m 

for the entire profile.  

 
 The bulk density of the ion adsorption layer was determined in this study. For the four 

other layers in the laterite profile, literature values were taken from the standard soil texture 

classes (Carsel & Parrish, 1988). The soil specific parameters are shown in Table 6.4. 

 
Table 6.4 The soil specific parameters used in the HYDRUS-1D simulation. 

Soil layer Texture 
ρb 

[g/cm3] 
al 

[m] 
MassTr Thlm = 0 

Top soil 
Loamy 
Sand 

1.43 1 0 0 

Ferruginous 
layer 

Sandy 
loam 

1.46 1 0 0 

Ion adsorption 
ore 

Sandy clay 
loam 

1.30 1 0 0 

Weathered 
granite 

Clay loam 1.39 1 0 0 

Bedrock 
Silty Clay 

Loam 
1.30 1 0 0 

 

The remaining parameters that simulate solute transport are the: 

 Solute transport model 

 Solute transport model, time weighting scheme, space weighting 

scheme, iteration criteria (for nonlinear problems), and number of solutes. 

 HP1 components database pathway 

 Define the solutes. 

 HP1 definition 

                                                
28 The immobile water content is set to = 0 when physical non-equilibrium is not considered. 
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 Solution composition, geochemical model and additional outputs. 

 Solute specific 

 Molecular diffusion coefficient in soil air and molecular diffusion 

coefficient in free water. 

 Solute transport boundary conditions 

 At the upper and lower boundaries and the initial conditions. 

 
6.3.2.1 Model Conditions 

 
 Steady state water flow was simulated with the van Genuchten-Mualem hydraulic model 

and a constant pressure head for the upper BC. All the lower BC options (e.g. horizontal drains) 

were simulated, but a freely draining soil profile was considered the most realistic in this 

situation, where the water table lies far below the ore body of interest (Šimůnek et al., 2008). 

 
 Solute transport was simulated with the equilibrium solute transport model with Galerkin 

finite elements as the space weight scheme and Crank-Nicholson as the time weight scheme. 

Three five-layered soil profiles each with typical IAD profile depths (6 m, 10 m and 30 m) were 

considered in these simulations. The profiles were discretised into 41 finite elements.   

 
 The soil profile initially contains groundwater in equilibrium with the cation exchanger29. 

Seven solutes were included in the model (Na, Cl, Total O, Total H, K, Al and Ca).The profile 

was flushed with a 1 M NaCl solution. Both solutions were prepared under oxidising conditions 

(in equilibrium with the pO2 in the atmosphere). The total simulation time was 400 days.  

 
 The amount of exchange sites (X) was 10.3 meq/100g of dry soil. This value was 

obtained from the CEC experiment with a concentrated barium chloride solution (§ 4.1). The 

log K constants for the exchange reactions are defined in the WATEQ4F database and 

therefore do not have to be specified in the input. 

 
 The solute parameters molecular diffusion coefficient in soil air and in free water were 

both set to equal zero. A concentration flux was used as an upper boundary condition and zero 

concentration gradient was assumed as a lower boundary condition with liquid phase 

concentrations as an initial condition. 

 
 Table 6.5 summarises the inputs for the steady state water flow and solute transport 

simulations at different soil depths. 

 

                                                
29 This initial soil solution was based on a groundwater sample collected by project colleagues from pit 

2 during the field expedition. 
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Table 6.5 Inputs for the water flow and solute transport simulations. 

Input    Value 

Number of Soil Materials 5 

Depth of the Soil Profile [m] z = 6, 10, 30 

Boundary Condition (top) Constant Pressure Head 

Boundary Condition (bottom) Free Drainage 

Hysteresis none 

Hydraulic model van Genuchten-Mualem 

Total Model Time [days] 400 

Number of Solutes  7 

Time Weighting Scheme 
Crank-Nicholson 

Scheme 

Space Weighting Scheme Galerkin Finite Elements 
Nonequilibrium Solute Transport 

Models Equilibrium Model 

 

 Solute transport simulations with a NaCl (seawater) solution were undertaken because 

it is considered the most environmentally acceptable reagent to mobilise the REE. Standard 

applications of ISR commonly use (NH4)2SO4 (Yang et al., 2013). A constant pressure head of 

0 m was assigned to the top and bottom boundary conditions in the simulations.  

 
 Fig. 6.6 shows the concentration of Na and Cl varying with simulation time in 6 m, 10 m 

and 30 m generic Madagascar soil profiles. The concentration of Cl being flushed from the soil 

decreases with the increasing depth profiles. After 400 days 1 mol/L Cl was still being flushed 

out at 6 m profile but at 30 m all the Cl was completely gone from the profile. 

 
 The concentration of Na that reached the bottom of the profile and was being flushed out 

at the end of the simulation, decreased with depth. At 400 days, the concentration of Na 

decreased from ~0.4 mol/L in the 6 m profile to 0.0 mol/L in the 30 m profile (Fig. 6.6). In the 

30 m profile, all the Na was entirely flushed from the soil after transport through 20 m. 

 
 The time taken for 1 M NaCl solution to reach the bottom of three generic soil profiles at 

6 m, 10 m and 30 m are shown in Fig. 6.7. The time taken for Na and Cl to reach the bottom 

of the profiles increased with depth. In the 30 m profiles, most of the element concentrations 

were flushed out at the bottom of the soil. 
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Fig. 6.6 Solute transport of 1 M NaCl through a 6 m, 10 m and 30 m soil profile. 
 
 

-6

-5

-4

-3

-2

-1

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Conc [mol/L]

-6

-5

-4

-3

-2

-1

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Conc [mol/L]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Conc [mol/L]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Conc [mol/L]

-30

-25

-20

-15

-10

-5

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Conc [mol/L]

-30

-25

-20

-15

-10

-5

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Conc [mol/L]Cl [M]

D
e
p

th
 [
m

]

6 m 10 m
D

e
p

th
 [
m

]

D
e
p

th
 [
m

]

30 m

Cl [M] Cl [M]

Na [M]

D
e

p
th

 [
m

]

6 m 10 m

D
e

p
th

 [
m

]

D
e

p
th

 [
m

]

30 m

Na [M] Na [M]

240 days

400 days

120 days

-30

-25

-20

-15

-10

-5

0

0.00 0.05 0.10 0.15

C [1/m]

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

0 days
40 days
80 days
120 days
160 days

200 days
240 days
280 days
320 days
360 days
400 days

-30

-25

-20

-15

-10

-5

0

0.00 0.05 0.10 0.15

C [1/m]

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

40 days



127 
  

 

 
 
Fig. 6.7 Time taken for transport of 1 M NaCl to reach the bottom of a 6 m, 10 m and 30 m soil profile. 
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 A number of additional simulations were performed in HYDRUS 1-D that determined the 

effect of increasing and decreasing ionic strength of the NaCl reactive solution by an order of 

magnitude. This was important to determine the optimum ionic strength to recover the REE 

during mining with ISR and to see how infiltration of the solution was affected. 

 
 The model conditions for water flow and solute transport are shown in Table 6.5. Six 

simulations were performed in which three five-layered soils and two ionic strength solutions 

were considered. The inflowing NaCl solutions had ionic strengths of 1 x 10-3 M and 2 M. The 

initial soil conditions comprised a groundwater solution in equilibrium with the exchanger. 

 
 Seven solutes were included in the simulations. These were Na, Cl, Total O, Total H, K, 

Al and Ca. The amount of exchange sites totalled 10.3 meq/100g. The exchange constants for 

the cation exchange reactions were already defined in the WATEQ4F database. The total 

simulation time was 400 days. 

 
 Fig. 6.8 - Fig. 6.11 show the transport of 1 x 10-3 M and 2 M NaCl solutions and their 

travel time through three soils at 6 m, 10, m and 30 m. In the 1 x 10-3 M simulations, the Na 

was entirely flushed out at 400 days (Fig. 6.8 and Fig. 6.9). The amount of Cl still being flushed 

from the soils at the end of the simulation increases with soil depth.  

 
 In the 2 M NaCl simulations, most of the Cl (~ 2M) and some Na (0.6 – 1.2 M) was still 

bring flushed from the profile at 400 days in the 6 m and 10 m soils (Fig. 6.9 and Fig. 6.11). 

However, in the 30 m soil the elements were entirely flushed out of the profile within 400 days. 

The time taken for Na and Cl to reach the bottom of the soils was independent of ionic strength. 

 
 A higher ionic strength solution is considered to be more effective to mobilise the 

exchangeable REE into solution (Moldoveanu & Papangelakis, 2012). These simulations 

indicate that 1 M ionic strength (Fig. 6.6) is adequate for ISR. Increasing or decreasing the 

ionic strength by an order of magnitude did not illustrate any significant infiltration differences.  
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Fig. 6.8 Solute transport of 1 x 10-3 M NaCl through a 6 m, 10 m and 30 m soil profile. 
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Fig. 6.9 Solute transport of 2 M NaCl through a 6 m, 10 m and 30 m soil profile. 
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Fig. 6.10 Time taken for transport of 1 x 10-3 M NaCl to reach the bottom of a 6 m, 10 m and 30 m soil profile. 
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Fig. 6.11 Time taken for transport of 2 M NaCl to reach the bottom of a 6 m, 10 m and 30 m soil profile. 
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 The following simulations include REE exchange reactions. These were undertaken to 

better understand REE transport thorough laterite soils. The model conditions are shown in 

Table 6.5 for steady state water flow and solute transport simulations. This includes free 

drainage as the lower boundary condition. Three five-layered soil profiles were considered.  

 
 The inflowing NaCl solution in each profile had a concentration of 1 M. For the initial soil 

conditions, a groundwater solution was put in equilibrium with the cation exchangers. Twenty 

solutes were included in the simulations, they were Na, Cl, Total O, Total H, K, Al, Ca, Y, La, 

Ce, Pr, Eu, Sm, Gd, Tb, Dy, Ho, Er, Yb and Lu30. The total simulation time was 400 days. 

 
 The amount of exchange sites totalled 10.3 meq/100g in each soil layer. The exchange 

composition comprised 0.24 meq/100g REEX3 exchange species (for individual REE 

equivalent fractions see Table 5.1) and 10.06 meq/100g NaX exchange species. Exchange 

constants for the REE which were taken from this research (log K = 2.29). 

 
 Fig. 6.12 and Fig. 6.13 show reactive transport behaviour of La, Ce, Nd and Dy through 

three soil profiles. The 30 m profiles best illustrate the REE peaks being mobilised downwards 

through the soil. The REE were transported at similar rates. The breakthroughs at each time 

step (i.e. every 40 days) successively increase until peak concentration is reached at 400 days. 

 
 The time taken to recover the majority of the exchangeable REE concentrations by 

flushing with NaCl varies. For example in the 10 m profiles, 160 days was needed for most of 

La to be recovered, 120 days was needed for Ce and Nd, whereas Dy needed only 80 days to 

recover the majority of their concentrations. 

 
 The time required for REE recovery could be related to the concentration on the 

exchange surface. Ce has the highest concentration on the exchanger, and therefore takes 

more time to be transported through the profile. Dy was one of the least concentrated REE and 

thus required less time for the recovery of most of its exchangeable concentration.  

 
 A comparison of REE peak concentrations indicates that in the 30 m weathered profiles 

greater REE concentrations were observed and therefore more REE could be recovered than 

in the 6 m and 10 m profiles. For example, the peak concentration for Ce was > 0.008 mM in 

the 30 m profile but was < 0.004 mM in the 6 m profile.  

 

                                                
30 Tm was excluded because 20 is the maximum number of elements allowed in HYDRUS 1-D and it 
has the lowest equivalent fraction in the CEC of the Madagascar IAD (Table 5.1).   
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 The simulations of REE transport through different depth soil profiles indicate that the 

best depth for REE recovery was between 10 m and 30 m. This was where the depth was 

sufficient to recover the richest horizons (within 400 days) but not so deep as to require 

unfeasibly long transport times (e.g. slow peak velocities). 

 

 The similarities in the reactive transport behaviour of all the REE in the HYDRUS-1D 

simulations and in the TRN simulations indicates that there is no fractionation of the REE 

pattern. This finding supports the results of the log K estimation i.e. that one log K can describe 

all REE exchange reactions with the Madagascar IAD. The coherent REE behaviour also 

supports the use of HYDRUS 1-D to test the applicability of ISR for IAD. 
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Fig. 6.12 Solute transport of La and Ce through a 6 m, 10 m and 30 m soil profile. 
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Fig. 6.13 Solute transport of Nd and Dy through a 6 m, 10 m and 30 m soil profile. 
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6.4 Further Site Investigation 

 
 Various generic simulations of water flow and solute transport through a laterite profile 

have been undertaken in this research. Future studies should determine site specific 

parameters in order to evaluate the hydrological properties of the deposit and move to the next 

stage of ISR assessment and design. This should involve field tests and pilot plant operations. 

 
 Exploration drilling and geophysical surveying should be undertaken to construct cross-

sections of the deposit in order to define the extent of groundwater saturation and to identify 

confining layers. The existing information in hydrogeological mapping study of north-central 

Madagascar (Davies, 2009) should then be compared to the results of the exploration drilling. 

 
 Any distinct lithologies, facies or tectonic domains (e.g. Ambohimirahavavy igneous 

complex) within the study area should be delineated and within these sections test wells should 

be installed. Test wells could also be installed outside the mineralised area to help define the 

flow direction and velocity related to the groundwater gradient.  

 
 Core samples of the ore-bearing horizon should be recovered from each of the test wells. 

In addition, geophysical well logging surveys should be conducted in each pilot hole. This 

should include natural gamma, electric (self potential and resistivity), borehole flow distribution, 

calliper and deviation logs.  

 
 Representative drill core samples should be recovered from all lithological rock types 

across the entire ore-bearing horizon and also from both upper and lower water-confining 

layers. The whole core and disaggregated samples can be studied in the laboratory to 

determine hydraulic properties such as porosity and permeability.  

 
 Following determination of the hydrological properties using the methods described 

above, a feasibility study should be compiled which takes into account: 

 

 the thickness of the ore horizon; 

 depth of the ore body; 

 the hydrostatic level of the water table, and 

 the permeability of the ore and productivity of the ore.  

 
If it is decided that the hydrological properties of the deposit make it suitable for ISR, the 

deposit should be subject to further detailed exploratory tests.  
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6.5 Key Outcomes 

 
 In accordance with the industrial driver for this research, a conceptual model of the 

geochemical reactive transport processes for ISR for the Madagascar IAD was developed, 

using existing literature and site data. Generic simulations of ISR processes based on the 

conceptual model were undertaken in HYDRUS-1D.  

 
 The simulations illustrate: 

 

 Soil water flow and infiltration properties of generic laterite profiles using the single 

and dual porosity flow models; 

 Solute transport of an environmentally acceptable reactive solution (NaCl) with 

different ionic strengths through generic laterite profiles, and 

 Solute transport of the REE through generic laterite profiles with different depths 

following REE-Na exchange reactions. 

 
 The simulations indicate that: 

 

 Use of the different porosity flow models did not influence soil water flow; 

 The residence time of infiltrating water to reach the bottom of the profile was less 

than 40 days in all the different profile depths (6 m, 10 m, 30 m); 

 The order of magnitude changes to ionic  strength did not significantly change NaCl 

transport through the soil, thus a 1 M NaCl solution was considered adequate for 

use in simulations of REE cation exchange processes and in ISR applications; 

 The REE were transported at similar rates through the soils; 

  The time needed to recover the majority of the exchangeable La concentration by 

flushing with NaCl was 160 days, for Dy this was only 80 days. This may be related 

to their concentrations on the exchange surface, and 

 REE peak concentration decreased with increased profile depth from 6 m to 30 m. 

Therefore, the best depth for REE recovery using ISR was between 6 m and 10 m. 

 The REE behave coherently in both the HYDRUS-1D and TRN simulations, this 

suggests that HYDRUS-1D can be used to test the applicability of ISR for IAD. 

 
 Following these simulations, future work to assess the potential for ISR at the 

Madagascar study area requires additional site investigation to determine the hydrological 

properties of the Madagascar deposit. This should involve: exploration drilling, geophysical 

surveying, installation of test wells and analysis of whole drill core samples. 
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CHAPTER 7 
 

7 CONCLUSIONS 
 
 The importance of the REE stems from their physicochemical similarities (i.e. mineral 

site coordination, charge and ionic radius) which have made them essential in many aspects 

of modern technology. Because of their numerous applications and the control that China over 

their supply, these trace metals are considered to be ‘critical’.  

 
 IAD are a REE-bearing deposit of particular significance, due to the chemical ease with 

which recovery of the ion exchangeable REE adsorbed onto clay mineral surfaces is possible. 

Since IAD are only commercially processed in China, where mining has led to environmental 

degradation. This study considered an IAD under active exploration in Madagascar. 

 
 Alternative environmentally focused mining approaches should be considered to recover 

REE from IAD (e.g. in Madagascar) but, prior to this, the mechanism of REE mobilisation 

during mining must be understood, and be modelled. There are a number of literature studies 

investigating REE sorption processes with common IAD minerals.  

 
 REE-kaolinite interactions are the most widely studied, where cation exchange at 

interlayer sites is the dominating sorption mechanism. The model which considers ion 

exchange requires thermodynamic equilibrium constants to model exchange reactions. 

However, there are no exchange constants for all the REE in any literature or database source. 

 
 In accordance with the challenges outlined above, the research aim was to develop a 

numerical modelling approach to simulate the mobilisation of the REE from IAD during mining. 

The principal objectives were therefore to determine thermodynamic equilibrium constants for 

REE exchange reactions with the Madagascar IAD minerals, test these constants using data 

and reactive transport modelling of flow-through laboratory column experiments, and 

implement these processes in a reactive transport model at site scale.  

 
7.1 Analytical Outcomes  

 
 Three types of experiments were carried out to provide model inputs for reactive 

transport and equilibrium simulations. CEC tests were performed to determine the exchange 

composition of the Madagascar IAD. Batch tests were undertaken to provide a REE dataset 

from which REE exchange constants were estimated. Soil column experiments were 

performed to verify the estimated REE exchange constants. 
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 The CEC of Madagascar IAD was obtained with different salt solutions. Each gave an 

average CEC of 10 meq/100g of dry soil. This is within the literature standard of 3 – 15 

meq/100g for pure kaolinite (Brady & Weil, 2002). The CEC of 10.34 ± 0.07 meq per 100g 

obtained with the barium salt was used as the model input. This was because this salt solution 

had been used in each type of experiment.  

 
 The major exchangeable cation on the Madagascar IAD was Al3+, where it occupied 

more than 70% of exchange sites. This was in addition to its occurrence in the deposit’s mineral 

structure. The resultant pH drop from near neutral to pH 4 when the sample material was put 

in contact with a salt solution could be explained by significant concentrations of exchangeable 

Al3+ being mobilised into the aqueous phase. 

 
 In the batch equilibrium tests, all the REE (incl. Sm and Eu) behaved coherently when 

mobilised into the aqueous phase by a concentrated salt solution at 9 SLR conditions, where 

increasing exchangeable REE concentrations in solution increased as a function of SLR. 

Spectral interference due to the presence of high barium concentrations during ICP-MS 

analysis was the only reason for the different Sm and Eu trends. 

 
 Cation exchange reactions were also observed in the soil column experiments by the 

retardation of the injected cation (Ba2+ or NH4
+) breakthrough curve. Retardation of the 

breakthrough point occurred as a result of the injected cation exchanging for the REE3+, Al3+ 

and the other trace elements in the column. 

 
7.2 Modelling Outcomes 

 
 Equilibrium calculations were performed in PHREEQC to model REE-IAD exchange in 

the batch tests and to estimate equilibrium constants for these reactions. Reactive transport 

calculations were then undertaken in TRN to model REE breakthrough curves with the 

exchange constants derived by modelling the batch equilibrium experiments. 

 
 This research shows the cation exchange reactions are able to adequately describe the 

mobilisation of the REE from the Madagascar IAD with the exchange reaction: 

 
(7.1)  3NaX + REE3+ ↔ REEX3 + 3Na+  log K  
  
which is split into  

 
(7.2)  REE3+

 

+ 3X- = REEX3  log K = 2.29 
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(7.3)  Na+ + X- = NaX   log K = 0.031 

 
A single thermodynamic equilibrium constant of 

 

 log K = 2.29 ± 0.3 (standard deviation)    best fit for REE dataset in batch tests 

 log K = 2.29 ± 0.5 (standard deviation)   best fit for REE dataset in all soil columns 

 
was able to describe all REE exchange reactions with the Madagascar IAD. 

 
 Exchange constants were also calculated for each individual REE to determine whether 

the REE dataset could be better represented. The individual log K dataset only varied after 2 

decimal places and the objective function difference between the two models was: 

 

 objective function = 5.71 x 10-11    for the different log K model  

 objective function = 5.72 x 10-11    for the single log K model 

 
 There is only one literature study that reported a REE exchange constant of log K = 11.0 

± 0.4 for the Na/Eu reaction on pure kaolinite (Tertre et al., 2006a). The literature value was 

determined using the diffuse double layer surface complexation model. The literature log K 

could not describe REE exchange reactions with the Madagascar IAD.  

 
 The order of magnitude differences could be explained by the different complexities of 

the materials or the different modelling approaches used. Furthermore only one constant was 

determined by Tertre et al. (2006a). In this study the REE exchange behaviour is coherent and 

can be described by a single constant but that may not be the case for the literature study.   

 
 However, because thermodynamic equilibrium constants are fundamental quantities 

they should not be affected by any of the explanations given in the previous paragraph. The 

exact reason for the order of magnitude variance is not known. But, it is important to note that 

the REE exchange constants derived from equilibrium modelling have only been fitted to a 

dataset from one sample from the Madagascar IAD. Therefore, these constants cannot be 

considered the equilibrium constants for all IAD-REE exchange reactions. 

 
7.2.1 Environmentally Focused Modelling Application 

 
 Once REE exchange reactions with the Madagascar IAD could be accurately 

characterised, generic simulations based on a conceptual model of ISR processes at the study 

                                                
31 The exchange constant is from the WATEQ4F database. 
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area were undertaken. These simulations varied: soil profile depth, the ionic strength of the 

environmentally viable flushing solution and the soil hydraulic model.  

 
 The residence time for infiltrating water to reach the bottom of the profile was relatively 

fast (< 40 days), and this was independent of the increasing soil depth profiles (6 m, 10 m, 30 

m). Changing the ionic strength of the flushing solution (1 x 10-3 M, 1 M and 2 M) did not 

significantly effect NaCl infiltration properties.  

 
 REE peak concentration increased with increased profile depth from 6 m to 30 m. 

Therefore, the best depth for REE recovery using ISR was indicated to be between 10 m and 

30 m where the depth was not so deep as to require impractically long transport times to the 

point where recovery takes place i.e. with horizontal drains. 

 
7.3 Future work 

 
 HYDRUS-1D has been used to generic ISR processes through the Madagascar soil 

profile. Development of a site specific model would require knowledge of the soil hydraulic 

properties (e.g. porosity) determined from whole core samples, as well as the installation of 

pilot wells and geophysical surveying. A 2D/3D flow and transport model could then be 

developed to move to the next stage of ISR assessment.   

 
 In order to determine whether the REE exchange constants obtained in this study are 

actually thermodynamic equilibrium constants, the constants should be applied to another IAD 

system and/or different samples from the Madagascar IAD. The literature REE equilibrium 

constants (Tertre et al., 2006a) could also be applied to different IAD to determine their efficacy 

in describing REE exchange reactions.  

 
 Future work could also consider whether cation exchange is sensitive to the type of clay 

mineral. This would require the additional REE-batch datasets in which clays other than 

kaolinite are dominant in the sample material. This study successfully used exchange 

constants from WATEQ4F.dat which according to Tournassat et al. (2007) were determined 

for montmorillonite. This indicated that cation exchange was insensitive to the clay mineral.  

  



143 
  

BIBLIOGRAPHY 
 
Aagaard, P., & Helgeson, H.C. (1982). Thermodynamic and kinetic constraints on reaction 
rates among minerals and aqueous solutions; I, Theoretical considerations. American 
journal of Science, 282 (3), 237-285. 
 
Abaka-Wood, G.B., Addai-Mensah, J., & Skinner, W. (2016). Magnetic separation of 
monaazite from mixed minerals.  Chemical Engineering-Regeneration, Recovery and 
Reinvention, 596. 
 
Aide, M.T., & Aide, C (2012). Rare Earth Elements: Their Importance in Understanding Soil 
Genesis. ISRN Soil Science.  
 
Aja, S. U. (1998). The Sorption of the Rare Earth Element, Nd, onto Kaolinite at 25 C. Clays 
and Clay Minerals, 46, 103-109. 
 
Allaby, M. (2008). A Dictionary of Earth Sciences. Oxford: Oxford University Press.  
 
Anders, E., & Grevesse N. (1989). Abundances of the elements: Meteoritic and solar. 
Geochimica et Cosmochimica Acta, 53, 197-214.  
 
Anderson, P.R., & Christensen, T.H. (1988). Distribution coefficients of Cd, Co, Ni, and Zn 
in soils. Journal of soil science, 39 (1), 15-22. 
 
Appelo, C.A.J. (1994). Cation and proton exchange, pH variations, and carbonate reactions 
in a freshening aquifer. Water Resources Research, 30 (10), 2793-2805. 
 
Appelo, C.A.J., & Postma, D. (2005). Geochemistry, groundwater and pollution. Leiden: A.A. 
Balekma Publishers. 
 
Arbogast, T., Douglas, Jr, J., & Hornung, U. (1990). Derivation of the double porosity model 
of single phase flow via homogenization theory. SIAM Journal on Mathematical Analysis, 21 
(4), 823-836. 
 
Aubert, D., Stille, P., & Probst, A. (2001). REE fractionation during granite weathering and 
removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et 
Cosmochimica Acta, 65 (3), 387-406. 
 
Baczewski, L.T., Givord, D., Alameda, J.M., Dieny, B., Nozieres, J.P., Rebouillat, J.P., & 
Prejean, J.J. (1993). Magnetism in rare-earth-transition metal systems. Magnetization 
reversal and ultra-high susceptibility in sandwiched thin films based on rare-earth and cobalt 
alloys. Acta Physica Polonica Series A, 83, 629-629. 
 
Ball, J.W., & Nordstrom, D.K. (1991). User's manual for WATEQ4F, with revised 
thermodynamic data base and test cases for calculating speciation of major, trace, and redox 
elements in natural waters. USGS. 
 
Bao, Z., & Zhao, Z. (2008). Geochemistry of mineralisation with exchangeable REY in the 
weathering crusts of granitic rocks in South China. Ore Geology Reviews, 33, 519-535. 
 
Barteková, E., & Kemp, R. (2016). National strategies for securing a stable supply of rare 
earths in different world regions. Resources Policy, 49, 153-164. 
 



144 
  

Bau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron 
oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide 
tetrad effect. Geochimica et Cosmochimica Acta, 63 (1), 67-77. 
 
Bear, F.E. (1965). Chemistry of the Soil. Reinhold Publishing: New York. 
 
Bear, J. (1972). Dynamics of fluids in porous materials. Society of Petroleum Engineers: 
Dallas, TX, USA. 
 
Berger, A., & Frei, R. (2014). The fate of chromium during tropical weathering: A laterite 
profile from Central Madagascar. Geoderma, 213, 521-532. 
 
Bonnot-Courtois, C.J.R.N., & Jaffrezic-Renault, N. (1982). Etude des échanges entre terres 
rares et cations interfoliaires de deux argiles. Clay Mineralogy, 17 (4), 409-420. 
 
Borges, J.B., Huh, Y., Moon, S., & Noh, H. (2008). Provenance and weathering control on 
river bed sediments of the eastern Tibetan Plateau and the Russian Far East. Chemical 
Geology, 254 (1), 52-72. 
 
Bradbury, M.H., & Baeyens, B. (2002). Sorption of Eu on Na-and Ca-montmorillonites: 
experimental investigations and modelling with cation exchange and surface complexation. 
Geochimica et Cosmochimica Acta, 66 (13), 2325-2334. 
 
Bradbury, M.H., & Baeyens, B. (2005). Modelling the sorption of Mn (II), Co (II), Ni (II), Zn 
(II), Cd (II), Eu (III), Am (III), Sn (IV), Th (IV), Np (V) and U (VI) on montmorillonite: Linear 
free energy relationships and estimates of surface binding constants for some selected 
heavy metals and actinides. Geochimica et Cosmochimica Acta, 69 (4), 875-892. 
 
Bradbury, M. H., & Baeyens, B. (2009). Sorption modelling on illite. Part II: Actinide sorption 
and linear free energy relationships. Geochimica et Cosmochimica Acta, 73 (4), 1004-1013. 
 
