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Abstract

Anthropogenic primary aerosol and aerosol precursor emissions have undergone

considerable regional changes over the last 50 years. Reduced anthropogenic emis-

sions across high-income regions, in part due to the implementation of air quality

and emission control regulations, have coincided with large economic-related emis-

sion growth across large parts of the developing world. These emission changes

have undoubtedly led to regional changes in ambient PM2.5 concentrations and have

affected human health. The global composition climate model, HadGEM3-UKCA,

was used to simulate and evaluate regional changes in ambient PM2.5 concentra-

tions and human health effects over the period 1960 to 2009. Dominated by regional

increases across China and India, global simulated population-weighted PM2.5 con-

centrations was estimated to have increased by 37.5% over the period 1960 to 2009,

despite declines across North America and Western Europe. As a result, mortal-

ity attributable to long-term PM2.5 exposure is estimated to have increased by 89%

to 124% over the same period, which were driven largely by demographic transi-

tions, and to a lesser extent by regional PM2.5 changes. Understanding the historical

changes in ambient PM2.5 and their associated effects on human health is not only

important for evaluating past efforts, but is also vital for crafting future air quality

strategies.

The combustion of residential solid-fuels for cooking and space heating contributes

a large proportion to the global burden of primary aerosol emissions in the present-

day, with potentially large impacts on ambient air quality, health and the climate.

Using a global chemistry-transport model (TOMCAT-GLOMAP), present-day emis-

sions from residential combustion activities were estimated to contribute to between

22% to 33% and 12% to 32% of the global annual mean burden of black carbon (BC)

and organic aerosol respectively. In addition, residential emissions were estimated

to contribute to regional annual mean surface PM2.5 concentrations of between 15%
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to > 40%, particularly across low and middle income regions, resulting in an esti-

mated preventable human mortality burden of between 315,000 to 516,600 (if emis-

sions were removed). Using an offline radiative transfer model, residential emis-

sions were estimated to exert a global annual mean direct radiative effect (DRE)

of between −66 and +21 mW m-2 and a global first aerosol indirect effect (AIE)

of between −52 and −16 mW m-2. Uncertainties in properties of residential com-

bustion aerosol contributed to a wide range of simulated radiative effects, which

makes quantifying the magnitude of their radiative effects difficult. Understand-

ing the present-day impacts from this emission source is an important first step in

identifying potential benefits of emission control measures, such as the use of clean

cookstoves or cleaner fuels.

Understanding to what extent the widespread near-term implementation of clean

residential combustion technologies (e.g., clean cookstoves) can avoid ambient air

quality and associated health impacts is important for reviewing options for air

quality management strategies. Understanding such measures in the context of fu-

ture changes in other anthropogenic emissions is also important. Using a global

chemistry-transport model (TOMCAT-GLOMAP), the widespread use of clean res-

idential combustion technologies was estimated to avoid 4.9 µg m-3 of population-

weighted PM2.5 concentrations in 2050 globally, resulting in 0.34 [0.28-0.4] million

avoided mortalities or 20% of the maximum global preventable mortality. It is ex-

pected that low-income regions of Sub-Saharan Africa will gain the most, where

half to two thirds of the maximum avoidable PM2.5 and mortality, can be attributed

to residential emission control technologies alone. In these regions, the use of clean

residential combustion technologies could provide an effective measure for tackling

poor air quality and public health.
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Chapter 1

Introduction

Air pollution in the form of atmospheric aerosols vary both spatially and temporally

in terms of their size, concentrations, and chemical composition, all of which are

determined by their emission sources, meteorological conditions (e.g., precipitation,

transport processes), and aerosol microphysical processes (e.g., removal processes,

secondary formation). Given their short residence time and complex life cycle in the

atmosphere, modelling atmospheric aerosol and their effects is challenging. Long-

term exposure to aerosol fine particulate matter (PM2.5) is a leading present-day

global risk factor to the global burden of disease, contributing to 4.1 million deaths

annually. Atmospheric aerosols also affect the climate directly and indirectly via

modification of the Earth’s radiative balance. The large regional changes in anthro-

pogenic pollutant emissions over the last 50 years has undoubtedly changed aerosol

concentrations and their effects on air quality and public health, with future impacts

likely also related to future changes in anthropogenic emissions. This thesis exam-

ines the impact of atmospheric aerosol on air quality, human health and climate,

over different time periods, with specific focusses on key polluting sources.

1.1 Ambient air pollutants

Air pollution is defined as the accumulation of air pollutants in the lower tropo-

sphere in sufficient concentrations to impair visibility, damage ecosystems, and have
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adverse effects on human health (Seinfeld and Pandis, 2012). Air pollution, typi-

cally measured in terms of air quality, is a complex mixture of aerosol particles or

particulate matter (PM), aerosol precursor-gases, and gas-phase species that vary

temporally and spatially. Air pollutants such as aerosols can also affect the climate

directly by scattering and absorbing solar and terrestrial radiation, and indirectly via

the interaction with clouds and chemistry of greenhouse gases.

Table 1.1 describes some of the most common air pollutants, their sources and for-

mation pathways. The chemical and physical properties of air pollutants are a result

of their different emission sources and the chemical reactions that transform them as

they are transported, mixed and removed from the atmosphere. Air pollutants can

either be emitted directly (primary) or formed via chemical reactions (secondary).

Primary air pollutants are typically associated with anthropogenic combustion activ-

ities such as the emission of black carbon (BC) and particulate organic matter (POM)

aerosol from diesel vehicles or combustion of biomass in small-scale residential or

household cooking and heating stoves. Anthropogenic primary pollutants can also

include gas-phase species such as sulphur dioxide (SO2) and nitrogen oxides (NOx)

generated by the combustion of fossil-fuels from power stations and motor vehicles.

Secondary pollutants include the formation of sulphate aerosol (SO4
2-) via gas-phase

and aqueous-phase oxidation of SO2 within the atmosphere. Tropospheric ozone

(O3), a major constituent of photochemical smog, can also be formed when precursor-

gases, NOx, carbon monoxide (CO) and volatile organic compounds (VOCs) react in

the presence of sunlight. Vehicle, industrial and chemical solvent emissions are all

important anthropogenic sources for tropospheric O3 precursor-gases.

Natural sources can also contribute to the burden of air pollutants in the atmosphere.

Examples of natural sources include sulphate precursor SO2 emissions from volcanic

and biogenic sources, windblown mineral dust, and secondary organic aerosol for-

mation from biogenic VOCs emitted from vegetation.

Under certain atmospheric conditions, pollutants such as PM2.5 (mass of aerosol

with an median aerodynamic dry diameter of < 2.5 μm) and tropospheric O3 can
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accumulate in high enough concentrations to degrade air quality and pose a risk to

human health. In addition, atmospheric stability and circulation can determine the

transport distances of pollutants but also the height at which aerosols can be lofted

influencing their interaction with radiation and clouds. The transport of air pollu-

tants over large distances also highlights air pollution as a transboundary issue that

does not respect national borders.

Pollutant Gas-phase Particulate-phase Formation Sources
PM1 , PM2.5 , PM10 - Yes; mass of particles < aerody-

namic dry diameter of 2.5 μm
Dependent on emissions, me-
teorology, transport and micro-
physical processes

Mixture dependent on compo-
nents included

Black Carbon (BC) - Yes Primary Incomplete combustion of fossil
fuel and biomass

Particulate Organic Matter
(POM)

- Yes Primary emission from com-
bustion sources, pollen spores
and algae. Also secondary
from gas-to-particle conversion
of biogenic, combustion solvent
VOCs

Biomass and fossil fuel combus-
tion, natural biogenic sources,
industrial solvents

Sulphate (SO4
2-) or ammonium

sulphate ((NH4)2SO4) after re-
action of H2SO4 with NH3

- Yes Secondary from gas-phase
oxidation products of SO2 ,
Dimethyl sulfide (DMS), H2S.
Also aqueous-phase in-cloud
secondary formation after re-
action of SO2 with H2O2 and
O3

SO2 from fossil fuel and
biomass combustion, volcanic
activity, DMS emissions from
marine phytoplankton

Nitrate (NO3
-) or ammonium

nitrate (NH4NO3) after reaction
of HNO3 with NH3

- Yes Secondary formed from reac-
tions of Nitric acid (HNO3) and
NOx

NOx from high temperature
combustion of fossil fuel and
biomass, electrical storms and
anaerobic processes in soils

Sea salt (NaCl) - Yes Primary emission from ocean
surface

Bursting of air bubble during
white cap formation or tearing
of drops from wave tops

Mineral Dust - Yes Primary emissions Wind attrition on bare soil. An-
thropogenic construction and
agricultural activities

Sulphur Dioxide (SO2) Yes - Primary. Also secondary from
DMS oxidation

Primarily from anthropogenic
combustion sources such as
coal. DMS emissions pro-
duced naturally from marine
phytoplankton

Nitric Oxide (NO) Yes - Primary Emitted by natural sources (e.g.,
forest fires, anaerobic processes
in soils and electrical storms)
and high temperature anthro-
pogenic combustion of fossil fu-
els

Nitrogen Dioxide (NO2) Yes - Primary. Also secondary from
NO oxidation

High temperature combustion.
See sources of NO above

Carbon Monoxide (CO) Yes - Primary. Also secondary from
Methane (CH4) and VOC oxida-
tion

CH4 and VOC emissions from
biosphere and natural forest
fires, as well as and anthro-
pogenic combustion and agri-
culture. Primary emissions pri-
marily from incomplete com-
bustion sources

Volatile Organic Compounds
(VOCs)

Yes - VOCs denote a numerous set of
gas-phase atmospheric organic
compounds, typically with high
vapour pressures

Anthropogenic and naturally
occurring compounds

Tropospheric ozone (O3) Yes - Secondary NO→NO2 conver-
sion

Natural and anthropogenic in-
duced NO→NO2 conversion

TABLE 1.1: Summary of common aerosol primary and precursor air
pollutants and gas-phase air pollutants, their sources, and formation

pathways.

1.1.1 Processes affecting ambient air pollutant concentrations

This thesis focuses on the effect of atmospheric aerosols because of their adverse ef-

fect on human burden of disease (Section 1.2) and climate through interaction with
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radiation and clouds (Section 1.3). The spatial and temporal distribution of atmo-

spheric aerosol concentrations depends on the interaction of processes highlighted

in Figure 1.1. These processes include emission sources, microphysical processes,

meteorology and transport. The interaction of these processes can mean that changes

in the anthropogenic emissions can produce non-linear responses which in turn may

affect air quality, human health and climate.

FIGURE 1.1: Overview of the emission sources of aerosol and aerosol
precursors, the processes that control their distribution in the atmo-
sphere, and their role in the climate system. ’Exposure zone’ is meant
to describe the Earth’s surface when human populations are exposed

to air pollutants.

Emission sources

Figure 1.1 and Table 1.2 shows that atmospheric aerosols are diverse in terms of their

emission sources, size, composition and formation pathways. Primary aerosols are

emitted directly into the atmosphere (e.g., BC and windblown mineral dust) whereas

secondary aerosols are formed via gas-to-particle chemical reactions (e.g., sulfate

production from dry and aqueous-phase oxidation of sulfur species).

Primary aerosols from natural sources (e.g., mineral dust and sea salt) largely domi-

nate the global emission mass flux of atmospheric aerosol. However, these particles



1.1. Ambient air pollutants 5

Source Estimate Flux (Tg/yr) Particle Size Category
Natural primary
mineral dust 1000-3000 Mainly coarse
Sea salt 1000-10000 Mainly coarse
Volcanic dust 2-10000 Coarse
Biological particles 26-80 Coarse
Natural secondary
Biogenic sulfate (e.g., from DMS) 80-150 Fine
Sulfate from volcanic SO2 5-60 Fine
Organic aerosol from biogenic VOCs 40-200 Fine
Nitrate from NOx (e.g., soil, oceanic) 15-50 Fine and Coarse
Total Natural 2200-23500
Anthropogenic primary
Industrial dust (excluding black carbon) 40-130 Fine and coarse
Black carbon 5-20 Mainly fine
Organic aerosol
Anthropogenic secondary
Sulfate from SO2 170-250 Mainly fine
Nitrate from NOx 25-65 Mainly coarse
Organic aerosol from VOCs 5-25 fine
Total anthropogenic 300-650
Total 2500-24000

TABLE 1.2: Global emission flux estimates and broad size category
for atmospheric aerosols classes. Figure adapted from Seinfeld and

Pandis, 2012.

tend to be emitted at coarse size ranges and thus exist in the atmosphere with rel-

atively short residence times (lifetime). In contrast, while anthropogenic emission

sources have a smaller mass flux, they tend to be made up of particles in the accu-

mulation size range. These particle sizes are not only more important for human

health effects, due to their smaller sizes and general proximity to human popula-

tions, but are also important for climate interactions as they have longer residence

times in the atmosphere.

Whilst anthropogenic aerosol and precursor emissions have changed significantly

over the industrial period (Section 1.4), especially during the last 50 years, the contri-

bution from natural sources is thought to have been relative constant in comparison.

However despite this, spatial and temporal changes to atmospheric aerosol concen-

trations cannot be inferred from changes in anthropogenic emissions alone. In such

cases, it is important to consider the impact of anthropogenic emission sources on

aerosol properties and processes.

Chemical composition

Atmospheric aerosol particles contain a mixture of components with different chem-

ical compositions. These include inorganic secondary sulfate, ammonium and ni-

trate, secondary organics, and primary and secondary carbonaceous material, min-

eral dust and sea salt (Table 1.1). The chemical composition of atmospheric aerosol
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are important for removal efficient from the atmosphere, particularly wet deposi-

tion (see below), as well as determining their interaction with radiation and clouds

(Section 1.3) (Seinfeld and Pandis, 2012). Aerosol mixing state is also important

for radiation and cloud interactions (Jacobson, 2001; Bond et al., 2013; Cappa et al.,

2012), with the extent of mixing determined by proximity of emission sources and

atmospheric ageing. Changes in aerosol precursor emissions can change the com-

position and ageing rate of aerosol particles thus influence their mixing state. For

human health impacts, while aerosol composition is thought to be very important

(Thurston et al., 2016; Tuomisto et al., 2008), lack of epidemiological evidence cur-

rently limit composition effects for health-based assessments (Section 1.2).

