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Abstract 

Natural disasters, especially volcanic eruptions, are hazardous events that 

frequently happen in Indonesia. As a country within the “Ring of Fire”, 

Indonesia has hundreds of volcanoes and Mount Merapi is the most active. 

Historical studies of this volcano have revealed that there is potential for a 

major eruption in the future. Therefore, long-term disaster management is 

needed. To support the disaster management, physical and socially-based 

research has been carried out, but there is still a gap in the development of 

evacuation models. This modelling is necessary to evaluate the possibility of 

unexpected problems in the evacuation process since the hazard 

occurrences and the population behaviour are uncertain.  

The aim of this research was to develop an agent-based model (ABM) of 

volcanic evacuation to improve the effectiveness of evacuation management 

in Merapi. Besides the potential use of the results locally in Merapi, the 

development process of this evacuation model contributes by advancing the 

knowledge of ABM development for large-scale evacuation simulation in 

other contexts. Its novelty lies in (1) integrating a hazard model derived from 

historical records of the spatial impact of eruptions, (2) formulating and 

validating an individual evacuation decision model in ABM based on various 

interrelated factors revealed from literature reviews and surveys that enable 

the modelling of reluctant people, (3) formulating the integration of multi-

criteria evaluation (MCE) in ABM to model a spatio-temporal dynamic model 

of risk (STDMR) that enables representation of the changing of risk as a 

consequence of changing hazard level, hazard extent and movement of 

people, and (4) formulating an evacuation staging method based on MCE 

using geographic and demographic criteria.  

The volcanic evacuation model represents the relationships between 

physical and human agents, consisting of the volcano, stakeholders, the 

population at risk and the environment. The experimentation of several 

evacuation scenarios in Merapi using the developed ABM of evacuation 

shows that simultaneous strategy is superior in reducing the risk, but the 

staged scenario is the most effective in minimising the potential of road 

traffic problems during evacuation events in Merapi. Staged evacuation can 

be a good option when there is enough time to evacuate. However, if the 

evacuation time is limited, the simultaneous strategy is better to be 

implemented. Appropriate traffic management should be prepared to avoid 

traffic problems when the second option is chosen. 
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Chapter 1  

Introduction 

1.1 Background 

Understanding volcanic risks is important in disaster risk reduction, because 

this is used to provide risk-oriented land use planning and ensure proper 

planning for disaster management (Zimmermann, 2005). Risk-oriented land 

use planning can be used efficiently to reduce volcanic risks by restricting 

hazardous living areas. However, particularly in Merapi, this is difficult in 

practice due to social, cultural and economic factors (Lavigne et al., 2008). 

In this area, people have been living for generations and so the Merapi 

environment is part of their life. The physical condition of the Merapi 

environment that is suitable for both farming and tourism, attracts people to 

live in this area, even though it is prone to volcanic disasters. More than 

50,000 people have been identified as continuing to live in the dangerous 

zone of Merapi, even though they have experienced several eruptions (Mei 

et al., 2013). Moreover, many people have rejected the relocation policy, 

even though the volcanic eruption damaged their settlements in 2010 

(Ayuningtyas, 2013; Nuzulia, 2014). Because applying land use planning is 

difficult in this case, stakeholders should provide the proper planning of 

disaster management to protect the lives of those at risk whenever disaster 

strikes. Evacuation is one important effort to save lives. 

Establishing volcanic risk management is complicated. This is not only due 

to the complexity of the hazard but also the complexity of the population’s 

responses. The volcanic hazard model is difficult to develop precisely due to 

the complicated volcanic systems which are controlled by the interactions of 

many processes (Sparks, 2003). Meanwhile, the population’s responses are 

complex social processes that are influenced by the socio-economic 

characteristics of the population. The impacts vary because volcanoes 

commonly produce various form of hazardous material during eruptions, 

which is spread as ash, a pyroclastics density current (PDC), or lava flow 

(lahars) (Felpeto et al., 2007). It is also difficult to predict occurrences. 

Although the likelihood of events might be predicted based on the 

observation of physical phenomena, such as seismic activity, the exact 

event itself is commonly difficult to forecast accurately in terms of its timing,  
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magnitude, the spatial extent of its impact, and who will be exposed to its 

effects.  

In order to understand and minimise the risk, Merapi has been explored in 

extensive studies from various points of view and using different 

methods/approaches, but less attention has been paid to evacuation 

modelling to improve the plan. This research ranges across the physical and 

social/human elements of the case study area. Considering the activities, the 

lesson learnt from the 2010 event (Mei et al., 2013), and also the complexity 

of both volcanism and the social processes associated with the disaster in 

Merapi, it is clear that providing a model for evacuation planning is very 

important. It can be used to identify any weaknesses in the plan as well as 

evaluate the plan for improvement. As the goal of the plan is to save human 

lives from the volcanic impact, the effectiveness of the plan is evaluated by 

its ability to achieve this goal.  

However, currently, there does not exist a method for measuring this 

effectiveness until the plan is tested by a real disaster. As a consequence, 

potential problems that might emerge during evacuation are difficult to detect 

– for instance, if there are insufficient transportation utilities to mobilize the 

population at risk. Losing time at this critical point might result in fatalities. 

There are many examples of emergency management failure due to 

unforeseen elements, such as in Merapi, Indonesia (Surono et al., 2012; 

Jenkins et al., 2013; Mei et al., 2013), El Chichón Volcano, Mexico (Tilling, 

2009), and Kelut, Indonesia (De Bélizal et al., 2012). In 2010, the eruption 

magnitude of Merapi suddenly increased significantly compared to its level 

during the 20th century (Mei et al., 2013). Similarly, the unusual eruption 

behaviour of Kelut Volcano in 2007 caused misunderstandings between the 

authorities and the population during an emergency situation (De Bélizal et 

al., 2012) while, the eruption of El Chichón Volcano in Mexico in 1982 

caused the deaths of about 2,000 people (Tilling, 2009). 

Developing a computer simulation of the evacuation process is one 

approach that can help to evaluate an evacuation plan and potentially 

minimise such failures (De Silva and Eglese, 2000). In the case of volcanic 

evacuation, people can display highly variable and uncertain behaviour 

during emergency situations (Mas et al., 2012) that should be considered 

when developing simulations; therefore, this requires an appropriate model. 

On the other hand, the spatial dynamics of hazards need to be taken into 

account in the modelling. To do so, many related works on evacuation 

modelling and simulation successfully involve the spatial attributes that can 
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be included in Geographic Information Systems (GIS), but pay less attention 

to human behaviour (Pidd et al., 1996; Cova and Church, 1997; Silva and 

Eglese, 2000; Church and Sexton, 2002; Uno and Kashiyama, 2008). The 

agent-based model (ABM) is considered an adequate approach not only for 

simulating the non-linearity of the social system but also for integrating the 

spatial variables into the simulation (Srbljinović and Škunca, 2003; Brown et 

al., 2005; Crooks and Castle, 2012; Malleson et al., 2014). The general aim 

of this thesis is to develop and evaluate an ABM of a volcanic evacuation to 

improve the effectiveness of evacuation management in Merapi. 

1.2 Study Area 

1.2.1 Overview of Merapi: Location and History 

Mt. Merapi (Figure 1.1) is located at 110o 26.5’ E, 7o32.5’ S in Java Island, 

Indonesia. Merapi spans four regencies of two provinces including Sleman 

(Yogyakarta), Magelang, Boyolali and Klaten (Central Java). Those 

regencies are all densely inhabited, but Sleman is the most densely 

populated of all. Based on the latest data from Bureau of Statistics (BPS) the 

total population of Sleman is 1,180,479 (1,901 people/km2), Magelang is 

1,245,496 (1,123 people/km2), Boyolali is 950,531 (912 people/km2), and 

Klaten is 1,300,000 (1,768 people/km2). Eruptive activities have been 

experienced by residents since Merapi was first settled. 

 

 

Figure 1.1 The location of Merapi volcano. 
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This volcano developed through several phases of geological processes. 

Newhall et al. (2000) explained the development phase of Mount Merapi 

from the formation and destruction of Proto-Merapi in detail. Merapi was 

formed from volcanic eruptions thousands of years ago with a peak shift 

following the initial development. The phases of development began with the 

establishment of Gunung (Mount/Hill) Gendol erosion located 20 km west-

southwest of Merapi (Newhall et al., 2000) near Gunung Sari, Gunung Ukir 

and some other hills. Those hills were assessed by van Bemmelen (1949) 

as consisting of lava deposits from Old Merapi cone, collapsed into a hill due 

to gravity failure from the west side. Citing sources of archeology, van 

Bemmelen stated that the collapse of Merapi host occurred in 1006. 

However, more reliable evidence indicates that these hills are the eroded 

remnants of the pre-Merapi volcanic area. 

The next phase was the formation of the Mountain and Gunung Turgo 

Plawangan which rose as high as 375 m above the pyroclastic deposits 

covering most of the south side of Merapi. The hills consist of variable 

weathered, mostly basaltic lava flows, and apparently a single mass that is 

now split by Kali Boyong. Some experts assume that these hills formed from 

the old Merapi. As an alternative interpretation, Newhall et al. (2000) suggest 

that these hills are the eroded remnants of the prominent initial cone of 

Merapi, referred to as "Proto-Merapi". The lava bedding direction is slightly 

to the north, toward modern Merapi, so that these hills may be a block that 

rotated slightly during the collapse due to gravity failure from the Proto-

Merapi. The collapse of the Proto-Merapi due to gravity failure left steep 

slopes on both sides at the base of the structure. After that, Lava 

Batulawang, the deposits of an Old Merapi, was formed (van Bemmelen, 

1949). Lava Batulawang, as lava of the top of Old Merapi, ranges from 

basalt to andesitic lava (Bahar, 1984). Lava forms most of the eastern and 

northern slopes of Merapi, also the Old Merapi. Another hill often referred to 

as part of the development of Merapi is Gunung Bibi: a small but 

conspicuous cone or dome-shaped hill, situated high on the northeast side 

of Old Merapi. 

 

1.2.2 Eruptive Activities of Merapi  

Merapi is one of the most active volcanoes in Indonesia with a long history of 

violent activities (Lavigne et al., 2000; Voight et al., 2000). The development 
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of Merapi has been followed by a series of disasters as the human 

population in the vicinity of the volcano has grown. It is recorded that the 

eruption in 1006 AD had severe impacts on civilization of the Mataram 

Kingdom in Central Java (Newhall et al., 2000). The dangerous activities are 

likely to continue in the modern era as recorded in the following Table 1.1. 

This table shows that there are many casualties in most of the events, but 

the highest number of casualties was recorded for the 1930 eruption. 

Moreover, Merapi has potential to erupt violently in the future; therefore, 

effective disaster management is needed. A study of two centuries of 

eruptive activities revealed that if the recurrence time of eruptions still 

applies in Merapi a large explosive event is possible in the future (Voight et 

al., 2000). As the population in the vicinity of Merapi is growing greatly, the 

recurrence of a big eruption can result in high casualties if not well managed. 

Therefore, it is important to provide an adequate disaster management plan 

to reduce destructive impacts. Evacuation management is part of the 

disaster management which is important in the emergency phase of a 

disaster. The research provided in this thesis can contribute to improving the 

evacuation management in Merapi. 

Table 1.1 Records of eruption events of Merapi. 

Eruption Deaths Injuries 

1832 32  - 

1872 200  - 

1904 16  - 

1920 35  - 

1930 1369  - 

1954 64   57  

1961 6  - 

1969 3  - 

1976 29  2  

1994 66  6  

1997 - - 

1998 - - 

2001 - - 

2006 2  - 

2010 354  240  

Sources: (BNPB, 2010; BNPB, 2014). 
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1.2.3 2010 Eruption of Merapi  

The most recent eruption (2010), recorded as the biggest eruption for a 

century, was surprisingly unpredicted (Surono et al., 2012). The eruptive 

activities at that time can be divided into five phases with respect to the 

dynamics of the hazard zone (Mei et al., 2013). The unusual activity of 

Merapi triggered the decision to increase the evacuation zone from a radius 

of 15 km to 20 km (Surono et al., 2011). The volcanic activities started to 

increase (low level) on 20 September 2010, reached the highest level 

between 25 October 2010 and 3 December 2010, peaking on 4 November 

(Figure 1.2), and decreased to a low level at 3 December 2010 (Mei et al., 

2013).   

 

 

Figure 1.2 The highest eruption on 4 November 2010 (source: 
tribunews.com). 

 

This eruption not only resulted in extensive physical changes of Merapi but 

also a high number of casualties (Table 1.2). Physically, this eruption 

changed the geomorphological structure (Saepuloh et al., 2013) and 

geological character of Merapi (Gertisser et al., 2012) affecting the potential 

flow direction of pyroclastic or lahars flow (Figure 1.2). Consequently, this 

eruption has changed the spatial extent of the hazard map (compare Figure 

1.2a and Figure 1.2b) (BNPB, 2008; BNPB, 2011). Therefore, it can be 
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predicted that the southern flank of Merapi (area of Sleman) will experience 

more potential impact from the next eruption than was the case during 

previous events. 

 

Table 1.2 Distribution of casualties and people at risk during eruption 
2010. 

No. Location 
Deaths 

Injuries Evacuee 
Burned Not Burned Total 

1 Yogyakarta 190 62 252 98 34,113 

 
1.1 Sleman 190 62 252 98 27,127 

 
1.2 KulonProgo 

    
1,574 

 
1.3 KotaYogyakarta 

    
1,142 

 
1.4 Bantul 

    
1,961 

 
1.5 Gunungkidul 

    
2,309 

2 Central Java 7 95 102 142 13,373 

 
2.1 Klaten 7 29 36 30 3,909 

 
2.2 Boyolali 

 
10 10 37 34 

 
2.3 MagelangRegency 

 
56 56 75 8,971 

 
2.4 MagelangCity 

    
28 

 
2.5 Temanggung 

    
359 

 
2.6 SemarangRegency 

    
72 

  
Total 197 157 354 240 47,486 

Source: BNPB (BNPB, 2010) 

 

 

Figure 1.3 Hazard model. (a) Before 2010 eruption (updated 2002), (a) 
after 2010 eruption (updated 2011). 
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The eruption not only killed a high number of people but also destroyed the 

settlements in areas surrounding the volcano (Figure 1.4). It is estimated 

that 3,245 houses were damaged by the eruption (Juliani et al., 2011). The 

subsequent relocation strategy enacted by the government was needed both 

to replace these damaged settlement areas and to mitigate future volcanic 

disasters. The government built 2,132 houses to relocate people whose 

houses were destroyed by the eruption (Maly et al., 2015). 

 

 

Figure 1.4 The example of remains of houses damaged by the 2010 
eruption (source: author documentation). 

 

1.2.4 Sleman Regency: Where the Population Meets the 

Hazardous Environment 

This research will focus on the area of Sleman Regency which is located in 

the southern flank of Merapi (Figure 1.3) given this area’s experience of the 

highest casualties in 2010 eruption (Table 1.2) and the likely potential 

direction of a future hazard. This area is administratively part of Yogyakarta 

Special Province, part of Java Island of Indonesia. Sleman is geographically 

located between 107° 15' 03" and 107° 29' 30" longitude, 7° 34' 51" and 7° 

47' 30" latitude. Sleman covers 57,482 hectares or 574.82 km2 or about 
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18% of Yogyakarta Province area. Administratively, this region consists of 

17 districts, 86 villages and 1,212 hamlets with a total population of about 

1,066,673 people in 2010 (BPS, 2015). 

 

 

Figure 1.5 The area of Yogyakarta Special Province (DIY) 
superimposed with hazard map. 

 

1.3 Literature Review 

This section provides an overview of the background concept of the 

research and is organized as follows: the first part is a conceptual 

description of disaster management is presented to provide a broader 

perspective of these activities and position the roles related to evacuation in 

disaster management. Next comes a focus on evacuation planning and the 

possibility of integrating spatial data into ABM. It closes with a review of the 

related work on evacuation modelling using ABM. 
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1.3.1 Disaster Management and Evacuation Planning 

The term “disaster management” derives from the term “management”. This 

is defined as a comprehensive approach to reducing the adverse impacts of 

particular disasters (natural or otherwise) that brings together into a disaster 

plan all of the actions that need to be taken before, during, immediately after, 

and well after the disaster has occurred (Park and Allaby, 2013). 

Management itself is defined as the process of dealing with or controlling 

things or people (Stevenson, 2010). Management consists of many 

activities, including planning and decision-making, organizing, leading and 

controlling resources to achieve certain goals (Griffin, 2012).  

Coppola (2015) described comprehensive disaster management as being 

based upon four distinct components: mitigation, preparedness, response, 

and recovery. Although a range of terminology is often used to describe 

them, effective disaster management utilizes each component in the 

following procedures (Figure 1.4) (Cova, 1999): (1) Mitigation. Involves 

reducing or eliminating the likelihood and/or consequences of a hazard. 

Mitigation seeks to “treat” the hazard so that it impacts on society to a lesser 

degree. (2) Preparedness. Involves equipping people who may be impacted 

by a disaster, or who may be able to help those impacted, with the tools to 

increase their chance of survival and minimize their financial and other 

losses. (3) Response. Involves taking action to reduce or eliminate the 

impact of disasters that have occurred or are currently occurring, in order to 

prevent further suffering and/or financial loss. Relief, a term commonly used 

in international disaster management, is one component of response. (4) 

Recovery. Involves returning victims’ lives back to a normal state following 

the impact of a disaster. The recovery phase generally begins after the 

immediate response has ended, and can persist for months or years 

thereafter. 
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Figure 1.6 Disaster management cycle (Cova, 1999). 

 

To understand disaster management, it is important to describe the concepts 

of hazard, vulnerability, disaster, and risk. Hazards refer to a potential harm 

which threatens our social, economic, and natural capital at a community, 

regional, or national scale. Hazards may refer to many types of natural, 

technological, or human-induced events (Pine, 2008). To analyze a hazard, 

one must determine exactly how that hazard came to exist within that 

specific community or country. Each hazard will be different in this respect, 

due to climate, geography, settlement patterns, and regional and local 

politics and stability, among many other factors. Disaster managers 

commonly create what is called a risk statement, which serves to summarize 

all of the necessary information into a succinct report for each identified 

hazard (Coppola, 2015). 

Disasters are the inevitable consequence of hazards. Disasters of all kinds 

happen when hazards seriously affect communities and households and 

destroy, temporarily or for many years, the livelihood security of their 

members. A disaster results from a combination of hazard risk conditions, 

societal vulnerability, and the limited capacity of households or communities 

to reduce the potential adverse impacts of the hazard (Baas et al., 2008). 

Disaster risk is usually described as a function of the hazard and the 
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vulnerability context, including the resilience (coping capacity) of the societal 

system under threat (Baas et al., 2008). 

The concept of hazard has been widely described, while the concept of 

vulnerability remains debatable (Scaini et al., 2014). Blaikie et al., (2014) 

explained that vulnerability involves the characteristics of a person or group 

and their situation that influence their capacity to anticipate, cope with, resist 

and recover from the impact of a natural hazard. Other studies define 

vulnerability as the potential for exposed elements to be directly or indirectly 

damaged by a given hazard (Scaini et al., 2014). The definition offered by 

Blaikie et al. (2014) clearly describes the role characteristics of the 

population who are coping with disaster.  

Both hazard and vulnerability are important factors in risk assessment. Risk 

Assessment is the process of making a decision and recommendation 

regarding whether the existing risks are tolerable and the present risk control 

measures are adequate and, if not, whether alternative risk control 

measures are justified or will be implemented. These activities form part of 

complex processes in disaster risk reduction (Figure 1.5). Risk assessment 

incorporates the risk analysis and risk evaluation phases (Kingma & van 

Westen, 2011). Furthermore, Kingma and van Westen note that risk 

assessment forms part of risk management, with the main purpose of 

providing information on risk reduction activities. The detailed processes of 

risk analysis and assessment are described in Figure 1.6 (UNISDR, 2002). 

The figure emphasizes the precise role of these risk factors. It consists of 

activities designed to identify both the hazard and the vulnerability of the 

elements at risk. Hazard identification is used to determine physical, social 

and geographic characteristics, intensity, and the probability of occurrence, 

while vulnerability/capacity identification is used to define susceptibility and 

capacity. Based on this information, an estimation of the level of risk can be 

provided. In both Figure 1.4 and 1.5, evacuation planning is an integral part 

of the preparedness in order to mitigate the consequences of hazard, thus 

reducing the level of risk. 
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Figure 1.7 Framework for disaster risk reduction (UNISDR, 2002). 

 

1.3.2 ABM for Evacuation Modelling and Planning 

Evacuation planning is an important aspect of disaster management, so a 

reliable plan should be prepared, with the purpose of allocating resources 

and responsibilities effectively in order to evacuate populations at risk. 

Several components should be established to prepare for evacuation 

planning, namely: 1) a crisis condition that requires evacuation; 2) the 

populations at risk; 3) evacuation routes and destinations; and 4) the 

resources and time required to evacuate populations at risk (MCDEM, 

2008). 

However, Tomsen et al. (2014) explained that evacuations are typically 

complex, and so lead to uncertainty about which people wish to be 

evacuated and which wish to stay. This makes it difficult to estimate the 
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duration of the evacuation process as well as the estimated resource 

allocation for this. The population’s evacuation is a social process that is 

dependent on numerous variables, including the characteristics of the 

hazard, the geographical and environmental conditions, and the behaviour of 

people.  

Since the social process is a non-linear, dynamic system, studies relating to 

this categorize it as a complex, adaptive system (Srbljinović and Škunca, 

2003). It can be simulated using symbols manipulation using programming 

languages (Troitzsch, 1997). Many years ago, social scientists sought to 

understand a certain social process in a simulated environment (Gilbert, 

2008). Simulation in this field means running a simplified social system that 

may occur in the real world. This simulation is important for several reasons, 

namely: (1) to obtain understanding, (2) to predict the result of particular 

social processes, (3) to substitute human capabilities, (4) training, (5) 

entertainment, and (6) to assist discovery and formalization (Gilbert and 

Troitzsch, 2005).  

There are many techniques that are suitable for social process simulation, 

including cellular automata, artificial intelligence and agent-based modelling. 

However, ABM is the only one that can accommodate the high complexity of 

the system and instantiate interactions between agents at the same or 

different levels (Gilbert and Troitzsch, 2005). It can be used to model social 

entities, together with their behaviors, social attributes, and the properties 

that emerge from their interaction. 

ABM is defined as a computational method that enables researchers to 

create, analyse, and experiment with models composed of agents that 

interact within an environment (Gilbert, 2008). This term is used 

interchangeably with ABS (Agent-based Systems) or IBM (Individual-based 

Modelling) (Macal and North, 2005). Macal and North (2005) recognised a 

complete term of modelling and simulation based on this technique with 

ABMS (Agent-based Modelling and Simulation). To provide a better 

understanding of the definition, it is important to explain each concept of 

ABMS. Agents (Figure 1.6) can be separate computer programs or take the 

common form of distinct parts of a program that are used to represent a 

social actor, which can be individual people, organizations such as firms, or 

bodies such as nation-states (Gilbert, 2008). Modelling is the act of creating 

a simplified representation of a system – an ‘abstraction of reality’ – for a 

particular purpose, such as to describe it, understand it, or derive some 

properties from it (Press, 2004; Demeritt and Wainwright, 2005) and a 
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simulation is defined as the imitation of a system using a prototype of the 

system to find the flaws and problems inherent in the system and so rectify 

them (Bandyopadhyay and Bhattacharya, 2014).  

 

Figure 1.8 The agent (Macal and North, 2005). 

 

1.3.3 Spatially Realistic ABM (Spatial ABM) 

Providing a spatially realistic environment is required in most ABM, which 

integrates both social and environmental systems. Therefore, the integration 

of GIS into ABM is required (Brown et al., 2005). The integrated model is 

called spatial agent‐based modelling (Brown and Xie, 2006) or a 

georeferenced agent-based model (Pons et al., 2014). The conceptual 

integration of both GIS and ABM is provided successfully by (Brown et al., 

2005), where GIS is used as the spatial data model representation and ABM 

as the processes model. This approach can be used to model and simulate 

complex systems and present the results of the spatial processes in the form 

of spatiotemporal information. 

Particularly in evacuation modelling, there are various types of spatial 

representation to choose from, with various considerations. The spatial 

environment/object can be modelled as vector data or raster data 

(Sugumaran and DeGroote, 2010). The vector data model represents the 

real world as a point, line, or polygon geometry while, in raster data, it can 

be represented as a regular two-dimensional grid with a specific spatial 

resolution.  



- 16 - 
 

These data models have advantages and disadvantages when visualizing 

the real world so, when choosing a model, it is important to ensure that it is 

appropriate for the specific application in mind. Moreover, each data model 

has a particular suitability for modelling geographical objects (Sugumaran 

and DeGroote, 2010). A vector is very suitable for representing discrete 

human objects, such as roads, buildings, and agricultural landscape. On the 

other hand, the raster is commonly used to model continuous phenomena 

with various values of data across space. Marrero et al. (2010) used a vector 

model to develop an evacuation model, where the road networks are 

represented as lines, the population as polygons and points, and the hazard 

zone as a polygon. Based on the above explanation, the population data, 

road networks and shelters can be appropriately represented as a vector. 

Meanwhile, the hazard zonation is suitable to be mapped as a raster to 

provide a better representation of the hazard level distribution. 

 

1.3.4 ABM Development Process 

There are various methods for developing ABM, and no one method has 

been recognised as the best approach (Gilbert and Terna, 2000). Macal and 

North (2010) explain that an ABM should contain three main elements: 

agents, relationships and environment. ABM can be developed by means of 

several steps (Macal and North, 2006): (1) identifying its purpose and the 

questions that are intended to be answered; (2) systematically analysing the 

system, identifying components and component interactions, relevant data 

sources and so on; (3) conducting the experiment; and (4) understanding the 

robustness of the model. Meanwhile, Salgado and Gilbert (2013) use three 

steps in developing ABM including specification-formalisation, modelling - 

verification - experimentation, calibration - validation. More simply, Crooks et 

al. (2018) formulate three steps in developing ABM including preparation 

and design, model implementation, evaluating the model.  

Although the formulation of the development steps varies, they share similar 

tasks in their steps. The development steps by Crooks et al. (2018) can be 

used to describe the similarities of the method. The preparation and design 

step begins with formulating a research question which will be answered 

with the ABM and the purpose of building the ABM. The step one by Macal 

and North (2006) “identifying its purpose and the questions that are intended 

to be answered” is covered in this step which is also similar to the first step 

by Salgado and Gilbert (2013) “specification-formalisation”. Designing the 

abstraction of the model is also needed in the first step (Crooks et al., 2018). 
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In other words, the modeller should specify the agents with their attributes 

and behaviour rules that are involved in the model and the environment 

where the agents are living (Salgado and Gilbert, 2013).  

The model implementation step translates the designed model into a 

computer program (Crooks et al., 2018). There is no generic model in ABM; 

therefore, as every ABM has a unique purpose and specification, the 

researcher should build their own model. There are various building toolkits 

that can help a modeller build their model and each one has a different 

capability and specification (Kravari and Bassiliades, 2015; Crooks et al., 

2018). It is very common to make many errors when writing a complex 

computer program. Therefore, Salgado and Gilbert (2013) put the 

verification step together in the second step. Verification is the process of 

checking that the program works as it was planned or ensuring the model 

implementation corresponds to the model design (Salgado and Gilbert, 

2013; Crooks et al., 2018). Crooks et al. (2018) put the verification process 

as part of the step of evaluating a model along with calibration and validation 

processes. 

The last step of ABM development processes is model evaluation (Crooks et 

al., 2018). The model implementation and evaluation is an iterative process 

to make sure that the model runs as expected. There are three ways to 

evaluate the model including verification, calibration and validation (Crooks 

et al., 2018). The verification process has been explained previously, while 

calibration and validation are unseparated processes of the evaluation 

process. Calibration aims to adjust the parameters of the model in order to 

produce a valid outcome (Klügl, 2008) or reach the best fit to historical data 

(O’Sullivan, 2004). On the other hand, validation aims to demonstrate that 

the ABM is sufficiently accurate/good in modelling the real system (Salgado 

and Gilbert, 2013; Crooks et al., 2018). There are four techniques in 

conducting validation including face validation, retrodiction, prediction and 

docking (Hawe et al., 2012). Face validation is conducted by using human 

intuition (experts) to assess whether the ABM behaves reasonably (Hawe et 

al., 2012; Crooks et al., 2018). Face validation is a qualitative approach 

(Crooks et al., 2018), while the others tend to be quantitative. Retrodiction is 

conducted by testing the ABM prediction using historical datasets, whereas 

prediction is conducted by comparing the prediction with the real event or 

field experiment (Hawe et al., 2012). Meanwhile, docking is comparing the 

outcome from the ABM with another validated model that might include two 
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different languages or different developers (Hawe et al., 2012; Crooks et al., 

2018). 

 

1.3.5 Behaviour of People in Evacuation and Modelling Approach 

Evacuation simulation is important in supporting evacuation management 

(De Silva and Eglese, 2000). Simulation can range from 'pen and paper' to 

real-life exercises. However, real-life exercises can be expensive and 

therefore, in silico simulation is beneficial (Hawe et al., 2012). In addition to 

minimising the cost, simulation in silico can reproduce scenarios that may be 

impossible to conduct in real-life due to their high risk or because they are 

environmentally damaging. In evacuation management, computer simulation 

can be used to reproduce various emergency scenarios and evaluate the 

ability of particular plans to minimise the risks. For example, De Silva and 

Eglese (2000) show that evacuation simulation can be used to test scenarios 

involving contingency plans. This simulation integrates GIS and a simulation 

model to develop simulation-based spatial decision support for evacuation 

planning. Evacuation from various types of hazard has been modelled in 

various approaches based on the evacuees’ behaviour (see Chapter 2 for 

more details). The modelling ranges from macroscopic to microscopic, 

depending on the evacuees’ behaviour (see the model).  

There are several approaches used to model evacuation on a microscopic 

scale, such as ABM (Mas et al., 2012; Wise, 2014; Ukkusuri et al., 2017), 

cellular automata (Zia and Ferscha, 2009; Wang et al., 2014), 

microsimulation (Chen, 2012), the Particle Swarm Optimisation algorithm 

(Yang et al., 2012), and game theory (Lo et al., 2006). However, based on 

the literature survey by Wang et al. (2016), which compared seven modelling 

approaches, ABM is more efficient at representing human behaviour. 

Macroscopic models do not take into account human behaviour or the 

interaction between the agents and are therefore unable to capture the 

variability within individuals’ behaviour (Alaeddine et al., 2015; Yang et al., 

2015). On the contrary, individual behaviour and interactions are considered 

in the microscopic model (Alaeddine et al., 2015; Yang et al., 2015). 

Between the two lies the mesoscopic model, which comprises both micro 

and macro output (Silva, 2001). This model is able to represent evacuees as 

individual entities/agents but unable to model their behaviour and 

interactions (Alaeddine et al., 2015). The evacuation model employed in this 

thesis used the microscopic approach, where evacuees are expressed as an 

individual entity together with their behaviour and interaction ability. ABM is 
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one of the most powerful tools for developing the simulation of an evacuation 

in an emergency, based on the microscopic approach. ABM is applied to 

simulate emergency situations arising due to various hazards, as presented 

in Table 1.3. The table presents an overview of the application of ABM for 

evacuation simulation based on some points of view, including the modelling 

tool used, the agent’s decision-making rules, the spatial scale, and the 

agent’s population generation method. 

There are a number of tools with a range of capabilities available for 

developing ABMs; for example, AGlobe, Cougaar, Repast, CybelePro, 

SESAM, AnyLogic, GAMA, and NetLogo (Kravari and Bassiliades, 2015). 

Abar et al. (2017) surveyed a large number of ABM platforms for developing 

ABMs with more comprehensive comparison criteria. Here, 85 agent-based 

toolkits were compared to help the user select the most appropriate for their 

needs. Based on the results from this survey, AnyLogic was selected and 

used in this thesis. It has a high degree of scalability and can be used across 

a wide range of applications. Importantly, this tool meets the current 

requirement to involve the spatial environment within the simulation. 

Modelling based on agent decision rules can be categorised into either 

simple or complicated (Sun et al., 2016). Simple decision-making and 

behavioural rules can be represented with simple expressions; for example, 

“if-then” rules, or some straight-forward mathematic equations. Meanwhile, 

complicated rules offer more advanced approaches, such as linear 

programming, decision trees, multivariate regression, the threshold rule and 

Bayesian networks. An example of a simple decision rule is provided by Mas 

et al. (2012), where each agent is assigned a decision preference based on 

the probability distribution generated by the survey. Meanwhile, an a 

example of complicated rule application for evacuation simulation is provided 

by Wise (2014), who developed a simulation of an evacuation from wildfire, 

where a decision tree is used to develop the agent decision rule. The 

decision tree provides a mechanism for action selection when the agent 

faces an emergency condition. Crooks et al. (2018) categorise the approach 

on modelling human behaviour into two categories: a) the mathematical 

approach, for example including probabilistic and threshold models, and b) 

conceptual cognitive models, for example the Belief-Desire-Intention (BDI) 

model.  

Based on spatial scale, the simulation of emergencies varies from buildings 

(e.g. fires (Shi et al., 2009)) to regions (e.g. earthquake (Bernardini et al., 

2014), wildfire (Wise, 2014), hurricane (Zhang et al., 2009) and tsunami 
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(Mas et al., 2012)). Hawe et al. (2012) provide a comprehensive review of a 

large-scale emergency simulation using ABM. The term “large-scale” can 

refer to the number of agents or the size of the environment. In this thesis, 

the ABM applied “large-scale” in terms of the size of the area covered in the 

simulation.  

ABMs commonly apply either random or synthetic population generation. A 

synthetic population can mimic the real population but only few of them use 

a synthetic population, such as a wildfire crisis (Wise, 2014), while most of 

them use a random agent to provide the population of agent (see Table 1.3). 

