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General summary

Understanding the causes of temporal variation in abundance is a fundamental
question within population ecology, and one with a number of implications for how
we think about and manage our natural systems. In particular, there is much interest
in the role of climatic variation, or weather, in determining population processes, due
both to the observation that these variables can be substantially involved in regulating
demographic and population processes, as well as the current context of climate
change, which is forecast to become a major determinant of population change over
the course of 21 century. In this thesis, I address the role of weather in determining
variation in abundance of European birds and butterflies, using large-scale monitoring
datasets from 11 countries across Europe. In chapter II I assess the sensitivity of 12
univoltine butterfly species to climatic variation across their geographic range, finding
that weather appears to be relatively more important towards latitudinal range
margins. In chapter III I address the extent to which weather variables contribute to
observed temporal variation in abundance in 153 species of European bird. I find that,
while there is a statistical signal of weather in the population growth rates of the
majority of species, explanatory capacities are typically low, with the effect that models
that contain large sets of weather variables perform fairly equivalently to those that
contain none at all. There are a number of potential causes of this result, which I
discuss, as well as make recommendations for further work to discriminate between
these. In chapter IV I test whether including information about short-term thermal
variation in population growth rate models enhances our ability to explain variation in
abundance for 32 species of butterfly in the UK. I find that, for the majority of species,
models of population growth are more able to explain variation in abundance when
they include information about fine-scale thermal variation. These results suggest that
it may be important to consider thermal variation acting at short timescales to
understand the temporal dynamics of populations. Looking across the thesis as a
whole, my findings indicate that using monitoring scheme datasets to relate inter-
annual variation in abundance to weather is not straight forward; future work with

these datasets needs to do more to address the measurement process, as well as working



to identify the limitations of models that do not contain population detail such as

demographic structure.

i



Acknowledgements
Huge thanks are owed to my supervisors, Dr Karl Evans, Dr Richard Bradbury,

Professor Richard Gregory, and Professor Tom Oliver for their invaluable support and
guidance over the course of my PhD. I'd like to further thank the Conservation Bites

group at Sheffield for their input and feedback throughout.

Thanks are owed to Jana Skorpilové at the Pan-European Common Bird Monitoring
Scheme, who was integral to acquiring the bird monitoring datasets as well as fielding
many, many queries about these. I would also like to thank the monitoring scheme
coordinators who provided constructive advice, as well as the reviewers of the first data

chapter, whose comments substantially enhanced this piece of work.

I am incredibly grateful for the support of my fellow students and friends over the past
four years; their advice and insight over the course of the PhD has been a continual
source of inspiration and has been greatly appreciated. To my family and parents for
supporting me, not only over the last few years, but also the preceding 24 or so, thank
you so much! I'm not sure that we would have forecast this moment, back in 2006..
To Charlotte, your unfailing support, and no small amount of patience, has been a
constant source of reassurance and comfort, for which I will be forever grateful. I owe

you a holiday!

Finally, thanks are owed to the army of volunteers who spend their free time collecting
these data in the first place. Without their many thousands of hours of work, none of

this would be possible, and I'm indebted to them and their efforts.

1ii



v



Declaration

The work presented herein is my own, but owes substantially to the guidance and
intellectual contributions of my supervisors, as well as a wider group of data providers

who are included on the resultant manuscripts.
Chapter II has been published as:

Mills, S.C., Oliver, T.H., Bradbury, R.B., Gregory, R.D., Brereton, T., Kihn, E.,
Kuussaari, M., Musche, M., Roy, D.B., Schmucki, R., Stefanescu, C., van Swaay, C.
and Evans, K.L. (2017) European butterfly populations vary in sensitivity to weather

across their geographical ranges. Global Ecology and Biogeography, 26, 1374-1385.

All writing, analyses, and data preparation were done by me under the guidance of my
supervisors, T.H.O, R.B.B., R.D.G., and K.L.E. Other listed coauthors provided the
butterfly datasets, and provided input on the resulting manuscript and contributed to

subsequent revisions.
Chapter III is currently submitted as:

Simon. C. Mills, Tom H. Oliver, Richard B. Bradbury, Richard D. Gregory, Virginia
Escandell, Ruud Foppen, Sergi Herrando, Frédéric Jiguet, Aleksi Lehikoinen, Ake
Lindstrém, Charlotte M. Moshej, Renno Nellis, Jean-Yves Paquet, Jifi Reif, Jana
Skorpilové, Chris A.M. van Turnhout, Thomas Vikstrem, Petr Vofi&k, Karl L. Evans
Submitted. Weather variables make minor contributions to explanatory capacity of

population dynamic models of European bird populations in an era of climate change

All writing, analyses, and data preparation were done by me under the guidance of my
supervisors, T.H.O., R.B.B., RD.G., and K.L.E. Other authors provided the
butterfly datasets, and provided input on the resulting manuscript and contributed to
subsequent revisions. Jana Skorpilova contacted all data providers and was heavily

involved in accessing the datasets from the eleven scheme coordinators.

Chapter IV is in preparation and currently unsubmitted. As with other chapters, my

supervisors provided guidance and support.



vi



Table of Contents

1 General Introduction

1.1 The role of weather in regulating populations
1.1.1 Weather and individuals
1.1.2 Weather and demography
1.1.3 Weather and populations

1.1.4 Climatic means, stochasticity, and Extreme Climatic Events
1.2 Thesis aims and objectives

1.3 Datasets
1.3.1 Butterfly Monitoring Datasets

1.3.2 Breeding Bird Survey Datasets

1.4 References

10

12

14

16

18

18

19

20

2 European butterfly populations vary in sensitivity to weather across their geographic ranges 29

2.1 Abstract
2.2 Introduction

2.3 Methods
2.3.1 Butterfly and climate datasets
2.3.2 Process model of population growth rates
2.3.3 Butterfly species inclusion

2.3.4 Assessing variation in sensitivity fo weather
2.4 Results
2.5 Discussion
2.6 References

2.7 Supplementary material

2.8 Addendum

vii

31

33

36

36

38

39

40

43

48

53

58

69



3 Weather variables make minor contributions to explanatory capacity of population dynamic

models of European bird populations in an era of climate change
3.1 Abstract
3.2 Introduction

3.3 Materials and methods
3.3.1 Datasets
3.3.2 Weather variables
3.3.3 Population growth rate model
3.3.4 Evaluation of weather importance
3.3.5 Robustness check using finer resolution climate datasets
3.3.6 Variation in contribution of weather with species traits

3.3.7 Variation in contribution of weather with geographical position
3.4 Results

3.5 Discussion
3.5.1 Phenomenological models and complex weather drivers
3.5.2 Unquantified census error
3.5.3 Non-climatic drivers of population growth

3.5.4 Conclusion
3.6 References
3.7 Supplementary material

4 Quantifying variation in thermal exposure during focal periods improves predictions of

population growth in UK butterflies
4.1 Abstract
4.2 Introduction

4.3 Methods
4.3.1 Datasets
4.3.2 Identifying focal time periods for temperature effects

4.3.3 Assessing contribution of standard deviation terms to model performance

Vviii

71

73

75

77

77

78

79

81

81

&2

&2

83

92

93

94

95

96

96

101

115

117

119

122

122

124

125



4.3.4 Assessing performance of a daily-temperature model 126

4.4 Results 128
4.5 Discussion 136
4.6 References 140
4.7 Appendix 144
4.8 Supplementary material 146
5 General discussion 157
5.1 Measurement error (the observation process) 160
5.2 Model comparison in the large-N context 165
5.3 Model complexity: characterising weather drivers, and general vs. unique trade-offs 166
5.4 Concluding remarks 170
5.5 References 171






Chapter 1:

General Introduction






One of the most self-evident features of the natural world is its dynamism. The
numbers of animals and plants are in constant flux, both over the course of the year,
with abundance varying from season to season, as well as across wider temporal scales,
with both marked variation between one year and the next and systematic shifts
measured at the scale of decades and longer (Oliver ez al. 2012; Spooner ez al. 2018).
Taking a long-enough perspective, it is further evident that many species are absent
from regions in which they were once abundant, while others are now present where
once they were not (Gaston 2003). What causes these spatial and temporal dynamics
is a question that lies at the heart of population ecology and has innumerable

implications for how we think about and manage our natural systems (Turchin 2003).

Early work on population dynamics tended to have a fairly narrow focus on the relative
importance of endogeneous vs. exogeneous processes for determining temporal
patterns of abundance (e.g. Elton, 1924), and, indeed, this has been a major theme
throughout the development of the field (Bjornstad & Grenfell 2001). Two key
teatures have emerged from these debates. First is the realisation that complex
dynamics can occur in the absence of any external forces at all, as a consequence of
chaotic dynamics (May 1976) or simply through complex demographic processes
(Turchin 2003). Second, many of the population dynamics we observe in the natural
world are readily explained in terms of variation in the environment, and explanations
that do not involve these factors will therefore tend to be limited (Stenseth ez aZ. 2002).
Modern population ecology now tends to consider the causes of variation in abundance
in a more unified way, with a focus on how to go about adequately capturing various

population processes with statistical models (Krebs 1995; Coulson e aZ. 2004).

Alongside this growth in our understanding of how populations behave are two other
important developments. The first of these is that there has been a dramatic change
in the availability of datasets with which to compare competing models of population
dynamics (Turchin 2003). This represents a radical departure from early work, which
relied heavily on theoretical models (e.g. Nicholson, 1933), or attempted to
discriminate between competing explanations for population dynamics with what we

would now consider unfeasibly small sets of observations (e.g. Elton, 1924). The
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current era of large longitudinal datasets such as the UK butterfly monitoring scheme
(Pollard & Yates 1993) or Pan-European Common Bird Monitoring Scheme
(Gregory et al. 2005), has transformed our capacity to ask questions of the processes
that regulate populations, and, indeed, has resolved many of the major debates that

marked the early period of population ecology (Turchin 1999).

The second development is that over the course of the last century there has been a
growing awareness of the dramatic changes occurring within our populations and
ecosystems. Global analyses document systematic shifts towards ecosystems that are
both more depauperate (Ceballos ez al 2015; Maxwell e a/. 2016) and defaunated
(Dirzo et al. 2014; Inger e al. 2015), as well as increasingly homogenised (Newbold ez
al. 2015). Some 1/5 of animals and plants are now considered threatened or
endangered (Hoffmann ez a/ 2010; Collen ez a/. 2012). Rising threat-status is mirrored
in observed rates of extinction, with at least 322 recorded vertebrate extinctions in the
last 500 years (Dirzo ez al. 2014), which corresponds to a 100-fold rise in the risk of
extinction in the era of modern humans (Ceballos ez a/. 2015). Population change is
further reflected in marked shifts in spatial distribution across many species (Chen e#

al. 2011), as the Earth’s biota redistributes according to modern-day pressures (Sunday

et al. 2012; Wernberg ez al. 2012).

The magnitude of many of these population changes is substantial cause for concern,
particularly given that rates of change appear to have accelerated over the course of the
last century (Newbold ez a/. 2015). Questions of population regulation are increasingly
of great practical importance, and there is now an intense focus upon resolving the key
determinants of abundance and identifying the impacts that anthropogenic activity
has upon population processes. Identifying these drivers and developing mitigation
strategies is fundamental to the task of managing our natural systems in a way that
preserves them for future generations (Mace ez a/. 2018). However, while there are
often clear cases where numerical changes in abundance can be unambiguously related
to particular drivers, this is frequently not the case, and thus, while we know
populations are changing, often the specific drivers of this population change are

unclear.



There are a number of different explanations for observed population changes, which
can broadly be distinguished as climate-related impacts and non-climate-related
impacts, and also their interaction. The latter category includes factors such as habitat-
loss and degradation, type of land-use and land-use intensity, and shifting patterns of
land-use. The effects of these can be substantial, and, often, may outweigh the effects
of climate (Maxwell ¢# al. 2016; Newbold 2018). Land-use, for example is estimated
to have resulted in average declines of 13.6% in species richness, and 10.7% in total
abundance (Newbold ez a/. 2015). Similarly, over-exploitation of habitats is thought
to be a major driver of population decline and species threat-status, with % of
extinctions since 1500 attributed to either overexploitation, agricultural activity, or
both (Maxwell ez al. 2016). There are thus clear linkages between how landscapes are
used and a range of metrics of ecosystem function, including biological and functional
diversity, total biomass, and ecosystem resilience (Millenium Ecosystem Assessment,
2005). While habitat loss and degradation have to date arguably been the major causes
of many observed population changes, there is now substantial concern about the role

of climate change (Pereira ez a/. 2010).

The effects of climate change on populations can be substantial (Parmesan & Yohe
2003), and, moreover, as climate change proceeds, the relative importance of climatic
factors in driving population change is likely to shift, with changing climate likely
representing a major force of population change over the course of the next century
(Newbold 2018). The relative importance of different drivers of contemporary
population change is further likely to vary according to a range of other factors. In
areas that are experiencing substantial ongoing habitat conversion, for example, factors
relating to habitat type and quality are likely to dominate observed changes in
abundance. Conversely, in areas that habitat condition is relatively constant from year
to year, climatic variation and changing climate is likely to be a relatively more
important driver of change. Many regions are experiencing high levels of ongoing
habitat conversion and agricultural expansion (for example, the tropics); however, in
the context of Europe, contemporary habitat conversion and degradation is relatively

minimal. There are however other changes to how we manage landscapes within



Europe that may be important for driving population change. For example, long-term
population trend of farmland birds has been linked to shifting agricultural practice in
(Doxa et al. 2010), and variation in pesticide application is thought to be involved in

determining trends of insectivorous bird populations (Hallmann ez a/ 2014).

Resolving the regulatory role of weather and climate (see Box 1 for definition of terms)
is increasingly important if we are to understand and forecast population change into
the 21 century, and design adaptation and mitigation strategies in response to these
(Oliver & Roy 2015). Identifying the effects of weather and climate on populations of
European birds and butterflies is the focus of this thesis. I present three chapters
(described in section 1.2) that use bird and butterfly monitoring datasets from 11
countries across Europe (described in section 1.3), to understand the role of weather
in regulating populations. First, I briefly review the conceptual framework that links

population dynamics with climatic variation.

1.1 The role of weather in regulating populations

Most fundamentally, temporal variation in abundance is born from the cumulative

effects of four processes, births (B), deaths (D), immigration (I) and emigration (E):
N[t+1]=N[t]B-D) +I1-E

Births and deaths are both per-capita processes, as they must act as a proportion of the
population at time # N[t]. By assuming, that immigration and emigration cancel (or
that the population is closed), and collapsing the separate B and D processes into a

single term, r, we arrive at the ‘classic’ discrete growth rate equation (Turchin 2003):
N[t+1] = #N[t]

Where 7 is the population growth rate, or per-capita rate of change (Turchin 1999),
and the effects of weather, density, or any other putative driver of population growth
act upon this directly. In order to arrive at this latter equation, in which abundance is
modelled as a function of 7 alone, we have traded the ability to resolve the individual
components B, D, I, and E, for the opportunity to model variation in /Vin the absence

of knowledge about variation in the underlying vital rates. This distinction is an



important one, and one that I will return to as I address the linkages between

population dynamics and weather.

1.1.1 Weather and individuals

At the most basic level, a population is composed of individuals. Any individual
organism does not perform uniformly well across environmental gradients, but rather
has regions in which performance is maximised, with declines in performance as
conditions increasingly depart from this (Martin & Huey 2008; Vasseur ez a/. 2014).
Most well elucidated are thermal performance curves (TPCs), which describe how
individual or population performance varies across a thermal gradient. These appear
to be characterised by an asymmetric response, with a gradual rise to an optimum with

more precipitous declines as temperatures move beyond this (Deutsch ez a/. 2008).

While these curves are often studied in the context of direct physiological responses,
these are not the only way in which climatic variables can affect performance, and
variation in performance may also arise through varying ability to maintain other
important functions across environmental gradients. For example, reproductive
capacity is likely to be impaired well before a survival limit is reached (Gaston 2003),
but this would similarly contribute towards declining performance. Thus, the TPC

can be considered as an integration across all the individual fitness components

(Martin & Huey 2008).

The existence of these performance curves suggest a role for climatic regulation in
nature, and, indeed, they are often used to forecast how populations and species might
respond to changing climatic conditions (e.g. Deutsch ez a/. 2008; Sunday ez a/. 2014;
Vasseur ez al. 2014), as they directly bear on the birth and death components in the
population model. However, there are a number of factors that can act to limit their

applicability to the real world (Sinclair ez a/. 2016).

Perhaps most importantly, in order to study variation in performance across
environmental gradients, in wvifro studies strip away an organism’s ability to
behaviourally respond to the environment. However, behavioural response will in

many cases forma major Component of response to Varying environmental conditions



(Buckley ez al. 2015), and organism function in the real world cannot be understood
in the absence of considering the flexibility introduced by this (Sunday ez a/. 2014). A
butterfly, for example, can alter its core body temperature by up to 12°C simply though
altering its basking behaviour (Barton ez al 2014), or, alternatively, selecting for
different microhabitats (Suggitt ez a/ 2011; Sunday ez al. 2014). It is thus not clear
how relevant the response to a particular heat-exposure is, given that an individual

may readily avoid these exposures through behavioural modification.

Similarly, by shifting the timing of various life history events (i.e. phenology), species
are able to minimise their exposure to sub-optimal conditions. In North America for
example, despite an average warming in breeding season temperatures of ~1°C, birds
have maintained a consistent egg-rearing temperature by shifting breeding phenology
forwards by 5-12 days (Socolar ez al. 2018). Phenological shifts are one of the most
readily observed biological responses to ongoing climate change and are well
documented in a great many taxa (Root ez a/ 2003). The key implication of these
phenological responses is that there is some elasticity in how populations respond to
variation in climatic conditions at a particular location, as they can avoid some

exposure through concomitant shifts in the timing of life-history events.

Behavioural responses to environmental conditions are, however, not without limits
of their own. As conditions increasingly depart from those that are tolerable for a
particular species, an organism is increasingly forced to invest in survival responses at
the expense of other fitness-generating activities. The accumulating costs of
behavioural response then in turn become a limiting factor on organism persistence
(Martin & Huey 2008). Phenological changes are similarly limited: though they
introduce some flexibility in how a particular species is able to respond to climatic
variation in situ, they are unlikely to be perfectly compensatory, particularly as
conditions start to significantly depart from those that are tolerable. The existence of
behavioural regulation is therefore not evidence against the concept of a TPC in
general, but rather it is a limitation of TPCs that are observed under simple lab-

conditions (Sinclair ef al. 2016).



Box 1. Defining terms

Climate is the “average weather” for a particular location or region, defined for a particular
time-period (IPCC 2014). More specifically, this is the statistical summary of climatic
conditions, which might be comprised of a mean and a standard deviation, or potentially
other parameters, depending on the complexity of the climatic distribution. Climate change
is the change in the statistical distribution of climate through time, reflected in any, or all,

of its descriptive parameters.

An Ewent is an individual draw from this climatic distribution, the full set of which define
the climate for a particular area. Often we might think of an event as weazher (though this
terminology becomes a bit stretched at very small, e.g. minutes, or very large, e.g. annual,

temporal scales).

Extreme Climatic Events (ECEs) have been frequently and variably defined (see, for
example, Gaines & Denny 1993; Gutschick & BassiriRad 2003, 2010; Jentsch ez a/. 2007
Smith 2011b; Bailey & van de Pol 2016). The number and variety of definitions has had
the consequence that it is that it is not clear what the shared features, if any, of ECE
research are. My personal synthesis is that such an event would be any event that occurs in
the tail of a climatic distribution (and thus is statistically infrequent). I expand on the

justification of this, and the effects of events of this form in section 1.2

Finally, cZimatic variation is synonomous with c/imatic stochasticity (which is itself a subset of
environmental stochasticity), and I use this simply to describe variation in climatic conditions,

i.e. variation around some climatic average.

The second important limitation of performance curves built in controlled conditions,
is that it is not clear how well these translate to the wider world. In vivo performance
may be far more affected by factors such as predation (Pitt 1999) or competition

(Coulson e al. 2004), or the temperature response itself may vary according to other



factors such as individual condition (Brett 1971) and developmental stage (Sinclair ez
al. 2016). As a result, TPCs may represent a relatively minor component of overall
organism performance. Thus, while there is an abundance of in wvifro literature
documenting the existence of TPCs, and evidence of this form is often used to make
inferences about how species and populations in the real world will respond to
changing climatic conditions, in order to understand population response in nature

this ideally needs to be considered directly.

1.1.2 Weather and demography
The link between how individuals respond to climatic conditions and how the
population as a whole responds comes in the form of demography which translates

individual responses to a population-level outcome through variation in Births,

Deaths, Immigration and Emigration (Merow ez a/. 2014; Griffith ez al. 2016).

Demographic responses to variation in climatic conditions are well documented across
a wide-range of taxa, and indicate that in natural populations climatic conditions can
have a significant influence on population vital rates (e.g. Sillett ez a/ 2000; Coulson
et al. 2001, 2005; Robinson ez al. 2007; Dybala ez al. 2013; Cleasby ez al. 2017). The
effects of these responses to climatic variation can be substantial. In the California
Song Sparrow Melospiza melodia, for example, winter weather (average temperature
and precipitation during over-winter period) alone can explain 44% of the variation in
adult survival (Dybala ez a/. 2013). Similarly, in Soay sheep, a model that links variation
in winter conditions to survival can explain 92% of the observed variation in population

size (Coulson ez al. 2001).

While demographic studies such as those described above indicate that climatic
variation can have significant impacts on natural populations, they also raise some
substantive issues that are particularly concerning to the would-be modeller of
population dynamics. The first of these is that, where applied to age-structured
populations, they frequently find substantial divergence in how different age-classes
respond to variation in environmental conditions (e.g. Milner ez a. 1999; Coulson ez

al. 2001; Robinson ez al. 2007; Dybala ez al. 2013). In Soay sheep, for example, though
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the population is strongly regulated by winter weather, its effects can vary markedly
between different age- and gender-classes (Milner ez al. 1999), with the consequence
that weather effects are weakly resolved until additional information on this population
structure is included into statistical models of population growth (Grenfell ez a/ 1998;

Coulson ez al. 2001).

In the case of the California Song Sparrow, divergent juvenile responses indicate that
not only can the action of a particular weather variable be poorly resolved in the
absence of knowledge of the population structure, but also that entirely different sets
of weather variables act on different population age-components (Dybala ez a/. 2013).
Thus, as with the Soay sheep, if a statistical model is unable to resolve vital rates
directly, there may be quite serious limitations on its capacity to model variation in
abundance through time. A further demonstration of the importance of age-structured
variation in vital rate arises due to the fact that the relative frequencies of different age-
components is expected to shift through time as a consequence of climate change
(Dybala ez al. 2013). From the perspective of a model that could not resolve the
separate contributions of different age-classes to overall population size, population
response would appear to shift through time, despite the fact that the direct weather

responses are unchanged.

Generally then, demographic studies suggest both that weather plays an important
role in regulating populations, but also that these drivers may be difficult to resolve
with models that only observe the growth-rate term, » (Knape & de Valpine 2011).
This can be understood as the loss of model-flexibility that arises due to collapsing
these separate population processes (B, D, I, and E) into a single term. However, the
other side of this trade-off is that, due to the high data-requirements required to
resolve these fine-resolution processes, in order to model these vital-rate processes
directly we have drastically narrowed the data available to understand drivers of
population change. The inability to learn from and predict population responses to
changing climate from models that cannot resolve vital rates would represent a severe
limitation in our capacity to understand how populations will respond to change, and

to predict response across the large spatial extents required for conservation.
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However, while a model that cannot observe B, D, I, and E, directly will necessarily
incur some cost to its explanatory capacity (Coulson ez a/. 2001), in a range of contexts,
population-dynamic models have also displayed substantial capacity to explain inter-
annual variation in abundance (e.g. Roy ez a/. 2001; Jiguet ez al. 2006; Boggs & Inouye
2012; Roland & Matter 2013; Oliver ez al. 2015). Interestingly, issues related to
population structure further suggest a role for taxonomic differences in model
performance: species with relatively more simple population structure (or,
equivalently, there is no population-structured heterogeneity in response) would be
predicted to have population dynamics that are more explicable than those with
complex population structure. Indeed, many of the examples that I refer to below are
for taxa such as Lepidoptera, which, based on the arguments here, we might a priori
expect to be more readily explicable in the absence of information on population

structure.

This issue of population structure relates to a more fundamental tension within
ecology between explanations that are sufficiently nuanced to recognise the important
idiosyncracies of a system, while sufficiently general that they do not simply become a
unique case (Lawton 1999; Bjernstad & Grenfell 2001). This distinction can be
framed as a difference between models that are sufficiently generic that they can be
applied across wide taxonomic and spatial extents, and models that are highly-case
specific but can explain the behaviour of a particular focal system well (Godfray &
Rees 2002). This is a point I return to throughout this thesis, and one that I discuss

below.

1.1.3 Weather and populations

The population dynamics of the mormon fritillary Speyeria mormonia are in large part
due to just a single weather driver, date of snow melt, with some 84% of the temporal
variation in abundance attributed to this factor alone (Boggs & Inouye 2012). Though
population abundance can be understood in terms of a single driver, its action is quite
complex, and is mediated both via the direct effects of snow-melt date, and also by the
indirect effects of flowering of the preferred nectar resource, which is in turn

determined by snow-melt. This example identifies that a simple population growth
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rate model can explain variation in abundance remarkably well, but also suggests that
there may be strong context dependencies in the factors that modify abundance in this
system. For example, this species is found in montane habitats spread across much of
north America (Sims 2017). How well does this mechanism transfer to other
populations of butterfly found in other portions of the range? Moreover, how well
would this mechanism translate to other butterfly species; would it translate to closely
related species? Most importantly, would a more generic model that knew nothing
about the indirect effect be able to explain variation in abundance well enough that it
would be considered useful? Certainly, while this example is used to argue that
knowledge of a fine-detailed mechanism is a pre-requisite for understanding
population dynamics (Boggs & Inouye 2012), where fairly generic phenomenological
models have been applied to other montane species of butterfly, these can, in some

cases, explain variation in abundance quite well (Roland & Matter 2013).

