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“Many cosmogonists now maintain that the Earth was origi-
nally cold and has been heating by radioactivity ever since. But
I think, as I have said, that some important facts cannot be ex-
plained without a fluid stage.”
Sir Harold Jeffreys
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Abstract

Seismic observations suggest that a stably-stratified layer, known as the
F-layer, 150–300 km thick exists at the base of Earth’s liquid outer core.
This contrasts with the density inferred from the Preliminary Reference
Earth Model, which assumes a well–mixed and adiabatic outer core. The
liquid core is composed primarily of iron alloyed with a light component.
We propose that the layer can be explained by a slurry on the liquidus,
whereby solid particles of iron crystallise from the liquid alloy throughout
the layer. The slurry model provides a dynamically consistent explanation
of how light element can pass through a stable layer.

We make two key assumptions, the first of which is fast-melting where the
time-scale of freezing is considered short compared to the evolution of the
F-layer. The second assumption is that we consider a binary alloy where
the light element is purely composed of oxygen, which is expelled entirely
into the liquid during freezing.

We present an idealised steady state model of a slurry, where temperature,
light element concentration and solid flux profiles are ascertained for vari-
ous layer thicknesses, inner core heat fluxes and values of the core thermal
conductivity, since there is some uncertainty in these parameters. Our
solutions demonstrate that the steady state slurry can satisfy the geophys-
ical constraints on the density jump across the layer and the core-mantle
boundary heat flux.

A time-dependent model is presented, in which the slurry system is cou-
pled to the evolving global heat balance of the core. Promising results
show that the origin of the F-layer and its future long-term development
may be probed.
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1.1 Background and Motivation

1.1 Background and Motivation

1.1.1 Core convection

Understanding the structure and dynamics of the Earth’s interior is one of the central

goals of geophysics. Paleomagnetic records show that the Earth’s magnetic field has

persisted over the past 3.5 billion years (Kono & Roberts, 2002; Tarduno et al., 2010).

If the core was not actively driven, then the magnetic field would decay away on a

20, 000 year magnetic diffusion time-scale (Glatzmaier & Coe, 2015). Gauss (1877)

deduced that the magnetic field must be internal in origin, and Larmor (1919) sug-

gested that self-excited dynamo action is responsible for sustaining the Earth’s mag-

netic field, whereby electric currents are induced by metallic liquid undergoing convec-

tion. To drive convection, a large amount of heat was released during core formation

and the Earth has been cooling ever since. Heat loss from the surface of the planet

is roughly estimated to be 45 TW (Jaupart et al., 2007). Estimates of the fraction of

this heat loss through the core-mantle boundary (CMB) vary widely from 5 to 17 TW

(Lay et al., 2008; Nakagawa & Tackley, 2007; Nimmo, 2015b). The rate at which

heat can be extracted from the core by the mantle ultimately controls core convection

and therefore dynamo operation. There is difficulty reaching a consensus about the

value of the CMB heat flux since direct temperature measurements of the Earth’s deep

interior are impossible. Furthermore core conditions are difficult to replicate in the

laboratory, with pressures reaching up to 330 GPa (Dziewonski & Anderson, 1981).

Seismology is the only tool that allows us to understand the density structure of the

Earth’s interior, therefore any realistic geophysical model of the core should match the

seismic observations.

Heat can be transported through the core by conduction and convection. The heat

that cannot be evacuated out of the core by conduction is available to drive convection.

3



1. INTRODUCTION

Figure 1.1: The solid inner core grows over time as the core cools. The dashed curves
denote the cooling adiabatic temperature at successive times. The ICB is defined at
point B where the adiabat crosses the melting curve (solid line). Figure from Jacobs
(1953).

Convection can only occur when the temperature gradient exceeds the adiabatic value.

Consider a small parcel of material that is displaced vertically upwards in a homoge-

neous medium. Suppose this happens on a time-scale so rapid that no heat transfer

occurs between the parcel and the medium. The temperature of the parcel decreases

by adiabatic cooling, where the volume of the parcel expands and work is done on its

surroundings. If the temperature of the parcel is the same as its new surroundings, then

the medium possesses an adiabatic gradient. If the temperature of the parcel is lower

than its surroundings, then the parcel is denser and will sink: the medium has a sub-

adiabatic temperature gradient. Conversely, if the temperature of the parcel is greater

than its new surroundings, then the parcel is lighter and will continue to rise. In this

case the medium is super-adiabatic and unstable, giving rise to convection. Convec-

tion is very efficient at advecting heat in a system, therefore the temperature gradient

in the core is believed to be very close to adiabatic, and this approximation is key to

4



1.1 Background and Motivation

estimating many thermal properties of the core (Gubbins et al., 2003).

Fluid velocities inferred from secular variations in the Earth’s magnetic field are on

the order of 10−4 ms−1 (Jault & Le Mouël, 1991). Vigorous core motions displace fluid

fast enough that the mean temperature in the liquid outer core is assumed to closely

approximate an adiabat, except in thin boundary layers. Convection also homogenises

the distribution of light elements in the bulk of the core. As the core cools latent heat

is released at the inner core boundary (ICB) in which the inner core solidifies from

the liquid iron alloy, and the extra latent heat released promotes convection. The inner

core freezes out from the centre of the Earth where it is hottest rather than from the

CMB where it is cooler. This is because the pressure at the centre of the Earth is ex-

tremely high and steepens the melting curve. The melting curve is a phase boundary

that characterises the melting behaviour of a material and may be experimentally de-

termined. For iron alloys, the melting curve originally crosses the adiabat at the centre

of the Earth, and so the inner core freezes from the centre outwards as the core grad-

ually cools (see Figure 1.1). Freezing the inner core releases buoyant light material at

the ICB and promotes compositional convection since light element impurities are in-

compatible with the solid. The gravitational energy released as a result is a significant

source of power for the dynamo.

1.1.2 Core temperature

Knowing the melting behaviour of core iron alloys is important for deducing the tem-

perature structure of the core since direct, physical measurements of the temperature

inside the core cannot be made. Theoretical and experimental approaches in mineral

physics can provide meaningful insights by constructing phase diagrams of iron alloys

at core conditions.

The thermodynamics of first-order phase transitions has been well understood for

5



1. INTRODUCTION

E

Figure 1.2: Eutectic phase diagrams of an Fe-O alloy at 330 GPa. (Blue) liquidus
curve, (red) solidus curve. Symbol L denotes liquid phase and E denotes the eutectic
point. Figure modified from Morard et al. (2014).

a long time, though a general theory on a macroscopic scale for understanding regions

of mixed phases in thermodynamic equilibrium is less clear (Roberts & Loper, 1987).

A pure phase contains a single constituent where its physical properties are entirely

described by two thermodynamic variables, namely the temperature and pressure. A

phase diagram shows the thermodynamically distinct phases that occur and coexist at

equilibrium given a set of pressure and temperature conditions.

For a medium that contains two components (e.g. a binary alloy), then the system

is divided into two homogeneous bodies that can be in different states but are in contact

with one another at the same time. Landau et al. (1980) state that for equilibrium be-

tween two components, their temperatures, pressure and chemical potentials must be

equal. Contrary to a single component medium, the physical state of a binary mixture

is described by three thermodynamic variables: temperature, T , pressure, p, and com-

position, ξ. Figure 1.2 presents a eutectic phase diagram for an Fe-O alloy at 330 GPa

(Morard et al., 2014). The liquidus curve is where solidification first starts as material

is cooled. The lower solidus curve is when all of the material has completely solidi-

fied. The eutectic point, E, shows the lowest melting point of the system where the

three phases (one liquid phase, and one solid phase of each component) can coexist.

6
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The eutectic diagram is a cross-section of a three-dimensional surface in p, T, ξ-space,

where ξ denotes the light element concentration. The eutectic point, E, therefore lies

on a eutectic line that varies with pressure. The Fe-O alloy eutectic diagram in Fig-

ure 1.2 represents a typical eutectic system, and increasing the pressure would move

the eutectic point to a higher O composition (Komabayashi, 2014). Core composition

must fall on the iron-rich side of the eutectic to match the seismic measurements of

density and bulk modulus in the core (Melchior, 1986). As the Earth cools over time,

the iron that is excess to the eutectic composition solidifies.

Estimating the melting temperature of iron at the ICB is important because it pro-

vides an anchor point to extrapolate along the adiabat and determine the temperature

profile across the liquid core. High-pressure experiments and first-principles calcu-

lations are conducted in an effort to understand the phase diagrams of pure iron and

its alloys at the relevant core pressure and temperature conditions. Alfe et al. (2004)

use ab initio calculations to estimate that the melting temperature of pure iron is ap-

proximately 6250± 300 K at ICB pressures . Figure 1.3 gives an overview of melting

curves for pure iron derived from experiments using shock (Brown & McQueen, 1986;

Nguyen & Holmes, 2004; Yoo et al., 1993), diamond anvil cell (Boehler, 1993; Jack-

son et al., 2013; Komabayashi & Fei, 2010; Shen et al., 2004; Williams et al., 1987),

fast x-ray diffraction (Anzellini et al., 2013; Ma et al., 2004), and ab initio calcu-

lations (Alfè, 2009; Alfè et al., 2002c; Belonoshko et al., 2000; Sola et al., 2009).

Though consensus between melting curves has been difficult to achieve in the past,

recent progress in experimental methods (Anzellini et al., 2013) appears to agree well

with ab initio calculations for pure iron. Melting data for iron alloys differ from pure

iron because light material depresses the melting temperature (see further discussion

in Section 1.1.3).

Thermal conductivity, k, is one of the least well-constrained physical properties at
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Figure 1.3: Melting curves of pure iron obtained from experiment and ab initio calcu-
lations. (8) Boehler (1993), (9) Shen et al. (2004), (10) Williams et al. (1987), (11) Ma
et al. (2004), (22) Komabayashi & Fei (2010), (29) Jackson et al. (2013), (5) Yoo et al.
(1993), (6) Nguyen & Holmes (2004), (7) Brown & McQueen (1986), (12) Belonoshko
et al. (2000), (13) Alfè et al. (2002c), (14) Alfè (2009), (15) Sola et al. (2009). Figure
from Anzellini et al. (2013).
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core conditions. Thermal conductivity is related to the electrical conductivity of the

core through the Wiedemann-Franz law (Chester & Thellung, 1961). A higher thermal

conductivity increases the ability of the core to conduct heat along the adiabat, which

lessens convection and reduces the available power for driving the dynamo. Varying

estimates of the thermal conductivity significantly impact estimates of heat flow along

the adiabat and thus the inner core age, since heat is conducted from the core more

quickly and increases the speed of IC growth (see Figure 1.4). Low k values of 28–

46 Wm−1K−1 (Konôpková et al., 2016; Stacey & Anderson, 2001; Stacey & Loper,

2007) predict an older inner core of at least 1 billion years, and high k values of 90–

150 Wm−1K−1 (de Koker et al., 2012; Gomi et al., 2013; Ohta et al., 2016; Pozzo

et al., 2012) predict a younger inner core of around 500 million years. Estimates are

uncertain because the high pressure and temperature conditions of the core are difficult

to study in experiments, and the electron-electron interactions in ab initio calculations

are challenging to model (Pourovskii et al., 2014). Revised estimates of the thermal

conductivity significantly impact previous studies of the core that used low k values

(Williams, 2018).
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Figure 1.4: Curves showing the radial growth of the inner core over time as a function
of core heat flow. Steeper curves correspond with a high thermal conductivity: low k
values predict an older inner core of at least 1 billion years and high k values predict a
younger inner core of around 500 million years. Figure from Williams (2018).

1.1.3 Core composition

Earth’s deep interior is mainly probed by the study of waves triggered by seismic events

such as earthquakes. In the early 20th century Oldham (1906) discovered the core by

noticing that the delayed arrival of secondary shear (S) waves was due to a change

in physical properties between the mantle and core. Notably, shear waves propagate

through solid only and are unsupported by the liquid outer core. Together with studying

the Earth’s tides, Jeffreys (1926) was able to deduce that the nature of the core was

fluid. Lehmann (1936) later determined that the liquid core surrounds a solid inner

core, while Birch (1952) noted that the pressure at the centre of the Earth is so high

that the inner core is likely to be composed of crystalline iron.

Seismic observations of the density jump at the ICB are important for determining

the composition of the core. If the density difference at the ICB cannot be explained

by phase change alone then the remainder of the density difference is compositional
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in origin, since light elements can enrich the liquid outer core relative to the inner

core (Jephcoat & Olson, 1987). Two main types of seismic data are used to determine

the density jump at the ICB. Long period normal modes, otherwise known as the free

oscillations of the Earth, are triggered by large earthquakes. Short period body waves

are compressional and provide a greater resolution than normal modes. Body wave

data is not exact, whereas the theory used to calculate normal mode spectra is exact in

principle (Deuss, 2014). Masters & Gubbins (2003) performed a normal mode study

to show that the density jump at the ICB is ∆ρmod = 820± 180 kgm−3. Studies using

body wave data give values as low as ∆ρbod = 520 ± 240 kgm−3 (Koper & Pyle,

2004) and as high as ∆ρbod = 1, 100 kgm−3 (Tkalc̆ić et al., 2009). Variability in the

estimates is due to different sampling techniques and data processing in each study,

though a common thread amongst all of the results is that the density difference cannot

be explained by phase change alone. This is because the density drop on melting pure

iron is 0.24 × 103 kgm−3 (Alfè et al., 2002a), which is less than the values of ∆ρmod

and ∆ρbod quoted above. Hence the rest of density difference must be attributed to a

change in composition.

Cosmochemical and geochemical arguments suggest that the core is composed of

an iron alloy with up 5 wt.% nickel (McDonough & Sun, 1995). Light elements must

exist in the core because core density is 5–10% smaller than if it were made of pure iron

and nickel (Birch, 1964). Candidate light elements include silicon, sulphur, oxygen,

hydrogen and carbon (Badro et al., 2014; Hirose et al., 2013; Poirier, 1994). Know-

ing the partitioning behaviour of the light element during solidification of iron alloys

helps to explain the seismic density jump at the ICB, and is therefore essential for un-

derstanding how compositional convection is driven in the core. Ab initio molecular

dynamics simulations are able to characterise partitioning of iron alloys at the relevant

core pressures and temperatures. Alfè et al. (2002a) study the thermodynamic equi-

11



1. INTRODUCTION

Figure 1.5: Ab initio calculations of (a) liquid density, (b) mole fraction in the solid at
chemical equilibrium and (c) the relative density jump at the ICB for light elements sil-
icon, sulphur and oxygen. The horizontal dotted lines represent estimates from PREM.
Figure from Alfè et al. (2002a).

librium between the solid and liquid phases of a binary alloy, in which the chemical

potentials of each component must be equal on both sides of the ICB. Figure 1.5 shows

significant partitioning of oxygen into the liquid phase compared with the even parti-

tioning of silicon and sulphur into both the liquid and solid phase. According to these

calculations, oxygen is not easily retained in a solid crystalline iron lattice because of

its smaller atomic radius, thus it is more stable in the liquid phase. Silicon and sulphur

substitute with iron freely and are equally stable in both the liquid and solid phase,

therefore there are similar concentrations of Si/S in the inner and outer core. Alfè

et al. (2002a) find that none of the binary systems alone can match the seismic data,

though ternary or quaternary alloys of all three impurities can match the seismic data

with estimated concentrations of 8.0± 2.5 mol.% oxygen and 10± 2.5 mol.% silicon

and/or sulphur in the liquid, and 0.2± 0.1 mol.% oxygen and 8.5± 2.5 mol.% silicon
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and/or sulphur in the solid. The presence of these light elements depresses the melting

temperature at the ICB from 6, 350 K for pure iron to approximately 5, 900 K for an

Fe-(Si,S)-O system (Davies et al., 2015). A review by Hirose et al. (2013) and further

ab initio results by Badro et al. (2014) also agree that oxygen is an essential component

of core chemistry. Umemoto & Hirose (2015) study iron hydrogen alloys using first-

principles calculations and rule out that hydrogen can be the only single light element

in the core, because the inner core shear velocities could not be reconciled. Nakajima

et al. (2015) look at iron-carbon alloys using sound velocity measurements, and con-

clude that the amount of carbon in the core deduced from these measurements is too

small to tally with the outer core density deficit.
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1.2 The F-layer

1.2.1 Seismic observations of the F-layer

Bullen’s nomenclature labelled the layers of the Earth from A to G, with A referring

to the crust and G the inner core (Bullen, 1953). The original F-layer indicated that

there exists a seismically anomalous transition region between the solid inner core and

the liquid outer core, with a density stratification inferred by a slower than expected

primary compressional (P) wave velocity (Jeffreys, 1939). Compressional P waves are

the only way to sample the liquid core since shear S waves cannot propagate through

a liquid. The F-layer thickness was roughly estimated to be 200 km and believed to

surround the whole inner core (Jeffreys, 1939).

In the 1970s the original F-layer was shown to be an artefact of scattered waves in

the strongly heterogeneous D” layer (Lay et al., 1998) located in the lowermost 200 km

of the mantle (Cleary & Haddon, 1972; King et al., 1973). Interest surrounding the F-

layer was lost and the region disappeared from subsequent global seismic models and

dynamical models of the core. The Preliminary reference Earth model (PREM), shown

in Figure 1.6, is a standard one-dimensional seismic model commonly used to describe

the density structure of the Earth derived from using both P and S waves (Dziewonski

& Anderson, 1981). In this model, the density follows the Adams-Williamson equa-

tion, which assumes that the core is homogeneous and approximately follows an adi-

abatic gradient throughout, since the liquid core is vigorously convecting everywhere

except in thin boundary layers.

The modern F-layer emerged when Souriau & Poupinet (1991) noticed that the

speed of PKP(bc)1 waves, which directly sample the lowermost 200 km of the outer

1P: longitudinal wave that has passed through the crust and mantle, K: longitudinal wave that has
passed through the Earth’s outer core, bc: phases that bottom in the lower outer core (Storchak et al.,
2003)
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1.2 The F-layer

Figure 1.6: The Preliminary reference Earth Model (PREM) (Dziewonski & Anderson,
1981) shows the distribution of seismic velocities and density as a function of depth.
This model assumes that the liquid core is well-mixed and adiabatically stratified. Fig-
ure from the website of Garnero (Accessed: 04-10-2018).
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core, was significantly slower than PREM values. They concluded that this was the

result of density stratification (see Figure 1.7). Many following seismic studies con-

firmed its existence (Adam & Romanowicz, 2015; Ohtaki & Kaneshima, 2015; Zou

et al., 2008), and the F-layer was adopted into more recent one-dimensional reference

models such as ak135 (Kennett et al., 1995) and PREM2 (Song & Helmberger, 1995).

Compared to PREM the P wave velocity is slower by approximately 0.7–0.8% and

suggests a stable density stratification because

v2p =
Ks

ρ
, (1.2.1)

where vp is the P wave speed, Ks is the bulk modulus and ρ is the density. At high

pressure density varies more than the bulk modulus (Gubbins et al., 2008), therefore a

greater density results in a slower P wave speed. Estimates of the layer thickness are

variable and generally fall between 150 km (Souriau & Poupinet, 1991) and 350 km

(Zou et al., 2008), which is roughly 10% of the radial distance from the ICB to the

CMB.

Reconciling the observed F-layer with the conventional view of outer core convec-

tion is challenging since buoyant light material excluded from the growing solid inner

core and released at the ICB must be able to pass through a stably-stratified layer and

into the overlying core. Explaining the F-layer is therefore of great geophysical im-

portance since compositional convection provides significant amounts of gravitational

energy to power the geodynamo. Other contributing power sources include secular

cooling, latent heat release from core crystallisation, pressure freezing and radiogenic

heating (Gubbins et al., 2003). Apart from radiogenic heating these contributions are

proportional to the core cooling rate, which is controlled by the rate heat is extracted

by the mantle (Gubbins et al., 2003).
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1.2 The F-layer

Figure 1.7: A schematic of the density profiles inferred from Vp profiles given by
(1) PREM (Dziewonski & Anderson, 1981), (2) Souriau & Poupinet (1991) and (3)
Kaneshima et al. (1994). Figure from Gubbins et al. (2008).
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1.2.2 Models of the F-layer

Braginsky (1963) was the first to recognise that the continuous crystallisation of the

inner core as the Earth slowly cools could help power the geodynamo and generate

the Earth’s magnetic field. Heat extracted from the core by the mantle supports man-

tle convection, which in turn leads to visible surface processes such as volcanism and

plate tectonics (Stacey & Davis, 2008). As heat is lost from the surface of the Earth

over time, the inner core cools and grows as iron solidifies from the liquid alloy that

composes the outer core. Buoyant, light material that is incompatible with the solid

inner core is released at the inner core boundary as a result, driving compositional con-

vection in the liquid outer core that sustains dynamo action. To explain the anomalous

F-layer, Braginsky’s model considered an iron-sulphur core with a sulphur concentra-

tion above the eutectic point. Core cooling creates solid particles of sulphur lighter

than the surrounding liquid that float to the top of the F-layer, leaving a composition-

ally stratified layer. It was hypothesised that the excess sulphur rises out of the layer to

drive compositional convection in the rest of the liquid outer core.

Classic models of core dynamics assume perfect mixing due to convection in the

liquid outer core, except in thin boundary layers (Nimmo, 2015a). The mean tempera-

ture profile closely follows an adiabat that is extrapolated from the melting temperature

at the ICB, which is dependent on pressure and composition. One may suppose that

the F-layer is purely thermal in origin, where slower fluid velocity close to the solid

boundary of the inner core inhibits convective mixing in a super-adiabatic, conductive

boundary layer. In this conductive boundary layer, the density decreases with depth

since material at the bottom of the layer is hotter and more thermally buoyant than at

the top. The resulting density stratification in a thermal boundary layer contradicts the

density increase with depth inferred from relation (1.2.1), since slower P wave speeds

would have been observed, therefore the F-layer cannot be explained by a thermal
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boundary layer alone (Gubbins et al., 2008).

Alternatively, a thermochemical, single phase layer composed of liquid iron al-

loyed with light element was proposed by Gubbins et al. (2008). The model contains

an updated core chemistry model using an Fe-(Si,S)-O alloy on the iron-rich side of

the eutectic rather than a sulphur rich core on the iron-poor side of the eutectic as Bra-

ginsky (1963) did. A compositional gradient is imposed on the F-layer a posteriori

by specifying the light element concentration at the layer boundaries, so that the nor-

mal mode data, ∆ρmod, matches the concentration at the top boundary and body wave

data, ∆ρbod, matches the bottom boundary. These conditions enforce the density strat-

ification to be the same as the seismology. The temperature in the layer is assumed

to follow the liquidus to avoid producing an F-layer that is completely solid. How-

ever, there is no consistent thermodynamic treatment of a solid phase described by the

model. Steady state is assumed and modelled by considering a reference frame that

is moving at the speed of inner core growth. Growth speed is computed iteratively by

balancing the heat flux through the layer with the latent heat release and the specific

heat lost by secular cooling. A solution of the thermochemical model is presented in

Figure 1.8. Gubbins et al. (2008) test the model by computing the heat flux through

the ICB and CMB for various layer thicknesses and light element concentration gradi-

ents. Solutions produced ICB heat fluxes that match a nominal inner core age of 1 Ga

using a low thermal conductivity, and CMB heat fluxes that fall between 5 and 17 TW

were obtained. However, the model fails to explain the dynamics of how the imposed

concentration gradient may be sustained, and how light material can pass through the

stably-stratified layer without disturbing it.

Convective translation of the inner core is proposed as another possible mechanism

for explaining the F-layer. This particular deformationless mode of motion can arise in

convectively unstable conditions and results in inner core freezing in the western hemi-
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Figure 1.8: A model solution from Gubbins et al. (2008) of the temperature (solid) and
concentration (dashed) as a function of distance above the ICB. The input parameters
are layer thickness, d = 150 km, light element concentration c(d) = 8 mol.% oxygen
at the top of the layer and c(0) = 0 mol.% at the base of the layer, which imposes a
concentration gradient that matches the seismically determined density jumps ∆ρmod =
600 kg m−3 and ∆ρbod = 240 kg m−3.

sphere and melting in the eastern hemisphere, which produces an iron-rich dense layer

that coats the inner core. Alboussière et al. (2010) use a low thermal conductivity of

36 W m−1 K−1 (Stacey & Davis, 2008) that favours superadiabatic conditions for ther-

mal convection in the inner core, and a high critical viscosity on the order of 1018 Pa s

accommodates convective instability by reducing viscous deformation. The viability

of this mechanism may be limited by more recent high thermal conductivity estimates,

which implies that the inner core is thermally stratified (Deguen, 2012). Compositional

effects have been proposed as an alternative pathway to inner core convection since

freshly created solid at the ICB contains less light elements and increases the density

with radius over the lifetime of the inner core, which gives rise to unstable stratifica-

tion as the concentration of iron is progressively refined (Deguen et al., 2013). Gubbins

et al. (2013) find a weak chemical stratification caused by temperature-dependent par-

titioning of light elements, though Labrosse (2014) and Lythgoe et al. (2015) find that

20



1.2 The F-layer

unstable compositional effects are weaker than the stabilising effect of thermal strati-

fication and so inner core convection is unlikely to occur. More recently Deguen et al.

(2018) consider the possibility of double-diffusive convection in the inner core owing

to the large difference in thermal and chemical diffusivities. They propose that inner

core translation is feasible provided that the compositional profile of the inner core is

destabilising and that the inner core viscosity is sufficiently large. Though it is possi-

ble these conditions were met over the inner core’s history, there is uncertainty whether

this applies in the present day. Models of convective translation are mainly concerned

with explaining the hemispherical asymmetry of the inner core. It is unclear whether

the magnitude of this convection can explain an observed global F-layer hundreds of

kilometres thick. For example, the layers produced by Deguen et al. (2014) fail to

envelop the entire inner core.

Other attempts to explain the F-layer include invoking a mushy zone, which con-

sists of a solid matrix of dendritic iron crystals percolated with liquid channels enriched

in light elements called ‘chimneys’ (Hills et al., 1983). Drawing from metallurgical ar-

guments, Fearn et al. (1981) suggested that liquid supercooled close to the ICB inter-

face gives rise to a mushy zone, where dendritic growth extends from the solidification

front into the liquid outer core. It was even suggested that the depth of this zone may

possibly extend to the centre of the Earth, but depending on the liquidus slope used the

depth can be 300 km (Deguen et al., 2007). Around the same time Loper & Roberts

(1981) argued that these dendrites are easily broken by convective flow, and advocated

for a slurry layer that contains iron crystals forming from the liquid alloy ahead of the

ICB.

To form a solid crystal, an activation barrier must be overcome due to the compe-

tition between the bulk energy and interfacial energy of the system (Christian, 2002).

For conditions in the Earth’s core, surmounting this barrier is almost impossible in the

21



1. INTRODUCTION

case of homogeneous nucleation because this requires a large amount of supercooling

on the order of 1, 000 K (Huguet et al., 2018). The only other alternative pathway to

form solid crystals in the core would be through heterogeneous nucleation, in which

pre-existing substrates would lower the activation energy.

Subsequent studies have considered inner core growth models using mushy zones

(Deguen et al., 2007; Loper & Roberts, 1981; Shimizu et al., 2005), because it was

speculated that the core could not supply enough substrates for heterogeneous nucle-

ation to occur and produce a slurry. However, these studies are limited because the

effect of core convection, compaction and the crystal structure of iron under high pres-

sure on the mush is poorly understood. Seismic studies by Adam et al. (2018) and Zou

et al. (2008) observe a strongly attenuating region at the base of the outer core, which

is the opposite to what is normally expected. As a result, both studies appeal to the

presence of a slurry layer containing a suspension of solid iron particles to explain the

scattering of seismic waves in this F-layer region.

In this thesis, we believe the slurry hypothesis can explain the dynamics of the

F-layer in a self-consistent manner that agrees with the seismic constraints. Loper &

Roberts (1977) extend the original model by Braginsky (1963) to develop a general

theory on the motion of an iron-alloy core containing a slurry. A core composition on

the iron-rich side of the eutectic was considered. A slurry is a two-component, two-

phase system and describes the dynamics of solidification and sedimentation of iron

particles that was absent from the Gubbins et al. (2008) model. Solid iron particles

freezing throughout the slurry layer that sink under gravity towards the ICB to grow the

inner core, whilst the remaining light material released throughout the layer migrates

to the outer core to power the dynamo without disturbing the F-layer. We believe a

slurry completes the dynamics of the F-layer that was missing from previous studies,

since the transport of solid phase can be described and provides a pathway for light
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material to pass through a stably-stratified layer.

In this project, the theory by Loper & Roberts (1977, 1980, 1987) and Roberts &

Loper (1987) will be developed into a tractable problem and geophysically relevant

parameters will be updated. We will demonstrate that a slurry can aid understanding

of the dynamics concerning the F-layer, and provide a way for light element released

by the growing inner core to pass through a stably-stratified F-layer. Explaining this

process is important because the release of these light elements is fundamental to pow-

ering the geodynamo.
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1.3 Project aims

The aim of this thesis is to develop an idealised, self-consistent slurry model that ex-

plains the dynamics of how heat and light material may pass through the F-layer. The

model should be compatible with the geophysical observations provided by seismol-

ogy and agree with constraints on the thermal history of the core. To this end, the

objectives are:

1. Derive the governing equations and boundary conditions of a slurry.

(a) Develop a mathematical description of the slurry model based on the gen-

eral theory of Loper & Roberts (1977, 1980, 1987); Roberts & Loper (1987).