Bradbury, M.H., & Baeyens, B. (2011). Predictive sorption modelling of Ni (II), Co (II), Eu 
(IIII), Th (IV) and U (VI) on MX-80 bentonite and Opalinus Clay: A “bottom-up” approach. 
Applied Clay Science, 52 (1), 27-33. 
 
Bradbury, M. H., Baeyens, B., Geckeis, H., & Rabung, T. (2005). Sorption of Eu (III)/Cm (III) 
on Ca-montmorillonite and Na-illite. Part 2: Surface complexation modelling. Geochimica et 
Cosmochimica Acta, 69 (23), 5403-5412. 
 
Brady, P.V. (1994). Alumina surface chemistry at 25, 40, and 60 C. Geochimica et 
cosmochimica acta, 58 (3), 1213-1217. 
 
Brady, P.V., Cygan, R.T., & Nagy, K.L. (1996). Molecular controls on kaolinite surface 
charge. Journal of Colloid and Interface Science, 183 (2), 356-364. 
 
Brady, N.C., & Weil, R. R. (2002). The Nature and Properties of Soil. New Jersey, USA:  
Prentice Hall. 
 
Braun, J.J., Viers, J., Dupré, B., Polve, M., Ndam, J., & Muller, J.P. (1998). Solid/liquid REE 
fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the 
present dynamics of the soil covers of the humid tropical regions. Geochimica et 
Cosmochimica Acta, 62 (2), 273-299. 
 
Brooks, R.H., & Corey, A.T. (1964). Hydraulic properties of porous media and their relation 
to drainage design. Transactions of the ASAE, 7 (1), 26-28. 



145 
  

 
Byrne, R.H., & Kim, K.H. (1990). Rare earth element scavenging in seawater. Geochimica 
et Cosmochimica Acta, 54 (10), 2645-2656. 
 
Buijs, B., & Sievers, H. (2011). Critical thinking about critical minerals: Assessing risks 
related to resource security. Polinares EU Policy on Natural Resources. The Hague: 
Clingendael International Energy Programme. 
 
Camobreco, V.J., Richards, B.K., Steenhuis, T.S., Peverly, J.H., & McBride, M.B. (1996). 
Movement of heavy metals through undisturbed and homogenized soil columns. Soil 
Science, 161 (11), 740-750. 
 
Cantrell, K. J., & Byrne, R. H. (1987). Rare earth element complexation by carbonate and 
oxalate ions. Geochimica et Cosmochimica Acta, 51 (3), 597-605. 
 
Cao, X., Yin, M., & Wang, X. (2001). Elimination of the spectral interference from polyatomic 
ions with rare earth elements in inductively coupled plasma mass spectrometry by combining 
algebraic correction with chromatographic separation. Spectrochimica Acta Part B: Atomic 
Spectroscopy, 56 (4), 431-441. 
 
Carsel, R.F., & Parrish, R.S. (1988). Developing joint probability distributions of soil water 
retention characteristics. Water resources research, 24 (5), 755-769. 
 
Carter, M.R. (Eds). (1993). Soil sampling and methods of analysis. CRC Press. 
 
Chi, R., & Tian, J. (2008). Weathered crust elution-deposited Rare Earth Ores. China: Nova 
Science Publishing Inc. 
 
Chi, R.A., Tian, J., Li, Z.J., Peng, C., Wu, Y.X., Li, S.R., Wang, C.W., & Zhou, Z.A. (2005). 
Existing State and Partitioning of Rare Earth on Weathered Ores. Journal of rare earths, 23 
(6), 756. 
 
Chi, R. A., Dai, Z. X., Xu, Z. G., Wu, Y. X., & Wang, C. W. (2006). Correlation analysis on 
partition of rare earth in ion-exchangeable phase from weathered crust ores. Transactions 
of Nonferrous Metals Society of China, 16 (6), 1421-1425. 
 
Clark, A.M. (1984). Mineralogy of the rare earth elements. In Developments in geochemistry 
Elsevier. 
 
Coppin, F., Berger, G., Bauer, A., Castet, S., & Loubet, M. (2002). Sorption of lanthanides 
on smectite and kaolinite. Chemical Geology, 182, 57-68.  
 
Coppin, F., Castet, S., Berger, G., & Loubet, M. (2003). Microscopic reversibility of Sm and 
Yb sorption onto smectite and kaolinite: Experimental evidence. Geochimica et 
Cosmochimica, 67, 14, 2515-2527. 
 
Cornell, R.M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, 
occurrences and uses. John Wiley & Sons. 
 
Dams, R.F., Goossens, J., & Moens, L. (1995). Spectral and non-spectral interferences in 
inductively coupled plasma mass-spectrometry. Microchimica Acta, 119 (3-4), 277-286. 
 
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon: exposition et application. Paris. 
 
Davies, C.W. (1962). Ion Association. London: Butterworths. 



146 
  

 
Davis, J.A., James, R.O., & Leckie, J.O. (1978). Surface ionization and complexation at the 
oxide/water interface: I. Computation of electrical double layer properties in simple 
electrolytes. Journal of colloid and interface science, 63 (3), 480-499. 
 
Del Nero, M., Froideval, A., Gaillard, C., Mignot, G., Barillon, R., Munier, I., & Ozgümüs, A. 
(2004). Mechanisms of uranyl sorption. Geological Society, London, Special 
Publications, 236 (1), 545-560. 
 
Ding, J. (2012). Historical review of the ionic rare earth mining: In honor of the 60 anniversary 
of GNMRI [J]. Nonferrous Metals Science and Engineering, 3 (4), 14-19. 
 
Doherty, J. (1994). PEST: a unique computer program for model-independent parameter 
optimisation. Water Down Under 94: Groundwater/Surface Hydrology Common Interest 
Papers, 551. 
 
Dontsova, K.M., Yost, S.L., Šimunek, J., Pennington, J.C., & Williford, C.W. (2006). 
Dissolution and transport of TNT, RDX, and Composition B in saturated soil 
columns. Journal of Environmental Quality, 35 (6), 2043-2054. 
 
Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore 
structure. Water resources research, 30 (2), 211-223. 
 
Dzombak, D.A., & Morel, F.M.M. (1990). Surface complexation modeling: hydrous ferric 
oxide. New York: John Wiley & Sons. 
 
European Commission. (2014). Report on critical raw materials for the EU-Report of the Ad 
hoc Working Group on defining critical raw materials. European Commission. 
 
Fletcher, P., & Sposito, G. (1989). Chemical modeling of clay/electrolyte interactions of 
montmorillonite. Clay Minerals, 24 (2), 375-391. 
 
Freundlich, H. (1909). Kolloidchemie. Akademischer Verlagsgeselschaft, Leipzig. 
Fryer, B.J. (1977). Trace element geochemistry of the Sokoman Iron Formation. Canadian 
Journal of Earth Sciences, 14 (7), 1598-1610. 
 

Gerke, H.H., & Van Genuchten, M.T. (1993). A dual‐porosity model for simulating the 
preferential movement of water and solutes in structured porous media. Water resources 
research, 29 (2), 305-319. 
 
Gidigasu, M.D. (1972). Mode of formation and geotechnical characteristics of laterite 
materials of Ghana in relation to soil forming factors. Engineering Geology, 6 (2), 79-150. 
 
Giles, C. H., Smith, D., & Huitson, A. (1974). A general treatment and classification of the 
solute adsorption isotherm. I. Theoretical. Journal of colloid and interface science, 47 (3), 
755-765. 
 
Glass, R.J., Oosting, G.H., & Steenhuis, T.S. (1989). Preferential solute transport in layered 
homogeneous sands as a consequence of wetting front instability. Journal of Hydrology 
(Amsterdam), 110 (1), 87-105. 
 
Golev, A., Scott, M., Erskine, P.D., Ali, S.H., & Ballantyne, G. R. (2014). Rare earths supply 
chains: Current status, constraints and opportunities. Resources Policy, 41, 52-59. 
 



147 
  

Goodenough, K.M., Wall, F., & Merriman, D. (2018). The rare earth elements: demand, 
global resources, and challenges for resourcing future generations. Natural Resources 
Research, 27 (2), 201-216. 
 
Graf, J.L. (1978). Rare earth elements, iron formations and sea water. Geochimica et 
Cosmochimica Acta, 42 (12), 1845-1850. 
 
Gray, A.L., & Williams, J.G. (1987). Communication. Oxide and doubly charged ion response 
of a commercial inductively coupled plasma mass spectrometry instrument. Journal of 
Analytical Atomic Spectrometry, 2 (1), 81-82. 
 
Grim, E. (1968). Clay Mineralogy. New York: McGraw-Hill. 
 
Guo, W. (2012). The rare earth development can no longer overdraw ecological cost. China 
Environment News. 
 
Gupta, C.K., & Krishnamurthy, N. (1992). Extractive metallurgy of rare earths. International 
Materials Reviews, 37 (1), 197-248. 
 
Gupta, C.K., & Krishnamurthy, N. (2005). Extractive metallurgy of rare earths. New York: 
CRC Press. 
 
Han, W.S., McPherson, B.J., Lichtner, P.C., & Wang, F.P. (2010). Evaluation of trapping 
mechanisms in geologic CO2 sequestration: Case study of SACROC northern platform, a 
35-year CO2 injection site. American Journal of Science, 310 (4), 282-324. 
 
Harper, L.A. (2005). Ammonia: measurement issues. U.S. Department of Agriculture: 
Agricultural Research Service, Lincoln, Nebraska. 
 
Hatch, G.P. (2012). Dynamics in the global market for rare earths. Elements, 8 (5), 341-346. 
 
Hayes, K.F., Redden, G., Ela, W., & Leckie, J.O. (1991). Surface complexation models: an 
evaluation of model parameter estimation using FITEQL and oxide mineral titration data. 
Journal of colloid and interface science, 142 (2), 448-469. 
 
Helfferich, F.G. (1995). Ion exchange. Courier Corporation. 
 
Helgeson, H.C. (1968). Evaluation of irreversible reactions in geochemical processes 
involving minerals and aqueous solutions—I. Thermodynamic relations. Geochimica et 
Cosmochimica Acta, 32 (8), 853-877. 
 
Hendershot, W.H., & Duquette, M. (1986). A simple barium chloride method for determining 
cation exchange capacity and exchangeable cations. Soil Science Society of America 
Journal, 50 (3), 605-608. 
 
Henderson, P. (1984). Rare Earth Element Geochemistry. Amsterdam: Elsevier. 
 
Hillel, D., & Hatfield, J.L. (Eds.). (2005). Encyclopedia of Soils in the Environment (Vol. 3). 
Amsterdam: Elsevier. 
 
Hillier, S. (2003). Clay Mineralogy, in Middleton, G.V., Church, M.J., Coniglio, M., Hardie, 
L.A., & Longstaffe, F.J. (Eds.) Encyclopaedia of sediments and sedimentary rocks. Kluwer 
Academic Publishers. 
 
Ho, Y.S. (2004). Selection of optimum sorption isotherm. Carbon, 42 (10), 2115-2116. 



148 
  

 
Huittinen, N., Rabung, T., Andrieux, P., Lehto, J., & Geckeis, H. (2010). A comparative batch 
sorption and time-resolved laser fluorescence spectroscopy study on the sorption of Eu (III) 
and Cm (III) on synthetic and natural kaolinite. Radiochimica Acta International journal for 
chemical aspects of nuclear science and technology, 98 (9-11), 613-620. 
 
Hunter, R.J. (1981). Zeta Potential in Colloid Science. New York: Academic Press. 
 
Humphries, M. (2013). Rare earth elements: The global supply chain. Technical report, 
Congressional Research Service. 
 
Jacques, D., & Šimůnek, J. (2005). User manual of the multicompenent variably-saturated 
flow and transport model hp1 (No. BLG--998). SCK-CEN. 
 
Jacques, D., Šimůnek, J., Mallants, D., & van Genuchten, M.T. (2003). The HYDRUS-
PHREEQC multicomponent transport model for variably-saturated porous media: Code 
verification and application. MODFLOW and More, 23-27. 
 
Jacques, D., Šimůnek, J., Mallants, D., & Van Genuchten, M.T. (2006). Operator-splitting 
errors in coupled reactive transport codes for transient variably saturated flow and 
contaminant transport in layered soil profiles. Journal of contaminant hydrology, 88 (3-4), 
197-218. 
 
Jarvis, K.E. (1988). Inductively coupled plasma mass spectrometry: a new technique for the 
rapid or ultra-trace level determination of the rare-earth elements in geological materials. 
Chemical Geology, 68 (1-2), 31-39. 
 
Jarvis, K.E. (1989). Determination of rare earth elements in geological samples by 
inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 
4 (7), 563-570. 
 
Jarvis, N. J. (1998). Modeling the impact of preferential flow on nonpoint source pollution. 
Physical Nonequilibrium in Soils: Modeling and Application, Ann Arbor Press, Chelsea, MI, 
195-221. 
Jarvis, K.E., Gray, A.L., & Houk, R.S. (1991). Handbook of inductively coupled plasma mass 
spectrometry. Chapman and Hall. 
 
Jarvis, K.E., Gray, A.L., & McCurdy, E. (1989). Avoidance of spectral interference on 
europium in inductively coupled plasma mass spectrometry by sensitive measurement of the 
doubly charged ion. Journal of Analytical Atomic Spectrometry, 4 (8), 743-747. 
 
Jenne, E.A. (1968). Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and 
waters: the significant role of hydrous Mn and Fe oxides. Trace Inorganics in Water – 
Advances in Chemistry, 73, 337-387. 
 
Johnson, J., Anderson, G., & Parkhurst, D. (2000). Database “thermo. com. V8. R6. 230,” 
Rev. 1-11. Lawrence Livermore National Laboratory. Livermore, California. 
 
Jordens, A., Cheng, Y.P., & Waters, K.E. (2013). A review of the beneficiation of rare earth 
element bearing minerals. Minerals Engineering, 41, 97-114. 
 
Jun, T., Jingqun, Y., Guohua, R., Mintao, J., & Ruan, C. (2011). Extraction of rare earths 
from the leach liquor of the weathered crust elution-deposited rare earth ore with non-
precipitation. International Journal of Mineral Processing, 98 (3-4), 125-131. 
 



149 
  

Jun, T., Ru-an, C., & Jing-qun, Y. (2010). Leaching process of rare earths from weathered 
crust elution-deposited rare earth ore. Transactions of Nonferrous Metals Society of China, 
20, 892-89. 
 
Kalka, H. (2018). TRN version 2.2.5.Umwelt- und Ingenieurtechnik GmbH Dresden.  
 
Kautenburger, R. & Beck, H.P. (2010). Influence of geochemical parameters on the sorption 
and desorption behaviour of europium and gadolinium onto kaolinite. Journal of 
Environmental Monitoring, 12 (6), 1295 - 1301. 
 
Kawabe, I., Ohta, A., Ishii, S., Tokumura, M., & Miyauchi, K. (1999). REE partitioning 
between Fe-Mn oxyhydroxide precipitates and weakly acid NaCl solutions: Convex tetrad 
effect and fractionation of Y and Sc from heavy lanthanides. Geochemical Journal, 33 (3), 
167-179. 
 
Kent, A.J. (2005). Production of barium and light rare earth element oxides during LA-ICP-
MS microanalysis. Journal of Analytical Atomic Spectrometry, 20 (11), 1256-1262. 
 
Kinniburgh, D.G. (1986). General purpose adsorption isotherms. Environmental Science & 
Technology, 20 (9), 895-904. 
 
Koeppenkastrop, D., Decarlo, E.H., & Roth, M. (1991). A method to investigate the 
interaction of rare earth elements in aqueous solution with metal oxides. Journal of 
radioanalytical and nuclear chemistry, 152 (2), 337-346. 
 
Koeppenkastrop, D., & Decarlo, E.H. (1992). Sorption of rare-earth elements from seawater 
onto synthetic mineral particles: An experimental approach. Chemical geology, 95 (3-4), 
251-263. 
 
Kookana, R.S., & Naidu, R. (1998). Effect of soil solution composition on cadmium transport 
through variable charge soils. Geoderma, 84 (1), 235-248. 
 
Kosugi, K.I. (1996). Lognormal distribution model for unsaturated soil hydraulic properties. 
Water Resources Research, 32 (9), 2697-2703. 
 
Kulik, D.A., Aja, S.U., Sinitsyn, V.A., & Wood, S.A. (2000). Acid–base surface chemistry and 
sorption of some lanthanides on K+-saturated Marblehead illite: II. A multisite–surface 
complexation modeling. Geochimica et Cosmochimica Acta, 64 (2), 195-213. 
 
Kung, K.S. (1990). Preferential flow in a sandy vadose zone: 2. Mechanism and 
implications. Geoderma, 46 (1-3), 59-71. 
 
Kurbatov, M.H., Wood, GB., & Kurbatov, J.D. (1951). Isothermal adsorption of cobalt from 
dilute solutions. The Journal of Physical Chemistry, 55 (7), 1170-1182. 
 
Lagaly, G. (1981). Characterization of clays by organic compounds. Clay Mineralogy, 16 (1), 
1. 
 
Langmuir, D. (1997). Aqueous environmental. Prentice Hall. 
 
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. 
Journal of the American Chemical society, 40 (9), 1361-1403. 
 
Le Couteur, P.C. (2011). Geological Report on the Chambe Basin Area of Exclusive 
Prospecting License EPL0325/11 Mulanje Massif, Southern Malawi, East Africa. 



150 
  

 
Li, C. (2011). The generalization and application of new technology on lixiviating mineral at 
the original place for ionic rare earths [J]. Nonferrous Metals Science and Engineering, 1, 
016. 
 
Li, Y.X., Zhang, L., & Zhou, X.M. (2010). Resource and environment protected exploitation 
model for ion-type rare earth deposit in southern of China. Chinese Rare Earths, 2, 023. 
 
Lichtner, P.C. (1988). The quasi-stationary state approximation to coupled mass transport 
and fluid-rock interaction in a porous medium. Geochimica et Cosmochimica Acta, 52 (1), 
143-165. 
 
Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007). 
Sorption isotherms: a review on physical bases, modeling and measurement. Applied 
geochemistry, 22 (2), 249-275. 
 
Oyelami, C.A., & Van Rooy, J.L. (2016). A review of the use of lateritic soils in the 
construction/development of sustainable housing in Africa: A geological perspective. Journal 
of African Earth Sciences, 119, 226-237. 
 
Ma, C., & Eggleton, R.A. (1999). Cation exchange capacity of kaolinite. Clays and Clay 
minerals, 47 (2), 174-180. 
 
Ma, C.A., Cai, Q. X., Wang, H., Shao, M.A., Fan, J., Shi, Z., & Wang, F. (2015). Modeling of 
water flow in reclaimed mine spoil with embedded lignitic fragments using Hydrus-1D. Mine 
Water and the Environment, 34 (2), 197-203. 
 
Maji, S.K., Pal, A., Pal, T., & Adak, A. (2007). Adsorption thermodynamics of arsenic on 
laterite soil. Journal of Surface Science and Technology, 23 (3/4), 161. 
 
Mancheri, N.A. (2015). World trade in rare earths, Chinese export restrictions, and 
implications. Resources Policy, 46, 262-271. 
 
Marmier, N., Dumonceau, J., Chupeau, J., & Fromage, F. (1994). Modeling of Yb (III) 
sorption on kaolinite by using single oxide surface complexation models. MRS Online 
Proceedings Library Archive, 353. 
 
Marmier, N., Dumonceau, J., & Fromage, F. (1997). Surface complexation modeling of Yb 
(III) sorption and desorption on hematite and alumina. Journal of contaminant hydrology, 26 
(1-4), 159-167. 
 
Masipan, T., Chotpantarat, S., & Boonkaewwan, S. (2016). Experimental and modelling 
investigations of tracer transport in variably saturated agricultural soil of Thailand: Column 
study. Sustainable Environment Research, 26 (2), 97-101. 
 
Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on 
international markets and future strategies. Resources Policy, 38 (1), 36-43. 
 
Mayer, K.U., Frind, E.O., & Blowes, D.W. (2002). Multicomponent reactive transport 
modeling in variably saturated porous media using a generalized formulation for kinetically 
controlled reactions. Water Resources Research, 38 (9), 13-1. 
 
McBride, M.B. (1976). Origin and position of exchange sites in kaolinite: an ESR study. Clays 

and clay minerals, 24 (2), 88-92. 



151 
  

 

McBride, M.B. (1994). Environmental Chemistry of Soils. Oxford University Press, New York. 
 
McLennan, S., & Taylor, S.R. (2012). Geology, Geochemistry and Natural Abundances of 
the Rare Earth Elements in Atwood, D.A. (Eds). The Rare Earth Elements: Fundamentals 
and Applications. West Sussex: John Wiley & Sons, Ltd. 
 
Mentani, T., Ohmura, T., Watanabe, Y., & Urabe, T. (2010). So-called ion-adsorption type 
REE deposits found in weathered crust of ilmenite-series granite in northern Vietnam. GSA 
Denver Annual Meeting. 
 
Meeussen, J.C.L., van der Sloot, H.A., Dijkstra, J.J., & Kosson, D.S. (2009). Review of 
thermodynamic and adsorption databases. Energy Research Centre of the Netherlands and 
Vanderbilt University/CRESP. 
 
Miranda-Trevino, J.C., & Coles, C.A. (2003). Kaolinite properties, structure and influence of 
metal retention on pH. Applied Clay Science, 23 (1), 133-139. 
 
Moldoveanu, G., & Papangelakis, V.G. (2012).  Recovery of rare earth elements adsorbed 
on clay minerals: I. Desorption mechanism. Hydrometallurgy, 117-118, 71-78. 
 
Möller, P. (1989). Rare earth mineral deposits and their industrial importance. In 
Lanthanides, tantalum and niobium. Springer, Berlin, Heidelberg. 
 
Mudd, G. M. (2001). Critical review of acid in situ leach uranium mining: 1. USA and 
Australia. Environmental Geology, 41, 390-403. 
 
Murata, K.J., Dutra, C.V., Da Costa, M.T., & Branco, J.J.R. (1959). Composition of 
monazites from pegmatites in eastern Minas Gerais, Brazil. Geochimica et Cosmochimica 
Acta, 16 (1-3), 1-14. 
 
Navarro, J., & Zhao, F. (2014). Life-cycle assessment of the production of rare-earth 
elements for energy applications: a review. Frontiers in Energy Research, 2, 45. 
 
Neumann, H., Jensen, B.B., & Brunfelt, A.O. (1966). Distribution patterns of rare earth 
elements in minerals. Rev. nor. geológ, 50, 357-373. 
 
Nicolai, J., Märten, H., & Kalka, H. (2017). In-Situ Recovery of Technology Metals. Umwelt- 
und Ingenieurtechnik GmbH Dresden. 
 
Nordstrom, D.K., & Munoz, J.I. (1994). Geotechnical Thermodynamics. Blackwell Scientific 
Publications. 
 
Palmer, M.A., Berhhardt, E.S., Schlesinger, W.H., Eshleman, K.N., Foufoula-Georgiou, E., 
Hendryx, M.S., Lemly, A.D., Likens, G.E., Loucks, O.L., Power, M.E., White, P.S., & Wilcock, 
P.R. (2010). Mountaintop Mining Consequences, Science, 327, 148-149. 
 
Pansu, M., & Gautheyrou, J. (2007). Handbook of soil analysis: mineralogical, organic and 
inorganic methods. Springer Science & Business Media. 
 
Papangelakis, V.G., & Moldoveanu, G. (2014). Recovery of Rare Earth Elements from Clay 
Minerals. European Rare Earth Resource Conference. Available at 
http://www.eurare.eu/docs/eres2014/fifthSession/VladimirosPapangelakis.pdf  [Accessed 
9th October 2015]. 
 

http://www.eurare.eu/docs/eres2014/fifthSession/VladimirosPapangelakis.pdf


152 
  

Parfitt, R.L., Fraser, A.R., & Farmer, V.C. (1977). Adsorption on hydrous oxides. III. Fulvic 
acid and humic acid on goethite, gibbsite and imogolite. Journal of Soil Science, 28 (2), 289-
296. 
 
Parkhurst, D.L. (1990). Ion-association models and mean activity coefficients of various 
salts. American Chemical Society, 3, 30-43.  
 
Parkhurst, D.L., & Appelo, C.A.J. (2013). Description of input and examples for PHREEQC 
version 3: a computer program for speciation, batch-reaction, one-dimensional transport, 
and inverse geochemical calculations. US Geological Survey. 
 
Parkhurst, D.L., & Appelo, C.A.J. (1999). User's guide to PHREEQC (Version 2): A computer 
program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical 
calculations. Colorado: U.S. Geological Survey. 
 
Paulick, H., & Machacek, E. (2017). The global rare earth element exploration boom: An 
analysis of resources outside of China and discussion of development perspectives. 
Resources Policy, 52, 134-153. 
 
Payne, T.E., Brendler, V., Ochs, M., Baeyens, B., Brown, P.L., Davis, J.A., Eckberg, C., 
Kulik, D.A., Lutzenkirchen, J., Missana, T., Tachi, Y., Van Loon, L.R., & Altmann, S.  (2013). 
Guidelines for thermodynamic sorption modelling in the context of radioactive waste 
disposal. Environmental modelling & software, 42, 143-156. 
 
Piper, D. Z. (1974). Rare earth elements in the sedimentary cycle: a summary. Chemical 
Geology, 14 (4), 285-304. 
 
Platt, A.W.G. (2012). Variable Valency in Atwood, D.A. (Eds). The Rare Earth Elements: 
Fundamentals and Applications. West Sussex: John Wiley & Sons, Ltd. 
 
Plummer, C.C., McGeary, D., & Carlson, D.H. (1991). Physical geology. Wm. C. Brown. 
 
Prommer, H., Barry, D.A. & Zheng, C. (2003). MODFLOW/MT3DMS-Based Reactive 
Transport Modeling. Groundwater, 41 (2), 247–257. 
 
Quinn, K.A., Byrne, R.H., & Schijf, J. (2006a). Sorption of yttrium and rare earth elements 
by amorphous ferric hydroxide: influence of pH and ionic strength. Marine Chemistry, 99 (1-
4), 128-150. 
 
Quinn, K.A., Byrne, R.H., & Schijf, J. (2006b). Sorption of yttrium and rare earth elements 
by amorphous ferric hydroxide: influence of solution complexation with carbonate. 
Geochimica et Cosmochimica Acta, 70 (16), 4151-4165. 
 
Rabung, T., Geckeis, H., Kim, J.I., & Beck, H.P. (1998). Sorption of Eu (III) on a natural 
hematite: application of a surface complexation model. Journal of colloid and interface 
science, 208 (1), 153-161. 
 
Rabung, T., Stumpf, T., Geckeis, H., Klenze, R., & Kim, J.I. (2000). Sorption of Am(III) and 
Eu(III) onto 𝜸-Al2O3: experiment and modelling. Radiochimica Acta, 88, 711-716. 
 
Rand, B., & Melton, I.E. (1977). Particle interactions in aqueous kaolinite suspensions, I. 
Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium 
kaolinite suspensions. Journal of Colloid and Interface Science, 60, 308-320. 
 



153 
  

Rocha, A., Schissel, D., Sprecher, A., de Tarso, P., & Goode, J. (2013). Process 
development for the Serra Verde weathered crust elution-deposited rare earth deposit in 
Brazil. Proceedings of the 52rd Conference of Metallurgists. 
 
Roskill. (2007). The economics of rare earths and yttrium. Roskill Information Services 
Limited. 
 
Ružičić, S., Kovac, Z., Mileusnic, M., & Posavec, K. (2013). Longitudinal dispersivity 
determination using conservative tracer in the field. In 4th International Conference 
HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems. 
 
Saalfeld, H., & Wedde, M. (1974). Refinement of the crystal structure of gibbsite, Al(OH)3. 
Zeitschrift für Kristallographie-Crystalline Materials, 139 (1-6), 129-135. 
 
Sanematsu, K., Kon, Y., & Imai, A. (2015). Influence of phosphate on mobility and adsorption 
of REEs during weathering of granites in Thailand. Journal of Asian Earth Sciences, 111, 
14–30. 
 
Sanematsu, K., Kon, Y., Imai, A., Watanabe, K., & Watanabe, Y. (2013). Geochemical and 
mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. 
Mineralium Deposita, 48, 437–451. 
 
Sanematsu, K., Murakami, H., Watanabe, Y., Duangsurigna, S., & Siphandone, V. (2009). 
Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in 
central and southern Laos. Bulletin of the Geological Survey of Japan, 60 (11-12), 527-558. 
 
Sanematsu, K., & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type 
rare earth element deposits. Reviews in Economic Geology, 18, 55-79. 
 