Changes in anthropogenic emissions can not only change the magnitude and loca-

tion of primary emission particles, which can for example, influence new particle for-

mation, but can also change the abundance of precursor gases and influence levels

of atmospheric oxidants. For example, declines in anthropogenic emissions across

North America and Europe (Section 1.4) together with increases in Asia over the

last few decades have shifted the oxidation efficiency of the atmosphere in the same

direction, which can influence the spatial efficiency of secondary aerosol formation

such as sulfate (Manktelow et al., 2007).

Aerosol microphysical processes

The size distribution of atmospheric aerosols is important for determining how they

interact with radiation, clouds and human health. Figure 1.2 shows a typical aerosol

size distribution as a function of microphysical processes not shown in Figure 1.1.

Based on particle diameter (Dp), the aerosol size distribution is commonly split into

4 mode: nucleation (dry diameter (Dp) <10 nm), Aitken (Dp 10–100 nm), accumu-

lation (Dp 100 nm to 1 μm) and coarse (Dp >1 μm). Greater particle number con-

centrations can be found in the nucleation and Aitken modes, which are dominated

by secondary aerosols such as sulfate and organics due to new particle formation

and condensation. In contrast, greater volume and mass concentrations are found in

the coarse mode, where primary natural particles such as windblown mineral dust
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and primary biological particles (e.g., spores and pollen) dominate. Aerosol parti-

cles of intermediate sizes, such as in the accumulation mode, typically have longer

lifetimes due to less efficient removal rates (see below), tend to be more important

for radiation (Section 1.3) and human health (Section 1.2) interactions.

FIGURE 1.2: Summary schematic of aerosol size distribution and mi-
crophysical processes.

The overall shape of the size distribution, composition and lifetime of atmospheric

aerosols is governed by the microphysical processes also summarised in Table 1.3.

Changes in aerosol primary and precursor emissions can lead to changes in micro-

physical processes and subsequently to changes in aerosol composition and size dis-

tribution. For example, changes in anthropogenic primary aerosol and precursor

emissions can affect the magnitude and location of new particle formation events

by increasing/decreasing the condensational sink due to primary particles and/or

increasing/decreasing low volatility vapours available for nucleation (Spracklen et

al., 2010; Forouzanfar et al., 2015). Such changes have the ability to affect climate

through, for example, changes in the ability of aerosols to interact with clouds (Sec-

tion 1.3). Additionally, increases in anthropogenic primary aerosol emissions will

lead to a greater abundance of fine particles which may ultimately impact on hu-

man health.

The main sink for atmospheric aerosol is wet deposition via in-cloud nucleation

scavenging (i.e. the rain-out of aerosol after the formation of a water droplet around
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Process Description Example
New particle forma-
tion

Homogeneous nucleation of low volatility vapours to
form new clusters that can growth through coagula-
tion and condensation.

Low volatility prod-
ucts from VOC oxi-
dation to form SOA

Condensation Heterogeneous nucleation of vapours on pre-existing
particles to increase mass but conserving number

VOC and H2SO4
vapour

Coagulation Collision and coalescence of particles due to random
motions to form larger particles resulting in less nu-
merous particle numbers

Collision and coales-
cence of pre-existing
particles

Activation Activation and growth of aerosol particles as water
droplets

Soluble particles of a
certain size and su-
persaturation

TABLE 1.3: Summary of key aerosol microphysical processes.

an activated aerosol particle) and below-cloud impaction scavenging (i.e. washout

of aerosol particles by falling rain drops). Both wet removal mechanisms are strongly

dependant on aerosol particle size and composition. Dry deposition is also an impor-

tant removal mechanism, which is similarly dependant on particle size, as well as the

underlying land surface type. Dry deposition tends to be more efficient at remove

larger sized particles through gravitational settling and small particles through Brow-

nian diffusion to the Earth’s surface. As a result, dry deposition is less efficient for

particles in intermediate size ranges (i.e. 100 nm to 1 μm in diameter) resulting in

the accumulation of accumulation mode size particles, which can remain the in at-

mosphere from a number of days to weeks, but also can be removed via wet depo-

sition given the right soluble properties and size (Seinfeld and Pandis, 2012). Sim-

ilarly to changes in emissions, removal processes are an important mechanism for

aerosol burdens and lifetimes. However, the representation of removal processes in

chemistry-composition models are highly uncertain, leading to the one of the largest

sources of uncertainty for simulated aerosol (Lee et al., 2013).

Meteorology and transport

The atmospheric boundary layer (BL) is defined as the lowest part of the atmosphere

and is continuously interacting with the Earth’s surface due to friction, heating and

cooling. BL processes play a critical role in determining the magnitude and location

of atmospheric aerosol concentrations since most primary and secondary aerosol

are emitted and formed in the BL, respectively (Figure 1.1). These processes to-

gether with meteorology and atmospheric circulation are thus important for human

exposures such that under stagnant conditions of high pressure, low wind-speed

and dispersion and precipitation, high concentrations of aerosol number and mass
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are able to accumulate (e.g. Whiteaker, Suess, and Prather, 2002; Tai, Mickley, and

Jacob, 2010).

BL stability determines the vertical mixing and lofting of aerosol from their sources

at the surface, controlling the height of aerosol layers, which in turn will affect the

ability and magnitude of aerosol radiation and cloud interactions. Processes such

as turbulent mixing and convection are able to transport aerosol particles to higher

altitudes (Figure 1.1). Convective transport is thought to be very important for con-

trolling the vertical profile of aerosol components by mass, whilst BL stability mix-

ing plays a more dominant role for sea-salt and mineral dust particles (Kipling et al.,

2016).

The lateral distribution of atmospheric aerosol are largely determined by the at-

mospheric circulation though wind regimes. Depending on the injection height

of emissions (e.g., from the surface or smoke stack) and vertical mixing related to

LB stability, aerosol and aerosol precursor emissions can be transported over large

distances before they are removed from the atmosphere by wet or dry deposition.

This long-range transport (Figure 1.1) can contribute and degrade air quality hun-

dreds to thousands of kilometres away downwind. For example, Vieno et al., 2016

found that high aerosol loading events observed in recent years over the United

Kingdom (UK) originated largely from continental European outflow, with agricul-

tural emissions of ammonia playing an important contribution. Similarly, wildfires

across Southern Sumatra were found to contribute the greatest proportion (42-62%)

of enhanced aerosol concentrations in Singapore in recent years (Reddington et al.,

2014). Large-scales weather systems typically control the transport of atmospheric

aerosol to remote continents and regions. Desert mineral dust and aerosol from open

biomass burning (wildfires) are important aerosol components and can to travel

across oceans to remote continents, which is of particularly important for transport

to the Arctic region due to their particle absorbing abilities acting to enhance Arctic

warming.

Meteorology and atmospheric circulation can determine the surface flux of natu-

ral aerosol and precursor emissions such as windblown mineral dust (Todd et al.,
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FIGURE 1.3: Time-series of dry season MODIS aerosol optical depth
(AOD) over the Amazon region. Drought years are shown in red.

Figure taken from Reddington et al., 2014.

2013; Dentener et al., 2006; Woodward, 2001), wind-speed dependant sea salt (Gong,

2003; Mårtensson et al., 2003; Monahan, Spiel, and Davidson, 1986), temperature de-

pendant biogenic VOCs, and the frequency of wildfire episodes (Brown, Hall, and

Westerling, 2004; Moriondo et al., 2006; Westerling and Bryant, 2008). Specific me-

teorological conditions such as droughts can reduced wet deposition leading to the

accumulation of high aerosol concentrations. In some regions, such as the over the

Amazon, drought conditions can also result in lowering of soil moisture creating

the ideal conditions for enhanced wilfire emissions leading to a positive feedback on

aerosol concentrations with effects on air quality and human health (e.g. Redding-

ton et al., 2015; Smith et al., 2014b) (Figure 1.3). It is uncertain however, how climate

change will affect both the flux of natural emissions and meteorological effects on

aerosol concentrations in the future.

1.2 Ambient air quality and human health

This thesis focuses on the human burden of disease associated with atmospheric

aerosols in the form of particulate matter (PM) exposure. This focus on PM is based

on years of epidemiological evidence regarding their adverse impacts on human
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health. The following section describes the evidence base for PM impacts on health,

with the rest of the section providing an overview on the current assessment used

estimate the global disease burden due PM exposure.

1.2.1 The health link

By the 1970s and 1980s, the link between respiratory and cardiovascular morbidity

and mortality outcomes due to extreme episodes of PM air pollution was generally

accepted (Pope III and Dockery, 2006). By the mid-1990s, however, the health evi-

dence associated with low-to-moderate PM exposure was mounting. Epidemiolog-

ical time-series studies conducted in North America cities were consistently linking

short-term daily changes in PM to daily counts of all-cause, cause-specific mortality

and/or hospital admissions using various regression techniques, while prospective

cohort studies (e.g., that controlled for individual confounder risk factors, including

smoking, age, sex, income, education etc.) were finding strong associations between

long-term PM exposure and respiratory and cardiovascular mortality (Dockery et

al., 1993; Pope, Dockery, and Schwartz, 1995; Pope et al., 1995). The health risks

from short-term exposure, while consistent across studies and regions (Atkinson et

al., 2014; Pope III and Dockery, 2006), were found to be small compared to long-

term risks, suggesting they captured only a small fraction of the overall cumulative

health effect of long-term cumulative exposure to PM (Beverland et al., 2012; Pope

III, 2007; Pope III and Dockery, 2006). The body of evidence from long-term prospec-

tive cohort studies have also been bolstered in recent by reanalysis of earlier North

American data (Krewski et al., 2009; Krewski et al., 2000; Laden et al., 2006), with

similar health associations being found across cohort studies conducted in other

high-income regions such as in Western Europe (Burnett et al., 2014; Cohen et al.,

2017).

The evidence from prospective cohort studies also suggested stronger respiratory

and cardiovascular disease associations from exposure to fine PM (PM with a me-

dian aerodynamic dry diameter of < 2.5 μm, PM2.5), thus supporting physiologi-

cal and toxicological considerations that PM2.5 exposure adversely affects human
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health. For example, PM2.5 particles are small enough to reach the smallest air-

ways and alveoli of the lungs, while the ultrafine size fraction of PM2.5, PM1, may

penetrate the blood-air barrier (alveolar-capillary membrane), eventually leading to

the cardiovascular system. In addition, PM2.5 particles can more readily penetrate

indoor environments, be transported over greater distances, and can remain sus-

pended for longer time periods. PM2.5 particles may be more toxic because they

include multiple inorganic and organic particles, metals, and absorption of various

chemicals species on particle surfaces such as PAHs.

Figure 1.4 shows some of the potential pathophysiological pathways linking PM2.5

exposure to various cardiovascular and respiratory mortality and morbidity. Epi-

demiological, biomedical and clinical evidence suggests that long-term exposure to

PM2.5 is responsible for chronic cardiovascular outcomes directly through toxicity

effects or indirectly by inducing systemic inflammation and oxidative stress (e.g.,

Du et al., 2016). Long-term exposure to PM2.5 also affects the respiratory system

through irritation and corroding of the alveolar wall, leading to inflammation and

impaired lung function, as well as promoting lung cancer (e.g., Xing et al., 2016).

There is a growing body of research that has observed how health effects relate to

the body’s response to the complex mixture, composition and multiple sources of

air pollution (West et al., 2016). For example, of the very few studies that have been

conducted, evidence has emerged of stronger cardiovascular effects associated with

PM2.5 components originating from fossil-fuel combustion (coal and diesel combus-

tion) compared to mineral dust and biomass burning sources (Thurston et al., 2016).

However, at present, there is not enough evidence to draw conclusive associations

between the biological effects of individual PM2.5 components and emission sources

at the population level. The result of this is that current risk associations used for

health-based assessments, such as the methods used in this thesis (see Methods

Chapter), consider all PM2.5 mass as equally toxic regardless of composition and

source (Burnett et al., 2014).

While the health risk evidence for PM2.5 exposure is compelling, adverse health ef-

fects are associated with other air pollutants. Table 1.4 reports a range of different
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FIGURE 1.4: Potential pathophysiological pathways linking PM2.5 ex-
posure to various cardiovascular and respiratory mortality and mor-
bidity. Figure taken from Pope III and Dockery, 2006. Heart: ’in-
creased dysrhythimc suscepibility’ is defined as an is an abnormal
heart beat; ’Altered cardiac repolarization’ is defined as heart rate
variability; ’Myocardial ischemia’ in defined as reduced blood flow
to the heart. Vasculature: ’Atherosclerosis’ defined as a disease in
which plaque builds up inside arteries; ’Endothelial dysfunction’ de-
fined as the inability of the endothelium (membrane that line vessels)
to perform tasks properly; ’Vasoconstriction and hypertension’ de-
fined as the constriction of blood vessels, which increases blood pres-
sure causing high blood pressure. Lungs: ’COPD’ defined as chronic
obstructive pulmonary disease. Blood: ’Altered rheology’ defined as
disruption of blood flow properties; ’Increased coagulability’ defined
as increased chance of blood clotting; ’Translocated particles’ defined
as PM particle traversing into the blood stream; ’Peripheral thrombo-
sis’ formation of blood clots. Brain: ’Cerebrovascular ischemia’ de-
fined as a condition in which there is insufficient blood flow to the

brain to meet metabolic demand.

air pollutants and their effects on health outcomes. Unlike other air pollutants, there

is enough evidence for PM2.5 effects to conduct reasonably well informed health

based-assessments for various disease endpoints. As such, PM2.5 health effects are

the focus of this thesis. The only other air pollutant with enough evidence for health

based-assessments is O3, which has enough evidence for causally associated respi-

ratory mortality in the form of COPD (Turner et al., 2016; Jerrett et al., 2009; Malley

et al., 2017; Gakidou et al., 2017). However, this thesis does not examine O3 impacts

on health.
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Air pollutants Associated Likely causal Enough evidence for global health-
based assessments?

PM2.5 Asthma, cognitive functions,
low birthweight, other cancers,
Alzheimer’s disease, tuberculosis,
cataracts

COPD, LRI, IHD, CEV, lung cancer,
type 2 diabetes

Yes, for causally associated diseases

O3 Possibly cardiovascular disease COPD Yes, for COPD
CO Likely cardiovascular morbidity. Sug-

gestive central nervous system effect,
respiratory morbidity and mortality,
birth and developmental effects.