More complex agent populations simulated by these models should 

implement synthetic populations to imitate real world heterogeneity (Cajka et 

al., 2010; Malleson and Birkin, 2012; Namazi-Rad et al., 2014). Volcanic 

disasters impact on cities and regions, so a complex population composition 

should be involved. It is important to involve a synthetic population in the 

model utilised, with individual behaviour regarding making decisions and 

their interactions. 
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Table 1.3 Comparison of the existing evacuation models. 

No Model Hazard Spatial 
Scale 

Population Generation Hazard 
Modelling 

Agents Evacuation 
Decision Modelling 

1. Agent-based emergency 
evacuation simulation with 
Individuals with disabilities 
in the population 
(Christensen and Sasaki, 
2008) 

Building damage-
related hazard 

Building The population number 
is limited to the building 
occupiers. The 
population 
characteristics were 
based on real data. 

There is no 
specified hazard 
modelling used 

Decision of movement is 
using consecutive 
binomial choices (move 
or not move) 

2. Agent-based evacuation 
model of large public 
buildings under fire 
conditions (Shi et al., 2009) 

Fire Building Random generation of 
building occupants 

Fire dynamics 
simulator 

Rule reasoning with 
numerical calculation of 
environmental factors 
using a weighted linear 
combination equation 

3. Agent-based modelling for 
household level hurricane 
evacuation (Zhang et al., 
2009) 

Hurricane City/region This is experimental 
research and no  
population mimicking,  

No hazard 
modelling used 

All agents assumed to 
evacuate 

4. Agent-based simulation of 
building evacuation: 
Combining human 
behaviour with predictable 
spatial accessibility in a fire 
emergency (Tan et al., 
2015) 

Fire Building Agent population is 
limited to the building 
occupier.  

No hazard 
modelling 

Evacuees chose exit 
door based on pre-
defined knowledge level. 
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Table 1.3 Continued … 

No Model Hazard Spatial 
Scale 

Population Generation Hazard 
Modelling 

Agents Evacuation 
Decision Modelling 

5. Agent-based simulation of 
the 2011 great east Japan 
earthquake/tsunami 
evacuation: An integrated 
model of tsunami inundation 
and evacuation (Mas et al., 
2012) 

Tsunami Region The population agents 
were divided into two 
groups (car passengers 
and pedestrian 
evacuees), synthetic pop 
not used in the model.  

Numerical 
simulation was 
used to model 
the tsunami 
propagation. 

Evacuation start time 
was generated from the 
survey. 

6. An agent-based model of a 
multimodal near-field 
tsunami evacuation: 
decision-making and life 
safety (Wang et al., 2016) 

Tsunami Region The population was 
divided into two classes 
(resident and tourism) 
with different 
characteristic of 
evacuation decision 
based on the awareness. 

Tsunami 
evacuation map 
was used. 

Each agent was 
assigned a predefined 
rule to select the 
evacuation mode.  

7. Integrating decentralized 
indoor evacuation with 
information depositories in 
the Field (Zhao et al., 2017) 

Building damage-
related hazard 

Building A numbers of agents 
were generated 
randomly. 

No hazard 
modelling used. 

Agent decides to 
evacuate after the 
emergency alert, and 
delays for individuals or 
community purposes are 
not considered. 
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Table 1.3 Continued … 

No Model Hazard Spatial 
Scale 

Population Generation Hazard 
Modelling 

Agents Evacuation 
Decision Modelling 

8. ABM for urban evacuation 

(Chen and Zhan, 2008) 

Generic Hazard City Population generated in 

household units that 

were represented as 

vehicle units. 

No hazard 

model used. 

Each driver agent 

assigned with behavior in 

selecting the destination 

and route. All 

households are assumed 

to evacuate. 

9. ABM discrete events 

simulation of large-scale 

disaster evacuation (Na and 

Banerjee, 2014) 

Generic Hazard Region Population generated as 

patient agents. There 

was no adequate 

explanation on how to 

generate this. 

No hazard 

model used. 

There is no clear 

explanation of the 

evacuation decision of 

the evacuees. 

11. Wildfire crisis (Wise, 2014) Wildfire Region Synthetic population was 

used. 

Fire propagation 

used to 

generate 

hazard. 

Agent has the ability to 

decide whether and how 

to evacuate based on 

decision tree. 
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1.4 Aims and Objectives 

The general aim of this thesis is to develop an ABM of volcanic evacuation 

to improve the effectiveness of evacuation management in Merapi. Several 

objectives were drawn up to achieve this overarching aim, including:   

Objective 1: To design a framework volcanic evacuation model using spatial 

ABM simulation. 

 

Objective 2: To develop and validate a spatial ABM of volcanic evacuation 

and explore the potential use of this model. 

 

Objective 3: To use the spatial ABM of volcanic evacuation to experiment 

with improving the effectiveness of evacuation management in Merapi. 

 

These objectives were reached by developing a conceptual framework of the 

evacuation model, followed by the development of an experiment to create a 

simultaneous and staged evacuation scenario. This application will provide 

both practical and theoretical outcomes. The practical outcome is reached 

by increasing the evacuation planning’s effectiveness, whereas the 

theoretical outcome is expected to emerge after evaluating the results and 

discussing the existing model. Consequently, it can highlight the new 

conceptualization of knowledge of volcanic evacuation modelling using 

spatial ABM. The simulation of various scenarios will produce a population 

risk state which can be analysed using GIS. An exploration of the results as 

well as a comparison between scenarios will enrich the understanding of 

crisis management. Based on the above objectives, the following research 

questions were formulated: 

1. How can ABM evacuation simulation be used to support evacuation 

management? 

2. What are the requirements for developing an ABM of volcanic 

evacuation? 

3. What are the factors influencing the evacuation decision of people? 

4. Does ABM make it possible to model individuals’ evacuation 

decisions? 

5. What is individual risk and how can this be modelled in ABM? 
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6. How can ABM simulate the spatiotemporal dynamics of risk? 

7. How can ABM evacuation simulation be used to improve evacuation 

management? 

8. Does a staged evacuation produce a better outcome in terms of 

reducing risk compared with a simultaneous evacuation strategy? 

9. Does a staged evacuation strategy produce a better outcome in terms 

of reducing road traffic congestion compared with a simultaneous 

evacuation strategy? 

10. Which factors can be used to plan a staged evacuation? 

 

1.5 General Methodology 

This section presents an overview of the approach adopted to achieve the 

objectives. A general overview of the research is described followed by the 

operational framework, which presents the technical flow of the research 

design. The dataset required for the research design is also reviewed to 

complete the description. An overview of the simulation method is then 

provided  to give a logical flow to the model.  

 

1.5.1 Overview of the Method 

The methodology of this research relies strongly on ABM simulation based 

on the literature review and empirical study complemented by GIS analysis 

for the preparation and output analysis. The simulation was based on the 

assumption that risk perception will influence the population’s behaviour 

regarding decision-making during crises. This relates to the probability of 

people being impacted by the disaster. Behaviour is commonly influenced by 

the social and demographic characteristics of people. Moreover, spatial and 

environmental features, such as road networks, evacuation shelters’ location 

and accessibility can also contribute to populations’ capacity to cope with 

disaster.  

The general concept of the ABM simulation is provided in Figure 1.9. In the 

ABM simulation, the synthetic population agents will be generated from 

census data, with a spatial distribution estimation using settlement areas 

drawn from a land use map. Regarding the evacuation decision-making 

processes, the spatial and environmental factors will be taken into 

consideration. A questionnaire survey with area sampling will be used to 

identify the household preferences regarding the decision-making processes 
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during evacuation. The identified result in the statistical data can then be 

used to characterise the agents’ behaviour during the simulation. 

At the end of the simulation, the populations who remain in the hazard zones 

at the expected time of onset will be considered to be at-risk populations. 

The results are spatially visualized in GIS. Finally, the effectiveness of the 

disaster management plans is measured by the degree of the risk that can 

be reduced as well as the ability to reduce road traffic congestion during the 

evacuation process.  

 

 

Figure 1.9 General concept of the involvement of the behaviour rule 
from the survey in ABM. 

 

1.5.2 Overview of the Data Collection  

Various data were involved in developing the model, both spatial and non-

spatial, and also primary and secondary. A complete description of the 

dataset is provided in Chapter 3. Here, some additional information about 

the primary data collection (questionnaire survey) is elaborated.  

The questionnaire was used to identify the variables that will be used in the 

simulation. There are five primary variables collected from the questionnaire 
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surveys, namely: socio-demographic characteristics that express social 

vulnerability, perceptions of volcanic hazard, decision-making behavior, 

interaction during the crisis, and also past evacuation experience (see 

Appendix 1.1). These data (mainly the perception of volcanic hazard, 

decision-making behavior and interaction during the crisis) will be used to 

generate population agents for the ABM simulation (Figure 1.9). Stratified 

random sampling was applied to conduct the survey. A total of 120 

household member samples, represented as building units, were selected 

randomly for each building block (dusun), with the distance from the volcano 

as the stratified value. This area segmentation is based on the consideration 

that each dusun will have one command (Rukun Tangga) and commonly, in 

rural areas of Indonesia, homogenous social characteristics. The following 

figure illustrates the sampling selection method. 

 

 

Figure 1.10 Example of sampling selection. 

 

The participants were distributed proportionally across all zones (Figure 

1.10). Each zone consists of three villages (dusun) as a sample, which was 

selected randomly using the randomise tool in Quantum GIS (see Figure 

1.11). For the first 5km zone, three relocation areas were used, as the 

people within this area had been relocated. A settlement (the building 

footprint) from each village from the selection set was extracted using 

intersect analysis. Similar to the village selection process, the buildings 
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group of each village was randomised to select 10 buildings which were 

used as samples. This random selection resulted in 120 buildings in total 

(Figure 1.12) (see Appendix 1.2 for the survey results). Finally, the selected 

buildings were exported to Keyhole Markup Languge (KML) to enable this to 

be imported into GPX Viewer (Android Application) for a field guide during 

the survey. 

 

 

Figure 1.11 Household selection and field identification procedure. 
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Figure 1.12 Distribution of the samples. 

 

1.5.3 Overview of Model Development, Experiments and Output 

Analysis 

Overall, the principle of this research follows the interaction of GIS 

(preparation) – ABM (simulation) – GIS (output analysis) (see Chapter 2). 

First of all, GIS is used to provide data for the simulation input. It is followed 

by the development of ABM and the simulations. The development process 

of the ABM was documented using the Overview, Design Concepts, and 

Details (ODD) approach (Grimm et al., 2006; Polhill, 2010). The general 

framework of the model was documented as a guide to implement the model 

in AnyLogic (Borshchev, 2013). The principal framework of ABM consists of 

three main agents, namely: volcano, stakeholder, and people (population), 

that interact within the geographical environment. The volcano acts as an 

agent, which initiates the hazardous situation and influences the 

environment as a potential threat to the surrounding population. The other 

agents in the interactions are the stakeholder and the population (people). 

The stakeholder, in this case the authorities (government), has a significant 
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role in observing and analysing the activities of the volcano and in issuing 

warnings to the population, whereby the human agent (population) is 

assigned an evacuation decision rule (Chapter 3). All human agents are also 

characterised by an individual risk assessment rule that makes it possible to 

capture the spatiotemporal dynamics of risk-taking during crises (Chapter 4). 

Based on those models, two scenarios (namely, the simultaneous and 

staged strategies) are used to evaluate which is more effective in 

diminishing risk and reducing traffic congestion during evacuation 

processes. The whole simulation outcome can be exported to enable 

spatiotemporal analysis using GIS or statistical software. Various software 

packages were used to support the preparation, development and analysis, 

including ArcGIS, AnyLogic, R and R studio, Quantum GIS, Map Info Pro, 

Map Comparison Kit 3.2 (Visser and Nijs, 2006), and Origin Pro. 

1.6 Thesis Outline 

Following the introduction chapter at the beginning and preceding the 

discussion chapter at the end, the main part of this thesis is divided into 

three parts: (1) designing the concept and framework, (2) developing the 

model, (3) applying the model (Figure 1.9). The improvement part consists of 

two sub-parts: improvement with the individual decision-making model and 

improvement with the individual risk model. Each part of this work will be 

published as a paper (Chapters 2 to 5). This chapter provides an 

introduction to these parts, and the overarching outcome will be discussed in 

the last chapter (Chapter 6). 
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Figure 1.13 Thesis outline. 

 

The introduction chapter (Chapter 1) provides a general overview of the 

importance of this research, introduces the study area, reviews the relevant 

literature, highlights the research gap, and presents the aim and objectives 

of the research. The introduction to the general method of this thesis is also 

provided in this chapter including the data collection and the model 

development and the experimentation. 

Chapter 2 presents the framework and initial model of the ABM to address 

the first and second objectives and to answer the research question 1 – 2 at 

the same time. This chapter starts with the introduction of Merapi and the 

importance of developing an instrument to improve the evacuation plan 

followed by the reason for choosing ABM as an approach to the instrument 

development. Consequently, the concept and design of the spatio-temporal 

ABM of volcanic evacuation is introduced here. This is supported with the 

initial implementation of the model using AnyLogic. The early developed 

model was used to show the potential application of the model and was 

evaluated for further improvements that are provided in Chapters 3 and 4.  

Chapter 3 provides improvements by utilizing the human agent with an 

evacuation decision mechanism and validates the outcome with real data to 

complement the achievement of the second objective as well as to answer 

Design the concept & framework (Chapter 2) 

Model Development 

Develop the basic ABM for volcanic evacuation (Chapter 2) 

Assign the ABM with an individual decision-making model 

(Chapter 3) 

 

Use ABM to experiment with the effectiveness of Evacuation 

Management: compare the result of the two evacuation strategies; 

simultaneous and staged (Chapter 5) 

Assign the ABM with an individual risk model (Chapter 4) 
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research questions 3 - 5. The evacuation decision model was formulated 

from the literature review supported by empirical data from the survey. The 

decision model allows the human agent to evacuate or to stay during the 

crisis based on the evaluation of their social attributes and the environment. 

Spatio-temporal validation was conducted by comparing the outcome of the 

simulation with the real data from the 2010 evacuation. 

Chapter 4 presented the concept and the implementation of spatio-temporal 

dynamics of risk in the evacuation model. This is complementing the 

achievement of the second objective and answering questions 6 – 7 at the 

same time. Here, the macro dynamic of risk is resulting from individual risk 

dynamics, whereas the dynamic of individual risk is a consequence of the 

dynamic hazardous environment and the agent’s movement. The individual 

risk uses multi-criteria evaluation (MCE) that is integrated into the ABM. The 

use of MCE in this model enables the Social Vulnerability Index (SoVI) of  

each individual to be derived and, in combination with the hazard level of 

individual environment, the risk to individual agents can be evaluated. 

Chapter 5 is dedicated to achieving the third objective as well as answering 

questions 8 – 10 at the same time. This chapter introduces a novel approach 

to developing a staged evacuation plan and implements this in the ABM 

experiment. Several “what-if” scenarios of staged evacuation plan were 

created and examined in the experiments. Those results are compared with 

the result from a simultaneous evacuation plan to evaluate the relative 

effectiveness of staged evacuation. The comparisons among various staged 

evacuation scenarios are also provided and discussed. 

The summary of all chapters is also provided in Chapter 6 in more detail. 

This is followed by the highlights of the contribution made by this study to the 

both methodology and the practice of risk reduction. It concludes with the 

lessons learn from the development, implementation, experimentation, and 

evaluation processes in this research. 

1.7 Summary 

The modelling of volcanic evacuation in Merapi is important in supporting the 

evaluation of the implementation of potential plans for reducing risk and 

providing more effective evacuation management. However, evacuation 

models specifically for volcanic hazards are absent from the literature. This 

thesis aims to develop an ABM of volcanic evacuation to improve the 

effectiveness of evacuation management in Merapi. The model is based on 
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the interaction among the components within the volcanic hazard system, 

including volcano, people at risk, responsible stakeholders, and the 

environment. The development of the model is divided into three steps that 

are used to structure this thesis, namely: the development of a basic ABM 

for volcanic evacuation, assigning the model an individual decision-making 

rule and the individual risk model. Finally, the model was used to compare 

the effectiveness of a staged evacuation scenario with a simultaneous 

scenario. Each of these stages make novel contributions that are worthy of 

publication. 
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Abstract: the understanding of evacuation processes is important for 

improving the effectiveness of evacuation plans in the event of volcanic 

disasters. In terms of social processes, the enactment of evacuations in 

volcanic crises depends on the variability of individual/household responses. 

This variability of population response is related to the uncertainty and 

unpredictability of the hazard characteristics of volcanoes—specifically, the 

exact moment at which the eruption occurs (temporal), the magnitude of the 

eruption and which locations are impacted (spatial). In order to provide 

enhanced evacuation planning, it is important to recognise the potential 

problems that emerge during evacuation processes due to such variability. 

Evacuation simulations are one approach to understanding these processes. 

However, experimenting with volcanic evacuations in the real world is risky 

and challenging, and so an agent-based model is proposed to simulate 

volcanic evacuation. This paper highlights the literature gap for this topic and 

provides the conceptual design for a simulation using an agent-based 

model. As an implementation, an initial evacuation model is presented for 

Mount Merapi in Indonesia, together with potential applications of the model 

for supporting volcanic evacuation management, discussion of the initial 

outcomes and suggestions for future work. 

Keywords: agent-based model; evacuation model; risk perception; Mount 

Merapi. 

 

This chapter presents the framework of the spatial agent-based model 

(ABM) of volcanic evacuation. This framework was applied and explored 

to identify the potential uses in improving the emergency evacuation 

management in Merapi, Indonesia. 
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2.1 Introduction 

Mount Merapi is located near the densely populated city of Yogyakarta and 

is one of the most active volcanoes in Indonesia (Lavigne et al., 2000; Voight 

et al., 2000). Merapi has a centuries-long record of numerous violent 

eruptions (Newhall et al., 2000). These dangerous events are likely to 

continue in the modern era and the recurrence of large explosive events on 

Mount Merapi is likely in the future (Voight et al., 2000). The physical 

condition of Merapi’s environment, which is suitable for farming and tourism, 

attracts people to live in and visit the area even though it is prone to volcanic 

disaster. It has been identified that there are more than 50,000 people living 

in the danger zone surrounding Merapi, even though they have themselves 

experienced several eruptions (Mei et al., 2013). Moreover, many people 

have refused to relocate, despite the 2010 volcanic eruption having 

damaged their settlements (Ayuningtyas and Gabriel, 2013; Nuzulia and 

Sudibyakto, 2014). It is therefore important to provide better evacuation 

planning, as this is the only way to reduce the risks for the nearby 

population. 

An important means of reducing the risk presented by volcanic eruption is 

through the provision of effective evacuation plans. However, people do not 

always respond positively to evacuation orders in volcanic crises. Although it 

is believed that people are aware of the decision to evacuate following an 

order from the authorities during a crisis (Mei et al., 2011), based on the 

experiences of the 2006 and 2010 Mount Merapi crises (POSKO SET 

BAKORNAS PBP, 2006; Mei et al., 2013), it appears that people’s slow 

evacuation response remained the major problem that led to fatalities. It was 

claimed that the response to the last eruption in 2010 was better planned 

than for previous eruptions; however, the casualties were higher than in 

2006 due to the unanticipated changing of the intensity of the eruption. 

Various study attempts relating to the reduction of physical and social 

aspects of the risks relating to Mount Merapi have been made (Table 2.1). 

The physical aspects considered mainly relate to the identification of 

hazards, based on historical events, seismicity, modelling/mapping, material 

sediment/deposit characteristics and ground-based/remotely sensed-based 

monitoring. The social aspects are related to disaster/risk management, 

decision-support systems, disaster impact, population responses and 

characteristics, and evacuation decisions/management. There is a lack of 

research, however, on evacuation simulation and its importance in 
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supporting the provision of better evacuation plans (De Silva and Eglese, 

2000; Handayani et al., 2016). 

 

Table 2.1 Existing studies of Mount Merapi. 

No. Research Focus References 

1 Disaster/risk management 
(Mei et al., 2011; Surono et al., 2011; Aman et 
al., 2012; Bachri et al., 2012; Bakkour et al., 
2013; Ismayasti et al., 2014) 

2 
Decision support for 
disaster/crisis management 

(Putra et al., 2011; Schneider et al., 2011; 
Setijadji, 2011; Jumadi et al., 2012) 

3 Historical events 
(Andreastuti et al., 2000; Newhall et al., 2000; 
Voight et al., 2000) 

4 
Sediment/deposit 
characteristics 

(Gomez et al., 2008; Charbonnier and 
Gertisser, 2008; Charbonnier and Gertisser, 
2011; Gertisser et al., 2012) 

5 Hazard mapping/modelling 

(Itoh et al., 2000; Takahashi and Tsujimoto, 
2000; Schwarzkopf et al., 2005; Miyamoto et 
al., 2011; Charbonnier and Gertisser, 2012; 
Darmawan et al., 2014) 

6 Impact of eruption 
(Takahashi and Tsujimoto, 2000; S.J. 
Charbonnier et al., 2013; Yulianto et al., 2013) 

7 Seismicity 
(Ratdomopurbo and Poupinet, 1995; 
Ratdomopurbo and Poupinet, 2000) 

8 Activity monitoring 
(Beauducel et al., 2000; Voight, Young, et al., 
2000; Pallister et al., 2013) 

9 
Population response, 
characteristics, perception 
and vulnerability 

(Utami, 2008; Dove, 2008; Lavigne et al., 
2008; Donovan, 2010; Christia, 2012; 
Donovan et al., 2012; Mei and Lavigne, 2012) 

10 
Factors influencing 
evacuation decision 

(Sagala and Okada, 2009; Handayani et al., 
2016) 

11 Hazard characteristics 
(S. Charbonnier et al., 2013; Damby et al., 
2013; de Bélizal et al., 2013; Bignami et al., 
2013) 

12 
Lessons from past 
evacuation management 

(Mei and Lavigne, 2013; Mei et al., 2013) 

 

Various aspects should be considered in order to provide modelling for 

volcanic evacuations, including socio-demographic attributes, behaviour, 

and spatial and temporal aspects. The population response is composed of 

the nonlinear mechanisms of social processes, and such responses are 

highly stochastic rather than deterministic. The model therefore needs to 

utilise an appropriate approach to accommodate this nonlinearity. 
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Nowadays, agent-based modelling (ABM) is considered an adequate model 

to simulate such nonlinear processes (Srbljinović and Škunca, 2003; 

Malleson et al., 2014). This approach, with the integration of geographic 

information systems (GIS) to model spatial aspects, is considered 

appropriate. The integration of GIS into ABM is known as spatial agent-

based modelling (Brown and Xie, 2006), or georeferenced agent-based 

modelling (Pons et al., 2014). The conceptual integration of both GIS and 

ABM is provided successfully by Brown et al. (2005), in which GIS is used as 

the spatial data-model representation, and ABM is used as the model for the 

processes. This approach can be used to model and simulate complex 

systems and represent the results of the spatial processes as spatio-

temporal information. 

This article, which comprises a conference paper published by Jumadi et al. 

(2016a), highlights the lack of research available in the literature related to 

evacuation modelling for Mount Merapi, provides a conceptual design for the 

simulation using spatial ABM and explores its potential use in supporting 

evacuation management. This paper contributes to the development of ABM 

for large-scale evacuation simulation, which integrates the hazard model, an 

aspect that is absent from the literature, especially regarding volcanic 

hazards. For further explanation, Section 2.2 presents the background to 

agent-based simulation in support of the evacuation decisions modelled; 

Section 2.3 outlines the concept of the volcanic evacuation model; Section 

2.4 presents the initial model design, implementation and its potential use in 

support of evacuation management; Section 2.5 specifies the future direction 

of research to validate this model, while Section 2.6 discusses the initial 

results and future work. 

2.2 Spatial Agent-Based Modelling to Support Evacuation 

Management 

Evacuation simulation is an important tool for the support of evacuation 

management (De Silva and Eglese, 2000). The example put forward by De 

Silva and Eglese (2000) shows that evacuation simulation can be used to 

test contingency plan scenarios. Their simulation integrates GIS and 

simulation models to develop simulation-based spatial decision support for 

evacuation planning. However, creating realistic evacuation scenarios is 

challenging because various factors need to be taken into consideration 

(Silva, 2001), especially the modelling of evacuee behaviour, which is very 

important in defining the evacuation outcome. 
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Evacuations from various types of hazard have been modelled through 

various approaches, based on the details of evacuee behaviour. Some 

examples of these, ranging from macroscopic to microscopic levels, 

depending on the evacuee behaviour detailed in the model, are presented in 

Table 2.2. A macroscopic model is unable to capture the level of variability of 

population behaviour that can be achieved through a microscopic model 

(Yang et al., 2015), whereas a mesoscopic model compromises both micro 

and macro outputs (Silva, 2001). Evacuation modelling uses varying 

methods such as GIS (Marrero et al., 2010; Ye et al., 2011; Yang et al., 

2012; Marrero et al., 2013), ABM (Chen et al., 2006; Mas et al., 2012; 

Handford and Rogers, 2012; Nagarajan, 2014; Teo et al., 2015; Tan et al., 

2015), numerical models (Pourrahmani et al., 2015; Pillac et al., 2015; Yang 

et al., 2015), cellular automata (Zia and Ferscha, 2009), linear programming 

(Dixit, 2008), game theory (Lo et al., 2006) and logit models (Sadri et al., 

2015; Ng et al., 2015). Of these studies, only a few are concerned with 

volcanic evacuation, such as Marrero et al. (2010, 2013), but, in these, the 

behaviour of both volcanoes and population is inadequately considered in 

the models (macroscopic). 

 

Table 2.2 Existing research on evacuation modelling. 

Modelling Type and 
Method 

Hazard 

Macroscopic 

Agent-Based Model Hurricane (Zou et al., 2005) 

Geographic Information 
System 

Volcanic (Kohsaka, 2000; Marrero et al., 2010; 
Marrero et al., 2013); 

Earthquake (Ye et al., 2011) 

Generic hazard (Brachman and Dragicevic, 2014) 

Mathematical/numerical 
model 

Earthquake (Pourrahmani et al., 2015); 

Generic hazard (Pillac et al., 2015); 

Genetic algorithm 
Generic hazard (Goerigk et al., 2014); 

Flood (Yang et al., 2015) 

Discrete choice Hurricane (Cheng et al., 2008) 

Mesoscopic 
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Table 2.2 Continued … 

ABM and numerical 
simulation 

Tsunami (Teo et al., 2015) 

Linear programming Hurricane (Dixit, 2008) 

Microscopic 

Agent-Based Model 

Fire/building-damage-related hazard (Christensen 
and Sasaki, 2008; Shi et al., 2009; Joo et al., 2013; 
Tan et al., 2015; Adam and Gaudou, 2017; Zhao et 
al., 2017); 

Generic hazard (Chen and Zhan, 2008; Zhang, 
2012; Nagarajan, 2014); 

Tsunami (Mas et al., 2012; Wang et al., 2016; 
Usman et al., 2017); 

Hurricane (Chen et al., 2006; Zhang et al., 2009; 
Handford and Rogers, 2012; Yin et al., 2014; 
Ukkusuri et al., 2017); 

Earthquake (Bernardini et al., 2014; Cimellaro et 
al., 2017); 

Flood (Dawson et al., 2011; Medina et al., 2016) 

Wildfire (Wise, 2014) 

Cellular automata 

Generic hazard (Zia and Ferscha, 2009; Wang et 
al., 2014); 

Fire (Yuan and Tan, 2007) 

Dijkstra’s algorithm, virtual 
reality Visualisation 

Flood (Uno and Kashiyama, 2008) 

Particle swarm optimization 
algorithm 

Generic hazard (Yang et al., 2012) 

Game theory Fire (Lo et al., 2006) 

Micro-simulation Generic hazard (Chen, 2012) 

Mixed logit Terror attack (Hsu and Peeta, 2013) 

 

The involvement of the behaviour of people in the evacuation model is 

important since evacuations are composed of complex social processes. 

Social processes are nonlinear and dynamic, and the studies relating to 

them are categorised as investigating complex adaptive systems (Srbljinović 

and Škunca, 2003). For many years, social scientists have tried to 

understand particular social processes by means of simulation environments 

(Gilbert, 2008). In this field, simulation means running simplified versions of 

social systems that might occur in the real world. Such simulation is 

essential for several purposes: to obtain understanding; to predict the 

consequences of particular social processes; to substitute human 



- 45 - 

 

capabilities; training; entertainment; and to assist in discovery and 

formalisation (Gilbert and Troitzsch, 2005). Although many techniques are 

suitable for social process simulations, including cellular automata, artificial 

intelligence and ABM, ABM is the only one that can accommodate the high 

level of complexity of a system and instantiate interaction between agents at 

the same or different levels (Gilbert and Troitzsch, 2005). It can be used to 

model social entities, their behaviours, social attributes, and properties that 

emerge from their interactions. Spatial data from GIS can be involved in the 

simulation environment, to match with particular geographic locations. 

ABM is defined as a computational method that enables a researcher to 

create, analyse and experiment with models comprised of agents that 

interact within an environment (Gilbert, 2008). This term is used 

interchangeably with the terms ‘agent-based systems’ and ‘individual-based 

modelling’ (IBM) (Macal and North, 2005). Macal and North (2005) 

introduced a complete term for modelling and simulation based on this 

technique of agent-based modelling and simulation (ABM). Agents can be 

separate computer programs or can take the form of distinct parts of a 

program used to represent social actors such as individual people, 

organisations such as firms, or bodies such as nation states (Gilbert, 2008). 

Modelling is the act of creating a model of something for a particular 

purpose, such as to describe it, understand it, or derive certain properties 

(Press, 2004). A model is defined as a simplified representation or 

‘abstraction of reality’ (Demeritt and Wainwright, 2005) and a simulation is 

defined as the imitation of a system through a prototype of the system, in 

order to find the flaws and problems inherent in it so as to rectify them 

(Bandyopadhyay and Bhattacharya, 2014). An agent can be represented in 

a spatially realistic environment involving a GIS. The integration of GIS and 

ABM has been discussed in numerous pieces of research and is known as 

spatial agent‐based modelling (Brown and Xie, 2006) or georeferenced 

agent-based modelling (Pons et al., 2014). 

ABM has advantages in modelling the complexity of interactions between 

social and physical environments (Heppenstall et al., 2016), which make it 

appropriate for modelling certain emergency conditions in silico to provide 

greater understanding of them (Hawe et al., 2012). It can model the dynamic 

changes of hazardous environments, as well as the behaviour of people in 

response to a disaster (Mas et al., 2012), so that the simulation outcomes 

can improve the understanding of evacuation processes and optimise 

evacuation plans (Silva, 2001). For a more realistic model, spatial data can 
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be integrated in the model at various scales (Hawe et al., 2012) ranging from 

small areas (e.g., (Christensen and Sasaki, 2008; Shi et al., 2009; Joo et al., 

2013; Tan et al., 2015; Zhao et al., 2017)) to large areas (e.g., (Chen et al., 

2006; Zhang et al., 2009; Handford and Rogers, 2012; Yin et al., 2014)), 

depending on the type of hazard being modelled. For example, fire may only 

impact a building, while an earthquake or tsunami can destroy a city or 

region. Some simulations proposed for a specific hazard integrate the 

hazard model in the ABM simulation and can therefore provide a more 

realistic model of interactions between human and hazard—for example, the 

fire dynamics simulator (Shi et al., 2009), numerical simulation of tsunami 

propagation (Mas et al., 2012), the tsunami inundation model (Wang et al., 

2016) and hydrodynamic simulation of a flood (Dawson et al., 2011). 

Meanwhile, the evacuation models proposed for generic hazards are 

developed without the integration of the hazard model (e.g., (Christensen 

and Sasaki, 2008; Zhang et al., 2009; Na and Banerjee, 2014; Tan et al., 

2015; Zhao et al., 2017)). Given that the hazard is spatially dynamic, 

providing this dynamic mechanism is significant. The hydrodynamic-using 

numerical simulations for tsunami (Mas et al., 2012; Wang et al., 2016) and 

floods (Dawson et al., 2011) are examples of the integration of the hazard 

dynamic model in the simulation on a regional (large) scale. However, these 

examples are limited in involving historical events to express the spatial 

extent of hazard in the model. This limitation is addressed in this paper. 

In addition, the composition of the population and its characteristics, 

behaviour and interactions can be modelled to complete the representation 

of the social environment. To do so, the synthetic population of agents 

utilises synthetic social networks, allowing synthetic daily activities to be 

generated based on real population data (Wise, 2014; van Dam et al., 2017). 

There are several techniques that can be used to generate a synthetic 

population, including deterministic reweighting, conditional probability (Monte 

Carlo simulation) and simulated annealing (Harland et al., 2012). Moreover, 

certain rules relating to how people respond to the hazardous event can be 

included, in order to specify the agent’s behaviour (Adam and Gaudou, 

2017). The agents utilised in the model used in this paper have the ability to 

observe and measure the hazard level of their environment and make 

decisions based on this as well as on their interactions. 
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2.3 The Concept of the Volcanic Evacuation Model 

It should be noted that no one method has been recognised as the best 

approach in the development of an ABM (Gilbert and Terna, 2000). 

However, it should contain three main elements: agents, relationships and 

environment (Macal and North, 2010). According to Macal and North (2006), 

ABM can be developed by means of several steps: (1) identifying its purpose 

and the questions that are intended to be answered; (2) systematically 

analysing the system, identifying components and component interactions, 

relevant data sources and so on; (3) conducting the experiment; and (4) 

understanding the robustness of the model. The purpose of the evacuation 

model presented in this paper is to provide a spatially realistic simulation of a 

volcanic evacuation. This model intends to answer questions related to 

spatial and temporal aspects of evacuation—for example, how different 

scenarios affect the disaster outcome and which route(s) might experience 

potentially high levels of congestion during the evacuation process. 