Sarangi, A.K., & Beri, K.K. (2000). Uranium mining by in-situ leaching. In Proceedings of the 
International conference on “Technology management for mining processing and 
environment”, Kharagpur. 
 
Saxena, R.K., Jarvis, N.J., & Bergström, L. (1994). Interpreting non-steady state tracer 
breakthrough experiments in sand and clay soils using a dual-porosity model. Journal of 
Hydrology, 162 (3-4), 279-298. 
 
Schoeller, W.R., & Powell, A.R. (1955). The Analysis of Minerals and Ores of the Rarer 
Elements. London; Charles Griffin and Company. 
 
Schüler, D., Buchert, M., Liu, R., Dittrich, S., & Merz, C. (2011). Study on rare earths and 
their recycling. Final Report for the Greens/EFA Group in the European Parliament. Öko-
Institut eV Darmstadt. 
 
Selim, H.M. (2012). Competitive sorption of heavy metals in soils: experimental 
evidence. Competitive Sorption and Transport of Heavy Metals in Soils and Geological 
Media. 
 
Seyfried, M.S., & Rao, P.S.C. (1987). Solute Transport in Undisturbed Columns of an 
Aggregated Tropical Soil: Preferential Flow Effects 1. Soil Science Society of America 
Journal, 51 (6), 1434-1444. 
 
Shabani, M.B., Akagi, T., Shimizu, H., & Masuda, A. (1990). Rapid and accurate 
determination of sub-parts per trillion lanthanides and yttrium in seawater by development 



154 
  

of solvent extraction and back extraction using inductively coupled plasma mass 
spectrometry. Analytical Chemistry, 62, 2709. 
 
Singh, S.K., Subramanian, V., & Gibbs, R.J. (1984). Hydrous Fe and Mn oxides—
scavengers of heavy metals in the aquatic environment. Critical Reviews in Environmental 
Control, 14 (1), 33-90. 
 
Simandl, G.J. (2014). Geology and market-dependent significance of rare earth element 
resources. Mineralium Deposita, 49 (8), 889-904. 
 
Šimůnek, J., Jarvis, N. J., Van Genuchten, M. T., & Gärdenäs, A. (2003). Review and 
comparison of models for describing non-equilibrium and preferential flow and transport in 
the vadose zone. Journal of hydrology, 272 (1-4), 14-35. 
 
Šimůnek, J., Sejna, M., Van Genuchten, M.T., Šimůnek, J., Šejna, M., Jacques, D., & Sakai, 
M. (1998). HYDRUS-1D. Simulating the one-dimensional movement of water, heat, and 
multiple solutes in variably-saturated media, version 2. 
 
Šimůnek, J., Van Genuchten, M.T., & Sejna, M. (2005). The HYDRUS-1D software package 
for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-
saturated media. University of California-Riverside Research Reports, 3, 1-240. 
 
Šimůnek, J., Jacques, D., & Van Genuchten, M.T (2006). Multicomponent geochemical 
transport modeling using the HYDRUS-1D computer software package. In American Water 
Resources Association Conference Proceedings. 
 
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., & Van Genuchten, M.T. (2008). The HYDRUS-
1D software package for simulating the movement of water, heat, and multiple solutes in 
variably saturated media, version 4.0: HYDRUS Software Series 3. Department of 
Environmental Sciences, University of California Riverside, Riverside, California, USA, 315. 
 
Smith, K.S. (1999). Metal sorption on mineral surfaces: an overview with examples relating 
to mineral deposits. The Environmental Geochemistry of Mineral Deposits. Part A: 
Processes, Techniques, and Health Issues, 6, 161-182. 
 
Sposito, G. (1983). On the surface complexation model of the oxide-aqueous solution 
interface. Journal of Colloid and Interface Science, 91 (2), 329-340. 
 
SRK (2013). A Competent Persons Report on the Tantalus Project, Northern Madagascar. 
Available at http://www.tre-ag.com/~/media/Files/T/Tantalus-Rare-
Earths/Attachments/pdf/2013_01_21_ES7520_SRKES_Tantalus%20CPR_Final_English.p
df [Accessed 14th March 2016].  
 
Steefel, C.I., DePaolo, D.J., & Lichtner, P.C. (2005). Reactive transport modeling: An 
essential tool and a new research approach for the Earth sciences. Earth and Planetary 
Science Letters, 240 (3-4), 539-558. 
 
Steefel, C.I., & Maher, K. (2009). Fluid-rock interaction: A reactive transport approach. 
Reviews in Mineralogy and Geochemistry, 70 (1), 485-532. 
 
Steenhuis, T.S., Parlange, J.Y., & Aburime, S.A. (1995). Preferential flow in structured and 
sandy soils: consequences for modeling and monitoring. Handbook of vadose zone 
characterization and monitoring, 61-77. 
 

http://www.tre-ag.com/~/media/Files/T/Tantalus-Rare-Earths/Attachments/pdf/2013_01_21_ES7520_SRKES_Tantalus%20CPR_Final_English.pdf
http://www.tre-ag.com/~/media/Files/T/Tantalus-Rare-Earths/Attachments/pdf/2013_01_21_ES7520_SRKES_Tantalus%20CPR_Final_English.pdf
http://www.tre-ag.com/~/media/Files/T/Tantalus-Rare-Earths/Attachments/pdf/2013_01_21_ES7520_SRKES_Tantalus%20CPR_Final_English.pdf


155 
  

Stumm, W., & Morgan, J.J. (2012). Aquatic chemistry: chemical equilibria and rates in 
natural waters. West Sussex: John Wiley & Sons.  
 
Stumpf, T., Bauer, A., Coppin, F., Fanghänel, T., & Kim, J.I. (2002). Inner-sphere, outer-
sphere and ternary surface complexes: a TRLFS study of the sorptionn process of Eu (III) 
onto smectite and kaolinite. Radiochimica Acta, 90 (6), 345-349. 
 
Tang, J., & Johannesson, K.H. (2003). Speciation of rare earth elements in natural terrestrial 
waters: assessing the role of dissolved organic matter from the modeling 
approach. Geochimica et Cosmochimica Acta, 67 (13), 2321-2339. 
 
Tang, J., & Johannesson, K.H. (2005). Adsorption of rare earth elements onto Carrizo sand: 
experimental investigations and modelling with surface complexation. Geochimica et 
Cosmochimica Acta, 69 (22), 5247-5261. 
 
Ter-Mikirtychev, V., & Ter-Mikirtychev, V. (2014). Optical properties and optical 

spectroscopy of rare earth ions in solids. Fundamentals of Fiber Lasers and Fiber Amplifiers, 

7-26. 

 

Tertre, E., Berger, G., Castet, S., Loubet, M., & Giffaut, E. (2005). Experimental sorption of 
Ni2+, Cs+ and Ln3+ onto a montmorillonite up to 150 °∁. Geochimica et Cosmochimica Acta, 
69, 4937-4948. 
 
Tertre, E., Berger, G., Simoni, E., Castet, E., Loubet, M., & Catalette, H. (2006a). Europium 
retention onto clay minerals from 25 to 150 °∁: Experimental measurements, spectroscopic 
features and sorption modelling. Geochimica et Cosmochimica Acta, 70, 4563-4578. 
 
Tertre, E., Castet, S., Berger, G., Loubet, M., & Giffaut, E. (2006b). Surface chemistry of 
kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60 C: 
experimental and modeling study. Geochimica et Cosmochimica Acta, 70 (18), 4579-4599. 
 
Tertre, E., Hofmann, A., & Berger, G. (2008). Rare earth element sorption by basaltic rock: 
experimental data and modeling results using the “Generalised Composite approach”. 
Geochimica et Cosmochimica Acta, 72 (4), 1043-1056. 
 
Thompson, J.B. (1959). Local equilibrium in metasomatic processes. Researches in 
geochemistry. 
 
Tian, J., Tang, X., Yin, J., Luo, X., Rao, G., & Jiang, M. (2013). Process optimization on 
leaching of a lean weathered crust elution-deposited rare earth ores. International Journal 
of Mineral Processing, 119, 83-88. 
 
Tombácz, E., Nyilas, T., Libor, Z., & Csanaki, C. (2004). Surface charge heterogeneity and 
aggregation of clay lamellae in aqueous suspensions. In From Colloids to Nanotechnology. 
Berlin; Springer. 
 
Tostevin, R., Shields, G.A., Tarbuck, G.M., He, T., Clarkson, M.O., & Wood, R. A. (2016). 
Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. 
Chemical Geology, 438, 146-162. 
 
Tournassat, C., Gailhanou, H., Crouzet, C., Braibant, G., Gautier, A., Lassin, A., Blanc, P., 
& Gaucher, E. C. (2007). Two cation exchange models for direct and inverse modelling of 
solution major cation composition in equilibrium with illite surfaces. Geochimica et 
Cosmochimica Acta, 71 (5), 1098-1114. 



156 
  

 
Truesdell, A.H., & Jones, B.F. (1974). WATEQ, a computer program for calculating chemical 
equilibria of natural waters. Journal of Research of the US Geological Survey, 2, 233-248. 
 
Tunega, D. (2012). Theoretical study of properties of goethite (α-FeOOH) at ambient and 
high-pressure conditions. The Journal of Physical Chemistry C, 116 (11), 6703-6713. 
 
Uddin, M.K. (2017). A review on the adsorption of heavy metals by clay minerals, with special 
focus on the past decade. Chemical Engineering Journal, 308, 438-462. 
 
USGS. (1996). Minerals Information. Rare Earths. Statistics and Information. 
https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/rareemcs96.pdf [Accessed 
10th January 2019]. 
 
USGS. (2011). Minerals Information. Rare Earths. Statistics and Information. 
https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2011-raree.pdf 
[Accessed 10th January 2019]. 
 
USGS. (2018). Minerals Information. Rare Earths. Statistics and Information. 
https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2018-raree.pdf 
[Accessed 10th January 2019]. 
 
Vahidi, E., Navarro, J., & Zhao, F. (2016). An initial life cycle assessment of rare earth oxides 
production from ion-adsorption clays. Resources, Conservation and Recycling, 113, 1-11 
 
Van Genuchten, M.T. (1980). A closed-form equation for predicting the hydraulic conductivity 
of unsaturated soils 1. Soil science society of America journal, 44 (5), 892-898. 
 
Van Olphen, H. (1977). An introduction to clay colloid chemistry: for clay technologists, 

geologists, and soil scientists. 

 

Van Kranendonk, M.J., Webb, G.E., & Kamber, B.S. (2003). Geological and trace element 
evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga 
stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. 
Geobiology, 1 (2), 91-108. 
 
Verma, P.K., & Mohapatra, P.K. (2016). Effect of different complexing ligands on europium 
uptake from aqueous phase by kaolinite: batch sorption and fluorescence studies. Royal 
Society of Chemistry, 6, 84464- 84471. 
 
Voβenkaul, D., Stoltz, N.B., Meyer, F.M., & Friedrich, B. (2015). Extraction of Rare Earth 
Elements from non-Chinese Ion Adsorption Clays. Processing of EMC 2015. Available at 
http://www.metallurgie.rwth-
aachen.de/new/images/pages/publikationen/vo_enkaeul_extr_id_8872.pdf [Accessed 12th 
April 2016]. 
 
Xiangke, W., Wenming, D., Yingchun, G., Changhui, W., & Zuyi, T. (2001). Sorption 
characteristics of radioeuropium on bentonite and kaolinite. Journal of radioanalytical and 
Nuclear Chemistry, 250 (2), 267-270. 
 
Wall, F. (2014). Rare earth elements. Critical metals handbook, 312-339. 
 

https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/rareemcs96.pdf
https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2011-raree.pdf
https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2018-raree.pdf
http://www.metallurgie.rwth-aachen.de/new/images/pages/publikationen/vo_enkaeul_extr_id_8872.pdf
http://www.metallurgie.rwth-aachen.de/new/images/pages/publikationen/vo_enkaeul_extr_id_8872.pdf


157 
  

Walter, A.L., Frind, E.O., Blowes, D.W., Ptacek, C.J., & Molson, J.W. (1994). Modeling of 
multicomponent reactive transport in groundwater: 1. model development and 
evaluation. Water Resources Research, 30 (11), 3137-3148. 
 
Walters, A., Lusty, P., & Hill, A. (2011). Rare Earth Elements: Mineral Profile. British 
Geological Survey, United Kingdom. 
 
Williams, D.J.A., & Williams, K.P. (1978). Electrophoresis and zeta potential of kaolinite. 
Journal of Colloid and Interface Science, 65 (1), 79-87. 
 
Wilson, B. M. (2007). Igneous petrogenesis a global tectonic approach. Springer Science & 
Business Media. 
 
Wu, C.Y., Huang, D.H., & Guo, Z.G. (1990). REE geochemistry in the weathered crust of 
granites, Longnan area, Jiangxi Province. Acta Geologica Sinica, 3 (2), 193-209. 
 
Wu, C., Yuan, Z., & Bai, G. (1995). Rare earth deposits in China. Mineralogical Society 
Series, 7, 281-310. 
 
Wübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an 
industry. Resources Policy, 38 (3), 384-394. 
 
Yang, X.J., Lin, A., Li, X-L., Wu, Y., Zhou, W., & Chen, Z. (2013). China’s ion-adsorption rare 
earth resources, mining consequences and preservation. Environmental Development, 8, 
131-136 
 
Yu, Q., Qiu, D., Ma, R., & Zhou, Z. (1990). The techniques for extraction of rare earths from 
the ionic type rare earth ores and their possible improvements. Mining and Metallurgical 
Engineering (China), 10 (1), 42-45. 
 
Zagorodni, A.A. (2006). Ion exchange materials: properties and applications. Elsevier. 
 
Zhang, Z.H. (1990). A study on weathering crust ion adsorption type REE deposits, south 
China. Contributions to Geology and Mineral Resources Research, 5 (1), 57. 
 
Zhao, J., Tang, X. Z., & Wu, C. (2001). Status quo of mining and recovering technologies for 
ion-absorbed rare earth deposits in China. Yunnan metallurgy, 30 (1), 11-14. 
 
Zhu, Y., Zhou, L., & Li, Q. (2011). Water pollution prevention method for in-situ leach mining 
of ion-absorbed rare-earth mineral. Nonferrous Metals (Mineral Processing Section), 6, 46-
49. 
 

 
  



158 
 

Appendix A 
 

Literature Data 
 
A.1 Global Ion Adsorption Deposits 

 
Location Sample Depth La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y 

  [m] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

Pit 3, 
Madagascar 

0578 0.3 3.61 62.28 0.47 1.35 0.17 0.02 0.23 0.02 0.08 0.01 0.03 0.00 0.02 0.00 0.42 

0579 0.5 4.64 47.74 0.79 2.42 0.33 0.04 0.32 0.03 0.16 0.03 0.07 0.01 0.04 0.01 0.70 

0581 0.8 4.72 43.80 0.87 2.71 0.39 0.05 0.35 0.04 0.18 0.03 0.08 0.01 0.06 0.01 0.79 

0582 1.0 4.51 46.76 0.86 2.73 0.41 0.05 0.37 0.04 0.19 0.03 0.08 0.01 0.06 0.01 0.76 

0583 1.3 4.08 48.52 0.78 2.47 0.38 0.05 0.34 0.04 0.17 0.03 0.07 0.01 0.05 0.01 0.67 

0584 1.5 3.62 47.14 0.67 2.14 0.33 0.04 0.30 0.03 0.15 0.03 0.06 0.01 0.04 0.00 0.55 

0586 1.8 2.63 31.50 0.48 1.54 0.24 0.03 0.22 0.03 0.11 0.02 0.04 0.01 0.03 0.00 0.39 

0587 2.0 2.08 25.92 0.37 1.21 0.18 0.02 0.17 0.02 0.08 0.01 0.03 0.00 0.02 0.00 0.29 

0588 2.3 2.45 33.97 0.44 1.39 0.22 0.03 0.20 0.02 0.10 0.02 0.04 0.00 0.03 0.00 0.32 

0589 2.5 2.56 38.20 0.46 1.43 0.23 0.03 0.21 0.02 0.09 0.02 0.04 0.00 0.03 0.00 0.32 

0590 2.8 2.98 42.28 0.53 1.67 0.25 0.03 0.23 0.02 0.10 0.02 0.04 0.01 0.03 0.00 0.34 

0591 3.0 2.78 32.40 0.48 1.49 0.20 0.02 0.17 0.02 0.07 0.01 0.03 0.00 0.02 0.00 0.25 

0592 3.3 6.37 64.80 1.09 3.42 0.45 0.05 0.38 0.04 0.16 0.03 0.06 0.01 0.05 0.01 0.52 

0594 3.5 8.86 86.01 1.53 4.76 0.63 0.07 0.52 0.05 0.22 0.03 0.08 0.01 0.06 0.01 0.71 

0595 3.8 8.19 73.03 1.41 4.43 0.58 0.07 0.46 0.05 0.19 0.03 0.07 0.01 0.06 0.01 0.62 

0596 4.0 6.92 60.35 1.19 3.76 0.49 0.06 0.39 0.04 0.17 0.03 0.06 0.01 0.05 0.01 0.53 

0597 4.3 1.36 11.77 0.25 0.77 0.11 0.01 0.08 0.01 0.03 0.01 0.01 0.00 0.01 0.00 0.11 

Longnan 
County, 
China 

LN-1 0.5 21.4 47.2 5.17 17.6 4.14 0.50 4.35 0.75 4.94 0.99 3.05 0.49 3.55 0.52 - 

LN-2 2 25.7 38.2 9.13 46.4 25.1 0.42 28.5 4.27 24.6 4.92 15.0 2.51 17.9 2.79 - 

LN-3 3.5 34.4 27.0 11.1 57.3 45.1 0.40 90.1 17.8 118 23.7 70.1 11.5 75.5 11.36 - 

LN-4 5 16.5 19.8 6.14 30.8 22.7 0.26 55.0 12.6 87.8 17.6 53.2 8.31 58.1 8.52 - 

LN-5 6.5 15.7 29.6 5.92 30.2 20.9 0.18 45.3 10.2 74.0 15.3 45.1 7.02 47.3 7.19 - 

LN-8 8 8.11 17.8 3.63 16.8 12.0 0.09 24.9 5.47 40.0 8.27 25.8 4.12 29.1 4.41 - 

LN-9 9.5 8.86 14.3 2.65 13.9 8.50 0.10 15.1 3.27 24.0 4.90 15.0 2.60 16.2 2.55 - 



159 
 

Location Sample Depth La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y 
  [m] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

Phuket, 
Thailand 

B1 0.5 83.8 253 16.9 53.6 7.84 0.60 6.68 0.62 3.24 0.59 1.77 0.25 1.76 0.25 - 

B2 1.4 113 301 24.4 78.2 10.8 0.76 8.95 0.82 4.22 0.73 2.29 0.31 2.21 0.32 - 

B3 2.1 119 183 29.3 97.9 15.2 1.07 11.5 1.10 5.66 1.00 3.05 0.42 2.91 0.43 - 

B4 2.8 86.6 300 21.0 69.0 10.9 0.76 8.20 0.76 4.08 0.71 2.34 0.34 2.55 0.42 - 

B5 3.5 77.3 174 17.5 57.4 8.47 0.61 6.36 0.57 2.88 0.52 1.69 0.23 1.70 0.25 - 

B6 4.2 57.5 279 14.1 47.2 6.65 0.54 5.28 0.50 2.66 0.55 1.98 0.34 2.76 0.46 - 

Attapu 

P716B 0.5 172 249 33.7 112 19.3 4.39 15.7 2.58 13.4 2.42 6.48 0.84 4.95 0.71 - 

P724C 1 57.7 102 10.6 29.7 5.1 1.08 3.8 0.4 2.0 0.3 0.9 0.14 0.9 0.14 - 

P725A 1.5 152 311 23.5 62.6 7.88 1.32 3.5 0.52 2.58 0.44 1.16 0.15 0.93 0.15 - 

P726B 2 88.1 156 17.5 60.2 8.93 1.93 6.88 0.98 5.14 0.95 2.72 0.39 2.46 0.38 - 

P781C 2.5 59.7 105 9.32 30 3.74 0.91 1.84 0.25 1.23 0.22 0.6 0.09 0.58 0.09 - 

P782B 3 39.8 90.8 6.68 20 2.81 0.84 1.2 0.2 1.18 0.23 0.67 0.1 0.69 0.11 - 

P783B 3.5 94.1 140 15.4 46.9 6.32 2.14 4.04 0.56 2.85 0.53 1.43 0.21 1.33 0.21 - 

P783C 4 30.8 41.4 4.82 15 1.98 1.21 1.46 0.2 0.97 0.19 0.54 0.08 0.64 0.11 - 

Table A.1 REE distribution patterns (ppm) from four weathered profiles. Data representing the Attapu IAD is taken from Sanematsu et al. (2009). Data used for the Longnan 
County IAD is from Bao & Zhao (2008). Data representing the Phuket IAD was taken from Sanematsu et al. (2013). NH4(SO4)2 leach pit 3 transect data determined at Brighton 
University represented the REE distribution in the Madagascar IAD. 
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Appendix B 
 

Analytical Data 
 
B.1 CEC Test Dataset 

 
Reagent Repeat Tests Na Mg Al Si K Ca Sc Mn Ni Cu Zn Y La 

  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

barium chloride 
1 0.47 0.21 2.28 1.00E-03 7.98E-02 3.17E-01 3.09E-05 2.84E-03 1.42E-05 1.24E-01 7.05E-01 1.29E-03 5.49E-03 

2 0.52 0.21 2.28 1.00E-03 8.13E-02 3.22E-01 3.09E-05 7.52E-05 1.37E-05 1.15E-01 7.22E-01 1.33E-03 5.46E-03 

ammonium chloride 
1 0.05 0.15 3.09 5.55E-02 5.52E-02 8.81E-02 2.22E-05 3.73E-03 2.21E-04 5.02E-04 5.98E-04 5.30E-04 3.98E-03 

2 0.05 0.15 3.09 5.45E-02 5.50E-02 9.08E-02 2.22E-05 3.99E-03 2.20E-04 5.21E-04 6.10E-04 5.43E-04 4.09E-03 

ammonium acetate 
1 0.09 0.16 0.03 1.32E-01 4.42E-02 2.55E-01 2.22E-05 2.24E-03 2.64E-04 6.34E-04 5.37E-04 2.50E-04 2.51E-03 

2 0.08 0.14 0.03 1.27E-01 4.09E-02 2.50E-01 2.22E-05 1.57E-03 2.59E-04 6.03E-04 5.39E-04 2.41E-04 2.81E-03 

 
Continued… 
 

Reagent Repeat Tests Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu 

  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

barium chloride 
1 3.11E-02 5.65E-04 3.29E-03 1.15E-02 2.81E-02 5.05E-05 1.56E-05 7.75E-05 9.22E-06 2.49E-05 5.92E-06 5.78E-06 6.06E-06 

2 3.21E-02 5.60E-04 3.34E-03 1.14E-02 2.84E-02 5.10E-05 1.52E-05 7.74E-05 9.00E-06 2.44E-05 5.80E-06 6.00E-06 6.20E-06 

ammonium chloride 
1 4.04E-02 7.08E-04 2.20E-03 2.85E-04 3.74E-05 1.74E-03 2.89E-05 9.66E-05 1.49E-05 4.05E-05 5.92E-06 2.58E-05 5.72E-06 

2 4.01E-02 7.31E-04 2.27E-03 2.88E-04 3.91E-05 1.75E-03 2.90E-05 9.85E-05 1.50E-05 4.22E-05 5.92E-06 2.81E-05 5.72E-06 

ammonium acetate 
1 2.30E-02 3.95E-04 1.73E-03 1.53E-04 2.30E-05 1.15E-03 1.52E-05 4.44E-05 6.05E-06 1.72E-05 5.92E-06 7.17E-06 5.72E-06 

2 2.48E-02 4.21E-04 1.83E-03 1.59E-04 2.34E-05 1.13E-03 1.59E-05 4.31E-05 6.03E-06 1.75E-05 5.92E-06 6.70E-06 5.72E-06 

Table B.1 Element concentrations used to calculate the CEC of the Madagascar IAD. 
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B.2 Batch Reaction Dataset 

  
SLR Na Mg Al Si Ca Ba K Cu Zn Mn 

 
[g/mL] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

Batch 1 

0.11 0.51 0.19 2.43 <0.04 0.26 851.98 0.01 0.11 0.66 0.00 

0.18 0.42 0.24 3.62 <0.04 0.27 3291.41 0.00 0.11 0.63 0.00 

0.25 0.37 0.25 3.61 <0.04 0.22 652.46 0.00 0.11 0.63 0.00 

0.33 0.60 0.40 4.86 <0.04 0.69 667.75 0.02 0.11 0.66 0.01 

0.43 0.41 0.38 6.41 <0.04 0.26 562.16 0.01 0.11 0.61 0.01 

0.54 0.47 0.53 8.97 <0.04 0.29 540.32 0.02 0.10 0.54 0.01 

0.67 0.51 0.65 11.08 <0.04 0.31 509.00 0.02 0.09 0.54 0.01 

0.82 0.50 0.72 12.27 <0.04 0.31 427.45 0.02 0.09 0.51 0.02 

1.00 0.57 0.86 14.68 <0.04 0.30 476.96 0.09 0.09 0.50 0.02 

Batch 2 

0.11 0.38 0.21 2.94 <0.04 0.23 635.71 0.01 0.12 0.69 0.00 

0.18 0.40 0.24 3.58 <0.04 0.26 4995.38 0.01 0.11 0.65 0.00 

0.25 0.40 0.31 4.97 <0.04 0.26 3488.02 0.01 0.11 0.63 0.01 

0.33 0.44 0.39 6.45 <0.04 0.30 1390.84 0.01 0.11 0.61 0.01 

0.43 0.58 0.49 8.08 <0.04 0.29 2592.35 0.02 0.10 0.59 0.01 

0.54 0.71 0.54 8.93 <0.04 0.33 496.62 0.02 0.09 0.53 0.01 

0.67 0.70 0.60 9.93 <0.04 0.39 509.73 0.02 0.09 0.51 0.01 

0.82 0.59 0.75 12.79 <0.04 0.32 2046.21 0.02 0.09 0.54 0.01 

1.00 0.66 0.87 14.53 <0.04 0.36 374.29 0.03 0.09 0.50 0.02 

Batch 3 

0.11 0.63 0.33 2.88 <0.04 0.77 701.25 0.02 0.12 0.70 0.00 

0.18 0.66 0.38 3.97 <0.04 0.78 630.61 0.02 0.12 0.71 0.00 

0.25 0.67 0.43 4.71 <0.04 0.77 615.32 0.03 0.12 0.69 0.01 

0.33 0.98 0.56 6.97 <0.04 0.91 2359.33 0.03 0.12 0.68 0.01 

0.43 0.84 0.61 8.26 <0.04 0.83 571.63 0.03 0.12 0.66 0.01 

0.54 0.81 0.67 9.12 <0.04 0.79 461.67 0.03 0.11 0.65 0.01 

0.67 0.81 0.79 11.56 <0.04 0.81 382.30 0.03 0.11 0.63 0.01 

0.82 0.78 0.85 13.16 <0.04 0.73 511.19 0.03 0.10 0.59 0.01 

1.00 0.77 0.91 13.79 <0.04 0.72 391.04 0.08 0.09 0.53 0.02 
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Continued…  
SLR Sc Ti Fe Co Ni Y La Ce Pr Nd 

