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SUMMARY 

Pain, injuries or diseases might affect how we (are able to) coordinate movement. Therefore, an in-

depth understanding of motor control, human movement dynamics and how pathologies affect 

movement coordination is essential to inform clinical practice that aims to improve the quality of 

movement in patients and therewith their quality of life. Musculoskeletal models allow for efficient 

simulations of human movement dynamics to predict the forces in muscles and joints in a non-invasive 

manner. However, assumptions on motor control are required to solve Bernstein’s problem of muscle 

redundancy: the large number of muscles relative to the number of joints requires the controller, our 

central nervous system, to choose how each muscle contributes to the forces that result in the 

intended movement. For healthy people, it seems reasonable to assume that we control our muscles 

following an optimality principle: to minimize the amount of metabolic energy spent on the task. 

However, a disease, pain or instability are likely to influence a patient’s control strategy; muscle 

control might be less optimal and more, or less, variable, depending on a person’s ability or need to 

control force production. Therefore, the general aim of this thesis was to explore the variability in 

motor control of the musculoskeletal dynamics during walking through a stochastic modelling 

approach. 

Firstly, I discussed the theoretical framework to model human movement dynamics and the current 

efforts to verify and validate musculoskeletal models, with the aim to quantify the errors in their 

predictions. Secondly, I aimed to explore the influence of motor control on the mechanical load 

experienced by the joints of the lower limb during level walking. An optimization approach to motor 

control showed that alternative motor control strategies have the potential to reduce the loading in 

the knee and the hip, but not in the ankle, during level walking. These results suggest that 

neuromuscular rehabilitation can be targeted as a conservative treatment when the mechanical load 

on joints is a determinant of the onset and/or progression of a disease. However, these alternative 

motor control strategies come at a cost of a moderate increase in the loading at non-targeted joints. 

Subsequently, the assumption of a lightly sub-optimal motor control strategy to predict knee contact 

forces, through a stochastic approach to model motor control, captured the measured intra-subject 

variability in these forces during multiple gait cycles of a patient with a knee replacement. Therefore, 

the assumption of sub-optimal control can predict a range of plausible joint contact forces, 

representative of the uncertainty in terms of measurement inaccuracies, modelling errors and 

inherent variability, which is likely to contain the true force. However, if a higher accuracy of predicted 

muscle and joint contact forces is required or in case of severely sub-optimal motor control, I believe 

the only solution is to include an explicit model of motor control. A refined mechanistic model would 
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allow for the differentiation between hierarchical levels of motor control, as proposed by Bernstein, 

such as the involuntary spinal control and the cognition-driven anticipatory control. 
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Many of us are lucky enough to take coordinated movement during activities of daily life for granted. 

When we drink from a glass or walk through a field, we are unlikely to consider the complexity of the 

task. We might be more aware of its difficulty when we try to avoid spilling a hot drink or when we try 

to avoid falling while walking on a slippery surface. Alternatively, we might wonder at the 

unfathomable skill of an elite sports athlete, dancer or circus artist. However, how often do we think 

about the movement of individual body segments or, even more abstract, the contribution of each 

individual muscle to those movements? Coordinated motion of the human body is highly complex and 

unstable, especially in tasks that involve balance, such as walking. Nevertheless, we take thousands of 

steps a day in a continuously changing environment and every single step is slightly different from the 

other steps, as we might have noticed when a blister on our heel hurt more with one step than with 

the other. Motor coordination and movement performance also change over a longer time scale: we 

both learn how to walk and start to struggle to walk with age. Also, pain, injuries or diseases might 

affect how we (are able to) coordinate movement: one might avoid certain movements to prevent or 

reduce the pain in an inflamed joint or injured muscle, one might tense muscles during walking to 

compensate for instability of the knee joint after an anterior cruciate ligament rupture, or the signals 

from the central nervous system might not reach the muscles due to a neurological disease like 

multiple sclerosis. An in-depth understanding of motor control, human movement dynamics and how 

pathologies affect movement coordination is essential to inform clinical practice that aims to improve 

the quality of movement in patients and therewith their quality of life. 

Information about the neural drive, the contribution of individual muscles and the resulting forces 

experienced by the joints involved in human movement is valuable to study motor control. However, 

access to these kinds of data is limited due to ethical concerns or technical limitations. For example, 

force sensors that measure the forces in the hip or knee can be placed in a joint replacement, but for 

obvious ethical reasons these highly invasive interventions are only performed in end-stage 

osteoarthritic patients. Musculoskeletal models allow for efficient simulations of human movement 

dynamics to predict the forces in muscles and joints; these models can be identified through non-

invasive measurement techniques such as motion capture and medical imaging. Therewith, 

musculoskeletal models provide a powerful approach to study motor control.  

One of the many open questions in the study of motor control relates to the principles of muscle 

redundancy and optimal control: the large number of muscles relative to the number of joints requires 

the controller, our central nervous system, to choose how each muscle contributes to the forces that 

result in the intended movement (Bernstein, 1967). For healthy people, it seems reasonable to assume 

that we control our muscles following an optimality principle: When we walk, we use a strategy of 

muscle activation to minimize the amount of metabolic energy spent on the task. However, one could 
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argue that we aim for ‘good enough’ control rather than optimal control as “an organism uses trial-

and-error learning to acquire a repertoire of sensorimotor behaviours that are known to be useful, 

but not necessarily optimal” (Loeb, 2012). This principle of ‘good enough’, or sub-optimal control, 

partially explains the observed kinematic variability in repeated tasks, but kinematic variability has 

been argued to serve a purpose: variability in directions that are independent to task performance 

does not have to be controlled and could potentially provide stability to sudden changes or 

perturbations (Scholz and Schöner, 1999). This theory of an uncontrolled manifold can equally be 

applied to the control of muscles. 

The general aim of this thesis was to explore the variability in motor control of the musculoskeletal 

dynamics during walking through a stochastic modelling approach: The first chapter provides a brief 

overview of the physiological elements involved in human movement; The second chapter focuses on 

the theoretical framework for simulations of human movement dynamics by discussing the largest 

and most common assumptions made in musculoskeletal models; The third chapter presents an 

overview of the current efforts to verify and validate these models and aims to quantify the 

uncertainty of the predictions made by musculoskeletal models; The fourth chapter aims to quantify 

the effect of muscle activation strategies on the forces experienced by the joints of the lower limb 

during level walking; The fifth chapter explores the limitations of optimal control to model 

pathological gait through a stochastic approach to motor control. Muscle recruitment that is optimal 

from the perspective of energy expenditure might be undesirable or even impossible to reach due to 

pain or impaired motor control in patients. 
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CHAPTER 1 

- 

ELEMENTS OF HUMAN MOVEMENT PHYSIOLOGY 
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This section is aimed to briefly introduce the anatomical and physiological components involved in 

human movement production and to provide a context to refer to later in this text.  

1.1 The musculoskeletal system 

The skeleton is the supporting structure of the human body, which protects internal organs, anchors 

muscles and allows body segments to move with respect to each other (Figure 1.1). Its main 

components are bone and cartilage material. A bone is a rigid organ due to its high content of 

mineralized tissue and provides structure to the body segments. Cartilage, a substance less stiff than 

bone, is found throughout the body, providing structure to for example the nose and the ears, but 

also covering the articular surfaces of bones. 

 

Figure 1.1: Human skeleton. 
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Joints are the links where the ends of two, or more, bones meet and can be classified according to the 

level of articulation they allow for: synarthroses are immovable, amphiarthroses are slightly movable 

and diarthroses, or synovial joints, are freely movable articulations (Gray, 1918). The bony surfaces of 

diarthroses are covered by articular cartilage, connected by ligaments and filled with synovial fluid to 

allow for a nearly frictionless articulation of bones with respect to each other. Diarthroses can be 

subdivided into different classes based on the permitted motion; hinge, pivot, ellipsoidal, saddle, ball-

and-socket and gliding joints (Figure 1.2). These joints allow free movement in given directions, or 

degrees of freedom (DoFs), while they resist movement in other directions, due to opposing forces in 

ligaments and bony structures. The hinge and pivot joints allow for uniaxial rotation around the 

transverse and longitudinal axis, respectively. Both the ellipsoidal and saddle joints allow for flexion-

extension and abduction-adduction movements but resist rotation around the longitudinal axis. Ball-

and-socket joints allow the distal bone to rotate around any axes that share a common origin. Gliding 

joints, as the name implies, do not allow rotational movements, but only allow translational 

movements, as these joints typically consist of the apposition of the planar surfaces. 

 

 

 

 

Figure 1.2: 1. Ball-and-socket joint, 2. Ellipsoidal joint, 3. Saddle joint, 4. Hinge 
joint, 5. Pivot joint. Image by Produnis, distributed under a CC BY-SA 3.0 
license. 

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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1.2 Anatomical terminology 

Anatomical terminology provides a vocabulary to describe the anatomical location of physiological 

elements and unambiguously define movement categories. Anatomical locations are described 

relative either to the centre of the body or to each other and the terminology therefore consists of 

antonyms (Figure 1.3):  

- Medial-lateral: Towards or away from the midline of the body. 

- Superior-inferior: Towards the head or towards the toes. 

- Anterior-posterior: Towards the front or back of the body. 

- Proximal-distal: Along a limb, towards or away from the trunk.  

- Plantar-dorsal: Towards the palmar or backside of the foot or hand. 

 

Three planes can be described along the two-dimensional sections of the human body in anatomical 

position: the frontal, sagittal and transverse plane. Joint motion can generally be categorized as a 

relative rotation of segments around one of the three axes originating from the intersections of these 

planes: the transverse, anterior-posterior and longitudinal axis (Figure 1.4). Flexion-extension is 

defined as rotation at the joint around the transverse axis, abduction-adduction occurs around the 

anterior-posterior axis and internal-external rotation is a rotation around the longitudinal axis. 

Figure 1.3: Anatomical directions: medial (M) – lateral 

(L), inferior (I) – superior (S), proximal (P) – distal (D). 
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1.3 Skeletal muscle physiology 

The skeletal muscles move, or actuate, the skeleton by producing forces that act on the bones. These 

myotendinous units consist of active and passive elements. The passive elements, or tendon units, are 

built up from fibrous connective tissue and typically anchor the functional element to the bones. The 

active element of a myotendinous unit consists of a highly ordered structure of contractile elements. 

The contractile proteins actin and myosin make up for about 80% of the total protein content of a 

muscle. A cylindrically shaped bundle of 100 to 400 filaments forms a myofibril, located in the 

sarcoplasm and connected to the sarcolemma, or cellular membrane, of the multinucleated muscle 

fibre cell. A layer of connective tissue, the endomysium, wraps around each muscle fibre and groups 

of 10 to 100 fibres are in turn wrapped by the slightly thicker perimysium to form fascicles. The 

epimysium eventually covers the whole muscle and is connected to the tendon unit (Jones et al., 

2004). This highly ordered structure does not only allow the length of the muscle to change, but also 

facilitates force generation. 

1.3.1 Motor unit activation and recruitment 

One alpha motor neuron, located in the ventral horn of the spinal cord, innervates multiple muscle 

fibres. A motor neuron and the fibres it innervates together are called a motor unit. A contraction of 

the muscle fibres is initiated when an action potential reaches a muscle fibre. An action potential is a 

fast depolarization of the membrane potential, travelling down the axon of the motor neuron. A single 

Figure 1.4: Frontal (left), sagittal (middle, left) and transverse (middle, right) planes and the 
corresponding three axes originating from the intersection of those planes (right): the longitudinal (L), 
transverse (T) and anterior-posterior (AP) axis. 
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action potential will lead to a twitch response in all the muscle fibres of the motor unit. A twitch is a 

short contraction (20-100 ms to build up tension, depending on the fibre type, as measured in humans 

by small force transducers in the tendon (Buchthal and Schmalbruch, 1970)) followed by complete 

relaxation (typically more than four times longer than contraction time). A single action potential 

originating at the motor neuron will lead to a twitch response in all the muscle fibres of the motor 

unit. If a sequential action potential reaches a muscle fibre before tension from the previous twitch 

has disappeared, tension will add up. The force produced by the motor unit will increase with 

increasing action potential frequency until a plateau is reached at 50-100 Hz. This tetanic activation 

will lead to the highest possible force the motor unit is able to produce in its specific configuration.  

Under isometric conditions, when the length of the muscle fibre is constant, motor units are recruited 

following a size principle: The smaller motor units that include less and slower muscle fibres are 

recruited first, while the larger motor units that include more and faster muscle fibres are recruited 

later. This allows not only for a smooth increase in force with increasing activation, but also for a 

higher resistance against fatigue as the smaller, more fatigue-resistant motor units are recruited first 

(Henneman et al., 1965). 

1.3.2 Force-length dependency 

The sliding-filament theory explains the physiological mechanism that allows for length change in the 

contractile element of a muscle (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954). The 

development of phase contrast and interference microscopy allowed for the visualization of the actin 

and myosin filaments in isolated myofibrils. The geometrical structure of these filaments, arranged in 

sarcomeres, allows them to slide along each other. A sarcomere is defined to stretch from one Z-line 

to the next Z-line, where the ends of the thin actin proteins from neighbouring sarcomeres link 

together. The opposite ends of actin within one sarcomere are interlaced with thick myosin proteins 

that join at the M-line, the middle of the myosin filament (Figure 1.5a). 

The development of electron microscopy allowed for higher resolution images of actin and myosin 

filaments, confirming the cross-bridge theory that suggested an interaction between the interlaced 

actin and myosin filaments. The theory explains how a sarcomere, and consequently a muscle, can 

produce a contractile tension through cyclic attachments and detachments of myosin cross bridges 

(Huxley, 1957). This interconnection mechanism forms the muscle’s contractile element and explains 

why muscles can only pull and not push. 

The amount of force produced by a muscle during a tetanic contraction depends on its length and 

contraction velocity. The amount of overlap between the thin and thick filaments explains this force-
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length dependency. At the optimal length, the muscle can produce its maximum isometric force: the 

force resulting from a tetanic contraction under isometric conditions when a maximum overlap 

between actin and myosin filaments exists. In a shorter muscle, the sarcomeres are compressed, and 

folds in the actin filaments prevent the attachment of cross-bridges, leading to a reduction in tetanic 

force. In a longer muscle, the sarcomeres are stretched and less overlap between filaments exists. 

Therefore, less cross bridges can be formed compared to a sarcomere at its optimal length and again 

the tetanic force production is reduced (Gordon et al., 1966) (Figure 1.5b-c).  

 

Figure 1.5: a) Sarcomere myosin and actin filaments with Z and M lines; b) Scenarios with 
increasing level of overlap between actin and myosin filaments; c) Tension-length curve of a 
sarcomere. The overlap at the numbers correspond to the numbered scenarios in b). Images 
adapted from Gordon et al. (1966). 
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Additionally, the stretch of muscle beyond a certain length leads to a passive, activation-independent, 

tension that increases exponentially with the extension (Jewell and Wilkie, 1958). At these greater 

muscle lengths the cell membranes, the connective tissues surrounding the muscle fibres, and the titin 

elements, that connect myosin filaments to the Z-line, are stretched; this mechanism is referred to as 

the muscle’s parallel elastic element. 

When a muscle contracts under isometric conditions it stretches the connective tissues in series with 

the contractile tissue. As the muscle length is constant, the stretch in the series connective tissue can 

only occur if the contractile tissue shortens by an equal amount. This internal shortening influences 

the time course of force development in dynamic situations. The force-length characteristics of the 

serial elastic element can be determined through an experiment where one end of an isolated muscle 

is instantly released. Before the release, the muscle is stimulated and kept at a constant length until 

the tension has built up. The muscle’s response to the release includes an almost instantaneous 

change in length of which the duration is dependent on the tension difference pre- and post-release. 

During the short time of near-instantaneous length change, the contractile tissue is assumed not to 

be able to shorten, while it still produces tension (Winter, 2009). 

1.3.3 Force-velocity dependency 

During isometric contractions, the sarcomere length is constant but when active fibres shorten or 

lengthen their tetanic force also depends on the contraction velocity. During a concentric contraction, 

when sarcomeres shorten, the tetanic force reduces with increasing velocities because fewer cross 

bridges form, cross bridges are, on average, less stretched and a proportion of cross bridges will be in 

a position where they oppose movement, due to their slow detachment compared to the contraction 

velocity. The relation between the tensile force and the shortening velocity was adequately described 

by Hill as a hyperbola, based on his work on the thermodynamics of tetanic contractions in frog 

Sartorius muscles (Hill, 1938): 

 (𝐹 + 𝑎)(𝑣 + 𝑏) = 𝑏(𝐹𝑜 + 𝑎) 1.1 

 

where 𝐹 is the tensile force, 𝐹𝑜 is the maximum isometric tensile force, 𝑣 is the shortening velocity, 𝑎 

is the constant coefficient of shortening heat and 𝑏 is a constant depending on 𝑎, 𝐹𝑜 and 𝑣𝑜, the 

maximum shortening velocity when 𝐹𝑜 = 0.  

Both the force-length and force-velocity dependency, as described above on the sarcomere level, 

translate to the muscle level: The force-length-velocity relationship of a muscle is shown in Figure 1.6. 
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During an eccentric contraction, when sarcomeres lengthen, the tetanic force increases with 

increasing lengthening velocities because the cross bridges are more stretched than during isometric 

contractions. Uncertainty exists about the shape of the eccentric force-velocity curve, but the force 

increase has been shown to be less during isovelocity, eccentric contractions than during isotonic 

eccentric contractions leading to a maximal force plateau ranging from 1.1 𝐹𝑜 to 1.8 𝐹𝑜 (Joyce et al., 

1969; Mashima, 1984; Mashima et al., 1972). 

1.3.4 Musculotendon dynamics 

On a muscle level, the orientation of fibres with respect to the tendinous tissue is another important 

factor influencing the force producing capacity of a muscle. In general, the more fibres are arranged 

in parallel, the stronger the muscle is because the individual fibre forces add up. Logically, in muscles 

with an equal volume, a stronger muscle has shorter fibres, but more fibres in parallel, than a weaker 

muscle. Consequently, the stronger muscle is able to produce more force over a shorter range of 

muscle lengths, while the weaker muscle is able to produce less force over a longer range of lengths. 

Based on fibre orientation, muscles can be classified as fusiform or pennate muscles. In fusiform 

muscles, the fibres run parallel to the muscle length, while in pennate muscles, the fibres run at a 

Figure 1.6: Three-dimensional illustration of the muscle force-
length-velocity relationship during isometric and concentric 
contractions for maximum activation. Muscle force (F), 
contraction velocity (v), muscle length (l), maximum isometric 
force (Fo) at optimal length (lo) and maximum shortening 
velocity (vm). Image adapted from Mashima et al. (1984). 
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certain pennation angle to the aponeurosis, a sheet-like fibrous tissue providing a wide attachment 

area for fibres. The physiological cross-sectional area (PCSA), as opposed to the anatomical cross-

sectional area, is the area of the cross section of a muscle perpendicular to the length of its fibres. 

Under the assumption of an invariant tetanic stress, the PCSA of a muscle at rest is frequently used as 

an indicator of muscle strength, even though fibre type, quality and the number of fibres per area also 

influence the muscle’s maximal isometric force. 

1.4 The basis of motor control 

Motor control research explores how the nervous system interacts with other body parts and the 

environment to produce purposeful, coordinated movements (Latash, 2012); how are we able to 

control simultaneous, as opposed to sequential movement, movement of joints to produce smooth, 

timely, flexible and robust motions? An important aspect to answer how the central nervous system 

controls our muscles is the understanding, and inclusion, of the physiological elements involved. 

Neurons, or nerve cells, receive, process and transmit information within the brain and between the 

brain and peripheral organs through electrochemical signals. Neurons exchange these signals between 

each other or pass them to a target cell at either electrically or chemically activated connections, called 

synapses. Ultimately, a received signal, if strong enough, causes a supra-threshold depolarization of a 

neuron’s membrane potential that initiates an action potential. An action potential consists of a 

standardized depolarization and sequential repolarization of the membrane potential and typically 

travels from a dendrite or the cell’s soma along the axon towards a synapse with another neuron or a 

target effector cell. Neuronal signals travel from the central nervous system along so-called efferent 

pathways to reach the innervated muscle fibres along and along afferent pathways to transfer 

information from the many sensory receptors in the human body to the central nervous system. 

Examples of sensory receptors involved in motor control are the joint proprioceptors, muscle spindles 

and Golgi tendon organs. Joint proprioceptors provide information on the orientation of joints, muscle 

spindles feedback information on fibre length and velocity and Golgi tendon organs send signals 

roughly correlated with muscle force. 

The complexity of motor control arises from the integration of sensory feedback into the planning of 

control signals sent to the muscles that appropriately deal with the complexity of the motor system. 

In his studies of blacksmiths hitting a chisel with a hammer, Bernstein observed a smaller variability in 

the trajectories of the tip of the hammer than in the trajectories of the individual joints (Bernstein, 

1967; Latash, 2012). This observation highlights what Bernstein classified as the problems of 

movement control: How to choose a trajectory from a multitude of available trajectories?; How to 
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deal with the excess of degrees of freedom of the motor system?; How to control for the errors in the 

original control command? Bernstein proposed the sensory corrections principle as an explanation of 

how the central nervous system deals with errors in motor performance (Feigenberg, 2014). This 

principle of closed-loop feedback highlights the importance of constant and complete information 

from sensory receptors. The second problem, known as motor redundancy, can be observed on 

different levels: On a joint level, as shown by Bernstein’s hammer task, an infinite number of 

combinations of joint angles leads to the same endpoint position, while on a muscle level an infinite 

number of combinations of muscle forces leads to the same joint movement. Bernstein suggested that 

synergies reduce the problem of muscle redundancy as muscles are controlled as ‘choirs’ (Feigenberg, 

2014), allowing one signal to control a group of muscles synchronously. For different tasks, a small 

number of synergies was able to explain a high percentage of the variance in the original dataset. 

However, this variable reduction was not typically able to account for the motor redundancy 

completely, supporting the principle of abundance which suggests that an abundant system is able to 

combine accuracy with stability and flexibility of motor performance (Latash, 2012). From the 

previous, the following question arises: How is the variability in degrees of freedom controlled during 

a movement? The uncontrolled manifold (UCM) hypothesis tries to answer this question by assigning 

variability to two directions (Scholz and Schöner, 1999). The first direction, the UCM, is defined by the 

configurations of DoFs that do not influence the hypothesized control variable, while the other 

direction is perpendicular to the UCM. A higher variability along the UCM compared to its 

perpendicular component would indicate that the hypothesized variable is indeed controlled when 

performing a motor task. The minimum intervention principle expands the reasoning of the UCM 

hypothesis. In simplified form, the principle states that the motor system should make no effort to 

correct deviations from average behaviour unless those deviations interfere with task performance 

(Todorov and Jordan, 2002). Following this principle, motor control has been suggested to be a 

stochastic process, as long as the variability appears in the redundant control space without affecting 

the motor goal (Viceconti, 2011).  