The ability, or lack thereof, of phenomenological models to adequately resolve drivers
of population growth thus remains unclear. Knape & de Valpine (2011) apply models
with generic sets of weather variables to population time-series in the Global
Population Dynamics Database, and find that the explanatory capacity is typically
weak, suggesting that models of this form are strongly limited. Conversely, analyses of
the population dynamics of European birds and butterflies generally report
associations between inter-annual growth rates and variation in climatic conditions
(Roy ez al. 2001; Pearce-Higgins ez al. 2015). Further, analyses that take a more macro-
scale perspective, for example by modelling longer-term regional population trends of
European birds find that these display broad congruence with climatic suitability
models (Stephens ez a/. 2016). Similarly work that takes a more holistic approach, by
focussing on the community as a whole, detect consistent shifts in composition
through time that are consistent with the effects of climate change (Devictor e al.
2012). Finally, distribution models that link average site abundances of North
American birds to temperature and precipitation averages can, for many species,

predict temporal changes in abundance well, despite the fact they do not incorporate
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information on demography, indirect effects, or any other mechanistic detail (Illdn ez

al. 2014).

Overall, while the distinction between phenomenological models and mechanistic
models, and their ability to explain temporal dynamics, has been widely-discussed
(Coulson ez al. 2001; Knape & de Valpine 2011; Boggs & Inouye 2012), this remains
an unresolved issue. As we travel from individual to population-level responses, we
increasingly trade the ability to resolve fine-scale population processes for increasing
data availability and generality. No specific one of these positions is obviously “best”-
or at least, if there is, it is not yet clear which one it is. The physiologist has gained
experimental control but lost generality. The demographer can resolve the birth and
death processes that drive population growth directly, but in order to do so they have
become tied to focal populations. The population dynamicist or species distribution
modeller is able to make general statements about the effects of climate and weather
across wide taxonomic and spatial extents, but has sacrificed predictive power and also

has to grapple with difficult questions about causality and appropriate null models

(Beale ef al. 2008, 2014).

There is one final complication that merits brief discussion- when characterising the
action of weather and climate on populations, it is not always clear what we need to
be measuring (Grosbois e# a/. 2008). In particular, there is growing interest in the roles
of climatic variation and ECEs in determining population growth, which I briefly

discuss.

1.1.4 Climatic means, stochasticity, and Extreme Climatic Events

There is a growing awareness of the inadequacy of climatic means alone to capture the
effects of climate on populations (Vasseur e a/. 2014), but this awareness has largely
developed in two separate literatures: one on variability and the role of environmental
stochasticity (e.g. Boyce ez a/. 2006; Martin & Huey 2008; Lawson ez a/. 2015), and a
literature on Extreme Climatic Events (ECEs; e.g. (Gutschick & BassiriRad 2003;
Smith 2011a). While ECEs are often described in terms that seemingly set them apart
from environmental stochasticity (e.g. Newton 1998; Leech & Crick 2007), with a
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distinction between ‘normal’ climatic variation and ‘climatic events’ (Jentsch ez al.
2007; Smith 2011a), these can in fact be treated under a shared conceptual framework

of environmental stochasticity (Boyce ez a/. 2006).

In order to understand drivers of long-term abundance (i.e. equilibrium abundance
defined over some temporal period), it is only when population response to individual
events is completely linear that this can be determined from climatic averages alone
(Lawson ez al. 2015). If there is any non-linearity in the climatic response function,
average climatic conditions alone will not be sufficient to understand variation in
abundance. To do so, the full distribution of events that a population is exposed to

must be considered (Vasseur e# al. 2014; Buckley e# al. 2015).

Additionally, if a population can be sufficiently perturbed that it can be extirpated,
then even in the event that the climatic response function is linear, it is still necessary
to consider variation around the mean. A population can now either be present and
thus responding to variation in conditions, or absent. In this scenario, it is possible
that there is a location with no population present, despite the fact that in the vast
majority of years conditions are perfectly suitable for presence (Denny ez al. 2009). It
is now necessary to know something about the probability of extirpation over a

particular time-frame (Gaines & Denny 1993).

Importantly, the role of environmental stochasticity and extremes can also be
considered at a different temporal scale, but in an equivalent fashion. If, for example,
a particular species has a non-linear response to overwinter temperature, then there
will be temperature-driven variation in response that is not identified by the mean
temperature for winter alone (Ruel & Ayres 1999). Rather, the population response
will hinge on the full set of exposure events, and additional information not captured
in the mean is required to characterise these (e.g. maxima and minima, standard
deviation, etc.). Though there is relatively little empirical work on effects of this form,
there is some evidence that considering extreme percentiles of distributions of
temperature and precipitation events can enhance our capacity to explain population

growth in UK butterflies (McDermott Long ez a/. 2016).
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Non-linearity in population response thus clearly motivates considering the full
distribution of environmental events (Lawson ez a/. 2015). The upper and lower
extremes of this distribution will frequently be important (as it is these that maximally
peturb a population), but it is not the case that these events are conceptually distinct
from environmental variation in general (Harris ez 2/ 2018), and it may not be helpful

to define them in such a way (though for an alternative take see Gutschick &

BassiriRad 2003; Smith 2011b).

1.2 Thesis aims and objectives

In this thesis I use monitoring datasets from across Europe (described below) to
investigate the role of weather in regulating populations of birds and butterflies.
Specifically, I focus on the importance of weather for understanding temporal
variation in abundance, and how we characterise these drivers of abundance in the

context of large surveying datasets.

In Chapter II, I assess the sensitivity of 12 species of univoltine butterfly to variation
in weather across their geographic range. Population dynamics are affected by a range
of factors, which are likely to vary in their relative importance across a species’ range
(Beale ez al. 2014). Climatic conditions are likely to be most important in regions
where they represent a limiting factor, such as at range edges, but relatively less
important away from these areas (Gaston, 2003). Where studies have investigated
geographical variation in the importance of weather for determining population
dynamics, patterns are variable, and suggest both positive, negative, and neutral
associations with latitude Importantly however, these studies do not explicitly place
observed variation in weather importance in the context of the species range, and it is
therefore possible that these conflicting results arise as a consequence of this. Where
gradients of sensitivity to weather have been explicitly studied in relation to a species
range, studies report general increases in sensitivity towards latitudinal and altitudinal
range edges (e.g. Ettinger, Ford, & HilleRisLambers, 2011; Myers-Smith et al.,
2015). If it is the case that range-margin populations are relatively more sensitive to

variation in climatic conditions, then it is likely that it is in these regions we will see
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the earliest, and the most substantial, changes in population dynamics due to climate

change.

This chapter sets out to assess whether this there was evidence for systematic variation
in the importance of weather for regulating butterfly populations across Europe. I
chose to focus on univoltine species as these represent ideal cases with which to study
this question, due to their very simple demography, marked by a single generation per
annum. The finding that range-limits are more sensitive to variation in climatic

conditions suggest that it is these ranges that are most sensitive to climate change.

Chapter III addresses the extent to which weather variables enhance our capacity to
explain temporal variation in European bird abundance using large-scale survey
datasets. There is increasingly interest in leveraging these datasets to make inferences
about the role of weather in regulating populations (e.g. Jorgensen ez al 2015;
Stephens e al. 2016; Bowler ez al. 2018), and, indeed, this was the initial goal in
working with these datasets. However, I found that even when including very large
and complex sets of variables in models that allowed for considerable flexibility in the
form of covariate associations across climatic and geographical gradients, models
typically had low predictive capacity and weather terms made negligible contributions
to this. These initial findings contrast significantly with previous work that often
employs equivalent analytical approaches and conclude that weather is an important
driver of population dynamics (e.g. Pearce-Higgins ez a. 2014). There is a further
conflict between studies such as these and those that suggest that there are general
constraints on our capacity to understand weather drivers of population dynamics
using in time-series that do not model demography directly (e.g. Coulson ez a/. 2003;
Knape and de Valpine, 2009).

Developing a firmer understanding of the limitations of these models and datasets is
crucial for informing future work that wishes to harness large-scale monitoring
datasets to address drivers of population change and has further significant
implications for our capacity to build predictive models of population dynamics more

generally. In this chapter I therefore set out to systematically assess the extent to which
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weather drivers of population growth can be identified in these datasets, and how they

contribute to our ability to understand and predict population growth.

In Chapter IV, I ask whether quantifying variation in thermal exposure improves
predictions of population growth for 32 species of butterfly in the UK. There is
growing interest in the respective roles of climatic means, variances, and extremes in
determining population growth. While means capture the average conditions
experienced at a particular location, they do not index the full set of climatic events
that a population is exposed to (i.e. total climatic variation). Importantly however, it
is the full climatic set of climatic events that a population experience, not simply what
they are like on average, and it is therefore likely that this information should enhance

our capacity to explain population dynamics.

While the theoretical expectation of how considering the full climatic regime that a
population experiences should affect population dynamics is well developed (e.g.
Kingsolver ez al. 2013; Sunday ez al. 2014; Lawson ez al. 2015), there is currently
limited empirical demonstration of these effects. Finding that considering the full
thermal regime enhances our capacity to explain population dynamics would suggest
that models of inter-annual population growth need to consider weather effects
happening at fine temporal scales, and further suggest that future should consider how
to better quantify the conditions that a population is directly exposed to. I therefore
set out to address this question, focussing specifically on how quantifying variation in
thermal exposure during these periods alters our ability to explain population growth,

beyond models that simply consider the average temperature alone.

1.3 Datasets

I use two sets of monitoring data in the course of this thesis- Butterfly Monitoring

datasets and Breeding Bird Survey datasets which I briefly outline below.

1.3.1 Butterfly Monitoring Datasets
The first Butterfly Monitoring Programme was initiated in the UK in 1974 (Pollard
& Yates 1993), and since then a number of other European countries have adopted

equivalent programmes. All follow a shared methodology in which, weather
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permitting, volunteers visit a site every week over between early spring and late
summer, and count the number of individuals observed for each species. While an
idealised abundance index for a particular {site, year, species} combination would be
calculated as the sum of the weekly counts, this calculation is impractical due to the
fact that counts may be missed due to poor weather or due to recorder unavailability.
Dennis e al. (2013) therefore developed a method in which first a spatial unit is
defined, and then an average flight-curve across this area is calculated using a General
Additive Model (GAM) fitted to each sites’ observations over the course of the season.
The resulting abundance index is a site-specific measure of the area under the curve,
with missing counts interpolated across by pooling information from nearby sites.
While Dennis et al. (2013) applied this specifically in the context of UK monitoring
(using the UK as the spatial unit), Schmucki ez a/. (2015) subsequently expanded on it
using bioclimatic zone as the spatial unit, allowing for this methodology to be applied
across Europe. In chapter II I use abundance indices calculated according to Schmucki
et al. (2015), in order to model European butterflies for five countries/regions (UK,
Catalonia, Germany, Netherlands, Finland) for the 1980-2014 period, while in
chapter IV, I use abundance indices calculated for the UK alone for the 1974-2016

period.

1.3.2 Breeding Bird Survey Datasets

Many countries across Europe run Breeding Bird Monitoring Surveys (Gregory ez al.
2005). These were largely motivated by a need to have systematic monitoring
programmes to monitor change to our natural populations over the course of the 20
and 21* centuries, but there is increasingly interest in harnessing these to understand
the drivers of population change (e.g. Jorgensen ez al. 2015; Stephens ez al. 2016;
Bowler ez al. 2018). Though there is some variation in the specific methodology
employed by each scheme, they all follow a broadly consistent model in which skilled
volunteers visit a site between one and four times over the course of the breeding
season with an abundance index estimated by taking the maximum count for each
species. In two cases- Spain and the Czech Republic- the mean rather than the

maximum is taken. The Netherlands further differs by following a territory-counting
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method, in which sites are visited up to ten times and number of territories counted.
The temporal period covered by each scheme is variable, but all broadly cover the
1990-2014 period, with a median length of 25 years. Datasets for individual schemes
were accessed through a centralised monitoring programme, the Pan-European
Common Bird Monitoring Scheme (PECBMS; http://www.ebcc.info/pecbm.html).
I accessed datasets for eleven European countries: Spain, France, Belgium, UK,

Netherlands, Germany, Czech Republic, Denmark, Sweden, Finland, and Estonia.
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their geographic ranges
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2.1 Abstract

Aim To assess the sensitivity of butterfly population dynamics to variation in weather
conditions across their geographic ranges, relative to sensitivity to density dependence,

and determine whether sensitivity is greater towards latitudinal range margins.
Location Europe

Time period 1980-2014

Major taxa studied Butterflies

Methods We use long-term (35 years) butterfly monitoring data from over 900 sites,
ranging from Finland to Spain, grouping sites into 2° latitudinal bands. For 12
univoltine butterfly species with sufficient data from at least 4 bands we construct
population growth rate models that include density dependence, temperature, and
precipitation during distinct life-cycle periods, which are defined taking regional
variation in phenology into account. We use partial R? values as indicators of butterfly
population dynamics’ sensitivity to weather and density dependence, and assess how

these vary with latitudinal position within a species’ distribution.

Results Population growth rates appear uniformly sensitive to density dependence
across species’ geographical distributions and sensitivity to density dependence is
typically greater than sensitivity to weather. Sensitivity to weather is greatest towards
range edges, and this pattern shows symmetry in northern and southern parts of the
range. This pattern is not driven by variation in the magnitude of weather variability
across the range, topographic heterogeneity, species’ latitudinal range extents or
phylogeny. Significant weather variables in population growth rate models appear
evenly distributed across the life-cycle, and across temperature and precipitation, with
much intra-specific variation across the geographic ranges in the associations between

population dynamics and specific weather variables.

Main conclusions Range-edge populations appear more sensitive to changes in
weather than those nearer the centre of species’ distributions but density dependence

does not exhibit this pattern. Precipitation is as important as temperature in driving
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butterfly population dynamics. Intra-specific variation in the form and strength of
sensitivity to weather suggests that there may be important geographical variation in

populations’ responses to climate change.
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2.2 Introduction

Understanding how environmental factors regulate population dynamics is a
fundamental question in ecology, and one of particular importance in the context of
climate change (Bellard e a/. 2012). Establishing the importance of climatic factors in
driving population dynamics, relative to others such as density dependence, is crucial
for predicting how populations will be affected by climate change. Climate appears to
play a role in regulating populations, as both occupancy and distribution limits are
often well explained by climate (Gaston 2003; Boucher-Lalonde e# a/ 2014) and
recent distributional shifts are often associated with changing climatic conditions (e.g.
Lenoir et al. 2008, Poloczanska et al. 2013). These relationships are frequently used
to project climate change impacts on species’ distributions and community structure
(Urban ez al. 2016). Shifts in phenology, associated changes in biotic interactions, and
direct effects also suggest that many species’ population dynamics are responding to

climate change (CaraDonna ez al. 2014).

Despite these general arguments supporting the role of climate in driving coarse-scale
population distributions and dynamics, studies that attempt to directly link relatively
shorter-term weather to inter-annual population dynamics have generated variable
conclusions. The ability of weather to explain variation in vital rates, as well as the
strength of these effects, has ranged from strongly regulating (Forchhammer ez a/.
1998; Boggs & Inouye 2012; Gullett ez a/. 2014), through to being of relatively limited
importance relative to other factors such as density-dependence, with weather
variables sometimes having negligible explanatory power (Nowicki ez a/. 2009; Bincila
et al. 2016). The reasons for these differences in sensitivity remain unclear. One
potential explanation is systematic spatial variation in the relative importance of
weather in regulating populations (Sandvik ez a/ 2008). Population dynamics are
driven by many factors that act at varying spatial and temporal scales and involve
different processes in different portions of the species’ range (Gaston 2003; Beale ez
al. 2014). If climatic factors limit species distributions, then one might expect that

weather variables are more important determinants of population growth rates at range
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edges than elsewhere in a species’ distribution (Garcia e a/. 2000), especially if there
is a rapid decline in the suitability of conditions towards the edge of species’
fundamental niche. By contrast, towards the range centre, factors such as intra- and
inter-specific competition may be of relatively greater importance, over-riding the
influence of weather effects (Bjornstad & Grenfell 2001). Position within the species’
range may thus be an important determinant of a given population’s sensitivity to
weather events. Conversely, if populations across a species’ range are highly adapted
to local weather regimes then all populations, regardless of their range position, will

exhibit similar sensitivity to local weather fluctuations (Myers-Smith ez a/. 2015).

A number of studies have found latitudinal gradients in sensitivity to weather but these
include positive latitudinal gradients (Forchhammer ez a/. 2002; Sather ef a/. 2003;
Chen et al. 2010), negative gradients (Forchhammer ez a/. 2002; Sather ez al. 2008),
and a mix of the two (Sather ez a/. 2008; Sandvik ez a/. 2008). The biological basis for
this variation in latitudinal trends in sensitivity to weather is unclear (Chen ez a/. 2010),
but could arise through a given latitude meaning different things for different species.
A given latitude will be close to the range edge for some species but closer to the range
centre for others, and by failing to place the latitudinal position in the context of the
species overall range, this is overlooked. Consequently, variation in latitudinal patterns
in weather sensitivity may still be consistent with the hypothesis that range position is
associated with sensitivity to weather conditions. To date, few studies have directly
examined if sensitivity to weather is greater in populations at range margins relative to
those closer to the range centre. Those studies that have been conducted have,

however, primarily found heightened sensitivity towards northern range edges and

high altitudes (Ettinger ez a/. 2011; Myers-Smith ez a/. 2015).

Variation in organism fitness over environmental gradients is not necessarily
symmetrical. Species performance typically declines more steeply above the thermal
optimum than below (e.g. Deutsch ez a/., 2008; Aradjo et al., 2013). Additionally,
Sunday ez al., (2014) find that upper thermal tolerances are frequently exceeded at the

warm range edge, while at the cool range edge a larger thermal safety margin exists
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between lower thermal tolerances and environmental temperatures. As a consequence,
at the trailing range margin, temperature may be a relatively more important
determinant of population dynamics than at the leading range edge. Alternatively
range-wide patterns of sensitivity may be more complex, with weather effects
displaying strong context dependence (Keith ez a/. 2008), or being masked by different
mechanisms, including differential responses to temperature and precipitation,

operating in different parts of the range (Beale ez a/. 2014).

Variation in weather sensitivity across a species’ range has important implications.
Firstly, weather associations observed in a single or a few population(s) are unlikely to
be representative of the overall species’ response, which limits the ability of single
population studies to generate general conclusions about the species’ response across
its entire range. It further suggests response to climate change will not be uniform
across the range and, if sensitivity does indeed increase towards range margins,
responses will be greater in peripheral regions than in the range centre. Failing to
account for these influences therefore limits our ability to understand and predict
species persistence and range dynamics under climate change. This suggests a need for
additional empirical studies assessing how sensitivity of population growth rates to

weather varies across species’ distributions.

Here, we assess how population growth rates of 12 univoltine butterfly species vary in
sensitivity to weather across their European distributions. We use data from five long-
term European butterfly monitoring schemes from 987 sites over five countries along
a latitudinal gradient from Spain to Finland, running from 1980 to 2014. Specifically,
we model how population growth rate varies as a function of temperature and
precipitation variables measured over periods corresponding to different life-stages, in
order to capture spatiotemporal variation in phenology, and assess how the sensitivity
of population growth rates to these weather terms changes with latitudinal position
within the species’ range. We compare and contrast this with the latitudinal pattern
in strength of density dependence to assess whether apparent patterns in weather

sensitivity are associated with converse patterns in sensitivity to density dependence.
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Our central hypothesis is that sensitivity to weather increases towards species’
geographical latitudinal range edges, and we further ask whether there is evidence of

asymmetry in sensitivity across this range.

2.3 Methods

2.3.1 Butterfly and climate datasets

We use annual site-level indices of abundance gathered from the butterfly monitoring
schemes of five European Countries: Finland, Germany, UK, the Netherlands, and
Spain. Length of coverage for each scheme varies: Finland (1999), Germany (2005),
UK (1976), the Netherlands (1990), and Spain (1994). Annual site-level abundance
indices are calculated from counts made at weekly intervals over the course of the
season using a standardised Pollard-walk methodology. Due to the pronounced
patterns of abundance seen in butterfly numbers over the course of a season, abundance
indices are derived from these weekly counts by fitting a General Additive Model
(GAM) and generating a measure of the area under the curve (Dennis e a/. 2013).
Where counts are missing, the GAM provides an interpolated estimate based on
counts made at other sites in the same bioclimatic zone (Metzger ez a/. 2013; Schmucki
et al. 2015). This method has been demonstrated to generate unbiased abundance
estimates, and outperform a simple linear interpolation method, which would be the
alternative to our chosen approach (Schmucki ez a/ 2015). To prevent spurious
estimates, sites with more than 50% observations missing were removed prior to
analysis (Schmucki e# a/. 2015). To model inter-annual changes in abundance, an
index of population growth was calculated from the relative change in abundance
between two consecutive years, In(N+1) - In(Ne.1+1), which is hereafter referred to as
relative growth rate. Sites with fewer than five years non-zero data were removed prior

to further analysis.

We obtained climate data from the European Climate and Assessment Dataset project
(ECAD; Haylock e al., 2008). This dataset is a gridded dataset of daily temperature
(°C) and precipitation (mm) since 1950 at a 25km resolution (0.22 degree rotated grid,
Version 12.0; Haylock et al. 2008). This spatial resolution is fairly coarse, but it is the
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only available European climatic dataset with the required temporal resolution. Sites
for which there were no climate data, typically because they fell in coastal grid-cells
which were not covered by the climate surface, were removed. To ensure that climatic
data matched as closely as possible the conditions at the monitoring site, we used the
7.5 arc-second (~250m) resolution Global Multi-resolution Terrain Elevation Data
map (GMTED) to exclude sites whose elevation differed by more than 150m from

the mean elevation within a 25km cell.

The influence of climatic variables on population growth rates can vary between
different life-stages (Radchuk ez a/ 2013), the timing of which can vary across the
species’ range (Schmucki ez a/ 2015). To accommodate this regional and temporal
variation, we used information about the flight-period of each species, defined at the
level of the bioclimatic zone (Metzger ez al. 2013), to tailor climatic indices to specific
periods of the butterfly’s life-cycle. For each species in each latitudinal band (see
below), we first obtained an average flight-curve from relative abundances over the
course of the season, following the methodology of Schmucki et al. (2015). We then
extracted daily temperature and precipitation variables for each 25km grid-cell, using
four time periods that reflect different life-stages occurring in an annual cycle: the post
flight, over-wintering, pre-flight and flight periods (Fig. 1), and standardised these to
unit standard deviation. Flight-period temperature and precipitation were then
defined as the mean of the daily temperature and precipitation indices falling between
the 10th and 90th percentiles of this flight-period distribution. We used the same
process to define the pre-flight and post-flight periods as the three months before and
after the flight period. The over-winter period was defined as November-January for
all species in all zones (Fig 1.). While over-winter periods could be defined over
alternative time-periods, for example December-February, this results in substantial
overlap between overwinter and adjacent time periods for some species in some
regions. This particular definition was therefore chosen on the basis that it minimises
such overlaps and these are marginal where they do occur. Analyses are restricted to
univoltine species, for which our methods of defining life-cycle periods are most

appropriate.
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Figure 1 Schematic of life-cycle periods and their correspondence to two annual abundance
indices, N; and N.1. Life-cycle periods are post flight-period (postFP), over-wintering
period (OW), pre-flight period (preFP) and flight period (FP).

2.3.2 Process model of population growth rates

To model the influence of weather variables on population growth rate in different
portions of each species range, the range was subdivided into latitudinal sections.
Models were constructed at this regional level rather than at the site-level as individual
sites typically had too few data to reliably fit the climate models (the longest time series
was 33 years and on average a site had data from nine years), necessitating a higher
level of grouping. Latitudinal bands were constructed at 2 degree intervals on the basis
that this maximised the number of models we could construct with reasonable sample
sizes, with population growth rate then modelled as a function of weather variables
within each latitudinal band. Models were constructed for each latitudinal band with
more than 150 data points (species/site/year combinations). Figure S1 displays the
spatial distribution of sites for each species. For each species, in each latitudinal band,
population dynamics were modelled on the log scale using the Stochastic Gompertz

model of population growth,
Nie= Nic-rexp(o; + logNit_1+ Wiie + .o+ Wege + €.1) [1]

Where N; is abundance at the ith site at time #, @; is a varying site-intercept, Wj;; is
the jth weather variable at site 7 at time # and &;_1is a normally distributed error term.

Taking logs and rearranging to express in terms of relative growth rate this becomes,
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Y= Xit™ Xie-1= 0 + Xjeg + Wageq + oo+ Wi g + €q [2]

Where x;; and x;_, are the log abundances at site 7 and times # and time #-7
respectively, and y; is thus the relative population growth rate at site i in year £ To
confirm that the weather terms included in these models had significance for the
population dynamics of the species modelled, we used F-tests to compare each model
with a reduced model containing no weather terms. Collinearity of weather variables
in each model was assessed using pairwise Pearson correlation coefficients. Just 2.4%
(43 of 1792) of pairwise comparisons had absolute correlation coefficients exceeding
0.7 and therefore the vast majority of individual parameter estimates were considered

robust to collinearity.

