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Abstract 

Gas-liquid bubbly flows exist in many engineering processes. However, limitations in 

understanding prevent the optimal design and operation of multiphase equipment. The 

bubble size distribution is a key parameter in such flows as it governs the interfacial area 

and the rate of exchange of mass, momentum and energy between the phases. Evolution 

of the bubble population is to a large extent driven by the coalescence and breakup of 

bubbles. Due to the lack of experimental studies of these phenomena, accurate 

predictions from numerical models are of value in improving understanding, and for use 

in developing engineering models. The work described furthers our insight of and ability 

to predict bubbly flows by combining large eddy simulation and Lagrangian bubble 

tracking. Horizontal and vertical channel flows of water over a range of shear Reynolds 

numbers and air bubble diameters are considered. Coalescence and breakup are favoured 

in upflows, with high turbulence levels impacting bubble interaction. Coalescence is 

dominant at low turbulence levels, and increases with decreasing bubble size, whereas 

breakup is favoured at high turbulence levels. The breakup of air bubbles, under the flow 

conditions studied, is almost negligible. The simulations are therefore extended to 

bubbles of refrigerant R134a, with a considerably lower surface tension than air bubbles, 

with significant levels of breakup detected at high Reynolds numbers. The investigation 

is a novel contribution to the literature and provides a comprehensive study of next 

generation predictive techniques. The model developed can predict microbubble 

behaviour in turbulent flows up to the level of four-way coupling, where inter-bubble 

collisions, coalescence and breakup are accounted for. Its application extends existing 

knowledge of these flows, including the effect of bubbles on the carrier fluid. Overall, the 

tool developed and the understanding generated are of value to industry in allowing the 

design of more efficient flow processes.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Dispersed multiphase flows, where discrete elements in the form of bubbles, droplets or 

particles are transported within a continuous phase fluid, occur in many natural and 

industrial processes. Depending on the nature of the continuous and dispersed phases, 

several classes can be distinguished (Balachandar and Eaton, 2010; Zhou, 2018). Most 

commonly considered are two-phase flows such as gas-solid flows (dust storms in nature, 

gas-fluidised beds, pneumatic conveying of solids in industry), see, for example, Mudde 

(2005). Others are liquid-solid (sediment transport in rivers, liquid-fluidised beds, 

stirred vessels, slurry flows), see Christopher (2005), and gas-liquid flows (gas bubbles 

in boiling flows, fluidised bed and stirred reactors, evaporators, heat exchangers, in 

cavitation, or liquid drops in rainfall, atomization and sprays, inkjet printing, oil/gas 

transport in pipelines, uptake of greenhouse gases by the ocean), as considered by 

Thorpe (1982), Molin et al. (2012) and Mudde (2005). However, many flows also involve 

three or more phases, such as gas-liquid-solid flows (transport and treatment of sewage) 

and flows with several types of fluids (transport of oil, gas and water in pipelines) or 

particles (multimodal particle size distribution), see Lee et al. (2014). The wide range of 

natural phenomena and industrial processes that can benefit from an increased 

understanding of multiphase flows is evident from these examples. 

In this thesis, only gas-liquid flows are considered. Gas-liquid flow is the most complex of 

the classes of multiphase flows because it combines the characteristics of a deformable 

interface with those of a compressible phase (Hewitt, 2011). In addition, the interfacial 

configurations in gas-liquid two-phase flows are very complicated, since there exists heat 

and mass transfer between the phases, and the interface itself can vary over a wide range 

of length scales. For a chosen flow configuration (horizontal, vertical or inclined 

orientation), and for given fluids fed into the system at know flow rates, different flow 

regimes or flow pattern exist in gas-liquid flows (Taitel et al., 1980; Ren et al., 2017). The 

typical flow regimes in a horizontal pipe or duct flow are shown in Figure 1.1. Here, 
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gravity acts normal to the flow direction, and therefore separation of the phases occurs 

due to gravitational settling. The heavier phase is more likely to be found in the bottom 

region of the flow domain, resulting in the axial symmetry of the flow being destroyed. 

The respective flow regimes are: 

i.Dispersed bubble flow: the bubbles are dispersed in the liquid continuum (though there 

is some separation due to gravity as illustrated); 

ii.Annular dispersed flow: the liquid flows on the wall of the tube as a film (with some liquid 

entrained in the core) and the gas flows in the centre; 

iii.Elongated bubble flow: there are large bubbles flowing near the top of the tube; 

iv.Slug flow: very large waves are present in the stratified layer which touch the top of the 

tube and form a liquid slug which passes rapidly along the channel; 

v.Stratified flow: where gravitational separation is complete; and 

vi.Stratified-wavy flow: which occurs with an increase in the gas velocity. 

 

Figure 1.1 Gas-liquid flow regimes in horizontal pipes. Adapted from Bratland (2010). 

Vertical flow can be either a downflow, where the flow is moving in the same direction as 

the gravity, or an upflow, where the flow moves against gravity. The flow regimes 

occurring in vertical flows are shown in Figure 1.2 and are similar to those in horizontal 

flows, except for the absence of stratification driven by gravity. The difference between 

(i) Dispersed bubble flow  (ii) Annular flow with droplets 

(iii) Elongated bubbly flow  (iv) Slug flow 

(v) Stratified flow   (vi) Stratified wavy flow 
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these two kinds of vertical flows is mainly due to the buoyancy force, which acts either 

with or against the flow of fluid depending on its direction of flow. The gas, which is the 

lighter phase, moves faster than the liquid in the case of upflow. In the case of downflow, 

the buoyancy force acts in the opposite direction and the liquid flows faster than the gas. 

 

Figure 1.2 Gas-liquid flow regimes in vertical pipes. Adapted from Bratland (2010). 

Following the numerous flow regimes that exist, many fluid mechanics practitioners have 

concluded that, although theoretically possible, it is simply too difficult to solve all the 

two-phase flow problems that using classical methods (Delnoij, 2001). To circumvent 

these challenges, the flow distribution classifications in Figure 1.1 and Figure 1.2 are 

adopted and the main characteristics of each distinct flow pattern are then studied 

separately. In this thesis, therefore, the focus is on dispersed bubbly flow, also commonly 

referred to simply as gas-liquid bubbly flow. Gas-liquid bubbly flow, therefore, is a two-

phase flow where gas bubbles are dispersed or suspended in a liquid continuum. 

Due to the widespread nature and importance of gas-liquid bubbly flows in industrial 

processes, improvement in the efficiency of unit operations (e.g. bubble columns, 

atomization and sprays, stirred reactors, etc.) which employ bubbly flows has always 

been a goal for engineers. Over time, many studies have been published in the literature 

concerning the design, scale-up and performance enhancement of these unit operations, 

e.g. see McCabe et al. (1993), Perry and Green (2008), and Coulson et al. (1978).  

With the aim of enhancing our understanding of the physics of bubbly flows, extensive 

experimental investigations have been performed over the years (Liu and Bankoff, 1993; 
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Serizawa et al., 1975; Descamps et al., 2008; Xu et al., 2012; Lance et al., 1996; Colin et al., 

2012; Pitsch, 2006). However, experiments are expensive and the level of detail 

achievable is limited by the scale of the unit operation and the availability of high-

resolution measurement techniques. For example, non-intrusive imaging techniques are 

limited by the sheer number of bubbles present at a high void fractions. Additionally, the 

measurement of flow initial and boundary conditions, and of phenomena such as bubble 

coalescence and breakup, is challenging. In view of the limitations in available 

experimental measurements, industrial applications of gas-liquid dispersed flows have 

generally been based on empirical and semi-empirical correlations derived with 

dimensional analysis from measurements of bulk flow quantities. These correlations are 

usually not sufficiently robust, however, since they are based on global process 

parameters and are usually only valid for a specific unit operation and for a limited range 

of operating conditions. One way to overcome some experimental limitations is the use 

of numerical simulation using computational fluid dynamics (CFD). Once properly 

validated, CFD can provide valuable insight into the physics of bubbly flows and support, 

together with experimental data, improvements in the design and operation of 

multiphase flow equipment. 

Over the last few decades, along with advancements in high-performance computing and 

modelling software for multiphase flows, CFD has become a powerful tool for use by 

engineers and scientists (Delnoij et al., 1997; Bini and Jones, 2008; Cinosi et al., 2014; 

Afkhami et al., 2015; Schwarzkopf et al., 2011; Prosperetti and Tryggvason, 2009). 

Interestingly, CFD offers several advantages in terms of time, cost and complexity when 

compared to empirical and semi-empirical approaches. CFD allows the acquisition of a 

priori information concerning the unit operations of interest, e.g. determining the 

limiting factors for the performance of a reactor, or calculating the optimum height-to-

diameter ratio of a full-scale bubble column (Grube, 2015). In addition, CFD simulations 

of high accuracy and fine spatial and temporal resolution are increasingly utilised for 

fundamental studies that aims at gaining a better understanding of the underlying 

physics of multiphase flows. In doing so, it is possible to explore the influence of a specific 

phenomenon (i.e. sensitivity studies) on the total performance of the system (e.g. the 

influence of gas volume fraction, or bubble breakup and coalescence, on process 

parameters). However, although time-dependent, three-dimensional simulations with a 
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sophisticated level of detail are feasible at the present time (Sungkorn, 2011), gas-liquid 

bubbly flows are intrinsically complex and have many modelling issues due to their 

multiscale nature (Mudde, 2005). 

For dispersed multiphase flows, three kinds of modelling approach can generally be 

identified based on the spatial and temporal resolution of the model (Deen et al., 2004; 

Delnoij, 2001). These include: (i) the averaged Eulerian-Eulerian approach (also called 

the two-fluid model), (ii) the Eulerian-Lagrangian intermediate level of modelling and 

(iii) interface tracking, where all the interface scales are fully resolved (Dhotre et al., 

2013; Fraga et al., 2016; Sungkorn et al., 2012). For the engineering modelling of large-

scale industrial units (e.g. reactors), which may contain hundreds of millions of bubbles, 

the averaged Eulerian-Eulerian approach is typically used due to its relatively low 

computational cost (Gruber et al., 2013). This modelling approach treats both phases as 

interacting continua, which are coupled with closure models for interphase exchanges of 

mass, momentum and energy. However, the Eulerian-Eulerian approach suffers from a 

lack of detail at the bubble level (Colombo and Fairweather, 2016), making direct 

modelling of the details of processes occurring at this scale impossible (Dhotre et al., 

2013). 

The Eulerian-Lagrangian approach tracks each bubble individually as a point, i.e. only the 

centre of the bubble is tracked, but its volume is considered with respect to the 

displacement of the surrounding fluid phase (Sungkorn et al., 2012). Here, the trajectory 

of each individual bubble is tracked by solving Newton’s second law of motion, 

accounting for the forces acting on the bubbles. In contrast, the continuous phase is 

modelled using an Eulerian approach. At this intermediate level of modelling, the 

Eulerian-Lagrangian approach offers a more detailed description of multiphase flow 

processes, and is, therefore, widely used (Fraga et al., 2016; Gruber et al., 2013; Lain et 

al., 2002; Lau et al., 2014; Mallouppas and van Wachem, 2013; Pang et al., 2010; Shams et 

al., 2011; Sommerfeld et al., 2003; Sungkorn et al., 2012; Vreman et al., 2009; Xue et al., 

2017; Subramaniam, 2013). Although the computational cost of tracking a large number 

of bubbles is high, several studies have shown that Eulerian-Lagrangian models are 

physically more realistic than those based on the Eulerian-Eulerian approach (Breuer and 

Alletto, 2012). Hence, the Eulerian-Lagrangian method is preferable for detailed studies 

of the hydrodynamics of bubbly flows, including bubble coalescence and breakup (Dhotre 



28 

 

et al., 2012; Gruber et al., 2013; Sommerfeld et al., 2003; Sungkorn et al., 2012; Xue et al., 

2017). 

Interfacial exchange and interactions between the phases can be entirely resolved if the 

position and shape of each interface structure in the flow is known with accuracy. This is 

achieved by interface tracking models that explicitly track the interface of each individual 

bubble. Examples are the volume-of-fluid approach of Hirt and Nichols (1981) and the 

front tracking approach of Unverdi and Tryggvason (1992) and Tryggvason et al. (2001). 

In these models, the continuous fluid phase is computed in an Eulerian framework. 

However, these approaches are still restricted to single bubbles or a few interacting 

bubbles due to their excessive computational requirements (Deen et al., 2004). 

Additional details on the modelling methods for multiphase flows are provided in 

Chapter 2 of this thesis. 

Once the method to treat the dispersed phase is defined, the flow and turbulence fields in 

the continuous phase can be predicted with different approaches, namely direct 

numerical simulation (DNS), large-eddy simulation (LES) and Reynolds-averaged Navier-

Stokes (RANS) models. In DNS, all the turbulent scales are numerically solved (Dabiri and 

Tryggvason, 2015). In LES, instead, only the largest and most energetic eddies are 

resolved, while the impact of the small-scale turbulence structures on the flow field is 

modelled by means of a sub-grid scale model. In RANS, the entire turbulence spectrum is 

modelled and only the time-averaged flow field is resolved (Fraga et al., 2016). 

In view of their relatively low computational cost, RANS models are the most commonly 

employed in industry (Lain et al., 2002), often with turbulence models based on the 

isotropic, linear eddy-viscosity assumption. Therefore, these models have clear 

limitations in most flow conditions and are generally not fully equipped to account for 

unsteadiness in the flow. Even at a low Reynolds number of the continuous phase, the 

dispersed phase induces significant turbulence of an anisotropic nature, hence violating 

the isotropic assumption on which many RANS turbulence closure models are based 

(Dhotre et al., 2013). On the other hand, DNS is the most accurate approach to predict 

gas-liquid bubbly flow dynamics. However, the high computational cost makes it 

impracticable for practical engineering problems involving high Reynolds number flows. 

At the present time, DNS is most useful for fundamental research on the physics of 
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multiphase interactions (Molin et al., 2012), or for producing highly accurate solutions 

for benchmark and validation of less accurate approaches in the absence of appropriate 

experimental data. In view of this, LES has received great attention in recent years as a 

compromise between accuracy and applicability. LES with proper modelling of the sub-

grid scale (SGS), and its impact on bubble dispersion, can reproduce the results of DNS of 

turbulent two-phase flows with reasonable accuracy and improved computational 

efficiency (Delnoij et al., 1997; Deen et al., 2001; van den Hengel et al., 2005; Lau et al., 

2014; Bini and Jones, 2008; Shams et al., 2011; Yamamoto et al., 2001). 

   

 

Figure 1.3 Some of the most important and generally accepted interactions between the 

different phases. 

The Eulerian-Lagrangian method is adopted in this thesis. The method is the most 

appropriate considering the range of bubble sizes investigated in this work (hundreds of 

microns in diameter and comparable to the computational cell size) and the level of detail 

in the description of physical phenomena that the work aims to achieve, i.e. at the level of 

bubble coalescence and breakup. In the Eulerian-Lagrangian approach, the dynamics of 
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the liquid phase is predicted using LES while the motion of each bubble is tracked with a 

Lagrangian bubble tracker. At low bubble volume fractions (e.g. 𝜙 ≤ 10−6) the effect of a 

bubble on the flow of the continuous field are negligible and one-way coupling between 

the gas and the liquid phase can be assumed. At higher void fractions (10−6 < 𝜙 < 10−3), 

however, two-way coupling which accounts for the impact and feedback of the bubbles 

on the liquid velocity and turbulence fields is required. With further increases in the 

bubble volume fraction (𝜙 ≤ 10−3), bubble-bubble interactions, bubble coalescence and 

bubble breakup are also included in a truly four-way coupling fashion (Elghobashi, 1994). 

Figure 1.3 illustrates some of the complex interactions, and their outcomes, between the 

two flow phases. 

1.2 Motivation, Objectives and Scope of Research 

The numerical simulation techniques available for predicting turbulent gas-liquid bubbly 

flows are still in need of substantial improvement. Although an extensive amount of 

research has been performed in the past, the simultaneous existence of physical 

phenomena (bubble dynamics, bubble coalescence and breakup, bubble size 

distribution) spanning a wide range of length scales makes the modelling of gas-liquid 

bubbly flows extremely complex. In addressing this multiscale complexity, until recently 

one of the key challenges has been the limitation in available computational resources. 

This has led to engineers having to make significant assumptions and simplifications, 

neglecting certain physical effects or limiting the size of the computational domain. These 

difficulties, coupled with limitations in the experimental measurement techniques 

available, have resulted in many physical aspects of bubbly flows still being poorly 

understood. This lack of understanding, and modelling limitations, negatively affects the 

design and the performance of multiphase equipment such as chemical reactors. 

Therefore, this thesis is motivated by the necessity to advance numerical modelling of 

such flows, and to improve understanding of the underlying physics of turbulent gas-

liquid bubbly flows. To this end, numerical simulations are performed to study dispersed 

and dense bubbly flows by varying the bubble volume fraction. In the flow, the size of the 

bubbles can undergo continuous change due to breakup and coalescence. The size of the 

bubbles determines the interfacial area density that drives exchanges of mass, 
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momentum and energy between the phases. Therefore, accurate description of the 

bubble size and its distribution is of paramount importance for the accurate simulation 

of bubbly flow behaviour. In view of this, a significant portion of the work is focused on 

extending Lagrangian modelling capabilities to account for bubble breakup and 

coalescence in a truly four-way coupled fashion. 

Specifically, the objective of this thesis is to develop a comprehensive and robust 

numerical approach for turbulent gas-liquid bubbly flows based on the Eulerian-

Lagrangian method and LES. The overall model is used to obtain detailed information and 

insight into the hydrodynamics of bubbly flows at the small scale, and to quantify their 

impact on large scale processes with only moderate computational requirements. The 

modelling techniques used in this study include the following elements: 

• The continuous liquid phase is modelled using the LES method, where only the 

largest and most energetic turbulence scales are resolved, and the small scales are 

modelled with a SGS model. Specifically, the dynamic Smagorinsky SGS model (Germano 

et al., 1991; Piomelli and Liu, 1995) has been used to model the effects of the sub-filter 

scales on the resolved field. It has been shown that LES, when the SGS influence on bubble 

dispersion is correctly accounted for, can reproduce the results of DNS-based predictions 

with reasonable accuracy and computational efficiency for turbulent two-phase flows 

(Delnoij et al., 1997; Deen et al., 2001; van den Hengel et al., 2005; Lau et al., 2014). 

Recently, Schutte et al. (2015) have demonstrated that the properties of particle 

agglomerates formed in such flows change when a two-way coupling model is considered 

rather than one-way coupling. In contrast, no difference was noticed when LES was 

employed rather than DNS. The work of Schutte et al. (2015), therefore, demonstrates 

that eddy-resolving simulations (LES and DNS) can successfully capture particle-particle 

and particle-turbulence interactions. 

• The trajectories of individual microbubbles are computed in a Lagrangian 

framework under the action of gravity, buoyancy and hydrodynamic forces (drag, 

pressure gradient, shear-lift and added-mass forces), see Maxey and Riley (1983). A set 

of closure relations for these inter-phase hydrodynamic forces was carefully chosen. The 

Schiller Naumann drag correlation (Cliff et al., 1978) is used for the drag coefficient, the 

Legendre and Magnaudet (1998) correlation for the lift coefficient, and the Fukagata et 
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al. (2001) correction coefficient for drag modification due to a wall. Impact of SGS velocity 

fluctuations on microbubble acceleration is considered with a stochastic Markov method 

(Bini and Jones, 2007; Bini and Jones, 2008). It should be noted that the Eulerian-

Lagrangian approach adopted in this work considers bubbles as pointwise objects with a 

size smaller than the grid spacing and does not resolve the gas-liquid interface. 

• Two-way coupling between the continuous fluid phase and the microbubbles is 

implemented by including, in the Navier-Stokes equations, momentum source terms due 

to the dispersed phase (Schwarzkopf et al., 2011; Lain et al., 2002; Bini and Jones, 2008). 

The source terms are calculated by time and ensemble averaging of the bubble 

trajectories for each control volume. 

• A CFD code based on the Eulerian-Lagrangian framework previously applied to 

particle simulations (Bini and Jones, 2007; Njobuenwu, 2010; Njobuenwu and 

Fairweather, 2014) is modified to handle bubbly flows and extended to account for 

bubble coalescence and breakup. In doing so, a deterministic bubble-bubble collision 

model based on Hoomans et al. (1996) hard-sphere collision model is employed. An 

efficient collision search algorithm based on virtual cells is also implemented. After a 

collision is detected, the Prince and Blanch (1990) film drainage model is adopted for the 

description of bubble coalescence. This method is selected due to its accuracy in 

predicting experimental results (Darmana et al., 2006; Chesters, 1991) and its 

compatibility with bubbly flows considered using the Lagrangian framework. For bubble 

breakup, the model of Martinez-Bazan et al. (1999) is adopted, again in the Lagrangian 

framework. This choice was motivated by the fact that it has an extensive theoretical 

basis and its results are comparable with experimental data (Lasheras et al., 2002; Liao 

and Lucas, 2009). 

• First, the CFD model developed is validated using DNS solutions for gas-solid 

turbulent channel flows at shear Reynolds numbers 𝑅𝑒𝜏 = 150 (Marchioli et al., 2008), 

𝑅𝑒𝜏 = 300 (Marchioli and Soldati, 2007) and 𝑅𝑒𝜏 = 590 (Moser et al., 1999). In order to 

study both the effect of bubble-bubble interactions (collision and coalescence) and the 

effects of bubble-fluid interactions (turbulence modulation and breakup), four kinds of 

simulations are addressed: (1) a turbulent channel flow with bubbles (bubble size, 𝑑𝑏 =

110, 220 and 330 𝜇𝑚) at three shear Reynolds numbers (𝑅𝑒𝜏 = 150, 300 and 590) under 
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a one-way coupled assumption; (2) a turbulent channel flow with bubbles, but without 

collisions using two-way coupling; (3) a turbulent channel flow with bubble-bubble 

interaction (four-way coupled case), and (4) a turbulent channel flow with bubble 

breakup. For the latter case, four shear Reynolds numbers (𝑅𝑒𝜏 = 150, 300, 590 and 

2000) are considered, and an additional fluid system with a refrigerant at 𝑅𝑒𝜏 = 1154. 

The differences between cases (1) and (2) quantify the effects of bubble-fluid 

interactions, whilst the differences between cases (2) and (3) quantify the effects of the 

bubble-bubble interactions. Differences between cases (3) and (4), if any, quantify the 

effects of bubble breakup. 

• The CFD model is used to carry out comprehensive and detailed sensitivity studies 

of microbubble dynamics, turbulence modulation and microbubble coalescence and 

breakup with respect to channel flow orientation and bubble size. Specifically, different 

channel orientations are considered, with no gravity, horizontal and vertical downward 

and upward flow conditions considered. 

1.3 Contributions and Originality  

The main contribution of this work is the development of a comprehensive modelling 

technique for gas-liquid bubbly flows capable of high accuracy and applicable to 

industrial-scale process (i.e. high Reynolds number flows). The following points cover the 

significant contributions provided by the work described in this thesis: 

• The efficient, deterministic Eulerian-Lagrangian technique developed is able to 

predict time-dependent, three-dimensional phenomena down to the bubble-scale. The 

technique is based on LES and the Lagrangian tracking approach and allows for one-way, 

two-way and four-way coupled investigations depending on the flow conditions. 

• Implementation of new numerical techniques in the LES code that provide a 

systematic and efficient method for investigating the effects of bubble-bubble interaction 

(i.e. collision and coalescence) as well as bubble-liquid interaction (i.e. turbulence 

modulation and bubble breakup) on the dynamics of the gas-liquid flow. The modelling 

techniques are based on elementary physical principles that are valid for a wide range of 
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scales. Therefore, the overall applicability of the modelling approach is not limited only 

to laboratory-scale systems but is also valid for large-scale systems. 

• A model capable of providing better understanding and insight into the 

hydrodynamics of gas-liquid flows. At the same time, by using LES, a model that remains 

computationally acceptable and applicable to flow conditions of industrial interest in the 

design of multiphase equipment. This is particularly relevant in view of the still restricted 

applicability of DNS to large-scale flows and the limited availability of experimental 

measurements at the smallest scales in bubbly flows. The amount of local detailed 

information obtainable from the LES Eulerian-Lagrangian model developed can be used 

to underpin the development and validation of more macroscopic approaches such as 

RANS-based models, population balance models and Eulerian-Eulerian two-fluid model 

closures. 

1.4 Thesis Outline 

The outline of this thesis is as follows: 

• Chapter 2 is dedicated to the fundamental theory of turbulent gas-liquid flows, the 

respective modelling and simulation techniques and relevant previous works. Chapter 2 

outlines the fundamental concepts and theories regarding turbulent gas-liquid flows and 

the numerical and experimental techniques for bubbly flows. Specific subjects covered in 

this chapter include previous works on one-way, two-way and four-way coupled 

simulations. Other subjects include modelling techniques such as direct numerical 

simulation, large eddy simulation, Reynolds-averaged Navier-Stokes models, Eulerian-

Eulerian and Eulerian-Lagrangian techniques. Previous works on the study of bubble 

dynamics, the effect of geometry shape and orientation, bubble-bubble collision, bubble 

coalescence and bubble breakup are reviewed. A summary reflecting the state of the art 

and gaps in the literature that provide justification for carrying out the work covered in 

this thesis is also presented. 

• Chapter 3 introduces the mathematical modelling of turbulent gas-liquid bubbly 

flows. The focus is on the LES descriptive equations, SGS modelling, modelling of the 

pressure gradient required to drive the flow and bubble feedback effects in two-way 
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coupled simulations. Thereafter, the bubble tracking technique is presented. The 

fundamental concepts of Lagrangian bubble tracking and the closure models for drag, lift 

and SGS forces are given. This is followed by a description of the models used for 

investigating bubble-bubble collision, bubble coalescence and bubble breakup. 

• In Chapter 4, the first set of results is discussed. The velocity statistics for single-

phase and dispersed phase flow injected with solid particles for Reynolds numbers 𝑅𝑒𝜏 = 

150, 300 and 590 are discussed to ascertain the viability of the Lagrangian tracking 

technique. Additional simulations are carried out in a vertical (upflow and downflow) 

channel at 𝑅𝑒𝜏 = 150 and 590 with a bubble size of 𝑑𝑏 = 220 𝜇𝑚 under a one-way coupled 

flow regime using the modified Langragian tracker with and without the inclusion of the 

lift force term to predict the effects of lift in turbulent flows. The chapter also provides 

two-way coupled simulation results for horizontal channel and vertical channels (upflow 

and downflow) laden with bubbles of 𝑑𝑏 = 110, 220 and 330 𝜇𝑚 at 𝑅𝑒𝜏 = 150 and 590. 

The results demonstrate the effect of bubbles on the fluid flow, and its turbulence field, 

and the effect of Reynolds number on turbulence modulation and bubble preferential 

concentration pertaining to the flow direction. The 𝑅𝑒𝜏 = 150 results are compared with 

available DNS data. 

• Chapters 5 and 6 further discuss the extension of the modelling technique 

presented in Chapter 4. Bubble coalescence, bubble breakup and the interaction between 

bubbles and turbulence are discussed in detail. Simulations of gas-liquid bubbly flow in 

vertical channels are performed. In the absence of experimental data or DNS solutions, 

the LES results are compared with earlier LES predictions to demonstrate the effect of 

the added physical phenomena to the overall bubbly flow dynamics. The chapters 

demonstrate the feasibility of using an LES-based Eulerian-Lagrangian technique as a tool 

to gain insights and accurate prediction of gas-liquid bubbly flows. 

• General conclusions and the outlook for future research are discussed in Chapter 

6. The main findings of the research are briefly summarised. Achievements are presented 

and challenges for future research discussed. 
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CHAPTER 2  

LITERATURE REVIEW 

 

In this chapter, a brief review of the modelling of turbulent two-phase flows is provided, 

together with a review of numerical and physical modelling of such flows in various 

geometries. Recent developments and trends in the numerical computation of single-phase 

flows on the basis of DNS (direct numerical simulation), LES (large eddy simulation) and 

RANS (Reynolds-averaged Navier-Stokes) approaches are summarised. Various techniques 

and concepts used in modelling bubbly flows are reviewed, including Eulerian-Eulerian, 

Eulerian-Lagrangian and fully resolved modelling approaches. Physical phenomena such as 

bubble dispersion, bubble-bubble collision, coalescence and breakup are discussed, and the 

main modelling advances reviewed. Significant experimental studies of gas-liquid bubbly 

flows, the data from which are crucial for the validation of any numerical technique, are 

summarised. Finally, gaps in the literature are identified, and the intended contribution of 

the work discussed in this thesis is outlined. 

2.1 Modelling of Turbulent Two-Phase Flows 

Turbulent dispersed multiphase flows are often encountered in many applications from 

small-scale laboratory equipment to large industrial plant. Multiphase flow equipment 

includes bubble columns, fluidized beds, chemical reactors and sprays, and applications 

are not limited to chemical engineering but extend over the entire engineering field. For 

a more detailed discussion of turbulent dispersed flow applications, the reader is referred 

to the numerous published books and reviews (Zhou, 2018; Yang et al., 2017; Zhou, 2010; 

Balachandar and Eaton, 2010). 

The design, scale-up and optimization of turbulent multiphase equipment involves 

significant complexities and requires substantial understanding. Most of the time, 

different local phase arrangements and flow regimes, often over a large range of length 

scales, can be found in different regions of the same equipment. In view of this, simulation 

of the entire range of flow regimes is extremely challenging, and frequently practically 

impossible because of the number of physical phenomena present and the range of length 



37 

 

and time scales involved. Due to this complexity, the most promising approach is the so-

called multi-scale method, where mathematical models at the different scales are 

explicitly coupled in the same computational framework, or interfaced and allowed to 

exchange information between each other. Various attempts have been made in this 

regard in an attempt to advance understanding of the physics involved at an achievable 

computational cost (Pitsch, 2006; Van den Akker and Harry, 2010). 

In the next section, before moving to dispersed flows in Section 2.3, the modelling of 

single-phase flows, which is the starting point for modelling of the continuous-phase in 

an Eulerian-Lagrangian model, is considered. 

2.2 Modelling Single-Phase Flows 

Computationally, to simulate turbulent single-phase flows, three options are at our 

disposal: direct numerical simulation (DNS), where all the scales in the flow are resolved, 

Reynolds averaged Navier-Stokes (RANS), where the turbulence field is entirely 

modelled, and large eddy simulation (LES). In LES, only the large, energy-containing 

turbulent eddies are resolved, while the smallest scale motions are modelled with a sub-

grid scale (SGS) model. 

2.2.1 Direct Numerical Simulation 

DNS is the most accurate modelling technique. The time dependent Navier-Stokes 

equations are fully-resolved numerically without any turbulence model requirement. 

DNS predicts the instantaneous flow field at any point within the flow and the mean flow 

and the turbulent velocity fluctuations can be determined by averaging of the 

instanteneous field. In order for DNS to solve all the time and length scales in the flow, it 

requires sufficiently fine space and time discretizations, which results in a large 

computational workload. For this reason, DNS is limited to flows with a relatively low 

Reynolds number, and for simple geometries. The use of DNS as a method to simulate 

industrially relevamt flows is still mostly impracticable. The main use of DNS at present 

is as an engineering tool to improve less computationally expensive methods, for single-

phase and two-phase flows (i.e. RANS and LES). Several DNS studies of bubbly flows have 
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been published in vertical (Giusti et al., 2005; Pang et al., 2010; Santarelli and Fröhlich, 

2016) and in horizontal (Mazzitelli et al., 2003; Xu et al., 2002; Pang et al., 2014) channels. 

2.2.2 Large Eddy Simulation 

In LES, the spatially filtered Navier-Stokes equations are solved. LES also requires fine 

computational grids. However, since only the large energy-containing scales are resolved 

while the sub-grid turbulent scales are modelled (Porté-Agel et al., 2000; Piomelli and 

Liu, 1995), computational requirements are reduced with respect to DNS. LES calculates 

the large scales in space directly, as illustrated in Figure 2.1. Separation between large 

and small scales is based on a cut-off length that has to be determined. Those scales that 

have a characteristic size greater than the cut-off length are resolved scales, while those 

below are modelled with an appropriate SGS model. 

 

Figure 2.1 LES decomposition of turbulence energy spectrum (Hinze, 1975). 

This approach to modelling turbulent flows allows a significant decrease in the 

computational cost over DNS, as noted, but additonally allows more of their dynamics to 

be captured than simple RANS models. It has therefore emerged as the next generation 

of numerical simulation techniques for use in and on behalf of industry in recent years. 

With time, more accurate models for the residual turbulent stress tensor, necessary for 

closure of the filtered Navier-Stokes equations, have been developed. The first SGS model 

was developed in 1963 by Smagorinsky (1963), for simulation of the dynamics of the 

atmosphere’s air currents, followed by the models of Smagorinsky et al. (1965) and 

Fischer (1965). Deardorff ( 1970) was the first to use the Smagorinsky model for 

prediction of the turbulent shear flow in a channel at large Reynolds numbers. Based on 
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its many applications, LES has been recently adopted to investigate the complexities of 

turbulent bubbly flows. 

2.2.3 Reynolds-Averaged Navier-Stokes Modelling 

The RANS approach is, generally, based on Reynolds-averaging, i.e. time-averaging, of the 

instantaneous Navier-Stokes equations, which are separated into mean and fluctuating 

components. RANS methods are less computationally expensive compared to DNS and 

LES. However, time averaging of the momentum equation leads to the loss of details 

contained in the instantaneous fluctuations and the appearance of unknown correlations 

known as the Reynolds stress terms. To model these terms and capture the action of the 

turbulence on the mean flow field, an additional turbulence model is required to close the 

equation set. Common RANS turbulence models are generally classified according to the 

number of additional transport equations that need to be solved in conjunction with the 

time-averaged Navier-Stokes equations. 

Over the years, many turbulence models have been developed: mixing length, Spalart-

Allmaras, 𝑘 − 𝜀, 𝑘 − 𝜔, algebraic stress and Reynolds stress models (Davidson, 2017). 𝑘 −

𝜀 and RSM are the most frequently used (Wilcox, 2006). RANS approaches are commonly 

used in practical engineering applications, mainly for predicting steady-state flows. 

Unsteady versions, commonly known as URANS (unsteady Reynolds-Averaged Navier-

Stokes) methods, have been developed to predict time-dependent and transient flow 

conditions (Speziale, 1991; Pope, 2000; Durbin and Reif, 2010; Hedlund, 2014). 

2.2.4 Comparative Analysis of DNS, LES and RANS 

Of the three modelling methodologies, RANS is the least computationally demanding. 

Therefore, it has been extensively applied to model single- and two-phase flows of 

industrial relevance with relative speed and robustness compared to LES and DNS. 

However, RANS models have limitations and they are not equipped to accurately predict 

the small scale and unsteady fluid-bubble and bubble-bubble interactions in a turbulent 

bubbly flow. LES can predict the instantaneous flow field and the increase in 

computational capacity over recent years has made LES studies of high Reynolds number 

two-phase flows achievable. Although DNS may provide more accurate predictions, the 
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exceptional computational demand still limits its applicability to more fundamental 

studies and benchmarking of LES and RANS models. LES is now capable of delivering 

more quantitative solutions for bubble dispersion, coalescence and breakup in two-phase 

bubbly flows of industrial relevance. For modelling the small turbulence scales, a dynamic 

Smagorinsky SGS closure is chosen. In the recent comparisons of Afkhami et al. (2015), 

this type of model provided the best results when compared with predictions of the 

Smagorinsky model, the Vreman model and the wall-adapting local eddy-viscosity model, 

and DNS results. 

2.2.5 Other Techniques 

Other numerical approaches to the prediction of continuous phase flows are the fluid-in-

cell method of Müller (1994) and Gentry et al. (1966), the vorticity stream function 

approach of Fromm and Harlow (1963), the marker and cell method of Harlow and Welch 

(1965), the lattice Boltzmann method of Sankaranarayanan et al. (2003), and the 

boundary element method. The finite element method is also used by engineers, 

scientists and mathematicians to obtain solutions of the partial differential equations that 

describe, or approximately describe, a wide variety of physical (and non-physical) 

problems, as opposed to the finite-volume method used herein. 

The immersed boundary method is an accurate, highly efficient approach for use in the 

simulation of unsteady three-dimensional incompressible flows with complex 

particle/bubble trajectories. This is achieved by using boundary body forces which allow 

the imposition of boundary conditions on a given surface not coinciding with the 

computational meshing network. The governing equations, therefore, can be discretized 

and solved on a regular mesh thus retaining the advantages and efficiency of standard 

solution procedures. The predominant issue is then interpolation of the forcing over the 

mesh used to represent a particle or a bubble which determines the accuracy of the 

scheme; this ranges from zeroth-order for the most commonly used interpolations up to 

second-order for an ad-hoc velocity interpolation (Laccarino and Verzicco, 2003; 

Badreddine et al., 2017) 
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2.3 Modelling Particle-Laden Flows 

The two modelling approaches most frequently employed to simulate multiphase flows 

are the Eulerian-Eulerian approach (Pfleger and Becker, 2001; Becker et al., 1994), and 

the Eulerian-Lagrangian approach (Lau et al., 2014). While the Eulerian-Lagrangian 

approach is more fundamental and tracks each single bubbles as a point source, the 

Eulerian-Eulerian method is preferred in higher gas volume fraction and churn turbulent 

flows. 

2.3.1 Eulerian-Eulerian Technique 

In the Eulerian-Eulerian description of two-phase flow, the dispersed phase and the 

continuous phase are treated as two interpenetrating continua. Therefore this approach 

is often referred to as the two-fluid formulation. To derive the equations of motion, the 

infinitesimal volume dV shown in Figure 2.2, over which the field quantities of both 

phases experience an infinitesimal change, is split into two separate volumes (Mashayek 

and Pandya, 2003; Zhou, 2015). 

 

Figure 2.2 Eulerian–Eulerian approach: Concept of two interpenetrating continua – red 

(dispersed) and blue (carrier) phases. 

The equations of motion for both phases are derived separately. The continuous and 

dispersed phase are therefore each described by a set of Navier-Stokes equations, closed 

within LES or RANS formulations. In Eulerian-Eulerian models, interphase transfer of 

mass, momentum and energy are entirely modelled (rather than simulated). These 

processes are driven by the interfacial area density and the evolution of the bubble size 

distribution. Accurate prediction of changes in the bubble size distribution as a 
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consequence of bubble coalescence and breakup is therefore of paramaount importance 

in Eulerian-Eulerian models (Calderbank et al., 1964; Bhaga and Weber, 1980; Crabtree 

and Bridgwater, 1971; Wilkinson et al., 1993; Otake et al., 1977; Chahed et al., 2003; 

Colombo and Fairweather, 2015). 

2.3.2 Eulerian-Lagrangian Technique 

The Eulerian-Lagrangian approach is commonly used for dilute two-phase flows where 

one phase is finely dispersed in a continuous carrier phase. The flow of the continuous 

phase is calculated in an Eulerian framework according to one of the three 

aforementioned options (RANS, LES or DNS). Then, the behaviour of the dispersed phase 

is predicted by tracking the path of individual point bubbles in a Lagrangian framework 

(Apte et al., 2003) using a Lagrangian particle tracking (LPT) technique. The coupling 

between the phases can be one-way (Marchioli et al., 2008), when the presence of the 

dispersed phase has no impact on the flow of the carrier phase. When the dispersed phase 

impacts the flow field of the continuous phase, the coupling is two-way (Molin et al., 

2012) or four-way (Yamamoto et al., 2001), with the latter also accounting for bubble-

bubble interaction. The consequence of treating bubbles as pointwise, however, is that 

the flow induced by the presence and the motion of the bubbles remains unresolved 

(Sommerfeld, 1996; Sommerfeld et al., 2003). 