Recent studies have argued that the human motor system is potentially not as redundant as the motor 

redundancy problem implies. Firstly, one could question whether humans have an overcomplete 

musculature or that the tasks performed in a laboratorial environment are underspecified (Loeb, 

2000)? The description of tasks in an experimental setup would imply an abundance of muscles 

compared to the kinematic degrees of freedom, but those descriptions are oversimplified and ignore 

task demands that reduce redundancy. In addition, in daily life motor tasks have even more complex 

demands. Secondly, it has been argued that muscle redundancy does not imply robustness to muscle 

dysfunction as simulated muscle loss lead to a reduction in index finger force production (Kutch and 
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Valero-Cuevas, 2011). Although these studies suggest that the motor system might be less redundant 

than expected, in tasks without a demand to be the highest, quickest or strongest, motor redundancy 

is observed and the central nervous system successfully manages to control these abundant DoFs. 

Therefore, the exploration of possible muscle force patterns underlying sub-maximal tasks, including 

gait, might lead to interesting insights into the variability of neuromotor control. 
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MODELLING HUMAN MOVEMENT DYNAMICS   
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2.1 The idealisation process 

2.1.1 Transient continuum deformation 

A continuum is assumed to consist of continuously distributed matter that entirely fills the space it 

contains; the inter-atomic space and the cracks and discontinuities on a microscopic scale are ignored. 

Due to its far larger space scale, human movement can be accurately modelled as the transient motion 

and deformation of a heterogeneous continuum from an initial steady state to a new steady state. 

Since the average adult human body consists for 50-60% of water (Guyton and Hall, 2006), we can 

assume that a human-body continuum contains both solid and fluid phases. Continuum mechanics 

can effectively model the motion and deformation of both phases in mathematical terms. However, 

the resulting mathematical model is extremely complex; a system of partial differential equations 

describes the transient motion and deformation of such a multiphase continuum but does not admit 

an analytical solution (imagine the complexity of the geometrical description and the accompanying 

boundary value problems). Even numerical methods such as finite element analysis involve dramatic 

complexity and computational costs due to the heterogeneous, multiphasic, non-linear, and transient 

nature of the problem. 

Therefore, a practical approach to model human movement dynamics requires that we heavily 

simplify the mathematical problem through a series of idealisations. In the following section, I list the 

most important idealisations, their experimental evidences, and their limits of validity. 

2.1.2 Rigid multibody dynamics 

During passive motion, such as a cadaver propelled in a ballistic flight motion, we can neglect the 

contractions of muscles and only external forces act on the human body. In such passive conditions, 

the spatial configuration that the body assumes at each instant of time is imposed by the spatial 

configuration of the skeleton. Thus, a body moves as its underlying skeleton moves; we can study the 

motion of the human body by modelling the motion of the skeleton and assume that the rest of the 

body (internal organs, soft connective tissues, internal fluids, etc.) contributes to the motion only as 

passive inertial masses attached to the skeleton. Within the skeleton itself, most of the deformation 

observed during motion is concentrated in specific regions called joints. If we ignore the deformation 

of bones, and only consider the deformation of joints, the moving human body can be idealised as a 

rigid mechanism: a set of infinitely rigid bodies of which each element is wrapped by a passive inertial 

mass and linked to other elements by joints. These assumptions allow us to model human movement 

with a very mature mathematical approach known as rigid multibody dynamics.  



19 
 

The assumption of infinitely rigid bones implies that the loading conditions of the specified task do 

not deform the bones. A study on cadaveric femora reported that an axial loading of 800 N displaced 

the femoral head by 0.5-0.6 mm (Cristofolini et al., 1996). With a peak force at the hip during level 

walking of 2-3 times the body weight (Bergmann et al., 2010), we would neglect changes in the 

location of the hip joint centre of 1-2 mm by assuming infinitely rigid bones. This inaccuracy lies well 

within the limits of the experimental methods used to quantify human movement. However, in tasks 

that involve much higher forces this assumption might not remain valid. For example, measured hip 

forces during a stumble reached up to 11,000 N (Bergmann et al., 2010), which implies changes in the 

hip joint centre location of 6-8 mm; depending on the scope of the analysis, this error might not be 

acceptable anymore. 

Body segment dimensions can be obtained from different sources, depending on their availability; 

scaling of a generic dataset, anthropometric measurements and segmentation of medical images, 

such as computed tomography or magnetic resonance imaging (MRI), all provide information on 

segment dimensions, but at increasing levels of accuracy. For each segment, a local reference frame 

can be constructed from a set of known anatomical landmarks. The location of these landmarks can 

be obtained through virtual palpation. These segment local reference frames can conveniently be 

defined following the standards for anatomy-based joint coordinate systems (Wu et al., 2002). 

Furthermore, the mass matrix of the musculoskeletal system must be defined to allow our dynamics 

model to be solved. Each segment is assumed to have a fixed mass lumped at its centre of mass (CoM) 

and the segments’ moments of inertia about the CoM are assumed to be constant throughout the 

movement (Winter, 2009). Average values for the segmental mass characteristics, based on 

population studies, can be obtained as a function of body mass and height (Drillis et al., 1964). We can 

make a more accurate approximation of the segments’ inertial properties when the segmented 

volumes of bone and soft tissue and their corresponding densities are available.  

2.1.3 Joint idealisation 

Classic treatments of rigid body dynamics assume that the rigid elements are connected by idealised 

joints that present no stiffness in the unconstrained directions, and infinite stiffness in the constrained 

directions. The validity of these assumptions, and any other assumption in the model, should be 

assessed by asking the question: ‘What is the maximum level of idealization I can afford without 

compromising the accuracy of my model in predicting what I care for?’ (Viceconti, 2011).  The extent 

of joint stiffness in an unconstrained direction is related to its coefficient of friction. The coefficient of 

kinematic friction for human synovial joints is around 0.003 (Jewett and Serway, 2007). A comparison 

to the ice-on-ice friction coefficient of 0.03 indicates the extremely low waste of energy into heat in 
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human joint articulation. The assumption of frictionless articulation is therefore unlikely to 

significantly influence the model’s prediction. 

In all friction experiments, Coulomb's Law of Friction (the coefficient of kinetic friction is independent 

of the sliding velocity) is assumed to be valid. However, the mechanical behaviour of human synovial 

joints is viscoelastic in the sense that its stiffness depends on the velocity with which the joint is 

deformed (Valle et al., 2006). Even if the effect of viscosity would increase the coefficient of friction 

for human synovial joints ten times, the resulting frictional forces would still be negligible compared 

to the other internal and external forces involved in human movement.  

In a three-dimensional Euclidean space, the position and orientation of two segments with respect to 

each other can be fully described by three translations and three rotations. Ideal joints provide no 

resistance to motion in some of these directions, the DoFs, while infinite rigidity is assumed in the 

remaining directions. However, human joints need to ensure a complex combination of stability and 

flexibility and the joint stiffness, its passive resistance against movement, depends on the orientation 

and velocity, both in the ‘free’ and ‘constrained’ directions. Typically, a sharp rise in stiffness is 

observed at the extreme orientations and even the constrained directions allow for a narrow range of 

motion with low resistance, called joint laxity. Besides joint orientation, a change in coordinate 

velocity changes the viscous contribution to movement resistance. One could argue that joint 

accelerations during the typical tasks of interest, such as gait, are low and therefore neglecting the 

viscous behaviour of the joint articulation is valid. However, at higher accelerations this assumption 

needs to be re-evaluated. In general, assumptions on joint idealization are valid in some circumstances 

but not in others and one needs to take note of the principle of limited validity when expanding the 

application of ‘validated’ models.  

The gait2392 model, one of the most commonly used musculoskeletal models, serves as a good 

example on joint idealisation (Delp et al., 1990). The hip is modelled as a ball-and-socket joint, the 

knee as a planar joint with prescribed translation between the tibia and the femur, depending on the 

flexion-extension angle, and the ankle and the subtalar joint as hinge joints. The justification of 

representing the knee as a planar joint was the small amount of axial rotation, which only becomes 

present near full extension, compared to the flexion-extension range of motion (Yamaguchi and Zajac, 

1989). However, joint laxity in the ab-adduction and internal-external rotation directions have been 

reported to range from 2° to 8° and 10° to 26°, respectively, with increasing knee flexion angle 

(Markolf et al., 1976). Moderate axial loads up to 300 N did not influence the rotation laxity, as was 

shown in a later study that also reported higher values for rotation laxity (Blankevoort et al., 1988). 

Even though higher axial loads in the order of magnitude of bodyweights, comparable to the loads in 

weight bearing activities, might reduce laxity, these studies suggest that significant movement outside 



21 
 

the sagittal plane is possible in the knee. More recently, the knee joint in the gait2392 model has been 

expanded to include prescribed internal-external rotation and ab-adduction values dependent on 

knee flexion (Arnold et al., 2010). Even though, this assumption takes the ‘screw-home’ movement 

during knee extension into account (Hallén and Lindahl, 1966), the potential influence of muscle forces 

on joint orientation in the constrained directions is still neglected. The accuracy of the off-plane 

kinematic data and the ratio between the joint stiffness and the expected forces and torques 

experienced by the joint during the movement of interest are other factors that might influence the 

choice to include or exclude certain degrees of freedom. Despite the potential oversimplification, the 

validity of a planar knee model, and of any level of idealization for any joint, remains to be assessed 

by its influence on the accuracy of the prediction. 

In addition to the definition of the degrees of freedom at the joints, movement of the musculoskeletal 

system with respect to the inertial, or ground, reference frame is typically allowed by a free joint, 

allowing for three translational and three rotational DoFs, between the pelvis and inertial reference 

frame. The parameters that uniquely describe the location and orientation of a multibody system at 

any given point in time are called the generalized coordinates �⃑�(𝑡). In case of musculoskeletal models, 

the generalized coordinates can therefore be divided into two groups: the six coordinates that 

describe the location and orientation of the pelvis with respect to the ground reference frame and the 

coordinates at the joints. The coordinates at the joints are commonly chosen to correspond with the 

allowed degrees of freedom. If all the DoFs are independent, the number of generalized coordinates 

is equal to the minimal number of parameters required to uniquely define the system’s configuration. 

2.1.4 Muscle lumped-parameter models 

Rigid multibody dynamics models allow for the analysis of the forces propagated through the joints 

during movement and muscle forces make up for the largest part of these joint contact forces (Winter, 

2009). So far, we assumed the human body behaved as a passive mass, moved only by the action of 

external forces, while the human body can in reality move autonomously through the contraction and 

relaxation of complex tissue structures known as musculotendinous units (MTU). Force generation in 

these structures results from the extremely complex interaction of the central nervous system (CNS), 

the peripheral nervous system (PNS), the excitation-activation dynamics at the neuromuscular 

junction (NMJ), the sarcomere contraction, the spatial arrangement of sarcomere fibres, and the 

connections of these fibres to the skeleton through tendons, aponeuroses, and other connective 

tissues. 

Several idealisations are considered to handle the muscles’ anatomical complexity and therewith to 

model the role of MTUs in human movement dynamics. Firstly, MTUs are assumed to connect only to 
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the skeleton and not to other connective tissues or to each other. Peter Huijing at the Vrije Universiteit 

Amsterdam showed that this assumption is not true and his work provided a quantification of such 

myofascial force transmission (Huijing et al., 1998; Huijing and Baan, 2003, 2001); for murine skeletal 

muscles with the anatomical structure typical of those relevant for locomotion, this effect is in the 

order of 10-15 %. We also neglect the transverse forces that layers of muscles exchange as they 

increase in volume during shortening. 

Secondly, the collection of three-dimensional, complexly deforming MTUs is reduced to a set of one-

dimensional, lumped-parameter actuators. For fusiform muscles the errors introduced by this 

idealisation are modest; the pennation angle between the muscle fibre direction and the line of action 

can be accounted for in the MTU formulation. However, for muscles with a more complex geometry, 

and different components that contribute to different movements, multiple one-dimensional 

actuators are required to retain sufficient accuracy (Valente et al., 2012). 

Lastly, the controlled is assumed to be separable from the controller: the set of one-dimensional 

actuators representing the MTUs is assumed to be separable from the CNS-PNS-NMJ complex 

including all the afferent signals from the muscles, tendons, and other connective tissues to the CNS. 

In simulations of human movement dynamics, the musculotendon models typically include only the 

essential mechanical properties to predict the forces along the tendon acting on the bony structures 

to the required level of accuracy. These essential properties can be included by ‘linking together 

idealized mechanical elements arranged to create a composite lumped-parameter model that mimics 

the behaviour of the actual physiological system under a set of well-defined conditions’ (Yamaguchi, 

2001a). The essential properties to include in our muscle models are the previously mentioned 

contractile and passive viscoelastic properties, describing the force-length-velocity relationship during 

muscle contractions. The following section describes the elements that are generally included in 

muscle models that are aimed to represent physiological phenomena observed in tetanic contractions 

of isolated muscles or muscle fibres. These observations generally refer to a single sarcomere, of which 

all within a muscle are assumed to be identical. This assumption reduces the muscle model to a 

superimposition of the behaviour of one single sarcomere onto the behaviour of the whole muscle. 

Various musculotendon dynamics models have been presented in the literature, but most, if not all, 

are based on the muscle model proposed by Hill (Hill, 1938). Hill-type muscle models consist of an 

active, or contractile, element (CE) and a passive structure that is representative of the viscoelastic 

properties of the muscle. The behaviour of this passive structure depends on the arrangement and 

properties of the idealized mechanical elements included, typically springs and viscous dampers. The 

CE is arranged in parallel with a damping element (DE). An elastic element (SEE) is added in series to 
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the CE and DE, while another elastic element (PEE) is added in parallel to these three elements (Figure 

2.1) (Yamaguchi, 2001a). 

 

The CE represents the length dependency of the active muscle force. The force-producing capacity of 

the CE reduces when the muscle is shortened or lengthened from its optimal length (𝑙𝑜
𝑀) and reaches 

zero at fibre lengths around 0.5 𝑙𝑜
𝑀 and 1.5 𝑙𝑜

𝑀, respectively. The PEE accounts for the activation-

independent force produced during the stretch of a muscle fibre and is assumed to behave as a 

massless, exponential spring: 

 𝐹𝑘 = 𝑘𝑥 2.1 

 

where 𝐹𝑘 is the magnitude of the force along the spring, 𝑘 is the spring constant, and 𝑥 is the spring 

deformation. The spring is slack at fibre lengths smaller than 𝑙𝑜
𝑀, but its deformation is equal to the 

muscle’s deformation at greater lengths, leading to an increase in tension. 𝑘 can include an 

exponential term to account for the exponential increase of force with increasing 𝑥. The SEE is a 

second massless spring element that allows for the nearly instantaneous length change observed 

during the quick release experiments in isolated muscles. The length of the contractile element cannot 

change instantaneously, because of the damper element works in parallel to the CE. The DE behaves 

as an ideal damper, allowing the viscous fluid in the cylinder to pass slowly when shortened or 

lengthened:  

 𝐹𝑏 = 𝑏�̇� 2.2 

Figure 2.1: Hill’s muscle model with a contractile element (CE), damping element (DE), series elastic 
element (SEE) and parallel elastic element (PEE). Image adapted from Yamaguchi (2001). 
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where 𝐹𝑏 is the force along the damper, 𝑏 is the viscous damping constant, and �̇� is the change of 

deformation over time. The velocities of the DE and CE maintain the same direction due to their 

parallel arrangement, resulting in a force resisting the change in fibre length. Therefore, a concentric 

contraction of the fibre leads to a force in the DE opposing the velocity of the CE, while during an 

eccentric contraction the force in the DE works with the CE force. The CE and DE placed in parallel 

result in a net increase of contractile force, compared to the isometric force, during eccentric 

contractions and a net decrease of contractile force during concentric contractions.    

A large heterogeneity of muscle parameters exists between subjects and between muscles. Not all 

these parameters can be measured for each specific muscle, due to ethical, cost and time reasons. By 

scaling only the essential parameters, a single input-single output (SISO) generic muscle model can be 

adjusted to a specific muscle (Zajac, 1989). Such models allow for ‘emphasizing the interactions among 

body segments and muscles, rather than the secondary and tertiary properties of any muscle’ in 

studies of human coordination. Four further assumptions on our muscle model are required to extend 

the model to a musculotendon dynamics model suitable to be included in musculoskeletal simulations 

of movement. Firstly, a muscle consists of many fibres arranged in parallel and their forces are 

assumed to add up. The fibre model could be expanded to a muscle model with multiple parallel fibres 

to account for the heterogeneity observed in for example muscle fibre length. However, for practical 

reasons most muscle models contain one strong muscle fibre that is assumed to be representative of 

the population of muscle fibres. Secondly, muscle fibres run at an angle with the tendinous tissue 

which needs to be compensated for to obtain the force along the line of action of the muscle: 

 𝐹𝑀 = cos(𝛼) (𝐹𝑎
𝑀 + 𝐹𝑝

𝑀) 2.3 

 

where 𝐹𝑀 is the force along the line of action of the muscle, 𝛼 is the pennation angle, and 𝐹𝑎
𝑀 and 𝐹𝑝

𝑀 

are the active muscle fibre forces, respectively. Thirdly, the tendinous tissue is added as another elastic 

element in series to the muscle model: 

 𝐹𝑀 = 𝐹𝑇 =  𝑘𝑇𝑥𝑇 2.4 

 

where 𝐹𝑇 is the force along the tendon, 𝑘𝑇 is the stiffness coefficient of the tendon, and 𝑥𝑇 is the 

deformation of the tendon. Stress-strain properties as well as the strain in the tendon when the 

muscle force is at its maximal isometric value have been assumed to be tendon independent, leaving 

the tendon slack length to be the only parameter to scale (Zajac, 1989). Lastly, the level of muscle 
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activation must be included. In most musculotendon models, the activation ranges from zero to one 

and serves as a linear scale factor of the force produced by the active component of the muscle: 

 𝐹𝑎
𝑀 =  𝐹𝐶𝐸(𝑎(𝑡), �̇�𝐶𝐸 , 𝑙𝑜

𝑀 , 𝐹𝑜
𝑀) 2.5 

 

where 𝐹𝐶𝐸 is the force produced by the contractile element which is dependent on 𝑎(𝑡), the activation 

at time 𝑡, �̇�𝐶𝐸, the rate of change in contractile element length, 𝑙𝑜
𝑀, the optimal muscle fibre length, 

and 𝐹𝑜
𝑀, the maximal isometric force. 

As mentioned previously, a muscle’s maximal isometric force is typically estimated from its PCSA, 

taken from a cadaveric average or medical images, and its tetanic stress. A range of experimentally 

measured values from 35 to 137 N/cm2 has been reported for the tetanic stress, which has also been 

argued to be a muscle-dependent property (Buchanan, 1995). In the most commonly used 

musculoskeletal models, however, the tetanic stress is set to 61 N/cm2 and assumed to be equal 

among muscles (Arnold et al., 2010; Delp et al., 1990): PCSA values were taken from cadavers and a 

relatively high value for the tetanic stress was chosen to compensate for the loss of muscle volume in 

elderly compared to young people. 

In most musculoskeletal models, a myotendinous unit is assumed to be a linear actuator that only 

transmits forces to bones at its origin and insertion. Many of the limitations introduced by this 

assumption are beyond the scope of this study, but the complexity of human musculature introduces 

some relevant difficulties to the definition of muscular lines of action: a muscle might have multiple 

origins or insertions, different regions of one muscle might contribute to different movement 

directions, fibre pennation angles might vary across a muscle and a muscle’s geometry is likely to be 

influenced by the surrounding bones, muscles and other structures. Possible solutions to these issues 

are the discretization of one muscle into multiple separate actuators and the a priori definition of via 

points or wrapping surfaces that guide the geometry paths. A muscle atlas from a generic model can 

be mapped onto the subject-specific skeleton using affine transformation or guidance from medical 

images. Ultimately, the geometry path determines the effectiveness with which a muscle force 

produces a torque at the spanned joint. Muscle moment arms are important variables to verify 

musculoskeletal models through a qualitative comparison with cadaveric studies. The perturbation 

method, commonly used in cadaveric studies, defines the moment arm as the change in muscle length 

with respect to a change in joint angle (An et al., 1983): 

  
𝐵𝑖𝑗(�⃑�) =

𝜕𝐿𝑗(�⃑�)

𝜕𝑞𝑖
 

2.6 
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where 𝐵𝑖𝑗  is the moment arm of muscle 𝑗 with respect to generalized coordinate 𝑖, 𝐿𝑗 is the length of 

muscle 𝑗, and �⃑� is the vector of generalized coordinates. In computational studies, the perturbation 

method might lead to violations of the constraints on the DoFs and involves difficulties with the 

linearization of complex muscle paths. The generalized force method, which is also derived from the 

principle of virtual work, overcomes these issues (Sherman et al., 2013): 

 
𝐵𝑖𝑗(�⃑�) =

𝜕𝜏𝑖(�⃑�)

𝜕𝑠𝑗
 2.7 

 

where 𝜏𝑖 is the torque at coordinate 𝑖, and 𝑠𝑗 is the tension along muscle 𝑗. 

2.1.5 Motor control as an optimal process 

A central question within studies of motor control is how the central nervous system chooses one 

solution from the many viable solutions, as discussed in Bernstein’s work on the theory of motor 

redundancy. In the literature, different authors approached the problem from very different 

perspectives, including reductionist, optimization, and explorative approaches. For example, a 

reductionist approach of muscle synergies predefines synchronous neural input to groups of muscles 

aiming to reduce the number of controls to the number of degrees of freedom. The optimization 

approach ‘searches for an allowable combination of controls that produce the ‘best’ one according to 

some predefined criterion’ (Yamaguchi, 2001a). Latash argued that ‘motor programs and control 

variables are a poor man’s way of describing a system, whose physics are unknown’ (Latash, 2012). 

Indeed, optimal control theory only provides a phenomenological representation of the process, 

which, while effective in predicting some of its manifestations, does not provide a detailed 

mechanistic representation. One of the main difficulties with this approach is how to formulate a 

physiologically justifiable cost function, or how to quantify how good a control strategy is; How to 

define such an optimization criterion that considers physiologically relevant variables like energy 

expenditure, muscle exertion, pain and fatigue? The optimization approach has resulted in 

physiologically plausible estimations of muscle forces during healthy gait (Crowninshield and Brand, 

1981) and the approach allows for the exploration of muscle abundance and the flexibility of the 

human motor system. Both the possibilities and limitations of the optimization approach to study 

motor control will be discussed in the following chapters in full detail, but we can already anticipate 

one of the main conclusions of this thesis: while optimal control models might work well in healthy 

adults, this approach shows reduced accuracy and some inherent limitations when used to model the 

movement of children, elderly people or patients. 
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2.2  Subject-specific model identification 

The following paragraph introduces the typical experimental data to identify subject-specific model 

parameters and that allow an optimization approach to model the dynamics of human movement. 