2.3.3 Butterfly species inclusion

12 univoltine species were sufficiently well represented across at least four latitudinal
bands to be included in analyses (at least 150 data points in a latitudinal band; Fig. 2
and Fig. S1) with a total of 52 species/latitudinal band combinations. The 12 species
were Orange Tip, Anthocharis cardamines, Ringlet, Aphantopus hyperantus, Dark-green
Fritillary, Argynnis aglaja, Silver-washed Fritillary, Argynnis paphia, Pearl-bordered
Fritillary, Boloria euphrosyne, Green Hairstreak, Callophrys rubi, Purple Hairstreak,
Favonius quercus, Brimstone, Gonepteryx rhamni, Meadow Brown, Maniola jurtina,
Gatekeeper, Pyronia tithonus, Essex Skipper, Thymelicus lineola, and Small Skipper,
Thymelicus sylvestris. One species, Brimstone, overwinters as an adult, and we are
consequently unable to distinguish between overwintering individuals and those which
emerged that year. To check that this did not alter our conclusions, we therefore also
ran the analyses excluding this species. These did not qualitatively affect our results
and we therefore just report the full analysis with this species included. While the
distributions of our focal species vary, they all have a pan-European distribution, with
some extending slightly into north Africa (which was taken into account when

defining range edges, see below).
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Figure 2 Sites retained following exclusion based on criteria outlined in text, with

2° latitudinal bands overlaid (dashed lines).

2.3.4 Assessing variation in sensitivity to weather

Measuring range position

In order to establish how population sensitivity to weather varies across the latitudinal
range of each species, we constructed a measure of relative N-S geographic range
position of the data for each latitudinal band, defined along a vector from each species’
northern and southern latitudinal range edges. To do this we first calculated, for each
latitudinal band, the average latitude of all data points in the model, latuersge, weighted
by the number of data points from each site. This was then expressed as a proportional

range-position, through the following conversion:

latavcragc - la'tmin

3]

relative range position, RRP=
&P ’ lat,,.- lat,;,
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Where latmn.. and latui, are the latitudes of the species’ northern and southern range
extents defined from the European butterfly atlas (Kudrna ez 2/ 2011), and Tennent
(1996) for species whose distributions extended into north Africa (i.e. the relative
range position metric does not impose an artificial boundary at the southern European
range edge). Thus our measure of relative range position scales between 0 (southern

range edge) to 1 (northern range edge).

Due to the predominantly European global distribution of all species modelled here,
absolute latitude and the derived relative range position are highly correlated (Pearson
correlation coefficient of 0.80). Consequently, it is not possible to distinguish between
the effects of absolute latitude and relative latitude. We continue to report results in
terms of relative latitude, but this opens up the possibility that patterns of sensitivity
may be driven by alternative factors associated with absolute latitude, rather than
distance from range edge per se. We discuss alternative explanations in the Discussion

section.
Assessing sensitivity to weather in relation to relative range position

We measured climatic sensitivity as the partial R? value for the suite of all weather
terms in each model, i.e. the difference in R* compared to a model containing just site
and density dependence terms (Myers-Smith ez a/ 2015). Increasing partial R? values
reflect increasing sensitivity to weather. Similarly, the importance of density
dependence was measured as the partial R? value for the density dependence term in
each model. Our approach of using a metric derived from one set of models as response
variables in other models is equivalent to that used in a number of other papers
assessing spatial variation in population dynamics (e.g. Myers-Smith ez al, 2015;

Morrison et al., 2016).

Latitudinal variation in partial R? measures was analysed using mixed-effects models,
with a random Gaussian intercept on species, using the /me# package in R (Bates ez al.
2015). Three models of increasing complexity were fitted (equations 4, 5, and 6).
Model improvement through adding latitudinal predictors was tested with an F-test

with the Kenward-Rogers correction for estimating degrees of freedom in a mixed-
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modelling framework (Bolker ez a/. 2009) using the pbkrtest package in R (Halekoh &
Hojsgaard 2014). We calculated mixed-effect R’ for these models based on the
framework outlined in Nakagawa and Schielzeth (2013).

sensitivity= s;+ € [4]
sensitivity= s;+ RRP+e [5]
sensitivity= s;+RRP+ RRP?+¢ [6]

Where s; is a random species-intercept, RRP is the relative range position for each
model, and ¢ is a normally-distributed error term. To check whether phylogenetic
relationships between the modelled species could influence our conclusions, we
constructed a second model that incorporated the phylogeny of Brooks ez a/. (2016)
into the random effects structure using the MCMCglmm package (Hadfield 2010).
We found that the phylogenetic variance terms approached zero and the model fit was
almost identical (Appendix S1 and Fig. S2). We therefore report models that do not

incorporate phylogeny in the main manuscript.

Sensitivity of butterfly population dynamics to weather could, in principle, be partly
driven either by (i) variation in weather variability across the range (i.e. increased
exposure rather than increased sensitivity) or (ii) through heightened topographic
heterogeneity buffering populations from weather effects. We recognise that it may
also be possible that habitat may modify response, but this is difficult to formally
quantify, and we expect its influence to be minimal (see Discussion). To assess the
influence of points (i) and (ii), we quantified (i) weather variability for each
species/latitudinal band combination (measured as standard deviations, averaged
across weather variables), and (ii) the average topographic heterogeneity (SD) within
500m of each site (using the GMTED raster), including each of these as additional
predictors in models. As a final robustness check, we also included total latitudinal
range size (latmu - latmin) as a predictor in models. These additional predictors had a
negligible influence on overall model fit and do not qualitatively affect our results (see
Appendix S1).
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Testing for asymmetry in climatic sensitivity between northern and southern portions of

range

We further set out to assess whether there was any evidence of asymmetry in the
latitudinal relationship by assessing whether the rate of change in climatic sensitivity
with latitude varied between the northern and southern halves of the range. To do
this, we defined the relative range position in terms of distance from the range centre
(i.e. difference between the relative range position and the range centre, 0.5) and
allowed the slope to vary depending on whether the relative position was in the

northern or southern half of the range:
sensitivity= s; + distance + [(RRP<0.5) + distance x I[(RRP<0.5)+ € [7]

Where s; is a random species-intercept, distance is the distance from the range centre
(scaling between O at the range centre and 0.5 at a range edge) and I is an indicator
function for range position (i.e. 1 in the southern half of the range and 0 in the
northern half). If there is no asymmetry in latitudinal pattern, both halves of the range
should display similar slopes, with no interaction term between slope and range

portion. Degrees of freedom were estimated using the Satterthwaite approximation

(Bates et al. 2015).

2.4 Results

Population dynamics were frequently associated with weather, with F-tests
demonstrating that the inclusion of weather terms significantly improved 75% of
models (39 out of 52, Table S1), and for each species this was the case in at least two
regions (Fig. 3). Individual parameter estimates for weather terms vary in magnitude
and direction, with 31% being significant across the 52 models (P < 0.05; Table S2).
The precise form of the relationships between butterfly population growth rate and
weather is highly variable across life-stages, both within and across species, but
significant parameter estimates are fairly evenly distributed across life-stages and
weather variables (Table S2). Models typically explained around 40% of variation in

population dynamics (mean R? = 0.39; Table S3), with variable contributions from
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weather terms in these (partial R% range from 1% to 22%, with a mean value of 5%).
Negative density dependence was ubiquitous, with all models containing significant
negative parameter estimates for log-density (P < 0.05; Table S2). Partial R? values for
density dependence terms were uniformly larger than those for weather terms, with a
mean partial R? of 29% (range: 1-52%; Table S3). While the inclusion of weather
terms significantly improved model performance, the ability of the final models to
predict relative growth rate remained highly variable, and a large amount of residual

variation remained unexplained (mean residual root mean squared error = 0.69; Table
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Figure 3 Number of models by species, where each model for each species is for a different
latitudinal band. Darker shading indicates that inclusion of climate terms resulted in

significant model improvement (F-test; P < 0.05).

There was support for latitudinal variation in sensitivity to weather, with the partial
R? values for weather terms in butterfly population dynamic models displaying
curvature across the gradient of relative range position, with lowest sensitivity to

weather in populations closer to the centre of the species’ European distribution (Fig.
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4). The explanatory capacity of weather variables, as measured by partial R?, display a
distinct latitudinal pattern, with the model containing quadratic terms performing
better than both intercept-only (F test for difference between these two models: Fy, 444
= 8.46, P < 0.001) and linear-slope models (Fy, 424 = 16.08, P < 0.001). For the
quadratic model, the curve inflection point (minima) is at a relative range position of
0.52 (i.e. close to the centre of species’ latitudinal range). Latitudinal terms explained
a reasonable proportion of the variation in partial R? values, with a marginal R? of 24%.
Conversely, there were no statistically significant patterns of latitudinal variation in
density dependence when measured by partial R?values (linear model: Fi 4.3 = 0.28,

P =0.602; quadratic model: F 404 = 0.19, P = 0.830; Fig. 5).

Measures of climatic sensitivity were tested for asymmetry in the change in sensitivity
across the latitudinal gradient using a break-point at the range-centre (RPP = 0.5).
These indicate an average increase of 0.20 units partial R? per 0.1 increase in distance
from the range centre (t = 3.87, df = 46.9, P> 0.001), but no significant difference in
slope between the upper and lower range halves (t = 0.57, df = 44.0, P = 0.570; Fig.
6).
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Figure 4 Partial R’ for the weather terms in each model by their relative position within
the geographic range (i.e. each point is a species/latitudinal band combination). The upper
panel displays partial R for all species; the lower panel displays same results, split by
species. Fitted curve displays the quadratic model (best supported of the three alternative

models), with 95% confidence band overlaid.
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Figure 5 Partial R’ for the density-dependence terms in each model by their relative
position within the geographic range (i.e. each point is a species/latitudinal band
combination). The upper panel displays partial R% for all species; the lower panel displays

the same results, split by species. The fitted line displays the intercept only model (best

Relative range position

supported of the three alternative models), with the 95% confidence band overlaid.
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Figure 6 Model fits for asymmetry analysis. Plotted is each model’s partial R* (upper panel)
for the suite of weather terms against the distance from range centre. Closed circles indicate
points that lie in the southern range half (i.e. RRP < 0.5) while open circles indicate points
that lie in the northern range half (i.e. RRP > 0.5). The modelled latitudinal relationship
(outlined in methods) is illustrated with a dashed line for the southern range half, and a solid

line for the northern part of the range (grey shading indicates the 95% confidence bands).

2.5 Discussion

Modelling population dynamics of regional populations of 12 univoltine butterfly
species suggests that populations towards species’ range edges are relatively more
sensitive to weather than those in the range centre. This pattern contrasts with the
uniform strength of density dependence across species’ latitudinal distributions. There
was limited evidence of asymmetry in sensitivity, with the amount of variation in
population dynamics driven by weather variables being similar at northern and
southern range boundaries. The size of the datasets used here necessitated the pooling
of observations both within latitudinal bands as well as across species (in the mixed-
effects framework). While the overall pattern is one of increased sensitivity towards
range margins, this result is tempered by the typically weaker within species pattern as
well as the limited number of observations for any single species. Future work to
investigate range-wide patterns of sensitivity to various environmental drivers at a finer

spatial grain for individual species would thus be of considerable interest.
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Our analyses focus on populations’ relative position within a species range, because
ecological theory predicts that range edge populations will be more sensitive to weather
conditions due to inhospitable conditions at the edge of species’ fundamental niche
space (Oliver ez al. 2012). Our results appear to be robust to a range of potential
alternative explanations including the effects of phylogeny, latitudinal extent of
species’ distributions and variation in inter-annual variation in weather conditions
across the range. Given that we focus on widely distributed species whose ranges are
centred on a single region there is, however, an inevitable strong correlation between
a population’s relative range position and absolute latitude. Consequently, it is difficult
to tease apart the effects of relative and absolute range position, with most of our range
edge populations being located in Spain and Finland. It is thus possible that butterfly
populations in these two countries display heightened sensitivity to weather for reasons
that are unrelated to range position. This seems unlikely, however, given that there are
no systematic differences in site selection across schemes, nor did we find any influence
of topographic heterogeneity on butterfly populations’ sensitivity to weather. In
principle, higher habitat quality or connectivity could also partly buffer butterfly
populations from adverse conditions thus reducing their apparent sensitivity to
weather (e.g. Oliver et al., 2012); however, our focal countries in central Europe
typically have greater agricultural intensification and habitat fragmentation and lower
quality habitats than in Spain and Finland (EEA 2016), which would act in opposition

to the observed pattern.

One mechanism that could drive heightened sensitivity to weather at range edges is if
species’ range margins coincide with climatic tolerances (i.e. range limits are
determined by climatic factors), as heightened sensitivity would then be expected in
more peripheral regions of the species’ range (Oliver ez a/. 2012; Myers-Smith ez al.
2015). This may arise as a result of conditions towards the range edge becoming
increasingly sub-optimal, resulting in relatively larger changes in organism
performance as weather conditions vary. For example, if the ‘performance curve’

(Deutsch ez al. 2008) that relates species’ performance to weather is unimodal, with
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declines to either side of this optimum, the rate of change in fitness is relatively larger

in more peripheral regions than in the range centre (Vasseur ez al. 2014).

Importantly, if species displayed a strong degree of adaptation to local climate, we
would not observe range-wide patterns in weather sensitivity, as species would be
uniformly sensitive to local climatic conditions (Bennett ez a/. 2015; Myers-Smith ez
al. 2015). Adaptation could arise as a result of intra-specific variation in tolerance
(Fischer & Karl 2010), or through behavioural plasticity, for example, behavioural
thermoregulation (Buckley e# a/ 2015). Our finding that increased sensitivity is
observed towards the range edges thus suggests general limitations to these
mechanisms of climatic adaptation and supports the hypothesis that latitudinal range
limits are at least partially explained by climate. This complements previous results
that document elevational range contraction for several European butterfly species in
Spain (Wilson e# al. 2005) and recent northern range edge expansions as a result of

climate change (Mair ez a/. 2012).

An alternative mechanism that could drive the observed increased sensitivity towards
range edges is a reverse density dependence effect. If factors such as density-
dependence are relatively more important in the species’ range core than at the edges
(i.e. show a reverse pattern to climatic sensitivity), these could mask climatic influences
towards the range centre (Swther ez a/. 2008). This could potentially arise as a result
of lower population densities towards the range edge, or through variation in the
importance of intra- or inter-specific competition across the range (e.g. Leisnham ez
al., 2009). However, the lack of relationship in our results between latitudinal position
within a species’ range and density dependence effects suggests that the observed
latitudinal gradient in climatic sensitivity exists independently of variation in the

strength of density dependence.

The overall pattern that we find is one of heightened sensitivity to weather towards
southern and northern range edges. Models of species’ presence/absence data at coarse
spatial scales typically indicate Gaussian response curves in relation to long-term

climate averages (Boucher-Lalonde ez a/. 2014), while species response curves that
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model changes in individual performance in relation to short-term temperature are
typically asymmetric, with steeper declines above optima than below (e.g. Deutsch ez
al., 2008; Aratjo et al, 2013). These respective relationships generate divergent
expectations: the former suggests that range-wide sensitivities to weather conditions
might be symmetrical, with weather being equally important at both range edges,
while the latter suggests that asymmetry is likely to be observed. Asymmetry could also
arise as a consequence of recent rapid climate change, with improving climatic
conditions at northern range edges, combined with lagged response rates in northward
range expansion (Devictor ez al. 2008), bringing northern populations closer to their
optimal conditions and thus reducing sensitivity to local weather conditions (Oliver ez
al. 2012). In contrast, climatic degradation in southern Europe (warming and drying
trends; Hartmann ez a/, 2013) may push populations at trailing range edges more
frequently into peripheral regions of their performance curves, in which performance
is more strongly affected by weather variation. Our ability to discern between these
two competing hypotheses is somewhat limited but our results fail to support the
longstanding theory that abiotic limitation is relatively more important at northern

range limits (Gaston 2003).

Density dependence consistently appears to be a more important driver of population
dynamics than weather, even in regions where sensitivity to weather is greatest. This
suggests that, for many populations, fluctuations in weather conditions will be partially
compensated for by density dependence effects, unless there are a large number of
climatically adverse years in close succession (Oliver ez a/. 2015), or adverse conditions
coincide with additional environmental change. It is unclear what the specific drivers
of density dependence might be, but it is possibly caused in part by host plant resource
availability and responses to natural enemies (e.g. Boggs & Inouye, 2012). While our
density dependence estimates are in line with other studies that employ similar
methodologies and/or datasets (e.g. Roy ez al., 2001; Nowicki e al., 2009), observation
error is known to inflate the strength of negative density dependence (Freckleton ez al.
2006). A caveat that therefore applies to our results (and others such as the cited

studies) is that, due to the imperfect correspondence between true and measured
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abundance, our estimates of density dependence may be over-estimates (Freckleton ez
al. 2006). However, as the abundance measures used here are informed by many
observations collected over the course of the season (Dennis ez a/. 2013), we expect any

biases arising from observation error to be relatively small.

Both temperature and precipitation appeared to have important effects on butterfly
population dynamics, with no clear distinction between the two in terms of either their
coefficient estimates or statistical significance (Table S2). While temperature is often
assumed to be a key driver of organism performance, these results suggest that it is
important to consider the role of precipitation in addition to temperature, which has
particular relevance for forming accurate forecasts of population performance under
climate change (McDermott Long e# a/. 2016; Sinclair ez al. 2016). There also appears
to be substantial intra-specific variation in the precise form of the weather associations
across the range, which many species distribution modelling approaches explicitly
assume is not the case. Further exploration of this intra-specific spatial variation in

population dynamics in response to weather is thus an important area of future study.

The observation that heightened sensitivities to weather occur towards the latitudinal
limits of butterflies adds to previous work documenting directional patterns of
sensitivity across climatic gradients (e.g. Ettinger ez al, 2011; Myers-Smith ez al.,
2015). In particular, we were able to extend previous work by investigating patterns
that occur towards both range edges simultaneously, rather than one in isolation.
There are two key implications of this work. Firstly, the existence of heightened
sensitivity at range edges suggests that population-level responses to ongoing climatic
change will not be uniform across the range, but are likely to be greatest at species’
range boundaries where population dynamics are most strongly determined by
weather. Secondly, because sensitivity to weather varies across species’ latitudinal range
extent, caution is required when extrapolating from studies conducted in part of a
species’ range or when using projection methodologies that do not take intra-specific

variation in responses to weather into account.
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2.7 Supplementary material
Appendix S1

Phylogenetic effects

The MCMCglmm package (Hadfield, 2010) was used to construct a model
containing both species and phylogenetic random effects within the model, using a
phylogeny obtained from Brooks et al. (2016). As with the main set of analyses,
sensitivity was allowed to vary as a quadratic function of relative range position, RRP,
with a species-specific random intercept term, s;. Using the MCMCglmm package we

could additionally incorporate phylogenetic information as p;. to render the model,
sensitivity= s; + p;+ RRP + RRP? + ¢

Where both s; and p;j are assumed to be normally distributed random effects, with the
variance term estimated from the data. As the model requires priors for each

parameter, we used the default non-informative prior for the fixed effects and for the
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variance terms in the random effects used a weakly informative inverse Gamma, with

shape and scale parameters set to 0.01. Models were run for 500000 iterations, with a

burn-in of 1000 and a thin of 500.

The variance terms for the phylogenetic random effect was negligible, with a mean of
0.004, and a 95% confidence interval of 0.001 to 0.009. The difference in shape of the
latitudinal relationship was correspondingly minor (Fig. S2), deviating only slightly
from the pattern seen in the main set of models in which phylogeny was not

incorporated.
Additional robustness checks

To assess the influence of other potential drivers of sensitivity, we fitted three models
of increasing complexity but with the addition of terms for latitudinal range size,
weather variability and topographic heterogeneity (A1, A2, A3). Methodology follows

that in the main text.

sensitivity= s; + latRange + SDy, + SDyqp, + € [A1]
sensitivity= s; + RRP + latRange + SD,, + SDygp, + € [A2]
sensitivity= s + RRP + RRP” + latRange + SD,, + SDy,p + £ [A3]

The effect of adding latitudinal terms mirrored that of the models without the
additional predictors, with the model containing quadratic terms (A3) performing
better than both intercept-only (Al; F test for difference between these two models:

F5 441 =7.99, P =0.001) and linear-slope models (Fy, 444 = 11.57, P = 0.001).

The associated coefficient estimates for these three controlling variables (in the full
model, A3) were: (1) /atRange, t=1.79 (df=9.9, P=0.105), (2) SD,,, t=0.34 (df=45.9,
P=0.736), and (3) SD,,,, (df=36.9, P=0.643).
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Orange Tip, Anthocharis cardamines Ringlet, Aphantopus hyperantus

Figure S1 Spatial distribution of sites retained following exclusion based on criteria outlined
in text, with 2° latitudinal bands overlaid (dashed lines). Colours distinguish between each

latitudinal band.
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Purple Hairstreak, Favonius quercus Brimstone, Gonepteryx rhamni

Figure S1 continued Spatial distribution of sites retained following exclusion based on
criteria outlined in text, with 2° latitudinal bands overlaid (dashed lines). Colours distinguish

between each latitudinal band.
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Figure S2 Partial R’ for the weather terms in each model by their relative position within
the geographic range (i.e. each point is a species/latitudinal band combination), with two
models overlaid. The model that incorporates phylogenetic information (described in
Appendix S1) is displayed by the red line, while the model without (as described in the main

text) is in blue.
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Table S1 Model comparison results. Full models containing all climate terms compared with

reduced models containing just density dependence and site effects.

Species Lat. band  Fvalue P value
Orange Tip 41° - 43° 3.1 0.002
Orange Tip 49°-51° 13.09 <.001
Orange Tip 51°-53° 19 <.001
Orange Tip 53°-55° 3 0.003
Ringlet 49°-51° 5.76 <.001
Ringlet 51°-53° 14.69 <.001
Ringlet 53°-55° 4.11 <.001
Ringlet 59°-61° 3.84 <.001
Ringlet 61° - 63° 7.39 <.001
Dark Green Fritillary 49°-51° 1.98 0.047
Dark Green Fritillary 51°-53° 3.58 <.001
Dark Green Fritillary 53°-55° 3.57 <.001
Dark Green Fritillary 59°-61° 3.01 0.004
Dark Green Fritillary 61° - 63° 1.23 0.285
Silver Washed Fritillary 41° - 43° 2.27 0.024
Silver Washed Fritillary 49°-51° 9.68 <.001
Silver Washed Fritillary 51°-53° 16.42 <.001
Silver Washed Fritillary 53°-55° 0.79 0.615
Pearl-bordered Fritillary 49°-51° 3.09 0.003
Pearl-bordered Fritillary 51°-53° 1.26 0.263
Pearl-bordered Fritillary 53°-55° 1.02 0.422
Pearl-bordered Fritillary 61° - 63° 2.14 0.036
Green Hairstreak 41° - 43° 2.97 0.004
Green Hairstreak 49°-51° 7.36 <.001
Green Hairstreak 51°-53° 8.64 <.001
Green Hairstreak 53°-55° 1.46 0.177
Purple Hairstreak 41° - 43° 1.34 0.226
Purple Hairstreak 49°-51° 2.22 0.025
Purple Hairstreak 51°-53° 7.19 <.001
Purple Hairstreak 53°-55° 0.84 0.570
Brimstone 41° - 43° 5.2 <.001
Brimstone 47° - 49° 3.94 <.001
Brimstone 49°-51° 18.5 <.001
Brimstone 51°-53° 43.84 <.001
Brimstone 53°-55° 5.34 <.001
Meadow Brown 41° - 43° 8.55 <.001
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Meadow Brown 49° - 51° 3.48 <.001

Meadow Brown 51°-53° 15.38 <.001
Meadow Brown 53°-55° 2.07 0.037
Gatekeeper 41° - 43° 1.2 0.303
Gatekeeper 49° - 51° 3.49 <.001
Gatekeeper 51°-53° 16.57 <.001
Gatekeeper 53°-55° 2.05 0.041
Essex Skipper 49°-51° 1.15 0.325
Essex Skipper 51°-53° 3.98 <.001
Essex Skipper 53°-55° 1.26 0.268
Essex Skipper 59° - 61° 8.72 <.001
Essex Skipper 61° - 63° 1.92 0.062
Small Skipper 41° - 43° 1.21 0.299
Small Skipper 49°-51° 2.34 0.017
Small Skipper 51°-53° 9.51 <.001
Small Skipper 53°-55° 0.55 0.819
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Table S2 Parameter estimates for the relationship between relative population growth rate and weather variables for all latitudinal bands. Estimates that differ
significantly from 0 at the P < .05 level are in bold-font, and at the P < .01 level are underlined and in bold-font. All climate variables are standardised to have unit
standard deviation and standard errors of each estimate are provided in parentheses. See Figure 1 for abbreviations for the time periods over which temperature and

precipitation variables were measured; log-density refers to density dependent effects, log(N..1).