Not clear yet Not yet

NO2 Likely respiratory and cardiovascu-
lar disease, cancer and all cause-
mortality

Not clear yet Still some debate on whether it is
an indicator pollutant for fossil fuel
PM2.5 or whether it is a toxic gas by
itself.

SO2 Likely respiratory mortality and mor-
bidity

Not clear yet Not yet

PAHs Cause of DNA damage, thus cancer Cancers Not yet

TABLE 1.4: Overview of the adverse health effects of various air pol-
lutant exposures. Disease acronyms can be found on the list of abbre-

viations at the front of this thesis.

1.2.2 Health-based assessments: recent improvements for estimating the

global burden of disease attributable to PM2.5

As mentioned in the previous section, this thesis focuses on the disease burden as-

sociated with long-term exposure to PM2.5. Global health-based assessments aiming

to estimate the burden of disease to known risk factors require firstly, a detailed

understanding of the population-level exposure distribution of a given risk factor,

and secondly, the expected exposure-response within a given population per level

of exposure. For PM2.5, knowledge of these two terms have undergone major de-

velopments over the past few years. These developments have been documented

by the Global Burden of Disease (GBD) Comparative Risk Assessment (CRA) (e.g.,

Gakidou et al., 2017), which describes mortality and morbidity from all major risk

factors (or the current disease that would be eliminated if known risk factors were

reduced to a theoretical minimum risk exposure level in the present-day) at global

and regional levels.

Until relatively recently, PM2.5 health-based assessments as part of the GBD CRA

were restricted to urban populations because of the larger pool of PM2.5 measure-

ments by which population-level exposure distributions could be derived (Cohen

et al., 2004; Ostro and WHO, 2004). However, more recent CRA (e.g. Gakidou et al.,

2017; Lim et al., 2012; Forouzanfar et al., 2015) have taken advantage of new tech-

niques, and employ high resolution spatially explicit exposure distributions across



1.2. Ambient air quality and human health 15

the entire Earth’s surface. Figure 1.5 shows an example of these new exposure dis-

tributions, which are produced by combining satellite retrievals of aerosol column

extinction (e.g., aerosol optical depth (AOD)) with surface measurements and global

chemistry-transport model (CTM) simulations (e.g., Brauer et al., 2015; Van Donke-

laar et al., 2010; Shaddick et al., 2018). The recent use of such methods now makes it

possible for researchers and policy makers to construct PM2.5 exposure distributions

across all global regions and populations, even where surface PM2.5 measurements

are unavailable. In Chapter 3 and Chapter 5, I make use of such datasets to compli-

ment my simulated PM2.5 concentrations.

FIGURE 1.5: Example of the annual mean PM2.5 exposure distribu-
tion used by the recent GBD CRA. Circles represent surface measure-
ment locations and magnitude of underlying population while grid-
ded contour data represents modelled concentrations. Gridded mod-
elled data are provided by the Data Integration Model for Air Qual-
ity (DIMAQ) (Shaddick et al., 2018). Taken from the interactive map

http://maps.who.int/airpollution/.

In addition to accurate exposure distributions, understanding of the exposure-response

relationship (i.e., how an exposure translates to an expected health response within

a given population) and associated theoretical minimum risk exposure level (TM-

REL) (i.e., below which no risk is assumed) are needed to conduct health-based as-

sessments. Moreover, for global health-based assessments like the CRA, exposure-

response relationships are needed at all global ranges of exposure distribution (e.g.,

Figure 1.5). However, until relatively recently, the GBD CRA prior to 2010 relied

exclusively on exposure-response relationships derived from ambient air quality

prospective cohort studies conducted in North America and or Western Europe only.

http://maps.who.int/airpollution/
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Thus, while these older relationships were valuable for quantifying risks (i.e., rela-

tive risk) at low exposure distributions typical of North America and Western Eu-

rope (e.g., usually <30 μg m-3), they could not be used to estimate risk at high expo-

sure distributions (above 30 μg m-3) experienced in many low and middle-income

countries where most of the global population is exposed (Figure 1.5). To address

this problem, older generation relationships employed linear (Cohen et al., 2004) and

log-linear (Ostro and WHO, 2004) approaches to extrapolate risk to high exposure

distributions. However, because of a lack of ambient air pollution epidemiological

observations at these high exposure distributions, such approaches inherently ran

the possibility of predicting implausible and biologically inconsistent risk estimates

(Ostro et al., 2018).

In recent years, a new generation of exposure-response relationships were devel-

oped to overcome these limitations by linking or integrating risk observations from

different prospective cohort studies associated with different combustion sources.

The development of these integrated exposure-response (IER) relationships, com-

pile observed risks estimates not only from prospective cohort studies associated

with ambient air quality from North America and Europe, but also from household

air pollution (HAP) studies from solid fuel combustion (using randomised control

trials), second-hand (passive) tobacco smoke, and active tobacco smoking studies

(Burnett et al., 2014). These other combustion sources provide the high exposure

distributions needed to construct a globally relevant exposure distribution appro-

priate for use in global health-based assessments. The use of IER in recent GBD CRA

thus provides a an improvement on previous methods because it allows researchers

and policy makers to estimate health risk based on empirical evidence for the entire

global range of exposure distributions without the need for extrapolation. As such,

in this thesis, IERs are used to estimate the global burden of disease associated with

PM2.5 exposure.
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1.2.3 The global burden of disease attributable to PM2.5 in the present-

day

Following improvement to health-based assessment methods highlighted in the pre-

vious subsection, the GBD CRA place air pollution as a leading global risk factor to

the global burden of disease and the most important environmental risk factor (Gaki-

dou et al., 2017). Table 1.5 reports global mortality and morbidity attributable to air

pollution and their risk ranking as of GBD CRA 2016 (Gakidou et al., 2017). For

comparison, Table 1.5 also shows attributable deaths due to urban ambient PM2.5 as

estimated by the GBD CRA 2008.

Long-term exposure to ambient PM2.5 is ranked the 5th largest risk factor to the

global burden of disease in CRA 2016, which is now considered among more well

known risk factors such as active tobacco smoking (2nd) and high body mass index

(7th). It typically ranked within the top ten risk factors for the 195 countries studied,

including the 3rd and 4th largest risk factor in India and China, respectively. Glob-

ally, ambient PM2.5 was responsible for 4.1 (3.6-4.6) million deaths in 2016 (7.6% of

total global deaths), including 105.7 (94.2-117.8) million disability-adjusted life-years

(DALYs) (4.2% of total global DAYLs). In contrast, the CRA 2008 estimated only 1.3

million global deaths attributable to ambient PM2.5 in 2008. The mortality estimate

in CRA 2016 compared to CRA 2008 largely reflects the improvements made to the

global exposure distribution and exposure-response relationships (IER) described in

the previous section.

Recent GBD CRA also provide disease burden estimates for other individual air

pollution risk factors (Table 1.5). These include ambient tropospheric O3 exposure

and exposure to household PM2.5 air pollution (HAP) from cooking with solid fuels

(Smith et al., 2014a). Exposure to HAP contributed to 2.7 (2.2–2.9) million deaths

and 77.16 (66.1–88.04) million DALYs global deaths in 2016, most of which were lo-

cated in low and middle-income countries where the use of solid fuels to meet basic

household needs are common place (Gakidou et al., 2017; Smith et al., 2014a; Lim et

al., 2012). Exposure to ambient O3 contributed to 233.6 (90.1–385.3) thousand deaths

and 3.79 (1.5-6.3) million DALYs in 2016, 91% lower than ambient PM2.5.
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Recent CRA also provide joint disease burden estimates for air pollution as the com-

bination of ambient PM2.5, ozone and HAP. This is estimated to be 6.1 (5.6–6.6) mil-

lion deaths and 163 (151–176) million DALYs in 2016. However, this joint estimate

for air pollution should be considered only as an approximation with an assumption

of independence, little correlation and/or interaction. For example, because disease

outcomes are often caused by more than one risk factor all interacting to the overall

disease outcome, the estimated proportion of the outcome per individual risk fac-

tor can often overlap or add up to more than one. In the case of joint air pollution

sources, the assumption of independence relates to a lack of epidemiological evi-

dence on the population exposure distribution between ambient and HAP, and how

individual level exposures correlate (e.g., because HAP also contributes to ambient

air pollution and vice versa), as well as other non-linear interactions (Ezzati et al.,

2003; Smith et al., 2014a). In this thesis, only ambient PM2.5 health impacts are con-

sidered which means that health burden estimates will not capture the full health

impact of overall air pollution.

Air pollution risk Deaths DALYs Rank 2016 CRA 2008
deaths

Air pollution (joint) 6.1 [5.6 to 6.6] 163 [151 to 176] - -
Ambient particulate matter (PM2.5)
pollution

4.1 [3,6 to 4.8] 106 [95 to 118] 5th (deaths), 6th

(DALYs)
1.3

Household air pollution (HAP) from
solid fuels

2.6 [2.2 to 2.9] 77 [66 to 88] 10th (deaths), 8th

(DALYs)
-

Ambient ozone pollution 0.23 [0.01 to 0.39] 3.8 [1.5 to 6.3] - -

TABLE 1.5: Global burden of disease estimates due to air pollu-
tion and their global risk factor rank as of GBD CRA 2016. Data
taken from GBD compare tool (https://vizhub.healthdata.org/
gbd-compare/). Death and DALYs are reported in millions. Deaths

for GBD CRA 2008 are also included (far right).

1.2.4 Emission source contributions in the present-day to the global bur-

den of disease

Global health-based assessments, such the GBD CRA described in the previous sec-

tion, estimate disease burdens using total exposure distributions (e.g., Figure 1.5).

However, understanding the contribution of different emissions sources on air pol-

lution concentrations and their subsequent health burden is important. Understand-

ing these source contributions is necessary for crafting sound air quality legislation

https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
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in order for policies to effectively target sources of ambient air pollution that are

having the greatest adverse effects.

The CRA does not apply or provide sources contributions to their estimates of ambi-

ent PM2.5 and their associated disease burden simply because their global exposure

distributions (e.g., Figure 1.5) are not fractionated by emission source. However,

two recent GBD studies have estimated source contributions nationally for both

China and India. In those two studies, ambient PM2.5 and health burden attribu-

tion was simulated using the GEOS-Chem chemical-transport model (CTM) under

an assumption that the attributed burden of disease scaled linearly with the simu-

lated fraction of PM2.5 per emission source. This linear attribution method is cur-

rently recommended by the GBD as the most palatable method for policy makers to

understand, and is also applied in Chapter 5 of this thesis.

Using the same linear attribution method, Lelieveld et al., 2015 was the first to ex-

amine the present-day contribution of emission sources to the attributable burden

of disease at global level (see Table 1.6). In that study, Lelieveld et al., 2015 found

that emissions from the residential sector were the largest global contributor, con-

tributing 31% of all global attributable deaths due to ambient PM2.5 (about 1 million

deaths). Most of these deaths were concentrated in low and middle-income regions

where the common combustion of residential solid fuels in simple and inefficient

cooking and heating stoves resulted in large PM2.5 related emissions. Emissions

from agriculture and power generation were found to be more important contribu-

tors to ambient PM2.5 and associated disease burdens in high-income countries (e.g.,

North America and Europe), while natural emission sources in the form of wind-

blown dust were found to be large contributors across North Africa and the Mid-

dle East. In this thesis, the contribution of residential emissions to ambient PM2.5

concentrations and associated health disease burdens are explored in greater detail

(Chapter 4 and 5).
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Country Res Agr Nat Pow Ind Bio Tra
China 32 29 9 18 8 1 3
India 50 6 11 14 7 7 5
Pakistan 31 2 57 2 2 2 3
Bangladesh 55 10 0 15 7 7 6
Nigeria 14 1 77 0 0 8 0
Russia 7 43 1 22 8 8 11
USA 6 29 2 31 6 5 21
Indonesia 60 2 0 5 4 27 2
Ukraine 6 52 0 18 9 5 10
Vietnam 51 12 0 13 8 12 4
Egypt 1 3 92 2 1 0 1
Germany 8 45 0 13 13 1 20
Turkey 9 29 15 19 11 6 11
Iran 1 6 81 4 3 1 4
Japan 12 38 0 17 18 5 10
World 31 20 18 14 7 5 5

TABLE 1.6: Present-day emission source contribution [%] of total at-
tributable mortality due to long-term exposure to PM2.5. Source con-
tributions to ambient PM2.5 include, Res = Residential, Agr = Agri-
culture, Pow = Power generation, Ind = Industry, Bio = open biomass
burning, and Tra = land transport. Bold values indicate the largest
health contribution [%] due to an emission source. Data taken from

Lelieveld et al., 2015.

1.2.5 Ambient air quality standards and guidelines for protecting health

and environment

Air quality standards and guidelines can be set by individual countries as part of

national environmental regulations to help protect human health, as well as achiev-

ing other environmental goals. Standards vary across different countries based on

approaches used to balance public health risks, technological feasibility, and other

various political and social-economic considerations and factors.

Over the past number of decades ambient legislation on air quality standards across

the North America and many European countries have been instrumental in im-

proving air quality. In the European Union (EU), standards are designed to protect

both human health and environmental effects of ambient air pollution. For ambi-

ent PM2.5, the EU directive on ambient air quality and cleaner air for Europe (EU,

2008) requires that member states achieve annual ambient PM2.5 exposure levels of

25 μg m-3 by the year 2015, with a second phase of reducing to 20 μg m-3 by the

year 2020. Based on epidemiological evidence, the United States (US) Environmen-

tal Protection Agency (EPA) recently reduced the annual ambient PM2.5 standard in

2012 from 15 μg m-3 to 12 μg m-3.

In contrast, many low and middle-income countries across Asia, Africa, Latin Amer-

ica and the Middle East, have not established or enforced national air pollution
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standards (Giannadaki, Lelieveld, and Pozzer, 2016), which have in part resulted

in air quality degradation. However, while annual PM2.5 standards have been intro-

duced in some highly polluted countries, such as India (40 μg m-3) and China (35 μg

m-3), they are often not legally binding (e.g., in India) and are consistently exceeded

(Archer-Nicholls et al., 2016; Conibear et al., 2018a).

In response to guidance on air pollution standards, the World Health Organization

(WHO) has proposed a number of interim targets for countries to strive for, all of

which are designed to protect human health based on epidemiological evidence.