Spatial data is essential for providing a spatially realistic evacuation 

simulation. Therefore, GIS is used for preparing spatial data as input into the 

ABM simulation (Figure 2.1). The spatial data in GIS can be modelled as 

vector data or raster data (Sugumaran and DeGroote, 2010). The vector 

data model represents the real world as point, line or polygon geometry, 

while, in raster data, representation can be as a regular two-dimensional grid 

with specific spatial resolution. These data models have advantages and 

disadvantages in visualising the real world, which should be noted when 

deciding which model is appropriate for certain applications. The choice of 

vector or raster model depends on the purpose and design of the simulation, 

in terms of how the data will be represented. There are a number of 

platforms that can be used to integrate GIS data into the ABM simulation—

for example AGlobe, Cougaar, Repast, CybelePro, SESAM, AnyLogic, 

GAMA, and NetLogo (Crooks and Castle, 2012; Kravari and Bassiliades, 

2015); however, their capabilities for supporting this type of GIS data vary. 

Repast, for example, is suitable for vector models, while AnyLogic, NetLogo 

and GAMA accommodate both vector and raster models (Crooks and 

Castle, 2012; Kravari and Bassiliades, 2015). In this present model, the GIS 

data of the population unit, hazard zones, road networks and shelters are 

represented as a vector. This data was prepared using GIS software and 

used to set up the environment where the agents are living or moving 

through (road networks). 
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Figure 2.1 Geographic Information System (GIS) and Agent-Based 
Model (ABM) interaction concept.  

 

Figure 2.1 shows the flow of the model from preparation and simulation to 

output. The output can be analysed using spatial analysis that is suitable for 

the purpose. Several of these outcomes are provided in Section 2.4.2 with 

the aim of answering evacuation-related problems. Therefore, it is important 

to utilise GIS in the analysis of the output. Additionally, there are some types 

of spatial analysis that can be used to analyse the output: point density 

analysis, for example, can be used to provide an analysis of the density map 

of the population that has been aggregated from the individual evacuees. It 

can also be used to analyse the road density map. 

 

2.3.1 Data Input Requirements 

Providing a spatially realistic model is important because the location of the 

crater and the population distribution are critical in defining the risk. 

Therefore, some spatial and non-spatial data were employed as inputs into 

this model. This data is predominantly comprised of: 

1. Administrative boundaries (vector data): this is used to populate the 

agents within the population unit (district) (BPS Kab. Sleman, 2015) (see 

the data in the supplementary material). 

2. Volcanic hazard zones (vector data): setting up the hazard scenarios 

and spatial distribution related to the eruption impact. 

3. Land use (vector data): defining the mean centre of population 

distribution (Jumadi et al., 2016b). This data is used to make the 

distribution of agents spatially similar to the real data. 

4. Census data: defining the number of agents within each population unit 

(BPS Kab. Sleman, 2015). 
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5. Road networks (vector data): this is used for evacuation routing of agent 

movement. Open Street Map data was used in PBF format for this 

purpose (GEOFABRIK, 2016). For the purpose of modelling movement, 

Dijkstra’s algorithm (Skiena, 1990) was utilised to find the shortest path 

from the origin location to the destination, as this algorithm is 

advantageous for analysing evacuation routing in a dynamic 

environment (Oyola et al., 2017). 

6. Evacuation shelter data (vector data): the shelter is used to 

accommodate the evacuees. In the initial model, the shelters are placed 

randomly within the city and outside the hazard zone. It is assumed that 

people would go to the city, as it will provide much-needed public 

services. However, a few datasets have been listed that could be used 

to improve the model in this aspect in future work (BNPB, 2010c; BNPB, 

2010a; BNPB, 2010d; BNPB, 2010b),(Budiyono, 2010). 

 

2.3.2 Agents and Environment 

The following list provides an overview of the agents as well as the 

environment components. Details of the agents and environment attributes 

are provided in Table 2.3. This table also details some attributes of the 

agents and environment that indicate geographic location e.g., district ID, 

latitude, and longitude. The determinations of both location (spatial) and 

attributes of the agents are based on the dataset provided in Section 2.3.1. 

The agents consist of volcano, stakeholders and people. The volcano has a 

specific coordinate based on its real location, while the human population is 

spatially distributed to mimic the real population (Section 2.3.3). The 

georeferenced environment where these agents live comprises population 

units, hazard zones, route networks and evacuation shelters. 

 

Agents: 

1. Volcano: this is a single agent that can produce activity and influence the 

hazard zone. 

2. Stakeholders: represent the authority that has the role of observing the 

volcano and alerting people. 

3. People: represent the people who live in the area surrounding the 

volcano. This agent has the ability to decide to move from the hazard 

zone to a safe area. 
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Environment: 

1. Population unit: this is a fixed environment that is provided as a GIS 

region. The population unit is provided as the district boundary where the 

agent’s population will be distributed within this region. 

2. Hazard zones: the hazard zones are provided to express the hazardous 

environment that is dynamically changing as the volcanic activity is 

changing. 

3. Route networks: the evacuation routes that are generated using 

OpenStreetMap (OSM) are a fixed environment that is used by agents to 

move along. 

4. Evacuation shelters: this is a fixed environment that is distributed outside 

the hazard zones at GIS points. 

 

Table 2.3 Overview of entities and attributes.  

Entity Attribute Name Attribute Type Description 

Volcano Latitude Double 
Latitude of the volcano 
location 

 Longitude Double 
Longitude of the volcano 
location 

 Activity length Integer The duration of crisis 

 Activity level Double 

This represents the level of 
volcanic activity expressed 
qualitatively from low (1) to 
high (4) 

 VEI  Volcanic Explosivity Index 

 
Activity 
Scenarios 

List<double> 
Contains the list of the 
scenarios of activity length of 
each level (low to high) 

People District ID Integer 
Number of districts where 
people live 

 Latitude Double Latitude of current location 

 Longitude Double Longitude of current location 

 Home latitude Double Latitude of home location 

 Home longitude Double Longitude of home location 

 
Movement 
speed 

Double Speed of movement (km/h) 

 Hazard level Integer 
The hazard level of the agent 
location 
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Table 2.3 Continued … 

 Destination Shelter 
The selected destination for 
evacuation 

 Links List<People> 
List of people generated 
randomly to express agents’ 
relationship 

 Age Integer 
Age of person generated 
from custom distribution 
based on census data 

 Education Integer 

Education level of person 
generated from custom 
distribution based on census 
data 

 Sex Integer 

Gender (male = 1, female = 
2) of person generated from 
custom distribution based on 
census data 

Stakeholder Alert level Integer 
Alert level as a result of 
volcanic activity observation 

 Links List<People> 
List of random people who 
directly receive the alert 

Environment Districts List<Polygon> 
The boundaries of districts 
(polygon) 

 Hazard zone List<Polygon> The hazard zones  

 Shelters List<Point> 
Location of shelters as 
evacuation destinations 

 Routes List<Object> 
Routes where people are 
moving loaded from OSM 

 

2.3.3 Agent Population Generation 

Developing a simulation in which the outcomes rely on individual behaviour 

needs a synthetic population of human agents in which the heterogeneity of 

the agents’ characteristics is consistent with the aggregate of characteristics 

of the real population (van Dam et al., 2017). Especially for spatially realistic 

simulation purposes, these population characteristics should be similar to 

real conditions in terms of socio-demographic attributes as well as spatial 

distribution (Heppenstall et al., 2011). However, the available population 

microdata commonly lacks spatial representation detail for household 

location due to confidentiality requirements (Huang and Williamson, 2001). 

Therefore, synthetic population generation should not only characterise 

demographic character but also geographic location. 
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A synthetic population is a population built from anonymous survey data at 

the individual level (Heppenstall et al., 2011). There are several techniques 

used to generate synthetic populations, including deterministic reweighting, 

conditional probability (Monte Carlo simulation) and simulated annealing 

(Harland et al., 2012). Among these techniques, conditional probability has 

advantages for use in this model as it contains stochastic elements. This 

stochastic condition is needed because the exact data is unknown. This 

technique comprises three steps: data preparation, conditional probability 

simulation development and execution, and verification to fit the result, with 

development, execution and verification being iterative processes. If the 

verification process finds that deviation from the real data is high, then the 

process loops back to the development and execution process to fix possible 

bugs or logical errors. 

In this model, the human agents are generated in individual units for each 

sub-district of Sleman that is located in the hazard zones. The number of 

agents within each district is proportionally minimized due to limitation of the 

agents in Anylogic Personal Learning Edition (PLE) (see supplementary data 

No. 4). The attributes were matched with the real data using census 

statistics represented as custom distribution in AnyLogic. The spatial 

distribution of the population was also randomly generated to match the real 

spatial distribution of the population agent using the centre of gravity model 

(Jumadi et al., 2016b), in which the agent population tends to be distributed 

randomly within the mean centre of residential areas. Furthermore, the 

outcome of the population generation model was verified using statistical 

and spatial distributions. 

 

2.3.4 Agents and Environment Interaction 

The ABM of the volcanic evacuation simulation is developed from the 

relationship between the volcano and the surrounding population (Figure 

2.2). An active volcano such as Merapi is a potential threat to the 

surrounding population. Two other important agents in the interactions are 

the stakeholders and the population at risk. Stakeholders, in this case the 

authorities (government), have a significant role in observing and analysing 

the activities of the volcano and in issuing warnings to the population. In the 

ABM simulation, these three elements are represented as agents who 

interact with the environment. Each agent displays specific behaviour and 

mechanisms when interacting with the others, as well as with the 

environment. The environment is represented through spatial data with 
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dynamic hazard properties. Meanwhile, the agents live in the environment 

within a specific geographic location. The volcano can be represented as a 

fixed agent that has the ability to influence the environment, although it has 

no ability to move, where its influence on the environment (hazard zone, see 

Figure 2.3) depends on its activity level and the intensity of the eruption 

(volcanic explosivity index (VEI)). When the volcano becomes active, the 

environment might change because of the material emitted from the volcano 

and thus become dangerous (Tables 2.4 and 2.5). 

 

Table 2.4 Matrix of relationships of the hazard level with VEI and hazard 
zone (Source: (BNPB, 2011)). 

VEI 

Zone 
1 2 3 4 

High High High High High 

Medium Medium Medium High High 

Low Low Low Low Low 

 

Table 2.5 Matrix of relationships of the hazard level with hazard zone 
and volcanic activities (Source: (BNPB, 2011)). 

Activity 

Zone 
Low Medium High 

Low Low Low Low 

Medium Low Medium Medium 

High Low Medium High 
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Figure 2.2 Conceptual framework of agent and environment interaction. 

 

 

Figure 2.3 Hazard zonation for the area around Merapi (BNPB, 2011). 

 

There are various types of hazards in one eruption event. The hazard 

originating from a volcano can be categorised into two types: (1) destructive: 

lava flows, nuées ardentes, and lahars; and (2) less destructive: heavy ash 

or pumice falls, deposition of toxic chemicals, pollution of surface or 

underground waters, etc. (d’Albe, 1979). Nuées ardentes and lahars are 

recognised as the most harmful events caused by eruptions of Merapi. 

Merapi produces specific nuées ardentes compared to other volcanoes 

(Bardintzeff, 1984). The distance of travel of deposits can be 3.5 km from 

only a few individual events (Abdurachman et al., 2000). Lahar-related 

disasters also have a high potential of occurring at Merapi (Lavigne et al., 

2011). Nue’esardentes originate from coupling of volcanic gases and 

volcanic material as a specific hazard of Merapi that usually kill people 
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(Bardintzeff, 1984), while lahars are overbank pyroclastic flows coupled with 

rainwater that occur during the rainy season (Lavigne and Thouret, 2003; 

Charbonnier and Gertisser, 2008). 

The hazard map (Figure 2.3) is developed based on historical records of 

eruptions together with deposit analysis (Andreastuti et al., 2000; Thouret et 

al., 2000; BNPB, 2011) that summarizes these events. The map expresses 

the spatial extent of hazard that relates to the location of the volcano. The 

hazard level of the area close to the summit is the highest, followed by the 

successive zones. The VEI influences the hazard level of each because this 

expresses the magnitude of the impact of eruptions quantitatively (Newhall 

and Self, 1982). A low VEI will produce a relatively low hazard level in 

relation to the zones. On the contrary, a high VEI will result in higher hazard 

levels (Table 2.4). Moreover, because the activity level of the volcano 

increases/decreases gradually (dynamically), the hazard level of each zone 

will also change based on this activity level (Table 2.5). 

The matrix of the relationships of the hazard characteristics, volcanic activity 

level and the hazard level of each zone provided in Tables 2.4 and 2.5 can 

be used to provide rules for the spatio-temporal dynamic of the hazard. 

Based on the matrix in Tables 2.4 and 2.5, the changing of the hazard level 

within these zones can be simulated dynamically (Figure 2.4). In referring to 

the tables interpreted in the official hazard map (BNPB, 2011), the scenarios 

related to 3 and 4 in the VEI have a more severe impact than scenarios 1–2. 

Likewise, the changing of the volcanic activity level from low to high (Mei and 

Lavigne, 2012; Mei and Lavigne, 2013) affects the hazard level in each 

hazard zone. 
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Figure 2.4 The dynamic changes of hazard level of the zones during the 
simulation in two different scenarios (BNPB, 2011). 

 

2.3.5 Evacuation Decision 

The evacuation decision made is an important aspect of an agent’s 

(person’s) behaviour. During the crisis, this defines whether the agent 

remains or evacuates the risk zone. Several factors influence evacuation 

decisions, including (Dash and Gladwin, 2007; Lim et al., 2015; Ahsan et al., 

2016) risk communication and warnings, perceptions of risk, community and 

social network influences, disaster likelihood, environmental cues and 

natural signals. The mechanisms related to individual decision-making 

during an evacuation, based on the literature review, is provided in Figure 

2.5. This figure provides an overview of the mechanisms of the above 

factors in their influencing of decisions made and their results, in terms of 

evacuating or remaining during the volcanic crisis. The following brief 

reviews provide an overview of how these factors affect the evacuation 

decision. 

1. Risk communications deal with the dissemination of risk warning 

regarding the probability of disaster occurrence within a community. 

There are three models of interaction in emergency situations, namely 

vertical (top-down), peer to peer and horizontally broadcast (Linardi, 

2016). Communication among people at risk (horizontal communication) 

is believed to be an effective way to increase the reach of a broadcast. 
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However, the delivering of risk warnings through social interaction also 

has the potential result of miscoordination (Linardi, 2016). This can lead 

to the occurrence of congestion and shadow evacuations (Lamb et al., 

2011). A shadow evacuation is the voluntary evacuation of people from 

areas outside a declared evacuation area that can congest roadways 

and inhibit the egress of those evacuating from the area at risk 

(Weinisch and Brueckner, 2015). 

2. Community and social networks also have an important role to play in 

influencing people in their responses to a disaster. People tend to follow 

their group’s (community’s) actions in their decisions in such situations 

(Khalid and Yusof, 2014). At the most basic community level, they will 

tend to stand together with their family when deciding to stay or to leave 

(Liu et al., 2014). It was found by Liu et al. (Liu et al., 2014) that people 

in crises will be more easily influenced when they interact with a group 

rather than with individuals. People may therefore decide to leave after 

seeing crowds of evacuees leaving their homes. Furthermore, social 

network contact is relatively more important in influencing evacuation 

decisions than warnings received from mass media (Ronald, 1983). 

3. Disaster likelihood and/or environmental cues and/or natural signals also 

influence evacuation decisions (Ronald, 1983; Sagala and Okada, 

2009). Studies of volcano and flood evacuation have identified that 

natural signals are the most important factors in evacuation decision 

(Ronald, 1983). Others state that risk perception is associated with 

environmental cues as well as with the characteristics of the hazard (Lim 

et al., 2015). 

4. Risk perception is a critical aspect in understanding how individuals 

decide to evacuate or to stay (Dash and Gladwin, 2007). Risk perception 

is also responsible for influencing people in their decisions about when 

they should evacuate and when they should return home during and 

after a crisis (Siebeneck and Cova, 2012). 
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Figure 2.5 Main agent (people) characteristics. 

 

The social and physical aspects of influencing factors in evacuation 

decisions that are presented in Figure 2.5 are involved in the model 

developed in this study. Generalisation and simplification were applied to 

make the modelling feasible. For the risk communication procedure, the 

model implements top-down as well as horizontal broadcasting as models 

for communicating the warning. This is to represent real conditions in which 

not all people directly receive alerts from government sources. The warning 

can be delivered through several layers of actors (Mei and Lavigne, 2012) as 

well as being broadcast among the population at risk. For this reason, 

agents are utilised in connection to other agents to express their social 

network. Some of them (1 in 100 people) are connected directly to the 

stakeholder, who represents the authority network delivering the evacuation 

command. When the volcano is active, it sends signals to all the other 

agents expressing cues for disaster likelihood. Meanwhile, the agents 

(people and stakeholders) perceive the risk by classifying the hazard level of 

their location based on the matrix presented in Section 2.3.4. 

2.4 Initial Model Design and Implementation 

2.4.1 Initial Design of the Model 

Based on the above conceptual framework, the initial model is developed 

and implemented using AnyLogic. Then, the agents are developed, 

consisting of the volcano, stakeholders, and people living within a 

geographically explicit environment and with concurrent properties/attributes 

and rules (Figure 2.6) (see the detailed attributes in documentation included 

as supplementary material). The environment aspect contains a map of the 

boundary of the district in which the population is distributed, hazard zones 
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to define hazard locations, and evacuation shelters as the evacuation 

destinations and routes for movements, as described in the previous section. 

Each agent has their own rules in responding to the occurring crisis, as well 

as in creating interactions. 

 

Figure 2.6 Agents—environment mechanism and interaction flowchart. 

 

The response procedure to the crisis primarily consists of volcanic 

activity/hazard observation procedure (owned by people and stakeholders), 

warning/alerting (owned by people and stakeholders), evacuation decision 

(owned by people) and destination selection and movement (owned by 

people). There are also interactions between the agents and environment 

among the agents. The interaction between agents and the environment 

include updating the hazard level of the hazard zones as the volcanic activity 

level changes, and human agents (people) retrieving environment data 

where they are living, such as hazard existence, routes and evacuation 

shelter location. The interaction among agents consists of top-down 

interaction and horizontal interaction. Top-down interaction is the alerting 
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procedure from the stakeholder agent to the human agents that consists of 

the disaster warning, whereas the horizontal interactions occur between 

human agents in communicating the disaster warning, their departure times 

and destinations. 

 

Figure 2.7 Screenshot of model implementation using AnyLogic. Red 
dots at (A) are the initial spatial distribution of people at risk. Grey 
dots are the people outside the danger zones. Subsequently, the 
people dots change to yellow with the increment of hazard levels 
at (B–D). The movements of people and the changing of the 
spatial distribution of individuals are displayed in (B–D). The 
monitor chart is (a) monitoring the simulated volcanic activity 
level, (b) monitoring the number of people at risk and (c) 
monitoring the percentage of people evacuating. 

 

Based on the flow chart in Figure 2.6, rules are developed for each agent in 

the model. The rules for each agent are expressed as an activity state chart 

in AnyLogic. This consists of the alerting mechanism, the volcanic-activity-
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changing mechanism and the evacuation mechanism. Interaction is handled 

by sending a message to the other agents. Furthermore, an interface is 

developed that can be used to monitor the simulation spatially or statistically. 

The screenshot of the developed ABM simulation that can be run from the 

AnyLogic portal is provided in Figure 2.7 (see the supplementary materials). 

The movement and changing of the distribution of the population at risk are 

recorded as spatial data that can be used for further spatial analysis. 

Examples of the results and the potential analysis from the data are provided 

in the following sub-section. 

 

2.4.2 Potential Use of the Model to Support Evacuation 

Management 

Evacuation management requires decision support that can be generated 

from predominantly spatial information (Silva, 2001). Information that can be 

generated from this simulation includes (1) spatial distribution of human 

exposure that is valuable in analysing volcanic risk to people and providing 

effective evacuation strategy (Pareschi et al., 2000; Escobar Wolf, 2013; 

Zhang et al., 2013); (2) information related to the volcanic disaster outcome 

in various scenarios, which is valuable in providing adjustable evacuation 

planning for changing hazard scenarios (Jumadi et al., 2016b); (3) 

information on route density analysis that can be used in managing 

evacuation routes to avoid high congestion, which may hold up the 

evacuation processes (Dixit, 2008; Liu and Lim, 2016; Huang et al., 2016); 

(4) information about variation in evacuation destination preferences 

provided by the evacuee distribution model that might produce a range of 

distribution scenarios concerning evacuees, this being information helpful in 

supporting shelter provision, logistical support, services and commodity-

needs planning (Yi and Özdamar, 2007); and finally, (5) clearance time 

analysis in various scenarios, which is a vital parameter in defining the 

effectiveness of evacuation processes and thus providing information 

essential for the decision maker (Mitchell and Radwan, 2006). 

 

2.4.2.1 Spatio-Temporal Analysis of the People at Risk Distribution 

This model can be used to simulate the changing of human exposure spatio-

temporally. The human agents’ mobility can be recorded at every time step. 

Due to the movement of the evacuation processes, the spatial pattern and 

density of the population at risk changes over time. This approach allows the 
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changing of spatial patterns of human exposure provided by GIS to be 

analysed. Figure 2.8 provides an example of spatial analysis using point 

density analysis of the human exposure within four different time steps, 

illustrating this spatial dynamic. The changing of the density from days 1.194 

to 6.465 can be observed in this figure. 

 

 

Figure 2.8 Example of result analysis of people at risk in different time 
steps using GIS. 

 

2.4.2.2 Analysing the Evacuation Outcome in Different Scenarios 

Knowing the possible evacuation outcome in various scenarios is important 

(Jumadi et al., 2016b), and so evacuation simulation should accommodate 

this requirement. The percentage of people at risk and the evacuating 

population in every time step of the simulation has been captured. The result 

of this information is the dynamic changing of human exposure (in medium- 

and high-level hazard zones) and evacuees temporally, as presented in 

Figure 2.9. This figure shows the variability of the human exposure 

percentage between scenarios 1 and 4 of the VEI. This variability results 

from the differences in the spatial extent of the impact (see Figure 2.4). 

Furthermore, the stochasticity of the model is also slightly affected by both 

the number of human exposures/evacuees and the evacuation rate, as 

shown by the curve. This stochasticity is shown in the variations in the chart, 

resulting from the randomness of the population distribution and the varying 

departure time decisions present in the simulations. 



- 63 - 

 

 

Figure 2.9 Example of the simulation outcomes of various scenarios. 
VEI: volcanic explosivity index, CL: crisis length (days). This can 
be adjusted based on the preferred scenario. The scenario setup 
shows the length of each activity phase, which can be adjusted to 
match with the real crisis situations. The top chart shows that the 
percentage of people at risk is continuously decreasing along with 
the increase in the percentage of people evacuating. 

 

2.4.2.3 Route Density Analysis 

Evacuation routing is another important aspect of evacuation modelling, 

especially for a large-scale evacuation that potentially produces congestion 

(Dixit, 2008; Liu and Lim, 2016; Huang et al., 2016). Here, 1000 human 

agents were selected randomly and their movements tracked consistently. 

The dataset resulting from this technique was analysed in GIS and produced 

the route density analysis presented in Figure 2.10. This figure reveals the 

relative density of the roads from the residential areas surrounding Merapi 

volcano to the five evacuation shelters that are placed randomly around the 

city. From this analysis, several major roads that may be crowded with 

evacuees are highlighted. Such information can help to support traffic 

management, in addition to examining potential congestion in relation to the 

shelters. 
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Figure 2.10 Example of the result of route density analysis. 

 

2.4.2.4 Evacuee Distribution Analysis 

Planning the distribution of services, logistical support and commodity needs 

for evacuees requires supporting data for the distribution of evacuees (Yi 

and Özdamar, 2007). This is especially significant in Merapi, where the 

evacuation shelters are mostly non-permanent and the community 

surrounding the hazard zone can better plan the voluntary building of 

emergency evacuation shelters (Mei et al., 2011) to simulate the possible 

distribution of evacuees. In this model, the distribution of evacuees was 

modelled based on the assumption that people will vary in selecting their 

destinations. The human agents are randomly categorised into three 

categories: those who prefer the nearest shelter, those who prefer to ask 

their relatives (other agents), and those who randomly select their 

destination. The real destination preference of people remains under 

investigation and will be included in a future model. The results of the 

simulation are presented in Figure 2.11, where the slight variations in the 

distribution of evacuees can be observed in the different runs. 
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Figure 2.11 Example of the results of evacuee distribution simulations. 

 

2.4.2.5 Clearance Time Analysis in Different Scenarios 

Clearance time/evacuation time is an important parameter in demonstrating 

the effectiveness of performance evacuation planning. Therefore, this is 

used as an indicator in some evacuation simulations (Mitchell and Radwan, 

2006; Tu et al., 2010; Marrero et al., 2010). In this model, the clearance time 

is simulated by calculating the time required between the dissemination of 

the warning to the clearance of the hazard zones (zero humans at risk). In 

this initial model, it is assumed that everyone would evacuate. Potential 

reluctance, as found by (Sagala, 2009; Lavigne et al., 2017), has not been 

considered. The human agents are characterised by random preparation 

time of up to 12 h. Such preparation time is needed in evacuation processes 

for activities such as protecting property (Donovan, 2010), gathering family 

members (Van Drimmelen, 2010; Liu et al., 2014) and evacuating livestock 

(Wilson et al., 2009). The result of the varying clearance time in different 

scenarios is presented in Figure 2.12. The real variability in departure time 

(see Figure 2.13) will be included in future work, with the aim of validating 

this result. 

 

Figure 2.12 Clearance time for various scenarios.VEI: volcanic 
explosivity index, CL: crisis length (days). 
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2.5 Towards a Validation of the Model with Real Data 

There are several procedures that can be used to validate the ABM 

simulation (Klügl, 2008). Dixit presents one of these appropriate procedures 

for a microscopic evacuation model (Dixit et al., 2011). This method is 

applied by making a comparison using a statistical approach between the 

simulation results and the real data. It is possible to make such a 

comparison of this model by setting up the spatio-temporal parameters of 

the disaster with data from a past event and comparing the results with the 

model. There are several records related to previous Merapi eruptions 

(Voight, et al., 2000; Siebert et al., 2011), but the last eruption in 2010 is 

relatively better documented than the others. This documentation includes a 

chronology of the eruption, evacuation data and the spatial distribution of the 

evacuees. 

The Merapi eruption crisis of 2010 took place over 104 days (Mei et al., 

2013). The chronological detail of this eruption is provided in (Mei and 

Lavigne, 2013). During the crisis, the volcano’s activity level changed over 

time. To make it more straightforward, this activity can be divided into four 

classes: normal (excluded from the volcanic crisis period), low, medium and 

high. Figure 2.13 presents the activity profile during the 2010 eruption, from 

rest conditions to the climax of activities to the return to normal conditions. 

The government issued several alerts during this crisis to anticipate the 

occurrence of the disaster (Figure 2.13). Alerts and warnings are part of the 

social capacity of the community in the event of a disaster. As the disaster 

warnings are produced from observation of the likelihood of disaster, these 

commonly include many uncertainties and limitations and so can result in 

false warnings and/or an unexpected eruption (Durage et al., 2016). The 

authorities in Merapi produce disaster warnings by means of observing the 

volcano’s activity, warnings being delivered through several layers of actors 

(Mei and Lavigne, 2012). The warning steps, referring to the actual warning 

procedures in Merapi, are provided by considering the volcanic activities 

occurring (Mei et al., 2013). Figure 2.13 also provides real data on the 2010 

evacuation (Local Government of Sleman, 2010), demonstrating a major 

increase in the number of evacuees resulting from the evacuation process 

and a significant decrease resulting from the return-entry process (returning 

home after the crisis). 



- 67 - 

 

 

Figure 2.13 Temporal dynamic of evacuees through the crisis period in 
2010.(a) the issuance of the first evacuation order on 3 November 
2010, (b) the issuance of the second evacuation order on 3 
November 2010, (c) the issuance of the third evacuation order on 5 
November 2010 (Source: Volcanic Crisis Chronology (Mei et al., 
2013) and Evacuation data (Local Government of Sleman, 2010)). 

 

The data taken from the 2010 eruption records can be used to set up the 

evacuation simulation, as undertaken by Mas et al. (2012) for the 2004 

tsunami. Subsequently, the outcome of the simulation using the real data is 

statistically and spatially compared. Comparison can be made in three ways. 

Firstly, comparing the emergence of people who are reluctant to evacuate 

with the real data that was observed by Lavigne et al. (2017) expresses the 

validity of the evacuation decision. Then, comparison of the accumulation of 

evacuation movement temporally can express the validity of the departure 

time as well as the number of people who decide to evacuate. Finally, the 

appropriateness of the destination decision choices can be evaluated by 

comparing the distribution of the evacuees within the shelter with the real 

evacuation distribution data (BNPB, 2010c; BNPB, 2010a; BNPB, 2010d; 

BNPB, 2010b),(Budiyono, 2010). 

In this study, we used a comparison of the accumulation of evacuation 

movement temporally to evaluate the departure time and the percentage of 

evacuating people (Figure 2.14). This first comparison of the average of 

simulation results from ten runs with the real data of 2010 can be used for 

initial evaluation of this model. It shows that there are discrepancies between 

the simulation results and the real data. Currently, there is limited 
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information about the reasons why people evacuate so late in reality 

compared to the simulated expectation. In terms of the difference between 

the percentage of people evacuating in 2010 and the simulation, the 

unpredicted nature of the 2010 eruption led to the unpreparedness of the 

stakeholder. The stakeholder used a simple delineation of a radius of 20 km 

from the summit as a limit for the evacuation order (Mei et al., 2013). This 

might have led to the occurrence of ‘shadow evacuation’. This term 

describes the behaviour of those who perceive personal danger despite not 

being in an evacuation zone (Dash and Gladwin, 2007) and as a result 

decide to evacuate. The occurrence of shadow evacuation can be a result of 

social interaction and communication, with people deciding to leave after 

seeing crowds of evacuees leaving their homes. These occurrences 

potentially stimulate people in low-risk or even safe areas to leave their 

homes without coordination (Baker, 1991). This phenomenon can lead to a 

higher-than-expected number of evacuees (Lamb et al., 2011), which 

necessitate more evacuation resources. 

 

 

Figure 2.14 Comparison of the average simulation result (10 runs) with 
the real data for the 2010 evacuation. Note: the returning home 
process is excluded from this comparison. 

2.6 Discussion and Future Work 

The importance of developing a volcanic evacuation model is presented in 

this paper. This is followed by the formulation of a conceptual design and the 

initial implementation of the model using AnyLogic. This is used to illustrate 

the potential use of such a model to support the decision-making for 

evacuation management. Models can also potentially be used to simulate 

the evacuation processes in various scenarios, such as the integrated GIS 
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and simulation model developed by (De Silva and Eglese, 2000); however, 

compared to that model, the implementation of the model in this study, using 

the new ABM approach and new technology (AnyLogic), provides a superior 

method of modelling population behaviour and interaction. 

This initial model development provides a novel approach for integrating the 

hazard model into the simulation. The approach is different from the tsunami 

model (Mas et al., 2012; Wang et al., 2016) or the flood model (Dawson et 

al., 2011), which employ a hydrodynamic numerical process to generate the 

hazard. The hazard model in this simulation is expressed as zones. This 

was originated from historical records of eruptions (BNPB, 2011) and 

enabled the hazard zones to be adjusted to the simulation scenarios as well 

as to the level of volcanic activity. However, several improvements are 

required to validate this simulation model with the real data from previous 

evacuations and for further decision-support purposes. There are some 

aspects of the evacuation processes from the 2006 and 2010 data, for 

example, that could not be accommodated in this initial model and this will 

be improved in future work. These aspects include the decision-making of 

agents, synthetic population development, and the effect of social networks 

on agent (people) decisions. 

Firstly, the evaluation of the decision-making mechanisms of agents needs 

to be improved. All people at risk were evacuating in the simulation (see 

Section 2.4.1), but the real data from the evacuations in 2006 and 2010 

reveal that not everyone took part in the evacuation, meaning that some of 

the population disobeyed the evacuation order and preferred to stay at home 

during the crisis (Sagala, 2009; Lavigne et al., 2017). It was observed that, in 

the 2006 eruption, individuals in some areas of Merapi disobeyed the 

evacuation order and suffered the consequences of the eruption (Mei and 

Lavigne, 2012). The evacuation rate at this time was 0.63 (Sagala, 2009). A 

similar phenomenon occurred in 2010, in which there were large numbers of 

reluctant people although the scale of the disaster was larger (Lavigne et al., 

2017). Some concepts of decision-making, such as those presented in 

(Lovreglio et al., 2015; Lovreglio et al., 2016), could be used as background 

to improve this evacuation model in the future. 

Secondly, the synthetic population agents need to be improved for family 

aggregation characteristics. This model applied loosely distributed individual 

agents, whereas, in the real world, the agents are generally grouped in 

families. Although statistically and spatially the synthetic population in this 

model closely matched with the real-world situation, this drawback should be 
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addressed in future work. Within the family/household situation where 

agents stay together or evacuate together, the outcome might be different 

from the individual decisions they might have made. The agents might also 

consider waiting with their families before evacuating (Van Drimmelen, 2010; 

Liu et al., 2014), leading to delays. 

Thirdly, the effect of social influence and the probability of successful contact 

among people on the evacuation decision might be varying and this might 

affect the outcome. This model ignores these variables and assumed that all 

agents always successfully make contact with their connections and always 

follow the commands given. In addition, it is possible for people to ignore the 

evacuation order altogether (Lavigne et al., 2017). A good example of this is 

presented by Wise (2014), in which studying these variables is expressed as 

contact success probability and communication success probability; these 

concepts could be used to improve this model. The decision result as a 

response from interaction may vary among people, based on their 

perception of risk, and, because of such interactions, people at risk may 

socially aggregate in making decisions or/and in the evacuation process. 