(b) Determine geophysically appropriate boundary conditions for the slurry

layer.

2. Establish a geophysically plausible, one-dimensional, steady state slurry model.

(a) Derive an idealised, steady-state numerical model that captures the funda-

mental processes of a slurry.

(b) Explore the parameter space to produce geophysically consistent solutions

that explain the F-layer.

3. Investigate the implications of the slurry’s presence in the core over time.

(a) Present a time-dependent model of the slurry with the relevant boundary

conditions that couple the layer to the changing thermal state of the core.

(b) Demonstrate that the F-layer can be formed by a growing slurry layer on

geological time-scales
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1.4 Thesis outline

In view of a systematic approach to explaining the stable F-layer, Chapter 2 outlines

the general slurry theory and examines the thermodynamics of the system. We for-

mulate a simplified theory clarifying the relevant dynamics and thermodynamics of a

Boussinesq slurry that is more practical than a full non-equilibrium slurry theory as

described by Loper & Roberts (1977). Specifically, the fast-melting limit and constant

solid assumption are applied in order to reduce the thermodynamic complexity of a

two-component, two-phase system. This constrains the slurry to follow the liquidus

temperature everywhere in the layer and prohibits light element in a solid phase.

Chapter 3 develops a novel, steady-state box model that explains the present day

F-layer. We solve the equations to find geophysically relevant solutions by fixing the

layer thickness and explore the parameter space guided by the latest estimates of phys-

ical properties. By testing the sensitivity of the thermal conductivity in our model, we

anticipate that the outcomes of this research are timely due to the recent debate of its

value in the literature. A key step advanced by the model is that a dynamical expla-

nation of how light material is transported through a stable layer is provided. This

chapter is concluded by a discussion of the results.

Chapter 4 continues with the steady-state model and transforms the geometry of the

system from Cartesian to spherical coordinates. Boundary conditions are improved by

adopting more sophisticated assumptions that couple the slurry layer to the inner core

and outer core in a geophysically realistic manner, so that the heat flow into and out

of the slurry is controlled by the thermal history of the entire core. Solutions to this

model provide suitable initial states for the time-dependent model.

Chapter 5 extends the work of the box and spherical models by relaxing the steady-

state assumption to allow for time-dependence. This allows the layer to either grow or
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shrink over time in response to the thermal evolution of the entire core. A numerical

scheme is implemented to account for the slurry boundaries moving independently of

each other at different speeds. Time-dependent boundary conditions are developed so

that the global core thermal history dictates the heat flow through the slurry system.

Chapter 6 summarises the contents of this thesis, discusses the limitations of the

model, and concludes by proposing further avenues for research in the future.
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1.5 Summary

The magnetic field is a robust feature of the Earth that has existed beyond the mag-

netic diffusion time-scale (Glatzmaier & Coe, 2015). Geochemical arguments assert

that the majority of the core is composed of iron (McDonough & Sun, 1995), which

permits dynamo action. The magnetic field is sustained by a self-excited dynamo that

is internal in origin, whereby convective motions in the metallic liquid outer core sup-

ports electromagnetic induction (Larmor, 1919). Temperature gradients with respect

to radius in the core closely approximate the adiabat (Nimmo, 2015a), except in thin

boundary layers, since convection is very efficient at advecting energy. Substantial

amounts of energy are needed to power the dynamo and this is mainly provided by

thermal and compositional sources (Gubbins et al., 2004). Earth’s interior is very hot

because of the accretional heat generated when the Earth was formed. Gradual cooling

of the Earth releases thermal energy to support thermal convection.

Seismic data finds that the density deficit of the outer core relative to pure iron is

5–10%, hence lighter elements also exist within the ferrous core (Birch, 1952). The

observed density jump at the ICB cannot be explained by phase change alone, therefore

light elements must be present in order to account for the rest of the density difference.

Viable candidate elements that match the seismic and geochemical constraints include

silicon, sulphur and oxygen (Badro et al., 2014; Hirose et al., 2013; Poirier, 1994).

The composition of the iron alloy is on the iron-rich side of the eutectic since the solid

inner core is denser than the liquid outer core. As the core cools over time heavy

iron solidifies to grow the inner core, liberating light elements at the ICB. Partitioning

studies show that oxygen readily separates into the liquid phase and is rejected by the

crystalline solid iron, whereas silicon and sulphur are incorporated evenly between the

solid and liquid phases of iron (Alfè et al., 2002a). The substantial amount of gravita-
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1. INTRODUCTION

tional energy released upon solidification provides the driving force for compositional

convection in the liquid core.

Experimentally and theoretically determined phase diagrams of iron and its alloys

determines the temperature structure of the liquid core. Estimates of the melting tem-

perature at the ICB provide an anchor point that can be extrapolated along the adiabat

to give the temperature distribution across the liquid core. The melting temperature

of pure iron is considerably depressed by hundreds of Kelvin when it is alloyed with

light element (Davies et al., 2015), which can alter the adiabatic temperature profile

significantly. Iron solidifies outwards from an initially fully molten state at the centre

of the Earth because the adiabat crossed the melting curve first at the centre (Jacobs,

1953). The latent heat released from phase transition provides a source of power to the

geodynamo.

Heat flow out of the core is limited by the ability of mantle convection to extract

heat from the core and is estimated to be between 5 and 17 terawatts (Lay et al., 2008;

Nimmo, 2015a). Upward revisions of the thermal conductivity of core material in-

crease the amount of heat that is conducted along the adiabat, reducing the thermal

energy available for thermal convection (Williams, 2018). This forces the inner core

to be younger since heat is removed from the core more quickly and so the speed of

inner growth is faster.

There is mounting evidence to suggest that a stably-stratified F-layer resides at

the base of Earth’s outer core. A low P wave velocity layer is consistently observed

by seismology (Adam & Romanowicz, 2015; Ohtaki & Kaneshima, 2015; Souriau &

Poupinet, 1991; Zou et al., 2008). P waves passing through the lowermost 150–350 km

portion of the outer core are slower than PREM speeds, in which PREM assumes an

adiabatic core. This infers a density stratification that cannot be explained by adiabatic

compression alone. The layer cannot be a thermal boundary layer, since temperature
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would decrease with radius and therefore produce an unstable density stratification.

Gubbins et al. (2008) try to explain the F-layer using a thermochemical model. This

approach was incomplete because a compositional gradient matching the seismic ob-

servations was imposed a posteriori, and the presence of any solid phase in the layer

was not considered.

Light material rejected by the crystalline iron phase as the inner core solidifies must

be able to pass through the stably-stratified F-layer without disturbing it. The aim of

this project is to explain this process in a self-consistent manner. Based on the work by

Loper & Roberts (1977, 1980, 1987); Roberts & Loper (1987) we believe the F-layer

can be explained by a slurry, which is a two-component, two-phase system. Solid

particles crystallise from the liquid iron alloy and snow under gravity towards the ICB

to grow the inner core, and light material is released throughout the layer rather than

immediately at the ICB. This allows the buoyant light material to be expelled into the

liquid phase without disturbing the stable stratification.

We shall approach this problem by developing the governing equations of a slurry

system based on the general theory of Loper & Roberts (1977, 1980, 1987); Roberts

& Loper (1987). A careful and consistent treatment of the thermodynamic system

will be required since there exists two components (iron and light element) in two

phases (solid and liquid) that undergo phase transition. We will derive appropriate

boundary conditions for the slurry layer so that solutions of the model are compatible

with seismic, geochemical and geophysical constraints.

An idealised, steady state, one-dimensional box model will be developed so that

the essential characteristics of a slurry system are elucidated. To achieve this we shall

simplify the thermodynamics by applying two key assumptions: fast–melting and con-

stant solid. The parameter space of this simplified model will be explored based on

varying the layer thickness according to seismic estimates, and varying the heat flow
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through the system. We shall explore the effect of changing the thermal conductivity

since recently revised estimates will have a significant impact on heat transfer.

Solutions of the steady-state model provide the basis for more complex time-

dependent studies. We will investigate the evolution of the slurry layer by coupling

the system to the global heat balance of the entire core. This will require further devel-

opment of the equations and boundary conditions. The governing slurry equations are

transformed to spherical coordinates and radially dependent properties such as grav-

ity may change significantly as the inner core grows over geological time-scales. The

time-dependent study may demonstrate that the slurry can grow in thickness over time,

which will shed light on the history and origin of the F-layer.

30



Chapter 2

Slurry theory

Contents

2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Conservation equations . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Fast-melting and constant solid composition . . . . . . . . . . . 40

2.4 Partial volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 The liquidus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.8 Jump conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.9 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.10 Global energy balance . . . . . . . . . . . . . . . . . . . . . . . . 69

2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

31



2. SLURRY THEORY

32



In this chapter, a general overview of the slurry theory developed by Loper &

Roberts (1977, 1980, 1987); Roberts & Loper (1987) is presented. Basic definitions

of each constituent of the slurry in each phase are outlined and the conservation laws

for these quantities and the entropy equations are formulated. We reduce the ther-

modynamics of the general slurry theory in two key ways: firstly, by considering the

fast-melting limit, and secondly, by assuming a constant solid composition, as origi-

nally suggested by Loper and Roberts (Loper & Roberts, 1977, 1980, 1987; Roberts

& Loper, 1987). The fast-melting limit assumes that the time-scales of phase change

are instantaneous compared to other relevant timescales of the core, thus constraining

the system to a state of phase equilibrium. As a consequence, the temperature of the

slurry is on the liquidus everywhere in the layer, and we derive a thermodynamically

consistent expression for the liquidus using the lever rule. In applying the constant

solid assumption we approximate the slurry mixture as a binary Fe-O alloy with oxy-

gen partitioning entirely into the liquid phase, as supported by the partitioning studies

of Alfè et al. (2002a). The solid material in the slurry is therefore assumed to be pure

iron. The constitutive equations for the light element flux, i, solid flux j, and entropy

flux, k, are developed by considering the exact differentials of the specific volume,

entropy and chemical potential derived from the Gibbs free energy. Jump conditions at

the slurry boundaries are developed from first principles, which will be used to inform

the boundary conditions imposed on the model in subsequent chapters. A summary

of the governing equations of the reduced slurry theory and a table of symbols used

is provided. Finally, the global heat balance of the core containing a slurry layer is

derived, which will serve as an important geophysical constraint on the results of the

model in subsequent chapters.
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2. SLURRY THEORY

2.1 Basic definitions

As discussed in Chapter 1, a slurry consists of a two-phase, two component mixture,

consisting of a light element alloyed with iron. The components and phases are defined

by considering a small volume of material with liquid iron mass M l
Fe, liquid light

element mass, M l
ξ, solid iron mass, M s

Fe, and solid light element mass, M s
ξ . Here the

superscript denotes the phase of the material, with ‘l’ for liquid and ‘s’ for solid, and

the subscript denotes the composition of the material, with ‘Fe’ for iron and ‘ξ’ for

light element. The mass concentrations of light element, ξ, light element in the liquid

phase, ξl, light element in the solid phase, ξs, and the solid fraction φ are defined as

ξ =
M s

ξ +M l
ξ

M l
ξ +M l

Fe +M s
ξ +M s

Fe

=
Light element mass

Total mass
(2.1.1a)

ξl =
M l

ξ

M l
ξ +M l

Fe

=
Liquid light element mass

Liquid mass
(2.1.1b)

ξs =
M s

ξ

M s
ξ +M s

Fe

=
Solid light element mass

Solid mass
(2.1.1c)

φ =
M s

ξ +M s
Fe

M l
ξ +M l

Fe +M s
ξ +M s

Fe

=
Solid mass
Total mass

(2.1.1d)

These definitions determine the relation

ξ = φξs + (1− φ)ξl, (2.1.2)

and its differential form

dξ = φdξs + (1− φ)dξl +
(
ξs − ξl

)
dφ (2.1.3)

will be used to develop the slurry equations later. The solid fraction φ is an average
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of the fraction of small, numerous solid grains that occupy a volume. Its value ranges

between 0 and 1, where φ = 0 indicates there is no solid present and φ = 1 means

that the whole volume is solid. However in a slurry volume we always assume that

φ � 1 so that the mixture consists of fine grain particles, and we do not consider a

solid matrix assembly and resulting effects such as compaction, which is beyond the

scope of this thesis.

2.2 Conservation equations

According to seismic observations, the thickness of the F-layer is small compared to

the rest of the liquid outer core. Therefore we assume that the density variations within

a thin F-layer are small relative to the reference density, ρ0, and apply the Boussinesq

approximation. Density variations are neglected everywhere except in the buoyancy

term where they are multiplied by the gravitational acceleration. The total mass of a

fixed volume, V , is conserved, and is given by

∫
V

ρ dV, (2.2.1)

where ρ = ρ(x, t) is the density that may be a function of position x and time t.

The mass of V can only change over time if there is a flow, u ≡ u(x, t), across the

boundary, S, that encloses volume, V , such that

d

dt

∫
V

ρ dV = −
∫
S

ρu · dS, (2.2.2)

where dS is the vector normal to the surface element dS. Since volume V is fixed and

does not depend on space and time, then the time derivative may be brought inside the
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2. SLURRY THEORY

integral so that (2.2.2) becomes

∫
V

(
∂ρ

∂t
+∇ · ρu

)
dV = 0. (2.2.3)

This holds for any arbitrary fixed volume, V , therefore

∂ρ

∂t
+∇ · ρu = 0. (2.2.4)

An alternative form is
Dρ

Dt
= −ρ∇ · u, (2.2.5)

where
D

Dt
→ ∂

∂t
+ u · ∇

is the material derivative. For a Boussinesq slurry with a constant reference density,

ρ0, then the condition for mass conservation (2.2.5) reduces to

∇ · u = 0. (2.2.6)

In other words the velocity is solenoidal and the slurry is incompressible, where u is

the mean (or barycentric) velocity,

Light element is conserved in the slurry layer, therefore

ρ0
Dξ

Dt
= −∇ · i, (2.2.7)

is the advection–diffusion equation for light element ξ, where i is the diffusive flux of

light element (Landau & Lifshitz, 1959). Light element in the slurry system cannot be

created or destroyed, therefore it is a conserved quantity and no source terms are
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2.2 Conservation equations

present.

The solid fraction, φ, is transported by advection and diffusion in the slurry. How-

ever, unlike light element, solid can be created and destroyed through freezing and

melting thus φ is not a conserved quantity. The advection-diffusion equation for the

solid is

ρ0
Dφ

Dt
= −∇ · j +ms, (2.2.8)

where j is the solid flux of the particles and ms is a source term that defines the rate

that solid particles are formed (Loper & Roberts, 1977).

Light element is either in a solid phase or a liquid phase, therefore the contribution

of solid light element to the solid flux is given by

ρ0
D

Dt
(φξs) = −∇ · (ξsj) +ms

ξ, (2.2.9)

wherems
ξ is the rate at which solid particles of light element are formed. An alternative

form can be acquired by using the conservation of solid mass (2.2.8), to give

ρ0φ
Dξs

Dt
= −j · ∇ξs +ms

ξ − ξsms. (2.2.10)

It is useful to define

i′ = i−
(
ξs − ξl

)
j, (2.2.11)

where i′ is the flux of light element in the liquid phase. A two phase binary system is

complex because it forms a system with four independent thermodynamic variables for

the constituents ξ, ξs, ξl and φ. The diffusive fluxes are separated into three parts i, i′

and j, compared with the conventional single flux to used describe Fickian diffusion.
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2. SLURRY THEORY

The equation for light element in the liquid phase is given by

ρ0 (1− φ)
Dξl

Dt
= −∇ · i′ + j · ∇ξl −ms

ξ + ξlms, (2.2.12)

when (2.2.7), (2.2.8), (2.2.10) and (2.2.11) are combined. This justifies that i′ is indeed

the diffusive flux of the light element in the liquid phase.

To derive the conservation of momentum, we assume that the slurry layer has a

hydrostatic reference state in which departures from hydrostatic equilibrium are small

so that

∇pH = −ρ0g, (2.2.13)

where pH is the hydrostatic pressure and g is the gravitational acceleration. The mo-

mentum equation under the Boussinesq approximation, with no rotation and no mag-

netic field1, is given by

Du

Dt
= −∇

(
p′

ρ0

)
+ ρ′g + ν∇2u + F, (2.2.14)

where p′ is the non-hydrostatic pressure, ρ′ is the density variation due to buoyancy, ν

is the kinematic viscosity and F are other external body forces.

The entropy equation is given by

ρ0T
Ds

Dt
+ T∇ · k = ρ0H +QD +QM +Qν , (2.2.15)

where s is the entropy, k is the entropy flux vector, and H is the internal heating rate

1We are most interested in studying the slurry first before adding more complex effects. Adding the
Lorentz and Coriolis is beyond the scope of this thesis.
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2.2 Conservation equations

produced by radiogenic sources (Loper & Roberts, 1977). On the RHS,

QD = −i′ · ∇µl − j ·
(
∇µφ − µs∇ξs + µl∇ξl

)
− k · ∇T, (2.2.16)

is the dissipation due to diffusive fluxes. The dissipation due to phase relaxation is

given by

QM = −ms
[
µφ −

(
ξs − ξl

)
µl
]
− (ms

O − ξsms)
(
µs − µl

)
, (2.2.17)

where ms
O is the creation rate of oxygen in the solid phase. We define µs = µsFe − µsξ

as the chemical potential of iron relative to light element in the solid phase, which

is the free energy released when an atom of solid light element replaces an atom of

solid iron at constant pressure and temperature. The chemical potential of iron relative

to light element in the liquid phase is given by µl = µlFe − µlξ, which is the free

energy released when an atom of liquid light element replaces an atom of liquid iron

at constant pressure and temperature. We also define µφ as the chemical potential of

solid relative to the liquid phase, which is unique to the slurry system and its meaning

in terms of the Gibbs free energy shall become clearer in Sections 2.3 and 2.5.

Viscous dissipation is given by

Qν = p∇ · u + τ : ∇u, (2.2.18)

where symbol ‘ : ’ denotes the double inner product and τ = −pδij + σij is the total

stress tensor, with p the total isotropic pressure, δij the Kronecker delta and σij is the

deviatoric stress tensor using the Einstein summation convention. Viscous dissipation

is an irreversible process that converts kinetic energy into internal energy, through the

action of shear forces that heat up the medium.
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This completes the set of conservative equations for a general slurry, originally

outlined by Loper & Roberts (1977).

2.3 Fast-melting and constant solid composition

The conservation laws formulated in the previous section are valid for a two-component,

two-phase slurry system that is thermodynamically complex, making it difficult to

solve in practice. We first reduce the general theory by assuming that the fast-melting

limit applies. We introduce the Gibbs free energy, which is a fundamental thermo-

dynamic potential that is minimised when a system reaches equilibrium at constant

pressure and temperature (Landau et al., 1980). The exact differential of the Gibbs

free energy is given by (Loper & Roberts, 1977)

dΦ = V dp− s dT + µl dξ + φ
(
µs − µl

)
dξs +

[
µφ −

(
ξs − ξl

)
µl
]

dφ, (2.3.1)

where

(
∂Φ

∂p

)
T,ξ,ξs,φ

≡ V,

(
∂Φ

∂T

)
p,ξ,ξs,φ

≡ −s,(
∂Φ

∂ξ

)
p,T,ξs,φ

≡ µl,

(
∂Φ

∂ξs

)
p,T,ξ,φ

≡ φ
(
µs − µl

)
,(

∂Φ

∂φ

)
p,T,ξ,ξs

≡ µφ −
(
ξs − ξl

)
µl.

At equilibrium the Gibbs free energy is minimised so that dΦ = 0. In the fast-melting

limit, we assume that the freezing time-scale is fast compared to the evolution of the

stably-stratified F-layer. In an infinitesimal slurry volume at a constant p, T , ξ and

ξs, the solid fraction varies as material solidifies so that dφ 6= 0. We assume that the
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2.3 Fast-melting and constant solid composition

approach to equilibrium through freezing is instantaneous so that

µφ −
(
ξs − ξl

)
µl = 0 (2.3.2)

must hold to minimise the Gibbs free energy. Similarly, if solid light element is frozen

at constant p, T , ξ and φ so that dξs 6= 0, then

µs − µl = 0 (2.3.3)

must hold. Physically, the fast-melting limit means that in an infinitesimal volume

the slurry contains either liquid or solid phase only, and there are no intermediate

metastable states in which both phases are present. This implies that the solid iron

crystals are in phase equilibrium with the liquid. The chemical potential µs no longer

enters the theory as a consequence of the fast-melting limit, as phase equilibrium im-

plies µl = µs everywhere and µl is rewritten as µ with no danger of ambiguity hence-

forth. As a result of (2.3.2) and (2.3.3), the dissipation due to phase change (2.2.17)

becomes

QM = 0. (2.3.4)

Adopting the fast-melting approximation alone does not avoid the challenging is-

sue of particle history dependence on composition, ξs. An iron crystal created at a

certain pressure and temperature may move to a location with different pressure and

temperature conditions where the particle may accrete material of a different ξs that

changes the compositional history of that particle. Accounting for this effect would

dramatically increase the complexity of this already complicated model. We argue

that the sensitivity to the compositional history of a particle can be safely ignored by

assuming a constant solid composition as follows.
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2. SLURRY THEORY

Constant solid composition assumes that the slurry mixture is a binary alloy com-

posed of iron and oxygen. As discussed in Chapter 1, ab initio calculations show that

oxygen partitions almost entirely into the liquid phase during solidification. Conse-

quently, the solid phase is exclusively composed of iron, therefore

ξs = 0 (2.3.5)

and (2.1.2), (2.1.3) reduce to

ξ = (1− φ) ξl, (2.3.6)

dξ = (1− φ) dξl − ξl dφ. (2.3.7)

Particle history dependence on composition is eliminated since solid particles can no

longer accrete variable concentrations of ξs that depend on differing pressure and tem-

perature conditions. The rate ξs is created is equal to zero by equation (2.2.10) so

that

ms
O = 0, (2.3.8)

where subscript O denotes the oxygen composing the light element ξ.

2.4 Partial volumes

In this section, we define the partial volumes of the slurry components using ideal so-

lution theory. Ideal solution theory assumes that there is no change in volume when

components of the slurry are mixed. According to Gubbins et al. (2004), this assump-

tion is accurate for the small concentrations of the light elements found in the core.

Defining their partial densities will be useful in the next section where we develop the
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2.4 Partial volumes

thermodynamics of the system.

Consider an infinitesimal volume of slurry material, denoted by δV . Applying the

constant solid approximation, the total mass inside this volume is defined as

M sl = M l
O +M l

Fe +M s
Fe, (2.4.1)

where M sl is the total mass of δV , M l
O is the mass of oxygen in the liquid phase, M l

Fe

is the mass of iron in the solid phase and M s
Fe is the mass of iron in the solid phase.

By (2.1.1a) and (2.1.1d), in which M s
O = 0 due to the constant solid assumption, the

mass of iron in the liquid phase is given by

M l
Fe = M sl −M l

O −M s
Fe = M sl (1− ξ − φ) , (2.4.2)

which will be useful later in deriving the partial volume of the whole slurry (2.4.5).

Using ideal solution theory, the volumes of each component can be added together

to form the total volume, δV , therefore

δV l
O =

M l
O

ρlO
, δV l

Fe =
M l

Fe

ρlFe
, δV s

Fe =
M s

Fe

ρsFe
, (2.4.3)

δV = δV l
O + δV l

Fe + δV s
Fe =

M l
O +M l

Fe +M s
Fe

ρ
=
M sl

ρ
, (2.4.4)

where ρ is the density of the whole volume, δV . Combining (2.4.4) together with

(2.1.1a), (2.1.1d), and (2.4.2) gives the partial volume of the slurry

1

ρ
=

ξ

ρlO
+

(1− ξ − φ)

ρlFe
+

φ

ρsFe
(2.4.5)

=
φ

ρsFe
+ (1− φ)

((
1− ξl

)
ρlFe

+
ξl

ρlO

)
, (2.4.6)
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which is re-written in terms of ξl using (2.3.6). Using (2.1.1b) and (2.4.3) , the partial

volume of the liquid phase is given by

1

ρlFe,O
=
δV l

O + δV l
Fe

M l
O +M l

Fe

=

(
1− ξl

)
ρlFe

+
ξl

ρlO
. (2.4.7)

Following this, it is clear that (2.4.6) can be expressed as

1

ρ
=

φ

ρsFe
+ (1− φ)

1

ρlFe,O
. (2.4.8)

2.5 The liquidus

In this section, we apply the fast melting limit and constant solid assumptions to derive

the liquidus equation from the Gibbs free energy. The liquidus is the melting curve on a

phase diagram that first divides solid from liquid. Exact differentials of thermodynamic

quantities are defined that will elucidate aspects of the slurry equations later. The

expression for the liquidus is derived by combining the condition for phase equilibrium

together with the lever rule and the exact differential for the chemical potential.

2.5.1 Exact differentials

Under the fast-melting limit and constant solid composition, the exact differential of

the Gibbs free energy (2.3.1) becomes

dΦ = V dp− s dT + µ dξ +
(
µφ + ξlµ

)
dφ, (2.5.1)
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2.5 The liquidus

where

(
∂Φ

∂p

)
T,ξ,φ

≡ V,

(
∂Φ

∂T

)
p,ξ,φ

≡ −s,(
∂Φ

∂ξ

)
p,T,φ

≡ µ,

(
∂Φ

∂φ

)
p,T,ξ

≡ µφ + ξlµ.

Equivalently we can combine (2.3.7) and (2.5.1) to express the Gibbs free energy dif-

ferential in terms of the independent variables p, T, ξl and φ to give

dΦ = V dp− s dT + (1− φ)µ dξl + µφ dφ, (2.5.2)

where

(
∂Φ

∂p

)
T,ξl,φ

≡ V,

(
∂Φ

∂T

)
p,ξl,φ

≡ −s,(
∂Φ

∂ξl

)
p,T,φ

≡ (1− φ)µ,

(
∂Φ

∂φ

)
p,T,ξl

≡ µφ.

The Gibbs free energy is a fundamental thermodynamic potential that can be manipu-

lated to give the exact differentials of the specific volume, dV , entropy, ds, and chem-

ical potential, dµ, that are useful for developing the slurry theory further.

The differential of the specific volume is used to determine the density variation,

ρ′ in (2.2.14). This is given by

dV =

(
∂V

∂p

)
T,ξ,φ

dp+

(
∂V

∂T

)
p,ξ,φ

dT +

(
∂V

∂ξ

)
p,T,φ

dξ +

(
∂V

∂φ

)
p,T,ξ

dφ

(2.5.3)

= −β
ρ

dp+
α

ρ
dT +

αξ
ρ

dξ − αφ
ρ

dφ, (2.5.4)
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where

(
∂V

∂p

)
T,ξ,φ

≡ −β
ρ
,

(
∂V

∂T

)
p,ξ,φ

≡ α

ρ
,(

∂V

∂ξ

)
p,T,φ

≡ αξ
ρ
,

(
∂V

∂φ

)
p,T,ξ

≡ −αφ
ρ
,

are the thermodynamic definitions of the isothermal compressibility, β (or the inverse

of the bulk modulus, K = 1/β), thermal expansion coefficient, α, compositional ex-

pansion coefficient, αξ, and phasal expansion coefficient, αφ. The density variation,

dρ, is related to the differential of the specific volume, dV , by

dV = d

(
1

ρ

)
= − 1

ρ2
dρ, (2.5.5)

therefore

dρ = ρ [β dp− α dT − αξ dξ + αφ dφ] . (2.5.6)

Most of the terms in (2.5.6) are familiar from other well known physical processes: the

first term is recognisable from the equation of state for compressible systems (Moran

et al., 2010), the second term is well known from thermal convection (Chandrasekhar,

1961) and the third term is familiar from double diffusive systems (Turner, 1973). Only

the last term is unique to the slurry system, where the phasal expansion and changes in

solid phase contribute to the density variation, dρ. Unlike water, iron contracts upon

freezing and we define αφ > 0. Since we are applying the Boussinesq approximation,

the first term vanishes and the equation of state becomes

ρ′ = ρ0 [−α dT − αξ dξ + αφ dφ] , (2.5.7)

where ρ0 is the reference density.
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2.5 The liquidus

The Gibbs free energy is manipulated in a similar manner to the specific volume to

give the specific entropy

ds =

(
∂s

∂p

)
T,ξl,φ

dp+

(
∂s

∂T

)
p,ξl,φ

dT +

(
∂s

∂ξl

)
p,T,φ

dξl +

(
∂s

∂φ

)
p,T,ξl

dφ

= −α
ρ

dp+
cp
T

dT − (1− φ)

(
∂µ

∂T

)
p,ξl,φ

dξl −
(
∂µφ
∂T

)
p,ξl,φ

dφ, (2.5.8)

where we make use of the thermodynamic definition of the heat capacity, cp, and

Maxwell’s relations

(
∂s

∂p

)
T,ξl,φ

= − ∂

∂p

(
∂Φ

∂T

)
p,ξl,φ

= − ∂

∂T

(
∂Φ

∂p

)
T,ξl,φ

= −
(
∂V

∂T

)
= −α

ρ
,(

∂s

∂T

)
p,ξl,φ

≡ cp
T
,(

∂s

∂ξl

)
p,T,φ

= − ∂

∂ξl

(
∂Φ

∂T

)
p,ξl,φ

= − ∂

∂T

(
∂Φ

∂ξl

)
p,T,φ

= −(1− φ)

(
∂µ

∂T

)
p,ξl,φ

,(
∂s

∂φ

)
p,T,ξl

= − ∂

∂φ

(
∂Φ

∂T

)
p,ξl,φ

= − ∂

∂T

(
∂Φ

∂φ

)
p,T,ξl

= −
(
∂µφ
∂T

)
p,ξl,φ

.