2.3.3 Inter-phase Tracking 

This approach is based on solving a single set of transport equations for the whole 

computational domain and treating the different phases as a single fluid with variable 

material properties. Changes in these properties are accounted for by advecting a phase 

indicator function. Interfacial exchange terms are incorporated by adding the 

appropriate sources as delta functions or smoothed gradients of the composition field at 

or across the interface (Lakehal et al., 2002). Alternatively, phenomena taking place at 

the interface are either modelled (Bishop, 1975) or fully-resolved if the topology and 

shape of the interface is explicitly simulated through use of a interface tracking method 

(Fulgosi et al., 2001). 
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2.4 Literature Review on Bubbly Flows 

In this section previous works on bubbly flows are reviewed, from modelling and 

simulation approaches (divided between DNS, LES and RANS) to experimental studies 

and the modelling of bubble coalescence and breakup. 

2.4.1 Modelling and Simulation Approaches 

2.4.1.1 Direct numerical simulation 

DNS has been employed by several authors to predict the behaviour of bubbles in 

turbulent flows. Among others, the front-tracking method has been proposed to handle 

the smallest time and length scales of the bubble and the surrounding fluid (Unverdi and 

Tryggvason, 1992; Tryggvason et al., 2001; Kanai and Miyata, 2001; Göz et al., 2002; Irfan 

and Muradoglu, 2017). This approach can generate insight into the behaviour of a single 

rising gas bubble, or the behaviour of a few rising gas bubbles, and supports the 

development of closures for bubble-liquid interaction. Lu et al. (2005) worked on the 

effect of bubbles on wall drag in a turbulent channel flow. The authors performed DNS 

simulations of 16 bubbles at Reynolds number 𝑅𝑒𝜏 = 135, with bubbles that were 54 wall 

units in diameter. All the flow scales of the bubbles and the surrounding flow were 

resolved. 

Esmaelli and Tryggvason (1999) and Delnoij et al. (1997) used an approach which 

provides the most detailed insight into single-bubble dynamics, as well as bubble-bubble 

and bubble-fluid interactions. The authors evaluated the influence of basic physical and 

geometrical parameters such as inertia, viscosity, surface tension, bubble size and gas 

volume fraction on the evolution of bubble swarms. 

Bunner (2000) investigated gas-liquid bubbly flows by DNS using a parallelized version 

of a finite-difference method and three-dimensional simulations of up to 216 bubbles at 

a bubble Reynolds number of approximately 20. The effects of inertia, viscosity, surface 

tension and interface deformation are all accounted for. Homogeneous flows were 

analyzed first to examine the interaction of the bubbles in the absence of walls. 

Simulations were performed for both spherical and ellipsoidal bubbles. Results showed 
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that as the void fraction increases, the average rise velocity decreases, but the fluctuation 

velocities continue to increase. 

Lee and Balachandar (2017) carried out DNS of a system of a few two- and three-

dimensional bubbles at a low but finite Reynolds number, in the range of 2 ≤ 𝑅𝑒 ≤ 100, 

in an initially quiescent homogeneous flow modelled as a periodic domain. The 

simulations included a fully deformable interface, surface tension, inertia and viscosity. 

While the bubbles were deformable, the actual deformations were small due to the low 

flow Reynolds number. The aim of this work was to compare the evolution of freely 

evolving bubbles with respect to fixed arrays of bubbles, and to examine the utility of 

two-dimensional simulations for the understanding of a fully three-dimensional system. 

The results showed that regular arrays of both two- and three-dimensional bubbles are 

unstable and split relatively quickly, with the regular arrays replaced by the formation of 

vertically orientated bubble pairs through ‘drafting’, followed by ‘kissing and tumbling’ 

(Esmaelli and Tryggvason, 1999). 

Biswas (2007) carried out a DNS study of multiphase bubbly flows in vertical and 

horizontal channels. Results were compared with predictions from the steady-state two-

fluid model of Antal et al. (1991). The simulations were performed assuming a two-

dimensional system and the model coefficients were adjusted slightly to match the data 

for upflow. The model was tested with different values of flow rate and gravity, as well as 

in downflow conditions. Results reasonably correlate in the middle of the channel. 

However, in upflow, the model performed poorly near the no-slip wall. Deformability of 

the bubbles was found to play a significant role in the flow structure and the averaged 

flow rate obtained. The aim was to examine how a simple one-dimensional model for the 

averaged void fraction captures the unsteady bubble motion by using void fraction 

dependent velocities. Results suggested that bubble dispersion by the fluctuating liquid 

velocities must be included, and an improved agreement was found by using a simple 

model for the bubble dispersion. 

Bogdevich et al. (1977), Madavan et al. (1984), Merkle and Deutsch (1989), Gutiérrez-

Torres et al. (2008) and Ceccio (2010) studied drag reduction by microbubbles. Drag 

reduction rates as high as 80% were obtained by injecting air through a porous plate to 

produce bubbles. In these works, drag reduction by microbubbles was found to be related 
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to numerous factors such as gas type, gas injection rate, surface roughness and 

configuration, the presence of surfactant, bubble size and shape, flow velocity, Froude 

number, Reynolds number, and global void fraction. Kanai and Miyata (2001) and Shen 

et al. (2006) pointed out that bubble size is a critical factor. Drag reduction was achieved 

only when the bubble diameter was less than approximately 1 mm, and the drag 

reduction rate was generally higher with even smaller bubble diameters. Sanders et al. 

(2006), Xu et al. (2007) and Zhou and Bai (2011) also studied drag reduction techniques 

by micorbubbles. Results from these authors confirm that drag reduction by 

microbubbles can be as high as 80%.  

Shams et al. (2011) developed a two-way coupled Eulerian-Lagrangian approach to 

simulate cavitating flows using DNS/LES and an unstructured grid approach. The 

Rayleigh-Plesset equation was applied to determine the behaviour of the bubble radius, 

but bubble coalescence or breakup were not accounted for. Numerical simulation of a 

growing bubble inside a micro-channel was simulated by Mukherjee et al. (2011). The 

bubble was placed at the centre of the channel surrounded by superheated liquid. The 

length of the bubble was initially found to increase linearly with time but as the bubble 

approached the channel wall, the bubble downstream interface was found to be 

accelerated. The bubble growth rate was also found to increase with the liquid superheat. 

Bolotnov et al. (2010) carried out detached direct numerical simulations of a two-phase 

turbulent bubbly channel flow at 𝑅𝑒𝜏 = 180 (based on friction velocity and channel half-

width) using a stabilized ‘finite element method (FEM)’, a level set algorithm to track the 

interface, and sub-grid wall models. Fully developed turbulent single-phase DNS results 

obtained previously by Trofimova et al. (2009) with the same stabilized FEM code were 

used as the initial flow field, and the level-set distance field was introduced to resolve and 

track the gas bubbles. Surface tension and gravity forces were used in the simulations to 

physically represent the behaviour of a bubbly air-water flow. 

Molin et al. (2012) studied liquid turbuelnce and bubble dispersion patterns in pressure-

driven bubbly flows. The physical understanding of bubble-turbulence interaction for 

small, non-deformable microbubbles in dilute systems was expanded and a benchmark 

for further comparison established. The effect of the bubble size on the overall behaviour 

of the two-phase system was obtained. This work is used as a test-case to compare the 
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the results of the LES-LPT developed in this thesis in view of the detailed results available 

for the vertical channel domain. 

Pang et al. (2014) investigated drag reduction by microbubbles in detail with the 

Eulerian-Lagrangian two-way coupling method. The liquid velocity field was solved with 

DNS, and the bubble trajectory was calculated using Newton’s law of motion. The 

interfacial momentum transfer between the gas and liquid phases was accounted for by 

introducing interphase forces. Results showed a low drag-reduction rate. The liquid-

phase velocity was slightly increased in the region away from the channel wall while the 

Reynolds shear stress of the liquid phase was changed across the whole channel height. 

The results suggested that drag reduction depends on mutual interactions between the 

microbubbles and the liquid turbulence, and on interphase forces. The DNS results from 

Pang et al. (2014) have also been used in this thesis to evaluate the accuracy of the 

proposed LES-LPT model in a horizontal channel. 

The DNS approach was also used in bubble coalescence and breakup studies. Levich 

(1962) developed a criterion for bubble breakup that is similar to that of Kolmogorov 

(1949) and Hinze (1955 ), except that the density of the bubble as well as that of the liquid 

appears in the criterion. The criterion suggested by Shinnar (1961) for bubble breakup is 

based on the size of the bubble and its surrounding turbulent eddies. Baldyga and Bourne 

(1995) generalized the above results to account for turbulent intermittency using a 

multifractal approach. The multifractal method accounts for the (often large) deviations 

of the local energy dissipation rate from the mean value. Senhaji (1993) suggested a 

critical Weber number (a measure of the relative importance of the fluid's inertia 

compared to its surface tension) of approximately 0.25, based on experimental studies 

on air bubbles in a uniform turbulent downflow under normal gravity conditions. The 

results of simulations of the deformation and breakup of bubbles in homogeneous 

turbulence under zero gravity conditions were also discussed. 

Overall, DNS studies are important for discovering the detailed physics of bubbly flows at 

the bubble scale. However, large-scale simulations of engineering problems with bubbly 

flows at high flow Reynolds numbers, and with thousands or millions of bubbles are, 

impractical with DNS due to the large computational requirements. Numerical 
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simulations of such systems require approaches that are less computationally 

demanding, as described below.  

2.4.1.2 Large eddy simulation 

The main difference between conventional RANS modelling approaches and LES is the 

’averaging’ procedure used to derive the equations of motion. In LES, the instantaneous 

Navier-Stokes equations are spatially filtered and the filtered, “sub-grid” part of the 

turbulence spectrum is modelled by means of a SGS model. A number of models for the 

SGS motion have been proposed, the first and simplest being that of Smagorinsky (1963). 

Germano et al. (1991) subsequently developed a more promising model, which was later 

modified by Ghosal et al. (1995) in order to meet certain modelling constraints. Sangani 

and Didwania (1993) and Smereka (1993) carried out simulations of the potential flow 

motion of spherical bubbles in a periodic box (both with and without viscous drag) and 

observed that bubbles tend to form horizontal clusters when the variance of the bubble 

velocity is small. When the drag force was included, the variance was found to diminish 

with time. The inclusion of drag force alone (Sangani and Didwania, 1993; Smereka, 

1993) in the dispersed phase equation will not result in absolute true behaviour bubbles 

in turbulence. Added mass alters the drag effect hence plays a major role bubbly flow. 

Also lift force accounts for mean velocity gradients within the boundary layer and should 

have been considered. 

Mattson (2011) developed a one-way coupled Eulerian-Lagrangian approach that 

included bubble-bubble collision and coalescence and variable bubble radius. The model 

was employed to simulate a large number of cavitating bubbles in complex geometries 

using DNS and LES. Simulations were performed for bubble migration in a turbulent 

boundary layer, bubble coalescence in a turbulent pipe flow and cavitation inception in a 

turbulent flow over a cavity. Mattson’s work serves as a good take off ground for further 

research work by considering two-way and four-way coupling techniques. 

Ghosal and Moin (1995) evaluated the performance of LES for flows in complex 

geometries and proposed a varying filter width technique to reflect the changing length 

scale of the characteristic structures in complex flows. An assessment of the state of LES 

simulations was carried out by Rodi et al. (1997) and several test cases were considered 
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for the evaluation of its predictive capabilities. The results revealed that control over 

parameters such as grid resolution, boundary conditions and numerical method was 

essential to obtain good results. van den Hengel et al. (2005) used LES with a Langrangian 

approach to study gas-liquid flows in a square cross-section bubble column domain. The 

liquid phase was computed using LES and a Lagrangian approach was used for the 

dispersed phase. The study of Ghosal and Moin (1995) presented LES in complex flow 

geometries nevertheless starting from a simple computation domain like channel with 

well-defined initial conditions before proceed to complex flow domains was as well an 

option to thoroughly predict bubbles behaviour in turbulence. 

2.4.1.3 Reynolds-averaged Navier-Stokes modelling 

The RANS modelling approach is widely used in the industrial sector despite its 

shortcomings and limitations. The main criticism of these techniques is their structural 

inability to represent fundamental turbulence processes, such as energy transfer within 

the inertial sub-range, and therefore they lack universality in their formulation. In RANS, 

averaging is performed over time (or realizations) and the averaged variables do not 

depend on time. Except in cases of simple flow situations, RANS models often struggle to 

accurately reproduce complex flow fields. They may be accurate in some locations of the 

flow while being very inaccurate in others. 

Laborde-Boutet et al. (2009) carried out computational fluid dynamic (CFD) simulations 

of gas-liquid flows in a full three-dimensional, unsteady, Eulerian-Eulerian framework 

and discussed their relevance to laboratory scale bubble columns, with a particular 

interest in churn-turbulent flows. The available choices for turbulence modelling in the 

RANS approach were tested using nine different options, i.e. three possible formulations 

of the k– ε model (standard, re-normalisation group (RNG), realizable) combined with 

three different modalities to account for gas-phase effects (dispersed, dispersed with 

bubble-induced turbulence, per-phase). The standard and realizable versions of the k– ε 

model were unable to reproduce the expected gulf-stream patterns of bubble columns. 

However, the RNG k– ε model exhibited much better descriptions of the flow features. 

The inclusion of bubble-induced terms in the turbulence equations led to a minor impact 

on the performance of the RNG  k– ε model. The superior performance of the latter model 
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was essentially due to it better representation of the turbulence energy dissipation rate 

and turbulent viscosity. Thus, the application of RNG k– ε models was also recommended 

for further implementation with bubble population balance models. 

Colombo and Fairweather (2015) investigated the ability of a two-fluid Eulerian–

Eulerian computational multiphase fluid dynamic model to predict bubbly air–water 

flows. Upward and downward pipe flows were considered and a database of 19 

experiments from 6 different literature sources were used to assess the accuracy of the 

model, with the aim of evaluating and predicting these kinds of flows and to contribute 

to ongoing efforts to develop more advanced simulation tools. Emphasis was focused on 

the prediction of multiphase turbulence due to its relevance in the modelling of bubbly 

flows in general, including bubble coalescence and breakup, and boiling at a wall. Overall, 

a satisfactory accuracy was obtained in the prediction of liquid velocities and void 

fraction distributions in all the flow conditions. Following experimental evidence, the 

drag model of Tomiyama et al. (2002) was used which assumes that the bubble shape is 

closer to spherical near a wall and employs a correlation to calculate the bubble aspect 

ratio. An increase in the drag coefficient due to the higher bubble aspect ratio increased 

the accuracy of calculated velocity profiles in the near-wall region, even if additional 

validation is still required due to the possible loss of predictive accuracy in the pipe 

centre. 

In Samir et al. (2017), a computational analysis of a dynamic vortex-cavitation flow was 

performed. The flow calculations were carried out using a RANS technique as well as 

improved delayed detached-eddy simulation models. The flow-field was realized as a 

continuous mixture of liquid and vapour bubbles, in the context of the Eulerian volume 

of fluid (VOF) method. For predicting the growth and collapse of cavitation bubbles, the 

multiphase VOF solver was coupled with different cavitation models based on the 

Rayleigh-Plesset equation, which also accounts for the inertia of bubbles as well as 

surface tension and viscous effects (Brennen, 1995). The results obtained were validated 

against reported experimental measurements of the lift force and the vortex shedding 

frequency. In addition, model predictions were also compared against equivalent CFD 

simulations reported in the literature (Bensow, 2011). The evaluation of the predicted 

results suggests that inertial effects of cavitating bubbles have a major impact on the 

transient characteristics of multiscale vortex cavitation flows. 
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2.4.1.4. Other techniques 

There are several other modelling techniques that have been used to analyse turbulent 

two-phase flows, as noted ealrier, including detailed studies based on the lattice 

Boltzmann method (LBM) (Rothman and Zaleski, 1997; Succi, 2001; Chen and Doolen, 

1998). Ryskin and Leal (1984) used an adaptive grid finite difference method to simulate 

the deformation of steadily rising axisymmetric bubbles. Kang and Leal (1987) used the 

Ryskin and Leal (1984) approach to study the deformation and breakup of bubbles in an 

axisymmetric flow, although they did not include buoyancy in their study. The front 

tracking finite difference method of Unverdi and Tryggvason (1992) was used to perform 

the simulation together with a discrete bubble model, originally developed by Delnoij et 

al. (1999), which was extended to incorporate models describing bubble breakup and 

coalescence. The mean and fluctuating velocities predicted in the simulations showed 

good agreement with the experimental data of Deen (2001). 

The LBM guarantees solutions of the Navier-Stokes equations by solving a kinetic 

equation for the probability distribution functions of an artificial lattice gas. The 

Chapman-Enskog procedure (Chapman and Cowling, 1961) is used to show that the 

velocity and pressure fields obtained from the LBM are approximate solutions of the 

Navier-Stokes equation, as long as they vary slowly in space and time. LBM has the 

advantage that it is relatively easy to develop for multiphase flows and flows in complex 

geometries. It can also be used readily in parallel computations since information transfer 

is local in time and space, as well as, for a given computational domain, being independent 

of the number of bubbles. 

The immersed boundary method was first developed by Peskin (1972) to simulate 

cardiac mechanics and associated blood flow. The entire simulation was carried out on a 

Cartesian grid, which did not conform to the geometry of the heart, and a novel procedure 

was formulated for imposing the effect of the immersed boundary on the flow. Since the 

inception of this method, several modifications and refinements have been proposed and 

a number of variants of this approach now exist such as “Cartesian grid methods,” which 

were originally developed for simulating non-viscous flows with complex embedded 

solid boundaries on Cartesian grids (Rajat and Gianluca, 2005; Clarke et al., 1986; Zeeuw 

and Powell, 1991). These methods have been extended to simulate unsteady viscous 
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flows (Udaykumar et al., 1996; Ye et al., 1999) and thus have capabilities similar to those 

of immersed boundary methods. 

2.4.2 Experimental Studies 

In parallel to the development of numerical modelling, many authors have investigated 

bubbly flows experimentally to better understand their physics (Serizawa et al., 1975; 

Lance et al., 1996; Pitsch, 2006; Descamps et al., 2008; Colin et al., 2012; Xu et al., 2012). 

In their experiments, these authors measured the void fraction distribution of the 

bubbles, the liquid velocity profile and turbulence structure, pressure drops and the 

effects of bubble size on flow parameters in both upflow and downflow conditions. 

Several experimental techniques such as hot film anemometry (HFA) (Kataoka et al., 

1986), particle image velocimetry (PIV) (Balachandar and Eaton, 2010), magnetic 

resonance velocimetry (Baldwin and Barth, 1991; Berger and Aftosmis, 1998), laser 

Doppler velocimetry (LDV) (Bishop, 1975) and phase Doppler anemometry (Hammami 

and Ratulowski, 2007) have been used in different flow geometries to understand the 

bubble behaviour in gas-liquid flows. With these techniques, forces that act on bubbles 

moving in a continuous turbulent fluid field, the radial and axial void fraction distribution 

and the liquid and gas phase velocity profiles and turbulent shear stresses (Lucas et al., 

2005). Tomiyama et al. (2002); Hosokawa et al. (2010) showed that the dispersion of 

bubbles occurs in a non-uniform fashion and gives rise to complex interactions with the 

turbulent flow structures. Other relevant experimental investigations include those of 

Serizawa and Kataoka (1990), Liu (1997), Mudde et al. (1997), Tran-Cong et al. (1998) 

and De Matos et al. (2004). Their experiments all showed that nearly spherical bubbles 

result in a wall-peaking of the void fraction profile in upflow, but in a bubble free wall-

layer in downflow. The velocity in the core of the channel flows studied was also found to 

become nearly uniform in both cases. 

The effect of bubbles on the turbulence spectrum was experimentally investigated by 

Bataille and Lance (1991). They found that relatively large bubbles modify the inertial 

range scaling. The Kolmogorov energy spectrum power law (-5/3 slope) was replaced by 

a -8/3 slope with increasing bubble concentration. It was argued by Wang and Maxey 

(1993) that the steeper spectrum originates from immediate dissipation of energy 
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production within the bubbles’ wakes. In contrast, Mudde et al. (1997) found the classical 

−5 3⁄  power law in a bubble column even for a gas volume fraction of 0.25. Yang and 

Thomas (1994 ), and Wang and Maxey (1993) in a previous investigation, showed that 

solid particles moving in a turbulent flow fall faster than in stagnant fluid, whereas 

bubbles rise slower than in a non-turbulent flow. This effect is attributed to the 

phenomenon of “preferential sweeping” of particles and bubbles in downward fluid 

velocity regions. 

Mukherjee et al. (2011) experimentally explored different flow regimes during boiling of 

water in channels. Experiments were carried out with six channels each with a 1 mm 

hydraulic diameter. The different flow regimes observed were bubbly flow, slug flow, 

annular/slug flow and dry out. Large pressure fluctuations were measured in the 

channels due to boiling. In some situations, slug growth was found to occur in the 

direction counter to the bulk flow, forcing liquid and vapour back into the inlet manifold. 

Kataoka and Serizawa (1989) carried out measurements of turbulence intensity in gas–

liquid two-phase flows in vertical pipes and detected turbulence modification via LDV. 

Gore and Crowe (1989) investigated turbulence modification caused by the addition of 

droplets in a gas flow, and pointed out that the modification is well correlated with the 

so-called critical parameter 𝑑 𝑙𝑡⁄ , the ratio of the bubble diameter d to a turbulence length 

scale lt. They applied this parameter to turbulence modification caused by bubbles and 

droplets and confirmed that the 𝑑 𝑙𝑡⁄  parameter is also applicable to gas-liquid dispersed 

flows. The critical parameter can also be regarded as the ratio of a characteristic length 

scale of the turbulence induced by the dispersed phase to that of the shear-induced 

turbulence. Reese et al. (1995), Enwald et al. (1996), Seol et al. (2007) and Ziegenhein et 

al. (2016) all used particle tracking velocimetry (PTV) to measure both the dispersed and 

continuous phases. An important aspect in the processing of the PIV images is the 

identification of the dispersed phase. Hassan et al. (1992) also performed simultaneous 

measurements of both the gas and the liquid phase in a system of single bubbles rising in 

a heavy mineral oil. In order to detect the bubble images, the bubbles needed to be over 

exposed, with a threshold function used to determine the position of the edges of the 

bubble. Both tracers and bubbles were tracked within the flow, and in order to obtain the 

velocity field on a regular grid, the PIV data were interpolated. Results indicated that the 
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PIV method used was an effective method for studying the specific interactions which 

occur between the phases in multiphase systems. 

Liu (1997) considered the effects of bubble size by using a special gas injector that 

allowed bubble size variations independently of liquid and gas mass fluxes. All three 

parameters, bubble size, liquid mass flux and gas mass flux, were changed in the 

investigation. A vertical upflow of water and air in a round pipe with inner diameter 57.2 

mm was studied. Radial profiles of void fraction, bubble size, liquid velocity and axial 

liquid turbulence intensity were measured at an axial position of 𝐿 𝐷⁄ = 60. In addition, 

the wall shear stress was measured. A change in the void fraction profile from wall to core 

peaked with increasing bubble size was observed, as well as turbulence suppression in 

the pipe centre at high liquid and low gas mass flux, which corresponded to the smallest 

bubble sizes. This work was also used in previous modelling studies on bubble induced 

turbulence by Troshko and Hassan (2001) and Politano et al. (2003). 

Hosokawa et al. (2007) conducted a study at different liquid and gas mass fluxes in a 

vertical upflow of water and air in a round cross section small pipe of 25 mm inside 

diameter. Radial profiles of void fraction, liquid and gas velocity and liquid turbulence 

kinetic energy were measured at an axial position of 𝐿 𝐷⁄ = 68. The bubble diameter 

distribution was also recorded. The data show both wall and core peaking void fraction 

profiles. Turbulence suppression was observed for cases with high liquid velocity, but no 

clear relation with bubble size was discerned. Shawkat et al. (2008) carried out a study, 

varying the liquid and gas mass fluxes in a vertical upflow of water and air in a round pipe 

with an inner diameter of 200 mm. Radial profiles of void fraction, bubble diameter, liquid 

and gas velocities and turbulence intensity were measured at an axial position of 𝐿 𝐷⁄ =

42. A varying void fraction profile from wall to core peaked with increasing bubble size 

was observed as well as turbulence suppression at the pipe wall for combinations of high 

liquid and low gas mass fluxes. 

Jones and Zuber (1979) and Trabold and Kumar (2001) made phase distribution and 

velocity measurements in a high aspect ratio rectangular duct, and measured phase 

distribution in triangular ducts. Neither investigation determined turbulence quantities 

due to the intrusive nature of the probes used in the HFA technique, which generally alter 

the flow velocity and other properties. Lopez de Bertodano et al. (1994) obtained multi-
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dimensional bubbly two-phase flow data in an isosceles triangular duct having 𝐷ℎ = 40 

mm at 𝐿 𝐷⁄ = 73. The measurements were performed with a single sensor and X-sensor 

cylindrical hot film probes of 0.025 mm diameter. These small probes had good bubble 

penetration characteristics and were capable of simultaneous measurement of the liquid 

phase instantaneous velocity and the phase indicator function. The data collected were 

also used in the validation of multidimensional two-fluid CFD models. 

2.4.3 Bubble Collision and Coalescence 

When the bubble volume fraction is greater than approximately 10−3, the two-phase 

regime is no longer dilute and bubble-bubble interactions come in to play. Bubble 

collisions play an important role in affecting the continuous phase flow, and in leading to 

bubble coalescence, and have to be taken into account by four-way coupled simulations. 

A bubble, while moving through the liquid phase, may therefore undergo turbulence-

driven random collisions with neighbouring bubbles that can result in two bubbles 

coalescing. The rate of these collisions depends on the bubble approach velocity and the 

bubble spacing, and the frequency of collision is expected to be higher in regions with 

higher bubble concentrations. 

Several numerical techniques have been developed to model collisions over the past few 

decades (Ashgriz and Poo, 1990; Tanaka and Tsuji, 1991; Sommerfeld and Zivkovic, 1992; 

Sommerfeld et al., 2003; Sharma et al., 2016). Numerous experimental studies of 

coalescence have also been performed (Estrade et al., 1999; Qian and Law, 1997; Kuschel 

and Sommerfeld, 2010; Brabcová et al., 2015). Elghobashi (1994) presented a diagram 

(Figure 2.3), as a function of the Stokes number 𝑆𝑡 = 𝜏𝑝 𝜏𝜂⁄ , defined using the 

Kolmogorov time scale 𝜏𝜂 , and the volume fraction ϕ, to characterize the different flow 

regimes appearing in gas–solid flows. The author ascertained that inter-particle 

collisions have an effect on the flow if the particle volume fraction is larger than 10−3 for 

homogeneous, isotropic turbulence.  
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Figure 2.3 Map of different regimes in particle-laden flows (Elghobashi, 1994). 

Particle or bubble collisions require two additional elements in any simulation; an 

algorithm that searches for collisions and a method that determines the result of a 

collision. The impact between two bubbles can be obtained from their position and 

relative motion. However, although this approach is numerically very accurate it is 

computationally very expensive for flows involving a large number of dispersed bubbles. 

Another technique is to model the collisions by means of a stochastic approach, where 

the interactions between bubbles are modelled by means of collision probabilities. Such 

techniques are of course microscopically invalid, but for high number densities they 

become reliable in the macroscopic sense. Stochastic collision models were originally 

developed for bubbles by Sommerfeld and Zivkovic (1992). 

Yamamoto et al. (2001) investigated a turbulent gas flow with particles in a turbulent 

vertical channel downward flow. In particular, the effect of inter-particle collision on the 

two-phase flow field was investigated. The gas flow field was obtained using LES. 

Particles were treated by a Lagrangian method, with inter-particle collisions calculated 

with a deterministic method. The spatial resolution of the LES was examined and 

relations between grid resolution and Stokes number were presented. Results show that 

the particle mean velocity, the particle wall-normal fluctuating velocity and the number 

density were flattened as a result of inter-particle collisions, and these results were found 

to be in good agreement with experimental measurements. 
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Collision between bubbles can be modelled with the hard sphere (Hoomans et al., 1996) 

or soft sphere (Tanaka and Tsuji, 1991) collision models, or the statistics-based 

stochastic inter-particle collision model (Sommerfeld, 2001). In the latter stochastic 

model, no direct collisions take place. Instead, a probable collision partner is assumed 

and a collision probability is established from kinetic theory for each parcel at each time 

step. The bubble size and velocity of the probable collision partner are randomly 

generated based on statistical information regarding the bubble size distribution and the 

bubble velocity at Eulerian grid nodes. The probable collision partner normally has 

similar properties and can be considered representative of surrounding bubbles. The 

collision probability 𝑃𝑐𝑜𝑙𝑙 is calculated based on the properties of the bubble (and its 

collision partner), and the local fluid properties, as 𝑃𝑐𝑜𝑙𝑙 =
π

4
(𝑑1 − 𝑑2)

2⌊𝑣𝑏1 − 𝑣𝑏2⌋𝑛𝑏∆𝑡, 

where 𝑑1 is the primary bubble and 𝑑2 is the fictitious collision partner. 

Breuer and Alletto (2012) also simulated particle-laden two-phase flows based on the 

Eulerian–Lagrangian approach. The methodology developed was driven by two major 

requirements: (i) the necessity to tackle complex turbulent flows by eddy-resolving 

schemes such as LES; and (ii) the requirement to predict dispersed multiphase flows at 

high mass loadings. A highly efficient particle tracking algorithm was developed working 

with a curvilinear, block-structured grid and particle–particle collisions (four-way 

coupling) were predicted using a deterministic collision model. The computational cost 

was reduced by using the concept of virtual cells, where only adjacent particles were 

accounted for in the search for potential collision partners. The methodology was applied 

to different test cases (plane channel flow, combustion chamber flow). The computational 

results were compared with experimental measurements and good agreement was 

found, with the technique developed providing a high level of accuracy. 

In bubbly flows, coalescence and break up governs the bubble size distribution and the 

interfacial area density, which drives exchanges of mass, momentum and energy between 

the phases. Three distinctive theories have been proposed to describe the coalescence 

process: the kinetic collision model (Howarth, 1964; Sovová and Procházka, 1981); the 

film drainage model (Prince and Blanch, 1990; Chesters, 1991; Tsouris and Tavlarides, 

1994); and the critical velocity model (Lehr et al., 2002). 
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In the kinetic collision or energetic model, the coalescence process is strictly based on the 

intensity of the impact between the colliding bubbles. If the approach velocity of the two 

colliding bubbles exceeds a critical value (leading to deformation of the bubbles’ surface), 

the two bubbles will coalesce. The critical velocity model states that bubble-bubble 

collision only results in coalescence if the approach velocities of both bubbles are lower 

than the critical velocity (maximum velocity resulting in coalescence). For a distilled 

water and air system, the critical velocity is 0.08 ms−1 and does not depend on the bubble 

size. Lehr et al. (2002) used this approach in a population balance equation to predict 

bubble size distributions in bubble columns. At high superficial gas velocities, bubbles 

became divided in two groups, one with small and the other with large bubble diameters. 

In the film drainage model, it is assumed that a certain amount of liquid remains trapped 

between two bubbles when they collide. For these bubbles to coalesce, the time of their 

interaction must be enough to allow draining of the film down to a critical thickness. If 

this is the case, film rupture occurs, and the bubbles coalesce. Otherwise, the bubbles 

bounce without coalescing (Prince and Blanch, 1990). 

For bubbles, coalescence has been studied mainly using an Eulerian-Eulerian (two-fluid) 

or an Eulerian-Lagrangian approach. With the Eulerian-Lagrangian model, Darmana et al. 

(2006) developed a coalescence model using the film-drainage timescale previous 

proposed by Prince and Blanch (1990) and the bubble-bubble interaction timescale 

proposed by Sommerfeld et al. (2003). Bokkers et al. (2006), in contrast, performed 

Eulerian-Lagrangian simulations with a hard-sphere collision model, assuming all 

collisions lead to coalescence (until a maximum bubble size was reached).  

In the Eulerian–Eulerian model, the dispersed gas phase is treated as a separate 

continuum with averaged properties (i.e. a mean bubble diameter). To model the 

interfacial momentum transfer, most interfacial force models require knowledge of the 

bubble size distribution or the interfacial area concentration. Some earlier studies have 

simplified the problem with a single bubble size (or so-called “mean” bubble diameter) 

(Krishna et al., 2000; Ramkrishna, 2000). Such an assumption is obviously invalid, except 

for mono dispersed bubbly size distributions, and in most industrial applications. 

Therefore, a population balance equation (PBE), with coalescence and breakup models, 

is often embedded in the Eulerian-Eulerian model to handle the evolution of the size 

distribution statistically. This method has emerged as a promising tool to simulate the 
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local hydrodynamics in bubble columns (Simonin et al., 1993; Sokolichin and 

Eigenberger, 1994; Boisson and Malin, 1996; Pfleger et al., 1999; Sokolichin and 

Eigenberger, 1999). Olmos et al. (2001) coupled an Eulerian-Eulerian model with the 

population balance equations to simulate the evolution of the bubble size. The 

coalescence model of Prince and Blanch (1990) was used, with a 𝑘 − 𝜀 turbulence model 

for the liquid phase, and assuming isotropic turbulence in the determination of the 

bubble-bubble collisions. Chen et al. (2005) performed Eulerian-Eulerian simulations 

using a the population balance equation and compared a variety of bubble breakup and 

coalescence models. The liquid-phase flow was also simulated with a 𝑘 − 𝜀 turbulence 

model. 

In the CFD framework, many population balance modelling approaches have been 

proposed over the years. The multiple sized-group (MUSIG) model has been extensively 

applied by different researches (Liu et al., 2015; Yuan et al., 2016; Sha et al., 2006). In this 

model, the bubble diameter distribution is discretised in a number of bubble size classes 

and a discrete population balance equation with sources for bubble coalescence and 

breakup is solved for each class. 

A relatively simpler approach was proposed with the average bubble number density 

(ABND) model (Cheung et al., 2007; Cheung et al., 2010; Deju et al., 2013) and the 

interfacial area transport equation (IATE) (Brooks and Hibiki, 2016; Hibiki et al., 2003; 

Ishii and Kim, 2004). In these, however, an average diameter over the entire bubble 

diameter spectrum is employed and the behaviour of the bubble diameter distribution is 

not predicted. In contrast, the direct quadrature method of moments (DQMOM) model is 

based on the solution of a number of transport equations for the moments of the 

dispersed phase size distribution. Therefore, the evolution of the bubble diameter 

distribution is predicted with this method and as a consequence it has received 

considerable attention (Santos et al., 2013; Fox et al., 2008; Fan et al., 2004). The Monte 

Carlo approach is another method that is based on statistical ensembles of a finite large 

number of realizations of the bubble evolution (Liffman, 1992; Maisels et al., 2004). This 

method has the advantage of flexibility and accuracy, but it needs substantial 

computational resources because its accuracy is directly proportional to the number of 

system realizations. 
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Overall, numerous numerical approaches have been developed to solve the population 

balance equation within the two-fluid Eulerian-Eulerian model. However, the limitation 

of Eulerian-Eulerian models is their inability to account for properties of single bubbles 

at the bubble scale. Instead, only averaged values are available (mean bubble diameter). 

Therefore, as mentioned before, the Eulerian-Lagrangian technique has been selected for 

this work. In this framework, the film drainage model of Prince and Blanch (1990) has 

been selected to predict bubble coalescence due to its acceptable performance in 

predicting this phenomenon. 

2.4.4 Bubble Breakup 

Together with bubble coalescence, bubble breakup plays a critical role in the evolution of 

the bubble size distribution and the interfacial area available for mass and heat transfer 

exchanges between the phases. The breakup of gas bubbles in a liquid involves interface-

related phenomena. Amongst these, the surface tension is arguably one of the most 

important parameters. Surface tension occurs when there is a difference between the 

intermolecular forces across an interface between two immiscible fluids. The resultant 

product is a force per unit length or an energy per unit area which resists the creation of 

a new interface (Israelachvili, 2011). Surface tension depends on the strength of the 

intermolecular attraction forces, the size of the molecules, and the chemistry along the 

interface. For instance, low surface tensions (~ 20 mNm−1) are observed at air/oil 

interfaces while for the air/water interface the surface tension is higher (~ 72.8 mNm−1). 

Bubble breakup can be due to different mechanisms: (1) turbulent fluctuations and 

bubble collisions; (2) viscous shear stress; (3) the shearing-off process; and (4) interfacial 

instabilities. In the following, available models of bubble breakup are reviewed and the 

application of these in Eulerian-Eulerian and Eulerian-Lagrangian models for the 

prediction of bubbly flows is considered.  

Researchers have been interested in determining the conditions that lead to bubble 

deformation and breakup for many years. The theory of bubble or droplet breakup in 

turbulent flow was first developed by Kolmogorov (1949), see Hinze (1955 ). It was 

suggested that a bubble breaks as a result of interactions with turbulent eddies that are 

of approximately of the same size of the bubble. It was assumed that the bubble size was 
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in the inertial sub-range of turbulence scales and Kolmogorov’s universal energy 

spectrum was used to estimate the strength of eddies having sizes comparable to the 

bubble. Specifically, Hinze (1955) formulated a criterion for breakup based on a force 

balance. This criterion states that, in a strong turbulence field, a bubble deforms and 

breaks if the restoring force due to the surface tension is unable to balance the random 

pressure fluctuations that cause the deformation. 

Following Kolmogorov (1949) and Hinze (1955), many subsequent studies have 

examined bubble breakup in turbulent flows. Levich (1962) updated the Kolmogorov 

(1949) and Hinze (1955) criteria by including the density of the air. Zeitling and 

Tavlarides (1972) approached the breakup problem by modelling the breakage efficiency 

of bubbles in a stirred tank. Coulaloglou and Tavlarides (1977) developed a 

phenomenological model that assumed breakup would only occur if the turbulence 

kinetic energy overcomes the surface energy of a bubble. Prince and Blanch (1990) 

examined the effect of eddy size on bubble breakup and concluded that breakup was due 

to interactions with turbulent eddies of a length scale between 0.2 and 1.0 times the 

bubble diameter. The authors also concluded that eddies larger than this size are only 

responsible for transporting the bubbles, and those that are smaller deform but are not 

capable of breaking the bubble. In addition to the length scale, the impact of eddies of 

different energy has been considered. For instance, Luo and Svendsen (1996) postulated 

that the minimum energy to initiate breakup should be comparable to the increase in the 

surface energy associated with the increase in surface area caused by the deformation. 

Risso and Fabre (1998) obtained critical values of the Weber number for breakup 

between 2.7 and 7.8 from experiments under microgravity conditions. The experiments 

were performed with two sets of bubbles: type A bubbles, which ranged from 2 mm to 

6 mm in size, and type B bubbles, ranging from 12.4 mm to 21.4 mm in size. Breakup was 

observed only for type B bubbles and in around 50% of the cases considered. The authors 

identified two bubble breakup mechanisms: force imbalance and resonance oscillation. 

In weak turbulence, it was postulated that a bubble breaks through a resonance 

phenomenon in which the 𝑛 = 2 bubble oscillation mode is dominant. The 𝑛 = 2 mode of 

oscillation is a degenerate mode that consists of an axisymmetric mode and two non-

axisymmetric modes (Risso, 2000; Ravelet et al., 2011) and in which the bubble volume 
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is conserved. When the turbulence is sufficiently strong, the resonance mode is bypassed, 

and the bubble breaks up abruptly. 