 
[g/mL] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

Batch 1 

0.11 2.25E-05 2.38E-05 1.79E-03 1.70E-05 1.70E-05 1.29E-03 6.22E-03 3.68E-02 6.65E-04 3.81E-03 

0.18 1.57E-05 2.30E-05 1.79E-03 1.70E-05 1.70E-05 1.51E-03 7.85E-03 5.29E-02 9.37E-04 5.59E-03 

0.25 1.59E-05 2.61E-05 1.79E-03 1.70E-05 1.70E-05 1.54E-03 7.78E-03 5.40E-02 9.94E-04 5.56E-03 

0.33 1.73E-05 2.86E-05 1.79E-03 1.99E-05 1.70E-05 1.97E-03 1.00E-02 7.28E-02 1.31E-03 7.28E-03 

0.43 1.61E-05 3.66E-05 1.79E-03 2.49E-05 1.70E-05 2.23E-03 1.20E-02 9.35E-02 1.71E-03 1.01E-02 

0.54 2.67E-05 4.35E-05 1.79E-03 6.74E-05 1.70E-05 2.72E-03 1.53E-02 1.29E-01 2.38E-03 1.38E-02 

0.67 2.29E-05 1.90E-04 1.79E-03 6.65E-05 1.70E-05 3.27E-03 1.82E-02 1.57E-01 2.83E-03 1.68E-02 

0.82 3.63E-05 4.53E-05 1.79E-03 5.67E-05 1.70E-05 3.39E-03 2.00E-02 1.74E-01 3.19E-03 1.89E-02 

1.00 4.27E-05 6.89E-05 1.79E-03 9.25E-05 1.70E-05 3.94E-03 2.35E-02 2.07E-01 3.79E-03 2.23E-02 

Batch 2 

0.11 1.18E-05 3.05E-05 1.79E-03 1.70E-05 1.70E-05 1.45E-03 6.53E-03 4.05E-02 7.52E-04 3.97E-03 

0.18 1.45E-05 4.58E-05 1.79E-03 1.70E-05 1.70E-05 1.52E-03 7.34E-03 4.93E-02 9.08E-04 5.03E-03 

0.25 1.92E-05 7.06E-05 1.79E-03 2.36E-05 1.70E-05 1.86E-03 9.43E-03 7.02E-02 1.25E-03 7.14E-03 

0.33 2.22E-05 4.80E-05 1.79E-03 2.41E-05 1.70E-05 2.25E-03 1.14E-02 8.99E-02 1.63E-03 9.36E-03 

0.43 3.07E-05 5.49E-05 1.79E-03 4.75E-05 1.70E-05 2.42E-03 1.36E-02 1.12E-01 2.06E-03 1.13E-02 

0.54 3.67E-05 6.06E-05 1.79E-03 3.85E-05 1.70E-05 2.67E-03 1.47E-02 1.23E-01 2.29E-03 1.40E-02 

0.67 4.23E-05 5.52E-05 1.79E-03 6.53E-05 1.70E-05 2.83E-03 1.63E-02 1.41E-01 2.57E-03 1.48E-02 

0.82 4.54E-05 5.87E-05 1.79E-03 7.94E-05 1.70E-05 3.58E-03 2.04E-02 1.78E-01 3.24E-03 1.91E-02 

1.00 5.36E-05 7.23E-05 1.79E-03 8.37E-05 1.70E-05 3.78E-03 2.25E-02 2.00E-01 3.63E-03 2.08E-02 

Batch 3 

0.11 2.38E-05 6.33E-05 1.79E-03 1.70E-05 1.70E-05 1.41E-03 6.65E-03 4.16E-02 7.59E-04 3.94E-03 

0.18 2.06E-05 5.62E-05 1.79E-03 1.70E-05 1.70E-05 1.65E-03 8.21E-03 5.50E-02 1.01E-03 5.66E-03 

0.25 2.22E-05 5.77E-05 1.79E-03 2.36E-05 1.99E-05 1.86E-03 9.29E-03 6.73E-02 1.23E-03 7.35E-03 

0.33 3.18E-05 6.79E-05 1.79E-03 3.22E-05 1.70E-05 2.41E-03 1.23E-02 9.71E-02 1.78E-03 1.04E-02 

0.43 3.40E-05 5.10E-05 1.79E-03 1.16E-04 1.70E-05 2.68E-03 1.39E-02 1.14E-01 2.06E-03 1.19E-02 

0.54 4.76E-05 6.91E-05 1.79E-03 4.19E-05 1.70E-05 2.91E-03 1.53E-02 1.31E-01 2.35E-03 1.40E-02 

0.67 4.05E-05 7.60E-05 1.79E-03 4.02E-05 1.70E-05 3.34E-03 1.87E-02 1.61E-01 2.95E-03 1.76E-02 

0.82 5.23E-05 8.11E-05 1.79E-03 5.06E-05 1.70E-05 3.48E-03 2.06E-02 1.78E-01 3.25E-03 1.84E-02 

1.00 5.78E-05 7.12E-05 1.79E-03 1.16E-04 1.70E-05 3.70E-03 2.16E-02 1.91E-01 3.52E-03 2.16E-02 
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Continued… 

 SLR Eu Sm Gd Tb Dy Ho Er Tm Yb Lu 

 [g/mL] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

Batch 1 

0.11 1.19E-02 2.93E-02 1.12E-04 1.59E-05 9.05E-05 9.82E-06 2.64E-05 1.18E-06 1.48E-05 7.20E-06 

0.18 1.14E-02 2.78E-02 1.71E-04 2.24E-05 1.35E-04 1.51E-05 4.07E-05 2.96E-06 1.73E-05 8.46E-06 

0.25 1.12E-02 2.74E-02 1.63E-04 2.40E-05 1.26E-04 1.59E-05 4.20E-05 4.74E-06 1.55E-05 8.57E-06 

0.33 1.16E-02 2.87E-02 2.54E-04 3.39E-05 1.80E-04 2.12E-05 5.98E-05 6.57E-06 3.29E-05 9.89E-06 

0.43 1.07E-02 2.69E-02 3.26E-04 4.10E-05 2.25E-04 2.74E-05 6.58E-05 6.69E-06 4.17E-05 1.17E-05 

0.54 9.08E-03 2.33E-02 5.01E-04 5.87E-05 3.00E-04 3.64E-05 8.91E-05 1.04E-05 1.07E-05 1.26E-05 

0.67 9.08E-03 2.29E-02 6.21E-04 6.92E-05 4.10E-04 4.48E-05 1.12E-04 1.32E-05 9.53E-05 1.42E-05 

0.82 8.69E-03 2.17E-02 6.87E-04 7.55E-05 4.28E-04 5.03E-05 1.21E-04 1.43E-05 1.02E-04 1.54E-05 

1.00 8.42E-03 2.17E-02 8.33E-04 9.12E-05 5.05E-04 5.83E-05 1.43E-04 1.67E-05 1.28E-04 1.78E-05 

Batch 2 

0.11 1.14E-02 2.85E-02 1.14E-04 1.86E-05 9.85E-05 1.25E-05 3.32E-05 1.18E-06 8.67E-06 7.54E-06 

0.18 1.07E-02 2.61E-02 1.44E-04 2.37E-05 1.18E-04 1.46E-05 3.72E-05 2.96E-06 1.50E-05 8.63E-06 

0.25 1.04E-02 2.57E-02 2.33E-04 3.09E-05 1.74E-04 2.03E-05 5.52E-05 4.74E-06 2.25E-05 9.43E-06 

0.33 1.00E-02 2.50E-02 3.21E-04 4.34E-05 2.18E-04 2.62E-05 6.52E-05 7.04E-06 3.25E-05 1.06E-05 

0.43 9.67E-03 2.36E-02 4.41E-04 5.06E-05 2.81E-04 3.32E-05 8.19E-05 8.64E-06 5.75E-05 1.23E-05 

0.54 8.88E-03 2.23E-02 4.93E-04 5.88E-05 3.19E-04 3.46E-05 8.97E-05 1.03E-05 6.36E-05 1.17E-05 

0.67 8.16E-03 2.02E-02 5.71E-04 6.42E-05 3.39E-04 4.10E-05 1.03E-04 1.08E-05 7.45E-05 1.21E-05 

0.82 8.82E-03 2.23E-02 7.63E-04 8.31E-05 4.22E-04 5.15E-05 1.28E-04 1.41E-05 1.06E-04 1.71E-05 

1.00 8.23E-03 2.11E-02 8.71E-04 9.12E-05 4.83E-04 5.98E-05 1.46E-04 1.81E-05 1.29E-04 1.83E-05 

Batch 3 

0.11 1.18E-02 2.93E-02 1.11E-04 1.91E-05 1.02E-04 1.24E-05 3.46E-05 1.18E-06 8.67E-06 7.72E-06 

0.18 1.18E-02 2.93E-02 1.63E-04 2.58E-05 1.36E-04 1.53E-05 4.35E-05 2.96E-06 1.50E-05 7.77E-06 

0.25 1.13E-02 2.83E-02 2.28E-04 3.15E-05 1.56E-04 1.93E-05 5.40E-05 4.74E-06 2.43E-05 1.00E-05 

0.33 1.11E-02 2.75E-02 3.61E-04 4.47E-05 2.42E-04 2.80E-05 7.23E-05 8.17E-06 4.11E-05 1.11E-05 

0.43 1.07E-02 2.66E-02 4.45E-04 5.50E-05 2.66E-04 3.50E-05 8.07E-05 8.46E-06 5.75E-05 1.24E-05 

0.54 1.05E-02 2.60E-02 5.20E-04 5.88E-05 3.07E-04 3.68E-05 8.97E-05 1.15E-05 6.47E-05 1.28E-05 

0.67 1.03E-02 2.60E-02 6.74E-04 7.36E-05 4.10E-04 4.65E-05 1.15E-04 1.28E-05 9.07E-05 1.57E-05 

0.82 9.74E-03 2.49E-02 7.50E-04 8.31E-05 4.28E-04 5.40E-05 1.27E-04 1.40E-05 1.06E-04 1.69E-05 

1.00 8.49E-03 2.19E-02 8.46E-04 9.12E-05 4.52E-04 5.81E-05 1.33E-04 1.63E-05 1.18E-04 1.75E-05 
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Continued… 

 SLR Chloride Nitrate Phosphate Sulphate Carbonate 

 [g/mL] [mM] [mM] [mM] [mM] [mM] 

Batch 1 

0.11 1.08 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.18 1.05 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.25 1.05 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.33 1.09 1.39E-04 <1.05E-04 <1.04E-04 <1.67E-05 

0.43 0.97 <8.06E-05 <1.05E-04 <1.04E-04 - 

0.54 0.96 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.67 0.89 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.82 0.86 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

1.00 0.86 <8.06E-05 <1.05E-04 <1.04E-04 - 

Batch 2 

0.11 1.03 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.18 1.03 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.25 0.99 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.33 0.96 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.43 0.89 <8.06E-05 <1.05E-04 <1.04E-04 <1.67E-05 

0.54 0.88 <8.06E-05 <1.05E-04 <1.04E-04 - 

0.67 0.76 <8.06E-05 <1.05E-04 <1.04E-04 - 

0.82 0.85 <8.06E-05 <1.05E-04 <1.04E-04 - 

1.00 0.82 <8.06E-05 <1.05E-04 <1.04E-04 - 

Batch 3 

0.11 1.08 1.60E-04 <1.05E-04 <1.04E-04 <1.67E-05 

0.18 1.08 1.53E-04 <1.05E-04 <1.04E-04 <1.67E-05 

0.25 1.07 1.48E-04 <1.05E-04 <1.04E-04 <1.67E-05 

0.33 0.98 1.61E-04 <1.05E-04 <1.04E-04 <1.67E-05 

0.43 1.02 1.37E-04 <1.05E-04 <1.04E-04 <1.67E-05 

0.54 0.97 1.26E-04 <1.05E-04 <1.04E-04 <1.67E-05 

0.67 0.95 1.21E-04 <1.05E-04 <1.04E-04 <1.67E-05 

0.82 0.87 1.10E-04 <1.05E-04 <1.04E-04 - 

1.00 0.83 1.11E-04 <1.05E-04 <1.04E-04 - 

Table B.2 All element concentrations mobilised into solution during the batch tests at 9 SLR conditions (in triplicate). 
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B.3 Soil Column Dataset 

 
 No. 

Start of 
Collection 

End of 
Collection 

Solution Na Mg Al Si K Ca Mn Fe Co Ni Cu Zn Ba Y 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

Column 
1 

1 
12.07.17 / 

10:00 
13.07.17 / 

07:00 
DI water 0.04 0.01 0.00 0.04 0.24 0.05 

1.82E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

3.50E-
03 

0.04 
1.12E-

05 

2 
13.07.17 / 

07:00 
13.07.17 / 

16:00 
DI water 0.04 0.01 0.00 0.04 0.14 0.03 

1.82E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

3.24E-
03 

0.02 
1.12E-

05 

3 
13.07.17 / 

16:00 
14.07.17 / 

07:00 
DI water 0.15 0.02 0.02 0.04 0.06 0.05 

2.84E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

7.81E-
03 

0.02 
1.12E-

05 

4 
14.07.17 / 

07:00 
17.07.17 / 

07:00 
DI water 0.04 0.01 0.01 0.04 0.04 0.02 

2.08E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

8.85E-
04 

0.01 
1.12E-

05 

5 
17.07.17 / 

07:00 
18.07.17 / 

07:00 
DI water 0.04 0.01 0.01 0.04 0.04 0.02 

2.37E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

8.82E-
04 

0.02 
1.12E-

05 

6 
18.07.17 / 

07:00 
19.07.17 / 

07:30 
DI water 0.04 0.01 0.01 0.04 0.04 0.02 

2.04E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

9.63E-
04 

0.03 
1.12E-

05 

7 
19.07.17 / 

07:30 
19.07.17 / 

15:00 
DI water 0.04 0.01 0.01 0.04 0.04 0.03 

2.20E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

9.39E-
04 

0.06 
1.12E-

05 

8 
19.07.17 / 

15:00 
20.07.17 / 

07:00 
DI water 0.04 0.01 0.02 0.04 0.04 0.02 

2.00E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

8.66E-
04 

0.03 
1.12E-

05 

9 
20.07.17 / 

07:00 
21.07.17 / 

07:00 
DI water 0.13 0.01 0.39 0.04 0.04 0.02 

2.60E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

1.56E-
03 

0.11 
1.12E-

05 

10 
21.07.17 / 

07:00 
21.07.17 / 

17:00 
DI water 0.04 0.01 0.01 0.04 0.04 0.02 

1.82E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

8.93E-
04 

0.03 
1.12E-

05 

11 
21.07.17 / 

17:00 
24.07.17 / 

07:00 
0.05 M 
BaCl2 

0.05 0.07 0.02 0.04 0.05 0.02 
1.71E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
1.37E-

03 
0.07 

5.20E-
05 

12 
24.07.17 / 

07:00 
25.07.17 / 

07:00 
0.05 M 
BaCl2 

0.15 0.01 0.03 0.04 0.05 0.03 
2.40E-

04 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
5.20E-

03 
0.03 

1.12E-
05 

13 
25.07.17 / 

07:00 
26.07.17 / 

07:00 
0.05 M 
BaCl2 

0.37 0.16 0.74 0.05 0.04 0.06 
5.15E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
6.09E-

03 
0.16 

1.28E-
04 

14 
26.07.17 / 

07:00 
26.07.17 / 

16:00 
0.05 M 
BaCl2 

1.35 2.91 5.15 0.09 0.05 0.28 
7.21E-

02 
1.79E-

04 
1.70E-

04 
2.54E-

04 
1.57E-

04 
2.49E-

02 
0.04 

6.40E-
04 

15 
26.07.17 / 

16:00 
27.07.17 / 

07:00 
0.05 M 
BaCl2 

0.78 5.31 10.90 0.15 0.05 0.47 
1.37E-

01 
1.79E-

04 
1.70E-

04 
4.86E-

04 
1.57E-

04 
1.62E-

02 
0.40 

1.74E-
03 

16 
27.07.17 / 

07:00 
27.07.17 / 

16:00 
0.05 M 
BaCl2 

0.30 3.82 13.56 0.13 0.05 0.43 
1.00E-

01 
1.79E-

04 
1.70E-

04 
4.69E-

04 
1.57E-

04 
1.10E-

02 
1.17 

2.13E-
03 

17 
27.07.17 / 

16:00 
28.07.17 / 

07:00 
0.05 M 
BaCl2 

0.06 2.49 18.20 0.12 0.05 0.39 
7.17E-

02 
1.79E-

04 
1.70E-

04 
4.50E-

04 
1.57E-

04 
1.20E-

02 
4.22 

2.88E-
03 

18 
27.07.17 / 

07:00 
28.07.17 / 

15:00 
0.05 M 
BaCl2 

0.12 1.14 13.97 0.11 0.05 0.24 
4.39E-

02 
1.79E-

04 
1.70E-

04 
3.07E-

04 
1.57E-

04 
1.46E-

02 
5.60 

2.35E-
03 

19 
27.07.17 / 

15:00 
31.07.17 / 

07:00 
0.05 M 
BaCl2 

0.04 0.51 15.12 0.10 0.07 0.16 
2.62E-

02 
1.79E-

04 
1.70E-

04 
2.18E-

04 
1.57E-

04 
2.19E-

02 
14.20 

2.94E-
03 

20 
31.07.17 / 

07:00 
31.07.17 / 

17:00 
0.05 M 
BaCl2 

0.04 0.13 12.16 0.08 0.07 0.09 
8.25E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
2.58E-

02 
18.64 

2.35E-
03 

21 
31.07.17 / 

17:00 
01.08.17 / 

07:00 
0.05 M 
BaCl2 

0.04 0.08 11.82 0.08 0.07 0.10 
6.41E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
3.40E-

02 
21.92 

2.38E-
03 
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 No. 
Start of 

Collection 
End of 

Collection 
Solution Na Mg Al Si K Ca Mn Fe Co Ni Cu Zn Ba Y 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

22 
01.08.17 / 

07:00 
02.08.17 / 

07:00 
0.05 M 
BaCl2 

0.04 0.09 10.79 0.08 0.07 0.07 
6.57E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
3.23E-

02 
24.90 

2.29E-
03 

23 
02.08.17 / 

16:30 
02.08.17 / 

16:30 
0.05 M 
BaCl2 

0.04 0.03 8.93 0.08 0.07 0.04 
4.02E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
3.24E-

02 
25.41 

1.99E-
03 

24 
02.08.17 / 

07:00 
03.08.17 / 

07:00 
0.05 M 
BaCl2 

0.04 0.02 8.89 0.08 0.07 0.04 
3.66E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
3.35E-

02 
27.67 

2.00E-
03 

25 
03.08.17 / 

07:00 
04.08.17 / 

07:00 
0.05 M 
BaCl2 

0.04 0.16 5.00 0.09 0.08 0.09 
7.44E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
4.07E-

02 
29.78 

2.06E-
03 

Column 
2 

1 
12.07.17 / 

10:00 
13.07.17 / 

07:00 
DI water 0.04 0.00 0.00 0.04 0.28 0.02 

1.98E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

1.85E-
03 

0.01 
1.12E-

05 

2 
13.07.17 / 

07:00 
13.07.17 / 

16:00 
DI water 0.06 0.02 0.00 0.04 0.16 0.04 

5.02E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

2.60E-
03 

0.01 
1.12E-

05 

3 
13.07.17 / 

16:00 
14.07.17 / 

07:00 
DI water 0.23 0.02 0.02 0.05 0.13 0.05 

4.40E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

8.37E-
03 

0.04 
1.12E-

05 

4 
14.07.17 / 

07:00 
17.07.17 / 

07:00 
DI water 0.06 0.01 0.01 0.04 0.12 0.02 

2.99E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

1.93E-
03 

0.01 
1.12E-

05 

5 
17.07.17 / 

07:00 
18.07.17 / 

07:00 
DI water 0.06 0.01 0.01 0.04 0.17 0.04 

3.29E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

1.97E-
03 

0.19 
1.37E-

05 

6 
18.07.17 / 

07:00 
19.07.17 / 

07:30 
DI water 0.07 0.01 0.01 0.04 0.19 0.03 

3.97E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

2.05E-
03 

0.01 
1.93E-

05 

7 
19.07.17 / 

07:30 
19.07.17 / 

15:00 
DI water 0.07 0.02 0.01 0.04 0.16 0.04 

3.77E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

2.03E-
03 

0.03 
1.12E-

05 

8 
19.07.17 / 

15:00 
20.07.17 / 

07:00 
DI water 0.06 0.01 0.02 0.04 0.17 0.02 

4.06E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

1.77E-
03 

0.04 
1.12E-

05 

9 
20.07.17 / 

07:00 
21.07.17 / 

07:00 
DI water 0.18 0.01 0.39 0.05 0.16 0.02 

5.13E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

2.86E-
03 

0.40 
5.46E-

05 

10 
21.07.17 / 

07:00 
21.07.17 / 

17:00 
DI water 0.06 0.01 0.01 0.04 0.17 0.02 

3.29E-
04 

1.79E-
04 

1.70E-
04 

1.70E-
04 

1.57E-
04 

1.64E-
03 

0.03 
1.12E-

05 

11 
21.07.17 / 

17:00 
24.07.17 / 

07:00 
0.05 M 
BaCl2 

0.06 0.01 0.02 0.04 0.18 0.02 
3.29E-

04 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
2.49E-

03 
0.02 

1.12E-
05 

12 
24.07.17 / 

07:00 
25.07.17 / 

07:00 
0.05 M 
BaCl2 

0.22 0.01 0.03 0.06 0.31 0.02 
5.48E-

04 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
4.14E-

03 
0.03 

1.12E-
05 

13 
25.07.17 / 

07:00 
26.07.17 / 

07:00 
0.05 M 
BaCl2 

0.55 0.46 0.74 0.06 0.20 0.06 
8.85E-

03 
1.79E-

04 
4.73E-

05 
1.70E-

04 
1.57E-

04 
5.77E-

03 
0.06 

9.21E-
05 

14 
26.07.17 / 

07:00 
26.07.17 / 

16:00 
0.05 M 
BaCl2 

1.78 2.78 5.15 0.14 0.18 0.28 
5.61E-

02 
1.79E-

04 
2.32E-

04 
1.70E-

04 
1.57E-

04 
6.67E-

03 
0.32 

7.90E-
04 

15 
26.07.17 / 

16:00 
27.07.17 / 

07:00 
0.05 M 
BaCl2 

1.30 4.61 10.90 0.18 0.18 0.41 
9.63E-

02 
1.79E-

04 
3.89E-

04 
1.70E-

04 
1.57E-

04 
1.13E-

02 
0.98 

1.74E-
03 

16 
27.07.17 / 

07:00 
27.07.17 / 

16:00 
0.05 M 
BaCl2 

0.48 3.64 13.56 0.18 0.16 0.31 
7.75E-

02 
1.79E-

04 
3.89E-

04 
1.70E-

04 
1.57E-

04 
1.09E-

02 
1.20 

2.31E-
03 

17 
27.07.17 / 

16:00 
28.07.17 / 

07:00 
0.05 M 
BaCl2 

0.25 2.63 18.20 0.15 0.16 0.30 
5.46E-

02 
1.79E-

04 
3.27E-

04 
1.70E-

04 
1.57E-

04 
1.02E-

02 
4.75 

2.63E-
03 

18 
27.07.17 / 

07:00 
28.07.17 / 

15:00 
0.05 M 
BaCl2 

0.32 1.42 13.97 0.15 0.17 0.29 
3.00E-

02 
1.79E-

04 
2.43E-

04 
1.70E-

04 
1.57E-

04 
1.65E-

02 
6.99 

2.55E-
03 

19 
27.07.17 / 

15:00 
31.07.17 / 

07:00 
0.05 M 
BaCl2 

0.04 0.85 15.12 0.11 0.16 0.11 
1.59E-

02 
1.79E-

04 
1.95E-

04 
1.70E-

04 
1.57E-

04 
1.96E-

02 
14.33 

2.67E-
03 
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 No. 
Start of 

Collection 
End of 

Collection 
Solution Na Mg Al Si K Ca Mn Fe Co Ni Cu Zn Ba Y 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

20 
31.07.17 / 

07:00 
31.07.17 / 

17:00 
0.05 M 
BaCl2 

0.04 0.22 12.16 0.10 0.17 0.07 
7.44E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
2.39E-

02 
14.68 

2.33E-
03 

21 
31.07.17 / 

17:00 
01.08.17 / 

07:00 
0.05 M 
BaCl2 

0.24 0.25 11.82 0.12 0.16 0.18 
7.21E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
2.78E-

02 
15.84 

2.25E-
03 

22 
01.08.17 / 

07:00 
02.08.17 / 

07:00 
0.05 M 
BaCl2 

0.04 0.07 10.79 0.10 0.12 0.05 
3.73E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
2.89E-

02 
19.68 

2.25E-
03 

23 
02.08.17 / 

16:30 
02.08.17 / 

16:30 
0.05 M 
BaCl2 

0.04 0.03 8.93 0.08 0.11 0.03 
2.71E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
2.77E-

02 
18.13 

1.84E-
03 

24 
02.08.17 / 

07:00 
03.08.17 / 

07:00 
0.05 M 
BaCl2 

0.04 0.05 8.89 0.10 0.12 0.03 
3.22E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
2.98E-

02 
19.06 

1.97E-
03 

25 
03.08.17 / 

07:00 
04.08.17 / 

07:00 
0.05 M 
BaCl2 

0.10 0.02 5.00 0.11 0.10 0.03 
1.68E-

03 
1.79E-

04 
1.70E-

04 
1.70E-

04 
1.57E-

04 
2.28E-

02 
28.01 

1.14E-
03 
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Continued….. 