2.2.1 Gait analysis 

Motion capture aims to record human motion and several techniques, such as goniometry, inertial 

measurements and stereo photogrammetry, are used for this purpose. Optical systems measure the 

location of skin-attached markers in the lab environment. Through spatial calibration of the cameras 

with respect to each other, the three-dimensional location of a marker can be reconstructed from the 

individual two-dimensional images. In a system with passive markers, the cameras are sensitive to the 

infrared light they emit which the markers reflect. A properly defined marker set allows for the 

reconstruction of segment orientation and the amount and location of the markers depend on the 

modelling procedure. Typically, three or more markers are attached per segment to fully define its 

orientation. With this technique, errors in segment orientation estimation originate from three 

different sources: instrumentation, marker placement and skin motion. Instrumentation errors are 

small relative to the other two types of errors. The use of ultrasound techniques or the recording of 

anatomical markers in the medical images, used to obtain bone geometries, can reduce marker 

placement errors. The largest source of error, however, is the movement of the skin with respect to 

the underlying bones. To reduce this error, a distinction is made between anatomical markers and 

technical markers; the former are attached to the skin over predefined bony landmarks that can be 

identified through manual palpation; the latter are attached to the skin at locations where movement 

with respect to the bones during motion tasks is minimal. Generally, the anatomical markers are used 

to define a static pose from a trial where the participant is asked to stand still, while the technical 

markers are used to reconstruct the segment orientations during motion trials. One of the possible 

procedures to estimate joint kinematics will be discussed later. 

In case of gait, the forces exchanged with the floor can be measured simultaneously to the skin-marker 

trajectories with force-sensitive platforms that are mounted in the floor. Different types of 

instrumentation, such as piezoelectric sensors or strain gauges, exist, but the principle remains the 

same: the forces at the origin and the moments around the axes of the platform reference frame are 

measured, which allows for the reconstruction of the point of application of the forces at the 

platform’s surface. Due to this reconstruction, the estimates of the point of application are highly 

sensitive to noise, especially at the low signal-to-noise ratios during initial contact and toe-off. A force 
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threshold, a cut-off value for lower forces, and a low-pass filter are commonly applied to reduce 

instrumentation errors. 

2.2.2 Electromyography 

Surface electromyography (EMG) allows for the recording of electrical activity of skeletal muscles with 

electrodes applied to the skin over the muscle centre. In bipolar recordings, a potential difference 

between two electrodes originates from the action potential dipoles that move along the muscle fibre 

membranes. Even though EMG recordings are representative of muscle activation, the relation with 

muscle force is not straightforward due to measurement errors and the non-linear relationship 

between a muscle’s electrical activation and force production. Movement artefacts, crosstalk from 

other muscles, material properties of the tissues between the muscle and the electrodes and 

heterogeneity of muscle fibre size are just a few factors that trouble EMG signals. A bandpass filter, 

signal rectification and a low-pass filter are sequentially applied to obtain EMG envelopes, which are 

indicative of muscle on- and offsets. Further interpretation of EMG in terms of activation amplitude 

and force prediction requires many assumptions and is beyond the scope of this study. 

2.2.3 Magnetic resonance imaging 

Magnetic resonance imaging is an imaging technique based on the spin of hydrogen protons in water 

molecules and their response to applied magnetic fields. An MRI scanner applies three different 

magnetic fields: a strong, static magnetic field to align the spin orientation, a radiofrequency (RF) field 

that excites the spin to a direction perpendicular to the static field and gradient fields to define spatial 

information. Contrast in the images is obtained through two relaxation measures that depend on the 

density of water molecules in a tissue: T1-weighted images depend on the time it takes for hydrogen 

spins to align with the static field after the RF field has been removed and T2*-weighted images 

depend on the dephasing of hydrogen spins from their alignment with the perpendicular RF field after 

being excited.  

Segmentation of bones from the MRI images provide segment geometries and can inform the 

orientation of rotation axes through the fitting of geometrical shapes, such as spheres and cylinders, 

to the joint surfaces. The volumes of soft tissue, such as the skin and muscles, are also visible on MRI 

images and can therefore inform the estimation of the segment mass properties and the orientation 

of muscle geometry paths. 
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2.2.4 Inverse kinematics 

Kinematics is the study that describes the motion of points, bodies and systems of bodies without 

considering the internal and external forces involved. An accurate description of the motion is valuable 

in the study of dynamics that aims to relate the forces to the positions, velocities and accelerations of 

the system. Once the musculoskeletal model is identified and the skin marker trajectories are 

obtained, an inverse approach can be taken to derive the underlying skeletal kinematics from the skin 

marker motions.  

Static tasks do not suffer from relative skin-bone motion and are used to identify the position of the 

technical markers with respect to the segment reference frames. A global optimization method is used 

to obtain the generalized coordinates that minimize the difference between the positions of the 

virtual and experimental anatomical markers (Lu and O’Connor, 1999). The positions of both the 

technical and anatomical virtual markers in the segment reference frames are then adjusted such that 

their positions in the global reference frame match those of the experimental markers. The same 

optimization technique can then be used to identify the trajectories of the generalized coordinates 

during a dynamic task, such as walking, running and squats. In contrast to the estimation of the static 

pose, the difference between positions of the virtual and the experimental technical markers now 

contributes to the optimization criterion. For each dynamic trial, the trajectories of generalized 

coordinates �⃑�(𝑡) fully describe the orientation and position of each segment of the musculoskeletal 

system at each time point.  

2.3 Inverse dynamics 

When we decide to move, our central nervous system signals our neurons to activate our muscles; the 

activation of our muscles leads to the production of forces that accelerate our joints and move our 

body segments in space over time. As mentioned above, rigid multibody dynamics provides a powerful 

approach to model these dynamics of the musculoskeletal system: The location and orientation of the 

musculoskeletal system is fully determined by the generalized coordinates �⃑�(𝑡), the change in 

configuration of the system over time is described by the generalized velocities, �⃑̇�(𝑡), and 

accelerations, �⃑̈�(𝑡). Following Newton’s and Euler’s second laws of motion, all the forces acting on a 

rigid body with constant mass describe the acceleration of its centre of mass and its angular 

acceleration. These laws of motion can be conveniently expanded to the dynamics of a rigid multibody 

system using Lagrange’s method, describing the relationship between the generalized accelerations 

and the forces acting on a system articulated by 𝑛 degrees of freedom: 
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 𝑀(�⃑�)�⃑̈�(𝑡) = �⃑⃑�(𝑡) + 𝐶(�⃑�(𝑡), �⃑̇�(𝑡)) + �⃑�(�⃑�(𝑡)) + �⃑⃑�(�⃑�(𝑡), �⃑̇�(𝑡)) 
2.8 

 

where 𝑀 is the 𝑛 × 𝑛 mass matrix and �⃑⃑� is the 𝑛 × 1 vector of forces and moments of force acting at 

the generalized coordinates and 𝐶, �⃑� and �⃑⃑� are the 𝑛 × 1 vectors of the centrifugal, the gravitational 

and the external forces, respectively. As with the generalized coordinates, the components of �⃑⃑� can 

be divided into two groups according to the type of coordinate it acts on: The forces and moments at 

the joint coordinates represent the net result from the forces in the muscles and the ligaments, while 

the residual forces and moments act on the coordinates that specify the location and orientation of 

the pelvis with respect to the inertial reference frame. The residual forces and moments represent the 

inconsistencies between the mass distribution, the joint kinematics and the measured ground reaction 

forces and the forces and moments exerted on the pelvis by the contralateral limb and/or the upper-

body segment that are potentially ignored. 

We can aim to solve this set of equations in a forward or inverse manner depending on the type of 

questions we want our model to answer and on the type of experimental data that is available. A 

forward dynamics approach explores the motion output as a function of the muscular force input and 

therefore allows us to answer ‘what if …?’ questions. However, two additional requirements 

complicate the application of a forward approach: Firstly, the ground reaction forces are an output of 

the model and therefore a foot-ground contact model is required. Secondly, the activation or force 

patterns for all muscles are required as an input, but a non-invasive technique to measure those forces 

or activations is currently not available. Muscle excitation patterns have been estimated from 

calibrated EMG data to drive musculoskeletal motion (Lloyd and Besier, 2003), but such methods 

require many assumptions and are difficult to validate. In the inverse approach, the orientations, 

velocities and accelerations, �⃑�(𝑡), �⃑̇�(𝑡) and �⃑̈�(𝑡), are assumed to be known and the equations of 

motion are solved for the generalized torques, �⃑⃑�(𝑡). An estimation of the generalized coordinates can 

be obtained through the previously explained inverse kinematics technique, while values for the 

generalized velocities and accelerations can be obtained by differentiation of the orientations with 

respect to time (Figure 2.2). Given the known musculoskeletal anatomy, the known kinematics and 

the known forces exchanged with the environment, the muscle forces must satisfy the following 

instantaneous equilibrium: 

 �⃑⃑�(𝑡) = 𝐵(�⃑�, 𝑡)�⃑�𝑀(𝑡) 
2.9 

 

where 𝐵 is a 𝑛 × 𝑚 matrix of muscle moment arms, and �⃑�𝑀 is a vector of 𝑚 muscle forces. With this 
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set of equilibrium equations, inverse dynamics provides a modelling approach to explore the possible 

muscle force patterns that underlie the known motion and result in the contact forces experienced by 

the joints. The inverse approach is commonly referred to as a quasi-static approach, because the 

dynamic equilibrium can be solved independently for each time point after the generalized 

accelerations are determined.  

 

2.4 Static optimization 

The concept of muscle redundancy implies that an infinite amount of muscle forces exists that balance 

the generalized torques in Equation 2.9. The central nervous system chooses one control pattern from 

many possibilities to make the musculoskeletal system execute the intended motion. One approach 

to solve this muscle load-sharing problem, typical in inverse dynamics simulations, is to assume that 

our central nervous system solves an optimization problem where a muscle activation pattern is 

selected by minimizing an objective function 𝐽: 

 min 𝐽(�⃑�𝑀)

subject to �⃑⃑�(𝑡) = 𝐵(�⃑�, 𝑡)�⃑�𝑀

 0⃑⃑ ≤ �⃑�𝑀 ≤ �⃑�𝑚𝑎𝑥
𝑀 (𝑡)

(𝑡) 2.10 

 

where �⃑�𝑚𝑎𝑥
𝑀  is the 𝑛 × 1 vector of maximal muscle forces given the dynamically solvable equations of 

Figure 2.2: Block representation of the forward dynamics (top) and inverse 
dynamics (bottom) approach to solve the muscle redundancy problem. Generalized 

coordinates, velocities and accelerations (�⃑�, �⃑̇� and �⃑̈�, respectively), generalized 

torques (�⃑⃑�) and muscle forces (�⃑�𝑀). Image adapted from Viceconti (2011). 
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musculotendon dynamics (Equation 2.5). A large number of studies explored if an objective function 

existed of which the minimization would predict a muscle activation pattern that agreed with the 

activation measured by EMG (Crowninshield and Brand, 1981; Hardt, 1978; Patriarco et al., 1981; 

Seireg and Arvikar, 1975) (For a complete overview, see (Erdemir et al., 2007)). Eventually, the 

consensus settled on the summation of muscle activations squared as an objective function that 

predicted muscle activation patterns in close enough agreement with EMG data. If we ignore the 

muscle force-length-velocity relationship, the generalized form of this objective function is: 

 
𝐽(�⃑�𝑀) =  ∑ (

𝐹𝑖
𝑀(𝑡)

�⃑�𝑚𝑎𝑥,𝑖
𝑀 (𝑡)

)

𝑘𝑚

𝑖=1

 
2.11 

 

where 𝑚 is the number of muscles and the exponent 𝑘 > 1. However, such an objective function did 

not provide a physical explanation of motor control as such. A later study included a sophisticated 

model of muscular energetics in a forward dynamics approach to simulate level walking: The 

minimization of the metabolic energy expenditure per unit distance travelled predicted body-

segmental displacements, ground reaction forces and muscle activations that were representative of 

healthy gait (Anderson and Pandy, 2001a). The same authors found that the minimization of the sum 

of muscle activations squared predicted very similar, but not identical, muscle activation patterns as 

the energetically optimal solution (Anderson and Pandy, 2001b). From here on, I will refer to optimal 

control as the minimization of the sum of muscle activations squared, due to its close approximation 

of the minimization of metabolic energy expenditure. In recent studies, optimal muscle control 

provided estimates of joint contact forces that were in approximation to the forces measured with 

instrumented implants (Kinney et al., 2013).  

Beyond the aim to obtain a physiologically plausible estimation of muscle forces and the resulting joint 

contact forces, the optimization approach has also been used to assess the influence of muscle 

recruitment on axial tibiofemoral forces and to explore feasible muscle activation ranges in walking 

(DeMers et al., 2014; Simpson et al., 2015). One important limitation of this quasi-static, optimization 

approach to motor control compared to a forward dynamics approach is the lack of dependency 

between time points. An instantaneous change in muscle force production is physiologically 

impossible, but not constrained in this approach. Also, ‘frame-by-frame’ optimality does not 

guarantee optimality for an entire movement (Yamaguchi, 2001a). 
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2.5 Joint contact forces 

Once we know the muscle forces, the dynamics of the system are fully described. The equal and 

opposite forces transmitted at the constrained directions of the joints do not contribute to the 

generalized accelerations and therefore are not represented in Equation 2.8. However, the joint 

surfaces experience these resultant forces and thus these forces are an important output of 

musculoskeletal dynamics models when considering possible biomarkers of joint degeneration. Some 

confusion exists on the correct term for these forces, but I will refer to them as joint contact forces 

(JCF), as proposed by (Zajac et al., 2002). The contact forces at each joint can be made explicit by 

solving the force equilibrium equations in a Cartesian coordinate system for each segment in an 

iterative manner; starting from the most distal segment upon which the ground reaction forces act 

and continuing in a proximal direction: 

 �⃑�𝑗(𝑡) =  𝑀𝑖(�⃑�)�⃑�𝑖(𝑡) − ∑ �⃑�𝑀(𝑡) − ∑ �⃑�𝑒𝑥𝑡 (𝑡) − �⃑�𝑗+1(𝑡)  2.12 

 

where �⃑�𝑗 is the contact force and moment of joint 𝑗 on the distal segment 𝑖, �⃑�𝑖  is the six-dimensional 

vector of linear and angular accelerations of segment 𝑖, ∑ �⃑�𝑒𝑥𝑡 is the sum of external forces, including 

the gravitational force, and �⃑�𝑗+1 is the contact force of joint 𝑗 + 1 on its proximal segment 𝑖. An 

example of all the forces acting on the femur is provided in the free-body diagram shown in Figure 

2.3.   
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�⃑�𝑖
𝑀 

�⃑�𝐾 

𝑚�⃑� 

𝑀�⃑� 

�⃑�𝐻 

Figure 2.3: Two dimensional free-body diagram of the femur; the 

muscle forces (�⃑�𝑖
𝑀), inertial forces (𝑀�⃑�), gravitational force (𝑚�⃑�) 

and knee and hip contact forces (�⃑�𝐾 and �⃑�𝐻) are shown. The 
reference frame is located at the centre of the femoral head. 
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To trust the answer a model provides to a specific research question, we need to know the accuracy 

of or, conversely, the error in its predictions. We need to quantify the uncertainty in predictions due 

to the inherent variability in the system of interest and determine the sensitivity of the output to our 

modelling assumptions. Specifically for musculoskeletal models and simulations of movement, Hicks 

and colleagues proposed a set of guidelines for model verification and validation (Hicks et al., 2015). 

These guidelines provide a complete and in-depth overview of best practices; the following section 

expands on these guidelines and is specifically aimed to quantify the uncertainty in joint contact force 

predictions and their relation to the prediction of muscle activation patterns. 

Hicks and colleagues followed the definitions of verification and validation from the American Society 

of Mechanical Engineers (Thacker, 2001):  

‘Verification is the process of determining that a model implementation accurately represents the 

developer’s conceptual description of the model and the solution to the model.’  

and 

‘Validation is the process of determining the degree to which a model is an accurate representation of 

the real world from the perspective of the intended uses of the model.’ 

3.1 Solver verification  

After we have defined a research questions and a methodological design and before we generate any 

simulation results with third-party software or in-house developed code, we must verify its 

implementation. In software development, a test suite provides a collection of test cases that 

collectively verify the implementation of the code. These test cases typically compare the predictions 

from the software to analytical benchmarks. 

OpenSim is a widely used, open-source code that allows for computational modelling and simulation 

of neuromusculoskeletal systems (Delp et al., 2007; Hicks et al., 2015; Seth et al., 2011), which 

leverages on the, also open-source, SimBody code to perform the simulations of multibody dynamics 

(Sherman et al., 2011). Before every release, OpenSim is tested against 29 benchmark problems that 

cover every aspect of the software’s functionality. 

Any in-house developed code, described in the remaining sections, leveraged as much as possible on 

the object-oriented design of the OpenSim-MATLAB application programming interface (API) to allow 

for efficient software verification (Hicks et al., 2015; Seth et al., 2011). The implementations of the 

system definition (Equation 2.10) and the optimizer to obtain muscle activation solutions (Equation 

2.11) were verified through comparison with the solution obtained from the OpenSim static 
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optimization tool when the objective function aimed to minimize the sum of muscle activations 

squared. 

3.2 Model verification: conservation of momentum 

The law of conservation of momentum states that the total momentum is constant in a closed system. 

In other words: for a system that does not interact with its environment, the sum of the mass 

multiplied by the velocity of each element remains equal. The musculoskeletal system, however, does 

exchange forces with its surroundings during dynamic tasks and therefore the momentum of the 

system changes over time. How well an inverse dynamics model captures these changes in momentum 

is quantified by the residual forces and moments: errors in the estimated kinematics and mass 

distribution of the musculoskeletal model result in residual forces and moments at the other end of 

the kinematic chain than where the external forces, or ground reaction forces, apply. Typically, the 

residual forces are defined to act at the link between the pelvis and the inertial reference frame, or 

ground.  

The guidelines proposed by Hicks and colleagues suggest threshold values that the residual forces and 

moments should not exceed for the model to accurately simulate the system dynamics: the root-

mean-square (RMS) and peak residual forces should not exceed 5 % of the magnitude of the external 

forces and the RMS and peak residual moments should not exceed 1 % of the body centre-of-mass 

height multiplied by the magnitude of the external forces. When the values of the original simulations 

exceed the threshold values, the reduce residual algorithm suggests slight adjustments of the 

kinematics and segments’ mass distribution to minimize the residual forces and moments (Hamner et 

al., 2010; Kuo, 1998). However, the residual forces and moments should only be minimized when 

these forces and moments are not compensating for a contralateral limb or upper body that is not 

represented in the model. Even when the model does contain both lower limbs and an upper body, 

one could question whether adjustments of the kinematics and mass distributions within the lower 

limb of interest are preferred. Most likely, the parameter identification and model assumptions for 

the lower limb are less course than those for the upper body. In simulations of walking, the upper 

limbs are generally ignored and the upper body is regarded as a single, rigid segment. Incorrect 

adjustments to the kinematics and mass distribution of the lower limb might be made to compensate 

for the inaccurate representation of the moving masses of the arms and internal organs. Therefore, 

the reduce residuals algorithm has not been applied in the following studies, but the residual forces 

and moments will be reported for each of the models. 
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3.3 Uncertainty quantification of inverse dynamics models 

Inverse dynamics simulations of human level walking require a variety of assumptions and data on the 

musculoskeletal system. Subsequently, the uncertainty in the model output suffers from these 

assumptions and a variety of errors in the parameter identification and the measured data.  

Soft-tissue artefacts are one of the largest sources of error in the input data for inverse dynamics 

models: The skin-attached markers move with respect to the bones during dynamic tasks, which 

introduces errors to the predicted location and orientation of segments over time. These artefacts get 

as large as 30 mm for markers on the thigh during walking, but are smaller for the markers on the tibia 

(Cappozzo et al., 1996). One sensitivity study artificially created 500 different sets of marker 

trajectories for level walking task, representative of the measured soft-tissue artefacts reported in 

literature (Lamberto et al., 2017). In three different scaled generic musculoskeletal models, the effect 

on the predicted joint angles and net-joint moments was evident. This effect propagated to the 

predicted joint contact forces: On average, the soft-tissue artefacts affected the force at the hip by 

less than one bodyweight (BW) and less than 0.5 BW for the knee and ankle, while maximum values 

reached as high as 1.5 BW for the hip. The effect on the predicted muscle forces varied across muscles, 

up to on average of 0.4 BW for the Gluteus Medius muscle, and around 10 % of each muscles’ 

maximum isometric force.   

Another sensitivity study focussed on the uncertainties in the identification of bony landmarks 

(influencing the location of joint axes), muscle geometry paths and maximum muscle tension (Valente 

et al., 2014). An MRI-based subject-specific model included a ball-and-socket joint at the hip and 

hinges at the knee and ankle. The sensitivity of the joint angles and net-joint moments to the 

uncertainties in parameter identification was minimal, but the joint contact forces showed a more 

pronounced sensitivity: the maximum standard deviation across stance was smaller than 0.3 BW for 

all joints, but maximum ranges varied from 1.5 BW for the hip and ankle to 2.1 BW for the knee. The 

maximum standard deviations of the forces in each muscle were smaller than 0.25 BW, with a 

maximum range of 1.5 BW for the Soleus muscle. These results suggest that the sensitivity of predicted 

muscle and joint contact forces to parameter identification is likely to be moderate, but a potentially 

large influence on the joint contact forces could occur in a worst-case scenario. An older study came 

to similar conclusion when varying the bone attachment points of muscles, but found a larger 

sensitivity of the hip contact force to these changes (Röhrle et al., 1984). 

A third study quantified the sensitivity of model predictions to the uncertainties in the definition of 

joint axes orientation (Martelli et al., 2015b). The joint locations and axes were defined following the 

recommendations of the International Society of Biomechanics (Wu et al., 2002). The operator-
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dependent variability in virtual palpations of anatomical landmarks defined the uncertainties in the 

joint reference frames. The ranges of predicted force in each muscle were smaller than 0.35 BW and 

did not exceed 15% of their maximal force contribution throughout the gait cycle. The ranges of 

predicted muscle forces were smaller than 0.3 BW for the hip and the ankle joint and smaller than 

0.15 BW for the knee joint. 

Besides the orientation of joint axes, assumptions on the degrees of freedom in different joint models 

also affect the model predictions. One study compared the effect of joint models on the predicted 

muscle and joint contact forces from three different MSK models to the reference model used for the 

sensitivity analysis of parameter identification mentioned previously (Valente et al., 2015, 2014). The 

first model included prescribed translation of the tibia with respect to the femur dependent on the 

knee flexion angle and a universal joint rather than a hinge at the ankle to allow for rotation in the 

subtalar joint; the second model included a three degree of freedom at the knee; the third model 

included anatomical ligaments that constrained the knee and ankle joints to function as hinges that 

allowed for small anterior-posterior and inferior-superior translations prescribed by the knee flexion 

angle. The differences with the predictions from the reference model in terms of joint contact forces 

were dependent on the joint model. The mean differences over repeated trials for the first model 

were smaller than 0.1 BW for the hip and the knee and smaller than 0.2 BW for the ankle, while the 

maximum difference did not exceed 0.5 BW for any of the joints. The differences of the second model 

got as large as 0.8 BW for the hip, 2.4 BW for the knee and 1.6 BW for the ankle. The differences of 

the third model were on average smaller than 0.2 BW for all joints, while the maximum differences 

did not exceed 1.1 BW for the knee. The differences in activation of the first and third model compared 

to the reference model were maximally 10-15 % during the stance phase.  

The assumption to represent muscles as linear actuators introduces errors in their estimated moment 

arms and lines of action, especially for muscles with large bone-attachment areas. Therefore, the 

decision on how to discretize these large muscles into individual compartments, all represented by 

one linear actuator, is likely to affect the errors in predicted joint contact forces and muscle forces. 