Qian et al. (2006) studied the feasibility of using the lattice Boltzmann method to simulate 

bubble breakup in turbulence by simulating the deformation and breakup of bubbles in 

homogeneous turbulence under zero gravity conditions. The other goal of the simulations 

was to understand the breakup mechanism. The Reynolds numbers of the simulations, 

based on the spatial period and the turbulence intensity, were too small for the existence 

of an inertial sub-range. However, the Reynolds number based on the equivalent 

spherical bubble diameter and the turbulence intensity was typically around 102. The 

results obtained for bubble breakup agreed well with the low gravity bubble breakup 

experiments of Risso and Fabre (1998). However, due to the computational demands of 

the simulations, Qian et al. (2006) were unable to obtain statistical results for the 

characteristics of the flow field. The number of daughter bubbles from bubble break up 

during the simulations was never more than 3. In the Risso and Fabre (1998) 

experiments, however, bubbles were observed to breakup into as many as 10 daughter 

bubbles. It seems plausible that the difference between these two studies is due to the 

fact that, in the simulations, the energy spectrum of the turbulence decreased more 

quickly with wavenumber than in the experiments, in which the bubbles were in the 

inertial sub-range of length scales. The finite size of the computational domain and the 

associated interaction of a bubble with the periodic boundaries are also likely sources of 

discrepancies between the simulations and the experiments. Finally, it was observed that 

small bubbles may simply dissolve due to Ostwald ripening. 

Lehr et al. (2002) studied bubble size distributions and the flow field in bubble columns 

with cylindrical cross-section using the Eulerian-Eulerian method. The authors used a 

population balance equation for the average bubble volume. The model developed 

predicted the rate of bubble breakup and coalescence based on physical principles. The 

calculated volume fractions, velocities and bubble-size distributions agreed well with 

existing and previously published experimental results for bubble columns up to 0.3 m in 

diameter. The breakup constraint was determined by the balance between the interfacial 

force of the smallest daughter bubbles and the critical value of the inertial force of the 

interacting turbulent eddies. 
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Few authors have used the Eulerian-Lagrangian approach to predict the bubble size 

distribution. In view of its ability to provide more detailed and physically more realistic 

predictions with respect to the Eulerian-Eulerian model (Göz et al., 2006; Lain et al., 

1999) however, the Eulerian-Lagrangian approach has been adopted for studies of 

coalescence and breakup processes in bubble columns and ducts (Sungkorn et al., 2012; 

Lau et al., 2014; Xue et al., 2016). According to Lau et al. (2014), the incorporation of 

breakup models originally developed for the PBE in an Eulerian-Lagrangian approach is 

not straightforward due to the differences in the mathematical representation. However, 

the underlying physics that represents these phenomena still hold and the associated 

constraints can still be used to formulate criteria for breakup in the Eulerian-Lagrangian 

technique. 

In Lau et al.’s (2014) work, the simulations were performed for a square air-water bubble 

column. The column had a square cross-section of 0.15 × 0.15 m2 and a height of 0.45 m. 

Air was introduced into the system through the bottom of the column via gas injection 

points. The gas inlet consists of 7 × 7 points, which were positioned in the centre of the 

bottom plane of the column with a square pitch of 6.25 mm. The diameter of the bubbles 

entering the column was set to 4 mm as experimentally observed by (Deen, 2001). The 

computational domain had an equidistant numerical grid of 30 × 30 × 90 and a fixed time 

step for the flow solver of 1.0 × 10−3 s. The total simulation time was set to 120 s, the first 

20 s of which were discarded to exclude initial condition effects. Results showed that the 

bubble breakup rate was predominant at the inlet and at the top of the bubble column 

where incoming bubbles were prone to large turbulent stresses. Breakup probability was 

very high at the bubble inlet. At the top of the bubble column, the change of liquid flow 

direction also caused the bubbles to experience large shear stresses. Breakup was 

assumed to be binary, as generally used in the literature, and the size of two daughter 

bubbles was determined from a prescribed probability function and the initial bubble 

volume. 

Different probability distributions have been proposed to determine the size of the 

daughter bubbles. The ‘U-shape’, which implies that the probability that a small daughter 

bubble breaks off from the parent bubble, is the highest, and equal sized daughter bubbles 

has the lowest probability, as used by Tsouris and Tavlarides (1994), Luo and Svendsen 

(1996) and Tsouris and Tavlarides (1994). The ‘M-shape’ implies that neither equal sized 
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breakup nor a small daughter bubble break up have a high probability, but rather that 

breakup values in between these two extremes have the highest probability (Lehr et al., 

2002). The uniform distribution, in contrast, infers that parent bubbles break up into 

daughter bubbles of any size with equal probability (Narsimhan et al., 1979; Prince and 

Blanch, 1990). Finally, the ‘bell-shape’, also known as the normal distribution, was 

proposed by Lee et al. (1987) and Martinez-Bazan et al. (1999). With this distribution, 

daughter bubbles with equal size have the highest probability of occurring, while one 

large and one small daughter bubble have a lower probability. 

2.5 Summary of State-of-the-Art and Present Contribution 

As stated earlier in this Section, air bubbles suspended in a turbulent liquid flow can 

interact with each other and with the surrounding fluid. Bubbles deform, vary in size, 

breakup and coalesce, and bubble behaviour crucially impacts the operation of industrial 

multiphase equipment, the performance of which is still negatively affected by the lack of 

detailed understanding of many physical aspects of bubbly flows. In recent decades, CFD 

has become a widely used and powerful tool for predicting the bubble size distribution 

(void fraction) and other parameters of two-phase bubbly flows. These parameters are 

crucial in analysing, optimising and supporting the design and operation of industrial 

units and engineering equipment that involve two-phase turbulent flows. 

In numerical modelling of two-phase turbulent flows, the local grid resolution may be 

such that the bubbles are fully resolved or under-resolved in relation to the resolution of 

the underlying mesh (Shams et al., 2011). In addition, the range of length scales in bubbly 

flows is often very large. Thus, the gas volume fraction impacts the component-scale 

average flow field. At the same time, the gas distribution is driven by microscale 

phenomena such as bubble coalescence and the drainage of a liquid film only a few 

micrometres in thickness. Different approaches have been applied to model this range of 

scales accurately, leading to multi-scale modelling strategies. The gas-liquid multi-scale 

modelling hierarchy includes fully resolved direct numerical simulations or lattice 

Boltzmann modelling approaches with interface tracking, the Eulerian-Lagrangian 

approach and Eulerian-Eulerian modelling (Lau, 2013). From the fully-resolved to the 
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under-resolved models, the amount of detail (and the computational cost) decreases 

while the geometric scale of the simulation increases. 

The Eulerian-Eulerian approach, also called the two-fluid model, treats both the carrier 

liquid phase and the dispersed gas phase as interpenetrating continua (Mashayek and 

Pandya, 2003; Zhou, 2015; Colombo and Fairweather, 2015). After averaging of the 

instantaneous phase field, closure relations are required to incorporate the (temporally 

and/or spatially averaged) interfacial mass, momentum and energy exchanges (Lau, 

2013). As information on individual bubbles is lost in this approach, the PBE is often 

embedded in Eulerian-Eulerian models to predict the bubble size distribution in 

industrial bubbly flows. The PBE handles the evolution of the size distribution of the 

dispersed phase statistically through coalescence and breakup models (Lau et al., 2014; 

Colombo and Fairweather, 2016). 

The Eulerian-Lagrangian method involves the use of DNS, LES or RANS for the carrier 

phase, whereas the motion of each dispersed phase bubble is tracked in a Lagrangian 

framework using Newton’s second law of motion, with the equation closed using model 

coefficients. The bubbles are usually modelled as spherical pointwise subjected to 

hydrodynamic and body forces. An additional dispersion model can be included to 

account for the contribution of the SGS velocity fluctuations in LES, or of the entire 

turbulence field if the carrier phase is obtained using RANS models, on the bubble 

acceleration. 

At an intermediate bubble volume fraction, the effect of the presence of the dispersed 

phase on the carrier phase has to be considered. This is represented by a force applied on 

the continuous phase by the dispersed phase, and such models are commonly referred to 

as two-way coupled (Shams et al., 2011; Molin et al., 2012). With further increases in the 

bubble volume fraction, bubble-bubble interactions become significant and, when they 

are accounted for through collision, coalescence and breakup models, the approach is 

known as four-way coupled (Shams et al., 2011). The Eulerian-Lagrangian approach is 

generally accurate in predicting bubble dynamics and transport when all bubble 

trajectories relevant to a problem are tracked (Shams et al., 2011). In addition, interaction 

mechanisms and the impact of small (in the range of the bubble length scale) fluid 

structures on bubble motion can be accurately predicted. In view of this capability of 
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being able to achieve predictive accuracy and insights into the physics of bubbly flows, 

without using the computational complexity of a full interface-tracking method, the 

Eulerian-Lagrangian approach is adopted in this thesis. 

For any advanced bubbly flow model, the ability to accurately predict the bubble size 

distribution is a requirement. The bubble size distribution depends mainly on the 

competition between bubble breakup and coalescence. Several breakup and coalescence 

models have been developed assuming different mechanisms, such as turbulence 

fluctuations in the surrounding liquid and the shear rate of the liquid phase. An overview 

of these models is given by Liao and Lucas (2009, 2010). The bubble-bubble interaction 

process consists of two sub-processes, i.e. collision and coalescence. The collision 

between bubbles is caused by their relative motion, which may be caused by a variety of 

mechanisms associated with the flow conditions in the carrier phase. The collision 

between bubbles can be modelled with direct collision models such as the hard sphere 

(Hoomans et al., 1996) and soft sphere (Tanaka and Tsuji, 1991) collision models, or 

statistics-based approaches (Sommerfeld, 2001). After colliding, the bubbles can either 

coalesce or separate without coalescing (Lau, 2013). For the determination of the 

probability of coalescence during a collision event, there are several descriptions of the 

coalescence process ranging from the kinetic collision model (Howarth, 1964; Sovová, 

1981), the film drainage model (Tsouris and Tavlarides, 1994) and the critical velocity 

model (Lehr et al., 2002). Between these models, the film drainage approach has been the 

most popular. Attractive forces between the interfaces drive the liquid film trapped 

between two colliding bubbles to drain out until the bubbles collapse, and coalescence 

follows. According to the model, coalescence will occur only if the interaction time 

exceeds the time needed for the film to drain out down to the critical rupture thickness. 

In this work, the deterministic event driven approach for bubble-bubble collision, and the 

film-drainage approach for the collision efficiency, are adopted due to their previous 

successes in handling these phenomena, as noted earlier in this review. 

Turbulent velocity fluctuations are not only a key contributor to the local relative velocity 

of the bubbles during coalescence but are also a major driver of bubble breakup. Often, a 

poor knowledge of the local turbulence behaviour in bubbly flows is a major limitation to 

breakup and coalescence model accuracy. In Eulerian carrier phase models based on 

RANS approaches, information on the turbulence field is only available through averaged 
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values, often of limited accuracy, of the turbulence fluctuations and the turbulence energy 

dissipation rate. In this work, use of the LES technique will enable the prediction of details 

of the turbulence behaviour at the bubble scale that are required for accurate prediction 

of breakup and coalescence events. LES is therefore chosen as a compromise between the 

inaccuracies associated with RANS approaches, and the computational demands of DNS-

based predictions.  

Despite their relevance, there have been relatively few attempts to model bubbly flows 

with four-way coupled, high-fidelity turbulent flow solvers that use eddy-resolving 

techniques coupled to coalescence and breakup models. Therefore, the abilities of such 

techniques to tackle the complex nature of bubbly flow processes have not been fully 

explored. At best, most numerical investigations of bubbly flows based on LES and DNS 

are limited to one-way coupled (Mattson and Mahesh, 2012; Giusti et al., 2005) or two-

way coupled (Fraga et al., 2016; Pang et al., 2016) simulations. Previous works on four-

way coupled simulation, where all the scales of the bubbles and the surrounding flow are 

resolved, have been limited to simulations of a few bubbles in turbulence at low shear 

Reynolds numbers (Lu et al., 2005; Bunner, 2000; Lee and Balachandar, 2017). More 

specifically, very few authors have employed LES coupled with a Lagrangian bubble 

tracker to study the hydrodynamics, coalescence and breakup of bubbles in two-phase 

flows, and those that have considered flows in square cross-section bubble columns 

(Delnoij et al., 1997; van den Hengel et al., 2005; Lau et al., 2014). In these systems, the 

smallest bubble size considered is of the order of a few millimetres. Additionally, there 

have been simulation studies of turbulent bubbly flows in horizontal and vertical 

channels. The one-way and two-way coupled DNS studies of bubbly flows in vertical 

(Giusti et al., 2005; Santarelli and Fröhlich, 2016; Pang et al., 2010) and in horizontal 

(Mazzitelli et al., 2003; Xu et al., 2002; Pang et al., 2014) channels are good examples. 

However, because of the multiplicity of physical effects, vertical and horizontal channel 

flows still remain a challenging application for computational tools, and very few studies 

have treated this problem with four-way coupled eddy-resolving techniques. It is 

therefore important to extend, and where possible to validate, the modelling capabilities 

of such techniques to incorporate bubble-bubble collisions, bubble coalescence and 

bubble breakup, and their effects on the bubble diameter distribution and the 
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instantaneous and mean flow field, for such simple flows ahead of their application to 

more realistic geometries of practical importance. 

In summary, the main contribution of the work described in this thesis is the 

development of a comprehensive four-way coupled numerical technique based on an 

eddy-resolving method. Additionally, the work demonstrates the ability of this technique 

to predict realistic bubbly flows using deterministic methods and to give new insights 

into the characteristics of bubbly flows in wall-bounded turbulence. A major limitation 

associated with such approaches is the rather high computational cost required by eddy-

resolving techniques. In view of this, the use of LES will limit computational requirements 

with respect to those required by DNS, whilst allowing resolution of the majority of the 

turbulence scales responsible for fluid-bubble and bubble-bubble interactions (i.e. the 

bubble scale). The computational cost of tracking a large number of dispersed bubbles in 

a four-way coupled fashion is another constraint to the development of high-fidelity CFD 

approaches for bubbly flows. Specifically, the detection of collision and coalesce events is 

particularly onerous, and scales linearly with the number of bubbles in the computational 

domain. From this point of view, the development of an efficient numerical technique to 

simulate turbulent bubbly flows at high mass loadings within the four-way coupled 

regime has significant potential. The algorithm described later efficiently detects bubble-

bubble collisions and, once a collision is detected, tests for bubble coalescence based on 

the film-drainage model requirements and subsequently tests for possible bubble 

breakup. The performance of the technique developed is tested by performing 

parametric studies on the influence the bubble size, flow Reynolds number, orientation 

of the channel and surface tension of the fluid. Although the thesis focuses on channel 

flows, the impact and outcomes are far reaching, and applicable to any flow geometry. 

The model can therefore, subsequently, be extended to different geometries and other 

fields of application and industries where accurate information is required on bubbly 

flow dynamics and bubble size distribution. This is particularly of value in view of the 

current lack of detailed experimental measurements of relevance to the many 

applications of bubbly flows. The developed methodology can also provide details, at the 

bubble scale, that are difficult, if not impossible, to obtain currently, even with the most 

advanced experimental techniques. 
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CHAPTER 3  

METHODOLOGY 

3.1 Introduction 

This chapter presents the mathematical formulation of the Eulerian-Lagrangian 

framework used in the present work, with a Lagrangian particle/bubble tracker (LPT) 

implemented in the large eddy simulation (LES) CFD code BOFFIN (Jones et al., 2002). 

Additionally, the numerical solution methods used to solve the descriptive equations are also 

described. The models and the numerical techniques were implemented to systematically 

study the complex behaviour of microbubbles in turbulent flow, beginning from a one-way 

coupled approach and ultimately with a four-way coupled model accounting for bubble 

collisions, coalescence and breakup. The BOFFIN LES flow solver and the bubble tracker, 

originally developed for solid particulate flows, were modified and extended to cover bubbly 

flows. In addition to the main models for the LES and the LPT, the sub-grid scale (SGS) model 

used within the LES, and the momentum feedback terms from the bubbles to the fluid, are 

also described. The bubble force models, collision model and models for coalescence and 

breakup implemented in the bubble tracker are presented.  

The specific contributions of the present work to the development of the overall numerical 

model were: 

• In the Lagrangian particle tracking algorithm, drag, lift and added mass force terms 

for bubbles were implemented. These greatly differ from similar models for solid particles. 

An additional force term, the wall correction coefficient, 𝐶𝑊, was also implemented. This is 

specific to bubbles and accounts for further modification of the drag force in the vicinity of 

a solid wall boundary.  

• The bubble feedback effect (two-way coupling) on the continuous phase liquid flow, 

and the bubble-bubble collision model (four-way coupling), were developed and 

implemented. 
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• Models for the coalescence and breakup of bubbles were adapted from the literature, 

to comply with the Lagrangian tracking framework, and implemented in the bubble tracker. 

3.2 Mathematical Model for Continuous Phase 

The evolution of a continuous fluid flow in space and time is described by a set of non-

linear, partial differential equations, commonly referred to as the Navier-Stokes 

equations. The non-linearity of the conservation equations arises from the convective 

transport of momentum and, if heat transfer or mass transfer are present, energy and 

scalar variables. 

In two-phase flows, the presence of a dispersed gas phase has to be considered while 

treating the continuous liquid flow. In this work, it is assumed that the characteristic 

dimension of the dispersed phase is smaller than the smallest turbulence length scales, 

enabling the gas bubbles to be viewed, in respect of their influence on the fluid phase, as 

point sources. This means that source terms appear in the differential forms of the 

conservation equations for the liquid phase to represent the effects of all bubbles 

contained within each fluid element (Bini and Jones, 2008). For an isothermal non-

reacting flow, as considered herein, only the continuity and momentum equations are 

required, as presented below. 

The Eulerian approach is based on solving the partial differential equations which 

describe the conservation of mass and momentum for three-dimensional, turbulent, 

incompressible and isothermal flows. The mass and momentum conservation equations 

expressed in Cartesian tensor form, are obtained respectively as: 

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (3.1) 

where 𝑥𝑖  is the 𝑖-th spatial co-ordinate and 𝑢𝑖  is the corresponding velocity component, 

and  

 
𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)] + 𝑆𝑚𝑜𝑚,𝑖 (3.2) 
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where 𝑝 represents the pressure of the fluid, 𝜌 is the fluid density and 𝜇 is the dynamic 

viscosity of the fluid. The source term 𝑆 represents momentum source terms due to the 

presence of the dispersed phase and the external body force field. Solution of the 

continuity and momentum equations gives a full description of the Newtonian-fluid flow. 

3.2.1 Large Eddy Simulation 

In LES, the fluid flow field is decomposed into large-scale motions that are resolved by 

the computation and small-scale, sub-grid fluctuations, using a filtering operation. The 

resolved flow field is obtained by considering the effects of the SGS fluctuations on the 

filtered continuity and momentum equations. The governing equations are filtered by 

applying a filter operator to the equations. The filter operator is defined as: 

 𝑓(𝑥) = 𝑓(̅𝑥)  +  𝑓𝑆𝐺𝑆(𝑥) (3.3) 

where 𝑓(̅𝑥) represents the resolved large scales and 𝑓𝑆𝐺𝑆(𝑥) is the sub-grid contribution. 

The spatial filter of a function 𝑓 = 𝑓(𝐱) is defined as its convolution with a filter function, 

𝐺, according to (Leonard, 1974): 

 𝑓(̅𝐱) = ∫ 𝐺[𝐱 − 𝐱′; Δ(𝐱)]𝑓(𝐱′)d𝐱′
Ω

 (3.4) 

where 𝐺[𝐱 − 𝐱′; Δ(𝐱)] denotes the filter function. The integration is carried out over the 

entire flow domain, Ω, and Δ denotes the filter width. The filter width serves to define the 

minimum length scales that are preserved, and various filter kernels are commonly used 

such as the “sharp cut off”, the Gaussian and the box or “top-hat” filter (Sagaut et al., 2002; 

Kleissl et al., 2002). In the present work, top-hat filter is applied as this fits naturally into 

the formalism of the finite volume method used to discretize the governing equations. 

This filter is defined by the following equation (Kuerten et al., 1999; Bini and Jones, 2008):  

 𝐺(𝑥 − 𝑥′; Δ(𝑥)) = {
Π𝑗=1
3 1

Δ𝑗
 ,   𝑓𝑜𝑟 |𝑥 − 𝑥𝑗

′| ≤
Δ𝑗

2

0,            𝑓𝑜𝑟 |𝑥 − 𝑥𝑗
′| >

Δ𝑗

2
 
 (3.5) 
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where Π𝑗=1
3 1

Δ𝑗
 corresponds to the inverse volume of a finite volume cell used in the 

numerical solution, and the filter corresponds to volume averaging over the cell. The filter 

function has a characteristic with, Δ (the filter width), which may in general vary with 

position (Δ = Δ(𝑥)) and is commonly taken as Δ = (Δ𝑥 × Δ𝑦 × Δ𝑧)
1/3

, with Δ𝑥, Δ𝑦 and Δ𝑧 

being the mesh spacings in the three coordinate directions. 

3.2.2 Filtered Navier-Stokes Equations 

The governing equations, Eqs. (3.1) and (3.2), must be filtered to obtain the LES 

equations. The filtered Navier-Stokes equations are presented below. 

Filtering the continuity equation, Eq. (3.1), using the filtering operation of Eq. (3.4) gives: 

 
𝜕𝑢̅𝑖
𝜕𝑥𝑖

= 0 (3.6) 

Comparison between Eqs. (3.6) and (3.1) shows that the filtering does not introduce any 

extra terms to the original continuity equation, but it only replaces unfiltered quantities 

with their filtered equivalents 

Similarly, the filtered momentum equation is written as: 

 
𝜕(𝑢̅𝑖)

𝜕𝑡
+ 𝑢̅𝑗

𝜕𝑢̅𝑖
𝜕𝑥𝑗

= −
𝜕𝑝̅

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢̅𝑗

𝜕𝑥𝑖
+
𝜕𝑢̅𝑖
𝜕𝑥𝑗

)] + 𝑆𝑚̅𝑜𝑚,𝑖 (3.7) 

Comparison between Eqs.(3.2) and (3.2) shows that all the terms can be rewritten as a 

function of filtered quantities, except for the non-linear convection term. Similar to 

temporal averaging in RANS modelling, LES filtering results in an unknown contribution, 

the so-called sub-grid stress tensor 𝜏𝑖𝑗
𝑠𝑔𝑠

: 

 𝑢𝑖𝑢𝑗 = 𝑢̅𝑖𝑢̅𝑗 + 𝜏𝑖𝑗
𝑠𝑔𝑠

 (3.8) 
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Substitution of the sub-grid stress tensor, Eq. (3.8), into the filtered momentum equation, 

Eq. (3.7) gives: 

 
𝜕𝑢̅𝑖
𝜕𝑡

+ 𝑢̅𝑗
𝜕𝑢̅𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝̅

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜈 (

𝜕𝑢𝑗

𝜕𝑥𝑖
+
𝜕𝑢𝑖
𝜕𝑥𝑗

) − 𝜏𝑖𝑗
𝑠𝑔𝑠
] + 𝑆𝑚̅𝑜𝑚,𝑖  (3.9) 

3.2.3 Sub-Grid Scale Modelling 

The filtered LES equations are unclosed, and modelling is required for the unknown sub-

grid stress tensor 𝜏𝑖𝑗
𝑠𝑔𝑠

. Compared to RANS turbulence models, the sub-grid stresses in 

LES are expected to be small, if the filter width is chosen in such a manner that most of 

the energy containing turbulence scales are resolved. Hence, as the filter width tends to 

zero, the LES solution approaches the DNS limit (Fox and Lilly, 1972). 

The dynamic SGS stress model of Germano et al. (1991) was applied, using the 

approximate localization procedure of Piomelli and Liu (1995) and the modification 

proposed by Di Mare and Jones (2003). This represents the SGS stresses as the product 

of a SGS viscosity, 𝜈𝑆𝐺𝑆 , and the resolved part of the strain tensor, 𝑆̅. The SGS viscosity is 

evaluated as the product of the filter length ∆ times an appropriate velocity scale, taken 

to be ∆‖S̅‖. Hence, the anisotropic part of the SGS stresses is given as: 

 𝜏𝑖𝑗
𝑠𝑔𝑠

= 2𝐶𝑠Δ
2‖𝑆𝑖̅𝑗‖𝑆𝑖̅𝑗 (3.10) 

where 𝐶𝑠 is the Smagorinsky constant that needs to be modelled. Additionally: 

• 𝑣𝑠𝑔𝑠 = (𝐶𝑠Δ
2)‖𝑆𝑖̅𝑗‖ is the SGS eddy kinematic viscosity 

• ‖𝑆𝑖̅𝑗‖ = √2𝑆𝑖̅𝑗𝑆𝑖̅𝑗 is the Frobenius norm of the filtered strain tensor 

• 𝑆𝑖̅𝑗 = 0.5 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) is the filtered strain tensor 

In the dynamic model, estimation of the model coefficient 𝐶𝑠 is achieved by applying a 

second filtering operation, 𝑇𝑖𝑗. The test-filtered SGS stresses are: 
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 𝑇𝑖𝑗 = 𝑢𝑖𝑢𝑗̿̿ ̿̿ ̿ −  𝑢̿𝑖𝑢̿𝑗  (3.11) 

In this equation, the topmost overbar represents the test filter operation. The parameters 

𝑇𝑖𝑗 and 𝜏𝑖̅𝑗 are unknown but are related by Germano’s identity (Kuerten et al., 1999) 

through the resolved stress tensor: 

 𝐿𝑖𝑗 = 𝑇𝑖𝑗 − 𝜏𝑖̅𝑗 = 𝑢𝑖𝑢𝑗̿̿ ̿̿ ̿ − 𝑢̿𝑖 𝑢̿𝑗  (3.12) 

which can be calculated from the resolved quantities. To give the required expression for 

𝐶𝑠, some form of relationship between the model constant values 𝐶𝑠 and 𝐶𝑠
2(•̅) at the grid- 

and test-filter levels must be specified and, based on the hypothesis that the cut-off length 

falls inside the inertial sub-range, 𝐶2 = 𝐶2(•̅). However, such a sub-range is not 

guaranteed to occur in wall bounded or low Reynolds number flows, with the largest 

deviation from the universality of the SGS motions expected to occur in the regions of 

weakest resolved strain. Based on this, the two values of the model parameter at two 

different filter levels are liable to differ. To account for this, Di Mare and Jones (2003) 

proposed the following: 

 𝐶𝑠
2(•̅) = 𝐶𝑠

2 (1 +
𝜖

2√2Δ̅2‖𝑆̿‖‖𝑆̿𝑎‖
2) (3.13) 

where 𝜖 represents the assumed turbulence energy dissipation rate, such that 

𝜖~𝑣3/𝑙, with 𝑣 and 𝑙 being the velocity and length scales, respectively, and 𝑣 = 𝑢𝑏 and 𝑙 =

ℎ, where 𝑢𝑏 and ℎ are the bulk velocity and channel half-height for the flows considered 

herein.  

Equation (3.13) is related to the assumption that the scale invariance of 𝐶𝑠 can only be 

invoked if the cut-off falls inside an inertial sub-range, and when this occurs, the modelled 

dissipation should represent the entire dissipation in the flow. Conversely, in the high 

Reynolds number limit, the dissipation is only determined by 𝑣 and 𝑙 so that the ratio of 

𝜖 to Δ̅2‖𝑆̿‖
3
 is a measure of how far the flow is from scale preserving conditions. This 

equation represents a first-order expansion of other scale dependent expressions for 𝐶𝑠, 

for example that of Porté-Agel et al. (2000), which also use a single length and velocity 
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scale. Equations (3.12) and (3.13), with contraction of both sides with the tensor 𝑆̿, then 

give: 

 𝐶𝑠
2 =

[2√2(𝐶∗2∆)2 ∥ 𝑆̅ ∥∥ 𝑆𝑖̿𝑗
𝑎 ∥ 𝑆𝑖̿𝑗

𝑎 − 𝐿𝑖𝑗
𝑎 𝑆𝑖̿𝑗

𝑎]

𝜖 + 2√2Δ̌2 ∥ 𝑆̿ ∥∥ 𝑆̿a ∥2
 (3.14) 

where 𝐶∗
2 is a provisional value for the field 𝐶𝑠

2, for example, its value at the previous time 

step (Piomelli and Liu, 1995). The dependence embodied in Eq. (3.14) gives a simple 

correlation for 𝐶𝑠
2. The main advantage of this method is that it is well conditioned and 

avoids the spiky and irregular behaviour exhibited by some implementations of the 

dynamic model and, as the resolved strain tends to zero, 𝐶𝑠
2 also tends to zero, while 

𝐶𝑠
2(•̅)2 remains bounded. The dissipation term also yields smooth 𝐶𝑠

2 fields without a 

need for averaging, and the maxima of 𝐶𝑠
2 are of the same order of magnitude as Lilly’s 

(1967) estimates for the Smagorinsky model constant. Negative values of the model 

parameters are possible, with such values set to zero to prevent instability. Negative 

values of the SGS viscosity are similarly set to zero. In this work, test filtering was 

performed in all space directions, with no averaging of the calculated model parameter 

field. The ratio ∆̅/∆ was set to 2. 

3.2.4 Periodic Boundary Conditions and Driving Pressure Drop  

The momentum source terms 𝑆𝑚𝑜𝑚 for a turbulent two-phase flow depend on the 

computational domain, the flow direction and the dispersed phase concentration. For a 

turbulent channel flow driven by a pressure gradient, the momentum source term 

includes the pressure gradient that drives the flow, the gravity-buoyancy source term and 

the dispersed phase feedback effect (as in two-way coupling). This sub-section describes 

the model for the pressure gradient that drives the flow in a turbulent channel. The other 

momentum source term due to two-way coupling will be discussed in a later section. 

As the computational domain used in this work is a channel flow with a periodic boundary 

condition in the direction of the flow, an additional source term is required to drive it. 

This additional source term is added to the filtered momentum equation, Eq. (3.9), 

analogously to the pressure drop. Furthermore, there are two ways to implement this: (i) 

by a constant flow rate, 𝑚̇, which is corrected by adjusting the forcing term in the 
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momentum equation at every timestep; and (ii) by specifying a constant pressure 

gradient, d𝑝/d𝑧, which can be applied when the required wall shear stress is known 

(Mallouppas and van Wachem, 2013). The source term is then equal to the integrated 

wall shear stress. 

The pressure gradient (𝑆𝑝𝑔,𝑖 = d𝑝/d𝑧) based on a constant flow rate is given by: 

 𝑆𝑝𝑔,𝑖 = −
𝑚0̇ − 𝑚̇𝑛

𝐴𝑐𝑟𝑜𝑠𝑠Δ𝑡𝑛
𝛿𝑖3 (3.15) 

where 𝑚̇ is the specified mass flow rate at a given cross-section with an area, 𝐴𝑐𝑟𝑜𝑠𝑠, 𝑚̇𝑛 

is the computed mass flow rate at the current time step Δ𝑡𝑛, 𝛿𝑖3 is the Kronecker function 

(𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗, 𝛿𝑖𝑗 = 0 for 𝑖 ≠ 𝑗) and 𝑆𝑝𝑔 has the unit of a pressure gradient, kgm−2s−2. 

The flow rate per channel cross sectional area is the bulk velocity, 𝑢𝐵, and the 

corresponding Reynolds number for a constant flow rate is thus the bulk Reynolds 

number 𝑅𝑒𝐵: 

 𝑅𝑒𝐵 = 𝑢𝐵ℎ/𝜈 (3.16) 

The pressure gradient (𝑆𝑝𝑔,𝑖 = d𝑝/d𝑧) based on a constant pressure gradient is given as: 

 𝑆𝑝𝑔,𝑖 = −(𝜏𝑤/ℎ)𝛿𝑖3 (3.17) 

where 𝜏𝑤 is the mean value of the wall shear stress and h the channel half-height. By using 

the shear velocity, 𝑢𝜏 = (𝜏𝑤/𝜌)0.5, the forcing term based on a constant pressure gradient 

becomes: 

 𝑆𝑝𝑔,𝑖 = −(
𝑢𝜏
2𝜌

ℎ
) 𝛿𝑖3 (3.18) 

The resultant Reynolds number based on 𝑢𝜏 is referred to as the shear Reynolds number 

𝑅𝑒𝜏 and is given by: 

 𝑅𝑒𝜏 = 𝑢𝜏ℎ/𝜈 (3.19) 

where 𝜈 is the kinematic viscosity of the fluid. 
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For vertical flows, an additional source term is required. The pressure gradient, 𝑆𝑝𝑔,𝑖, 

taking into account gravity and buoyancy forces, is given as (Molin et al., 2012; Yamamoto 

et al., 2001): 

 𝑆𝑝𝑔,3 = −
𝜌𝑢𝜏

2

ℎ
± Φ(𝜌 − 𝜌𝑏)𝑔 (3.20) 

where Φ is the bubble volume fraction. The sign ± depends on the flow direction and 𝜌𝑏 

is the density of the bubble.  

3.3 Mathematical Model for Dispersed Phase 

It is noteworthy that bubbles flowing in a liquid are not spherical by default, but their 

shape varies due to the action of different physical parameters. Specifically, freely moving 

bubbles under the influence of gravity can be classified as: 

• Spherical: The bubbles are considered spherical if interfacial and viscous forces 

dominate over inertial forces 

• Ellipsoidal: The bubbles are considered ellipsoidal if they are oblate with a convex 

surface 

• Spherical cap or ellipsoidal cap: Larger bubbles that tend to be flat, dimpled or 

skirted at the rear fall under the category of spherical or ellipsoidal cap. 

Cliff et al. (1978) state that the different shapes of bubbles can be categorised by three 

dimensionless numbers: the Eotvos number, 𝐸𝑜, Morton number, 𝑀, and bubble Reynolds 

number 𝑅𝑒𝑏: 

 𝐸𝑜 =
𝑔Δ𝜌𝑑𝑒𝑞

2

𝜎
 (3.21) 

 𝑀𝑜𝑟 =
𝑔𝜇4∆𝜌

𝜌2𝜎3
 (3.22) 

 𝑅𝑒𝑏 =
|𝐮 − 𝐯|𝑑𝑒𝑞

𝜈
 (3.23) 

where 𝑔 is gravitational acceleration, Δ𝜌 is the density difference between the continuous 

phase and the dispersed phase, 𝜎 is the surface tension, 𝑑𝒆𝑞 is the diameter of the volume-
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equivalent sphere and |𝐮 − 𝐯| is the magnitude of the slip velocity. These dimensionless 

numbers are used to classify the shape of bubbles moving through a liquid under the 

effects of gravity. For instance, a bubble is termed spherical if its Eotvos number has a 

high value and the Reynolds number is low, or the Reynolds number is high and the 

Eotvos number low, or both numbers are low. 

3.3.1 Forces Affecting Bubble Motion 

The motion of a small rigid spherical bubble in a turbulent flow field is described by 

Newton’s second law of motion (Maxey and Riley, 1983). With the bubble-fluid density 

ratio 𝜌𝑏/𝜌 ≪ 1, the microbubbles are subjected to drag, lift, gravity, buoyancy, pressure 

gradient and added mass forces, and a stochastic contribution arising from the SGS 

velocity fluctuations (Elghobashi and Truesdell, 1992). Therefore, the motion of 

microbubbles obeys the following Lagrangian equation:  

 𝑚𝑏

d𝐯

d𝑡
= ∑𝐅 = 𝐅D + 𝐅BG + 𝐅SL + 𝐅PG + 𝐅AM + 𝛘sgs (3.24) 

where: 

• 𝐅D is the drag force 

• 𝐅BG is the buoyancy-gravity force 

• 𝐅SL is the shear lift force 

• 𝐅PG is the pressure gradient force 

• 𝐅AM is the added mass force 

• 𝛘sgs is the SGS contribution  

• 𝑚𝑏 is the mass of the bubble 

The bubble position vector 𝐱𝑏 = (x𝑏 , y𝑏 , z𝑏) is obtained from the bubble equation motion: 

 
d𝐱𝑏
d𝑡

= 𝐯 (3.25) 
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Drag Force 

The drag force, 𝐅D, is due to the viscous friction between the bubble and the carrier fluid, 

and is given by: 

 𝐅D =
1

2
𝜌𝐴𝑏𝐶𝐷𝐶𝑤|𝐮 − 𝐯|(𝐮 − 𝐯) (3.26) 

where 𝐮 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is the resolved fluid velocity vector at the bubble position, 𝐯 =

(𝑣𝑥, 𝑣𝑦, 𝑣𝑧) is the bubble velocity vector and 𝐴𝑏 = 𝜋𝑑𝑏
2 4⁄  is the cross-sectional area of the 

bubble. The drag coefficient 𝐶𝐷 is a function of the bubble Reynolds number, 𝑅𝑒𝑏, and 

various expressions are available in literature. The Schiller and Naumann (1935) 

expression for the drag coefficient is used in the present work as it includes a non-linear 

correction coefficient to modify the Stokesian drag force for bubbles with finite Reynolds 

number: 

𝐶𝐷 =

{
 
 

 
 
24/𝑅𝑒𝑏,                                      𝑅𝑒𝑏 ≤ 1,                Stokes region                 

         
24/𝑅𝑒𝑏(1 + 0.15𝑅𝑒𝑏

0.687), 1 < 𝑅𝑒𝑏  < 1000, Schiller and Neumann

0.44,                                           𝑅𝑒𝑏 ≥ 1000, Newton region              

 (3.27) 

 

The wall correction coefficient, 𝐶𝑊, accounts for further modifications to the drag force 

due to the presence of a solid boundary in the vicinity of the bubble. 𝐶𝑊 is modelled 

following Fukagata et al. (2001) and has different expressions in the directions parallel, 

𝐶𝑊∥, and perpendicular, 𝐶𝑊⊥, to the wall: 

 

𝐶𝑊∥ = [1 −
9

16
(
𝑑𝑏
2𝑥
) +

1

8
(
𝑑𝑏
2𝑥
)
3

−
45

256
(
𝑑𝑏
2𝑥
)
4

−
1

16
(
𝑑𝑏
2𝑥
)
5

]

−1

 

𝐶𝑊⊥ = {[1 −
9

8
(
𝑑𝑏
2𝑥
) +

1

2
(
𝑑𝑏
2𝑥
)
2

] [1 − exp(−2.686 (
2𝑥

𝑑𝑏
− 0.999))]}

−1

 

(3.28) 

where the term 𝑑𝑏 2𝑥⁄  indicates the ratio between the bubble radius and the distance 

between the wall and the bubble centre of mass. 
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Buoyancy-Gravity Force 

The buoyancy and gravity forces are often computed together due to the simplicity of 

their expressions. These are due to the force acting on a bubble due to the gravity field 

and the difference in density between the bubble and the surrounding fluid: 

 𝐅BG = (𝑚𝑏 −𝑚𝑓)𝐠 (3.29) 

𝑚𝑏 and 𝑚𝑓 are the mass of the bubble and the fluid element the bubble displaces, and 

they are given as: 

 

𝑚𝑏 = 𝜌𝑏𝑉𝑏 

𝑚𝑓 = 𝜌𝑉𝐷 

𝑉𝑏 =
1

6
𝜋𝑑𝑏

3 =
4

3
𝜋𝑟𝑏

3 

(3.30) 

were 𝑉𝑏 is the volume of a spherical bubble, 𝑉𝐷 is the volume of the computational domain 

and 𝑟𝑏 is the radius of the spherical bubble. 