The entropy differential is used to derive the temperature equation (2.6.22) later.

The chemical potential differential is used to develop the liquidus relation, and flux

vectors i, j, k later in equations (2.5.27), (2.6.8), (2.6.10) and (2.6.16) respectively.

The chemical potential differential is is given by

dµ = ∆V l
Fe,O dp+

(
∂µ

∂T

)
p,ξl,φ

dT +

(
∂µ

∂ξl

)
p,T,φ

dξl, (2.5.9)

where we make use of the Maxwell relation

(
∂µ

∂p

)
T,ξl,φ

=
∂

∂p

(
∂Φ

∂ξl

)
p,T

=
∂

∂ξl

(
∂Φ

∂p

)
T,ξl

=

(
∂V

∂ξl

)
T,ξl

.
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2. SLURRY THEORY

The partial volume (2.4.7) together with V ≡ V l
Fe,O, gives

(
∂V l

Fe,O

∂ξl

)
T,ξl

=

(
∂

∂ξl

(
1

ρlFe,O

))
T,ξl

=

(
∂

∂ξl

(
1− ξl

ρlFe
+
ξl

ρlO

))
T,ξl

=
1

ρlO
− 1

ρlFe

= V l
O − V l

Fe ≡ ∆V l
Fe,O.

Therefore (
∂µ

∂p

)
T,ξl,φ

≡ ∆V l
Fe,O, (2.5.10)

is the change in specific volume between liquid iron and oxygen.

2.5.2 The lever rule

Assuming that the liquid and solid phases do not interact chemically, which is com-

monly supposed in phase equilibrium (Loper & Roberts, 1977), then the lever rule can

apply where the Gibbs free energy is assumed linear in φ such that

Φ = φΦs(p, T ) + (1− φ) Φl(p, T, ξl), (2.5.11)

where Φs is the Gibbs free energy of the solid and Φl is the Gibbs free energy of the

liquid. Its exact differential is

dΦ = φdΦs + (1− φ)dΦl +
(
Φs − Φl

)
dφ, (2.5.12)
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2.5 The liquidus

where

dΦs =

(
∂Φs

∂p

)
T

dp+

(
∂Φs

∂T

)
p

dT, (2.5.13)

dΦl =

(
∂Φl

∂p

)
T,ξl

dp+

(
∂Φl

∂T

)
p,ξl

dT +

(
∂Φl

∂ξl

)
p,T

dξl, (2.5.14)

are the solid and liquid parts of the Gibbs free energy differential respectively. The

full expression of the Gibbs free energy differential in terms of the chosen independent

thermodynamic variables p, T, ξl, φ, is given by substituting (2.5.13) and (2.5.14) into

(2.5.12) to get

dΦ =

(
φ
∂Φs

∂p
+ (1− φ)

∂Φl

∂p

)
dp+

(
φ
∂Φs

∂T
+ (1− φ)

∂Φl

∂T

)
dT + (1− φ)

∂Φl

∂ξl
dξl

+
(
Φs − Φl

)
dφ.

(2.5.15)

By comparing (2.5.15) with (2.5.2), it can be seen that the specific volume, V , and

entropy, s, follow a similar lever rule with

V = φV s
Fe + (1− φ)V l

Fe,O, (2.5.16)

s = φss + (1− φ) sl, (2.5.17)

where

V s
Fe =

(
∂Φs

∂p

)
T

, V l
Fe,O =

(
∂Φl

∂p

)
T,ξl

,

−ss =

(
∂Φs

∂T

)
p

, −sl =

(
∂Φl

∂T

)
p,ξl

,

µ =

(
∂Φl

∂ξl

)
p,T

, µφ = Φs − Φl. (2.5.18)
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2. SLURRY THEORY

Using (2.5.18), differentials (2.5.13) and (2.5.14) can be re-written as

dΦs = V s
Fe dp− ss dT, (2.5.19)

dΦl = V l
Fe,Odp− sl dT + µ dξl. (2.5.20)

Assuming constant solid composition, (2.3.5), the phase equilibrium condition, (2.3.2),

becomes

µφ + ξlµ = 0. (2.5.21)

Substituting µφ (2.5.18) into (2.5.21), the phase equilibrium condition can be expressed

as

Φs − Φl + ξlµ = 0, (2.5.22)

via the lever rule. The differential of (2.5.22) is also equal to zero at phase equilibrium,

so

dΦs − dΦl + ξldµ+ µdξl = 0. (2.5.23)

Substituting (2.5.19) and (2.5.20) into (2.5.23) gives

(
V s
Fe − V l

Fe,O

)
dp+

(
−ss + sl

)
dT + ξl dµ = 0, (2.5.24)

and we define

V l
Fe,O − V s

Fe ≡ ∆V s,l
Fe,O (2.5.25)

as the change in specific volume between liquid and solid, otherwise known as the

change in specific volume upon melting. By using the chemical potential differential
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2.5 The liquidus

(2.5.9), then (2.5.24) can be written

−∆V s,l
Fe,O dp+

(
−ss + sl

)
dT + ξl

[
∆V l

Fe,O dp+

(
∂µ

∂T

)
p,ξl,φ

dT

+

(
∂µ

∂ξl

)
p,T,φ

dξl

]
= 0. (2.5.26)

Re-arranging (2.5.26) yields the liquidus relation

∆V s,l
Fe dp− L

T
dT = ξl

∂µ

∂ξl
dξl, (2.5.27)

where

∆V s,l
Fe,O − ξ

l∆V l
Fe,O = V l

Fe,O − V s
Fe − ξl

(
V l
O − V l

Fe

)
=

1

ρlFe,O
− 1

ρsFe
− ξl

(
1

ρlO
− 1

ρlFe

)
=

(
1− ξl

)
ρlFe

+
ξl

ρlO
− 1

ρsFe
− ξl

(
1

ρlO
− 1

ρlFe

)
=

1

ρlFe
− 1

ρsFe

= V l
Fe − V s

Fe ≡ ∆V s,l
Fe (2.5.28)

is the change in specific volume between solid iron and liquid iron, derived by using

(2.4.7), and

−ss + sl + ξl
∂µ

∂T
≡ L

T
(2.5.29)

is the latent heat of fusion per unit mass. The expression for the latent heat is similar

to the standard definition of latent heat, L = T∆s, that appears in the usual Clausius-
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2. SLURRY THEORY

Clapeyron relation (Moran et al., 2010)

dp

dT
=

L

T∆v
,

where ∆v is the change in specific volume of the phase transition. Definition (2.5.29)

contains an extra contribution proportional to ∂µ/∂T that is unique to the slurry sys-

tem. The liquidus relation 2.5.27 is an important consequence of the fast-melting limit

because it links the thermodynamic variables p, T and ξl everywhere in the slurry,

therefore reducing the degree of thermodynamic freedom in the system. Increasing

pressure will increase the liquidus temperature, while increasing the presence of light

elements will depress the liquidus temperature.

The lever rule, µφ (2.5.18), together with the definition of the latent heat, (2.5.29)

can be used to re-write the last term in the entropy differential (2.5.8) as

(
∂µφ
∂T

)
p,ξl,φ

=
∂

∂T

(
Φs − Φl

)
= −ss + sl =

L

T
− ξl ∂µ

∂T
, (2.5.30)

hence (2.5.8) becomes

ds = −α
ρ

dp+
cp
T

dT − (1− φ)

(
∂µ

∂T

)
p,ξl,φ

dξl −
(
L

T
− ξl ∂µ

∂T

)
dφ. (2.5.31)

In a similar manner, the phasal expansion coefficient can be re-written as

αφ ≡ −ρ
(
∂V

∂φ

)
p,T,ξ

= −ρ ∂
∂φ

(
∂Φ

∂p

)
p,T,ξ

= −ρ
(
∂µφ
∂p

)
T,ξ,φ

, (2.5.32)

where we can apply the lever rule (2.5.19,2.5.20) and the definition of ∆V s,l
Fe,O (2.5.25)
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2.6 Constitutive relations

to (2.5.32), to get

αφ = −ρ ∂
∂p

(
Φs − Φl

)
= −ρ

(
V s
Fe − V l

Fe,O

)
= ρ∆V s,l

Fe,O. (2.5.33)

Hence the phasal expansion coefficient is the change in volume per unit mass upon

melting.

2.6 Constitutive relations

To complete the conservation equations (2.2.7, 2.2.8, 2.2.15), the constitutive form of

the light material flux i, solid flux j and entropy flux k must be sought. In general, the

fluxes can be written as any linear combination of the gradients of p, T and µ. Onsager

noted that there are symmetry conditions that restrict the fluxes (Landau et al., 1980),

and the general form is given by

i = −
(
a− hξl

)
∇µ− g∇T − ξlj, (2.6.1)

j =
(
bξl − h

)
∇µ− f∇T , (2.6.2)

k = −(g − fξl)∇µ− c∇T , (2.6.3)

where coefficients a to g are arbitrary. In writing these constitutive relations, we have

applied the fast-melting limit and the constant solid assumption to reduce the consti-

tutive relations given by equations 3.21-3.23 of Loper & Roberts (1977), and we have

used the flux relation

i′ = i + ξlj (2.6.4)

to write i′ in terms of i and j, and we set h = 0 without loss of generality since h only

appears in combination with coefficients a and b (Loper & Roberts, 1980). Small-
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2. SLURRY THEORY

scale responses of the light element mass flux to temperature gradients, also known

as the Soret effect, are usually ignored as the relevant Soret coefficient is difficult

to determine from first principles (Gubbins et al., 2004) or experimentally (Rahman

& Saghir, 2014). The solid flux is assumed to be independent of temperature and

compositional gradients (Loper & Roberts, 1977). Substituting the chemical potential

differential (2.5.9) into (2.6.1) and (2.6.2) gives

i = − a∆V l
Fe,O∇p−

[
a

(
∂µ

∂T

)
p,ξl,φ

+ g

]
∇T − a ∂µ

∂ξl
∇ξl − ξlj, (2.6.5)

j = b
(
ξl∆V s,l

Fe,O + ∆V s,l
Fe

)
∇p−

[
b
L

T
− bξl ∂µ

∂T
+ f

]
∇T, (2.6.6)

where ignoring Soret effects implies that

f = −b
(
L

T
− ξl ∂µ

∂T

)
,

g = −a ∂µ
∂T

, (2.6.7)

which is also given in Loper & Roberts (1980).

Upon substitution of ∆V s,l
Fe (2.5.28) and the liquidus (2.5.27) into (2.6.5), the light

element flux becomes

i = −
ρlFeD

′∆V s,l
Fe,O

ξl (∂µ/∂ξl)
∇p+

ρlFeD
′L

Tξl (∂µ/∂ξl)
∇T − ξlj, (2.6.8)

where

a ≡ ρlFeD
′/
(
∂µ/∂ξl

)
, (2.6.9)

and D′ is the self-diffusion coefficient of the light material (Landau & Lifshitz, 1959),

which measures the diffusion coefficient of a species in the absence of a chemical

potential gradient. The first term in (2.6.8) corresponds to the barodiffusion of light
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material in the slurry and occurs whether solid material is present or not. Barodiffusion

occurs when material diffuses from a higher pressure to a lower pressure. The “Soret”-

like behaviour in the second term of (2.6.8) is caused by variations in ∇ξl that depend

on ∇p and ∇T through the liquidus. The last term accounts for the light element that

is displaced by the flux of solid particles snowing under gravity.

Substituting (2.5.28) into (2.6.6) and using (2.6.7) yields the solid flux

j = b(φ)∆V s,l
Fe,O∇p, (2.6.10)

where b(φ) is the sedimentation coefficient with dimension kg s m−3. The mass flux, j,

describes how the solid particles fall through the liquid in response to gravity, which is

proportional to the pressure gradient, and has dimension kg m−2 s−1. The sole purpose

of the sedimentation coefficient is to relate the solid fraction, φ, with the solid flux, j,

and its form will be developed later in Section 2.7.

Turning attention to the entropy flux in order to complete the entropy equation

(2.2.15), then (2.6.3) can be re-written

k = −
[
a
∂µ

∂T
+ bξl

(
L

T
− ξl ∂µ

∂T

)]
∇µ−

[
k

T
+ b

(
L

T
− ξl ∂µ

∂T

)2

+ a

(
∂µ

∂T

)2
]
∇T,

(2.6.11)

where coefficients f and g (2.6.7) are replaced, and

c ≡ k

T
+
f 2

b
+
g2

a
. (2.6.12)
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Substituting the chemical potential differential (2.5.9) into (2.6.11) gives

k = −
[
−a ∂µ

∂T
+ bξl

(
L

T
− ξl ∂µ

∂T

)][
∆V s,l

Fe∇p+
∂µ

∂T
∇T +

∂µ

∂ξl
∇ξl
]

−

[
k

T
+ b

(
L2

T 2
− 2

Lξl

T

∂µ

∂T
+

(
ξl
∂µ

∂T

)2
)

+ a

(
∂µ

∂T

)2
]
∇T.

(2.6.13)

We eliminate∇ξl using the liquidus (2.5.27) to get

k = −
[
−a ∂µ

∂T
+ bξl

(
L

T
− ξl ∂µ

∂T

)][
∆V s,l

Fe,O

ξl
∇p+

(
∂µ

∂T
− L

Tξl

)
∇T

]

−

[
k

T
+ b

(
L2

T 2
− 2

Lξl

T

∂µ

∂T
+

(
ξl
∂µ

∂T

)2
)

+ a

(
∂µ

∂T

)2
]
∇T,

(2.6.14)

where the relation between the changes in specific volumes (2.5.28) is used to obtain

∆V s,l
Fe,O. The terms in (2.6.14) cancel to give

k = a
∂µ

∂T

∆V s,l
Fe,O

ξl
∇p− a ∂µ

∂T

L

Tξl
∇T + bξl

∂µ

∂T
∆V s,l

Fe,O∇p− b
L

T
∆V s,l

Fe,O∇p−
k

T
∇T

= − ∂µ
∂T

[
−a

∆V s,l
Fe,O

ξl
∇p+ a

L

Tξl
∇T − ξlj

]
− L

T
j− k

T
∇T, (2.6.15)

where the definition of the solid flux, (2.6.10) has been applied. Equation (2.6.15)

finally reduces to

k = − ∂µ
∂T

i− L

T
j− k

T
∇T, (2.6.16)

where the definition of the light element flux, (2.6.8), has been applied.

Under the fast-melting limit (2.5.21), the energy flux can be defined as (Loper &

Roberts, 1977)

q = µi + Tk =

(
µ− T ∂µ

∂T

)
i− Lj− k∇T, (2.6.17)

where µ− T ∂µ
∂T

is the heat of reaction (Gubbins et al., 2004).
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Dissipation due to fluxes (2.2.16), together with the phase equilibrium condition

(2.5.21), constant solid assumption (2.3.5) and the flux relation (2.6.4), reduces to

QD = −i′ · ∇µ− j ·
(
∇µφ + µ∇ξl

)
− k · ∇T

= −i′ · ∇µ− j · ∇ξlµ− j · µ∇ξl − k · ∇T

= −i′ · ∇µ+ ξlj · ∇µ− k · ∇T

= −i · ∇µ− k · ∇T. (2.6.18)

To derive a temperature equation for the slurry, the exact differential of the entropy

(2.5.8) and (2.6.18) is substituted into entropy equation (2.2.15) to give

−αT Dp

Dt
+ρ0cp

DT

Dt
−ρ0T

∂µ

∂T

Dξl

Dt
−ρ0L

Dφ

Dt
+ρ0T

∂µ

∂T
ξl

Dφ

Dt
+T∇·k = ρ0H−i·∇µ−k·∇T.

(2.6.19)

where the viscous dissipation, Qν , is neglected under the Boussinesq approximation,

and the fast-melting limit means dissipation due to melting and freezing, QM , is equal

to zero (see equation 2.3.4). Using (2.3.7) and ∇ · Tk = T∇ · k + k · ∇T , we can

re-write (2.6.19) as

− αT Dp

Dt
+ ρ0cp

DT

Dt
− ρ0T

∂µ

∂T

Dξ

Dt
− ρ0L

Dφ

Dt
= ρ0H − i · ∇µ−∇ · Tk. (2.6.20)

Substituting the entropy flux vector (2.6.16) into (2.6.20) gives

ρ0cp
DT

Dt
− αT Dp

Dt
= ρ0T

∂µ

∂T

Dξ

Dt
+ ρ0L

Dφ

Dt
− i · ∇µ−∇ ·

(
− ∂µ
∂T

i− L

T
j− k

T
∇T
)

+ ρ0H

= ∇ · k∇T + ρ0L
Dφ

DT
+ L∇ · j− i · ∇

(
µ− T ∂µ

∂T

)
+ ρ0H,

(2.6.21)
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where the conservation of light element (2.2.7) has been used. For the sake of simplic-

ity radiogenic heating, ρ0H , is ignored in (2.6.21). Pressure heating, −αT Dp
Dt

, is the

heat released by an isothermal increase in pressure (Gubbins et al., 2003). The heat of

reaction is µ−T ∂µ
∂T

, which is released when the Fe-O alloy dissociates, and is absorbed

as the oxygen recombines in the outer core (Gubbins et al., 2004). Heat of reaction

and pressure heating are often ignored in the literature, as their estimated values are

small compared to the other terms (Davies, 2015; Gubbins et al., 2003, 2004; Nimmo,

2015a) and we have already assumed that the solid and liquid phases do not interact

chemically when applying the lever rule. Therefore (2.6.21) becomes the temperature

equation

ρ0cp
DT

Dt
= ∇ · (k∇T + Lj) + ρ0L

Dφ

DT
, (2.6.22)

which is similar to the conventional temperature equation for Rayleigh-Bénard con-

vection (Chandrasekhar, 1961), except that there is an extra term to account for the

latent heat release due to phase change, which is proportional to the rate of freezing,

ms = ρ0
Dφ
Dt

+∇ · j (2.2.8).

2.7 Sedimentation

For the sake of simplicity, in our model of sedimentation, we assume that the solid

iron crystals are uniformly spherical particles falling with gravity against viscous drag.

According to Stokes’ law (Kundu et al., 2015), the drag force acting on a single solid

particle with radius R is defined as

Fd = (ρsFe − ρ0)
4πR3

3
g = ρsFe∆V

s,l
Fe,O

4πR3

3
∇p, (2.7.1)
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2.7 Sedimentation

where (2.5.25) is used to re-write the specific densities in terms of the change in spe-

cific volume, ∆V s,l
Fe,O, and hydrostatic equilibrium (2.2.13) is assumed. The flux of

solid caused by a pressure gradient is

j = ρ0φMFd, (2.7.2)

where

M =
1

6πρ0νR
, (2.7.3)

is the average mobility of the solid particle (Landau & Lifshitz, 1959), and recall that

ν is the kinematic viscosity. Equating (2.7.2) with (2.6.10) gives

b (φ) = ρsFeρ0φMv =

(
v2

6π2

) 1
3 ρsFeφ

3ν
=

(
ρsFeρ

2
0

162π2ν3N2

)1/3

φ5/3, (2.7.4)

where

v =
4πR3

3
=

ρ0φ

ρsFeN
(2.7.5)

is the volume of an individual solid particle in terms of φ, and N is the number of

particles per unit volume (Loper & Roberts, 1980). Note that the dimension of the

sedimentation coefficient, b(φ), is kg m−3 s. If there are a small number of very large

particles or a large number of very small particles, then both scenarios can produce the

same solid flux. There is no likely indication of what the particle size should be from

observations to constrain N , hence by considering solutions of j there is no need to

evaluate φ. Our model of the slurry is based on the premise that φ � 1, so that solid

iron is a small component of a mostly liquid slurry. In this model of mobility there

is currently no capacity for the kinematic viscosity, ν, to change depending on φ in

this model. If φ exceeds a critical value then a larger presence of solid particles in the

suspension would start to inhibit shear, therefore increasing the effective viscosity. It
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is possible that once the solid fraction exceeds a critical value, bridging of iron crystals

may occur and the slurry could transition to a mush (Loper & Roberts, 1987). Other

more sophisticated models of sedimentation and mobility (for example, crystallisation

of magma oceans (Solomatov, 2007)) could be incorporated into b(φ) to account for

factors such as particle shapes and hindered particle transport, which is beyond the

scope of this thesis.

2.8 Jump conditions

In this section jump conditions at the lower ICB and upper core-slurry boundary (CSB)

for the slurry system are derived from first principles. In general, Leibniz’s rule for

integrating a scalar quantity f over a volume that changes over time, V (t), is

d

dt

∫∫∫
V (t)

fdV =

∫∫∫
V (t)

∂f

∂t
dV +

∮
At

fUt · n dS −
∫∫

Sb

fUb · n dS, (2.8.1)

where U is the velocity of the end face in which the subscripts t and b refer to the top

and bottom surfaces At and Ab respectively (see Figure 2.1).

We denote that 〈a〉 = asl − al/s is the jump in quantity a, with superscripts sl and

l/s denoting the value in the slurry and in the liquid/solid. We assume the continuity

of temperature

〈T 〉 = 0, (2.8.2)

at both layer boundaries, and the continuity of light element in the liquid phase

〈ξl〉 = 0, (2.8.3)

at both boundaries, since both of these variables are governed by diffusive equations.
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rX
V (t)

A(t)
dAt

dAb

n

l

Figure 2.1: A Gaussian pillbox with volume V (t) enclosed by area A(t) spanning a
slurry interface, rX . Areas of the end faces are denoted by dAt and dAb, separated
by a distance l, and n is the normal vector.

2.8.1 Conservation of mass

Consider the continuity equation in the rest frame,

∂ρ

∂t
+∇ · (ρu) = 0. (2.8.4)

Integrating over a pill-box, V (t), that straddles the interface rX , gives

∫
V (t)

∂ρ

∂t
dV = −

∮
A(t)

ρu · n dA, (2.8.5)

where the divergence theorem has been applied. Applying Leibniz’s rule gives

d

dt

∫
V (t)

ρ dV −
∮
At

ρUt · n dA+

∮
Ab

ρUb · n dA = −
∮
A(t)

ρu · n dA. (2.8.6)

We take Ub = 0 and re-write Ut = U without loss of generality, since only the relative

velocity u−U between the fluid and the moving volume is important. As V (t)→ 0,

then ∮
A(t)

ρ (u−U) · n dA = 0,
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2. SLURRY THEORY

therefore we obtain the pillbox condition

〈ρ (u−U)〉 · n = 0, (2.8.7)

that conserves mass at the boundaries.

2.8.2 Conservation of solid

The conservative form of the solid equation is

∂

∂t
(ρφ) = −∇ (ρφu + j) +ms.

Integrating over the pillbox volume gives

∫
V (t)

∂

∂t
(ρφ) dV = −

∮
A(t)

(ρφu + j) · n dA+

∫
V (t)

ms dV.

Applying Leibniz’s rule, taking Ub = 0 and re-writing Ut = U gives

d

dt

∫
V (t)

ρφ dV −
∮
At

ρφU · n dAt = −
∮
A(t)

(ρφu + j) · n dA+

∫
V (t)

ms dV.

As the pillbox volume vanishes, we are left with

∮
A(t)

(ρφ (u−U) + j) · n dA = 0,

which yields the pillbox condition

〈ρφ (u−U)〉 · n + 〈j〉 · n = 0. (2.8.8)
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2.8 Jump conditions

No new particles nucleate at the boundaries as solid is conserved there, so the inner

core is assumed to grow entirely by the accumulation of iron particles settling onto the

ICB under the influence of gravity.

2.8.3 Conservation of total energy

In general, the conservative form of the internal energy equation is

∂

∂t
(ρE) = −∇ · (q + ρEu) , (2.8.9)

where the energy flux vector, q is given by (2.6.17)

q = −Lj− k∇T. (2.8.10)

after neglecting the heat of reaction. We dot the more general form of the momentum

equation (2.2.14) with u to obtain the kinetic energy equation

∂

∂t

(
ρu2

2

)
= −u · ∇

(
ρu2

2

)
− u · ∇p+ σ′ · u + ρu · F, (2.8.11)

where σ′ is the deviatoric stress tensor and F are external body forces, and includes the

buoyancy force, fb = −∇ψ, in which ψ is the gravitational potential. The equation for

total energy is therefore

∂

∂t

(
ρ

(
E +

u2

2

))
= ρu · F−∇ ·

[
ρ

(
E +

u2

2

)
u + pu− σ′ · u + q

]
. (2.8.12)
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Applying the pillbox argument to this equation yields the condition (Loper & Roberts,

1987)

n · ρ (u−U) 〈E +
u2

2
+
p

ρ
〉+ n · 〈−σ′ · (u−U) + q〉 = 0, (2.8.13)

where (2.8.7) is used to remove the jump in mass. The Gibbs free energy is related to

the total internal energy by (Landau et al., 1980)

Φ = E − Ts+
p

ρ
.

Evaluating the jump in Gibbs free energy at the boundaries and re-arranging gives

〈E +
p

ρ
〉 = 〈Φ〉+ T 〈s〉, (2.8.14)

where we have assumed the continuity of temperature (2.8.2). To evaluate the Gibbs

free energy term, we combine the lever rule (2.5.11) and the condition for phase equi-

librium (2.5.22) to get

Φ = Φl(p, T, ξl)− φξlµ(p, T, ξl),

where µ is dependent on the thermodynamic variables p, T and ξl. We assume that

〈p〉 = 0 since viscosity and velocity jumps are assumed to have a small effect on the

normal component of the stress at the interface (Loper & Roberts, 1987). If pressure,

temperature and ξl are continuous across the interface, then so are Φl and µ. Therefore

the jump in Gibbs free energy is given by

〈Φ〉 = −ξlµ〈φ〉. (2.8.15)
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2.8 Jump conditions

Similarly for the entropy term, we use the lever rule (2.5.17) and the definition of the

latent heat (2.5.29) to obtain

s = sl + φ

(
ξl
∂µ

∂T
− L

T

)
. (2.8.16)

Therefore

T 〈s〉 = −〈φ〉
(
L− Tξl ∂µ

∂T

)
, (2.8.17)

where sl, L and ∂µ
∂T

are assumed to be continuous. Substituting (2.8.15) and (2.8.16)

into (2.8.14) gives

〈E +
p

ρ
〉 = −〈φ〉

(
L+ ξl

(
µ− T ∂µ

∂T

))
. (2.8.18)

After ignoring viscous stresses, σ′, (since we are working in the Boussinesq frame-

work), the heat of reaction, and assuming that jumps in kinetic energy are small

(〈u2
2
〉 = 0), we can use (2.8.18) and the energy flux vector, (2.8.10), to express (2.8.13)

as

n · ρL〈φ〉 (u−U) + n · 〈Lj + k∇T 〉 = 0. (2.8.19)

By using the jump condition on the solid mass (2.8.8), then (2.8.19) can be re-written

as

n · 〈k∇T 〉 = 0. (2.8.20)

In other words, condition (2.8.20) says that the heat flux across the slurry interface is

continuous.

More specific boundary conditions for the steady state models (Chapter 3 and 4)

and time-dependent model (Chapter 5) are developed in the proceeding chapters, since

they differ depending on the assumptions made.
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2.9 Governing equations

In summary the reduced equations of a Boussinesq slurry are

ξ = (1− φ)ξl, (2.9.1a)

ρ0
Dξ

Dt
= −∇ · i, (2.9.1b)

ρ0
Dφ

Dt
= −∇ · j +ms, (2.9.1c)

ρ0cp
DT

Dt
= ∇ · (k∇T + Lj) + ρ0L

Dφ

Dt
, (2.9.1d)

∇T =
T∆V s,l

Fe

L
∇p−

Tξl
(
∂µ/∂ξl

)
L

∇ξl, (2.9.1e)

i = −
ρ0D

′∆V s,l
Fe,O

ξl (∂µ/∂ξl)
∇p+

ρ0D
′L

Tξl (∂µ/∂ξl)
∇T − ξlj, (2.9.1f)

j = b(φ)∆V s,l
Fe,O∇p, (2.9.1g)

∇ · u = 0, (2.9.1h)

Du

Dt
= −∇

(
p′

ρ0

)
+
ρ′

ρ0
g + ν∇2u + F, (2.9.1i)

ρ′ = ρ0
[
−αT ′ − αξξ′ + αφφ

′] . (2.9.1j)

The governing equations are subject to the jump conditions

〈ρ (u−U)〉 · n = 0 (2.9.2a)

〈ρφ (u−U)〉 · n + 〈j〉 · n = 0 (2.9.2b)

〈k∇T 〉 · n = 0 (2.9.2c)

at the ICB and CSB.