 No. 
Start 

Collection 
End  

Collection 
Solution La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

Column 
1 

1 
12.07.17 / 

10:00 
13.07.17 / 

07:00 
DI water 

7.20E
-06 

7.14E
-06 

7.10E
-06 

6.93E
-06 

6.58E
-06 

6.65E
-06 

2.13E
-05 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

2 
13.07.17 / 

07:00 
13.07.17 / 

16:00 
DI water 

1.56E
-05 

2.15E
-05 

7.10E
-06 

6.93E
-06 

6.58E
-06 

6.65E
-06 

1.61E
-05 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

3 
13.07.17 / 

16:00 
14.07.17 / 

07:00 
DI water 

1.06E
-05 

7.49E
-05 

7.10E
-06 

6.93E
-06 

1.05E
-05 

6.65E
-06 

1.21E
-05 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

4 
14.07.17 / 

07:00 
17.07.17 / 

07:00 
DI water 

8.85E
-06 

1.05E
-05 

7.10E
-06 

6.93E
-06 

6.58E
-06 

6.65E
-06 

9.60E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

5 
17.07.17 / 

07:00 
18.07.17 / 

07:00 
DI water 

7.20E
-06 

1.59E
-05 

7.10E
-06 

6.93E
-06 

5.31E
-05 

2.87E
-05 

7.82E
-05 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

6 
18.07.17 / 

07:00 
19.07.17 / 

07:30 
DI water 

9.50E
-06 

1.71E
-05 

7.10E
-06 

6.93E
-06 

6.58E
-06 

6.65E
-06 

7.57E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

7 
19.07.17 / 

07:30 
19.07.17 / 

15:00 
DI water 

1.23E
-05 

3.13E
-05 

7.10E
-06 

6.93E
-06 

1.01E
-05 

6.65E
-06 

1.07E
-05 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

8 
19.07.17 / 

15:00 
20.07.17 / 

07:00 
DI water 

8.49E
-06 

1.49E
-05 

7.10E
-06 

6.93E
-06 

1.27E
-05 

6.65E
-06 

9.03E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

9 
20.07.17 / 

07:00 
21.07.17 / 

07:00 
DI water 

1.26E
-05 

1.36E
-04 

7.10E
-06 

6.93E
-06 

1.18E
-04 

5.81E
-05 

8.20E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

10 
21.07.17 / 

07:00 
21.07.17 / 

17:00 
DI water 

1.14E
-05 

3.15E
-05 

7.10E
-06 

6.93E
-06 

9.08E
-06 

6.65E
-06 

8.39E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

11 
21.07.17 / 

17:00 
24.07.17 / 

07:00 
0.05 M 
BaCl2 

2.51E
-04 

2.08E
-03 

3.92E
-05 

1.30E
-04 

6.58E
-06 

6.65E
-06 

3.68E
-05 

6.29E
-06 

6.71E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

12 
24.07.17 / 

07:00 
25.07.17 / 

07:00 
0.05 M 
BaCl2 

1.81E
-05 

8.35E
-05 

7.10E
-06 

6.93E
-06 

9.02E
-06 

6.65E
-06 

5.99E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

13 
25.07.17 / 

07:00 
26.07.17 / 

07:00 
0.05 M 
BaCl2 

6.12E
-04 

3.20E
-03 

7.88E
-05 

2.66E
-04 

4.90E
-05 

1.28E
-05 

5.77E
-05 

6.29E
-06 

1.32E
-05 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

14 
26.07.17 / 

07:00 
26.07.17 / 

16:00 
0.05 M 
BaCl2 

3.07E
-03 

2.85E
-02 

4.93E
-04 

1.34E
-03 

5.02E
-04 

1.45E
-04 

4.21E
-04 

2.07E
-05 

8.74E
-05 

1.40E
-05 

3.47E
-05 

5.92E
-06 

2.63E
-05 

5.72E
-06 

15 
26.07.17 / 

16:00 
27.07.17 / 

07:00 
0.05 M 
BaCl2 

1.35E
-02 

8.92E
-02 

1.44E
-03 

6.44E
-03 

1.04E
-03 

2.77E
-04 

1.31E
-03 

6.36E
-05 

2.60E
-04 

4.03E
-05 

1.02E
-04 

1.24E
-05 

7.11E
-05 

9.89E
-06 

16 
27.07.17 / 

07:00 
27.07.17 / 

16:00 
0.05 M 
BaCl2 

1.17E
-02 

1.11E
-01 

1.80E
-03 

6.11E
-03 

1.80E
-03 

5.75E
-04 

1.64E
-03 

7.87E
-05 

2.55E
-04 

5.00E
-05 

1.25E
-04 

1.52E
-05 

8.55E
-05 

1.24E
-05 

17 
27.07.17 / 

16:00 
28.07.17 / 

07:00 
0.05 M 
BaCl2 

1.47E
-02 

1.42E
-01 

2.51E
-03 

7.42E
-03 

2.51E
-03 

9.31E
-04 

2.30E
-03 

1.08E
-04 

4.14E
-04 

6.49E
-05 

1.58E
-04 

1.89E
-05 

1.05E
-04 

1.54E
-05 

18 
27.07.17 / 

07:00 
28.07.17 / 

15:00 
0.05 M 
BaCl2 

1.28E
-02 

1.22E
-01 

2.07E
-03 

5.75E
-03 

3.21E
-03 

1.34E
-03 

1.88E
-03 

8.75E
-05 

3.29E
-04 

5.24E
-05 

1.28E
-04 

1.53E
-05 

8.44E
-05 

1.24E
-05 

19 
27.07.17 / 

15:00 
31.07.17 / 

07:00 
0.05 M 
BaCl2 

1.52E
-02 

1.47E
-01 

2.65E
-03 

7.28E
-03 

4.34E
-03 

1.96E
-03 

2.17E
-03 

9.82E
-05 

3.47E
-04 

5.38E
-05 

1.32E
-04 

1.53E
-05 

8.03E
-05 

1.20E
-05 

20 
31.07.17 / 

07:00 
31.07.17 / 

17:00 
0.05 M 
BaCl2 

1.24E
-02 

1.17E
-01 

2.09E
-03 

6.63E
-03 

4.87E
-03 

2.31E
-03 

1.62E
-03 

7.11E
-05 

2.52E
-04 

3.92E
-05 

9.69E
-05 

1.14E
-05 

5.67E
-05 

8.69E
-06 

21 
31.07.17 / 

17:00 
01.08.17 / 

07:00 
0.05 M 
BaCl2 

1.15E
-02 

1.10E
-01 

2.04E
-03 

5.37E
-03 

5.30E
-03 

2.55E
-03 

1.51E
-03 

6.86E
-05 

2.32E
-04 

3.66E
-05 

8.97E
-05 

1.02E
-05 

5.07E
-05 

7.60E
-06 

22 
01.08.17 / 

07:00 
02.08.17 / 

07:00 
0.05 M 
BaCl2 

1.09E
-02 

1.05E
-01 

1.89E
-03 

5.71E
-03 

6.03E
-03 

3.01E
-03 

1.42E
-03 

6.17E
-05 

2.08E
-04 

3.19E
-05 

7.77E
-05 

8.82E
-06 

4.42E
-05 

6.92E
-06 
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 No. 
Start 

Collection 
End  

Collection 
Solution La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

23 
02.08.17 / 

16:30 
02.08.17 / 

16:30 
0.05 M 
BaCl2 

9.21E
-03 

8.85E
-02 

1.67E
-03 

4.97E
-03 

5.65E
-03 

2.85E
-03 

1.23E
-03 

5.35E
-05 

1.76E
-04 

2.67E
-05 

6.70E
-05 

7.64E
-06 

3.88E
-05 

6.12E
-06 

24 
02.08.17 / 

07:00 
03.08.17 / 

07:00 
0.05 M 
BaCl2 

9.07E
-03 

8.64E
-02 

1.63E
-03 

4.43E
-03 

6.37E
-03 

3.21E
-03 

1.16E
-03 

5.00E
-05 

1.66E
-04 

2.49E
-05 

6.16E
-05 

7.04E
-06 

3.49E
-05 

5.83E
-06 

25 
03.08.17 / 

07:00 
04.08.17 / 

07:00 
0.05 M 
BaCl2 

8.78E
-03 

8.28E
-02 

1.60E
-03 

4.35E
-03 

4.63E
-03 

2.39E
-03 

1.14E
-03 

4.96E
-05 

1.64E
-04 

2.45E
-05 

5.95E
-05 

6.81E
-06 

3.59E
-05 

5.72E
-06 

Column 
2 

1 
12.07.17 / 

10:00 
13.07.17 / 

07:00 
DI water 

1.86E
-05 

5.85E
-05 

7.10E
-06 

8.39E
-06 

6.58E
-06 

6.65E
-06 

9.22E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

2 
13.07.17 / 

07:00 
13.07.17 / 

16:00 
DI water 

1.71E
-05 

4.13E
-05 

7.10E
-06 

6.93E
-06 

6.58E
-06 

6.65E
-06 

7.76E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

3 
13.07.17 / 

16:00 
14.07.17 / 

07:00 
DI water 

1.58E
-05 

1.07E
-04 

7.10E
-06 

6.93E
-06 

1.05E
-05 

6.65E
-06 

8.14E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

4 
14.07.17 / 

07:00 
17.07.17 / 

07:00 
DI water 

1.33E
-05 

4.71E
-05 

7.10E
-06 

6.93E
-06 

6.58E
-06 

6.65E
-06 

7.76E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

5 
17.07.17 / 

07:00 
18.07.17 / 

07:00 
DI water 

3.05E
-05 

7.92E
-05 

7.10E
-06 

1.14E
-05 

5.31E
-05 

2.87E
-05 

7.76E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

6 
18.07.17 / 

07:00 
19.07.17 / 

07:30 
DI water 

3.88E
-05 

4.30E
-05 

7.10E
-06 

1.66E
-05 

6.58E
-06 

6.65E
-06 

9.35E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

7 
19.07.17 / 

07:30 
19.07.17 / 

15:00 
DI water 

2.20E
-05 

8.92E
-05 

7.10E
-06 

1.15E
-05 

1.01E
-05 

6.65E
-06 

7.89E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

8 
19.07.17 / 

15:00 
20.07.17 / 

07:00 
DI water 

2.65E
-05 

1.31E
-04 

7.10E
-06 

1.16E
-05 

1.27E
-05 

6.65E
-06 

8.97E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

9 
20.07.17 / 

07:00 
21.07.17 / 

07:00 
DI water 

2.96E
-04 

2.60E
-03 

4.68E
-05 

1.64E
-04 

1.18E
-04 

5.81E
-05 

4.66E
-05 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

10 
21.07.17 / 

07:00 
21.07.17 / 

17:00 
DI water 

2.12E
-05 

8.49E
-05 

7.10E
-06 

1.05E
-05 

9.08E
-06 

6.65E
-06 

6.36E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

11 
21.07.17 / 

17:00 
24.07.17 / 

07:00 
0.05 M 
BaCl2 

2.63E
-05 

1.26E
-04 

7.10E
-06 

1.37E
-05 

6.58E
-06 

6.65E
-06 

6.36E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

12 
24.07.17 / 

07:00 
25.07.17 / 

07:00 
0.05 M 
BaCl2 

2.98E
-05 

2.23E
-04 

7.10E
-06 

1.46E
-05 

9.02E
-06 

6.65E
-06 

9.22E
-06 

6.29E
-06 

6.15E
-06 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

13 
25.07.17 / 

07:00 
26.07.17 / 

07:00 
0.05 M 
BaCl2 

5.38E
-04 

4.77E
-03 

8.45E
-05 

2.72E
-04 

4.90E
-05 

1.28E
-05 

7.95E
-05 

6.29E
-06 

1.34E
-05 

6.06E
-06 

5.98E
-06 

5.92E
-06 

5.78E
-06 

5.72E
-06 

14 
26.07.17 / 

07:00 
26.07.17 / 

16:00 
0.05 M 
BaCl2 

4.66E
-03 

4.32E
-02 

7.59E
-04 

2.17E
-03 

5.02E
-04 

1.45E
-04 

7.19E
-04 

3.44E
-05 

1.30E
-04 

2.10E
-05 

5.12E
-05 

6.27E
-06 

3.63E
-05 

5.72E
-06 

15 
26.07.17 / 

16:00 
27.07.17 / 

07:00 
0.05 M 
BaCl2 

9.86E
-03 

9.56E
-02 

1.67E
-03 

4.82E
-03 

1.04E
-03 

2.77E
-04 

1.56E
-03 

7.49E
-05 

2.86E
-04 

4.56E
-05 

1.12E
-04 

1.36E
-05 

7.63E
-05 

1.08E
-05 

16 
27.07.17 / 

07:00 
27.07.17 / 

16:00 
0.05 M 
BaCl2 

1.27E
-02 

1.23E
-01 

2.22E
-03 

5.84E
-03 

1.80E
-03 

5.75E
-04 

2.09E
-03 

9.63E
-05 

3.61E
-04 

5.61E
-05 

1.42E
-04 

1.69E
-05 

8.96E
-05 

1.29E
-05 

17 
27.07.17 / 

16:00 
28.07.17 / 

07:00 
0.05 M 
BaCl2 

1.44E
-02 

1.41E
-01 

2.53E
-03 

7.07E
-03 

2.51E
-03 

9.31E
-04 

2.30E
-03 

1.05E
-04 

3.80E
-04 

6.03E
-05 

1.48E
-04 

1.73E
-05 

9.53E
-05 

1.38E
-05 

18 
27.07.17 / 

07:00 
28.07.17 / 

15:00 
0.05 M 
BaCl2 

1.35E
-02 

1.29E
-01 

2.51E
-03 

6.67E
-03 

3.21E
-03 

1.34E
-03 

2.17E
-03 

9.82E
-05 

3.46E
-04 

5.44E
-05 

1.35E
-04 

1.61E
-05 

8.38E
-05 

1.23E
-05 

19 
27.07.17 / 

15:00 
31.07.17 / 

07:00 
0.05 M 
BaCl2 

1.48E
-02 

1.44E
-01 

2.58E
-03 

7.97E
-03 

4.34E
-03 

1.96E
-03 

2.05E
-03 

9.25E
-05 

3.24E
-04 

5.04E
-05 

1.23E
-04 

1.44E
-05 

7.45E
-05 

1.10E
-05 

20 
31.07.17 / 

07:00 
31.07.17 / 

17:00 
0.05 M 
BaCl2 

1.23E
-02 

1.20E
-01 

2.13E
-03 

6.48E
-03 

4.87E
-03 

2.31E
-03 

1.68E
-03 

7.42E
-05 

2.54E
-04 

3.88E
-05 

9.51E
-05 

1.07E
-05 

5.58E
-05 

8.52E
-06 
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 No. 
Start 

Collection 
End  

Collection 
Solution La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

21 
31.07.17 / 

17:00 
01.08.17 / 

07:00 
0.05 M 
BaCl2 

1.20E
-02 

1.16E
-01 

2.10E
-03 

6.43E
-03 

5.30E
-03 

2.55E
-03 

1.53E
-04 

7.11E
-05 

2.42E
-04 

3.77E
-05 

9.09E
-05 

1.07E
-05 

5.13E
-05 

8.00E
-06 

22 
01.08.17 / 

07:00 
02.08.17 / 

07:00 
0.05 M 
BaCl2 

1.12E
-02 

1.08E
-01 

1.93E
-03 

5.62E
-03 

6.03E
-03 

3.01E
-03 

1.45E
-03 

6.24E
-05 

2.08E
-04 

3.20E
-05 

7.83E
-05 

8.58E
-06 

4.33E
-05 

7.09E
-06 

23 
02.08.17 / 

16:30 
02.08.17 / 

16:30 
0.05 M 
BaCl2 

9.29E
-03 

8.99E
-02 

1.60E
-03 

4.96E
-03 

5.65E
-03 

2.85E
-03 

1.21E
-03 

5.23E
-05 

1.74E
-04 

2.68E
-05 

6.46E
-05 

7.04E
-06 

3.74E
-05 

6.06E
-06 

24 
02.08.17 / 

07:00 
03.08.17 / 

07:00 
0.05 M 
BaCl2 

9.50E
-03 

8.99E
-02 

1.74E
-03 

4.71E
-03 

6.37E
-03 

3.21E
-03 

1.27E
-03 

5.46E
-05 

1.81E
-04 

2.76E
-05 

6.70E
-05 

7.75E
-06 

3.92E
-05 

6.17E
-06 

25 
03.08.17 / 

07:00 
04.08.17 / 

07:00 
0.05 M 
BaCl2 

5.23E
-03 

5.06E
-02 

1.02E
-03 

3.04E
-03 

4.63E
-03 

2.39E
-03 

8.20E
-04 

3.54E
-05 

1.19E
-04 

1.84E
-05 

4.27E
-05 

5.92E
-06 

2.59E
-05 

5.72E
-06 
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Continued… 

 Sample Start of Collection End of Collection Solution Chloride Nitrate Phosphate Sulphate 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] 

Column 

1 

1 12.07.17 / 10:00 13.07.17 / 07:00 DI water 0.12 0.01 0.01 0.02 

2 13.07.17 / 07:00 13.07.17 / 16:00 DI water 0.14 0.01 0.01 0.02 

3 13.07.17 / 16:00 14.07.17 / 07:00 DI water 0.18 0.01 0.01 0.02 

4 14.07.17 / 07:00 17.07.17 / 07:00 DI water 0.27 0.01 0.01 0.03 

5 17.07.17 / 07:00 18.07.17 / 07:00 DI water 0.45 0.01 0.01 0.02 

6 18.07.17 / 07:00 19.07.17 / 07:30 DI water 1.02 0.01 0.01 0.02 

7 19.07.17 / 07:30 19.07.17 / 15:00 DI water 1.31 0.01 0.01 0.02 

8 19.07.17 / 15:00 20.07.17 / 07:00 DI water 1.59 0.01 0.01 0.01 

9 20.07.17 / 07:00 21.07.17 / 07:00 DI water 1.84 0.01 0.01 0.01 

10 21.07.17 / 07:00 21.07.17 / 17:00 DI water 1.84 0.01 0.01 0.01 

11 21.07.17 / 17:00 24.07.17 / 07:00 0.05 M BaCl2 1.84 0.01 0.01 0.01 

12 24.07.17 / 07:00 25.07.17 / 07:00 0.05 M BaCl2 16.15 0.01 0.01 0.01 

13 25.07.17 / 07:00 26.07.17 / 07:00 0.05 M BaCl2 19.19 0.01 0.01 0.03 

14 26.07.17 / 07:00 26.07.17 / 16:00 0.05 M BaCl2 30.58 0.01 0.01 0.03 

15 26.07.17 / 16:00 27.07.17 / 07:00 0.05 M BaCl2 47.67 0.01 0.01 0.01 

16 27.07.17 / 07:00 27.07.17 / 16:00 0.05 M BaCl2 53.03 0.01 0.01 0.03 

17 27.07.17 / 16:00 28.07.17 / 07:00 0.05 M BaCl2 55.85 0.01 0.01 0.03 

18 27.07.17 / 07:00 28.07.17 / 15:00 0.05 M BaCl2 56.69 0.01 0.01 0.01 

19 27.07.17 / 15:00 31.07.17 / 07:00 0.05 M BaCl2 62.34 0.01 0.01 0.02 

20 31.07.17 / 07:00 31.07.17 / 17:00 0.05 M BaCl2 67.98 0.01 0.01 0.01 

21 31.07.17 / 17:00 01.08.17 / 07:00 0.05 M BaCl2 75.03 0.01 0.01 0.01 

22 01.08.17 / 07:00 02.08.17 / 07:00 0.05 M BaCl2 75.03 0.01 0.01 0.01 

23 02.08.17 / 16:30 02.08.17 / 16:30 0.05 M BaCl2 75.03 0.01 0.01 0.02 

24 02.08.17 / 07:00 03.08.17 / 07:00 0.05 M BaCl2 75.03 0.01 0.01 0.01 

25 03.08.17 / 07:00 04.08.17 / 07:00 0.05 M BaCl2 77.00 0.01 0.01 0.01 

Column 

2 

1 12.07.17 / 10:00 13.07.17 / 07:00 DI water 0.06 0.01 0.01 0.02 

2 13.07.17 / 07:00 13.07.17 / 16:00 DI water 0.13 0.01 0.01 0.02 

3 13.07.17 / 16:00 14.07.17 / 07:00 DI water 0.26 0.01 0.01 0.04 

4 14.07.17 / 07:00 17.07.17 / 07:00 DI water 0.32 0.01 0.01 0.03 
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 Sample Start of Collection End of Collection Solution Chloride Nitrate Phosphate Sulphate 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] 

5 17.07.17 / 07:00 18.07.17 / 07:00 DI water 0.51 0.01 0.01 0.03 

6 18.07.17 / 07:00 19.07.17 / 07:30 DI water 0.56 0.01 0.01 0.03 

7 19.07.17 / 07:30 19.07.17 / 15:00 DI water 1.39 0.00 0.01 0.01 

8 19.07.17 / 15:00 20.07.17 / 07:00 DI water 1.69 1.01 0.01 0.01 

9 20.07.17 / 07:00 21.07.17 / 07:00 DI water 2.00 0.01 0.01 0.01 

10 21.07.17 / 07:00 21.07.17 / 17:00 DI water 3.02 0.01 0.01 0.00 

11 21.07.17 / 17:00 24.07.17 / 07:00 0.05 M BaCl2 4.85 0.01 0.01 0.00 

12 24.07.17 / 07:00 25.07.17 / 07:00 0.05 M BaCl2 5.64 0.01 0.01 0.02 

13 25.07.17 / 07:00 26.07.17 / 07:00 0.05 M BaCl2 15.06 0.01 0.01 0.04 

14 26.07.17 / 07:00 26.07.17 / 16:00 0.05 M BaCl2 24.60 0.02 0.01 0.01 

15 26.07.17 / 16:00 27.07.17 / 07:00 0.05 M BaCl2 48.80 0.02 0.01 0.01 

16 27.07.17 / 07:00 27.07.17 / 16:00 0.05 M BaCl2 58.39 0.01 0.01 0.01 

17 27.07.17 / 16:00 28.07.17 / 07:00 0.05 M BaCl2 64.03 0.02 0.01 0.01 

18 27.07.17 / 07:00 28.07.17 / 15:00 0.05 M BaCl2 65.72 0.03 0.01 0.01 

19 27.07.17 / 15:00 31.07.17 / 07:00 0.05 M BaCl2 68.54 0.02 0.01 0.01 

20 31.07.17 / 07:00 31.07.17 / 17:00 0.05 M BaCl2 71.36 0.02 0.01 0.01 

21 31.07.17 / 17:00 01.08.17 / 07:00 0.05 M BaCl2 72.49 0.02 0.01 0.01 

22 01.08.17 / 07:00 02.08.17 / 07:00 0.05 M BaCl2 73.05 0.01 0.01 0.01 

23 02.08.17 / 16:30 02.08.17 / 16:30 0.05 M BaCl2 75.31 0.01 0.01 0.01 

24 02.08.17 / 07:00 03.08.17 / 07:00 0.05 M BaCl2 78.13 0.01 0.01 0.01 

25 03.08.17 / 07:00 04.08.17 / 07:00 0.05 M BaCl2 78.98 0.01 0.01 0.01 
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Continued… 

 No. 
Start 

Collection 

End 

Collection 
Solution Na Mg Al Si K Ca Mn Fe Co Ni Cu Zn Ba Y 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

Column 

1 

1 
23.08.17 / 

17:00 

24.08.17 / 

15:30 
DI water 0.08 0.02 0.07 0.07 0.02 0.06 

7.14E-

04 

1.79E-

04 

1.70E-

04 

3.65E-

03 

1.57E-

04 

1.84E-

03 

2.75E-

01 

4.62E-

05 

2 
24.08.17 / 

15:30 

25.08.17 / 

07:30 
DI water 0.08 0.02 0.10 0.04 0.01 0.03 

1.21E-

03 

1.79E-

04 

1.70E-

04 

4.86E-

03 

1.57E-

04 

2.48E-

03 

4.27E-

01 

4.71E-

05 

3 
25.08.17 / 

07:30 

25.08.17 / 

16:00 
DI water 0.12 0.02 0.07 0.04 0.01 0.03 

7.88E-

04 

1.79E-

04 

1.70E-

04 

2.64E-

03 

1.57E-

04 

1.73E-

03 

2.96E-

01 

2.94E-

05 

4 
25.08.17 / 

16:00 

28.08.17 / 

07:00 
DI water 0.12 0.02 0.03 0.04 0.02 0.02 

4.15E-

04 

1.79E-

04 

1.70E-

04 

8.84E-

04 

1.57E-

04 

1.03E-

03 

1.13E-

01 

1.21E-

05 

5 
28.08.17 / 

07:00 

28.08.17 / 

16:30 
DI water 0.14 0.03 0.01 0.05 0.04 0.03 

2.95E-

04 

1.79E-

04 

1.70E-

04 

3.27E-

04 

1.57E-

04 

7.83E-

04 

4.25E-

02 

1.12E-

05 

6 
28.08.17 / 

07:00 

29.08.17 / 

07:00 
DI water 0.11 0.01 0.01 0.04 0.02 0.01 

2.53E-

04 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

5.43E-

04 

2.76E-

02 

1.12E-

05 

7 
29.08.17 / 

07:00 

30.08.17 / 

07:00 
DI water 0.11 0.01 0.01 0.04 0.01 0.01 

2.26E-

04 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

3.96E-

04 

2.18E-

02 

1.12E-

05 

8 
30.08.17 / 

07:00 

31.08.17 / 

07:00 
DI water 0.12 0.01 0.01 0.04 0.01 0.02 

2.00E-

04 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

4.01E-

04 

1.75E-

02 

1.12E-

05 

9 
31.08.17 / 

07:00 

01.09.17 / 

08:00 

0.1 M 

NH4Cl 
0.06 0.01 0.01 0.04 0.00 0.01 

1.01E-

04 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

3.01E-

04 

1.80E-

02 

1.12E-

05 

10 
01.09.17 / 

08:00 

01.09.17 / 

15:30 

0.1 M 

NH4Cl 
0.10 0.01 0.00 0.04 0.01 0.03 

2.75E-

04 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

3.62E-

04 

2.09E-

02 

1.12E-

05 

11 
01.09.17 / 

15:30 

04.09.17 / 

07:00 

0.1 M 

NH4Cl 
0.10 0.01 0.01 0.06 0.09 0.02 

1.63E-

04 

1.79E-

04 

1.70E-

04 

2.40E-

04 

3.94E-

04 

4.88E-

04 

1.65E-

02 

1.12E-

05 

12 
04.09.17 / 

07:00 

05.09.17 / 

07:00 

0.1 M 

NH4Cl 
0.11 0.01 0.01 0.06 0.09 0.02 

1.61E-

04 

1.79E-

04 

1.70E-

04 

2.06E-

04 

2.94E-

04 

4.45E-

04 

1.87E-

02 

1.12E-

05 

13 
05.09.17 / 

07:00 

06.09.17 / 

07:00 

0.1 M 

NH4Cl 
0.10 0.01 0.01 0.06 0.09 0.02 

1.66E-

04 

1.79E-

04 

1.70E-

04 

2.01E-

04 

3.24E-

04 

3.95E-

04 

1.46E-

02 

1.12E-

05 

14 
06.09.17 / 

07:00 

06.09.17 / 

16:00 

0.1 M 

NH4Cl 
0.12 0.01 0.01 0.06 0.09 0.02 

1.67E-

04 

1.79E-

04 

1.70E-

04 

2.15E-

04 

3.21E-

04 

4.95E-

04 

1.40E-

02 

1.12E-

05 

15 
06.09.17 / 

16:00 

07.09.17 / 

07:30 

0.1 M 

NH4Cl 
1.47 0.81 1.11 0.07 0.10 0.07 

1.77E-

02 

1.79E-

04 

1.70E-

04 

2.44E-

04 

3.75E-

04 

8.47E-

04 

4.03E-

02 

1.70E-

04 

16 
07.09.17 / 

07:30 

07.09.17 / 

17:00 

0.1 M 

NH4Cl 
0.51 0.69 1.14 0.06 0.09 0.06 

1.50E-

02 

1.79E-

04 

1.70E-

04 

2.66E-

04 

4.17E-

04 

5.80E-

04 

3.13E-

02 

1.55E-

04 

17 
07.09.17 / 

17:00 

08.09.17 / 

07:30 

0.1 M 

NH4Cl 
0.41 0.70 1.19 0.07 0.09 0.06 

1.51E-

02 

1.79E-

04 

1.70E-

04 

2.45E-

04 

4.04E-

04 

6.65E-

04 

2.95E-

02 

1.65E-

04 

18 
08.09.17 / 

07:30 

08.09.17 / 

17:00 

0.1 M 

NH4Cl 
1.14 8.56 13.82 0.17 0.09 0.52 

1.76E-

01 

1.79E-

04 

4.43E-

04 

6.55E-

04 

1.57E-

04 

1.93E-

03 

9.10E-

02 

2.58E-

03 

19 
08.09.17 / 

17:00 

11.09.17 / 

10:00 

0.1 M 

NH4Cl 
0.21 3.65 23.02 0.21 0.17 0.42 

7.61E-

02 

1.79E-

04 

3.82E-

04 

6.37E-

04 

1.57E-

04 

1.62E-

03 

2.24E-

01 

4.33E-

03 



174 
 

 No. 
Start 

Collection 

End 

Collection 
Solution Na Mg Al Si K Ca Mn Fe Co Ni Cu Zn Ba Y 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

20 
11.09.17 / 

10:00 

12.09.17 / 

12:00 

0.1 M 

NH4Cl 
0.04 0.53 18.90 0.19 0.26 0.14 

1.40E-

02 

1.79E-

04 

1.85E-

04 

3.09E-

04 

4.16E-

04 

1.64E-

03 

1.28E-

01 

3.91E-

03 

21 
12.09.17 / 

12:00 

13.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.04 0.13 15.16 0.18 0.25 0.07 

5.55E-

03 

1.79E-

04 

1.70E-

04 

2.76E-

04 

3.77E-

04 

1.50E-

03 

6.79E-

02 

3.01E-

03 

22 
13.09.17 / 

07:10 

13.09.17 / 

17:10 

0.1 M 

NH4Cl 
0.04 0.05 12.68 0.16 0.22 0.05 

3.80E-

03 

1.79E-

04 

1.70E-

04 

2.76E-

04 

3.87E-

04 

1.46E-

03 

4.59E-

02 

2.49E-

03 

23 
13.09.17 / 

17:10 

14.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.04 0.03 11.64 0.16 0.20 0.04 

3.06E-

03 

1.79E-

04 

1.70E-

04 

4.31E-

04 

1.57E-

04 

1.42E-

03 

3.80E-

02 

2.22E-

03 

24 
14.09.17 / 

07:10 

14.09.17 / 

17:10 

0.1 M 

NH4Cl 
0.04 0.02 10.64 0.15 0.17 0.04 

2.78E-

03 

1.79E-

04 

1.70E-

04 

2.63E-

04 

3.98E-

04 

1.44E-

03 

2.92E-

02 

1.92E-

03 

25 
14.09.17 / 

17:10 

15.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.04 0.02 9.67 0.15 0.15 0.03 

2.49E-

03 

1.79E-

04 

1.70E-

04 

4.37E-

04 

1.57E-

04 

1.29E-

03 

2.61E-

02 

1.71E-

03 

26 
15.09.17 / 

07:10 

15.09.17 / 

17:10 

0.1 M 

NH4Cl 
0.04 0.01 8.64 0.14 0.13 0.03 

2.38E-

03 

1.79E-

04 

1.70E-

04 

2.63E-

04 

3.47E-

04 

1.26E-

03 

2.44E-

02 

1.55E-

03 

27 
15.09.17 / 

17:10 

18.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.04 0.01 7.56 0.13 0.12 0.03 

2.28E-

03 

1.79E-

04 

1.70E-

04 

4.00E-

04 

1.57E-

04 

1.35E-

03 

2.47E-

02 

1.34E-

03 

28 
18.09.17 / 

07:10 

19.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.04 0.01 6.15 0.13 0.11 0.03 

2.11E-

03 

1.79E-

04 

1.70E-

04 

2.89E-

04 

3.82E-

04 

1.43E-

03 

2.40E-

02 

1.12E-

03 

29 
19.09.17 / 

07:10 

19.09.17 / 

15:10 

0.1 M 

NH4Cl 
0.04 0.01 5.67 0.13 0.10 0.03 

2.11E-

03 

1.79E-

04 

1.70E-

04 

2.78E-

04 

3.40E-

04 

1.56E-

03 

2.40E-

02 

1.04E-

03 

30 
19.09.17 / 

15:10 

21.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.04 0.01 5.30 0.13 0.10 0.03 