Shear Lift Force 

The shear lift force is due to the velocity gradient in the flow and the force is given as 

(Mazzitelli et al., 2003): 

 𝐅SL = 𝑚𝑓𝐶𝐿(𝐮 − 𝐯) ×  𝛚 (3.31) 

where 𝛚 =  0.5(∇ × 𝐮) is the fluid rotation. The lift force coefficient, 𝐶𝐿 , accounts for the 

correction due to small and large bubble Reynolds number. 𝐶𝐿 is a function of the bubble 

Reynolds number, 𝑅𝑒𝑏, and the dimensionless shear rate, 𝑆𝑟𝑏 = [(𝐮 − 𝐯) × 𝛚]𝑑𝑏/

(𝐮 − 𝐯)2. Based on McLaughlin (1991) and Kurose and Komori (1999), CL is given as: 

𝐶𝐿 =

{
 
 
 

 
 
 𝐶L−MCL = [5.816(

𝑆𝑟𝑏
2𝑅𝑒𝑏

)
0.5

− 0.875
𝑆𝑟𝑏
2
]
3

4𝑆𝑟𝑏
 
𝐽(∈)

2.255
,   for   Reb < 1       

CL−MCL =
5 − 𝑅𝑒𝑏 

4
+ CL−KK

𝑅𝑒𝑏 − 1

4
 ,                                for 1 < 𝑅𝑒𝑏  < 5 

CL−KK = [(𝐾0 (
𝑆𝑟𝑏
2
)
0.9

+ 𝐾1 (
𝑆𝑟𝑏
2
)
1.1

)]
3

4𝑆𝑟𝑏
,                    for 𝑅𝑒𝑏 > 5         

 (3.32) 

where 𝐶L−MCL represents the coefficient calculated following McLaughlin (1991). The 

function, 𝐽(∈) = 2.225/(1 + 0.2 ∈−2)3 2⁄  is also used in McLaughlin (1991), with ∈=
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(𝑆𝑟𝑏 𝑅𝑒𝑏⁄ )1 2⁄ . The coefficient 𝐶L−KK is calculated as noted in Kurose and Komori (1999), 

where 𝐾0 and 𝐾1 are coefficients which are functions of 𝑅𝑒𝑏. 

Pressure Gradient Force 

The pressure gradient force is the acceleration of the bubble due to the pressure field in 

the surrounding fluid (Auton et al., 1988) and it is given as: 

 𝐅PG = 𝑚𝑓

D𝐮

D𝑡
 (3.33) 

Added-Mass Force 

The added-mass force accounts for the fact that a bubble accelerating relative to the fluid 

surrounding it transfers momentum at a certain rate to the carrier flow. The increase in 

the apparent mass of the bubble compared to the mass of the displaced fluid is commonly 

referred to as the added mass (Lahey Jr et al., 1980). In order to accelerate the bubble, 

both the bubble and the surrounding fluid must be set in motion. For a constant volume 

and added mass coefficient, the added mass force is expressed as: 

 𝐅AM = 𝜌𝑉𝑏𝐶𝐴𝑀 (
d𝐮

d𝑡
−
d𝐯

d𝑡
) (3.34) 

where 𝐶𝐴𝑀 is the added mass coefficient. For a single non-deformable spherical bubble, 

𝐶𝐴𝑀 = 0.5. An important notation convention is that the derivatives (d d𝑡⁄ ) and (D D𝑡⁄ ) 

represent the time derivatives following the moving bubble and the surrounding fluid 

element, respectively. Therefore, the following relations hold when the derivatives are 

calculated along the bubble trajectory (bold face symbols denote vector quantities): 

 
d

d𝑡
=
∂

𝜕𝑡
+ 𝐯. ∇ (3.35) 

and 
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D

D𝑡
=
∂

𝜕𝑡
+ 𝐮. ∇ (3.36) 

3.3.2 Bubble Equation of Motion 

Inserting the expression of the forces into the force balance equation, Eq. (3.24), and 

dividing the resulting equation by the mass of the bubble, 𝑚𝑏, gives: 

 

d𝐯

d𝑡
= (1 −

𝜌

𝜌𝑏
) 𝐠 + 

(𝐮 − 𝐯)

𝜏𝑏
𝐶𝐷𝐶𝑤 + 𝐶𝐿

𝜌 

𝜌𝑏
[(𝐮 − 𝐯) × 𝛚] 

+
𝜌

𝜌𝑏

D𝐮

D𝑡
+
1

2

𝜌

𝜌𝑏
(
d𝐮

d𝑡
−
d𝐯

d𝑡
) + 𝛘sgs 

(3.37) 

The terms on the right-hand side of Eq. (3.37) represent the forces per unit mass acting 

on a bubble and describe the effect of gravity, drag, shear lift, pressure gradient and added 

mass forces, while the last term 𝛘sgs represents the effect of SGS velocity fluctuations on 

the bubble motion. Subscript 𝑏 refers to the bubble and 𝜏𝑏 is the bubble relaxation time, 

corrected to account for added mass effects to give 𝜏̌𝑏 = 𝜏𝑏(1 + 0.5 𝜌 𝜌𝑏⁄ ). Therefore, Eq. 

(3.37) is the force equation that is applied for the calculation of the bubble trajectories in 

turbulent flows. It is important to point out that calculation of the Basset history force is 

usually time consuming, and Maxey (1990) and Rivero et al. (1991) found that its 

contribution for a bubble is always negligible in comparison with the other forces. Similar 

findings were obtained by Sridhar and Katz (1995). Therefore, the Basset history force 

was neglected, as was also assumed in the works of Thomas et al. ( 1983 ), Onslow et al. 

(1993 ), Yang and Thomas (1994 ) and Sene et al. (1994). 

3.3.3 Modelling Sub-grid Scale Velocity Fluctuation Effects on Bubble Dispersion 

The last term in Eq. (3.37), representing the effect of the SGS velocity fluctuations on 

bubble motion, is determined using a stochastic Markov model (Bini and Jones, 2008) 

that represents the influence of the unresolved fluctuations on bubble acceleration: 

 𝛘𝑠𝑔𝑠 = 𝐶0 (
𝑘𝑠𝑔𝑠

𝜏𝑡
)
 d𝐖𝑡

d𝑡
 (3.38) 
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where 𝑘𝑠𝑔𝑠 is the unresolved turbulence kinetic energy of the liquid phase, 𝐶0 is a model 

constant taken as unity, and d𝐖𝑡  represents the increment of the Wiener process. During 

the simulation, d𝐖𝑡  is represented by 𝜉𝑖 × √∆𝑡, where 𝜉𝑖 is a random variable sampled 

from a normal distribution with zero mean and a variance of unity, and which is 

independent for each time step and for each velocity component. 𝜏𝑡 is a sub-grid time 

scale which affects the rate of interaction between the bubble and the turbulence, defined 

as: 

 𝜏𝑡 =
𝜏𝑏
1.6

(∆ 𝑘𝑠𝑔𝑠
0.5⁄ )

0.6 (3.39) 

The SGS kinetic energy is obtained from 𝑘𝑠𝑔𝑠 = (2∆𝑣𝑠𝑔𝑠𝑆𝑖̅𝑗𝑆𝑖̅𝑗)
2
3⁄ , an expression derived 

using equilibrium arguments (Bini and Jones, 2008). Interaction and collision of the 

bubbles with a wall are handled using the hard sphere collision model (Njobuenwu and 

Fairweather, 2017). 

3.4 Two-way Coupling Model 

Two-way coupling applies to a dispersed multiphase flow when the volume fraction of 

the dispersed phase is larger than 10−6 and at moderately high bubble mass loading. The 

momentum transfer from the bubble suspension is large enough to modify the structure 

of the turbulence. This interaction is referred to as two-way coupling. The coupling effect 

is enforced by the addition in the momentum balance equation, Eq.(3.9), of the source 

term 𝑆2𝑤,𝑖 that has the units of pressure gradient and represents the force per unit volume 

exerted by the bubbles on the fluid: 

 𝑆2𝑤,𝑖 = −
1

Δ3
∑𝑓𝐻,𝑖

𝑗

𝑛𝑏

𝑗=1

 (3.40) 

Here, the summation is defined over the number of bubbles 𝑛𝑏 in the finite-volume cell 

under consideration. 𝑓𝐻,𝑖
𝑗

 is the source term arising from the 𝑗𝑡ℎ bubble in the 𝑖𝑡ℎ direction 

and the subscript 𝐻 represents the hydrodynamic force terms. In the present case, the 
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relevant source term used in the momentum equation is the summation of all the 

hydrodynamic forces (drag, shear-lift, pressure gradient and added mass), with the body 

forces (gravity and buoyancy) already included via the pressure gradient term of Eq. 

(3.20): 

 𝑓𝐻,𝑖
𝑗
= 𝐅D

𝑗
+ 𝐅SL

𝑗
+ 𝐅PG

𝑗
+ 𝐅AM

𝑗
 (3.41) 

3.5 Four-way Coupling Model 

3.5.1 Modelling Bubble-bubble Collision 

In the four-way coupled mechanistic approach, the technique employed to handle 

bubble-bubble collisions is important. As noted in the review of previous studies, the hard 

sphere collision model is used to predict bubble interactions within the fluid. This 

deterministic approach is preferred to the stochastic collision technique which is often 

used due to its lower computational cost (Sommerfeld, 2001; Breuer and Alletto, 2012). 

Only binary collisions are accounted for. To calculate bubble trajectories, two distinct 

stages are involved, namely: (i) bubbles are moved based on the equation of motion 

without bubble-bubble interaction; (ii) the occurrence of collisions in (i) is examined for 

all bubbles. If a collision is found, the velocities and positions of the collision pair are 

replaced by the post-collision values. 

The collision handling technique is carried out in two stages: 

• In the first step, likely collision partners are recorded by taking into account the 

smallest possible time step within the flow. Since for small time steps only collisions 

between neighbouring bubbles are likely, substantial computational time savings are 

achieved by further splitting the computational domain into virtual cells. This method 

stores for each bubble a list of neighbouring bubbles. For instance, for a specific bubble 

A, all neighbouring bubbles within a certain distance are stored. The collision occurrence 

is only checked between bubble A and its neighbours. The details of the algorithm used 

are given in Hoomans et al. (1996) and Vreman et al. (2009). 
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• In the second step, the collision-detection algorithm based on search cells is 

applied. In this, the computational domain is split into three-dimensional cells and only 

bubbles located inside these search cells are checked for collisions (Breuer and Alletto, 

2012; Mallouppas and van Wachem, 2013; Breuer and Almohammed, 2015). 

 

Figure 3.1 Collision detection technique by virtual cell: (a) first search and (b) second 

search (Breuer and Alletto, 2012). 

A schematic of the two step approach is presented in Figure 3.1. The computational 

domain of size (𝑛𝑖, 𝑛𝑗 , 𝑛𝑘) is split into (𝑖𝑐, 𝑗𝑐, 𝑘𝑐) cells. 

 

𝑖𝑐 = 𝐢𝐧𝐭
𝑛𝑖
𝑑𝑖
⁄ + 1 

𝑗𝑐 = 𝐢𝐧𝐭
𝑛𝑗
𝑑𝑖
⁄ + 1 

𝑘𝑐 = 𝐢𝐧𝐭
𝑛𝑘

𝑑𝑖
⁄ + 1 

(3.42) 

where 𝑑𝑖 is a factor adjusted dynamically during the simulation to limit the maximum 

number of bubbles in a virtual cell to an amount specified by the user. Based on the bubble 

coordinates in the computational domain, (𝜉𝑏, 𝜂𝑏 , 𝜁𝑏), the corresponding index details of 

the virtual cells can be obtained: 

 

𝑖𝑏 = 𝐢𝐧𝐭
𝜉𝑏
𝑑𝑖
⁄ + 1 

𝑗𝑏 = 𝐢𝐧𝐭
𝜂𝑏

𝑑𝑖
⁄ + 1 

𝑘𝑏 = 𝐢𝐧𝐭
𝜁𝑏
𝑑𝑖
⁄ + 1 

(3.43) 

(a)  (b)  
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The bubble tracking in Cartesian space has an advantage for the collision algorithm, since 

the bubble coordinates are naturally available. Finally, a bubble property is defined by 

assigning the index of the virtual cell, denoted 𝑖𝑣𝑐, in which the bubble is located: 

 𝑖𝑣𝑐 = 𝑖𝑏 + (𝑗𝑏 − 1) × 𝑖c + (𝑘𝑏 − 1) × 𝑖c × 𝑗c (3.44) 

Here, all bubbles within the same virtual cell are characterized by the same index, 𝑖𝑣𝑐. In 

this way, the collision detection procedure can be limited to the bubbles in each virtual 

cell. Furthermore, to avoid overlapping cells or the necessity to take all 26 surrounding 

cells into account during the first step, the collision detection procedure is carried out a 

second time with slightly larger virtual cell sizes, i.e. the ratio of edge lengths is equal to 

the quotient of the two prime numbers 17 and 13, and hence about 1.3, as presented in 

Figure 3.1(b) and recommended by Breuer and Alletto (2012). This ensures that 

potentially colliding bubbles on the border of two cells are detected. 

 

Figure 3.2 Relative motion of two colliding bubbles (Tanaka and Tsuji, 1991). 

The second step takes each bubble in one virtual cell into account. The algorithm relies 

on the assumption of constant velocity within a time step, which is reasonable for the 

small-time step sizes applied in LES. Figure 3.2 represents the relative motion of two 

colliding bubbles on the assumption of linear displacements during a time step. It is 

possible to detect the collision of two bubbles by the purely kinematic condition that the 

two bubbles must approach one another, expressed by: 
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 𝐱𝑟 . 𝐯𝑏,𝑟 < 0 (3.45) 

Otherwise, a collision is impossible. Here, 𝐱𝑟 and 𝐯𝑏,𝑟 are the relative distance and the 

relative velocity between the two bubbles, respectively. For those bubble pairs within a 

virtual cell for which this condition is met a second more detailed condition is checked. 

Thus, the computational effort required is further reduced. The second condition must 

ensure that the minimum separation between the bubbles within a time step is less than 

the sum of their radii. For this purpose, the time Δ𝑡min at which the bubble separation 

distance is a minimum 𝑥𝑟,𝑚𝑖𝑛 are expressed as: 

 Δ𝑡min = −
𝐱𝑟𝐯𝑏,𝑟

|𝐯𝑏,𝑟|
2 (3.46) 

and: 

 𝐱𝑟,min = 𝐱𝑟 + 𝐯𝑏,𝑟 Δ𝑡min (3.47) 

The condition that two bubbles interact is thus: 

 (Δ𝑡min ≤ ∆𝑡 and |𝐱𝑟,min| ≤ 𝑑𝑏12)v(|𝐱𝑟| ≤ 𝑑𝑏12) (3.48) 

where 𝑑𝑏12 is the sum of the radii of the two interacting bubbles. If the condition is 

fulfilled, the time required for the two bubbles to collide ∆𝑡coll is calculated from the 

condition that the relative distance at that time must be equal to 𝑑𝑏12: 

 |𝐱𝑟 + ∆𝑡coll 𝐯𝑏,𝑟|
2
= 𝑑𝑏12

2  (3.49) 

The solution of this expression is given by: 

 ∆𝑡coll = Δ𝑡min(1 − √1 − 𝐾1𝐾2) (3.50) 
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where 𝐾1 = [𝐱𝑟]
2[𝐯𝑏,𝑟]

2
(𝐱𝑟𝐯𝑏,𝑟)

2
⁄  and 𝐾2 = 1 − (𝑑𝑏12

2 [𝐱𝑟]
2⁄ ). The collision-normal 

vector required for the execution of the collision itself can be expressed as: 

 𝐱𝑟,coll = 𝐱𝑟 + 𝐯𝑏,𝑟 ∆𝑡coll (3.51) 

In handling the collision, it is vital to determine the bubble velocities before the collision 

(denoted by superscript _ ) in the direction normal to the collision: 

 v1𝑛
− =

𝑥𝑟,coll

|𝐱r,coll|
v1𝑥 +

y𝑟,coll

|𝐲r,coll|
v1𝑦 +

𝑧𝑟,coll

|𝐳r,coll|
v1𝑧 (3.52) 

where 𝑥𝑟,coll, 𝑦𝑟,coll and 𝑧𝑟,coll represent the Cartesian components of the collision-normal 

vector and v1𝑥, v1𝑦 and v1𝑧 the Cartesian velocity components of bubble 1 before the 

collision took place. An equivalent expression is used for bubble 2. After the detection of 

a collision, the velocities of the colliding bubbles are changed according to hard sphere 

inelastic collision principles, thus: 

 

v1𝑛
+ =

𝑚𝑏1v1𝑛
− +𝑚𝑏2v2𝑛

− − 𝑒 𝑚𝑏2(v1𝑛
− − v2𝑛

− )

𝑚𝑏1 +𝑚𝑏2
 

v2𝑛
+ =

𝑚𝑏1v1𝑛
− +𝑚𝑏2v2𝑛

− + 𝑒 𝑚𝑏1(v1𝑛
− − v2𝑛

− )

𝑚𝑏1 +𝑚𝑏2
 

(3.53) 

In the equations above, v1𝑛
+  and v2𝑛

+  represent the bubble velocities in the direction 

normal to the collision after the collision (denoted by superscript +). Collisions are 

assumed to be frictionless. Only the velocity components in the collision-normal direction 

are changed by the collision. The Cartesian components of the bubble post-collision 

velocities are calculated as follows: 

 

𝐯1
+ = 𝐯1n

+
𝐱r,coll

|𝐱r,coll|
 

𝐯2
+ = 𝐯2n

+
𝐱r,coll

|𝐱r,coll|
 

(3.54) 
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3.5.2 Bubble Coalescence 

Turbulent bubbly flows generally result in bubble coalescence and/or breakup, which are 

of major significance in the determination of bubble size distribution and the 

corresponding interfacial area between phases. There are several models of the 

coalescence process which were summarised in the literature review chapter. The film 

drainage approach was adopted in the present work in view of its higher accuracy with 

respect to experimental results (Chesters, 1991; Darmana et al., 2006). 

In the film drainage model, the coalescence process is divided into three steps: (i) two 

bubbles collide and trap a small amount of liquid between them; (ii) while both bubbles 

stay in contact, the liquid film drains out to a critical thickness; and (iii) rupture of the 

liquid film occurs, leading to the coalescence of the bubbles. Otherwise, the bubbles 

bounce back without coalescing. The constraint for coalescence to occur is that the 

duration of the contact time of the bubbles must be sufficiently long for the liquid film to 

drain. Hence, using the Lagrangian approach, the contact time at the instance of collision 

can be expressed as: 

 𝜏𝑖𝑗 =
𝐶𝑐𝑅𝑖𝑗

𝑢𝑛
 (3.55) 

Here, 𝑅𝑖𝑗 is the equivalent bubble radius and is given as 𝑅𝑖𝑗 = 2.0(2/𝑑𝑏1 + 2/𝑑𝑏2)
−1. 𝑢𝑛 

is the relative approach velocity in the normal direction and 𝐶𝑐 is the deformation 

distance as a fraction of the effective bubble radius. A value of 0.25 gave the best 

agreement with the experimental data of Sommerfeld et al. (2003) and is used throughout 

this work. Neglecting the effects due to surfactants and Hamaker forces (Sungkorn et al., 

2012), the film drainage time can be expressed as: 

 𝑡𝑖𝑗 = √
𝑅𝑖𝑗
3 𝜌

16𝜎
 ln (

ℎ0

ℎ𝑓
) (3.56) 

with the initial film thickness ℎ0 for air-water set to 1.0 × 10−4 m and the final film 

thickness before rupture ℎ𝑓 set to 1.0 × 10−8 m (Prince and Blanch, 1990). The properties 



89 

 

of the new bubble after coalescence were calculated from a mass and momentum balance. 

The new bubble diameter after coalescence is calculated as: 

 𝑑𝑏,new = (𝑑𝑑1
3 + 𝑑d2

3 )
1 3⁄

 (3.57) 

The normal velocity of the bubbles after coalescence 𝐯𝑏,𝑛𝑒𝑤 can be expressed as: 

 𝐯𝑏,𝑛,𝑛𝑒𝑤 = 
𝑚1𝐯1  × 𝑚2𝐯2
𝑚1 +𝑚2

 (3.58) 

The volume of the new bubble after coalescence is thus: 

 V𝑛𝑒𝑤 = V1 + V2 (3.59) 

The position of the new bubble after coalescence is given by: 

 𝐱𝑏,𝑛,𝑛𝑒𝑤 = 
𝑚1𝐱1  × 𝑚2𝐱2
𝑚1 +𝑚2

 (3.60) 

where 𝑚1 and 𝑚2 represent the masses of the two colliding bubbles, and V1 and V2 are 

the volume of the two colliding bubbles. 

3.6 Bubble Breakup 

Breakup mechanisms have been classified into four different categories: (i) turbulent 

fluctuations and collision; (ii) viscous shear stress; (iii) the shearing off process; and (iv) 

interfacial instability (Lau et al., 2014). Out of these mechanisms, bubble breakup due to 

turbulent pressure fluctuations on the bubble surface is assumed to be the dominant 

breakup mechanism for the turbulent bubbly flows studied in this thesis. 

The breakup model of Martinez-Bazan et al. (1999) was adopted under the Eulerian-

Lagrangian framework due to the fact that it has an extensive theoretical basis and its 

results are highly compatible with experimental data. This has also been demonstrated 

by Lasheras et al. (2002) and Liao and Lucas (2009). The basic principle of this model is 
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that for a bubble to break, its surface has to be deformed and sufficient deformation 

energy must be provided by the surrounding fluid turbulent stresses. 

The minimum energy required to deform a spherical bubble of diameter 𝑑𝑏 is its surface 

energy: 

 𝐸𝑠(𝐷) =  𝜋𝜎𝑑𝑏
2 (3.61) 

Where a bubble is non-spherical in shape, the surface area of the non-spherical bubble 

must be incorporated, although such bubbles are not considered herein. Using the aspect 

ratio, 𝐸𝑏 = d𝑥 d𝑧⁄ , and the Eötvos number, 𝐸𝑜̈, the surface energy of a bubble with an 

equivalent bubble diameter d is expressed as: 

 𝐸𝑠(𝐷) =  𝜋𝜎𝑑𝑏
2. 𝛾−1 (3.62) 

where 𝛾 = [(1 + 2𝐸𝑏
𝑝)/ (3𝐸𝑏

2 3𝑝⁄
)]
−1/𝑝

 is a surface correction factor that is valid for 𝐸𝑜̈ <

40 and Morton number < 10−6, 𝑝 = 1.6075, and 𝐸𝑠 = 𝑓(𝐸𝑜̈). For spherical bubbles 𝛾 = 1 

(Lau et al., 2014). Martinez-Bazan et al. (1999) state that when the turbulent stresses due 

to the velocity fluctuations exceed the surface restoring pressure of the bubble, the 

bubble will eventually deform and breakup. The surface restoring pressure of a bubble 

with a diameter 𝑑𝑏 is expressed as: 

 𝜏𝑠(𝐷) = 6
𝜎

𝑑𝑏
 (3.63) 

When air bubbles are introduced into the turbulent fluid phase, the velocity fluctuations 

of the turbulence cause pressure deformation forces that act on the bubbles’ surface. 

When these forces exceed the cohesive forces due to surface tension, the bubble breaks 

up. When the size of the bubble is within that of the inertial sub-range, the average 

deformation stress, which results from velocity fluctuations existing in the liquid 

between two points separated by a distance equal to the bubble diameter 𝑑𝑏, is given by: 
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 𝜏𝑡(𝑑𝑏) =  
1

2
𝜌𝛿𝑢2(𝑑𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3.64) 

where 𝛿𝑢2(𝑑𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average value of the square of the velocity differences over a 

characteristic distance 𝑑𝑏, also expressed as 𝛽𝜖2 3⁄ 𝑑𝑏
2 3⁄ : 

 𝜏𝑡(𝑑𝑏) =  
1

2
𝜌𝛽𝜖2 3⁄ 𝑑𝑏

2 3⁄  (3.65) 

𝛽 = 8.2 is a constant obtained by integrating the difference between the velocity 

fluctuations (Batchelor, 1951). The equality 𝜏𝑠(𝑑𝑏) = 𝜏𝑡(𝑑𝑏) can also be rearranged in 

terms of the Weber number, which represents the ratio of the inertial to surface tension 

forces. Therefore, the criteria for bubble breakup can be expressed as a function of a 

critical Weber number 𝑊𝑒crit that represents the maximum Weber number for which the 

bubble remains stable and does not break up, and is expressed as (𝛿𝑢2(𝐷)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑏)/𝜎 =

12. As:  

 𝑊𝑒 =
𝜌𝛿𝑢2(𝑑𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑏

𝜎
> 𝑊𝑒crit ⟹ breakup (3.66) 

then the criteria for bubble breakup becomes: 

 𝑊𝑒 > 12 (3.67) 

Because of the Lagrangian framework adopted, the location of each individual bubble is 

known and information on the placement of the daughter bubbles formed on breakup is 

essential. If a bubble meets the break-up criterion, therefore, the parent bubble breaks 

up into two separate daughter bubbles according to the volumetric breakup fraction 

which is determined from the daughter size distribution. Some typical examples of the 

latter include uniform, Bell-shaped, U-shaped and M-shaped (Liao and Lucas, 2009). In 

this work, the two daughter bubbles formed after the breakup event are assumed to be 
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of equal size for simplicity. Their location is also initially taken to be that of the parent 

bubble. 

3.7 Numerical Solution Methods 

3.7.1 Large Eddy Simulation Numerical Solver 

The filtered governing equations and the SGS closure model were solved using the LES-

BOFFIN (Boundary Fitted Flow Integrator) code (Jones et al., 2002). The flow solver 

implements a boundary conforming general curvilinear coordinate system with a co-

located variable storage arrangement that is based on a fully implicit low Mach number 

formulation and is second order accurate in space and time. For the momentum equation 

convection expressions, an energy-conserving discretisation scheme is applied. Every 

other spatial derivative is approximated by a standard second-order central difference. 

Time derivatives are approximated by a three-point backward difference scheme with a 

variable time step to ensure that the maximum Courant number, based on the filtered 

velocity, always lies between 0.1 and 0.3 (Di Mare and Jones, 2003) as this is required for 

the maintenance of high accuracy (Choi and Moin, 1994). A two-step, second-order, time-

accurate approximate factorisation method is used to determine the pressure and ensure 

mass conservation in conjunction with a Rhie and Chow (1983) pressure smoothing 

technique to prevent even-odd node uncoupling of the pressure and velocity fields. The 

system of algebraic equations resulting from the discretisation is solved using the matrix 

preconditioned conjugate gradient method BI-CGSTAB (Delnoij et al., 1999) for the 

matrix of velocity vectors, and ICCG (Descamps et al., 2008) for the pressure.  

More information on the numerical algorithm and how it is implemented can be found in 

Jones et al. (2002) and references cited therein. In order to generate the flow conditions 

described in this study, it became necessary to modify the existing LES-BOFFIN code. The 

main modification was ensuring that the mean flow pressure gradient was constant 

throughout the simulations and adjusted dynamically to maintain a stable mass flux 

through the flow geometry in each case, as discussed earlier in section 3.2.4. 

The solution of fluid dynamic problems in any CFD code involves three steps: pre-

processing, solution and post-processing. These are briefly introduced below: 
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• Pre-processing – The user specifies the problem by assigning all the necessary 

information. This includes the geometry of the computational domain, from which a 

suitable volumetric computational mesh is generated, and the properties of the 

computational grid, number of phases, properties of materials, physical and chemical 

phenomena involved, transport and constitutive equations, time step, numerical schemes 

and the initial and boundary conditions. The stretching functions that can be used to 

produce the boundary-fitted non-orthogonal block-structured grid, with matching 

interfaces and collocated variable arrangement, include linear, power, hyperbolic, 

trigonometric (sine, cosine) and exponential functions. The computational mesh, 

boundary conditions for the flow geometry and the fluid material properties together 

create input files to the solver. 

• Solution phase – At this stage, the code integrates the differential transport 

equations over each computational cell, applying the Gauss and Leibnitz theorems to 

yield a set of integral equations that express conservation laws on a control-volume basis. 

The code then converts these equations into algebraic equations by using discretization 

techniques that approximate some terms of the equations (for instance, the accumulation 

terms) or the values of some variables (for instance, cell-face values of variables used in 

convective fluxes) with finite differences. Finally, the code solves iteratively the set of 

algebraic equations and finds the cell-centre values of the flow variables. 

• Post-processing phase – The user analyses and interprets the simulated results, 

generates plots, diagrams and creates snapshots as well as animations by using data 

management and graphics tools.  

In this work, new terms for the bubble-fluid and bubble-bubble interactions were 

implemented in the code. The programming language required in the BOFFIN code is 

FORTRAN (Jones et al., 2002). The code was significantly modified since it was previously 

used for solid particle flows of low mass loadings. Therefore, additional force models, 

coefficients and closures that are needed for bubbly multiphase flow problems of both 

low and high mass loadings were implemented, as were algorithms to determine bubble-

bubble collisions, coalescence and breakup. 
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This flow solver has been applied extensively in the LES of reacting (Jones et al., 2014) 

and non-reacting (Bini and Jones, 2008; Njobuenwu and Fairweather, 2015) turbulent 

flows. Further details of the numerical methods used in BOFFIN are also given in these 

references.  

3.7.2 Lagrangian Bubble Tracker 

The bubble tracking algorithm tracks the path of a bubble through the channel by 

updating its three-dimensional trajectory with time and by computing the bubble velocity 

from the instantaneous solution of the fluid’s velocity field. The expression obtained 

through the implementation of the fourth-order Runge-Kutta scheme on Eq. (3.37) is 

used to determine the bubble position in the flow. In this procedure, Eq. (3.37) is 

integrated twice in time to determine the bubble position at every time step. The first 

integration is performed in order to calculate the bubble velocity in the computational 

space (Faires and Burden, 1994). In order to determine the new position of the bubble, 

this equation is integrated once more, and performing this efficienlty is crucially 

important for the overall performance of the code. It functions by determining the bubble 

position, followed by the interpolation of the fluid flow data at this location, and then 

integrating the equation of motion. From these steps, the effect of the bubble-wall 

collisions can also be calculated.  

The bubbles were introduced into the flow at the start of a simulation, prior to which the 

carrier phase had reached a statistically steady state. The bubbles were injected in parcels 

across the inlet plane of the channel with initial locations uniformly distributed across 

this plane and with initial velocities set equal to those of the local fluid velocity at each 

bubble location. Once the fluid velocity at the bubble location had been established, the 

equation of motion for each bubble was solved using a fourth-order Runge-Kutta scheme 

for the integration. At the bubble’s position, a trilinear interpolation scheme was utilised 

to obtain the fluid velocity, 𝑢, the unresolved turbulence kinetic energy, 𝑘𝑠𝑔𝑠, and the fluid 

rotation, 𝜔. Both the fluid and bubbles were re-introduced back into the flow on exit from 

the channel, with periodic boundary conditions set in both the streamwise and spanwise 

directions. The flow was driven using a fixed pressure gradient imposed in the 

streamwise direction. 
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3.8 Summary of Methodology and Justification 

In this work, the Eulerian-Lagrangian approach is adopted since this method is the most 

viable and appropriate in regards to the motivation for the present research which 

necessitates the accurate tracking of individual bubbles in the flow, and their subsequent 

coalescence due to bubble-bubble collisions and breakup due to interaction with 

turbulent eddies. The Eulerian-Lagrangian approach adopted is an extension of an 

existing LES-Lagrangian particle tracking code, with modifications to the code 

implemented to represent additional bubble force models, bubble-fluid flow feedback 

(two-way) terms, and four-way coupling including bubble-bubble collision, and bubble 

coalescence and breakup. The complete model developed is more sophisticated than 

those previously applied in studies of bubbly flows of the type described in subsequent 

chapters.  

Many authors have employed large eddy simulation coupled with a Lagrangian bubble 

tracker to study the hydrodynamics of bubby flows, including bubble coalescence and 

breakup, but mostly in square cross-section bubble columns (Delnoij et al., 1997; van den 

Hengel et al., 2005; Lau et al., 2014). The smallest bubble size considered in all these 

studies are in the millimeter range. Microbubbles have a myriad of applications in the 

fields of medicine, pharmacology, materials science and the food industry (Rodríguez-

Rodríguez et al., 2015). Therefore, this work is novel in considering the detailed 

prediction of the behaviour of microbubbles in turbulent flows. 

Channel flows, though simple, are commonly used within the fluid mechanics community 

to study the physics of multiphase flows. Channel flow domains of varying configurations 

are adopted in this work due to the ease of implementation of boundary and initial 

conditions, and the reduced computer run times associated with such flows. The presence 

of walls ensures the existence of velocity gradients and turbulent shear stresses, making 

research findings in such flows relevant to more complex geometries. The use of a 

periodic boundary condition imposed along the streamwise and spanwise directions of 

the channel is also frequently employed, and reduces computer run times, as well as 
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reducing the difficulty in setting the initial conditions at the start of the simulation and 

the size of the domain required to obtain a fully developed flow. 
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CHAPTER 4  

ONE- AND TWO-WAY COUPLED FLOWS 

In this chapter, the LES and the LPT models are first tested and then developed to predict 

multiphase gas-liquid bubbly flows. Initial validation of the LES-LPT code capabilities 

includes the prediction of single-phase flows and the transport of solid particles in fully-

developed turbulent liquid channel flows. Computations are performed at shear Reynolds 

numbers 𝑅𝑒𝜏 = 150, 300 𝑎𝑛𝑑 590, based on the shear velocity and channel half-height. The 

influence of the sub-grid scale stresses on the resolved LES and on the dispersed-phase 

acceleration are parametrised using the Germano’s dynamic model and a stochastic Markov 

model, respectively. To allow validation, material and flow properties of the fluid and the 

particles are identical to those used in the DNS solutions of Marchioli et al. (2008) for 𝑅𝑒𝜏 =

150, of Marchioli and Soldati (2007) for 𝑅𝑒𝜏 = 300, and of Moser et al. (1999) for 𝑅𝑒𝜏 =

590. With regards to model development, the LES-LPT capabilities are extended to bubbly 

flows and to one-way and two-way coupled simulations, depending on the volume fraction 

of the bubbles. The sizes of bubbles considered are 𝑑𝑏 = 110, 220 𝑎𝑛𝑑 330 μm, with 

horizontal and vertical channel flows simulated. The model is successfully validated against 

DNS-based predictions from the literature and, through additional simulations, the range 

of parameters previously investigated is extended to allow greater insight into the 

hydrodynamics of bubbly flows. Analysis of the results includes the statistical properties of 

the fluid flow and the dispersed phase, and a comparison of one-way and two-way coupled 

simulations and the impact of the level of coupling on the predictions. Additionally, bubble 

preferential concentration, a force analysis in the wall-normal direction, and the effect of 

Reynolds number on the extent of turbulence modulation by the bubbles and on bubble 

concentration are all considered. 

4.1 Single Phase Flow Velocity Statistics 

Before the two-phase simulations are presented and discussed, single-phase turbulent 

flows (i.e. with no bubbles or particles) were predicted for friction Reynolds numbers 

𝑅𝑒𝜏 = 150, 300 and 590, based on the wall friction velocity 𝑢𝜏 and the channel half height 

ℎ. The single-phase flow was assumed to be incompressible, isothermal and with constant 
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properties. Thermo-physical property data were chosen as those of water at room 

temperature. The size of the channel domain was 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 2ℎ × 2𝜋ℎ × 4𝜋ℎ, which 

was resolved using 129 ×128 ×128 grid points in the x, y and z directions, respectively. 

These dimensions and grid resolution correspond to those employed by the authors 

below whose predictions are used to validate the present results, apart from the highest 

𝑅𝑒𝜏 case (discussed further below). 

The instantaneous streamwise velocity field 𝑢𝑧  (m s
−1) in the turbulent channel flow is 

presented in Figure 4.1 for the three shear Reynolds numbers. Results show increasing 

turbulence levels with respect to the increase in the shear Reynolds number. Red and 

blue colours identify maximum and minimum values, respectively, with higher velocity 

values at the core of the channel and lowest velocity values near the channel walls. 

 

 

 

Figure 4.1 Two-dimensional representation of the single phase turbulent flow 

structures in the channel flow domain for shear Reynolds numbers, 𝑅𝑒𝜏 = (a) 150, (b) 

300, and (c) 590. 

(a) 

(b) 

 

(c) 
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Presented in Figure 4.2, 4.3 and Figure 4.4 are the single-phase velocity statistics for the 

same three turbulent flows. In Figure 4.2, LES results at 𝑅𝑒𝜏 = 150 are compared against 

the DNS data of Marchioli et al. (2008) at the same shear Reynolds number. In Figure 4.3, 

the LES predictions are validated at 𝑅𝑒𝜏 = 300 against the DNS data of Marchioli and 

Soldati (2007), whilst in Figure 4.4, they are compared with the DNS results of Moser et 

al. (1999) for the 𝑅𝑒𝜏 = 590 flow. Results are shown using variables in wall units 

(identified with the superscript +), made dimensionless using 𝑢𝜏, 𝑣 and 𝜌. Also, for the 

LES, results are shown both with (LES + SGS) and without (LES) the inclusion of sub-grid 

scale velocity fluctuations. 

  

Figure 4.2 Plots of DNS versus LES single-phase velocity statistics for 𝑅𝑒𝜏 = 150: (a) 

mean streamwise fluid velocity 𝑢𝑧
+; (b) rms of fluid velocity fluctuations in the 

streamwise 𝑢𝑧,𝑟𝑚𝑠
′+ , spanwise 𝑢𝑦,𝑟𝑚𝑠

′+ , and wall normal 𝑢𝑥,𝑟𝑚𝑠
′+ , directions, and fluid shear 

stress 𝑢𝑥
′+𝑢𝑧

′+. 

Figure 4.2(a) shows the time and space-averaged, single-phase streamwise mean velocity 

profile in the wall-normal direction for 𝑅𝑒𝜏 = 150 on a linear-logarithmic scale. As the 

simulation is for the least turbulent case, it shows good agreement with the higher 

resolution DNS study in the boundary layer close to the wall. For the streamwise velocity 

fluctuation 𝑢𝑧,𝑟𝑚𝑠
′+  in Figure 4.2(b), the agreement with the DNS predictions is again good 

in the bulk of the flow, although there is a small over-estimation of the peak in these 

fluctuations which is located at the interface of the bulk flow and the boundary layer. The 

spanwise and wall-normal velocity fluctuations (𝑢𝑦,𝑟𝑚𝑠
′+  and 𝑢𝑥,𝑟𝑚𝑠

′+ ) also show good 

agreement with the DNS results, with slight deviations from the DNS limited to a few 
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percent, with peaks in the range of 10%–15% very close to the wall. The shear stress 

𝑢𝑥
′+𝑢𝑧

′+ is similarly in good agreement with the DNS, except for a minor offset of about 

0.05 across the majority of the channel. Nevertheless, overall, there is close agreement of 

the flow features predicted using LES when compared with the DNS results.  

  

Figure 4.3 Plots of DNS versus LES single-phase velocity statistics at 𝑅𝑒𝜏 = 300: (a) 

mean streamwise fluid velocity 𝑢𝑧
+; (b) rms of fluid velocity fluctuations in the 

streamwise 𝑢𝑧,𝑟𝑚𝑠
′+ , spanwise 𝑢𝑦,𝑟𝑚𝑠

′+  and wall-normal 𝑢𝑥,𝑟𝑚𝑠
′+  directions, and fluid shear 

stress 𝑢𝑥
′+𝑢𝑧

′+. 

The results in Figure 4.3 also show the single-phase velocity statistics, but in this case for 

the 𝑅𝑒𝜏 = 300 flow. Figure 4.3(a) presents the mean streamwise velocity from the LES 

compared with the DNS on a linear-logarithmic plot. There is a slight over-estimation of 

by the LES in the region 20 ≤ 𝑥+ ≤ 150. However, the comparison still demonstrates 

quite good agreement. Figure 4.3(b) shows the rms of the velocity fluctuations in the 

three coordinate directions, and the shear stress. The results perfectly match the DNS 

predictions from Marchioli and Soldati (2007). 