The effect of an accurate representation of muscles with a large bone-attachment area as separate 

linear actuators on the resultant force in the centroid of the attachment area was small, but larger for 

the resultant moments (Valente et al., 2012). This finding is relevant to estimate the effect on the 

bone surface, but the effect on the predicted muscle and joint contact forces during dynamic tasks, 

such as level walking, remained unclear. A follow-up study, presented in a doctoral thesis, suggested 

that during level walking the effect on the peak forces at the hip and knee ranged from 5 to 15 %, 

while no effect was found at the ankle (Valente, 2013). 
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The operator-dependent variability in the predicted vertical ankle forces and the forces in muscles 

that span the ankle within a subject-specific model construction pipeline were dependent on the 

subject (Hannah et al., 2017). For three different subjects the maximum difference in ankle force 

between operators ranged from 0.7 to 1.5 BW, while intra-operator variability was 0.3 BW for the 

subject with the lowest inter-operator variability. The inter-operator variability of predicted muscle 

forces was highly dependent on the subject and the maximum differences were as large as 73 % of 

the maximum isometric force for the Gastrocnemius Medialis muscle.  

From these studies, we can estimate the uncertainty affecting the predictions of musculoskeletal 

models, similar to the ones used in the following sections of this work, to be around 1-2 BW for joint 

contact forces and roughly 10 % of the maximum activation for each muscle. In the following, we will 

explore this region through variability in motor control and study how well the uncertainty on muscle 

force predictions overlap with the measured forces across repeated trials, which include both intra-

subject variability and all uncertainties affecting the experimental measurements.  

3.4 Solution space of the dynamic equilibrium 

3.4.1 Introduction 

When using an inverse approach to study the dynamics of human movement assumptions on motor 

control strategies are required. Typically, these assumptions are represented as optimization 

strategies that are suggested to yield physiologically plausible results. However, the selection of a 

motor control strategy is likely to be patient specific and influenced by multiple factors. For example, 

the minimization of energy expenditure has been proposed as a general strategy in healthy gait 

(Anderson and Pandy, 2001a), but energy expenditure has been shown to increase in pathological gait 

(Waters and Mulroy, 1999) and the amount of co-contraction observed during gait has been 

associated with painful joints (Childs et al., 2004; Heiden et al., 2009) and instability (Hirokawa et al., 

1991; Hurd and Snyder-Mackler, 2007). This indicates that the minimization of energy expenditure is 

not always the preferred control strategy. Also, muscle control might be more, or less, variable, 

depending on a person’s ability or need to control force production, for example due to pathologies 

or pain.  

Several alternative approaches have been suggested to explore the solution space of muscle forces 

that satisfy the dynamic equilibrium (Equation 2.9). For example, in one experimental approach 

surface electromyography was successfully used to predict muscle forces in different knee movement 

tasks and gait (Lloyd and Besier, 2003; Pizzolato et al., 2015). Another study focussed on the estimation 
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of  joint contact forces by predicting ranges of muscle forces based on variability in EMG (Mirka and 

Marras, 1993). Despite these interesting applications, an experimental framework to explore the 

solution space of the dynamic equilibrium is difficult to realise, as variability in experimental 

measurements only occurs when a task is repeated. Hence, variability will not only occur in the space 

of muscle force patterns, but will also inherently occur as kinematic variability. The question would be 

how to separate these sources of variability. 

In a more deterministic approach to explore the structure of muscle redundancy, a combination of 

cadaveric data and computational geometry of the cat hind limb was used (Kutch and Valero-Cuevas, 

2011; Valero-Cuevas et al., 2015, 1998). Feasible force sets were determined for each muscle, 

representing the contribution of a specific muscle to the force produced at the motor endpoint. Many 

different combinations of individual muscle forces produced identical submaximal forces at the most 

distal point of the limb (Valero-Cuevas et al., 2015). However, due to both the cadaveric element and 

the computational expense to obtain an exact solution, it is currently unfeasible to apply this method 

to a multi-body dynamics model of the human motor system for complex tasks such as walking.  

Optimization techniques have been used to assess muscle redundancy in force producing tasks by 

exploring the borders of the solution space through minimization and maximization of the activation 

of a single muscle, while the other muscle were free to satisfy the dynamic equilibrium (Sohn et al., 

2013). However, this method did not provide any information on the distribution of sub-optimal 

muscle recruitment strategies within the solution space, while previous studies did account for sub-

optimality and showed its relevance to the prediction of spontaneous fractures (Martelli et al., 2011; 

Viceconti et al., 2012). A later study introduced a probabilistic approach to estimate an even larger set 

of sub-optimal muscle force patterns (Martelli et al., 2013). These sub-optimal solutions were shown 

to, on average, correlate well with EMG and span a large range of hip contact forces (Martelli et al., 

2015a).  

Specifically, this method leverages on Bayesian statistics to define a probability distribution from 

which muscle force patterns are sampled using a Markov chain Monte Carlo method. The sampled 

posterior probability distribution of muscle forces is defined by a prior and a likelihood term:  

 𝜋(�⃑�𝑀(𝑡)|�⃑⃑�(𝑡)) ∝  𝜋𝑝𝑟(�⃑�𝑀(𝑡))𝜋(�⃑⃑�(𝑡)|�⃑�𝑀(𝑡)) 3.1 

 

where 𝜋𝑝𝑟(�⃑�𝑀(𝑡)) is the prior term that represents the constraints on the muscle forces (Equation 

2.10), 𝜋(�⃑⃑�(𝑡)|�⃑�𝑀(𝑡)) is the likelihood term that represents the probability of the known generalized 

torques, �⃑⃑�(𝑡), given a vector of muscle forces �⃑�𝑀(𝑡) and 𝜋(�⃑�𝑀(𝑡)|�⃑⃑�(𝑡)) is the posterior distribution 
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that represents the probability of a vector of muscle forces that satisfies the dynamic equilibrium 

(Equation 2.8). The likelihood term 𝜋(�⃑⃑�(𝑡)|�⃑�𝑀(𝑡)) consists of a Gaussian distribution along the null 

space of the moment-arm matrix 𝐵(𝑞, 𝑡) (Equation 2.9). For each time frame, a Markov chain Monte 

Carlo random-walk method was used to obtain a set of representative samples, or muscle force 

patterns, from the probability distribution. The algorithm to sample the solution space of muscle force 

patterns was part of the Metabolica software, implemented in MATLAB (v2017a, The MathWorks, 

Inc., Natick, MA, USA) (Heino et al., 2010, 2007).  

When such a probabilistic approach to obtain sub-optimal muscle force patterns is used to study 

physiologically plausible motor control, it is important to assess how the set of samples is 

representative of the entire solution space. On the one hand, in the study that introduced the use of 

Metabolica in this context, at least one force pattern was sampled for each muscle in which that 

muscle did not contribute any force at the instant of the gait cycle where the first peak of the hip 

contact force occurred during level walking (Martelli et al., 2013). This result was later subscribed by 

an optimization study in which no muscle was specifically required to contribute force at any instant 

of the gait cycle in treadmill walking (Simpson et al., 2015). On the other hand, in the Metabolica 

study, no solutions were sampled that reached the muscles’ maximum force values for (compartments 

of) the Gluteus Maximus, the hip adductor, the Semimembranosus, the Vasti, the Gastrocnemius and 

the Soleus muscles. However, the optimization study showed that only for the Gastrocnemius and the 

Soleus muscles no force pattern existed, at specific time intervals during the gait cycle, in which these 

muscles contributed their maximum force. Even though these studies were performed on different 

participants, these results suggest that the probabilistic method does not always reach the boundaries 

of the solution space of muscle force patterns. However, the sample size could influence the range of 

forces that is obtained for each muscle. Therefore, the first aim of this methodological work was to 

study the effect of the sample size in the probabilistic method, as described above, on the range of 

muscle forces obtained for a multibody-dynamics simulation of level walking. The second aim of this 

work was to explore the distribution and the density of samples within the solution space. 

3.4.2 Methods 

Dynamics simulations 

The trajectories of skin marker positions and ground reaction forces of one overground, level walking 

gait cycle for one healthy participant (male, age: 28 yrs., height: 1.90 m) were included. Details on the 

experimental data collection are listed in Appendix A.1 under p01. The segment geometries of a 

generic musculoskeletal model that included 13 DoFs and 92 muscles, were scaled based on the 
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measured positions of skin markers during a static standing trial (Delp et al., 1990). The generalized 

coordinates, the generalized torques and the muscle lever arms with respect to the coordinates were 

estimated using the Opensim inverse kinematics and inverse dynamics tools. The patterns of joint 

angles and joint moments (normalized to body weight × height) resembled normative patterns 

(Kadaba et al., 1989). The maximum force each muscle could produce during any instant of the gait 

cycle was defined by its maximum isometric force, which was scaled according to the ratio of body 

mass between the participant and the generic model.  

Muscle force patterns 

The optimization problem in Equation 2.10 was solved twice for each muscle to obtain the minimum 

and maximum possible force for each muscle using the following linear objective function: 

 𝐽(�⃑�) =  �⃑⃑⃑�𝑇�⃑�(𝑡) 3.2 

 

where �⃑⃑⃑� is a 𝑚 × 1 vector of weights of each actuator. The first optimization 𝐽𝑚𝑖𝑛(�⃑�) aimed to 

minimize the force in the targeted muscle actuator: the entries of �⃑⃑⃑� were set to 0, except for the entry 

of the targeted muscle which was set to 1. The second optimization 𝐽𝑚𝑎𝑥(�⃑�) aimed to maximize the 

force in the targeted muscle: the entries of �⃑⃑⃑� were set to 0, except for the entry of the targeted muscle 

which was set to -1. MATLAB’s linear programming linprog, leveraging on the dual-simplex algorithm, 

was used to solve the problem. 

The Metabolica tool was used to generate multiple sets of possible muscle force patterns 

{[�⃑�(𝑡)]
1

, [�⃑�(𝑡)]
2

, … , [�⃑�(𝑡)]
𝑁

} from which each sample satisfied Equation 2.9. The samples were 

drawn four times to obtain four sets of different sample sizes: 𝑁 = 1 × 105, 𝑁 = 2 × 105, 𝑁 =

3 × 105 and 𝑁 = 1 × 106. The starting point was the solution to the optimization problem in Equation 

2.10 given the following objective function, where each actuator was treated as an ideal force 

generator: 

 
𝐽𝑜𝑝𝑡(�⃑�) = ∑ (

𝐹𝑖(𝑡)

𝐹𝑜,𝑖
)

2𝑚

𝑖=1

 3.3 

 

where 𝐹𝑜,𝑖  is the maximum isometric force of (muscle) actuator 𝑖. MATLAB’s quadratic programming 

quadprog, leveraging on the interior-point algorithm, was used to solve the problem. 
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Quantification of sampled region of muscle force patterns 

For each muscle in each of the four sampled sets, the range of the sampled forces was expressed as a 

ratio with respect to the range of forces found through optimization: 

 
𝑟𝑖(𝑡) =

[𝐹𝑖
𝑀(𝑡)]

𝑚𝑎𝑥
− [𝐹𝑖

𝑀(𝑡)]
𝑚𝑖𝑛

𝐹𝑚𝑎𝑥,𝑖
𝑀 (𝑡) − 𝐹𝑚𝑖𝑛,𝑖

𝑀 (𝑡)
 

3.4 

 

where [𝐹𝑖
𝑀(𝑡)]

𝑚𝑎𝑥
 is the maximum force value of muscle 𝑖 within a set of samples, [𝐹𝑖

𝑀(𝑡)]
𝑚𝑖𝑛

 is the 

minimum force value of muscle 𝑖 within a set of samples, 𝐹𝑚𝑎𝑥,𝑖
𝑀 (𝑡) is the force value of muscle 𝑖 from 

the 𝐽𝑚𝑎𝑥 solution and 𝐹𝑚𝑖𝑛,𝑖
𝑀 (𝑡) is the force value of muscle 𝑖 from the 𝐽𝑚𝑖𝑛 solution. Values of 𝑟𝑖(𝑡) 

were defined to fall in between 0 and 1, indicating a not sampled or fully sampled range of forces for 

muscle 𝑖, respectively. 

As a measure of similarity, the normalized distance of each sampled force pattern to the 𝐽𝑜𝑝𝑡 solution 

was defined as: 

 

𝑑𝑘(𝑡) = √∑ (
[𝐹𝑖

𝑀(𝑡)]
𝑘

− 𝐹𝑜𝑝𝑡,𝑖
𝑀 (𝑡)

𝐹𝑜,𝑖
𝑀 )

2𝑚

𝑖=1

 
3.5 

 

where [𝐹𝑖
𝑀(𝑡)]

𝑘
 is the force in muscle 𝑖 from the sampled force pattern 𝑘 and 𝐹𝑜𝑝𝑡,𝑖

𝑀 (𝑡) is the force in 

muscle 𝑖 from the 𝐽𝑜𝑝𝑡 solution. A distance value of zero indicates a sample that is identical to the 𝐽𝑜𝑝𝑡 

solution, while a higher distance value indicates a sampled force pattern that is increasingly different 

from the 𝐽𝑜𝑝𝑡 solution. 

3.4.3 Results 

For a sample size of 1x105, the force ranges sampled with Metabolica were significantly smaller than 

the muscle force ranges from the 𝐽𝑚𝑖𝑛 and 𝐽𝑚𝑎𝑥 solutions for most muscles throughout the gait cycle. 

At the larger sample sizes, the maximum and minimum possible muscle forces were sampled for most 

muscles at each instant of the gait cycle (Figure 3.1). However, the Metabolica samples did not reach 

the boundaries of the solution space for the Vasti, the intermediate and posterior compartments of 

the left Gluteus Maximus and the anterior and posterior compartments of the left Gluteus Medius 

muscles, typically during the terminal stance (around 50 % of the gait cycle) or terminal swing phase 

(90-100 % of the gait cycle). In addition, for both the left and right Soleus muscles the sampled force 

values only reached the boundaries of the solution space at a short time interval during terminal 
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stance. A further increase in sample size from 2x105 to 1x106 did not increase the sampled range of 

forces for any of these muscles at the specified time intervals. Therefore, only the sample size of 2x105 

was considered when discussing the distance values 𝑑𝑘. 

The average distance of the samples from the 𝐽𝑜𝑝𝑡 solution ranged from 4.2 to 4.9 normalized force 

values throughout the gait cycle and at each time point a bell-shaped frequency distribution was 

obtained around the average distance value (Figure 3.2). The interval of distance values between zero 

and 3 to 3.5 normalized force values, depending on the time point, was scarcely sampled, while no 

distance values higher than 6 normalized force values occurred. The samples in this scarcely sampled 

region were intermediate steps of the random walker in the direction of the densely sampled region 

around the average distance. 
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3.4.4 Discussion 

The aim of the current methodological work was twofold: Firstly, this work aimed to study the effect 

of the sample size on the range of obtained muscle forces in a previously published, probabilistic 

method to calculate sub-optimal muscle force patterns in a multibody-dynamics simulation of level 

walking. Secondly, this work aimed to explore the distribution and the density of those sampled 

muscle force patterns within the solution space. 

The difference in sampled muscle force ranges obtained with a sample size of 1x105 and 2x105 suggests 

that an insufficiently large sample size results in an underrepresentation of the possible sub-optimal 

force patterns. The number of samples to include, likely dependent on the size of the system (the 

number of degrees of freedom and muscles), can be evaluated by assessing the influence of a stepwise 

increase in sample size on the sampled range of forces for each muscle, as presented here. 

In a previous study, the sampled force range of, among other muscles, the intermediate compartment 

of the Gluteus Maximus, the Vasti and the Soleus muscles did not span from zero to its corresponding 

maximum isometric force (Martelli et al., 2013). In this work, the sampled forces for these muscles did 

not reach the boundary forces for which the dynamic equilibrium could still be satisfied, determined 

following the methodology of a previous optimization study (Sohn et al., 2013). A further five times 

Figure 3.2: The distance 𝑑 of the sampled muscle force patterns to the 𝐽𝑜𝑝𝑡 

solution are shown throughout the gait cycle. The colour of the data points 
indicates the number of samples at the corresponding distance. The vertical, 
dashed line indicates the time instant when toe off occurred. 
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increase in sample size, from 2x105 to 1x106 samples, did not evidently change the sampled force 

ranges. These results suggest that the probabilistic estimation of sub-optimal muscle force patterns 

with Metabolica needs to be accompanied by or confirmed with results from optimization techniques 

when the entire solution space of possible muscle force patterns is of interest. 

Only a relatively small number of samples nearby the 𝐽𝑜𝑝𝑡 solution, in terms of distance in the 

normalized force space, was obtained. These samples were all obtained as intermediate steps of the 

random-walk method from the starting point to the densely sampled region. Therefore, this behaviour 

of the sampler results in a non-uniform representation of the solution space. These results suggest 

that the boundaries on the muscles’ maximum force should be narrowed around a specific region of 

interest to obtain a representative set of muscle force patterns that resembles light sub-optimality 

with respect to an assumed control strategy. 

In conclusion, the sampling technique of Metabolica provides a valuable, probabilistic approach to 

obtain a large number of muscle force patterns, representative of sub-optimality and variability in 

motor control, in inverse dynamics simulations of human movement. However, the probabilistic 

method is not suited for the exploration of the boundaries of motor control and the definition of these 

limits is likely to be an important factor when aiming to obtain physiologically plausible muscle force 

patterns.  
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CHAPTER 4 

- 

EFFECT OF MUSCLE ACTIVATION STRATEGIES ON JOINT LOADS 
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4.1 Introduction 

Degeneration of the joint surface in diseases like osteoarthritis leads to joint pain, reduces 

functionality and affects activity in daily life. Biomechanical determinants considerably affect the 

progression, and possibly drive the onset, of damage to the joint cartilage and the underlying bone; 

aberrant loading of joints was argued to be an important risk factor of the progression of knee 

osteoarthritis (Waller et al., 2011). Varus-valgus misalignment and anterior cruciate ligament rupture 

have been associated with disease development and progression due to their influence on joint 

loading (Andriacchi et al., 2004; Brouwer et al., 2007; Sharma et al., 2001), while an independent 

relationship between joint overloading due to obesity and joint degeneration was not established 

(Felson, 2000; Reijman et al., 2006). Nonetheless, obesity has been identified as a risk factor for both 

hip osteoarthritis (Cooper et al., 1998) and total hip replacement (Karlson et al., 2003); indeed, 

increased loading due to obesity amplified degeneration in misaligned knee joints (Felson et al., 2004).   

Unloading has been proposed as a conservative treatment to osteoarthritis progression (Lafeber et 

al., 2006) and interventions focus on weight loss, gait retraining, selective strength training and 

neuromuscular rehabilitation. The aim of the latter is not to introduce macroscopic kinematic 

compensations in the gait pattern, but rather to develop subtler neuromotor strategy compensations 

aimed to reduce the joint loading. Physical interventions, designed to reduce the load transmitted to 

the affected joint by modifying the neuromuscular recruitment patterns during gait, have a high 

potential because muscle forces are the primary contributors to joint compressive forces (Winby et 

al., 2009; Winter, 2009). But, being also the mildest of the interventions, one may wonder if it is 

reasonable to expect a significant reduction in the force transmitted through a joint by simply 

modifying the muscular recruitment strategy while preserving the gait kinematics. 

Direct measurements of muscle forces and joint loads are invasive and musculoskeletal models offer 

a valuable non-invasive alternative to investigate the forces transmitted at joints during activities of 

daily life. A range of plausible muscle recruitment strategies in walking has been proposed (Anderson 

and Pandy, 2001b; Crowninshield and Brand, 1981; Seireg and Arvikar, 1975), among which the 

minimization of the sum of muscle activations squared was shown to be equivalent to energetically 

optimal strategies and is now widely used to estimate muscle forces in simulations of gait (Anderson 

and Pandy, 2001b). However, the potential of alternative muscle recruitment strategies to unload 

joints has been studied to a limited extent; A previous optimization study showed that alternative 

neuromotor control could significantly reduce axial knee loads on the tibia throughout the stance 

phase of gait (DeMers et al., 2014), while an exploration of possible muscle recruitment strategies in 

walking  suggested that the potential to reduce the hip loads might be limited (Martelli et al., 2011); 
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The load-reducing potential of alternative muscle recruitment remains unknown for the ankle. Also, 

the influence of such alternative muscle recruitment strategies on the load in adjacent joints has not 

been investigated. The current study aimed to fill these gaps and to expand the investigation to a 

diverse population by answering the following questions: 1) Can alternative muscle recruitment 

strategies reduce the peak force transmitted at each lower limb joint during level walking?; 2) Is this 

reduction similar for all four cases studied here, which were selected to represent widely different 

populations in terms of age, gender and health status?; 3) If a muscle recruitment strategy that 

significantly reduces the force in one joint exists, what is its influence on the other joints?; 4) Does the 

joint load-reducing potential of alternative recruitment strategies change with different walking 

speeds?; 5) How do the activation patterns predicted by different recruitment strategies at the instant 

of peak joint contact force differ? 

4.2 Methods 

4.2.1 Experimental data 

In order to explore the research questions with sufficient generality, we conducted the same analysis 

of four different subject-specific musculoskeletal dynamics models, each generated in a different 

research project, using different modelling approaches, and each referring to a very different subject: 

one for a healthy participant (p01), one for a participant with an instrumented full right knee 

replacement (p02; the sixth Knee Grand Challenge dataset (Fregly et al., 2012)), one for a participant 

with juvenile idiopathic arthritis (p03, part of the MD-Paedigree project JIA cohort (EC 7th FP, ICT 

Programme, Ref. No. 600932)) and one for a participant with osteopenia (p04, part of the MultiSim 

cohort (EPSRC Frontier Engineering Awards, Ref. No. EP/K03877X/1)); details for all participants in 

Table 4.1). Overground, level-walking trials at a self-selected speed for all participants and at orally 

instructed slow and fast speeds for p01 and p04 were included (Table 4.2) in this study. 

 

Table 4.1: Details of participants. 

 Gender Age (yrs.) Height (m) Mass (kg) 

p01 male 28 1.90 82 

p02* male N/A 1.72 70 

p03 female 16 1.68 83 

p04 female 74 1.64 57 

* Participant has a total knee replacement in the right limb 
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Table 4.2: Number of available trials (#) and average walking speeds for each participant. 

 
Self-selected Slow Fast 

# Speed ± SD (m/s) # Speed ± SD (m/s) # Speed ± SD (m/s) 

p01 6 1.24 ± 0.02 5 1.03 ± 0.05 2 2.43 ± 0.06 

p02 6 1.03 ± 0.02 N/A N/A N/A N/A 

p03 5 1.32 ± 0.03 N/A N/A N/A N/A 

p04 5 1.27 ± 0.03 5 1.14 ± 0.04 5 1.60 ± 0.05 

 

Three-dimensional positions of skin markers and ground reaction forces (GRF) were available for all 

trials. Technical details of the data collection, specific for each participant, are provided in Appendix 

A.1. A 10 Hz low-pass, zero-lag, 4th order Butterworth filter was applied to the ground reaction force, 

moment and centre-of-pressure trajectories. For the time frames with a vertical force below 20 N, the 

force, moment and centre-of-pressure components were set to equal zero. This threshold prevented 

a low signal-to-noise ratio to influence the accuracy of the centre of pressure reconstructions. 