For annual mean PM2.5, these standards, though not legally binding, incorporate a

three tier system to the ultimate desirable standard of the Air Quality Guidelines

(WHO AQG) standard of 10 μg m-3 (see Table 1.7). However, recent epidemiological

evidence suggests that mortality risk can exist at low exposures, low than even the

AQG. This suggest that the desired target of AQG may not fully protect public health

(Cohen et al., 2017).

PM2.5 μg m-3 Basis for selection
Interim target-1 (IT-1) 35 Approximately 15% higher long-term mor-

tality risk relative to the AQG level
Interim target-2 (IT-2) 25 Approximately 6% lower mortality risk rel-

ative to IT-1
Interim target-3 (IT-3) 15 Approximately 6% lower mortality risk rel-

ative to IT-2
Air quality guideline
(AQG)

10 Lowest levels that mortality risk has been
shown to increase (as of evidence in 2005)

TABLE 1.7: World Health Organization (WHO) air quality guidelines
and interim targets for annual mean ambient PM2.5 concentration lev-

els.

1.3 Atmospheric aerosol and the Earth’s radiation budget

Air pollutants can affect the climate system by interacting with the Earth’s radiation

balance (Figure 1.1). The Earth’s energy budget accounts for the balance between

radiation received by the Earth-system (i.e. the surface and atmosphere) from the

Sun and the energy radiated back to space. Anything that increases or decreases

the amount of incoming and outgoing radiation (short-wave and long-wave) will

disturb this balance with implications for the Earth’s climate system.

Atmospheric aerosols can interact with climate directly by absorbing and scatter-

ing incoming short-wave radiation and by absorbing outgoing long-wave radiation,



22 Chapter 1. Introduction

known as aerosol direct effects. The magnitude of the direct effect at any given

time and location is generally dependant on the aerosol size, burden and optical

properties (and solar zenith angle). Absorption of atmospheric aerosol can also lead

to surface cooling and local heating of the atmosphere, which can reduce the for-

mation of clouds and precipitation, known as aerosol semi-direct effects (Lohmann

and Feichter, 2005). Atmospheric aerosols of a certain size and composition can act

as cloud condensation nuclei (CCN), which can activate to form cloud droplets in-

fluencing cloud-droplet number concentrations (CDNC). The aerosol influence on

CDNC can indirectly affect the Earth’s radiation balance by modifying properties

of clouds, known as aerosol indirect effects. Aerosol indirect effects can be further

sub-categorised into two effects: 1) The cloud albedo effect (sometimes referred to as

the Twomey effect or first indirect effect) where the albedo of clouds are enhanced by

aerosols acting to produce more numerous smaller cloud droplets under an assump-

tion of fixed liquid water content (Twomey, 1959; Twomey, 1977); 2) The cloud lifetime

effect (sometime referred to as the second direct effect) where more numerous smaller

cloud droplets result in a decrease in precipitation efficiency and prolonged cloud

lifetime (Albrecht, 1989).

FIGURE 1.6: Summary of direct and indirect effects of atmospheric
aerosols on radiation, including new AR5 definitions. Figure taken

from Boucher et al., 2013.

Figure 1.6 shows a summary of these interactions. In the 5th Assessment Report

(AR5) of the Intergovernmental Panel on Climate Change (IPCC), new definitions

for these interactions were termed. Aerosol radiation interactions (ari) represent the

former direct and semi-direct effects, while aerosol-cloud interactions (aci) repre-

sents the former cloud albedo and cloud lifetime effects (Boucher et al., 2013). Ad-

ditional distinctions have also been made for radiative forcing effects (representing
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both direct and cloud albedo effects) and rapid adjustment effects (representing both

semi-direct and cloud lifetime effects), which combined leads to overall effective ra-

diative forcing (EFR) from both ari (ERFari) and aci (ERFaci). Here, ERF is defined

as the change in net top of the atmosphere downward radiative flux after allowing

for atmospheric temperatures, water vapour, and clouds to adjust, but with surface

temperature or a portion of surface conditions unchanged (Myhre et al., 2013).

Figure 1.7 summarises the anthropogenic drivers of EFR relative to the pre-industrial

year of 1750. Instantaneous RF is given as a measure of the change in net radiative

flux in both shortwave and longwave radiation at the top of the atmosphere (clima-

tological tropopause). Instantaneous radiative forcing (RF) does not include changes

from rapid adjustments or feedbacks, such as those from aerosol cloud changes (i.e.

cloud lifetime and semi-direct effects), which are included in the measure of ERF,

but are measured relative to the pre-industrial. In addition, the term instantaneous

radiative effect (RE) is distinct from ERF, as the measure of the radiative radiative

flux imbalance of an atmospheric constituent in the present-day atmosphere only.

FIGURE 1.7: Global drivers of climate change as a measure of effec-
tive radiative effect (ERF) relative to the pre-industrial year 1750. The
measure of the level of confidence in radiative forcing estimates (fur-
thest column on the right) is represented: very high (VH), high (H),
medium (M), low (L), and very low (VL). Figure taken from Stocker,

2014
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The relatively small error bars due to well-mixed greenhouse gases reflect the high

level of confidence in their mean positive radiative forcing (e.g., + 1.68 [1.33 to 2.03]

W m -2 for CO2, see Figure 1.7). However, the radiative forcing due to atmospheric

aerosol is estimated to be negative (-0.27 [-0.77 to -0.23] W m -2 for aerosol and -

0.55 [-1.33 to -0.08] W m -2 for aerosol cloud adjustments), with large error bars,

representing the largest source of uncertainty to net anthropogenic radiative forcing.

The radiative effect of an aerosol population depends on the size aerosol particles

and the chemical composition of the particles through their respective refractive in-

dices. Figure 1.8 shows the different radiative effects (RFari) of aerosol components

as reported in AR5. Sulphate aerosol is estimated to have the most negative RFari

(−0.4 [−0.6 to−0.2] W m -2), with BC exerting the largest positive RFari (+0.4 [+0.05

to +0.8] W m -2). In total, the RFari for all aerosol components combined is estimated

to be −0.35 [−0.85 to +0.15] W m -2. Shortly after the publication of AR5, Bond et

al., 2013 reported a larger direct radiative forcing for BC of +0.71 [+0.08 to +1.27]

W m -2, which was based by scaling BC absorption to remote sensing observations

and considering enhanced absorption due to optical mixing states. In addition, they

also argued that modelled BC burdens were too low over many regions (e.g. Africa

and Asia), which are likely dominated by underestimates of emissions from BC rich

sources such as the residential sector.

1.4 Trends in anthropogenic emissions

Understanding how anthropogenic emissions changed over time is important for

understanding how ambient air pollution and air quality have changed over time.

Figure 1.9 shows the historical trend in global anthropogenic aerosol primary and

precursor emissions, as well as other climate relevant pollutants. Global emissions

have increased since the start of the industrial period. Emissions from residential

cooking and space heating dominated emissions of black carbon (BC), organic car-

bon (OC), carbon monoxide (CO), and non-methane volatile organic compounds

(NMVOCs or VOCs) in the mid-18th to mid-19th century. By the late-19th to mid-

20th century, growing industrial, energy and transport emissions started to build
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FIGURE 1.8: Annual mean top of the atmosphere radiative forc-
ing due to different aerosol components for the 1750-2010 period.
Solid boxes are the AR5 estimates, whereas the hatched box and
whiskers are estimates from the AeroCom II models. Figure taken

from Boucher et al., 2013.

and increased on the relatively steady emission base of the residential sector (Hoesly

et al., 2018). Growing activities in the industrial and transport sectors during the

20th century increased global pollutants of sulfur dioxide (SO2), oxides of nitrogen

(NOx), and NMVOCs, while the steady growth in global BC and OC emissions were

dominated by residential activities. The process of ammonia synthesis over the past

100 years, together with population growth, resulted in the rapid increase in global

NH3 emissions (Erisman et al., 2008).

For the period after 1950, global emissions increase rapidly for most pollutants, but

with regional differences (Figure 1.10). Dominated by the industrial and power sec-

tors, SO2 emissions declined across North America and Europe due to greater envi-

ronmental air quality legislation, but continued to increase across Asia due to eco-

nomic and population growth, and lack of environmental legislation (Figure 1.10).

For CO emissions, while the introduction of catalytic converters in North Amer-

ica and Europe (and more recently in other regions) led to a reduction in global

CO emissions from the transport sector, CO emissions have continued to increase in
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FIGURE 1.9: Global anthropogenic emissions by sector used in the
Coupled Model Intercomparison Project phase 6 (CMIP6) compared
to other estimates (e.g., CMIP5 and CDIAC). Emissions from aviation
and open biomass burning are not included. "RCO" refers residential,

commercial and other. Figure taken Hoesly et al., 2018.

Africa and Asia due to population growth and residential biomass burning contribu-

tions (Lamarque et al., 2010; Hoesly et al., 2018; Granier et al., 2011). Similarly, while

NOx emissions from the transport sector have decreased, economic growth across

much of Asia has resulted in large increases in global NOx emissions since the year

2000 (Figure 1.10). Global increases in BC and OC emissions since 1950 have been

dominated by growth in Africa and Asia largely to due to residential combustion

activities responding to population growth, but the use of diesel vehicles has also

added to the global growth, especially for BC emissions. The large regional changes

in anthropogenic emissions over the past 50 years or so has thus undoubtedly in-

fluenced regional changes in ambient PM2.5 concentrations and associated health

burdens, and is a focus of this thesis in Chapter 3.

Figures 1.9 and 1.10 also highlight the uncertainties in estimates among difference

emission inventories. These different estimates are largely a result of uncertainties

relating to energy consumption patterns and emission factors, which can be particu-

larly sparse for certain sectors and geographical regions where data are not routinely
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FIGURE 1.10: Global anthropogenic emissions by region used in the
Coupled Model Intercomparison Project phase 6 (CMIP6) compared
to other estimates (e.g., CMIP5 and CDIAC). Emissions from aviation
and open biomass burning are not included. Figure taken Hoesly et

al., 2018.

documented and where emission testing is limited. The collection of consumption

patterns for residential solid-fuel burning (e.g., for cooking and heating in low and

middle-income countries) is one such example. Together with a limited number

of field-based emission factors, the residential emission sector represents one the

largest sources of uncertainty when it comes to anthropogenic emission mass flux

(Bond et al., 2013; Winijkul, Fierce, and Bond, 2016), and is a point of interested ex-

plore in this thesis in Chapter 4. It is therefore important to have accurate emission

inventory data when quantifying their impacts on air quality and climate.

While uncertainties in estimating historical anthropogenic emissions are apparent,

understanding future emission trends may be more uncertain. Future scenarios

emission pathways are generally estimate emission changes in response to projected

changes in economic growth, population, energy consumption, land-use and agri-

culture (Rao et al., 2017; Moss et al., 2010). Examples include the Representative

Concentration Pathway (RCP) scenarios (Van Vuuren et al., 2011), which examine
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a range of climate forcings without socioeconomic narratives, and are based under

assumptions of the Kuznets hypothesis where future air pollutants decline in re-

sponse to income growth (Rao et al., 2017). As such, RCPs show general declines in

aerosol primary and precursor emissions (and ozone precursor emissions) over the

21st century (Stohl et al., 2015; Amann, Klimont, and Wagner, 2013). However, more

recent emission pathway scenarios include alternative assumptions based on ’refer-

ence’ scenarios and co-benefits of climate change mitigation policy (Rao et al., 2017;

Stohl et al., 2015). In these scenarios, a range of emission pathways can be examined

that do not necessarily follow that of the Kuznets hypothesis, resulting in a greater

diversity of emission pathways than predicted under the RCPs alone (Figure 1.11).

FIGURE 1.11: Global annual anthropogenic emissions of CO2, CH4
and air pollutants (SO2, NOx and BC) from the ECLIPSE emission in-
ventory for the current legislation (CLE), no further controls (NFC)
and short-lived climate pollutants (SLCP) mitigation scenario. Also
shown for comparison is the range of the RCP emission scenarios

(grey shading). Figure taken from Stohl et al., 2015.

1.5 Trends in ambient particulate air pollution

Following the implementation of air quality legislation and standards, regional mon-

itoring networks were established to evaluate air quality performance both tempo-

rally and spatially. The longest operated networks are those based in North America

(e.g., Integrated Monitoring of Protected Visual Environments, IMPROVE (Malm

et al., 1994)) and Europe (e.g., European Monitoring and Evaluation Programme,
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EMEP (Tørseth et al., 2012)), with measurements of aerosol mass from total sus-

pended particles (TSP) dating since the 1970s. More recently (i.e., past two decades

or so), PM2.5 measurements have taken priority due to epidemiological concerns

highlighting the health risk associated with these particles sizes.

FIGURE 1.12: Time-series of the European observations of total sus-
pended particulate matter (SPM) and PM10 PM2.5 (mass particulate
matter with an median aerodynamic dry diameter of < 10 μm) from
the EMEP network over the period 1978 to 2010. Coloured lines rep-
resent individual measurement locations with the solid black lines

representing the mean. Figure taken from Turnock et al., 2015.

Recent anthropogenic emission reductions across Europe and North America (Fig-

ure 1.10) have resulted in regional reductions in ambient PM. In Europe, TSP de-

creased by 40% during the period 1978-1998, with a smaller reduction in observed

PM10 and PM2.5 (not shown) between 2000-2009 (Figure 1.12), representing an 18%

and 27% reduction respectively (Turnock et al., 2015; Tørseth et al., 2012). Across the

United States (US), annual PM10 and PM2.5 decreased by 34% and 41% during the

period 1990-2017 and 2000-2017, respectively (Figure 1.13). The above reductions in

ambient PM can be attributed to the implementation of air quality legislation and

emission control technologies in both these regions.
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FIGURE 1.13: Time-series of the US observations of PM10 (left) and
PM2.5 (right) for measurement locations across the US. Dark blue
line is mean across all locations with the light blue shaded area rep-
resenting the 5th and 95th percentile range. Data taken from the
US Environmental Protection Agency (EPA) https://www.epa.gov/

air-trends/.

https://www.epa.gov/air-trends/
https://www.epa.gov/air-trends/
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While reductions in PM have been observed across high-income regions in recent

decades, increases in anthropogenic emissions and lack air quality regulation has

contributed to rising PM concentrations across many low and middle-income coun-

tries, especially in Asia. However, while monitoring networks are being established

at increasing rates across some countries, such as in China (e.g. Archer-Nicholls et

al., 2016) and India (e.g. Conibear et al., 2018a), few long-term measurements (e.g., >

10 yrs) exist, apart from a few in heavily urbanised locations. This presents a prob-

lem for evaluating simulations from chemistry-composition models, and thus for

understanding air quality effects on human health and climate over the last decade

or more.