A list of symbols used in this chapter is presented in Table 2.1.
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2.9 Governing equations

Symbol Definition Units

ξ Light element concentration

ξl Light element concentration in the liquid phase

φ Solid fraction

T Temperature K

p Pressure Pa

p′ Reduced pressure Pa

ρ0 Reference density kgm−3

ρ′ Density variation kgm−3

u Flow velocity m s−1

i Light element flux vector kg m−2 s−1

j Solid mass flux vector kg m−2 s−1

k Entropy flux vector J

b(φ) Sedimentation coefficient kg m−3 s

ms Creation rate of solid particles kg m−3 s−1

M l
O Mass of liquid oxygen kg

M l
Fe Mass of liquid iron kg

M s
Fe Mass of solid iron kg

ρO Specific density of light element kg m−3

ρlFe Specific density of liquid iron, reference density kg m−3

ρsFe (ρs) Specific density of solid kg m−3

∆V l
Fe,O (δ̄) Change in specific volume between light element and

liquid iron

kg−1 m3

∆V s,l
Fe,O (∆V ) Change in specific volume between liquid and solid

phase

kg−1 m3
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2. SLURRY THEORY

∆V s,l
Fe (δ) Change in specific volume between liquid iron and solid

iron

kg−1 m3

Φ Gibbs free energy J

V Specific volume m3kg−1

s Specific entropy JK−1

µ (µl) Chemical potential of light element relative to iron J kg−1

µφ (ψ) Chemical potential of solid relative to the liquid J kg−1

β Isothermal compressibility Pa−1

α Thermal expansion coefficient K−1

αξ (ᾱ) Compositional expansion coefficient

αφ Phasal expansion coefficient

cp (Cp) Specific heat capacity J kg−1 K−1

∂µ/∂T (−s̄) Thermodynamic derivative of chemical potential w.r.t.

T

J kg−1K−1

∂µ/∂ξl (µ̄) Thermodynamic derivative of chemical potential w.r.t.

ξl

J kg−1

k Thermal conductivity W m−1 K−1

L Latent heat of fusion J kg−1

D′ ξl self–diffusion coefficient m2s−1

Table 2.1: Symbols commonly used in the reduced slurry theory. For ease of reference,
the corresponding notation used in Loper & Roberts (1977, 1980, 1987); Roberts &
Loper (1987) is provided in brackets.
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2.10 Global energy balance

2.10 Global energy balance

We consider the conservation of energy in the whole core and derive the global energy

balance that includes a slurry layer at the base of the outer core. The heat flux across the

CMB, Qc, is extracted by the mantle out of the core. A high CMB heat flow indicates

that the core is rapidly cooling. We show that energy is derived from three key sources:

secular cooling, Qs, latent heat, QL, gravitational power, Qg
1.

The global energy balance will be used to constrain solutions to the slurry model in

future chapters. As discussed in Chapter 1, the CMB heat flow cannot exceed 17 TW.

Geophysically relevant solutions of the slurry model should therefore be consistent

with the core thermal history and power requirements for operating the geodynamo.

Consider a core volume V (t) bounded by a surface A(t), where there is no mass

exchange at the CMB. We assume there is a no normal flow at the CMB, therefore

u · n̂ = 0 there. The time-scale of interest is long compared to the scale of convective

motions but short compared to geological time-scales.

Recall the general continuity and momentum equations with no rotation and no

magnetic field

Dρ

Dt
= −ρ∂ui

∂xi
, (2.10.1)

ρ
Dui
Dt

= ρ
∂ψ

∂xi
+
∂τij
∂xj

, (2.10.2)

which are written in tensor notation using the Einstein summation convention, where ψ

is the gravitational potential in which gi = ∂ψ
∂xi

. Note that we assume that the Boussi-

nesq approximation applies to the slurry volume only and not the rest of the liquid

outer core when deriving the global energy balance. The Boussinesq approximation is

1We neglect the heat of reaction, pressure freezing and internal heating - see discussion following
(2.6.21)
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2. SLURRY THEORY

used when considering the equation of state (2.9.1j) to eliminate compressible effects

in the slurry.

To find the rate of change of kinetic energy, we dot (2.10.2) with u to get

ρ
D

Dt

(
u2i
2

)
= ρui

∂ψ

∂xi
+ ui

∂τij
∂xj

, (2.10.3)

where u2i = uiui = u21 + u22 + u23. Consider the total work done on the fluid element

by surface forces, ∂
∂xj

(uiτij), and the identity

∂

∂xj
(uiτij) ≡ τij

∂ui
∂xj

+ ui
∂τij
∂xj

. (2.10.4)

The first term on the RHS is the work done by viscous deformation which increases

the internal energy, and the second term on the RHS is the increase in kinetic energy

as local fluid is advected due to differences in stress on a fluid element. The total stress

tensor for a Newtonian fluid is

τij ≡ −pδij + σij = −pδij + 2ηeij −
2

3
η (∇ · u) δij, (2.10.5)

where η is the dynamic viscosity. The product τij ∂ui∂xj
is equal to τij times the symmetric

part of ∂ui
∂xj

denoted by eij (Kundu et al., 2015), therefore the rate of work done by

deformation is

τij
∂ui
∂xj

= τijeij = −pδijeij + 2ηeijeij −
2

3
η (∇ · u) δijeij

= −p (∇ · u) + 2ηeijeij −
2

3
η (∇ · u)2 , (2.10.6)

where

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.10.7)
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and eijδij = eii = ∇·u. Substituting (2.10.4) and (2.10.6) back into the kinetic energy

equation (2.10.3) gives

ρ
D

Dt

(
u2i
2

)
= ρui

∂ψ

∂xi
+

∂

∂xj
(uiτij) + p∇ · u− φν , (2.10.8)

where φν = 2ηeijeij − 2
3
η (∇ · u)2 is the rate of viscous dissipation. The term p∇ · u

represents the rate of work done by volume expansion. Integrating (2.10.8) gives the

integral equation for the kinetic energy

d

dt

∫
V

ρu2

2
dV =

∫
V

ρui
∂ψ

∂xi
dV +

∮
A

uiτij dAj +

∫
V

p∇ · u dV −
∫
V

φν dV.

(2.10.9)

To find the rate of change of the total energy, we need to also consider the internal

energy of the system in addition to the kinetic energy. The equation of internal energy

is given by (Loper & Roberts, 1977)

ρ
DE

Dt
= − ∂qi

∂xi
− p∇ · u + φν , (2.10.10)

where

ρ
DE

Dt
=
p

ρ

Dρ

Dt
+ ρT

Ds

Dt
(2.10.11)

after assuming fast-melting and constant solid composition, as well as neglecting the

heat of reaction. The sumE+
u2i
2

is the total energy per unit mass. Integrating (2.10.10)

over the core volume V and combining with (2.10.9) gives

d

dt

∫
V

ρ

(
E +

u2

2

)
=

∫
V

ρu · ∇ψ dV +

∮
A

u · τ · dA−
∮
A

q · dA. (2.10.12)

On the time-scales of interest, it is assumed that the rate of change in kinetic energy
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is negligible in comparison with the leading order changes in gravitational and internal

energies (Buffett et al., 1996; Gubbins, 1977). Therefore (2.10.12) becomes

d

dt

∫
V

ρE =

∫
V

ρu · ∇ψ dV −
∮
A

q · dA−
∫
V

p∇ · u dV. (2.10.13)

where the work done by deviatoric stress forces at the boundary vanish by assuming a

stress-free boundary at the CMB.

By substituting the entropy differential (2.5.31) into (2.10.11), integral (2.10.13)

becomes

−
∫
V

αT
Dp

Dt
dV +

∫
V

ρcp
DT

Dt
dV −

∫
V

ρL
Dφ

Dt
dV

=

∫
V

ρu · ∇ψ dV −
∮
A

q · dA, (2.10.14)

where the continuity equation (2.10.1) is used to replace Dρ
Dt

.

Recall that the entropy flux (2.8.10) is given by

q = −Lj− k∇T (2.10.15)

after neglecting the heat of reaction. Then the CMB heat flux is defined from (2.10.14)

by

Qc ≡
∮
A

−k∇T · dA

=

∫
V

αT
Dp

Dt
dV︸ ︷︷ ︸

Qp, pressure freezing

−
∫
V

ρcp
DT

Dt
dV︸ ︷︷ ︸

Qs, secular cooling

+

∫
V

L

(
ρ

Dφ

Dt
+∇ · j

)
dV︸ ︷︷ ︸

QL, latent heat

+

∫
V

ρu · ∇ψ dV︸ ︷︷ ︸
Qg , gravitational power

.

(2.10.16)

Assuming that pressure freezing and internal heating terms are negligible (see discus-
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sion following equation (2.6.21)), the CMB heat flux reduces to

Qc = −
∫
V

ρcp
DT

Dt
dV +

∫
V

Lms dV +

∫
V

ρu · ∇ψ dV, (2.10.17)

where the solid mass equation (2.2.8) is used to relate the latent heat flux to the rate

at which solid is created, ms. Heat from secular cooling, Qs, is generated as specific

heat is lost over time as the core cools. Gravitational power, Qg, is associated with the

release of compositional energy as light elements separate from the solid phase when

core material freezes. Latent heat, QL, is also released as result of phase change as

solid phase is produced.

2.11 Summary

In this chapter, we presented the equations governing a two-phase, two component

slurry system. Conservation laws for the total mass, light element, solid fraction,

momentum and energy were expressed. We simplified the thermodynamics of these

equations to produce a reduced slurry theory by applying two main approximations

suggested by Loper & Roberts (1977, 1980, 1987); Roberts & Loper (1987), namely

the fast-melting limit and constant solid composition. The fast-melting limit assumes

that an infinitesimal volume of slurry exclusively contains either a solid or liquid phase,

which implies that solid iron crystals are in phase equilibrium with the ambient liquid.

We consider this assumption to be valid on relevant time-scales such as the speed of IC

growth. By assuming a constant solid composition the solid created by freezing the al-

loy is composed only of pure iron while light element partitions entirely into the liquid

phase during solidification. This assumption is supported by the ab initio partitioning

studies of Alfè et al. (2002a), and allows us to disregard potential complications such
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as particle history dependence.

The Gibbs free energy of the slurry system is considered in detail. Exact differen-

tials of the specific density, entropy and chemical potential are derived from the Gibbs

free energy, which is useful for developing the governing slurry equations. By assum-

ing that the liquid and solid phases do not interact chemically the lever rule can be

applied to derive the liquidus relation, which is essentially another form of the phase

equilibrium condition. The liquidus describes the relationship between temperature,

pressure and light element in the liquid phase everywhere in the slurry. This is very

useful for reducing the thermodynamic complexity of the non-equilibrium theory.

Constitutive equations for the light element, solid and entropy fluxes are developed.

In doing so, many of the thermodynamic quantities derived from the Gibbs free energy

are used. The light element flux is composed of three parts: barodiffusion, a “Soret”-

like effect, and the displacement of light element due to solid flux. These processes can

explain the dynamics of how light element can pass through a stable F-layer. Solid flux

is assumed to depend only on gradients of pressure, and we assume that solid particles

fall under gravity against viscous drag according to Stokes’ law. A model of mobility

is proposed to help define the sedimentation coefficient, b (φ), however there is some

uncertainty over estimating the number of particles per unit volume. In view of this, it

is more insightful to consider solutions of the solid flux, j, rather than solutions of φ

of the slurry system. The entropy flux is derived and used to develop the temperature

equation. By ignoring radiogenic heating, and neglecting the heat of reaction and

pressure heating, we derive a temperature equation that is similar to the standard form

used in thermal convection. The only difference is that the slurry releases latent heat as

iron undergoes solidification, therefore an extra term proportional to the freezing rate,

ms, is needed to account for this.

Jump conditions on the mass, energy and solid mass at the slurry boundaries are
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derived from first principles using the pillbox argument. We assume that the thermody-

namic variables pressure, temperature and light element are continuous at the bound-

aries, whereas the solid fraction is not. We find that the heat flux across the slurry

boundaries is continuous, after neglecting jumps in kinetic energy, viscous stress and

the heat of reaction.

The slurry system is fundamentally distinct from the dynamics and thermodynam-

ics of thermal or thermochemical convection. This is clear from the contribution of the

changes in solid phase, dφ, to the Gibbs free energy. A significant difference of the

slurry compared to standard convection models is the intrinsic relationship between the

temperature, pressure and light element through the liquidus relation. For example in

a system at constant pressure, warm fluid may not necessarily rise as it does in regular

thermal convection since an increase in temperature reduces the concentration of light

material in the liquid phase to maintain the liquidus. The increase in density from the

reduction of light material can outweigh the decrease in density from warm tempera-

tures. This mechanism could possibly help produce a stabilising, bottom-heavy slurry

layer may explain the F-layer.

By examining the conservation of energy in the entire core, we derive a global

energy balance for a core containing a slurry that is consistent with the assumptions

made so far. This includes neglecting pressure freezing and the heat of reaction, as

well as ignoring any internal heat generated from radiogenic sources. Heat is extracted

from the core by the overlying mantle, and the simplified CMB heat flux is composed

of three main parts: secular cooling, Qs, latent heat, QL and the gravitational power,

Qg. We constrain results from the slurry system in subsequent chapters so that they are

consistent with the CMB heat flows determined by thermal history models given in the

literature.
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In this chapter we explore the properties of a basic slurry system by solving the

governing equations (see Section 2.9) in a non-convective and steady reference state.

We shall develop and examine a simple model of a slurry in a Cartesian box, with

no x, y dependence, and z denoting the vertical distance in the layer. We ignore the

effects of a magnetic field and rotation so that the dynamics of the slurry alone can

be demonstrated clearly. The Boussinesq approximation is applied, where changes

in density are assumed to be small except in the buoyancy force, since variations in

density across an F-layer between 150 and 300 km thick are likely to be on the order

of 0.1% according to PREM (Dziewonski & Anderson, 1981).

For conditions in the Earth’s core a bottom-heavy F-layer with an unstable temper-

ature gradient and a stable composition is inferred, as heat is transported radially out-

ward from the inner core and a stable composition matches the seismology (see Section

1.1.2) . The position of the ICB changes over time due to inner core growth as iron par-

ticles accumulate at the base of the layer, so we seek a coordinate transform to a frame

moving at the speed of ICB advance. This introduces an inherent time-dependence

to the steady system, and so the model is technically in a quasi-steady state. The ap-

propriate boundary conditions are determined, which constrains the steady state slurry

equations. This includes fixing the light element concentration, temperature and solid

flux at the top of the layer, and fixing the solid flux and the heat flow at the bottom of

the layer. A schematic of the box model and the imposed boundary conditions is given

in Figure 3.1.

A range of reference states are explored by changing three parameters. Due to

the uncertainty in seismological estimates of the layer depth (see Section 1.2.1), we

explore a range of layer thicknesses between 150 and 300 km. The heat flux out of the

inner core is a geophysically uncertain constraint, with estimates varying between 0.3

TW and 1.6 TW depending on whether the inner core is assumed to be isothermally
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fixed layer
thickness

ẑ

CSB

ICB

liquid OC

solid IC

vs

vs

ξl(d) = ξT , T (d) = Ta(d),jz(d) = 0,

jz(0) = −vsρsFe, dT
dz
|z=0 = − Qis

4kπr2i
.

Figure 3.1: A schematic of the steady state box model. The steady state problem is
solved subject to five boundary conditions.

or adiabatically stratified (Pozzo et al., 2014). We explore its effect on the slurry

layer by varying the heat flow through the system. Recent upward revisions to the

thermal conductivity (see Section 1.1.3) significantly affects the amount of heat that is

conducted along the adiabat, therefore we investigate its effect on the slurry layer.

80



3.1 Box model

3.1 Box model

The slurry layer is considered to be relatively thin compared to the rest of the core, so

we seek a reference state in a Cartesian geometry. Seismic evidence indicates that

F-layer stratification is dependent on depth, therefore we aim to formulate a one–

dimensional model by assuming no x, y dependence ( ∂
∂x
, ∂
∂y
→ 0) and denote ẑ as

the unit vector pointing away from the ICB. In a steady state we assume that the layer

thickness, d, is fixed and cannot grow or shrink over time.

The position of the ICB advances upwards at the rate of inner core growth as solid

particles accumulate at the base of the layer, assuming that there is no direct freezing

at the interface itself and no compaction1 of the solid occurs. In a steady state, the

slurry is time-independent ( ∂
∂t
→ 0) and static (u = 0). The time dependence of the

advancing ICB is removed by transforming to a frame of reference that moves with the

ICB, in a similar manner to Gubbins et al. (2008). This transformation is given by

z = z′ − vst t = t′ (3.1.1)

where z′ and t′ are the vertical and time coordinates in the rest frame, with z and t

the corresponding coordinates in the moving frame in which the ICB is assumed to

advance at speed vs > 0. Buffett et al. (1996) estimate that the inner core growth rate,

vs, scales with
√
t, however for the purposes of developing a simple steady state model

we shall assume that vs is constant. As a consequence of transforming to a moving

frame (3.1.1), the material derivative is given by

Df

Dt
≡ −vs

∂f

∂z
, (3.1.2)

1Compaction is a common process in Earth sciences that occurs in lake sediments, hardening of
snow, cumulate formation of magma chambers, etc. (Sumita et al., 1996)
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for an arbitrary scalar function, f .

There are a couple of simplifications that can be applied to the model equations

at this point. Loper & Roberts (1980) assume that ξl cannot diffuse through solid

material, which suggests that the diffusion coefficient D′ can be linearly approximated

as

D′ = (1− φ)D̄ ' D̄ (3.1.3)

where D̄ is a modified diffusion coefficient independent of φ, and φ � 1 is always

assumed. The depression of the liquidus (2.9.1e) due to composition and the light

element flux (2.9.1f), depends on the derivative of the chemical potential with respect

to ξl. We use ideal solution theory (Gubbins et al., 2004) to approximate the chemical

potential. An ideal solution experiences no change in volume upon mixing, though the

validity of an ideal solution under core pressure and temperature conditions remains to

be checked experimentally by high pressure experiments. Gubbins et al. (2004) argue

that the ideal solution approximation should be accurate for small concentrations of

impurity, and the chemical potential is given by

µ = µ0 +RT
1000

aO
log ξl, (3.1.4)

where µ0 is a constant reference potential, and R × 1000/aO converts from molar to

mass concentration, with R the gas constant and aO the atomic weight of oxygen. The

derivative of the chemical potential with respect to ξl is therefore

ξl
∂µ

∂ξl
= RT

1000

aO
. (3.1.5)
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The general equations for the light element (2.9.1b) and temperature (2.9.1d) are

ρ0
Dξ

Dt
= −∇ ·

(
−
ρ0D

′∆V s,l
Fe,O

ξl (∂µ/∂ξl)
∇p+

ρ0D
′L

Tξl (∂µ/∂ξl)
∇T − ξlj

)

ρ0cp
DT

Dt
= ∇ · (k∇T + Lj) + ρ0L

Dφ

Dt

where (2.9.1g) defines the solid flux

j = b (φ) ∆V s,l
Fe,O∇p

and the liquidus (2.9.1e)

∇T =
T∆V s,l

Fe

L
∇p−

Tξl
(
∂µ/∂ξl

)
L

∇ξl

closes the equations. For a steady slurry system with an advancing ICB, the light

element and temperature equations become

ξl
djz
dz

= gρlFe
d

dz

(
ρlFeD̄∆V s,l

Fe,O

RT 1000
aO

)
−
(
vsρ

l
Fe + jz

) dξl

dz
, (3.1.6)

−kd2T

dz2
= vsρ

l
Fecp

dT

dz
+ L

djz
dz

, (3.1.7)

using (3.1.2) and (3.1.5), where the reference density, ρ0, is assumed to be equal to the

density of liquid iron, ρlFe. Terms involving dφ/dz are ignored since results suggest

the solid fraction must be on the order of |φ| ∼ 10−3 to be comparable with the other

terms in (3.1.7). The “Soret”-like term in the light element flux is also neglected, so

that the effect of barodiffusion alone can be elucidated for the sake of simplicity.
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3. A STEADY-STATE BOX MODEL

3.1.1 Boundary conditions

The steady state equations (3.1.6), (3.1.7) and liquidus (2.9.1e) form a fourth order

system. This is solved subject to five boundary conditions, in which the extra boundary

condition determines a free parameter introduced later in Section 3.1.2. In Section 2.8

we derived the jump conditions at the slurry boundaries. We assumed the continuity of

light element in the liquid phase (2.8.3)

〈ξl〉 = 0,

at the ICB and CSB. Continuity of ξl at the CSB at the top of the layer yields the

boundary condition

ξl(d) = ξT , (3.1.8)

where ξT is the concentration of light element in the bulk of the liquid core, and is

presumed to be 8 mol.% oxygen (Alfè et al., 2002b). The temperature is assumed to

be continuous across the boundaries (2.8.2), so that

〈T 〉 = 0,

therefore the slurry temperature at the CSB should coincide with the adiabatic temper-

ature of the liquid outer core

T (d) = Ta(d), (3.1.9)

where Ta is the adiabatic temperature. The adiabat is calculated by (Gubbins et al.,

2003)

Ta(z) = Ti exp

(
−
∫ ri+z

0

gγ

ϕ
dz

)
, (3.1.10)
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where Ti is the ICB temperature, ri is the ICB radius and

ϕ ≡ Ks

ρ
= v2p −

4

3
v2s (3.1.11)

is the seismic parameter, with Ks ≡ −V
(
∂p
∂V

)
s

the adiabatic bulk modulus, vp the P

wave speed and vs the S wave speed. Shear waves cannot propagate through liquid

so the seismic parameter reduces to ϕ = v2p in the liquid outer core, and the P wave

velocity is taken from PREM (Dziewonski & Anderson, 1981).

Continuity of the heat flux at the boundaries (2.8.20) is given by

n · 〈k∇T 〉 = 0.

At the ICB this heat flux condition becomes

dT sl

dz
= − Qi

s

4kπr2i
, (3.1.12)

where thermal conductivity, k, is assumed to be continuous and Qi
s is the heat flux

from the secular cooling of the IC. Note that the latent heat released in the slurry is

separated from the heat flux out of the inner core, since we assume that the latent heat

released by inner core growth is due to the accumulation of solid particles from the

slurry settling onto the ICB.

The jump condition on the solid mass at the slurry boundaries (2.8.8) is

〈ρφ (u−U)〉 · n + 〈j〉 · n = 0.
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3. A STEADY-STATE BOX MODEL

At the ICB this condition becomes

ρslφsl(usl − U sl) + jslz − ρsφs(us − U s)− jsz = 0. (3.1.13)

We have assumed a fixed layer thickness so that the boundary velocities are the same,

so U sl = U s = vs, the speed of the moving frame. In the limit φsl � 1, the first

term of (3.1.13) becomes negligible. Assuming that the solid inner core is static and

not convecting, then us = 0 and jsz = 0. The density of the solid, ρs, is assumed to be

equal to the density of solid iron, ρsFe, and we suppose φs = 1 in the solid inner core.

Therefore the boundary condition on the solid flux at the ICB is

jslz = −ρsFevs. (3.1.14)

The sign of the solid flux is negative down towards the ICB since iron particles

sediment under gravity. Assuming linear growth of the inner core, then the growth

speed, vs > 0, is estimated by

vs =
ri
τi

(3.1.15)

where ri is the present-day inner core radius and τi is the age of the inner core. Speeds

of 1.2 and 2.4 mmyr−1 correspond with inner core ages of 0.5 and 1 Ga respectively,

and relate to the high and low values of thermal conductivity through the core energy

budget (see Figure 1.4).

At the CSB, condition (2.8.8) gives

ρslφsl(usl − U sl) + jslz − ρlφl(ul − U l)− jlz = 0

⇒ jslz = 0, (3.1.16)
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3.1 Box model

where jlz = φl = 0 in the liquid since no solid exists on the liquid side of the CSB,

and φsl � 1. Applying two boundary conditions on jz over–constrains the steady state

problem, therefore a free parameter is introduced in Section 3.1.2 to ensure (3.1.16) is

satisfied at the CSB.

3.1.2 Turbulent mixing layer

If there is no diffusion in the light element flux so that D̄ = 0, then the first term on

the RHS of (3.1.6) vanishes. This gives

d

dz

(
vsρ

l
Feξ

l + ξljz
)

= 0,

which can be simply integrated to give

vsρ
l
Feξ

l + ξljz = C, (3.1.17)

where C is a constant of integration. At the CSB, we apply the boundary conditions

(3.1.8) and (3.1.16), therefore constant C is given by

C = vsρ
l
FeξT

and (3.1.17) becomes

vsρ
l
Fe(ξT − ξl) = ξljz. (3.1.18)

For a stable layer, we require ξl < ξT and the solid flux is always in the negative

direction for solid particles to snow towards the ICB. These two requirements are not

consistent with condition (3.1.18) and contradicts the assumption that D̄ = 0, hence

we require D̄ 6= 0 to attain a stable layer.
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3. A STEADY-STATE BOX MODEL

We envisage a thin turbulent mixing sub-layer at the top of the slurry generated

by the difference in the slurry and the liquid outer core velocities. We suppose that

in the mixing sub-layer, diffusion is enhanced by eddies that promote the transport of

light element out of the slurry layer into the rest of the outer core. This mechanism

is incorporated into the pre-existing light element barodiffusion term in (3.1.6), as this

process also transports light element out of the layer, albeit along a pressure gradient.

Enhancement is controlled by modifying the self-diffusion coefficient, D̄. A functional

form of D̄ is assumed by the exponential function

D̄ = DO exp

(
Fz

d

)
, (3.1.19)

where DO is the self-diffusion coefficient of oxygen and F is a dimensionless free

parameter to be determined by forcing the solid flux to vanish at the CSB as required

by (3.1.16). Note that by adopting (3.1.19) the product rule applies to the z-derivative

of the barodiffusion term in (3.1.6) so that the light element flux becomes

iz = −gρlFe
d

dz

(
ρlFeD̄∆V s,l

Fe,OaO

1000RT

)

= −

(
gρlFe

2∆V s,l
Fe,OaO

1000R

)
d

dz

(
D̄

T

)
− ξljz

= −
gρlFe

2∆V s,l
Fe,OaO

1000R

(
FD̄

Td
− D̄

T 2

∂T

∂z

)
− ξljz. (3.1.20)

3.2 Parameter estimates

To explore the slurry system we shall vary the most uncertain parameters, such as

the layer thickness, ICB heat flux and thermal conductivity, while assuming that other

parameters remain fixed. For reference, a list of all parameter estimates is given in
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Figure 3.2: Gravitational acceleration in the core according to PREM (Dziewonski &
Anderson, 1981).

Table (3.1). Given that the F-layer is thin compared to the rest of the outer core,

some parameter values are assumed to be constant since they are not expected to vary

much across such a thin layer. This includes physical and material properties such as

the gravitational acceleration, g, specific heat capacity, cp, thermal and compositional

expansion coefficients, α and αξ respectively, latent heat, L, self-diffusion coefficient

of oxygen, DO, specific densities ρlO and ρlFe, and thermal conductivity, k.

From Figure 3.2 it can be seen that the gravitational acceleration, g, varies signifi-

cantly with depth inside the core. Its value is 4.40 ms−2 at the ICB and 5.32 ms−2 at

the top of an F-layer 300 km thick. This difference is roughly 20%, which is not in-

significant, however as a sensible first step we take g as constant in the slurry for now.

The thermal expansion coefficient, α, and the specific heat capacity, cp, are closely

linked through the Grüneisen parameter, γ, by

γ =
αKs

ρcp
, (3.2.1)

where Ks ≡ −V
(
∂p
∂V

)
s

is the adiabatic bulk modulus (Stacey & Davis, 2008). Calcu-

lations from first principles show that the Grüneisen parameter near the ICB varies a

small amount from 1.51 to 1.52 as pressure increases from 280 to 340 GPa (Ichikawa
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3. A STEADY-STATE BOX MODEL

Figure 3.3: Thermal expansion coefficient, α, with units of 10−5K−1 in the core. Figure
modified from Gubbins et al. (2003).

et al., 2014). The relevant core pressures for an F-layer up to 300 km thick is be-

tween 310 and 330 GPa, therefore we take γ as constant. Both the density, ρ, and

the adiabatic bulk modulus, Ks, are known from PREM (Dziewonski & Romanowicz,

2015), whereas thermal expansion, α, and the specific heat capacity, cp, are determined

from experiments and ab initio calculations. Figure 3.3 shows the variation of the ther-

mal expansion coefficient in the core determined from first principles (Gubbins et al.,

2003). At core pressures relevant to the F-layer, we take α as constant with the value

1.0× 10−5 K−1 and the corresponding specific heat capacity is given by

cp =
αKs

γρ
' (1.0× 10−5)(1.3× 1012)

(1.5)(1.2× 104)
' 715 Jkg−1. (3.2.2)

The compositional expansion coefficient, αξ, is calculated from the partial volume

data provided by ab initio calculations. From first principles, Gubbins et al. (2004)

find that compositional expansion coefficient is equal to 1.1 for oxygen.
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Figure 3.4: Entropy of melting per atom from ab initio calculations. Figure modified
from Alfè et al. (2002c).