4.2.2 Musculoskeletal models 

Model identification 

Participant 1 (p01) 

An eight segment, 19 degree-of-freedom, 92 actuator generic musculoskeletal model was scaled to 

match the participant’s anthropometry based on the ratio between the segment lengths of the generic 

model and those obtained from the marker trajectories of the static trial (Delp et al., 1990). Details on 

the methods used to compute the segment lengths from the experimental data can be found in 

(Lamberto et al., 2017). The back and hip were defined as ball-and-socket joints, the knee was defined 

as a hinge joint with prescribed anteroposterior and superior-inferior translation and the ankle was 

defined as a hinge joint.  

The maximal isometric forces of the muscles were initially scaled uniformly according to the ratio 

between the body mass of the participant and the generic model. After the initial muscle force scaling, 

the model appeared too weak to produce the required generalized torques of the fast walking trials 

and therefore the maximal isometric forces were increased by a factor 1.5 (Yamaguchi, 2001b). 

Participant 2 (p02) 
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A five segment, 11 degree-of-freedom and 43 actuator subject-specific musculoskeletal model of the 

patient’s implanted, right leg was constructed. Segment geometries were provided with the dataset; 

Bone geometries for the femur, tibia, fibula and patella had been segmented from pre- and post-

operative CT scan data; Implant geometries for the femoral component, patellar button, tibial insert 

and tibial tray had been extracted from point cloud data (Fregly et al., 2012; Lin et al., 2010). 

Segmental mass, centre-of-mass locations and inertial properties were obtained from the known 

geometries and densities of soft tissue, bone and implant structures. The pelvis’ geometry was 

obtained from the Visible Human Dataset (Spitzer and Whitlock, 1998). The dimensions and mass 

properties of the pelvis segment were taken from a generic pelvis segment that was scaled according 

to the body-mass ratio of the generic model and the participant (Delp et al., 1990). The foot segment 

was obtained from one of the musculoskeletal models constructed from the MD-Paedigree dataset 

and scaled to the patient according to the body-mass ratio.  

Analytical shapes were fitted to the joint surfaces of the identified bone geometries (Modenese et al., 

2018); a spherical shape was fitted to the femoral head to identify the hip as a ball-and-socket joint 

and cylindrical shapes were fitted to the femoral condyles and to the talar trochlea to identify the 

knee and ankle as hinge joints, respectively. The rotation in the sagittal plane and translation of the 

patellofemoral joint were prescribed by the knee angle, ensuring an articulation of the patellar button 

along the surface of the femoral component.  

The geometrical paths of the 43 muscle actuators were mapped onto the patient-specific bone 

geometries from a generic model (Delp et al., 1990). The paths of the Quadriceps muscles were 

adjusted such that they extended through the patella and attached to the tibia (Rajagopal et al., 2016). 

The maximal isometric forces of the muscles were scaled uniformly according to the ratio between 

the lower-limb mass of the participant and the generic model. The pennation angles were copied from 

the generic model. 

Participant 3 (p03) 

A five segment, 12 degree-of-freedom and 42 actuator subject-specific musculoskeletal model of the 

participant’s right leg was used which had previously been constructed following a published pipeline 

(Modenese et al., 2018): Bone geometries were obtained through segmentation of MRI images and 

segment inertial properties were estimated with use of the segmented soft-tissue volumes, assigning 

different densities to bone and soft tissue. Analytical shapes were fitted to the joint surfaces of the 

identified bone geometries; the hip, knee and ankle joint were defined as in p02; spherical shapes 

were fitted to the talocalcaneal and to the talonavicular articular surfaces to identify the subtalar joint 
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as a hinge joint with its axis of rotation defined by the line joining the two spheres. The patella was 

rigidly attached to the tibia.  

The geometrical paths of the 42 muscle actuators were mapped onto the patient-specific bone 

geometries from a generic model (Delp et al., 1990): The atlas of the muscle attachment and via-point 

locations were mapped to the subject-specific geometry using an affine transformation of registered 

bony landmarks and sequentially snapped onto the bone surfaces. The maximal isometric forces of 

the muscles were scaled uniformly according to the ratio between the lower-limb mass of the 

participant and the generic model. The pennation angles were copied from the generic model. 

Participant 4 (p04) 

A seven segment, 16 degree-of-freedom and 86 actuator subject-specific musculoskeletal model of 

the participant’s two lower limbs was constructed, largely following the model identification methods 

as explained for p03. Two differences exist between the methods: Firstly, no subtalar joint was 

included and hence the foot was modelled as a single segment. Secondly, mapping of the muscle 

geometry points was performed using an iterative-closest point method rather than an affine 

transformation. 

 

Figure 4.1 shows the four different musculoskeletal models used in this study. 

Figure 4.1: The four different models during the loading phase of the gait cycle. The pink markers 
show the location of the virtual markers on the models. The green arrows represent the ground 
reaction forces acting on the foot segments of the models. 
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The force-length-velocity (FLV) relationship of the muscle actuators was not considered for any of the 

participants. Currently no standardized methods exist to accurately predict this relationship on an 

individual basis and the translation of the involved muscle properties from isolated physiological 

experiments to their involvement in whole-body mechanics, where musculotendinous units are 

idealised as one-dimensional actuators, is unclear.  

Inverse kinematics 

The generalized coordinates, �⃑�(𝑡), were obtained by solving the inverse kinematics problem with a 

global optimization method that minimized the differences between the position of the model’s 

virtual markers and the experimental markers at each time frame using the inverse kinematics tool in 

OpenSim (Delp et al., 2007; Lu and O’Connor, 1999). The trajectories of the generalized coordinates 

for the full gait cycle are shown in the figures of Appendix A.2. 

The generalized coordinates were further processed to allow for double differentiation with respect 

to time to obtain the generalized speeds and accelerations, similar to the implementation in OpenSim; 

Firstly, the coordinate trajectories were low-pass filtered using a 3rd order inverse impulse response 

Butterworth filter with a cut-off frequency of 10 Hz. Secondly, a quintic spline was fitted to each 

trajectory such that the trajectories were expressed as a time-dependent continuous function. 

Inverse dynamics 

The known generalized coordinates, velocities and accelerations were input to the equations of 

motion, using the inverse dynamics tool in OpenSim, to solve for the unknown torques: 

The trajectories of the generalized forces and moments �⃑⃑�(𝑡) for the full gait cycle are shown in the 

figures of Appendix A.3. 

4.2.3 Optimization problems 

Two different objective functions within a constrained, nonlinear optimization were used to solve the 

muscle redundancy problem, similar to the problem defined in Equation 2.10: 

 min 𝐽(�⃑�)

subject to �⃑⃑�(𝑡) = 𝐵(𝑞, 𝑡)(�⃑�𝑇(𝑡)�⃑�𝑚𝑎𝑥)

 �⃑�𝐿 ≤ �⃑�(t) ≤ �⃑�𝑈

 4.2 

 �⃑⃑�(t) = 𝑀(�⃑�)�⃑̈�(𝑡) − 𝐶(�⃑�(𝑡), �⃑̇�(𝑡)) − �⃑�(�⃑�(𝑡)) − �⃑⃑�(�⃑�(𝑡), �⃑̇�(𝑡)) 4.1 
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where �⃑� is the vector of activations with its entries defined as 𝑎𝑖(𝑡) =  𝐹𝑖(𝑡) 𝐹𝑚𝑎𝑥,𝑖⁄ , �⃑�𝑚𝑎𝑥 is the vector 

of 𝑚 maximum forces, 𝐹𝑖 is the force of actuator 𝑖 and �⃑�𝐿 and �⃑�𝑈 are the lower and upper constraints 

on �⃑�(𝑡), respectively.  

System definition 

Six residual actuators that acted on the three rotational and three translational degrees of freedom of 

the ground-pelvis joint were appended to the model’s set of musculotendinous actuators. These 

residual actuators compensate for the inconsistencies between the measured ground reaction forces 

and the mass distribution and joint kinematics and for the forces and moments exerted on the pelvis 

by the contralateral limb and/or the upper-body segment that are missing in some of the models used 

in this study. 

Therefore, the column vector �⃑� represents the muscle activations and the activations of the residual 

actuators, such that �⃑�(𝑡) =  [�⃑�𝑀(𝑡), �⃑�𝑅(𝑡)]𝑇. The column vector �⃑�𝑚𝑎𝑥 represents the maximum 

active, isometric muscle forces and the maximum forces and torques of the residual actuators, such 

that �⃑�𝑚𝑎𝑥 =  [�⃑�𝑚𝑎𝑥
𝑀  �⃑�𝑚𝑎𝑥

𝑅 ]
𝑇

. The values of the residual actuators in the matrix of moment arms, 

𝐵(𝑞, 𝑡), were set to 1, representing ideal moment arms. The constraint on the activation of each 

residual actuator was set to [−∞, ∞], ensuring that the residual actuators could produce the required 

forces, while the activation of muscle actuators could vary between 0 and 1. The variables required to 

define the optimization problem were obtained using the OpenSim API through MATLAB (v2017a, The 

MathWorks Inc., Natick, MA, USA).  

Objective functions 

The first objective function aimed to minimize overall muscle activation and was defined as: 

 
𝐽𝑎𝑐𝑡(�⃑�) = ∑(𝑎𝑖(𝑡))2

𝑚

𝑖=1

 4.3 

 

where 𝑎𝑖  is the activation of actuator 𝑖. MATLAB’s quadratic programming quadprog, leveraging on 

the interior-point algorithm, was used to solve the problem. 

The second objective function, aimed to minimize the magnitude of the joint contact force, was 

defined as: 
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𝐽𝐹𝑗(�⃑�) = 𝑤1 (

‖�⃑�𝑗(�⃑�, 𝑡)‖

‖�⃑�𝑎𝑐𝑡
𝑗 (�⃑�𝑎𝑐𝑡, 𝑡)‖

) + 𝑤2𝑅(�⃑�, 𝑡) 4.4 

 

where ‖�⃑�𝑗(�⃑�, 𝑡)‖ is the magnitude of the contact force at joint 𝑗 acting on its distal segment, 

‖�⃑�𝑎𝑐𝑡
𝑗

(�⃑�𝑎𝑐𝑡, 𝑡)‖ is the magnitude of the contact force given the solution, �⃑�𝑎𝑐𝑡(𝑡), of 𝐽𝑎𝑐𝑡, 𝑅(�⃑�, 𝑡) is a 

regularization term and 𝑤1 and 𝑤2 are constant weights that define the relative contribution of both 

parts to the objective function. MATLAB’s nonlinear programming fmincon, leveraging on the interior-

point algorithm, was used to solve the problem.  

For each trial of each participant, the optimization problem was solved once for 𝐽𝑎𝑐𝑡 and three times 

for 𝐽𝐹𝑗; once for the hip (𝐽𝐹𝐻), once for the knee (𝐽𝐹𝐾) and once for the ankle (𝐽𝐹𝐴). 

At the time points during the swing phase when ‖�⃑�𝑎𝑐𝑡
𝑗

(�⃑�𝑎𝑐𝑡, 𝑡)‖ equalled 0 N, no minimization of 

𝐽𝐹𝑗(�⃑�) for the corresponding joint was performed: No solution would have been found due to an 

infinitely high value of the first part of the objective function as a result of a normalization of 

‖�⃑�𝑗(�⃑�, 𝑡)‖ with 0. Therefore, no muscle activation values from the 𝐽𝐹𝑗(�⃑�, 𝑡) solution at these time 

points were included in any further analyses. The 𝐽𝑎𝑐𝑡 solution served as an alternative at these time 

points, as the resultant contact force at the joint was already minimal for the 𝐽𝑎𝑐𝑡 solution. 

Regularization term 

The regularization term 𝑅(�⃑�) was included to prevent the optimization problem from being ill-posed 

(Tikhonov and Glasko, 1965) and was defined as: 

 
𝑅(�⃑�, 𝑡) =

∑ (a𝑖
𝑁𝑆(𝑡))

2𝑚
𝑖=1

𝑚
 4.5 

 

where a𝑖
𝑁𝑆(𝑡) is the activation of the 𝑖th muscle that does not span the joint for which the contact force 

is minimized. The following equally holds for the minimization of the knee and the ankle contact 

forces, but let us consider the regularization term within the minimization of the hip contact force. 

The muscles not spanning the hip do not contribute to the objective function directly and without the 

regularization term, the cost function would be underdetermined. In that case we would not be able 

to identify a local minimum through nonlinear constrained optimization; the solution could vary along 

certain dimensions, the activation of the non-spanning muscles, without changing the value of the 

objective function. This is not to be confused with the occurrence of multiple local minima in the 

solution space. The ratio of the two weight constants, 𝑤1: 𝑤2, had to be chosen such that the influence 
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of the regularization term on the solution was minimal: For all trials of p01, the minimizations of 𝐽𝐹𝑗 

were performed for the hip, knee and ankle joint, each with six different weight ratios ranging from 

1:1 to 1x105:1. The decrease in magnitude of joint contact force showed asymptotic behaviour with 

the increase in weight ratio. When the weight ratio was increased from 10:1 to 100:1, the joint contact 

force did not decrease more than 0.002 BW for any joint, averaged over time points and trials, and did 

not exceed 0.03 BW for any time point in any trial. These results indicated a minimal influence of the 

regularization term on the obtained solution; the weight ratio was set to 10:1 for all 𝐽𝐹𝑗 minimizations. 

Initial guess 

To ensure the 𝐽𝐹𝑗 minimizations resulted in unique solutions, the minimizations for all trials of p02 

were started from 44 different initial guesses. 43 of the initial guesses were obtained by solving a 

quadratic programming problem with different relative weights to the individual muscle activations:  

 
𝐽(�⃑�) =

1

2
 �⃑�(𝑡)𝑇𝐻�⃑�(𝑡) + 𝑓𝑇�⃑�(𝑡) 4.6 

 

where 𝐻 is a 𝑚 × 𝑚 matrix, representative of the quadratic term, and 𝑓 is a 𝑚 × 1 vector, 

representative of the linear term. MATLAB’s quadratic programming quadprog, leveraging on the 

interior-point algorithm, was used to solve the problem. For each muscle one minimization was 

performed where the contribution of that muscle to the quadratic term was set to 0, while the entries 

in 𝐻 of the other muscles were set to 1. The contribution to the linear term for the muscle of interest 

was set to -1, while the entries to 𝑓 for the other muscles were set to 0. This configuration of relative 

weights ensured the optimization problem was solved by maximizing the activation in the muscle of 

interest, while the solution for the remaining muscles followed Equation 4.3. In this way, for each time 

frame of each trial of p02, 43 different initial guesses for the 𝐽𝐹𝑗 minimizations, distributed over the 

range of the solution space, were obtained. One additional initial guess was set equal to a 𝑚 × 1 zero 

vector, 0⃑⃑. For each joint, all 44 𝐽𝐹𝑗 minimizations converged to the same solution. Therefore, the initial 

guesses for the minimizations performed for the other participants were set to 0⃑⃑.  

4.2.4 Joint Contact Forces 

For each solution, the joint contact forces at the hip, knee and ankle were computed following the 

implementation of joint reaction forces in OpenSim (Steele et al., 2012). The change in peak contact 

force magnitude at the hip, knee and ankle for each solution of the corresponding JCF minimization 

(�⃑�𝐹𝐻, �⃑�𝐹𝐾 and �⃑�𝐹𝐴) was quantified as a percentage: 
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𝑟𝐹𝑗 =

(‖�⃑�𝑗(�⃑�𝐹𝑗, 𝑡)‖
𝑚𝑎𝑥

− ‖�⃑�𝑗(�⃑�𝑎𝑐𝑡 , 𝑡)‖
𝑚𝑎𝑥

)

‖�⃑�𝑗(�⃑�𝑎𝑐𝑡, 𝑡)‖
𝑚𝑎𝑥

 × 100% 4.7 

 

where 𝑟𝐹𝑗 is the percentage of change in the peak contact force at joint 𝑗 and ‖�⃑�𝑗(�⃑�𝐹𝑗, 𝑡)‖
𝑚𝑎𝑥

 is the 

peak magnitude of contact force at joint 𝑗 given the solution �⃑�𝐹𝑗 that minimizes the force transmitted 

at joint 𝑗. The time point at which the peak contact force magnitude occurs in joint 𝑗 is defined as 

𝑡𝐹𝑗𝑚𝑎𝑥. 

4.3 Results 

For all participants and all walking speeds, the peak magnitude of contact force at the hip, knee and 

ankle was reduced with a muscle recruitment strategy aimed to minimize the loads at the respective 

joints (𝐽𝐹𝑗) compared to a recruitment strategy aimed to minimize the sum of muscle activation 

squared (𝐽𝑎𝑐𝑡). The reduction of peak force ranged from 7 to 21 % at the hip, from 27 to 49 % at the 

knee and from 3 to 5 % at the ankle depending on the participant and the walking speed. No significant 

influence of the walking speed on the joint contact force reduction was found (Table 4.3). No 

consistent pattern across participants was found with respect to a time shift in peak contact force 

occurrence; for several trials of p01 the peak hip and knee contact force occurred during early stance, 

rather than during late stance, when aiming to minimize the loads in the respective joints; for two out 

of six trials of p02 the occurrence of peak knee contact force shifted from late to early stance when 

aiming to minimize the knee load (Table 4.4).  

The muscle activation patterns that aimed to minimize the load in one joint, when compared to the 

𝐽𝑎𝑐𝑡 solutions, had a variable effect on the peak magnitude of the contact force in the non-targeted 

joints (Table 4.3); when minimizing the hip load, the peak JCF magnitude in the knee increased, with 

a range from 20 to 102 %, for p01, p03 and p04, while the peak JCF decreased for p02. No significant 

change in peak ankle force was observed for any of the participants at any of the speeds, except for 

the two fast trials of p01, where the peak ankle contact force increased; when minimizing the knee 

load, the peak JCF magnitude in the hip increased for all participants at all speeds, ranging from 4 to 

54 %. A slight increase of 3 to 5 % in peak JCF was observed at the ankle for all the participants at all 

speeds, except for the trials at a self-selected speed for p03, where the ankle load increased by 22 %; 

when minimizing the ankle load, the peak JCF magnitude in the hip did not change significantly, except 

for the trials at a self-selected speed, where the hip force increased. The peak magnitude of knee 
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contact force increased for all participants at all walking speeds, with a range of increase from 33 to 

92 %. 

In Table 4.5, the muscle activations, averaged over the trials at a self-selected walking speed, for both 

the 𝐽𝑎𝑐𝑡 and the 𝐽𝐹𝑗 solutions are shown at the time instants 𝑡𝐹𝑗𝑚𝑎𝑥 of peak contact force in the hip, 

knee and ankle as predicted by the 𝐽𝑎𝑐𝑡 solution. When aiming to minimize the hip contact force 

magnitude, a change in muscle activation pattern, consistent across the models, was observed: The 

activation of the Gluteus Minimus compartments and the knee stabilizers increased, while the 

activation of the Gluteus Medius compartments and the Iliopsoas muscles decreased. For three out 

of for models, the activation of the Rectus Femoris muscle increased and a shift in activation from the 

Soleus to the Gastrocnemius muscles occurred. For two models, the Gemellus muscle became 

involved when aiming to minimize the hip contact force. 

When aiming to minimize the knee contact force, a change in muscle activation, consistent across the 

models, was observed. The activation of the Gluteus Medius (and, to a lesser extent, the Gluteus 

Minimus) compartments, the Iliopsoas muscles, and the Soleus muscle increased, while the Rectus 

Femoris muscle, the knee stabilizers and the Gastrocnemius muscles (except for the lateral 

compartment of p04) were switched off. For two models, the Semitendinosus muscle became involved 

when aiming to minimize the knee contact force. For p03 the activation of the smaller plantarflexors 

around the ankle increased. These changes in muscle activation patterns were consistent across 

models even though the peak loads for the 𝐽𝑎𝑐𝑡 solution, in both the hip and the knee joint, occurred 

predominantly during late stance for p01 and p04 and predominantly during early stance for p02 and 

p03. When aiming to minimize the ankle contact force magnitude, the change in muscle activation, 

was consistent across models: The activation of the Soleus muscle decreased, while the activation of 

the Gastrocnemius muscles and the Rectus Femoris muscle (and to a lesser extent the Iliopsoas 

muscles) increased.  

The trajectories over the gait cycle for the contact force magnitudes in all joints and the activation of 

all muscles can be found in Appendices A.4 and A.5, respectively. A table, equivalent to Table 4.5, 

which shows the mean and standard deviation values of muscle activation over the different trials for 

each muscle of each model, can be found in Appendix A.6.  
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Table 4.3: Mean and standard deviation (SD) values of the peak hip, knee and ankle contact force 

magnitude (‖�⃑�𝑗‖
𝑚𝑎𝑥

) in bodyweight (BW) for the minimization of activation (𝐽𝑎𝑐𝑡) and the 

minimization of the contact force in the corresponding joint (𝐽𝐹𝑗); The mean and standard deviation 

values of the change in peak contact force magnitude (𝑟𝐹𝑗) for each 𝐽𝐹𝑗 compared to 𝐽𝑎𝑐𝑡 in 

percentages. 