Satellite retrievals AOD, which is a measure the amount of light extinction through

the atmospheric column due to aerosols, have a global temporal coverage extending

more than a decade and are spatially explicit in extent. Satellite AOD can thus be

used to evaluate model simulated AOD over regions void of surface observations.

The relationship between AOD and surface PM2.5 concentrations, which depends

on the aerosol profile distribution through the column, aerosol optical properties

and humidity, can also be used to estimate PM2.5 concentrations in regions where

surface observations are lacking (Liu et al., 2004; Van Donkelaar, Martin, and Park,

2006). This technique uses the ratio of PM2.5 to AOD simulated by a CTM to infer

surface PM2.5 concentrations directly from satellite AOD retrievals. Such estimates

can be provided at relatively high spatial resolutions with a temporal coverage ex-

tending from the start of the satellite period (e.g., 1998) to the present-day. More

recent examples of this technique also include the inclusion of surface PM2.5 mea-

surements (where available), and are used as the official exposure distributions in

GBD CRA (Brauer et al., 2015; Van Donkelaar et al., 2016; Shaddick et al., 2018).

Figure 1.14 shows the trend in population-weighted PM2.5 concentrations in China

and India for period 2000-2016, which are based on satellite AOD retrievals and sur-

face observations. These estimates show that population-weighted PM2.5 concentra-

tions increased by 8% and 25% in China and India respectively over this period. It

can also be seen that that after 2010, PM2.5 concentrations started to slow and de-

cline in China, which is largely attributable to China’s efforts of curb emissions in



1.6. Trends in the global burden of disease attributable to PM2.5 31

 

2000 2002 2004 2006 2008 2010 2012 2014 2016
 

30

40

50

60

70

80

304050607080

P
o

p
u

la
ti

o
n

-w
ei

g
h

te
d

 P
M

2.
5 

(µ
g

 m
-3
)

ChinaIndia

China
India

2000 2002 2004 2006 2008 2010 2012 2014 2016
 

30

40

50

60

70

80

304050607080

P
o

p
u

la
ti

o
n

-w
ei

g
h

te
d

 P
M

2.
5 

(µ
g

 m
-3
)

FIGURE 1.14: Time-series of population-weighted PM2.5 concentra-
tions in China and India from 1990-2016. Data taken from State of

Global Air 2018 https://www.stateofglobalair.org/data/.

key polluting regions (e.g. Zheng et al., 2017).

Understanding how ambient PM2.5 concentrations will change into the future is

complex and depends on a number of different factors such as changes in anthro-

pogenic emissions, climate and meteorology, and natural emissions. However, con-

sidering anthropogenic emissions alone, regional changes will be dependant on the

emission pathway scenario assumed (Figure 1.15). That said, it is important to con-

sider how changes or emission abatement in key polluting anthropogenic sectors

might affect and improve ambient levels of PM2.5 in the near-term (Chapter 5).

1.6 Trends in the global burden of disease attributable to PM2.5

In addition to providing disease burden estimates for the present-day, the GBD CRA

also provided trends for the burden of disease attributable to individual known risk

factors (1990 to present-day). In the most recent CRA (Gakidou et al., 2017; Feigin,

2016; Cohen et al., 2017), the global burden of disease attributable to long-term am-

bient PM2.5 exposure was found to increase 20% from 3.5 (3.0 to 4.0) million deaths

in 1990 to 4.2 (3.7-4.8 ) million deaths in 2015 (Figure 1.16).

Figure 1.17 shows the change in ambient PM2.5 attributable mortality over the same

period (1990 to 2015) for ten populous countries together with the contribution of

individual factors that influence mortality changes. The increase in the number of

attributable deaths globally was largely caused by increases in PM2.5 exposure and

https://www.stateofglobalair.org/data/
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FIGURE 1.15: Regional annual mean population weighted PM2.5 con-
centrations (μg m-3) (left axis) in 2005 and 2050 under different emis-
sion scenarios including ’Reference’ or Shared Socio-Economic Path-
way (SSP) scenarios (blue color bars) and average of 3 RCP scenarios
(grey bar). Green, orange and red colored markers indicate the frac-
tion of the population exposed to <10, <25 and <35 μg m-3 respec-
tively (right axis), and contribution of natural PM 2.5 is represented

by the hatched area. Figure taken from Rao et al., 2017

the absolute numbers of deaths from non-communicable diseases in highly popu-

lated countries such as India and China, where populations are growing and ageing

rapidly. These changes were enough to counteract the reduction in attributable mor-

tality experienced across high-income countries (e.g. US) where reductions in PM2.5

have been achieved since 1990, and where populations are not growing rapidly.

In contrast, age-standardised death rates from ambient PM2.5 decreased by 12.3%

from 65.6 per 105 deaths (56.9-74.9) in 1990 to 57.5 per 105 deaths (50.2-64.8) in 2015.

This reduction was a result of improved air quality across high-income countries and

overall global improvements in global healthcare, which resulted in overall declines

in background disease rates that are causally associated with PM2.5 exposure (Cohen
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FIGURE 1.16: Total global deaths attributable to ambient PM2.5 pollu-
tion by year and cause. Figure taken from Cohen et al., 2017.

et al., 2017).

FIGURE 1.17: Changes in attributable deaths from ambient PM2.5 ex-
posure due to the changing contribution from population growth,
ageing, background disease mortality, and exposure. Figure taken

from Cohen et al., 2017

Given the large risk factor to public health, understanding historical changes in am-

bient PM2.5 disease burden is vital for informing future air quality policy design.

However, current estimates are restricted to examining changes over the last 25

years only (Figure 1.16), when satellite and ground-based observations are typically

available. Few studies have investigated changes in attributable disease burdens

associated with changes in ambient PM2.5 over the last 50 years or so, a period of

widespread implementation of air quality regulation and emission controls across

North America and Western Europe coincided with extensive economic growth and
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limited emission controls across developing Asia (Figures 1.10). Such changes would

have undoubtedly resulted in regional contrasts in ambient PM2.5 and associated

disease burden trends, and thus a focus of this thesis in Chapter 3.

Understanding how the PM2.5 disease burden will change in the future is complex

and depends not only on changes in PM2.5 concentrations (previous section), but

also on changes in demographics and background disease epidemiology. Given the

large demographic contribution to changes in PM2.5 disease burden over the last 25

years (Figure 1.17), future changes in demographics will likely play an important

role in future attributable disease burdens. Regional studies have shown that future

population growth and ageing will increase deaths from PM2.5 in China and India,

even when PM2.5 levels have been substantially reduced relative to the present-day

(GBD MAPS Working Group, 2016; GBD MAPS Working Group, 2018; Conibear et

al., 2018b).

Studies that examine changes in PM2.5 mortality under future emission pathway sce-

narios, report global increases of between 50-335% by 2050 relative to the present-

day (Lelieveld et al., 2015; Stohl et al., 2015; IEA, 2016), while other studies predict

reductions (Silva et al., 2016; IEA, 2016). These differences are attributable to the

differences in assumed emissions and demographic pathways. Nevertheless, few

global studies have examined the likely contribution of changes in demographics

and background disease to future changes in PM2.5 mortality, which is focus of this

thesis in Chapter 5. Understanding these contributions may be important for craft-

ing future air quality policy.

1.6.1 Options for mitigating particulate air pollution

Air pollution in the form of PM will persist as a major public health problem until

governments take the necessary action to mitigate its effects. PM air pollution can be

mitigated through control or end-of-pipe technologies that reduce emissions at the

point of emission (e.g., vehicle catalytic converters and smokestack scrubbers), and

more structural shifts that avoid the occurrence of emissions (e.g., fuel switching,
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energy efficiency and low or non-combustion technologies). However, with the evi-

dence base for PM health effects growing at an ever increasing rate, the need to take

action quickly using the range of mitigation options available should nevertheless

be modulated by the need to find a long-term path that also does not compromise

other policy goals (IEA, 2016). The optimum policy path is one that takes decisive ac-

tion in coordination with others, which should include both the setting of ambitious

long-term air quality goals and a clean air strategy for the important polluting sec-

tors, with effective monitoring, enforcement, evaluation and communication (IEA,

2016).

Reducing air pollution can also bring desirable co-benefits. Climate change co-

benefits have recently gained attention through high profile political initiatives, such

as the Climate and Clean Air Coalition (CCAC) (www.ccacoalition.org). However,

decision makers need to be made aware that while action may provide benefits in

one area (e.g., climate), they can worsen the situation in another (e.g., air quality).

For example, climate policy favouring low emitting CO2 diesel vehicles replacing

equivalent petrol vehicles can lead to detrimental effects on air quality (e.g. Jon-

son et al., 2017). Another example includes the shift from light fossil fuel used for

space heating to ’carbon-neutral’ biomass (wood), which may have greater adverse

effects on PM air quality (e.g. Haluza et al., 2012). While this last example may

be an growing problem facing wealthy regions (e.g., Europe), providing appropri-

ate ’win-win’ solutions for the 3 billion users of residential (household) solid fuels

(mainly solid biomass) in low and middle-income countries (Bonjour et al., 2013),

which contribute both to household and ambient PM pollution, and climate change,

(Smith et al., 2014a; Chafe et al., 2014; Lelieveld et al., 2015) is a complex but pressing

issue.

The large scale adoption and implementation of clean burning solid fuel cookstoves

has been suggested as a possible ’win-win’ solution (e.g. Anenberg et al., 2013).

However, others argue that use such cookstoves are being driven by an interna-

tional policy agenda focussing on climate goals (i.e., one promoting carbon-neutral

solid biomass) rather than a promoting cleaner burning light fossil fuels (e.g., LPG),

which would provide greater reductions in PM air pollution (both household and
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ambient) and benefits for health (Goldemberg et al., 2018; Smith and Sagar, 2014). It

is thus important to consider how future changes in emissions (e.g., residential en-

ergy) due to policy measures might impact on both air quality (and human health)

and climate, which is a focus of this of this thesis in Chapter 5.

1.7 Summary and motivation

Long-term exposure to fine particulate matter (PM2.5) air pollution is the 5th largest

risk factor to the global burden of disease, contributing to 4.1 million deaths annu-

ally in the present-day. The large regional changes in anthropogenic emissions over

the last 50 years has undoubtedly changed aerosol concentrations and thus their

effects on air quality and public health. Understanding these historical changes, us-

ing chemistry-composition models combined with long-term observations, is vital

for informing air quality policy design. Previous studies have tended to focus on

trends in PM2.5 air pollution and associated public health impacts over the last 25

years (e.g. Cohen et al., 2017), when satellite and ground-based measurements were

typically available. For this reason, little is known about impacts between 1960 and

1990, a period where large regional changes in anthropogenic emission occurred.

Using a detailed chemistry-climate model simulation, this thesis will build on cur-

rent knowledge and examine trends in PM2.5 air pollution and associated public

health impacts over the past 50 years (Chapter 3).

Atmospheric aerosols also have substantial impacts on climate via modification of

the Earth’s radiative balance. This aerosol radiative effect is large and of opposite

sign to the greenhouse gas effect. However, large uncertainties remain to their pre-

cise effects (Boucher et al., 2013). The aerosol radiative effect from substantial an-

thropogenic emission sources such as combustion of residential solid fuels (e.g., for

household cooking and space heating) is thought to be large. This source sector

contributes a considerable fraction of anthropogenic BC and OC emissions in the

present-day(Bond et al., 2013). Combustion of residential solid fuels are also re-

sponsible for one-quarter of the attributable deaths associated with ambient PM2.5

air pollution. The large scale adoption and implementation of clean burning solid
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fuel cookstoves (and clean fuel such as gas and electricity) across low and middle-

income regions has been suggested as a possible option for mitigating the adverse

effects of traditional solid fuel combustion (e.g. Anenberg et al., 2013). Quantifying

the present-day impact of residential solid fuel combustion on climate, ambient air

quality and health is thus an important first step in understanding the likely effects

of large scale adoption and implementation of clean cookstoves and fuels. Using a

chemistry-transport model, this thesis seeks to examine the extent of these present-

day impacts from the residential sector (Chapter 4).

Understanding the potential benefits of large scale adoption of clean cookstove tech-

nologies as a means of reducing emissions from the residential sector is important.

However, quantifying any potential benefits to air quality and health needs to be

done in the context of future changes in other anthropogenic emission sources, res-

idential solid fuel usage, and demographic transitions. Previous studies examining

potential future benefits of reducing emissions from the residential sector have re-

lied on unrealistic assumptions of complete removal of emissions (e.g. Lacey et al.,

2017a). This thesis will apply chemistry-transport model simulations using technology-

based scenarios to quantify the potential near-term air quality and associated public

health benefits of reducing emissions in the residential sector (Chapter 5). Under-

standing of these benefits will be particularly useful for decision makers across low

and middle-income countries where the public health burden due to air pollution

associated with residential solid fuel combustion is considerable.

1.8 Thesis aims and objectives

The overall aim of this thesis to quantify how changes in anthropogenic air pollu-

tants have affected air quality and attributable disease burdens. It will also eval-

uate the present-day and future impact of residential combustion emissions, and

how adoption of clean residential combustion technologies might reduce adverse

impacts.

Individual aims for each result chapter are set out below:
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1. How have changes in anthropogenic aerosol primary and precursor emissions

affected global and regional trends in surface PM2.5 concentrations and associ-

ated health burdens over the past 50 years from 1960 to 2009?

(a) Can simulated changes in regional PM2.5 concentrations reproduce long-

term observed changes?

(b) What are main sources of uncertainty in the model that are influencing

the comparison to long-term measurements?

(c) How have global and regional simulated PM2.5 concentrations changed

over the period 1960 to 2009?

(d) How has the global and regional burden of disease attributable to long-

term exposure to ambient PM2.5 changed over the period 1960 to 2009?

(e) What factors have dominated the contribution to the change in total PM2.5

mortality over the period 1960 to 2009?

(f) How can trends in historical PM2.5 concentrations help inform policy mak-

ers about the impacts of future changes in PM2.5 mortality?

2. How important is the present-day contribution of residential solid fuel com-

bustion to atmospheric aerosol, human health and climate?

(a) Can a global model simulate observed aerosol mass and number concen-

trations at locations where influence of residential combustion on atmo-

spheric aerosol are thought to be important?