Recall the definition of the latent heat in the slurry (2.5.29)

L = T∆s+ Tξl
∂µ

∂T
, (3.2.3)

where ∆s = sl − ss is the entropy difference between solid and liquid. Figure 3.4

presents data from ab initio calculations (Alfè et al., 2002c) that shows the entropy of

melting varies little at pressures between 310 and 330 GPa which correspond with the

F-layer. From ideal solution theory (3.1.4), the second term of (3.2.3) becomes

Tξl
∂µ

∂T
= Tξl

1000R

aO
log ξl. (3.2.4)

We assume that ξl and T do not vary greatly in the layer, which is likely to be smaller

than the change in gravity across the layer. Given that model uncertainties in the pa-

rameter estimates cannot be avoided, we take L = 0.75 × 106 Jkg−1 (Gubbins et al.,

2003) as constant in the slurry layer for the sake of simplicity.
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3. A STEADY-STATE BOX MODEL

Figure 3.5: Self-diffusion coefficients of iron, silicon and oxygen atoms as a function
of pressure for an Fe0.82Si0.10O0.08 mixture. Figure from Pozzo et al. (2013).

The self-diffusion coefficient of oxygen, DO, is calculated from first principles

(Pozzo et al., 2013). Figure 3.5 shows that its value does not vary greatly with pressure

close to the ICB. Therefore we take DO constant at 1× 10−8 m2s−1.

From seismology, the specific density on the solid side of the ICB is estimated as

ρsFe = 12.76 × 103 kg m−3 (Dziewonski & Anderson, 1981). Ideal solution theory is

used to estimate the specific densities of the other slurry components. Specific densities

are taken from Gubbins et al. (2004) and are given by ρO = 5.56 × 102 kg m−3, and

ρlFe ≡ ρsFe − ∆ρmelting = 12.52 × 103 kg m−3 where the density drop upon melting

is ∆ρmelting = 0.24× 103 kg m−3, calculated from first principles (Alfè et al., 2002a).

This assumes that the core material is composed of an Fe-(Si,S)-O alloy, with 84%

iron, 8% silicon/sulphur and 8% oxygen, where oxygen partitions entirely into the

liquid when the alloy solidifies (Alfè et al., 2002b).

As discussed in Section 1.1.2 thermal conductivity at core conditions is difficult to

study in high pressure experiments, and its value significantly impacts thermal history

models and estimates of the inner core age. Lower thermal conductivities produce a
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nominal inner core age of a billion years (Davies et al., 2015), since heat is removed

more slowly from the core as less heat is conducted along the adiabat. However recent

higher conductivity estimates mean that heat is evacuated more quickly from the core,

therefore the inner core is a much younger feature of the Earth, with a predicted inner

core age of 500 million years (Gomi et al., 2013; Konôpková et al., 2016; Ohta et al.,

2016).

Table 3.1 summarises the parameter estimates used in the steady state box model.
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Symbol Definition Value Units Source

ri ICB radius 1.22× 106 m PREM

(Dziewonski

& Anderson,

1981)

ro CMB radius 3.48× 106 m PREM

g Gravitational acceleration

at r = ri

4.40× 104 ms−1 PREM

gρlFe Hydrostatic pressure gra-

dient at r = ri

5.51× 104 Pa m−1 PREM

ρsFe Specific density of solid 12.76× 103 kg m−3 PREM

ρlFe,O Specific density of liquid

iron and oxygen at r = ri

12.17× 103 kg m−3 PREM

ξT Oxygen concentration in

the bulk of the liquid core

0.0252 (8) Mass frac-

tion (mol.%)

Alfè et al.

(2002b)

Ti ICB temperature 5, 500 K Alfè et al. (2007)

Tc CMB temperature 4, 290 K Davies et al.

(2015)

cp Specific heat capacity 715 J kg−1 K−1 Gubbins et al.

(2003)

α Thermal expansion coef-

ficient

1× 10−5 K−1 Gubbins et al.

(2003)

αξ Compositional expansion

coefficient of oxygen

1.1 Gubbins et al.

(2004)

94



3.2 Parameter estimates

L Latent heat of fusion 0.75× 106 J kg−1 Gubbins et al.

(2003)

DO Self–diffusion coefficient

of oxygen

1× 10−8 m2s−1 Pozzo et al.

(2013)

∆ρmelting Density drop upon melt-

ing

0.24× 103 kg m−3 Alfè et al.

(2002a)

ρO Specific density of light

element

5.56× 103 kg m−3 Gubbins et al.

(2004)

ρlFe Specific density of liquid

iron, reference density

12.52× 103 kg m−3 Gubbins et al.

(2004)

d Layer thickness 150− 300 km Section 1.2.1

Qi
s Secular cooling of the in-

ner core

0.8− 1.6 TW Pozzo et al.

(2014)

τi Inner core age 0.5− 1 Ga Gomi et al.

(2013)

k Thermal conductivity 50− 107 Wm−1K−1 Davies et al.

(2015)

Qc CMB heat flow 5− 17 TW Lay et al. (2008),

Nimmo (2015a)

dTc
dt

Core cooling rate −100 KGa−1 Nimmo (2015a)

Table 3.1: Parameter estimates used in the steady state box model. The first group
are well-known and derived from seismology; the second group relies on ab initio
calculations; the third group depend on ideal solution theory; the fourth group are
parameters to be investigated in the slurry model.
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3.3 Geophysical constraints

The steady state model should satisfy several geophysical constraints. The density

jump across the slurry layer should be consistent with seismic observations (see Sec-

tion 1.1.3). The discrepancy between the normal and body wave estimates, ∆ρmod −

∆ρbod, constrains the anomalous stabilising density contrast across the F-layer caused

by stable stratification. Hence solutions obtained from the slurry model should satisfy

a maximum density jump of max(∆ρmod −∆ρbod) = 1, 100− 280 = 720 kg m−3, and

a minimum density jump is unspecified since min(∆ρmod − ∆ρbod) < 0 because the

observations are not in agreement with each other. The variance in the range of per-

missible density jumps is attributed to the limitations of different sampling techniques

employed in each seismic study (Deuss, 2014).

Total density, ρ, is given by the addition of the hydrostatic part, ρH , together with

density fluctuations, ρ′, within the slurry given by (2.9.1j). The hydrostatic contribution

is derived from the equation of hydrostatic equilibrium (2.2.13)

dpH
dz

= −gρH . (3.3.1)

The thermodynamic definition of the isothermal bulk modulus is

KT ≡ ρ
dp

dρ
, (3.3.2)

therefore the variation of the hydrostatic density with respect to z is

∂ρH
∂z

=
∂ρ

∂pH

∂pH
∂z

= −gρ
2
H

KT

. (3.3.3)
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Integrating (3.3.3) gives

∫
1

ρ2H
dρH =

∫
− g

KT

dz ⇒ − 1

ρH
= − gz

KT

+ C, (3.3.4)

where C is a constant of integration. We impose ρ(d) = ρPREM, in which ρPREM is the

PREM value of the density taken from Dziewonski & Anderson (1981) at the top of

the slurry layer. Hence (3.3.4) becomes

ρH =

(
g

KT

(z − d) +
1

ρPREM

)−1
. (3.3.5)

Note that for a bottom-heavy layer the calculated density jump, ∆ρ, is negative, so its

magnitude is presented in the results.

Present day estimates of the maximum CMB heat flow are believed to be 12±5 TW

(see Table 3.1), therefore acceptable steady state solutions should satisfy

5 TW ≤ Qc = Qs +Ql +Qg ≤ 17 TW. (3.3.6)

The global energy balance of the core is derived in Chapter 2 and is given by (2.10.17)

Qc = −
∫
V

ρcp
DT

Dt
dV +

∫
V

Lms dV +

∫
V

ρu · ∇ψ dV (3.3.7)

The total core volume, V , can be split into three parts: V = V l + V sl + V s, where V l

is the liquid outer core volume, V sl is the slurry volume and V s is the solid inner core

volume. The secular cooling can be split into Qs = Ql
s +Qsl

s +Qi
s, where

Ql
s = −

∫
V

ρcp
DTa
Dt

dV l. (3.3.8)

is the secular cooling in the liquid outer core. We have assumed that the temperature in
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the liquid outer core is adiabatic, Ta, calculated using (3.1.10). Gubbins et al. (2003)

show that the change in adiabatic temperature is related to the core cooling rate, dTc
dt

by

1

Ta

DTa
Dt

=
1

Tc

dTc
dt

, (3.3.9)

where Tc is the CMB temperature. We use the estimate of Tc = 4, 290 K as reported

by Davies et al. (2015), which is derived from ab initio calculations and high pressure

experiments, and a cooling rate of dTc
dt

= −100 KGa−1, which is a rough value taken

from Nimmo (2015a) derived from thermal history models in the literature. Hence

(3.3.8) becomes

Ql
s = −4πcp

Tc

dTc
dt

∫ ro

rsl

ρTar
2 dz, (3.3.10)

where r = ri + z and rsl = ri + d denotes the CSB radius. Note that the global

energy balance is formulated in the rest frame, so technically the coordinates need to

be denoted by primes (see equation (3.1.1)), but we drop them here for the sake of

convenience. In the slurry volume we have assumed that the flow is static, therefore

Qsl
s = −

∫
V sl

ρcp
∂T

∂t
dV sl

= −
∫
V sl

ρcp
∂T

∂z

∂z

∂t
dV sl

= −4π

∫ d

0

ρcpvs
∂T

∂z
(ri + z)2 dz,

where vs ≡ ∂z
∂t

is the speed of IC growth.

On time-scales longer than core convection but shorter than core evolution, we

assume that all of the solid formed in the slurry volume has fallen towards the ICB and

98



3.3 Geophysical constraints

accumulated to grow the IC. Therefore

∫
V sl

ms dV sl =
d

dt

∫
V s
ρsFeφ

s dV s =

∮
As
ρsFeU

s · dAs, (3.3.11)

where the RHS describes the rate of change of the total mass of the IC volume. Latent

heat is released when solid particles freeze from the alloy, therefore the latent heat flux

is

QL =

∫
V sl

LmsdV sl =

∮
As
ρsFeLU

s · dAs = −
∮
As
Ljz dAs, (3.3.12)

where boundary condition (3.1.14) is used to relate the ICB speed to the solid flux by

ρsFeU
s · n̂ = ρsFevs = −jz. The latent heat flux, QL, is known a priori since this is

controlled by the input parameter, vs, the ICB speed. We assume that iron particles fall

under gravity and accumulate at the ICB to grow the inner core, therefore latent heat

is not released directly at the ICB, though its calculation using time-scale arguments

is evaluated at the IC surface using (3.3.12). Boundary condition (3.1.12) contains the

specific heat extracted from the inner core and does not include the latent heat release

in the slurry.

The total gravitational power in the core can be manipulated to give

Qg =

∫
V

ρu · ∇ψ dV

=

∫
V

∇ · (ρψu) dV −
∫
V

ψ∇ · (ρu) dV. (3.3.13)

Assuming that there is no normal flow at the CMB boundary, then u · n̂ = 0 and

(3.3.13) together with the continuity equation (2.10.1) becomes

Qg =

∫
V

ψ
∂ρ

∂t
dV. (3.3.14)
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Gravitational energy is released when light element from the slurry moves into the

convecting liquid outer core. The available energy (negative) helps to power the dy-

namo, and is converted into heat (positive) that enters into the global heat balance, Qc.

Gubbins et al. (2004) notes that the density change caused by the separation of light

material is given by

(
∂ρ

∂t

)
p,T,φ

=

(
∂ρ

∂ξ

)
p,T,φ

∂ξ

∂t
= −ραξ

∂ξ

∂t
, (3.3.15)

where the thermodynamic definition of the compositional expansion coefficient, αξ ≡

−1
ρ

(
∂ρ
∂ξ

)
p,T,φ

is used. Substituting (3.3.15) into (3.3.14) gives

Qg = −
∫
V

ρψαξ
∂ξ

∂t
dV

= −
∫
V

ρψαξ
∂ξ

∂z

∂z

∂t
dV

= −
∫
V

ρψαξvs
∂ξ

∂z
dV. (3.3.16)

We assume that vigorous convection in the liquid outer core quickly homogenises the

distribution of light elements, and no light elements exist in the solid inner core, there-

fore ∂ξ
∂z

is zero in V l and V s. Hence (3.3.16) becomes

Qg = −
∫
V sl

ρψαξvs
∂ξ

∂z
dV sl

= 4π

∫ d

0

ρgαξvs
∂ξ

∂z
(ri + z)3 dz, (3.3.17)

where we have assumed gravity is constant in the layer so that ψ =
∫
g dr = gr =

g(ri + z).

In conventional thermal history models the CMB heat flux is directly proportional

to the core cooling rate dTc
dt

(Gubbins et al., 2003). When a slurry is present this is not
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3.4 Boundary value problem

the case, because the specific heat in the slurry layer is conducted along the liquidus

temperature gradient rather than the adiabat, for example.

3.4 Boundary value problem

In this section we formulate a boundary value problem to solve the steady state system

(see equations 2.9.1e, 2.9.1g, 3.1.6, 3.1.7, and 3.1.20)

dT

dz
= −T∆V s,l

Fe

L
gρlFe −

RT 21000

aOL

dξl

dz
, (3.4.1a)

ξl
djz
dz

= gρlFe
ρlFe∆V

s,l
Fe,OaO

1000R

(
FD̄

Td
− D̄

T 2

∂T

∂z

)
−
(
vsρ

l
Fe + jz

) dξl

dz
, (3.4.1b)

−kd2T

dz2
= vsρ

l
Fecp

dT

dz
+ L

djz
dz

, (3.4.1c)

jz = −b(φ)∆V s,l
Fe,Ogρ

l
Fe, (3.4.1d)

subject to the boundary conditions (see equations 3.1.8, 3.1.9, 3.1.12, 3.1.14 and

3.1.16)

ξl(d) = ξT , (3.4.2a)

T (d) = Ta(d) (3.4.2b)

dT

dz

∣∣∣∣
z=0

= − Qi
s

4kπr2i
, (3.4.2c)

jz(0) = −ρsFevs, (3.4.2d)

jz(d) = 0. (3.4.2e)

Equations (3.4.1a)–(3.4.1d) form a fourth order system, but there are five boundary

conditions (3.4.2a)–(3.4.2e) which over-constrains the problem. A free parameter, F ,

is introduced through a turbulent mixing layer at the top of the slurry (see Section
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3. A STEADY-STATE BOX MODEL

3.1.2), which is controlled by the self-diffusion coefficient (3.1.19)

D̄ = DO exp

(
Fz

d

)
.

The unknown parameter F is an eigenvalue to be determined that satisfies (3.4.2e).

The boundary value problem is solved using MATLAB function bvp4c, which

implements a three-stage Lobatto IIIa formula using finite differences (Shampine et al.,

2000). Equations (3.4.1a)–(3.4.1d) are converted to an equivalent system of first order

ordinary differential equations for the solver. We substitute the liquidus (3.4.1a) into

the temperature equation (3.4.1c) to give

d2ξl

dz2
=

[
vsρ

l
FecpaO

1000kRT 2
− ∆V s,l

Fegρ
l
FeaO

1000RT 2
− 2

T

dξl

dz

]
dT

dz
+

aOL

1000kRT 2

djz
dz

. (3.4.3)

We label the variables

y1 = ξl, (3.4.4a)

y2 = T, (3.4.4b)

y3 = jz, (3.4.4c)

so that (3.4.1a), (3.4.1b) and (3.4.3) become

dy1
dz

= y4, (3.4.5a)

dy2
dz

= −K1y2 −K2y
2
2y4, (3.4.5b)

dy3
dz

=

[
−(y3 +K3)y4 +K4

(
FD̄

dy2
− D̄

y22

dy2
dz

)]
y−11 , (3.4.5c)

dy4
dz

=

[
K3K5

K2y22
− K1

K2y22
− 2y4

y2

]
dy2
dz

+
K6

K2y22

dy3
dz

, (3.4.5d)

102



3.5 Results and discussion

where

K1 =
gρlFe∆V

s,l
Fe,O

L
, (3.4.6a)

K2 =
1000R

aOL
, (3.4.6b)

K3 = vsρ
l
Fe, (3.4.6c)

K4 =
gρlFe

2
∆V s,l

Fe,OaO

1000R
, (3.4.6d)

K5 =
cp
k
, (3.4.6e)

K6 =
L

k
, (3.4.6f)

are constants. The slurry equations are solved subject to boundary conditions

y1(d) = ξT , (3.4.7a)

y2(d) = Ta(d), (3.4.7b)

y3(0) = −vsρsFe, (3.4.7c)

y3(d) = 0, (3.4.7d)

y4(0) =
Qi
s

kK2T 2
− K1

K2T
, (3.4.7e)

and the eigenvalue F is determined subject to y3(d) = 0.

3.5 Results and discussion

We investigate the effect of layer thickness, variations of the ICB heat flux and the

impact of high versus low thermal conductivity on a non-convecting, steady state slurry

layer. We solve the boundary value problem outlined in Section 3.4 to determine the

temperature, light element in the liquid phase and solid flux across the layer. Plots of
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3. A STEADY-STATE BOX MODEL

the solid fraction are obtained from the solid flux via the mobility model (2.7.4), and

are not computed from the BVP itself. All of the solutions should be consistent with

geophysical constraints such as the seismic density jump across the layer, and give

plausible CMB heat fluxes as described in Section 3.3. All parameters are kept fixed

as listed in Table 3.1.

Given the range of layer depths inferred from seismology in Table 3.1 and the

uncertainty in estimates of the ICB heat flux, layer thicknesses between 150 km and

300 km at different rates of secular cooling, Qi
s, are investigated. Initially a fixed

thermal conductivity with a high value of 107 W m−1 K−1 (Davies et al., 2015) and a

young inner core age of 0.5 Ga is investigated.

Figure 3.6 shows profiles of ξl, T , |jz| and φ/φB for a range of depths with

Qi
s = 1.6 TW. The solid flux is always negative since iron particles fall towards

the ICB under gravity in the negative ẑ-direction and its absolute value is plotted. The

solid fraction is normalised by its value at the base of the layer, φB. An increase in

light element concentration to the outer core value of 8 mol.% is clearly observed, and

its depressing effect on the liquidus towards the top of the layer is evidenced by the

steepening temperature gradient. Throughout the layer the solid flux remains close to

its value predetermined by the inner core growth rate, vs, at the ICB and then quickly

decreases to zero at the top where the effect of barodiffusion is enhanced by the tur-

bulent mixing layer. The solid fraction profile follows the behaviour of the solid flux,

since they are related by using Stokes flow as a model of mobility (2.7.4). The temper-

ature at the CSB is continuous, hence at the top of the layer the liquidus temperature is

equal to the adiabatic temperature. A departure in temperature from the anchor point

for the adiabat is evident at the base of the layer, since the actual temperature at the

ICB increases due to the latent heat transported there by falling solid particles that

have crystallised in the slurry. The slurry has developed an equilibrium by balancing
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Figure 3.6: (Clockwise from top left) Profiles of ξl, temperature, solid fraction nor-
malised by its value at the base of the layer, φB, and the absolute value of the solid
flux. Layer thickness is indicated by the legend. Secular cooling of the inner core is
fixed at Qi

s = 1.6 TW and the thermal conductivity is equal to 107 W m−1 K−1, with
an inner core age of τi = 0.5 Ga.
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Figure 3.7: (Clockwise from top left) Profiles of ξl, temperature, solid fraction nor-
malised by its value at the base of the layer, φB, and the absolute value of the solid
flux. Layer thickness is indicated by the legend. Secular cooling of the inner core is
fixed at Qi

s = 0.8 TW and the thermal conductivity is equal to 50 W m−1 K−1, with an
inner core age of τi = 1 Ga.
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the latent heat released by the freezing iron snow with the heat lost by cooling so that

the temperature is on the liquidus everywhere in the layer.

We compare lower estimates of the thermal conductivity to the solutions obtained

with a higher thermal conductivity. A lower value of k = 50 Wm−1 K−1 (Konôpková

et al., 2016), and an older inner core age of 1 Ga is selected. The steady state is

sensitive to the inner core age through the speed of ICB advance, vs, defined at the

base of the slurry, and this enters the boundary condition (3.4.2d) for the solid flux.

Profiles for a range of depths with a fixed secular cooling ofQi
s = 0.8 TW are given

in Figure 3.7. The speed of ICB advance has halved, resulting in the same factor of

reduction in the solid flux imposed at the base of the layer. In comparison to the higher

thermal conductivity solutions the reduction in solid flux yields a reduction in the light

element concentration at the ICB, as less freezing occurs to partition light element into

the liquid. Less light element in the liquid overall reduces the depression in the liquidus

temperature. A lower thermal conductivity restricts the amount of heat that can be

conducted through the layer along the adiabat, so more heat must be transported by the

slurry and increases the temperature compared to the higher thermal conductivity case.

Figure 3.8 shows the density and P wave speed profiles compared with PREM as

a function of radius, where a high and low thermal conductivity case is tested. Layer

thickness is varied between 150 – 300 km. The total density is calculated by adding the

fluctuations (2.9.1j) to the hydrostatic part (3.3.5). P wave speed (1.2.1) is determined

by (1.2.1)

vp =

√
Ks

ρ
,

where the bulk modulus, Ks, is taken from PREM. Plots of the density all show a

stably stratified layer, with less dense material overlaying more dense material. The

corresponding plots of P wave speed demonstrate the decrease in speed because of
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the density stratification compared with PREM. Seismic evidence suggests that the

slowdown in speed is about 0.7 – 0.8% (see Chapter 1). For the high conductivity case

the slowdown is around 0.2% whereas for the low conductivity case, the slowdown is

around 0.3%.

Figure 3.9 shows a phase diagram of solutions to the steady state model comparing

high and low thermal conductivity solutions. It shows that a wide range of solutions

satisfy the geophysical constraints on the density jump and the CMB heat flux. In-

creasing the layer thickness increases the density jump across the layer at a fixed Qi
s,

and similar increases in density jump are observed when increasing Qi
s for a fixed

layer depth. There is a proportional increase in the CMB heat flux with layer thickness

since a larger slurry volume releases more latent heat, and more secular cooling arises

because the liquidus gradient is steeper than the adiabat. Very high estimates of the

CMB heat flux are attained with Qi
s = 2 TW for thicker layers with a high thermal

conductivity.

Lower thermal conductivity models with smaller layer thicknesses can comfort-

ably provide acceptable solutions with lower rates of inner core secular cooling. Less

heat is conducted down the adiabat, and therefore more heat must be transported by

the slurry compared to high thermal conductivity models. The temperature drop and

hence the density jump increases across the layer in turn. Conversely, a higher ther-

mal conductivity decreases the density jump across the layer significantly, since more

heat is conducted along the adiabat and reduces the temperature drop across the slurry.

A larger density jump requires a greater layer thickness and/or stronger heating from

inner core secular cooling to compensate.
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Figure 3.8: Density and P wave speed over distance above the ICB compared with
PREM for a range of fixed layer thicknesses between 150 and 300 km. (Top row)
Qi
s = 1.6 TW, k = 107 Wm−1K−1, τi = 0.5 Ga. (Bottom row) Qi

s = 0.8 TW,
k = 50 Wm−1K−1, τi = 1.0 Ga.
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3.6 Summary

We have developed a simplified model of a slurry system to explain the dynamics

of a seismically distinct layer at the base of the Earth’s outer core. We propose that

the F-layer can be explained by a slurry layer where stable stratification arises from

particles of iron freezing out of the liquid alloy. As the iron particles fall under the

influence of gravity, residual light element migrates towards the CSB into the rest of the

outer core to help power the geodynamo. A steady state slurry zone that is chemically

stable and on the liquidus temperature everywhere is consistent with the seismically

inferred density jumps for a range of layer thicknesses and inner core secular cooling.

Sensible values of the total CMB heat flux are achieved, using both high and low

thermal conductivity. Greater layer thickness, secular cooling at the ICB and lower

thermal conductivity tend to favour a larger density jump.

The steady state slurry model presented in the chapter provides a good dynamical

description of the present day F-layer that agrees with current geophysical constraints.

In the proceeding chapters we test our assumptions on how an evolving slurry layer

coupled to the thermal history of the core could answer questions surrounding the ori-

gins of a slurry F-layer. While this box model generally satisfies the geophysical con-

straints, relatively high values of the heat flux through the CMB and hence a high rate

of inner core cooling is required. This is needed to keep the slurry on the liquidus near

the ICB. In Chapter 4 the boundary conditions of the slurry system is further developed

so that the global heat balance of the core remains consistent. A transformation from

a Cartesian box model to a spherical geometry is performed and a possible physical

scenario leading to a higher heat flux at the ICB is investigated.
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A steady-state spherical model
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In this chapter we extend the box model of Chapter 3 and develop a steady state

slurry in spherical coordinates to match the geometry of the core. Appropriate bound-

ary conditions are developed so that the slurry volume is coupled to the liquid outer

core and solid inner core in a consistent manner. We formulate a boundary value prob-

lem and the steady state solutions obtained will be used to initialise the time-dependent

model in Chapter 5. For this reason, it is important that the boundary conditions im-

posed are consistent. The objective of this chapter is to seek stably-stratified solutions

that match the seismic observations of the present day F-layer. Results will be used to

explain the evolution of the F-layer in the next chapter using a time-dependent model.

A schematic of the spherical steady state model is given in Figure 4.1.

fixed layer
thickness

r̂

CSB

ICB

liquid OC

solid IC

vf + vs

vf + vs

ξl(rsl) = ξT , T (rsl) = Tl(rsl),

j(rsl) = 0, dT
dr
|r=rsl = − Qsl

4kπr2sl
,

jr(ri) = −vsρsFe, dT
dr
|r=ri = −vfρ

s
FeL

k
.

Figure 4.1: A schematic of the boundary conditions imposed on the spherical steady
state slurry problem. The system is solved subject to six boundary conditions.
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4.1 Spherical geometry

We solve the steady slurry equations in spherical coordinates to account for geometric

effects. Recall the temperature equation (2.9.1d)

ρlFecp
DT

Dt
= ∇ · (k∇T + Lj) + ρlFeL

Dφ

Dt
. (4.1.1)

In the φ � 1 limit the last term on the RHS is assumed to be negligible, i.e. Dφ
Dt
→ 0.

In spherical coordinates, the divergence for a radially dependent slurry is

∇ ·A =
1

r2
∂ (r2Ar)

∂r
.

Therefore (4.1.1) in spherical coordinates is

DT

Dt
= κ

∂2T

∂r2
+

2κ

r

∂T

∂r
+

L

ρlFecp

∂jr
∂r

+
2L

rρlFecp
jr, (4.1.2)

where κ = k/ρlFecp is the thermal diffusivity, and we have assumed the slurry remains

static (u = 0).

Recall the light element equation (2.9.1b)

ρlFe
Dξ

Dt
= −∇ · i (4.1.3)

and the light element flux from (3.1.20)

ir =
gρlFe

2D̄∆V s,l
Fe,OaO

1000RT
− ξljr. (4.1.4)
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In spherical coordinates, (4.1.3) together with (4.1.4) becomes

ρlFe
Dξ

Dt
= K4

[
D̄

T 2

∂T

∂r
− 1

T

∂D̄

∂r
− 2

r

D̄

T

]
+

(
ξl
∂jr
∂r

+ jr
∂ξl

∂r
+

2

r
ξljr

)
(4.1.5)

where K4 = gρlFe
2
∆V s,l

Fe,OaO/1000R (3.4.6d), and we use r = ri + z to write the

functional form of the diffusion coefficient, D̄ (3.1.19) as

D̄ = DO exp

(
F (r − ri)

d

)
. (4.1.6)

In spherical coordinates, the liquidus equation is given by

∂T

∂r
= −g(r)K1T −K2T

2∂ξ
l

∂r
, (4.1.7)

where K1 = ρlFe∆V
s,l
Fe,O/L and K2 = 1000R/aOL. The constants K1, K2 and K4

(3.4.6) are the same values used in the box model with the same physical properties

given in Table 3.1, since quantities such as the latent heat do not vary greatly in a

steady state slurry layer.

4.2 Boundary conditions

The slurry ODEs form a fourth order system, however in this section we develop

six boundary conditions compared with the five boundary conditions used in the box

model. There are two boundary conditions on the heat flux at the ICB and CSB, two

boundary conditions on the solid flux at the ICB and CSB, one boundary condition on

the light element concentration at the CSB and one boundary condition on the temper-

ature at the CSB. Compared with the box model, the extra condition comes from the

heat flux imposed at the CSB. This is used to determine the snow speed, vs, at which
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4. A STEADY-STATE SPHERICAL MODEL

the ICB moves due the accumulation of iron particles snowing from the slurry.