Temperature Precipitation
# significant parameter estimates 52 19 15 16 13 15 20 16 14
Species Latitudinal band  Log-density postFP ow preFP FP postFP ow preFP FP
Orange Tip 41° - 43° -0.77 (x0.07)  0.18 (x0.13) -0.16 (x0.17) 0.54 (+0.17) -0.08 (0.1) 0.05 (x0.07) -0.04 (x0.06) -0.01 (x0.07) 0.04 (x0.06)
Orange Tip 49° - 51° -0.89 (x0.03)  0.04 (x0.03) -0.22 (x0.04)  0.18 (x0.03) -0.14 (x0.03)  -0.04 (0.03) 0.01 (x0.03) -0.03 (x0.02) 0.05 (x0.03)
Orange Tip 5il® = 58° -0.8 (+0.02) 0.03 (+0.02) 0 (x0.02) 0.05 (x0.01) -0.09 (x0.01) -0.07 (x0.02)  0.01 (x0.01) -0.03 (x0.01)  -0.02 (0.01)
Orange Tip 53°-55° -0.79 (x0.05)  0.11 (x0.06) -0.12 (x0.04)  -0.03 (x0.04) -0.03 (x0.04) 0.07 (+0.05) -0.12 (x0.07) -0.04 (x0.06) -0.03 (x0.04)
Ringlet 49° - 51° -0.51 (x0.03)  -0.07 (+0.03)  0.22 (x0.05) 0 (x0.03) 0.07 (0.03) -0.03 (x0.03) 0.03 (+0.03) 0.09 (+0.03 0.06 (+0.03)
Ringlet 51°-53° -0.44 (x0.01)  -0.05 (x0.01)  0.09 (x0.02) 0.01 (0.01) 0.04 (+0.01) 0.02 (x0.01) 0.03 (x0.01) 0.04 (x0.01) 0.03 (x0.01)
Ringlet 53°-55° -0.13 (+0.04) -0.17 (+0.06)  0.03 (+0.06) 0.17 (+0.06) -0.11 (x0.07) -0.08 (x0.07) 0.11 (+0.1) 0.2 (+0.06 -0.04 (x0.05)
Ringlet 59°-61° -0.78 (x0.09)  -0.08 (x0.07) 0 (x0.07) 0.12 (+0.06) -0.19 (+0.06)  0.17 (+0.06) 0.16 (+0.07) -0.01 (x0.05) -0.22 (+0.06)
Ringlet 61° - 63° -0.69 (x0.08)  0.01 (x0.05) 0.16 (+0.05) -0.19 (x0.06)  -0.11 (+0.04)  0.14 (x0.04) 0.12 (+0.04) -0.06 (+0.05) -0.05 (x0.04)
Dark Green Frit. 49° - 51° -0.61 (x0.04)  -0.03 (x0.05) 0.02 (0.09) 0.06 (+0.04) 0.08 (+0.05) 0.02 (+0.04) 0.15 (+0.05) -0.01 (x0.04) 0.06 (x0.04)
Dark Green Frit. 51°-53° -0.55 (x0.03)  -0.06 (0.03) 0.02 (0.04) 0.06 (+0.03) 0 (x0.03) 0.03 (+0.03) 0.09 (+0.03 0.04 (+0.03) 0 (x0.03)
Dark Green Frit. 53°-55° -0.41 (+0.04)  0.19 (+0.05) 0.05 (+0.05) -0.01 (0.05) 0.15 (+0.05) 0 (x0.04) 0.14 (+0.06) 0.07 (+0.05) 0.12 (x0.05)
Dark Green Frit. 59°-61° -0.74 (x0.08)  -0.01 (x0.08) 0.1 (x0.09) -0.3 (+0.09) -0.14 (x0.08) -0.18 (x0.07)  -0.02 (x0.07) -0.09 (x0.07) 0.05 (x0.07)
Dark Green Frit. 61°-63° -0.97 (+0.08)  -0.01 (x0.07) -0.04 (x0.08) -0.11 (x0.09) 0.01 (x0.06) -0.03 (x0.07) 0.17 (+0.06) -0.04 (x0.07) 0.05 (x0.07)
S-w. Fritillary 41° - 43° -0.83 (x0.07) 0.2 (x0.14) 0.32 (0.2) -0.3 (x0.17) -0.18 (x0.16) -0.09 (x0.07) -0.07 (+0.08) -0.07 (x0.07) -0.1 (x0.07)
S-w. Fritillary 49° - 51° -0.71 (x0.03)  -0.06 (+0.03)  0.21 (+0.05) -0.09 (+0.03)  -0.07 (x0.03) -0.06 (x0.02)  0.09 (+0.03 -0.03 (x0.03) -0.1 (+0.03)
S-w. Fritillary 51°-53° -0.39 (x0.02)  -0.06 (+0.02) 0.1 (x0.03) 0.02 (0.02) -0.02 (x0.02) -0.05 (x0.02)  0.11 (x0.02) -0.07 (+0.02) -0.12 (x0.02)

65




S-w. Fritillary
P.-b. Fritillary
P.-b. Fritillary
P.-b. Fritillary
P.-b. Fritillary
Green Hairstreak
Green Hairstreak
Green Hairstreak
Green Hairstreak
Purple Hairstreak
Purple Hairstreak
Purple Hairstreak
Purple Hairstreak
Brimstone
Brimstone
Brimstone
Brimstone
Brimstone
Meadow Brown
Meadow Brown
Meadow Brown
Meadow Brown
Gatekeeper
Gatekeeper
Gatekeeper
Gatekeeper

53° - 55°
49° - 51°
51°-53°
53° - 55°
61° - 63°
41° - 43°
49° - 51°
51°-53°
53° - 55°
41° - 43°
49° - 51°
51°-53°
53° - 55°
41° - 43°
47° - 49°
49° - 51°
51°-53°
53° - 55°
41° - 43°
49° - 51°
51°-53°
53° - 55°
41° - 43°
49° - 51°
51° - 53°
53° - 55°

-0.45 (x0.08)  -0.06 (0.11) -0.02 (x0.1) -0.12 (x0.1) -0.12 (x0.14) 0.15 (x0.14) 0.11 (0.17) 0.01 (0.12) -0.16 (x0.11)
-0.48 (+0.06)  0.23 (+0.08) -0.08 (+0.08) 0.01 (+0.08) -0.06 (+0.07) 0.17 (+0.08) 0.06 (0.06) 0 (x0.06) -0.2 (+0.06)
-0.35 (x0.05)  0.19 (x0.07) -0.08 (+0.07) 0 (x0.07) -0.03 (x0.07) 0.06 (0.07) -0.06 (+0.06) 0.1 (x0.06) -0.04 (+0.05)
-0.52 (x0.06)  0.13 (x0.09) -0.05 (+0.08) 0.03 (+0.08) -0.03 (x0.08) 0.04 (x0.09) 0 (x0.07) -0.08 (+0.08) -0.04 (+0.06)
-0.83 (x0.08)  0.25 (x0.1) -0.12 (x0.09) 0.02 (0.1) 0.12 (+0.09) 0.01 (+0.08) 0.02 (+0.08) -0.13 (+0.08) 0.07 (0.09)
-0.69 (x0.07)  -0.21 (x0.12) -0.12 (x0.17) 0.2 (x0.16) -0.14 (x0.09) 0.16 (+0.08) 0.15 (x0.07) -0.21 (x0.07)  -0.32 (x0.08)
-0.76 (x0.03)  -0.03 (x0.04) -0.03 (x0.06) 0.04 (+0.04) -0.15 (x0.03)  -0.11 (+0.04)  0.09 (x0.03) 0.01 (0.03) 0 (x0.03)
-0.7 (+0.02) 0.04 (x0.03) 0.02 (0.03) 0.04 (0.03) -0.11 (x0.02)  -0.09 (x0.03)  0.01 (x0.02) 0.03 (x0.02) 0.02 (+0.02)
-0.89 (x0.07)  0.16 (0.1) -0.15 (x0.08) 0.12 (x0.09) -0.08 (+0.08) 0.09 (x0.09) 0.1 (x0.1) -0.18 (x0.1) -0.09 (x0.07)
-0.75 (x0.08)  0.21 (0.15) -0.27 (x0.26) 0.26 (x0.24) 0.27 (x0.22) 0.04 (x0.12) 0.02 (x0.14) 0.06 (+0.13) 0.16 (x0.13)
-0.69 (x0.05)  -0.05 (x0.04) 0.08 (x0.07) -0.02 (x0.04) -0.08 (£0.06) -0.11 (x0.04)  0.08 (x0.05) -0.11 (x0.05)  -0.04 (x0.04)
-0.76 (x0.02)  -0.03 (x0.02) 0.04 (x0.02) 0 (x0.02) -0.01 (x0.02) 0 (x0.02) -0.03 (x0.02) -0.11 (x0.02)  0.03 (x0.02)
-1.05 (x0.09)  0.08 (x0.07) -0.04 (x0.06) -0.02 (x0.07) 0.01 (x0.09) -0.1 (x0.07) -0.1 (x0.08) 0.05 (x0.07) 0.05 (x0.07)
-0.79 (x0.06) -0.72 (x0.17)  0.24 (+0.18) 0.29 (x0.18) -0.24 (x0.12)  0.05 (+0.06) 0.02 (x0.07) 0.09 (x0.06) 0.04 (x0.06)
-1.01 (x0.1) -0.41 (x0.1) 0.31 (x0.12) -0.3 (x0.1) -0.09 (x0.12) -0.11 (0.1) 0.02 (x0.12) 0.15 (x0.09) -0.21 (x0.11)
-0.9 (+0.03) -0.09 (x0.02)  -0.05 (x0.03) -0.05 (x0.02)  -0.03 (+0.03) -0.02 (x0.02) 0.11 (+0.02) -0.1 (x0.02) -0.12 (x0.02)
-0.72 (x0.01)  -0.12 (x0.01)  0.03 (x0.01) -0.05 (x0.01)  0.03 (x0.01) 0.02 (x0.01) 0.08 (x0.01) -0.09 (x0.01)  -0.04 (x0.01)
-0.63 (x0.04)  -0.01 (x0.03) -0.05 (x0.04) 0.03 (x0.05) -0.16 (x0.06) -0.16 (x0.06)  0.18 (+0.06) -0.1 (x0.06) -0.08 (x0.04)
-0.75 (+0.05)  0.09 (x0.09) 0.79 (x0.12) -0.29 (x0.1) 0.07 (0.13) 0 (x0.05) -0.13 (x0.05)  0.15 (+0.05) 0.09 (x0.05)
-0.76 (x0.02)  0.03 (x0.02) 0.08 (+0.03 -0.04 (x0.02)  -0.01 (x0.02) 0.01 (x0.02) 0 (x0.02) 0.07 (+0.02) 0.01 (x0.02)
-0.54 (x0.01)  -0.05 (+0.01)  0.03 (x0.01) 0.02 (+0.01) 0 (x0.01) 0.02 (+0.01) 0.04 (+0.01) 0.06 (+0.01) 0 (x0.01)
-0.72 (x0.04)  -0.01 (x0.04) 0.03 (+0.03) -0.03 (+0.03) -0.03 (x0.05) 0.02 (+0.05) -0.06 (+0.05) 0.12 (+0.04 -0.04 (x0.04)
-0.49 (x0.06)  -0.02 (x0.16) 0.34 (+0.21) -0.28 (x0.22) -0.11 (x0.19) -0.01 (x0.08) -0.07 (x0.09) 0.06 (+0.08) 0.11 (+0.09)
-0.49 (x0.02)  0.06 (+0.02) -0.02 (x0.03) -0.03 (x0.02) 0.02 (x0.02) 0.01 (x0.02) 0.04 (+0.02) 0.01 (0.02) -0.06 (+0.02)
-0.44 (+0.01)  0.07 (+0.01) 0.06 (+0.01) 0.03 (+0.01) 0.03 (x0.01) 0.02 (x0.01) 0.04 (+0.01 0 (x0.01) -0.04 (+0.01)
-0.18 (x0.04)  -0.05 (x0.06) 0.09 (+0.06) 0.1 (x0.06) 0.09 (+0.08) -0.16 (x0.09) 0.08 (0.1) 0.1 (x0.07) 0.19 (x0.07)
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Essex Skipper
Essex Skipper
Essex Skipper
Essex Skipper
Essex Skipper
Small Skipper
Small Skipper
Small Skipper
Small Skipper

49° - 51°
51°-53°
53°-55°
59°-61°
61° - 63°
41° - 43°
49° - 51°
51°-53°
53°-55°

-0.63 (x0.04)  -0.05 (x0.05)
-0.51 (x0.01)  -0.02 (x0.02)
-0.46 (20.08)  -0.02 (x0.1)
-0.75 (x0.07)  -0.24 (x0.05)
-0.51 (x0.08)  0.02 (+0.08)
-0.82 (x0.09)  0.42 (x0.31)
-0.48 (x0.02)  -0.1 (x0.04)
-0.5 (+0.02) -0.17 (+0.03)
-0.39 (x0.06) -0.07 (x0.1)

0.06 (x0.07)
-0.06 (+0.02)
0.05 (x0.09)
-0.12 (x0.06)
0 (x0.08)
-0.07 (x0.31)
0.07 (x0.06)
-0.03 (+0.03)
0 (x0.09)

-0.04 (+0.04)
-0.01 (x0.02)
0.12 (+0.08)
0.05 (+0.06)
0.08 (x0.07)
-0.07 (x0.25)
0.04 (0.03)
0.09 (x0.02
0.06 (x0.09)

-0.01 (x0.05)
-0.04 (x0.02)
-0.03 (x0.11)
-0.12 (x0.05)
-0.06 (+0.07)
0.18 (x0.17)
-0.02 (x0.05)
0 (x0.03)
0.12 (x0.11)

-0.04 (x0.04)
0.07 (+0.02)
-0.05 (x0.1)
-0.23 (+0.05)
-0.1 (x0.08)
-0.13 (x0.1)
-0.03 (x0.04)
-0.06 (x0.02)
-0.06 (0.1)

-0.02 (x0.04)
0 (x0.02)
0.08 (+0.11)
-0.08 (+0.05)
-0.18 (+0.08)
0.08 (0.13)
0.06 (+0.04)
0.05 (x0.02)
0.04 (+0.15)

0.07 (+0.04)
0.03 (x0.02)
0.21 (x0.09)
-0.16 (+0.05)
-0.08 (+0.08)
-0.01 (x0.12)
-0.03 (x0.04)
-0.01 (x0.02)
0.07 (x0.1)

-0.01 (x0.04)
-0.04 (x0.02)
-0.11 (x0.09)
-0.02 (+0.06)
0.04 (0.07)
0.03 (x0.1)
-0.05 (x0.04)
-0.03 (x0.02)
0.05 (x0.09)
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Table S3 R?, partial R% and root mean square error (RMSE) by species and latitudinal band.

Species Lat. band R?> RMSE Dens. partial R*  Clim. partial R?
Orange Tip 41°-43° 047 0.65 0.34 0.06
Orange Tip 49°-51° 049 0.64 0.42 0.04
Orange Tip 51°-53° 0.44 0.64 0.38 0.02
Orange Tip 53°-55° 045 0.64 0.34 0.03
Ringlet 49° -51° 0.3 0.74 0.24 0.03
Ringlet 51°-53°  0.28 0.66 0.21 0.02
Ringlet 53°-55° 0.18 0.73 0.03 0.08
Ringlet 59°-61° 0.53 0.45 0.27 0.12
Ringlet 61°-63° 0.55 0.38 0.29 0.2
Dark Green Frit. 49°-51°  0.33 0.81 0.29 0.02
Dark Green Frit. 51°-53° 0.31 0.74 0.26 0.02
Dark Green Frit. 53°-55°  0.31 0.69 0.24 0.06
Dark Green Frit. 59°-61° 0.51 0.6 0.3 0.09
Dark Green Frit. 61°-63° 0.56 0.54 0.47 0.03
S-w. Fritillary 41°-43°  0.48 0.69 0.38 0.04
S-w. Fritillary 49°-51° 042 0.63 0.34 0.05
S-w. Fritillary 51°-53° 0.26 0.69 0.17 0.06
S-w. Fritillary 53°-55°  0.28 0.8 0.2 0.04
P.-b. Fritillary 49°-51°  0.37 0.58 0.24 0.1
P.-b. Fritillary 51°-53° 0.23 0.77 0.16 0.03
P.-b. Fritillary 53°-55°  0.31 0.8 0.24 0.03
P.-b. Fritillary 61°-63°  0.48 0.75 0.39 0.07
Green Hairstreak 41°-43°  0.44 0.76 0.31 0.07
Green Hairstreak 49°-51°  0.43 0.69 0.36 0.04
Green Hairstreak 51°-53° 0.4 0.73 0.34 0.03
Green Hairstreak 53°-55°  0.55 0.73 0.45 0.03
Purple Hairstreak 41°-43° 0.44 0.97 0.33 0.04
Purple Hairstreak 49°-51°  0.39 0.74 0.33 0.03
Purple Hairstreak 51°-53° 0.41 0.74 0.37 0.01
Purple Hairstreak 53°-55°  0.58 0.53 0.52 0.02
Brimstone 41°-43°  0.49 0.64 0.37 0.1
Brimstone 47°-49°  0.63 0.62 0.37 0.11
Brimstone 49°-51°  0.51 0.52 0.41 0.05
Brimstone 51°-53° 041 0.61 0.34 0.04
Brimstone 53°-55° 041 0.61 0.31 0.05
Meadow Brown 41°-43°  0.56 0.53 0.32 0.12
Meadow Brown 49°-51°  0.42 0.52 0.37 0.01
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Meadow Brown 51°-53°  0.32 0.61 0.25 0.01

Meadow Brown 53°-55°  0.39 0.58 0.32 0.02
Gatekeeper 41°-43°  0.33 0.73 0.26 0.04
Gatekeeper 49° - 51° 0.3 0.58 0.23 0.02
Gatekeeper 51°-53°  0.29 0.61 0.21 0.03
Gatekeeper 53°-55°  0.17 0.74 0.06 0.05
Essex Skipper 49°-51° 0.33 0.78 0.29 0.01
Essex Skipper 51°-53°  0.29 0.93 0.24 0.01
Essex Skipper 53°-55° 0.3 0.77 0.17 0.05
Essex Skipper 59°-61° 0.62 0.46 0.33 0.22
Essex Skipper 61°-63° 0.38 0.63 0.22 0.08
Small Skipper 41°-43°  0.46 0.66 0.39 0.05
Small Skipper 49°-51°  0.27 1.02 0.23 0.01
Small Skipper 51°-53°  0.28 1.03 0.24 0.02
Small Skipper 53°-55°  0.18 1.03 0.15 0.01

2.8 Addendum (response to examiner’s comment)

Note: not peer reviewed or in published version of article

There was interest in whether or not northern or southern range margins exhibited
more positive or negative effects of temperature and precipitation. I have plotted the
coefficient estimates for northern (>59° latitude) and southern (<43° latitude) range-
margins (numerical estimates given in Table S2) below. There is no clear tendency
for estimates to be systematically above or below 0, and in all cases 95% confidence

intervals for coefficient estimates substantially overlap 0.
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Figure A1 Coefficient estimates for weather associations at range margins, by variable type
(precipitation or temperature) and life-cycle period (preFP, FP, postFP, and OW). Means and 95%

confidence intervals are overlaid (black points and bars)
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Chapter 3:

Weather variables make minor contributions to explanatory capacity
of population dynamic models of European bird populations in an era

of climate change
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3.1 Abstract

Aim Though weather is widely regarded as playing an important role in determining
population dynamics, the extent to which generally formulated phenomenological
models can capture population response to variation in climatic conditions remains
unclear. We assess the ability of weather to explain variation in inter-annual

population growth rates at continental scales.
Location Europe
Time Period 1990-2014

Major Taxa Studied Birds

Methods We model temporal variation in site-level abundance using long-term
monitoring datasets from 11 countries across Europe (c. 8500 sites). We quantify i)
the statistical signal of weather in site-level inter-annual population growth rates, ii)
the extent to which these weather effects improve models’ explanatory capacities and
reduce residual uncertainty, and iii) assess if these explanatory capacities vary

systematically in space and with species’ ecological and life history traits.

Results For the majority of species, we observe a statistical signal of weather in inter-
annual growth rates, with more small P-values than would arise by chance. However,
the explanatory capacity of these variables is typically limited, and models retain
substantial residual uncertainty. Consequently, models containing no weather terms
at all often have similar capacities to explain population growth as models containing
large and flexible sets of weather variables. The contribution of weather terms is not

significantly associated with species’ ecological or life history traits.

Main Conclusions Our results raise important questions about the ability to
understand drivers of population growth through application of general
phenomenological models to large-scale survey datasets. In particular, they suggest a
greater need to focus on the contributions of census error to observed population
growth as well as to better appraise how model data requirements and model

performance trade off against each other. If we are to adequately capture how
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populations respond to inter-annual variation in climatic conditions then approaches

that acknowledge and account for these issues are required.
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3.2 Introduction

Understanding the relative importance of environmental variation in driving
population dynamics is a central question in population ecology (Turchin 1999).
While complex population dynamics can arise in the absence of any external forcing
(Turchin 2003), weather and climate are thought to play an important role in a range
of population processes, from driving variation in vital rates (Dybala e# a/. 2013) and
inter-annual population growth (Mills ez a/ 2017) through to determining long-term
trends and population persistence (Beale ez a/. 2014; Stephens e al. 2016). Given the
apparent importance of weather and climate across a range of scales, there is substantial
concern about how populations will respond to climate change and much interest in
quantifying these responses (Bellard ez 4/ 2012). Statistical models that elucidate
precisely how weather drives population dynamics are central to this task and can be
used to forecast ecological responses to climate change, and to assess and inform

strategies for conservation and climate change adaptation (Oliver & Roy 2015).

Approaches to understanding population responses to weather can be broadly
categorised according to the level of detail included in the model structure and their
corresponding data requirements. These range from detailed population growth
models that model demographic responses directly (e.g. Dybala et al. 2013) or invoke
precise mechanisms through which weather affects population growth (e.g. Boggs and
Inouye 2012), through to more general phenomenological models that model variation
in temporal abundance in the absence of demographic detail and often apply similar
model forms containing general suites of weather variables across wide taxonomic and

geographic extents (e.g. Knape & de Valpine 2011; Pearce-Higgins ez a/. 2015).

Demographic models of population growth have shown both that weather can play an
important role in driving demography and temporal variation in abundance, and also
that the linkages between weather and population dynamics can be complex, requiring
substantial population detail in order to explain how weather drives population growth
(Coulson ez al. 2001; Robinson ez al. 2007; Dybala e al. 2013; Cleasby ez al. 2017).
For example, when effects of weather vary with population structure, such as when

response varies with age or gender, variation in the demographic composition of a
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population drives heterogeneity in how the population as a whole responds to a given
weather event (Dybala e a/. 2013; Cleasby ez a/. 2017). Population models that do not
incorporate demographic detail cannot resolve these separate processes and,
consequently, can be limited in their ability to explain temporal variation in abundance

(Coulson ez al. 2001).

While intensive population-specific studies can resolve weather impacts well, these
approaches come with the cost of high data requirements that tend to limit their
applicability to individual populations (though see Coulson ez a/. 2005; Nicole ez al.
2011). As a consequence, it is often difficult to make general inferences that extend
beyond the focal population from these studies alone. There is therefore considerable
interest in less data-intensive modelling approaches that are not tailored to specific
populations or landscapes (e.g. Boggs & Inouye 2012), but that can be applied more
generally, in order to understand population responses across wider geographic and
taxonomic extents. For example, long-term population monitoring schemes that use
standardised methodologies may provide essential data to fit more generally-
formulated phenomenological models to predict population responses to climate
change across large (e.g. continental) scales. Though these modelling approaches will
necessarily incur some cost to their explanatory capacity (Knape & de Valpine 2011),
the question is whether, despite this, they can still be used to shed light on how

populations respond to variation in environmental conditions.

There is increasingly interest in harnessing datasets from long-term population
monitoring schemes to make inferences about the role of weather in regulating
populations (e.g. Pearce-Higgins ez al. 2014; Jorgensen et al. 2015; Stephens e al.
2016; Bowler ez al. 2018), and addressing how well we are able to do so with standard
approaches is thus timely. In particular, there is a need to resolve the apparent conflict
between studies that conclude that weather plays an important role in regulating the
populations recorded in long-term monitoring schemes (e.g. Pearce-Higgins ez al.
2014) and those that suggest that there are general constraints on our capacity to
understand weather drivers of population dynamics using in time-series that do not

model demography directly (e.g. Coulson ez a/. 2003; Knape and de Valpine, 2009).
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To this end, we carry out the first continental-scale assessment of the capacity of
monthly and seasonal weather variables to explain site-level inter-annual variation in
population growth rate. We do so using long-term data on population growth rates of
153 bird species at c. 8,500 sites spread across 11 European countries that span a
latitudinal and longitudinal gradient from Spain to Finland. Data are derived from
long-term Breeding Bird Surveys (BBS) that have been widely used to model
population responses to a range of environmental drivers (Jiguet ez a/. 2006; Both ez al.
2010; Jorgensen ez al. 2015; Pearce-Higgins ez al. 2015; Stephens ez al. 2016) and are
typical of the types of datasets employed to understand population responses to
environmental variation. Specifically, we quantify i) the statistical signal of weather in
site-level inter-annual population growth rates, ii) the extent to which these weather
effects improve models’ explanatory capacities and reduce residual uncertainty, and iii)
assess if these explanatory capacities vary systematically in space and with species’

ecological and life history traits.

3.3 Materials and methods

3.3.1 Datasets

We obtained BBS datasets for 11 countries in the Pan-European Common Bird
Monitoring Scheme (PECBMS): Finland, Sweden, UK, Estonia, Denmark,
Germany, Netherlands, Belgium, France, Czechia, and Spain. While there is some
variation in the specific methodology followed by each country, each scheme follows
a broadly consistent standardised model in which skilled volunteers visit a site between
one and four times over the course of the breeding season and a single breeding season
abundance estimate index is calculated by taking the maximum count for each species,
or, in two cases (Spain and Czechia), taking the mean (http://www.ebcc.info/
pecbm.html: Gregory et al. 2005). In the Netherlands, sites are visited up to ten times
and territories counted. By their nature, these surveys cover the commoner and more
abundant bird species in each country. Temporal coverage of each scheme varied but
following data cleaning steps (see below), they typically cover the 1990-2014 period,

with a median length of 25 years (Table S1). Site-species combinations with five or
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fewer population growth rate data points (i.e. a count at time # and time #+7, at least

one of which is non-zero) were removed prior to analysis.