(b) What are the global regional contributions of residential combustion emis-

sions to atmospheric aerosol mass in the near present-day?

(c) What is the near present-day global and regional burden of disease at-

tributable residential combustion emissions on ambient PM2.5 concentra-

tions?
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(d) What is the near present-day direct and first indirect radiative effect of

residential combustion aerosol on the Earth’s radiation budget?

(e) What might the uncertainties in residential combustion emission mass

flux and emitted size distributions mean for quantifying residential im-

pacts on air quality, human health and radiative effect?

3. How are ambient PM2.5 concentrations and associated disease burdens ex-

pected to change by 2050? To what extend can the adoption of clean residen-

tial combustion technologies in the near-term offset adverse air quality and

attributable health impacts?

(a) To what extent can a global chemical-transport model reproduce annual

mean observed PM2.5 concentrations across multiple global regions?

(b) How do annual mean ambient PM2.5 concentrations change regionally

under a reference scenario in the year 2050?

(c) How does the disease burden attributable to ambient PM2.5 exposure change

in the year 2050 under the reference scenario?

(d) How does the widespread adoption and sustained use of clean residential

combustion technologies improve ambient PM2.5 air quality relative to

a reference scenario and a maximum anthropogenic emission reduction

scenario?

(e) How does the widespread adoption and sustained use of clean residential

combustion technologies improve the PM2.5 mortality burden relative to

a reference scenario and a maximum anthropogenic emission reduction

scenario?

(f) How can near-term scenarios of clean residential emission controls in-

form ambient air quality management strategies?
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Chapter 2

Methods

The amount of aerosol present in the atmosphere can strongly affect air quality re-

sulting in adverse impacts on human health. Aerosols can also impact the climate di-

rectly through the absorption and scattering of radiation or indirectly via interaction

with clouds. While measurements of aerosol such as their mass and number con-

centrations are valuable in quantifying some of these impacts, models can be used

to simulate and understand aerosol impacts over spatial and temporal dimensions

where measurements are not available. Models can simulate atmospheric aerosol

through calculation of anthropogenic and natural emissions fluxes and the micro-

physical processes that govern the mass and number size distributions of aerosol

components, which are important for air quality and climate impacts. However,

aerosol measurements cannot be replaced by model simulations as the inclusion of

observations are essential for understanding real atmosphere conditions, which are

crucial for evaluating the models.

Models make it possible to simulate atmospheric aerosol impacts not only for past

and present-day conditions, but also into the future, allowing for investigations of

future mitigation scenarios. Models can be run at different spatial resolutions, with

computational expense currently limiting global models to low resolutions greater

than 100 km. Low spatial resolutions result in large scale mean aerosol properties

which struggle to resolve gradients associated with urban scale locations. In ad-

dition, computational expense means that global models often include simplified

aerosol size distribution representations.
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In general, atmospheric aerosol are simulated in one of two types of global mod-

els; chemistry transport models (CTM) or chemistry-climate models (CCM). CTMs

simulate atmospheric chemistry and aerosols using input meteorological data pre-

scribed from a general circulation or climate model, where the CTM is run as a sep-

arate program off-line. Simulated atmospheric chemistry and aerosol from a CTM

are thus not able to feedback and impact on meteorology, which is distinct from a

CCM where meteorology, chemistry and aerosols are all calculated on-line allowing

for feedbacks and interactions.

In this thesis, atmospheric aerosol is simulated using a CTM and CCM both of which

are configured with the same aerosol scheme, the Global Model of Aerosol Processes

(GLOMAP-mode). The following chapter describes both the CTM and CCM config-

uration used in thesis Chapters, with Table 2.1 presenting some key differences. In

addition, a full description of the GLOMAP-mode model is also provided, as well

as descriptions for the methods used to estimate aerosol radiative effects and the

disease burden associated with ambient PM2.5 exposure.

2.1 Chemistry–climate model (CCM)

The CCM HadGEM3-UKCA was applied using the same setup described in Turnock

et al., 2015. HadGEM3-UKCA incorporates on-line treatment of chemistry and aerosols

through the United Kingdom Chemistry and Aerosols (UKCA) programme (O’Connor

et al., 2014). The dynamical core of the model is the Met Office’s Unified Model

(UM), which provides meteorological components including the large scale pro-

cesses of advection, convection and boundary layer mixing (Davies et al., 2005).

In this thesis, HadGEM3-UKCA is used in atmosphere-only mode (Hewitt et al.,

2011) with at spatial resolution of 1.875◦ × 1.25◦ (approximately 140 km at mid

latitudes) with 63 vertical levels to a height of 40km. The model was run over a

simulation period from 1960 to 2009, with meteorological fields nudged at 6-hourly

intervals to the European Centre for Medium-Range Weather Forecasts (ECMWF)
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Reanalysis ERA-40 (period 1960 to 2000) (Uppala et al., 2005) and ERA-Interim (pe-

riod 2000 to 2009) (Dee et al., 2011). Nudging to meteorological reanalysis is a sim-

ple form of data assimilation whereby dynamic variables of the free running CCM

are adjusted to allow an accurate representation of meteorological conditions un-

der which observations were collected. Sea ice fields and sea surface temperatures

were prescribed to those used in the Coupled Model Intercomparison Project Phase

5 (CIMP5) (Hurrell et al., 2008), while the coupling of the land surface and atmo-

sphere were prescribed using the Met Office’s Surface Exchange Scheme (MOSES)

(Essery et al., 2003).

Atmospheric chemistry within HadGEM3-UKCA is calculated based on the scheme

(TropIsop) described in O’Connor et al., 2014 and includes reactions of odd oxy-

gen (Ox), nitrogen (NOy), hydrogen (HOx = OH + HO2), as well as carbon monox-

ide (CO), methane (CH4) and short chain non-methane volatile organic compounds

(VOCs). The chemistry scheme has a total of 41 species and simulates approximately

120 chemical reactions. The photolysis scheme (Fast-J) (Wild, Zhu, and Prather,

2000) is used to calculate photolysis rates on-line based on the distribution of simu-

lated clouds, ozone and aerosol fields.

To allow coupling to the aerosol model (GLOMAP-mode), the chemistry scheme

also includes additional chemistry with sulfur (Mann et al., 2010), monoterpene

(Spracklen et al., 2006) and isoprene (Scott et al., 2014) species (Table 2.2). This cou-

pling allows for the interaction and feedback of aerosol and chemistry. However,

feedbacks and interactions on meteorology are suppressed through nudging to the

meteorology reanalysis.

HadGEM3-UKCA (Chapter 3) TOMCAT-GLOMAP (Chapter 4) TOMCAT-GLOMAP (Chapter 5)
Spatial resolution 1.875◦ × 1.25◦ 2.8◦ × 2.8◦ 2.8◦ × 2.8◦
Vertical resolution 63 levels 31 levels 31 levels

Meteorology Nudged to ECMWF Off-line ECMWF Off-line ECMWF
Chemistry Coupled chemistry Prescribed oxidants Coupled chemistry

Aerosol GLOMAP-mode GLOMAP-mode GLOMAP-mode
Thesis chapter 3 4 5

TABLE 2.1: Summary of key differences among the models configu-
rations used in this thesis. TOMCAT-GLOMAP in Chapter 4 refers to
the prescribed oxidant configuration, while TOMCAT-GLOMAP in

Chapter 5 refers to the coupled chemistry configuration.
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2.2 Chemistry–transport model (CTM)

In this thesis, the CTM TOMCAT was used (Chipperfield, 2006; Monks et al., 2017),

which has a horizontal resolution of 2.8◦ × 2.8◦ (approximately 300 km at mid

latitudes) and 31 hybrid vertical σ–p levels extending from the surface to 10 hPa

( 30Km). The model is run off-line with prescribed large-scale transport and mete-

orology (e.g., winds, temperature and humidity fields) from ECMWF ERA-Interim

re-analyses data (Dee et al., 2011) at 6 hourly intervals. Large-scale tracer advection

in the meridional, zonal and vertical is based on Prather, 1986, while sub-grid trans-

port (boundary layer mixing and convective transport) is based on the schemes by

Holtslag and Boville, 1993 and Tiedtke, 1989. The use of prescribed meteorology

means that simulated chemistry and aerosol are not able to feedback and interact on

the meteorology, which is also the case for the CCM setup described above.

The chemistry scheme in TOMCAT includes detailed tropospheric gas-phase chem-

istry inclusive of reactions of odd oxygen (Ox), nitrogen (NOy), hydrogen (HOx =

OH + HO2), as well as CO, CH4 and short chain VOCs (Chipperfield, 2006; Monks et

al., 2017). The photolysis scheme calculates photolysis rates on-line at each chemical

time step based on a two-stream method considering direct and scattered radiation,

and are coupled through TOMCAT simulated temperature and ozone concentration

profiles. Surface albedo and monthly mean climatological cloud fields are supplied

to the photolysis scheme from the International Satellite Cloud Climatology Project

(ISCCP-D2) (Rossow and Schiffer, 1999), while aerosol concentrations are supplied

by GLOMAP-mode (coupled or prescribed, see below).

The TOMCAT-GLOMAP-mode configuration is described as one of two setups (Ta-

ble 2.1). The first describes a coupled chemistry configuration where oxidants are in-

teractively regenerated allowing for the oxidation with sulfur and biogenic monoter-

pene species (Table 2.2) that can interact and feedback on atmospheric chemistry and

aerosol. The second configuration describes GLOMAP-mode run with prescribed 6

hourly oxidant fields from a previous TOMCAT simulation (Arnold, Chipperfield,

and Blitz, 2005), which are linearly interpolated to the GLOMAP-mode model time

step. Under the prescribed oxidant set up, interaction and feedback of atmospheric
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chemistry such as changes in oxidant concentrations, due to changes in aerosol pri-

mary and gas-phase precursor emissions (e.g. sulfur and biogenic species), are not

accounted for.

Reactions
DMS + OH→ SO2

(a)

DMS + OH→ 0.6 SO2 + 0.4 DMSO (b)

DMSO + OH→ 0.6 SO2 + 0.4 MSA (b)

DMS + NO3 → SO2
(a)

CS2 + OH→ SO2
(b)

COS + OH→ SO2
(b)

SO2 + OH + M→ H2SO4
(b)

monoterpene + OH→ 0.13 secondary-organic (a)

monoterpene + NO3 → 0.13 secondary-organic (a)

monoterpene + O3 → 0.13 secondary-organic (a)

HO2 + HO2 → H2O2
(c)

TABLE 2.2: Reactions of gas-phase chemistry used in GLOMAP-
mode with oxidants provide by either HadGEM3-UKCA or TOM-
CAT (Table 2.1), adapted from (Mann et al., 2010). Reactions for
sulfur species include: dimethyl sulphide (DMS,DMSO), sulfur diox-
ide (SO2), sulphuric acid (H2SO4), methane sulphonic acid (MSA),
carbonyl sulphide (COS) and carbonyl sulphide (CS2), and semi-
prognostic hydrogen peroxide (H2O2). Formation of sulfate (SO4

2-)
aerosol, includes gas-phase reactions by the hydroxyl radical (OH),
as well as aqueous-phase formation through the oxidation of sulphur
species (S(IV) to S(VI)) by H2O2 and ozone O3 dissolved in cloud
drops present in low-level clouds. In addition, secondary organic
aerosol formation includes reactions of biogenic monoterpene to form
low volatility oxidation products. Here, monoterpene are oxidised at
a 13% yield following reaction rates for α–pinene. (a) Atkinson et al.,

1992, (b) Pham et al., 1995, and (c) Jones et al., 2001.

2.3 GLOMAP-mode aerosol model

The Global Model of Aerosol Processes (GLOMAP) is a global microphysical model

of aerosol processes that simulates the evolution of size-resolved mass and num-

ber concentrations of aerosol particles with different compositions. In this thesis, the

modal version of GLOMAP (GLOMAP-mode) is used (Mann et al., 2010). GLOMAP-

mode simulates the shape of the aerosol size distribution as a series of log-normal

modes (with the width of each mode being fixed) and includes a number of size-

resolved processes including primary emissions, new particle formation, particle

growth through coagulation, condensation, and cloud-processing, as well as the re-

moval of particles by dry deposition and wet in-cloud and below-could scavenging.
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2.3.1 Aerosol primary and gas-phase precursor emissions

Subject to the aim of the research study, different combinations of emission invento-

ries have been used in this thesis, with each Chapter describing specific emissions

used. Key differences in natural and anthropogenic emissions used in each chapter

are described in Table 2.3 and Table 2.4, respectively.

Natural emissions of volcanic SO2 are provided for both continuous (Andres and

Kasgnoc, 1998) and explosive (Halmer, Schmincke, and Graf, 2002) eruptions. Wild-

fire emissions of BC, OC and SO2 are taken from the Global Fire Emission Database

(GFED) (Van Der Werf et al., 2004) or from the MACCity (MACC/CityZEN EU

projects) inventory (Granier et al., 2011) and REanalysis of the TROposhperic chemi-

cal composition (RETRO) inventory (Schultz et al., 2008) (Table 2.3). Oceanic dimethyl-

sulfide (DMS) emissions are calculated using an ocean surface DMS concentration

database (Kettle and Andreae, 2000) combined with a wind speed dependant sea–air

exchange parametrisation from Nightingale et al., 2000 or Liss and Merlivat, 1986.

Emissions of oceanic sea salt are calculated using the scheme of Gong, 2003 and are

emitted into the accumulation and coarse modes. Emissions of oceanic sea salt are

also calculated using the schemes of Mårtensson et al., 2003 and Monahan, Spiel,

and Davidson, 1986 which includes a more observationally driven treatment of sub-

micron sea salt particles. Monoterpene emissions from vegetation are prescribed as

monthly mean fields from the Global Emissions Inventory Activity database based

on Guenther et al., 1995. Mineral dust emissions are either provided by daily-

varying fluxes as recommended by AeroCom (Dentener et al., 2006) or from a sepa-

rate six-bin scheme of Woodward, 2001 or are not included (Table 2.3).