We improve the ICB heat flux condition from the previous box model so that it is

closer to geophysical reality. We assume that the inner core is isothermal. In reality

the inner core is likely to be somewhere between isothermal and adiabatic since the

thermal diffusion timescale is tκ = r2i /κ ' 1.9 Ga (Pozzo et al., 2014), which is

longer than the oldest estimates of the inner core age of around 1 Ga. If the inner core is

convecting then the superadiabatic temperature is effectively ‘frozen in’ at the melting

point in the limit of zero thermal conductivity. If the inner core is isothermal then

the inner core cannot convect and the heat flux across the ICB is zero, because a high

thermal conductivity rapidly exchanges heat away so that no temperature gradients can

exist. Pozzo et al. (2014) use a core cooling rate of dTc
dt

= −100 KGa−1 to show that

the secular cooling of the inner core is Qi
s = 0.3 TW, whereas the adiabatic heat flux

is Qi
a = 1.6 TW. Assuming that there is no radiogenic heating in the inner core, this

indicates that the inner core is very subcritical because Qi
s < Qi

a. If the inner core was

assumed to be neutrally stable so that Qi
s = Qi

a, then this would require a much higher

cooling rate of dTc
dt

= −540 KGa−1, which corresponds to an extremely high CMB

heat flux of 66 TW. This value is implausible, since the surface heat flux of the Earth

is estimated to be 47± 2 TW (Davies & Davies, 2010).

If we assume that the inner core is subadiabatic, then the temperature gradient at the

ICB is too shallow to get onto the liquidus. If we assume that the inner core is adiabatic

then we would require an inner core that can release heat for a long time, which has

already been shown to be geophysically implausible. However we overcome this by

supposing that there exists an infinitely thin shell at the inner core surface where direct

freezing occurs, which introduces a freezing speed denoted by vf separate from the

ICB snow speed, vs, originally introduced in the coordinate transform in the steady

model (3.1.1). The freezing speed is a kinematic velocity rather than a fluid velocity,
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4.2 Boundary conditions

and is fixed at a constant value. This releases the latent heat necessary to elevate the

temperature gradient onto the liquidus in the slurry and maintain an isothermal inner

core. This model improves on the traditional model of iron freezing directly onto the

ICB, which does not explain the stable F-layer, and the box model in Chapter 3, which

did not consider an isothermal inner core. We adjust the previous coordinate transform

(3.1.1) to a spherical geometry by

r = r′ − vt, t = t′, (4.2.1)

The ICB advances through the combination of iron particles settling and accumulating

at the base of the F-layer, given by the snow speed vs, as well as through direct freezing,

vf . Therefore the total speed of ICB advance is the sum of these two components

v ≡ ṙi = vs + vf , (4.2.2)

and the material derivative becomes

Df

Dt
≡ −v∂f

∂r

for an arbitrary scalar function f . The latent heat flux at the ICB released from direct

freezing is therefore given by

Qi
l = 4πr2i vfρ

s
FeL at r = ri (4.2.3)

and replaces the ICB heat flux, Qi
s, (3.4.2c) that is no longer specified since the core is
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4. A STEADY-STATE SPHERICAL MODEL

isothermal. The condition on the temperature gradient at the ICB becomes

∂T

∂r

∣∣∣∣
r=ri

= −vfρ
s
FeL

k
. (4.2.4)

Compared to the previous box model, an extra condition is provided on the heat

flux at the CSB that will eventually couple the slurry with the thermal evolution of the

liquid outer core in the time-dependent model of Chapter 5. At the CSB we impose

∂T

∂r

∣∣∣∣
r=rsl

= − Qsl

4kπr2sl
, (4.2.5)

where the CSB heat flux,Qsl, is prescribed and time-independent for now. A high ther-

mal conductivity estimate of k = 107 Wm−1K−1 is used throughout to be consistent

with the value used in Chapter 3 (see Table 3.1).

Light element concentration remains continuous at the CSB and is fixed at a value

of ξT = 8 mol.%. Temperature is also continuous at the CSB and is equal to the

liquidus temperature, Tl, given by the melting data obtained from ab initio calculations.

The liquidus data for a core composition of Fe0.82Si0.10O0.08 (Pozzo et al., 2013) is

available as a polynomial fit given by Davies et al. (2015) as a function of pressure, p,

in GPa given by

Tl(p) = a0 + a1p+ a2p
2 + a3p

3, (4.2.6)

where the coefficients an are given in Table 4.1. Although the slurry model assumes a

binary Fe-O alloy, its melting curve is not defined clearly in the literature. The assumed

composition of the core may significantly alter the results of this model through the

temperature condition at the CSB, but the exact nature of the light elements present in

the core remain under debate (see Chapter 1).

Additionally, the solid flux at the ICB remains proportional to the speed of IC
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4.2 Boundary conditions

n 0 1 2 3
an 1698.55 27.3351 -0.0664736 7.94628× 10−5

Table 4.1: Table of interpolation constants an used to approximate the liquidus Tl for
a core composition of Fe0.82Si0.10O0.08 (Pozzo et al., 2013) according to a polynomial
fit (4.2.6) given by Davies et al. (2015).

growth, vs, due to accumulating iron particles where

jr = −vsρsFe at r = ri, (4.2.7)

however vs is no longer fixed and is an eigenvalue to be determined by the BVP now

that there is an extra boundary condition on the CSB heat flux. The solid flux at the

CSB is equal to zero as before in the box model (3.4.2e), so we impose

jr = 0 at r = rsl, (4.2.8)

which is met by invoking a turbulent mixing layer that enhances barodiffusion at the

CSB, and the mixing parameter F is an eigenvalue to be determined by the BVP

that controls the exponential form of the self-diffusion coefficient of oxygen given

by (4.1.6).
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4. A STEADY-STATE SPHERICAL MODEL

4.3 Boundary value problem

In summary the time-independent
(
∂
∂t
→ 0

)
slurry equations to be solved in a spherical

geometry (see equations 4.1.2, 4.1.5, 4.1.7) are

∂T

∂r
= −T∆V s,l

Fe

L
gρlFe −

RT 21000

aOL

∂ξl

∂r
(4.3.1)

ξl
∂jr
∂r

=
1

r2
∂

∂r

(
r2gρlFe

2
D̄∆V s,l

Fe,O

TR 1000
aO

)
−
(
vρlFe + jr

) ∂ξl
∂r
− 2

r
ξljr, (4.3.2)

−k∂
2T

∂r2
= vρlFecp

∂T

∂r
+ L

∂jr
∂r

+
2k

r

∂T

∂r
+

2L

r
jr, (4.3.3)

and the self-diffusion coefficient takes an exponential form (4.1.6) given by

D̄ = DO exp

(
F (r − ri)

d

)
.

A side-by-side comparison of the boundary conditions used in the box model and

the spherical model is given in Table 4.2. Note that compared with the box model,

there is an extra boundary condition on the CSB heat flux that determines the extra

free parameter, vs, that enters the solid flux condition at the ICB. Similarly the mixing

parameter, F , is also an eigenvalue to be determined by imposing zero solid flux at the

CSB.

The boundary value problem is solved as before using MATLAB function bvp4c,

and requires formulating the problem as a system of first order differential equations.

We label the variables

y1 = T, (4.3.4a)

y2 = ξ (4.3.4b)

y3 = j, (4.3.4c)
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4.3 Boundary value problem

Box model Spherical model

−4kπr2i
∂T

∂z

∣∣
z=0

= Qi
s

ξ(d) = ξT

jz(d) = 0

jz(0) = −ρsFevs
T (d) = Ta(d)

−4kπr2i
∂T

∂r

∣∣
r=ri

= 4πr2i vfρ
s
FeL

−4kπr2sl
∂T

∂r

∣∣
r=rsl

= Qsl

ξ(rsl) = ξT

jr(rsl) = 0

jr(ri) = −ρsFevs
T (rsl) = Tl(rsl)

Table 4.2: A side-by-side comparison of the boundary conditions applied to box model
and the spherical problem.

so equations (4.3.1)–(4.3.3) become

∂y1
∂r

= y4, (4.3.5a)

∂y2
∂r

= − K1

K2y1
− y4
K2y21

, (4.3.5b)

∂y3
∂r

=
1

y2

{
− (vK3 + y3)

∂y2
∂r
− 2

r
y2y3 +K4

(
FD̄

dy1
− D̄y4

y21
+

2D̄

ry1

)}
, (4.3.5c)

∂y4
∂r

= −vK3K5y4 −
2

r
y4 −K6

∂y3
∂r
− 2K6

r
y3 (4.3.5d)

and are solved subject to boundary conditions

y2(rsl) = ξT , (4.3.6a)

y1(rsl) = Tl(rsl), (4.3.6b)

y4(ri) = −vfρ
s
FeL

k
, (4.3.6c)

y4(rsl) = − Qsl

4kπr2sl
, (4.3.6d)

y3(ri) = −ρsFevs, (4.3.6e)

y3(rsl) = 0, (4.3.6f)
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4. A STEADY-STATE SPHERICAL MODEL

where constantsK1 toK6 are given by (3.4.6), except thatK3 = ρlFe so that v = vf+vs

is no longer held constant. Physical and material properties given in Table 3.1 remain

the same unless stated otherwise in the text.

4.4 Results and discussion

We vary the CSB heat flux, Qsl, freezing speed, vf , and the layer thickness, d, to seek

stably-stratified solutions that are suitable for initialising the time dependent system in

Chapter 5. If we assume that the ICB heat flux, Qi
s, is between 0.5 and 2 TW (Pozzo

et al., 2014), then

vf =
Qi
s

4πr2i ρ
s
FeL

(4.4.1)

gives a freezing speed range of 2.8 ≤ vf ≤ 11.2 × 10−12 ms−1. The CSB heat flux is

a geophysically uncertain value, so we widely vary the CSB heat flux between 1 and

6 TW. The CSB heat flux is added to the secular cooling, Ql
s, and gravitational power,

Ql
g, of the liquid outer core to obtain the total CMB heat flux. Plausible estimates of

the CMB heat flux are in the range of 5 ≤ Qc = Qsl + Ql
s + Ql

g ≤ 17 TW (see Table

3.1).

Figure 4.2 shows steady state results for a fixed layer thickness of 150 km and vf =

2.8× 10−12 ms−1 (which corresponds to an ICB heat flux of 0.5 TW), where the CSB

heat flux is varied between 1 and 6 TW. Primarily the oxygen profiles are unstable

and decrease from an ICB concentration that is higher than the imposed CSB value for

solutions with 1 ≤ Qsl ≤ 4 TW. For higher CSB heat flows the oxygen concentration

at the ICB is lower than the fixed CSB value, though the layer remains unstable in the

region immediately above the ICB and then stabilises part way through the layer as the

radius increases. The parameter most responsible for this effect is the freezing speed,

vf , because this sets the ICB temperature gradient and hence the ICB oxygen gradient
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Figure 4.2: Profiles of the temperature, oxygen concentration, solid flux and density
over radius for CSB heat fluxes between 1 and 6 TW. Layer thickness is fixed at
150 km and freezing speed is fixed at 2.8 × 10−12 ms−1. (Bottom right) Dotted line
refers to the PREM density.
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Figure 4.3: Comparison of temperature, oxygen concentration, solid flux and density
profiles between the spherical model (solid) and the box model (dashed). CSB heat
fluxes between 2 and 6 TW in the spherical case correspond with the same colour key
shown in Figure 4.2. Layer thickness, d, is fixed at 150 km and freezing speed, vf ,
is fixed at 11.2 × 10−12 ms−1. Snow speeds determined by the spherical model vary
between 0.10 × 10−11 ms−1 and 2.6 × 10−11 ms−11, which are input as fixed values
into the box model. (Bottom right) Dotted line refers to the PREM density.
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through the liquidus. The chosen value of the thermal conductivity also affects the ICB

temperature gradient, where we have used a value of k = 107 Wm−1K−1. For a stable

oxygen configuration, a positive ICB gradient is desirable. The temperature profiles are

related to the oxygen profiles through the liquidus, and monotonically decrease from

the ICB temperature to the imposed temperature at the CSB. The solid flux follows

a more linear profile, whereas previously in the box model the profile was constant

throughout the majority of the layer before sharply decreasing to zero as determined

by the turbulent mixing layer (note that the plots in Chapter 3 show the absolute value

of the solid flux, whereas it remains negative here). This difference in behaviour is

attributed to the treatment of the solid flux condition at the ICB, in which a fixed value

is imposed in the box model whereas the solid flux is free to be determined in the

spherical system. An overall density stratification steeper than PREM is not observed

for most CSB heat fluxes imposed, with most profiles falling below the PREM density

except for the case when Qsl = 6 TW. Steady state solutions obtained with d =

150 km and vf = 2.8× 10−12 ms−1 are therefore not viable initial states for the time-

dependent model.

Figure 4.3 shows results for the same parameter values but with a higher freezing

speed of vf = 11.2× 10−12 ms−1 (which corresponds to an ICB heat flux of 2.0 TW).

This is compared with solutions from the steady state box model using equivalent

boundary conditions: snow speeds, vs, determined by the spherical problem and an

ICB heat flux of Qi
s = 2.0 TW are input as a fixed values into the box model (see

Table 4.2). For simulations with a CSB heat flux of 1 TW, positive values of the solid

flux are observed so the solution is rejected because the model of mobility (2.7.4) used

to solve for φ yields complex values. Also a positive value of the solid flux indicates

that solid is moving upwards, which is inconsistent with present-day observations of a

stably-stratified F-layer. The same general trends for the increasingly linear behaviour
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of the temperature and solid flux is observed when the imposed CSB heat flux is lower.

Importantly, the oxygen profiles are stable for all values of the CSB heat flow since the

value of the freezing speed is high enough to set a steeper ICB temperature gradient

that corresponds with a positive oxygen gradient at the ICB through the liquidus. The

concentration increases from an ICB value that varies between 6.8 and 7.8 mol.%, be-

fore approaching the imposed CSB value of 8.0 mol.%. Density stratification above the

PREM density is observed for CSB heat fluxes of 4 TW and above, with an increasing

ICB density jump as the CSB heat flux increases.

Compared with the box model, the temperature gradient imposed at the CSB in the

spherical model is shallower than the temperature gradient that is free to be determined

by the box model. Through the liquidus relation, this presents as a shallower oxygen

gradient at the CSB compared with the box model. Temperatures at the ICB in the

spherical model are more spread and generally higher than the ICB temperatures found

in the box model, and similarly oxygen concentrations at the ICB are more spread

and lower than the oxygen concentrations encountered the box model. The solid flux

profiles are similar between the spherical and box models for Qsl = 2 TW and more

prominent deviations are observed at higher CSB heat fluxes, which is an outcome

of changing the condition on the solid flux at the ICB. Density stratification in the

spherical model is much stronger than the box model for CSB heat flows between 4

and 6 TW.

A greater layer thickness of 300 km is also explored. For freezing speeds of

2.8 × 10−12 ms−1 all solutions again contained an unstable oxygen profile, whereas

for freezing speeds of 11.2× 10−12 ms−1 all solutions contained a desired stable oxy-

gen profile. Figure 4.4 presents a comparison of results obtained from the spherical

and box models for a layer thickness of 300 km. Snow speeds obtained vary between

0.18× 10−11 ms−1 and 2.30× 10−11 ms−1, and are faster compared with d = 150 km.
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Figure 4.4: Comparison of temperature, oxygen concentration, solid flux and density
profiles between the spherical model (solid) and the box model (dashed). CSB heat
fluxes between 2 and 6 TW in the spherical case correspond with the same colour key
shown in Figure 4.2. Layer thickness, d, is fixed at 300 km and freezing speed, vf ,
is fixed at 11.2 × 10−12 ms−1. Snow speeds determined by the spherical model vary
between 0.18 × 10−11 ms−1 and 2.30 × 10−11 ms−11, which are input as fixed values
into the box model. (Bottom right) Dotted line refers to the PREM density.
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Figure 4.5: Comparing the mixing parameter, F , and snow speed, vs, between the
spherical and box models for d = 150 km and vf = 11.2× 10−12 ms−1.

The solid flux in the spherical model appears to follow a less linear profile as the CSB

heat flow increases for a thicker layer compared with a thinner layer. The CSB temper-

ature is lower when d = 300 km because the CSB is located at a lower pressure and

corresponds to a lower melting temperature. Overall the temperature curves are less

spread at the ICB compared to the case when d = 150 km, however the oxygen profiles

display a significantly different trend. For d = 300 km the oxygen concentration gra-

dient increases more sharply to meet the CSB condition on the oxygen concentration

to create an “S” shaped curve, for CSB heat fluxes greater than 2 TW. For d = 150 km

this shape is significantly less pronounced. In contrast the oxygen gradient decreases

as it approaches the CSB for Qsl = 2 TW for both layer thicknesses. We proceed with

analysing solutions for the thinner layer of 150 km since the oxygen profiles exhibit a

more desirable uniform oxygen stratification.

Figure 4.5 shows a comparison of F determined by the box model and the spherical
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Figure 4.6: Comparing the heat flows between the spherical and box models for d =
150 km, vf = 11.2× 10−12 ms−1 and vs = 1.3× 10−11 ms−1.

model. The mixing parameter F ranges between 0.5 and 2.6 as it increases with a

higher snow speed, which corresponds with an increasing CSB heat flux imposed in

the spherical model. The greatest difference is found when the snow speed is lowest,

whereas the difference lessens at higher snow speeds. The higher values of F in the box

model is consistent with the observation that the profiles of the temperature, oxygen

concentration and solid flux increase more rapidly towards zero on approach to the

CSB compared with the spherical model, due to the enhanced diffusion in the turbulent

mixing layer.

Figure 4.6 compares the heat flows between the spherical model and the box model.

Layer thickness is fixed at 150 km and a freezing speed of vf = 11.2 × 10−12 ms−1

is selected, which corresponds to an ICB heat flow of 2.0 TW. Fixing the CSB heat

flow in the spherical model at 4.0 TW yields a snow speed of vs = 1.3× 10−11 ms−1

that is input into the box model to fix the solid flux condition at the ICB. The proce-
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dure for calculating components of the global heat balance is the same as the Cartesian

case, where the spherical transform (4.2.1) is applied. The total CMB heat flow adds

up to 14.1 TW in the spherical case and 13.2 TW in the box model. The majority of

this difference comes from the decrease in gravitational energy in the box model since

much shallower gradients in oxygen concentration occur, therefore less compositional

energy is released. The gravitational power in the spherical case is 1.9 TW. There

is a moderate increase in CSB heat flow to 5.1 TW in the Cartesian geometry, where

steeper CSB temperature gradients are encountered compared with the spherical ge-

ometry. The secular cooling in the liquid outer core is equal to 8.0 TW in both cases,

since the temperature at the CSB determined by liquidus data is evaluated at the same

radius since the layer thicknesses are fixed. Hence the adiabat constructed from the

CSB to the CMB is the same in both cases, assuming that the core cooling rate, dTc
dt

,

remains the same (see equation 3.3.10) so that an identical amount of specific heat of

cooling is computed in the liquid outer core.

4.5 Summary

In this chapter the one-dimensional box model of the steady state slurry outlined in

Chapter 3 is extended and transformed into spherical coordinates to reflect the ge-

ometry of the core. In anticipation of building a fully time-dependent model, more

sophisticated boundary conditions are developed to couple the slurry layer to the in-

ner and outer core volumes in a consistent manner. We assume that the inner core is

isothermal, since recent high thermal conductivity estimates suggest that the present-

day inner core is not thermally convecting. The heat flux across the ICB is zero for an

isothermal inner core, since no temperature gradients exist as heat rapidly leaks from

the inner core via conduction. We allow a small amount of interfacial freezing to oc-
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cur at the ICB to lift the temperature gradient onto the liquidus in the slurry layer, on

account of the fact that in reality the inner core is somewhere between isothermal and

adiabatic. Inner core growth associated with interfacial freezing is compounded with

the inner core growth related to the accumulation of solid particles produced by the

slurry. Hence the ICB speed is composed of two parts: the freezing speed, vf , and the

snow speed, vs, which is a notable alteration compared with the box model.

Another way that the spherical model differs from the box model is the additional

constraint on the CSB heat flux. A prescribed and constant value of the heat flux is

imposed on the CSB that in turn specifies the temperature gradient at the CSB. This

condition is developed furthermore in Chapter 5 as it becomes regulated by a time-

dependent CSB heat flux consistent with the thermal evolution of the entire core. For

the purposes of this chapter the CSB heat flux is held constant in order to find a suitable

initial condition for the time-dependent system. The total CMB heat flow is calculated

by adding the CSB heat flow together with the secular cooling and gravitational power

of the liquid outer core.

Other boundary conditions remain the same as the conditions imposed in the box

model. This includes imposing a continuous oxygen concentration at the CSB that

equals a fixed concentration of 8 mol.% found in the bulk of the liquid outer core.

The temperature at the CSB is continuous with the melting temperature provided by

data from ab initio calculations for an Fe0.82Si0.10O0.08 alloy. Solid flux at the CSB

is set to zero and the solid flux at the ICB remains proportional to the snow speed

of accumulating solid particles falling under gravity. In total there are six boundary

conditions on the spherical system: two on the heat flux at the ICB and CSB, two on

the solid flux at the ICB and CSB, one on the oxygen concentration at the CSB and

one on the temperature at the CSB.

The steady state spherical slurry equations form a fourth order system, therefore the
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4. A STEADY-STATE SPHERICAL MODEL

two extra boundary conditions imposed determine the free parameters F , the mixing

parameter, and vs, the snow speed. A boundary value problem is formulated as a series

of first order differential equations and solved subject the boundary conditions. We

examine the effect of varying the freezing speed, CSB heat flux and layer thickness on

the profiles of temperature, oxygen concentration, solid flux and density, as well as on

parameters F , vs and the global heat balance.

For a fixed layer thickness of 150 km, a low freezing speed corresponding to a

latent heat flux 0.5 TW at the ICB resulted in solutions containing unstable oxygen

profiles. We identified that a low freezing speed imposed a shallow ICB temperature

gradient that relates to a negative ICB oxygen gradient via the liquidus. A high freezing

speed corresponding with an ICB latent heat flux of 2 TW is great enough to overcome

negative pressure gradient term in the liquidus and produce a positive oxygen gradient

at the ICB. This provided stable oxygen profiles that form suitable initial states for a

time-dependent system. Solutions for the high freezing speed are computed for CSB

heat fluxes ranging from 1 and 6 TW. The solution for 1 TW is rejected since positive

values of the solid flux were observed, which is inconsistent with the model of mobility

and present-day observations of a stably-stratified F-layer.

Profiles were compared with equivalent solutions computed from the box model for

CSB heat flows of 2 TW and above. Snow speeds determined by the spherical problem

are input as a fixed value into the box model. The equivalent latent heat flux released by

direct freezing in the spherical model is input as a fixed ICB heat flux in the box model,

so that a like-for-like comparison can be made. In general temperatures encountered

in the spherical case are higher than those found in the Cartesian case, even though

they are both fixed at the same liquidus temperature at the CSB. A similar behaviour

is observed with the oxygen concentrations, where the spherical model yields lower

values than the box model. These effects combine to give a greater density jump in the
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spherical model compared with the box model, and a desirable density stratification

that exceeds the PREM density is observed for high enough CSB heat flows. Solid

flux curves behave more linearly compared to the Cartesian case, where profiles of the

solid flux are almost the same in both cases when the snow speed is lowest, and then

increasingly deviate from each other as the snow speed increases.

A greater layer thickness of 300 km is explored and compared with the equivalent

system in a Cartesian geometry. Oxygen profiles remain stable for a high freezing

speed, though their gradients vary more within the layer to create a prominent “S”

shaped curve as the CSB heat flow increases. Deviations in the solid flux solutions

obtained in the box model become more prominent as the CSB heat flow increases,

even when the imposed values at the ICB and CSB are exactly the same. Solutions for

the oxygen concentration in a thinner layer contain a more stable gradient, therefore

we continue the analysis using a layer thickness of 150 km to generate a suitable initial

condition for the time-dependent model.

We compare the mixing parameter, F , between the spherical and box models for a

fixed layer thickness of 150 km. It was generally found that values in the box model are

much higher compared with the spherical solutions, which is reflected in the steeper

behaviour of the solid flux as it approaches zero at the CSB where barodiffusion is

enhanced in the mixing layer. The heat flow through the core containing a slurry

layer 150 km thick, with a high freezing speed and a moderate snow speed of vs =

1.8 × 10−11 ms−1, is evaluated. The total heat flow in the spherical case is 13.9 TW,

where the CSB heat flux is fixed at 5.0 TW. The secular cooling in the liquid outer

core is similar in the box model and the spherical model. The major difference stems

from the difference in gravitational power as oxygen concentration gradients in the

spherical case are significantly greater.

Some of the steady state results obtained in this chapter are able to explain the
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present day observations of the F-layer and form a starting point for the time-dependent

model developed in the next chapter. We have obtained solutions with a stable oxygen

profile and a sufficient density stratification that are consistent with present-day obser-

vations of the F-layer. This provides a suitable initial state that can be used to initialise

the time-dependent system.
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The steady-state models demonstrate that the modern day F-layer can be explained

by a slurry that produces stably-stratified layers. In order to understand the possible

origin and evolution of the F-layer over time, we develop a one-dimensional, time-

dependent slurry system in this chapter. More sophisticated boundary conditions are

developed so that the slurry volume is coupled to the thermal evolution of the liquid

outer core and solid inner core. A solution from the steady-state problem is used to

generate a suitable initial condition for the time-dependent model. Numerical testing

is performed to verify that reliable solutions are produced. We examine a couple of

test case solutions and present a discussion of the results.

A schematic of the time-dependent model and its boundary conditions is given in

Figure 5.1.

r̂

CSB

ICB

liquid OC

solid IC

ṙsl

ṙi

ξl(rsl) = ξT (t), T (rsl) = Tl(rsl),

j(rsl) = 0, −4kπr2sl
∂T
∂r
|r=rsl = Qc −Ql

s(t)−Qg(t),

ṙi = vf + vs(t), dT
dr
|r=ri = −vfρ

s
FeL

k
.

Figure 5.1: A schematic of the boundary conditions imposed on the time-dependent
slurry problem.
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5.1 Time-dependent equations

Recall that the governing time-dependent, static, slurry equations in spherical coordi-

nates (see 4.1.2, 4.1.5 and 4.1.7) are

DT

Dt
= κ

∂2T

∂r2
+

2κ

r

∂T

∂r
+

L

ρlFecp

∂jr
∂r

+
2L

rρlFecp
j, (5.1.1a)

ρlFe
Dξ

Dt
= K4

[
D̄

T 2

∂T

∂r
− 1

T

∂D̄

∂r
− 2

r

D̄

T

]
+

(
ξl
∂jr
∂r

+ jr
∂ξl

∂r
+

2

r
ξljr

)
(5.1.1b)

∂T

∂r
= −g(r)K1T −K2T

2∂ξ
l

∂r
, (5.1.1c)

where

D̄ = DO exp

(
F (r − ri)

d

)
, (5.1.2)

is the enhanced self-diffusion coefficient.

Note that for the time-dependent problem, both the ICB and CSB boundaries can

move at different speeds as the layer thickness is no longer assumed to be fixed. We

formulate the equations in the rest frame so that we no longer use the coordinate trans-

forms (3.1.1) in the box model, and (4.2.1) in the spherical model. Instead we trans-

form into a moving frame as outlined in Section 5.3 below.

5.2 Boundary conditions

In the time-dependent model the layer thickness is no longer fixed, so that the locations

of the ICB and CSB are able to independently change over time as the inner core

grows. Therefore some physical properties, such as gravity, become dependent on

radius rather than taken as constant as in the previous steady-state models. The slurry

ODEs form a fourth order system, solved subject to six boundary conditions. In the

steady case, there are two boundary conditions on the heat flux at the ICB and CSB,
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5.2 Boundary conditions

one boundary condition on the light element concentration at the CSB, one boundary

condition on the temperature at the CSB and one boundary condition on the solid flux

at the CSB. A slightly different boundary condition is used to constrain the position

of the moving ICB instead of (but similar to) the solid flux condition on the ICB as

before.

The time-dependent global heat balance of the core with no rotation and no mag-

netic field is given by

− 4kπr2sl
∂T

∂r
= Qc −Ql(t)−Qg(t) at r = rsl(t), (5.2.1)

where the LHS is the heat flux out of the slurry, Qc is the CMB heat flux, which

is prescribed and assumed fixed over time, Ql
s(t) is the secular cooling of the liquid

outer core (OC) volume, which changes over time as the core cools, and Qg(t) is

the gravitational power, which changes over time as the liquid volume decreases. To

calculate the secular cooling of the OC, the adiabatic temperature in the OC must be

computed.

To calculate the adiabat, the position of the CSB, rsl(t), must be determined. In the

steady-state model the layer thickness is fixed so that the liquidus data provided by ab

initio calculations is evaluated at a fixed CSB radius to yield its temperature

T (rsl) = Tl(rsl). (5.2.2)

In the time-dependent model this process is reversed, so that the temperature is freely

calculated by the time-dependent system which is used to pinpoint the CSB location

using the melting data. The CSB speed is then defined by

ṙsl =
∆rsl
∆t

, (5.2.3)
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5. A TIME-DEPENDENT SLURRY

where ∆rsl is the change in CSB radius after timestep ∆t.