2.7 Conclusions 

This article was developed based on four points of focus: (1) highlighting the 

importance of providing evacuation simulation for Merapi, (2) providing and 

introducing the initial design of ABM for volcanic evacuation simulation, (3) 

demonstrating the potential uses of the model to support evacuation 

decisions, and (4) evaluating the initial design and giving insights for further 

improvements. This paper contributes to the development of ABM for large-

scale evacuation simulation by integrating the hazard model, especially 

regarding volcanic hazard, which is a topic absent from the literature. 

The evacuation simulation of a volcanic crisis involving Mount Merapi is 

important for improving evacuation management as an element of disaster 

risk reduction. Therefore, we initially developed this model as the basis for 

further application purposes. The volcanic evacuation model represents the 

relationships between physical and human agents, consisting of the volcano, 

stakeholders, the population at risk and the environment. Some potential 

uses of this model to support decision-making were demonstrated—for 

instance, analysing route densities, evacuees’ distribution in shelters, and 

the evacuation outcome in various scenarios. The comparison of some 

simulation results with real data was provided with the aim of evaluating this 

model. We found that there are discrepancies between the simulation results 
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and the real data. Based on this, we suggest improvements to several 

aspects of this model, including the decision-making of agents, synthetic 

population development and the effect of social networks on agent 

decisions. 

Supplementary Materials 

Appendix 2.1. Online Model: http://www.runthemodel.com/models/k-

RgpNLa1oojYE1To31FJa/.  

Appendix 2.2. Simulation Video: https://osf.io/qr65b/.  

Appendix 2.3. Application documentation: https://osf.io/7yf3p/.  

Appendix 2.4. Population unit and data: https://osf.io/k6d2n/. 
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Abstract: As the size of human populations increases, so does the severity 

of the impacts of natural disasters. This is partly because more people are 

now occupying areas which are susceptible to hazardous natural events, 

hence evacuation is needed when such events occur. Evacuation can be the 

most important action to minimise the impact of any disaster, but in many 

cases there are always people who are reluctant to leave. This paper 

describes an Agent-based Model (ABM) of evacuation decisions, focusing 

on the emergence of reluctant people in times of crisis and using Merapi, 

Indonesia as a case study. The individual evacuation decision model is 

influenced by several factors formulated from a literature review and survey. 

We categorised the factors influencing evacuation decisions into two 

opposing forces, namely the driving factors to leave (evacuate) versus those 

to stay, to formulate the model. The evacuation decision (to stay/leave) of an 

agent is based on an evaluation of the strength of these driving factors using 

threshold-based rules. This ABM was utilised with a synthetic population 

from census microdata, in which everyone is characterised by the decision 

This chapter improves the spatial ABM of volcanic evacuation that has 

been presented in Chapter 2. There are some improvements of the 

model presented in this chapter including the involvement of the 

individual decision in the model, employment of the synthetic population 

based on census microdata, validation of the output of the model based 

on the real data, and the use of real data to parameterise the model. 

Evaluation of several scenarios of the decision and hazard model is also 

presented and discussed in this chapter. 
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rule. Three scenarios with varying parameters are examined to calibrate the 

model. Validations were conducted using a retrodictive approach by 

performing spatial and temporal comparisons between the outputs of 

simulation and the real data. We present the results of the simulations and 

discuss the outcomes to conclude with the most plausible scenario. 

Keywords: Agent-based model, evacuation model, evacuation decision, risk 

perception model, volcanic hazard, synthetic population, Merapi. 

 

3.1 Introduction 

Geophysical events such as earthquakes, volcanic eruptions, landslides and 

flooding have been occurring on the planet long before the advent of 

humans, but these events are transformed into natural disasters when they 

threaten human life (Alcántara-Ayala, 2002). The occurrence of natural 

disasters has increased over the last decades in line with the increase in the 

human population, because more people are now occupying those areas 

which are susceptible to such events (Beck, 2009). While disasters occur 

worldwide, they have the greatest impact in developing countries due to the 

prevailing physical (i.e. geographic and geologic) and social conditions 

(Alcántara-Ayala, 2002). During the last decade, the number of affected 

people increased greatly in 2015 compared to the period 2005 to 2014, with 

the highest percentage in Asia (CRED, 2016). In that year, Indonesia was 

the fourth most frequently affected Asian country (Guha-Sapir et al., 2016). 

Among the various natural hazards, volcanic eruptions pose a significant 

threat to Indonesia, as it is located within the “Ring of Fire” (Siagian et al., 

2013). Merapi is the most active volcano in Indonesia, and the 2010 eruption 

was ranked third in the world since 2005 in terms of impact (Guha-Sapir et 

al., 2016). Being in such susceptible areas, people living close to Merapi 

should, therefore, develop their awareness and preparedness to evacuate 

when a hazard occurs.  

Evacuation is an important life-saving action in any disaster (Makinoshima et 

al., 2017), with a history as old as human history in saving lives (Quarantelli, 

1990). It takes place by moving people from a hazardous area to a safer 

place in a very limited time (Saadatseresht et al., 2009). This time limit 

depends on the speed of the onset of the hazard. Some hazards occur 

rapidly, with others more slowly (Alcántara-Ayala, 2002; Cutter et al., 2008). 

For example, hurricanes or earthquakes happen very quickly, while global 
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temperature variations, rises in sea level, drought, and disease affect society 

more slowly (Cutter et al., 2008). For fast-onset hazards, immediate 

responses leading to evacuation are needed, because being at the wrong 

place at the wrong time will quickly lead to fatalities. Volcanic eruptions can 

happen several days after the initial signs of instability, but it is also possible 

for them to happen several weeks later (Voight et al., 2000). Therefore, 

immediate responses from the surrounding population are needed, but there 

are often cases of people who refuse or are reluctant to evacuate from 

hazardous areas (Quarantelli, 1990). For example, in two crises in Merapi 

(2006 and 2010), it was recorded that some people stayed even after official 

evacuation orders from the local authorities. In the 2006 eruption, individuals 

in some areas of Merapi disobeyed the evacuation order and suffered the 

consequences of the eruption (Mei and Lavigne, 2012). Likewise, reluctance 

was one of the main issues in the volcanic crisis management of the 2010 

eruption (Lavigne et al., 2017). 

This phenomenon can hamper evacuation processes, but has received 

surprisingly little attention in studies on evacuation modelling (e.g. (Chen 

and Zhan, 2008; Zhang et al., 2009; Mas et al., 2012; Jumadi et al., 2017)). 

Modelling the emergence of reluctant people during a crisis might help in 

improving evacuation plans; that is, to what extent the number of reluctant 

people can be reduced to save more lives. This paper aims to model the 

individual decision-making processes of evacuation (evacuate/stay) during a 

volcanic crisis using an agent-based model (ABM). The model uses several 

interacting factors (Sagala, 2009; Donovan, 2010a; Wilson et al., 2012; 

Chandan et al., 2013) that drive people to leave (forced to evacuate) versus 

the driving factors to stay (forced to stay). Mt Merapi in Indonesia was used 

as a case study, with records from the 2010 eruption and associated 

documentation used as empirical data to validate the model. In the paper, 

Section 3.2 will present the background literature within this field. Section 3.3 

presents the methodology of the research and also gives an introduction to 

the study area, the synthetic population generation technique, and data on 

past eruptions. A description of the ABM using Overview, Design concepts 

and Details (ODD) protocol (Grimm et al., 2006; Polhill, 2010), and the 

calibration and validation techniques are also included in this section. 

Section 3.4 presents the results and discussion, followed by the conclusion 

in Section 3.5. 
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3.2 Background 

The decision to evacuate is not only complex, but also dynamic. Therefore, 

developing a model can be intricate and needs an appropriate approach. 

Evacuation is a complex social process, resulting from many interrelating 

physical and social factors. Studies have identified that evacuation decisions 

are influenced by several factors (Dash and Gladwin, 2007; Lim et al., 2015; 

Ahsan et al., 2016) including: (1) risk communication and warning; (2) 

perception of risk; (3) community and social network influence; and (4) 

disaster likelihood, environmental cues and natural signals. As a social 

process, it will be dynamically changed nonlinearly as the above factors also 

change.  

Risk communications deal with the dissemination of risk warnings regarding 

the probability of a disaster occurring within the community. There are three 

types of interaction models in emergency situations, namely vertical (top-

down), peer to peer, and horizontally broadcast (Linardi, 2016). On the other 

hand, risk perception is a critical aspect of understanding how individuals 

decide to evacuate or to stay put (Dash and Gladwin, 2007). Risk perception 

is also responsible for influencing people’s decisions on when they should 

evacuate, and when they should return home during a crisis (Siebeneck and 

Cova, 2012). Perception, from the geographer’s point of view, describes how 

things that are related to the surrounding environment are remembered and 

recalled by people (Golledge, 1997), whereas risk perception is the way 

people interpret the likelihood of danger, with those who believe that they 

are not at risk (perceive themselves as safe) tending to feel that evacuation 

is not essential (Ronald, 1983). Several factors influence risk perception, 

including social and cultural factors, gender, and experience (Dash and 

Gladwin, 2007). Another study by Botzen et al. (2009) has stated that some 

demographic aspects, namely location, experience, knowledge and 

socioeconomic status, contribute to the perception of the population toward 

risk. The perceptions of people who live on and around the volcano 

commonly vary, and this affects the warning-response outcome (Rianto, 

2009; Bird et al., 2011). Community and social networks also play an 

important role in influencing how people respond to a disaster. People tend 

to keep within their group (community) in their decision response in such 

situations (Khalid and Yusof, 2014), so they will stand together with their 

family when deciding to stay or to leave (Liu et al., 2014). Moreover, in crises 

people are more easily influenced when they interact with a group rather 

than with individuals. Therefore, people may decide to leave themselves 



- 86 - 

 

after seeing crowds of evacuees leaving their homes. Lastly, disaster 

likelihood, environmental cues or natural signals, also affect evacuation 

decisions (Ronald, 1983; Sagala and Okada, 2009). Some studies on 

volcano and flood evacuation have identified that natural signals are the 

most critical factor in evacuation decisions (Ronald, 1983), while others state 

that risk perception is associated with environmental cues, as well as with 

the characteristics of the hazard (Lim et al., 2015).  

These aspects should all be considered when modelling evacuation 

decisions in order to better understand how willingness and reluctance 

emerge. Several studies highlight that traditional beliefs, culture/inherited 

local knowledge, and economic aspects are found to be the common 

reasons for refusing to follow evacuation orders (Tayag et al., 1996; Lavigne 

et al., 2008; Sagala, 2009; Donovan, 2010b; Bird et al., 2011). Although the 

economic aspect has no influence in the case of evacuation decisions in 

Merapi (Sagala, 2009), it does encourage people to return home to protect 

their property or to feed cattle during the evacuation period (Donovan, 

2010a). Some modelling studies show how social processes affect 

evacuation decisions. An example of a communication model among agents 

within a group, and from one group to different groups, has been presented 

by Canessa and Riolo (2003). Agent interaction, specifically the mechanisms 

of how actions and messages from other agents motivate individuals, can be 

represented using an agent-based model (Marsella et al., 2004). The 

aggregation behaviour of people was successfully presented by Qiu and Hu 

(2010). However, models of the decision-making mechanisms as a result of 

these factors are limited. The evacuation decision model (EDM) developed 

in this paper is different from another recent model based on perceived risk 

by Reneke (2013) and improved by Lovreglio et al. (2016). These models 

(Reneke, 2013; Lovreglio et al., 2016) disregard the social characteristics of 

agents in defining risk perception. However, based on other research, risk 

perception does not stand alone, but depends on other factors (Rosenbaum 

and Culshaw, 2003; Dash and Gladwin, 2007; Botzen et al., 2009). 

Therefore, this paper attempts to address this problem by involving risk 

perception and some of the other aforementioned factors in evacuation 

decision making. For this purpose, Agent-based modelling (ABM) was 

employed to simulate the decision making mechanism during an emergency 

situation. 

ABM, which in some literature is called ABS (agent-based systems) or IBM 

(individual-based modelling) (Macal and North, 2005), is defined as a 



- 87 - 

 

computational method that enables a researcher to create, analyse, and 

experiment with models comprising agents that interact within an 

environment (Macal, 2005; Gilbert, 2008). These agents can be separate 

computer programs, or in the common form, distinct parts of a program that 

are used to represent social actors, which can be individual people, 

organisations such as firms, or bodies such as nation-states (Gilbert, 2008). 

The agent can also be represented in a spatially realistic environment 

involving a Geographic Information System (GIS), which is called spatial 

agent‐based modelling (Brown and Xie, 2006) or georeferenced agent-

based model (Pons et al., 2014). The conceptual integration of both GIS and 

ABM is achieved successfully by Brown et al. (Brown et al., 2005), where 

GIS is used as the spatial data model representation, and ABM as the 

processes model. Such a model is suitable for developing an emergency 

evacuation model, considering the spatial aspects of both hazard and 

population.  

In addition to ABM, there are several other computer simulation techniques 

for emergency simulation and evacuation, namely system dynamics, 

stochastic modelling, queuing networks, lattice gas models, social force 

models, fluid-dynamic models, and game theoretic models (Zheng et al., 

2009; Hawe et al., 2012). GIS and cellular automata (CA) are also used by 

some models for the same purposes (Cole et al., 2005; Yuan and Tan, 2007; 

Marrero et al., 2010; Ye et al., 2014; Wang et al., 2014). However, ABM has 

more benefits in modelling individuals in emergencies, including the 

possibility to capture emergent phenomena, to naturally describe the 

system, and flexibility (Bonabeau, 2002; Hawe et al., 2012). ABM and CA 

share some similar characteristics, but ABM is superior since CA is less able 

to represent the heterogeneity of agents within a population (Reynolds, 

1999; Zheng et al., 2009). With particular reference to evacuation modelling, 

Zheng et al. (2009) compared seven methodologies for simulating crowd 

evacuation, including CA and ABM. Their study highlighted that only 

simulation using ABM has the capability to model heterogeneous agents at a 

microscopic scale; this ability is important to model evacuation with varying 

population characteristics.  

Although the development of ABM is intricate, such as being a complicated 

development process, being difficult to understand, challenging to collect the 

required data, difficult to validate, commonly needing very large runs due to 

the randomness; and complex in analysing the output, it provides a 

promising approach to simulating human-natural system interaction (Gilbert, 
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1993; Grimm et al., 2006; Klügl, 2008; An, 2012; Lee et al., 2015; Robinson 

and Rai, 2015; Heppenstall et al., 2016; Chapuis et al., 2018). Its 

advantages enable ABM to be better at representing human behaviour in 

decision-making (Wang et al., 2016), especially when dealing with disaster 

events. This approach has been applied to a range of hazards; for instance, 

fire and building damage-related hazards (Christensen and Sasaki, 2008; 

Shi et al., 2009; Tan et al., 2015; Zhao et al., 2017), hurricanes (Zhang et al., 

2009), and tsunami (Mas et al., 2012; Wang et al., 2016). These models 

vary in terms of the spatial extent of the simulated areas, the population 

mimicking method, integration of the hazard model, and the evacuation 

decision of agents. Fire and building damage-related hazards apply to a 

smaller spatial extent than hurricanes and tsunami, which use regions/cities 

as simulation areas.  

Wider areas imply more complexity in the agent population and evacuation 

routes. Small area evacuation, such as in fire evacuation models, use only a 

small number of evacuees, making their characteristics less complex. These 

models commonly generate a number of agents randomly as building 

occupiers in the simulations (Shi et al., 2009; Tan et al., 2015). More 

complex agent populations simulated in models should implement synthetic 

populations to imitate real world heterogeneity (Cajka et al., 2010; Malleson 

and Birkin, 2012; Namazi-Rad et al., 2014). However, few of the evacuation 

models have used this approach in generating the population of agents. This 

approach might not be important for a model intended for experimental 

purposes only (Zhang et al., 2009), but it should be applied to a model that 

uses real data with heterogeneous population characteristics. The 

emergence of a new library for synthetic population generation, such as 

Gen* (Chapuis et al., 2018), is promising for future enhancement of this 

aspect. 

3.3 Materials and Methods  

3.3.1 Study Area 

Mt. Merapi (110o 26.5’ E, 7o32.5’ S) in central Java is one of the most active 

volcanoes in Indonesia (Sadono et al., 2017). More than 1 million people live 

in the vicinity, with 400,000 people at especially high risk (Mei et al., 2011; 

Mei et al., 2013); the city of Yogyakarta (population 4 million) lies only 28 km 

to the south. There is a record of dangerous eruptions going back many 

hundreds of years, with an average interval between eruptions of 1-6 years 

(Voight et al., 2000; Siebert et al., 2011). More than 74 eruptions have been 



- 89 - 

 

recorded since 1548 AD, most of them around VEI 2 (Newhall and Self, 

1982) but larger events (VEI >3) occurred in 1672, 1822, 1846, 1849, 1872, 

1930-31 and 1961 (Voight et al., 2000; Siebert et al., 2011; Gertisser et al., 

2012). Eruptions in the 20th century have caused many deaths, including 

those of 1930 (1400 deaths), 1954 (54 deaths), 1961 (6 deaths), and 1994 

(69 deaths) (Thouret et al., 2000; Wilson et al., 2007), while the VEI 4 

(Newhall and Self, 1982) eruption in 2010 was the largest in over a century, 

ejecting 30-60 million m3 of pyroclastic material (Surono et al., 2012) and 

resulting in 332 deaths and 1,705 injuries (Marfai et al., 2012). As an active 

volcano, further large explosive eruptions of Merapi should be anticipated by 

studying its characteristics from historical events (Voight et al., 2000).  

The historical activity of Merapi is dominated by the episodic growth and 

collapse of andesitic lava domes at the summit (2978 m a.s.l prior to the 

2010 eruption). Less frequently, the summit dome complex is destroyed by 

more massive explosive eruptions. Lava dome collapse triggers a range of 

pyroclastic density currents (PDCs), a general term applied to fast-moving 

ground-hugging mixtures of hot gas, rock fragments and ash, which have 

both dilute, turbulent (surge) and dense pyroclastic flow (PF) end-members 

(Branney and Kokelaar, 2002). At Merapi these include: (1) high energy 

dilute, turbulent pyroclastic surges; (2) valley-confined, relatively dense 

block-and-ash flows (BAF), comprising juvenile volcanic blocks in an ash 

matrix, sometimes referred to as Merapi-type nués ardentes (Bardintzeff, 

1984; Charbonnier and Gertisser, 2008), which travelled as far as 16.5 km 

during the 2010 eruption (Solikhin et al., 2015); (3) unconfined and overbank 

pyroclastic flows; and (4) dilute ash cloud surges elutriated and decoupled 

from the denser flows (Kelfoun et al., 2000; Thouret et al., 2000).  

Rain-triggered lahars are a serious additional hazard at Merapi, both during 

and after eruptions, when heavy rainfall remobilises fresh pyroclastic 

deposits (Pierson and Major, 2014). The word lahar is an Indonesian term 

referring to a sediment-laden flow of water from a volcano, other than the 

normal stream flow (Smith and Fritz, 1989). At Merapi, lahars, including both 

debris- and hyper-concentrated flow types (Smith and Lowe, 1991), can 

travel at 5-7 m/s at elevations above 1000 m a.s.l and reach as far as 30-40 

km from the summit along each of the several rivers that drain the mountain, 

inundating extensive areas of the ring plain below 600 m a.s.l and aggrading 

channels (Lavigne et al., 2000; Thouret et al., 2000; Lavigne and Thouret, 

2003; Lavigne et al., 2011; de Bélizal et al., 2013; Gob et al., 2016). In 
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comparison with the PDC and lahar hazards, distal ashfall is a relatively 

minor phenomenon at Merapi (Damby et al., 2013). 

Geographically, Merapi spans four regencies of two provinces, i.e. Sleman 

(Yogyakarta), Magelang, Boyolali and Klaten (Central Java). This study 

focuses on the Sleman regency, lying on the southern flank of Merapi 

(Figure 3.1) between 107° 15 '03" to 107° 29 '30" E and 7° 34' 51" to 7° 47' 

30" S. The area covers 57,482 hectares (574.82 km2), or about 18% of 

the Yogyakarta metropolitan area. Administratively, the region contains 17 

sub-districts, 86 villages and 1,212 hamlets. The area was selected because 

it is located on the southwest flank of Merapi, which is prone to disaster 

(Lavigne et al., 2007), and also due to the significant geomorphic (Saepuloh 

et al., 2013) and geological changes (Gertisser et al., 2012) produced by the 

2010 eruption, which have potentially changed the likely run-out direction of 

the pyroclastic and lahar flows, impacting the accuracy of existing hazard 

maps (see Figure 3.1) (BNPB, 2008; BNPB, 2011).  

 

 

Figure 3.1 Study area and hazard zones. 
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3.3.2 General Framework 

The framework to develop the model (Figure 3.2) mainly comprises 

preparation, model development and simulation, calibration and validation. 

The purpose of the preparation step is to collect and analyse the dataset that 

is used to generate the variables and formulate the rules in the simulation 

(see Section 3.3.3). The simulation step includes the development of the 

ABM application and experimentation based on the formulated rules. 

Calibration and verification steps are needed when the output of the model is 

unacceptable (see Section 3.3.6.2). The aim of the calibration was to adjust 

the variables used in the model, whereas verification aimed to 

improve/revise the rules and the ABM application. When the 

revision/improvement was complete, re-simulation and re-validation were 

then needed iteratively. Two adjustments were made to the hazard model, 

while the decision model was adjusted three times, resulting in three 

simulation scenarios. Finally, the validation step compared the simulation 

output of both the spatial and temporal data (see Section 3.3.6.3). 

 

 

Figure 3.2 General framework. 

 

3.3.3 Input Data 

3.3.3.1 Data Requirement and Sources 

Several types of spatial and non-spatial data from Merapi were collected and 

used to generate the agent and environment (Table 3.1). The spatial data 



- 92 - 

 

mainly comprises the administrative boundaries of Sleman, the volcanic 

hazard zone, land use, and road network. The non-spatial data comprises 

microdata from the Indonesian Census of 2010 from IPUMS (Minnesota 

Population Center, 2015), demography, and population characteristics 

developed from the survey.  

 

Table 3.1 Dataset list for the model.  

Data Source Use 

ABM development 

 Administrative boundary 
Indonesian Geospatial 
Agency (BIG) 

This data is used to distribute the 
human agents within the 
boundary. 

 Volcanic hazard zones  

(1) National Agency for 
Disaster Management 
(BNPB), (2) Based on 
the evacuation order 
hazard zones in 2010 
(Mei et al., 2013) 

Setting up the hazard scenarios 
and spatial distribution of the 
eruption impact. 

 Shelter location 

Geospatial BNPB 
(BNPB, 2010c; BNPB, 
2010a; BNPB, 2010d; 
BNPB, 2010b), DYMDIS 
GEGAMA (Budiyono, 
2010) 

Defining evacuation destination. 

 Land use 
Indonesian Geospatial 
Agency (BIG) 

Defining the mean centre of 
population distribution (synthetic 
population generation). 

 Census microdata 

Microdata of the Census 
of Indonesia 2010 from 
IPUMS (Minnesota 
Population Center, 
2015) 

Defining the sociodemographic 
characteristic distribution 
(synthetic population generation). 

 Road networks 
OSM PBF File 
(GEOFABRIK, 2016) 

Evacuation routing 

 Survey data Survey Formulating the decision making. 

Validation 

 
Map of distribution of 
reluctant people 

Evacuation refusal map 
(Lavigne et al., 2017) 

Spatial validation. 

 
Series of daily records of 
evacuees in 2010 eruption 

Local Government of 
Sleman (Slemankab, 
2010) 

Temporal validation. 
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3.3.3.2 Survey: Design and Data Analysis 

1. Questionnaire Development 

The questionnaire was developed to gather information regarding the 

mechanisms used in decision-making and the interaction of people during 

eruption crises in the Mt. Merapi region. A literature review was conducted to 

explore the variables that influence decision-making and interaction. Five 

primary variables were assessed in the questionnaire survey; namely, socio-

demographic characteristics, perception of volcanic hazard, decision-making 

behaviour, interaction during a crisis, and willingness to accept and act on 

an alert. The question list is developed based on these variables.  

The demographic characteristics are used in this research to characterize 

the agent as well as identify the social vulnerability of the agent. Social 

vulnerability is defined as "the characteristics of a person or group and their 

situation that influence their capacity to anticipate, cope with, resist and 

recover from the impact of a natural hazard" (Blaikie et al., 2014). 

Vulnerability is multidimensional, and so consists of many variables 

(Lummen and Yamada, 2014). Cutter et al. (2003) recognized that the social 

vulnerability index comprises several indicators: socioeconomic status 

(income, political power, prestige), gender, race and ethnicity, age, 

commercial and industrial development, unemployment, rural/urban status, 

residential property type, infrastructure and lifelines, renter, occupation, 

family structure, education, population growth, availability of medical 

services, social dependence, and special needs populations. Alcorn et al. 

(2013) listed the social vulnerability factors, consisting of ethnicity, age, 

class, wealth, wealth/extractive employment, poverty/unemployment, race, 

and gender. Letsie (2015) summarized the social vulnerability factors from 

various studies, mainly comprising income, gender, race/ethnicity, age, 

unemployment, housing condition, infrastructure, family structure, education, 

culture, place, population growth, special need, commercial and industrial 

development, and built environment. Holand et al. (2011) classified the 

vulnerability indicators as socioeconomic vulnerability and built environment 

vulnerability. More specific to the evacuation assistant needs, Chakraborty et 

al. (2005) developed Social Vulnerability for Evacuation Assistance Need 

(SVEAI), with ten variables from three social characteristics; namely, 

population and structure, differential access to resources, and population 

with special evacuation needs. According to Holand et al. (2011), the 

questionnaire needs to measure socioeconomic vulnerability. Meanwhile, 

the built environment vulnerability is observed from spatial data. Several 
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relevant indicators from Letsie (2015) and Chakraborty et al. (2005) are 

used: income, gender, race/ethnicity, age, unemployment, family structure, 

education, culture, special need, communication access, and transportation 

access. The questionnaire is thus used to capture the full range of 

demographic characteristics of the people. 

Perception, on the other hand, relates to the way in which individuals or 

communities respond to natural disasters (Rianto, 2009). Risk perception is 

the estimated probability at which people perceive that hazards will affect 

them (Lavigne et al., 2008). Perception of risk is developed from several 

factors: exposure, familiarity, preventability and dread (Rosenbaum and 

Culshaw, 2003). Exposure, preventability and dread are actually quite 

complex in nature. They are related to the nature of hazard events and the 

element at risk. Therefore, to measure the perception of the population, 

familiarity with the likelihood of an eruption will be used. Table 3.2 lists the 

questions used to assess the perception of people regarding the risk, based 

on natural cues. The expected answer to each question (the real risk level) 

is provided in Table 3.3. The perception (how accurately people perceive the 

risk) is measured based on how the answer compares to the real risk level 

(Table 3.4), where the overall score is the average.   

Table 3.2 Question list to assess people’s perception of volcanic risk. 

Volcanic Activity 1 

No Risk 

It is safe for 
me to stay 

2 

Slight Danger 

but I prefer to 
stay 

3 

Moderate Danger 

May still be safe for 
me to stay 

3 

Severe Danger 

I have to 
evacuate 

4 

Extreme Danger 

I should not be 
here 

You see gas rising from the crater   

 

    

You feel tremors 

 

     

You hear/see explosion  

 

    

Your environment is full of ash      

You see material in your village 
collapsing 
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Table 3.3 Expected answers to the questions in Table 3.2. 

Volcanic Activity Risk level (Real) 

You see gas emitted from the crater  1 

You feel tremors 2 

You hear/watch explosion 3 

Your environment fulfilled by ashes 4 

You see material collapse to your village 5 

 

Table 3.4 Matrix for evaluating the accuracy of people’s perceptions. 

Perceived (P) – 
Real (R) R1 R2 R3 R4 R5 

P1 5 4 3 2 1 

P2 4 5 4 3 2 

P3 3 4 5 4 3 

P4 2 3 4 5 4 

P5 1 2 3 4 5 

 

Meanwhile, the decision-making process describes when people start to 

evacuate. It explores the variability of the population in terms of making 

decisions during a crisis. The main indicator of this behaviour is the start 

time, related to the onset of enhanced activity of the volcano. Based on 

Golledge (1997), decision-making can be classified as disaggregate or 

aggregate. Aggregate decision-making occurs when the decision is made by 

a single unit of the population i.e. an individual or household. Meanwhile, an 

aggregate decision is made by a group within the population i.e. the 

community. This questionnaire explores the decision-making process on the 

basis of the household (disaggregate) level. The questionnaire explores the 

factors that might motivate or demotivate people in making the decision 

whether to evacuate.  

Interaction during a crisis can take the form of word-of-mouth (WOM) via 

various media. Word-of-mouth can be analyzed based on the probability that 

people will forward information to others (Allsop et al., 2007). In this case, 

data on the probability that people will forward their information about alerts 

and the impact of this on people’s decisions people is needed. Mathbor 

(2016) highlighted that social organizations play an important role in 

reducing vulnerability. It mainly consists of the social coping mechanism of 

the family, group or community: resilience, unity and solidarity. Such 

interaction can be an advantage in an emergency situation. This information 
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was identified from the questionnaire survey. These data are used to 

estimate the probability that people will pass their information on to others. 

The interaction behaviour is expressed as a social concern variable in the 

questionnaire. 

2. Field Survey 

In order to collect these variables, stratified random sampling was applied. 

Household member samples, represented as building units, were selected 

randomly for each building block (dusun). This area segmentation is based 

on the consideration that each dusun has one village chief who mobilizes 

people (Rukun Tangga) and, commonly, in the rural areas of Indonesia, has 

homogenous social characteristics. Twelve villages were selected within a 

radius of 20km. Several ring buffers with distance ranges of 5 km were 

created to define the sampling areas, with three villages selected from each 

range. Furthermore, 10 participants from each village were selected 

randomly, resulting in 120 participants in total.  

3. Data Analysis 

The results of the survey were statistically analysed to develop the 

evacuation decision model (see Supplementary MaterialAppendix 3.1). The 

data from the survey were tabulated and analysed using SPSS. Linear 

regression was used to analyse the data to generate a formulation of the 

variable value based on the demographic characteristics (Figure 3.3). The 

result of the regression analysis is used to develop the driving forces 

governing the decision to evacuate and to stay. These were also partially 

used to characterize the agents (the majority of agent characteristics were 

taken from census microdata). 

 

 

Figure 3.3 Formulation of the variable values based on the regression. 
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4. Limitation of the Survey 

This survey has limitations regarding uncertainty of participant selection and 

the possible changes in the perceptions of people regarding the risk. The 

survey expected to meet the head of the household as a participant. 

However, in some cases, the head of household was away for work or other 

purposes because the survey was conducted during the daytime. In those 

cases, a member of the household who had the ability to answer the 

questions was selected to represent the head of the household. On the other 

hand, people may also change their perceptions regarding the volcanic risk 

due to the time lag between the last eruption (2010) and the survey (2016).  

 

3.3.4 Model Design 

3.3.4.1 Overview 

Purpose 

The purpose of the simulation was to model individual decisions in the 

volcanic evacuation which led to reluctance and to validate the output with 

real data. The validation is based on temporal and spatial data from the 

evacuation of 2010. The temporal data is the evacuation dataset (see 

Supplementary MaterialAppendix 3.2) that was provided on a daily basis 

during the crisis, whereas the spatial data is the emergence of reluctant 

people (see Supplementary MaterialAppendix 3.3).  

 

Entities, State Variables, Scales and Environment 

The ABM is based on a model from Jumadi et al. (2017) that mainly consists 

of three agent types, namely the volcano, people, and stakeholder. 

Additionally, there are safe shelters, which are objects assigned as 

properties of the environment, together with districts, hazard zones and 

routes. A detailed description of the entities and the corresponding attributes 

is provided in a previous article (Jumadi et al., 2017), with some 

improvements in the people agent provided in Table 3.5. The following is a 

brief description of each element: 

1. Volcano: this agent represents Mt. Merapi, which has the rule to produce 

activity and trigger a change in the environment. 



- 98 - 

 

People: this agent type represents people, generated based on the census 

data as synthetic population agents (see Section 3.5 for details of the 

synthetic population generation). 

2. Stakeholder: this is an agent who acts as stakeholder, with the role to 

alert people to evacuate. 

3. Environment: this is represented as a spatial environment where the 

agents live. It consists of: (1) the population unit, which is a fixed 

environment provided as a GIS region; (2) the administrative boundary of the 

district where the agent’s population will be distributed within the region; (3) 

hazard zones to model the hazardous environment that dynamically 

changes following the volcanic activity; (4) the route networks that are used 

by agents to move; and (5) evacuation shelters, which are distributed 

outside the hazard zones as GIS points. 

Table 3.5 Overview of main attributes additional to the previous model 
(Jumadi et al., 2017). 

Entity Attribute Type Description 

People Disability Integer 

Expresses 
whether the 
agent has a 
disability or 
not. 

 Experience Integer 

Expresses 
whether the 
agent has 
experienced a 
previous 
eruption or not. 

 Income Integer 
Income class 
of agent. 

 PersonalIntension (PI) Integer 

The degree to 
which people 
are motivated 
to evacuate by 
themselves 
(taken from the 
survey). 
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Table 3.5  Continued … 

 ProtectProperty (PP) Integer 

The degree to which are 
people motivated to stay 
to protect their property 
(taken from the survey). 

 SeeTheExplosion (SE) Boolean 
Whether the agent has 
seen the volcanic 
eruptionor not. 

 Perception Integer 
This value describes 
how well the agent 
perceives the hazard. 

 

CulturalBelief (CB) Integer 

The degree to which 
people are motivated to 
stay by their beliefs 
(estimated from the 
literature; this is only 
assigned to aged and 
poorly educated 
people). 

 

GovernmentAlert (GA) Integer 

The degree to which 
people are motivated to 
evacuate when they 
receive an alert from the 
stakeholder (taken from 
the survey). 