Climate data were obtained from the European Climate and Assessment Dataset
(ECAD; Haylock et al. 2008). This is a 25 km-resolution gridded dataset (.22° rotated
grid; version 12.0), comprised of daily estimates of temperature (average temperature;
°C) and precipitation (total rainfall; mm) for grid-cells across Europe. Sites that were

not covered by the climate surface were removed prior to further analysis.

3.3.2 Weather variables

Due to geographical variation in the number of data points at each site, there is a
trade-off between the number of weather terms that can be included in the model (i.e.
model complexity) and the number of sites and regions that can be included, especially
for rarer species. While larger sets of variables allow for more robust conclusions
regarding the influence of weather on population growth rate, the cost is that any
conclusions risk loss of generality as an increasingly small set of regions and species are
investigated. To manage this trade-off, we formulated two sets of models. The first
contains 12 monthly average temperature and 12 monthly summed precipitation
variables, counting from May in year # to April in year #+1 (Figure S1), to cover the
period between the counts that make up each inter-annual population growth rate
datum (i.e. 24 weather variables; full variable set models). The second set used the
maximum and minimum mean monthly temperature during the winter (December-
February) and breeding (April-June) seasons, and the maximum and minimum
summed precipitation during these seasons (i.e. eight weather variables; reduced

variable set models).

Weather effects are further allowed to vary regionally (across 200 km x 200 km grid
cells, see below) such that, for example, January temperature might be the main driver
of population growth rate in one part of the range, while in another it might be July
precipitation. Similarly, in the reduced variable set of models a species may respond to
minimum winter temperature and maximum breeding season temperature in part of

its range, but respond to breeding season precipitation in another region. While these
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sets of weather variables are by no means comprehensive, temperature and
precipitation are considered important drivers of temporal variation in bird abundance
across a range of spatial and temporal scales, particularly during the breeding season
and over winter, which represent critical periods for recruitment and survival processes

(Dybala ez al. 2013; Illan ez al. 2014; Pearce-Higgins ez al. 2015).

3.3.3 Population growth rate model

We use a stochastic Gompertz, or first-order autoregressive, model (Dennis ez a/.
2006), which is used widely in population ecology (e.g. Roy et al. 2001, Knape et al.
2013, Pearce-Higgins et al. 2015). The fundamental logic of the model is that the
abundance in a given year, N; 1, is the abundance in the year before, Ny, multiplied by
a growth-rate term. Environmental drivers act directly upon the growth rate, along
with a first-order density dependence term. For a single site and species, the model

can be written as:
Neyq1 = Neexp(a + BolnNg + Y BiWie + €¢) (1)

Where a is the site-level intercept, 5y is the lag-1 density-dependence coefficient, and
Pr (k =1,...,n) are the coefficients estimated for each weather term, Wy, in the
model. Residual error, & (process error) is normally-distributed with mean 0 and

variance a2. This equation log-linearises and rearranges to form:
Te = Xep1 — Xe = a + BoXe + Xie1 BiWir + & (2)

Where 13 is the inter-annual population growth rate at time # and X, is the log-
abundance at time £ In order to extend this site-level model to accommodate data
from multiple sites taken from across the range of each species, a number of additional
covariates are needed. Firstly, to accommodate the fact that weather covariates may
systematically deviate from site-level conditions (due to variation in elevation, for
example), a site-level intercept term is required. Effects of weather are also likely to
vary across species’ ranges as they represent different regions of a species’ climatic niche
space (Mills e al. 2017). To accommodate this, we split Europe into 200 x 200 km
grid-cells, allowing weather effects to vary at this spatial-grain — although note that

the estimate of local weather conditions remains at the resolution of the 25 km gridded

79



climate data. To allow weather covariate effects to vary spatially, we estimate weather
covariates in each 200 km grid-cell independently of the others (i.e. there is no sharing
of information, or “pooling of variance”, across grid-cells). The full model is thus

written as:

Tije =itV +BojXije+ Xi=1BrjWijre + €ijt (3)

where growth rate at site 4, in grid-cell j, at time # is a function of a normally-
distributed, random-site intercept, ;, and a grid-cell intercept (treated as a fixed
effect), y;. As specified above, the density-dependence term, S, j and weather terms,

Bk, j, are now estimated for each 200km grid-cell individually.

While site-intercepts are estimated by pooling variation across all grid-cells, weather-
effects and grid-cell intercepts are estimated locally. To ensure that there were enough
data to estimate grid-cell specific weather effects, we only included grid-cells with
>500 data points in the full variable set, and 2300 in the reduced variable set. After
applying these criteria, models could be run for 130 species using the full-variable set,
and 153 using the reduced variable set, with a spatial coverage of much of the
latitudinal gradient of Europe (Figure 1). For the small number of species that had
models with just a single grid-cell (full variable set, n = 16; reduced variable set, n =

19), the respective grid-cell terms were dropped from the model.

(a) All sites (b) Full-variable set (b) Reduced-variable set
w . _.,v; '7.“

Figure 1 Spatial distribution of sites (a) with at least 5 years of data, (b) used in full variable

set models, and (c) reduced variable models.
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3.3.4 Evaluation of weather importance

The effects of weather on population growth rate are appraised in three ways. First,
we summarise the distributions of coefficient P-values (calculated under the
Satterthwaite approximation), which under the null hypothesis of weather terms
having no effect on population growth rate should be uniformly distributed between
0 and 1. Departures from this, with more small P-values than expected to occur by
chance, are thus indicative of underlying weather effects. We summarise these patterns

across all species and by species and weather variable.

Second, we summarise the improvement in model explanatory capacity thatis achieved
through addition of weather variables (hereafter contribution of weather). We measure
contribution of weather as 1 — 6.2 /0, where 62 is the residual variance of the
model containing weather terms (defined above) and 6%, is the residual variance in
a null model that just contains the random site-intercept, fixed grid-cell intercepts and

density-dependence terms:
Tije = @+ Y+ BojXije+ &ijt (4)

This measure thus captures the proportional improvement in explanatory capacity of
models through addition of weather terms, where a value of 0 indicates no
improvement, and values above 0 indicate improvement in model explanatory power.
As with the full weather model, species represented by just a single grid-cell had grid-
cell terms removed. Lastly, we examine the residual variation that exists in the full

weather model, which determines the accuracy of population growth rate predictions.

3.3.5 Robustness check using finer resolution climate datasets

One concern with using a 25 km resolution climate dataset is that weather variables
might represent imprecise estimates of the local weather experienced by a population.
Substantial error in predictors can generate regression dilution (Mclnerny & Purves
2011) and weak weather effects could therefore arise trivially if the 25 km dataset is a
highly noisy estimate of site-level weather. For the UK, a finer resolution climate
dataset is available (5 km resolution, UKCP09; Perry and Hollis 2005). To confirm

that our results do not simply arise as a result of imprecise local weather estimates, we
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repeated the full-variable set analyses using just the UK dataset (83 species at 2979
sites across 20 years) and 5 km UKCP09 climate data.

3.3.6 Variation in contribution of weather with species traits

Species’ sensitivity to weather may be influenced by a wide range of ecological and life
history traits (Leech & Crick 2007) and we therefore assess whether population
growth rates of species with particular characteristics exhibit greater sensitivity to
weather. We use Phylogenetic Generalised Least Squares (PGLS) regression to model
the relationship between the importance of weather and the following species’ traits
(all of which have received some empirical support): a) Log body mass (natural log),
on the basis that this can modify physiological responses to temperature (Sinclair ez a/.
2016), b) migratory status (long distance migrants versus other species), with
migration potentially increasing vulnerability to climate change due to trophic
mismatch (Both e# a/ 2010), ¢) diet (vertebrate, invertebrate, plant; coded as a binary
trait for each dietary component) and d) habitat type (forest, aquatic and open
habitats) as both feeding guild and habitat have previously been implicated as
correlates of population change (Van Turnhout ez a/. 2010), e) single versus multi-
brooded species, which may give some buffering against adverse weather conditions
during any single breeding attempt (Jiguet ez a/ 2007), and f) adult life-span, as
population growth rates of longer lived species may be relatively buffered against short-
term weather effects. The phylogeny was obtained from Roquet et al. (2014), and two
recently-split species that are not included in this phylogeny, Corvus cornix and
Acanthis cabaret, were excluded. Trait data were obtained from Storchova and Hordk
(2018), and a further four species (Cuculus canorus, Regulus ignicapilla, Cisticola juncidis,

and Tetrax tetrax) were excluded due to incomplete trait data.

3.3.7 Variation in contribution of weather with geographical position

To check that an overall species-level contribution of weather score did not conceal
systematic spatial trends in the contribution of weather (Mills e# a/. 2017), we model
spatial variation in grid-cell level estimates of the importance of weather in driving
population dynamics. For each species and grid-cell, we calculated the Mean Square

Error (MSE) for the full model containing weather terms and the null model that
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contained no weather terms, and for each species calculated a contribution of weather
score for each individual grid cell as 1 — MSE,,/MSE,,,;;, calculated for each
individual species and grid-cell combination. We then assessed whether there are
systematic latitudinal or longitudinal patterns in regional contribution of weather
scores while controlling for between species variation in sensitivity and accounting for
statistical non-independence of observations within a grid-cell (Table S2). While
these analyses do not directly control for phylogenetic relatedness, the results of the

PGLS trait-based analysis suggest that phylogenetic signal is negligible in these data
(Table 1).

All analyses were all carried out in the R programming environment (version 13.0)

and code is available at github.com/SimonCMills/PopnResponseToWeather.

3.4 Results

There was a readily discernible statistical signal of weather in site level inter-annual
population growth rates of European breeding bird populations, with weather
coefficients displaying substantially more small P-values than expected by chance
(Figure 2). This held when considering species individually, with the vast majority
exhibiting a larger number of statistically significant weather coefficients than would
be expected by chance (full variable set: 117 of 130 species, 90%; reduced variable set:
123 of 153 species, 80%; Figure 3). There was no clear tendency for particular periods
of the year or specific weather variables to exhibit stronger or weaker statistical signals
of weather effects, with all weather variables showing very similar skewed distributions

towards smaller P-values than expected by chance (Figures S2, S3).

Incorporating weather terms typically generated marginal improvements in
explanatory capacity, with a mean contribution of weather (i.e. proportional reduction
in residual uncertainty) of approximately 3% in the full-variable set, and approximately
2% in the reduced-variable set (Figure 4). For species that were included in both full
and reduced variable set models, there was broad consistency in the contribution of
weather to population models (Pearson correlation coefficient = 0.80, n = 130). Species

displayed some variation in the magnitude of the contribution of weather, but across

83



all species values are typically low, with a minority of species having values above 5%
(full variable set: 17 of 130 species, 13%; reduced variable set: 4 of 153 species, 3%;

Figure 3).

Levels of residual uncertainty were typically high, indicating a low predictive capacity
of the models (Figure 5). The mean residual uncertainty term is 0.52 in both model
sets, which corresponds to a 95% predictive interval of 0.36p- 2.77u, where p is the
model predicted inter-annual growth rate (i.e. if the model predicted a stable
population growth rate of 1, this interval includes populations that crashed to 36% or
increased to 277% of their abundance in the year prior). Thus, for population growth
rate models that contain 24 monthly weather variables and abundance in the previous
year, along with site and grid-cell intercepts, substantial uncertainty remains in the
predicted growth rates. The lowest predictive uncertainties observed correspond to a

95% predictive interval of 0.57p- 1.75p.

Qualitatively identical results (Figure S4) were obtained when modelling the UK
subset of data using a finer resolution climate dataset, suggesting that our results are

not due to using a coarse climate surface.
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(a) Full variable set
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Figure 2 Histogram of P-values for all weather coefficients across all models, for both the
full variable set and reduced variable set. Column widths are 0.01 and the dashed line
indicates the corresponding uniform null expectation. Equivalent plots, but broken down

by weather variable are given in Figures S2 and S3.
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Figure 3 (overleaf) Breakdown of P-values and explanatory capacities by species, for (a) full
variable set models and (b) reduced variable set models. In the left-hand panel, the x-axis is
the proportion of coefficient P-values that are 0.01. The dashed line at 0.01 signifies the
baseline proportions that we would expect to observe if observed effects were entirely driven
by chance. The right-hand panel gives the corresponding contribution of weather terms to

each model. Scientific names are given in Table S3.

3.3.1 Effects of species’ traits and geographical position

Using data on the contribution of weather terms to model performance from both the
full and reduced variable model sets revealed similar associations with species’
ecological and life history traits (Table 1). These models contained negligible
phylogenetic signal (1<0.2, both sets) and had R? values of 0.06 and 0.13 respectively
in the full and reduced variable set models. Traits had negligible effect sizes and 95%

confidence intervals that overlapped zero in all cases.

There was some variation across grid-cells in the contribution of weather to population
growth rate models (Figures S5 and S6). The strength of weather effects still tend to
be limited, however; in the full variable set, just 19 of 130 species (14%) and in the
reduced variable set just 4 of 153 species (3%) had a maximum grid-cell contribution
of weather to model explanatory power that exceeded 5%. Overall, 120 of 1102 grid-
cells in the full variable set (10%), and 55 out of 1911 grid-cells in the reduced variable
set (3%) had contribution of weather scores that exceeded 5%. Thus, even in models
that consider spatial heterogeneity in contribution of weather to population growth

rate, contributions of weather are still typically low.

There were weak but statistically significant linear associations between contribution
of weather and longitude for both model sets (full variable set- Fy, 33.00= 9.92, P=0.003;
reduced variable set- Fi 5024=4.61, P=0.037; Table S2). This amounts to a difference
of 2.6% across the modelled longitudinal range in the full model set and 1.0% in the
reduced model set, such that variation in population growth was marginally better

explained by weather variables in Eastern Europe (Figure S6; Table S2). By

88



comparison, there were no statistically significant associations with latitude (Figure

S6; Table S2).

(a) Full variable set
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Figure 4 Histograms of contribution of weather terms to models across all species. The

upper panel displays the frequency distributions for the full variable set, while the lower

panel is for the reduced variable set. The dashed line at O indicates the level at which

addition of weather terms did not improve the explanatory capacity of the model (i.e.

residual variance was identical in the null and the model containing weather terms). The

red line indicates the mean contribution of weather across all species, for each model set.
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Figure 5 Histograms of the predictive capacity of models, across all species. The upper
number on the x-axis gives the standard deviation (0,,), while the intervals below these
represent the corresponding 95% predictive interval, based on this value. The red line

corresponds to the average predictive uncertainty in each set.
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Table 1 Coefficient estimates and model R? for analyses of associations between contribution of weather scores and species’ traits.

(a) full-variable set (b) reduced-variable set
Coefficient Estimate 95% C.IL. P-value Estimate 95% C.I. P-value
Intercept 0.037 (0.009, 0.066) 0.011 0.026 (0.008, 0.045) 0.006
Log(body mass) -0.001 (-0.006, 0.003) 0.600 -0.002 (-0.005, 0.001) 0.114
Multibrooded 0.002 (-0.009, 0.014) 0.698 0.006 (0.000, 0.013) 0.068
LD migrant -0.004 (-0.016, 0.008) 0.518 -0.001 (-0.008, 0.005) 0.686
Life span 0.000 (-0.001, 0.001) 0.478 0.000 (-0.001, 0.000) 0.459
Diet: vertebrate 0.004 (-0.010,0.019) 0.546 0.006 (-0.002,0.015) 0.161
Diet: invertebrate -0.003  (-0.016,0.011) 0.698 0.006 (-0.002,0.014) 0.119
Diet: plant -0.005 (-0.015, 0.006) 0.395 -0.001 (-0.008, 0.005) 0.697
Habitat: forest 0.003 (-0.009, 0.016) 0.583 -0.001 (-0.007, 0.006) 0.859
Habitat: open 0.009 (-0.001, 0.019) 0.084 0.002 (-0.004, 0.007) 0.590
Habitat: aquatic 0.002 (-0.011,0.016) 0.743 -0.003 (-0.011, 0.004) 0.396
2 0.000 (0.000, 0.537) 0.295 (0.000, 0.811)
R? 0.06 0.13
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3.5 Discussion

We present the first continental-scale analysis of the effects of weather on site-level
population dynamics, using breeding bird population data for 153 widespread
European bird species. For the majority of species, we found statistically significant
effects of weather on population growth rates, with approximately equal contributions
across all seasons and for both temperature- and precipitation-based variables.
However, the explanatory contribution of weather terms was typically marginal, with
an average associated improvement in variance explained of less than 3%, even when
using a large suite of weather variables, and allowing effects to vary both regionally and
between species. Variation in the ability of weather to explain site-level population
growth rate was not associated with phylogeny or species’ ecological or life history

traits.

We do however find a weak association between the importance of weather and
longitude across both sets of models. Effect sizes are however small, and overall
explanatory contributions remain low even when within-species spatial variation is
considered. It is possible that the limited geographical association we observe owes in
part to the fact that these coordinates are not standardised relative to the range limits
of each species (i.e. as they were in Chapter II). By failing to do this, a given latitude
or longitude could lie close to the range limits for one species but far from the range
limits of another, and we would therefore not expect to see a shared response across
these. It is important to note however that this fact is very unlikely to affect our
conclusions about limited geographical pattern, due to the fact that almost all cases
(species:200km grid cell combinations) continue to have very limited explanatory
contributions of weather (<5% model improvement), even after allowing these to vary
spatially. Consequently, even if it was the case that the most sensitive regions were
consistently towards range edges, the conclusion would still be that weather appears

to play a weak role in driving variation in abundance, relative to other processes.
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There are three broad sets of explanations for these results. First, impacts of weather
on population growth rates may only be weakly captured by generic phenomenological
models that use ‘off-the-shelf covariates (Knape & de Valpine 2011) and do not
incorporate population detail such as age-structure or timing of life-history events.
Second, unquantified census error may contribute substantially to observed population
growth rates, limiting the explanatory capacity of weather. Third, inter-annual site-
level population growth rates may be driven in large part by non-climatic factors, such
that weather plays a relatively weak regulatory role at present. We discuss each of these
in turn, and their implications for future work on the population impacts of weather

and climate.

3.5.1 Phenomenological models and complex weather drivers

There has been extensive debate over the extent to which drivers of population
dynamics can be captured in the absence of demographic or other population detail
(Knape & de Valpine 2011; Boggs & Inouye 2012). In particular, this has focussed on
the role of complex demographic responses, which are well documented (Benton ez a/.
2006; Cleasby ez al. 2017), but population detail can prove critical in a number of other
ways. For example, detailed knowledge of how the timing of weather events coincides
with the life-history events such as breeding or fledging (Hallett e a/. 2004; Benton ez
al. 2006) and interactions with habitat (Nicole ez a/. 2011; Oliver & Morecroft 2014)
can also be crucial in order for a statistical model to adequately resolve weather drivers.
Similarly, where weather drivers act via indirect pathways, information on the

mediating variable can be essential to understanding weather impacts (Boggs & Inouye

2012; Ogilvie ez al. 2017).

Collecting this level of population detail across any wide spatial extent would require
a substantial, if not insurmountable, increase in surveying effort. If it is the case that
models that contain high levels of demographic detail or otherwise invoke intricate
mechanistic detail are required to adequately capture weather impacts on population
growth, then large survey datasets may be ill-suited to the task due to their inability to

resolve critical population processes.
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Despite the apparent importance of including mechanistic detail in statistical models
of weather impacts on population dynamics (Knape & de Valpine 2011), there is
relatively little research that directly addresses how the costs to explanatory capacity
accumulate as lower levels of population detail are included (though see Coulson et al.
2001 as an example of this). Developing a stronger understanding of these trade-offs
seems a particularly important avenue of exploration if we are to understand the
inherent limitations of population growth models that do not incorporate context-
specific (e.g. demographic age-structure or local habitat) detail. In particular,
identifying critical features that explanatory capacity hinges upon would be useful for
(i) determining whether, given the constraints of a particular dataset, there is the
potential for informative models of inter-annual growth, and (ii) directing efforts for

obtaining additional information to incorporate into statistical models.

3.5.2 Unquantified census error

The growing availability of population time-series increasingly allows for ecologists to
investigate drivers of population change. However, a recurring difficulty comes in the
form of census error (i.e. inaccurate estimates of population size), the magnitude of
which is often unknown (Freckleton ez a/. 2006; Lindén & Knape 2009). While census
error should not in principle bias estimates of environmental effects (though see
Lindén and Knape 2009), if the proportion of variance in growth rate arising through
census error is high, then weather terms will have only a weak capacity to explain
growth rate, irrespective of their underlying importance. It is difficult to directly assess
the extent to which this contributes to the results observed here, but census error can
be large in breeding bird surveys, e.g. 70% of the variation in American Redstart
(Setophaga ruticilla) abundance in the North American BBS is attributable to census

error (Dennis e al. 2006).

While methods exist that attempt to partition observed variation into observation and
process error, these are typically difficult to fit and estimates of the respective variance
terms can perform poorly (Dennis et al. 2006, Knape and de Valpine, 2012; Auger-
Méthé et al. 2016). Estimating census error from time-series directly is thus

considerably problematic; the median time-series length at any individual site in the
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datasets used here is nine years, and thus estimates of census error would have to be
estimated across multiple sites, schemes, habitat-types, etc. It is not clear that census
error should be consistent across these various groupings, and choosing an adequate
observation model can be critical to obtaining sensible estimates of uncertainty (Knape
et al. 2011). A more robust approach would be to directly assess the magnitude of
census error through replicated sampling of populations, and to explore the
implications of the various sampling methods employed by a particular scheme (Brian
et al. 2010). This would allow for the contribution of census error to be partitioned
out, which would enable much stronger conclusions to be made about the relative

support that different models of population growth receive.

Importantly, while an alternative response to the issue of substantial and unquantified
census error might be to average away census error to coarser-scale regional or national
units and model these annual averages instead (e.g. Pearce-Higgins ez a/. 2015), these
approaches do not appear to resolve the issues that we describe here, and, where
reported, explanatory capacities also appear generally low (Jorgensen e al 2015;
Martay et al. 2017; Bowler e al. 2018). This likely arises in part due to the loss of
information incurred as explanatory variables are aggregated to a more coarse-scale
regional index. While the result is a less variable abundance measure, the
corresponding costs seem to negate the improvement in explanatory capacity that

might otherwise be achieved.

3.5.3 Non-climatic drivers of population growth

Non-climatic drivers are also likely to be involved in population regulation. Over the
last 30 years, numerous non-climatic changes have also occurred within Europe, many
of which have been implicated in population change. These include factors such as the
increased application of pesticides and other factors linked to agricultural
intensification (Hallmann ez a/. 2014), change in landscape management (Jorgensen ez
al. 2015), and release from historical persecution (Lorrilliere ez a/. 2010). Non-climatic
factors such as these are not captured by our population growth models, and, indeed,
they are difficult to capture at the annual resolution required for such a model.

However, factors such as these are likely to be involved in population regulation and
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could outweigh the effect of weather on populations (Maxwell ez a/. 2016), and are

therefore likely to contribute, at least in part, to the results we observe.

3.5.4 Conclusion

Understanding and predicting population responses to changes in weather conditions
is critical for assessing and responding to the impacts of climate change on biodiversity.
Survey datasets that cover wide spatial and taxonomic extents offer much opportunity
to address these questions, and indeed may be necessary if we are to make general
inferences about how populations will respond to changing climatic conditions. To
date, these schemes have demonstrated great utility in understanding climate change
impacts on species (e.g. Oliver ez al. 2015; Stephens ez al. 2016; Urban ez al. 2016),
and documenting contemporary population trends of European birds (Inger ez /.
2015). However, our work here on birds, along with that on a diversity of other taxa
(Coulson ez al. 2001; Knape & de Valpine 2011; Boggs & Inouye 2012), indicates that
not only are there important challenges that need resolution before datasets of this
form can be usefully employed to predict how population growth rates respond to
varying weather conditions and climate change, but also that there may be general
constraints on the capacity of these models to achieve this goal. While the statistical
signal that we detect indicates that climate is influencing European bird populations,
it is important to recognise that at present, for many species, models that include no
weather effects at all have a similar capacity to explain population growth as models
that contain large sets of weather variables. Our results highlight the importance of
considering explanatory capacity of weather terms rather than focussing solely on their
statistical significance and also suggest a need to develop a greater understanding of
the contribution of census error in order to understand the relative importance of

various drivers of population growth.
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3.7 Supplementary material
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(b) Reduced variable set . . . . . . . . . .E. . . . . .

Year r Year #+]
Figure S1 Schematic of periods used in models (black squares), with approximate breeding
season sampling periods indicated above. Note that in the case of the reduced variable set,
the black squares indicate the breeding season and overwinter periods, which the maximum

and minimum monthly tempera’ture averages and precipitation sums were taken from.
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Figure S2 Histogram of P-values for all weather coefficients across all models, for each variable in the full variable set.

Column widths are 0.05 and dashed line indicates the corresponding uniform null expectation.
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dataset (ECAD; dark blue, solid). In the centre panel, the dashed line at 0 indicates the level
at which addition of weather terms did not improve the explanatory capacity of the model (i.e.
residual variance was identical in the null and the model containing weather terms). In the
lower two panels, lines indicate the mean contribution of weather and the mean predictive
uncertainty respectively, when using the UKCP09 dataset (light green) and the ECAD dataset
(dark blue); note that in the bottom panel, the lines overlap with the green line sitting behind

the blue.
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Figure S5 (overleaf) Break down of spatial contribution of weather terms by species, for (a)

reduced variable set models and (b) full variable set models. Scientific names are given in Table

S3.

(a) full variable set (c) reduced variable set
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significant associations exist (see Table S2), these are represented by the red lines.
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Table S1 Breakdown of temporal coverage of data for each scheme.