1.98E-

03 

1.79E-

04 

1.70E-

04 

2.53E-

04 

3.08E-

04 

2.00E-

03 

2.43E-

02 

9.46E-

04 

31 
21.09.17 / 

07:10 

21.09.17 / 

18:10 

0.1 M 

NH4Cl 
0.04 0.01 4.86 0.13 0.10 0.03 

1.98E-

03 

1.79E-

04 

1.70E-

04 

2.56E-

04 

3.37E-

04 

1.32E-

03 

2.29E-

02 

8.68E-

04 

32 
21.09.17 / 

18:10 

22.09.17 / 

17:10 

0.1 M 

NH4Cl 
0.04 0.01 4.48 0.12 0.09 0.03 

1.89E-

03 

1.79E-

04 

1.70E-

04 

4.10E-

04 

1.57E-

04 

1.25E-

03 

2.25E-

02 

7.92E-

04 

33 
22.09.17 / 

17:10 

25.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.04 0.01 5.30 0.13 0.11 0.03 

1.81E-

03 

1.79E-

04 

1.70E-

04 

2.34E-

04 

3.67E-

04 

1.53E-

03 

2.20E-

02 

9.66E-

04 

Column 

2 

1 
23.08.17 / 

17:00 

24.08.17 / 

15:30 
DI water 0.05 0.02 0.01 0.04 0.05 0.02 

4.73E-

04 

1.79E-

04 

1.70E-

04 

1.59E-

03 

1.57E-

04 

1.79E-

03 

6.18E-

01 

1.23E-

05 

2 
24.08.17 / 

15:30 

25.08.17 / 

07:30 
DI water 0.20 0.06 0.04 0.04 0.07 0.04 

1.42E-

03 

1.79E-

04 

1.70E-

04 

2.27E-

03 

1.57E-

04 

1.97E-

03 

5.73E-

01 

1.74E-

05 

3 
25.08.17 / 

07:30 

25.08.17 / 

16:00 
DI water 0.19 0.06 0.03 0.04 0.05 0.03 

1.37E-

03 

1.79E-

04 

1.70E-

04 

1.53E-

03 

1.57E-

04 

1.46E-

03 

3.87E-

01 

1.23E-

05 

4 
25.08.17 / 

16:00 

28.08.17 / 

07:00 
DI water 0.07 0.02 0.01 0.04 0.03 0.02 

4.22E-

04 

1.79E-

04 

1.70E-

04 

4.50E-

04 

1.57E-

04 

9.36E-

04 

8.45E-

02 

1.12E-

05 

5 
28.08.17 / 

07:00 

28.08.17 / 

16:30 
DI water 0.16 0.04 0.01 0.04 0.08 0.04 

6.24E-

04 

1.79E-

04 

1.70E-

04 

4.94E-

04 

1.57E-

04 

8.89E-

04 

9.68E-

02 

1.12E-

05 
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 No. 
Start 

Collection 

End 

Collection 
Solution Na Mg Al Si K Ca Mn Fe Co Ni Cu Zn Ba Y 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

6 
28.08.17 / 

07:00 

29.08.17 / 

07:00 
DI water 0.14 0.04 0.01 0.04 0.07 0.03 

5.72E-

04 

1.79E-

04 

1.70E-

04 

4.29E-

04 

1.57E-

04 

1.16E-

03 

7.79E-

02 

1.12E-

05 

7 
29.08.17 / 

07:00 

30.08.17 / 

07:00 
DI water 0.12 0.03 0.02 0.05 0.05 0.02 

7.21E-

04 

1.79E-

04 

1.70E-

04 

2.96E-

04 

1.57E-

04 

1.33E-

03 

6.42E-

02 

1.12E-

05 

8 
30.08.17 / 

07:00 

31.08.17 / 

07:00 
DI water 0.10 0.02 0.01 0.04 0.05 0.02 

4.22E-

04 

1.79E-

04 

1.70E-

04 

2.78E-

04 

1.57E-

04 

1.34E-

03 

4.86E-

02 

1.12E-

05 

9 
31.08.17 / 

07:00 

01.09.17 / 

08:00 

0.1 M 

NH4Cl 
0.05 0.01 0.01 0.04 0.03 0.03 

1.65E-

04 

1.79E-

04 

1.70E-

04 

5.01E-

04 

1.57E-

04 

7.75E-

04 

2.25E-

02 

1.12E-

05 

10 
01.09.17 / 

08:00 

01.09.17 / 

15:30 

0.1 M 

NH4Cl 
0.09 0.02 0.27 0.04 0.05 0.08 

4.08E-

04 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

6.44E-

04 

3.07E-

02 

6.20E-

05 

11 
01.09.17 / 

15:30 

04.09.17 / 

07:00 

0.1 M 

NH4Cl 
0.09 0.02 0.01 0.04 0.06 0.03 

3.28E-

04 

1.79E-

04 

1.70E-

04 

4.41E-

04 

1.57E-

04 

1.13E-

03 

3.47E-

02 

1.12E-

05 

12 
04.09.17 / 

07:00 

05.09.17 / 

07:00 

0.1 M 

NH4Cl 
0.10 0.02 0.55 0.04 0.30 0.03 

2.88E-

04 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

9.93E-

04 

2.70E-

02 

4.80E-

05 

13 
05.09.17 / 

07:00 

06.09.17 / 

07:00 

0.1 M 

NH4Cl 
0.09 0.01 0.01 0.04 0.06 0.03 

2.68E-

04 

1.79E-

04 

1.70E-

04 

4.33E-

04 

1.57E-

04 

6.25E-

04 

2.45E-

02 

1.12E-

05 

14 
06.09.17 / 

07:00 

06.09.17 / 

16:00 

0.1 M 

NH4Cl 
1.00 0.82 1.43 0.04 0.06 0.13 

1.84E-

02 

1.79E-

04 

1.70E-

04 

1.20E-

03 

1.57E-

04 

7.25E-

03 

2.93E-

01 

2.61E-

04 

15 
06.09.17 / 

16:00 

07.09.17 / 

07:30 

0.1 M 

NH4Cl 
2.07 7.98 26.76 0.21 0.09 0.70 

1.63E-

01 

1.79E-

04 

6.14E-

04 

3.49E-

03 

1.57E-

04 

1.11E-

02 

5.67E-

01 

4.59E-

03 

16 
07.09.17 / 

07:30 

07.09.17 / 

17:00 

0.1 M 

NH4Cl 
0.37 3.89 50.78 0.36 0.22 0.47 

7.66E-

02 

1.79E-

04 

4.48E-

04 

9.37E-

04 

1.57E-

04 

3.35E-

03 

1.35E-

01 

8.80E-

03 

17 
07.09.17 / 

17:00 

08.09.17 / 

07:30 

0.1 M 

NH4Cl 
0.07 1.05 23.68 0.12 0.08 0.06 

2.00E-

02 

1.79E-

04 

1.70E-

04 

3.31E-

04 

1.57E-

04 

9.41E-

04 

4.57E-

02 

4.16E-

03 

18 
08.09.17 / 

07:30 

08.09.17 / 

17:00 

0.1 M 

NH4Cl 
0.07 1.19 39.29 0.31 0.27 0.10 

2.35E-

02 

1.79E-

04 

2.26E-

04 

4.38E-

04 

1.57E-

04 

1.58E-

03 

6.77E-

02 

6.93E-

03 

19 
08.09.17 / 

17:00 

11.09.17 / 

10:00 

0.1 M 

NH4Cl 
0.03 0.62 31.91 0.25 0.26 0.03 

1.31E-

02 

1.79E-

04 

1.70E-

04 

2.76E-

04 

1.57E-

04 

1.59E-

03 

5.13E-

02 

5.68E-

03 

20 
11.09.17 / 

10:00 

12.09.17 / 

12:00 

0.1 M 

NH4Cl 
0.01 0.18 20.31 0.20 0.19 0.02 

4.59E-

03 

1.79E-

04 

1.70E-

04 

1.79E-

04 

1.57E-

04 

1.46E-

03 

3.36E-

02 

3.69E-

03 

21 
12.09.17 / 

12:00 

13.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.01 0.08 15.94 0.18 0.14 0.02 

2.95E-

03 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

1.18E-

03 

3.23E-

02 

2.85E-

03 

22 
13.09.17 / 

07:10 

13.09.17 / 

17:10 

0.1 M 

NH4Cl 
0.01 0.05 13.49 0.17 0.12 0.02 

2.31E-

03 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

9.41E-

04 

3.07E-

02 

2.40E-

03 

23 
13.09.17 / 

17:10 

14.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.01 0.04 11.75 0.16 0.09 0.02 

1.93E-

03 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

8.73E-

04 

2.93E-

02 

2.08E-

03 

24 
14.09.17 / 

07:10 

14.09.17 / 

17:10 

0.1 M 

NH4Cl 
0.01 0.03 10.30 0.15 0.08 0.02 

1.61E-

03 

1.79E-

04 

1.70E-

04 

3.85E-

04 

1.57E-

04 

8.40E-

04 

2.78E-

02 

1.82E-

03 
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 No. 
Start 

Collection 

End 

Collection 
Solution Na Mg Al Si K Ca Mn Fe Co Ni Cu Zn Ba Y 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

25 
14.09.17 / 

17:10 

15.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.01 0.02 9.45 0.15 0.07 0.02 

1.48E-

03 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

8.00E-

04 

2.69E-

02 

1.65E-

03 

26 
15.09.17 / 

07:10 

15.09.17 / 

17:10 

0.1 M 

NH4Cl 
0.01 0.02 8.23 0.13 0.07 0.02 

1.31E-

03 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

7.59E-

04 

2.41E-

02 

1.44E-

03 

27 
15.09.17 / 

17:10 

18.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.01 0.02 7.30 0.13 0.07 0.02 

1.17E-

03 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

1.00E-

03 

2.21E-

02 

1.25E-

03 

28 
18.09.17 / 

07:10 

19.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.01 0.02 5.63 0.11 0.07 0.02 

1.13E-

03 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

1.11E-

03 

1.84E-

02 

9.71E-

04 

29 
19.09.17 / 

07:10 

19.09.17 / 

15:10 

0.1 M 

NH4Cl 
0.01 0.02 5.00 0.11 0.06 0.02 

1.01E-

03 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

8.46E-

04 

1.84E-

02 

8.45E-

04 

30 
19.09.17 / 

15:10 

21.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.01 0.01 4.52 0.11 0.06 0.02 

9.59E-

04 

1.79E-

04 

1.70E-

04 

1.70E-

04 

1.57E-

04 

8.99E-

04 

1.78E-

02 

7.60E-

04 

31 
21.09.17 / 

07:10 

21.09.17 / 

18:10 

0.1 M 

NH4Cl 
0.00 0.01 3.89 0.10 0.06 0.02 

9.45E-

04 

1.79E-

04 

1.70E-

04 

6.32E-

04 

1.57E-

04 

9.85E-

04 

1.59E-

02 

6.49E-

04 

32 
21.09.17 / 

18:10 

22.09.17 / 

17:10 

0.1 M 

NH4Cl 
0.00 0.01 3.31 0.09 0.05 0.02 

9.14E-

04 

1.79E-

04 

1.70E-

04 

2.86E-

04 

1.57E-

04 

7.83E-

04 

1.59E-

02 

5.42E-

04 

33 
22.09.17 / 

17:10 

25.09.17 / 

07:10 

0.1 M 

NH4Cl 
0.00 0.01 2.88 0.09 0.06 0.02 

7.86E-

04 

1.79E-

04 

1.70E-

04 

4.07E-

04 

1.57E-

04 

9.30E-

04 

1.50E-

02 

4.66E-

04 

 

  



177 
 

Continued… 

  Start 

Collection 

End 

Collection 
Solution La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

Column 1 

1 
23.08.17 / 

17:00 

24.08.17 / 

15:30 
DI water 

1.25E-

04 

2.95E-

04 

1.87E-

05 

5.78E-

05 

8.25E-

05 

3.00E-

05 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

2 
24.08.17 / 

15:30 

25.08.17 / 

07:30 
DI water 

2.01E-

04 

5.10E-

04 

3.09E-

05 

1.06E-

04 

1.42E-

04 

5.19E-

05 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

3 
25.08.17 / 

07:30 

25.08.17 / 

16:00 
DI water 

1.32E-

04 

3.51E-

04 

2.02E-

05 

6.61E-

05 

9.91E-

05 

3.68E-

05 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

4 
25.08.17 / 

16:00 

28.08.17 / 

07:00 
DI water 

5.66E-

05 

1.34E-

04 

8.37E-

06 

2.66E-

05 

3.55E-

05 

1.37E-

05 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

5 
28.08.17 / 

07:00 

28.08.17 / 

16:30 
DI water 

2.15E-

05 

4.19E-

05 

7.10E-

06 

9.43E-

06 

1.39E-

05 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

6 
28.08.17 / 

07:00 

29.08.17 / 

07:00 
DI water 

1.94E-

05 

3.54E-

05 

7.10E-

06 

8.32E-

06 

9.44E-

06 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

7 
29.08.17 / 

07:00 

30.08.17 / 

07:00 
DI water 

3.56E-

05 

3.80E-

05 

7.10E-

06 

1.36E-

05 

7.52E-

06 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

8 
30.08.17 / 

07:00 

31.08.17 / 

07:00 
DI water 

1.04E-

05 

1.58E-

05 

7.10E-

06 

6.93E-

06 

6.65E-

06 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

9 
31.08.17 / 

07:00 

01.09.17 / 

08:00 

0.1 M 

NH4Cl 

7.49E-

06 

1.24E-

05 

7.10E-

06 

6.93E-

06 

6.65E-

06 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

10 
01.09.17 / 

08:00 

01.09.17 / 

15:30 

0.1 M 

NH4Cl 

7.20E-

06 

9.49E-

06 

7.10E-

06 

6.93E-

06 

6.65E-

06 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

11 
01.09.17 / 

15:30 

04.09.17 / 

07:00 

0.1 M 

NH4Cl 

1.99E-

05 

1.98E-

05 

7.10E-

06 

6.93E-

06 

1.78E-

05 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

1.49E-

05 

5.72E-

06 

12 
04.09.17 / 

07:00 

05.09.17 / 

07:00 

0.1 M 

NH4Cl 

1.44E-

05 

2.40E-

05 

7.10E-

06 

6.93E-

06 

1.78E-

05 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

1.23E-

05 

5.72E-

06 

13 
05.09.17 / 

07:00 

06.09.17 / 

07:00 

0.1 M 

NH4Cl 

1.08E-

05 

1.83E-

05 

7.10E-

06 

6.93E-

06 

1.44E-

05 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

1.18E-

05 

5.72E-

06 

14 
06.09.17 / 

07:00 

06.09.17 / 

16:00 

0.1 M 

NH4Cl 

3.31E-

05 

1.74E-

05 

7.10E-

06 

6.93E-

06 

1.32E-

05 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

1.14E-

05 

5.72E-

06 

15 
06.09.17 / 

16:00 

07.09.17 / 

07:30 

0.1 M 

NH4Cl 

1.07E-

03 

3.07E-

03 

1.67E-

04 

5.21E-

04 

1.02E-

04 

1.37E-

05 

6.49E-

05 

6.80E-

06 

2.95E-

05 

6.06E-

06 

1.06E-

05 

5.92E-

06 

1.60E-

05 

5.72E-

06 

16 
07.09.17 / 

07:30 

07.09.17 / 

17:00 

0.1 M 

NH4Cl 

1.00E-

03 

2.85E-

03 

1.55E-

04 

4.85E-

04 

8.45E-

05 

1.18E-

05 

5.42E-

05 

6.29E-

06 

2.75E-

05 

6.06E-

06 

1.04E-

05 

5.92E-

06 

1.33E-

05 

5.72E-

06 

17 
07.09.17 / 

17:00 

08.09.17 / 

07:30 

0.1 M 

NH4Cl 

1.04E-

03 

3.00E-

03 

1.65E-

04 

5.14E-

04 

8.78E-

05 

1.19E-

05 

5.72E-

05 

6.80E-

06 

2.96E-

05 

6.06E-

06 

1.08E-

05 

5.92E-

06 

1.38E-

05 

5.72E-

06 

18 
08.09.17 / 

07:30 

08.09.17 / 

17:00 

0.1 M 

NH4Cl 

1.61E-

02 

4.64E-

02 

2.61E-

03 

7.83E-

03 

1.03E-

03 

1.37E-

04 

5.51E-

04 

1.05E-

04 

4.54E-

04 

6.73E-

05 

1.64E-

04 

1.94E-

05 

1.13E-

04 

1.53E-

05 

19 
08.09.17 / 

17:00 

11.09.17 / 

10:00 

0.1 M 

NH4Cl 

2.71E-

02 

7.85E-

02 

4.41E-

03 

1.32E-

02 

1.84E-

03 

2.43E-

04 

9.09E-

04 

1.75E-

04 

7.63E-

04 

1.13E-

04 

2.74E-

04 

3.18E-

05 

1.78E-

04 

2.54E-

05 
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  Start 

Collection 

End 

Collection 
Solution La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

20 
11.09.17 / 

10:00 

12.09.17 / 

12:00 

0.1 M 

NH4Cl 

2.53E-

02 

7.35E-

02 

4.12E-

03 

1.22E-

02 

1.63E-

03 

2.13E-

04 

8.33E-

04 

1.59E-

04 

6.83E-

04 

1.01E-

04 

2.48E-

04 

2.89E-

05 

1.63E-

04 

2.31E-

05 

21 
12.09.17 / 

12:00 

13.09.17 / 

07:10 

0.1 M 

NH4Cl 

2.07E-

02 

6.00E-

02 

3.37E-

03 

1.03E-

02 

1.28E-

03 

1.66E-

04 

6.80E-

04 

1.28E-

04 

5.53E-

04 

8.12E-

05 

1.99E-

04 

2.33E-

05 

1.31E-

04 

1.82E-

05 

22 
13.09.17 / 

07:10 

13.09.17 / 

17:10 

0.1 M 

NH4Cl 

1.78E-

02 

5.21E-

02 

2.89E-

03 

8.94E-

03 

1.09E-

03 

1.42E-

04 

5.76E-

04 

1.09E-

04 

4.61E-

04 

6.73E-

05 

1.65E-

04 

1.91E-

05 

1.09E-

04 

1.53E-

05 

23 
13.09.17 / 

17:10 

14.09.17 / 

07:10 

0.1 M 

NH4Cl 

1.60E-

02 

4.71E-

02 

2.60E-

03 

7.90E-

03 

9.64E-

04 

1.24E-

04 

5.14E-

04 

9.63E-

05 

4.12E-

04 

6.03E-

05 

1.49E-

04 

1.78E-

05 

1.00E-

04 

1.37E-

05 

24 
14.09.17 / 

07:10 

14.09.17 / 

17:10 

0.1 M 

NH4Cl 

1.44E-

02 

4.21E-

02 

2.33E-

03 

7.14E-

03 

8.65E-

04 

1.12E-

04 

4.59E-

04 

8.56E-

05 

3.65E-

04 

5.28E-

05 

1.32E-

04 

1.53E-

05 

8.73E-

05 

1.22E-

05 

25 
14.09.17 / 

17:10 

15.09.17 / 

07:10 

0.1 M 

NH4Cl 

1.30E-

02 

3.78E-

02 

2.08E-

03 

6.51E-

03 

7.71E-

04 

9.94E-

05 

4.11E-

04 

7.61E-

05 

3.24E-

04 

4.75E-

05 

1.18E-

04 

1.40E-

05 

7.86E-

05 

1.09E-

05 

26 
15.09.17 / 

07:10 

15.09.17 / 

17:10 

0.1 M 

NH4Cl 

1.20E-

02 

3.57E-

02 

1.94E-

03 

5.95E-

03 

7.12E-

04 

9.15E-

05 

3.84E-

04 

6.92E-

05 

2.95E-

04 

4.22E-

05 

1.06E-

04 

1.27E-

05 

7.28E-

05 

9.54E-

06 

27 
15.09.17 / 

17:10 

18.09.17 / 

07:10 

0.1 M 

NH4Cl 

1.06E-

02 

3.14E-

02 

1.70E-

03 

5.30E-

03 

6.32E-

04 

8.09E-

05 

3.41E-

04 

6.14E-

05 

2.58E-

04 

3.77E-

05 

9.33E-

05 

1.11E-

05 

6.36E-

05 

8.46E-

06 

28 
18.09.17 / 

07:10 

19.09.17 / 

07:10 

0.1 M 

NH4Cl 

9.00E-

03 

2.66E-

02 

1.46E-

03 

4.42E-

03 

5.27E-

04 

6.78E-

05 

2.82E-

04 

4.98E-

05 

2.14E-

04 

3.08E-

05 

7.71E-

05 

9.23E-

06 

5.39E-

05 

7.32E-

06 

29 
19.09.17 / 

07:10 

19.09.17 / 

15:10 

0.1 M 

NH4Cl 

8.35E-

03 

2.46E-

02 

1.35E-

03 

4.17E-

03 

4.94E-

04 

6.32E-

05 

2.68E-

04 

4.70E-

05 

1.96E-

04 

2.87E-

05 

7.05E-

05 

8.58E-

06 

5.11E-

05 

6.63E-

06 

30 
19.09.17 / 

15:10 

21.09.17 / 

07:10 

0.1 M 

NH4Cl 

7.63E-

03 

2.26E-

02 

1.23E-

03 

3.76E-

03 

4.56E-

04 

5.77E-

05 

2.47E-

04 

4.33E-

05 

1.83E-

04 

2.61E-

05 

6.52E-

05 

7.93E-

06 

4.65E-

05 

6.23E-

06 

31 
21.09.17 / 

07:10 

21.09.17 / 

18:10 

0.1 M 

NH4Cl 

7.11E-

03 

2.10E-

02 

1.15E-

03 

3.54E-

03 

4.28E-

04 

5.38E-

05 

2.30E-

04 

3.93E-

05 

1.69E-

04 

2.41E-

05 

5.98E-

05 

7.10E-

06 

4.33E-

05 

5.72E-

06 

32 
21.09.17 / 

18:10 

22.09.17 / 

17:10 

0.1 M 

NH4Cl 

6.49E-

03 

1.93E-

02 

1.05E-

03 

3.31E-

03 

3.90E-

04 

4.91E-

05 

2.12E-

04 

3.57E-

05 

1.53E-

04 

2.23E-

05 

5.55E-

05 

6.57E-

06 

4.06E-

05 

5.72E-

06 

33 
22.09.17 / 

17:10 

25.09.17 / 

07:10 

0.1 M 

NH4Cl 

7.85E-

03 

2.35E-

02 

1.28E-

03 

3.90E-

03 

4.68E-

04 

5.91E-

05 

2.52E-

04 

4.35E-

05 

1.85E-

04 

2.72E-

05 

6.70E-

05 

7.93E-

06 

4.74E-

05 

6.17E-

06 

Column 2 

1 
23.08.17 / 

17:00 

24.08.17 / 

15:30 
DI water 

2.15E-

05 

2.73E-

05 

7.10E-

06 

6.93E-

06 

1.89E-

04 

7.30E-

05 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

2 
24.08.17 / 

15:30 

25.08.17 / 

07:30 
DI water 

5.04E-

05 

1.11E-

04 

7.10E-

06 

1.88E-

05 

1.74E-

04 

6.65E-

05 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

3 
25.08.17 / 

07:30 

25.08.17 / 

16:00 
DI water 

3.64E-

05 

8.28E-

05 

7.10E-

06 

1.34E-

05 

1.11E-

04 

4.22E-

05 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

4 
25.08.17 / 

16:00 

28.08.17 / 

07:00 
DI water 

9.43E-

06 

1.91E-

05 

7.10E-

06 

6.93E-

06 

2.48E-

05 

9.21E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

5 
28.08.17 / 

07:00 

28.08.17 / 

16:30 
DI water 

7.20E-

06 

1.33E-

05 

7.10E-

06 

6.93E-

06 

2.79E-

05 

1.07E-

05 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 
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  Start 

Collection 

End 

Collection 
Solution La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

6 
28.08.17 / 

07:00 

29.08.17 / 

07:00 
DI water 

1.12E-

05 

2.31E-

05 

7.10E-

06 

6.93E-

06 

2.27E-

05 

8.49E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

7 
29.08.17 / 

07:00 

30.08.17 / 

07:00 
DI water 

8.85E-

06 

1.96E-

05 

7.10E-

06 

6.93E-

06 

1.98E-

05 

7.17E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

8 
30.08.17 / 

07:00 

31.08.17 / 

07:00 
DI water 

7.20E-

06 

1.16E-

05 

7.10E-

06 

6.93E-

06 

1.39E-

05 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

9 
31.08.17 / 

07:00 

01.09.17 / 

08:00 

0.1 M 

NH4Cl 

7.20E-

06 

8.85E-

06 

7.10E-

06 

6.93E-

06 

6.65E-

06 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

10 
01.09.17 / 

08:00 

01.09.17 / 

15:30 

0.1 M 

NH4Cl 

4.69E-

04 

1.41E-

03 

7.74E-

05 

2.32E-

04 

3.47E-

05 

6.58E-

06 

1.32E-

05 

6.29E-

06 

1.14E-

05 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

11 
01.09.17 / 

15:30 

04.09.17 / 

07:00 

0.1 M 

NH4Cl 

7.20E-

06 

8.06E-

06 

7.10E-

06 

6.93E-

06 

6.65E-

06 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

12 
04.09.17 / 

07:00 

05.09.17 / 

07:00 

0.1 M 

NH4Cl 

3.98E-

04 

1.22E-

03 

6.54E-

05 

1.96E-

04 

2.94E-

05 

6.58E-

06 

6.36E-

06 

6.29E-

06 

8.74E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

13 
05.09.17 / 

07:00 

06.09.17 / 

07:00 

0.1 M 

NH4Cl 

7.20E-

06 

7.14E-

06 

7.10E-

06 

6.93E-

06 

6.65E-

06 

6.58E-

06 

6.36E-

06 

6.29E-

06 

6.15E-

06 

6.06E-

06 

5.98E-

06 

5.92E-

06 

5.78E-

06 

5.72E-

06 

14 
06.09.17 / 

07:00 

06.09.17 / 

16:00 

0.1 M 

NH4Cl 

1.63E-

03 

4.73E-

03 

2.51E-

04 

7.63E-

04 

1.47E-

04 

3.66E-

05 

4.72E-

05 

9.82E-

06 

4.40E-

05 

6.49E-

06 

1.61E-

05 

5.92E-

06 

6.01E-

06 

5.72E-

06 

15 
06.09.17 / 

16:00 

07.09.17 / 

07:30 

0.1 M 

NH4Cl 

3.01E-

02 

8.85E-

02 

4.50E-

03 

1.37E-

02 

1.94E-

03 

2.72E-

04 

1.20E-

03 

1.80E-

04 

7.88E-

04 

1.17E-

04 

2.83E-

04 

3.32E-

05 

1.92E-

04 

2.63E-

05 

16 
07.09.17 / 

07:30 

07.09.17 / 

17:00 

0.1 M 

NH4Cl 

5.94E-

02 

1.74E-

01 

8.94E-

03 

2.72E-

02 

3.69E-

03 

4.50E-

04 

2.32E-

03 

3.45E-

04 

1.50E-

03 

2.22E-

04 

5.37E-

04 

6.27E-

05 

3.68E-

04 

5.00E-

05 

17 
07.09.17 / 

17:00 

08.09.17 / 

07:30 

0.1 M 

NH4Cl 

2.91E-

02 

8.64E-

02 

4.38E-

03 

1.34E-

02 

1.81E-

03 

2.14E-

04 

1.08E-

03 

1.65E-

04 

7.14E-

04 

1.05E-

04 

2.55E-

04 

2.90E-

05 

1.64E-

04 

2.36E-

05 

18 
08.09.17 / 

07:30 

08.09.17 / 

17:00 

0.1 M 

NH4Cl 

5.05E-

02 

1.50E-

01 

7.66E-

03 

2.33E-

02 

3.07E-

03 

3.65E-

04 

1.90E-

03 

2.79E-

04 

1.20E-

03 

1.78E-

04 

4.27E-

04 

4.96E-

05 

2.88E-

04 

3.97E-

05 

19 
08.09.17 / 

17:00 

11.09.17 / 

10:00 

0.1 M 

NH4Cl 

4.38E-

02 

1.30E-

01 

6.66E-

03 

2.02E-

02 

2.67E-

03 

3.14E-

04 

1.61E-

03 

2.38E-

04 

1.01E-

03 

1.48E-

04 

3.56E-

04 

4.19E-

05 

2.39E-

04 

3.33E-

05 

20 
11.09.17 / 

10:00 

12.09.17 / 

12:00 

0.1 M 

NH4Cl 

3.05E-

02 

9.06E-

02 

4.63E-

03 

1.40E-

02 

1.81E-

03 

2.09E-

04 

1.06E-

03 

1.53E-

04 

6.58E-

04 

9.58E-

05 

2.33E-

04 

2.72E-

05 

1.53E-

04 

2.17E-

05 

21 
12.09.17 / 

12:00 

13.09.17 / 

07:10 

0.1 M 

NH4Cl 

2.50E-

02 

7.42E-

02 

3.80E-

03 

1.16E-

02 

1.48E-

03 

1.68E-

04 

8.46E-

04 

1.23E-

04 

5.18E-

04 

7.52E-

05 

1.85E-

04 

2.15E-

05 

1.20E-

04 

1.73E-

05 

22 
13.09.17 / 

07:10 

13.09.17 / 

17:10 

0.1 M 

NH4Cl 

2.16E-

02 

6.46E-

02 

3.30E-

03 

9.98E-

03 

1.27E-

03 

1.45E-

04 

7.25E-

04 

1.07E-

04 

4.42E-

04 

6.49E-

05 

1.57E-

04 

1.78E-

05 

1.00E-

04 

1.44E-

05 

23 
13.09.17 / 

17:10 

14.09.17 / 

07:10 

0.1 M 

NH4Cl 

1.78E-

02 

5.72E-

02 

2.91E-

03 

8.87E-

03 

1.13E-

03 

1.27E-

04 

6.22E-

04 

9.25E-

05 

3.88E-

04 

5.60E-

05 

1.37E-

04 

1.53E-

05 

8.55E-

05 

1.24E-

05 

24 
14.09.17 / 

07:10 

14.09.17 / 

17:10 

0.1 M 

NH4Cl 

1.57E-

02 

5.11E-

02 

2.59E-

03 

7.90E-

03 

9.98E-

04 

1.13E-

04 

5.54E-

04 

8.12E-

05 

3.42E-

04 

4.89E-

05 

1.22E-

04 

1.35E-

05 

7.40E-

05 

1.11E-

05 
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  Start 

Collection 

End 

Collection 
Solution La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] [mM] 