Annual mean anthropogenic emissions of BC, OC and SO2 are provided by the At-

mospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) (Lamar-

que et al., 2010) or as monthly mean varying emissions by the MACCity inventory

(Granier et al., 2011) and ECLIPSE (Evaluating the Climate and Air Quality Impacts

of Short-Lived Pollutants) inventory version v5a (Stohl et al., 2015) (Table 2.4). Emis-

sions were provided for different years typically for the following anthropogenic
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Emission source HadGEM3-UKCA (Chapter 3) TOMCAT-GLOMAP (Chapter
4)

TOMCAT-GLOMAP (Chapter
5)

Wildfires emissions
Years 1960-2009 Averaged (1997-2002) Averaged (1997-2010)

Reference MACCity and RETRO GFED GFED
Oceanic sea salt

Years Present-day, wind-speed depen-
dant

Present-day, wind-speed depen-
dant

Present-day, wind-speed depen-
dant

Reference Gong, 2003 Gong, 2003 Mårtensson et al., 2003 and
(Monahan, Spiel, and Davidson,
1986)

Windblown dust
Years Present-day, wind-speed depen-

dant
Present-day Not included

Reference Separate scheme Woodward,
2001

GLOMAP, daily flux from Den-
tener et al., 2006

Not included

TABLE 2.3: Key differences in natural aerosol primary and gas-phase
precursor emissions used in the different thesis chapters and models.
TOMCAT-GLOMAP in Chapter 4 referrers to the prescribed oxidant
configuration, while TOMCAT-GLOMAP in Chapter 5 refers to the

coupled chemistry configuration.

sectors: power, industry, transport, residential and commercial, agriculture, waste

treatment and international shipping.

Anthropogenic SO2 emissions are emitted into the lowest model layer for low-level

sources (i.e. residential and commercial and land transport sectors) but are injected

at altitudes ranging 100-300 m for the energy and industrial sectors accounting for

smoke stack heights. Wildfire SO2 emissions are injected uniformly between the

surface and 3 km, whereas wildfire BC and OC are injected between the surface and

6 km (Dentener et al., 2006). Volcanic SO2 emissions are injected at heights based on

volcano-top altitudes (Dentener et al., 2006).

Emission source HadGEM3-UKCA (Chapter 3) TOMCAT-GLOMAP (Chapter
4)

TOMCAT-GLOMAP (Chapter
5)

Anthropogenic emissions
Years 1960-2009 2000 2015-2050

Data source MACCity MACCity and ACCMIP ECLIPSE

TABLE 2.4: Key differences in anthropogenic aerosol primary and
gas-phase precursor emissions used in the different thesis chapters
and models. TOMCAT-GLOMAP in Chapter 4 refers to the pre-
scribed oxidant configuration, while TOMCAT-GLOMAP in Chapter

5 refers to the coupled chemistry configuration.

To account for sub-grid nucleation and formation of SO4
2- particles in volcanic,

power-plant, and transport exhaust plumes, 2.5% of all SO2 emissions are emitted as

primary SO4
2- particles based on the size distribution of Stier et al., 2005. To account

for the size distribution of primary BC and OC emissions at the point of emission and

sub-grid-scale processing at short time-scales after emission, BC and OC are emitted

with an initial log-normal size distribution. This log-normal size distribution has a

specified geometric mean diameter of 150 nm for wildfire and other biomass burning
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emissions and 60 nm for fossil fuel emissions (regardless of specific source), with a

geometric standard deviation set at 1.59. The distribution of BC and OC particles are

then incorporated into the Aitken insoluble mode. Additionally, to account for the

additional mass of oxygen, hydrogen and nitrogen atoms associated with particu-

late organic matter (POM) aerosol, OC emissions are multiplied by a OC:POM ratio

of 1.4 or 2 based on AeroCom (Dentener et al., 2006) and other recommendations

(Philip et al., 2014).

2.3.2 Aerosol microphysical processes

GLOMAP-mode is a two-moment scheme where information on aerosol number

and mass concentrations of different components are carried in a series of log-normal

size modes: nucleation (dry diameter (Dp) <10 nm), Aitken (Dp 10–100 nm), accu-

mulation (Dp 100 nm to 1 μm) and coarse (Dp >1 μm). GLOMAP-mode simulates

multiple components in soluble and insoluble modes where aerosol components can

be a combination of internal and external mixtures. Typical aerosol components

include sulfate (SU, SO4
2-), sea-salt (SS, NaCl), black carbon (BC), particulate or-

ganic matter (POM) and mineral dust (DU). Table 2.5 reports key differences in the

GLOMAP-mode set up used in each thesis Chapter and model configuration.

HadGEM3-UKCA
(Chapter 3)

TOMCAT-GLOMAP
(Chapter 4)

TOMCAT-GLOMAP
(Chapter 5)

Mode Size (Dp) Components Components Components
Nucleation Dp <10 nm SU,POM SU,POM SU,POM
Aitken soluble Dp 10–100 nm SU,POM,BC SU,POM,BC SU,POM,BC
Accumulation solu-
ble

Dp 100 nm to 1 μm SU,POM,BC,SS SU,POM,BC,SS,DU SU,POM,BC,SS

Coarse soluble Dp >1 μm SU,POM,BC,SS SU,POM,BC,SS,DU SU,POM,BC,SS
Aitken insoluble Dp 10–100 nm BC,POM BC,POM BC,POM
Accumulation insol-
uble

Dp 100 nm to 1 μm - DU -

Coarse insoluble Dp >1 μm - DU -

TABLE 2.5: Summary of GLOMAP-mode set up. Dp (dry diameter);
SU (sulfate), POM (particulate organic matter), BC (black carbon), SS
(sea salt), DU (mineral dust). Sigma reflects geometric standard de-
viation of mode. TOMCAT-GLOMAP in Chapter 4 refers to the pre-
scribed oxidant configuration, while TOMCAT-GLOMAP in Chapter

5 refers to the coupled chemistry configuration.

To simulate the evolution of aerosol concentrations, each mode has a fixed geometric

standard deviation but a changeable particle geometric mean dry diameter. When



48 Chapter 2. Methods

microphysical processes (coagulation, condensational growth and in-cloud process-

ing) act to exceed the geometric mean dry diameter above the upper size limit of the

respective mode, particle number and mass are transferred between the modes.

Microphysical processes include the new particle formation in the boundary layer

and free troposphere, ageing of insoluble to soluble aerosol particles through con-

densational ageing, as well as complete removal of aerosol particles via wet and dry

deposition processes. Figure 2.1 presents a summary of the microphysical processes

in GLOMAP-mode that govern aerosol size distributions, composition and lifetime.

FIGURE 2.1: Summary of microphysical processes that control atmo-
spheric aerosol size distributions, lifetime and chemical composition.

Figure taken from Raes et al., 2000.

New particle formation

New particle formation through the nucleation of new particle clusters is simulated

in GLOMAP-mode by the binary homogeneous nucleation of H2SO4–H2O (Kul-

mala, Laaksonen, and Pirjola, 1998) in the free and upper troposphere and in the

boundary layer (boundary layer nucleation) using an empirical mechanism (Kul-

mala, Lehtinen, and Laaksonen, 2006; Sihto et al., 2006). Binary homogeneous nu-

cleation is the dominant source of new particles in the free and upper troposphere

due to its preference for low temperature, high relative humidity, and low particle

surface areas (Spracklen et al., 2005a; Spracklen et al., 2005c). However, boundary
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layer nucleation is more important for new particle formation in remote continental

locations (Spracklen et al., 2006).

Updated mechanisms for the formation of inorganic new particles have been made

to TOMCAT-GLOMAP-mode coupled chemistry version used in Chapter 5. Here

new particle formation is expressed as the sum of binary homogeneous nucleation

(H2SO4–H2O) and ternary sulfuric acid-ammonia-water (H2SO4–NH3–H2O) com-

ponents, as described in Gordon et al., 2017. New particle formation from H2SO4

with oxidation products of monoterpenes with the hydroxyl radical (OH) has also

been included in this version of the model (Riccobono et al., 2014).

Coagulation

Coagulation is the process by which aerosol particles can collide due to random mo-

tions and coalesce to form larger particles resulting in less numerous particle num-

bers. Using a mass conserving scheme Seinfeld and Pandis, 1998, GLOMAP-mode

simulates coagulation through Brownian diffusion (i.e., random motion of particles)

of both intra-modal collisions of particles in the same mode and inter-modal colli-

sions of particles between different modes (Mann et al., 2010; Spracklen et al., 2005a).

Coagulation is an important mechanism for the growth of sub-micron particles in the

nucleation and Aiken size ranges, due to the random Brownian motion of particles

within these size ranges.

Condensation

In GLOMAP-mode, oxidants react with SO2 and monoterpenes (at reaction rates

for α–pinene) to produce low volatility oxidation products H2SO4 and gaseous sec-

ondary organic vapour from a 13% production yield (Table 2.2). These vapours have

the ability to condense onto all pre-existing particles acting not only as a condensa-

tional sink for these low volatility vapours, but acting to increase the size and mass
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of existing particles without changing overall number concentrations. The nucle-

ation of new particles and potential for condensational growth are in direct compe-

tition, as the existence of particle surface areas act as a condensational sink limiting

the available low volatility vapours for nucleation events. The condensation of low

volatility soluble vapours can also age insoluble aerosol particles into soluble modes

thus influencing time-scales for wet deposition.

Cloud processing

In GLOMAP-mode, cloud processes are simulated by the growth of aerosol parti-

cles as water droplets and the aqueous phase oxidation of SO2 in non-precipitating

clouds. This process leads to a gap in the growth of activated and non-activated

aerosol particles, resulting in a minimum in the particle size distribution, which de-

fines both the Aitken and accumulation modes (i.e., ’Hopple gap’) (Hoppel et al.,

1994). For HadGEM3-UKCA, information on low-level cloud liquid water path are

taken from the coupled climate model, whereas they are taken from off-line ISCCP-

D2 data (Rossow and Schiffer, 1999) in the TOMCAT-GLOMAP-mode configuration.

Following Spracklen et al., 2005b, cloud processing of aerosol in GLOMAP-mode is

determined using a global uniform activation dry radius (defined as the smallest

particles activated to cloud droplets) of 37.5 nm corresponding to a stratocumulus

cloud supersaturation of 0.2% for H2SO4.

Dry deposition

The removal of atmospheric aerosol by dry deposition processes in GLOMAP-mode

is parameterised using the scheme of Zhang et al., 2001, which represents gravita-

tional settling, Brownian diffusion, impaction interception of the surface, and par-

ticle rebound of the surface. The particle sizes, underlying land surface type (i.e.

forest, ocean, ice) and wind speed determine the deposition velocity. In general, dry

deposition velocity is less efficient for particles of an intermediate size ranges (i.e.

100 nm to 1 μm in diameter), leading to the accumulation of accumulation mode
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size aerosol particles. Dry deposition velocities on the other hand, are more effi-

cient for larger size particles through gravitational settling processes, as well as for

smaller size particles through diffusion to the surface.

Wet deposition

The wet removal of atmospheric aerosol is treated in GLOMAP-mode through in-

cloud nucleation scavenging (i.e. the rain-out of aerosol after the formation of a

water droplet around an activated aerosol particle) and below-cloud impaction scav-

enging (i.e. washout of aerosol particles by falling rain drops). Removal is simulated

for both large-scale and convective-scale precipitation events based on prescribed

ECMWF reanalysis (i.e., TOMCAT-GLOMAP-mode configuration) or nudged cli-

mate model (i.e., HadGEM3-UKCA). For large-scale precipitation events, all in-cloud

activated particles in the soluble accumulation and coarse modes are removed at a

constant rate in the cloudy fraction of grid boxes containing precipitating clouds.

However, for sub-grid convective precipitation events, in-cloud nucleation scaveng-

ing of aerosol is assumed to occur in 30% of the model grid box. For both large scale

and convective precipitation events, GLOMAP-mode removes aerosol particles at a

rate proportional to the amount of condensed water converted to rain. For removal

of aerosol through below-cloud impaction scavenging, GLOMAP-mode uses a rain-

drop aerosol collection efficiency lookup table based on geometric mean dry radius

of mode and raindrop size distribution (Sekhon and Srivastava, 1971).

2.4 Off-line radiative transfer model

In chapter 4 (TOMCAT-GLOMAP-mode configuration), the Edwards and Slingo,

1996 off–line radiative transfer model is used to quantify the radiative effects of

aerosol. The radiative transfer model uses nine radiation bands in the longwave
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(LW) and six bands in the shortwave (SW), together with monthly-mean climatolo-

gies of water vapour, temperature and O3 based on ECMWF re-analysis. Informa-

tion on surface albedo and climatological clouds is also provided by the ISCCP-D2

dataset.

Following Rap et al., 2013, the aerosol direct effect (DRE) is calculated by the dif-

ference in net (SW and LW) top of atmosphere (TOA) all-sky radiative flux between

a control unperturbed and perturbed TOMCAT-GLOMAP-mode simulation. For

each spectral band and aerosol mode, aerosol optical properties are calculated as

described in Bellouin et al., 2013. Optical properties are the specific scattering and

absorption coefficients, which calculates the magnitude of scattering and absorp-

tion per unit aerosol mass, and the dimensionless asymmetry parameter, describing

the angular dependence of the scattering (Bellouin et al., 2013). he quantification of

DRE here is based under the unrealistic assumption that BC is internally or homoge-

neously mixed with scattering aerosol species (i.e. does not account for different BC

optical mixing states), providing an upper bound for BC DRE (Kodros et al., 2015;

Jacobson, 2001). Additionally, DRE calculated here does not account for light ab-

sorbing effect of brown carbon, which is thought to be important for absorption at

visible to ultraviolet wavelengths (Sun, Biedermann, and Bond, 2007).

To determine the first aerosol indirect effect (AIE) or cloud albedo effect, the con-

tribution of aerosol concentrations to cloud droplet number concentrations (CDNC)

needs to be calculated. The maximum supersaturation (SSmax) of an ascending cloud

parcel depends on the competition between increasing water vapour saturation with

decreasing pressure and temperature, and the loss of water vapour through conden-

sation onto activated particles. CDNC are calculated here using a physically based

method based on the scheme of Nenes and Seinfeld, 2003, which has been evalu-

ated previously in GLOMAP (Pringle et al., 2009). For a given updraught velocity,

monthly mean aerosol size distributions are converted to a supersaturation distri-

bution where the number of activated particles can be determined for SSmax. Here,

CDNC are calculated in a post-processing procedure in all model grid boxes (and at

all levels) using a constant up-draught velocity of 0.15 ms-1 over the ocean and 0.2
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ms-1 over the land, consistent with observations of low-level stratus and stratocu-

mulus clouds (Pringle et al., 2012). While up-draught velocities will vary substan-

tially at such locations, the use of average velocities in previous GLOMAP studies

have shown to capture observed relationships between particle number and CDNC

(Pringle et al., 2009), as well as reproducing realistic CDNCs (Merikanto et al., 2010).