Country Firstyear  Lastyear  Year range

Belgium 1990 2014 24
Czechia 1982 2013 31
Denmark 1976 2013 37
Estonia 1983 2013 30
Finland 1975 2013 38
France 1989 2014 25
Germany 2005 2014 9
Netherlands 1990 2014 24
Spain 1998 2014 16
Sweden 1975 2014 39
UK 1994 2014 20

108



Table S2 Results for model comparisons between spatial contribution of weather terms and models with varying latitudinal and longitudinal associations

(no association, 1&3; linear association, 2&#4; quadratic association, 3&6). F-statistics and associated degrees of freedom (df) and P-values (calculated with

Kenward-Roger correction) are calculated for each successive addition of terms. Potential longitudinal associations are controlled for while making

latitudinal comparisons and vice-versa (as higher latitudes are typically only observed at higher longitudes also), and statistical non-independence of species

and grid-cell contribution of weather scores is controlled for with random effects placed on these factors (1|species) + (1|grid-cell). Statistically significant

associations at the 5% level are highlighted in bold.

(a) full variable set

(b) reduced variable set

Model F-statistic  df P F-statistic  df P

(1) lon + lon?+ (1]species) + (1|grid-cell) - -

(2) lat + lon + lon?+ (1]species) + (1|grid-cell) 2.62 4090 0.113 3.13 5131 0.083
(3)lat?+ lat+ lon + lon?+ (1]species) + (1|grid-cell) 0.00 42.38 0.959 245 5253  0.123
4) lat + lat? + (1|species) + (1|grid-cell) - -

(5) lon+ lat+lat®+ (1|species) + (1|grid-cell) 9.92 3390 0.003 461 50.24 0.037
(6) lon? + lon+ lat+lat’+ (1|species) + (1|grid-cell) 2.45 5253 0.123 0.20 64.43  0.656
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Table S3 Scientific names of all breeding bird species incorporated in analyses.

Species

Latin binomial

Bee Eater
Black-headed Gull
Black-tailed Godwit
Black-throated Diver
Black Grouse

Black Kite

Black Redstart
Black Woodpecker
Blackbird

Blackcap

Blue Tit

Bluethroat
Bullfinch

Buzzard

Carrion Crow
Cetti's Warbler
Chaffinch
Chiffchaff

Cirl Bunting

Coal Tit

Collared Dove
Common Gull
Common Redpoll
Common Rosefinch
Common Sandpiper
Common Tern
Coot

Cormorant

Corn Bunting
Crane

Crested Lark
Crested Tit

Cuckoo

Curlew

Dunnock
Fan-tailed Warbler
Fieldfare

Firecrest

Merops apiaster
Chroicocephalus ridibundus
Limeosa limosa
Gawvia arctica

Tetrao tetrix
Milvus migrans
Phoenicurus ochruros
Dryocopus martius
Turdus merula
Sylvia atricapilla
Cyanistes caeruleus
Luscinia svecica
Pyrrbula pyrrbula
Buteo buteo

Corvus corone

Cettia cetti
Fringilla coelebs
Phylloscopus collybita
Emberiza cirlus
Periparus ater
Streptopelia decaocto
Larus canus
Carduelis flammea
Carpodacus erythrinus
Actitis hypoleucos
Sterna hirundo
Fulica atra
Phalacrocorax carbo
Emberiza calandra
Grus grus

Galerida cristata
Lophophanes cristatus
Cuculus canorus
Numenius arquata
Prunella modularis
Cisticola juncidis
Turdus pilaris
Regulus ignicapilla
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Gadwall

Garden Warbler
Garganey

Goldcrest

Golden Oriole
Goldeneye
Goldfinch

Goshawk
Grasshopper Warbler
Great Crested Grebe
Great Spotted Woodpecker
Great Tit

Green Sandpiper
Green Woodpecker
Greenfinch

Grey Heron

Grey Partridge

Grey Wagtail
Greylag Goose
Hawfinch

Herring Gull

Hobby

Hooded Crow
Hoopoe

House Martin

House Sparrow
Icterine Warbler
Jackdaw

Jay

Kestrel

Lapwing

Lesser Black-backed Gull
Lesser Redpoll
Lesser Spotted Woodpecker
Lesser Whitethroat
Linnet

Little Bustard

Little Grebe

Little Owl
Long-eared Owl

Anas strepera
Sylvia borin

Anas querquedula
Regulus regulus
Oriolus oriolus
Bucephala clangula
Carduelis carduelis
Accipiter gentilis
Locustella naevia
Podiceps cristatus
Dendrocopos major
Parus major

Tringa ochropus
Picus viridis

Chloris chloris
Ardea cinerea
Perdix perdix
Motacilla cinerea
Anser anser
Coccothraustes coccothraustes
Larus argentatus
Falco subbuteo
Corvus cornix
Upupa epops
Delichon urbicum
Passer domesticus
Hippolais icterina
Corvus monedula
Garrulus glandarius
Falco tinnunculus
Vanellus vanellus
Larus fuscus
Carduelis cabaret
Dendrocopos minor
Sylvia curruca
Carduelis cannabina
Tetrax tetrax
Tachybaptus ruficollis
Athene noctua

Asio otus
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Long-tailed Tit
Magpie

Mallard

Marsh Harrier
Marsh Tit

Marsh Warbler
Meadow Pipit
Melodius Warbler
Middle Spotted Woodpecker
Mistle Thrush
Moorhen

Mute Swan
Nightingale
Nuthatch
Opystercatcher
Pheasant

Pied Flycatcher
Pied/White Wagtail
Pochard

Quail

Raven

Red-backed Shrike
Red-legged Partridge
Red Grouse

Red Kite

Redshank

Redstart

Redwing

Reed Bunting

Reed Warbler
Robin

Rook

Sand Martin

Savi's Warbler
Sedge Warbler

Serin

Shelduck
Short-toed Treecreeper
Shoveler

Siskin

Aegithalos caudatus
Pica pica

Anas platyrbynchos
Circus aeruginosus
Poecile palustris
Acrocephalus palustris
Anthus pratensis
Hippolais polyglotta
Dendrocopos medius
Turdus viscivorus
Gallinula chloropus
Cygnus olor

Luscinia megarhynchos
Sitta europaea
Haematopus ostralegus
Phasianus colchicus
Ficedula hypoleuca
Motacilla alba

Aythya ferina
Coturnix coturnix
Corvus corax

Lanius collurio
Alectoris rufa

Lagopus lagopus
Milvus milvus

Tringa totanus
Phoenicurus phoenicurus
Turdus iliacus
Emberiza schoeniclus
Acrocephalus scirpaceus
Erithacus rubecula
Corvus frugilegus
Riparia riparia

Locustella luscinioides

Acrocephalus schoenobaenus

Serinus serinus
Tadorna tadorna
Certhia brachydactyla
Anas clypeata

Carduelis spinus
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Skylark

Snipe

Song Thrush
Sparrowhawk
Spotless Starling
Spotted Flycatcher
Starling

Stock Dove
Stone-curlew
Stonechat
Swallow

Swift

Tawny Owl
Teal

Thrush Nightingale
Tree Pipit

Tree Sparrow
Treecreeper
Tufted Duck
Turtle Dove
Water Rail
Wheatear
Whinchat
White Stork
Whitethroat
Willow Tit
Willow Warbler
Wood Warbler
Woodcock
Woodlark
Woodpigeon
Wren

Wryneck
Yellow Wagtail

Yellowhammer

Alauda arvensis
Gallinago gallinago
Turdus philomelos
Accipiter nisus
Sturnus unicolor
Muscicapa striata
Sturnus vulgaris
Columba oenas
Burhinus oedicnemus
Saxicola rubicola
Hirundo rustica
Apus apus

Strix aluco

Anas crecca

Luscinia luscinia
Anthus trivialis
Passer montanus
Certhia familiaris
Aythya fuligula
Streptopelia turtur
Rallus aquaticus
Oenanthe oenanthe
Saxicola rubetra
Ciconia ciconia
Sylvia communis
Poecile montana
Phylloscopus trochilus
Phylloscopus sibilatrix
Scolopax rusticola
Lullula arborea
Columba palumbus
Troglodytes troglodytes
Jynx torquilla
Motacilla flava

Emberiza citrinella
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Chapter 4:

Quantifying variation in thermal exposure during focal periods

improves predictions of population growth in UK butterflies
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4.1 Abstract

Aim Developing a robust understanding of the respective roles of climatic means,
variances, and extremes in driving population growth is central to predicting how
populations respond to variation in environmental conditions. Here we address the
relative importance of considering thermal variation acting at fine-temporal scales in

explaining variation in inter-annual population growth.

Location UK
Time period 1974-2016
Major taxa studied Butterflies

Methods We model inter-annual population growth rates of 32 species of UK
butterfly at 460 sites across the UK. We first identify focal periods in which mean
monthly temperature is most strongly associated with population growth, and then ask
how the inclusion of information on the variation in within-month temperatures alters
our ability to predict population growth, while controlling for a number of other
potentially confounding covariates. We further assess whether a simple empirical
model of population growth in which population growth is simply the average of

responses to daily temperature exposures can explain differences in model predictive
capacity.

Results For the majority of species, we find that inclusion of information on standard
deviation of weather variables substantially enhances our ability to explain inter-annual
population growth, and the biological significance of these terms can be substantial.
We further find that the predictive capacities of the simple empirical models are
limited, and typically do not outperform models that contain mean monthly

temperatures alone.

Main conclusions The key implication of our results is that thermal variation at fine
temporal scales appears to be involved in population regulation, and failure to
incorporate this biologically relevant variation in temperature limits the capacity of

models to explain variation in abundance. The finding that these model improvements
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cannot be understood as arising through a simple accumulation of daily exposures
indicates that the drivers of population growth may be difficult to characterise and

suggests a role for more complex non-linear responses to thermal extremes.
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4.2 Introduction

There is much interest in the respective roles of climatic means, variances, and
extremes in determining population performance, not least to understand how climate
change impacts populations (Thompson e# a/. 2013; Harris ez a/. 2018). While means
capture the average conditions experienced at a particular location, they are limited in
their capacity to index the full set of climatic events that a population is exposed to, as
they contain no information about the width of the climatic distribution, or where the
upper and lower extremes of the distribution lie. Considering climatic means alone
when assessing population responses to climatic conditions is problematic, as even
short-lived and infrequent events can have substantial impacts on population
performance, and it is the full set of climatic events that a particular population
experiences that is likely to determine population performance (Scheffers ez al. 2014;
Sunday ez al. 2014). Furthermore, as climate change can involve many distributional
changes beyond simple shifts in mean climatic conditions (Huntingford ez a/. 2013),
it is important to develop a holistic understanding of how populations respond to
changes in climate regimes that act at fine temporal scales, in order to forecast
adequately how populations will respond to changes occurring across the full climatic

distribution and into the future.

Considering the full climatic regime that a population experiences is particularly
important when there are non-linearities in how populations respond to climatic
variation (Vasseur e al 2014; Lawson ef a/ 2015). When there are non-linear
responses, how an organism or population responds cannot be understood in terms of
the mean alone, as response depends upon the full set of exposure events (Martin &
Huey 2008). Considering the climatic regime as a whole, rather than just what
conditions are like on average, can considerably alter the predicted behaviour of
biological systems, and can change long-term predicted population growth rate
(Lawson ez al. 2015), optimal thermal environment and organism behaviour (Martin
& Huey 2008), species performance and distribution limits (Kingsolver ez a/. 2013;
Sunday ez al. 2014), predicted responses to climate change (Deutsch e al 2008,;

Vasseur ez al. 2014) and rate of disease transmission (Paaijmans ez a/. 2010).
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Importantly, the effect of changing climatic regimes can be complex and is likely to be
difficult to characterise (Sinclair ez a/. 2016). If we consider temperature specifically, a
common approach is to construct a thermal performance curve (TPC) from in vivo
experiments (e.g. Vasseur ez a/. 2014), and, from this, forecast how changing thermal
regimes will alter the functional response of an organism, population, or species (e.g.
Lawson e al. 2015). These forecasts are based on the assumption that the overall
response is the average (or weighted sum; Martin & Huey 2008) across the response
to finer scale exposure events (Ruel & Ayres 1999), and that the TPC is fixed (i.e.
does not vary across different thermal regimes). According to this, when the response
function is convex, increasing fine scale variation in temperature (e.g. in daily
measurements that contribute to the mean measure, such as monthly or seasonal
mean) enhances performance, while the opposite is true when the response is concave
(following Jensen’s inequality; see Figure 1a). Crucially however, the assumption that
response curves are static across thermal regimes (i.e. there is no intra-specific
variation) is, in many situations, unlikely to hold. There are numerous biological
mechanisms that can cause the TPC to vary, including local adaptation (Williams ez
al. 2015), physiological acclimation (Dowd ez a/. 2015), behavioural plasticity (Buckley
et al. 2015), and the occurrence of lethal exposures (Martin & Huey 2008; for review,
see Sinclair et al. 2016). To illustrate the effect of just one of these, we pick an example
in which there is a threshold that results in population extirpation when exceeded
(Figure 1b). Thus, while we expect that considering the full thermal regime to which
a population is exposed will improve our ability to explain observed variation in
abundance, it is difficult to articulate a precise expectation about how thermal variation

will modify the response to temperature in natural populations.

Here, we assess whether the inclusion of terms that capture the full range of thermal
conditions that a population experiences improves the capacity of inter-annual
population growth models to explain variation in abundance. We further assess
whether these responses can be understood as a simple accumulation of daily

exposures, as would occur if there is a fixed, shared TPC and the overall response is
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just the average across these, or whether associations with temperature are indicative

of more complex responses to variation in temperature.

Using abundance datasets for 32 species of UK butterfly, spanning four decades and
over 450 sites, we first identify focal periods in which temperature is most strongly
associated with population growth. This first step of identifying monthly periods to
focus on was carried out on the basis that we are interested in how inclusion of
information on the thermal variation can affect the predicted population response.
Across the life-cycle of a butterfly there are many periods in which population growth
is relatively unaffected by variation in thermal conditions. We would a priori expect
that including information on thermal variation would not affect population growth
during such periods. By instead focussing on months in which thermal conditions
appear involved in population growth we are better able to address whether or not
fine-scale thermal variation is able to- at least in some cases- improve the predictive
capacity of population growth models. Following this selection step, we assess whether
including terms that measure the width of the thermal distribution (standard
deviation) for these periods enhances our ability to predict population growth, beyond
considering the average alone. Finally, we ask whether a model in which population
growth is just the average of population responses to daily temperatures, assuming a
fixed TPC, can explain population growth rate as well as the previously applied models
containing monthly means and standard deviations, or whether the SD associations

that we observe are indicative of more complex forms of response to thermal variation.
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Figure 1 Two hypothetical examples of how varying thermal regime (normally distributed,
with changing mean and SD, o) alters population response when (a) there is a shared thermal
performance curve (TPC) that is not modified by factors discussed in text, and (b) when there
is a threshold-temperature (at 21 °C), which, if exceeded, results in population extirpation. In
this latter model, the population response now partially depends on whether an event that
exceeds this temperature threshold occurs, and the population response is therefore not
captured by simply averaging over the response curve observed when o=0. This varying
response drives the discrepancy between upper and lower panels (see Appendix for full details).

The black dashed lines indicate population response when SD is 0.

4.3 Methods

4.3.1 Datasets

Daily temperature data were extracted from the UKCP09 dataset, a 5-km resolution
gridded dataset of interpolated daily temperatures since 1950 (Perry & Hollis 2005).
Daily temperature data for butterfly monitoring sites were extracted and, for each year,
monthly temperature means (Mean “C) and standard deviations of each month (SD
°C) were calculated. Site elevations were calculated from the Shuttle Radar
Topography Mission dataset (SRTM; 1-Arc second, ~30m resolution; Farr e# al.

2007) by averaging across cells falling within a 50 metre buffer of site coordinates.
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Butterfly population data were obtained from the UK Butterfly Monitoring Scheme
(UKBMS; Pollard & Yates 1993), and, for each species, annual site-level abundance
indices were generated using the methods outlined in Dennis e a/. (2013). Briefly,
throughout spring and summer, each site is visited weekly and butterflies are counted
using a standardised Pollard-walk methodology. Butterfly abundance varies markedly
over the course of the season, characterised by a flight-curve; for species with just a
single generation per year (univoltine) there is a single flight curve, while for species
with multiple generations per year (multivoltine) there are multiple flight curves. The
index of abundance is a measure of the area under the flight curve(s), and therefore
corresponds to a single generation in the case of univoltine species, or is the abundance
aggregated across multiple generations in multivoltine species. In principle the status
of a species (univoltine or multivoltine) should not matter for the question we address
here. However, we do later plot coefficient estimates for univoltine and multivoltine

species to assess whether there are systematic differences between the two.

For each species, sites with fewer than 10 data points (i.e. a count in year t and year
t+1, at least one of which is non-0) were removed prior to analysis, and, following this,
species with fewer than 50 sites (and therefore at least 500 datapoints) were removed,
as were 3 species that are long-distance immigrants to the UK (Red Admiral, Vanessa
atalanta, Clouded Yellow, Colias croceus, and Painted Lady, Vanessa cardui), to leave
32 species. Retained sites have a spatial distribution given in Figure 2 (for individual
species plots see Figure S1), and a temporal coverage from 1974-2016 (the number of
data points, number of sites, year range of modelled data and species’ scientific names

are given in Table S1).
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Easting

Figure 2 Distribution of sites contributing to analyses (for site distributions of individual

species see Figure S2).

4.3.2 Identifying focal time periods for temperature effects

For each individual species, we first identified periods for which temperature was most
strongly associated with population growth. Temperature can be involved in regulating
population growth across multiple stages of the life-cycle (Roy ez a/. 2001; Mills ez al.
2017). Here, rather than attempting to characterise the full set of temperature drivers
of population growth, to address our key questions we identified a single period for
each species in which temperature is most strongly associated with population growth.
We opted to focus on monthly temperature variables which is a frequently-used
temporal resolution within which to assess weather impacts on population change (e.g.
Roy et al. 2001; Pearce-Higgins e al. 2015; Fenberg ez al. 2016; Dennis e al. 2017),
often under the implicit-assumption that population responses will be similar at finer

temporal resolutions. To identify focal weather variables for each individual species,
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we constructed a series of models that each contain just a single monthly temperature

variable (formula 1);
rgr ~ log(N[t-1]) + Mean[i] + (1|siteID) + error 1)

Where 7gr is the relative growth rate, /og(NJt]) — log(N[t-1]), Meanli] is the ith
monthly mean temperature variable, drawn from months between January in year t
and August in year t+1. The model also contains a randomly varying site intercept,
(1]siteID), as well as a lag-1 density term to control for non-independence of counts

in consecutive years (i.e. arising through a density-dependent response).

For each species, the models for different temperature periods were then ranked
according to their Watanabe-Akaike Information Criterion score (WAIC; Gelman ez
al. 2014). WAIC acts similarly to AIC (and any other information criterion), by
indirectly trying to measure the out-of-sample predictive accuracy of a model, by
measuring the improvement in predictive accuracy while penalising for the effective
number of parameters in a model. It is however fully Bayesian, because it is estimated
with a posterior density in addition to the point-estimate, which is useful for model
comparison as it captures posterior uncertainty (unlike AIC or DIC). WAIC is
implemented in R, using the /oo package (Vehtari ez al. 2016); for further details see
(Gelman ef al. 2014a; Vehtari ez al. 2016). For each species, the month whose
statistical model had the lowest WAIC score was selected and this was then used in
subsequent modelling. Each species’ selected coefficient is displayed alongside species

names in all figures and also given in Table 1.

4.3.3 Assessing contribution of standard deviation terms to model performance

The additional contribution of standard deviation terms was assessed through the
change in WAIC (AWAIC ) resulting from the addition of standard deviation as both
a main effect (i.e. intercept) and an interaction with mean monthly temperature
(formulas 2 and 3 respectively). We consider both interactions and main effects of SD,
as the effects of variation could plausibly be represented in either of these terms (see
Figure 1). Negative AWAIC values indicate that the inclusion of SD terms increase

the predictive capacity of the model, and, as a Bayesian statistic, we can calculate the
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proportion of the AWAIC posterior that is >0. This proportion is the probability that
the inclusion of SD-terms only spuriously improve model predictive capacity. To give
an example, a value of 0.1 would indicate that 10% of the posterior was positive, or the
model assigns a 10% probability to the inclusion of standard deviation terms worsening

model performance (McElreath 2016).
rgr ~ log(N[t-1]) + Mean[s] + (1|siteID) + error (2)
rgr ~ log(N[t-1]) + Mean[s] + SD[s] + Mean[s]* SD[s] + (1]siteID) + error (3)

Where Mean[s] and SD[s] are the model-selected monthly temperature variables
from the previous step. We also fitted an additional set of models that included
Northing and Easting (British National Grid datum; BNG), site elevation, and
interactions between these and mean temperature effects, (i.e. ... + Easting +Northing
+ site elevation + Easting:mean + Northing:mean + elevation:mean), to ward against
potential confounding associations with any of these ‘nuisance’ variables. We present

these results alongside the models that do not contain these terms.

Across all models, coefficients were supplied with either flat or diffuse priors that
provide negligible prior information to the model. Specifically, fixed effect coefficients
have uniform priors across all real numbers, while site random intercepts have students
t-distribution centred at 0 with 3 degrees of freedom and a standard deviation of 10.
As models are expressed as log-growth rate, and a site has at least 10 years of data,
site-level intercepts can in reality only take substantially smaller values than implied
by this prior, so this prior is non-informative in the context of these models. All models
were run across 4 chains for 10000 iterations, with the first 5000 discarded as the burn-

in period, and convergence was checked using R-hat diagnostics.

4.3.4 Assessing performance of a daily-temperature model

Following the above procedure, we assessed whether any improvements in model
explanatory capacity, generated by the addition of SD terms, could be explained by a
model in which the realised population response arises through the simple
accumulation of effects of shorter-term exposure events, i.e. as would occur under
Jensen’s inequality.
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A model using monthly temperature is given in formula 2. To model daily
temperatures, rather than the monthly average, we use the daily temperatures extracted

from the UKCPO09 dataset directly, incorporating them as:
rgr ~ log(N[t —1]) + %Zlivﬂ f(T;) + (1]siteID) + error 4)

Where f(Ti) describes the response to the i-th daily temperature, and it is the average
of these daily responses that describes the overall population response. This is thus
equivalent to the formulations described in Vasseur e# a/. (2014), but is summing across
empirical exposures rather than integrating across a continuous density function. We
opted to treat the functional form as f(T;) = by * T; + b, * T, i.e. quadratic. Using

this, formula 4 can be simplified to:

rgr ~ log(N[t — 1]) + b; T + b,T? + (1 |siteID) + error (5)

Where T is the mean of daily temperatures and T2 is the mean of squared daily
temperatures (note the distinction between this and the square of mean daily

temperature).

When b, is < 0, on the un-logged scale (i.e. N,) this temperature response function
corresponds to a symmetrical bell-shaped curve. As values of b, > 0 can readily generate
biologically implausible shapes (it is difficult to find a theoretical justification for
climatic associations that are not either monotonic or unimodal; Austin 2002), we
constrain these values to be negative by placing an upper bound of 0 on the prior

distribution of this variable (thus constraining b, to be less than 0).

All analyses were all carried out in the R programming environment (version 3.4.4)
and all code is available at github.com/SimonCMills/mean-variance. Models were

implemented in Stan (version 2.17.0) via rstan (Carpenter ef al. 2017) and brms

(Biirkner 2017).
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4.4 Results

Including standard deviation terms (both as an interaction with mean temperature and
as a main effect) improved the predictive capacity of models across the vast majority
of species, with 25 out of 32 species having AWAIC<0 in both models that controlled
for additional covariates and those that did not (Figure 3). The magnitude of
improvement varied substantially across species, and in many cases the model
improvement was quite minor, such that only 17 of 32 (53%) of species had less than
5% of the AWAIC posterior >0 (for both corrected and uncorrected models; i.e.
indicating that SD term inclusion significantly improved model performance). For the
remaining 15 species, where the AWAIC posterior substantially overlaps 0, the
inclusion of SD terms did little to improve model predictive capacity and there was
relatively little to distinguish the predictive capacity of this model from that of the

more parsimonious model that contains just the average monthly temperature.

The specific coefficient estimates for SD-terms were quite variable across species, with
SD effects reflected in both the intercept- and interaction-terms (Table 1 and Table
S2). There was no clear pattern to the values that the individual coefficient estimates
take, with no clear covariation between coefficient estimates and voltinism, mean-
temperature effect, or the timing of the focal period (spring, summer, autumn, or
winter; Figure S4). Further, coefficient estimates for both the main SD effect and the
mean:SD interaction are clustered around zero, with no general tendency towards

being positive or negative.

The biological significance of including SD effects can however be quite substantial.
For example, in small tortoiseshell Aglais urticacae, inter-annual population growth is
considerably sensitive to variation in SD, and variation in the width of the thermal
distribution can drive substantial variation around the mean-only predicted growth
rates (comparison between points and black line). For two populations experiencing
an identical mean temperature (e.g. 0, centred scale), one could be experiencing a
substantial decline (predicted growth rate = 0.75) while the other could be
experiencing a substantial increase in population size (predicted growth rate > 1.25),

depending on the SD-value for that month (Figure 4). For a species with more
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moderate model improvement from SD-terms, such as small heath, Coenonympha
pamphilus, or small skipper, Thymelicus sylvestris, these effects are less pronounced, but
the predicted growth rate can still vary markedly across the range of SDs (Figure 4).
By contrast, for a species’ model that is not substantially improved by addition of SD
terms, like the dingy skipper, Erynnnis tages, there is little variation in inter-annual
population growth that is not captured by the monthly mean alone (Figure 4). Looking
across all species (Figure S3), there is relatively little in the way of consistent pattern,
with some species showing enhanced sensitivity to temperature with increasing SD,

while some display the opposite pattern of association.