 

𝑱𝒂𝒄𝒕 𝑱𝑭𝑯 𝑱𝑭𝑲 𝐉𝑭𝑨 

‖�⃑�𝑗‖
𝑚𝑎𝑥

  ‖�⃑�𝑗‖
𝑚𝑎𝑥

  𝑟𝐹𝑗 ‖�⃑�𝑗‖
𝑚𝑎𝑥

  𝑟𝐹𝑗 ‖�⃑�𝑗‖
𝑚𝑎𝑥

  𝑟𝐹𝑗 

± SD ± SD ± SD ± SD ± SD ± SD ± SD 

(BW) (BW) (%) (BW) (%) (BW) (%) 

H
ip

 

Sl
o

w
 p01 4.1 ± 0.2 3.3 ± 0.2 -19 ± 2 5.2 ± 0.2 27 ± 5 4.1 ± 0.2 -1 ± 0 

p04 4.2 ± 0.2 3.3 ± 0.1 -20 ± 1 4.9 ± 0.2 18 ± 1 4.0 ± 0.2 -3 ± 0 

Se
lf

-s
el

ec
te

d
 p01 4.3 ± 0.2 3.6 ± 0.2 -16 ± 3 6.6 ± 0.5 54 ± 11 4.3 ± 0.3 1 ± 6 

p02 4.0 ± 0.2 3.7 ± 0.2 -7 ± 1 4.8 ± 0.3 20 ± 6 4.2 ± 0.5 5 ± 10 

p03 4.2 ± 0.1 3.7 ± 0.1 -11 ± 1 4.4 ± 0.2 4 ± 4 4.2 ± 0.1 0 ± 1 

p04 4.4 ± 0.3 3.5 ± 0.2 -21 ± 1 5.2 ± 0.3 19 ± 0 4.3 ± 0.3 -3 ± 0 

Fa
st

 p01 7.6 ± 0.5 6.8 ± 0.6 -12 ± 2 11.3 ± 0.0 48 ± 10 7.5 ± 0.5 -1 ± 0 

p04 5.4 ± 0.1 4.7 ± 0.2 -14 ± 2 6.5 ± 0.1 21 ± 2 5.3 ± 0.2 -1 ± 1 

K
n

ee
 

Sl
o

w
 p01 3.2 ± 0.1 5.0 ± 0.6 57 ± 17 1.6 ± 0.2 -49 ± 6 5.9 ± 0.4 85 ± 8 

p04 3.5 ± 0.1 4.9 ± 0.2 40 ± 3 2.0 ± 0.0 -43 ± 1 6.6 ± 0.1 86 ± 2 

Se
lf

-s
el

ec
te

d
 p01 3.4 ± 0.1 6.8 ± 0.6 102 ± 11 2.0 ± 0.2 -41 ± 5 5.5 ± 0.1 63 ± 8 

p02 2.2 ± 0.1 2.0 ± 0.1 -8 ± 6 1.6 ± 0.2 -27 ± 7 4.2 ± 0.4 92 ± 20 

p03 3.6 ± 0.2 4.3 ± 0.6 20 ± 14 2.1 ± 0.1 -40 ± 3 5.3 ± 0.1 50 ± 7 

p04 3.7 ± 0.2 5.1 ± 0.1 39 ± 4 2.0 ± 0.1 -47 ± 1 6.9 ± 0.2 86 ± 9 

Fa
st

 p01 5.7 ± 0.7 10.5 ± 0.1 86 ± 20 3.3 ± 0.5 -41 ± 15 7.5 ± 0.6 33 ± 5 

p04 4.0 ± 0.2 5.1 ± 0.2 25 ± 4 2.1 ± 0.1 -47 ± 3 7.0 ± 0.1 73 ± 10 

A
n

kl
e 

Sl
o

w
 p01 4.6 ± 0.3 4.7 ± 0.3 1 ± 0 4.8 ± 0.3 4 ± 0 4.4 ± 0.3 -4 ± 0 

p04 4.9 ± 0.1 4.9 ± 0.1 0 ± 0 5.1 ± 0.1 4 ± 0 4.7 ± 0.1 -5 ± 0 

Se
lf

-s
el

ec
te

d
 p01 4.4 ± 0.2 4.6 ± 0.2 3 ± 3 4.7 ± 0.2 5 ± 0 4.3 ± 0.2 -4 ± 0 

p02 3.2 ± 0.3 3.3 ± 0.2 1 ± 0 3.3 ± 0.3 3 ± 0 3.1 ± 0.2 -5 ± 0 

p03 6.1 ± 0.1 6.0 ± 0.1 0 ± 1 7.4 ± 0.4 22 ± 5 5.8 ± 0.1 -4 ± 0 

p04 5.1 ± 0.2 5.1 ± 0.2 0 ± 0 5.3 ± 0.2 4 ± 0 4.9 ± 0.2 -5 ± 0 

Fa
st

 p01 5.3 ± 0.3 6.9 ± 0.0 30 ± 9 5.6 ± 0.4 5 ± 0 5.2 ± 0.3 -3 ± 0 

p04 5.0 ± 0.1 5.0 ± 0.1 0 ± 0 5.2 ± 0.1 4 ± 0 4.8 ± 0.0 -4 ± 0 
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Table 4.4: For the hip, knee and ankle joint, the percentage of trials with a peak contact force 
during the late stance phase of the gait cycle for the 𝐽𝑎𝑐𝑡 solution and the J𝐹𝑗 solution of the 

corresponding joint. 

 
Hip Knee Ankle 

𝐽𝑎𝑐𝑡 J𝐹𝐻 𝐽𝑎𝑐𝑡 J𝐹𝐾 𝐽𝑎𝑐𝑡 J𝐹𝐴 

‖
�⃑�

𝒋 ‖
𝒎

𝒂
𝒙
 d

u
ri

n
g 

la
te

 s
ta

n
ce

  

(%
 o

f 
tr

ia
ls

) 

Sl
o

w
 p01 100 80 100 20 100 100 

p04 100 100 100 100 100 100 

Se
lf

-s
el

ec
te

d
 p01 100 50 100 83 100 100 

p02 0 0 50 17 100 100 

p03 40 20 0 0 100 100 

p04 100 100 100 100 100 100 

Fa
st

 p01 100 100 100 0 100 100 

p04 100 100 100 20 100 100 
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Table 4.5: Muscle activations at the time of peak hip, knee and ankle contact force magnitude 
in the 𝐽𝑎𝑐𝑡 solution, given for both the 𝐽𝑎𝑐𝑡 and the corresponding J𝐹𝑗 solution. Muscle activation 

values are averaged over trials at self-selected speed and represented by a colour scale (white: 
no activation, red: full activation). For each muscle, the four rows represent the activation level 
for the four different participants.  
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4.4 Discussion 

This study was aimed to explore the potential of alternative muscle recruitment strategies to reduce 

the forces experienced by the joints of the lower limb during level walking through answering the 

following five research questions: 1) Can alternative muscle recruitment strategies reduce the peak 

force transmitted at each lower limb joint?; 2) Is this reduction similar for all four cases, representative 

of four widely different populations, studied here?; 3) If a muscle recruitment strategy that 

significantly reduces the force in one joint exists, what is its influence on the other joints?; 4) Does the 

joint load-reducing potential of alternative recruitment strategies change with different walking 

speeds?; 5) How do the activation patterns predicted by different recruitment strategies at the instant 

of peak joint contact force differ? 

Alternative recruitment strategies reduced the magnitude of peak contact force in the knee, and to a 

smaller extent in the hip, compared to a strategy that minimized the sum of muscle activation squared 

(𝐽𝑎𝑐𝑡), which has been shown to be equivalent to an energetically optimal recruitment strategy 

(Anderson and Pandy, 2001b); for the trials at a self-selected walking speed, the reduction in peak 

force magnitude ranged from 0.6 to 1.7 BW in the knee and from 0.3 to 0.9 BW in the hip. In the ankle 

joint the effects of an alternative recruitment strategy seemed to be minimal as the reduction in peak 

force magnitude ranged from 0.1 to 0.3 BW. The reduction of peak force at the hip and knee is 

comparable to the effect of alternative muscle recruitment strategies on the joint contact force found 

in previous studies (DeMers et al., 2014; Martelli et al., 2011). Also, this study found a similar pattern 

of reduction in knee force over the gait cycle for p01, p03 and p04 compared to a previous study 

(DeMers et al., 2014): The biggest reduction in knee force occurred during late stance, as shown in 

Figure 4.2 for all models for the trials at a self-selected speed.  

The potential to reduce joint contact forces through alternative muscle recruitment strategies is 

measured against an estimated reference, the 𝐽𝑎𝑐𝑡 solution. At a self-selected walking speed, this 

reference of peak magnitude of force in the hip and knee ranged from 4.0 to 4.4 BW and from 3.4 to 

3.7 BW (excluding p02), respectively. In studies that measured the forces at the hip and knee during 

level walking through instrumented joint replacements, the peak forces ranged from 2 to 3 BW 

(Bergmann et al., 2001; Damm et al., 2017; Kutzner et al., 2010), which is significantly lower than the 

estimated reference peak forces in this study. However, p01, p03 and p04 were either healthy or did 

not have a pathology with hip and knee involvement and therefore a notable difference in walking 

dynamics most likely exists with patients that underwent a full hip replacement. For p02, who had an 

instrumented knee implant, the peak knee forces from 𝐽𝑎𝑐𝑡 were similar to the measured values 

(Figure 4.2), supporting the choice to use the 𝐽𝑎𝑐𝑡 solutions as a reference. The potential to reduce the 
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force experienced by the hip, knee and ankle in p02 followed the patterns of the other models, but 

was slightly smaller. However, this difference in effect size can likely be attributed to a difference in 

walking dynamics rather than an overestimation of the reference force values from the 𝐽𝑎𝑐𝑡 solutions, 

as suggested by the difference in self-selected, or preferred, walking speed. 

 

The four cases presented here were selected to represent widely different populations and a range of 

methods in musculoskeletal models; the participants showed a big range in age (16 to 74 years old), 

height (1.64 to 1.90 m), mass (57 to 83 kg) and health status; the musculoskeletal models were 

identified on different levels of subject specificity, ranging from a scaled generic model (p01) to a 

model with fully personalised musculoskeletal geometry and joint orientation (p04). Also, for p02 a 

patellofemoral joint was included to represent a more refined knee mechanism, while for p03 a 

subtalar joint was included to represent a more refined ankle mechanism. Nonetheless, the potential 

to reduce contact forces at the hip, knee and ankle was found to be consistent across different four 

cases. This consistency suggests these results are not subject specific in their general nature, but are 

determined by the physical limitations that the muscle controls have in each of the lower limb joints. 

Figure 4.2: Knee contact force trajectories of all participants for the 
trials at a self-selected walking speed; mean (solid line) and range 
(shaded area) values of force magnitude are shown in bodyweight 
(BW) for the 𝐽𝑎𝑐𝑡 (black) and 𝐽𝐹𝐾 (yellow) solutions. For p02, the 
mean and range values as measured by the implant (eTibia, 
dashed) are shown. The vertical dashed line indicates the time 
instant when toe off occurred. 
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In general, the results of this study showed an increase of the load in the adjacent joint, when aiming 

to minimize the force in a particular joint: when aiming to minimize hip force magnitude, the peak 

force increased in the knee, but not in the ankle; when aiming to minimize knee force magnitude, the 

peak force in both the hip and, to a lesser extent, the ankle increased; when aiming to minimize the 

ankle force magnitude, the peak force increased in the knee, but not in the ankle. This shift of load 

towards adjacent, non-targeted joints was to be expected due to the coupling of the joints through 

multi-articular muscles. A change in force along a multi-articular muscle, aimed to reduce the load in 

a targeted joint, has to be compensated for by antagonist muscles at the non-targeted joint in order 

to maintain the balance in joint moments and will therefore affect the load in non-targeted joints. The 

effect of this compensation wears off when moving along the kinematic chain further away from the 

targeted joint. The magnitude of the adverse effects on the load in non-targeted joints, at a self-

selected walking speed, was dependent on the joint and varied across participants: the knee load, 

when minimizing the force in the hip, doubled from 3.4 to 6.8 BW for p01, while for p02 the knee load 

decreased with 8 %; when minimizing the knee force, the effect on the hip force ranged from hardly 

any to half a bodyweight; when minimizing the ankle force, a significant increase in knee load occurred 

for all participants and ranged from 1.7 to 3.2 BW. The magnitude of the adverse effects are potentially 

sensitive to the capacity of muscles in the model to produce force beyond the minimum required by 

the dynamic equilibrium. In any case, due to the assumption of independent muscle control, possibly 

not all adjustment are physiologically possible and therefore this study provides theoretical 

boundaries to the reduction of joint loads through alternative muscle recruitment strategies and the 

effect on non-targeted joints. 

The absolute values of the contact forces at the different joint increased with the walking speed as 

expected due to the requirement of larger muscle forces for the increase in segment accelerations. 

However, no clear effect of walking speed on the potential to reduce joint forces or on the load in 

non-targeted joints was observed. 

The change in muscle activation showed clear patterns depending on the joint in which the force was 

minimized; the peak force in the hip reduced due to a shift in activation from the Gluteus Medius to 

the Gluteus Minimus muscle and a decrease in the activation of the Iliopsoas muscles. To maintain the 

levels of hip adduction moment and hip flexion moment during late stance, the Rectus Femoris, 

Sartorius and Tensor Fasciae Latae muscles were activated. The bi-articular nature of these muscles 

led to the observed increase in knee contact force; the peak force in the knee reduced due to a shift 

in activation from the bi-articular Rectus Femoris and Gastrocnemius muscles to the mono-articular 

Iliopsoas and Soleus muscles. The required moments around the hip and ankle were not produced by 

muscles spanning the knee, but by mono-articular muscles with smaller moment arms around the hip 
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and ankle coordinates which required larger forces. These results were consistent with the findings in 

a previous study (DeMers et al., 2014); the peak force in the ankle reduced only by a very small amount 

due to a shift in activation from the Soleus to the Gastrocnemius muscles. An increase in the activation 

of this bi-articular muscle, spanning the ankle and the knee, increased the force experienced by the 

knee significantly. For p03 only, the muscles contributing to the in-/eversion moment at the ankle 

were involved in all solutions and their activation further increased when minimizing the force at knee. 

The inclusion of a subtalar joint might therefore be associated to the increased estimated ankle 

contact force for p03 compared to the other models. However, the participant was a JIA patient and 

might therefore have an altered kinematic pattern compared to healthy participants or patients 

without ankle involvement.  

The main limitation of this study is the assumption of independent muscle control and the author 

acknowledges that future work should include a dependency between the controls of muscle groups. 

However, as stated above, this study does provide a theoretical boundary to the reduction of joint 

loads through alternative muscle recruitment strategies. Secondly, the force-length-velocity 

relationship was not considered when determining the force producing capacity of the muscles. As 

mentioned before, no standardized method currently exists to accurately predict this relationship for 

each muscle individually. Furthermore, some muscle groups might be more compliant to a change in 

length of the musculotendon unit and might show near isometric behaviour during the stance phase 

of level walking compared to other muscle groups (Lichtwark et al., 2007). Therefore, the author 

assumed the optimal fibre length to be representative at the instants of peak force in the hip, knee 

and ankle when no extreme orientations of the joints occurred. Lastly, these results are somehow 

limited in scope as they assume that the compensation strategy is limited to the neuromuscular 

control and not to possible changes in joint kinematics. We believe this assumption represents an 

idealised case, representative of moderately severe compensation strategies, typical of early-stage 

pathologies. 

In conclusion, the results presented in this study suggest that neuromuscular rehabilitation can be 

targeted to reduce the loading of the affected joint at the knee and the hip. The muscles that are 

primarily involved in such compensatory strategies have been identified for all joints of the lower limb. 

These alternative muscle recruitment strategies come at a cost of a moderate increase in the loading 

at other joints, so the opportunity of neuromuscular rehabilitation must be considered carefully in 

patients with multiple joints affected. Instead, the ankle joint load can only be reduced by a small 

amount by simply changing the neuromuscular control. 
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In the previous chapter, muscle recruitment strategies were identified through mathematical 

optimization techniques. Even though this approach is representative of these strategies’ potential to 

reduce the metabolic energy cost or to reduce the force acting at the joints of the lower limb during 

level walking, no variability is included in such assumptions of motor control. Indeed, useful and ‘good 

enough’ control strategies, identified through trial and error, have been argued to represent human 

motor control, rather than strategies identified through optimization (Loeb, 2012). Moreover, we 

might allow for variability along task-independent directions in repeated movements to ensure 

stability to perturbations (Scholz and Schöner, 1999). Therefore, the following chapter explores 

muscle recruitment through a stochastic approach, representative of sub-optimal motor control.  
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CHAPTER 5 

- 

LIMITATIONS OF OPTIMAL MUSCLE CONTROL TO MODEL 

PATHOLOGICAL GAIT 
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5.1 Introduction 

The relevance of the forces experienced by the articular surface of weight-baring joints during 

activities of daily life to the onset and progression of joint degenerative diseases, such as 

osteoarthritis, has been discussed extensively in the literature (see Section 4.1) and a framework to 

understand the in vivo pathogenesis of knee osteoarthritis has previously been proposed (Andriacchi 

et al., 2004): Changes in joint loading due to traumatic injuries, such as a rupture of the anterior 

cruciate ligament, or due to aging, have been associated to disease onset, while increased loads have 

been associated to disease progression. Experimental data on the forces experienced by the joints are 

typically obtained from a patient population with end-stage osteoarthritis through force sensors in a 

hip or knee implant. Therefore, accurate predictions of joint contact forces with simulations of 

musculoskeletal dynamics can provide insight in the joint loads of early-stage patients and healthy 

controls, are relevant to study treatment effects in a non-invasive manner and could potentially inform 

clinical practice. Nevertheless, open-source datasets from instrumented joint implants, such as the 

Knee Grand Challenge dataset, serve as an important validation of simulation studies (Fregly et al., 

2012).  

Numerous studies used one of the six Knee Grand Challenge (or similar) datasets to validate different 

approaches to simulate musculoskeletal dynamics and predict knee contact forces, such as the 

inclusion of more complex and subject-specific joint contact models (Hast and Piazza, 2013; Jung et 

al., 2016; Kim et al., 2009; Smith et al., 2016; Thelen et al., 2014), force-dependent knee kinematics 

(Marra et al., 2015) and patient-specific musculoskeletal geometry in a segment-based model (Ding 

et al., 2016). Experimental data has also been used to argue the importance of the discretization of 

large muscles into separate compartments and subject-specific muscle parameters in musculoskeletal 

dynamic simulations when predicting knee contact forces (Moissenet et al., 2016; Serrancolí et al., 

2016). All of the studies mentioned previously predicted muscle activation patterns under the 

assumption of optimal control (from the perspective of metabolic energy expenditure, see Section 2.4) 

that might be valid for healthy gait, but does not necessarily hold for pathological gait (Section 3.4.1). 

Previous studies that allowed for validation with experimental data have included subject-specific 

approaches to muscle control, such as EMG-driven forward dynamics and muscle synergies, to predict 

knee contact forces (Razu and Guess, 2018; Walter et al., 2014). However, the assumptions required 

for the translation from measurements of electrical activation to units of force and the limited 

information on the activation levels of deep muscles with surface electromyography remain a major 

limitation.  
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The influence of sub-optimal muscle control on hip joint loads has been shown previously through a 

probabilistic approach (Martelli et al., 2013), but the study lacked a direct comparison to experimental 

measurements. Another approach to study sub-optimal muscle control varied the relative 

contribution of agonist muscle groups and their individual muscles parametrically to obtain a solution 

space of possible muscle activations and knee contact forces (Lundberg et al., 2013, 2009). The 

variability of muscle activations and its influence on the knee contact forces predicted by such a 

parametric approach was small compared to the probabilistic approach. Most likely, this approach did 

not include every possible combination of muscle activations and therefore underestimated the 

influence of accurate models of motor control on joint force predictions.  

This study was aimed to explore the limitations of optimal control in predictions of knee contract 

forces by answering the following questions: 1) Can a subject-specific musculoskeletal dynamics 

model, built according to the current best practice, predict the measured forces at the knee during 

level walking? In other words, does at least one muscle activation pattern exist for which the model 

prediction and the measurements differ less than the measurement precision?; 2) Assuming such a 

solution exists, how different is it from an optimal control solution in terms of knee contact forces, 

but also in terms of muscle activation?; 3) How well can this difference be explained by a stochastic 

component superimposed to the optimal control (consistent with the uncontrolled manifold theory)? 

5.2 Methods 

The experimental data, the musculoskeletal model, the dynamic simulations and the muscle activation 

solution that minimized the sum of muscle activations squared (𝐽𝑎𝑐𝑡, Equation 4.3) and the solution 

that minimized the contact force in the knee (𝐽𝐹𝐾, Equation 4.4) solutions for p02, as described in the 

previous chapter, were re-used for this study. The following section describes the additional data and 

methodology in more detail. 

5.2.1 Experimental data 

Six trials of level, overground walking, labelled as ‘DM_ngait_og’ in the original dataset, were included. 

The original trial numbers (3, 4, 5, 6, 7 and 9) were maintained to allow for comparison across studies. 

Instrumented knee implant 

The forces and moments acting on the right knee joint were available from a six-axis load cell 

embedded in the stem of the tibial prosthesis (eTibia; (Kirking et al., 2006)). The implant data were 

originally sampled at 50 Hz but provided after being resampled to 200 Hz using a cubic-spline 
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interpolation and filtered using a 4th order, low-pass Butterworth filter with a cut-off frequency of 15 

Hz. The location and orientation of the load cell’s reference frame are shown in Figure 5.1. 

 

Electromyography 

EMG data were available for 15 muscles of the right lower extremity: The Gluteus Maximus, the 

Gluteus Medius, the Adductor Magnus, the Tensor Fasciae Latea, the Sartorius, the 

Semimembranosus, the long head of the Biceps Femoris, the Vastus Medialis and Lateralis, the Rectus 

Femoris, the Gastrocnemius Medialis and Lateralis, the Soleus, the Tibialis Anterior and the Peroneus 

Longus muscles. Upon visual inspection, the data for the Gluteus Medius and the Vastus Medialis 

muscles were identified to be of insufficient quality given the signals’ small amplitudes. In a study that 

used the same dataset for EMG-driven forward dynamics simulations, the data for these two muscles 

and the Biceps Femoris were also excluded for quality reasons (Razu and Guess, 2018). The Biceps 

Femoris data was of good quality for the trials considered in this study and therefore included in 

further analyses. Electrode placement was consistent with (Delagi and Perroto, 1980). The data were 

sampled at 1000 Hz and provided after being high-pass filtered at 30 Hz using a 4th order Butterworth 

filter. Subsequently, the offset of each signal was removed, a low-pass filter with a cut-off frequency 

Figure 5.1: The coordinate system fixed in 
the tibial tray and used to resolve the 
instrumented implant force and moment 
measurements. Image from Fregly et al. 
(2012). 
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of 400 Hz was applied and the signals were full-wave rectified. The data were then separately 

processed to obtain both the envelope trajectories and the EMG onset times: Envelope trajectories 

were obtained through applying a low-pass filter with a cut-off frequency of 4 Hz; After a low-pass 

filter with a cut-off frequency of 10 Hz, EMG onset times were defined as the time of the initial frame 

of a 50 ms sliding window at which the average value of the window exceeded a predefined threshold 

value (Hodges and Bui, 1996). For each muscle, the threshold value was defined, on a trial-by-trial 

basis, as three standard deviations increase from the average value of a period of visually-inspected 

inactivity. All filters were 4th order, zero-lag Butterworth filters and implemented in MATLAB. To allow 

for a direct comparison of EMG data with muscle activations predicted by musculoskeletal models, 

given that no activation dynamics was included in the muscle models used in this study, an 

electromechanical delay (EMD) of 60 ms was taken into account; values for EMD in lower-limb muscles 

reported in experimental literature varied from 40 to 80 ms (Vos et al., 1990; Zhou et al., 1995). 

5.2.2 Musculoskeletal model 

To facilitate the comparison of the simulated knee contact force with the measured values from the 

instrumented knee implant, a knee contact joint was placed in the tibial tray aligned with the origin of 

the reference frame of the implant (Figure 5.2). A massless body linked the articulating knee joint with 

the knee contact joint, which was in turn linked distally to the tibia segment. All six coordinates of the 

knee contact joint were locked which assured the original orientation of the massless body and the 

tibia with respect to each other was maintained; the addition of the knee contact joint allowed for 

direct comparison of the estimated knee contact force to the measured knee forces. Therefore, any 

reported knee contact forces predicted by the model in the following sections are resolved around 

this knee contact joint. 
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5.2.3 Muscle activation patterns 

Muscle activation patterns were available from the previously defined 𝐽𝑎𝑐𝑡 and 𝐽𝐹𝐾 solutions 

(Equations 4.3 and 4.4, respectively). Additional muscle activation patterns were obtained through 

two different methods: an additional optimization and the probabilistic approach described in Section 

3.4.1. 