In Figure 4.4, the LES results for the 𝑅𝑒𝜏 = 590 flow are compared with the predictions 

of Moser et al. (1999), who carried out DNS of a channel flow at shear Reynolds numbers 

𝑅𝑒𝜏 = 180, 395 and 590 using a spectral element numerical solution method. The LES 

results are in good agreement with those of Moser et al. (1999) for the latter flow, and in 

terms of both the mean streamwise velocity and the turbulent stresses, although the 

normal stresses are slightly under-predicted near the wall in the spanwise and wall 
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normal directions, and near the centre of the channel in the streamwise direction. Given 

the relatively high Reynolds number of this flow, Moser et al. (1999) used a grid 

resolution of 384 ×  257 ×  384 in contrast to the resolution of 129 × 128 × 128 used in 

this work. Despite the differences noted above, however, the LES predictions at all 

Reynolds numbers are in acceptable agreement with the DNS results, and the ability of 

the LES to resolve the main characteristics of the turbulent flows is evident. This, in the 

context of multiphase flows, translates into the ability of the LES to resolve the scales that 

are mainly responsible of fluid-bubble and fluid-particle interactions. 

  

Figure 4.4 Plots of DNS versus LES single-phase velocity statistics at 𝑅𝑒𝜏 = 590: 

(a) mean streamwise fluid velocity 𝑢𝑧
+; (b) rms of the fluid velocity fluctuations in 

the streamwise 𝑢𝑧,𝑟𝑚𝑠
′+ , spanwise 𝑢𝑦,𝑟𝑚𝑠

′+  and wall normal 𝑢𝑥,𝑟𝑚𝑠
′+  directions, and 

fluid shear stress 𝑢𝑥
′+𝑢𝑧

′+. 

Lastly, is should be noted that the inclusion of sub-grid scale velocity fluctuations 

in the LES-based predictions of the normal and shear stresses has little impact on 

the results. This is mainly due to the relatively high resolution of the LES grids 

employed, and implies that the turbulence energy spectrum is well resolved by the 

simulations. 
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4.2 One-way Coupled Flow Simulations 

4.2.1 Horizontal Channel Flow 

 

Figure 4.5 Schematic of horizontal channel computational domain. 

Using the fully converged single-phase LES flow solutions presented in the previous 

section, solid particles were uniformly injected into the computational domain with their 

initial velocity set equal to that of the fluid at their initial position. The size of the channel 

domain was 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 2ℎ × 2𝜋ℎ × 4𝜋ℎ, which was resolved using 129 ×128 ×128 

grid points in the x, y and z directions, respectively, which corresponds to 300 × 942 ×

1885 wall units, with the reference geometry containing two infinite flat parallel walls as 

shown in Figure 4.5. The 𝑥, 𝑦 and 𝑧 axes point in the wall-normal, spanwise and 

streamwise directions, respectively. Particles, which are assumed pointwise, rigid and 

spherical, were injected into the flow at a concentration low enough to neglect particle 

collisions. The effect of particles onto the turbulence field was also neglected (one-way 

coupling assumption) due to the low particle concentration employed. The flow field was 

periodic in both the streamwise and spanwise directions, with no-slip conditions applied 

at the walls. All simulations were run at 𝑅𝑒𝜏 = 150, 300 and 590. These values 

correspond to shear velocities 𝑢𝜏 equal to 7.5 × 10−3 ms−1, 1.50 × 10−2 ms−1 and 

2.95 × 10−2 ms−1, respectively, in a channel with a half width ℎ = 0.02 𝑚. Results were 

again non-dimensionalized and variables expressed in wall units (identified with the 

superscript +), made dimensionless using 𝑢𝜏, 𝑣 and 𝜌. 
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As for the grids used in predicting the single-phase flows considered in the previous 

section, in the wall-normal direction grid points are clustered in the near-wall region. 

This was achieved by applying the hyperbolic function of Gamet et al. (1999). To calculate 

the mean particle velocities, detailed procedural steps were put in place. The channel 

height was therefore divided into 𝑁𝑏 wall-parallel bins, with the bth bin having a width 

Δ𝑥𝑏
+ = 𝑅𝑒𝜏/2[1 − cos(𝜋(𝑏 − 1)/(𝑛𝑏 − 1))], which is equal to the wall-normal distance 

between two neighbouring grid points, and reduces toward the channel walls to provide 

a larger number of small bins in the near-wall region. The computation was carried out 

at each time step to determine the bin containing a particle, and the local instantaneous 

particle velocity within each bin was determined. Finally, the instantaneous mean 

particle velocities were averaged over time and space to give mean and fluctuating 

quantities. 

The dispersed phase concentration was computed using the following steps: (i) the flow 

domain was split into control volumes; (ii) at each time step the number of particles 

within each control volume (𝐶𝑉) was determined and was divided by the control volume 

to obtain the local concentration 𝐶 = 𝑛𝑏 𝐶𝑉⁄ ; finally (iii) 𝐶 was normalized by its initial 

value, 𝐶0. With this approach, the ratio 𝐶 𝐶0⁄  refers to a number density distribution and 

hence is larger than unity in the flow regions were particles tend to preferentially 

concentrate, and smaller than unity in the regions depleted of particles. All the results 

obtained below were time- and space-averaged along the homogeneous, i.e. the spanwise 

(𝑦 axis) and streamwise (𝑧 axis), directions. The quantities 𝑥+ and 𝑡+ represent the 

distance from the channel wall (0 being the lower channel wall) and the simulation time, 

respectively. 

Table 4.1 presents the reference flow and particle parameters used in the simulations 

indicated. To initialize the position and velocity of the dispersed phase, the flow domain 

was split into 128 slices along the wall-normal direction and the thickness of each slice 

was made equal to the wall-normal grid spacing. The number of particles injected 

uniformly across the flow domain was 100,000. The computational time-step size in wall 

units was ∆𝑡+  =  0.045 for the fluid and ∆𝑡+  =  0.45 for the particles with 𝑆𝑡 = 1 and 5, 

with three reference Reynolds numbers considered. The computations including 

particles were allowed to run for 𝑡+ =  1106, where 𝑡+ = 𝑡𝜈 𝑢𝜏
2⁄  and 𝑡 is the actual time 
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in seconds, before averaging. This ensured that all initial condition effects had 

disappeared from the flow field before averaging took place. 

Table 4.1 Reference flow and particle parameters. 

𝑆𝑡 = 𝜏𝑝/𝜏𝑓 𝜈 (m2s−1) 𝑢𝜏 (ms
−1) 𝑑𝑝

+ 𝜌𝑝 𝜌⁄  𝑑𝑝(μm) 

𝑅𝑒𝜏 = 150 

1 1.0 × 10−6 7.5 × 10−3 0.153 769.23 20.4 

5 1.0 × 10−6 7.5 × 10−3 0.342 769.23 45.6 

𝑅𝑒𝜏 = 300 

1 1.0 × 10−6 1.5 × 10−2 0.153 768.93 10.2 

5 1.0 × 10−6 1.5 × 10−2 0.342 769.46 22.8 

𝑅𝑒𝜏 = 590 

1 1.0 × 10−6 2.95 × 10−2 0.153 768.93 5.18 

5 1.0 × 10−6 2.95 × 10−2 0.342 769.46 11.59 

The results in Figure 4.6 to Figure 4.9 compare predictions of particle velocity statistics 

and concentration profiles, for 𝑆𝑡 = 1 and 𝑆𝑡 = 5 particles, using the reference shear 

Reynolds number flows of 𝑅𝑒𝜏 = 150, 𝑅𝑒𝜏 = 300 and 𝑅𝑒𝜏 = 590. The particle velocity 

profiles presented in Figure 4.6 and Figure 4.7, for 𝑅𝑒𝜏 = 150 and 𝑅𝑒𝜏 = 300 and 𝑆𝑡 = 1 

and 𝑆𝑡 = 5, compare LES-based predictions with the corresponding DNS-based results of 

Marchioli et al. (2008) and Marchioli and Soldati (2007), respectively. The results show 

very good agreement with the DNS, especially for the mean streamwise velocity (𝑣𝑧
+) at 

𝑅𝑒𝜏 = 300. The results for 𝑅𝑒𝜏 = 150 do, however, shown an over-prediction by the LES 

for both Stokes numbers. The rms of the velocity fluctuations, and the shear stress, are in 

close agreement with their DNS counterparts across the entire height of the channel for 

both flows. The only exception is a slight over-prediction of 𝑣𝑧,𝑟𝑚𝑠
′+  in the region 60 ≤ x+ ≤

100 for 𝑆𝑡 = 1 and 5 and 𝑅𝑒𝜏 = 150, and at 75 ≤ x+ ≤ 225 at 𝑅𝑒𝜏 = 300. 
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Figure 4.6 Plots of DNS versus LES particle velocity statistics at 𝑅𝑒𝜏 = 150: (a, c) mean 

streamwise particle velocity v𝑧
+; (b, d) rms of particle velocity fluctuations in the 

streamwise 𝑣𝑧,𝑟𝑚𝑠
′+ , spanwise 𝑣𝑦,𝑟𝑚𝑠

′+  and wall normal 𝑣𝑥,𝑟𝑚𝑠
′+  directions, and particle shear 

stress v𝑥
′+v𝑧

′+. (a, b) 𝑆𝑡 = 1; (c, d) 𝑆𝑡 = 5. 
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Figure 4.7 Plots of DNS versus LES particle velocity statistics at 𝑅𝑒𝜏 = 300: (a, c) mean 

streamwise particle velocity 𝑣𝑧
+; (b, d) rms of the particle velocity fluctuations in the 

streamwise 𝑣𝑧,𝑟𝑚𝑠
′+ , spanwise 𝑣𝑦,𝑟𝑚𝑠

′+  and wall normal 𝑣𝑥,𝑟𝑚𝑠
′+  directions, and particles 

shear stress 𝑣𝑥
′+𝑣𝑧

′+. (a, b) 𝑆𝑡 = 1; (c, d) 𝑆𝑡 = 5. 
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Figure 4.8 Plots of LES particle velocity statistics at 𝑅𝑒𝜏 = 590; (a, c) mean streamwise 

particles velocity 𝑣𝑧
+; (b, d) rms of the particle velocity fluctuations in the streamwise 

𝑣𝑧,𝑟𝑚𝑠
′+ , spanwise 𝑣𝑦,𝑟𝑚𝑠

′+  and wall normal 𝑣𝑥,𝑟𝑚𝑠
′+  directions, and particles shear stress 

𝑣𝑥
′+𝑣𝑧

′+. (a, b) 𝑆𝑡 = 1; (c, d) 𝑆𝑡 = 5. 

Presented in Figure 4.8 are the results obtained from the LES-LPT code using a 

considerably higher Reynolds number of 𝑅𝑒𝜏 = 590, and particles with Stokes numbers 

𝑆𝑡 = 1 and 𝑆𝑡 = 5. Unfortunately, there are no DNS results to compare with. Generally, 

however, Stokes numbers much greater than 1 describe particles that remain unaffected 

by fluid velocity changes, continuing on their original trajectory. Such interital particles 
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the fluid’s velocity without influencing the flow structure. The Stokes number increases 

with particle size, and in doing so causes the inertial response of the particles to the 

motion of the fluid to reduce, leading to larger particles sizes being transported to, and 

remaining, near the wall, as is evident in the results of Figure 4.9.  

 

 

 

 

Figure 4.9 Plots of particle concentration profiles: (a, b) 𝑅𝑒𝜏 = 150; (c, d) 𝑅𝑒𝜏 = 300; (e), 

(f) 𝑅𝑒𝜏 = 590. (a, c, e) 𝑆𝑡 = 1; (b, d, f) 𝑆𝑡 = 5. 
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The concentration results of Figure 4.9 show that, starting from a flat profile (𝐶/𝐶0  ≃  1) 

at 𝑡+ = 0, the expected near-wall concentration increases with increasing simulation 

time. The particle concentration reduces in the centre of the channel with time, and the 

particles migrate towards the wall for the three flows considered. This effect increases 

with increasing Stokes number, and decreases with the flow Reynolds number, and is due 

to the effects of turbophoresis which describes the tendency for particles to migrate in 

the direction of decreasing levels of turbulence level. 

The above case studies, which considered single-phase and particle-laden flows, served 

as a preliminary test and validation of the capabilities of the BOFFIN LES code, with and 

without coupling with a Lagrangian particle tracking routine, before proceeding with 

modification of the tracker to accommodate and predict bubbly flows. The particlular 

single-phase and particle-laden flows predicted were considered since, in the majoirty of 

cases, DNS-based results were available for comparison purposes.  

4.2.2 Vertical Channel Flow  

The prediction of microbubbles in turbulence was carried out for upward and downward 

flows in a vertical channel. A sketch of the channel geometry is shown in Figure 4.10. The 

computational domain was 1885 × 942 × 300 wall units in z, y and x directions, 

respectively. A computational grid with 128 × 128 × 129 nodes was used, and the spacing 

between grid points in the streamwise and spanwise directions was ∆𝑧+ ≈ 15 and ∆𝑦+ ≈

7.5 wall units. In the wall-normal direction, 𝑥+, the distance between two grid points 

ranged from 0.045 near the walls to 3.682 in the centre of the channel. These grid 

resolutions were sufficient to describe the significant length scales in the channel flow.  

A total number of 100,000 microbubbles with density 𝜌𝑏 = 1.3 kgm−3 and bubble 

diameter 𝑑𝑏 = 220 x 10−6 m were injected in the flow field uniformly with initial 

velocities set equal to that of the fluid at the bubble position. The volume fraction in each 

flow configuration was fixed at 10-5. To keep the average volume fraction of bubbles in 

the computational domain constant in time, when a bubble exited one of the domain 

boundaries in the streamwise or spanwise direction, it was reinjected into the domain 

according to the periodic condition of the flow field. Bubble-wall interaction was 

computed by enforcing rigid elastic rebound. 
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Figure 4.10 Vertical channel upflow and downflow computational domain. 

The importance of the lift force on bubble behaviour is emphasized in the case of 

turbulent vertical channel flows. The objective of this test case was therefore to focus on 

the effect of the lift force on bubble behaviour in the near-wall region of the channel. 

Bubbles were tracked (under a one-way coupled assumption) with and without the lift 

force term in the force balance equation. The overall volume and mass fractions of the 

dispersed bubbles were equal, respectively, to 𝑉 = 4.889 x 10−4 m3 and 𝑀 =

3.76 x 10−7 kg. The bubble response time, expressed as 𝜏𝑏 = 𝜌𝑏𝑑𝑏
2 18𝜇⁄  and corrected to 

account for added mass effects, was 𝜏̌𝑏 = 𝜏𝑏(1 + 𝜌𝑙 2𝜌𝑏⁄ ) = 385.6 𝜏𝑏. The total 

simulation time for both upflow and downflow cases was 𝑡+ = 1093. Averaging was 

started at 𝑡+ = 600 and carried out for a sufficient time for a bubble moving at a speed 

equal to the average fluid velocity to move through the entire streamwise length of the 

channel more than eight times. 

4.2.2.1 Validation test case 

Presented in Figure 4.11 are the fluid velocity statistics for the vertical channel one-way 

coupled turbulent flows, compared with the DNS results of Giusti et al. (2005). The fluid 

mean velocity profiles for upflow and downflow, in Figure 4.11(a), are equivalent, since 

the one-way coupling approach was applied, with resonable agreement between LES and 

DNS predictions. Figure 4.11(c) and (e) show the time- and spacially-averaged mean 

streamwise velocity of the microbubbles. In Figure 4.11(c) the profiles for upward and 

downward flows with the lift force are presented, while Figure 4.11(e) shows the no lift 
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force case, in comparison with the DNS predictions. As is clearly shown, in the upward 

flow case the bubbles move faster than the fluid in the upward direction due to the effects 

of buoyancy. In the downward flow case, in contrast, the bubbles move slower than the 

fluid. The LES-based microbubble statistics obtained with and without lift both give mean 

velocities that, relative to the DNS-based results, over-predict for the upflow case, and 

under-predict for the downflow. In the centre of the channel, the non-dimensional 

velocity is 21.41 for upflow and 13.91 for downflow, with a positive difference of 

approximately 1.5 for upflow, and a negative difference of about 0.9 for downflow, with 

respect to the DNS. 

Results for the normal and shear stresses in the fluid flow and for the microbubbles are 

also given in Figure 4.11(b), (d) and (f), although equivalent DNS based results are not 

available. In terms of the microbubbles, significant differences between the upflow and 

downflow cases are apparent,  with values in upflow being larger than those encountered 

in the downflow case, particularly in the streamwise normal stresses. 

Overall, the LES results with lift force effects are in qualitative agreement with the 

referenced DNS test case, as well as being in similar agreement with previous 

experimental studies (Wang et al., 1987) of spherical bubbles in turbulent flows. The 

results also confirm that bubble migration towards the wall in the upflow case, and away 

from the wall in the downflow case, is a combined result of the influence of gravity and 

the lift force, as considered in Figure 4.12. 

In the absence of the lift force, therefore, the lateral drift of the bubbles is uniformly zero, 

which results in zero wall accumulation, as observed in the results of Figure 4.12(c) for 

both flow configurations. The trend of the LES results with lift (Figure 4.12(a) and 4.12(b)) 

from a qualitative point of view also shows similarities with respect to experimental 

works (Tomiyama et al., 2002; Shu et al., 2009), where bubbles were found to migrate in 

the wall normal direction, and in the directions shown. Figure 4.12(c) presents a 

combined plot of microbubble lateral evolution with and without lift, with the no lift test 

case in both flow configurations confirming that bubble migration towards or away from 

the channel walls is due to the lift force. 
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Figure 4.11 Fluid and microbubble velocity statistics for the vertical channel one-way 

coupled turbulent upflow and downflow compared with DNS results: (a) Fluid mean 

streamwise velocity; (b) rms of fluid velocity fluctuations and shear stress; (c) bubble 

mean streamwise velocity (with lift); (d) rms of bubble velocity fluctuations and shear 

stress (with lift); (e) bubble mean streamwise velocity (no lift); and (f) rms of bubble 

velocity fluctuations and shear stress (no lift). 
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Figure 4.12 Profiles of microbubble concentration with increasing 𝑡+ for upflow and 

downflow cases, with and without lift force: (a) upflow; (b) downflow; (c) combined 

profiles 𝑡+ = 900. 

4.2.2.2 Effect of flow Reynolds number 

A higher Reynolds number flow of 𝑅𝑒𝜏 = 590 was also simulated with the LES under the 

one-way coupling framework, and in upflow and downflow configurations. Comparison 

with simulations at 𝑅𝑒𝜏 = 150, given in the previous section, allowed an analysis of the 

behaviour of microbubbles in different levels of turbulence, and the impact of turbulence 

on the lift force effect observed above, especially in the channel wall region. 
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Figure 4.13 Fluid and microbubble velocity statistics for 𝑅𝑒𝜏 = 590 in upflow and 

downflow conditions and under the one-way coupled assumption: (a) Fluid mean 

streamwise velocity; (b) rms of fluid velocity fluctuations and shear stress; (c) bubble 

mean streamwise velocity (with lift); (d) rms of bubble velocity fluctuations and shear 

stress (with lift); (e) bubble mean streamwise velocity (no lift); and (f) rms of bubble 

velocity fluctuations and shear stress (no lift). 
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Presented in Figure 4.13(a) and (b) are the fluid velocity statistics for the vertical channel 

with upflow and downflow. The results show no real distinction between the two flows 

in terms of all the statistics, as would be expected under the one-way coupling 

assumption. 

Figure 4.13(c) and (d) give the microbubble velocity statistics for the 𝑅𝑒𝜏 = 590 flow, 

with the lift force included. The mean streamwise velocity profiles for both flows closely 

match each other close to the channel wall. At around x+=25, however, a gradual 

separation of the two velocities occurs, with the upflow case peaking on the centre line at 

22.22, whereas the downflow peaks at 20.7. The normal and shear stresses in both flow 

configurations show no significant variations between the upflow and downflow cases. 

In order to emphasise the relevance of the lift force component in bubbly flows, 

specifically in the near-wall region, Figure 4.13(e) and (f) gives the bubble mean 

streamwise velocity and normal and shear stresses without the effects of the lift force 

included. Again, apart from the mean velocity, all other statistics are similar for each of 

the flows, and comparable to the results obtained with the lift force included in Figure 

4.13(c) and (d). Mean velocities are also comparable to those given in the latter figures, 

apart from very close to the channel walls. 

The time-evolution of the microbubble concentration profiles for both upflow and 

downflow are shown in Figure 4.14, with the lateral bubble concentration profiles in 

upflow and downflow, and  with and without the lift force, combined in Figure 4.14(c). In 

the upward flow configuration, the bubbles travel faster than the fluid due to buoyancy 

effects, whereas in the downward flow configuration the bubbles move slower than the 

fluid, as can be seen from the results of Figure 4.13. In the absence of the lift force, the 

bubble concentration profiles in Figure 4.14 remain similar to the initially uniform 

distribution with time, and show no tendency to migrate either towards or away from the 

wall. In contrast, inclusion of the lift force, as for the lower Reynolds number flow, causes 

bubbles to migrate towards the wall in upflow, and away from the wall in downflow. 
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Figure 4.14 Profiles of microbubble concentration with increasing 𝑡+ for upflow and 

downflow cases, with and without lift force, at 𝑅𝑒𝜏 = 590: (a) upflow; (b) downflow; (c) 

combined profiles 𝑡+ = 1200. 

Comparing the velocity profiles between the 𝑅𝑒𝜏 = 150 and 𝑅𝑒𝜏 = 590 flows under the 

same one-way coupling assumption, it is clear that the presence of the microbubbles has 

no effects on the surrounding fluid, as expected. In addition, the bubble mean streamwise 

velocity peaks for the 𝑅𝑒𝜏 = 150 flow were 21.41 and 13.91 for upflow and downflow, 

respectively. At 𝑅𝑒𝜏 = 590, the results obtained were 22.22 and 20.70, respectively. The 

higher flow velocity, with respect to a relative velocity between the bubble and the fluid 

that depends mainly on the bubble diameter and remains almost the same between the 

two cases, explains the lower relative difference between the upflow and downflow 

peaks. The bubble preferential concentration at the wall at 𝑅𝑒𝜏 = 150 is close to 100 for 

upflow and 0.001 for downflow, as shown in Figure 4.12. At 𝑅𝑒𝜏 = 590, the same values 

become 10 for upflow and 0.15 for downflow (Figure 4.14). This result quantifies the 

0 50 100 150
0.1

1

10

100

C
/C

0

x
+

 t
+
 = 0.00

 t
+
 = 800 - 1000

 t
+
 = 1000 - 1200

0 50 100 150
0.01

0.1

1

10

C
/C

0

x
+

 t
+
 = 0.00

 t
+
 = 800 - 1000

 t
+
 = 1000 - 1200

1 10 100
0.01

0.1

1

10

C
/C

0

x
+

 Lift upflow

 Lift downflow

 No lift upflow

 No lift downflow

(a)  

(c)  

(b)  



117 

 

much higher dispersion of the microbubbles promoted by the higher levels of turbulence 

at 𝑅𝑒𝜏 = 590. This addditional dispersion opposes and reduces the preferential 

accumulation induced by the lift force. 

4.3 Two-way Coupled Simulations 

The presence of bubbles in the fluid phase can lead to both turbulence enhancement or 

attenuation with respect to the single-phase turbulent flow (Serizawa et al., 1975; 

Hosokawa and Tomiyama, 2004). However, the physical process of turbulence 

modulation is not yet fully understood, and the reliable prediction of turbulence 

enhancement or attenuation by bubbles is still difficult (Lance and Bataille, 1991). This 

has stimulated much research on bubbly flows and promoted the requirement for a 

deeper understanding of bubble hydrodynamics and the role bubble-induced turbulence 

plays in modifying the characteristics of the continuous phase flow. The present study 

aims to add to the understanding of turbulence modulation by microbubbles in horizontal 

and vertical channel flows, and to provide a reliable predictive technique. The effect of 

pressure gradient on the bubbly flow and the impact of the liquid phase turbulence on 

bubble behaviour are also investigated. 

The role of bubble-induced turbulence was analysed experimentally in a vertical duct by 

Zhang et al. (2015). The study indicated that higher levels of turbulence could be induced 

by bubbles in a large duct when compared to a smaller duct with a similar void fraction. 

Interaction between the shear-induced and the bubble-induced turbulence was also 

discussed. Results showed that the existence of a wall could suppress bubble-induced 

turbulence, and the presence of bubbles could also suppress the solely wall-induced 

turbulence as compared to a single-phase turbulent flow, even if the total turbulence was 

enhanced. Pang et al. (2013) investigated turbulence modulation by small bubbles in a 

liquid flow in detail using DNS, in an Eulerian-Lagrangian approach, of a vertical upward 

channel flow with a finite number of small bubbles. The investigation showed that the 

liquid turbulence is intensified near the wall and is slightly weakened in the channel 

central region due to the addition of bubbles. 

From the literature it can be concluded that although many investigations into turbulence 

modulation by bubbles have been performed using DNS (e.g. Mazzitelli et al., 2003), the 



118 

 

turbulence modulation mechanism is still not fully understood and there are varying and 

slightly conflicting findings between experimental and modelling results (Pang et al., 

2010). Ferante and Elghobashi (2004) argued that microbubbles in a spatially developing 

turbulent boundary layer push the developing streamwise vortices away from the wall, 

leading to less dissipation in the boundary layer. van den Berg et al. (2007) also concluded 

that microbubble modulation of turbulence is a boundary layer effect. Lu and Tryggvason 

(2008) in their study additonally showed that bubble deformation has a great influence 

on the liquid turbulence. 

According to Yeo et al. (2010), turbulence modulation depends only slightly on the 

dispersion characteristics of a flow. Recently, Pang and Wei (2016) in their DNS work 

investigated the effect of the flow direction on the distribution of bubbles and the liquid 

turbulence in a vertical channel. The computational domain size was 10ℎ × 2ℎ × 5ℎ in 

the streamwise, wall-normal and spanwise directions, respectively. The shear Reynolds 

number of the liquid phase was 𝑅𝑒𝜏 = 150 with bubbles of diameter 220 μm. Turbulence 

modulation mechanisms by bubbles were analyzed in the paper, but the analysis was 

limited to one bubble size and one flow Reynolds number. 

4.3.1 Horizontal Channel Flow  

The LES coupled with the modified Lagrangian bubble tracker was first used with the 

two-way coupling assumption for a flow of air microbubbles in a horizontal water 

channel flow. Results are first validated against the DNS results of Pang et al. (2014) at a 

shear Reynolds number 𝑅𝑒𝜏 = 150 and for spherical microbubbles of diameter 𝑑𝑏 =

220 μm. Additional simulations are then made at the higher shear Reynolds number of 

𝑅𝑒𝜏 = 590 to study the effect of higher turbulence levels on bubble accumulation at the 

upper wall that is promoted by buoyancy effects, and the modifications induced by the 

presence of these bubbles in the continuous phase field. Also, two additional bubble sizes, 

𝑑𝑏 = 110 μm and 𝑑𝑏 = 330 μm, are considered at both shear Reynolds numbers to 

investigate the complex mutual interactions between turbulence, bubble diameter and 

preferential bubble concentration near the upper wall. 

Before introducing bubbles, a fully developed single-phase turbulent channel flow was 

obtained at shear Reynolds numbers 𝑅𝑒𝜏 = 𝑢𝜏ℎ/𝜈 of 150 and 590, with water as the 
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carrier phase fluid with a kinematic viscosity 𝑣 = 1 × 10−7 m2s−1 and density 𝜌 =

1000 kgm−3. The computational domain was a channel bounded by two infinite flat 

parallel walls, as illustrated in Figure 4.5, with the 𝑥, 𝑦 and 𝑧 axes pointing in the wall 

normal, spanwise and streamwise directions, respectively. Air bubbles with a density 

𝜌𝑏 = 1.3 kgm
−3 were introduced uniformly into fully-converged single-phase flow 

solutions, with the initial velocity of a bubble equal to the fluid velocity at the bubble 

location, obtained by interpolation. Three bubble sizes, 𝑑𝑏 = 110, 220 and 330 μm, were 

considered, and the bubble volume fraction was chosen as 𝜙 = 1.12 × 10−4, which is high 

enough to allow analysis of the effect of microbubbles on the continuous flow field but, at 

the same time, low enough to ensure negligible bubble-bubble interaction. This 

corresponds to a total number of 181,272 microbubbles for 𝑑𝑏 = 110 μm, 25,400 for 

𝑑𝑏 = 220 μm and 6,714 for 𝑑𝑏 = 330 μm. 

Perfectly elastic collisions were assumed at the walls when the microbubble centre was 

at a distance from the wall lower than the bubble radius. The time-step for the bubble 

tracker was chosen equal to that of the fluid solver time-step, and corresponding to 

roughly one-fifth of the bubble relaxation time (see Table 4.2 below). The total simulation 

time was 𝑡+ = 200 for 𝑅𝑒𝜏 = 150 and 2000 for 𝑅𝑒𝜏 = 590, with averaging carried out 

after 100 and 1000 𝑡+, respectively. Here, and below, the superscript (+) refers to a non-

dimensional quantity scaled by the wall (viscous) variables, where 𝑢𝜏/𝜈, uτ and 𝜈/𝑢𝜏
2  are 

the characteristic length, velocity and time scales. Also, 𝑡+ values quoted relate to times 

after the bubbles were first introduced to the fully developed single-phase solutions. 

4.3.1.1 Validation test case 

This section gives the two-way coupled LES results compared with the DNS of Pang et al. 

(2014) at 𝑅𝑒𝜏 = 150 and for 𝑑𝑏 = 220 μm. Figure 4.15 shows the bubble enhanced fluid 

velocity statistics and the bubble velocity statistics in this flow. Figure 4.15(a) and (b) 

give the bubble enhanced fluid mean streamwise velocity and the turbulent normal and 

shear stresses. The mean streamwise velocity of Pang et al. (2014) is slightly over-

predicted by the LES, although this is probably as a consequence of the low grid 

resolution used by the latter authors who employed a 64 × 64 × 64 mesh, which is 

significantly less resolved than the present 128 129 ×128 ×128 mesh. In contrast, the 
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normal and shear stress results of both approaches are in good agreement. These results 

are in line with those obtained for the 𝑅𝑒𝜏 = 150 single phase flow considered in the 

previous section. 

 

 

Figure 4.15 Fluid and bubble velocity statistics at 𝑡+ = 102 in two-way coupled 

simulations compared with DNS at 𝑅𝑒𝜏 = 150: (a) mean streamwise fluid velocity; (b) 

fluid turbulent normal and shear stresses; (c) mean streamwise bubble velocity; and (d) 

bubble turbulent normal and shear stresses. DNS source Pang et al. (2014). 

In Figure 4.15 (c, d), the microbubble mean velocity and turbulent stress profiles are also 

compared with the DNS predictions of Pang et al. (2014). For the mean bubble velocity, 

the DNS is found to be lower than the LES results, this again being a likely consequence 

of the low resolution used by the latter authors. Unfortunately, no DNS results for the 

turbulent stresses were provided by Pang et al. (2014), although the LES results are given 

in Figure 4.15(d). For both the LES and the DNS, the velocity profiles of the gas and liquid 

phases are very similar, with the microbubble mean velocity being slightly higher than 

that of the fluid phase. An explanation to this is provided by Pang et al. (2014). The 
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interphase forces acting on the microbubbles are the drag, lift, added mass, gravity-

buoyancy and the pressure gradient forces. In the streamwise direction, the added mass, 

pressure gradient and gravity-buoyancy forces are negligible, and the drag force is 

expected to be weak due to the low mean slip velocity between the gas and liquid phases. 

The velocity difference is therefore mostly generated by the component of the lift force 

in the streamwise direction induced by the spanwise vorticity (Pang et al., 2014), and this 

effect is reproduced by the LES. 

 

Figure 4.16 Time evolution of bubble concentration profiles in the two-way coupled 

simulations at 𝑅𝑒𝜏 = 150: (a) bubble concentration profiles across the horizontal 

channel; and (b) bubble concentration profiles close to the upper channel wall. 

In the wall-normal direction, gravity-buoyancy is the dominant force, even if the lift force 

is expected to contribute by moving the bubbles towards the channel walls. The gravity-

buoyancy force itself causes the lower density bubbles to mifgrate towards the upper wall 

of the channel, with the results given in Figure 4.16 showing the evolution of the 

microbubble concentration with time. Starting from an initially uniform bubble 

concentration, the bubbles gradually migrate from the lower channel wall to the upper 

wall and, by 𝑡+ = 102, the majority of the bubbles have moved close to the latter wall. 
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Figure 4.17 Comparison between two-way coupled and single-phase fluid statistics: (a) 

LES mean streamwise velocity; (b) DNS mean streamwise velocity (Pang et al., 2014); 

and (c) LES turbulent normal and shear stresses. 

A comparison between the two-way coupled and the single-phase fluid mean streamwise 

velocities and turbulent stresses is given in Figure 4.17. The LES mean streamwise 

velocity is shown in Figure 4.17(a) and this can be compared with the DNS prediction as 

given in Figure 4.17(b). The LES turbulent normal and shear stresses are also shown in 

Figure 4.17(c). Relative to the single-phase, the mean velocity of the fluid phase exhibits 

a slight asymmetrical profile in the presence of microbubbles. More specifically, in the 

lower half of the channel (0 < 𝑥+ < 150 ), the fluid velocity generally matches that of the 

single phase due to the negligible number of microbubbles in that region. In contrast, in 

the upper half of the channel (151 < 𝑥+ < 300), the fluid phase mean velocity is slightly 

enhanced in the region away from the wall due to the presence of the microbubbles. As a 

consequence, the peak velocity is shifted slightly higher than the channel centre relative 
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to the single phase peak. Some small modifications are also visible in the turbulent stress 

profiles, in Figure 4.17(c) which, in agreement with Pang et al. (2014), are slightly 

reduced in the upper half of the channel, particularly in the streamwise direction. 

4.3.1.2 Effect of flow Reynolds number 

Additional simulations at 𝑅𝑒𝜏 = 590 were also carried out for the two-way coupled LES 

to study the effect of turbulence levels on microbubble dispersion and migration to the 

upper wall. Figure 4.18 shows the fluid velocity statistics, the bubble velocity statistics 

and bubble concentration profiles with time. For the fluid, the two-way coupled results 

are again compared with the single-phase profiles in Figure 4.18(a) and (b). The 

asymmetrical profiles which were observed at a shear Reynolds number 𝑅𝑒𝜏 = 150 are 

not apparent at the higher Reynolds number, with the mean velocity and turbulent stress 

profiles insignificantly different from the corresponding single-phase results. 

This is as a result of the higher bulk flow velocity and turbulence levels that dominate the 

buoyancy effect on the bubbles and their movement towards the upper wall. This is 

confirmed by the results of Figure 4.18(c) and (d), where the mean velocity and turbulent 

stresses of the bubbles are almost identical to those of the continuous phase. Additonally, 

in Figure 4.19(e) and (f), it is seen that, although some effect of buoyancy is apparent with 

time near the lower channel wall, there is no significant accumulation of bubbles near the 

upper wall. As a consequence of the higher bubble dispersion by the turbulence, the 

concentration of bubbles, therefore, remains significant in the lower half of the channel, 

even at 𝑡+ = 1219. 
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Figure 4.18 Fluid and bubble velocity statistics at 𝑡+ = 1219, and time evolution of 

bubble concentration profiles, in two-way coupled simulations at 𝑅𝑒𝜏 = 590: (a) mean 

streamwise fluid velocity; (b) fluid turbulent normal and shear stresses; (c) mean 

streamwise bubble velocity; (d) bubble turbulent normal and shear stresses; (e) bubble 

concentration profiles across the horizontal channel; and (f) bubble concentration 

profiles close to the upper channel wall. 
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Figure 4.19 Time evolution of bubble concentration profiles at 𝑡+ = 70 for different 

shear Reynolds numbers: (a) across the horizontal channel; and (b) close to the upper 

channel wall. 

An additional simulation at the intermediate shear Reynolds number of 𝑅𝑒𝜏 = 300 was 

also performed, and results for the bubble concentration distribution in the channel at all 

three Reynolds numbers are shown in Figure 4.19. This allows further consideration of 

the time required for the microbubbles to move from the lower regions of the channel to 

the upper channel wall, with the predictions in Figure 4.19(a) plotted at a fixed time of 

𝑡+ = 70 and with distance given relative to the total channel height 2ℎ+, expressed in 

wall units. At 𝑅𝑒𝜏 = 150, the microbubble concentration is negligible in the lower regions 

of the channel until 𝑥 2h⁄ = 0.55, such that more than half the channel is devoid of 

bubbles. In contrast, bubbles still occupy the majority of the channel height at 𝑅𝑒𝜏 = 300, 

and even more so at 𝑅𝑒𝜏 = 590, because their higher mean velocity and turbulence levels 

partially override the effects of buoyancy. Comparing the bubble concentration at 𝑅𝑒𝜏 =

150 and 𝑅𝑒𝜏 = 590 at the 𝑡+ used in Figure 4.19(a), the migration rate of the 

microbubbles is 11 times faster at the lower shear Reynolds number. A correspondingly 

lower concentration of bubbles at the upper channel wall with increasing 𝑅𝑒𝜏 is shown in 

Figure 4.19(b). 

4.3.1.3 Effect of bubble size 

The influence of bubble size was also studied using two additional bubble diameters 

(𝑑𝑏 = 110 μm and 330 μm), with simulations performed at shear Reynolds numbers of 
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illustrated in Figure 4.20 and at 𝑅𝑒𝜏 = 590 in Figure 4.21. Both figures give results for all 

the three bubble sizes considered. In Figure 4.20, the segregation of the microbubbles 

and their movement towards the upper wall is increased with an increase in the bubble 

size. In Figure 4.20(a), some bubbles remain in the lower half of the channel at 𝑡+ ≈ 200, 

whilst in Figure 4.20(b), the lower half of the channel is practically emptied of bubbles by 

𝑡+ ≈ 100, and by 𝑡+ ≈ 38 in Figure 4.20(c). Since the buoyancy force acting on the 

bubbles is proportional to their volume, and hence to the third power of the bubble 

diameter, it is increased eight times by doubling the bubble diameter. In contrast, larger 

bubbles tend to be less affected by turbulent dispersion. Therefore, the buoyancy force is 

clearly more influential than turbulent dispersion at the larger bubble diameters, with 

buoyancy promoting the greater segregation of the bubbles and their accumulation near 

the upper wall of the channel. 

 

Figure 4.20. Bubble concentration profiles at 𝑅𝑒𝜏 = 150 for different bubble diameters: 

(a) 110 μm; (b) 220 μm; and (c) 330 μm. 

 

0 50 100 150 200 250 300
1E-4

0.001

0.01

0.1

1

10

100

1000

10000

C
/C

0

x+

  t+ = 0

  t+ = 10 - 50

  t+ = 51 - 100

  t+ = 110 - 150

  t+ = 151 - 200

0 50 100 150 200 250 300
1E-4

0.001

0.01

0.1

1

10

100

1000

10000

C
/C

0

x+

  t+ = 0

  t+ = 10 - 50

  t+ = 51 - 100

  t+ = 101 - 120

 

0 50 100 150 200 250 300
0.001

0.01

0.1

1

10

100

1000

10000

C
/C

0

x+

  t+ = 0

  t+ = 10 - 24

  t+ = 25 -38

  t+ = 39 - 50

 

(a)  (b)  

(c)  



127 

 

 

 

Figure 4.21 Bubble concentration profiles at 𝑅𝑒𝜏 = 590 for different bubble diameters: 

(a) 110 µm; (b) 220 µm; and (c) 330 µm. 
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the upper wall modifying the liquid velocity field such that the mean velocity profile 

becomes asymmetric, in agreement with DNS predictions (Pang et al., 2014). Some slight 

modification of the turbulent stresses is also noted. Using the same computational 

conditions, the simulations were extended to a shear Reynolds number 𝑅𝑒𝜏 = 590. At the 

higher mean velocity and turbulence levels, the buoyancy effect is partially overridden 

by the turbulent dispersion of the microbubbles, with migration towards the upper 

channel wall significantly reduced as a consequence. 