Daily temperature models in which the population response is an average across
individual daily exposures varied in their ability to explain population growth relative
to other models (Figure 5), but overall tended to do less well than the
phenomenological model with monthly mean and SD terms. For 15 species, neither
the daily temperature model nor the mean and SD model significantly outperformed
a mean-only model. Of the remaining 17 species that mean and SD models
significantly improved on mean-only models, just 7 of these also had daily temperature
models that were significantly better than mean-only models (Figure 5). Thus, overall,
daily temperature models typically performed less well than models containing
monthly mean and SD terms. Given the types of functional form observed in Figure
S3, it is not overly surprising that these models do not perform well, due to the
diversity of responses observed across species, and the fact that many of them would
not obviously be explicable with a log-quadratic functional form. We did not explore
more complex functional forms beyond the quadratic model, and it is therefore

important to note that more complex forms may better explain variation in abundance.
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Figure 3 AWAIC scores for each species (Point-estimates and 95% credible interval), for
comparison between a model that contains no SD terms and the model that contains SD
terms. Negative values indicate model improvement, and the numbers on the right hand side
indicate the proportion of the AWAIC posterior density > 0. Red points and text indicate
models that do not control for Easting, Northing, and elevation, while blue indicate those that

do. The temporal period of each species’ focal weather variable is given alongside each species’
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name, indicating the month, and whether this falls in year # (the year of the first count) or year

t+1 (the year of the second count).
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Figure 4 Predicted population growth rates with varying mean temperature and standard
deviation of temperature for four selected butterfly species. Growth rates are measured as
N[t+1]/N[t] when N[t] is fixed at each species’ median abundance (across entire dataset), with
a value of 1 indicating no population change. The overlaid black line is the predicted growth
rate in a model that contains only the mean temperature effect (centred at 0) and does not
contain SD terms. Each point is the model-predicted growth at an observed monthly mean,
coloured by the standard deviation of temperature in that month (colours are discretised purely
for visualisation purposes, but were modelled continuously). The four species are selected to

show a range from one for which SD most improved model performance (small tortoiseshell),
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through to a species for which SD-terms did not improve model performance (dingy skipper;

Figure 3). The full set of species plots (n=32) are given in Figure S2.
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Figure 5 AWAIC scores for each species and modelling approach (y axis: daily temperature
model; x-axis monthly mean&sd model that includes SD as both a main effect and
interaction term). Values in the bottom left quadrant (i.e. AWAIC: daily temperature or
AWAIC: monthly mean&sd are <0) are species for which either the daily temperature
model or the phenomenological model containing SD terms had better model predictive
power relative to a model that contains a mean temperature variable only. Points that are in
the bottom left quadrant, but are above the 1:1 line, show less model improvement in the
daily temperature model than in phenomenological model. Conversely, points that are in
the bottom left quadrant, but are below the 1:1 line indicate species in which the daily
temperature model performance was better than the phenomenological model performance.
Point colour indicates degree of model improvement (relative to the mean-only model).
Black indicates that neither the daily temperature nor the phenomenological model is
significantly better than the mean-only model (“significantly better” defined as <5% of the
posterior >0). Blue indicates that just mean&SD models were substantially better than
mean-only models, while red indicates that both sets of models were significantly better
than mean-only models. The fact that most points are above the 1:1 line, and there are a

lot of blue-shaded points is due to daily temperature models tending to perform less well
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than the phenomenological models. Figure S3 displays AWAIC scores for daily

temperature models in the same format as in Figure 3
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Table 1 Coefficients for temperature terms and summary statistics for models predicting population growth rate containing Mean monthly temperature, SD
of monthly temperature and the interaction between the two. The 95% credible intervals for model coefficients are in parentheses, and bold font indicates where
these do not overlap 0. Mean and SD variables are both centred, and coefficient values for the main effects can therefore be interpreted as the effect when the
other variable is at its mean. Species are ordered according to AWAIC score. Note, models were also fitted with additional control variables relating to position

in geographic range, and summary statistics for these can be found in Table S2

Species Month Mean °C SD°C Mean °C:SD °C R? pWAIC AWAIC RMSE

1. Small tortoiseshell, Aglais urticae Nov[t]  -0.28 (-0.31, -0.26) 0.22(0.18,0.27)  -0.08 (-0.12, -0.04) 039 ~66.6 <01 1.16
2. Large white, Pieris brassicae Dec[t] -0.19 (-0.21,-0.17)  -0.20 (-0.24, -0.17) 0.05 (0.02, 0.09) 0.46 -64 <.01 1.04
3. Green-veined white, Pieris napi Nov[t] -0.14 (-0.16,-0.11)  -0.19 (-0.22, -0.15) -0.01 (-0.04,0.02)  0.39 -61.3 <.01 0.94
4. Orange tip, Anthocaris cardamines Feb[t] -0.06 (-0.08, -0.05) -0.16 (-0.19,-0.12)  -0.02 (-0.04,-0.01) 0.41 -50.9 <.01 0.91
5. Common blue, Polyommatus icarus Apr[t] 0.30(0.27,0.32) -0.07 (-0.14,-0.01)  -0.20 (-0.24,-0.16)  0.42 -43.8 <.01 1.10
6. Brimstone, Gonepteryx rbamni Jul[t+1] 0.08 (0.06, 0.09) 0.15 (0.10,0.19)  -0.05 (-0.08, -0.02)  0.37 -28.3 <.01 0.78
7. Meadow brown, Maniola jurtina Aug[t+1] 0.07 (0.06, 0.08) 0.05 (0.03, 0.08) 0.05 (0.03,0.06) 0.27 -24.4 <.01 0.61
8. Ringlet, Aphantopus hyperantus Aug[t]  -0.04 (-0.06,-0.02) -0.10 (-0.16, -0.04)  -0.05 (-0.08,-0.02)  0.25 -23.7 <.01 0.85
9. Small white, Pieris rapae Nov[t] 0.17 (0.15, 0.19) 0.00 (-0.05, 0.06) 0.06 (0.03,0.09) 0.45 -12 0.01 1.06
10. Small heath, Coenonympha pamphilus Feb[t+1] 0.06 (0.04, 0.09) 0.08 (0.00, 0.15) 0.12(0.08,0.16) 0.17 -17.1 0.02 0.89
11. Small copper, Lycaena phlacas Nov[t] 0.14 (0.12, 0.17) 0.08 (0.02, 0.15) 0.06 (0.02,0.09) 0.39 -11.7 0.01 1.05
12. Large skipper, Ochlodes venata Jun[t+1]  -0.13 (-0.15, -0.11) 0.02 (-0.02, 0.06)  -0.08 (-0.12,-0.05) 0.30 -12.9 0.01 0.94
13. Speckled wood, Pararge aegeria Jun[t]  -0.09 (-0.10, -0.07) -0.02 (-0.05, 0.01) 0.03 (0.02, 0.05) 0.27 -15.1 0.01 0.70
14. Comma , Polygonum c-album Jun[t] 0.09 (0.08,0.11)  -0.07 (-0.11, -0.04) -0.02 (-0.03,0.00)  0.41 -7.8 0.04 0.92
15. Gatekeeper, Pyronia tithonus Jan[t] 0.08 (0.07, 0.09)  -0.06 (-0.09, -0.03) -0.02 (-0.04,-0.01) 0.23 -6.6 0.07 0.73
16. Brown argus, Aricia agestis Jun[t+1] 0.24 (0.20, 0.27)  -0.16 (-0.25, -0.06) -0.01 (-0.07,0.06) 0.41 -5.7 0.04 1.14
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17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

White admiral, Limenitis camilla
Chalk-hill blue, Polyommatus coridon
Marbled white, Melanargia galathea
Small skipper, Thymelicus sylvestris
Silver-washed fritillary, Argynnis paphia
Grizzled skipper, Pyrgus malvae
Small blue, Cupido minimus

Green hairstreak , Callophrys rubi
Peacock, Inachis io

Wall brown, Lasiommata megara
Holly blue, Celastrina argiolus

Purple hairstreak, Neozephyrus quercus
Essex skipper, Thymelicus lineola
Dingy skipper, Erynnnis tages

Dark green fritillary, Argynnis aglaja
Grayling, Hipparchia semele

Apr[t] -0.11 (-0.13, -0.08)

Seplt] 0.22 (0.18, 0.26)
Aug[t+1] 0.13 (0.11, 0.15)
Jan[t]  -0.16 (-0.19, -0.13)
Aprlt] 0.22 (0.19, 0.25)
Apr[t] -0.13 (-0.16, -0.09)
Aug[t]  -0.16 (-0.21, -0.11)
Feb[t] -0.13 (-0.17,-0.10)
Mar[t+1]  -0.18 (-0.20, -0.16)
Feb[t+1]  -0.17 (-0.21, -0.13)
Mar([t] 0.21 (0.18, 0.24)
Jan[t+1] 0.06 (0.02, 0.11)
Sep[t] -0.14 (-0.21, -0.07)
Feb[t] -0.08 (-0.10, -0.06)
Feb[t+1]  -0.13 (-0.18, -0.09)
Nov[t] -0.11 (-0.17,-0.05)

-0.10 (-0.16, -0.05)
-0.21 (-0.34, -0.09)
-0.10 (-0.17, -0.03)

0.07 (0.01, 0.12)
-0.08 (-0.18, 0.02)

-0.09 (-0.17, -0.02)
-0.18 (-0.31, -0.05)

0.02 (-0.05, 0.09)
0.04 (0.01, 0.07)

-0.15 (-0.26, -0.04)

0.02 (-0.06, 0.09)
0.05 (-0.07, 0.17)
-0.06 (-0.18, 0.06)
-0.02 (-0.07, 0.04)
0.03 (-0.05, 0.11)
-0.06 (-0.25,0.12)

-0.00 (-0.03, 0.03)
~0.17 (-0.25, -0.09)
-0.03 (-0.08, 0.01)
-0.07 (-0.12, -0.02)
-0.15 (-0.22, -0.09)
0.03 (-0.04, 0.09)
-0.03 (-0.10, 0.04)
-0.07 (-0.13, -0.01)
-0.04 (-0.07, -0.01)
-0.00 (-0.08, 0.07)
0.04 (0.00, 0.08)
0.03 (-0.03, 0.10)
0.04 (-0.06, 0.13)
-0.01 (-0.04, 0.02)
-0.01 (-0.08, 0.06)
-0.06 (-0.18, 0.06)

0.33
0.23
0.19
0.24
0.30
0.34
0.27
0.41
0.35
0.22
0.46
0.40
0.30
0.33
0.25
0.23

-6.8
-6.4
-5.2
-5.7
-6
-2.5
-2.6
-0.9
-1.4
-0.2
-0.9
0.3

2.2
2.4
2.2

0.05
0.07
0.04
0.06
0.12
0.17
0.19
0.35
0.34
0.47
0.37
0.57
0.50
0.99
>.99
0.98

0.91
0.93
0.82
1.18
0.85
0.93
1.09
1.00
0.81
0.99
1.20
1.10
1.29
0.95
0.98
0.94
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4.5 Discussion

We find that the predictive capacity of population growth rate models is enhanced
when they include information on the range of thermal conditions that a population
is exposed to (the standard deviation of daily temperatures). Models that include
thermal standard deviations can vary substantially in the predictions that they make,
compared to those that contain monthly mean temperature only, improving our ability
to explain observed variation in population growth. Interestingly, however, a daily
temperature model in which the effects of thermal variation arise through the simple
accumulation of exposures on individual days within a given month performed much
more poorly, and tended to be limited in their capacity to explain population growth.
This discrepancy between the two modelling approaches suggests that the link
between temperature variation over short time-scales and change in abundance may
be complex and requires further work to characterise. Overall, these findings suggest
that models of population growth that do not consider thermal variation acting at fine
temporal scales may often overlook biologically relevant effects, and fit into a growing
body of work that highlights the limitations of using coarse climatic averages to
understand population change (McInerny & Purves 2011; Maclean ez a/. 2016; Suggitt
et al. 2018), and the importance of more fully characterising the exposures that a

population directly experiences (Sunday ez a/. 2014; Vasseur ez al. 2014).

While our results suggest that fine-scale thermal variation occurring at sub-monthly
intervals can be important to consider, it is not clear how fine-scale the temporal-
resolution needs to be before there are no further improvements in model
performance. Our thermal distributions were parameterised using daily temperature
means, but these themselves average across even finer-scale variation in temperature.
Thermal events that occur hourly or even sub-hourly intervals may play a role in
determining organism performance (Schefters ez a/. 2014), and it is thus plausible that
there is fine-scale thermal variability that is relevant to population performance but is
not captured by our models. Additionally, while our approach was to calculate standard
deviations of daily temperatures occurring within each month in order to broadly

quantify the width of the thermal distribution, these do not quantify other variation

136



in distribution that might occur, such as skew. These other measures of the thermal
distribution can also alter the response function (Vasseur ez a/. 2014), and it is therefore
possible that our results here overlook further subtleties in the effect that the full

thermal regime has on population growth.

Given that thermal variation at sub-monthly intervals appears important, a natural
question is: why not model daily temperatures directly? Our results suggest that we
should be considering thermal variation that occurs at these time-scales, but also that
it is not clear how daily temperature exposures accumulate to drive variation in
population change. We observe both a diversity of SD associations, with the effects of
standard deviation variables being reflected in both main effects and interaction terms
across different species, with the direction of these effects showing further substantial
variation across species. This variety of response suggests that any single functional

form may be limited in its capacity to explain all of them.

It is particularly intriguing that in some cases the daily temperature model in which
the overall population response is simply the average across daily exposure events does
a reasonable job of explaining population growth in some species, but performs worse
(sometime very poorly) in most species. Given the simplicity of this model- which
assumes that the TPC is symmetrical, it is not entirely surprising, as this functional
form does not have the flexibility to capture the majority of observed responses.
Averaging across a quadratic-type TPC could cause the intercept-term to vary, but
could not generate interaction effects between the mean and standard deviation (see
Figure 4, Lawson ez al. 2015). However, the effects of standard deviation are, for many
species, reflected in the interaction-terms. For a daily-temperature model to generate
this form of association, we would need to consider a more complex functional form,

specifically one in which the second derivative is not constant.

Perhaps more importantly than these questions about the shape of the TPC, the
limited performance of the empirical model suggests that the TPC itself may vary
within a species. Such intraspecific variation would not be captured by any model that

assumes a fixed TPC and this is therefore a likely cause of the results we observe here.
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The question is what factors might cause the TPC to alter? One potential mechanism
is that the TPC is modified by the availability of microclimates, which can act to
modify the temperatures that a population is directly exposed to. Both topography and
habitat can alter temperatures at fine spatial scales, and can generate substantial
microclimatic heterogeneity within a small radius of a site (Suggitt ez a/. 2011; Maclean
et al. 2016). If there is a wide availability of microclimates, populations are likely to be
buffered from climatic effects as they can minimise exposure to sub-optimal conditions
by preferentially selecting for microclimates that maximise performance (Kearney ez
al. 2009). As a consequence, the thermal response of a population is likely to vary
depending upon the availability of microclimates (Oliver ez a/. 2015). A recent analysis
of UK Lepidoptera finds substantial reduction in extinction risk when the availability
of local thermal microhabitats is considered (Suggitt ez a/. 2018). However, these
results could arise either due to a subset of populations being able to persist in sub-
regions of a coarse grid-cell, or through locally-acting buffering effects that allow
populations to persist in situ. The latter is a particularly interesting prospect as it
suggests a strong role for local features to adjust exposure and thus modify long-term
persistence in the face of climate change. Extending the models that we apply here to
consider interactions with landscape variables would enable an assessment of the
importance of local factors in modifying thermal response and would thus be an

interesting next step.

Finally, it is important to note that there are a number of aspects of thermal regime
that we do not consider, but that are likely to be important for population regulation.
Most obviously, both the duration of exposure and sequence of exposure events can
alter how organisms respond to thermal conditions (Sinclair ez a/. 2016). From in vivo
studies of organism performance, it is well understood that duration of exposure
dramatically modifies the effects of temperature on organisms, and temperatures that
are tolerable in the short-term can be lethal over longer time-frames (Rezende ez /.
2014). This can occur both through a simple physiological response, and also due to
chronic impairment of organism function, for example, as might occur over multiple

days of poor weather which prevent foraging or other functions necessary to survival
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(Robinson ez a/. 2007). Similarly, the sequence of events may modify response, for
example as occurs through acclimation or acclimatisation to thermal conditions
(Dowd e al. 2015). Both of these mechanisms amount to there being non-
independence between individual exposure events with the response to the current
thermal challenge depending upon the history of prior exposures. While these
complexities represent difficult modelling challenges (Sinclair ez a/ 2016), the
apparent importance of thermal variation in temperature at fine-temporal scales

suggests that these also represent important avenues of exploration.

Here we find that variation in temperature at fine-temporal scales is relevant to
understanding inter-annual population growth rate. Theoretically such effects are well
understood, but, to date, have had relatively little empirical demonstration (though see
Paaijmans ez a/. 2010) and, to our knowledge, have not been documented in butterflies
previously. Our results identify a role for both variation in temperature as well as the
upper and lower extremes of the thermal distribution in regulating populations
(McDermott Long ez al. 2016), both of which are increasingly the focus of research
efforts (Thompson ez al. 2013). While developing a stronger understanding of the
mechanisms that drive these responses is an important next step, our results show that
even relatively simple additions to the model structure, such as including SD-

interactions can substantially enhance the predictive capacity of models.
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4.7 Appendix

Abundance (or fitness) varies across a thermal gradient according to the Gaussian
tunction, g(7; optimum, scale), multiplied by a constant (=100) . Across all panels in
Figure 1, the scale of the response function is set to 5, with the optimum moving from
20, to 15, to 10, moving from left to right. If the realised abundance response, g, is
just the average across the abundance response at shorter time-scales, then abundance

varies according to:

g(wo) = fg(T)Xpdf(T,u,a)

Where pdf (T, u, 0) is the probability of observing a particular temperature, given p
and o. Assuming that temperatures are normally distributed, the realised temperature
response changes with varying mean p and standard deviation ¢ according to the

curves displayed in Figure 1a.

Alternatively however, if g(T) itself varies across different thermal regimes, i.e. as pu
and/or o change so does g, then this link between response to finer-temporal scale
thermal events and the overall realised response no longer applies. This might occur
in a number of ways, for example, due to physiological adaptation such as hardening,
sequence of thermal events, duration of exposure, or if an extreme exposure results in
widespread mortality or otherwise impaired population function. These all have the
effect of altering the TPC, such that the above equality no longer correctly

characterises the realised population response.

The specific example that we use (in Figure 1b) is when an extreme exposure causes
local extirpation, such that the TPC outside of this extreme exposure no longer applies
(as there is not a population there to experience it). In this case, the expected
abundance response, g, is a mixture of populations that were exposed and thus
extirpated, and populations that were not exposed and thus the TPC still applies. The
relative proportions of these two components depends on the probability of exposure,
with overall response being the sum of g;(T) X Pexposure and g(T) X
(1 - pexposure). As g,(T) is simply 0 (as the population no longer exists), and g, (T)
is identical to g(T) this simplifies to:
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B,0) = [ 97X (1 = Pesposure (14.0)) X pAf (T, ,0)

Now the realised population response diminishes with increasing probability of an
extirpation event occurring. For the purposes of illustrating these changes we use an
exposure threshold of 21°C, so that it lies slightly beyond the range of temperatures
that a population reared ato = 0 experiences. The inclusion of this extirpation
threshold drives the differences between panels (a) and (b) in Figure 1. For the code
used to implement this, see:  https://github.com/SimonCMills/mean-

variance/tree/master/scripts.
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4.8 Supplementary material

Brimstone Brown argus Chalk-hill blue Comma Common blue

{

~

Dark green fritillary Dingy skipper Essex skipper

Large skipper

Easting

Figure S1 Continued overleaf.
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Silver-washed fritillary Small blue Small copper

Purple hairstreak Ringlet

Small white

Small heath

Northing

Figure S1 Retained sites for individual species.
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13. Speckled wood, Jun([t]
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25. Peacock, Mar[t+1]

26. Wall brown, Feb[t+1]

27. Holly blue, Mar[f]
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Figure S2 Predicted population growth rates with varying mean temperature and standard
deviation of temperature for all species. Growth rates are measured as N[t+1]/N[t] when N[t]
is fixed at each species’ median abundance (across entire dataset), with a value of 1 indicating
no population change. The overlaid black line is the predicted growth rate in a model that
contains only the mean temperature effect (centered at 0) and does not contain SD terms.
Each point is the model-predicted growth at an observed monthly mean, coloured by the
standard deviation of temperature in that month (colours are discretised purely for

visualisation purposes, but were modelled continuously). Species are ordered by AWAIC

SCore.
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Figure S3 AWAIC scores for each species (Point-estimates and 95% credible interval), for
comparison between daily temperature model and the model that monthly temperature model.
Negative values indicate model improvement in the daily temperature model relative to the
Mean-only model. The temporal period of each species’ focal weather variable is given
alongside each species’ name, indicating the month, and whether this falls in year 7 (the year
of the first count) or year #+7 (the year of the second count). Ordering is retained from Figure

3.
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Figure S4 Coefficient estimates for SD main effects and mean:SD interaction terms across
species. Points are coloured by (a) the timing of the focal period, (b) voltinism, and (c) by the

value of the mean-temperature coefficient.
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Table S1 Number of datapoints, number of sites, and year range, by species.

Species N(obs.) N(sites) Firstyear  Last year

Meadow brown, Maniola jurtina 8025 459 1974 2016
Large white, Pieris brassicae 7504 430 1974 2016
Small white, Pieris rapae 7379 424 1974 2016
Gatekeeper, Pyronia tithonus 7098 398 1974 2016
Green-veined white, Pieris napi 7008 397 1974 2016
Large skipper, Ochlodes venata 6904 393 1974 2016
Small tortoiseshell, Aglais urticae 6796 394 1974 2016
Common blue, Polyommatus icarus 6795 393 1974 2016
Speckled wood, Pararge aegeria 6661 384 1974 2016
Peacock, Inachis io 6637 388 1974 2016
Comma , Polygonum c-album 6365 362 1974 2016
Ringlet, Aphantopus hyperantus 5829 332 1974 2016
Brimstone, Gonepteryx rbamni 5740 336 1974 2016
Small copper, Lycaena phlacas 5690 334 1974 2016
Orange tip, Anthocaris cardamines 5076 304 1974 2016
Small skipper, Thymelicus sylvestris 4992 296 1974 2016
Small heath, Coenonympha pamphilus 4519 265 1974 2016
Holly blue, Celastrina argiolus 4473 290 1974 2016
Marbled white, Melanargia galathea 4285 250 1977 2016
Brown argus, Aricia agestis 2950 178 1977 2016
Dingy skipper, Erynnnis tages 2182 136 1977 2016
Green hairstreak , Callophrys rubi 2157 135 1975 2016
Silver-washed fritillary, Argynnis paphia 2152 128 1977 2016
Wall brown, Lasiommata megara 2138 128 1974 2016
Dark green fritillary, Argynnis aglaja 1865 114 1977 2016
Chalk-hill blue, Polyommatus coridon 1725 96 1977 2016
Grizzled skipper, Pyrgus malvae 1711 111 1974 2016
White admiral, Limenitis camilla 1660 92 1974 2016
Purple hairstreak, Neozephyrus quercus 1600 99 1974 2016
Grayling, Hipparchia semele 1148 67 1977 2016
Essex skipper, Thymelicus lineola 1019 71 1977 2016
Small blue, Cupido minimus 952 58 1977 2016
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Table S2 Coefficients for temperature terms and summary statistics for models predicting population growth rate containing Mean monthly temperature, SD
of monthly temperature and the interaction between the two. The 95% credible intervals for model coefficients are in parentheses, and bold font indicates where
these do not overlap 0. Mean and SD variables are both centred, and coefficient values for the main effects can therefore be interpreted as the effect when the

other variable is at its mean. Species are ordered according to AWAIC score. These coefficients are for models that fitted additional control variables.