Optimization problem 

Muscle activation patterns for all trials were obtained by solving the optimization problem defined in 

Equation 4.2. The following objective function was used, aimed to minimize the difference between 

the resultant force as measured by the knee implant and the knee resultant force as estimated by the 

model: 

 
𝐽𝐹𝑚𝑎𝑡𝑐ℎ(�⃑�) = 𝑤1 (

‖�⃑�𝑒𝑥𝑝
𝐾 (𝑡)‖ − ‖�⃑�𝐾(�⃑�, 𝑡)‖

‖�⃑�𝑒𝑥𝑝
𝐾 (𝑡)‖

)

2

+ 𝑤2R(�⃑�, 𝑡) 
5.1 

Figure 5.2: The coordinate system (anterior 
posterior (AP) axis (red), mediolateral (ML) 
axis (yellow) and superior-inferior (SI) axis 
(green)) fixed in the locked knee contact 
joint and used to resolve the simulated joint 
contact forces and moments. 
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where ‖�⃑�𝑒𝑥𝑝
𝐾 (𝑡)‖ is the magnitude of the experimental knee resultant force, acting on the tibia 

segment, as measured by the instrumented knee implant and ‖�⃑�𝐾(�⃑�, 𝑡)‖ is the magnitude of the 

resultant force acting on the tibia in the knee joint as predicted by the musculoskeletal model, 𝑅(�⃑�, 𝑡) 

is a regularization term and 𝑤1 and 𝑤2 are constant weights that define the relative contribution of 

both parts to the objective function. The regularization term 𝑅(�⃑�, 𝑡) was included to prevent the 

optimization problem from being ill posed, as some muscles do not contribute directly to the first part 

of the objective function, and was defined as in Equation 4.5. MATLAB’s nonlinear programming 

fmincon, leveraging on the interior-point algorithm, was used to solve the problem.  

The weight ratio 𝑤1: 𝑤2 was set to 10:1, based on the asymptotic behaviour of the objective function 

value with an increasing weight ratio, as described in Section 4.2.3. To ensure the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ 

minimizations resulted in unique solutions, the minimizations for all trials of p02 were started from 44 

different initial guesses as described in Section 4.2.3. All 44 𝐽𝐹𝑚𝑎𝑡𝑐ℎ minimizations converged to the 

same solution. Therefore, the initial guesses for the minimizations were set to 0⃑⃑. 

Sampling of solution space 

The probabilistic approach, as explained in more detail in Section 3.4.1, was used to draw a set of 

possible muscle activation patterns {[�⃑�𝑀(𝑡)]1, [�⃑�𝑀(𝑡)]2, … , [�⃑�𝑀(𝑡)]𝑁} from the following probability 

distribution:  

 𝜋(�⃑�𝑀(𝑡)|�⃑⃑�(𝑡)) ∝  𝜋𝑝𝑟(�⃑�𝑀(𝑡))𝜋(�⃑⃑�(𝑡)|�⃑�𝑀(𝑡)) 5.2 

 

where 𝜋𝑝𝑟(�⃑�𝑀(𝑡)) is the prior term that represents the constraints on the muscle activations, 

𝜋(�⃑⃑�(𝑡)|�⃑�𝑀(𝑡)) is the likelihood term that represents the probability of the known generalized 

torques, �⃑⃑�(𝑡), given a vector of muscle activations �⃑�𝑀(𝑡) and 𝜋(�⃑�𝑀(𝑡)|�⃑⃑�(𝑡)) is the posterior 

distribution that represents the probability of a vector of muscle activations that satisfies the dynamic 

equilibrium: 

 �⃑⃑�(t) = 𝐵(𝑞, 𝑡)(�⃑�(𝑡)𝑇�⃑�𝑚𝑎𝑥) 5.3 

 

The constraints on the muscle activations were set to a limit radius around the 𝐽𝑎𝑐𝑡 solution: 

 max {�⃑�𝑎𝑐𝑡(𝑡) − 0.1, 0⃑⃑} ≤ �⃑�(t) ≤ min {�⃑�𝑎𝑐𝑡(𝑡) + 0.1, 1⃑⃑} 
5.4 
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where �⃑�𝑎𝑐𝑡(𝑡) is the vector of muscle activations that resulted from the minimization of 𝐽𝑎𝑐𝑡. The 

values of the constraints were defined component-wise. The limit radius of 0.1, or 10% of the 

maximum activation of 1, was chosen to be representative of the uncertainty in predicted muscle 

activations as quantified in Section 3.3. The sample size was set to 𝑁 = 1 × 105, which was assumed 

to be sufficiently large to obtain a set of muscle activation patterns representative of the allowed 

solution space, given the results from Section 3.4, the narrow constraints on the activation values and 

the fewer number of generalized coordinates in the model compared to the model presented in 

Section 3.4.2. The sampling was performed with use of Metabolica, implemented in MATLAB (Heino 

et al., 2010).  

In total, three muscle activation patterns were obtained with different objective functions in an 

optimization approach: 𝐽𝐹𝑚𝑎𝑡𝑐ℎ tested if an activation pattern existed that allowed the model to 

accurately predict the measured knee forces; 𝐽𝑎𝑐𝑡 represented the activation pattern that minimized 

the metabolic energy expenditure; 𝐽𝐹𝐾 represented the activation pattern that minimized the knee 

contact force. A fourth muscle activation pattern, the 𝐽𝑚𝑒𝑡 solution, was selected from the 1 × 105 

Metabolica samples as the sampled muscle activation pattern that resulted in the predicted knee force 

closest to the measured value. 

5.2.4 Knee contact forces 

The contact forces at the knee joint were computed, leveraging on the implementation in OpenSim 

through the MATLAB API, for each muscle activation pattern that was obtained as an optimization 

solution or as a sample from the solution space. 

Evaluation of knee contact force prediction 

The root-mean-square error (RMSE) was used to quantify the differences between the magnitude of 

the estimated knee contact forces ‖�⃑�𝐾(�⃑�, 𝑡)‖ and the measured knee contact forces ‖�⃑�𝑒𝑥𝑝
𝐾 (𝑡)‖ for 

each trial: 

 

𝑅𝑀𝑆𝐸 =  √∑ (‖�⃑�𝐾(�⃑�, 𝑡)‖ − ‖�⃑�𝑒𝑥𝑝
𝐾 (𝑡)‖ )

2
𝑇
𝑡=1

𝑇
 

5.5 

 

where 𝑇 is the total number of time points. The RMSE was chosen as a suitable measure of differences 

due to its sensitivity to confusing-factors, such as amplitude, amplitude fluctuations, offset and curve 

shapes (Di Marco et al., 2018).  
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The coefficient of determination (R2) was used to quantify the proportion of the variance in the 

measured knee forces ‖�⃑�𝑒𝑥𝑝
𝐾 (𝑡)‖ that was explained by the estimated knee forces ‖�⃑�𝑒𝑠𝑡

𝐾 (𝑡)‖ for each 

trial: 

 
𝑅2 =  1 −

𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 5.6 

 

where the residual sum of squares 𝑆𝑆𝑟𝑒𝑠 =  ∑ (‖�⃑�𝐾(�⃑�, 𝑡)‖ − ‖�⃑�𝑒𝑥𝑝
𝐾 (𝑡)‖)2𝑇

𝑡=1 , the total sum of squares 

𝑆𝑆𝑡𝑜𝑡 =  ∑ (‖�⃑�𝑒𝑥𝑝
𝐾 (𝑡)‖ − ‖�⃑�𝑒𝑥𝑝

𝐾 ‖
̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑇

𝑡=1  and ‖�⃑�𝑒𝑥𝑝
𝐾 ‖

̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average magnitude of measured knee contact 

force over all time points. 

RMSE and R2 values were obtained for the 𝐽𝑎𝑐𝑡, 𝐽𝐹𝐾, 𝐽𝐹𝑚𝑎𝑡𝑐ℎ and 𝐽𝑚𝑒𝑡 solutions. Both the RMSE and R2 

values were the suggested measures of comparison for the Knee Grand Challenge, so allowed for 

comparison with previous studies (Fregly et al., 2012). 

5.2.5 Sampled regions of muscle activation patterns 

Unblinded selection of accurate samples 

From the set of 1 × 105 muscle activation patterns obtained with Metabolica at each time point, the 

muscle activation patterns that predicted a knee contact force within 5 % from the measured value 

were selected. This subset of samples, 𝑀𝑒𝑡𝑐𝑙𝑜𝑠𝑒, is therefore representative of the range of muscle 

activations that predicted the knee contact force within measurement uncertainties: a maximum error 

of 15 N was observed during ex-vivo, dynamic load tests of the knee implant where the force ranged 

from 200 to 1800 N (Kirking et al., 2006). No samples were included in the 𝑀𝑒𝑡𝑐𝑙𝑜𝑠𝑒 set for time points 

when none of the 1 × 105 samples predicted the measured knee force with 5 % accuracy. 

Normalized range of sampled activations 

For both the complete set of 1 × 105 muscle activation patterns and the 𝑀𝑒𝑡𝑐𝑙𝑜𝑠𝑒 subset, the ratio of 

the range of sampled activations with respect to the allowed range of activations, as defined by the 

constraints on the activations of the optimal control solution ± 0.1 (Equation 5.4), was defined for each 

muscle: 

 
𝑟𝑖(𝑡) =

[𝑎𝑖
𝑀(𝑡)]

𝑚𝑎𝑥
− [𝑎𝑖

𝑀(𝑡)]
𝑚𝑖𝑛

𝑎𝐻,𝑖
𝑀 (𝑡) − 𝑎𝐿,𝑖

𝑀 (𝑡)
 

5.7 
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where [𝑎𝑖
𝑀(𝑡)]

𝑚𝑎𝑥
 is the maximum activation of muscle 𝑖 within a set of samples, [𝑎𝑖

𝑀(𝑡)]
𝑚𝑖𝑛

 is the 

minimum activation of muscle 𝑖 within a set of samples, 𝑎𝐻,𝑖
𝑀 (𝑡) is the constraint to the highest allowed 

activation value of muscle 𝑖 and 𝑎𝐿,𝑖
𝑀 (𝑡) is the constraint to the lowest allowed activation value of 

muscle 𝑖. The ratio 𝑟𝑖(𝑡) was defined to be in between 0 and 1, indicating whether the set of samples 

(the complete set or the 𝑀𝑒𝑡𝑐𝑙𝑜𝑠𝑒 subset) included no samples or the complete allowed range of 

activations for muscle 𝑖, respectively. 

5.3 Results 

The magnitude of the knee contact force for the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solutions matched the measured values for 

each of the six trials throughout the entire gait cycle, except for small time intervals during the loading 

response phase (0-10 % of the gait cycle) of trial 3 and 5 and a short time interval during the terminal 

stance phase (30-50 % of the gait cycle) of trial 9 (Figure 5.3). During these time intervals the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ 

solution overestimated the knee contact force.  

The following pattern in knee contact force prediction was consistent in the 𝐽𝑎𝑐𝑡 solutions for all trials: 

𝐽𝑎𝑐𝑡 underestimated the knee force at initial contact, during the mid-stance phase (10-30% of the gait 

cycle) and during swing phase (except for the final 8 % of the swing phase in trial 4) and overestimated 

the knee force during the loading response phase. The differences between the predicted and 

measured values were less consistent throughout trials for the first peak and during terminal stance: 

The first peak in predicted knee contact force was lower for trial 4, 6 and 9, while this underestimation 

in knee force during the transition from loading response to mid-stance phase did not occur for trials 

3, 5 and 7; The second peak in predicted knee contact force, during the final part of terminal stance, 

was lower for trial 3, 5, 7 and 9, while oscillations of the measured knee force around the predicted 

value were obtained for trial 4, 6 and 9 during terminal stance. The knee contact force for the 𝐽𝐹𝐾 

solutions underestimated the measured values for each trial throughout the gait cycle, except for the 

same time intervals of the trials when 𝐽𝐹𝑚𝑎𝑡𝑐ℎ overestimated the knee forces. Even though 

underestimated in terms of absolute value, the predicted timing of the first peak by the 𝐽𝐹𝐾 solution 

shifted towards the measured value compared to the 𝐽𝑎𝑐𝑡 solution (Figure 5.3). 

For each trial, the measured knee contact forces were within the range of forces estimated by the 

sampled muscle activation patterns for most of the gait cycle, except for a time interval during the 

loading response phase when all sampled muscle activation patterns overestimated the measured 

knee force. Also, for trial 4, 6 and 9, all sampled muscle activation patterns overestimated the 
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measured knee contact force during a time interval in the terminal stance phase, while for trial 6 all 

samples underestimated the measured knee contact force around 30 % of the gait cycle (Figure 5.3).  

The RMSE and R2 values, both for individual trials and averaged over trials, showed a similar pattern 

in terms of goodness of knee force estimation for the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ, 𝐽𝑎𝑐𝑡 and 𝐽𝐹𝐾 solutions and the closest 

sample 𝐽𝑚𝑒𝑡 (Table 5.1); the RMSE was lowest and the R2 was highest for the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solution, followed 

by the 𝐽𝑚𝑒𝑡 sample. These muscle activation patterns were both obtained in an unblinded manner as 

the measured knee contact force was required to identify the solutions. From the blinded predictions, 

the 𝐽𝑎𝑐𝑡 solution resulted in lower RMSE and higher R2 values (0.5 BW and 0.61 on average, 

respectively) compared to the 𝐽𝐹𝐾 (0.7 BW and 0.20 on average, respectively). 

The activation levels of the main muscles that span the knee for the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solutions were 

consistently lower than the 𝐽𝑎𝑐𝑡 solutions for time intervals when the 𝐽𝑎𝑐𝑡 solutions overestimated the 

measured knee contact forces and consistently higher for time intervals when the 𝐽𝑎𝑐𝑡 solutions 

underestimated the measured knee contact forces. In trial 3, a representative example, a reduction in 

activation of muscles that span the knee was predicted during the loading response phase, while a 

pattern of co-contraction was predicted by the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solution during the mid-stance and terminal 

stance phases (Figure 5.4). In the 𝐽𝐹𝐾 solutions, the main muscles that span the knee were not 

activated throughout the gait cycle, except for the Rectus Femoris muscle during the mid-stance phase 

and the Semitendinosus muscle during the loading response, mid-stance and terminal stance phase 

(figure for Semitendinosus activation can be found in Appendix A.7). The muscle activation to produce 

the required joint moments around the hip and ankle shifted to the mono-articular muscles as 

previously shown in Section 4.3.  

For the largest part of the gait cycle, the muscle activations as predicted by the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solutions were 

within the range of muscle activations as sampled by Metabolica. A mismatch between the sampled 

activation ranges and the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solutions occurred in all trials during the first 10 % of the gait cycle, 

when the 𝐽𝑎𝑐𝑡 solutions underestimated the magnitude of knee contact forces (Figure 5.4 for trial 3, 

Appendix A.7 for other trials). 
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Figure 5.3: Knee contact force trajectories in bodyweight (BW) for all trials; the values from the 
instrumented implant (eTibia; black, solid), the 𝐽𝑎𝑐𝑡 (blue, dashed), 𝐽𝐹𝐾 (red, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ 
(yellow, dashed) solutions are shown as lines; the sampled values from Metabolica are shown as a 
range for which the colour indicates the number of samples that resulted in the corresponding 
knee force (see colour bar). The vertical dashed line indicates the time instant when toe off 
occurred. 
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Overall, the agreement between activation patterns from the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solutions and EMG onset data 

for muscles spanning the knee changed minimally and non-consistently across muscles when 

compared to the 𝐽𝑎𝑐𝑡 solutions for each trial (Figure 5.4 for trial 3, Appendix A.7 for other trials). One 

difference between the EMG data and the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solutions was consistent across trials: the EMG data 

did not show the predicted inactivity of muscles that span the knee during loading response. Apart 

from an accurately predicted activation of the Rectus Femoris muscle during the mid-stance phase, 

the 𝐽𝐹𝐾 solutions agreed poorly with EMG onset timing.  

The muscle activation patterns in the complete set of samples spanned the range allowed by the 

constraints for most muscles throughout the gait cycle (Figure 5.5): only the sampled activation range 

for the anterior compartment of the Gluteus Medius, the medial Gastrocnemius, the Semitendinosus 

and the Soleus muscles (and the Gluteus Maximus for some trials during the terminal stance phase) 

was smaller than the allowed range during parts of the gait cycle. The range of muscle activations in 

the 𝑀𝑒𝑡𝑐𝑙𝑜𝑠𝑒 set was narrower compared to the range of the complete set for most muscles at time 

points when the measured knee force was close to the boundary of the range of knee forces predicted 

by the sampled muscle activation patterns. Logically, these narrow ranges occurred at time points 

adjacent to the intervals where the measured knee force fell outside the range of sampled knee forces 

due to the sparsity of accurate predictions (Figure 5.5). However, besides these time intervals, the 

activation ranges of the 𝑀𝑒𝑡𝑐𝑙𝑜𝑠𝑒 subset were comparable to the ranges of the complete set, indicating 

a high possible variability in muscle activations that accurately predicted the measured knee contact 

force. 

  

Table 5.1: Root-mean-square errors (RMSE; in bodyweight (BW)) and coefficients of determination 
(R2) for each trial and the mean values over trials for the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ, 𝐽𝑎𝑐𝑡 and 𝐽𝐹𝐾 solutions and 𝐽𝑚𝑒𝑡, 
the sample closest to the measured knee force. 

 RMSE (BW) R2 

 Trial # 

mean 

Trial # 

mean  3 4 5 6 7 9 3 4 5 6 7 9 

𝑱𝑭𝒎𝒂𝒕𝒄𝒉 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝑱𝒂𝒄𝒕 0.7 0.3 0.4 0.6 0.5 0.5 0.5 0.23 0.85 0.76 0.59 0.58 0.65 0.61 

𝑱𝑭𝑲 0.8 0.6 0.7 0.9 0.7 0.7 0.7 -0.21 0.50 0.21 0.06 0.25 0.32 0.19 

𝑱𝒎𝒆𝒕 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.96 0.99 0.99 1.00 0.95 0.96 0.98 
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Figure 5.4: Trial 3, the activation patterns of the muscles that span the knee for which EMG data 
were available. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 𝐽𝐹𝐾 (red, dashed) 
and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a range 
for which the colour indicates the number of samples (see colour bar); the bottom graph shows 
the EMG data: the rectified values in light grey, the envelope in black and the onset timing as dark 
grey boxes. The vertical axis of the bottom graph was normalized to the maximum value in the 
rectified EMG data. The vertical dashed lines indicate the time instant when toe off occurred.  
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5.4 Discussion 

This study was aimed to explore the limitations of optimal control in predictions of knee contract 

forces by answering the following questions: 1) Can a subject-specific musculoskeletal dynamics 

model, built according to the current best practice, predict the measured forces at the knee during 

level walking? In other words, does at least one muscle activation pattern exist for which the model 

prediction and the measurements differ less than the measurement precision?; 2) Assuming such a 

solution exists, how different is it from an optimal control solution in terms of knee contact forces, 

but also in terms of muscle activation?; 3) How well can this difference be explained by a stochastic 

component superimposed to the optimal control (consistent with the uncontrolled manifold theory)? 

For each trial, a 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solution of muscle activations existed for which the knee force tracked the 

force measured with an instrumented implant; only during a brief time interval during terminal stance 

in one trial a difference in knee force occurred. The existence of such solutions confirmed that the 

model, with its idealisations and methods used to identify its input, is capable to exactly describe the 

observations in multiple repeated trials. Given their uniqueness, the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solutions can serve as a 

reference activation pattern for solutions obtained in an unblinded manner. 

The mean RMSE and R2 values of the 𝐽𝑎𝑐𝑡 solutions (0.5 BW and 0.61, respectively) were comparable 

to the values reported for blinded predictions of the total knee force in various studies that assumed 

optimal control in simulations of different trials (normal and instructed ‘bouncy’ and ‘smooth’ gait) 

from the same Knee Grand Challenge dataset: 0.4 – 0.8 BW and 0.54 – 0.74, respectively (Ding et al., 

2016; Jung et al., 2016; Moissenet et al., 2016; Smith et al., 2016). In each of these studies, the 

objective functions to obtain muscle activation patterns included a term comparable to 𝐽𝑎𝑐𝑡: the 

minimization of the sum of muscle activation squared. It should be noted that some of these studies 

included some form of a contact force term in the objective function (Jung et al., 2016; Moissenet et 

al., 2016) and for most studies only one or two trials of smooth and bouncy gait were included 

compared to the six trials of normal, level walking included in this study. Hence, we assumed that the 

current model, under the assumption of optimal control, performed comparable to other approaches. 

For one normal gait trial from the dataset used here, an EMG-driven forward dynamics approach 

showed a slight improvement in predicted total knee force (RMSE: 0.2 BW, R2: 0.93, (Razu and Guess, 

2018)) compared to the highest agreement for a single trial in this study, when assuming optimal 

control (trial 3; RMSE: 0.3 BW, R2: 0.85). However, the results for only one trial of normal gait were 

made available and therefore no comparison could be made with the capability of an EMG-driven 

approach to capture the large inter-trial variability in experimental knee forces in this dataset. The 

different muscle activation patterns from the optimal control and the best-match solutions did not 
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show a notable difference in agreement with the EMG onset timing, which raise questions on the 

capability of EMG-driven approaches to identify the activation patterns that best match the measured 

knee forces. 

A stochastic approach explored the solution space of sub-optimal muscle activation patterns within a 

10 % limit radius from the solution for optimal control, representative of the uncertainty in predicted 

muscle activations as quantified in Section 3.3. For most of the gait cycle in all six trials, this stochastic 

approach captured the best-match solutions in terms of both knee force and muscle activation: only 

during limited time intervals during the loading response phase (all trials) and the terminal stance 

phase (three out of six trials) did the low knee contact force not appear in the set of sub-optimal 

solutions. The range of sampled knee forces was larger compared to a study that explored sub-optimal 

muscle control with a parametric approach in a different Knee Grand Challenge dataset (Lundberg et 

al., 2013). The bias of the probabilistic approach to sample higher knee forces compared to the optimal 

control solution corresponded to the range of hip forces found in a previous study that used the same 

approach on a different dataset (Martelli et al., 2013). The large range of muscle activation that 

resulted in accurate predictions of knee contact forces suggest that the probabilistic approach used 

here is representative of a ‘lightly sub-optimal’ or ‘good-enough’ control that accounts for co-

contraction and captures the inter-trial variability in knee forces during most of the gait cycle, while 

during some time intervals a more explicit representation of the motor control strategy is required. In 

this specific case, the minimization of the knee force might provide a more accurate prediction during 

the loading response phase. 

The author acknowledges three main limitations of this study: Firstly, even though an instrumented 

knee implant provides a valuable dataset of measured knee forces to validate our model predictions, 

the current study included only one participant. The author acknowledges that the current work 

should be expanded to other datasets within the Knee Grand Challenge competition and preferably 

to other publicly available datasets that include measured hip forces, such that the generalizability of 

the current work can be confirmed. Nonetheless, the question how to validate approaches to predict 

joint contact forces in participants without an instrumented joint implant remains. Secondly, the 

force-length-velocity relationship was not considered when determining the force producing capacity 

of the muscles. However, as mentioned before, no standardized method currently exists to accurately 

predict this relationship for each muscle individually. Furthermore, the predicted levels of activation 

were relatively low, strengthening the author’s belief that the results would not change when the 

force-length-velocity relationship would be considered. Thirdly, only the resultant force and not the 

direction of the forces experienced by the knee were considered. Given the relatively large 

contribution of the axial component to the resultant force and the small mediolateral and anterior-
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posterior orientation of the muscle lines of action with respect to the joint during the stance phase, 

no difference in the obtained results was expected if the directional components of the contact force 

were included separately. Nonetheless, future work should study the influence of muscle control on 

the distribution of loads over different compartments of the knee joint. 