 
FeelingDanger (FD) Integer 

Quantification of feeling 
in danger. 

 

FeelingSafe (FS) Integer 

Quantification of feeling 
safe. This will be 
deduced when FD 
increases. 

 

NotKnowingTheDestinatio
n (ND) 

Integer 

The degree to which 
people are motivated to 
stay because they do 
not know where to go 
(taken from the survey). 

 

TransportConcern (TC) Integer 

The degree to which 
people are motivated to 
stay because they have 
a problem with 
transportation (taken 
from the survey). 

 

SocialInfluence (SI) Integer 

The degree to which 
people are motivated to 
evacuate by their social 
relation decisions (taken 
from the survey). 
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Process Overview and Scheduling 

The model comprises several processes: (1) volcanic activity generation, (2) 

the stakeholder’s alerting procedures, and (3) people’s individual decision-

making. The volcanic activity will change over the time of the simulation. The 

length of crisis can be either predefined at the simulation start or randomly 

generated by the simulation, while the stakeholder is observing this activity 

during simulation. When the activity changes, it will be analysed against the 

alerting rules. The alert will be sent to the population if the condition fulfils 

the requirements of evacuation order issuance. Otherwise, the stakeholder 

will continue to observe the volcano. The population can observe the 

volcanic activity and the environment, as well as receiving commands from 

the stakeholder. People will evacuate when the conditions meet the criteria. 

Details of the procedures are provided in Section 3.3.4.3. 

3.3.4.2 Design Concepts 

The following concepts will be used in the model:  

Emergence: by simulating the evacuation decision in a spatiotemporal 

dynamic model, the potential problems for evacuation may emerge, 

especially the emergence of reluctant people.  

Sensing: the stakeholder can sense the change in volcanic activity level by 

reading the signal (message) from the volcano. Human agents can sense 

their location, and whether they are located in a danger zone or not.  

Interaction: the stakeholder interacts with the human agents regarding the 

alert issuance. Human agents interact with each other to convey their 

decision to evacuate. 

Stochasticity: the socio-demographics and location of the human agents 

are generated randomly. The socio-demographics are generated using 

custom distribution based on census microdata, whereas the location of 

agents is generated based on the settlement distribution generated from 

land use data (Jumadi et al., 2016). 

Observation: the output can be monitored directly during the simulation 

from the map, as well as the monitoring charts. Some indicators are 

observed during the simulation, including the percentage of people at risk 

(low, medium, high), the percentage of evacuating people, occupancy of the 

evacuation shelters, and the level of volcanic activity. This output is also 

recorded as a CSV file that can be spatiotemporally analysed using GIS, or 

Excel for other purposes. 
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3.3.4.3 Details 

Initialisation and Input 

The initialisation of the model relies on the input data previously provided in 

Section 3.3.3, complemented with data from the literature and author 

estimation of missing data. The volcano attribute initiation values are mostly 

based on data from the literature. In addition, the population attributes are 

mostly from the statistical data derived from the census microdata and the 

survey. We developed custom distribution based on these statistics to 

initiate the value of the demographic attributes. Custom distribution is a 

feature in AnyLogic 8.2 (The AnyLogic Company, Oakbrook Terrace, IL, 

USA), developed based on frequency from the observed samples 

(Borshchev, 2013). Meanwhile, the stakeholder has simple attributes taken 

from the literature. The overall parameterisation of agents in the model is 

provided in Table 3.6. In this initial condition, the environment is assigned 

with safe or low hazard, depending on the hazard zone. 

 

Table 3.6 Overview of the initialisation of the primary attributes. 

Entity  Attribute  
Initial 

Value 
Unit 

Changing 

Mechanism 
Source 

Volcano 

Latitude -7.541 
Degre

e 
Fixed (BNPB, 2011) 

Longitude 110.446 
Degre

e 
Fixed (BNPB, 2011) 

ActivityLength 104 Days  
(Mei et al., 

2013) 

ActivityLevel 0 -  
(Mei et al., 

2013) 

VEI 4 - Fixed (BNPB, 2011) 

Stakehold

er 
AlertLevel 1 - 

Changed by 

changing 

ActivityLevel 

(Mei et al., 

2013) 

People Age 

Based on 

custom 

probability 

Years Fixed 

Dataset 

(Minnesota 

Population 

Center, 2015) 

 Disability 

Based on 

custom 

probability 

- Fixed 

Dataset 

(Minnesota 

Population 

Center, 2015) 
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Table 3.6 Continued … 

Education 

Based on 

custom 

probability 

- Fixed 

Dataset 

(Minnesota 

Population 

Center, 2015) 

Education 

Experienc

e 

Based on 

custom 

probability 

- Fixed Survey Data Experience 

HouseHol

dID 

From 

Simulation 
- Fixed Simulation HouseHoldID 

 Income 

Based on 

custom 

probability 

- Fixed 

Dataset 

(Minnesota 

Population 

Center, 2015) 

 DistrictID 
From 

simulation 
- Fixed Simulation  

 Sex 

Based on 

custom 

probability 

- Fixed 

Dataset 

(Minnesota 

Population 

Center, 2015) 

 Latitude 
From 

simulation 

Degre

e 

Changed by 

movement 
Simulation 

 Longitude 
From 

simulation 

Degre

e 

Changed by 

movement 
Simulation 

 HomeLatitude 
From 

simulation 

Degre

e 
Fixed Simulation 

 
HomeLongitud

e 

From 

simulation 

Degre

e 
Fixed Simulation 

 
MovementSpe

ed 
30 – 40 km/h Fixed 

(Muhammad, 

2015) 

 
PersonalIntens

ion (PI) 

1 – 5 

 
 Fixed  

 
ProtectPropert

y (PP) 
1 – 5 - Fixed Simulation 

 
SeeTheExplosi

on (SE) 
0 - 

Changed by the 

volcano activity 
Simulation 

 Perception 1 – 5 - Fixed Simulation 

 
CulturalBelief 

(CB) 

0 – 5 

 
- Fixed Simulation 

 
GovernmentAl

ert (GA) 
0 - 

Changed when 

alert received 
Simulation 

 
FeelingDanger 

(FD) 
0 - 

Changed by the 

volcano activity 

and the hazard 

zone 

Simulation 
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Table 3.6 Continued … 

 
FeelingSafe 

(FS) 
5 - 

Changed when 

FD changes 
Simulation 

 
NotKnowTheD

estination (ND) 
1 – 5 - Fixed Simulation 

 
TransportConc

ern (TC) 
1 – 5 - Fixed Simulation 

 
SocialInfluenc

e (SI) 
0 - 

Changed when 

receiving alert by 

social network 

Simulation 

 

Sub-models 

1. Volcanic Activity 

During a period of crisis, the activity level of the volcano (VAL) changes over 

time. This activity can be divided into four classes: normal (out of the 

volcanic crisis period), low, medium and high. For instance, the data from 

two crisis records (2006 and 2010) show how the relative length of each 

level varies randomly (Mei and Lavigne, 2012; Mei and Lavigne, 2013) for 

chronological details). Temporally, the VAL changes over time, typically from 

low to medium to high to medium to low. This spatially affects the changes in 

the hazardous environment in the model. Similarly, the variability of the 

Volcanic Explosivity Index (VEI) also affects the variability of the spatial 

extent of the impact. The impact will be much wider when the intensity is 

higher. VEI is a semi-quantitative index used to describe the magnitude or 

the destructiveness of an eruption (Newhall and Self, 1982), ranging from 0 

(least destructive) to 8 (most destructive) (Newhall and Self, 1982). Based 

on historical records, the VEI of Merapi eruptions ranges from 1 – 4 (Surono 

et al., 2012). The rule in this model on how VAL and VEI influence the 

hazard zone is provided in Table 3.7 (a more detailed illustration is provided 

in Figure 3.7 of a previous paper (Jumadi et al., 2017)). 
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Table 3.7 Matrix Relationship between the Volcanic Explosivity Index 
(VEI), VAL and the hazard level within Hazard Zones (adapted from 
(Jumadi et al., 2017)). 

                                  VEI 

                            Hazard  

Zone 

VAL 

1 2 3 4 

L M H L M H L M H L M H 

III (H) L M M L M M M H H M H H 

II (M) L M M L M M M M H M M H 

I (L) L L M L L M L M M L M M 

Notes: L: Low, M: Medium, H: High 

 

2. Official Warning Models  

Alerts and warnings are part of the social capacity of the community in a 

disaster. Disaster warning is a communicative process comprising 

interrelated activities and procedures (Anderson, 1969). As this is produced 

from observation of the likelihood of disaster, it is commonly included with 

many uncertainties and limitations that can fall to the false warning and 

missed event (Durage et al., 2016). The sources of warnings can be  

authorities, peers, friends or family members, and media (Thompson et al., 

2017). The authorities issue disaster warnings in Merapi from the 

observation of activity levels. Subsequently, warnings are delivered to all 

agents; the warning level is derived from the VAL. The warning steps, 

referring to the actual warning procedure in Merapi, are provided in Table 

3.8 (Mei et al., 2013).  

Table 3.8 Alert rules in Merapi. 

VAL Definition Volcanic Activity 
Evacuation 

Alert 

I 
Normal 

activity 

No indication of activity change, either 

visual likelihood or seismicity level. 

No Evacuation 

alert 

II (Low) On guard 

Indications of activity are increasing, either 

from visual likelihood on the crater, or 

seismicity level. 

No Evacuation 

alert 

III 

(Medium) 
Prepare  

Seismic activity is increasing intensely, with 

obvious visual changes on the crater. 

Prepare to 

Evacuate 

IV (High) Beware About to erupt. Evacuate 

Adapted from Mei et al. (2013). 
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3. Evacuation Decision Model of People 

The human agents in the ABM are utilised with the ability to decide to 

evacuate or to stay, based on the threshold rule (Robinson et al., 2011; 

Kennedy, 2012) and evacuation states model of Lovreglio et al. ( 2016). The 

decision is made by evaluating social and physical factor variables (Figure 

3.4). These factors are quantified, weighted and classified into two main 

categories: driving factors to evacuate (EF) or driving factors to stay (SF) 

(Figure 3.4a). A detailed description and quantification of EF and SF are 

provided in the supplementary material (Appendices 3.4 – 6), where the 

weight of the factors varies based on the scenario setting (see section 

3.7.2). Both EF and SF are used in Equation (3.1) to define the strength of 

the evacuation decision (ED). Agents use threshold-based rules (Robinson 

et al., 2011; Kennedy, 2012) to evaluate the ED (Figure 3.4b). The change in 

ED triggers the transition between the states of Normal-Investigating-

Evacuating. When the agents have enough EF, i.e. they exceed the 

threshold, they will evacuate, otherwise they will continue to stay. An 

overview of the states is provided as follows (a detailed state chart diagram 

is provided in the Supplementary MaterialAppendix 3.7):  

Normal: initial state of agent when there is no sign of hazard.  

Investigating: the agent observes the volcano and their environment 

(social, physical) as the activity of the volcano increases.  

Evacuating: the agent decides to evacuate. In this state, the agent warns 

their family as well as their relations to evacuate. 
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ED = EF – SF ………………………………………….…………………….. (3.1) 

 

Figure 3.4 Threshold-based decision rule based on the Normal-
Investigating-Evacuating state model. (a) The interrelating 
variables and functions define the value of the evacuation 
decision (ED); and (b) the transition between states in the 
evacuation decision as result of changing ED based on the 
threshold model. Descriptions of the variables and functions are 
provided in the supplementary materials (Supplementary 
Material—Appendices 3.5–7). 

 

3.3.5 Population and Synthetic Population Generation 

Spatially realistic ABM requires the utilisation of realistic agent attributes and 

localisation (spatial distribution) (Chapuis et al., 2018). However, population 

microdata is commonly lacking in the spatial representation details of 

household location due to confidentiality issues (Huang and Williamson, 

2001). Moreover, the aggregate characteristics of human agents need to be 

consistent with the aggregate characteristics of the real population (van Dam 

et al., 2017). This population characteristic should be similar to the real 

situation regarding socio-demographic attributes as well as spatial 

distribution (Heppenstall et al., 2011). Therefore, the synthetic population 

generation characterizes not only the demographic character, but also the 

geographic location, to fulfil this requirement.  

The synthetic population is a population built from anonymous survey data at 

the individual level (Heppenstall et al., 2011). In this model, the individuals 

will be grouped into households to represent reality. There are several 

techniques to generate a synthetic population, including deterministic 

reweighting, conditional probability (Monte Carlo simulation) and simulated 

annealing (Harland et al., 2012). Among these techniques, conditional 

probability has advantages for use in this model as it contains stochastic 

elements. This stochastic condition is needed because the exact location is 
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unknown. The general technique for generating the synthetic population in 

this model is provided in Figure 3.5. The technique comprises three steps: 

data preparation; conditional probability simulation development and 

execution; and verification to fit the result. Development, execution and 

verification are iterative processes. If the verification finds high deviation 

between the real data, it then loops back to the development and execution 

process to fix possible bugs or logical errors. 

The details of Monte Carlo simulation to generate the synthetic population 

model are based on a method by Moeckel et al. (2003). In this model, 

human agents are generated for each sub-district of Sleman in individual 

units grouped as households. The attributes are matched with the real data 

using census data statistics and field data from questionnaires. The spatial 

distribution of the population is also randomly generated to be matched with 

the real spatial distribution of the population using the centre of gravity 

model (Jumadi et al., 2016). Due to software and computer resource 

limitations, the simulated population was minimised proportionally (Table 

3.9). 

 

Figure 3.5 Synthetic population generation. 
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Table 3.9 Real population level (2010) and simulated agents. 

District Population Mean Centre 

Number of 
Households 

Number of 
Simulated 

Households 

Estimated 
Level of 

Simulated 
Populatio

n 

 Longitude Latitude 

Berbah 110.448997 -7.802559 18,927 473 1,892 

Cangkringan 110.456001 -7.649149 9,187 230 920 

Depok 110.400001 -7.773849 47,228 1,181 4,724 

Gamping 110.334999 -7.78209 31,724 793 3,172 

Godean 110.301002 -7.77015 24,619 615 2,460 

Kalasan 110.467002 -7.74484 25,277 632 2,528 

Minggir 110.238998 -7.73681 13,432 336 1,344 

Mlati 110.361 -7.75394 34,703 868 3,472 

Moyudan 110.239997 -7.772729 11,677 292 1,168 

Ngaglik 110.378997 -7.743549 39,991 1,000 4,000 

Ngemplak 110.430999 -7.71747 20,906 523 2,092 

Pakem 110.410003 -7.653709 12,585 315 1,260 

Prambanan 110.496002 -7.787529 28,141 704 2,816 

Seyegan 110.299003 -7.72833 17,278 432 1,728 

Sleman 110.347999 -7.70054 23,814 595 2,380 

Tempel 110.317001 -7.670989 19,977 499 1,996 

Turi 110.376998 -7.63426 1164 29 116 

   
380,630 9517 38,068 

Source: BPS (2015) and spatial analysis of land use data. 

 

This model is also utilised with a synthetic social network, which represents 

the human relations and spread of risk warning. The social network for the 

spread of risk warning does not always require physical contact, as in 

modelling for the spread of disease (Adiga et al., 2015), but can be through 

non-physical contact, e.g. using the medium of social media (Wise, 2014). 

Each agent is assigned with links with other agents in order to mimic social 

network reality. The number of linked agents is generated differently to 

accommodate the varying social interactions between people. There are 

several types of connections among agents: household member 

connections; friendship connections; and connections with the stakeholder. 

3.3.6 Calibration and Validation 

In implementing the model structure discussed above, we need to verify that 

the model works in line with the concept, as well as fitting the real world. We 

used the retrodiction approach from the various other validation techniques 
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(Hawe et al., 2012) to measure the validity of the model. This approach 

focuses on measuring the replicative validity, i.e. the ability of the resulting 

output from the simulation to match the real data (Troitzsch, 2004). Two 

outputs were compared with the real data to establish that the model was 

plausible: the spatial pattern of reluctant people; and the temporal 

accumulation of evacuees. If any output was unreasonably different from the 

real data, we manually adjusted the parameter or the rules of the model to 

produce reasonable outputs (calibration). Graphical monitor and statechart 

inspection were used to verify that the implemented model worked 

corresponding to the model design (visualisation approach) (Hawe et al., 

2012). Calibration and fitting of some parameter values or data was 

conducted to achieve output similarity (Section 3.3.6.2). To quantitatively 

measure the similarity between the modelling output and the real data 

(Section 3.3.6.1), we used temporal and spatial validation (Section 

3.3.6.3)(Robinson and Rai, 2015).  

 

3.3.6.1 Empirical Data for Comparison  

We used several data to measure the validity of the model, including the 

spatial distribution of reluctant people and the temporal accumulation of 

evacuees. All these data were provided by the 2010 evacuation records (see 

Section 3.3). The data on reluctance is provided in Figure 3.6. Such 

reluctance always occurs in Merapi based on past eruption records. It also 

occurred in the 2006 eruption, as identified by Sagala and Okada (2009). 

Reluctance to evacuate potentially leads to fatalities in disasters; therefore, 

we considered that validating the model based on this output was important. 

These data were derived from a map provided by Lavigne et al. (2017), 

which consists of the distribution of villages in which at least one person 

refused to evacuate in 2010 based on reports from the village chiefs 

(Lavigne et al., 2017). We selected relevance areas from the original map 

(Lavigne et al., 2017), extracted the centroid of the areas and created the 

density map (Figure 3.6) using kernel density analysis in ArcGIS to make 

comparison possible with the output of the model (Robinson and Rai, 2015). 

In addition, when people start evacuating (the temporal aspect) is also 

significant, as late evacuation can also increase risk. Therefore, we also 

used this issue to measure the validity of the model, where the temporal 

aspect is expressed as the temporal accumulation of evacuees (Figure 3.7). 

This data was from the daily records of evacuees during the eruption of 

2010. These records are documented on the government website (Local 
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Government of Sleman, 2010). These data were copied to Excel and are 

provided in the supplementary material (Supplementary MaterialAppendix 

3.2). 

 

Figure 3.6 Distribution of reluctant evacuees during the 2010 
evacuation (adapted from (Lavigne et al., 2017)).  

 

 

Figure 3.7 Temporal accumulation of evacuees during the crisis period 
in 2010. (a) Issuance of first evacuation order on 25 October 2010; 
(b) issuance of second evacuation order on 3 November 2010; (c) 
major eruption on 4 November 2010; (d) issuance of third 
evacuation order on 5 November 2010 (Adapted from [15,76]). 
Excel data: see Supplementary Material—Appendix 3.2. 

 

3.3.6.2 Calibration  

We conducted several calibrations to fit the model, as the initial evaluation 

indicated that there were discrepancies between the simulation results and 
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the real data (Jumadi et al., 2017). The differences were mainly in the 

comparison of the percentage of the evacuating population, the temporal 

accumulation of evacuees, and the emergence of reluctant people, which 

could not be captured in the first model. We assumed that the differences in 

both the percentage of the evacuating population and the temporal 

accumulation of evacuees were because of the different hazard scenarios 

used to make evacuation decisions. The evacuation order in 2010 was 

based on radius distance, i.e. 20 km from the summit (Mei et al., 2013). The 

population within this radius (Figure 3.8b) is higher compared to that within 

the actual hazard zone (Figure 3.8a), which possibly results in the 

differences. Based on this assumption, we first calibrated the model by fitting 

the hazard scenario. We used both hazard zones scenarios (Figure 3.8) in 

the simulation and made a comparison of the results. Meanwhile, we 

addressed the drawback of the first model, which was unable to capture the 

emergence of reluctance (to evacuate) behaviour, by assigning the 

evacuation decision (Section 3.4.3), which is the main focus of the paper. 

 

 

Figure 3.8 Hazard scenarios setting: (a) based on actual hazard map 
(BNPB, 2011), (b) based on hazard map used for evacuation order 
in 2010 eruption (Mei et al., 2013). 

 

The simulations were divided into three scenarios with varying parameters. 

The variation in the settings of these scenarios is provided in Table 3.8. 

Scenario 1 uses hazard model a (Figure 3.8a) to set the hazard zone of the 

ABM environment. The evacuation decision of this scenario is based on 

evaluation of the force to evacuate versus the force to stay (Section 3.3.4.3). 

However, SE was disregarded in this scenario. Meanwhile, scenario 2 uses 

hazard model b (Figure 3.8b) to set the hazardous environment with regard 
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to the SE factor for the decision model. We assumed that this factor was 

important since the evacuation records from 2010 show that people 

continued to stay at home after receiving two evacuation alerts from the 

government, but did evacuate after the major explosion occurred (Figure 

3.10). The scenario uses the same hazard map setting, as well as the same 

evacuation decision factors, as the second scenario, but different weighting 

was applied to SI for this scenario. 

 

Table 3.10 Simulation scenarios. 

Scenario 
Hazard 

Model 

Weight of Driving 

Factors to Evacuate 

(EF) 

Weight of Driving 

Factors to Stay (SF) 

FD PI GA SI SE PP ND TC FS CB 

1 a 1 1 1 1 - 1 1 1 1 1 

2 b 1 1 1 1 1 1 1 1 1 1 

3 b 1 1 1 1 1.5 1 1 1 1 1 

 

3.3.6.3 Validation  

The validation approach was to make comparisons between the temporal 

and spatial aspects of the output and the real data. The aim was to assess 

how well the model predicted the outcome under the same parameters 

compared to the real event (see Section 3.3.3 for the data used and Section 

3.3.4.3 for the parameter value setup). We adapted approaches used by 

Robinson and Rai (2015) for the spatial and temporal validation techniques. 

The spatial validation was conducted to establish the ability of the model to 

predict the spatial distribution of the reluctant people. Fuzzy similarity (K*) 

and a wavelet correlation coefficient (rw) were used to measure the similarity 

between the simulation output and the real data (Hagen-Zanker, 2006; 

Robinson and Rai, 2015). We used Map Comparison Kit 3.2 of Visser and 

Nijs (2006) to perform this analysis. Moreover, temporal validation was 

conducted to establish the ability of the model to represent the time when 

people start to evacuate. We compared the temporal accumulation of 

evacuees of both the real and simulation output data. Root Mean Square 

Error (RMSE) was used to measure the plausibility of this output. We used 

the rmse library in R (Bigiarini, n.d.) to calculate this error for all periods 
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(n=100) of the simulated crisis (see Figure 3.6). The returning home process 

was excluded in this comparison, since the model only regards the 

evacuation process (Jumadi et al., 2017). When the outputs appeared very 

different, some parameters/data and rules were calibrated/fitted to obtain the 

most similar output with the real data. Lastly, we concluded with the most 

plausible scenario with the indicators being the highest value of K* and rw, 

and the lowest value of RMSE. 

3.4 Results and Discussion  

3.4.1 Results of the Simulation Scenarios 

Once the model design (Section 3.4) was applied in the previous model 

(Jumadi et al., 2017), we performed several simulations to verify that the 

developed model corresponded to the design and that there was no error in 

the code (Crooks et al., 2018). After the verification had been conducted and 

the program ran as intended, we ran the simulation 30 times for each 

scenario (Section 3.6.2) to provide enough samples for statistical analysis 

(Haneberg, 2004; Ghasemi and Zahediasl, 2012). The outputs of the 

scenarios were analysed and presented both as spatial and temporal 

distributions. The indicators of the plausibility of the model are presented 

alongside the results. The results for scenarios 1, 2, and 3 are shown below. 

3.4.1.1. Scenario 1  

The first scenario is the basic model of the evacuation decision used in this 

ABM. Spatial and temporal comparison between the real data (empirical) 

and the simulation results of scenario 1 are provided in Figures 3.9 and 3.10. 

The results indicate that the model is able to represent the emergence of 

reluctant people, as shown in Figure 3.9. However, the evacuees departed 

too quickly compared to the empirical data (Figure 3.10). 
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Figure 3.9 Spatial comparison of simulated and observed reluctance 
distribution based on scenario 1. The raster data is provided in the 

supplementary material (Supplementary MaterialAppendix 3.8). 

 

 

Figure 3.10 Temporal comparison of simulated and observed evacuee 
accumulation based on scenario 1: (a) overall comparison; (b) 
zoomed to the simulation outputs; and (c) RMSEs. 

 

3.4.1.2. Scenario 2 

The second scenario is the improved model, in which both the hazard model 

and the evacuation decision factors have been adjusted (Section 3.3.4.3). 

Spatial and temporal comparison between the real data (empirical) and the 

simulation results of this scenario are provided in Figures 3.10 and 3.11. The 
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results of this scenario also indicate that the model is able to represent the 

emergence of reluctant people, as shown in Figure 3.11. The evacuees’ 

departure in this scenario can be classified into two different times: first, 

roughly half the evacuees departed once the volcanic activity had reached 

its highest level; second, the remainder departed after the timestep reached 

the major explosion time (Figure 3.12). This also shows discrepancy with the 

empirical data. 

 

Figure 3.3 Spatial comparison of simulated and observed reluctance 
distribution based on scenario 2. The raster data is provided in the 

supplementary material (Supplementary MaterialAppendix 3.9). 
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Figure 3.4 Temporal comparison of simulated and observed evacuee 
accumulation based on scenario 2: (a) overall comparison, (b) 
zoomed to the simulation outputs, (c) RMSEs. 

 

3.4.1.3 Scenario 3 

The third scenario uses a similar hazard and evacuation decision model, but 

this one has been improved with a weighting strategy for observing the 

explosion factors (Section 3.3.4.3). Spatial and temporal comparison 

between the real data (empirical) and the simulation results of this scenario 

are provided in Figures 3.13 and 3.14. Similarly, the results of this scenario 

also indicate that the model is able to represent the emergence of reluctant 

people, as shown in Figure 3.13. However, the temporal data shows a 

different result, that all the evacuees departed after the time-step reached 

the major explosion time (Figure 3.14). This shows a discrepancy with the 

empirical data, but appears better than the results of scenarios 1 and 2. 

Detailed discussion of the comparison between all the scenario results is 

provided in Section 3.4.2. 
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Figure 3.5 Spatial comparison of simulated and observed reluctance 
distribution based on scenario 3. The raster data is provided in the 

supplementary material (Supplementary MaterialAppendix 3.10). 

 

Figure 3.6 Temporal comparison of simulated and observed evacuee 
accumulation based on scenario 3: (a) overall comparison, (b) 
zoomed to the simulation outputs, (c) RMSEs. 

 

3.4.2 Discussion and Future Research 

An evacuation decision model based on both physical and social factors with 

three scenarios to fit the model with reality is presented in this paper. The 

outcome of the research addresses a drawback that was found in the 
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previous model, which was unable to capture the emergence of reluctant 

people (Jumadi et al., 2017). It also improves on other similar models of 

evacuation, which give less consideration to this phenomenon (e.g. Zhang et 

al. (2009); Mas et al. (2012); Wise (2014); Wang et al. (2016); Adam and 

Gaudou, (2017)). Additionally, the model has been evaluated through a 

spatial and temporal validation approach to evaluate its plausibility. The 

spatial validation is based on evaluation of K* and rw (Hagen-Zanker, 2006; 

Robinson and Rai, 2015) in the simulated and real spatial distribution of 

reluctant people. Meanwhile, the temporal validation is based on evaluation 

of the RMSE (Robinson and Rai, 2015) of simulated and real temporal 

accumulation of evacuees (the returning home process is excluded). 

There are some studies which help understand these measures (e.g. Briggs 

and Levine (1997); Hagen (2003); Hagen-Zanker et al. (2005); Hagen-

Zanker (2006); Rai and Robinson (2015); Robinson and Rai (2015); Bigiarini 

(n.d.)). Fuzzy similarity (K*) measures the similarity of cells in the same 

location of one map with their counterparts by taking into account the directly 

neighbouring cells (local similarity) of the counterpart map based on Fuzzy 

Kappa (Hagen, 2003; Hagen-Zanker, 2006; Rai and Robinson, 2015), where 

the degree of similarity is assigned as 0 (different) or 1 (similar). This means 

that the higher the value, the more similar the maps. In interpreting the 

results, a higher value means that the output is more similar to the real data. 

Meanwhile, the wavelet correlation coefficient (rw) compares two maps, 

which are decomposed using a discrete wavelet transform, by RMSE 

(quantity), r (pattern), and ER (energy) (Hagen-Zanker, 2006). This paper 

focuses on pattern comparison, therefore an r coefficient is used for the 

measurement. Similar to K*, the degree of similarity of this is also assigned 

as 0 or 1, in which a higher correlation means the greater the similarity of the 

pattern. Both K* and rw measure the degree of similarity based on the 

equivalency of the structures of the maps, where the individual values may 

not exactly be the same (Rai and Robinson, 2015). rw is used together with 

K* to measure the robustness of the results; if the rw value is consistent with 

K* this means that the similarity of the simulation output with the real data is 

robust (Rai and Robinson, 2015). On the other hand, the RMSE that is used 

to measure temporal validity measures the deviation of the output of the 

simulation from the real data (Rai and Robinson, 2015). A smaller value 

means better mimicry of the real data. 

Based on the evaluations and measurements, all the scenarios presented 

here are able to simulate the emergence of reluctant people, which is the 
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main objective of this paper. The first scenario is the most robust of all, with 

the value of K* consistent with rw. However, the third scenario is the most 

plausible, based on the evaluation of both the spatial and temporal validation 

results. However, this is not the best scenario as evaluated from one aspect, 

i.e. spatial validation. Based on the visual inspection of Figure 3.15 to 

provide a qualitative comparison (Crooks and Hailegiorgis, 2014), this 

indicates that the second model is the most appropriate, but the statistical 

analysis shows differences. The statistical analysis of K* and rw shown in 

Figure 3.15a indicate that the first scenario gives the best outcome. This is 

indicated not only from the values of both K* and rw, but also from the ranges 

of the values; their values in this scenario are relatively higher than those in 

the other scenarios. In addition, these have the smallest of all the ranges 

(minimum variation). Moreover, both values in this scenario are the most 

consistent compared to the others; the outcomes from the other scenarios 

show variance between K* and rw. However, the temporal validation (Figure 

3.16b) indicates that the first scenario results in the highest error (RMSE), 

while the third scenario give the best results based on both the values and 

the range from the simulation results. Based on this, and its spatial validation 

results which are still reasonable compared to the others, the third scenario 

can better represent real evacuation. 

We found from this model evaluation that the occurrence of disaster can be 

a major factor to evacuate. This is proved in this model, as the results more 

closely fit reality after this aspect (explosion occurrence) was weighted 

(Scenario 3) in the case study (see Figures 3.7 and 3.14). People are likely 

to disobey the evacuation command, but are motivated to evacuate after the 

real explosion has occurred (Figure 3.7). Such difficulties in ordering people 

to evacuate is a common phenomenon (Tobin and Whiteford, 2002). It 

occurs not only in the case of volcanic eruption, but also in the other 

hazards, such as Hurricane Katrina (Elder et al., 2007). Therefore, a strong 

evacuation command is needed to ensure the evacuation processes (Riad et 

al., 1999); for example, military force, as in the evacuation from Tungurahua, 

Ecuador in 1999 (Tobin and Whiteford, 2002). Nevertheless, although this 

evaluation indicates that explosion (occurrence of disaster) is the major 

motivation to evacuate, we still lack information on why there is a delay 

between the major explosion and the evacuation, as indicated in Figure 3.7. 

This missing information makes it impossible to model this delay in the 

current design. 
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Figure 3.7 Overall comparison of spatial distribution of reluctant 
people. The scenario output was averaged. 

 

Figure 3.8 Comparison of both spatial and temporal measures of 
validity for all scenarios. (a) Spatial validity evaluation based on K* 
and rw, (b) temporal validity evaluation based on RMSE. 
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Figure 3.9 Distribution of evacuees from Sleman in the 2010 Merapi 
crisis . Source: Geospatial BNPB (BNPB, 2010c; BNPB, 2010a; 
BNPB, 2010d; BNPB, 2010b), DYMDIS GEGAMA (Budiyono, 2010). 

The shapefile is provided in Supplementary MaterialAppendix 
3.11. 

Furthermore, a thorough evacuation decision should also include a decision 

on destination choice. This has also been assigned in this model, but has yet 

to be calibrated or validated. It is important to compare the distribution of 

evacuees with the real data as this expresses the validity of the destination 

choice rule of the agent. In 2010, the population within the danger zone in 

Merapi evacuated to temporary shelters (evacuation centres) distributed 

outside the danger zone (Figure 3.17). These shelters were commonly 

public facilities, such as stadiums, schools, mosques/churches, etc. 

Analysing the distribution of evacuees in Figure 3.17, it can be assumed that 

the majority from Merapi selected the nearest shelter as their destination 

(travel distance). This is proven by the fact that the percentage occupancy of 

the shelters in the surroundings of the restricted zone were relatively high 

compared to more distant ones. Some people chose shelters close to public 

services. Interestingly, few people chose quite remote spots as their 

destination. Commonly, evacuees chose this kind of shelter because they 

had relatives in the destination area (Joglosemar, 2010; JPNN, 2010) or they 

were looking for a safer place (Ramdan, 2010), which is relevant to the 
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finding by Cheng et al. (2008). In Merapi, based on the shelter zoning 

analysis of Figure 3.16, 80.3% of evacuees preferred to select the shortest 

distance, 12.4% preferred to select destinations close to public services 

zones, and the rest (7.2%) either used relatives or risk indicators as 

preferences. Addressing this issue, together with involving the delay factors 

as mentioned earlier, would be a good way to improve this model. 

3.5 Conclusion 

The paper presented an individual evacuation decision model in ABM with 

Mt. Merapi, Indonesia as a case study. The model was based on various 

interrelating factors developed from the literature review and survey. These 

factors were categorized into driving forces to evacuate or driving forces to 

stay. The threshold-based approach was used to evaluate the differences in 

both values and to define whether agents would evacuate or stay. This 

decision model can be used to simulate two important aspects of 

evacuation, namely the dynamic of evacuation departure, and the 

emergence of reluctant people. Both of these aspects are important in 

defining the effectiveness of evacuation because a high emergence of 

reluctant people or evacuation which is too late will increase the risk. 