Species Month Mean °C SD °C Mean °C:SD °C R? pWAIC AWAIC RMSE

1. Small tortoiseshell, Aglais urticae Nov[t] -0.28 (-0.31, -0.26) 0.23 (0.18, 0.28) -0.02 (-0.09, 0.05)  0.39 -67 <.01 1.16
2. Large white, Pieris brassicae Dec[t] -0.19(-0.21,-0.17) -0.21 (-0.24,-0.17)  -0.09 (-0.16,-0.02)  0.46 -67.4 <.01 1.04
3. Green-veined white, Pieris napi Nov[t] -0.13 (-0.16,-0.11)  -0.19 (-0.22, -0.15) 0.13 (0.05,0.21) 0.39 -64.4 <.01 0.94
4. Orange tip, Anthocaris cardamines Feb[t] -0.06 (-0.08, -0.05) -0.15 (-0.18, -0.11) 0.04 (-0.03,0.12)  0.41 -52.2 <.01 0.91
5. Common blue, Polyommatus icarus Aprlt] 0.30 (0.28,0.32) -0.08 (-0.15, -0.02) 0.06 (-0.03,0.16)  0.42 -43.1 <.01 1.1
6. Brimstone, Gonepteryx rbamni Jul[t+1] 0.08 (0.06, 0.10) 0.15 (0.10, 0.19) -0.02 (-0.10, 0.07)  0.37 -25.4 <.01 0.78
7. Meadow brown, Maniola jurtina Aug[t+1] 0.07 (0.06, 0.08) 0.05 (0.03, 0.07) -0.01 (-0.05,0.04)  0.27 -21.4 <.01 0.61
8. Ringlet, Aphantopus hyperantus Aug[t]  -0.03 (-0.05,-0.01) -0.10 (-0.16, -0.04) 0.14 (0.08,0.21) 0.25 -26.6 <.01 0.85
9. Small white, Pieris rapae Nov][t] 0.16 (0.14, 0.19) -0.01 (-0.06, 0.05) -0.02 (-0.10, 0.05)  0.45 -12.8 <.01 1.06
10. Small heath, Coenonympha pamphilus Feb[t+1] 0.07 (0.04, 0.10) 0.05 (-0.02, 0.13) 0.06 (-0.00,0.12)  0.17 -21 <.01 0.89
11. Small copper, Lycaena phlaeas Nov[t] 0.15 (0.12, 0.17) 0.09 (0.02, 0.15) 0.02 (-0.07,0.11)  0.39 -12 <.01 1.05
12. Large skipper, Ochlodes venata Jun[t+1]  -0.13 (-0.15, -0.11) 0.02 (-0.02, 0.06) -0.02 (-0.07, 0.04) 0.3 -11.3 0.02 0.94
13. Speckled wood, Pararge aegeria Jun[t]  -0.09 (-0.10, -0.07) -0.02 (-0.05, 0.00) 0.03 (-0.02, 0.07)  0.28 -10.5 0.03 0.7
14. Comma , Polygonum c-album Jun[t] 0.09 (0.08,0.11)  -0.08 (-0.11, -0.04) 0.06 (-0.00, 0.11)  0.41 -11 <.01 0.92
15. Gatekeeper, Pyronia tithonus Jan[t] 0.08 (0.07,0.09) -0.06 (-0.09, -0.03) 0.00 (-0.03,0.04) 0.23 -11.1 0.01 0.73
16. Brown argus, Aricia agestis Jun[t+1] 0.24 (0.21,0.27)  -0.16 (-0.26, -0.06) -0.05 (-0.20, 0.09) 0.41 -5.4 0.05 1.14
17. White admiral, Limenitis camilla Apr[t] -0.11(-0.13,-0.08) -0.11 (-0.17, -0.06) -0.02 (-0.13,0.09)  0.33 -7.1 0.05 0.91
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19.
20.
21.
22.
23.
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26.
27.
28.
29.
30.
31.
32.
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Purple hairstreak, Neozephyrus quercus
Essex skipper, Thymelicus lineola
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Dark green fritillary, Argynnis aglaja
Grayling, Hipparchia semele

Seplt] 0.22 (0.18, 0.26)
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Jan[t]  -0.16 (-0.18, -0.13)
Apr[t] 0.22 (0.19, 0.25)
Apr[t]  -0.13 (-0.16, -0.09)
Aug[t]  -0.16 (-0.21, -0.11)
Feb[t]  -0.13 (-0.17, -0.10)
Mar{t+1]  -0.18 (-0.20, -0.16)
Feb[t+1]  -0.16 (-0.20, -0.12)
Mar[t] 0.21 (0.18, 0.24)
Jan[t+1] 0.07 (0.03, 0.11)
Sep[t]  -0.13 (-0.20, -0.06)
Feb[t]  -0.08 (-0.10, -0.06)
Feb[t+1]  -0.13 (-0.17, -0.09)
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0.02 (-0.04, 0.09)
-0.03 (-0.12, 0.06)
0.02 (-0.09, 0.14)
0.16 (0.02, 0.31)
0.04 (-0.07, 0.15)
0.13 (0.08, 0.19)
0.09 (0.02, 0.17)
-0.03 (-0.10, 0.04)
0.06 (-0.10, 0.22)
0.04 (-0.11, 0.18)
0.02 (-0.11, 0.15)
0.08 (-0.06, 0.22)
-0.10 (-0.29, 0.08)

0.24
0.19
0.24
0.31
0.34
0.28
0.41
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0.46
0.41
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0.34
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0.24
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0.2
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0.73
0.81
0.91
0.95
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0.93
0.82
1.18
0.85
0.93
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0.81
0.99

1.2

1.1
1.29
0.95
0.98
0.94
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Chapter 5:

General discussion
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Monitoring schemes, as the name suggests, were largely developed to fulfil a need to
monitor the state of our nature (Pollard & Yates 1993; Gregory ez a/. 2005; Dennis e#
al. 2013; Inger et al. 2015). In this regard, they have been tremendously successful,
providing some of the strongest evidence of the systematic changes afoot in our
European populations of birds and butterflies (Fox e a/. 2011a; Inger ez al. 2015), and
contributing directly to red-list assessments of population health (Fox e a/. 2011b).
Understandably, as these datasets have grown in size, interest has turned to harnessing
the power of these datasets- namely their substantial spatial, temporal, and taxonomic
extents- to ask questions not only about whether population change is occurring, but

what the drivers of population change might be.

In this regard, there have also been some notable successes, particularly when factors
associated with population change have large effects. The dramatic declines of birds
in our agricultural landscapes are self-evident in these datasets, for example (Gregory
et al., 2007; Birdlife International, 2013) and evidence of this form is central to
mobilising conservation efforts and further work to understand the causes of these
declines (e.g. Bradbury ez a/ 2003). Long-term population trend has been linked with
a range of other life-history (Jiguet ez a/. 2007) and functional or climatic traits (Jiguet
et al. 2010). Further, Stephens ez al (2016) identify broad congruence between
regional population trajectories and the climatic suitability trend (CST) of species
distribution models, suggesting a role for climate in driving long-term population
trend. It is important to note that, unlike the fairly clear-cut example of population
declines in farmland birds, and, to a lesser extent, woodland birds, these latter
associations typically have smaller effect sizes and are thus somewhat more equivocal.
For example, though Stephens ez a/ (2016) uncover a statistically significant
association between CST score and regional population trend, there is substantial
variation in regional population trend is not explained by CST, and instead is captured
by the random-effect terms of the model (Stephens ez a/ 2016 Supp. Info.). These
caveats aside, however, studies such as these do appear to identify reasonably sizeable

associations between long-term trend and a range of other factors.
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More recently, attention has turned to relating between-year changes in abundance to
various environmental drivers, across a range of spatial scales (Jorgensen ez al. 2015;
Pearce-Higgins ez al. 2015; Bowler ez al. 2018). This class of questions are likely to be
more difficult still. Inter-annual growth is driven by a great many factors, and, as
discussed in chapters I and III, are likely to be typified by low signal to noise ratios.
Taken in aggregate, the results of this thesis suggest that there are currently some
difficulties in linking variation in inter-annual growth to environmental drivers with
these datasets. Importantly however, these difficulties are not irresolvable, and I
suggest some opportunities for future work on population dynamics that uses these
datasets. There is a distinction to be made between birds and butterflies, due to both
taxonomic differences and the substantial differences between sampling strategies
employed by the different types of monitoring scheme. While the general suggestion
from this work is that signals of weather can be more readily observed in the butterfly
datasets than in the bird datasets, it is difficult to identify the precise cause of this. On
the one hand, the relative demographic simplicity of butterfly populations may render
weather drivers more easily resolvable (as populations do not have a complex
structure). On the other, butterfly abundance indices have far less measurement error,
as the derived abundance index is informed by a lot of counts over the course of the
season, rather than just a few. Consequently, differences in the measurement process
alone would be expected to drive differences in the apparent signal of weather. 1
expand on these points further below, and also discuss the more general themes of the
thesis, broadly grouping them as: unquantified measurement error (section 5.1), issues
with statistical significance (section 5.2), and characterising weather drivers and model

generality (section 5.3). I finish with some general conclusions (section 5.4).

5.1 Measurement error (the observation process)

The data we deal with are bad, scarce, and derived. They're bad: they
have tremendous measurement error, they have no nice sampling design,
and they’re often just opportunistic. [..] They're highly derived, in the

sense that the things that you collect and measure are not the entities that
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are theoretically nominated and important. You have to do some post-
processing and you need a really nice measurement model to do these

things. It’s nothing like an agricultural trial.

Richard McElreath, presenting at StanCon Helsinki, 2018

Complications introduced by measurement error in the analysis of time-series are well
understood, and have been widely discussed within population ecology, particularly in
the context of detecting density-dependence (DD; Dennis ez al., 2006; Freckleton ez
al., 2006; Knape, 2008; Knape & de Valpine, 2012). The existence of measurement
error (i.e. when the correspondence between observed abundance and ‘true’ abundance
is not 1:1), is particularly problematic for the estimation of DD terms, as measurement
error causes bias in DD estimates (Knape & de Valpine 2012). For estimating the
effects of environmental variables, measurement error is less of a problem, so long as
there is not strong temporal autocorrelation in these variables (Lindén & Knape 2009).
In the absence of strong temporal autocorrelation in the environment (r > 0.7), models
that assume process error, but not measurement error (i.e. the models applied
throughout this thesis), will have coefficient estimates that are unbiased and have

confidence intervals with correct coverage (Lindén & Knape 2009).

While, on the face of it, this might suggest that there may not be too much of a
problem with measurement error for the purpose of estimating environmental effects,
there are a few important complications introduced by the measurement process. Most
importantly, these issues all arise due to the fact that currently the relative contribution
of measurement error to observed variation in abundance is not known. However, if
the contribution of measurement error to observed variation was addressed, these
problems would be resolved, and work to address this question therefore offers
substantial opportunity to enhance our ability to tackle questions about inter-annual

growth with these datasets.

The consequence of unquantified measurement error is that it is difficult to establish
whether or not observed effects are effects that we, as ecologists, should be interested

in. When coefficients occur on scales that are readily interpretable (i.e. that have an
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intuitive meaning), low model explanatory capacity is not necessarily a critical
problem. In these cases, an intuitive coefficient can be interpreted as ‘meaningful’, with
reference to other potential effect sizes, despite the fact that it might explain a small
proportion of the variation in the response variable. For example, consider the 76.5%
reduction in species richness and 39.5% reduction in total abundance observed in
highly degraded habitats (Newbold ez a/ 2015). These associations are intuitively
meaningful, and are interpretable in the absence of any information about explanatory
capacity. The problematic case is when a coefficient estimate does not have an intuitive
meaning, and in the absence of further contextualisation we cannot say anything about

the importance of its effects.

To pick an example from chapter I1, for Orange Tip Anthocharis cardamines in the 41°-
43° latitudinal band (largest effect in the first row of Table 2.52), we observe a
standardised coefficient estimates of 0.54 (+0.17) for pre-flight period temperature
(P<0.01). This implies that across the 95% range of that environmental variable, we
travel from a population growth rate of 35%, to a population growth rate of 294%.
This seems like quite a substantial amount of variation in population growth across
the range of this variable. If, however, we consider the effect of pre-flight period
temperature in the 51° - 53° latitudinal band, at the same level of statistical significance
(P<0.01), the effect is 0.05 (+0.01), implying variation in population growth of 91%
to 110%. Does this represent a meaningful association with pre-flight period
temperature? Probably not, but it’s difficult to say. These sorts of coefficient estimates
bracket two ends of a spectrum between estimates that are quite substantial and
estimates that it is difficult to express much enthusiasm about. For more intermediate
values it is even more difficult to say whether these represent meaningful drivers of

change in these populations.

In cases such as this, explanatory capacity offers a straight-forward solution: if a
variable substantially enhances our capacity to explain variation in response, then we
should retain it if we wish to explain observed phenomena (Knape & de Valpine 2011).
Coefficients can be entirely without intuitive meaning, but, if they appear to be very

important for explaining observed phenomena, then on this basis alone they can be
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judged as important (as they substantially enhance our ability to explain the behaviour
of a given system). The ability to make these judgements breaks down however, once
the measurement process contributes substantially to variation in the response variable.
Now, there might be a variable that does a very good job of explaining variation in the
underlying ‘true’ variation, but that explains little of the observed variation in response
due to the substantial noise contributed by the measurement process. When there is
substantial unquantified measurement error and coefficients do not take on readily
interpretable values (or, do not have extremely large effect sizes), it becomes very
difficult to establish whether observed effects represent meaningful associations that

we should be interested in.

A second issue introduced by low model explanatory capacity is to do with making
predictions. Low explanatory capacity implies the majority of processes that cause
variation in abundance are not present within the model. Forecasts should thus be
treated with little faith, as the contribution of these unmodelled factors evidently far
outweighs the contribution of those within the model, and it is not reasonable to
assume that modelled variables will vary in isolation. Small changes in unmodelled
factors are likely to have far more substantial effects on population growth than those
included within the model and models that explain a low proportion of the variation
are thus not terribly useful in a predictive role. Clearly, however, unquantified

measurement error makes such an assessment difficult.

Measurement error is thus a substantial problem in the context of these datasets and
these models. Indeed, if there is a single take-home message from this work, it is that,
in order to maximally harness these datasets to understand inter-annual variation in
abundance, then there needs to be a greater focus on the process of measurement, and,
specifically, work needs to be done to establish the contribution of measurement error
to observed variation in abundance. This particularly applies to the bird datasets, but
can, to a lesser extent, also be raised in the context of the butterfly datasets.
Fortunately, however, some relatively simple steps offer much opportunity to address

these issues.

163



What might be done to address the issue of measurement? In the context of the
butterfly datasets, it is fairly straight-forward. The sampling process is already
extensive, consisting of many counts over the course of the season which contribute to
an abundance index (that corresponds to the area under the flight curve, at a particular
site). The method described by Dennis et al. (2013) generates a site-level point-
estimate for this coarse measure of abundance, and confidence intervals for this are
obtained via bootstrap. However, these bootstrap estimates are computationally
intensive, to the extent that they cannot be calculated by default alongside the point-
estimate (Dennis, E., pers. comm.). This is unfortunate, as these estimates both could
be included in a weighted regression, so that high-quality estimates had relatively more
influence relative to poor, but also these intervals tell us something about the sampling
variation generated by this measurement process. In principle, this information would
give some indication as to the relative contribution of this measurement process to

observed variation in abundance. It is likely that this would be readily achievable via

MCMC methods such as Stan or JAGS, or perhaps via INLA.

With regards to the bird monitoring datasets, it will be more difficult to obtain
estimates of measurement error to observed variation in population growth as it will
require additional sampling (beyond what is already done) to address. Specifically, it
requires replicated sampling over a period that the population can be assumed to be
closed (i.e. over the course of a few days) to quantify how much variation arises simply
from the measurement process. Depending on the precise causes of measurement
error, additional permutations may be required. For example, if observer experience or
habitat type were deemed to be important contributors to measurement variation, then
a sampling design that allowed for these influences to be directly assessed would need
to be developed. There is relatively little work that directly addresses this issue;
Freckleton ez al. (2006) however, identify the potential of this approach. Due to the
availability of a dataset in which there was replicated sampling, they were able to
address the contribution of different sources of error to abundance measures for five
species in the UK Common Birds Census (a scheme that predates the current UK

BBS, based on territory mapping). They found in four out of five cases that census
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error contributed substantially to variation in population size, and measurement error

can substantially exceed the underlying process variation.

Clearly, insisting that what is currently a single site-visit becomes three (or more) site-
visits (as recommended by Brian ez o/ 2010; Knape ez a/. 2013) is likely unfeasible.
Further, reallocating volunteer effort towards more surveys but at fewer sites would
not fit with the main aims of these monitoring programmes, which is to track long-
term change across wide spatial extents. However, just addressing this question at a
much smaller subset of sites would allow for inference to be made more widely. For
example, a relatively small study across just a few sites would move us from the very
speculative position we are currently at -‘we know measurement error exists, but not
how much’- to a situation in which we have some idea as to the relative importance of
this process. Further, different schemes do vary somewhat in their specific design -
e.g. point counts vs. line transects etc.- and getting a better handle on the implications
of these sampling designs would be a great help both when it comes to amalgamating
multiple different schemes into a single dataset, as well as identifying optimal survey

designs from the variety that are currently employed.

5.2 Model comparison in the large-N context

It is important to briefly address the role of statistical significance (or any other form

of model comparison) in the context of these large-N monitoring datasets.

With increasing sample sizes it becomes increasingly possible to discriminate between
competing explanations for observed phenomena. Model comparisons (or,
equivalently, comparing certain regions of parameter space) will increasingly
differentiate between models that might only marginally differ in their ability to
explain variation in response (or, equivalently, their fit to the data). This is not
inherently a problem - in fact it is an entirely desirable quality- but it means that
identifying model differences becomes very easy when the sample size is large.
Working with the bird monitoring datasets, effects that only marginally depart from
0 will frequently have an absolute t-value of >2. However, as discussed above, it is

difficult to see how such a marginal coefficient estimate can represent an important
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association. Some additional context can be gleaned from the coefficients for lag-1
DD terms. These, often, have an absolute t-value of >150, and, in this context
observing a t-value >2 starts to seem quite negligible. Extremely large t-values, or
statistically significant t-values on seemingly marginal coefficient estimates is simply a
function of there typically being in excess of 1x10* observations for a given species in

the bird monitoring datasets.

In the absence of coefficients that are readily interpretable, and very marginal
explanatory capacities, there should be scepticism of evidential claims based solely on
statistical significance or any other form of model comparison. In the absence of being
able to state the importance of a particular variable for explaining ‘true’ variation in
abundance (due to unquantified measurement error), the case must be made on the
biological implications of a particular coefficient value. Assessments of statistical
significance should not be used to justify the importance of a particular association (as
this is not what a P-value is designed to do). As discussed in the previous section, the
most fruitful course of action will likely be to address the issue of measurement error,
and, in the meantime, assess the importance of particular variables based on their

biological implications.

5.3 Model complexity: characterising weather drivers, and general vs.

unique trade-offs

For population ecology, the wedding of long-term studies with theory
forces scientists to juggle two apparently incompatible aims: fto
understand any system, we need to appreciate its idiosyncrasies; to
encompass broad patterns, we need to extract generalities. The current
challenge to time series analysis and ecological theory is, thus, to

simultaneously accommodate and transcend the details of natural history.

Bjernstad & Grenfell, 2001

The question of “how complex should a model be to understand population change”

is a further question that has frequently arisen in the course of this thesis, as well as
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one that has been widely discussed in the literature on population dynamics (Lawton
1999; Bjernstad & Grenfell 2001; Coulson e a/. 2001). It is fairly obvious that there
are trade-offs between complex site or case-specific models and models that apply
more generally and can be applied across large geographic and temporal extents
(Bjernstad & Grenfell 2001; Godfray & Rees 2002). However, the precise form of
these trade-offs is less clear. Phenomenological models do appear, in general, to be
fairly limited in their ability to explain inter-annual variation in population growth
(Chapter 11, III, IV; Coulson e a/. 2001; Hallett e al. 2004; Knape & de Valpine
2011; Boggs & Inouye 2012), and there is thus some suggestion that, in order to
understand inter-annual growth rate responses, more information is required than
exists in simple time-series of population abundance (Knape & de Valpine 2011).
Importantly, such a perspective precludes a macroecological approach to
understanding drivers of inter-annual growth, and suggests that generalised, multi-
species inferences about how populations will respond to climate change may simply

be an unattainable goal.

A further perspective that I have been aware of is that weather drivers may just be
inherently complex, high-dimensional sets of interacting and potentially non-linear
effects. Indeed, it’s very easy to find large sets of variables that might plausibly be
involved in population regulation (Grosbois ez al. 2008). However, if drivers of
population growth are inherently this complex then there are necessarily severe
limitations in our ability to understand the influence of weather on population growth
rates, as responses of this form defy any simple approximation. The criticism that we
didn’t look at enough variables to conclude that it is difficult to explain variation in
population growth with large sets of weather drivers (chapter III) is thus not
reasonable. If drivers are really of this form then, necessarily, models will have a low
capacity to predict variation in population growth, and adding large sets of variables
and their interactions into the mix will not change this. This perspective further flies
in the face of evidence from detailed demographic studies which typically uncover
fairly simple low-dimensional associations with weather (Coulson ez a/ 2001, 2005;

Dybala ez al. 2013; Cleasby ez al. 2017).
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This criticism suggests an additional problem in how we approach questions regarding
drivers of population dynamics. If the existence of strong prior notions about the
importance of weather in determining population dynamics generates an asymmetry
in how authors respond to the results of subsequent research, then a misleading picture
of the importance of these factors is created. By iteratively adding more predictors and
tweaking the model formulation until a result that more comfortably sits with our prior
beliefs is arrived at, we misrepresent the underlying evidence for a particular
phenomenon. This mechanism has been referred to as the garden of forking paths
(Gelman and Loken, 2013), and its consequences are equivalent to those of the file-
drawer problem, in which the results of a line of research influence the likelihood of it

being published or otherwise disseminated (Rosenthal, 1979).

While it is probably premature to give up on the macroscale approach entirely, we
should be concerned about the low explanatory power these approaches seem to have
at present. Simply accepting that phenomenological models will necessarily have low
explanatory power but we should stick with them anyway does not seem a particularly
tenable position; rather, we should seek to develop a stronger understanding of the
trade-offs between model complexity (and, consequently, data requirements) and
model explanatory capacity, as well as work to identify generalities in response, both
across taxonomic groupings, and also across spatial gradients. One particularly
important question to ask in the context of climate change, for example, regards the
extent to which there are generalities in population response to weather, and how these

vary spatially.

Niche concepts lead us to expect that the direction of effect of weather associations
will vary spatially, but also suggest a common form for these associations. At a warm
range-edge for example, warming would be expected to drive declines in abundance as
a species is shifted further away from its optimum. Conversely at a cold range-edge,
warming would correspond to a species being shifted closer to its optimum. Niche
theory thus gives us the backbone of a model. If we expect that there is just a single
optimal position along the temperature axis, we can specify that population response

has to be either unimodal (with declines to either side), or monotonically increasing
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or decreasing (if you are observing just the edges of a niche, rather than the turning
point). In chapter IV I incorporated this theoretical expectation by forcing the log-
quadratic term to take a negative value by assigning a zero prior to values above 0.
However, this is not an ideal approach as the association is still forced to have a
particular functional form (in this case the Gaussian). Others have opted for a more
flexible approach in which the response function is a constrained spline, that has the
unimodal or monotonic properties described above, but allows for substantial

flexibility in the precise shape of the association (Beale ez a/. 2014).

However, this approach explicitly assumes that there is minimal intraspecific variation
in order to assume a shared functional form across a species as a whole. If it is the case
that response that is constructed for a species as a whole is in fact better understood as
a ‘smoothing across’ different response curves at the sub-species level, the assumption
that populations would respond in a particular way to future events becomes
problematic. Consider, for example, the Ringlet butterfly Aphantopus hyperantus. In
this species (as well as a number of other butterfly species), populations at the warm
range edge exhibit aestivation behaviours that allow them to tolerate the warmest
conditions during the summer months. In the absence of this behaviour they would
likely be unable to tolerate the warmest, driest conditions and populations would

consequently become extinct.

A key question is: when we observe how populations in this region respond to variation
in environmental conditions, is this response representative of how another population
elsewhere in the distribution would respond to increasingly warm and/or dry
summers? As the UK summers become warmer and drier, would ringlets in the UK
be able to exhibit the same aestivation behaviours that we observe in Spain? If it is the
case that this behaviour needs to first migrate here from Spain, then the predicted
response to a changing climate will be dramatically different than if they can already

respond this way in situ.

This question is not unique to butterflies, and applies to many taxa such as plants and

birds. In birds for example, blackbirds similarly exhibit marked variation in a variety
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of traits across their range extent. Morphologically, birds are significantly larger in
Scandinavia than they are in central Europe, and in turn are significantly smaller at
their warm range edge in Spain (Svensson, 1992). Behaviourally they also vary, with
the insulation of blackbird nests showing a strong association with temperature of nest
location (Mainwaring ez a/. 2016). These traits substantially alter the thermodynamics
of the individuals that make up a population and would therefore be expected to affect
how a given population would respond to a particular temperature event. The lability
of these traits thus becomes a central question in forecasting population responses to
climate change. Developing a firmer understanding of how population responses to
weather are maintained across the range of a species is thus central to generating
sensible forecasts of population response to changes in climate, and this is an important

avenue of future work (Valladeres ez a/ 2014).

5.4 Concluding remarks

In this thesis I address several questions about the role of weather in regulating
European populations of birds and butterflies, using monitoring datasets from 11
countries across Europe. There are three main findings from this work. Firstly, the
importance of weather for driving temporal variation in abundance appears to vary
across the range, with weather appearing relatively more important towards latitudinal
range edges. This suggests that that weather and climate may represent limiting factors
in these regions, and that it is in these regions that we expect to observe the earliest
and most substantial consequences of climate change. Secondly, thermal variation at
relatively fine temporal scales appears to be involved in population regulation, and
including terms that quantify this variation in population growth rate models enhances
their ability to explain variation in population growth for UK butterflies. This finding
suggests substantial opportunity to improve upon pre-existing approaches through
relatively straight-forward tweaks to the model formulation. The final finding is that
greater caution is required in our conclusions about the importance of weather for
regulating populations. This applies in particular to birds, where it has been
particularly difficult to identify weather associations that drive meaningful variation in

abundance, but can also be applied, to a lesser extent, to butterflies. It appears that,
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when using long-term monitoring datasets, weather terms typically display a limited
capacity to explain population growth, with the consequence that there is substantial
residual variation in population growth not explained by modelled variables. On the
basis of these results, I recommend that, if these datasets are to be used to assess drivers
of inter-annual growth, further work needs to be done to address the issue of
measurement error (which will require additional data collection). In the absence of
this, the ability to make robust and meaningful inference from these datasets is, in my
opinion, somewhat limited. Overall, I hope that these represent useful contributions
to the literature on population dynamics, and that they have in some small way
advanced how we approach and think about questions to do with population

regulation.
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