Once T (rsl) is determined, an adiabat, Ta, can be constructed from the CSB to the

CMB, which then determines the CMB temperature, Tc, so that the core cooling rate

can be computed by
dTc
dt

=
∆Tc
∆t

, (5.2.4)

where ∆Tc is the change in CMB temperature after timestep ∆t. The adiabat is given

by

Ta(r, t) = Tcsb(t) exp

(
−
∫ r

rsl(t)

gγ

φ
dr

)
, (5.2.5)

where γ is Grüneisen’s parameter and φ is the seismic parameter. Grüneisen’s param-

eter quantifies the thermoelastic properties of core material (Vocadlo et al., 2000), and

the seismic parameter is given by φ = v2p in the liquid core, in which vp is the P wave

velocity taken from PREM. The adiabat (5.2.5) is used to calculate the secular cooling

of the OC volume, given by

Ql
s(t) = −

∫ rc

rsl

4πr2ρcp
∂Ta
∂t

dr, (5.2.6)

where ∂Ta
∂t

is the change in adiabatic temperature over time. Note that compared

with the corresponding calculation (3.3.10) in the steady-state, the cooling rate is no

longer fixed because this becomes a consistent quantity (5.2.4) within a time-dependent

framework now that the adiabatic temperature varies with time.

Gravitational energy, Qg(t), is liberated when light element from the slurry moves

into the convecting liquid outer core and releases heat, which enters into the global

energy balance (5.2.1). This is given by

Qg =

∫
V

ρu · ∇ψ dV, (5.2.7)
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originally defined in (2.10.16). An equivalent time-dependent expression is given by

Qg(t) = ṙsl

∫ rc

rsl+δr

9MOr
2
sl

(r3c − r3sl)
2 g(r)r3 dr, (5.2.8)

derived in Appendix A, where MO is the fixed mass of oxygen contained in the OC.

This expression makes use of the CSB speed, ṙsl, and accounts for the radially depen-

dent gravitational acceleration, g(r).

The concentration of light element at the CSB, ξT , is no longer held constant at

8 mol.%, since the liquid outer core volume is decreasing over time while the inner

core and slurry volume grows. Hence ξT ≡ ξT (t) is time-dependent and is determined

by

ξT (t) =
MO

M l(t)
at r = rsl(t), (5.2.9)

where MO is the total oxygen mass, which is fixed throughout time since it cannot be

destroyed or created within the core and we assume that oxygen cannot be exchanged

with the mantle. The mass of the liquid outer core, M l(t), shrinks over time as a

function of the growing inner core and slurry volume, which is given by

M l(t) = Mcore −M s(t)−M sl(t), (5.2.10)

where Mcore = 1.84×1024 kg (Dziewonski & Anderson, 1981), M s(t) ' ρsFe
4πr3i
3

and

M sl(t) ' 4π
3
ρlFe (r3sl − r3i ). For the sake of simplicity we assume that the IC density

is constant since it varies by less than 2.6% according to PREM, and that the density

across the slurry is close to the reference density, ρlFe.

Instead of a condition on the solid flux at the ICB given by (4.2.7) in the steady-

state spherical model, this is replaced by an equivalent condition on the ICB speed
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itself given by

ṙi = vf + vs(t), (5.2.11)

where the snow speed, vs(t) = j(ri, t)/ρ
s
Fe is similar to (4.2.7) and is free to be deter-

mined and the freezing speed, vf , is prescribed and assumed constant.

For completeness, the solid flux condition on the CSB (4.2.7),

jr(rsl, t) = 0 (5.2.12)

and the condition on the ICB heat flux (4.2.3)

dT

dr

∣∣∣∣
r=ri

= −vfρ
s
FeL

k
(5.2.13)

remain the same as in the steady-state spherical case.

5.3 Landau transform

If we consider the problem in the rest frame, then it is numerically difficult to resolve

a slurry with two moving boundaries at ri(t) and rsl(t), since variables would need

to be interpolated as the mesh changes with each timestep. We take an alternative

approach and perform a Landau transform. This is a common method implemented in

Stefan problems, which are a class of moving boundary problems that involve phase

change (Alexiades, 1992). In our model of the core, each interface is treated as an

infinitesimally thin surface where the ICB separates the inner core from the slurry and

the CSB separates the slurry from the outer core. We perform a Landau transform

x =
r − ri(t)

rsl(t)− ri(t)
, t = t′ (5.3.1)
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5.3 Landau transform

so that the ICB, r = ri(t), maps to x = 0 and the CSB, r = rsl(t), maps to x = 1 at

each timestep. There is no change in the transform of the time coordinate. The Landau

transform means that the partial derivative for an arbitrary variable a with respect to

time in the x coordinate system is

∂a

∂t
=

∂a

∂t′
∂t′

∂t
+
∂a

∂x

∂x

∂t

=
∂a

∂t′
− ∂a

∂x
· xṙsl + (1− x)ṙi

rsl − ri
, (5.3.2)

where ṙi = ∂ri/∂t, ṙsl = ∂rsl/∂t. The partial derivative with respect to r becomes

∂a

∂r
=

∂a

∂t′
∂t′

∂r
+
∂a

∂x

∂x

∂r

=
1

rsl − ri
∂a

∂x
, (5.3.3)

and the second derivative is

∂2a

∂r2
=

∂

∂r

(
∂a

∂r

)
=

1

(rsl − ri)2
∂2a

∂x2
. (5.3.4)

This transform is a generalisation of the Gubbins et al. (2008) transform employed in

Chapters 3 and 4 when a fixed layer depth was assumed.

After performing a Landau transform, and assuming that the slurry is static, then

the temperature equation (5.1.1a) becomes

∂T

∂t
− x ˙rsl + (1− x)ṙi

rsl − ri
∂T

∂x

=
κ

(rsl − ri)2
∂2T

∂x2
+

κ

(rsl − ri)
2

ri + x (ri − rsl)
∂T

∂x

+
L

ρlFecp (rsl − ri)
∂jr
∂x

+
2Ljr

ρlFecp [ri + x (rsl − ri)]
, (5.3.5)
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the light element equation (5.1.1b) becomes

∂ξl

∂t
− x ˙rsl + (1− x)ṙi

rsl − ri
∂ξl

∂x

=
K4

ρlFe

{
D̄

(rsl − ri)T 2

∂T

∂x
− FD̄

(rsl − ri)T
− 2

[ri + x(rsl − ri)]
D̄

T

}
+

1

ρlFe

{
ξl

rsl − ri
∂jr
∂x

+
jr

rsl − ri
∂ξl

∂x
+

2

[ri + x(rsl − ri)]
ξljr

}
, (5.3.6)

and the liquidus (5.1.1c) becomes

1

rsl − ri
∂T

∂x
= −g(r)K1T −

K2T
2

rsl − ri
∂ξl

∂x
. (5.3.7)

5.4 Numerics

We define a regularly spaced mesh for x ∈ [0, 1] by

xm =
m− 1

nx
for m = 1, ..., nx + 1,

with the total number of gridpoints nx defining the numerical resolution, and a spatial

step size of ∆x = 1/nx. A time mesh is defined by

tn =
n− 1

nt
for n = 1, ..., nt + 1,

where nt is the total number of points in time and the timestep is given by ∆t = 1/nt.

We solve equations (5.3.5)-(5.3.7) implicitly using the Crank-Nicolson scheme. The

Crank-Nicolson method samples the ODE at time t = tn+ 1
2

that is second order in time

and unconditionally stable (Morton & Mayers, 2005). The scheme is a combination

of the forward Euler method at n, which utilises three points, and a backward Euler
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m− 1, n+ 1 m,n+ 1 m+ 1, n+ 1

m− 1, n m, n m+ 1, n

n+ 1
2

Figure 5.2: A stencil of the Crank-Nicolson scheme applied to a one-dimensional prob-
lem.

method at n + 1, which also utilises three points. Figure 5.2 shows a stencil for the

Crank-Nicolson scheme applied to a one-dimensional problem, which utilises all six

points. The θ rule is implemented so that the explicit forward and implicit backward

schemes can be weighted to either improve accuracy or stability, with θ ∈ [0, 1]. The

usual value of θ for the Crank-Nicolson method is 0.5, which gives a second-order

accuracy. If θ = 0, then the scheme becomes a less numerically stable explicit forward

Euler method, whereas if θ = 1, then the scheme becomes an implicit backward Euler

method with improved numerical stability. We write ξl → ξ and jr → j henceforth so

that indices m and n can be used.

We denote the finite difference approximations by

un+θm = θun+1
m + (1− θ)unm (5.4.1a)

Dtu
n+θ
m =

un+1
m − unm

∆t
(5.4.1b)

Dxu
n+θ
m = θ

(
un+1
m+1 − un+1

m−1

2∆x

)
+ (1− θ)

(
unm+1 − unm−1

2∆x

)
(5.4.1c)

D2
xu

n+θ
m = θ

(
un+1
m+1 − 2un+1

m + un+1
m−1

∆x2

)
+ (1− θ)

(
unm+1 − 2unm + unm−1

∆x2

)
(5.4.1d)

where unm is a numerical approximation at mesh point xm and timestep tn of an arbi-

trary function, u, such as the temperature, T , oxygen concentration, ξ, or the solid flux,
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j. Thus the temperature equation (5.3.5) becomes

DtT
n+θ
m −

(
xmDtr

n+θ
sl + (1− xm)Dtr

n+θ
i

rn+θsl − r
n+θ
i

)
DxT

n+θ
m

=
κ(

rn+θsl − r
n+θ
i

)2D2
xT

n+θ
m +

2κ(
rn+θsl − r

n+θ
i

) [
rn+θi + xm

(
rn+θsl − r

n+θ
i

)]DxT
n+θ
m

+
L

ρlFecp
(
rn+θsl − r

n+θ
i

)Dxj
n+θ
m +

2Ljn+θm

ρlFecp
(
rn+θi + xm

(
rn+θsl − r

n+θ
i

))
for 2 ≤ m ≤ nx (5.4.2)

the light element equation (5.3.6) becomes

Dtξ
n+θ
m −

(
xmDtr

n+θ
sl + (1− xm)Dtr

n+θ
i

rn+θsl − r
n+θ
i

)
Dxξ

n+θ
m

=
K4

ρlFe

{
FD̄m(

rn+θsl − r
n+θ
i

)
(T n+θm )2

DxT
n+θ
m − FD̄m(

rn+θsl − r
n+θ
i

)
T n+θm

− 2D̄m(
rn+θi + xm

(
rn+θsl − r

n+θ
i

))
T n+θm

}
+

1

ρlFe

{
ξn+θm(

rn+θsl − r
n+θ
i

)Dxj
n+θ
m

+
jn+θm(

rn+θsl − r
n+θ
i

)Dxξ
n+θ
m +

2(
rn+θi + xm

(
rn+θsl − r

n+θ
i

))ξn+θm jn+θm

}

for 1 ≤ m ≤ nx (5.4.3)

and the liquidus (5.3.7) becomes

1(
rn+θsl − r

n+θ
i

)DxT
n+θ
m = −gn+θm K1T

n+θ
m −

K2

(
T n+θm

)2(
rn+θsl − r

n+θ
i

)Dxξ
n+θ
m

for 1 ≤ m ≤ nx (5.4.4)
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where

D̄m = DO exp (Fxm) (5.4.5)

is the enhanced self-diffusion coefficient of oxygen at mesh point xm, and the gravita-

tional acceleration is given by

gn+θm ≈ g(rm, t
n+θ), (5.4.6)

in which g(rm, t
n+θ) is given by a polynomial fit to the PREM data (Dziewonski &

Anderson, 1981).

The temperature equation is second order and parabolic. Therefore (5.4.2) is solved

at the interior mesh points x2, ..., xnx , which gives n − 1 algebraic equations to solve

for the temperature. At endpoints x1 and xnx+1, the boundary conditions (5.2.1) and

(5.2.13) are imposed. The three-point endpoint finite difference formulae required to

implement these conditions are given by

D+
x u

n+θ
1 = θ

(
−3un+1

1 + 4un+1
2 − un+1

3

2∆x

)
+ (1− θ)

(
−3un1 + 4un2 − un3

2∆x

)
(5.4.7a)

D−x u
n+θ
nx+1 = θ

(
un+1
nx−1 − 4un+1

nx + 3un+1
nx+1

2∆x

)
+ (1− θ)

(
unnx−1 − 4unnx + 3unnx+1

2∆x

)
(5.4.7b)

so that the condition on the ICB temperature gradient becomes

1(
rn+θsl − r

n+θ
i

)D+
x T

n+θ
1 = −vfρ

s
FeL

k
(5.4.8)
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and the condition on the CSB heat flux is

−
4kπ

(
rn+θsl

)2(
rn+θsl − r

n+θ
i

)D−x T n+θnx+1 = Qc −Ql
s(t

n+θ)−Qg(t
n+θ) (5.4.9)

where

Ql
s(t

n+θ) =

∫ ro

rn+θsl

4πr2ρcpDtT
n+θ
a dr (5.4.10)

Qg(t
n+θ) = Dtr

n+θ
sl

∫ ro

rn+θsl

9MO

(
rn+θsl

)2(
r3o −

(
rn+θsl

)3)2 gn+θm (rn+θm )3 dr, (5.4.11)

in which Simpson’s rule is used to perform the integration over the radius of the liquid

outer core.

We solve nx equations in (5.4.3) to determine the solid flux, j, at each timestep. At

the mesh point xnx+1, we impose the condition

jn+θnx+1 = 0, (5.4.12)

which ensures that the solid flux at the CSB is zero.

We solve nx equations in (5.4.4) to obtain the light element concentration, ξ. At

mesh point xnx+1, we impose the condition

ξn+θnx+1 = ξT (tn+θ), (5.4.13)

where ξT is defined by (5.2.9).
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The ICB position, ri, is numerically determined by

Dtr
n+θ
i = vf −

jn+θ1

ρsFe
(5.4.14)

where the freezing speed, vf , is assumed to be constant. The CSB position, rsl is given

by

T n+θnx+1 = Tl(rsl, t
n+θ), (5.4.15)

where the temperature at the CSB is freely determined by the system and the liquidus

data (4.2.6) is used to find the CSB position.

In total there are 3nx + 5 equations to be solved for 3nx + 5 unknowns that form a

tridiagonal linear system

Ay = y0.

We use a MATLAB iterative nonlinear solver fsolve to solve this system of equa-

tions to advance in time, where A is a (3nx+5)× (3nx+5) matrix, y are the variables

to be determined at the weighted timestep θtn+1 + (1 − θ)tn, and y0 are the known

variables at the previous timestep. Vectors y and y0 are populated by a linear index of

the variables T , ξ, j, ri and rsl, and the equations are re-written in implicit form so that

the residual equations can be minimised by the solver.

5.5 Initialisation

We initialise the time-dependent system using a solution from the spherical steady-

state problem in Chapter 4. An initial guess, y0, is provided to the time-dependent

system using the selected parameters in Table 5.1. This solution is chosen because the

oxygen profile is stable everywhere in the layer with a sufficient density stratification,

and the calculated CMB heat flow is moderate (see Figure 4.3). The mixing parameter,
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d (km) Qsl(TW) Qc (TW) vf (ms−1) F
150 4 13.9 11.2× 10−12 2.08

Table 5.1: Selected input parameters used in the initial state.

F , that is provided is fixed throughout time. The CMB heat flux is calculated accord-

ing to the global heat balance (5.2.1), and then assumed to be constant throughout the

time-dependent simulation. Though the initial solution is in a steady-state, there is an

underlying time dependence of the moving ICB due the growing inner core given by v

in the coordinate transform (4.2.1). We choose a small timestep of ∆t = 10−6 Ga to

calculate the secular cooling, Qs, and the gravitational power, Qg, according to equa-

tions (5.2.6) and (5.2.8) to determine the CMB heat flow, Qc that will be prescribed in

condition (5.2.1). The same timestep will be used to initialise the time-dependent code

before increasing to a larger timestep where data is collected.

5.6 Testing

5.6.1 Initial transient phase

To determine whether the time-dependent code is reliable, we aim to reproduce the

steady-state solution using a small time-step. Equivalent boundary conditions from the

spherical steady-state problem are imposed on the time-dependent system (see Table

5.2), and the simulation is initialised with the solutions computed using the parameters

in Table 5.1. We choose a θ value of 0.6 in the Crank-Nicolson scheme, so that the

solution method is slightly more implicit than explicit to enhance numerical stability,

while retaining close to second order accuracy. We select a small time-step of ∆t =

10−6 Ga to minimise the time-dependent effects and analyse the initial behaviour of

the time-dependent code.
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Initial state Time dependent

−k∂T
∂r

∣∣
r=ri

= vfρ
s
FeL

−4kπr2sl
∂T

∂r

∣∣
r=rsl

= Qsl

ξ(rsl) = ξT

j(rsl) = 0

j(ri) = −ρsFevs
T (rsl) = Tl(rsl)

−k∂T
∂r

∣∣
r=ri

= vfρ
s
FeL

−4kπr2sl
∂T

∂r

∣∣
r=rsl

= Qc −Ql(t)−Qg(t)

ξ(rsl) = ξT (t)

j(rsl) = 0

ṙi = vf + vs(t)

T (rsl) = Tl(rsl)

Table 5.2: A side-by-side comparison of the boundary conditions applied to the ini-
tial state, created using the spherical steady-state model of Chapter 4 and the time-
dependent problem.

Figure 5.3 shows the time-dependent simulation over the first 5 time-steps There

is a very small immediate change in the ICB temperature after the first time-step, but

the rest of the solution near the CSB closely follows the initial state thereafter. Similar

behaviour is observed for the light element concentration, which is expected because

temperature and light element are linked through the liquidus relation. We encounter

a transient phase in the solid flux during the initial stages of the simulation, where the

value of the solid flux at the ICB oscillates between each time-step. The system takes

time to settle down to a numerically stable solution. We deal with the initial transience

by running the time-dependent model using a small time-step until a numerically stable

state is reached. Data from the initial period is ignored in the interpretation of the final

results, and the full time-dependent simulation is run for long enough so that the bias

effect from the initial transient phase is negligible. A time series of the snow speed, vs,

for the same simulation is run for a longer total time of 10−3 Ga. There is a clear initial

transient phase observed in the first 1 × 10−4 Ga of the simulation before the system

settles to a more steady value. We therefore ignore results from the first 1 × 10−4 Ga

of the simulation, as these reflect deviations from the initial condition and are not
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Figure 5.3: Initial stages of the time-dependent simulation over 5 time-steps with ∆t =
10−6 Ga. Initial state (dashed) given by the steady-state solution d = 150 km, Qsl =
4 TW, F = 2.08 and vf = 11.2 × 10−12 ms−1. (Lower-right) A time series of the
snow speed, vs, over 10−3 Ga.

representative of the fundamental dynamics of the slurry system. Figure 5.4 shows the

solid flux from the same simulation over a longer time period. This shows the evolution

of the solid flux after the initial transient phase has passed and oscillations at the ICB

are no longer observed, where j(ri) smoothly increases over time. We proceed with

confidence that the time-dependent scheme is free from initial transient effects after a

simulated time of 1× 10−4 Ga using a small time-step of 10−6 Ga.
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Figure 5.4: Evolution of the solid flux profile after ignoring the initial transient period.
Initial state is given by the steady-state solution d = 150 km, Qsl = 4 TW, F = 2.08
and vf = 11.2× 10−12 ms−1.
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Qc(TW) F vf (ms−1) nr Percent difference
13.9 2.08 11.2× 10−12 25 –
13.9 2.08 11.2× 10−12 50 0.7000 %
13.9 2.08 11.2× 10−12 100 0.0030 %
13.9 2.08 11.2× 10−12 200 0.0008%

Table 5.3: Selected input parameters used in resolution test, and the percentage differ-
ence in results between each simulation.

5.6.2 Resolution testing

To confirm that the solutions computed by the time-dependent scheme given in Section

5.4 are reliable, the same simulation is performed using different mesh resolutions. A

simulation is well-resolved and reliable if the solutions agree with the results of a

higher resolution test. A time series of the layer thickness evolution, d(t), is used

to compare results, and is performed for every test case to ensure that the results are

reliable.

An example of a resolution test is given in Figure 5.5. The numerical resolution

is doubled in each simulation until a reliable time series of d(t) is achieved. Table

5.3 shows the input parameters selected for this resolution test. After running the

resolution test, we find the maximum percentage difference in the layer thickness,

calculated by

max

(
dnr(t)− d2nr(t)

dnr(t)

)
× 100,

For nr = 25 and 50, the difference is less than 0.7%. The percentage difference

between the results for nr = 50 and 100 is less than 0.003%. After doubling the reso-

lution to nr = 200 mesh points, there is less than 0.0008% difference compared with

nr = 100. We suppose that a difference of less than 0.003% is acceptable, therefore

we proceed with confidence that results from this test case using nr = 50 mesh points

is reliable.
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Figure 5.5: A time series of the layer thickness evolution, d(t) for numerical resolution
25, 50, 100 and 200. The percentage difference in results for resolutions 50 and 100 is
less than 0.0030%, therefore indicating that the numerical simulations at nr = 50 are
reliable for this test case.
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5.7 Results and discussion

Input parameters explored include the CMB heat flux, Qc, mixing parameter, F , and

the interfacial freezing rate, vf . As discussed in the steady-state problem, geophysi-

cally plausible estimates of the CMB heat flux lie between 5 and 17 TW (see Table

3.1). The CMB heat flux enters the model via the CSB heat flux condition (5.2.1). The

mixing parameter, F , enters the problem in the self-diffusion coefficient, D̄ (5.1.2).

Currently there is no estimation of what the interfacial freezing speed, vf , would be

according to observations or experiments. The purpose of vf is to lift the temperature

at the ICB onto the liquidus, since we have assumed that the inner core is isothermal.

We test values of vf that correspond with reasonable ICB heat fluxes of 0.5 TW and

2 TW.

Complete solutions of the temperature, oxygen concentration and solid flux sim-

ulated over a time of 1 billion years using parameters from the resolution test case

described in Table 5.3 are presented in Figure 5.6. The effect of core cooling over

time is evident in the decreasing temperatures experienced in the slurry layer, with a

decrease of 240 K in the ICB temperature over a billion years. This is fast compared to

the calculated core cooling rate of dTc
dt

= −56 KGa−1, which is much smaller than the

cooling rate used in steady-state models (see Table 3.1). The temperature gradient at

the ICB steepens slightly over time since latent heat release due to interfacial freezing,

vf , scales with the decreasing thermal conductivity across the core. Similarly, the CSB

temperature gradient steepens over time as more heat is extracted from the slurry as the

core cools. Temperature changes within the layer more or less follows a linear profile.

The evolution of light element concentration within the slurry layer quickly changes

from a stable configuration given by the initial state (see Figure 4.3), to an unstable con-

figuration with more light element at the bottom compared with the top of the layer.
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As the outer core decreases in volume due to the growing size of the inner core and

slurry volume, the concentration of light element in the outer core bulk increases from

7.7 mol.% at t = 0.1 Ga to 8.8 mol.% by t = 1 Ga. Note that the concentration does

not start from the usual value of 8 mol.% because of the initial transient phase that

has been ignored. The light element concentration at the base of the layer initially in-

creases monotonically over time from a value of 7.9 mol.% at time t = 0.1 Ga before

increasing to 9.5 mol.% by t = 1 Ga.

Profiles of the solid flux in the time-dependent case significantly differ from the

profiles presented in Chapter 3. One such feature is that the solid flux behaves more

linearly. This is caused in part by the different boundary conditions imposed on the

solid flux at the ICB: for the time-dependent case this is free to be determined by

the solution whereas in Chapter 3 the solid flux is explicitly related to the inner core

growth rate, vs, which is assumed to be fixed. The solid flux goes to zero at the top

of the layer as imposed by the zero solid flux condition at the CSB. The slurry is

snowing much harder at the bottom of the layer compared with the top. An increased

rate of solidification at the base of the layer leaves more light element in the residual

liquid, therefore increasing the oxygen concentration in this region as evidenced by

Figure 5.6. Fixing the mixing parameter, F , may have been responsible for this effect,

whereas previously in Chapter 3 this was free to be determined and had a higher value

(see Figure 4.5). More stable oxygen configurations are attained in the box model

since there is a uniform amount of solid produced over the majority of the slurry layer

before decreasing sharply to zero at the CSB.

Figure 5.7 shows the ICB and CSB position and speed over time. The ICB starts

from a radius of 1262 km after 0.1 Ga, and then increases to 1663 km after 1 billion

years. The CSB starts from an initial value of 1443 km and increases to 1924 km after

1 billion years. From Figure 5.8, it can clearly be seen that the layer thickness under-
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Figure 5.7: ICB and CSB position (left) and speed (right) over 1 billion years. Qc =
13.9 TW, F = 2.08 and vf = 11.2× 10−12 ms−1.

goes a period of growth before receding at t = 0.80 Ga. Relaxing the condition on

the layer thickness that was previously fixed at d = 150 km allows the layer thickness

to rapidly deviate from the initial state. Figure 5.7 shows that the CSB speed continu-

ally decreases over time, whereas the ICB speed increases steadily before decelerating

at around 0.6 Ga. The boundary speeds concur at t = 0.80 Ga, the time at which

the layer begins to shrink. Figure 5.8 also shows the evolution of the density profile

within the slurry layer. A stably–stratified layer exceeding observations from PREM

is barely obtained at t = 0.1 Ga and subsequently falls below PREM thereafter. This

is primarily a result of the unstable oxygen profiles negatively contributing to the total

density.

Evolution of the snow speed can be inferred from the solid flux at the ICB using

(4.2.7). The magnitude of vs is the same order of magnitude as vf . The sum of vs

and vf gives ṙi ∼ 10−11 ms−1, the ICB speed. From Figure 5.7 it can be seen that the

magnitude of ṙsl, the CSB speed, is on the order of 10−11 ms−1 also and continually

decelerates. Therefore the balance between ṙi and ṙsl, and hence layer thickness, is

partly controlled by vs and vf . An increasing amount of snow is produced over time,
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thereby increasing the rate at which the ICB advances compared with the CSB and so

the layer will eventually diminish given enough time.

The CMB heat flux is a parameter assumed to be constant and imposed onto the

system that is originally determined by the CSB heat flux selected in the initial state.

An initial CSB heat flux of 4 TW corresponds to a CMB heat flux of 13.9 TW after

solving the spherical steady-state problem. The rate of heat loss by secular cooling in

the liquid outer core decreases from a 7.7 TW to 4.7 TW over the course of the time-

dependent simulation. This is balanced by the overall increase in the CSB heat flux and

gravitational power over time, with the former increasing from 2.4 TW to 4.5 TW, and

the latter increasing from 3.8 TW to 4.7 TW by the end of the simulation. There is a

large jump of the CSB heat flux from 4 TW to 2.4 TW during the initial transient phase

of the simulation, causing the temperature gradient at the CSB to become more shallow

than in the initial state. The increase in CSB heat flux throughout the simulation is

predominantly dependent on the geometric increase in CSB radius, rsl, and grows

accordingly as the inner core enlarges. Gravitational energy is related to the CSB

speed, ṙsl and the CSB radius also. The increasing ICB heat flux is initially set by the

freezing speed, vf , and then mostly scales with the geometric increase of the inner core

radius over time.

Figure 5.10 shows the results of the time-dependent code initialised using a steady-

state solution with a higher initial CSB heat flow of 6 TW, amounting to a fixed CMB

heat flow Qc = 21.4 TW. The freezing speed remains the same at vf = 11.2 ×

10−12 ms−1 and the mixing parameter determined by the initial state is F = 2.58.

Similar behaviour is again observed, where the temperature and solid flux straighten

out to a more linear profile while the oxygen concentration quickly becomes unstably

stratified. The layer attains a greater thickness since it immediately adjusts from the

initialised layer thickness of 150 km to 213 km, and the initial speed at which the
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Figure 5.10: Results with a higher CMB heat flow of Qc = 21.4 TW, F = 2.58 and
vf = 11.2× 10−12 ms−1.
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CSB speed advances is much greater. The snow speed and hence the total ICB speed,

ṙi = vs + vf , is also greater than before, but this is dominated by ṙsl to achieve a

greater layer thickness overall at t = 0.1 Ga. More heat is flowing out of the core than

is geophysically plausible, with Qc = 21.4 TW. Nevertheless, by comparing a high

heat flow case to a lower heat flow case, key characteristics of the slurry system can be

elucidated. The CSB heat flux grows from 2.8 TW at 0.1 Ga to 6.4 TW by 1 Ga, which

is almost two terawatts more than at the end of the low heat flow case (see Figure 5.8).

Extracting more heat from the slurry steepens the temperature gradient at the CSB even

more, so that the light element gradient at the CSB is shallower through the liquidus

relation. Therefore if we wish to obtain a more stable oxygen profile, then the heat

flow out of the slurry should be large enough to allow a more positive ξ gradient at

the CSB through the liquidus. Density stratification above PREM is prolonged and is

observed up to 0.2 Ga into the simulation.

5.8 Summary

A time-dependent slurry model is developed to explain the evolution of the F-layer over

the course of geological time. The slurry equations are solved in spherical coordinates

to account for the geometric effect of large core volumes changing in size over a billion

year time-scale. Other physical properties, such as gravity, also become a function of

radius over such length-scales. The condition on the oxygen concentration at the CSB

becomes dependent on time, because the bulk of the liquid outer core contains a fixed

mass of oxygen and the outer core volume significantly reduces over time as the inner

core grows, thereby increasing the oxygen density.