At both shear Reynolds numbers, the influence of microbubble diameter was also 

investigated, with simulations performed for 110 μm, 220 μm and 330 μm diameter 

bubbles. Buoyancy, being proportional to the bubble volume, increases bubble migration 

towards the upper channel wall and segregation of the bubbles in the upper half of the 

channel with increasing bubble diameter, with this effect reduced with increasing 

Reynolds number. 

4.3.1.4 Force analysis in wall-normal direction 

The individual forces acting on the microbubbles are analysed in more detail in this 

section. More specifically, the forces in the wall-normal direction are considered, in terms 

of the force per unit mass (Nkg−1), since it is in this direction that the greatest change in 

bubble distribution occurs. Plots of all the individual forces acting on the microbubbles 

are presented for the 𝑅𝑒𝜏 = 150 and 𝑅𝑒𝜏 = 590 flows for a bubble diameter 𝑑𝑏 = 220 µm 

and at 𝑡+ = 200 in Figure 4.22. Similar results were found for simulations performed for 

all three bubble sizes considered and, therefore, only results for the 220 µm case are 

considered below. 

Figure 4.22 shows the wall-normal profiles for all the forces acting on the microbubbles 

for both the shear Reynolds numbers considered. In both cases, the gravity-buoyancy 

force is, as expected, the dominant force with a constant value of 19.6 Nkg−1 in the 

direction of the upper wall. This force is balanced by drag, with other forces such as lift, 

added mass and pressure gradient being negligible. Because of their small magnitudes, 

Figure 4.22(b) and (d) use an expanded scale to better illustrate the variation in the latter 

forces. At the higher shear Reynolds number 𝑅𝑒𝜏 = 590 in particular, although the gravity-

buoyancy and drag forces are still dominant, the lift, added mass and pressure gradient 
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forces are seen to play a role, albeit small, in the near-wall region. Here, an increased 

positive lift contributes to pushing bubbles towards the wall, with a slightly counteracting 

effect from the added mass and pressure gradient forces also observed. Overall, however, 

the force analysis shows the dominant role of the gravity-buoyancy force and the 

balancing effect of the drag force that is generated as soon as the bubbles start to migrate 

towards the upper surface. 

 

Figure 4.22 Forces acting in the wall normal direction for 𝑑𝑏 = 220 µm bubbles and 𝑡+ = 

200: (a, b) 𝑅𝑒𝜏 = 150; and (c, d) 𝑅𝑒𝜏 = 590. Plots (b) and (d) show an expanded scale to 

highlight the magnitude of the smaller forces (𝐹𝐷 = drag force, 𝐹𝐺𝐵 = gravity-buoyancy 

force, 𝐹𝑆𝐿 = shear lift force, 𝐹𝐴𝑀 = added mass force and 𝐹𝑃𝐺 = pressure gradient 

force). 
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4.3.2 Vertical Channel Flow 

In this section, attention is shifted to the study of the flow of air microbubbles in a vertical 

(upflow and downflow) water channel. The DNS results of Molin et al. (2012) allow 

validation of the LES-based results at a shear Reynolds number 𝑅𝑒𝜏 = 150. Microbubbles 

with diameters 𝑑𝑏 = 110 μm, 220 μm and 330 μm were considered to investigate the 

complex mutual interactions between turbulence and bubble size near the channel walls. 

A second set of simulations was carried out at the higher, and more industrially relevant, 

shear Reynolds number of 𝑅𝑒𝜏 = 590 to study the effect of turbulence on the bubble 

evolution towards or away from the wall regions promoted by lift and the modifications 

induced by the presence of bubbles in the continuous phase flow field. It is demonstrated 

that at this higher Reynolds number the coupling effect between the bubbles and the 

continuous flow rapidly diminishes, with preferential concentration or depletion of 

bubbles at the channel wall also reduced. This is due to the greater influence of turbulent 

dispersion in this flow, and the consequent impact on the forces acting on the bubbles. 

4.3.2.1 Validation test case 

Fully converged single-phase turbulent channel flows at shear Reynolds number 𝑅𝑒𝜏 =

150 and 𝑅𝑒𝜏 = 590 were considered. Water was used as the continuous phase with 

kinematic viscosity 𝑣 = 1.0 x 10−7 m2s−1 and density 𝜌 = 1000 kgm−3. The 

computational domain was a channel bounded by two infinite flat parallel walls as 

illustrated in Figure 4.10, with the x, y, and z axes pointing in the wall normal, spanwise 

and streamwise directions, respectively. The dimensions of the computational domain 

was set to 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 2ℎ × 2𝜋ℎ × 4𝜋ℎ and this was discretised using 𝑁𝑥 × 𝑁𝑦 ×𝑁𝑧 =

129 ×  128 ×  128 grid points in the wall-normal, spanwise and streamwise directions, 

respectively. The computational grid was uniformly distributed along the y and 𝑧 axes 

and non-uniform using a hyperbolic function (Gamet et al., 1999) in the wall-normal 

direction. The no-slip boundary condition was imposed at the channel wall (Tagawa et 

al., 2010) while periodic boundary conditions were imposed in the streamwise and 

spanwise directions, with the flow being driven by an imposed streamwise fixed pressure 

gradient. 
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Air bubbles with a density 𝜌𝑏  = 1.3 kgm−3 were used as the dispersed phase and bubbles 

were uniformly introduced into the fully-converged single-phase flow solutions, with the 

initial velocity of the bubble equal to the fluid velocity at the bubble location, obtained by 

interpolation. Three bubble sizes, 𝑑𝑏 = 110, 220 and 330 μm, were selected, and the 

bubble volume fraction was chosen as 𝛷 = 1.0 × 10−4, high enough to analyse the 

microbubbles effect on the continuous fluid field but, at the same time, low enough to 

ensure negligible bubble-bubble interaction. The corresponding total number of 

microbubbles for the respective bubble sizes are presented in Table 4.2 below. Two 

different flow configurations (upward and downward) were studied. The single-phase 

and two-way coupled values of the wall shear stress, the shear velocity and the shear 

Reynolds number for these cases are summarized in Molin et al. (2012) and presented in 

Table 4.3. 

Table 4.2 Computational parameters for bubbles and liquid in the vertical channel 

simulations for the two flow Reynolds numbers. 

𝑹𝒆𝝉 = 150 𝑹𝒆𝒃 = 2272 𝐮𝛕(𝐦𝐬
−𝟏) = 7.5  10-3 𝒖𝒃𝒖𝒍𝒌 = 0.114 

𝒅𝒃(𝝁𝒎) 𝒅𝒃
+ 𝝉𝒃(𝝁𝒔) 𝝉𝒃

+ 𝝉̃𝒃(𝒔) 𝝉̃𝒃
+ 𝒏𝒃 

110 0.83 0.87 4.89  10-5 3.37  10-4 0.02 181,272 

220 1.65 3.50 1.97  10-4 1.35  10-3 0.07 22,660 

330 2.48 7.87 4.42  10-4 3.03  10-3 0.17 6,714 

𝑹𝒆𝝉 = 590 𝑹𝒆𝒃 = 11033 𝒖𝝉 = 2.95 x 10-2 𝒖𝒃𝒖𝒍𝒌 = 0.552 

𝒅𝒃 (𝝁𝒎) 𝒅𝒃
+ 𝝉𝒃(𝝁𝒔) 𝝉𝒃

+ 𝝉̃𝒃(𝒔) 𝝉̃𝒃
+ 𝒏𝒃 

110 3.25 0.87 7.61  10-4 3.37  10-4 0.29 45,318 

220 6.49 3.50 3.04  10-3 1.35  10-3 1.17 5,664 

330 9.74 7.87 6.84  10-3 3.03  10-3 2.64 1,678 
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Table 4.3. Non-dimensional wall shear stress, shear velocity and Reynolds number for 

the single-phase and the two-way coupled simulations at nominal shear Reynolds 

numbers 𝑅𝑒𝜏 = 150 and 𝑅𝑒𝜏 = 590. 

 

Unladen flow 

Two-way coupled flow 

Upflow Downflow 

𝑅𝑒𝜏 = 150 𝑅𝑒𝜏,2𝑤 𝑢𝑓 =  171 𝑅𝑒𝜏,2𝑤 𝑑𝑓 =  122 

𝜏𝑤
+ = 1 𝜏𝑤,2𝑤 𝑢𝑓

+ =  1.31 𝜏𝑤,2𝑤 𝑑𝑓
+ =  0.66 

𝑢𝜏 = 7.5 x 10
−3ms−1 𝑢𝜏,2𝑤 𝑢𝑓 =  8.58 x 10

−3ms−1 𝑢τ,2w df =  6.11 x 10
−3ms−1 

Unladen flow Upflow Downflow 

𝑅𝑒𝜏 = 590 𝑅𝑒𝜏,2𝑤 𝑢𝑓 =  612 𝑅𝑒𝜏,2𝑤 𝑑𝑓 =  562 

uτ = 2.95 x 10
−2ms−1 𝑢𝜏,2𝑤 𝑢𝑓 =  3.06 x 10

−2ms−1 𝑢𝜏,2𝑤 𝑑𝑓 =  2.81 x 10
−2ms−1 

𝜏𝑤
+ = 1 𝜏𝑤,2𝑤 𝑢𝑓

+ =  1.07 𝜏𝑤,2𝑤 𝑑𝑓
+ =  0.91 

The trajectories of individual microbubbles were obtained from integration of the 

Lagrangian tracking equation, Eq. (3.37), using a fourth-order Runge-Kutta scheme. 

Perfectly elastic collisions were assumed at the wall when the microbubble centre was at 

a distance from the wall less than the bubble radius. The time-step for the bubble tracker 

was chosen equal to that of the fluid solver time-step, and corresponding to roughly one-

fourth of the bubble response time (𝜏𝑏 = 𝜌𝑏𝑑𝑏
2 18𝜇⁄ ) for both Reynolds numbers (Table 

4.2). The total simulation time in wall units, derived from 𝑡+ = 𝑡𝑢𝜏
2 𝜐⁄ , was 1500 for 

upflow and 2000 for downflow at 𝑅𝑒𝜏 = 150, and 1200 for upflow and 1400 for 

downflow at 𝑅𝑒𝜏 = 590, with averaging carried out after 1000 𝑡+. 

The simulation results are discussed below, and in particular the velocity fields for both 

the fluid and the microbubbles as well as the microbubble concentration profiles are 

considered. Validation of the single-phase flow results has already been considered in 

Figure 4.2 and Figure 4.4 at the beginning of this section. Here, bubbly flows in both 

upflow and downflow are first validated against the results of Molin et al. (2012) for 

bubble sizes 𝑑𝑏 = 110 and 𝑑𝑏 = 220. Results of extended simulations at 𝑑𝑏 = 330 μm 

and 𝑅𝑒𝜏 = 590, for which no results are currently available in literature, are then 

addressed. Finally, the role and importance of the different forces acting on the bubbles 
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in the wall normal direction, and their effect on the bubble concentration profiles, are 

considered. 

In Figure 4.23, the bubble enhanced fluid mean velocity profiles in the wall-normal 

direction are shown. More specifically, two-way coupled LES results are compared 

against the DNS results of Molin et al. (2012) at 𝑅𝑒𝜏 = 150, and for 𝑑𝑏 = 110 μm and 

220 μm bubbles, in both the upward and downward flow directions. In addition, LES 

results are also provided for the 𝑑𝑏 = 330 μm case. 

 

 

Figure 4.23 Bubble enhanced mean streamwise fluid velocity for the three bubble sizes: 

(a) 𝑑𝑏 = 110 μm; (b) 𝑑𝑏 = 220 μm; and (c) 𝑑𝑏 = 330 μm. 
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In Figure 4.23(a), the LES mean streamwise bubble velocities peak at approximately 13 

and 18.5 for downflow and upflow, respectively. This difference is reduced in Figure 

4.23(b), where the velocity peaks at 14.8 in downflow and 19 in upflow, and further 

decreases in Figure 4.24(c) that shows peaks at 16 and 19. Equivalent bubble velocities 

are given in Figure 4.24. Overall, acceptably close agreement with the DNS predictions of 

Molin et al. (2012) is apparent for the two lower bubble diameters. 

In Figure 4.25, the same mean streamwise fluid velocities for bubble sizes 𝑑𝑏 = 110 μm 

and 𝑑𝑏 = 220 μm are rescaled using the effective upflow, 𝑢𝜏,2𝑤 𝑢𝑝𝑓, and downflow, 

𝑢𝜏,2𝑤 𝑑𝑓 , shear velocities after the introduction of the bubbles, with the present 

predictions compared against the rescaled DNS results. As already noted by Molin et al. 

(2012), the difference that is observed in Figure 4.23 is reduced when the upflow and 

downflow shear velocities are used to scale the velocity profiles for both bubble sizes. 

More specifically, the LES profiles are almost superimposed and remain close to the 

single-phase profile in both flow configurations. As already noted, the total pressure drop 

was kept constant in these flows, but the gravitational loss in upflow and gain in 

downflow are modified by the introduction of the bubbles. Therefore, because of the 

reduced gravitational loss, the upflow is almost equal to a single-phase flow driven by an 

increased pressure gradient. In a similar way, the downflow is equivalent to a flow driven 

by a reduced pressure gradient because of the reduced gravitational gain. 
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Figure 4.24 Mean streamwise bubble velocity for the three bubble sizes: (a) 𝑑𝑏 =

110 𝜇𝑚;  (b) 𝑑𝑏 = 220 𝜇𝑚; and (c) 𝑑𝑏 = 330 𝜇𝑚. 
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Figure 4.25 Mean streamwise fluid velocity rescaled with the effective shear velocities: 

(a) 𝑢𝜏,2𝑤 𝑢𝑝𝑓 for upflow; and (b) 𝑢𝜏,2𝑤 𝑑𝑓 for downflow. ־־־ LES,  𝑑𝑏 = 110 𝜇𝑚; — LES, 

𝑑𝑏 = 220 𝜇𝑚; ● DNS, 𝑑𝑏 = 110 𝜇𝑚; ○ DNS, 𝑑𝑏 = 220 𝜇𝑚; and -·- LES single phase. 

As shown in Figure 4.26, and for both upflow and downflow, the bubbles alter not only 

the mean velocity but also the intensity of the turbulence in the fluid, and these effects 

are well reproduced in the LES simulations which show a good agreement with the DNS. 

When scaled using the actual shear velocities, rms values in Figure 4.26 look similar to 

those in a single-phase flow. Therefore, not only for the mean velocity, but also for the 

turbulence in the fluid, the upflow is equivalent to a single-phase flow with a slightly 

higher mass flow rate, and the downflow to a flow with a lower mass flow rate. Overall, 

the increase in flow rate results in a corresponding increase in the turbulence intensity. 

In upflow, the rms values are scaled using a higher shear velocity, whereas the equivalent 

reduction in downflow produces lower turbulence fluctuations. In addition, although of 

lower strength, there is also an effect of the bubble diameter on the fluid turbulence since, 

at 𝑑𝑏 = 330 μm (Figure 4.26(e) and (f)), the largest deviations with respect to the single-

phase profiles are observed. 
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Figure 4.26 Rms of fluid velocity fluctuations and shear stress scaled with effective 

upflow and downflow shear velocity compared with DNS data: (a, b) 𝑑𝑏 = 110 μm; (c, d) 

𝑑𝑏 = 220 μm; and (e, f) 𝑑𝑏 = 330 μm. 
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values are again scaled using the fluid-only, single-phase shear velocity. As is evident, in 

0 30 60 90 120 150
0

1

2

3

+'

,rmsxu

+'

,rmsyu

+'

,rmszu

N
o

rm
a

l s
tr

e
ss

e
s

x+

 DNS

 LES

0 30 60 90 120
0

1

2

3

+'

,rmsxu

+'

,rmsyu

+'

,rmszu

N
o
rm

a
l s

tr
e
s
s
e
s

x+

 DNS

 LES

0 30 60 90 120 150
0.0

0.5

1.0

1.5

2.0

2.5

+'

,rmsxu

+'

,rmsyu

+'

,rmszu

N
o

rm
a

l s
tr

e
ss

e
s

x+

 DNS

 LES

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

2.0

2.5

+'

,rmsxu

+'

,rmsyu

+'

,rmszu

N
o

rm
a

l s
tr

e
s
s
e

s

x+

 DNS

 LES

0 30 60 90 120 150
-1

0

1

2

3

++ ''

zx uu

+'

,rmszu

+'

,rmsyu

+'

,rmsxu

N
o

rm
a

l a
n

d
 s

h
e

a
r 

st
re

ss
e

s

x+

 LES upflow

0 20 40 60 80 100 120
-1

0

1

2

3

++ ''

zx uu

+'

,rmsxu

+'

,rmsyu

+'

,rmszu

N
o

rm
a

l a
n

d
 S

h
e
a

r 
S

tr
e

ss
e

s

x+

 LES downflow

(a) (b) 

(d) (c) 

(f) (e) 



138 

 

upflow conditions the turbulent fluctuations are considerably higher than in the 

downflow case, and enhanced with respect to those of the continuous phase. In contrast, 

in downflow, the turbulence levels are decreased with respect to the single-phase flow. 

 

 

 

Figure 4.27 Rms of bubble velocity fluctuations and shear stresses scaled with effective 

upflow and downflow shear velocity compared with DNS data: (a, c, e) upflow; and (b, d, 

f) downflow. (a, b) 𝑑𝑏 = 110 μm ; (c, d) 𝑑𝑏 = 220 μm; and (e, f) 𝑑𝑏 = 330 μm. 
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Overall, modifications in the turbulence level of the fluid, and the bubble phase turbulent 

statistics, are well-reproduced by the LES, with results in good agreement with the DNS-

based solutions, and with similar trends found in the LES alone for a bubble diameter of 

𝑑𝑏 = 330 μm. It should be noted that, in downflow, and in particular for bubble diameters 

of 𝑑𝑏 = 220 μm and 330 μm, the turbulence profiles are not defined in the very near-wall 

region. This is due, as will be discussed in more detail below, to the small number of 

bubbles in this region that arose due to bubble interaction with the fluid phase. 

For microbubble flows, and for bubbly flows in general, of significant interest is how the 

distribution and concentration of the bubbles are affected by the fluid phase, and in 

particular by the levels of turbulence within the flow. As a consequence of their 

interaction with the continuous phase, bubbles may concentrate in specific regions of the 

flow and leave other areas depleted. In pipes and channels, it has been observed how 

small bubbles, that tend to remain spherical, concentrate near the wall in upflow and in 

the centre of the flow in downflow (Giusti et al., 2005; Wang and Maxey, 1993). This effect 

has been generally attributed to the action of the lift force, which pushes the bubbles 

perpendicularly to the direction of the main fluid motion, and in the direction of the 

negative, in upflow, and positive, in downflow, fluid velocity gradient. 

 

Figure 4.28 Time evolution of microbubble concentration in the wall normal direction 

for shear Reynolds number 𝑅𝑒𝜏 = 150 and 𝑑𝑏 = 110 μm: (a) upflow; and (b) downflow. 

The time evolution of bubble concentration in the wall-normal direction in both upflow 

and downflow is given in Figure 4.28, 4.29 and 4.30 for the three bubble sizes considered. 

In these figures, the full profile across the vertical channel domain, and details of the wall 
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region, are shown. To compute the bubble concentration, wall-normal direction space 

divisions were used. As previously, the average number of bubbles within each slab 𝑛𝑏 

was counted and divided by the volume of the slab, 𝑉, to obtain the local concentration 

𝐶 = 𝑛𝑏 𝑉⁄ . The local concentration was then normalized by its initial value 𝐶0. The ratio 

𝐶 𝐶0⁄  is therefore the normalized bubble number density and it is always greater than 

unity in flow regions were bubbles tend to segregate and smaller than unity in regions 

depleted of bubbles. The plots show concentration profiles averaged over consecutive 

time intervals to emphasize the evolution of the bubble concentration over time. 

 

Figure 4.29 Time evolution of microbubble concentration in the wall normal direction 

for shear Reynolds number 𝑅𝑒𝜏 = 150 and 𝑑𝑏 = 220 μm: (a) upflow; and (b) downflow. 

   

Figure 4.30 Time evolution of microbubble concentration in the wall normal direction 

for shear Reynolds number 𝑅𝑒𝜏 = 150 and 𝑑𝑏 = 330 μm: (a) upflow; and (b) downflow. 
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The results show symmetric profiles of bubble concentration under all conditions. 

Starting from a uniform distribution at the beginning of a run, in upflow the bubbles tend 

to accumulate near the wall, generating a wall-peaked distribution. In contrast, in 

downflow the bubbles are moved from the near-wall region towards the channel centre, 

resulting, ultimately, in very low concentrations of bubbles close to the wall. These 

bubble-depleted regions near the walls are responsible for the problems noted above in 

relation to determining the turbulent bubble statistics due to the small bubble sample 

size when averaging. The concentration profiles obtained confirm findings from previous 

studies (Giusti et al., 2005; Shams et al., 2011; Serizawa et al., 1975; Hibiki et al., 2004). 

Examining the plots in more detail, it is observed that the increase or decrease of the 

concentration profiles near the wall, and the extent of the region affected, in particular 

for the downflow case, increases with bubble diameter (from Figure 4.28 to Figure 4.30). 

More specifically, the concentration in upflow increases from almost 10 for 𝑑𝑏 = 110 𝜇𝑚 

in Figure 4.28, to more than 100 for 𝑑𝑏 = 330 𝜇𝑚 in Figure 4.30. In downflow, the 

depleted region ends to 𝑥+ ≈ 10 in Figure 4.28, and to 𝑥+ ≈ 15 in Figure 4.29, extending 

to values greater that 𝑥+ ≈ 20 in Figure 4.30. To investigate this phenomenon in more 

detail, and to further elucidate the mechanisms responsible for the qualitative shape of 

the concentration profiles obtained, the magnitude of each force acting on the bubbles in 

the wall normal direction is analysed in a later section. 

4.3.2.2 Effect of flow Reynolds number 

Since turbulence can significantly affect bubble behaviour, additional simulations at 

𝑅𝑒𝜏 = 590, taking advantage of the less-demanding computational resources required by 

LES when compared to DNS, were also made to study the effect of the turbulence on the 

microbubble dispersion in vertical channels. For these simulations, the bubble diameter 

was chosen equal to 220 μm. Figure 4.31 shows fluid and bubble velocity and the 

turbulence statistics for both upflow and downflow, with bubble concentration profiles 

presented in Figure 4.32. 

The distinctive differences between the results for upflow and downflow which were 

apparent at a shear Reynolds number 𝑅𝑒𝜏 = 150 are greatly reduced at 𝑅𝑒𝜏 = 590, with 

both profiles peaking at around 22.5 in the centre of the channel. For such flow, the effects 
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of the forces acting on the bubbles are partially over-ridden by the influence of turbulent 

dispersion. The normal and shear stresses for both flow configurations show no 

noticeable changes when compared to the single phase, as reflected in the results of 

Figure 4.31(b) and (Figure 4.31d). Mean bubble velocity profiles, which are provided in 

Figure 4.31(c), also show a reduced separation with respect to the same bubble diameter 

at shear Reynolds 150, with the upflow peaking at approximately 22.5 and the downflow 

at 20.5. As already noted, the relative velocity between the fluid and the bubbles is mostly 

a function of the bubble diameter, therefore it does not change significantly with an 

increase in the fluid velocity. Instead, the velocity magnitude of both the fluid and the 

bubbles, and the shear velocity, are greatly increased at the higher shear Reynolds 

number. Therefore, the importance of the relative velocity with respect to the velocity 

magnitude is significantly reduced and the magnitude of the separation between the 

upflow and downflow velocity profiles reduces. 

Presented in Figure 4.32 is the microbubble concentration evolution in the wall-normal 

direction. The distribution profiles show a similar pattern to those obtained for the 𝑅𝑒𝜏 =

150 flow, with bubbles concentrating near the wall in upflow and moving towards the 

channel centre in downflow. However, the peak value of the bubble concentration in 

upflow, and the width and strength of the bubble depleted region in downflow, are both 

reduced because of the increased dispersion of the microbubbles due to the higher levels 

of turbulence. The predictions show symmetric profiles of bubble concentration under 

both conditions. Starting from a uniform distribution, therefore, in upflow the bubbles 

again tend to accumulate near the wall, generating a wall-peaked profile. In contrast, in 

downflow, the bubbles move away from the near-wall region. The magnitude of the 

Reynolds number is therefore seen to critically affect the impact of the flow on the 

microbubble concentration. 
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Figure 4.31 Fluid and bubble statistics for 𝑅𝑒𝜏 = 590 using bubble size 𝑑𝑏 = 220 μm: (a) 

mean streamwise fluid velocity; (b) rms of fluid velocity fluctuations and shear stresses; 

(c) mean streamwise bubble velocity; and (d) rms of bubble velocity fluctuations and 

shear stresses. 

To further establish the effects of Reynolds number, for bubble size 𝑑𝑏 = 220 µm, 

concentration profiles at 𝑡+ = 1500 at the two Reynolds numbers are compared for both 

upflow and downflow in Figure 4.33. In upflow, the peak near-wall concentration for the 

𝑅𝑒𝜏 = 150 flow is greater than 100, while for the 𝑅𝑒𝜏 = 590 case the peak is reduced to 

approximately 10. The increase in the shear Reynolds number therefore reduces the 

value of the concentration peak at the wall in upflow, while the concentration near the 

wall remains fairly constant in downflow, although the extent of the depleted region 

reduces with increasing Reynolds number. These results confirm how higher levels of the 

turbulence enhance bubble mixing, generating more homogeneous concentration 

profiles and partially overriding the effect of the other forces acting on the bubbles. 
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Figure 4.32 Time evolution of microbubble concentration for shear Reynolds number 

𝑅𝑒𝜏 = 590 and 𝑑𝑏 = 220 μm: (a, b) upflow; and (c, d) downflow. 

 

Figure 4.33 Instantaneous concentration profiles for the two reference Reynolds 

numbers at bubble size 𝑑𝑏 = 220 μm: (a) upflow; and (b) downflow. 
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4.3.2.3 Force analysis in wall-normal direction 

The forces acting on the bubbles (force per unit mass in N kg−1) are shown for the 𝑅𝑒𝜏 =

150 vertical channel with upflow and downflow in Figure 4.34. Results are only provided 

for the 𝑑𝑏 = 220 μm case as the other bubble sizes showed similar trends. 

 

Figure 4.34 Forces acting in the wall normal direction for 𝑑𝑏 = 220 μm bubbles at 𝑅𝑒𝜏 =

150: (a, b) upflow; and (c, d) downflow. (b) and (d) show an expanded scale to highlight 

the magnitude of the smaller forces (𝐹𝐷 = drag force, 𝐹𝐺𝐵 = gravity-buoyancy force, 

𝐹𝑆𝐿 = shear lift force, 𝐹𝐴𝑀 = added mass force and 𝐹𝑃𝐺 = pressure gradient force). 

Overall, the drag and lift forces tend to be dominant, with the lift force pushing bubbles 

closer to the wall in upflow and towards the centre of the channel in downflow. This is 

confirmed by the change in sign in the lift force between the upflow to downflow cases. 

The lift force is also always opposed and balanced by the drag force. Clearly, both gravity 

and buoyancy do not play a significant role in the wall-normal direction, with their effect 
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acting in the vertical direction.There is also a not insignificant effect of the added mass 

and pressure gradient forces, although they are an order of magnitude less than the lift 

and drag forces. Both of these forces are directed towards the centre of the flow near the 

wall and, to a lesser extent, towards the wall in the centre of the channel. Therefore, in 

the near-wall region, they oppose the lift force in upflow and, in contrast, they support 

the lift force in downflow. 

The role of the lift force is also addressed in Figure 4.35, where its magnitude for the three 

different bubble sizes is compared for the upflow and downflow cases. In both flow 

configurations, the magnitude of the lift force increases with bubble diameter, as 

expected. This is in agreement with earlier results (Figure 4.28, 4.29 and Figure 4.30) 

where, in the wall region, the concentration peak near the wall in upflow, and the extent 

of the bubble depleted region in downflow, were found to increase with the bubble 

diameter. 

The forces are also plotted at 𝑅𝑒𝜏 = 590 in Figure 4.36. The lift force, which was dominant 

at 𝑅𝑒𝜏 = 150, is now significant only in the very near-wall region for both upflow and 

downflow. Instead, in the remainder of the channel, the pressure gradient and the added 

mass, which are more related to the fluid and bubble velocity magnitude, are now 

dominant. The effect of the high turbulence level is therefore to partially override the 

individual forces acting on the bubble, and the behaviour of the bubble is more related to 

the fluid turbulent flow. Due to the fact that increase in turbulence increase the vorticity 

of the flow, the added mass and pressure gradient forces, which are hydrodynamic forces, 

are observed to significantly increase in the regions where the vorticity is high. 

An intermediate Reynolds number 𝑅𝑒𝜏 = 300 was again examined using the same bubble 

size and simulated under the same conditions as the other shear Reynolds number flows. 

The results are not shown here, but they demonstrated pressure gradient and added 

mass forces that were reduced in comparison to the 𝑅𝑒𝜏 = 590 case, but which were 

significantly greater than at 𝑅𝑒𝜏 = 150. The force analysis in Figure 4.36 agrees 

qualitatively with the findings of Spelt and Sangani (1997) who demonstrated that the 

bubble-phase pressure increases from zero to attain a maximum value, and then 

decreases, with distance away from the wall. To balance this, the drag force changes sign, 

which becomes the same as the lift in upflow and its opposite in downflow. 
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Figure 4.35 Lift force for the three microbubble sizes in the wall normal direction at 

𝑅𝑒𝜏 = 150: (a) upflow; and (b) downflow. 

 

Figure 4.36 Forces acting on the bubbles in the wall normal direction at 𝑅𝑒𝜏 = 590 and 

for 𝑑𝑏 = 220 μm: (a) upflow; and (b) downflow. 
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spanwise directions. LES results were first successfully compared with DNS data from 

0 30 60 90 120 150
-0.4

-0.3

-0.2

-0.1

0.0

0.1

F
S

L
X

x+

 110 µm

 220 µm

 330 µm

0 30 60 90 120 150
-0.1

0.0

0.1

0.2

0.3

0.4

F
S

L
X

x+

 110 µm

 220 µm

 330 µm

0 30 60 90 120 150
-2

-1

0

1

2

F
x

x+

 FD

 FGB

 FSL

 FAM

 FPG

0 30 60 90 120 150
-2

-1

0

1

2

F
x

x+

 FD

 FGB

 FSL

 FAM

 FPG(a) (b) 

(a) (b) 



148 

 

Molin et al. (2012) at 𝑅𝑒𝜏 = 150 and 𝑑𝑏 = 110 and 220 μm, and LES simulations were 

later extend to a shear Reynolds 𝑅𝑒𝜏 = 590 and bubble diameter 𝑑𝑏 = 220 μm. 

The presence of the microbubbles strongly influences the fluid flow which becomes like 

a single-phase fluid flow at a higher mass flow rate in upflow and at a lower mass flow 

rate in downflow. Turbulence is enhanced in upflow and reduced in downflow, and 

velocity fluctuations for the bubbles are higher in upflow and lower in downflow with 

respect to the fluid phase. A different bubble distribution is found in the two flow 

configurations, with bubbles segregating at the wall in upflow and moving towards the 

centre of the channel in downflow. In the wall-normal direction, the lift force is the 

dominant force at a shear Reynolds 𝑅𝑒𝜏 = 150, and is responsible for the observed 

bubble distribution. The lift force is balanced by the drag force, and the pressure gradient 

and added mass forces are also significant. 

LES results show good agreement when compared with available DNS-based predictions 

and, in view of its less demanding computational requirements, it was possible to extend 

the LES simulations to a higher shear Reynolds number flow, closer to those of industrial 

interest. At the same time, the accuracy obtained suggests that the level of detail reached 

with LES is sufficient to describe the fluid structures that affect the bubble behaviour. 

Overall, the LES and the Lagrangian bubble tracker can be used with confidence to predict 

these kinds of multiphase flows, with the potential to be applied to other flows of 

engineering interest. 

4.4 Summary of One- and Two-way Coupled Results 

LES coupled to a Lagrangian tracking approach was applied to investigate the dynamics 

of microbubbles in turbulent (horizontal, and vertical upflow and downflow) channel 

flows of water under one- and two-way coupling assumptions. First, the velocity statistics 

for single-phase and for solid particle-laden flows at Reynolds numbers 𝑅𝑒𝜏 = 150, 300 

and 590 were analysed and discussed. This work as perfomed by way of model validation. 

Bubbly flows under the one-way coupling assumption were then simluated in a vertical 

(upflow and downflow) channel at 𝑅𝑒𝜏 = 150 and 590 with a bubble size of 𝑑𝑏 = 220 μm. 

The motion of the bubbles was computed considering drag, gravity-buoyancy, pressure 

gradient and added mass forces, and both with and without the inclusion of the lift force 
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term to predict the effects of this force in the turbulent flows. Later, simulations were 

extended to the two-way coupling approach for horizontal and vertical channels (again 

in upflow and downflow), with bubbles of diameter 110, 220 and 330 μm and at 𝑅𝑒𝜏 = 

150 and 590. 

The main findings of the work described in this chapter can be summarized as follows: 

• Single-phase velocity and turbulence fields predicted with the LES at shear 

Reynolds numbers 150, 300 and 590 were in good agreement with the DNS 

predictions of Marchioli and Soldati (2007) and Marchioli et al. (2008). The same 

DNS databases for solid particle flows at the same Reynolds numbers were also 

successfully used to demonstrate the accuracy of the LPT in modelling dispersed 

multiphase turbulent flows. 

• The coupled LES-LPT code was applied to the simulation of bubbly flows under 

the one-way coupling assumption in a vertical channel at 𝑅𝑒𝜏 = 150. Substantial 

developments were introduced into the Lagrangian tracker to enable the model to 

predict the flow of gas bubbles in liquid flows. The DNS results of Giusti et al. 

(2005) for microbubbles of diameter 𝑑𝑏 = 220 μm were then used to validate the 

LPT under these conditions, and good agreement was found. 

• The impact of the lift force was found to be crucial in terms of the lateral migration 

and accumulation of bubbles. Bubbles evolve towards the channel walls in upflow 

and away from the walls in downflow. This was confirmed by comparison against 

zero-lift simulation results that did not show any lateral evolution. 

• The lateral bubble evolution promoted by the lift force reduces with an increase 

in turbulence because of the competing effects of bubble motion and turbulent 

dispersion. Analysis which quantified these competing mechanisms is of benefit 

to the development of more accurate interfacial closures in computational 

approaches where they are entirely modelled, such as in the Eulerian-Eulerian 

two fluid model. 

• The overall LES-LPT model was extended to two-way coupling to account for fluid-

bubble intercations and feedback from the bubbles to the fluid phase. These 

additional capabilites allow the prediction of bubbly flows with increased bubble 
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volume fractions. Horizontal and vertical (upflow and downflow) channel flows at 

𝑅𝑒𝜏 = 150 and 590, with bubbles of diameters 𝑑𝑏 = 110, 220 and 330 μm, were 

predicted. The model was succesfully validated against DNS-based results at a 

Reynolds number of 150, and was then used to simulate flows at higher shear 

Reynolds numbers and bubble diameters, thereby extending the range of 

parameters studied beyond those already available in the literature.   

• The presence of microbubbles in the flow field modulates the turbulence structure 

and the velocity field of the flow. In horizontal channel flow, an asymmetric flow 

profile develops due to bubble migration towards the upper channel wall. In the 

vertical channel flow, turbulence is increased in upflow and decreased in 

downflow after the injection of bubbles. Modulation of the turbulence increases 

with an increase in bubble size. 

• Force analysis shows that the net gravity-buoyancy force dominates in the 

horizontal channel and it is counterbalanced by the drag force. In the vertical 

channel, the lift force was found to be the most dominant force, with its effect 

counterbalanced by drag. At shear Reynolds number 150, other forces were found 

insignificant. Consequently, bubbles migrate towards the upper channel wall in 

the horizontal chanel and, driven by the lift force, towards the walls in the vertical 

upflow and away from the walls  in the vertical downflow.  

• Turbulence only slightly affects bubble concentrations at a shear Reynolds 

number of 150. In contrast, at a shear Reynolds number 𝑅𝑒𝜏 = 590, the role of the 

turbulence is much more significant. In vertical channels, the lift force remains 

dominant only in the very near-wall region while, in the remainder of the channel, 

the pressure gradient and added mass forces become more influential and are 

balanced by the drag force. In the horizontal channel, the higher turbulence level 

partially supresses bubble accumulation near the upper wall.  

• Insights into bubble behaviour available from these predictions, and the predicted 

impact of the bubbles on the fluid flow, improve our understanding of bubbly 

flows and provide necessary support to the development of improved Eulerian-

Eulerian model closures, as already mentioned. 
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In this chapter, the overall model has been developed up to a two-way coupled capability. The 

model’s accuracy has also been validated against DNS-based results available in the literature, 

and the model’s capabilities demonstrated in a number of applications which extend the types 

of flow previously studied. In the following chapters, the present LES-LPT model is further 

developed to include a four-way coupled capability, accounting for bubble-bubble interactions, 

bubble coalescence and bubble breakup. 
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CHAPTER 5  

FOUR-WAY COUPLED FLOWS WITH COALESCENCE 

In this chapter, the model developed previously is extended to embody a four-way coupled 

approach by including the effects of bubble-bubble collisions and coalescence. Gas-liquid 

bubbly turbulent flows in horizontal channels, and downward and upward flows in vertical 

channels, are studied and the results compared with those obtained in the absence of 

gravity. Models and routines for bubble-bubble collision, based on a deterministic event-

driven approach (Hoomans et al., 1996), and bubble coalescence, based on the film-drainage 

approach (Prince and Blanch, 1990; Tsouris and Tavlarides, 1994), are added to the overall 

LES-LPT model. In the flow, bubble-bubble collisions are first identified by the detection 

algorithm and, once a collision is detected, the likelihood of coalescence occurring is 

evaluated. A highly resolved LES with 129 × 128 × 128 computational nodes is used ensure 

the accuracy of the results. Two shear Reynolds numbers, 𝑅𝑒𝜏 = 150 𝑎𝑛𝑑 590, and three 

bubble sizes, 𝑑𝑏 = 110, 220 𝑎𝑛𝑑 330 𝜇𝑚, are considered. Results are presented by 

comparing predictions obtained from the four-way coupled simulations with those obtained 

from the single-phase flow simulations, reported in a previous chapter. The key features of 

bubble coalescence in the flows examined, including the distribution of bubble collisions, 

coalescence efficiencies and the size of bubbles formed after coalescence, are presented. The 

effect of collisions and coalescences on the behaviour of the continuous phase flow, 

examined through profiles of the flow and turbulence fields, and the bubble wall-normal 

forces and their number density distribution, are also discussed. 

5.1 Bubble Coalescence in Horizontal Channel Flow 

In this section, bubbly flow with coalescence is studied using large eddy simulation 

coupled to Lagrangian bubble tracking in a horizontal channel flow. The same conditions 

as applied in the previous section are employed, namely a water flow (density 𝜌 =

1000 kgm−3, kinematic viscosity 𝜈 = 10−6 m2s−1 and surface tension 𝜎 = 7.2 ×

10−2Nm−1) with air bubbles at shear Reynolds numbers 150 and 590. The overall 

properties of the flows are summarised in Table 5.1. Figure 5.1 shows a schematic of the 

channel configuration, in which periodic boundary conditions are applied in the 
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streamwise (𝑧) and spanwise (𝑦) directions, with the x-axis being in the wall-normal 

direction. The flow is driven using an imposed streawise fixed pressure gradient. 