25 
14.09.17 / 

17:10 

15.09.17 / 

07:10 

0.1 M 

NH4Cl 

1.48E-

02 

4.78E-

02 

2.43E-

03 

7.42E-

03 

9.31E-

04 

1.05E-

04 

5.11E-

04 

7.61E-

05 

3.13E-

04 

4.58E-

05 

1.12E-

04 

1.24E-

05 

6.82E-

05 

1.06E-

05 

26 
15.09.17 / 

07:10 

15.09.17 / 

17:10 

0.1 M 

NH4Cl 

1.28E-

02 

3.93E-

02 

2.12E-

03 

6.48E-

03 

8.25E-

04 

9.15E-

05 

4.32E-

04 

6.42E-

05 

2.70E-

04 

3.93E-

05 

9.63E-

05 

1.11E-

05 

5.77E-

05 

8.63E-

06 

27 
15.09.17 / 

17:10 

18.09.17 / 

07:10 

0.1 M 

NH4Cl 

1.15E-

02 

3.54E-

02 

1.91E-

03 

5.84E-

03 

7.38E-

04 

8.23E-

05 

3.82E-

04 

5.82E-

05 

2.41E-

04 

3.46E-

05 

8.67E-

05 

9.53E-

06 

5.15E-

05 

7.77E-

06 

28 
18.09.17 / 

07:10 

19.09.17 / 

07:10 

0.1 M 

NH4Cl 

9.14E-

03 

2.83E-

02 

1.53E-

03 

4.66E-

03 

5.83E-

04 

6.46E-

05 

2.94E-

04 

4.57E-

05 

1.85E-

04 

2.71E-

05 

6.70E-

05 

7.10E-

06 

3.71E-

05 

6.17E-

06 

29 
19.09.17 / 

07:10 

19.09.17 / 

15:10 

0.1 M 

NH4Cl 

8.06E-

03 

2.49E-

02 

1.36E-

03 

4.13E-

03 

5.15E-

04 

5.64E-

05 

2.50E-

04 

3.92E-

05 

1.62E-

04 

2.32E-

05 

5.79E-

05 

6.16E-

06 

3.10E-

05 

5.72E-

06 

30 
19.09.17 / 

15:10 

21.09.17 / 

07:10 

0.1 M 

NH4Cl 

7.42E-

03 

2.30E-

02 

1.25E-

03 

3.83E-

03 

4.72E-

04 

5.17E-

05 

2.27E-

04 

3.60E-

05 

1.46E-

04 

2.09E-

05 

5.33E-

05 

5.92E-

06 

2.81E-

05 

5.72E-

06 

31 
21.09.17 / 

07:10 

21.09.17 / 

18:10 

0.1 M 

NH4Cl 

6.39E-

03 

1.99E-

02 

1.09E-

03 

3.30E-

03 

4.03E-

04 

4.48E-

05 

1.89E-

04 

3.06E-

05 

1.24E-

04 

1.76E-

05 

4.50E-

05 

5.92E-

06 

2.17E-

05 

5.72E-

06 

32 
21.09.17 / 

18:10 

22.09.17 / 

17:10 

0.1 M 

NH4Cl 

5.53E-

03 

1.73E-

02 

9.44E-

04 

2.90E-

03 

3.54E-

04 

3.95E-

05 

1.58E-

04 

2.64E-

05 

1.09E-

04 

1.56E-

05 

3.82E-

05 

5.92E-

06 

1.77E-

05 

5.72E-

06 

33 
22.09.17 / 

17:10 

25.09.17 / 

07:10 

0.1 M 

NH4Cl 

4.78E-

03 

1.51E-

02 

8.23E-

04 

2.54E-

03 

3.08E-

04 

3.38E-

05 

1.36E-

04 

2.29E-

05 

9.29E-

05 

1.32E-

05 

3.29E-

05 

5.92E-

06 

1.44E-

05 

5.72E-

06 
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Continued… 

 No. Start Collection End Collection Solution Chloride Nitrate Phosphate Sulphate 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] 

Column 

1 

1 23.08.17 / 17:00 24.08.17 / 15:30 DI water 0.76 0.00 0.00 0.00 

2 24.08.17 / 15:30 25.08.17 / 07:30 DI water 1.28 0.00 0.00 0.00 

3 25.08.17 / 07:30 25.08.17 / 16:00 DI water 1.03 0.00 0.00 0.00 

4 25.08.17 / 16:00 28.08.17 / 07:00 DI water 0.50 0.00 0.00 0.00 

5 28.08.17 / 07:00 28.08.17 / 16:30 DI water 0.30 0.00 0.00 0.01 

6 28.08.17 / 07:00 29.08.17 / 07:00 DI water 0.25 0.00 0.00 0.01 

7 29.08.17 / 07:00 30.08.17 / 07:00 DI water 0.21 0.00 0.00 0.01 

8 30.08.17 / 07:00 31.08.17 / 07:00 DI water 0.20 0.00 0.00 0.01 

9 31.08.17 / 07:00 01.09.17 / 08:00 0.1 M NH4Cl 0.12 0.00 0.00 0.01 

10 01.09.17 / 08:00 01.09.17 / 15:30 0.1 M NH4Cl 0.15 0.00 0.00 0.01 

11 01.09.17 / 15:30 04.09.17 / 07:00 0.1 M NH4Cl 0.19 0.00 0.00 0.01 

12 04.09.17 / 07:00 05.09.17 / 07:00 0.1 M NH4Cl 0.21 0.00 0.00 0.01 

13 05.09.17 / 07:00 06.09.17 / 07:00 0.1 M NH4Cl 0.19 0.00 0.00 0.01 

14 06.09.17 / 07:00 06.09.17 / 16:00 0.1 M NH4Cl 0.20 0.00 0.00 0.01 

15 06.09.17 / 16:00 07.09.17 / 07:30 0.1 M NH4Cl 27.92 0.00 0.00 0.04 

16 07.09.17 / 07:30 07.09.17 / 17:00 0.1 M NH4Cl 103.8 0.00 0.00 0.04 

17 07.09.17 / 17:00 08.09.17 / 07:30 0.1 M NH4Cl 105.5 0.00 0.00 0.04 

18 08.09.17 / 07:30 08.09.17 / 17:00 0.1 M NH4Cl 97.0 0.08 0.05 0.15 

19 08.09.17 / 17:00 11.09.17 / 10:00 0.1 M NH4Cl 105.5 0.08 0.05 0.17 

20 11.09.17 / 10:00 12.09.17 / 12:00 0.1 M NH4Cl 113.7 0.08 0.05 0.16 

21 12.09.17 / 12:00 13.09.17 / 07:10 0.1 M NH4Cl 113.7 0.08 0.05 0.15 

22 13.09.17 / 07:10 13.09.17 / 17:10 0.1 M NH4Cl 97.6 0.08 0.05 0.15 

23 13.09.17 / 17:10 14.09.17 / 07:10 0.1 M NH4Cl 108.88 0.08 0.05 0.15 

24 14.09.17 / 07:10 14.09.17 / 17:10 0.1 M NH4Cl 113.67 0.08 0.05 0.14 

25 14.09.17 / 17:10 15.09.17 / 07:10 0.1 M NH4Cl 112.83 0.08 0.05 0.14 

26 15.09.17 / 07:10 15.09.17 / 17:10 0.1 M NH4Cl 113.67 0.08 0.05 0.13 

27 15.09.17 / 17:10 18.09.17 / 07:10 0.1 M NH4Cl 115.08 0.08 0.05 0.13 

28 18.09.17 / 07:10 19.09.17 / 07:10 0.1 M NH4Cl 108.88 0.08 0.05 0.12 
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 No. Start Collection End Collection Solution Chloride Nitrate Phosphate Sulphate 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] 

29 19.09.17 / 07:10 19.09.17 / 15:10 0.1 M NH4Cl 119.88 0.08 0.05 0.11 

30 19.09.17 / 15:10 21.09.17 / 07:10 0.1 M NH4Cl 110.85 0.08 0.05 0.12 

31 21.09.17 / 07:10 21.09.17 / 18:10 0.1 M NH4Cl 110.29 0.08 0.05 0.12 

32 21.09.17 / 18:10 22.09.17 / 17:10 0.1 M NH4Cl 111.42 0.08 0.05 0.12 

33 22.09.17 / 17:10 25.09.17 / 07:10 0.1 M NH4Cl 112.26 0.08 0.05 0.11 

Column 

2 

1 23.08.17 / 17:00 24.08.17 / 15:30 DI water 0.76 0.00 0.00 0.00 

2 24.08.17 / 15:30 25.08.17 / 07:30 DI water 1.28 0.00 0.00 0.00 

3 25.08.17 / 07:30 25.08.17 / 16:00 DI water 1.03 0.00 0.00 0.00 

4 25.08.17 / 16:00 28.08.17 / 07:00 DI water 0.50 0.00 0.00 0.00 

5 28.08.17 / 07:00 28.08.17 / 16:30 DI water 0.30 0.00 0.00 0.01 

6 28.08.17 / 07:00 29.08.17 / 07:00 DI water 0.25 0.00 0.00 0.01 

7 29.08.17 / 07:00 30.08.17 / 07:00 DI water 0.21 0.00 0.00 0.01 

8 30.08.17 / 07:00 31.08.17 / 07:00 DI water 0.20 0.00 0.00 0.01 

9 31.08.17 / 07:00 01.09.17 / 08:00 0.1 M NH4Cl 0.12 0.00 0.00 0.01 

10 01.09.17 / 08:00 01.09.17 / 15:30 0.1 M NH4Cl 0.15 0.00 0.00 0.01 

11 01.09.17 / 15:30 04.09.17 / 07:00 0.1 M NH4Cl 0.19 0.00 0.00 0.01 

12 04.09.17 / 07:00 05.09.17 / 07:00 0.1 M NH4Cl 0.21 0.00 0.00 0.01 

13 05.09.17 / 07:00 06.09.17 / 07:00 0.1 M NH4Cl 0.19 0.00 0.00 0.01 

14 06.09.17 / 07:00 06.09.17 / 16:00 0.1 M NH4Cl 0.20 0.00 0.00 0.01 

15 06.09.17 / 16:00 07.09.17 / 07:30 0.1 M NH4Cl 27.92 0.00 0.00 0.04 

16 07.09.17 / 07:30 07.09.17 / 17:00 0.1 M NH4Cl 103.80 0.00 0.00 0.04 

17 07.09.17 / 17:00 08.09.17 / 07:30 0.1 M NH4Cl 105.49 0.00 0.00 0.04 

18 08.09.17 / 07:30 08.09.17 / 17:00 0.1 M NH4Cl 97.03 0.08 0.05 0.15 

19 08.09.17 / 17:00 11.09.17 / 10:00 0.1 M NH4Cl 105.49 0.08 0.05 0.17 

20 11.09.17 / 10:00 12.09.17 / 12:00 0.1 M NH4Cl 113.67 0.08 0.05 0.16 

21 12.09.17 / 12:00 13.09.17 / 07:10 0.1 M NH4Cl 113.67 0.08 0.05 0.15 

22 13.09.17 / 07:10 13.09.17 / 17:10 0.1 M NH4Cl 97.59 0.08 0.05 0.15 

23 13.09.17 / 17:10 14.09.17 / 07:10 0.1 M NH4Cl 108.88 0.08 0.05 0.15 

24 14.09.17 / 07:10 14.09.17 / 17:10 0.1 M NH4Cl 113.67 0.08 0.05 0.14 
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 No. Start Collection End Collection Solution Chloride Nitrate Phosphate Sulphate 

  [date/h] [date/h]  [mM] [mM] [mM] [mM] 

25 14.09.17 / 17:10 15.09.17 / 07:10 0.1 M NH4Cl 112.83 0.08 0.05 0.14 

26 15.09.17 / 07:10 15.09.17 / 17:10 0.1 M NH4Cl 113.67 0.08 0.05 0.13 

27 15.09.17 / 17:10 18.09.17 / 07:10 0.1 M NH4Cl 115.08 0.08 0.05 0.13 

28 18.09.17 / 07:10 19.09.17 / 07:10 0.1 M NH4Cl 108.88 0.08 0.05 0.12 

29 19.09.17 / 07:10 19.09.17 / 15:10 0.1 M NH4Cl 119.88 0.08 0.05 0.11 

30 19.09.17 / 15:10 21.09.17 / 07:10 0.1 M NH4Cl 110.85 0.08 0.05 0.12 

31 21.09.17 / 07:10 21.09.17 / 18:10 0.1 M NH4Cl 110.29 0.08 0.05 0.12 

32 21.09.17 / 18:10 22.09.17 / 17:10 0.1 M NH4Cl 111.42 0.08 0.05 0.12 

33 22.09.17 / 17:10 25.09.17 / 07:10 0.1 M NH4Cl 112.26 0.08 0.05 0.11 

Table B.3 All element concentrations eluted from the barium chloride and ammonium chloride column experiments (in duplicates). 
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Appendix C 
 

Model Inputs 
 
C.1 Modelling CEC in PHREEQC 

 
 

Exchangeable Species on Clay 
(initial state at pH 7) 

Equilibrium with 0.5 M BaCl2 

 Exchangeable Species on Clay In Solution 

 [meq/100g] [mM] [meq/100g] 

without Al 

HX 0 Ca 2.84 HX 2.74E-05 

NaX 2.90 Mg 1.33 NaX 0.04 

KX 1.35 Na 2.86 KX 0.07 

CaX2 2.90 K 1.28 CaX2 0.06 

MgX2 1.35 Mn 1.34 MgX2 0.02 

MnX2 1.35   MnX2 0.01 

    BaX2 7.58 

with Al 

HX 0 Ca 0.965 HX 0.04150 

NaX 0.7 Mg 0.583 NaX 0.01731 

KX 0.3 Na 0.683 KX 0.02690 

CaX2 1 K 0.273 CaX2 0.03519 

MgX2 0.6 Mn 0.298 MgX2 0.01708 

MnX2 0.3 Al 7.063 MnX2 0.00222 

AlX3 7.1   BaX2 12.89699 

    AlX3 0.03715 

Table C.1 Input and output conditions for PHREEQC modelling of two CEC scenarios: with Al and without Al. 
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C.2 Modelling Batch Tests in PEST 

 
 PEST (Doherty, 1994) was used to determine the optimised exchange constants that 

describe all REE exchange reactions with kaolinite (in the batch REE dataset). PEST required 

three input files to run PHREEQC through the command line. These are: 

 

 Command file: supplies PEST with all the template and instruction files, names of 

model input & output files, the problem size, control variables, initial parameter 

values, measurement values, weights etc. 

 Instruction file: informs PEST where the model output data is and defines the 

character length. 

 Template file: copy of PHREEQC input file except the adjustable parameters are 

specified.  

 
The input file that PHREEQC required was called the inp.dat. These four input files are shown in 

tabular form in this section.  

 
PHREEQC Input File  

DATABASE C:\phreeqc\database\w_data.dat 

EXCHANGE_SPECIES 

  

Yt+3 + 3X- = YtX3  

log_k 2.28974119 

  

La+3 + 3X- = LaX3  

log_k 2.28974119 

  

Ce+3 + 3X- = CeX3  

log_k 2.28974119 

   

Pr+3 + 3X- = PrX3  

log_k 2.28974119 

  

Nd+3 + 3X- = NdX3  

log_k 2.28974119 

  

Gd+3 + 3X- = GdX3  

log_k 2.28974119 

  

Tb+3 + 3X- = TbX3  

log_k 2.28974119 

  

Dy+3 + 3X- = DyX3  

log_k 2.28974119 

  

Ho+3 + 3X- = HoX3  

log_k 2.28974119 



186 
 

PHREEQC Input File  

  

Er+3 + 3X- = ErX3  

log_k 2.28974119 

  

Tm+3 + 3X- = TmX3 

log_k 2.28974119 

  

Yb+3 + 3X- = YbX3  

log_k 2.28974119 

  

Lu+3 + 3X- = LuX3  

log_k 2.28974119 

   

   

SELECTED_OUTPUT 1 

    -file                  C:\Models\PEST\Fin_Files\SLR1to9_output.dat 

    -reset                 false 

    -simulation true  

    -active true  

    -user_punch true  

  

USER_PUNCH  

    -headings Y La Ce Pr Nd Gd Tb Dy Ho Er Tm Yb Lu 

    -start  

10 PUNCH TOT("Yt") TOT("La") TOT("Ce") TOT("Pr") TOT("Nd") 
TOT("Gd") TOT("Tb") TOT("Dy") TOT("Ho") TOT("Er") TOT("Tm") 
TOT("Yb") TOT("Lu") 

   -end  

   

PRINT  

    -reset  false 

    -exchange               true  

    -headings  true  

    -surface    true  

    -totals              true  

    -selected_output true  

    -warnings 100 

   

SOLUTION 1   

units mol/kgw 

temp 25.00 

pH 6.98 

pE 11.18 

Cl 1.00 

Ba 0.50 

Ca 3.9E-04 

Mg  2.1E-04 

NaX 5.4E-04 

K  1.4E-05 

Al  2.8E-03 

Mn  3.5E-06 

Zn 6.0E-04 
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PHREEQC Input File  

EXCHANGE 1  

NaX 5.50E-04 

KX 1.50E-05 

CaX2 4.00E-04 

MgX2 2.10E-04 

MnX2 4.00E-06 

AlX3 2.83E-03 

ZnX2 6.00E-04 

YtX3 1.69E-06 

LaX3 6.30E-06 

CeX3 4.74E-05 

PrX3 8.20E-07 

NdX3 4.69E-06 

SmX3 1.03E-06 

EuX3 6.30E-07 

GdX3 1.45E-07 

TbX3 2.30E-08 

DyX3 1.21E-07 

HoX3 1.50E-08 

ErX3 4.20E-08 

TmX3 1.50E-09 

YbX3 1.40E-08 

LuX3 1.00E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 2  

NaX 5.00E-04 

KX 1.00E-05 

CaX2 4.00E-04 

MgX2 2.45E-04 

MnX2 4.00E-06 

AlX3 3.23E-03 

ZnX2 6.00E-04 

YtX3 2.00E-06 

LaX3 9.40E-06 

CeX3 6.61E-05 

PrX3 1.32E-06 

NdX3 7.10E-06 

SmX3 1.80E-06 

EuX3 1.20E-06 

GdX3 1.98E-07 

TbX3 3.10E-08 

DyX3 1.68E-07 

HoX3 2.00E-08 

ErX3 5.20E-08 

TmX3 4.00E-09 

YbX3 2.00E-08 

LuX3 1.15E-08 

    -pitzer_exchange_gammas true 

END  
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PHREEQC Input File  

   

USE solution 1  

   

EXCHANGE 3  

NaX 4.00E-04 

KX 9.00E-06 

CaX2 4.00E-04 

MgX2 3.00E-04 

MnX2 5.00E-06 

AlX3 3.67E-03 

ZnX2 6.00E-04 

YtX3 2.50E-06 

LaX3 1.25E-05 

CeX3 8.85E-05 

PrX3 1.80E-06 

NdX3 9.40E-06 

SmX3 2.40E-06 

EuX3 1.70E-06 

GdX3 2.97E-07 

TbX3 4.20E-08 

DyX3 2.11E-07 

HoX3 2.60E-08 

ErX3 7.00E-08 

TmX3 7.00E-09 

YbX3 3.40E-08 

LuX3 1.30E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 4  

NaX 7.00E-04 

KX 2.00E-05 

CaX2 6.00E-04 

MgX2 4.50E-04 

MnX2 1.00E-03 

AlX3 4.00E-03 

ZnX2 6.00E-04 

YtX3 3.30E-06 

LaX3 1.70E-05 

CeX3 1.31E-04 

PrX3 2.30E-06 

NdX3 1.35E-05 

SmX3 3.20E-06 

EuX3 1.90E-06 

GdX3 4.81E-07 

TbX3 6.20E-08 

DyX3 3.09E-07 

HoX3 3.90E-08 

ErX3 9.80E-08 

TmX3 1.05E-08 

YbX3 5.50E-08 
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PHREEQC Input File  

LuX3 1.80E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 5  

NaX 0.0006 

KX 0.000008 

CaX2 0.0004 

MgX2 0.00045 

MnX2 0.0000209 

AlX3 0.004 

ZnX2 0.0006 

YtX3 0.0000034 

LaX3 0.0000184 

CeX3 0.0001514 

PrX3 0.0000026 

NdX3 0.0000142 

SmX3 0.0000036 

EuX3 0.0000026 

GdX3 0.000000583 

TbX3 0.000000072 

DyX3 0.000000377 

HoX3 0.000000046 

ErX3 0.000000109 

TmX3 1.15E-08 

YbX3 0.00000008 

LuX3 0.000000019 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 6  

NaX 7.00E-04 

KX 9.00E-06 

CaX2 4.00E-04 

MgX2 1.00E-05 

MnX2 5.00E-06 

AlX3 4.00E-03 

ZnX2 6.00E-04 

YtX3 3.80E-06 

LaX3 2.18E-05 

CeX3 1.82E-04 

PrX3 3.20E-06 

NdX3 1.98E-05 

SmX3 3.90E-06 

EuX3 3.00E-06 

GdX3 7.02E-07 

TbX3 7.80E-08 

DyX3 4.45E-07 

HoX3 5.20E-08 
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PHREEQC Input File  

ErX3 1.23E-07 

TmX3 1.60E-08 

YbX3 1.14E-07 

LuX3 2.00E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 7  

NaX 7.00E-04 

KX 2.00E-05 

CaX2 4.00E-04 

MgX2 6.00E-04 

MnX2 1.50E-05 

AlX3 4.33E-03 

ZnX2 5.00E-04 

YtX3 4.49E-06 

LaX3 2.53E-05 

CeX3 2.21E-04 

PrX3 4.05E-06 

NdX3 2.42E-05 

SmX3 4.50E-06 

EuX3 3.40E-06 

GdX3 9.01E-07 

TbX3 1.03E-07 

DyX3 5.64E-07 

HoX3 6.40E-08 

ErX3 1.61E-07 

TmX3 1.80E-08 

YbX3 1.31E-07 

LuX3 2.30E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 8  

NaX 6.00E-04 

KX 2.00E-05 

CaX2 4.00E-04 

MgX2 7.00E-04 

MnX2 8.00E-06 

AlX3 5.00E-03 

ZnX2 5.00E-04 

YtX3 5.30E-06 

LaX3 3.02E-05 

CeX3 2.64E-04 

PrX3 4.80E-06 

NdX3 2.83E-05 

SmX3 4.90E-06 

EuX3 3.70E-06 

GdX3 1.10E-06 
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PHREEQC Input File  

TbX3 1.25E-07 

DyX3 6.72E-07 

HoX3 8.15E-08 

ErX3 1.86E-07 

TmX3 2.20E-08 

YbX3 1.69E-07 

LuX3 2.70E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 9  

NaX 7.00E-04 

KX 8.00E-05 

CaX2 4.00E-04 

MgX2 8.50E-04 

MnX2 1.40E-05 

AlX3 5.67E-03 

ZnX2 5.00E-04 

YtX3 6.20E-06 

LaX3 3.34E-05 

CeX3 3.23E-04 

PrX3 5.70E-06 

NdX3 3.36E-05 

SmX3 5.20E-06 

EuX3 4.00E-06 

GdX3 1.42E-06 

TbX3 1.49E-07 

DyX3 8.11E-07 

HoX3 9.90E-08 

ErX3 2.30E-07 

TmX3 2.80E-08 

YbX3 2.15E-07 

LuX3 3.30E-08 

    -pitzer_exchange_gammas true 

END  
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Continued… 

PEST Template File  

DATABASE C:\phreeqc\database\w_data.dat 

EXCHANGE_SPECIES 

  

Yt+3 + 3X- = YtX3  

log_k #k             # 

  

La+3 + 3X- = LaX3  

log_k #k             # 

  

Ce+3 + 3X- = CeX3  

log_k #k             # 

   

Pr+3 + 3X- = PrX3  

log_k #k             # 

  

Nd+3 + 3X- = NdX3  

log_k #k             # 

  

Gd+3 + 3X- = GdX3  

log_k #k             # 

  

Tb+3 + 3X- = TbX3  

log_k #k             # 

  

Dy+3 + 3X- = DyX3  

log_k #k             # 

  

Ho+3 + 3X- = HoX3  

log_k #k             # 

  

Er+3 + 3X- = ErX3  

log_k #k             # 

  

Tm+3 + 3X- = TmX3 

log_k #k             # 

  

Yb+3 + 3X- = YbX3  

log_k #k             # 

  

Lu+3 + 3X- = LuX3  

log_k #k             # 

   

   

SELECTED_OUTPUT 1 

    -file                  C:\Models\PEST\Fin_Files\SLR1to9_output.dat 

    -reset                 false 

    -simulation true  

    -active true  

    -user_punch true  

  

USER_PUNCH  

    -headings Y La Ce Pr Nd Gd Tb Dy Ho Er Tm Yb Lu 
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PEST Template File  

    -start  

10 PUNCH TOT("Yt") TOT("La") TOT("Ce") TOT("Pr") TOT("Nd") 
TOT("Gd") TOT("Tb") TOT("Dy") TOT("Ho") TOT("Er") TOT("Tm") 
TOT("Yb") TOT("Lu") 

   -end  

   

PRINT  

    -reset  false 

    -exchange               true  

    -headings  true  

    -surface    true  

    -totals              true  

    -selected_output true  

    -warnings 100 

   

SOLUTION 1   

units mol/kgw 

temp 25.00 

pH 6.98 

pE 11.18 

Cl 1.00 

Ba 0.50 

Ca 3.9E-04 

Mg  2.1E-04 

NaX 5.4E-04 

K  1.4E-05 

Al  2.8E-03 

Mn  3.5E-06 

Zn 6.0E-04 

   

EXCHANGE 1  

NaX 5.50E-04 

KX 1.50E-05 

CaX2 4.00E-04 

MgX2 2.10E-04 

MnX2 4.00E-06 

AlX3 2.83E-03 

ZnX2 6.00E-04 

YtX3 1.69E-06 

LaX3 6.30E-06 

CeX3 4.74E-05 

PrX3 8.20E-07 

NdX3 4.69E-06 

SmX3 1.03E-06 

EuX3 6.30E-07 

GdX3 1.45E-07 

TbX3 2.30E-08 

DyX3 1.21E-07 

HoX3 1.50E-08 

ErX3 4.20E-08 

TmX3 1.50E-09 

YbX3 1.40E-08 

LuX3 1.00E-08 
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PEST Template File  