Calibration was conducted by setting up the parameters based on three 

scenarios. We validated the model by a retrodiction approach which 

consisted of spatial and temporal validation. K* and rw were used to measure 

the validity of the spatial distribution of the simulated reluctant people 

against the real data. Meanwhile, RMSE was used to measure the validity of 

the temporal accumulation of evacuees. Analysis of the simulation outputs 

shows that scenario 3, which weighted the occurrence of an explosion as the 

most important motivation for evacuation (four times more important than the 

other aspects), was the most plausible model in mimicking the real volcanic 

disaster events in Mt. Merapi. This plausibility was indicated by both the 

spatial and temporal similarity of the output with the real data being relatively 

high (high K*, rw and low RMSE) compared to the other scenarios. 
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Reluctance raster map (https://osf.io/gy8ew/); (4) Appendix 3.4. Functions 

Overview of Evacuation Decision for Scenario 1 (https://osf.io/pqmv3/); (5) 

Appendix 3.5. Functions Overview of Evacuation Decision for Scenario 2 
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statechart diagram of the evacuation decision (https://osf.io/wftx7/); (8) 

Appendix 3.8. Raster data for Figure 3.9 (https://osf.io/chgdy/); (9) Appendix 

3.9. Raster data for Figure 3.11 (https://osf.io/cygmp/); (10) Appendix 3.10. 
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Chapter 4  

An Agent-based Spatio-temporal Dynamics Model of Risk in 

Merapi 
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based Spatio-temporal Dynamics Model of Risk in Merapi. URL: https://goo.gl/x5royU.  

 

 

 

Abstract: Managing disasters caused by natural events, especially volcanic 

crises, requires a range of techniques including risk modelling and analysis. 

Risk modelling is commonly conducted at community/regional scales using 

GIS. However, such an approach cannot properly capture the dynamic of 

risk due to limitations in accommodating object movement over time and 

space. The development of individual modelling, specifically Agent-based 

Modelling (ABM), allows modelling of risks at individual scale over space 

and time to address this limitation. We propose a new approach of Spatio-

temporal Dynamics Model of Risk (STDMR) by integrating multi-criteria 

evaluation (MCE) within a georeferenced ABM with Mt. Merapi, Indonesia as 

a case study. Using this model it was possible to simulate the spatio-

temporal dynamic of people at risk during a volcanic crisis. The model 

captures dynamic risk as a function of hazard and vulnerability, where the 

intensity of the hazard varies over time and space. Here, vulnerability is 

defined using a social vulnerability index (SoVI) as aggregated in the MCE 

from several attributes of individual agents. We generate a synthetic 

population to assign attributes to the individual agents using probability 

This chapter proposes an individual risk model based on multi-criteria 

evaluation (MCE) and implements this to simulate the spatio-temporal 

dynamics of risk using the ABM from Chapter 3. As in Chapter 3, the 

results suggest that the real and perceived hazard might different, dual 

hazard model is implemented to the ABM (real and perceived). The real 

model is used in assessing individual risk, while the perceived model is 

used in defining the individual evacuation decision. The spatial 

distribution of risk (risk hotspots) as aggregated from individuals risk is 

presented and discussed in this chapter. 

https://goo.gl/x5royU
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distribution of the population characteristics sourced from primary and 

secondary data. Importantly, individual vulnerability is heterogeneous and 

depends on the characteristics of the individuals concerned. The risk to 

individual people dynamically changes along with the changing hazard 

dynamics and the location of people (movement). The model can be used to 

simulate the risk dynamics within the crisis and potentially improve the 

decision making process of evacuation. 

Keywords: ABM, volcanic crisis, risk dynamics, spatio-temporal risk model, 

MCE. 

 

4.1 Introduction 

When natural disasters occur, hazard levels vary over space and time 

depending on various factors. During a volcanic eruption, for example, the 

spatial extent of the impact relates to the contrasting nature of the volcanic 

sources, the type and magnitude of explosive eruptions and the topography 

(Lirer et al., 2010) while the level of hazard can vary over space and time 

during such crises. Likewise, in the case of floods, the spatio-temporal 

hazard can vary depending on a range of hydro-meteorological and 

topographical factors (Merz et al., 2006; Yan et al., 2015). Such spatio-

temporal variability of hazards means that the associated risk varies over 

time and space. Especially during volcanic crises, time and location are 

critical in defining the risk to human populations: fatalities can result from 

people being located in the wrong place at the wrong time. Therefore, under 

certain conditions, residents in the vicinity of a volcano need to evacuate 

quickly from hazardous areas. Evacuation is often the only way to reduce 

the risk from volcanic impact because it is almost impossible to survive the 

hazardous material emitted during an eruption such as pyroclastic flows and 

toxic gases (d’Albe, 1979).  

The combination of the mobile nature of people with the spatio-temporal 

variability of hazard means that the risk changes dynamically. More thorough 

spatio-temporal modelling is required to figure out the dynamic rather than 

static risk map, such as that produced by Alcorn and colleagues (Alcorn et 

al., 2013). Risk modelling plays an important part in improving understanding 

of the potential impact of certain hazards and for informing disaster 

management. This is traditionally conducted at community/regional scale 

using GIS. For example, Biass et al. (2012) successfully analysed risk 
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focusing on the impact of tephra fallout from the Cotopaxi volcano and 

produced several thematic maps that included social risk level. 

Meanwhile, Alcorn et al. (2013) more comprehensively analysed the volcanic 

risk of Valles Caldera, New Mexico, focusing on testing and demonstrating a 

GIS-based Multi-Criteria Evaluation (MCE) for risk assessment. Both hazard 

and vulnerability were aggregated from several criteria using MCE. Similarly, 

Scaini (2014) used spatial overlay analysis of the hazard and vulnerability 

map in GIS to generate the risk in Tenerife Island, Spain. Although both the 

Alcorn and Scaini studies present more comprehensive analyses regarding 

the hazards than does the Biass approach, they share a similar limitation 

with respect to accounting for the dynamic risk posed to mobile individuals.  

Such GIS-based overlay analysis can provide spatial risk information that is 

suitable for the risk to fixed elements such as buildings, infrastructure and 

economic units but is less appropriate for modelling the risk to people who 

have the ability to move during an emergency in response to unfolding 

volcanic activity. Therefore, a model that can represent the dynamics of 

individual risk over time and space is required. Agent-based Models (ABMs) 

provide a new approach to risk analysis that focuses on the individuals who 

are ultimately at risk (Clarke, 2014), but the concept and model of individual 

risk is less developed, whereas MCE has advantages for modelling 

individual risk involving multiple attributes.  

ABM has been shown to be effective in simulating agent behaviour in non-

linear systems (Malleson et al., 2014; Srbljinović and Škunca, 2003). In an 

ABM, people are represented as agents who have heterogeneous 

characteristics and behaviour (Crooks and Heppenstall, 2012). They are 

able to navigate their environment and interact with other agents and the 

model therefore reflects individual variations in vulnerability and mobility. 

The coupling of ABM with a dynamic hazard model is therefore an ideal 

framework within which to represent the dynamic risk to individuals during a 

volcanic emergency. 

In this paper, we propose a new approach of Spatio-temporal Dynamics 

Model of Risk (STDMR) and provide a case study using a pre-developed 

agent-based evacuation model of Mt. Merapi (Jumadi et al., 2018, 2017). 

This approach first creates an individual-level population (synthetic 

population) of agents who live in the area surrounding a volcano. Each agent 

has a unique vulnerability and since vulnerability comprises several factors 

(Cutter et al., 2003), MCE is used to create a single social vulnerability index 

for each individual. This is coupled with a dynamic hazard model to capture 
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the dynamics of risk. The model is able to highlight a small number of high-

risk spatio-temporal positions where, due to the behaviour of individuals 

evacuating the volcano and the dynamics of the hazard itself, the overall risk 

in those times and places is extremely high. The outcomes are interesting 

and extremely relevant for stakeholders and the work of combining an ABM 

and a MCE with a dynamic volcanic hazard is novel.  

The paper is organised as follows: in Section 4.2 we describe the 

background concept of the approach; Section 4.3 then presents the method 

of the application of the model and the case study; Section 4.4 provides the 

results of the experimentation and the spatio-temporal analysis of the results 

and discusses the outcomes; and lastly, Section 4.5 provides overall 

conclusions. 

4.2 The concept of Individual Risk using MCE in ABM 

Previously we have discussed the importance of incorporating the spatio-

temporal dynamic of a hazard into the modelling of human risk. This section 

provides the background concept to the approach through the integration of 

Multi-Criteria Evaluation (MCE) into an ABM. MCE was originally a 

technique to make a decision from multiple criteria and conflicting priorities 

(Voogd, 1982). This concept has since been widely used to analyse 

problems or to assess values that consist of multiple criteria or attributes 

(Abella and Westen, 2007; Armaș and Gavriș, 2013; Labadie and Prodhon, 

2014). The vulnerability of people to a volcanic hazard is multi-faceted, so 

MCE is a useful technique that can be used to quantify this value (Armaș 

and Gavriș, 2013). Meanwhile, ABM is used here to account for the nature of 

the social processes in an emergency situation which are complex (Dash 

and Gladwin, 2007). Representing human behaviour in such situations is 

extremely challenging due to the difficulties in modelling human behaviour. 

Specifically, the responses and behaviour of people during a disaster will 

vary according to their socio-economic and demographic characteristics 

(Christia, 2012; Donovan, 2010; Dove, 2008; Lavigne et al., 2008; Rianto, 

2009). Integrating the two approaches enables spatio-temporal modelling of 

the dynamics of human risk in relation to natural hazards. 

The risk is considered here to be the probability of harmful consequences or 

expected losses that result from the interactions between hazards and 

vulnerable people or objects (Blaikie et al., 2014; UNISDR, 2004). Risk is 

estimated as a function of hazard and vulnerability using Equation 4.1 (Sar 

et al., 2015; UNISDR, 2004). Consequently, when the value of the hazard 
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changes, risk changes as well. For example, consider a population with a 

degree of vulnerability arising from living in the certain hazard zone (Figure 

4.1). During a volcanic emergency, the magnitude and intensity of hazards 

vary with respect to the proximity to the summit, as well as the topographic 

conditions that determine the direction of the flow of volcanic material. As the 

population may be moving during the crisis, their hazard level will vary with 

time (t1 to t2). Simultaneously, the hazard will vary due to the changing of the 

intensity of the volcanic activity. Therefore, the degree of risks varies in both 

cases. The mentioned concept of risks with regards to the mobility of people 

and the dynamics of hazard can be used to formulate the spatio-temporal 

risk model on an individual basis. 

 

𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 ∗ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ………………………………………….…(4.1) 

 

 

Figure 4.1 Illustration of moving people and the dynamic of hazard 
within time and space. 

 

Individual risk (Newhall and Hoblitt, 2001) is the probability that a particular 

individual, at known co-ordinates, will be killed or injured by the volcano 

within a specified period. In this research, we specify the hazard as a 

potentially damaging eruption that may cause loss of life or injury and social 

disruption (UNISDR, 2004). A map of the hazard can be composed of 

several elements. Specifically, in the case of volcanic hazards, the elements 
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include the types of hazardous material that are emitted during eruption such 

as Pyroclastic Density Current (PDC), lava flow and tephra fallout (Alcorn et 

al., 2013). In the study area, the hazard map has been compiled from the 

historical record to be a single hazard map (BNPB, 2011). Meanwhile, we 

describe vulnerability as the characteristics of a person or group that 

influence their capacity to anticipate, cope with, resist and recover from the 

consequences of a natural hazard (Blaikie et al., 2014). Vulnerability is 

multidimensional and can be measured using a combination of many 

variables (Lummen and Yamada, 2014). Here, we quantify vulnerability 

using the Social Vulnerability Index (SoVI) (Cutter et al., 2003). This index 

has been developed based on several attributes: socio-economic status 

(income, political power, prestige), gender, race and ethnicity, age, 

commercial and industrial development, employment loss, rural/urban, 

residential property tenure, infrastructure and lifelines, occupation, family 

structure, education, population growth, medical services, social 

dependence, special needs populations (Cutter et al., 2003). The index has 

been widely used to measure social vulnerability toward environmental 

hazards in various regions (Armaș and Gavriș, 2013; Chakraborty et al., 

2005; Garbutt et al., 2015; Letsie and Grab, 2015; Schmidtlein et al., 2008; 

Tapsell et al., 2010; Yoon, 2012).  

The individual risk assessment has different criteria compared with the risk 

assessment for a community/region which uses criteria based on the 

characteristics of the community and the region where the population lives. 

There is no relevant literature in this field that addresses risk assessment on 

an individual basis. Therefore, in this research, we define several 

characteristics of individual people (or ‘agents’) to generate the SoVI and 

degree of hazard that any agent is exposed to in any specific location at any 

particular time. The concept used here to define individual risk consists of 

three parts: defining the socio-economic parameters for individual 

vulnerability; defining hazard at the individual location; and measuring the 

risk. Several socio-economic parameters are used in the vulnerability 

assessment through the application of a MCE. Meanwhile, the hazard is 

assessed based on the location of a person within the given hazard zone. 

The risk is defined based on the measured vulnerability and the hazard level 

(Figure 4.2).  
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Figure 4.2 Individual risk concept using Multi-Criteria Evaluation (MCE) 
using physical (hazard) and social (person attribute) variables. 

 

MCE plays a major role in defining the individual risk. In the individual risk 

model, MCE is used to evaluate both SoVI and the risk as a final result, 

based on the criteria provided. MCE, also called Multi-Criteria Analysis 

(MCA), was initially conceptualised in the early 1970s. MCE is often used to 

analyse a compromise between choice alternatives, while GIS enables 

analysis of complex spatial problems from several layers of spatial data. 

MCE analysis starts with the construction of an evaluation matrix containing 

elements that reflect the characteristics of the set of alternatives based on a 

specific set of criteria. Each element can be weighted based on its 

contribution to the goal using several techniques: ranking, rating, pairwise 

comparison (AHP) and trade-off (Malczewski, 1999). Commonly there are 

two techniques to aggregate this element so that the final result can be 

achieved through a weighted linear combination (WLC) and Boolean overlay 

(Eastman, 1999; Malczewski, 2000). 

Finally, those concepts need to be implemented in ABM to simulate the 

dynamics. Although potentially powerful and successfully integrated into GIS 

(Carver, 1991), the integration of MCE and ABM is rare. They have been 

used for decision-making simulations of various expert groups (Bishop et al., 

2009) and for recreational fishing management (Gao and Hailu, 2012). 

Bishop et al. (2009) discussed the potential use of MCE to explore the 

various outcomes of decision-making processes with different preferences of 
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human agent, while Gao and Hailu (2012) applied MCE in an Agent-based 

Simulation as a Decision Support System (DSS) to select fisheries 

management strategies. However, we found no articles using such an 

approach for disaster risk modelling. ABM has emerged as a valuable 

alternative to traditional aggregate mathematical modelling as it can 

accommodate the complexity of a system through its ability to capture the 

interactions between agents at the same or different scales (Gilbert and 

Troitzsch, 2005). An ABM consists of discrete ‘agents’ that can interact 

within an environment (Gilbert, 2008). It can incorporate complex and 

multiple attributes of individuals but lacks the capacity to evaluate those 

attributes into single decisions/values. Integrating MCE into the model, 

however, is promising for solving this problem.  

4.3 Application and the Case Study 

The basic concepts of integrating MCE into ABM for the STDMR have been 

theoretically discussed in the previous section. In this section, we provide an 

overview of the application of STDMR. It starts with the introduction to the 

study area, an outline of the process of collecting data for use in the model 

and the integration of STDMR into the ABM of evacuation. This ABM is 

developed based on the spatio-temporal volcanic evacuation model 

framework (Jumadi et al., 2017) that has been improved with the addition of 

the individual evacuation decision model and underwent validation with the 

real data (Jumadi et al., 2018).  

 

4.3.1 Study Area 

Merapi Volcano, located on Java Island, Indonesia, can be a potential 

hazard to the surrounding communities. Recent work suggests that the 

potential for eruptions from Merapi is much higher now than has was the 

case historically (Andreastuti et al., 2000; Camus et al., 2000). These risks 

were confirmed by the last event in 2010. The eruption style tends to be 

either Sub-Plinian or Plinian. In disaster studies, a volcanic explosivity index 

(VEI) is often used to describe the destructiveness of an eruption with a 

range from 0 (least destructive) to 8 (most destructive) (Newhall and Self, 

1982). The VEI of Merapi eruptions is generally within the range 1– 3 but it 

unexpectedly increased to 4 in 2010 (Surono et al., 2012). As a 

consequence of this event, the area surrounding Merapi suffered the worst 

disaster impact for a century. 
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Merapi eruptions commonly produce diverse hazardous events: nuées 

ardentes (fast-moving clouds of hot gas and ash produced by gravitational 

dome collapse) (Bardintzeff, 1984) and lahars (the overbank flows of 

pyroclastic material coupled with rainwater) (Lavigne and Thouret, 2003) are 

two particular hazards that are harmful to the communities living close to 

explosions (Thouret et al., 2000). Ash fall also has an impact (Damby et al., 

2013). The effect of nuées ardentes depend on topographic character 

(Kelfoun et al., 2000) and can travel up to 3.5 km from only a few individual 

events (Abdurachman et al., 2000). Lahar events are usually initiated by 

high rainfall intensity (Lavigne and Thouret, 2003). These are considered the 

most dangerous part of the material flow system in Merapi (Charbonnier and 

Gertisser, 2008). The direction of this flow is strongly influenced by the initial 

flow direction and the topography subsequently affects the spatial extent of 

the hazard (Itoh et al., 2000). 

Previous eruptions have strongly affected the geomorphological structure 

(Saepuloh et al., 2013) and geological character (Gertisser et al., 2012) of 

Merapi with implications for the spatial extent of the hazard map (BNPB, 

2011, 2008). Also, eruption history has changed the potential direction of 

pyroclastic or lahar flows. It can be foreseen that the southern flank of 

Merapi will be the most likely area to be impacted by the next eruption 

(Figure 4.4). Based on this prediction, we use the Sleman Regency, a region 

that is located on the southern flank of Merapi, as a case study. Sleman 

(Figure 4.3) is geographically located between 107° 15 '03 "and 107° 29 

'30" east longitude, 7° 34' 51" and 7° 47' 30" South latitude. Sleman covers 

57,482 hectares or 574.82 km2 or about 18% of Yogyakarta Province 

area. Administratively, this region consists of 17 districts, 86 villages and 

1,212 hamlets.  
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Figure 4.3 Study area. 

 

4.3.2 Data Collection 

The data used here are collected from secondary and primary sources. The 

secondary data consist of administrative boundary, volcanic hazard zones, 

the location of shelters, land use, census microdata and road networks. The 

primary data from an extensive questionnaire survey undertaken in 2016 

were used to complete the variables of census microdata (Minnesota 

Population Center, 2015) to create the population of people agents as well 

as developing the evacuation decision model (Jumadi et al., 2018). This 

survey used 12 villages within a radius of 20km. We created several ring 

buffers with distance ranges of 5km to define the sampling areas. Three 

villages were selected from each area. Furthermore, 10 participants from 
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each village were selected randomly, resulting in 120 participants in total. 

The detailed information on the data is elsewere (Jumadi et al., 2018). 

 

4.3.3 Agent-based STDMR of Volcanic Evacuation  

4.3.3.1 General Framework 

The ABM of the volcanic evacuation simulation was developed based on the 

relationship between the volcano and the surrounding population. The basic 

model and its complete documentation was provided in the previous 

publication (Jumadi et al., 2017). This model marries the physical 

environment and social interactions to generate the value of risk (Cova, 

1999; Pons et al., 2014; Sengupta and Bennett, 2003) as presented in 

Figure 4.4. The physical variables were generated from the characteristics of 

the volcano and its hazard zone. These include VEI, activity length, activity 

level and the spatial extent of the hazard (Figure 4.4). The VEI can also be 

used to estimate the spatial extent of the impact and was generated from the 

eruption record of the volcano. The probability distribution of the VEI was 

used to define the VEI in the simulation. Eruption records can also be used 

to estimate the length of the crisis (activity length). As volcanic activity 

fluctuates within a period of crisis, the activity level from the rest condition to 

the climax of the events can be estimated. This activity level is also related 

to the hazard. 
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Figure 4.4 General framework of ABM. The left box (Physical Variables) 
illustrates how the VEI and activity level are used to estimate the spatial 
extent of the volcanic hazard. The VEI and the length of the activity are 
the physical characteristics of the volcano as recorded in literature. 
These feed into the socio-economic variables (right box) that are 
attributes of the people agents and are used to assess the overall risk. 
The hazard (which varies spatially and temporally) is used to estimate 
exposure to the population and subsequently the overall risk. Activity 
length is used to estimate the evacuation time (the period in which the 
risk changes dynamically as a result of the movement of people) and 
subsequently the spatiotemporal risk dynamic which quantifies the risk 
at every time period (t). 

 

4.3.3.2 Synthetic Population Generation  

To create human agents, data from the census microdata (Minnesota 

Population Center, 2015) and a separate survey of 120 households are 

used. We used conditional probability (Monte Carlo Simulation) to generate 

the synthetic population of agents  (Heppenstall et al., 2011; Moeckel et al., 

2003), where the complete description of this generation is provided 

elsewhere (Jumadi et al., 2018). In this model, the human agents are 

generated for each sub-district of Sleman with individual units grouped as a 

household. It would be advantageous to create an agent to represent every 

person, but the AnyLogic PLE limits the total number of agents to 50,000. 

Therefore approximately 50,000 representative agents were created. The 

characteristics of the people are used in order to calculate the SoVI 

variables; they, together with the other variables, influence the decisions of 

the agents. This is discussed in more detail in (Jumadi et al., 2018). Each 

agent is initialised with characteristics that are randomly drawn from 
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probability distributions generated from the census microdata and survey 

data.  

 

4.3.3.3 Overview of the Agents and Their Behaviour  

The model consists of three main agents: volcano, stakeholder and people 

(population) that interact within the geographic environment (Jumadi et al., 

2017). The volcano acts as an agent which initiates the hazardous situation 

and influences the environment as a potential threat to the surrounding 

population. The other agents in the interactions are the stakeholder and the 

population (people). The stakeholder, in this case the authorities 

(government), plays a significant role in observing and analysing the 

activities of the volcano and in issuing warnings to the population. In the 

ABM simulation, each agent displays specific behaviour and mechanisms 

when interacting with the others, as well as with the environment. The 

environment is represented through spatial data with dynamic hazard 

properties.  

People in this model are the most important agents and form the main focus 

of the simulation observation. Each agent can be expected to act to save 

themselves from danger in crisis. Therefore, the human agent is utilized with 

a decision mechanism that allows them to make the decision to evacuate in 

circumstances of danger. This evacution decision is based on the Normal – 

Investigating – Evacuating state model that is provided in the other paper 

(Jumadi et al., 2018). Conceptually, this evacuation decision is influenced by 

several factors including (Ahsan et al., 2016; Dash and Gladwin, 2007; Lim 

et al., 2015): (1) risk communication and warning; (2) perception of risk; (3) 

community and social network influence and (4) disaster likelihood, 

environmental cues, and natural signals. The mechanism of the individual 

decision in evacuation based on the literature review is provided in Figure 

4.5. The transition between states is based on threshold-based rules 

(Kennedy, 2012; Robinson et al., 2011) that evaluate the strength of force to 

evacuate based on various factors. 
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Figure 4.5 Main agent (people) characteristics. 

 

The risk to each individual is evaluated based on the hazard and 

vulnerability variables. The hazard level is measured from the environmental 

properties at the agent location whereas the vulnerability of each individual 

is based on SoVI that is evaluated based on socio-demographic character. 

The following sub-section (Section 4.3.3.4) elaborates this risk model in 

detail. The risk to the individual might change after the decision and 

subsequent movement because this results in a change of location with a 

different hazard profile: the level of risk is dynamic over time for a mobile 

individual. 

 

4.3.3.4 Implementation of Individual Risk Model in the ABM 

The concept of individual risk set out in Section 4.2 states that risk 

comprises two main components: hazard and vulnerability. We provide a 

calculation procedure based on MCE to integrate this into the ABM of 

evacuation. Consequently, Java functions are designed based on this 

concept and integrated into the previous model (Jumadi et al., 2018). 
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1. Hazard 

The hazard is classified into three zones (Figure 4.2). The hazard level of 

each zone is dynamically changed over the duration of the simulation to 

reflect the changing volcanic activity. The rule of hazard level changing, 

based on a function of several variables of the volcano including Volcanic 

Explosivity Index (VEI) and Volcanic Activity Level (VAL), is provided in 

Table 4.1 (Jumadi et al., 2017). An illustration of the changing of the hazard 

level within those zones is provided in Figure 4.6. Finally, the hazard level in 

the agent location (based on the co-ordinates) is classified and scored 

based on Table 4.2. The value is used in the risk calculation. 

 

Table 4.1 Matrix relation of VEI, VAL and hazard level within hazard 
zones. 

                                  VEI 

              

                                    Hazard  

                                               

Zone 

VAL 

1 2 3 4 

L M H L M H L M H L M H 

III (H) L M M L M M M H H M H H 

II (M) L M M L M M M M H M M H 

I (L) L L M L L M L M M L M M 

Notes: L: Low hazard level, M: Medium hazard level, H: High hazard level 

 

 

Figure 4.6 Hazard dynamics scenarios. 
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Table 4.2 Hazard level classification and scoring. 

Criteria  
Theme of 

attributes 
Description 

Pairwise 

comparison index 

(H) 

Hazard 

level  

High  Highly hazardous 0.723 

Medium Hazardous 0.216 

Low less Hazardous 0.061 

 

2. Vulnerability 

The vulnerability index used in the model is based on SoVI (Cutter et al., 

2003) with some attributes of each agent (person) given scores that are then 

used to generate the SoVI. The score of each attribute is defined based on 

pairwise comparison weighting (Saaty, 2008). Each theme of the attribute is 

ranked based on the vulnerability level (Cutter et al., 2003). The result of the 

pairwise comparison analysis is shown in Table 4.3. Finally, we aggregate 

the social attributes using Equation 4.2 to calculate the SoVI (Chakraborty et 

al., 2005). The variables for SoVI are provided in Table 4.3. 

 

𝑆𝑜𝑉𝐼 =  
∑ 𝐼𝑖

𝑛
𝑖=1

𝑛
 ……………………………………………………………. (4.2) 

 

Table 4.3 Variables classification and scoring to determine social 
vulnerability index (SoVI). 

Criteria  Theme of attributes Description 

Pairwise 

comparison index 

(I) 

Age  

Elderly and Child 

(>75 years and <14  

years) 

Vulnerable 0.75 

Adult ( 15 - 75 year) 
Less 

Vulnerable 
0.25 

Sex  

Female  Vulnerable 0.75 

Male 
Less 

Vulnerable 
0.25 
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Table 4.3 Continued ... 

Education  

Basic Education Vulnerable 0.75 

High Education 
Less 

Vulnerable 
0.25 

Income  

Live in Poverty  Vulnerable 0.75 

Standard Living 
Less 

Vulnerable 
0.25 

Disability  

Disable  Vulnerable 0.75 

Non-Disable 
Less 

Vulnerable 
0.25 

Experience  

No Experiences  Vulnerable 0.75 

Experienced with 

Previous Eruption 

Less 

Vulnerable 
0.25 

 

3. Risk 

The calculation of the individual risk is based on the risk concept explained 

in Section 4.2 (Sar et al., 2015; UNISDR, 2004). We express the individual 

risk as a certain quantification that can be classified. The formula to provide 

the value is presented in Equation 4.3. This equation generates the risk to 

each individual as a risk index value (Ri) using a weighted linear 

combination (WLC) (Malczewski, 2000). Once the index is obtained, it is 

classified into one of three categories (Table 4.5).  

 

Table 4.4 Weight of hazard and SoVI in defining risk. 

Classification Description Weight (w) 

Hazard (h) Important 0.75 

SoVI (v) Less important 0.25 

 

 

𝑅𝑖 = (ℎ 𝑤ℎ)(𝑆𝑜𝑉𝐼 𝑤𝑣) ..………………………….……..…………...(4.3) 
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Table 4.5 Risk classification rule. 

Ri Range Classification Description 

0.18 < Low  Less Risky 

0.18 - 0.33 Medium Slightly Less Risky 

> 0.33 High Risky 

 

4.3.3.5 Dual Hazard Model Implementation: Real and Perceived 

We implemented a dual hazard model in setting up the environment of the 

agent-based evacuation model (Figure 4.7). The first hazard model (a) is the 

actual spatial extent of hazard in Merapi based on several historical records 

of eruptions including the eruption in 2010 (actual hazard) (BNPB, 2011). 

The distribution of hazard on this map is strongly based on the physical 

distribution of volcanic material deposit. While, the second hazard model (b) 

is the hazard map used by government to alert the population at risk in 2010 

(perceived hazard) (Mei et al., 2013). This hazard model is a rough 

estimation based on the distance from the volcano as well as being closely 

related to the administrative boundaries. This makes it easier to translate the 

model into an evacuation command. For example, it will be easier for people 

to remember that “people within a distance of up to 10 km are in danger” 

(hazard model b) rather than “people within the medium hazard zone are in 

danger” (hazard model a). The first hazard model will be used for defining 

the individual risk, while the second hazard model is used for the decision 

making of evacuation. This is based on the experiment that using the second 

hazard model will result in a smaller error compared with the first hazard 

model (Jumadi et al., 2018), while the second hazard model does not 

directly represent the hazard, so it is not appropriate for assessing the risk. 

Therefore, we implement dual hazard models to get a better outcome of 

evacuation decision while retaining a more precise appreciation of risk. 
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Figure 4.7 Dual hazard model implementation. (a) actual hazard map 
(BNPB, 2011), (b) perceived hazard map based on a hazard map 
used for evacuation order in 2010 eruption (Mei et al., 2013). 

 

4.3.4 Implementation, Experimentation and Analysis of STDMR 

The model is implemented by using AnyLogic, a multimethod (Agent-based, 

System Dynamics, and Discrete Event) simulation modelling tool developed 

by The AnyLogic Company (Borshchev, 2013). The overview of agents’ 

statechart to express the behaviour rules of agents is provided in Figure 4.8. 

A statechart is a graphical representation of transition between states of an 

agent. The detail of the documentation of the ABM application is provided at 

https://goo.gl/Xp44iH. These statecharts represent the implementation of the 

model in AnyLogic (Jumadi et al., 2017). Statechart is typically a state 

transition diagram used to define event- and time-driven behaviour in 

AnyLogic (Grigoriev, 2015). There are three main statecharts for people 

agents (Figure 4.8a) including observing hazard, evacuation decision and 

alerting community. The observing hazard statechart enables the human 

agents to sense the hazard at their location and classify the level based on 

Table 4.1. The ‘evacuation decision’ statechart is used by the agents to 

decide whether they need to evacuate (see Section 4.3.3.3 and the other 

paper (Jumadi et al., 2018) for the detail of the evacuation decision model). 

When the human agent feels in danger the ‘alerting community’ statechart is 

used to decide whether they will alert their relations or not. Meanwhile, the 

volcano and stakeholder agent have only one statechart each. The volcano 

agent is utilised with the statechart of the volcanic activity generator, while 

the stakeholder agent is able to make a decision based on the volcanic 

https://goo.gl/Xp44iH


- 151 - 

 

activity. The stakeholder will alert people when the volcano shows a high 

level of activity. 

 

 

Figure 4.8 Overview of agents’ statecharts expressing the agents’ 
behaviour. 

 

Using the developed model, experiments can demonstrate how the spatio-

temporal dynamics of risk vary with the magnitude of the hazard (VEI) and 

the crisis length. Here, we explore the eruptive activity using a scenario with 

VEI 4 and Crisis Length 102 days to mimic the past eruption in 2010 (Mei et 

al., 2013; Surono et al., 2012). The results, consisting of the combination of 

people and their risk level, are then analysed using kernel density analysis to 

identify the risk hotspots in ArcGIS. Kernel density was used to provide the 

spatial density of risk to which people are exposed since it is a popular 

geostatistical-based method that has been widely used in analysing risk 

hotspots (Lin et al., 2010; Thakali et al., 2015). To produce the final risk 
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hotspots, we ran the model 30 times to provide enough samples for 

statistical analysis based on the central limit theorem (Ghasemi and 

Zahediasl, 2012; Haneberg, 2004) and spatially averaged the results. 

4.4 Experimentation Results and Discussion 

Section 4.3 provided a technical overview of the model; we now describe the 

simulation experiments, the spatio-temporal analysis of the results and 

discuss the outcome with reference to related works, highlighting potential 

implementation in supporting emergency management.  

 

4.4.1 The STDMR 

The purpose of the experiment is to highlight the validity of the approach 

(coupling an ABM with a physical hazard model and a MCE to determine 

individual vulnerability and, consequently, the individual risk) and to show 

that the overall outcomes are potentially extremely valuable for practical 

emergency management. The outcome of the experiment can be saved for 

further analysis as well as directly overviewed during the simulation (e.g. 

Figure 4.9). Figure 4.9 shows the result by illustrating the spatial distribution 

of the people at risk as well as the dynamic of risk level. Subfigures a–d 

illustrate the changing level of risk as the emergency develops. Initially (a) 

most individuals are at low (or negligible) risk. However, as the hazard 

spreads the risks become much greater (b and c). Then, few people at risk 

are remaining in Figure 4.9d due to the massive evacuations. Most people 

are moving away from the hazard zone during the high level of volcanic 

activity. The remaining people are considered as the reluctant people as a 

consequence of the variability of the individuals’ decisions (Jumadi et al., 

2018). 
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Figure 4.9 Spatio-temporal risk dynamic simulation. (a) Shows the 
initial condition before the volcanic activity start: most individuals 
are at low or negligible risk. (b) illustrates the increasing 
individual risk level due to the increasing volcanic activity. (c) 
shows numbers of people moving after the alert from the 
government. (d) shows the reluctant people that remain in the 
hazard zone during the crisis. There are four graphs in the 
interface: these show, from the top to the bottom respectively, the 
volcanic activity level and show the progress of the simulation, 
the risk composition of the individuals, percentage of evacuees, 
and the distribution of evacuation in shelters. See the animated 
image at https://goo.gl/QYqihw. 