 

Figure 5.1 Horizontal channel configuration. 

Bubbles were injected uniformly into the channel flow. In the flow, bubble-bubble 

collisions were identified by the detection algorithm and, once a collision was detected, 

the occurrence of coalescence was evaluated from the coalescence model based on the 

film-drainage theory, described in Section 3.5.2. This section of the study is chiefly aimed 

at investigating the effects of gravity on microbubble mixing, collision and subsequent 

events leading to coalescence, or collisions without coalescence. 

Table 5.1 Computational parameters for the four-way coupled simulations. 

Computational parameters 

𝑅𝑒𝜏 150 590 

𝑅𝑒𝑏 2272 11033 

𝑢𝜏  (ms
−1) 7.5 × 10−3 2.92 × 10−2 

𝑢𝑏 (ms−1) 0.1136 0.5517 

𝑛𝑏 (-) 226550 56647 

𝑑𝑏 (μm) 220 220 

 

  

g 
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Presented in Figure 5.2 are the number of collision and coalescence events, and the 

number of bubbles of different sizes that are formed in the flow, as a function of time. 

Results for the four-way coupled simulations at a shear Reynolds number 𝑅𝑒𝜏 = 150 and 

bubble size 𝑑𝑏 = 220 μm in a horizontal channel are compared with the same flow 

conditions without gravity. Figure 5.2(a, b) shows the number of bubble collisions, 

coalescences, and collisions without coalescence, while Figure 5.2(c, d) gives the number 

of bubbles of various sizes formed after coalescence. In Figure 5.2(a), all collisions result 

in coalescence until 𝑡+ = 40, where the first collisions without coalescence are detected. 

At 𝑡+ = 100, the number of collisions without coalescence recorded is around 12,000. In 

the no gravity test case, in contrast, at the same simulation time all collisions have 

resulted in coalescence. It was observed that the inclusion of the buoyancy-gravity force 

term in the bubble equation of motion introduced additional velocity fluctuations into the 

liquid turbulence which in turn enhanced bubble-bubble collisions, coalescences and 

collisions without coalescence. This is evident by comparing the results for flows with 

and without gravity in Figure 5.2 (a, b). 

In Figure 5.2(c, d), the legends (1), (2), (3), (4), (5), etc., represent bubbles with a volume 

equal to one, two, three, four, five, etc., times that of the primary bubbles, for flows with 

and without gravity included. The total number of collisions continuously increases as 

the simulation progresses in both cases, with virtually all collision events resulting in 

coalescence in the zero-gravity case, as noted above. In the case with gravity, the number 

of collisions and coalescences is much higher, since the bubbles migrate towards the 

upper wall where turbulence levels are high (considered further below). In contrast, in 

the zero-gravity flow, the bubble distribution remains relatively uniform and a larger 

number of bubbles remain in regions of lower turbulence away from the walls. 
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Figure 5.2 Collision and coalescence events (a, b) and number of bubbles of different 

sizes (c, d) in four-way coupled simulations at shear Reynolds number 𝑅𝑒𝜏 = 150 and 

bubble size 220 μm: (a, c) horizontal channel with gravity; and (b, d) channel with no 

gravity. 
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In Figure 5.3, the number density of bubble collisions and coalescences across the 

horizontal channel is presented. Calculation of the number density of the bubbles was 

performed by dividing the flow domain into 16 equally spaced bins in the wall-normal 

direction. In Figure 5.3(c) and (d), the instantaneous number of bubbles spatially 

averaged in each slab at 𝑡+ = 100 for both test cases is presented. Figure 5.3(c) clearly 

shows how buoyancy pushes bubbles towards the upper channel wall, with no bubbles 

remaining in the bottom section of the channel. Instead, in Figure 5.3(d), the bubble 

distribution remains almost uniform due to the absence of gravity effects. In Figure 5.3(a) 

and (b), it is observed that the greatest number of bubble-bubble collisions is found near 

the channel walls. Approximately 100,000 collisions were recorded at the upper channel 

wall, and about 110 collisions near the lower wall, in the horizontal channel flow with 

gravity effects included. Where no gravity is considered (Figure 5.4(b)), the number of 

collisions recorded at both channel walls is quite similar at around 5000-5500, since 

fewer bubbles are present in the wall regions.  

Not all collisions in the case with gravity result in coalescence, as is evident from the 

results of Figure 5.3(a). Since most bubbles are found near the upper wall (Figure 5.4(a)), 

this leads to an increase in turbulence levels in that region which, even if only small, 

increases the turbulence fluctuations in that region. This is turn reduces the contact time 

between bubbles during collisions which, therefore, leads to a reduction in the 

coalescence efficiency. Without gravity, there is a uniform bubble distribution (Figure 

5.4(b)) which leads to a lower number of bubbles in the wall regions which do not induce 

the same enhancement in the turbulence field of the continuous phase, and hence all 

collisions lead to coalescence.  

The coalescence efficiency is given in Figure 5.5. This efficiency is highest in the centre of 

the channel where turbulence levels are low, even for the channel flow with gravity 

effects included (Figure 5.5(a)), where the efficiency reaches almost 100%. Closer to the 

upper wall, this efficiency reduces, as previously discussed.  
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Figure 5.3 Distribution of bubbles across the channel at 𝑡+ = 100 for both test cases: (a, 

b) number of bubble collisions and coalescences; and (c, d) number of bubbles (of any 

size) within the channel. (a, c) with gravity; and (b), (d) no gravity. 
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Figure 5.4 Microbubble wall-normal concentration profiles at shear Reynolds number 

𝑅𝑒𝜏 = 150: (a) with gravity; and (b) no gravity. Upper wall is at x+ = 300. 

 

Figure 5.5 Collision efficiency at 𝑡+ = 100: (a) with gravity; and (b) no gravity. 
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5.1.1 Reynolds Number Effect in Horizontal Channel Flow 

Results for the same two test cases at the higher Reynolds number 𝑅𝑒𝜏 = 590 are 

presented in this section. At this higher turbulence level, a larger number of collisions 

without coalescence are found in the horizontal channel with gravity effects included 

(about 5000, Figure 5.6(a)), and some are also recorded in the no gravity flow case (about 

40, Figure 5.6(b)). Similarly to what was observed at the lower Reynolds, the number of 

collisions and coalescences (11,000 and 10,000, Figure 5.6(a)) is higher with gravity than 

for the zero gravity flow (around 2,600 bubble collisions, Figure 5.6(b)). With regards to 

the different sizes of bubbles formed, more multi-sized bubbles are formed in the with 

gravity case when compared the flow with no gravity. Multi-sized bubbles of up to six 

primary bubbles are formed with gravity, as noted in Figure 5.6(c), whereas in the zero-

gravity case (Figure 5.6(d)) the largest bubble size consists of five primary bubbles.  

The bubble distribution across the horizontal channel shows the same qualititative 

trends as for the 𝑅𝑒𝜏 = 150 flow. Buoyancy pushes the bubbles towards the upper wall 

in the case with gravity (Figure 5.7(c) and Figure 5.8(a)), whilst an approximately 

symmetric profile is recorded in the zero gravity flow (Figure 5.7(d) and Figure 5.8(b)). 

However, in this case the higher levels of turbulence limit bubble migration and 

accumulation near the upper wall for the with gravity case. In Figure 5.4(a), therefore, at 

𝑡+ = 50 - 100, approximately 70% of the bubbles have already moved towards the upper 

channel wall. In contrast, in Figure 5.8(a), even at 𝑡+ = 500 – 700 bubbles can still be 

found in the bottom half of the channel. 

The collision efficiency is given in Figure 5.9, with the results showing again that the 

collision efficiency is higher in the centre of the channel than in the near wall regions. In 

the channel flow with gravity (Figure 5.9(a)), the collision efficiency is reduced near the 

upper wall with respect to that seen for the shear Reynolds number 150 case (Figure 

5.5(a)). Also, an efficiency lower than 100% is found near the walls in the no gravity case 

due to the higher levels of turbulence in these regions. As for the lower turbulence case, 

the efficiency remains at approximately 100% in the centre of the channel in both test 

cases. 
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Figure 5.6 Collision and coalescence events (a, b) and number of bubbles of different 

sizes (c, d) in four-way coupled simulations at shear Reynolds number 𝑅𝑒𝜏 = 590 and 

bubble size 220 μm: (a, c) horizontal channel with gravity; and (b, d) channel with no 

gravity. 
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Figure 5.7 Distribution of bubbles across the channel at 𝑡+ = 500 for both test cases: (a, 

b) number of bubble collisions and coalescences; and (c, d) number of bubbles (of any 

size) within the channel. (a, c) with gravity; and (b, d) no gravity. 
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Figure 5.8 Microbubble wall-normal concentration profiles at shear Reynolds number 

𝑅𝑒𝜏 = 590: (a) with gravity; and (b) no gravity. Upper wall is at x+ = 1200. 

  

Figure 5.9 Collision efficiency at 𝑡+ = 500: (a) with gravity; and (b) no gravity. 
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Comparing the results of Figure 5.2(a) with those of Figure 5.6(a), although the same 

volume concentration of bubbles and initial conditions were applied, the results are 

significantly different. In Figure 5.2, at the lower Reynolds number, the number of bubble 

coalescences is approximately ten times larger than for the higher turbulence case in 

Figure 5.6(a), despite the greater simulation time in the latter case. This demonstrates 

that at the lower Reynolds number, the levels of turbulence are sufficiently lower to allow 

increased bubble-bubble contact times during collisions, as compared to at the higher 

Reynolds number, which in turn increases the number of bubble coalescences, as the film 

drainage model of coalescence requires. The effect of buoyancy, which enhances bubble 

migration towards the upper wall, is relatively strong felt in the low Reynolds number 

case, whereas in the higher Reynolds number flow, the fluid turbulence to some extent 

overrides the buoyancy effect since, even at longer times, bubbles are still found in the 

centre of the channel. Lower Reynolds number flows are therefore best suited for drag 

reduction in marine vessel transportation (Pang et al., 2014), whilst higher Reynolds 

numbers are more effective in the transportation of crude and other petroleum products, 

as well as flow for assurance from production sites to storage sites (Hassan, 2014; 

Martínez-Palou et al., 2011). 

5.2 Bubble Coalescence in Vertical Upward and Downward Channel 

Flows 

The results of simulations using the LES-LPT code in vertical channels are presented in 

this section, starting with the shear Reynolds number Reτ = 150 flow. First, the changes 

induced by the presence of microbubbles on the liquid–phase flow field are analysed. 

Presented in Figure 5.10 are the velocity statistics for the four-way coupled fluid flow for 

the three bubble sizes considered in comparison with the single-phase fluid flow for the 

upflow case. The fluid mean streamwise velocity profiles are shown in Figure 5.10 (a, c, 

e). It is clear that the four-way coupled fluid flow is enhanced by the presence of the 

bubbles, with the peak mean velocity increased above that of the single-phase flow. In 

Figure 5.10 (b, d, f), the rms of  velocity fluctuations in the streamwise, spanwise and wall 

normal directions, in addition to the shear stress, are given. All the normal stresses and 

the shear stress are increased with respect to the single-phase flow in all cases, 

confirming the DNS results of Elghobashi (1994) who studies the modulation of the 
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continuous phase turbulence induced by solid particles of different Stokes numbers. 

 

 

       

Figure 5.10 Fluid velocity statistics for four-way coupled simulation at shear Reynolds 

number 𝑅𝑒𝜏 = 150 for the three bubble sizes and vertical channel upflow: (a, c, e) mean 

fluid streamwise velocity; and (b, d, f) fluid normal and shear stresses. (a, b) 𝑑𝑏 =

110 μm; (c, d) 𝑑𝑏 = 220 μm; and (e, f) 𝑑𝑏 = 330 μm.  
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Figure 5.11 Fluid velocity statistics for four-way coupled simulation at shear Reynolds 

number 𝑅𝑒𝜏 = 150 for the three bubble sizes and vertical channel downflow: (a, c, e) 

mean fluid streamwise velocity; and (b, d, f) fluid normal and shear stresses. (a, b) 𝑑𝑏 =

110 μm; (c, d) 𝑑𝑏 = 220 μm; and (e, f) 𝑑𝑏 = 330 μm.  
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Same quantities presented in Figure 5.10 for upflow are shown in Figure 5.11 for the 

vertical channel downward flow, where the four-way coupled results are again compared 

with the single-phase results for the three bubble sizes. The mean streamwise fluid 

velocity profiles do not show much difference form the single-phase flow, except for in 

Figure 5.11(c), which peaks at 17.5 due to the higher relative velocity induced by the 

increased bubble size. No significant changes are also found for the rms of the velocity 

fluctuations, and for the shear stress, except for the in streamwise direction that shows a 

slighlty increased turbulence level. Overall, the influence of the microbubbles is greater 

for the upflow case, whilst their effect is in general negligible in downflow. Similar results 

were obtained in the two-way coupled vertical channel flows considered in the previous 

chapter, and also in the DNS predictions of Molin et al. (2012). 

Mean streamwise velocity profiles for the bubbles are shown in Figure 5.12 for the both 

the upflow and the downflow cases. Microbubbles flow faster than the fluid in upflow and 

slower than it in downflow due to the effects of buoyancy. The relative velocity between 

the microbubbles and the surrounding fluid flow leads to the occurrence of the interphase 

drag force. For upflow, the drag force accelerates the liquid phase. On the other hand, for 

downward flow, the drag force causes the surrounding fluid phase to decelerate. It is also 

worthy of note that the distinction between the upflow and downflow cases increases 

with increasing bubble size, as shown in Figure 5.12. For 𝑑𝑏 = 110 μm bubbles, therefore, 

the upflow mean streamwise velocity peaks at 19.59, with 𝑑𝑏 = 220 μm at 22.75 and with 

𝑑𝑏 = 330 μm at 23.42. For the downflow, the mean streamwise velocity for the three 

bubble sizes peaks at 15.50, 11.70 and 10.82, respectively. 
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Figure 5.12 Bubble mean streamwise velocity profiles for the four-way coupled 

simulations at 𝑅𝑒𝜏 = 150: (a) 𝑑𝑏 = 110 μm; (b) 𝑑𝑏 = 220 μm; and (c) 𝑑𝑏 = 330 μm. 
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The microbubble velocity fluctuations in the three directions, and the shear stress, for the 

three bubble sizes are plotted in Figure 5.13 for upflow (Figure 5.13 (a, c, e)) and 

downflow (Figure 5.13(b, d, f)). The plots show results over half the channel width due 

to symmetry within the flow. In the core of the channel and away from the near-wall 

region, bubble motion is, to a large extent, governed by the large-scale, energy-carrying 

turbulence structures, and the effect of the small-scale fluctuating velocity field is less 

significant. In the buffer layer and near-wall regions, however, the scale of the largest 

structures decreases, and the bubble motion becomes more sensitive to velocity 

fluctuations (i.e. bubble fluctuating velocities peak in the near-wall regions but are 

significantly lower at the core of the flow). In upflow, the streamwise velocity 

fluctuations, in particular, are enhanced for the three bubble sizes when compared to the 

single-phase profiles. This indicates the influence of the lift force in pushing bubbles 

towards the wall regions, and also the influence of four-way coupling which, as a result 

of the higher mass loading near the wall, increases the bubble velocity fluctuations. In 

contrast, in downflow the normal and shear stresses are not affected due to bubble 

migration away from the wall region, such that the stresses are generally in line with 

those observed for the single-phase flow for all three bubble sizes. From Figure 5.13, it is 

also noticeable that microbubble fluctuations in the streamwise direction in upflow are 

more significant than in the wall-normal and spanwise directions, when compared to the 

single-phase flow. Similar slight changes are also apparent in the bubble Reynolds shear 

stress, which decreases slightly in the region near the channel wall when compared to the 

single-phase results. Similar trends are observed for the downflow case, although to a 

lesser extent than in the upflow. 

Presented in Figure 5.14 are the bubble wall-normal concentration plots for the vertical 

channel. Figure 5.14 (a, c, e) shows bubble concentrations in upflow, while Figure 5.14(b, 

d, f) gives equivalent results in downflow. 
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Figure 5.13 Bubble normal and shear stresses for upflow and downflow configurations 

at shear Reynolds number 𝑅𝑒𝜏 = 150 for the three bubble sizes in comparison with the 

single-phase flow: (a, b) 𝑑𝑏 = 110 μm; (c, d) 𝑑𝑏 = 220 μm; and (e, f) 𝑑𝑏 = 330 μm. (a, c, 

e) upflow; and (b, d, f) downflow.  
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Figure 5.14 Microbubble wall-normal concentration profiles for vertical channel upflow 

and downflow: (a, c, e) upflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 = 330 μm, 

respectively; and (b, d, f) downflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 = 330 μm, 

respectively. 
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Figure 5.15. Microbubbles wall-normal volume concentration profiles for vertical 

channel upflow and downflow: (a, c, e) upflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 =

330 μm, respectively; and (b, d, f) downflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 =

330 μm, respectively. 
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Because of inter-bubble collisions, the bubble trajectories become random and therefore 

they are less influenced by coherent near-wall structures within the flow. As a result of 

the mechanism described by Marchioli et al. (2006), i.e. turbophoresis, which leads to 

bubble accumulation in the near-wall regions for one- and two-way coupled flows, bubble 

movement is inhibited and the concentration close to the wall is reduced in four-way 

coupled flows. It is worthwhile noting that, during coalescence, the number of bubbles 

reduces, and therefore the bubble concentration tends to slightly decrease with time. As 

a consequence, Figure 5.15 shows predictions of the relative volume of bubbles found in 

each cell in the computational domain with respect to time. The results given in this figure 

provide a clearer view of the bubble volume fraction evolution towards the channel walls 

in upflow, and away from the channel walls in downflow, with respect to increasing 

simulation time. Also shown in the figure is the initial volume fraction profile of 10−3. 

In upflow, the relative velocity between the bubbles and the fluid is positive. Therefore, 

the shear lift force always points to the channel wall and drives microbubbles towards 

the near-wall region. In contrast, in downflow, the relative velocity is negative, which 

changes the shear lift force direction. Thus, in this case, the shear lift force always points 

to the channel centre and pushes microbubbles away from the channel wall. In Figure 

5.16, the wall-normal forces acting on the microbubbles are given. It is apparent that the 

drag and lift forces dominate in the near-wall region (0 <  x+ < 30). Other forces such as 

the pressure gradient, added mass and gravity-buoyancy are negligible compared to the 

drag and lift forces. The drag force acts as a counter balance to the lift force in both flow 

configurations. The lift force is always positive (i.e. towards the wall) for upflow, and as 

the bubble size increases, the lift force becomes more negative. For 𝑑𝑏 = 110 μm the lift 

force is approximately −0.075 Nkg−1, therefore, and −0.2 Nkg−1 for 𝑑𝑏 = 220 μm and  

−0.3 Nkg−1 for 𝑑𝑏 = 330 μm For downflow, the lift force is negative (i.e. away from the 

channel wall) and again increases with the bubble size. 
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Figure 5.16. Wall-normal forces acting on the bubbles for shear Reynolds number 𝑅𝑒𝜏 =

150: (a, c, e) upflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 = 330 μm, respectively; and 

(b, d, f) downflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 = 330 μm, respectively (FD = 

drag force, FGB = gravity-buoyancy force, FSL = shear lift force, FAM = added mass force 

and FPG = pressure gradient force). 
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Figure 5.17 presents the number of bubble collisions, coalescences and collisions without 

coalescence for upfow and downflow at 𝑅𝑒𝜏 = 150, and for 𝑑𝑏 = 110, 220 and 330 μm. 

In upflow, and for 𝑑𝑏 = 110 μm (Figure 5.17(a)), the number of bubble-bubble collisions 

continuously increases as the simulation progresses and almost all collision events result 

in coalescence, with the number of collisions without coalescence reaching a maximum 

value of approximately 1,000 at the end of the simulation. This almost 100% coalescence 

efficiency is due mainly to the low Reynolds number and the small bubble size. 

Specifically, the relatively low turbulence levels result in high bubble contact times that 

are sufficient for the liquid film trapped between the bubbles to drain off. For 𝑑𝑏 =

220 μm (Figure 5.17(c)), the trend is similar to that at 𝑑𝑏 = 110 μm. However, the 

number of bubbles separating without coalescing becomes significant from 𝑡+ = 200, 

and the total number of collisions without coalescence recorded is approximately 20,000 

at the end of the simulation. For db = 330 μm (Figure 5.17(e)) the number of bubbles 

colliding without coalescencing becomes significant at 𝑡+ = 420, and at 𝑡+ = 2,000 the 

total number of collisions without coalesce is around 20,000. From these results, the 

coalescence rate clearly reduces with increasing bubble size under the same flow 

conditions. 

The number of bubble collisions, coalescences and collisions without coalescence for the 

downflow case are given in Figure 5.17(b, d, f). The number of bubbles collisions without 

coalescence for 𝑑𝑏 = 110 μm becomes significant at 𝑡+ = 150 and at 𝑡+ = 500, the 

number of failed coalescences is similar to that for the upflow test case . For 𝑑𝑏 = 220 μm, 

the number of collisions without coalescence begin to become significant at 𝑡+ values 

around 170, and at 𝑡+ = 2,000 a total of 1,100 failed coalescences have occurred. In 

Figure 5.17(f), collisions without coalescence are initially noted at 𝑡+ = 250 and the total 

number of bubbles that collide but fail to coalesce is approximatley 500 at the end of the 

simulation. It is clear , therefore, that microbubble coalescence is favoured in upflow with 

respect to downflow. This is due to the fact that in upflow, the bubbles migrate towards 

the vertical channel walls promoting more collisions due to the higher levels of 

turbulence on those regions and, even if not all collisons result in coalescence, the overall 

increase in collisions still results in a higher number of coalescence events. As a 

consequence of the coalescence events, the number of bubbles reduces over time and 

progressively more larger bubbles are formed. 
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Figure 5.17 Number of bubble collisions, coalescences and collisions without 

coalescence at 𝑅𝑒𝜏 = 150: (a, c, e) upflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 =

330 μm, respectively; and (b, d, f) downflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 =

330 μm, respectively. 
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Figure 5.18 gives the number of bubbles with a volume equivalent of up to ten primary 

bubbles that are formed over the various times considered for the three primary bubbles 

sizes for both flow configurations. In Figure 5.18(a), for the upflow case, the number of 

primary bubbles of 𝑑𝑏 = 110 μm injected into the flow was 1,812,720. At 𝑡+ = 500, the 

number of single (primary) bubbles is reduced to approximately to one million, with the 

progressive formation of larger bubbles accounting for the reduction. In contrast, in 

Figure 5.18(b) for downflow, the number of single bubbles remaining in the flow is still 

greater that one million at the end of the simulation.  

Figure 5.18(c) and (Figure 5.18d) give, respectively, results for the upflow and downflow 

cases for 𝑑𝑏 = 220 μm up to 𝑡+ = 2000. The initial number of bubbles injected was 

227,000 in this case. There is no noticeable difference in the number of single bubbles 

and coalesced bubbles formed between the upflow and downflow cases. Rather, there is 

a sharp increase in the number of bubbles with a volume equal to 10 primary bubbles to 

around 1,100 in upflow compared to 800 in downflow. This trend is similar at 𝑑𝑏 =

330 μm, where the initial number of bubbles was 67,140. The number of bubbles with a 

volume equal to 10 primary bubbles in this case is about 110 in upflow compared with 

90 for the downflow case. Overall, the rate of bubble coalescence increases with 

decreasing bubble size. These results are in line with those of He et al. (2015), where the 

authors’ observed that small bubbles tends to coalesce more than larger bubbles, with 

the coalescence of small bubbles being a mechanism that is of improtance for drag 

reduction. Note that some bubble sizes have been omitted from the multi-sized bubble 

plots in Figure 5.18 for clarity, although the formation with time of increasingly larger 

bubbles is evident. 

The spatial distribution of collisions and coalescences is presented in Figure 5.19. An 

almost 100% coalescence efficiency is confirmed in Figure 5.19(a) and (b), i.e. for upflow 

and downflow, for bubble size 𝑑𝑏 = 110 μm. Overall, the largest number of coalescence 

events occurs near the channel wall, where the concentration of the bubbles and the 

turbulence levels are highest. The migration of bubbles towards the channel walls under 

the influence of the lift force for the upflow case increases the number of collisions and 

coalescences when compared with those for the downflow. 
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Figure 5.18. Number of bubbles of various sizes formed after coalescence in vertical 

channels at 𝑅𝑒𝜏 = 150: (a, c, e) upflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 = 330 μm, 

respectively; and (b, d, f) downflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 = 330 μm, 

respectively. 
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Figure 5.19. Number of bubble collisions and coalescences across the vertical channel at 

𝑅𝑒𝜏 = 150: (a, c, e) upflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 = 330 μm, respectively; 

and (b, d, f) downflow for 𝑑𝑏 = 110 μm, 𝑑𝑏 = 220 μm and 𝑑𝑏 = 330 μm, respectively. 
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The spatial distribution of collisions and coalescences for bubble sizes 𝑑𝑏 = 220 μm and 

𝑑𝑏 = 330 μm is also presented in Figure 5.19(c) and (d), and Figure 5.19(e) and (f), for 

upflow and downflow, respectively. The number of collisions increases towards the 

channel walls for all flow systems, while the collision efficiency reduces towards the walls 

as not all the collisions result in bubbles coalescence. It is also observed that there are a 

significantly greater number of collisions and coalescences recorded in the upflow 

configuration as compared to the downflow. This is again due to the lift force pushing 

bubbles to the walls in upflow, thereby increasing the bubble concentration in regions 

where the turbulence intensity is high, and enhancing the number of collisions. In 

contrast, in downflow, bubble movement away from the near-wall turbulent regions 

reduces the overall number of collisions and results in a more uniform distribution of 

these event across the channel. 

5.2.1 Reynolds Number Effect in Vertical Upward and Downward Channel Flows 

The increased shear in high Reynolds number flows increases the intensity of the 

turbulent regions, and therefore the bubble fluctuations and the number of bubble-

bubble interactions. Further analysis is desirable to establish a quantitative and 

qualitative relationship between the bubble fluctuating velocity and its impact on bubble 

coalescence. Since turbulence can significantly affect bubble behaviour, additional 

simulations at 𝑅𝑒𝜏 = 590, taking advantage of the less-demanding computational 

resources required by LES as compared to DNS, were also made to study the effect of 

turbulence on microbubble dispersion in vertical channels. For these simulations, the 

bubble diameter chosen was 220 μm, as was done for the two-way coupled simulations 

reported in the previous chapter. 

Presented in Figure 5.20 are the fluid mean streamwise velocity and the turbulence 

statistics for both upflow and downflow, compared with single-phase flow results. It is 

obvious that no remarkable differences are apparent. In Figure 5.21(a) and (b) the bubble 

velocity statistics are presented alongside the 𝑅𝑒𝜏 = 150 results with the same void 

fraction. The distinctive separation between upflow and downflow, which was visible at 

a shear Reynolds number 𝑅𝑒𝜏 = 150, is greatly reduced at 𝑅𝑒𝜏 = 590, with the upflow 

peaking at approximately 22.5 and the downflow at 20.5. In addition, the normal and 
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shear stress profiles shown in Figure 5.21(c) and (d), for upflow and downflow, 

respectively, are essentially in line with their corresponding single-phase flow profiles as 

a result of the higher turbulence levels tending to partially override other forces acting 

on the bubbles. The relative velocity between the fluid and the bubbles is mostly a 

function of the bubble diameter, therefore it does not change significantly with an 

increase in the fluid velocity. Instead, the velocity magnitude of both the fluid and the 

bubbles, and the shear velocity, are greatly increased at the higher shear Reynolds 

number. Therefore, the importance of the relative velocity with respect to the velocity 

magnitude is significantly reduced, as is the magnitude of the separation between upflow 

and downflow velocity profiles. This trend was also noted in the two-way coupled results. 

Bubble concentration profiles and the forces acting on the bubbles in the wall-normal 

direction are presented in Figure 5.22 and 5.23, respectively. Evolution of the bubble 

concentration profiles is similar to that observed in the 𝑅𝑒𝜏 = 150 flow, with bubbles 

migrating towards the wall in upflow, and in the opposite direction in downflow. The 

peak value of the bubble concentration in upflow and downflow are reduced, however, 

due to the increased dispersion of the microbubbles caused by the higher levels of 

turbulence. This result confirms that, as expected, higher levels of turbulence enhance 

bubble mixing within the flow, generating more homogeneous concentration profiles and 

partially overridding the effect of other forces acting on the bubbles.  

These forces are given in Figure 5.23, with the results showing similar trends to those 

observed in the 𝑅𝑒𝜏 = 150 predictions. In this case, however, the lift force, which was 

dominant at 𝑅𝑒𝜏 = 150, is now significant only in the near wall region in both upflow and 

downflow. Instead, in the remainder of the channel, the pressure gradient and the added 

mass force, which are more related to the fluid and bubble velocity magnitude, are now 

dominant. The drag force again counter balances the other forces and changes sign, being 

in the same direction as the lift force in upflow, except very close to the wall, and in the 

opposite direction in downflow. 
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Figure 5.20. Fluid velocity statistics for four-way coupled simulation at shear Reynolds 

number 𝑅𝑒𝜏 = 590 and bubble size 𝑑𝑏 = 220 μm in vertical channel flow: (a, b) mean 

fluid streamwise velocity; and (c, d) fluid normal and shear stresses. (a, c) upflow; and 

(b, d) downflow. 
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Figure 5.21. Bubble velocity statistics for four-way coupled simulation with 𝑑𝑏 =

220 μm in vertical channel flows: (a, b) bubble mean streamwise velocity at 𝑅𝑒𝜏 = 590 

and 𝑅𝑒𝜏 = 150, respectively; and (c, d) bubble normal and shear stresses for upflow and 

downflow at 𝑅𝑒𝜏 = 590, respectively. 
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Figure 5.22. Bubble wall-normal concentration profiles at 𝑅𝑒𝜏 = 590 and 𝑑𝑏 = 220 μm 

in vertical channel flows: (a, b) bubble concentration for upflow and downflow, 

respectively; and (c, d) bubble volume concentration for upflow and downflow, 

respectively. 
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Figure 5.23. Wall-normal forces acting on the bubbles for shear Reynolds number 𝑅𝑒𝜏 =

590 and 𝑑𝑏 = 220 μm in vertical channels: (a) upflow; and (b) downflow (FD = drag 

force, FGB = gravity-buoyancy force, FSL = shear lift force, FAM = added mass force and 

FPG = pressure gradient force). 

Figure 5.24 below shows the number of bubble collisions, coalescences and collisions 

without coalescence for upflow and downflow. Figure 5.24(a) and (c) are for the upflow 

case, while Figure 5.24(b) and (d) are for downflow. In upflow, the number of collisions, 

coalescences and collisions without coalescence all increase with time, and not all 

collision events result in coalescence. The number collisions without coalescence is low 

however, with a value of 10 at 𝑡+ = 120 and reaching a maximum value of about 356 at 

the end of the simulation. For downflow, an initial value of about 10 occurs at 𝑡+ = 40 

and this reaches a maximum value of approximately 132 for a simulation time of 𝑡+ =

2400. More collisions without coalescence were recorded in upflow, as is to be expected, 

due to the net-buoyancy and relative velocity contributions resulting in higher levels of 

turbulence which leads to shorter bubble contact times that are insufficient for the liquid 

film trapped between the bubbles to drain off during bubble contact. 
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Figure 5.24. Number of bubble collisions, coalescences and collisions without 

coalescence, and the number of bubbles of various size formed, at 𝑅𝑒𝜏 = 590 an initial 

𝑑𝑏 = 220 μm: (a, b) number of bubble collisions, coalescences and collisions without 

coalescence; and (c, d) number of bubbles of various sizes formed after coalescence. The 

legends (1), (2), (4), (6), (8), etc., represent bubbles with a volume equal to one, two, 

four, six, eight, etc., times that of the primary bubbles. (a, c) upflow; and (b, d) 

downflow. 
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those in the lower Reynolds number flow, although a longer simulation time was required 

at the higher Reynolds number because of the lower coalescence efficiency found in 

higher levels of turbulence. Comparing Figure 5.24(c) and (d), the rate of formation of 

multi-sized bubbles in upflow is faster than in downflow, as expected and in line with 

observations at the lower Reynolds number. Also, presented in Figure 5.25 is the spatial 

distribution of microbubble collisions and coalescences across the vertical channel width 

for upflow and downflow. In upflow, the number of coalescences recorded at both 

channel walls is about 14,000 and approximately 250 in the centre of the channel. In 

contrast, in downflow about 13,000 coalescences occur near the channel walls and 

approximately 300 in the centre of the channel. These results confirm the influence of 

buoyancy discussed previously, and are qualitatively in line with those observed at the 

lower Reynolds number.  

   

Figure 5.25. Number of bubble collisions and coalescences across the vertical channel at 

𝑅𝑒𝜏 = 590 in vertical channels: (a) upflow; and (b) downflow. 
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less pronounced, particularly in the wall regions. This is as to be expected since, in upflow, 

the slip velocity of the bubbles in the vertical direction is in the same direction as the 

liquid velocity. For downflow, the slip velocity of bubbles in the vertical direction is in 

opposite direction of the liquid velocity. Therefore, the magnitude of the absolute vertical 

velocity of bubbles is much greater in upflow than in downflow. Hence the trajectories of 

bubbles in downflow are irregular whereas in upflow they are more in line with the fluid 

streamlines. These results show reasonable agreement with the findings of Biswas 

(2007). 

5.3 Summary of Bubble Coalescence in Horizontal and Vertical Channel 

Flows 

Four-way coupled simulations of bubbly flows in channels have been performed using 

the LES-LPT model. To do so, appropriate bubble collision and coalescence routines were 

added to the model developed and used in previous chapters. Firstly, a horizontal channel 

flow of water at shear Reynolds numbers 150 and 590 were simulated using 220 μm 

diameter, spherical air bubbles. The bubbles were found to move towards the upper 

channel wall with time, generating a large number of collisions and coalescences in that 

region, whilst the lower section of the channel becames depleted of bubbles. The results 

were compared with zero-gravity simulations, where the bubble velocity profile remains 

symmetric across the channel, with the number of collisions and coalescences at both 

channel walls also compared. 

Subsequently, vertical upward and downward channels flows of water at shear Reynolds 

numbers of 150 and 590 were simulated, with air bubbles of 110, 220 and 330 μm in 

diameter. A greater number of collisions and coalescence events occurs at 𝑅𝑒𝜏 = 590 due 

to the enhanced bubble interaction promoted by the higher levels of turbulence. For the 

same reason, the associated lower bubble contact time results in a reduced coalescence 

efficiency than for the lower Reynolds number 𝑅𝑒𝜏 = 150 case. Larger numbers of 

bubble-bubble collisions and coalescences, but with a reduced efficiency of coalescence, 

occured in upflow when compared to downflow, partially because the bubbles increase 

turbulence levels in the fluids flow in upflow but reduce it in downflow. In addition, the 

lift force, by pushing bubbles towards the highest turbulence regions near the wall in 
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upflow, promotes bubble collision and coalescence with respect to downflow where the 

bubbles concentrate in lower turbulence regions in the centre of the channel.  

Being able to predict changes in, and the evolution of, the bubble size distribution is 

crucial in bubbly flows, since the amount of interfacial area determines the rate of 

exchange of mass, momentum and energy between the phases. Specifically, in the absence 

of heat and mass transfer, the evolution of the size distribution is induced by the 

coalescence and breakup of bubbles. Coalescence of bubbles plays a major role in the 

bubble size evolution, promoting a wide bubble size distribution. Overall, the results 

presented in this chapter demonstrate the potential of the overall model for predicting 

microbubble coalescence in the types of flow considered. Previous studies of this kind 

have been mostly limited to bubble columns (Delnoij et al., 1997; van den Hengel et al., 

2005; Lau et al., 2014) with bubbles millimeters in size. Also, DNS- and LES-based studies 

in closed ducts of various geometries have generally been limited to two-way coupled 

simulations. In contrast, the work described has been able to obtain detailed predictions 

of microbubble coalescence in channel flows using a range of bubble sizes (110, 220 and 

330 μm), highlighting, amongst other parameters, the influence of bubble diameter on 

coalescence. Of particular interest with the approach adopted is the deterministic 

evaluation of collision, and coalescence, from the local resolved turbulence field. This 

approach is clearly superior to statistical models of coalescence based on averaged 

velocity and turbulence fields, which most macroscopic models that are applied to bubbly 

flows in the chemical and process engineering, pharmacology, water treatment and food 

industries (Rodríguez-Rodríguez et al., 2015) are based on. In the next chapter, this 

model will be used as a starting point and further develoepd to enable the full prediction 

of bubble size evolution with the introduction of a model for bubble breakup. 
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CHAPTER 6  

FOUR-WAY COUPLED FLOW WITH COALESCENCE AND 

BREAKUP 

In this chapter, the LES-LPT model is further extended with the addition of a model for 

bubble breakup to the four-way coupled model developed and applied in Chapter 5. The 

Martinez-Bazan et al. (1999) breakup model is adopted for inclusion in the Eulerian-

Lagrangian technique. For a bubble breakup to occur, the turbulent flow structures 

surrounding the bubble must be sufficiently strong enough to deform its surface and 

overcome the surface restoring forces. Upward and downward vertical channel flows of 

water at shear Reynolds numbers of 150, 590 and 2000 are examined, with air bubbles of 

diameter 𝑑𝑏 = 110, 220 𝑎𝑛𝑑 2000 m dispersed within the flows. The ability of the model 

to predict both coalescence and breakup is evaluated, as well as the impact of the flow 

condition on the two phenomena. The tests start with a sensitivity analysis on the carrier 

phase turbulence energy dissipation rate that shows breakup cannot be achieved in the 𝑅𝑒𝜏 

= 150, 590 and 2000 water flows laden with air bubbles because of the high surface tension 

𝜎 = 7.2 × 10−2 Nm−1of such bubbles that restores the deformed surface. Additional 

simulations are performed for refrigerant R134a at a shear Reynolds number of 1154 

dispersed with refrigerant bubbles of 𝜎 = 8.08 × 10−3 Nm−1. Refrigerant bubbles break up 

more easily due to their lower surface tension. The breakup location is found to be near the 

channel walls, where the turbulence kinetic energy dissipation rate is highest. Coalescence 

and breakup are favoured in upflow conditions, with turbulence levels found to significantly 

impact the extent of bubble interaction. Coalescence is dominant at low turbulence levels, 

and breakup, which was only detected in the R134a flow, is favoured by high turbulence. 

The results demonstrate the capabilities of the overall model to predict bubble coalescence 

and breakup and its usefulness for predicting flows that are of industrial relevance, where 

interfacial area and bubble size distribution govern interfacial mass, momentum and heat 

transfer processes. 
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6.1 Bubble Breakup Approach 

The breakup model of Martinez-Bazan et al. (1999) was adopted since it is applicable 

within an Eulerian-Lagrangian framework, and was incorporated into the modified 

bubble tracker. The basic concept of the model is that for a bubble to break, its surface 

has to be deformed and further, the deformation energy required to do this must be 

provided by the surrounding fluid turbulent stresses. The minimum energy required to 

deform a bubble of size 𝑑𝑏 is its surface energy, expressed in Eq. ((3.63) as 𝜏𝑠(𝐷) =

6𝜎 𝑑𝑏⁄ . When air bubbles are introduced into the turbulent carrier fluid phase, the 

velocity fluctuations of the turbulence field produce pressure deformation forces on the 

bubbles’ surface. When these forces exceed the confinement forces due to surface tension, 

the bubble breaks up. Recalling Eq. ((3.65), the average deformation stress results from 

velocity fluctuations existing in the liquid between two points separated by a distance 𝑑𝑏: 

𝜏𝑡(𝑑𝑏) =  0.5(𝜌𝛽𝜖2 3⁄ 𝑑𝑏
2 3⁄ ). For a bubble to breakup, Eq. (3.69) must be greater than Eq. 