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 2  

NaX 5.00E-04 

KX 1.00E-05 

CaX2 4.00E-04 

MgX2 2.45E-04 

MnX2 4.00E-06 

AlX3 3.23E-03 

ZnX2 6.00E-04 

YtX3 2.00E-06 

LaX3 9.40E-06 

CeX3 6.61E-05 

PrX3 1.32E-06 

NdX3 7.10E-06 

SmX3 1.80E-06 

EuX3 1.20E-06 

GdX3 1.98E-07 

TbX3 3.10E-08 

DyX3 1.68E-07 

HoX3 2.00E-08 

ErX3 5.20E-08 

TmX3 4.00E-09 

YbX3 2.00E-08 

LuX3 1.15E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 3  

NaX 4.00E-04 

KX 9.00E-06 

CaX2 4.00E-04 

MgX2 3.00E-04 

MnX2 5.00E-06 

AlX3 3.67E-03 

ZnX2 6.00E-04 

YtX3 2.50E-06 

LaX3 1.25E-05 

CeX3 8.85E-05 

PrX3 1.80E-06 

NdX3 9.40E-06 

SmX3 2.40E-06 

EuX3 1.70E-06 

GdX3 2.97E-07 

TbX3 4.20E-08 

DyX3 2.11E-07 

HoX3 2.60E-08 

ErX3 7.00E-08 
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PEST Template File  

TmX3 7.00E-09 

YbX3 3.40E-08 

LuX3 1.30E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 4  

NaX 7.00E-04 

KX 2.00E-05 

CaX2 6.00E-04 

MgX2 4.50E-04 

MnX2 1.00E-03 

AlX3 4.00E-03 

ZnX2 6.00E-04 

YtX3 3.30E-06 

LaX3 1.70E-05 

CeX3 1.31E-04 

PrX3 2.30E-06 

NdX3 1.35E-05 

SmX3 3.20E-06 

EuX3 1.90E-06 

GdX3 4.81E-07 

TbX3 6.20E-08 

DyX3 3.09E-07 

HoX3 3.90E-08 

ErX3 9.80E-08 

TmX3 1.05E-08 

YbX3 5.50E-08 

LuX3 1.80E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 5  

NaX 0.0006 

KX 0.000008 

CaX2 0.0004 

MgX2 0.00045 

MnX2 0.0000209 

AlX3 0.004 

ZnX2 0.0006 

YtX3 0.0000034 

LaX3 0.0000184 

CeX3 0.0001514 

PrX3 0.0000026 

NdX3 0.0000142 

SmX3 0.0000036 

EuX3 0.0000026 

GdX3 0.000000583 

TbX3 0.000000072 
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PEST Template File  

DyX3 0.000000377 

HoX3 0.000000046 

ErX3 0.000000109 

TmX3 1.15E-08 

YbX3 0.00000008 

LuX3 0.000000019 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 6  

NaX 7.00E-04 

KX 9.00E-06 

CaX2 4.00E-04 

MgX2 1.00E-05 

MnX2 5.00E-06 

AlX3 4.00E-03 

ZnX2 6.00E-04 

YtX3 3.80E-06 

LaX3 2.18E-05 

CeX3 1.82E-04 

PrX3 3.20E-06 

NdX3 1.98E-05 

SmX3 3.90E-06 

EuX3 3.00E-06 

GdX3 7.02E-07 

TbX3 7.80E-08 

DyX3 4.45E-07 

HoX3 5.20E-08 

ErX3 1.23E-07 

TmX3 1.60E-08 

YbX3 1.14E-07 

LuX3 2.00E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 7  

NaX 7.00E-04 

KX 2.00E-05 

CaX2 4.00E-04 

MgX2 6.00E-04 

MnX2 1.50E-05 

AlX3 4.33E-03 

ZnX2 5.00E-04 

YtX3 4.49E-06 

LaX3 2.53E-05 

CeX3 2.21E-04 

PrX3 4.05E-06 

NdX3 2.42E-05 

SmX3 4.50E-06 
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PEST Template File  

EuX3 3.40E-06 

GdX3 9.01E-07 

TbX3 1.03E-07 

DyX3 5.64E-07 

HoX3 6.40E-08 

ErX3 1.61E-07 

TmX3 1.80E-08 

YbX3 1.31E-07 

LuX3 2.30E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 8  

NaX 6.00E-04 

KX 2.00E-05 

CaX2 4.00E-04 

MgX2 7.00E-04 

MnX2 8.00E-06 

AlX3 5.00E-03 

ZnX2 5.00E-04 

YtX3 5.30E-06 

LaX3 3.02E-05 

CeX3 2.64E-04 

PrX3 4.80E-06 

NdX3 2.83E-05 

SmX3 4.90E-06 

EuX3 3.70E-06 

GdX3 1.10E-06 

TbX3 1.25E-07 

DyX3 6.72E-07 

HoX3 8.15E-08 

ErX3 1.86E-07 

TmX3 2.20E-08 

YbX3 1.69E-07 

LuX3 2.70E-08 

    -pitzer_exchange_gammas true 

END  

   

USE solution 1  

   

EXCHANGE 9  

NaX 7.00E-04 

KX 8.00E-05 

CaX2 4.00E-04 

MgX2 8.50E-04 

MnX2 1.40E-05 

AlX3 5.67E-03 

ZnX2 5.00E-04 

YtX3 6.20E-06 

LaX3 3.34E-05 

CeX3 3.23E-04 
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PEST Template File  

PrX3 5.70E-06 

NdX3 3.36E-05 

SmX3 5.20E-06 

EuX3 4.00E-06 

GdX3 1.42E-06 

TbX3 1.49E-07 

DyX3 8.11E-07 

HoX3 9.90E-08 

ErX3 2.30E-07 

TmX3 2.80E-08 

YbX3 2.15E-07 

LuX3 3.30E-08 

    -pitzer_exchange_gammas true 

END  
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Continued… 

PEST Instruction File 

pif @ 

@Y@ @La@ @Ce@ @Pr@ @Nd@ @Gd@ @Tb@ @Dy@ @Ho@ @Er@ @Tm@ @Yb@ @Lu@ 

l1 [o1]19:29 [o2]35:45 [o3]51:61 [o4]67:77 [o5]83:93 [o6]99:109 [o7]115:125 [o8]131:141 [o9]147:157 
[o10]163:17

3 
[o11]179:18

9 
[o12]195:20

5 
[o13]211:22

1 
l1 

[o14]19:29 
[o15]35:45 [o16]51:61 [o17]67:77 [o18]83:93 

[o19]99:10
9 

[o20]115:12
5 

[o21]131:14
1 

[o22]147:15
7 

[o23]163:17
3 

[o24]179:18
9 

[o25]195:20
5 

[o26]211:22
1 

l1 
[o27]19:29 

[o28]35:45 [o29]51:61 [o30]67:77 [o31]83:93 
[o32]99:10

9 
[o33]115:12

5 
[o34]131:14

1 
[o35]147:15

7 
[o36]163:17

3 
[o37]179:18

9 
[o38]195:20

5 
[o39]211:22

1 
l1 

[o40]19:29 
[o41]35:45 [o42]51:61 [o43]67:77 [o44]83:93 

[o45]99:10
9 

[o46]115:12
5 

[o47]131:14
1 

[o48]147:15
7 

[o49]163:17
3 

[o50]179:18
9 

[o51]195:20
5 

[o52]211:22
1 

l1 
[o53]19:29 

[o54]35:45 [o55]51:61 [o56]67:77 [o57]83:93 
[o58]99:10

9 
[o59]115:12

5 
[o60]131:14

1 
[o61]147:15

7 
[o62]163:17

3 
[o63]179:18

9 
[o64]195:20

5 
[o65]211:22

1 
l1 

[o66]19:29 
[o67]35:45 [o68]51:61 [o69]67:77 [o70]83:93 

[o71]99:10
9 

[o72]115:12
5 

[o73]131:14
1 

[o74]147:15
7 

[o75]163:17
3 

[o76]179:18
9 

[o77]195:20
5 

[o78]211:22
1 

l1 
[o79]19:29 

[o80]35:45 [o81]51:61 [o82]67:77 [o83]83:93 
[o84]99:10

9 
[o85]115:12

5 
[o86]131:14

1 
[o87]147:15

7 
[o88]163:17

3 
[o89]179:18

9 
[o90]195:20

5 
[o91]211:22

1 
l1 

[o92]19:29 
[o93]35:45 [o94]51:61 [o95]67:77 [o96]83:93 

[o97]99:10
9 

[o98]115:12
5 

[o99]131:14
1 

[o100]147:1
57 

[o101]163:1
73 

[o102]179:1
89 

[o103]195:2
05 

[o104]211:2
21 

l1 
[o105]19:29 

[o106]35:4
5 

[o107]51:6
1 

[o108]67:7
7 

[o109]83:9
3 

[o110]99:1
09 

[o111]115:1
25 

[o112]131:1
41 

[o113]147:1
57 

[o114]163:1
73 

[o115]179:1
89 

[o116]195:2
05 

[o117]211:2
21 

l1 
[o118]19:29 

[o119]35:4
5 

[o120]51:6
1 

[o121]67:7
7 

[o122]83:9
3 

[o123]99:1
09 

[o124]115:1
25 

[o125]131:1
41 

[o126]147:1
57 

[o127]163:1
73 

[o128]179:1
89 

[o129]195:2
05 

[o130]211:2
21 
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Continued… 

PEST Control File     
  

pcf  
     

* control data      
restart  estimation      
  1  130  1  0  1       
  1  1  single point  1  0  0      
  5.0  2.0  0.3  0.03  10      
  3.0  3.0  0.001  0      
0.1  

     
  30  0.01  3  3  0.01  3      
  1  1  1   

     
* parameter groups      
k   relative  0.01  0.0  switch  2.0  parabolic    
* parameter data       
k  none relative  2.300  1.000000E-1   1.000000E+1  k  1.0000   0.0000  1 

* observation groups      
obsgroup  

     
* observation data      
o1                      0.00000      1.0  obsgroup    
o2                      0.00000      1.0  obsgroup    
o3                      0.00000      1.0  obsgroup    
o4                      0.00000      1.0  obsgroup    
o5                      0.00000      1.0  obsgroup    
o6                      0.00000      1.0  obsgroup    
o7                      0.00000      1.0  obsgroup    
o8                      0.00000      1.0  obsgroup    
o9                      0.00000      1.0  obsgroup    
o10                     0.00000      1.0  obsgroup    
o11                     0.00000      1.0  obsgroup    
o12                     0.00000      1.0  obsgroup    
o13                     0.00000      1.0  obsgroup    
o14                    1.400000E-06  1.0  obsgroup    
o15                    5.100000E-06  1.0  obsgroup    
o16                    3.960000E-05  1.0  obsgroup    
o17                    7.000000E-07  1.0  obsgroup    
o18                    3.900000E-06  1.0  obsgroup    
o19                    1.120000E-07  1.0  obsgroup    
o20                    1.800000E-08  1.0  obsgroup    
o21                    9.700000E-08  1.0  obsgroup    
o22                    1.200000E-08  1.0  obsgroup    
o23                    3.100000E-08  1.0  obsgroup    
o24                    1.000000E-09  1.0  obsgroup    
o25                    1.100000E-08  1.0  obsgroup    
o26                    7.500000E-09  1.0  obsgroup    
o27                    1.600000E-06  1.0  obsgroup    
o28                    7.100000E-06  1.0  obsgroup    
o29                    5.240000E-05  1.0  obsgroup    
o30                    1.000000E-06  1.0  obsgroup    
o31                    5.400000E-06  1.0  obsgroup    
o32                    1.590000E-07  1.0  obsgroup    
o33                    2.400000E-08  1.0  obsgroup    
o34                    1.290000E-07  1.0  obsgroup    
o35                    1.500000E-08  1.0  obsgroup    
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PEST Control File     
  

o36                    4.000000E-08  1.0  obsgroup    
o37                    3.000000E-09  1.0  obsgroup    
o38                    1.600000E-08  1.0  obsgroup    
o39                    8.000000E-09  1.0  obsgroup    
o40                    1.800000E-06  1.0  obsgroup    
o41                    9.100000E-06  1.0  obsgroup    
o42                    6.380000E-05  1.0  obsgroup    
o43                    1.600000E-06  1.0  obsgroup    
o44                    6.700000E-06  1.0  obsgroup    
o45                    2.080000E-07  1.0  obsgroup    
o46                    2.900000E-08  1.0  obsgroup    
o47                    1.520000E-07  1.0  obsgroup    
o48                    1.800000E-08  1.0  obsgroup    
o49                    5.000000E-08  1.0  obsgroup    
o50                    5.000000E-09  1.0  obsgroup    
o51                    2.100000E-08  1.0  obsgroup    
o52                    9.000000E-09  1.0  obsgroup    
o53                    2.200000E-06  1.0  obsgroup    
o54                    1.130000E-05  1.0  obsgroup    
o55                    8.660000E-05  1.0  obsgroup    
o56                    1.600000E-06  1.0  obsgroup    
o57                    9.000000E-06  1.0  obsgroup    
o58                    3.120000E-07  1.0  obsgroup    
o59                    4.100000E-08  1.0  obsgroup    
o60                    2.130000E-07  1.0  obsgroup    
o61                    2.500000E-08  1.0  obsgroup    
o62                    6.600000E-08  1.0  obsgroup    
o63                    7.000000E-09  1.0  obsgroup    
o64                    3.600000E-08  1.0  obsgroup    
o65                    1.100000E-08  1.0  obsgroup    
o66                    2.400000E-06  1.0  obsgroup    
o67                    1.280000E-05  1.0  obsgroup    
o68                    1.070000E-04  1.0  obsgroup    
o69                    1.900000E-06  1.0  obsgroup    
o70                    1.030000E-05  1.0  obsgroup    
o71                    4.040000E-07  1.0  obsgroup    
o72                    4.900000E-08  1.0  obsgroup    
o73                    2.580000E-07  1.0  obsgroup    
o74                    3.200000E-08  1.0  obsgroup    
o75                    7.600000E-08  1.0  obsgroup    
o76                    8.000000E-09  1.0  obsgroup    
o77                    5.200000E-08  1.0  obsgroup    
o78                    1.200000E-08  1.0  obsgroup    
o79                    2.800000E-06  1.0  obsgroup    
o80                    1.530000E-05  1.0  obsgroup    
o81                    1.280000E-04  1.0  obsgroup    
o82                    2.300000E-06  1.0  obsgroup    
o83                    1.390000E-05  1.0  obsgroup    
o84                    5.050000E-07  1.0  obsgroup    
o85                    5.000000E-08  1.0  obsgroup    
o86                    3.090000E-07  1.0  obsgroup    
o87                    3.600000E-08  1.0  obsgroup    
o88                    8.900000E-08  1.0  obsgroup    
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PEST Control File     
  

o89                    1.100000E-08  1.0  obsgroup    
o90                    7.900000E-08  1.0  obsgroup    
o91                    1.200000E-08  1.0  obsgroup    
o92                    3.100000E-06  1.0  obsgroup    
o93                    1.740000E-05  1.0  obsgroup    
o94                    1.530000E-04  1.0  obsgroup    
o95                    2.800000E-06  1.0  obsgroup    
o96                    1.640000E-05  1.0  obsgroup    
o97                    6.220000E-07  1.0  obsgroup    
o98                    6.900000E-08  1.0  obsgroup    
o99                    3.860000E-07  1.0  obsgroup    
o100                   4.400000E-08  1.0  obsgroup    
o101                   1.100000E-07  1.0  obsgroup    
o102                   1.200000E-08  1.0  obsgroup    
o103                   8.700000E-08  1.0  obsgroup    
o104                   1.400000E-08  1.0  obsgroup    
o105                   3.500000E-06  1.0  obsgroup    
o106                   1.990000E-05  1.0  obsgroup    
o107                   1.770000E-04  1.0  obsgroup    
o108                   3.200000E-06  1.0  obsgroup    
o109                   1.880000E-05  1.0  obsgroup    
o110                   7.330000E-07  1.0  obsgroup    
o111                   8.100000E-08  1.0  obsgroup    
o112                   4.260000E-07  1.0  obsgroup    
o113                   5.200000E-08  1.0  obsgroup    
o114                   1.250000E-07  1.0  obsgroup    
o115                   1.400000E-08  1.0  obsgroup    
o116                   1.050000E-07  1.0  obsgroup    
o117                   1.600000E-08  1.0  obsgroup    
o118                   3.800000E-06  1.0  obsgroup    
o119                   2.100000E-05  1.0  obsgroup    
o120                   1.990000E-04  1.0  obsgroup    
o121                   3.600000E-06  1.0  obsgroup    
o122                   2.150000E-05  1.0  obsgroup    
o123                   8.850000E-07  1.0  obsgroup    
o124                   9.100000E-08  1.0  obsgroup    
o125                   4.800000E-07  1.0  obsgroup    
o126                   5.900000E-08  1.0  obsgroup    
o127                   1.410000E-07  1.0  obsgroup    
o128                   1.700000E-08  1.0  obsgroup    
o129                   1.250000E-07  1.0  obsgroup    
o130                   1.790000E-08  1.0  obsgroup    
* model command line      
C:\phreeqc\phreeqc.exe C:\Models\PEST\Fin_Files\in.dat C:\Models\PEST\Fin_Files\in.dat.out 
C:\phreeqc\database\w_data.dat  

* model input/output      
C:\PEST\temp.tpl C:\Models\PEST\Fin_Files\in.dat   
C:\PEST\inst.ins C:\Models\PEST\Fin_Files\SLR1to9_output.dat  

Table C.2 Pest input files to model the REE batch dataset. 
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C.3 Modelling Soil Column Experiments in TRN 

 
 The TRN input files for simulation of the barium chloride columns are shown in this section. 

Six input files were required to model the barium chloride columns. These are: 

 

 trn.ini     defines the global parameters 

 box.dat     defines cell data 

 qIn.dat    defines inflow solutions 

 element.dat   defines chemical elements  

 exch.ini    defines ion exchange species 

 phase.ini    defines equilibrium phases  

 
Two input solutions were required (created in PHREEQC) to run TRN.  These are: 

 

 005_bacl.sol   file name of aqueous inflow solution  

 CEC.sol   file name for initial mobile water  

 
trn.ini   Description 

BOXN 10  total number of cells 

DELT 1.57 // h time step 

T_END 400 // h // h simulation time 

AREA 0.001256 // m^2 cross section of column 

DISP 1  0-without dispersion, 1-with dispersion 

REAC 0  0-without kinetics, 1-with kinetics 

PHAS 1  0-without mineral equilibrium, 1 with 
mineral equilibrium 

EXCH_TYP 3 
// 1-resin,  2-soil, 3-resin-
cation 

 

EXCH_POR 2 
// 0-mobile, 1-stagnant, 2-
both 

 

DBL_POR 1  0-single porosity, 1-dual porosity 

MIX_VOL 0  0.00785  // in m3 volume of upstream mix cell 

DILU 0  0  0 // on/off  diluT 1st_dilu_box  

RESIN_FLOW 0 494 3  
// on/off  nR_steps  
NR_cells  mix_cells 

 

MIX_SOL 
Pink2_eqREE_conc.s
ol 

 initial water in upstream mix (file name) 

RESIN_SOL 
Pink2_eqREE_conc.s
ol 

  

EXCH_DAVIES  1 // activity correction for IX  

ICHM 1  0-without PHREEQC, 1-with PHREEQC 

KCHM 1  increment factor for PHREEQC calculations 

KOUT 1  increment factor for output in cM_*.txt and 
cP_*txt 

KOUX 1  increment factor for output in profile 
directories 

KOUB 0   

UNSATU 0   

ANALY 0   

ELEM_DO 0 
// external Dissolved 
Oxygen Do 

 

CTOT 150  0  0 // meq/L plus assym_factor total ion exchange capacity 

CHRG pH  parameter for chage balance adjustment for 
t>0 
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trn.ini   Description 

CHRG_IN pH  parameter for chage balance adjustment for 
t=0 

UNIT 2 // -2 mg/L , +2 mmol/L  

DISP_PHRE 1   

PRN_MASS_UNIT 3  units of mass balance elements 

PRN_MASS_EBOX 3 // number of boxes number of cells in mass balance output 

PRN_MASS_FULL 0 // 1 = output per disp-step 
type of mass output (0-standard, 1-for each 
dispersion step) 

PRN_END_CELLS 0 // solu-output of all cells  

PRN_BOX_DAT_REVER
SE 

0 
// print box.dat in reverse 
order 

 

SI_ONLY_PORE 0 // makeshift for column tests  

PHAS_TO_PORE 0   

FILL_AND_WAIT 0  0 // fill, timesteps after fill  

IX_NO_EQUILIBRATE 1 // no IX equilibrium at t=0  

ELMB_NB 8  number of elements for mass balance 

ELMB_01 La  name of first mass balance element 

ELMB_02 Ce  name of second mass balance element 

ELMB_03 Nd  name of third mass balance element 

ELMB_04 Dy  name of fourth mass balance element 

ELMB_05 Cl  name of fifth mass balance element 

ELMB_06 Ba  name of sixth mass balance element 

ELMB_07 Al  name of seventh mass balance element 

ELMB_08 Na  name of last mass balance element 

REDX_PAIR 0 // redox Fe(2)/Fe(3)  

PHRE_SHOW 0 // -1 no output time step for PHREEQC-input check 

FOUR_DIAG 1   

PE_FIX 0  0 // for pore water 1-without pe changes during reactions 

PE_MIN 0  0 // pe_Min = par - pH parameter to fix minimum pe value 

PE_MAX 0  0 // pe_Max = par      parameter to fix maximum pe value 

TIME_DIGITS 6   

 

box.dat 
  

Description  

box 1 
 

number of first cell in the section 

name A 
 

name of the section 

dx 0.015 // m cell length 

eps 0.1 // m^3/m^3 porosity for mobile phase 

epsP 0.5 // m^3/m^3 porosity for stagnant phase 

diffu 0 // m^2/s effective diffusion coefficient 

disp 0.001 // m longitudinal dispersivity 

alpha 0.055 // 1/h exchange rate between between mobile and stagnant water 

cell CEC.sol 
 

file name for initial mobile water  

 

CEC.sol  

SOLUTION 1   

units mol/kgw 

temp 2.50E+01 

pH 6.00E+00 

pE 4.00E+00 

Ca 3.40E-05 

Mg 9.00E-06 

Na 6.50E-05 

K 8.80E-05 

S(6) 3.00E-06 
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CEC.sol  

Cl 7.40E-05 

Fe 1.79E-07 

Al 5.00E-06 

Mn 2.17E-07 

N(5) 1.00E-06 

P 1.00E-06 

Ni 1.70E-07 

Zn 2.60E-06 

Cu 1.57E-07 

Yt 1.12E-08 

La 1.02E-08 

Ce 2.55E-05 

Pr 7.10E-09 

Nd 6.93E-09 

Sm 8.29E-09 

Eu 6.86E-09 

Gd 2.22E-08 

Tb 6.29E-09 

Dy 6.15E-09 

Ho 6.06E-09 

Er 5.98E-09 

Tm 5.92E-09 

Yb 5.78E-09 

Lu 5.72E-09 

  

EXCHANGE 1   

QH 0.00E+00 

QNa 4.74E-04 

QK 7.98E-05 

QNH4 0.00E+00 

Q2Ca 1.58E-04 

Q2Ba 0.00E+00 

Q2Mg 1.03E-04 

Q2Mn 1.40E-06 

Q2Fe 0.00E+00 

Q3Fe 0.00E+00 

Q3Al 7.61E-04 

Q3Yt 4.31E-07 

Q3La 1.83E-06 

Q3Ce 1.04E-05 

Q3Pr 1.88E-07 

Q3Nd 1.10E-06 

Q3Sm 9.36E-06 

Q3Eu 3.82E-06 

Q3Gd 1.70E-08 

Q3Tb 5.00E-09 

Q3Dy 2.60E-08 

Q3Ho 3.00E-09 

Q3Er 8.00E-09 

Q3Tm 2.00E-09 

Q3Yb 2.00E-09 

Q3Lu 2.00E-09 
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CEC.sol  

END  

 

qIn.dat     Description  

box FIRST  name of first cell 

Typ 0 \\ should not be changed  

t0 0 \\ h  start of time period 

q0 1 \\ should not be changed inflow scaling at t0 

t1 100000  end of time period 

q1 1 \\ should not be changed inflow scaling at t1 

nmCX 005_bacl.sol   file name for aqueous inflow solution 

 

005_bacl.sol    

SOLUTION 1    

units mol/kgw  

temp 2.50E+01  

pH 6.97E+00  

pE 1.06E+01  

Cl 1.00E-01  

Ba 5.00E-02  

O(0) 2.42E-16  

END    

 

phas.ini  

Gypsum 0 

Calcite 0 

Dolomite 0 

Fe(OH)3(a) 0 

Al(OH)3(a) 1 

Gibbsite 1 

Brucite 0 

Kaolinite 1 

Siderite 0 

Silicagel 0 

Coffinite 0 

Schwertmann_KT(e) 0 

Schwertmann_Yu(e) 0 

Schwertmann_Bh(e) 0 

Schoepite 0 

Rutherfordine 0 

Uraninite(c) 0 

UO2(a) 0 

Becquerelite(e) 0 

Soddyite(e) 0 
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Continued… 

element.ini  

BDAT DATA_BASE\w_data.dat 

Ca 1  0  0  0  

Mg 1  0  0  0 

Na 1  0  0  0 

K 1  0  0  0  

S(6) 1  0  0  0  

C(4) 0  0  0  0 

Cl 1  0  0  0  

Fe(2) 1  0  0  0  

Fe(3) 0  0  0  0 

Fe 1  0  0  0  

Al 1  0  0  0 

Mn 1  0  0  0 

Ba 1  0  0  0  

U 0  0  0  0 

U(4) 0  0  0  0 

U(6) 0  0  0  0 

F 0  0  0  0 

C(-4) 0  0  0  0 

S(-2) 0  0  0  0 

O(0) 1  0  0  0  

Sc 1  0  0  0  

Yt 1  0  0  0  

P 0  0  0  0 

Si 1  0  0  0 

Cd 0  0  0  0 

Mo 0  0  0  0 

Zr 0  0  0  0 

La 1  0  0  0  

Ce 1  0  0  0  

Pr 1  0  0  0  

Nd 1  0  0  0  

Sm 1  0  0  0  

Eu 1  0  0  0  

Gd 1  0  0  0  

Tb 1  0  0  0  

Dy 1  0  0  0  

Ho 1  0  0  0  

Er 1  0  0  0  

Tm 1  0  0  0  

Yb 1  0  0  0  

Lu 1  0  0  0  

Y 1  0  0  0  

Table C.3 Input files for TRN calculations..  
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C.4 Modelling Water Flow in HYDRUS 1-D 

 
HYDRUS 1-D Input 

Main Processes   

Water Flow  

Solute Transport  

Heat Transport  

Root Water Uptake  

CO2 Transport   

  

Geometry Information  

Length Units m 

Number of Soil Materials 5 

Number of Layers for Mass Balances  5 

Decline from Vertical Axes  1 

Depth of the Soil Profile  6 

  

Time Information  

Time Units  Days 

Initial Time 0 

Final Time 400 

Initial Time Step 0.001 

Minimum Time Step 1.00E-05 

Maximum Time Step  10 

  

Print Information   

T-level Information  

Every n time steps 1 

Print at Regular Time Interval  

Screen Output  

Print Fluxes (instead of Temp) for Observation Nodes  

Hit Enter at End?  

Number of Print Times  10 

  

Iteration Criteria   

Maximum Number of Iterations 10 

Water Content Tolerance 0.001 

Pressure Head Tolerance [m] 0.01 

Lower Optimal Iteration Range 3 

Upper Optimal Iteration Range 7 

Lower Time Step Multiplication Factor 1.3 

Upper Time Step Multiplication Factor 0.7 

Lower Limit of the Tension Interval [m] 1.00E-08 

Upper Limit of the Tension Interval [m] 100 

  

Soil Hydraulic Model   

van Genuchten-Mualem  

Modified van Genuchten  

Brooks-Corey  

Kosugi (log-normal)  

Dual-porosity (Durner, dual van Genuchten - Mualem)  

Dual-porosity (mobile-immobile, water c. mass transfer)  

Dual-porosity (mobile-immobile, head mass transfer)  
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Dual-permeabilty (Gerke and van Genuchten, 1993)  

Look-up Tables  

No Hysteresis  

Hysteresis in retention curve  

Hysteresis in retention curve and conductivity  

Hysteresis in retention curve (no pumping, Bob Lenhard)  

  

Water Flow Parameters  see Table 6.1 

  

Water Flow Boundary Conditions   

Upper Boundary Condition  

     Constant Pressure Head  

     Constant Flux  

     Atmospheric BC with Surface Layer  

     Atmospheric BC with Surface Run Off  

     Variable Pressure Head  

     Variable Pressure Head/Flux  

Lower Boundary Condition   

     Constant Pressure Head  

     Constant Flux  

     Variable Pressure Head  

     Variable Flux  

     Free Drainage  

     Deep Drainage  

     Seepage Face  

     Horizontal Drains  

Initial Condition  

     In Pressure Heads  

     In Water Contents    

Table C.4 HYDRUS 1-D inputs to simulate water flow through a 6 m laterite. 
 