In conclusion, the results presented in this study underline the importance of muscle control in the 

prediction of knee forces within a multi-body dynamics approach. A subject-specific musculoskeletal 

dynamics model, built according to the current best practice, was compatible with the experimentally 

measured knee forces during level walking. In case of pathological gait, such as studied here, the 

assumption of optimal motor control was not representative of the considerable level of inter-trial 

variability. A stochastic approach that assumed an uncontrolled manifold of 10 % around the optimal 

control solution did capture this variability for most of the gait cycle. In cases when the motor control 

strategy is severely sub-optimal or when a higher level of accuracy for the predicted joint contact 

forces is required, the author believes the only solution is to not reduce motor control to an 

optimization problem and include an explicit model of control. 
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The general aim of this thesis was to explore the variability in motor control of the musculoskeletal 

dynamics during walking through a stochastic modelling approach: Optimal motor control is not 

representative of inherent variability in repeated tasks and optimality from the perspective of energy 

expenditure might be undesirable or even impossible in pathological gait.  

The first part of this work outlined the processes of verification and validation of musculoskeletal 

dynamics models that allow for quantification of the uncertainty in the predicted muscle and joint 

contact forces. Previous studies suggested that the sensitivity of predicted joint contact forces to 

measurement errors, model parameter identification and joint models was around 1 to 2 BW. The 

corresponding uncertainty of predicted muscle forces was around 10 % of the maximum isometric 

force. Exploratory work showed that a previously presented stochastic approach to predict muscle 

activation patterns has potential to capture sub-optimal control and inherent variability in repeated 

tasks but is not suited to explore the boundaries of motor control. 

The second part of this work explored the boundaries of motor control by aiming to minimize the 

forces experienced by the lower-limb joints during level walking. Alternative muscle recruitment 

strategies have the potential to reduce the forces at the hip and knee, but not at the ankle. Muscle 

recruitment strategies that aim to reduce the force in the hip or knee, might increase the peak contact 

force in the non-targeted knee or hip, respectively. Therefore, future work should further study the 

potential of neuromuscular rehabilitation, such as strength training of specific muscle groups and 

body-awareness approaches, to target preventive reduction of contact forces at the hip and knee, 

while considering the potential adverse effects on non-targeted joints.  

The third part of this work studied the limitations of optimal control in dynamic simulations of 

pathological gait, specifically in a patient with an instrumented knee implant. Optimal muscle control 

predicted the measured knee contact force, on average, with a root-mean-square error of 0.5 BW and 

a correlation coefficient of 0.61; previous studies on the same publicly available dataset that assumed 

optimal control reported comparable levels of accuracy. A control strategy that aimed to minimize the 

knee force did not improve the accuracy of the predicted knee force; given the high inter-trial 

variability in the measured knee force, no single cost function is likely to provide a viable alternative. 

A stochastic approach to predict muscle activation patterns, representative of the 10 % uncertainty in 

their prediction (Section 3.3), captured the uncertainty and inherent variability of repeated tasks in 

predicted joint contact forces. Therefore, the assumption of sub-optimal control provides a range of 

plausible joint contact forces, representative of the uncertainty in terms of measurement inaccuracies, 

modelling errors and inherent variability, which is likely to contain the true force. The inclusion of a 

stochastic element in the prediction of muscle activation corresponds with larger frameworks such as 

‘good enough’ control and the uncontrolled manifold theory (Loeb, 2012; Scholz and Schöner, 1999). 
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Both frameworks highlight the importance of variability in motor control, which is ignored by the 

assumption of motor control arising from optimization. The stochastic approach, first applied to a 

musculoskeletal modelling approach by Martelli et al. (Martelli et al., 2013), draws sub-optimal muscle 

recruitment patterns from a probability distribution along the null space of the force equilibrium 

equations. This null space represents all combinations of muscle activations that do not alter the 

resultant net-joint moments, equivalent to the task-independent direction, or uncontrolled manifold, 

on the level of muscle activation (Scholz and Schöner, 1999). According to the uncontrolled manifold 

theory, variability along this direction could allow for stability to perturbations. In case of motor 

control, such perturbations could be noise in the signals from the central nervous system to the muscle 

fibres or sudden changes in the length of muscle fibres, affecting the afferent information. By limiting 

the sampled muscle activation to lie within a range from the optimal muscle activation pattern, a level 

of sub-optimality was introduced to the prediction of muscle control. The stochastic approach to 

muscle control presented here successfully predicted the inter-trial variability observed in the knee 

contact force that could not be predicted by kinematic variability alone. Future work should focus on 

how to quantify the level of sub-optimality in muscle activation in different applications: Pathologies 

are likely to influence the level of sub-optimality in control strategies due to altered or decreased 

neural control. Also, modelling errors influence the uncertainty in predicted muscle activation: 

Validation and quantification of error propagation should therefore be an integrated element when 

identifying ranges of predicted joint contact forces.  

If higher accuracy of predicted muscle and joint contact forces is required or in case of severely sub-

optimal motor control, I believe the only solution is to include an explicit model of motor control. A 

refined mechanistic model would allow for the differentiation between hierarchical levels of motor 

control, as proposed by Bernstein (Bernstein, 1967), such as the involuntary spinal control and the 

cognition-driven anticipatory control. The current work has shown that the validity of a sophisticated 

model of human movement dynamics is highly dependent on the assumptions on motor control. A 

mechanistic approach would allow for a subject-specific model of motor control, likely to be 

dependent on the health status of the participants or the environment of the task, and has the 

potential to improve the accuracy of neuromusculoskeletal models.  

A logical approach to include subject-specific motor control would be to include electromyography 

data in the identification of the control signals that drive the musculoskeletal dynamics. In the inverse 

dynamics approach muscle synergies, a reduced number of activation signals to groups of muscles 

identified with EMG data, have prescribed muscle activation patterns. EMG has also been successfully 

used to define the muscle activation in a forward dynamics approach (Lloyd and Besier, 2003; Pizzolato 

et al., 2015). In such an EMG-driven approach, the relationship between the measured electric 
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potential and the force exerted by a muscle is identified through calibration: Typically, both the net-

joint moments and the EMG of relevant muscles are recorded simultaneously during simple tasks such 

as isolated joint flexion or extension. The parameters that predict the force a muscle produces given 

the measured electric potential are determined from these calibration trials. However, the calibration 

is indirect as multiple muscles are involved in even the simplest movements and the net-joint moment, 

rather than the force along each muscle’s tendon, serve as the calibration values. Additionally, 

assumptions on the excitation of deeper muscle tissues are required as these muscles cannot be 

reached with surface electrodes and wire EMG raises ethical issues in most applications. Nonetheless, 

an EMG-driven, or EMG-informed, approach could provide a subject-specific muscle activation pattern 

representative of possible pathological muscle control, as opposed to the assumption of optimal 

control. This muscle activation pattern could then serve as the muscle activation pattern around which 

the stochastic approach assumes a level of sub-optimality. The level of sub-optimality could, for 

example, be representative of the uncertainty in the muscle activation prediction resulting from the 

EMG-force calibration. However, one could question the difficulty to validate the model predictions 

qualitatively when EMG is already included in the model definition and measured joint contact forces 

data are not available. 

An explicit model of motor control would allow for truly predictive simulations as not only the effect 

of the activation of a specific muscle on the segmental accelerations, but also the influence of different 

levels of motor control on the movement can be determined directly. Motion capture through stereo 

photogrammetry or wearable sensors, in tasks that are more representative of daily life, and EMG 

data can serve as independent validation measures for movement dynamics and motor control, 

respectively. Such an approach to answer ‘what if’ questions has a large potential to inform research 

into compensatory strategies targeted by neurorehabilitation.  

A second challenge remains to determine the influence of the assumptions on muscle physiology on 

model predictions. The dependency between time points in a forward dynamics approach, for 

example, allows to account for the stretch in tendinous tissue that stores energy and keeps muscle 

fibres around their optimal length. Not only are such mechanisms metabolically advantageous, they 

are also likely to influence motor control: energy can be released at later time points and tendinous 

elasticity might be exploited to regulate joint stability. The current inverse approach to optimal motor 

control, however, ignores these mechanisms.  

A relevant question is how task specification determines the variability in predicted muscle 

activations. Many studies focus on tasks in a simplified setting, such as a motion capture laboratory 

environment, which is likely to overestimate the redundancy in more demanding tasks of everyday 
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life (Loeb, 2000). New approaches to study motor control should be developed with their application 

to more complex tasks in a setting of daily life kept in mind. 

In conclusion, motor control in complex motor tasks should be studied with the required level of 

dynamic accuracy to obtain a solution space representative of the physiological muscle redundancy 

that motor control must choose a solution from. An inverse dynamics approach suffices in certain 

applications, but sub-optimality in motor control should be accounted for to provide a range of muscle 

and joint contact force predictions. However, an explicit model of motor control, implemented in a 

forward dynamics approach, is required to study the influence of individual elements of the neural 

system on the movement dynamics in pathological gait. 
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And so castles made of sand 

Melts into the sea 

Eventually 

Jimi Hendrix
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A.1 Experimental data 

Participant 1 (p01) 

Ethical approval for the data collection was provided by the University Research Ethics Committee at 

the University of Sheffield. Skin marker trajectories were captured at 100 Hz with an 8-camera motion 

capture system (MX, Vicon Motion Systems Ltd, Oxford, UK). The ground reaction forces were 

measured at 1000 Hz with two strain-gauge force platforms (Bertec Corp., Columbus, OH, USA). 

Participant 2 (p02) 

The dataset was provided through the Knee Grand Challenge (Fregly et al., 2012). The marker 

trajectory data were originally sampled at 120 Hz, but provided after being resampled to 200 Hz using 

a cubic-spline interpolation and filtered using a 15 Hz low-pass, 4th order Butterworth filter. The 

ground reaction force data were originally sampled at 3840 Hz, but provided after being resampled to 

1200 Hz using a cubic-spline interpolation and filtered using a 100 Hz low-pass, 4th order Butterworth 

filter. 

Participant 3 (p03) 

The data were previously collected as part of the MD-Paedigree project (EC 7th FP, ICT Programme, 

Ref. No. 600932) and details on the data collection were published earlier (Prinold et al., 2016). Skin 

marker trajectories were captured at 100 Hz with a 6-camera motion capture system (Smart-DX, BTS 

S.p.A., Milan, Italy). The ground reaction forces were measured at 1000 Hz with two piezoelectric force 

platforms (Kistler Group, Winterthur, Switzerland). 

Participant 4 (p04) 

The data were provided as part of the MultiSim project (EPSRC Frontier Engineering Awards, Ref. No. 

EP/K03877X/1) for which the data collection was approved by the NHS research ethics committee. 

Skin marker trajectories were captured at 100 Hz with a 12-camera motion capture system (Vantage 

5, Vicon Motion Systems Ltd, Oxford, UK). The ground reaction forces were measured at 1000 Hz with 

two piezoelectric force platforms (Kistler Group, Winterthur, Switzerland). 

 

Specifications of the skin markers included for the different participants can be found in Table A.1.1. 
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Table A.1.1: The skin markers and their anatomical locations for the different datasets 

Acronym Location p01 p02 p03 p04 

C7 Spinous process of the 2nd thoracic vertebrae x    

T10 Spinous Process of the 10th thoracic vertebrae xM    

SHO Acromioclavicular joint xM    

CLAV Anterior, superior aspect of sternum xM    

STRN Xiphoid process of sternum x    

RASI Right anterior, superior iliac spine xM    

LASI Left anterior, superior iliac spine x x x x 

RPSI Right posterior, superior iliac spine x x x x 

LPSI Left posterior, superior iliac spine x x x x 

THI Lateral aspect of thigh - on wand x x x x 

TC1 First marker of technical cluster on thigh    xM 

TC2 Second marker of technical cluster on thigh xM xM xM xM 

TC3 Third marker of technical cluster on thigh xM xM  xM 

KNE Lateral femoral epicondyle xM xM  xM 

MFC Medial femoral epicondyle x xS x xS 

SC1 First marker of technical cluster on shank xS  xS xS 

SC2 Second marker of technical cluster on shank xM xM xM xM 

SC3 Third marker of technical cluster on shank  xM   

TIB Lateral aspect of shank - on wand  xM   

HFB Lateral aspect of the head of the fibula xM   x 

MMA Medial malleolus of right ankle   x x 

ANK Lateral malleolus of right ankle xS xS xS xS 

HEE 
Posterior aspect of the calcaneus or equivalent on shoe - at 
approximate toe height 

x xS x xS 

TOE 
In between second and third metatarsal heads/above second 
metatarsal head or equivalent on shoe - aligned with RHEE 

x x x x 

D1M Medial aspect of the first metatarsal head xM x x x 

D5M Lateral aspect of the fifth metatarsal head x   xS 

TTB Tibial tuberosity x  xS xS 

S: Static trials only, M: Movement trials only 
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A.2 Trajectories of generalized coordinates 
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A.3 Trajectories of generalized torques 
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A.4 Trajectories of joint contact forces 

Figure A.4.1: Joint contact force trajectories at the hip (top), knee (middle) and ankle (bottom) of 
p01 for the trials at a slow walking speed; mean (solid line) and range (shaded area) values are 
shown in bodyweight (BW) for the different solutions: 𝐽𝑎𝑐𝑡 (black), 𝐽𝐹𝐻 (blue, left), 𝐽𝐹𝐾 (yellow, 
middle) and 𝐽𝐹𝐴 (red, right).  
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Figure A.4.2: Joint contact force trajectories at the hip (top), knee (middle) and ankle (bottom) of 
p01 for the trials at a self-selected walking speed; mean (solid line) and range (shaded area) values 
are shown in bodyweight (BW) for the different solutions: 𝐽𝑎𝑐𝑡 (black), 𝐽𝐹𝐻 (blue, left), 𝐽𝐹𝐾 (yellow, 
middle) and 𝐽𝐹𝐴 (red, right).  
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Figure A.4.3: Joint contact force trajectories at the hip (top), knee (middle) and ankle (bottom) of 
p01 for the trials at a fast walking speed; values for each trial are shown in bodyweight (BW) for 
the different solutions: 𝐽𝑎𝑐𝑡 (black), 𝐽𝐹𝐻 (blue, left), 𝐽𝐹𝐾 (yellow, middle) and 𝐽𝐹𝐴 (red, right).  



A-33 
 

  

Figure A.4.4: Joint contact force trajectories at the hip (top), knee (middle) and ankle (bottom) of 
p02 for the trials at a self-selected walking speed; mean (solid line) and range (shaded area) values 
are shown in bodyweight (BW) for the different solutions: 𝐽𝑎𝑐𝑡 (black), 𝐽𝐹𝐻 (blue, left), 𝐽𝐹𝐾 (yellow, 
middle) and 𝐽𝐹𝐴 (red, right). Additionally, the mean and range values of the magnitude of force 
measured by the implant (eTibia, dashed) are shown for the knee.  
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Figure A.4.5: Joint contact force trajectories at the hip (top), knee (middle) and ankle (bottom) of 
p03 for the trials at a self-selected walking speed; mean (solid line) and range (shaded area) values 
are shown in bodyweight (BW) for the different solutions: 𝐽𝑎𝑐𝑡 (black), 𝐽𝐹𝐻 (blue, left), 𝐽𝐹𝐾 (yellow, 
middle) and 𝐽𝐹𝐴 (red, right).  
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Figure A.4.6: Joint contact force trajectories at the hip (top), knee (middle) and ankle (bottom) of 
p04 for the trials at a slow walking speed; mean (solid line) and range (shaded area) values are 
shown in bodyweight (BW) for the different solutions: 𝐽𝑎𝑐𝑡 (black), 𝐽𝐹𝐻 (blue, left), 𝐽𝐹𝐾 (yellow, 
middle) and 𝐽𝐹𝐴 (red, right).  
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Figure A.4.7: Joint contact force trajectories at the hip (top), knee (middle) and ankle (bottom) of 
p04 for the trials at a self-selected walking speed; mean (solid line) and range (shaded area) values 
are shown in bodyweight (BW) for the different solutions: 𝐽𝑎𝑐𝑡 (black), 𝐽𝐹𝐻 (blue, left), 𝐽𝐹𝐾 (yellow, 
middle) and 𝐽𝐹𝐴 (red, right).  
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Figure A.4.8: Joint contact force trajectories at the hip (top), knee (middle) and ankle (bottom) of 
p04 for the trials at a fast walking speed; mean (solid line) and range (shaded area) values are 
shown in bodyweight (BW) for the different solutions: 𝐽𝑎𝑐𝑡 (black), 𝐽𝐹𝐻 (blue, left), 𝐽𝐹𝐾 (yellow, 
middle) and 𝐽𝐹𝐴 (red, right).  
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A.5 Trajectories of muscle activations 

The following section contains the figures that show the trajectories of muscle activation for the 

different solutions. The results for the Adductor Brevis, Pectineus and Peroneus Brevis muscles are 

not shown due to the large number of muscles and their relatively small contribution to the joint 

contact forces.  
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A.6 Table of muscle activation patterns 
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Table A.6.1: Muscle activations at the time of peak hip, knee and ankle contact force magnitude 
in the 𝐽𝑎𝑐𝑡 solution, given for both the 𝐽𝑎𝑐𝑡 and the corresponding J𝐹𝑗 solution. Muscle activation 

values are averaged over trials at self-selected speed, shown as mean ± standard deviation, and 
represented by a colour scale (white: no activation, red: full activation). For each muscle, the 
four rows represent the activation level for the four different participants.  
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A.7 Sampled muscle activation patterns for main muscles 

The following figures show the muscle activation patterns for the main muscles for each trial of p02. 

The predicted activation patterns from the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ, 𝐽𝑎𝑐𝑡 and 𝐽𝐹𝐾 and the Metabolica samples were 

included. The muscles were divided into two groups according to which the figures were organized: 

- Muscles that span the knee for which EMG data was available 

- Remaining main muscles 
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Figure A.7.1: Trial 3, the activation patterns of the muscles that span the knee for which EMG data 
were available. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 𝐽𝐹𝐾 (red, dashed) 
and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a range 
for which the colour indicates the number of samples (see colour bar); the bottom graph shows 
the EMG data: the rectified values in light grey, the envelope in black and the onset timing as dark 
grey boxes. The vertical axis of the bottom graph was normalized to the maximum value in the 
rectified EMG data. The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.2: Trial 4, the activation patterns of the muscles that span the knee for which EMG data 
were available. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 𝐽𝐹𝐾 (red, dashed) 
and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a range 
for which the colour indicates the number of samples (see colour bar); the bottom graph shows 
the EMG data: the rectified values in light grey, the envelope in black and the onset timing as dark 
grey boxes. The vertical axis of the bottom graph was normalized to the maximum value in the 
rectified EMG data. The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.3: Trial 5, the activation patterns of the muscles that span the knee for which EMG data 
were available. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 𝐽𝐹𝐾 (red, dashed) 
and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a range 
for which the colour indicates the number of samples (see colour bar); the bottom graph shows 
the EMG data: the rectified values in light grey, the envelope in black and the onset timing as dark 
grey boxes. The vertical axis of the bottom graph was normalized to the maximum value in the 
rectified EMG data. The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.4: Trial 6, the activation patterns of the muscles that span the knee for which EMG data 
were available. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 𝐽𝐹𝐾 (red, dashed) 
and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a range 
for which the colour indicates the number of samples (see colour bar); the bottom graph shows 
the EMG data: the rectified values in light grey, the envelope in black and the onset timing as dark 
grey boxes. The vertical axis of the bottom graph was normalized to the maximum value in the 
rectified EMG data. The vertical dashed lines indicate the time instant when toe off occurred. 
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Figure A.7.5: Trial 7, the activation patterns of the muscles that span the knee for which EMG data 
were available. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 𝐽𝐹𝐾 (red, dashed) 
and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a range 
for which the colour indicates the number of samples (see colour bar); the bottom graph shows 
the EMG data: the rectified values in light grey, the envelope in black and the onset timing as dark 
grey boxes. The vertical axis of the bottom graph was normalized to the maximum value in the 
rectified EMG data. The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.6: Trial 9, the activation patterns of the muscles that span the knee for which EMG data 
were available. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 𝐽𝐹𝐾 (red, dashed) 
and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a range 
for which the colour indicates the number of samples (see colour bar); the bottom graph shows 
the EMG data: the rectified values in light grey, the envelope in black and the onset timing as dark 
grey boxes. The vertical axis of the bottom graph was normalized to the maximum value in the 
rectified EMG data. The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.7: Trial 3, muscle activation patterns. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 
𝐽𝐹𝐾 (red, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a 
range for which the colour indicates the number of samples (see colour bar); the bottom graph shows the EMG 
data (if available): the rectified values in light grey, the envelope in black and the onset timing as dark grey 
boxes. The vertical axis of the bottom graph was normalized to the maximum value in the rectified EMG data. 
The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.8: Trial 4, muscle activation patterns. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 
𝐽𝐹𝐾 (red, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a 
range for which the colour indicates the number of samples (see colour bar); the bottom graph shows the EMG 
data (if available): the rectified values in light grey, the envelope in black and the onset timing as dark grey 
boxes. The vertical axis of the bottom graph was normalized to the maximum value in the rectified EMG data. 
The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.9: Trial 5, muscle activation patterns. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 
𝐽𝐹𝐾 (red, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a 
range for which the colour indicates the number of samples (see colour bar); the bottom graph shows the EMG 
data (if available): the rectified values in light grey, the envelope in black and the onset timing as dark grey 
boxes. The vertical axis of the bottom graph was normalized to the maximum value in the rectified EMG data. 
The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.10: Trial 6, muscle activation patterns. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 
𝐽𝐹𝐾 (red, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a 
range for which the colour indicates the number of samples (see colour bar); the bottom graph shows the EMG 
data (if available): the rectified values in light grey, the envelope in black and the onset timing as dark grey 
boxes. The vertical axis of the bottom graph was normalized to the maximum value in the rectified EMG data. 
The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.11: Trial 7, muscle activation patterns. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 
𝐽𝐹𝐾 (red, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a 
range for which the colour indicates the number of samples (see colour bar); the bottom graph shows the EMG 
data (if available): the rectified values in light grey, the envelope in black and the onset timing as dark grey 
boxes. The vertical axis of the bottom graph was normalized to the maximum value in the rectified EMG data. 
The vertical dashed lines indicate the time instant when toe off occurred.  
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Figure A.7.12: Trial 9, muscle activation patterns. For each muscle, the top graph shows the 𝐽𝑎𝑐𝑡 (blue, dashed), 
𝐽𝐹𝐾 (red, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a 
range for which the colour indicates the number of samples (see colour bar); the bottom graph shows the EMG 
data (if available): the rectified values in light grey, the envelope in black and the onset timing as dark grey 
boxes. The vertical axis of the bottom graph was normalized to the maximum value in the rectified EMG data. 
The vertical dashed lines indicate the time instant when toe off occurred.  