 

The saved outputs of the simulations are used to provide spatio-temporal 

densities of people at risk to show the dynamic. The densities provide a 

better approximation of the spatial distribution of people at risk, rather than 

the points distribution (Figure 4.9), because the agent population members 

were distributed randomly using the Monte Carlo approach (Section 4.3.3.2). 

Using the point distribution of people at risk directly to understand the risk 

can be misleading. We used GIS (see Section 4.3.4) to explore the dynamic 

risk over time by analysing the locations and attributes of the people (risk 

level attribute). Figure 4.10 presents these results of varying density 

(calculated using kernel density analysis) of the individuals who are at risk at 

various time points in the simulation. XFrom these results we can see that 

https://goo.gl/QYqihw


- 154 - 

 

risks of the hazard toward humans can change dynamically. The risk values 

not only depend on the level of hazard but also the number of people. This 

model can show the direct impact of evacuation processes on reducing 

disaster risk, confirming the importance of considering risks through a 

dynamic rather than static model. 

 

 

Figure 4.10 The STDRM analysis. The densities of people at risk (a) are 
fitted with the people at risk distribution graph (b), the simulated 
temporal volcanic activities graph (c) and the temporal curve of 
percentage of evacuees accumulation (d). 

 

4.4.2 The Risk Hotspots 

In this study, we use the term ‘Risk Hotspots’ to indicate the geographic 

locations of people at risk who are reluctant to evacuate during the simulated 

crisis. Hotspots are defined as relatively high-risk locations (Thakali et al., 

2015). To create the hotspot, we analyse the density of the individuals (using 

kernel density analysis) who are at risk when the volcanic activity becomes 

high. A risk hotspot is, therefore, a place with a substantial concentration of 

people who are at risk and reluctant to leave at a time when the activity of 

the volcano is high. We captured the distribution of individuals who remain in 

their location until the end of the high-activity period of the volcano (see 

Figure 4.10). The Risk Hotspots are provided in Figure 4.11. To produce the 

hotspots below, the scenario was executed 30 times and the results were 
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averaged. From the figure, it becomes clear that the risk hotspots are mainly 

located in three areas. The first is in Cangkringan District, the second is 

around Ngaglik District and the third is around Temple District. The 

Cangkringan District is in the high and medium hazard zone, where 

individuals are at risk of direct volcanic events such as toxic gases, nuées 

ardentes and PDC. 

 

 

Figure 4.11 The risk hotspots. 

 

4.4.3 Discussion 

The STDMR of this experiment, that integrates the MCE-based individual 

risk model into ABM simulation, can show the impact of improved evacuation 

processes for reducing the impact of disasters. The most striking result of 

the simulation is that we can highlight the risk hotspots as an emerging 

result of the evacuation decisions of people during a crisis. This mapping 

can improve the decisions of disaster managers in focusing resources to 

mobilise and facilitate evacuation processes in the hotspot areas. The 
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patterns are closely related to the real casualties distribution data provided 

by local government of Sleman (Pemkab Sleman, 2010) (Figure 4.12). The 

distribution of casualties map also shows relatively high percentage of 

casualties in Cangkringan District; however, there are discrepancies in 

Pakem, and Turi District.  

 

 

Figure 4.12 The risk hotspots (a) and distribution of casualties in 2010 
eruption (b). Source: (a) Simulations, (b) Casualties Data (Pemkab 
Sleman, 2010). 

Moreover, this approach can improve the existing static GIS-based risk 

analyses that are commonly conducted at area/regional level (Alcorn et al., 

2013; Martins et al., 2012) by providing a more detailed pattern of the people 

who are at risk in two ways. Firstly, enabling the population at risk to move 

during the crisis creates a considerably more realistic spatial distribution of 

the population. Secondly, by accounting for the individual risk to people as 

well as the dynamic volcanic activity, the resulting pattern of the risk is much 

more realistic. This model can provide individual levels of risk that can be 

used to build a more detail spatial pattern of risk compared with less detailed 

regional-level risk analysis (Alcorn et al., 2013; Martins et al., 2012). 

4.5 Conclusion 

The integration of MCE-ABM for STDMR has been successfully presented in 

this paper to show the dynamic change of volcanic risk across an area and 

through time. The ability of the model to show how evacuation processes 

affect the risk reduction outcome has potential to be used to measure the 

effectiveness of various evacuation plans to reduce risk. Moreover, from the 

simulation, we present the risk hotspots that emphasise the concentration of 

people at risk at particular sites as the outcome of the evacuation decision of 
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individuals. This simulation can potentially be used to improve the decision-

making processes of evacuation. Knowing the hotspots can help the 

decision maker allocate more resources to manage and mobilise these 

areas.  
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An agent-based Evaluation of Varying Evacuation Scenarios 

in Merapi: Simultaneous and Staged 
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Abstract: Mass evacuation should be conducted when a disaster threatens 

within a regional scale. It is reported that 400,000 people were evacuated 

during the last eruption of Mt. Merapi in 2010. Such a large-scale evacuation 

can lead to chaos or congestion, unless well managed. Staged evacuation 

has been investigated as a solution to reducing the degree of chaos during 

evacuation processes. However, there is a limited conception of how the 

stages should be ordered in terms of which group should move first and 

which group should follow. This paper proposes to develop evacuation stage 

ordering based on the geographical character of the people at risk and 

examine the ordering scenarios through an agent-based model of 

evacuation. We use several geographical features, such as proximity to the 

hazard, road network conditions (accessibility), size of the population and 

demographics as the parameters for ranking the order of each population 

unit in GIS. From this concept, we produced several scenarios of ranking 

based on different weightings of the parameters. We applied the scenarios in 

an agent-based model of volcanic evacuation experiment to observe the 

results. Afterwards, the results were evaluated based on the ability to reduce 

This chapter used the ABM from Chapter 4 to evaluate the relative 

effectiveness of two evacuation strategies namely simultaneous and 

staged. The simultaneous strategy model assumes that all populations 

are commanded to evacuate at the same time, while staged strategy 

model assumes that the populations are clustered into several zones 

and commanded sequentially based on certain priority. A method of 

prioritisation (staging) is proposed and implemented in this chapter. The 

results of both strategies are then evaluated and compared based on 

the ability to minimise the traffic congestion and the ability to reduce the 

risk. 
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the risk and spatio-temporal traffic density along road networks compared to 

the result of simultaneous evacuation to establish the relative effectiveness 

of the outcome. The results show that the staged scenario has a better 

ability to reduce the potential traffic congestion during the peak time of the 

evacuation compared to the simultaneous strategy. However, the 

simulations of simultaneous strategy has better performance regarding the 

speed of reducing the risk. An evaluation of the relative performance of the 

four varying staged scenarios is also presented and discussed in this paper. 

Keywords: Agent-based Model, GIS, Merapi, staged evacuation, 

simultaneous evacuation, evacuation management, simulation. 

5.1 Introduction 

The human population growth and distribution changes on earth increase 

the occurance of natural disasters over time (Shahabi and Wilson, 2018). 

Natural disasters occur worldwide but have a greater impact on developing 

countries, especially Indonesia. These disasters occur when geophysical 

events, such as earthquakes, volcanic eruptions, landslides and floods, 

threaten human life (Alcántara-Ayala, 2002). The impact of natural disasters 

is increasing in present years due to the increasing size of the population in 

the hazard-prone areas (Beck, 2009). Indonesia is one of the countries that 

is prone to suffering natural hazards, especially volcanic eruptions (Siagian 

et al., 2013). Indonesia is also one of the most volcanically active countries, 

with over 130 volcanoes and some of the most densely populated areas in 

the world (Voight, Sukhyar, et al., 2000; Thouret et al., 2000; Mehta et al., 

2015). This combination of both physical and social factors has led to 

Indonesia suffering the greatest number of fatalities due to eruptions 

(Alcántara-Ayala, 2002; GVP, 2017). Merapi, in central Java, is one of the 

most dangerous volcanoes in Indonesia because of its frequent activity, 

location in a densely populated area, and proximity to the city of Yogyakarta 

(Mei et al., 2011; Mei et al., 2013; Sadono et al., 2017). More than a million 

people live in this city, and 400,000 people are at particular risk (Mei et al., 

2011; Mei et al., 2013). 

Mass evacuations should be conducted when a volcanic crisis threatens the 

surrounding areas and demands effective management. Over 400,000 

people were evacuated in the last eruption of 2010. Various problems arose 

following this mass mobilisation, and it can lead particularly to congestion 

and excessive delays unless well managed (Sbayti and Mahmassani, 2006). 

These conditions not only decrease the effectiveness of evacuations in 
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minimising the risk but also lead to secondary fatalities, such as fatal 

accidents (Rizvi et al., 2007). Providing a well-tested evacuation plan is one 

of the ways to increase the effectiveness of evacuations in terms of saving 

lives (Pidd et al., 1996). It is necessary to evaluate the evacuation plan 

based on the population’s behavior, in order to test the plan. As the goal of 

the plan is to save human lives from the volcano’s impact, the effectiveness 

of the plan is measured by its ability to achieve this goal.  

Two major evacuation plans are commonly applied; namely, staged and 

simultaneous evacuation (Chien and Korikanthimath, 2007). In simultaneous 

plans, all of the residents on the affected area are evacuated 

simultaneously, while a staged strategy divides the affected area into zones 

and organizes the evacuation of residents in each zone in a sequence (Chen 

and Zhan, 2008). The simultaneous strategy has been applied widely but 

examples of the staged strategy remain limited. A well-documented staged 

evacuation was that in New Orleans in response to Hurricane Katrina in 

2005 (Wolshon, 2006). Staged evacuation has been investigated as a 

potential solution to reducing the time required for evacuation processes 

when the road network is incapacitated (Chen and Zhan, 2008).  

Studies exist on developing methods for a staged evacuation strategy, 

including scheduling the start time for the evacuation of each group using a 

mathematical approach (Li et al., 2012), defining the evacuation time and 

delay time using a mathematical approach (Chien and Korikanthimath, 

2007), identifying the priority ranking using a heuristic approach (Mitchell 

and Radwan, 2006), and defining the evacuation zones using a clustering 

approach (Lim et al., 2016). However, there exists limited knowledge 

regarding how the sequential ordering of the evacuation measures should be 

managed, i.e. how to prioritise which zone should be evacuated first and 

which should follow. Moreover, evaluation of the effect of evacuation staging 

on reducing disaster risk is absent from the literature. 

This paper proposed to develop evacuation stage ordering based on the 

geographical character of the people at risk and examine the scenarios 

within the agent-based model of evacuation. We use several parameters 

modified from Mitchell and Radwan (2006), such as proximity to the hazard, 

the accessibility of shelters, and population density as the parameters for 

ranking the order of each population unit in GIS. Based on this concept, we 

produced several ranking scenarios based on different weightings of the 

parameters. We use the scenarios in the agent-based model of volcanic 

evacuation experiment to observe the results. Afterwards, the results were 
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evaluated based on the ability to reduce risk and spatio-temporal traffic 

density along road networks compared to the result of simultaneous 

evacuation in providing the relative effectiveness of the outcome. The details 

about the method are provided in the following section. Subsequently, the 

results and discussion are provided in the third section and, finally, the 

conclusion is presented in the fourth section. 

5.2 Materials and Method 

We used an agent-based experiment to examine the “what if” scenarios of 

evacuation staging produced by Spatial Multi-criteria Evaluation (SMCE) in 

GIS (Figure 5.1). The results of these scenarios were compared against 

simultaneous scenarios to evaluate: (1) whether staged evacuation is more 

effective than simultaneous evacuation, and (2) the importance of the 

ranking of the criteria in planning the zonal order. Pairwise comparison 

analysis (AHP) (Saaty, 2008) was used to rank the criteria. Afterwards, a 

weighted linear combination (WLC) (Eastman, 1999; Malczewski, 2000) was 

used to analyse the population unit spatially to produce the evacuation 

sequence in GIS, where the sequence results are used to set the agent-

based model (ABM) that was previously developed (Jumadi et al., 2017; 

Jumadi et al., 2018; Jumadi et al., n.d.), whereby a detailed framework is 

provided in (Jumadi et al., 2017), the individual evacuation decision concept 

in (Jumadi et al., 2018), and the spatio-temporal dynamics of the risk model 

in (Jumadi et al., n.d.). For the experimentation, we used Merapi as a case 

study of evacuation during a volcanic crisis. This section provides (1) an 

overview of the study area, (2) a technique for developing the zonal ranking 

to short the evacuation sequence in the staged evacuation scenario, (3) the 

agent-based model used to evaluate the scenarios, (4) the implementation 

of the scenarios in the ABM experiment to examine them, and (5) an 

approach to evaluating the effectiveness of each scenario. 
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Figure 5.1 The general framework. 

 

5.2.1 Study Area 

Merapi Volcano is located in Indonesia, in the central part of Java Island. 

Geographically, Merapi is located across four districts of two provinces 

namely Sleman (Yogyakarta), Magelang, Boyolali and Klaten district (Central 

Java). More precisely, it is located at 7° 32' 30" latitude and 110° 26' 30" 

longitude. In this study, we only use the Sleman area, that is located on the 

southern flank of Merapi (Figure 5.2). It is geographically located between 

107° 15 '03 "and 107° 29 '30" longitude, 7° 34' 51" and 7° 47' 30" latitude. 

Sleman covers 57,482 hectares or 574.82 km2 ( about 18% of Yogyakarta 

Province). Administratively, this region consists of 17 districts, 86 villages 

and 1,212 hamlets.  

The latest eruption occurred in 2010 and was said by the authorities to have 

been the largest since the 1870s. The eruption began in late October 2010 

and continued into November 2010. During this period, the activity of Merapi 

culminated in numerous pyroclastic flows down to the populated area on the  

lower slope. Almost 50,000 people were located in the high risk area. 

Moreover, 367 of these people lost their life, 277 were injured, and 410,388  

were displaced (Surono et al., 2012). After the eruption, Merapi lahars can 

remain a potential threat to the surrounding communities for at least three 
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years. This threat not only damaged hundreds of settlements but also 

bridges, tourism sites, irrigation channels and agricultural land. Accordingly, 

the National Agency for Disaster Management (BNPB) published a map of 

the vulnerable area of Merapi due to the neighbouring volcano (Figure 5.2). 

It can be seen that the vulnerable area spread down from the summit into 

the settlement areas. 

 

 

Figure 5.2 The hazard zones of Merapi volcano and Sleman area. 
Source: BNPB, 2011. 

 

There are two potential hazards, namely nuées ardentes and lahars, that 

usually kill people. Nuées ardentes are produced by occasional gravitational 

collapses (Voight et al., 2000), and deposits can travel up to 3.5 km from 

only a few individual events (Abdurachman et al., 2000). They can be 

triggered by gravitational dome collapse, the extent of the impacts of which 

are commonly controlled by topographical factors (Kelfoun et al., 2000). On 

the other hand, lahars are usually initiated by intense rainfall (Lavigne and 

Thouret, 2003). Lahars are an overbank pyroclastic coupled with rainwater 

flow, which is considered the most dangerous part of the material flow 

system in Merapi (Charbonnier and Gertisser, 2008). The direction of this 

flow is strongly influenced by the initial flow direction and the topography that 

affect the spatial extent of the hazard afterwards (Itoh et al., 2000). This kind 

of disaster is prone to occur in Merapi (Lavigne et al., 2011) and potentially 

posed the major risk after the 2010 eruption (de Bélizal et al., 2013). In 
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particular, the abundance of pyroclastic deposits on the slope lead to 

occurrences of lahars flooding during rainstorms. 

 

5.2.2 Zones Ranking for Evacuation Staging 

A staged evacuation strategy needs scenarios of leaving sequences among 

the evacuation zones. The sequence for which zone should be evacuated 

first and which later requires careful prioritisation. There are some aspects to 

consider when setting these priorities. Mitchell and Radwan (2006) used 

population density, roadway exit capacity, distance to safety or shelter, 

distance to major evacuation routes, and number of other regions or level of 

population density to transit. Conversely, Lim et al. (2012) used the distance 

of regions from the hazard, the hazard extent and the population density, 

while Alaeddine et al. (2015) used similar factors to Lim et al. (2012), with 

the additional factor of the age of the population. Based on the previous 

studies, we developed a method for building a sequence of evacuation 

staging using a spatial approach. We used this approach since evacuation is 

a geographically-related problem; therefore, decisions based on spatial data 

will provide better results. We used a pairwise comparison to rank and order 

the evacuation zones into a sequence in GIS. Several aspects were used to 

develop the priority ranking, modified from Lim et al. (2012) and Alaeddine et 

al. (2015). Here, we used three slightly different factors; namely, distance of 

the region from the hazard (the volcano’s crater), population density, 

accessibility to shelter and the proportion of those of vulnerable age. The 

various evacuation staging scenarios that which will be evaluated using an 

agent-based experiment are provided in Section 5.2.3.  

 

5.2.2.1 Evacuation Zones and Spatial Characteristics 

The administrative boundary of the district level (Figure 5.2) will be used as 

the unit of the zones of the group since the evacuation command will be 

organized mainly by the local government (Mei and Lavigne, 2012). There 

are five districts located in the main hazard zones of Merapi – Tempel, Turi, 

Pakem, Cangkringan and Ngempak (see Figure 5.2) – while districts at 

minor risk were excluded from the plan. The characteristics of each zone 

were identified to map the criteria used to design the staging. The data used 

to obtain the criteria included administrative boundaries, hazard zones 

(BNPB, 2011), 2010 evacuation distribution data (BNPB, 2010c; BNPB, 

2010a; BNPB, 2010d; BNPB, 2010b) and population data (each age 
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category) (Local Government of DIY, n.d.). All of the data were analysed and 

mapped to each zone (district) to establish the criteria. 

The criteria used to analyse the zones’ ranking consisted of four spatial 

datasets (Figure 5.3), including: (1) Proximity to the hazard (PH), provided 

by calculating the distance between the centroid of each zone and the 

volcano (summit); (2) Population density (PD), provided by dividing the area 

of the zone by the population size within the zone; (3) Accessibility to shelter 

(AS), analysed using the Hansen Index (Hansen, 1959; Morris et al., 1979) 

provided in Equation 5.1, where Ai is the accessibility index for zone i to 

shelters (S), Sj is the capacity of shelter j, Tij is the distance from zone i to 

shelter j (see https://goo.gl/RhKaSa for a detailed calculation); and (4) the 

proportion of population of vulnerable age (VA), based on the proportion of 

children (<15) and elderly people (>75). 

𝐴𝑖 =  ∑
𝑆𝑗

𝑇𝑖𝑗

𝑛
𝑗=1  ………………………………………………………. (5.1) 

 

Figure 5.3 Spatial data for the zone ranking. 

https://goo.gl/RhKaSa
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5.2.2.2 “What if” Scenarios Development using Pairwise Comparison 

Analysis 

All of the datasets provided above (Section 5.2.2.1) were then analysed to 

design the staging scenarios using pairwise comparison analysis (Table 5.1 

and 5.2). Since there has been little research on which factors are more 

important than others when designing the ordering, we used what if 

scenarios to examine all possible scenarios and select the most effective 

composition. Each scenario varied due to assigning the weight of each 

criterion depending on the importance scale (Table 5.2). The scenarios were 

designed to give all of the criterion a chance to be the most, medium or 

least. The final score for each district is calculated using WLC (Equation 

5.2), after which the results are ordered to obtain the ranking. 

 

Table 5.1 Criteria and attributes value for the priority design. 

Criterion  Class Description Priority I 

PH 

Very high Very high priority to evacuate 1 0.503 

High High priority to evacuate  2 0.260 

Medium Moderate priority to evacuate 3 0.134 

Low Slightly less priority to evacuate 4 0.068 

Very low Less priority to evacuate 5 0.035 

PD 

Very high Very high priority to evacuate 1 0.503 

High High priority to evacuate  2 0.260 

Medium Moderate priority to evacuate 3 0.134 

Low Slightly less priority to evacuate 4 0.068 

Very low Less priority to evacuate 5 0.035 

AS 

Very low  Very high priority to evacuate 1 0.503 

Low High priority to evacuate  2 0.260 

Medium Moderate priority to evacuate 3 0.134 

High  Slightly less priority to evacuate 4 0.068 

Very high Less priority to evacuate 5 0.035 
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Table 5.1 Continued … 

VA 

Very low  Very high priority to evacuate 1 0.503 

Low High priority to evacuate  2 0.260 

Medium Moderate priority to evacuate 3 0.134 

High  Slightly less priority to evacuate 4 0.068 

Very high Less priority to evacuate 5 0.035 

Remark: I = priority index (see the complete calculation of the index: 

https://goo.gl/vZnLFm)  

 

Table 5.2 “What if” weighting scenarios’ criteria. 

Criterion 

Staged 1 Staged 2 Staged 3 Staged 4 

R W R W R W R W 

PH 1 0.558 4 0.057 3 0.122 2 0.263 

PD 2 0.263 1 0.558 4 0.057 3 0.122 

AS 3 0.122 2 0.263 1 0.558 4 0.057 

VA 4 0.057 3 0.122 2 0.263 1 0.558 

Remarks: R = importance rank, W = weight (see the complete calculation: 

https://goo.gl/euDcNA)  

 

𝑆𝑐𝑜𝑟𝑒 = ∑ 𝐼𝑖 ∗ 𝑊𝑖
𝑛
𝑖=1  …………………………………………………. (5.2) 

 

5.2.2.3 Staging Scenarios 

A staging strategy is needed during a mass evacuation when the 

transportation network is unable to accommodate the whole population at 

the same time (Alaeddine et al., 2015). Therefore, a priority list is required to 

establish an affective evacuation staging scheme when scheduling the 

evacuation (Mitchell and Radwan, 2006). We provide the staging scenarios 

based on the scoring approach of the zone characteristics (Section 5.2.2.2). 

Based on an analysis of the datasets using WLC, a distinct sequential order 

for each scenario was created, based on the degree of priority (Table 4 and 

Figure 4). The prioritisation result shows that each zone is assigned a 

https://goo.gl/vZnLFm
https://goo.gl/euDcNA
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different priority rating for each scenario. Only one of the scenarios has the 

full five stages, while three have four stages, since two zones have the same 

score. 

Table 5.3 Staging scenarios calculation and ranking. 

District 
Staged 1 Staged 2 Staged 3 Staged 4 

Scor
e 

Priorit
y rank 

Scor
e 

Priorit
y rank 

Scor
e 

Priorit
y rank 

Scor
e 

Priorit
y rank 

Ngemplak 0.30 1 0.07 5 0.11 3 0.16 2 

Tempel 0.30 1 0.08 4 0.09 4 0.16 2 

Pakem 0.22 2 0.42 1 0.33 2 0.14 3 

Turi 0.12 4 0.23 3 0.33 2 0.13 4 

Cangkringan 0.18 3 0.34 2 0.43 1 0.35 1 

The attributes data are provided at https://goo.gl/Ek9aWS. 

 

 

Figure 5.4 Staging scenarios map. (a) scenario 1, (b) scenario 2, (c) 
scenario 3, (d) scenario 4. 

 

https://goo.gl/Ek9aWS
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5.2.2.4 Time Interval between the Stages 

The time interval is required to be set at the optimum value. This should be 

as low as possible but sufficient for the population within a zone to reach a 

major road network. It is assumed that, after reaching the major road, the 

traffic can run smoothly. To provide the values for the time intervals, we 

analysed the average time that people required to reach the major exit 

points using Google Maps Distance Matrix API. To provide the averages, we 

used the centroid of the population areas (districts) and found the minimum 

travel times from the grids to the exit points (Figure 5.5). The average of all 

of the travel times from the districts to reach the surrounding major exit 

points was used as the time interval between the stages (Table 5.5). 

 

 

Figure 5.5 Population at risk’s origin and the major exits for calculating 
the average travel time to reach the major evacuation routes. 

Table 5.4 Time intervals between the stages. 

No District Average travel time to reach a 

major road (in minutes) 

Source 

1. Cangkringan 23.5 https://goo.gl/UWbZnY  

2. Ngemplak 24.5 https://goo.gl/M7RQe6  

3. Pakem 21.9 https://goo.gl/qqDvyL  

4. Tempel 28.2 https://goo.gl/59Xnb9  

5. Turi 20.9 https://goo.gl/BHppxA  

Average (time interval) 23.8  

 

https://goo.gl/UWbZnY
https://goo.gl/M7RQe6
https://goo.gl/qqDvyL
https://goo.gl/59Xnb9
https://goo.gl/BHppxA
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5.2.3 The Agent-based Volcanic Evacuation Model  

The simulation used an agent-based volcanic evacuation model that was 

provided elsewhere (Jumadi et al., 2017; Jumadi et al., 2018; Jumadi et al., 

n.d.). Overall, the framework of this model consists of three main agents; 

namely, the volcano, stakeholders, and people (population) who interact 

within the geographical environment (Jumadi et al., 2017). The volcano acts 

as an agent which initiates the hazardous situation and influences the 

environment by posing a potential threat to the surrounding population. The 

other agents in the interactions are the stakeholders and the population 

(people). The stakeholders, in this case, the authorities (government), play a 

significant role in observing and analysing the activities of the volcano and 

issuing warnings to the population, where the human agent (population) is 

assigned an evacuation decision rule.This evacution decision is based on 

the Normal – Investigating – Evacuating state model, that is provided 

elsewhere (Jumadi et al., 2018). In the ABM simulation, each agent displays 

a specific behaviour and mechanisms when interacting with others as well 

as with the environment. The environment is represented through spatial 

data with dynamic hazard properties. Meanwhile, the risk to individuals, that 

is used as the main evaluation of evacuation effectiveness in this paper, is 

evaluated based on the hazard and vulnerability variables (Jumadi et al., 

n.d.). The hazard level is measured by the environment properties at the 

agent’s location, whereas the vulnerability of individuals is based on SoVI, 

that is calculated according to socio-demographic factors. The following sub-

section describes this risk model in detail. The risk of the individual might 

change after the decision and movement are made, as his/her location 

changes. When people make a movement due to the evacuation process, 

the level of hazard of their environment changes, as does their degree of 

risk. Therefore, the value of their risk is dynamic over time as an individual 

moves. 

5.2.4 Applying the Staging Strategy in the Agent-based 

Experiment 

The previously developed agent-based evacuation model (Jumadi et al., 

n.d.) was used to design the experiment. There is no significant change with 

regard to the simultaneous scenario (Figure 6a). While the alerting rule of 

the stakeholder agent was modified for the staged scenario (Figure 6b), 

iterative alerting was used to alert the population agents in the districts on 

the list sequentially based on the provided order (Section 5.2.2.4). The 
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interval between the alerts is based on the optimal value provided by the 

sensitivity analysis (Section 5.2.5). 

 

Figure 5.6 Alerting rule, (a) simultaneous scenarios, (b) staged 
scenarios. 

 

5.2.5 Effectiveness Measures, Analysis, Comparison, and 

Evaluation 

Three measurements were used to make comparisons between the 

scenarios, including the temporal and spatial distribution of evacuees on the 

road and the effectiveness in reducing the risk. The temporal distribution 

was expressed as a percentage of the evacuees on the road (evacuating) 

over time. The peak time of the evacuation, where the percentage was at a 

maximum, was used to compare all of the scenarios. Meanwhile, the spatial 

distribution was based on the relative density of the evacuees on the road. 

Figure 7 provides a flowchart of the spatial analysis to illustrate the relative 

density. The relative density at the peak time of evacuation, as identified by 

the percentage, is used to compare the outcome of all scenarios. To 

promote the effectiveness of the risk reduction, the graph showing the 

temporal distribution of the people at risk is used for the comparison. We 

focus on the high and medium-risk group for this comparison. The risk 

reduction ability is measured based on the time needed to clear people at 

risk (Jumadi et al., n.d.). The comparison is not only between a simultaneous 

and a staged strategy but also among staged-scenarios’ output to select the 

most effective staging scenarios. 
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Figure 5.7 Relative density analysis of the evacuees’ traffic. 

 

5.3 Results and Discussion 

5.3.1 Overview of the Simulations Run 

The simulations were run over 102 days of a volcanic crisis length of VEI 

(volcanic explosivity index) 4 and the activities phases following the 2010 

eruption. These parameters affected the spatio-temporal configuration of the 

simulation (Jumadi et al., 2017; Jumadi et al., 2018). A brief overview of the 

simulations run for all scenarios is provided in Figure 5.8. This figure shows 

that the evacuation peak times occurred between 30% and 35% of the crisis 

length, when the volcanic activity reaches a peak. A small percentage of 

evacuees were evacuated during the early and medium level of volcanic 

activity (before the peak evacuation time) and also at the explosion time 

(after the peak of the evacuation time). The maximum percentage of the 

evacuees on the road (Figure 5.8b) exceeded 27% at the peak evacuation 

time under the simultaneous evacuation strategy. The result of each 

scenario presented in this paper is averaged from several results of 

simulation runs. 
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Figure 5.8 Overview of the simulations run for all scenarios. (a) the 
temporal accumulation of the evacuees (% of population), (b) the 
temporal distribution of the evacuees on the road (% of evacuees), 
(c) volcanic crisis phases setup. 

 

5.3.2 Spatial and Temporal Distribution of Evacuees on the Road 

Agent-based model may be used in simulating the spatial distribution of 

traffic as a result of human behaviour (Manley and Cheng, 2018). This ability 

is employed in this research to evaluate the effectiveness of implementation 

of the staged evacuation strategy. The evaluation is not only based on the 

spatial distribution but also based on the percentage of evacuees distributed 

on the road at the peak time of evacuation. Based on the simulation results 

as presented in Figure 5.8, we highlighted the peak time of the evacuation 

(Figure 5.9). It is clear that there are different percentages of evacuees on 

the road at the peak time of the evacuation in the simultaneous scenario and 

staged scenario, respectively. The staged scenario has about 23% fewer 

evacuees at the peak time of evacuation compared to the simultaneous 

scenario. This relative effectiveness of the staged scenario in reducing 

evacuee traffic compared to the simultaneous scenario is also proved by the 

spatial density distribution of evacuees at the peak time (Figure 5.10). Figure 

5.10 shows that the simultaneous scenario produces relatively higher traffic 

density at two major roads; namely, Kaliurang Road and Palagan Tentara 

Pelajar Road (Figure 5.10a). On the other hand, the staged scenario 
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highlighted that mainly Kaliurang Road is congested, but has a smaller 

density compared to the simultaneous scenario (Figure 5.10b – e).  

 

Figure 5.9 Comparison of the percentage of evacuees on the road 
during the peak evacuation time. 

 

 

Figure 5.10 Relative densities of evacuee traffic on the road at the peak 
evacuation time. (a) simultaneous, (b) staged 1, (c) staged 2, (d) 
staged 3, (e) staged 4 scenario, and (f) inset map. Road name: (1) 
Kaliurang road, (2) Palagan tentara pelajar road. 
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5.3.3 Efficiency in Reducing the Risk 

Figure 5.11 presents graphs showing how the evacuation reduces the 

number of people at risk (%) temporally. The variation in the percentages of 

the at risk group (high-risk and medium-risk group) in these graphs is 

caused by the random nature of the ABM. These graphs show that there is 

no significant difference between the speed of reducing the risk among the 

staged scenarios (Figure 5.11b – e), but the simultaneous strategy (Figure 

5.11a) has the best performance of all. The percentage of risk group of both 

high and medium groups never reaches the same number with the staged 

strategy, because the population within the hazard zone is evacuating 

directly at the same time. 

 

Figure 5.11 Risk reduction comparison. (a) simultaneous, (b) staged 1, 
(c) staged 2, (d) staged 3, (e) staged 4 scenarios. 

 

5.3.4 Evaluating the Performance of the Staged Scenarios 

Among the four scenarios for staged evacuation (see Section 5.2.2.4), the 

second scenario (Staged 2) performs best in reducing the percentage of 

evacuees (potential traffic congestion) on the road during the peak time of 

the evacuation (Figure 5.12). This scenario sets the population density (PD) 

as the most important criterion in developing the prioritisation, followed by 

accessibility to shelter (AS), proportion of people of vulnerable age (VA), and 

proximity to the hazard (PH), respectively. However, in terms of the 

evacuees distribution on the road at that time, the third staged scenario, 

which places accessibility to shelter (AS) as the most important criterion, 

followed by the proportion of people of vulnerable age (VA), population 

density (PD), and proximity to the hazard (PH), performs best in terms of 
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reducing traffic density, as identified from the spatial distribution of the traffic 

density (see Figure 5.10d). Meanwhile, the first staged scenario (Staged 1) 

performs worst in terms of reducing the potential for traffic congestion. 

 

Figure 5.12 Performance comparison among the four staged scenarios. 

 

5.3.5 Discussion 

5.3.5.1 Supporting the Evacuation Management with Simulation  

There are four important contributions and findings that can be highlighted 

from this research: (1) a novel approach of zones prioritising a staged 

evacuation strategy, based on the demographic and geographical 

characteristics of the zones using SMCE, was developed and examined, (2) 

the experiments and analysis confirm that staged evacuation is more 

effective in reducing the potential traffic congestion at the peak time of the 

evacuation, (3) the problem regarding potential traffic congestion under the 

simultaneous evacuation strategy was identified and proved using actual 

evacuation data (2010 evacuation), and (4) the optimum formulation of the 

prioritising criteria was found. 

The staging technique used in this research offers a more geographical 

approach than the existing methods, such as (Mitchell and Radwan, 2006; Li 

et al., 2012). Both Mitchell and Radwan (2006) and Li et al. (2012) 

implement numerical modelling to provide a staging technique which pays 

less consideration to the geographical aspect of the evacuation zones. 