The slurry system is coupled to the thermal history of the core by ensuring that the

heat flow from the solid inner core and liquid outer core is continuous across the slurry
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boundaries. We assume that the inner core is isothermal to prevent it from losing too

much heat over time, therefore a freezing speed is introduced at the ICB to release the

latent heat necessary to lift the temperature onto the liquidus from an isothermal state.

This means the total speed at which the ICB advances due to the flux of solid slurry

particles accumulating at the base of the layer also includes this newly introduced

freezing speed in addition. No solid flux is allowed at the CSB, since solidification

cannot occur outside of the slurry region. We allow a continuous temperature across

the CSB so that the liquidus temperature matches with the adiabatic temperature.

A numerical code is developed where a Crank-Nicolson scheme is employed and a

Landau transform is applied. This useful transform is commonly used in free boundary

problems involving phase change, known as Stefan problems, to deal with boundaries

that move in time. Numerical tests were performed to ensure that the time-dependent

code is able to reproduce the initial steady-state well. An initial transient phase occurs

in the opening 10−4 Ga of the time-dependent simulation, as a result of a jump discon-

tinuity in the initial condition. Therefore the initial period of simulation is ignored in

the results, since these contain numerical artefacts that do not represent slurry dynam-

ics. A resolution test is applied and it was identified that a mesh resolution using 50

nodes is reliable.

The time-dependent code is initialised using a solution to the steady-state problem

modified from Chapter 4 to make the boundary conditions consistent. A condensed

list of boundary conditions used to create the initial state compared with the time-

dependent problem is presented in Table 5.2.

Results from the time-dependent simulations illustrated prominent features of the

slurry system. Solutions of the temperature, light element and solid flux displayed

more linear behaviour compared with the previous steady-state results of Chapter 3.

Simulations showed that a stable oxygen configuration is difficult to maintain, even
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if an initial state containing a stable oxygen profile is input into the system. This is

because increased rates of solidification at the base of the layer compared with the

top leaves more light element in the residual liquid in this region, therefore destabil-

ising the layer. Barodiffusion remains enhanced using an exponential form, so that

the solid flux is able to vanish at the CSB. The F parameter controls how strong the

barodiffusive effect is, and is output from the initial state. This parameter is then fixed

as an input value throughout the duration of the time-dependent simulation. Limiting

the F parameter to a fixed value may contribute to the unstable oxygen configurations

determined by the time-dependent system, since this is responsible for the more lin-

ear behaviour of the solid flux. In the spherical steady-state set-up, Figure 4.5 shows

that the F parameter is sensitive to the CSB heat flux, whereas in the time-dependent

system the CSB heat flux varies with time but F does not.
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6.1 Summary

6.1 Summary

A self-consistent slurry model was developed and used to explain key features of the

F-layer. Previous attempts to explain the F-layer have failed to produce an adequate

description of the dynamical processes that allow the layer to remain stably-stratified

while simultaneously allowing light material released from freezing out the inner core

to pass through it. This thesis has developed a plausible mechanism for explaining

the F-layer, and a useful model has been developed so that the possible origin of the

F-layer may be explored.

In Chapter 2, the thermodynamics outlined by Loper & Roberts (1977, 1980, 1987)

governing the slurry system was extensively examined. Starting from the fundamental

conservation laws for mass, energy, and momentum, the governing slurry equations

were outlined and a thermodynamically consistent treatment of creating solid phase

through freezing a two-component system was derived. The complexity associated

with handling a two-component, two-phase, non-equilibrium theory, such as particle

history dependence on composition, was discussed. The general non-equilibrium the-

ory was reduced by applying the fast-melting limit, which assumes that the timescale

of phase change in the slurry is instantaneous. Consequently, the slurry is in phase

equilibrium and is constrained to the liquidus temperature at all times. The liquidus

was derived, using the lever rule, that distinctly links the temperature to the light el-

ement concentration. The general theory was reduced further by assuming that the

slurry mixture is a binary alloy composed of iron and oxygen. By applying a con-

stant solid composition, no oxygen is incorporated into the solid. After assuming both

fast-melting and constant solid, the constitutive relations for the diffusive fluxes were

elucidated, which completed the conservative equations. A model of mobility was

augmented into the solid flux equation to describe the sedimentation of solid parti-
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cles according to Stokes’ flow. Jump conditions at the layer boundaries were derived

from first principles that describe the total mass, solid mass and total energy at the

slurry boundaries, which determine the boundary conditions imposed on the system.

A global heat balance of the core containing a slurry was established and later used to

constrain the results of the model.

A one-dimensional, steady-state box model with a fixed layer thickness was de-

vised in Chapter 3. The slurry was transformed to a frame of reference that moved

at the ICB speed as the inner core grows from solid iron particles accumulating at

the base of the layer. Approximations were applied to simplify the model, where we

assumed that

• the speed of ICB growth was linear, for the sake of simplicity

• light element could not diffuse through the solid so that the self-diffusion coeffi-

cient of oxygen became independent of φ

• ideal solution theory could be applied so that the thermodynamic derivatives of

the chemical potential could be estimated

• gradients of φ and the “Soret”-like term in the light element flux were negligible.

The governing equations form a fourth order system of ODEs, and boundary conditions

for the box model were developed. We imposed a continuous temperature and oxygen

concentration at the CSB, fixing a continuous heat flux at the ICB, as well as a fixing

the solid flux at the ICB proportional to the snow speed as iron particles accumulate

at the base of the slurry layer. We also forced the solid flux to vanish at the CSB,

adding a free parameter that models a turbulent mixing layer at the top of the slurry.

Geophysical constraints on the density jump across the layer and the total CMB heat

flow were outlined to determine whether solutions to the slurry model are feasible.
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Results showed that a steady-state slurry layer can produce a stably-stratified layer

that could explain the observed characteristics of the F-layer. Solutions using both

high and low thermal conductivities showed that the slurry was compositionally stable

and exhibited a total density stratification steeper than PREM.

The box model provided a sound basis for linking the slurry to the rest of the

core. In Chapter 4, we modified the geometry and transformed the slurry equations

from Cartesian to spherical coordinates, and the appropriate boundary conditions were

advanced. We assumed an isothermal inner core that introduced a freezing velocity

at the ICB in addition to the previous snow velocity associated with the accumulation

of solid particles at the base of the layer. Latent heat release at the ICB lifted the

temperature gradient onto the liquidus whilst maintaining an isothermal inner core.

An additional constraint on the CSB heat flux was imposed that accounted for the heat

extracted from the slurry by the overlying, convective outer core. Melting data from

ab initio studies was incorporated into the condition on the CSB temperature, so that

by fixing the layer thickness the CSB temperature can be matched with the melting

data. Other boundary conditions remained the same as in the box model, bringing the

total number of boundary conditions to six. As a consequence, the ICB snow speed

was an eigenvalue to be determined. Results showed that a sufficient amount of latent

heat release at the ICB was required to provide a stable oxygen configuration. Through

the liquidus relation, the temperature gradient needed to be large enough to overcome

the pressure contribution to provide a positive oxygen gradient. Solutions containing

a stable oxygen configuration and a density stratification that exceeded PREM were

produced when the freezing speed was equal to 11.2 × 10−12 ms−1 and the CSB heat

flux was higher than 3 TW. The effect of increasing the fixed layer thickness to 300 km

led to an “S” shaped curve in the oxygen profiles. Barodiffusion was less enhanced in

the spherical model compared with the box model, resulting in a more linear behaviour
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of the solid flux profiles despite having exactly the same conditions on the solid flux

imposed at the boundaries. For a specific test case exhibiting a stable stratification,

total heat flows between the box and spherical models were compared. This case

showed that a slightly steeper CSB temperature gradient in the box model resulted

in the generation of more heat coming out of the slurry layer, though the gravitational

power was greatly diminished so that the spherical model yielded a higher CMB heat

flow overall.

The test case computed from the spherical state model was used as an initial condi-

tion for the time-dependent model developed in Chapter 5. Governing time-dependent

equations were outlined and boundary conditions were coupled to the thermal history

of the core. This was achieved by modifying the condition on the CSB heat flux to

admit a time-dependent energy balance, where the cooling adiabat reduces the specific

heat lost in the outer core, and the liberation of light elements as core material crys-

tallises increases the gravitational power over time. We assumed that the CMB heat

flux was constant, which was calculated from the total CMB heat flux in the initial

steady-state. To probe the origins of the F-layer and establish whether it can be formed

by a growing slurry layer, the layer thickness was no longer held fixed and was free

to be determined by the system. Consequently, the mixing parameter used to enhance

diffusion in the turbulent mixing layer was held fixed at its initial state value instead.

We assumed that oxygen cannot be created or destroyed in the core, therefore the oxy-

gen concentration at the CSB became variable with time since its density increases as

the liquid outer core volume shrinks whilst the inner core grows over geological time-

scales. Other boundary conditions remained the same as in the spherical steady-state

model. We verified the time-dependent code by reproducing the solution from the ini-

tial state using a small time-step, however an initial transient period was identified in

the solid flux. For a specific test case, we deduced that results from the first 1×10−4 Ga

174



6.1 Summary

of the simulation should be neglected, to avoid effects of a jump discontinuity from the

initial condition, before settling to a more numerically stable state. We also identified

that the test case solutions using 50 mesh points was as reliable as using 100 mesh

points. Results from the time-dependent model suggested a more linear behaviour of

the temperature, oxygen concentration and solid flux profiles compared with the steady

box model as a result of fixing the mixing parameter and allowing the layer thickness

and ICB solid flux to be freely determined. A stable oxygen profile was difficult to pre-

serve in the few cases tested since more solidification at the base of the layer enriched

the residual liquid with buoyant oxygen that destabilises the layer. Over the course of

a simulated time period of one billion years, an appreciable amount of growth in layer

thickness was detected before it began to diminish. Discovering a regime where the

slurry layer was able to grow is a meaningful step towards explaining the origins of the

F-layer, though more work is required to determine whether the stratification within

the layer can be sustained.

175



6. CONCLUSION

6.2 Project aims revisited

Chapter 1 set out the aims and objectives of the project that guided the research illus-

trated in this thesis. We revisit these aims and consider whether the objectives have

been met:

1. Derive the governing equations and boundary conditions of a slurry.

(a) Develop a mathematical description of the slurry model based on the gen-

eral theory of LR77, LR80, LR87, RL87.

The thermodynamic foundations of a slurry system were outlined in Chap-

ter 2 and reduced to an idealised fluid dynamical model. This was achieved

by applying suitable approximations such as the fast-melting limit and con-

stant solid composition. Conservative equations for the total mass, light

element, solid mass, energy and momentum were outlined, and the con-

stitutive equations for the light element, solid mass and entropy flux were

derived.

(b) Determine appropriate boundary conditions for the slurry layer.

Boundary conditions that preserve the conservation laws for energy, mass

and momentum were derived from first principles in Chapter 2. Appro-

priate boundary conditions that were specific to the steady-state box model

(Chapter 3), steady-state spherical model (Chapter 4) and the time-dependent

model (Chapter 5) were developed further.

2. Establish a geophysically plausible, one-dimensional, steady-state slurry model.

(a) Derive an idealised, steady-state numerical model that captures the funda-

mental processes of a slurry.

A simple box model was developed in Chapter 3. To ensure the solid flux
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vanishes at the CSB, we model a turbulent mixing layer that enhances dif-

fusion, caused by the difference in velocities between the slurry and the

vigorously convecting outer core. An equivalent model in spherical coor-

dinates was developed in Chapter 4, wherein more geophysically realistic

boundary conditions were advanced. Consequently, this produced some

different solutions relative to the box model.

(b) Explore the parameter space to produce geophysically consistent solutions

that explain the F-layer.

A suite of steady-states was generated by fixing the layer thickness at dif-

ferent values while varying the heat flows and thermal conductivity. Results

showed that a slurry is able to produce a stably-stratified layer describing

an F-layer that was compatible with the geophysical constraints. Solutions

from the spherical steady-state problem formed a suitable initial state for

the time-dependent model.

3. Investigate the geophysical implications of the slurry’s presence in the core over

time.

(a) Present a time-dependent model of the slurry with the relevant boundary

conditions that couple the layer to the changing thermal state of the core.

Chapter 5 retained the time-dependent parts of the slurry equations and al-

lowed the boundaries to move independently from each other so that layer

thickness can grow or shrink over time. Boundary conditions were de-

veloped so that the CSB heat flow out of the slurry was connected to the

evolution of the global heat balance. Numerical tests were implemented to

verify the code and establish mesh independence.

(b) Demonstrate that the F-layer can be formed by a growing slurry layer.
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We have discovered that a time-dependent slurry can undergo a signifi-

cant period of layer growth over geological time-scales, however the layer

quickly destabilises as the light element concentration gradient becomes

unstable. Suggestions for how this might be improved have been identi-

fied, and a more extensive parameter search is still needed. Recommended

further work is provided in Section 6.4.
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6.3 Discussion

Several assumptions were made in order to produce a slurry model, and these are

appraised in the following discussion. These assumptions include

(i) fast-melting

(ii) constant solid composition

(iii) binary mixture

(iv) ideal solution theory

(v) static slurry

(vi) Stokes’ flow model of mobility

(i) The fast-melting limit considerably simplifies the thermodynamics and con-

strains the system to remain in phase equilibrium, therefore the temperature follows

the liquidus in the slurry. Without this limit departures from phase equilibrium must

be incorporated into the constitutive relations using a macroscopic measure of the mi-

croscopic crystal growth process (Loper, 1992), which is precluded by assuming the

fast-melting limit. Nucleation may be a factor that can complicate the slurry model.

Classical nucleation theory (Christian, 1965) suggests that critical supercooling rates

are as high as 1, 000 K for homogeneous nucleation of the inner core, which is para-

doxically so large that the inner core never freezes out (Davies et al., 2019; Huguet

et al., 2018). A less extreme position is that the degree of supercooling sufficient for

nucleation is attained only at the ICB itself. Though possible it would be difficult to

explain the F-layer, since it would not be clear how a consistent thermal and compo-

sitional structure could be explained if the layer contained no solid. Alfè et al. (2011)
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find no evidence of a barrier to melting/freezing using molecular dynamics simula-

tions, and find that the mean waiting time to nucleate iron for a particular supercooling

rate decreases as the system size increases. The degree of supercooling required to

nucleate solid iron at core conditions during the onset of inner core freezing is poorly

constrained, therefore the extent to how nucleation theory applies to the slurry model

is unknown in this period of the Earth’s history. However once nucleation has occurred

there will always be nucleation sites on which iron particles can grow, so supercooling

becomes less of an issue. We believe, as did Roberts & Loper (1987), that once nucle-

ation sites have been created the slurry will evolve to a mature slurry state in which fast

melting is a reasonable approximation to make compared to other model uncertainties.

(ii) & (iii) Core material is modelled as a simple binary mixture composed of iron

and oxygen due to the constant solid assumption. The solid inner core is lighter than

if it were composed of pure solid iron (Jephcoat & Olson, 1987) so partitioning light

element into the solid phase demands modelling of the composition history within

each solid grain. This was not attempted in this study as modelling such a complex

particle history significantly complicates the mathematical problem (Roberts & Loper,

1987). However we expect the main dynamical effect within the F-layer is caused by

the partitioning of oxygen into the liquid phase when core material freezes, as this

creates the compositional density contrast between solid and liquid for light element

to rise out of the layer.

We also note that the compositions derived from ab initio studies used in the slurry

are based on the density jump across the ICB determined by seismology. Since solu-

tions to the slurry model yield differing density jumps across the ICB, then strictly-

speaking the composition of the core must be updated to reflect this change. Consid-

ering that the model is complicated enough already, this effect has not been studied

but could be improved. We think that these approximations are sensible compromises
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given the present knowledge of the core and the current complexity of the model.

(iv) Ideal solution theory is used to estimate parameters, such as changes in density

and the chemical potential, that are difficult to measure experimentally at the relevant

core pressures and temperatures. Ideal solutions exclude the possibility of chemical

reactions between iron and light element. Whilst ideal solution theory is accurate for

predicting densities, it does not predict the chemical potential or its derivatives well at

core conditions (Gubbins et al., 2004). Departures from ideal solution theory may alter

the liquidus curve and its intersection with the adiabat that controls the CSB temper-

ature, which may significantly impact our results. Currently, ideal solution theory is

sufficient, though we expect parameter estimates to improve with future experiments.

(v) The slurry is assumed to be non-convecting, however coupling the momentum

equation (2.9.1i) to the system allows the convecting state to be investigated. Exploring

its linear stability may map out the different regimes of slurry convection and provide

a deeper understanding of the system. Possible scenarios include a phase instabil-

ity that can arise when lateral variations of solid phase induce overturning (Loper &

Roberts, 1987). Nevertheless, maintaining a net stable stratification will remain a key

requirement in such a convecting state in order to be consistent with the geophysical

observations.

(vi) Estimating mean solid particle size in models of particle mobility is important

in characterising sedimentation. It is unlikely that direct measurements of this property

will be made in the Earth’s core, however an advantage of the slurry model is that only

the solid flux needs to be calculated. If so desired, the model of mobility provides

an estimate of the solid fraction, φ, using the solid flux, j. Further work investigating

the mobility may shed light on the range of admissible particle sizes encountered in

the core. Estimates of particle sizes in alternative physical situations may benefit this

problem – for example growth and coagulation of raindrops used in the existing slurry
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theory (Loper & Roberts, 1977), and helium droplets in Saturn and Jupiter in iron snow

models (Rückriemen et al., 2015).

If the model conditions (i)–(vi) are met, then a present-day slurry is likely to exist

that can explain the F-layer given the current geophysical observations. If dTa/dp <

dTl/dp < dTc/dp, where dTl/dp is the liquidus gradient and dTc/dp is the conduction

gradient, then a slurry is inevitable (Loper & Roberts, 1977). Current estimates for the

thermal conductivity and ICB heat flux satisfy the above inequality. If dTc/dp <

dTl/dp then freezing may occur directly onto the inner core and a small conductive

sub-layer is possible, but this alone cannot explain the stable stratification inferred

from seismology.

Under the fast-melting limit our slurry model idealises that the inner core grows

exclusively by solid particles settling at the ICB under Stokes’ flow. Alternatively, it

has been proposed that the inner core may grow through a mushy layer, where consti-

tutional supercooling ahead of the ICB promotes dendritic crystal growth of solid iron

at the interface (Fearn et al., 1981). The solid fraction of a mush is significantly greater

than a slurry, as we have assumed φ� 1 throughout our model. Deguen et al. (2007)

conduct a linear stability analysis to find that the interdendritic spacing is at least sev-

eral metres wide at the ICB in its current state, with an approximate layer thickness of

300 km extending into the inner core. The top of the mush must be at the ICB to be

consistent with the sharpness of the seismic velocity jump (Fearn et al., 1981) and is

thought to be strongly influenced by convection, the effect of which is poorly under-

stood. Huguet et al. (2016) use experimental methods to suggest that mush convection

is the dominant regime in the inner core, leaving a matrix with a solid fraction close

to unity without the effect of compaction (a collapsing mush). If the inner core grows

dendritically then our model of a slurry layer cannot overlay a mush, since by the fast-

melting limit, the dendrites would grow to the point where the liquidus and adiabat
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intersect at the CSB. A solid matrix extending to the top of the layer would have been

seismically detectable, therefore it is unlikely the slurry and mush combination could

explain the F-layer in this situation.
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6.4 Further work

This thesis has developed a self-consistent and idealised slurry model that offers a

great opportunity for further research. The steady-state models successfully explain

the stably-stratified F-layer that is coherent with present-day observations and current

understanding of core heat flows. Time-dependent results in Chapter 5 form a pre-

liminary investigation into the origin of the F-layer and its future evolution. Further

avenues of research to extend this work are proposed as follows:

1. Explore the parameter space in the spherical steady-state model

A rudimentary parameter search is performed in Chapter 4, however we sus-

pect that many other suitable solutions containing a stable oxygen configuration

remain to be found and used to initialise the time-dependent model. A system-

atic search would map out how layer thickness, CSB heat flow, freezing speed

and thermal conductivity may affect slurry behaviour and reveal the conditions

in which the slurry layer is stable. A promising route could be to increase the

amount of heat that is extracted through the CSB, which steepens the tempera-

ture gradient at the CSB. As a result, the oxygen gradient at the CSB becomes

more positive because this is linked to the temperature via the liquidus relation,

therefore increasing the likelihood of securing a stable oxygen profile. Another

key parameter to vary is the thermal conductivity since this also directly im-

pacts the condition on the temperature gradient at the ICB. A smaller thermal

conductivity would increase the ICB oxygen gradient, which may increase the

likelihood of preserving a stable oxygen profile in the time-dependent cases.

2. Improve the time-dependent model

(a) The time-dependent model is limited by fixing the mixing parameter, F , at

a constant value rather than being freely determined as in the steady-state
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cases. This parameter is normally controlled by the zero solid flux condi-

tion at the CSB. The time-dependent slurry equations form a fourth order

system, with two boundary conditions on the heat flux, two on the solid

flux, one on the CSB oxygen concentration and one on the CSB tempera-

ture. By relaxing the fixed layer thickness condition, the condition on the

CSB temperature is no longer a constraint on the temperature but a con-

dition that determines the CSB position. Therefore if the F parameter is

not held constant, then an extra condition is required to constrain it. For

instance, a simple model of inner core growth could provide a value for

the snow speed, vs, prescribed on the solid flux at the ICB, so that the

F parameter becomes free to be computed by the time-dependent model.

Otherwise, a systematic search varying this parameter is possible.

(b) Freezing speed, vf , is arbitrarily fixed and assumed to be constant over

time. We could suppose that the freezing speed is related to the snow

speed, vs, by a simple linear relationship so that a feedback mechanism

is provided. This would affect the competition between the ICB speed and

the CSB speed, which affects the evolution of the layer thickness.

(c) A more sophisticated model of the core that is geophysically realistic could

be developed. Effects of the Coriolis force due to the Earth’s rotation and

the Lorentz force from the electromagnetic field should be included. For

the sake of simplicity, these effects are overlooked in this thesis, however a

comprehensive study of how a slurry F-layer could potentially impact core

dynamics and dynamo operation is warranted.
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Gravitational power

Gravitational energy is released when light element from the slurry moves into the

convecting liquid outer core. The energy provided helps to power the dynamo, and the

heat released, Qg(t), enters into the global energy balance (5.2.1).

Consider the gravitational force acting on a point particle of mass mi located at ra-

dius r from the centre of a spherically symmetric mass (Figure A.1). Then by Newton’s

law of gravitation, we have

Fi = −GmiM

r2
r̂, (A.1)

where G is the universal gravitational constant, M is the mass contained within radius

dr

r

M

mi

Figure A.1: Point particle with mass mi is located at radius r from the centre of a
spherically symmetric mass, expressed as a point mass in the centre, M . Particle mi

exists within an infinitesimally thin shell of iron of thickness dr.
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r, expressed as a point mass at the centre. Loss of gravitational potential energy is

equivalent to the work gained, Ui, to bring the point particle from radius r to infinity,

therefore

Ui =

∫ ∞
r

Fi · dr′ =
∫ ∞
r

−GmiM

r′2
dr′ =

GmiM

r
. (A.2)

The sum total of the mass in an infinitesimally thin shell of iron with thickness dr is

dm = 4πρ(r)r2dr. (A.3)

Therefore the gravitational potential energy of an infinitesimally thin shell of iron is

dU =
GM

r
dm = 4πρ(r)rGMdr. (A.4)

To obtain the gravitational energy of the iron in the liquid outer core, we integrate over

every infinitesimally thin shell of iron from the CSB to the CMB so that

U = 4π

∫ ro

rsl

GMρ(r)r dr = 4π

∫ ro

rsl

ρ(r)g(r)r3 dr, (A.5)

where g(r) = GM/r2 is the gravitational acceleration.

After time δt, the interface rsl has moved to rsl + δr, where ṙsl = δr/δt. The

change in gravitational potential energy of iron in the liquid outer core is

dU l
Fe

dt
=

4π

δt

{∫ rc

rsl

ρ(r)g(r)r3 dr −
∫ rc

rsl+δr

ρ(r)g(r)r3 dr

}
(A.6)

and the change in gravitational potential energy in the slurry is

dU sl
Fe

dt
=

4π

δt

{∫ rsl

ri

ρ(r)g(r)r3 dr −
∫ rsl+δr

ri

ρ(r)g(r)r3 dr

}
. (A.7)
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Though the liquid outer core has lost energy, the slurry has gained exactly the same

amount. There is no net change in the gravitational potential energy of the core and

dUFe
dt

=
dU l

Fe

dt
+

dU sl
Fe

dt
= 0, (A.8)

hence this does not contribute to the global energy balance.

The same argument does not apply to the gravitational potential energy of the light

element, since there is work done to move it from the slurry to mix into the convecting

liquid outer core. The total gravitational energy of light element in the liquid outer

core is

UO = 4π

∫ ro

rsl

ρ(r)ξ(rsl, t)g(r)r3 dr =

∫ ro

rsl

3MO

(r3c − r3sl)
g(r)r3 dr, (A.9)

where

ρ(r)ξ(rsl, t) =
MO

4π
3

(r3c − r3sl)
, (A.10)

is the oxygen density in the liquid OC. After time δt, the change in gravitational energy

of light element in the liquid outer core is

dU l
O

dt
=

1

δt

{∫ rc

rsl

3MO

(r3c − r3sl)
g(r)r3 dr −

∫ rc

rsl+δr

3MO

(r3c − (rsl + δr)3)
g(r)r3 dr

}
' 1

δt

{∫ rc

rsl

3MO

(r3c − r3sl)
g(r)r3 dr −

∫ rc

rsl+δr

3MO

(r3c − r3sl)
g(r)r3 dr

−
∫ rc

rsl+δr

3MO

(r3c − r3sl)
· 3r2slδr

(r3c − r3sl)
g(r)r3 dr

}
, (A.11)

where we approximate (rsl + δr)3 ' r3sl + 3r2slδr. The change in gravitational energy
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in the slurry is

dU sl
O

dt
=

1

δt

{∫ rsl

ri

3MO

4π
3

(r3c − r3sl)
g(r)r3 dr −

∫ rsl+δr

ri

3MO

4π
3

(r3c − r3sl)
g(r)r3 dr

}
(A.12)

The net change in the gravitational potential energy of light element in the core is

dUO
dt

=
dU l

O

dt
+

dU sl
O

dt
= −δr

δt

∫ rc

rsl+δr

9MOr
2
sl

(r3c − r3sl)
2 g(r)r3 dr, (A.13)

which is decreasing over time since work is done to stir light element into the liquid

core. The available gravitational energy is converted to heat as it powers the dynamo,

therefore positively contributing to the CMB heat flux by

Qg(t) = ṙsl

∫ rc

rsl+δr

9MOr
2
sl

(r3c − r3sl)
2 g(r)r3 dr, (A.14)

where ṙsl = δr
δt

is the CSB speed.
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ALFÈ, D., PRICE, G. & GILLAN, M. (2002c). Iron under Earth’s core conditions:

Liquid-state thermodynamics and high-pressure melting curve from ab initio calcu-

lations. Phys. Rev. B, 65, 165118. xv, xvii, 7, 8, 91
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SOLA, E., BRODHOLT, J.P. & ALFÈ, D. (2009). Equation of state of hexagonal closed

packed iron under Earth’s core conditions from quantum Monte Carlo calculations.

Phys. Rev. B, 79, 024107. xv, 7, 8

SOLOMATOV, V.S. (2007). Magma oceans and primordial mantle differentiation. Trea-

tise on geophysics, 9, 91–120. 60

SONG, X. & HELMBERGER, D.V. (1995). Depth dependence of anisotropy of Earth’s

inner core. Journal of Geophysical Research: Solid Earth, 100, 9805–9816. 16

SOURIAU, A. & POUPINET, G. (1991). The velocity profile at the base of the liq-

uid core from PKP(BC+Cdiff) data: an argument in favor of radial inhomogeneity.

Geophys. Res. Lett., 18, 2023–2026. xvi, 14, 16, 17, 28

STACEY, F. & ANDERSON, O. (2001). Electrical and thermal conductivities of Fe-Ni-

Si alloy under core conditions. Phys. Earth Planet. Int., 124, 153–162. 9

STACEY, F. & DAVIS, P. (2008). Physics of the Earth (Cambridge). 18, 20, 89

203



REFERENCES

STACEY, F. & LOPER, D. (2007). A revised estimate of the conductivity of iron alloy

at high pressure and implications for the core energy balance. Phys. Earth Planet.

Int., 161, 13–18. 9

STORCHAK, D.A., SCHWEITZER, J. & BORMANN, P. (2003). The IASPEI standard

seismic phase list. Seismological Research Letters, 74, 761–772. 14

SUMITA, I., YOSHIDA, S., KUMAZAWA, M. & HAMANO, Y. (1996). A model

for sedimentary compaction of a viscous medium and its application to inner-core

growth. Geophysical Journal International, 124, 502–524. 81

TARDUNO, J., COTTRELL, R., WATKEYS, M., HOFMANN, A., DOUBROVINE, P.,

MAMAJEK, E., LIU, D., SIBECK, D., NEUKIRCH, L. & USUI, Y. (2010). Geo-

dynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science, 327,

1238–1240. 3
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