(3.67). The table below summarises the computational parameters used for the 

prediction of bubble breakup in water flows. 

Table 6.1 Simulation parameters for bubble breakup. 

Simulation parameters applied 

Reynolds number (𝑅𝑒𝜏) 150, 590 

Fluid density (𝜌) 1000 kgm−3 

Bubble density (𝜌𝑏) 1.3 kgm−3 

Reference bubble size (𝑑𝑏) 220, 2000 μm 

Batchelors constant (𝛽) 8.2 

Surface tension (𝜎) 7.2 × 10−2 Nm−1 

Based on the computational details given in Table 6.1, the plots presented in  

Figure 6.1 show a balance of the turbulence kinetic energy dissipation rates at the 

reference Reynolds numbers of 150 and 590, using the bubble size 𝑑𝑏 = 220 μm and an 

additional larger bubble size 𝑑𝑏 = 2000 μm. Each figure gives the minimum, maximum 

and the average dissipation rate predicted in the carrier fluid across the channel. The 

larger bubbles were considered as they exhibit a lower surface restoring pressure and 

therefore tend to breakup more easily. In the plots, the threshold level of turbulence 
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kinetic energy dissipation rate required to breakup bubbles of the specified diameter are 

compared against the turbulence dissipation rates in the flow. Additionally, the vertical 

dotted line shows the location where the centre of bubbles of the specified size is located 

for a bubble in contact with the wall. 

  

 

Figure 6.1 Turbulence kinetic energy dissipation rates across the channel in wall units: 

(a) 𝑅𝑒𝜏 = 150, 𝑑𝑏 = 220 μm (1.65 wall units); (b) 𝑅𝑒𝜏 = 590, 𝑑𝑏 = 220 μm (6.5 wall 

units); and (c) 𝑅𝑒𝜏 = 590, 𝑑𝑏 = 2000 μm (59 wall units). Dashed line is the location of 

the centre of the bubble when it is closest to the channel wall. 
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In Figure 6.1(a), the flow of 𝑅𝑒𝜏 = 150 with a bubble of 220 μm is presented, while Figure 

6.1(b) and (c) represent a flow of 𝑅𝑒𝜏 = 590 with bubble sizes 220 μm and 2000 μm, 

respectively. The threshold lines represent the dissipation rate required to break the 

bubble, with the centre of the bubble identified by the dashed line. Remember that since 

the Lagrangian bubble tracker makes a point particle assumption, it is the dissipation rate 

at the location of the bubble centre that must be considered in regards to bubble breakup. 

In Figure 6.1(a) and (b), the threshold level lies above the maximum turbulence kinetic 

energy dissipation rate in the fluid and hence no breakup is expected. In Figure 6.1(c) the 

maximum dissipation rate is slightly higher than the threshold level, but only very close 

to the wall and at locations where the bubble cannot interact with the flow turbulence 

since the position of the centre of the bubble lies at higher 𝑥+ values. Therefore, no 

breakup is also expected for the flow considered in Figure 6.1(c). 

Therefore, to observe and study bubble breakup, turbulent flows of refrigerant bubbles 

R134a, which have a much lower surface tension than air bubbles in water, were 

considered. Figure 6.2 represents turbulence kinetic energy dissipation rates and 

thresold levels for breakup for flows of refrigerant R134a at a shear Reynolds number 

𝑅𝑒𝜏 = 360 with bubbles of different size.  

  

Figure 6.2 Turbulence kinetic energy dissipation rates across the channel in wall units 

for a flow of refrigerant at 𝑅𝑒𝜏 = 360: (a) 𝑑𝑏 = 220 μm (3.94 wall units); and (b) 𝑑𝑏 = 

2000 μm (36 wall units). 
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Figure 6.2(a) represents bubbles of size 𝑑𝑏 = 220 μm and Figure 6.2(b) of size 𝑑𝑏 =

2000 μm. The threshold level again lies above the peak dissipation rate in Figure 6.2(a) 

and just below in Figure 6.2(b), but again, in Figure 6.2(b), the dissipation rate at the 

bubble centre is only just equal to the threshold and no breakup was observed during 

simulations. 

6.2 Higher Reynolds Number Single-Phase Flow 

Since turbulence levels in the flows investigated thus far where not sufficient to achieve 

bubble breakup, further work was carried out at a higher Reynolds number flow of water 

at 𝑅𝑒𝜏 = 2000, with a corresponding bulk Reynolds 𝑅𝑒𝑏 = 𝑢𝑏ℎ 𝜈⁄ = 51,500. The velocity 

statistics of the single phase flow were validated by comparing with the DNS results 

obtained by Bernardini et al. (2014). The LES results did not give perfect agreement with 

the DNS predictions, as shown in Figure 6.3, but the motivation behind moving to a higher 

Reynolds number flow was to allow testing of the ability of the overall model to predict 

bubble breakup, even under the known limitations of the LES with the computational grid 

employed. The DNS work used 8192 × 1024 × 4096 nodes, which is far more than the 

number of nodes used in the present LES. 

Table 6.2 Higher Reynolds number simulation parameters for bubble breakup. 

Single phase flow parameters 

Reynolds number (𝑅𝑒𝜏) 2000 

Bulk Reynolds number (𝑅𝑒𝑏) 51500 

Shear velocity (𝑢𝜏) 0.10 ms−1 

Bulk velocity (𝑢𝑏) 2.18208 ms−1 

Fluid density (𝜌) 1000 kgm−3 

Computational domain 2ℎ × 𝜋ℎ × 2𝜋ℎ 

Table 6.2 present a summary of the single-phase flow properties. In Figure 6.3, the single-

phase velocity statistics are presented and compared against the DNS results. The time-

averaged mean streamwise velocity is plotted in Figure 6.3(a). The DNS peaks close to 25 

whilst the LES peak is at 23.6, and close to the walls it is observed that the LES 

significantly over predicts the DNS. In Figure 6.3(b), the normal and shear stresses are 
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presented. The mean streamwise velocity fluctuations from the LES are high at 3.55 

compared to an equivalent DNS prediction of approximately 3. The spanwise and wall-

normal velocity fluctuations are under predicted when compared with the DNS reults, as 

is the shear stress considered. In Figure 6.3(c), a two-dimensional representation of the 

instantaneous velocity of the single phase flow is given. High velocities and turbulence 

levels are found in the flow, with turbulence dominating the majority of the channel, 

confining viscous effects and the viscous sublayer to very near-wall regions. 

   

 

Figure 6.3 Single-phase predictions of Reynolds number 𝑅𝑒𝜏 = 2000 flow: (a) 

streamwise mean velocity in comparison with DNS (Bernardini et al., 2014) ; (b) normal 

and shear stresses in comparison with DNS; and (c) two-dimensional representation of 

LES instantaneous velocity. 
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Air bubbles of different sizes were injected into the flow to check whether the critical 

threshold level required to observe breakup was achieved, as shown in Figure 6.4. In 

Figure 6.4(a), no break is possible due to the small bubble size, with the critical level of 

turbulence kinetic energy dissipation rate required for bubble breakup still lying well 

above the dissipation rates in the flow. The same is true for 𝑑𝑏 = 220 μm in Figure 6.4(b). 

However, in Figure 6.4(c), where the bubble size is 𝑑𝑏 = 2000 μm, the turbulence 

dissipation rates at the bubble centre indicates that breakup may be possible. 

. 

Figure 6.4 Turbulence kinetic energy dissipation rates across the channel in wall units 

at 𝑅𝑒𝜏 = 2000: (a) 𝑑𝑏 = 110 μm (11 wall units); (b) 𝑑𝑏 = 220 μm (22 wall units); and (c) 

𝑑𝑏 = 2000 μm (200 wall units). 
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Table 6.3 gives a summary of the number of bubble breakups recorded for the three 

bubble sizes noted in Figure 6.4 for a total simulation time of 𝑡+ = 900. Only 11 bubble 

breakups were recorded for 𝑑𝑏 = 2000 μm, with no breakups recorded for the other two 

bubble sizes, as anticipated. These results indicate that, even for the largest bubble size, 

the surface restoring pressure of the bubble is still sufficient to overcome the surface 

deformation induced by turbulent fluctuations. 

Table 6.3 Breakup statistics for bubbles in water. 

Bubble size Conditions Number Breakups Runtime 

𝑑𝑏 = 110 𝜇𝑚 Breakup only 0 𝑡+ = 900 

𝑑𝑏 = 220 𝜇𝑚 Breakup only 0 𝑡+ = 900 

𝑑𝑏 = 2000 𝜇𝑚 Breakup only 11 𝑡+ = 900 

 

In Figure 6.5, dissipation rate plots are shown at a shear Reynolds number of 1154 for a 

flow of refrigerant R134a. Note that this flow is equivalent to a 𝑅𝑒𝜏 = 2000 flow of water, 

taking into account the changes in physical properties of the carrier fluid. The same 

comparative analysis was carried out using refrigerant bubble sizes 𝑑𝑏 = 110 μm, 

220 μm and 2000 μm, with the aim of obtaining a more significant number of breakups. 

Figure 6.5(a) is for a bubble size 𝑑𝑏 = 110 μm, Figure 6.5(b) for 𝑑𝑏 = 220 μm while 

Figure 6.5(c) is for 𝑑𝑏 = 2000 μm. From the results, it can be concluded that bubble 

breakup is likely to occur for all three bubble sizes. When the flows were run with bubbles 

present, very few breakup events were recorded at 𝑑𝑏 = 110 μm, a reasonable number 

were found at 𝑑𝑏 = 220 μm and at 𝑑𝑏 = 2000 𝜇𝑚 such events occurred sporadically. 

These observations are in line with the fact that bubbles will continue to breakup until 

the smallest size of bubble formed is one where the surface restoring pressure exceeds 

the turbulence kinetic energy dissipation rate generated by the flow. This is considered 

further below. 

Having established that a 𝑅𝑒𝜏 = 1154 refrigerant R134a flow exhibited bubble breakup, 

further work for this case was undertaken, as described below. 
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Figure 6.5 Turbulence kinetic energy dissipation rates across the channel in wall units 

for a flow of refrigerant R134a at 𝑅𝑒𝜏 = 1154: (a) 𝑑𝑏 = 110 μm (11 wall units); (b) 𝑑𝑏 = 

220 μm (22 wall units); and (c) 𝑑𝑏 = 2000 μm (200 wall units). 
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chosen at room temperature and are presented in Table 6.4. It is worthy of note that 

refrigerant R134a is the chemical compound 1, 1, 1, 2-tetra-fluoro-ethane, containing two 

atoms of carbon, four fluorine atoms and two atoms of hydrogen. Its chemical formula is 

𝐶𝐹3𝐶𝐻2𝐹 and its molecular weight 133.4. With respect to other refrigerants, such as 

hydrofluorocarbon (HFC) and R12, which have similar physical and thermodynamic 

properties, R134a depletes the ozone layer less and has very little greenhouse effect. The 

Motreal Protocol established in 1987 addressed the phase out of ozone depleting 

substances such as chlorofluorocarbons and hydrochlorofluorocarbons. In 2013, a 

collaboration between the Chinese government and the United States of America was 

successfully established to implement changes in HFC use with the objective of avoiding 

a rise of 0.5 0C in the global temperature that was forecast to occur by 2100 (Field and 

Hrnjak, 2007). 

Table 6.4 Refrigerant bubbles (R134a) simulation properties. 

Liquid-phase Gas-phase 

𝜌 = 1206.5 kgm−3 𝜌𝑏 = 28.4 kgm−3 

𝑅𝑒𝜏 = 1154 𝜎 = 8.08 x 10−3 Nm−1 

𝜈 = 9.697 x 10−7 m2s−1 𝑑𝑏 = 110 μm, 𝑛𝑏 = 1812729 

 
𝑑𝑏 = 220 μm, 𝑛𝑏 = 226591 

𝑑𝑏 = 2000 μm, 𝑛𝑏 = 302 

 

The bubbles were initially injected uniformly within the computational domain and the 

initial velocity of each bubble was set equal to that of the fluid at the bubbles’ location. 

The overall volume fraction of the dispersed bubbles was 𝜙 = 10−3. The initial 

concentration of the three bubble sizes was sampled at time 𝑡+ = 0.0 to obtain the initial 

bubble distribution profiles presented in Figure 6.6. The total simulation period in wall 

units was 𝑡+ = 3000, which was sufficient enough for a bubble with a speed equal to the 

average fluid velocity to move through the entire streamwise length of the channel more 

than twelve times. The time span utilised for averaging the statistics was 𝑡+ = 1500 for 

all bubble sizes. 
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Figure 6.6 Initial bubble concentration profiles for the three bubble sizes at start-up of 

the simulations: (a) 𝑑𝑏 = 110 μm; (b) 𝑑𝑏 = 220 μm; and (c) 𝑑𝑏 = 2000 μm. 

The initial concentration plots in Figure 6.6 shown an approximately uniform 

distribution of bubbles across the channel for all bubble sizes. Figure 6.6(a) and (b) in 
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6.4) equally distributed resulted in some control volumes surrounding the nodes 

containing a reduced number of bubbles. The LES code was used in such a way that the 
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bubbles was larger than the mesh spacing, and some bubbles therefore occupied or 

overlapped into neighbouring cells, violating the point particle assumption. However, the 

simulation at the largest bubble size was nevertheless run to detect the occurrence of 

breakup and test the breakup model, also considering the fact that when breakup occurs 

progressively smaller bubbles are formed. 

As noted, bubble breakup is determined by the level of the turbulence kinetic energy, and 

in particular its dissipation rate, within a flow, and in Figure 6.7 the number of bubble 

breakups with time is presented for bubble sizes 𝑑𝑏 = 110 μm, 220 μm and 2000 μm. It 

can be seen that bubbles breakup in all three cases since the turbulent stresses on the 

bubble surface overcome the surface restoring effect of the surface tension (Martinez-

Bazan et al., 1999; Sungkorn et al., 2012; Xue et al., 2017). In Figure 6.7(a) for 𝑑𝑏 =

110 μm, the number of breakups in upflow is higher than in downflow, with a total 

number of 106 breakups recorded in upflow compared to 64 in downflow at the end of 

the simulation. It is noteworthy that despite the large number of bubbles injected 

(1,812,729), the number of breakups is still limited since the surface restoring pressure 

is high for a bubble of relatively small diameter, with high turbulence levels required to 

cause breakup. Bubble breakup is more significant in upflow because of the influence of 

the lift force in this case, which pushes bubbles towards the wall and into regions of high 

turbulence kinetic energy disspation rate, whilst in downflow the bubbles move towards 

the centre of the channel and away from such regions. 

In Figure 6.7(b), the total number of breakups with time for 𝑑𝑏 = 220 μm is presented. 

For the upflow, the number of breakups realised was 3,859, while the downflow gave 

2,605 breakups, by the end of the simulation. The lower number in downflow is caused 

to some extent by the lower turbulence levels observed in the four-way coupled 

simulations in this case, as compared to in upflow, but mainly due to the accumulation of 

the bubbles driven by the lift force in the centre of the channel, where turbulence levels 

are low. It is clear that at times 0.0 ≤ 𝑡+ ≤ 300, there is a progressive increase in the 

number of bubble breakups, with more occurring in downflow than in upflow, with this 

trend observed for all bubble sizes. This is caused by bubble buoyancy effects conflicting 

with the downward flow direction and causing perturbations which result in additional 

breakup. The path of bubbles in downflow was therefore extremely irregular, as noted 

previously, whereas in upflow their paths were in line with the fluid streamlines and 
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relatively predictable. At later times, the number of breakups in upflow eventually 

exceeds that in downflow due to bubble migration towards the wall. Over 500 ≤ 𝑡+ ≥

2500 in Figure 6.7(b), the breakup rate reduces and tends towards a steadily increasing 

rate, with the upflow experiencing a larger number of breakups. The plot for breakup of 

bubble size 𝑑𝑏 = 2000 μm, with number of bubbles injected equal to only 302, is shown 

in Figure 6.7(c). The total number of breakups for upflow and downflow were 304 and 

300, respectively, at the end of the simulation. The breakup rate here is faster than in the 

other two cases as larger bubbles have a low surface restoring capability, as in Eq. (3.67), 

and are highly buoyant. At 𝑡+ ≥ 600, all the primary bubbles had broken up into at least 

two equal sized bubbles in downflow, whereas in upflow further breakup continued to 

occur until 𝑡+ = 800. 

Figure 6.8 presents breakup locations across the vertical channel for the various bubble 

sizes. Figure 6.8(a) is for 𝑑𝑏 = 110 μm at 𝑡+ = 800, Figure 6.8(b) for 𝑑𝑏 = 220 μm at 𝑡+ =

2600, and Figure 6.8(c) is for 𝑑𝑏 = 2000 μm at 𝑡+ = 800. For the 110 μm and 220 μm 

bubble sizes, breakup occurs in the near-wall regions of the channel where the turbulence 

energy dissipation rate is high. The results in Figure 6.8(c) show a broader spatial 

distribution due to the fact that when these large bubbles break into two smaller bubbles, 

those daughter bubbles, which could now be tracked in the computational mesh, undergo 

further breakup if located in a region where the dissipation rate is sufficiently high. 

Cumulative plots showing the number of bubble collisions, coalescences and breakups in 

upflow and downflow are presented in Figure 6.9(a) and (b) for bubble size 𝑑𝑏 = 110 μm, 

Figure 6.9(c) and (d) for 𝑑𝑏 = 220 μm, and Figure 6.9(e) and (f) for 𝑑𝑏 = 2000 μm. As 

previously noted, all events occur at their highest levels in the near-wall regions. In these 

regions, due to the high turbulence levels, not all collisions result in coalescence because 

the contact time between bubbles is insufficient to allow for the liquid film trapped 

between the colliding bubbles to drain. In the centre of the channel, for the smaller bubble 

sizes at least, where the turbulence is lower and the contact time higher, almost all 

collisions result in coalescence. Hence, although coalescence events are much lower in 

number in the channel centre, their coalescence efficiency is high, in agreement with film-

drainage theory. Breakup events for the smallest bubble size are relatively low in number 

since the surface restoring pressure is high for a bubble of relatively small diameter. For 

𝑑𝑏 = 220 μm, in regions where the turbulence is high enough for breakup to occur, the 
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number of breakup events almost matches the number of coalescences, although in these 

flows the high turbulence encourages slightly more coalescences than breakup events. 

Finally for the largest bubble size, the number of breakup events is greater than the 

number of collisions and coalescences in upflow and downflow. Again, this arises due to 

the large size of these bubbles and their low surface restoring capability. Overall, the 

results obtained show good qualitative agreement with previous experimental works for 

particle (Randolph, 1969) and bubble (Martinez-Bazan, 1998) breakup.  

  

 

Figure 6.7 Number of bubble breakups with time for a flow of 𝑅𝑒𝜏 = 1154 with 

refrigerant R134a bubbles: (a) 𝑑𝑏 = 110 μm; (b) 𝑑𝑏 = 220 μm; and (c) 𝑑𝑏 = 2000 μm. 
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Figure 6.8 Breakup locations across the channel for a flow of 𝑅𝑒𝜏 = 1154 with 

refrigerant R134a bubbles: (a) 𝑑𝑏 = 110 μm at 𝑡+ = 800; (b) 𝑑𝑏 = 220 μm at 𝑡+ =

2600; and (c) 𝑑𝑏 = 2000 μm at 𝑡+ = 600. 
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Figure 6.9 Number of bubble collisions, coalescences and breakups for a flow of 𝑅𝑒𝜏 =

1154 with refrigerant R134a bubbles: (a) 𝑑𝑏 = 110 μm at 𝑡+ = 800; (b) 𝑑𝑏 = 220 μm at 

𝑡+ = 2600; and (c) 𝑑𝑏 = 2000 μm at 𝑡+ = 600. (a, c, e) upflow; and (b, d, f) downflow. 
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Lastly, from the results given in Figure 6.10 for the flow with 𝑑𝑏 = 220 μm bubbles, it is 

seen that not all collisions result in coalescence as the flow turbulence structure does not 

allow sufficient contact time for the liquid film between the bubbles to drain and 

coalescence to occur, as noted above. In Figure 6.10(a), for upflow, a large number of 

bubble-bubble collisions occur, but with significantly fewer coalescences occurring at all 

times. The number of collisions without coalescence increases with time until at the end 

of the simulation the cumulative number of collisions without coalescence slightly 

exceeds those with. Similar trends are found for the downflow case, although here, at the 

end of the simulation, the number of collisons with and without coalescence are 

approximately equal. These trends occur due to the migration over time of bubbles 

towards the wall in upflow, where turbulence levels are high and film-drainage times are 

hence reduced, and in downflow due to the migration of bubbles towards the channel 

centre with lower turbulence levels, so that collisions without coalescence, relative to the 

upflow case, are fewer in number. 

  

Figure 6.10 Number of bubble collisions, coalescences and collisions without 

coalescence for 𝑅𝑒𝜏 = 1154 with refrigerant R134a bubbles and 𝑑𝑏 = 220 μm: (a) 

upflow; and (b) downflow. 

6.4 Summary of Bubble Breakup Studies in Vertical Channel Flows 

Four-way coupled simulations of bubbly flows in vertical channels have been performed 

using the enhanced LPT routine that handles both coalescence and breakup processes, 

0 500 1000 1500 2000 2500 3000
0.1

1

10

100

1000

10000

100000

N
u

m
b

e
r 

o
f 

e
v
e

n
ts

t+

 Collisions

 Coalescences

 Collisions without coalescence

0 500 1000 1500 2000 2500 3000
0.1

1

10

100

1000

10000

100000

N
u

m
b

e
r 

o
f 

e
v
e

n
t

t
+

 Collisions

 Coalescences

 Collisions without coalescence

(a) (b) 



206 

 

coupled to LES of the liquid phase. For bubble breakup to occur, the turbulent flow 

structures surrounding the bubble must be high enough to overcome the surface 

restoring force resulting from the surface tension. Two different water flow Reynolds 

numbers, 𝑅𝑒𝜏 = 150 and 590, were simulated by injecting air bubbles of various sizes. No 

bubble breakup was recorded, and it has been demonstrated that this is as a result of the 

turbulence kinetic energy dissipation rate in the flow not being sufficiently large to 

deform and breakup the air bubbles dispersed in the flow. The flow turbulence level was 

consequently increased by performing runs at a shear Reynolds number 𝑅𝑒𝜏 = 2000, but 

only 11 bubble breakups were obtained for the large 𝑑𝑏 = 2000 μm bubbles considered. 

In order allow bubble breakup in reasonable quantities, additional simulations were 

performed for the case of refrigerant R134a at a shear Reynolds number of 1154, with 

refrigerant bubbles of 𝑑𝑏 = 110, 220 and 2000 μm. This fluid was chosen due to its low 

surface tension which encourages bubble breakup. The ability of the overall model to 

predict coalescence and breakup in such flows has been evaluated, as well as the impact 

of the flow conditions on the two phenomena. 

Results showed that breakup took place only in regions of the flow where the turbulence 

kinetic energy dissipation rate is sufficiently high to deform and break the three bubbles 

sizes injected, specifically in near-wall regions. Coalescence and breakup were favoured 

in upflow conditions under the influence of the lift force which promotes bubble 

migration towards the highly turbulent near-wall regions, with turbulence found to 

significantly impact the level of bubble interaction. Coalescence was dominant at low 

turbulence levels and breakup, which was only detected in the R134a flow, was favoured 

at high turbulence levels. The results also showed that coalescence is favoured at small 

bubble size but, as the bubble diameter is increased, the phenomena of breakup becomes 

comparable with and, at the highest bubble diameter considered, is favoured over 

coalescence. Overall, bubble breakup was found to be infrequent at low-medium 

turbulence levels or low-medium bubble sizes. 

A review of previous work shows that bubble breakup studies have only been carried out 

in bubble columns and ducts, and for bubbles in the diameter range 2 mm ≤ 𝑑𝑏 ≤ 6 mm. 

No previous studies have achieved the prediction of microbubble breakup in any flow, 
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and hence the conclusions reached in relation to channel flows containing microbubbles 

are original. 

The study of breakup is of importance industrially since interfacial transfer processes, 

linked to the bubble size distribtuion, impact on mixing as well as heat and mass transfer 

in bubbly flows. Overall, the results demonstrate the capabilities of the model derived to 

predict microbubble behaviour and changes in the bubble size distribution. Future 

developments should include application of the methodology to flows of industrial 

interest, and prediction of the full-evolution of the bubble size distribution in such flows 

through bubble coalescence and breakup. 
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

WORK 

In this chapter detailed highlights of the conclusions drawn from this study are summarized. 

Further work is also proposed to improve and expand our understanding and ability to 

accurately predict bubble behaviour in multiphase flows, including their application to 

problems of industrial relevance. 

7.1 Conclusions 

The work described in this thesis was undertaken to gain insight into the complex nature 

of microbubbles in turbulent flows, starting using the simplest coupling technique 

between the phases and building to a more complex approach where bubble coalescence 

and breakup can be accommodated. The developments described have also led to 

improvments in our ability to accurately predict such flows. The results and conclusions 

reached are of relevance to processes employed in a wide range of applications, such as 

the transfer and processing of oil and gas, cooling in nuclear reactors and steam 

generators, bubble column reactors, and the evaporation and condensation of 

refrigerants in air conditioning equipment, to name but a few.   

In particular, the influence of bubble interactions and fluid phase behaviour in turbulent 

flows on bubble dispersion have been investigated. The mathematical modelling 

technique used was based on the large eddy simulation (LES) methodology embodied in 

the BOFFIN LES code, with complete flow solutions provided by coupling the LES to a 

Langrangian bubble tracking technique which was used for the prediction of bubble 

motion and interaction. 

The BOFFIN LES flow solver and the Lagrangian approach have been used previously for 

studying solid particulate flows. These were modified and extended in this work to cover 

bubbly flows. In addition to the main models for the LES and the bubble tracker, the sub-

grid scale model within the LES and the way in which momentum feedback from the 



209 

 

bubbles to the fluid are handled were described. Bubble force models, the bubble collision 

model and models for the coalescence and breakup of bubbles implemented in the overall 

model were also presented, and were included to allow a systematic study of bubbles in 

turbulent flows with a view to provide methods for their accurate prediction and to allow 

insight into the physics of bubbly flows. The modified Lagrangian tracker accounts for 

gravity-buoyancy, drag, lift, pressure gradient and added mass forces acting on the bubbles. 

The complete model has been applied to turbulent horizontal, and vertical upward and 

downward, channel flows to investigate the dynamics of bubbles in one-way, two-way 

and four-way coupled flow regimes. 

The introduction of coupling effects between the phases was preceded by simulating 

single-phase channel flows at four Reynolds numbers in order to validate the LES 

predictions. The results generated by the LES were validated against direct numerical 

simulations (DNS) of channel flows with shear Reynolds numbers, 𝑅𝑒𝜏 = 150, 300, 590 

and 2000 (Marchioli et al., 2008; Marchioli and Soldati, 2007; Moser et al., 1999; 

Bernardini et al., 2014). It is worthy of note that in any CFD modelling, it is critical to 

compare and validate any predictions against experimental data, where available, or the 

predictions of well-proven and high accuracy first principles models such as DNS. In 

circumstances where experimental data is scarce, as in the present case, DNS is the most 

accurate approach for predicting single-phase (and two-phase bubbly) flows given its 

fundamental nature and lack of simplifying assumptions.  The predictions of DNS are 

currently used in this way by both the fluid dynamics and combustion research 

communities to provide benchmark solutions for the validation of less accurate 

modelling approaches. Overall, the LES showed good qualitative and quantitative 

agreement with the mean streamwise velocities, and normal and shear stresses, 

predicted using DNS. 

Following implementation of the bubble tracker, the impact of the lift force in one-way 

coupled flows was found to be crucial in terms of the migration and accumulation of 

bubbles. Bubbles migrate towards the channel walls in vertical upflows, and away from 

the walls in downflow, though the action of the lift force. Confirmation of this was found 

by comparison against zero-lift simulation results that did not show any lateral bubble 

migration. The results obtained show good agreement with the numerical studies of 
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Giusti et al. (2005) and Molin et al. (2012), and the experimental works of Tomiyama et 

al. (2002) and Ogasawara et al. (2004).  

The presence of microbubbles in the flow modulates the velocity field and turbulence 

structure of the continuous phase in two-way coupled flows. In the horizontal channel 

flow, an asymmetric velocity flow profile develops due to the bubbles’ migration towards 

the upper channel wall. In the vertical channel flow, turbulence is increased in upflow and 

decreased in downflow after the injection of bubbles. Modulation of the turbulence was 

also found to increase with an increase in bubble size. 

Forces analyses in the wall-normal direction show bubbles migrating towards the upper 

wall under the influence of the gravity-buoyancy force which is dominant in the 

horizontal channel, with it being counterbalanced by the drag force. In the vertical 

channel, it was shown that for both upflow and downflow the drag and lift forces tend to 

be dominant, with the lift force pushing bubbles closer to the wall in upflow and towards 

the centre of the channel in downflow. This is confirmed by the change in sign in the lift 

force between the upflow to downflow cases. The lift force is also always opposed and 

balanced by the drag force. Clearly, both gravity and buoyancy do not play a significant 

role in the wall-normal direction, with their effect acting in the vertical direction. 

To account for bubble coalescence, the bubble tracker was modified to include a 

deterministic hard-sphere model for bubble-bubble collisions and a film-drainage model 

for bubble coalescence. In the flow, bubble-bubble collisions are identified by a detection 

algorithm and, once a collision is detected, the likelihood of coalescence is evaluated using 

the film-drainage theory. The updated tracker was subsequently applied to study the 

influence of gravity on bubble mixing, bubble migration, inter-bubble collisions and 

bubble coalescence. This was first carried out by running four sets of simulations in a 

horizontal channel, with and without the gravity-buoyancy force term applied, using 

flows of 𝑅𝑒𝜏 = 150 and 590 laden with 220 𝜇𝑚 diameter spherical bubbles, with the 

results demonstrating the significant influence of gravity on bubble migration, collision 

and coalescence when compared with predictions for zero gravity flows. 

Upward and downward vertical channel flows of water at shear Reynolds numbers of 150 

and 590 with air bubbles of diameter 𝑑𝑏 = 110, 220 and 330 μm dispersed within the 



211 

 

flows were also investigated using the same model, with the influence of the lift force, 

bubble size, flow configuration and turbulence on microbubble coalescence considered. 

In the vertical channel, and as noted, bubbles migrate towards the wall in upflow and 

towards the channel centre in downflow, with the lift force dominant in the wall-normal 

direction and largely responsible for the lateral bubble dispersion. Features of the bubble 

distribution in such flows were well captured by the model, as was the impact of flow 

Reynolds number, with higher Reynolds numbers overridding the effects of lift and 

leading to less bubble accumulation in the centre of the channel or at the walls. 

Microbubble preferential concentration was found to increase with increasing bubble 

size. A greater number of bubble-bubble collisions and coalescences, but at a reduced 

efficiency of coalescence, were also observed close to the walls in vertical channel 

upflows, when compared to the downflow configuration, due partially to bubbles 

increasing the turbulence level in upflow but reducing it in downflow, but mainly due to 

the migration of bubbles to near-wall regions where bubble concentrations and 

turbulence levels are high. A greater number of collision and coalescence events also 

occurred at 𝑅𝑒𝜏 = 590 due to enhanced bubble mixing and interaction promoted by high 

levels of turbulence. 

Coalescence of bubbles plays a major role in bubbly flows, promoting a wide bubble size 

distribution. Overall, the results obtained for the above four-way coupled flows 

demonstrate the potential of the overall model for predicting microbubble coalescence. 

Previous studies of this kind have been mostly limited to bubble columns (Delnoij et al., 

1997; van den Hengel et al., 2005; Lau et al., 2014) with bubbles of millimeters in size. In 

addition, DNS- and LES-based studies in closed ducts of various geometries have also 

been performed, but these are mainly limited to two-way coupled simulations. In this 

work, detailed studies of microbubble coalescence in channel flows for a range of bubble 

sizes have been performed, highlighting, amongst other parameters, the influence of 

bubble diameter on coalescence. Of particular interest with the approach adopted is the 

deterministic evaluation of collision, and coalescence, based on the locally resolved 

turbulent flow field. This approach has clear advantages, in terms of detail and accuracy, 

over the macroscopic statistical models of coalescence based on averaged velocity and 

turbulence fields which are generally applied in the prediction of bubbly flows in the 
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chemical and process engineering, pharmacology, water treatment and food industries 

(Rodríguez-Rodríguez et al., 2015). 

A criteria for bubble breakup was also introduced into the bubble tracker, based on the 

approach of Martinez-Bazan et al. (1999) which best suited the Eulerian-Langrangian 

technique adopted in this work. For a bubble to break, the flow surrounding the bubble 

must be sufficiently turbulent to deform the bubble and overcome its surface restoring 

force. Upward and downward vertical channel flows of water at shear Reynolds numbers 

of 150, 590 and 2000 were examined, with air bubbles of diameter 𝑑𝑏= 110, 220 and 2000 

𝜇𝑚 dispersed within the flows. The ability of the model to predict breakup was evaluated, 

as well as the impact of the flow condition. However, studies revealed that the carrier 

phase turbulence kinetic energy dissipation rate, used to quantify bubble breakup in the 

model of Martinez-Bazan et al. (1999), was not sufficient within the flows investigated to 

cause bubble breakup. This was largely due to the high surface tension of air-in-water 

bubbles that restores any bubble surface deformation. Additional simulations in a vertical 

channel were therefore performed for the case of a refrigerant R134a flow at a shear 

Reynolds number of 1154 with dispersed refrigerant bubbles with a significantly lower 

surface tension. 

It was concluded that bubbles with low surface tension breakup more easily, as would be 

anticipated. Predictions of the bubble size distribution resulting from breakup events, 

which assume that when a primary bubble breaks two daughter bubbles with uniformly 

distributed volumes are formed, showed good qualitative agreement with previous 

experimental work (Randolph, 1969; Martinez-Bazan, 1998). The location of breakup 

events was found to be in the near channel wall regions where the turbulence kinetic 

energy dissipation rate is highest. It was found that more bubble breakups occurred for 

the 𝑑𝑏 = 220 𝜇𝑚 bubble size than for the 110 𝜇𝑚 and 2000 𝜇𝑚 bubbles also considered. 

This is because 110 𝜇𝑚 bubbles possess a high surface restoring force, whereas in the 

2000 𝜇𝑚 case this was due to the small number of bubbles within the flow (used to 

maintain a constant bubble volume fraction across the three sizes of bubble considered). 

Simulations including coalescence and breakup also demonstrated that both phenomena 

are favoured in upflow conditions, with the higher turbulence level found close to solid 

surfaces significantly impacting the extent of bubble interaction. Coalescence is dominant 
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at low turbulence levels and increases with decreases in bubble size, whereas breakup, 

which was only detected in the R134a flow, is favoured at high turbulence levels.  

The results given in previous chapters demonstrate the ability of the overall model to 

predict bubble coalescence and breakup and, ultimately, its usefulness for predicting 

flows that are of industrial relevance where interfacial area and bubble size distribution 

govern interfacial mass, momentum and heat transfer processes. 

7.2 Recommendations for Further Work 

Based on the conclusions of this study, there remains a number of areas that are worthy 

of further investigation. Recommendations for future work are presented below. 

LES is an attractive tool for complex flow modelling, and represents the next generation 

of CFD tool for use by industry, but in its application inaccuracies inevitably occur since 

it does not resolve all turbulence length and timescales. Although models are available 

that can predict sub-grid scale velocity fluctuations, these embody significant simplifying 

assumptions. Therefore, by using direct numerical simulation as the basis of bubbly flow 

predictions, with simple one-way through to complex four-way coupling with bubble 

coalescence and breakup, more realistic and accurate predictions will be obtained that 

reveal more insight into the physics of bubbly flows. DNS by definition solves the Navier–

Stokes equations numerically without any turbulence modelling, with the whole range of 

spatial and temporal scales of turbulence resolved. Results are of the highest accuracy, 

but computationally expensive, although the increasing availability of high performance 

computers makes their use feasible. 

The Lagrangian bubble tracking approach is less attractive when the volume fraction of 

bubbles is high. This approach was used in the present work to allow the tracking of 

individual bubbles within the flow, and to allow insight into bubble behaviour. However, 

in many practical applications the volume fraction of bubbles is significantly higher than 

considered in this work. Coupling LES with an Eulerian based method for predicting 

bubble behaviour should therefore also be pursued. Generally, the effects of interest in 

bubbly flows are best described in a Lagrangian framework, although at high volume 

fractions the computational effort required becomes significant. In pursuing Eulerian 
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approaches, however, the results of Lagrangian-based simulations, as described in this 

thesis, are of value, together with experimental data, in allowing their formulation and 

validation, for example in providing physical details of bubble dynamics and carrier fluid-

bubble interactions. 

Improvement of the Lagrangian bubble tracker described to account for multiple 

collisions, as opposed to the binary collisions assumed in the present work, is also 

required, although this will be very challenging to implement and will inevitably lead to 

increases in computational cost. 

Bubble breakup was difficult to obtain based on the model used in this work, and this may 

have been due, to some extent, to inaccuracies within the model. Additional studies are 

therefore required to precisely quantify the turbulence properties that are responsible 

for bubble deformation and ultimately bubble breakup, with such studies being of value 

in the reformulation of overall models of breakup. Likewise, the model employed in this 

work for bubble coalescence would benefit from further investigation, with detailed 

studies of coalescence again of benefit to improvements in model accuracy. The type of 

work necessary to provide such understanding is covered in the following point. 

During the breakup studies, it was found that breakup was only recorded in the highest 

turbulence kinetic energy dissipation regions within a flow (close to the channel walls). 

The LES predictions were made using a numerical mesh structured in such a way that the 

grid was finer in the wall regions to ensure resolution of flow behaviour close to solid 

surfaces. However, this meant that larger bubbles of 𝑑𝑏 = 2000 𝜇𝑚 tended to overlap 

control volumes thereby violating the point-wise particle assumption implicit in 

Lagrangian approaches of the type employed. Therefore, it would be useful to pursue 

studies of bubbly flows using interface tracking techniques, either with LES or DNS. Such 

techniques would allow the accurate prediction of the dynamics of bubbles of any size, 

and indeed shape. However, the limitation is that such approaches are computationally 

intensive and hence limited to orders of magnitude fewer bubbles than considered in this 

work. Nevertheless, their use would allow improvements in both Lagrangian and 

Eulerian approaches to modelling bubbly flows.  
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By introducing additional models for heat transfer and boiling within the overall flow 

solver it could be applied more broadly to the prediction of boiling flows, as encountered 

in many engineering processes and nuclear reactor thermal hydraulics. 

By changing the flow geometry from a channel flow to a pipe, as applied most frequently 

in industry, the overall model could be used to provide useful information about the 

physical mechanisms governing bubble-laden turbulent flows in such geometries. 

Indeed, applying the model more broadly to a wider range of flow types of practical 

relevance would be beneficial. 

Lastly, and perhaps most importantly, there is a paucity of detailed and reliable 

experimental data on bubbly flows, with very few studies concerning bubble coalescence 

and breakup. Detailed experimental studies in simple flow geometries on microbubble 

coalescence and breakup would be very useful, as would detailed measurements of both 

the continuous and dispersed phases, and would allow validation of predictions of 

models of the type developed in this work. Detailed experiments on single bubbles, pairs 

of bubbles and high volume fractions of bubbles would all be useful, not only in allowing 

validation of overall models, but also in justifying many of the sub-models embodied 

within them. 
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