Meanwhile, the ABM experiment and the evaluation, that demonstrate the 
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ability of a staged evacuation scenario to reduce the potential traffic 

congestion during the peak time of the evacuation, complemented the 

research by (Chien and Korikanthimath, 2007; Chen and Zhan, 2008). Both 

Chen and Zhan (2008) and Chien and Korikanthimath  (2007) focus on the 

effect of adding a staging strategy to the evacuation duration. They 

commonly agree that a staged evacuation strategy, under certain conditions, 

is effective in reducing the overall evacuation duration. Meanwhile, the 

simulation presented in this paper focuses on the effect of implementing a 

staged evacuation in reducing traffic congestion. 

The simulation identified that two major roads were mainly likely to become 

crowded during the simultaneous evacuation process; namely, Kaliurang 

Road and Palagan Tentara Pelajar Road. This result is proved by a report of 

the evacuation in 2010 by national mass media “The movement of citizens 

simultaneously made Kaliurang Road full and jammed. A number of 

accidents occurred in the evacuation process” (translated from Indonesian) 

(Liputan6.com, 2010). Kaliurang Road remains the most densely crowded 

road during the implementation of the staged evacuation strategy but to a 

lesser extent than during a simultaneous evacuation strategy (see Section 

5.3.2). Therefore, the application of a staged strategy will potentially reduce 

the chaos and congestion that occurred during the 2010 evacuation process 

(Liputan6.com, 2010).  

Among the staged scenarios examined by the ABM, the first one performed 

best in terms of reducing traffic density, as identified from the spatial aspect. 

This scenario ranks proximity to hazard (PH) as the most important criterion 

when developing the prioritisation, followed by population density (PD), 

accessibility to shelter (AS), and the proportion of people of vulnerable age 

(VA).  

5.3.5.2 Limitation of the Study  

The results presented above show that ABMs can be used to test various 

scenarios of evacuation and evaluate the effect of factors such as the road 

traffic density. Although the experiment noted important findings on 

managing evacuations in Merapi - and more generally provides a method for 

developing prioritisation in evacuation staging that is applicable for many 

other hazards and locations - the limitations of this model should be 

considered when developing future works or, for more practical purposes, 

deriving policy implication based on these findings.  
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First of all, the current model used in these experiments disregards the 

possible effect of road traffic congestion on the movement of agents, and 

therefore it is unable to simulate the dynamic interaction between evacuees 

and road/traffic conditions. Batty et al. (2003) explains that the interaction of 

people over different scales implies different dynamics, purpose, and goals. 

Where interactions take place over very small spatial scales (i.e. less than 

tens of square metres), the dynamics of movement are dominated by density 

considerations such as overcrowding. On the other hand, over wider areas, 

movement is more likely to be characterised by cost and purpose. In reality, 

congestion affects the dynamic of traffic movement by limiting the movement 

of people and vehicles at “bottle-necks” (Rao and Rao, 2012) and can 

possibly trigger re-routing of the movement via alternative roads (Bazzan 

and Klügl, 2014). Although the potential of high crowd of movement of 

evacuees can be identified from the current model, the impact of the 

congestion is still hard to identify. Such dynamic and behavioural effects can 

affect spatiotemporal traffic density in ways that might produce different 

results. As Dixit and Wolshon (2014) explain, speed movement is inversely 

proportional to traffic density, therefore, the lower the speed, the higher the 

density of traffic will be produced. Moreover, re-routing behaviour in 

congestion affects the dynamic of spatial distribution of evacuees which in 

turn affects their density. It should be noted that approaches do exist to 

model such re-routing behaviour, for example ant-colony optimisation (Bedi 

et al., 2007) or swarm-intelligence (Tatomir and Rothkrantz, 2006).  

Secondly, road capacity is an important aspect in modelling evacuation 

traffic (Dixit and Wolshon, 2014). This has not been considered in the model. 

Road capacity is defined as the flow of traffic which moves at the minimum 

acceptable average speed (Wardrop, 1954). Congestion commonly occurs 

when the volume of traffic is too close to the maximum capacity of the road 

(Goodwin, 2004). Therefore, the result of the model might different when this 

factor is applied, and this will depend on the road capacity and the number 

of evacuees conducting the evacuation. 

Thirdly, the behaviour of people in choosing their evacuation destination is 

also important in defining the traffic (Charnkol et al., 2007; Cheng et al., 

2008; Mesa-Arango et al., 2012). Yet this aspect is not fully validated in the 

current model. Besides the stay-or-leave behaviour, the people behaviour in 

selecting their destination is another complex decision in modelling 

evacuations. The behaviour in selecting the destination depends on the 

preference and socio-economic character of the people Charnkol et al. 
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(2007). In Merapi, the outcome of the destination choice decision has been 

investigated. Based on the shelter zoning analysis by Jumadi et al. (2018), 

80.3% of evacuees preferred to select the shortest distance, 12.4% 

preferred to select destinations close to public services zones, and the rest 

(7.2%) either used relatives or risk indicators as preferences. However, what 

and how such socio-economic factors affect the decision is still unknown, 

and therefore further study is needed to apply this aspect in the model. 

Based on the limitations mentioned above, there are three aspects that can 

be improved to make this model more accurate. (1) Involvement of the 

interaction model of people on the road that leads to congestion and the 

interactions on speed dynamic and re-routing behaviour. (2) Assigning road 

capacity on the road network so that the congestion caused by this aspect 

can be modelled. (3) Assigning the decision model of destination choice to 

the agents so that the dynamic of the shelter choice that affects traffic 

distribution can be captured. 

5.5 Conclusions 

A novel approach to staged scenario design using spatial multi-criteria 

analysis to create the prioritisation is presented and examined in this paper. 

The prioritisation was applied in ABM to evaluate the relative comparison 

between simultaneous and staged evacuation, and among various staged 

scenarios based on different criteria weightings. The evaluation is based on 

the ability to reduce the potential road congestion during evacuation 

processes, which includes the percentage of evacuees on the road and the 

spatial distribution of relative traffic density, as well as the ability (fastness) 

to reduce the number of the population at risk. The result shows that the 

staged scenario was more effective in reducing the potential traffic 

congestion during the peak time of the evacuation compared to the 

simultaneous strategy. However, simultaneous evacuation strategy has 

better performance in reducing the risk compare to staged strategy. Among 

the four staged evacuation scenarios, there is no significant difference 

between them with regard to the speed at which the risk is reduced. Among 

the staged scenarios, the second one performed best in terms of reducing 

traffic density, as identified from the percentage of evacuees on the road 

during the peak time of evacuation. 
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Chapter 6   

Discussion and Conclusions 

 

6.1 Overview 

This thesis represents an advance step toward utilisation of spatial ABM to 

simulate emergency evcuation in volcanic areas in order to find alternative 

scenarios in improving the effectiveness of evacuation plans. The thesis 

highlighted how statistical data, from both survey (primary) and secondary 

sources, can be used to parameterise spatial ABMs and develop the 

evacuation decision rule of the agents, as well as how different scenarios of 

evacuation can impact the effectiveness of evacuation. The insight derived 

from this research fills a gap in knowledge relating to the methodology of 

how to evaluate certain scenarios of evacuation in volcanic areas. The 

methodology presented here, includes the development of evacuation 

decisions based on questionnaire surveys, a method for designing the 

spatiotemporal dynamics of a hazardous environment, and a method for 

designing staged-evacuation strategies based on geographical variables.  

The structure of the thesis represents the development processes of the 

spatial ABM of volcanic evacuation. The main development steps are 

elaborated in three chapters (Chapter 2-4) and followed by the use of the 

model in improving evacuation management (Chapter 5). This chapter (the 

final chapter) collates all the foregoing chapters, discusses and evaluates 

the findings in relation to the broader literature, points out limitations and 

concludes with the overarching findings. 

The development of the ABM started with designing the framework and 

initial model as presented in Chapter 2. Briefly, this chapter developed 

based on four points of focus: (1) highlighting the importance of providing 

evacuation simulation for Merapi, (2) providing and introducing the initial 

design of ABM for volcanic evacuation simulation, (3) demonstrating the 

potential uses of the model to support evacuation decisions, and (4) 

evaluating the initial design and giving insights for further improvements. The 

initial volcanic evacuation model development was presented in this chapter 

as the basis for further application purposes. The volcanic evacuation model 

represents the relationships between physical and human agents, consisting 
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of the volcano, stakeholders, the population at risk and the environment. The 

spatio-temporal dynamic of hazard following the volcanic activity level is also 

formulated in this chapter. Afterwards, some potential uses of this model to 

support decision-making were demonstrated – for instance, analysing route 

densities, evacuees’ distribution in shelters, and the evacuation outcome in 

various scenarios. The comparison of some simulation results with real data 

was provided with the aim of evaluating this model. Drawbacks in the model 

were identified: in the decision-making of agents, synthetic population 

development and the effect of social networks on agent decisions. 

The model was improved in the next phase to address those drawbacks. 

Chapter 3 presented an individual evacuation decision model in ABM with 

Mt. Merapi, Indonesia as a case study. In this version, the model was utilised 

with an individual decision-making rule, a synthetic population and social 

network interaction. The individual decision-making rule was based on 

various interrelating factors developed from the literature review and survey. 

These factors were categorised into driving forces to evacuate or influences 

tending to make people stay put. The threshold-based approach was used to 

evaluate the differences in both values and to define whether agents would 

evacuate or stay. This decision model can be used to simulate two important 

aspects of evacuation, namely the dynamic of evacuation departure, and the 

emergence of reluctant people. Both of these features are important in 

defining the effectiveness of evacuation because a high incidence of 

reluctant people or evacuation which is too late will increase the risk. 

Calibration was conducted by setting up the parameters based on three 

scenarios. The model was validated by a retrodiction approach which 

consisted of spatial and temporal validation. K* and rw were used to measure 

the validity of the spatial distribution of the simulated reluctant people 

against the real data. Meanwhile, RMSE was used to measure the validity of 

the temporal accumulation of evacuees. Analysis of the simulation outputs 

shows that scenario 3, which weighted the occurrence of an explosion as the 

most important motivation for evacuation (four times more important than the 

other aspects), was the most plausible model in mimicking the real volcanic 

disaster events in Mt. Merapi. This plausibility was indicated by both the 

spatial and temporal similarity of the output with the real data being relatively 

high (high K*, rw and low RMSE) compared with the other scenarios. 

The speed in reducing risk is an important indicator of the success of 

evacuation. The overall risk is aggregated from the individual risk. Therefore, 

the concept of individual risk is formulated and demonstrated in Chapter 4 
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which presented the integration of MCE-ABM for STDMR to show the 

dynamic spatio-temporal change of volcanic risk. The model captures 

dynamic risk as a function of hazard and vulnerability, where the hazard 

varies over time and space. Here, vulnerability is defined using a social 

vulnerability index (SoVI) as aggregated in the MCE from several attributes 

of the individual agent. From the simulation, the risk hotspots were identified: 

particular sites of concentration of people at risk over time. This simulation 

can potentially be used to enhance the decision-making processes of 

evacuation. Knowing the hotspots can help the decision maker to allocate 

more resource to manage and mobilise these areas.  

So far, the model was utilised with spatio-temporal dynamic of hazard, 

individual decision-making of evacuation, synthetic population, social 

network interaction, and individual risk modelling which is spatio-temporally 

dynamic. The verification, calibration, and validation effort was also 

presented in Chapter 3. The next phase uses the model to experiment with 

some scenarios of evacuation to evaluate the outcome as presented in 

Chapter 5. Firstly, this chapter provides the development of evacuation 

stage ordering based on the geographic character of people at risk and then 

examines the ordering scenarios in an agent-based model of evacuation. 

Several geographic characters such as proximity to hazard, road network 

condition (accessibility), number of population, and demographics as 

parameters were used to rank the order of each population unit in GIS. From 

this concept, several scenarios of ranking based on different weightings of 

the parameters were created and examined. Afterwards, the results were 

evaluated to assess the effectiveness in reducing risk and spatio-temporal 

traffic density along road networks compared with carrying out simultaneous 

evacuation. The results show that the staged scenario has the best potential 

to reduce traffic congestion during the peak time of the evacuation compared 

with the simultaneous strategy. However, simultaneous evacuation strategy 

has the best performance in the speed of reducing the risk. 

6.2 Research Contributions 

This thesis was developed based on several contributions that imply 

knowledge development and potential for practical application. Besides the 

potential to be used locally in Merapi, especially by experimenting with 

several scenarios and suggesting the most effective evacuation plan, the 

development processes of this evacuation model contribute to the 

development of ABM for large-scale evacuation simulation by (1) integrating 



- 191 - 

 

the hazard model that is derived from historical records of spatial impact of 

eruptions, (2) formulating and validating an individual evacuation decision 

model in ABM based on various interrelating factors revealed from the 

literature review and survey, (3) formulating the integration of multi-criteria 

evaluation (MCE) in ABM to model spatio-temporal dynamic model of risk 

(STDMR) that enables  representation of the changing risk as a 

consequence of changing hazard levels; hazard extent; and movement of 

people, (4) formulating an evacuation staging method based on MCE using 

geographic and demographic criteria. 

6.2.1 Contributions in Local Context 

Evaluation of evacuation scenarios through simulation is important for 

arranging further improvement of the evacuation plan. Merapi, with high 

uncertainty of both the hazard (physical) and the responses of people 

(social), needs an adaptable plan that is valid for any hazard scenario. 

Modelling of the volcanic evacuation in Merapi is important to support the 

evaluation of the implementation of potential plans for reducing risk and 

providing more effective evacuation management. However, although 

various aspects of Merapi have been researched (Jumadi et al., 2017), less 

attention has been paid to evacuation modelling. Some research has been 

conducted, such as Handayani et al. (2016, 2017), but those studies are still 

in the early phase of model development, i.e. formulating the behaviour rule 

of people in the evacuation processes. 

This thesis has made a novel contribution by developing an agent-based 

model that allows simulation of the evacuation processes in Merapi. This can 

potentially be used to support the evaluation and improvement of evacuation 

management in Merapi as presented in Chapter 2 and Chapter 5. Moreover, 

the agent-based model of volcanic evacuation developed in this thesis 

enables evaluation of the potential problems of the existing scenario 

(simultaneous evacuation strategy) – the evacuation plan as practised in 

2010 evacuation. This evacuation strategy produced some traffic problems 

during the movement as reported by national mass media (Liputan6.com, 

2010). Such problems were also identified by the results of the simulation as 

presented in Chapter 5, where there are some high traffic densities on the 

roads at the peak time of evacuation. It is mainly at Kaliurang Road that was 

also reported in the real evacuation processes in 2010 (Liputan6.com, 

2010). 

This thesis suggests a more effective scenario as presented in Chapter 5, 

i.e. a staged evacuation strategy. Based on the simulation, traffic density at 
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the peak time of evacuation could be reduced by up to 23% compared with 

the simultaneous strategy. A staged evacuation scenario was also proved 

more effective for evacuation from Hurricane Katrina (Wolshon, 2006). Also, 

based on the relative comparison, this strategy is better in reducing 

clearance time under certain road network conditions (Chen and Zhan, 

2008). 

6.2.2 General Contributions to Evacuation Modelling 

6.2.2.1 The Spatial Dynamic of Hazard Model 

Simulating a disaster event, especially a volcanic eruption, needs a spatio-

temporally dynamic hazard model since the hazard is naturally changing in 

spatial extent and magnitude over the period of crisis. Some efforts in 

integrating the hazard dynamics have been made in developing models of 

evacuation, for example hydrodynamic numerical simulations for tsunami 

evacuation (Mas et al., 2012; Wang et al., 2016) and floods (Dawson et al., 

2011). However, the implementation of spatio-temporal hazard dynamics 

that involves real data from previous events has only been considered in a 

limited way. This approach to modelling is further developed in this thesis, as 

presented in Chapter 2. It is based on the changing of physical parameters 

of the volcano. The hazardous environment is divided into several zones 

based on the impact records from the previous events. The changing 

volcanic eruption parameters – magnitude (VEI), and especially the volcanic 

activity level (VAL) – change the hazard level within each zone.  

6.2.2.2 Individual Evacuation Decision Model 

The reluctances phenomenon can hamper evacuation processes, but has 

received surprisingly little attention in studies on evacuation modelling (e.g. 

(Chen and Zhan, 2008; Zhang et al., 2009; Mas et al., 2012; Jumadi et al., 

2017)). Modelling the phenomenon of reluctant people during a crisis might 

help in improving evacuation plans; that is, to what extent the number of 

reluctant people can be reduced to save more lives. The model of individual 

decision-making processes of evacuation (evacuate/stay) during a volcanic 

crisis using an agent-based model (ABM) is provided in Chapter 3. The 

model uses several interacting factors (Sagala, 2009; Donovan, 2010a; 

Wilson et al., 2012; Chandan et al., 2013) that drive people to leave (forced 

to evacuate) versus the factors tending to hold people back (forced to stay). 

The evacuation decision model is based on a threshold model where the 

interacting factors are quantified and evaluated against the threshold. The 

change of values of the factors, when exceeding the threshold, triggers the 
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transition state from Normal – Investigating – Evacuating (Lovreglio et al., 

2016). Normal conditions mean there is no impulse to evacuate. The state 

moves to Investigating (people increase their level of awareness) when the 

urge to evacuate increases but does not yet exceed the tendency to stay. 

This rule can model the emergence of people who are reluctant to evacuate 

during the volcanic disaster. 

6.2.2.3 Spatio-temporal Dynamics Model of Risk 

Risk modelling from certain hazards is traditionally presented as a static map 

with the region as the mapping unit. Nowadays, the emergence of ABM as 

an approach to individual modelling allows risk modelling on an individual 

scale. ABM can accommodate this requirement (Clarke, 2014), and has 

been shown to be effective in simulating agent behaviour in non-linear 

systems (Srbljinović and Škunca, 2003; Malleson et al., 2014). In an ABM, 

people are represented as agents who have heterogeneous characteristics 

and behaviour (Crooks and Heppenstall, 2012). They are able to navigate 

their environment and interact with other agents. Furthermore, heterogeneity 

can be introduced into the population of agents which allows for modelling 

individual variations in vulnerability and mobility. The coupling of ABM with a 

dynamic hazard model is, therefore, an ideal framework with which to 

represent the dynamic risk to individuals during a volcanic emergency. 

In this thesis (Chapter 4), a new approach of Spatio-temporal Dynamics 

Model of Risk (STDMR) was proposed and a case study using a pre-

developed agent-based evacuation model of Mt. Merapi was provided 

(Jumadi et al., 2017; Jumadi et al., 2018). This approach first creates an 

individual-level population (synthetic population) of agents who live in the 

area surrounding a volcano. Each agent has a unique vulnerability and since 

vulnerability comprises several factors (Cutter et al., 2003), MCE is used to 

create a single social vulnerability index for each individual. This is coupled 

with a dynamic hazard model to capture the dynamics of risk. The model is 

able to highlight a small number of high-risk spatio-temporal positions where, 

due to the behaviour of individuals evacuating the volcano and the dynamics 

of the hazard itself, the overall risk in those times and places is extremely 

high. Nevertheless, the outcomes are interesting and extremely relevant for 

stakeholders, and the work of coupling an ABM, MCE, and dynamic volcanic 

hazard, is novel. 
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6.2.2.4 Evacuation Priority List Design and Staged Evacuation 

Evaluation 

Staged evacuation has been put forward as an effective solution to reduce 

chaotic conditions during evacuation processes. However, there is limited 

grasp of how the stages can be ordered to manage which evacuees can 

leave earlier and which ones can follow later. An example of the design of 

priority ranking using a heuristic approach was presented by Mitchell and 

Radwan (2006), but less consideration was given to a spatial element. In this 

thesis (Chapter 5), the development of evacuation stage ordering based on 

the geographic character of people at risk was presented and examined. 

Several geographic characters such as proximity to hazard, road network 

condition (accessibility), number of population, and demographics as 

parameters were used to rank the order of each population unit in GIS. Four 

scenarios of ranking based on the different weight of the parameters were 

produced and examined.  

6.2.2.5 Identifying Potential Problem on Evacuation 

Identifying potential problems from an evacuation scenario is an important 

aspect of evacuation simulations. This was demonstrated in Chapter 5. In 

this chapter, a potential problem, especially traffic congestion during the 

peak time of evacuation, was identified by analysing the traffic density at that 

time. The traffic densities from simultaneous and staged evacuation 

strategies were compared. The results showed that the simultaneous 

strategy results in the highest potential traffic problem because most people 

start to evacuate at the same time so traffic is concentrated on particular 

roads/junctions at the peak time. In contrast, in the staged strategy, people 

start to evacuate gradually so traffic is more distributed, road congestion is 

less severe. 

6.3 Evaluations of the Model 

6.3.1 The Aspects of the Model that Worked Well 

In order to represent the process of volcanic crisis occurrence and, followed 

by, the evacuation; this model involved various aspect including the 

environmental (physical) and social. There is some aspect of that 

representation that is work well, as expected. From the physical aspect, the 

model has been able to represent the spatiotemporal dynamic of hazard as 

effect of the changing of the volcanic activity. The volcanic activity matrix as 

a rule to drive this aspect can be used for this purpose. On the other hand, 
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from the social aspects, there are some components that worked to comply 

with the model design such as the use of threshold-based rule that 

successfully trigger people to leave or stay based on the emerging value of 

driving forces to leave and driving forces to stay. Moreover, from the 

methodological perspective, the method of population synthesis as well as 

the development of evacuation stage prioritisation worked well. The success 

of the population synthesis can be seen from the spatial distribution as well 

as structure of agents of population that are generated. Nearest Neighbour 

analysis was used to compare the spatial distribution that is all simulation 

samples shows similarity of the pattern to the real data (clustered). While to 

analyse the structure similarity, descriptive statistics were used. Figure 5.1 

shows the comparisons of the structure, based on the socio-economic 

attributes, between the real (census microdata) with the agents population. 

Table 6.1 Spatial comparison based on Nearest Neighbour. 

Data 
Observed 

Mean 
Distance 

Expected 
Mean 

Distance 
NN Index 

Number of 
Points 

Spatial 
Pattern 

Real Data 11.986 25.537 0.469 297659 Clustered 

Simulation 1 91.326 136.972 0.667 13733 Clustered 

Simulation 2 90.092 135.649 0.664 13733 Clustered 

Simulation 3 90.246 135.275 0.667 13733 Clustered 

Simulation 4 90.988 136.746 0.665 13733 Clustered 

Simulation 5 91.098 135.352 0.673 13733 Clustered 

Simulation 6 90.987 135.355 0.672 13733 Clustered 

Simulation 7 90.327 137.019 0.659 13733 Clustered 

Simulation 8 91.933 135.396 0.678 13733 Clustered 

Simulation 9 91.558 136.018 0.673 13733 Clustered 

Simulation 10 91.200 135.876 0.671 13733 Clustered 
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Figure 6.1 Structure of agents population – examples from ten 
simulation run. Note: (a) age structure, (b) sex structure, (c) 
education structure, (d) family income structure, (e) structure of 
disabilities. 

 

6.3.2 The Aspects of the Model that Worked Less Well 

Although the model has been able to model the emergence of reluctances, 

there are still discrepancies in the spatial distribution between the simulation 

output with the real data. The statistical analysis of this confirmed that these 

results are plausible and robust because the comparisons rely on the pattern 

(neighbourhood) rather than pixel to pixel. If we take a look at the map 

resulting from the simulations (Figure 5.2), we can see some spots that are 

different. This aspect should be taken into consideration when conducting 
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further improvements, besides some limitations that will be presented in 

Section 6.4. 

 

Figure 6.2 Spatial discrepancies between real and simulated data. 

 

6.3.3 The Complicatedness of the Model  

There is still academic debate on how complicated an ABM should be . 

Edmonds and Moss (2004) argue that ABM have the ability to model 

complexity in detail and suggest starting with a complex model and 

simplifying it provided the outputs continue to 'capture' real-world complexity. 

However, as yet, there is no consensus on whether to start with a simple 

model and make it more complicated or vice versa. Compared to a similar 

model, the ABM of wildfire (Wise, 2014) for example, the model developed in 

this thesis is more complex in terms of its parameterisation and decision 

rules. The wildfire model used decision a tree that relies on probability, while 

this thesis used threshold-based rules that need some parameters to 

generate the value. That is the reason why the there are so many 

parameters used in this thesis. In further improvement, following the 

guidance from Edmonds and Moss (2004), it is possible to simplify the 

model while attempting to retain the existing model behaviours.6.4 

Limitations 

This model has the potential to support the evacuation management in 

Merapi. However, there are several limitations that are possible to improve in 
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the future. Based on the evaluation of both the model and the output, there 

are some limitations on the decision rules, the probability of interaction of 

people and the involvement of the road congestion effect on the agent 

speed.  

Firstly, there is a key limitation regarding the decision rule of the agent. The 

destination choice rule should be improved since this is out of the scope of 

this research. The ABM has been utilised with the destination choice model 

when the agent decides to evacuate but is yet to be calibrated and validated. 

The distribution of evacuees is important to compare with the real data as it 

expresses the validity of the destination choice rule of the agent. In 2010, the 

populations within the danger zone in Merapi evacuated to temporary 

shelters (evacuation centres) distributed outside the danger zone. These 

shelters are commonly public facilities such as stadiums, schools, 

mosques/churches, etc.  

Secondly, the effect of social influence and the probability of successful 

contact among people on the evacuation decision might be varying and this 

might affect the outcome. The model presented here ignores these variables 

and assumes that all agents always successfully make contact with their 

connections and always follow the commands given. In addition, it is 

possible for people to ignore the evacuation order altogether. The decision 

result as a response from interaction may vary among people, based on 

their perception of risk, and, because of such interactions, people at risk may 

socially aggregate in making decisions or/and in the evacuation process. 

Thirdly, the result of traffic evaluation based on various scenarios of 

evacuation may be improved as there is an absence of involvement of 

congestion effect, road capacity variablility, and variability in the decision of 

destination choices. The current model used in the experiment disregards 

the possible effects of congestion to the movement of agents, therefore, it is 

unable to simulate the dynamics of evacuees following the interaction on the 

road. The congestions commonly occur when the volume of traffic is too 

close to the maximum capacity of the road (Goodwin, 2004). Therefore, the 

result of the model might be different when this factor is applied; but that 

depends on the value of road capacity and the number of evacuees 

conducting the evacuation. The distribution of evacuees is also defined by 

the variability of destination choice of evacuees since this affects their route 

selection.  
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6.5 The Road Map: from Modelling to Policy 

Gilbert et al. (2018) suggest that there are seven aspects should be taken 

into account when bringing the model into public policy. (1) The 

appropriateness of the process means that the plausibility of the model is not 

merely measured from the output, but also the correctness of the process. It 

is needed to convince that the model is designed as a representation of the 

process in the real world. (2) The appropriateness of the level of model 

abstraction means the model should represent the real world in appropriate 

detail. All model requires a generalisation of the real system to simplify and 

make it easy to understand and validate. Therefore, the level of 

generalisation should consider the purpose of modelling (Edmonds and 

Moss, 2004). (3) By recognising the data and validation challenge, the future 

data collection and validation requirements can be identified for 

improvement, because modelling for policy is continuous processes (Gilbert 

et al., 2018). (4) Collaborative processes of model development and use are 

needed to ensure the model is focused on the purpose and to provide more 

effective peer review and scrutiny of the modelling processes (Gilbert et al., 

2018). (5) Consideration of ethical issues is also important because policy 

will affect to human life. At least, it will involve human participants in 

developing the model. Likewise, the questionnaire survey that was 

conducted to develop the model in this thesis has undergone ethical review. 

(6) Communicating the modelling processes with stakeholder as well as the 

user who involved in the policy development is also important to be taken 

into account. (7) Lastly, the model also needs to be maintained regarding the 

evaluation of the policy implementation as well as the progress of 

technology. 

It is considering the above successful keys of developing a model to support 

policymaker, this important to plan a roadmap to make sure that this volcanic 

evacuation model is implementable. The roadmap of the integration of the 

model to policy is presented in Figure 5.2. The roadmap consists of several 

steps that are including improvement of the model as well as stakeholder 

engagement. The improvement is that in order to consider, as well as to 

address the limitations that are presented previously in section 6.4. 

Therefore, because it should involve some additional rules, e.g. destination 

choice model, it should be undergone some further validations and data 

improvements whereas the stakeholder engagement is started by 

communicating the model with the stakeholder who responded to the 

evacuation management. 
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Figure 6.3 Road map of model implementation – leading to policy 
integration. 

 

The integration of the model is then presented in Figure 5.2. The evacuation 

management procedure involves various parties of stakeholders including 

scientists (volcanologists), local government, and emergency response team 

that is some of the members are volunteers (Figure 5.2a) (Mei and Lavigne, 

2012) whereas the model is attached to the procedure as a tool to support 

the local government in generating policy regarding the evacuation 

command issuance (Figure 5.2b). For example, the scenarios of the hazard 

following the result of the observation is then used to parameterise the 

simulation. The result of the simulation such as the evacuees density 

distribution along road networks is used to distribute police officer to 

anticipate bottlenecks or congestions. 
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Figure 6.4 Attachment of the model to evacuation decision process 
(modified from Mei and Lavigne, 2012). (a) Current procedure of 
evacuation management process, (b) the evacuation procedure 
supported by the model. 

6.6 Future Works 

Considering the limitations mentioned above, there are some future works to 

improve the model as follows: (1) utilise the agent decision rule with a valid 

destination choice model derived from survey. This is important because 

developing an evacuation plan where the potential impact is uncertain needs 

several scenarios that might be possible to happen. One of the important 

aspects to consider in the plan is the distribution of evacuees. Research 

shows that destination choices are influenced by some factors. There are 

several relevant criteria for this model including travel distance, risk 

indicator, proximity to public services area, and the existence of family 

relatives (Cheng et al., 2008). Moreover, shelter capacity is also relevant in 

choosing evacuees’ destination (Xu et al., 2014).This aspect is important in 

order to plan the services and logistics during the evacuation period. To do 

this, an extensive survey regarding the preference of people should be 

conducted. The result can be used to develop the agent’s destination choice 

rule. (2) Utilise the model with synthetic social networks that mimic social 

networks derived from survey. (3) Utilise the model with a measure of agent 

friction during periods of congestion that impact the agent movement. 
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6.7 Concluding Remarks 

The work presented in this thesis consists of developments in the processes 

of ABM and application of the techniques in order to achieve insights about 

how a spatial agent-based simulation can be used to improve volcanic 

evacuation management. The findings can be applied both to improvement 

of evacuation modelling and the practice of evacuation. This section 

discusses those aspects of Chapters 2 to 5 which advance not only the 

theory and practice of modelling but also the improvement of evacuation 

management in the specific case of Merapi. 

This thesis offers improvements in a range of areas especially disaster 

management. The improvements to evacuation modelling are conducted by 

integrating spatio-temporal dynamics of the hazard into the model, utilising 

spatially realistic synthetic populations from microdata, formulating individual 

evacuation decision rules based on a survey, and using an individual risk 

model based on MCE. Improvements to evacuation management are 

provided by (1) new design of evacuation staging strategy, (2) anticipating 

reluctant people by identifying risk hotspots, (3) anticipating congestion by 

identifying potentially congested roads during the peak of evacuation time. 

In this thesis, the use of geographical characteristics of an area to design 

evacuation prioritisation contributes to the application of geography for 

disaster management. This approach is applicable not only to manage 

evacuation from a volcanic hazard, but also from the other hazards where 

road networks and time constraints influence outcomes. The design of 

evacuation staging used in this thesis can easily be applied in other contexts 

by incorporating geographical characteristics of an evacuation zone to 

develop prioritisation. This spatial approach can be implemented in GIS by 

employing MCE. 

To sum up, this thesis presents the development of a spatial agent-based 

model of volcanic evacuation in Mt. Merapi. This is an important effort due to 

lack of research in evacuation modelling conducted in Merapi. This can 

potentially be used to improve the effectiveness of evacuation plans by 

offering a less congested evacuation scenario and highlighting potential 

problems related to traffic management. Besides the potential for using 

these techniques locally in Merapi, the development processes of this 

evacuation model contribute in advancing the knowledge of ABM 

development for large-scale evacuation simulation by (1) integrating the 

hazard model that is derived from the historical record of spatial impacts of 
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eruptions, (2) formulating and validating an individual evacuation decision 

model in ABM based on various interrelating factors revealed from the 

literature review and survey that enable modelling of the phenomenon of 

reluctant people, (3) formulating the integration of multi-criteria evaluation 

(MCE) in ABM to create a spatio-temporal dynamic model of risk (STDMR) 

that enables representation of  changing risk as a consequence of changing 

of hazard level; hazard extent; and movement of people, (4) formulating an 

evacuation staging method based on MCE using geographic and 

demographic criteria.  
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All appendices below are provided soft file in the attached memory stick 

(except Appendix 2.1): 

Appendix 1.1 The questionnaire survey. 

Appendix 1.2 The survey results. 

Appendix 2.1. Online Model: http://www.runthemodel.com/models/k-

RgpNLa1oojYE1To31FJa/.  

Appendix 2.2. Simulation Video: https://osf.io/qr65b/.  

Appendix 2.3. Application documentation: https://osf.io/7yf3p/.  

Appendix 2.4. Population unit and data: https://osf.io/k6d2n/. 

Appendix 3.1. Statistical Analysis of Survey Data (https://osf.io/a8zew/) 

Appendix 3.2. Evacuation dataset (https://osf.io/4kujy/);  

Appendix 3.3. Reluctance raster map (https://osf.io/gy8ew/);  

Appendix 3.4. Functions Overview of Evacuation Decision for Scenario 1 

(https://osf.io/pqmv3/);  

Appendix 3.5. Functions Overview of Evacuation Decision for Scenario 2 

(https://osf.io/tkanc/);  

Appendix 3.6. Functions Overview of Evacuation Decision for Scenario 3 

(https://osf.io/rcqb3/);  
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