For calculating AIE (see below), a cloud mask from ISCCP data are used, and only

CDNDs for low-level clouds (i.e., below 600 hPa) are considered.

Following previous methodologies (Scott et al., 2014; Schmidt et al., 2012; Spracklen

et al., 2011b), AIE is calculated assuming fixed water content where a control uni-

form cloud droplet effective radius re1 = 10 μm is assumed to maintain consistency

with the ISCCP derivation of liquid water path:

re2 = re1 ×
[

CDNC1

CDNC2

] 1
3

where CDNC1 represents a control unperturbed simulation (e.g. with residential

emissions) and CDNC2 represents a perturbed simulation (e.g. without residential

emissions). The AIE is calculated by comparing the net TOA radiative fluxes us-

ing the different re2 values derived for each perturbation experiment, to that of the

control where re1 is fixed.

2.5 Simulating PM2.5 concentrations

The mass of particles with a median aerodynamic dry diameter of < 2.5 μm (PM2.5)

is strongly associated with mortality and morbidity epidemiological evidence and

thus is used in air quality health burden assessments. In this thesis, PM2.5 concen-

trations from GLOMAP-mode output are calculated in a post processing procedure

based on a mathematical function that calculates the cumulative of a log-normal

distribution up to a specific radius (i.e. 1.25 μm for PM2.5). Using this function, the

mass fraction of particles at or below a median aerodynamic dry diameter of < 2.5

μm (PM2.5) can be calculated and summed over all aerosol modes. Calculation of
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the mass of water associated with individual aerosol components under specific rel-

ative humidities (RH) can also be quantified, which is useful for comparing to PM2.5

measurements under certain RH conditions. Here, a hygroscopicity parameter k is

assigned to individual components in soluble modes to estimate the mass of water

associated.
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TOMCAT-GLOMAP-mode (coupled chemistry) PM2.5 (µg m-3)

a
Surface mean = 7.01 (µg m-3)

 

0 2 4 6 8 10 12 14 16 18 20 30 40 50 60 70 80
TOMCAT-GLOMAP-mode (uncoupled chemistry) PM2.5 (µg m-3)

b
Surface mean = 4.45 (µg m-3)
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HadGEM3-UKCA PM2.5 (µg m-3)

c
Surface mean = 3.82 (µg m-3)

FIGURE 2.2: Annual mean surface PM2.5 concentrations in the
present-day from TOMCAT-GLOMAP-mode (coupled chemistry) in
year 2015 a, TOMCAT-GLOMAP-mode (uncoupled chemistry or pre-
scribed oxidants) in year 2000 b, and HadGEM3-UKCA in year 2008

c.

The use of GLOMAP-mode within the different model configurations used in this

thesis makes it hard to compare the magnitude of differences in simulated PM PM2.5

concentrations as shown in Figure 2.2. Differences likely stem from a number of dif-

ferent reasons such as spatial resolution used, chemical scheme, anthropogenic and

natural emissions and meteorological year used, as well as other structural differ-

ences.

Table 2.6 summarises some of the key differences between model configurations

that likely contribute to differences in simulated surface PM2.5 concentrations 2.2.

The use of a higher spatial resolution in HadGEM3-UKCA leads to noticeable PM2.5

’hotspots’ or plumes over heavily urbanised areas, which cannot be resolved under
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the relatively coarse resolution of TOMCAT-GLOMAP. Elevated PM2.5 concentra-

tions over the oceans in the TOMCAT-GLOMAP (coupled chemistry) configuration

are more apparent than in the other two model configurations, which contributes

to the larger mean surface PM2.5 estimate of 7.01 μg m-3. Elevated PM2.5 over the

oceans in this model configuration is due to a more robust representation of sub-

micron sea salt particles using a parametrisation more consistent with observations

(Mårtensson et al., 2003). Organic aerosol is an important constituent of PM2.5 and

differences in the assumed ratio of OC:POM can lead to noticeable differences in

simulated concentrations. For example, the use of a larger ratio of 2 in the TOMCAT-

GLOMAP (coupled chemistry) configuration is responsible for a large proportion of

elevated PM2.5 concentrations in biomass combustion regions (e.g. wildfire regions

of the Amazon, Congo basin and South East Asia, and residential and agricultural

biomass burning regions of India and China).

HadGEM3-UKCA
(Chapter 3)

TOMCAT-GLOMAP
(Chapter 4)

TOMCAT-GLOMAP
(Chapter 5)

Spatial resolution 1.875◦ × 1.25◦ 2.8◦ × 2.8◦ 2.8◦ × 2.8◦
Sea salt Gong, 2003

parametrisation
Gong, 2003
parametrisation

Mårtensson et al.,
2003 parametrisation

OC:POM ratio 1.4 1.4 2
Meteorology 2008 2000 2015
Anthropogenic emissions 2008, MACCity 2000, ACCMIP 2015, ECLIPSE

TABLE 2.6: Summary of the key difference between the model con-
figurations that likely contribute to differences in simulated surface
PM2.5 concentrations reported in Figure 2.2. TOMCAT-GLOMAP
in Chapter 4 refers to the prescribed oxidant configuration, while
TOMCAT-GLOMAP in Chapter 5 refers to the coupled chemistry con-

figuration.

2.6 Perturbed Parameter Ensemble

In Chapter 3, a perturbed parameter ensemble (PPE) is used (Lee et al., 2011; Re-

gayre et al., 2018) to explore the uncertainty in simulated PM2.5 concentrations from

HadGEM3-UKCA CCM (see Appendix A for further details). The PPE used in Chap-

ter 3 represented 235 simulations from a separate group of HadGEM3-UKCA runs

for the year 2008 where 26-related parameters are perturbed simultaneously (Yosh-

ioka, 2017). In brief, the PPE approach uses expert elicitation and statistical sampling

methods such as Latin hypercube sampling to produce a large number of variations
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of one model to represent the full parametric uncertainty space of simulated out-

put variables (e.g., PM2.5 concentrations). Latin hypercube sampling is key to the

PPE because it stratifies uncertainty among input parameters so that sampling can

cover the full parametric uncertainty space with a limited sample size, which means

a reduced number of simulations are required compared to a more common Monte

Carlo sampling approach.

2.7 Calculating the attributable burden of disease to PM2.5

exposure

Estimating the burden of disease attributable to long-term PM2.5 exposure are simi-

lar to those employed by the GBD CRA (e.g. Lim et al., 2012; Gakidou et al., 2017).

Estimating the health burden due to ambient PM2.5 exposure requires an under-

standing of three key factors; 1) population-level PM2.5 exposure distributions, 2)

exposure-response relationships together with theoretical minimum risk exposure

levels (TMREL, below which no risk is assumed), and 3) demographic and back-

ground disease characteristics.

2.7.1 PM2.5 exposure distribution

The PM2.5 exposure distributions used in the GBD CRA are taken from gridded

surface estimates based on combining CTM modelling, ground measurements and

satellite retrievals of AOD (e.g. Brauer et al., 2015; Van Donkelaar et al., 2010; Shad-

dick et al., 2018). In this thesis, PM2.5 exposure distribution estimates are taken from

GLOMAP-mode, as well as the satellite based estimates used in the GBD. As in the

GBD CRA and other health burden assessments, annual mean surface concentra-

tions of ambient PM2.5 are assumed a proxy for long-term personal exposures.
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2.7.2 Exposure-response relationships

To translate a health outcome or risk in a population given a level of PM2.5 ex-

posure, knowledge of the exposure-response relationship and TMREL is required.

Exposure-response relationships usually take the form of relative risk (RR) estimates

based on epidemiological evidence from prospective cohort studies. RR is expressed

as the ratio of the probability of cumulative incidences for disease mortality in an ex-

posed population π1 over the probability of cumulative incidences in an unexposed

population π2 over an observation period:

RR =
π1

π2

After controlling for other individual confounder risk factors, RR represents the dif-

ferences in population level health outcomes due to differences in PM2.5 exposure

levels, with risk being limited to above the lowest measured exposure distribution

among cohort studies (e.g., TMREL).

Two different types of exposure-response relationship are used in this thesis (see

Table 2.7), representing old and new generation relationships. The two relationships

chart the improvement in scientific understanding regarding the estimated PM2.5

exposure-response over the past few years.

The older relationship, typically used before GBD CRA 2010 (Lim et al., 2012), is

based entirely on ambient air quality prospective cohort studies from North Amer-

ica and Western Europe. However, because PM2.5 concentrations rarely exceeded

30 μm-3 across these regions, older relationships employed linear or log-linear func-

tions to estimate excess risk at high exposure distributions more typical of low and

middle-income countries with poor ambient air quality (e.g., India and China where

cohort studies do not exist) (Cohen et al., 2004; Ostro and WHO, 2004). Thus, risk es-

timates at concentrations typically above 30 μm-3 were dependant on the extrapola-

tion model (e.g., linear or log-linear), which are not constrained by observations. Fol-

lowing (Ostro and WHO, 2004; Schmidt et al., 2011), a log-linear exposure-response

relationship is used in Chapter 4 of this thesis.
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HadGEM3-UKCA
(Chapter 3)

TOMCAT-GLOMAP
(Chapter 4)

TOMCAT-GLOMAP
(Chapter 5)

Exposure-response relationship IER1 Log-linear IER2

TABLE 2.7: Summary of exposure-response relationships used in
each thesis Chapter and model configuration. ’IER’ represents inte-
grated exposure-response and the subscript indicates different ver-
sions used. TOMCAT-GLOMAP in Chapter 4 refers to the prescribed
oxidant configuration, while TOMCAT-GLOMAP in Chapter 5 refers

to the coupled chemistry configuration.

There are a number of limitations and concerns associated with the use of older

generation relationships similar to the log-linear approach used in Chapter 4. Most

are concerned with the risk of simulating implausible and biologically inconsistent

risk estimates at high exposure distributions not constrained by epidemiological ev-

idence (Ostro et al., 2018).

To overcome this limitation, researchers looked to combine observed epidemiolog-

ical risks from high exposure distribution activities such as active tobacco and pas-

sive (second hand) smoking (Pope III et al., 2011, e.g.,). Following this body of re-

search, integrated exposure-response (IER) relationships were developed that could,

for the first time, predict observationally-constrained risk estimates for the entire

global range of ambient PM2.5 exposures (Burnett et al., 2014). The IER works by

compiling observed risks from different epidemiological prospective cohort studies

and randomised control trials of different combustion sources, including ambient air

pollution, household air pollution (HAP) from solid fuel combustion, second-hand

(passive) tobacco smoke, and active tobacco smoking. The IER relationship is thus

far more superior than the older generation relationships (e.g., log-linear relation-

ship) (Ostro et al., 2018).

In addition, the IER predicts a greater number of individual cause-specific diseases

than older generation relationships that have been deemed consistent with causal re-

lationships: ischaemic heart disease (IHD), cerebrovascular disease (ischaemic stroke

and haemorrhagic stroke; CEV), lung cancer, chronic obstructive pulmonary disease

(COPD), and lower respiratory infections (LRI).

Two different versions of the IER are used in this thesis (see Table 2.7 and Figure
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FIGURE 2.3: Integrated-exposure response relationships used to re-
late PM2.5 exposure to cause-specific diseases endpoints: all-ages
lower respiratory infections, lung cancer, chronic obstructive pul-
monary disease, and age-specific ischaemic heart disease and cere-
brovascular disease (ischaemic stroke and haemorrhagic stroke).
Solid lines represent the up-to-date IER version used in Chapter 5,
whereas the dotted lines represent the an older IER version used in

the Chapter 4.

2.3). The differences between the two versions represent the greater inclusion of epi-

demiological evidence in recent years. For example, the more up-to-date version of

the IER used in Chapter 5 includes data from many more prospective cohort studies

compared to the older version used in Chapter 3. In addition, the up-to-date version

includes a lower TMREL due to the inclusion of a greater number cohort studies

in very clean regions. Figure 2.3 show a comparison of the two IER versions. In

general, IER curves are non-linear, with reduced sensitivity to changes in PM2.5 at

higher concentrations, particularly for cardiovascular diseases (IHD and CEV). Age-

specific cardiovascular RRs also show a decline with age as supported by health

evidence (Singh et al., 2013). Health assessments employing different versions of

the IER or altogether different exposure-response relationships, make comparisons

between health burden estimates difficult (Ostro et al., 2018).
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2.7.3 Calculating attributable deaths

Once an appropriate exposure-response relationship is selected, the number of deaths

attributable to long-term PM2.5 exposure can be quantified. Following GBD CRA

methods, the number of attributable deaths for a given year, country, sex and cause-

specific disease, can be estimated using the population attributable fraction (PAF):

PAF =
Pf age(RRage − 1)

Pf age(RRage)

where RRage is the all-age or age-specific IER-derived RR estimate derived from

country-level population-weighted PM2.5 concentrations and Pf age is the fraction of

the age-group population of interest. Total attributable deaths or mortality (MortPM2.5)

are then calculated by multiplying the (PAF) by the annual total age and cause-

specific background disease mortality Mortbackgroundage :

MortPM2.5 = PAF×Mortbackgroundage

Attributable disease burden (deaths) can either be calculated at the national or country-

level using population-weighted PM2.5 concentrations (Chatper 5) or calculated on

the grid-level (Chapter 3 and 4) using grid-level PM2.5 concentrations. Both methods

produce very similar burden results at the national-level.

2.7.4 Demographic and disease data

Subject to the aim of the research study, different combinations of demographic and

background disease data have been used to estimate attributable health burdens.

Table 2.8 reports the different data sources used in each thesis Chapter.

The Gridded Population of the World (GPW) dataset (CIESIN, 2005; Doxsey-Whitfield

et al., 2015) are used to estimate the total number of people exposed to ambient PM2.5

spatially (Figure 2.4). The GPW dataset is generated by collecting detailed spatial

resolution data from the most available rounds of population and housing censuses

and extrapolating them to produce gridded estimates for different years (typically
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HadGEM3-UKCA
(Chapter 3)

TOMCAT-GLOMAP
(Chapter 4)

TOMCAT-GLOMAP
(Chapter 5)

Gridded population GPW GPW GPW and IFs
Background disease IHME UN IHME and IFs
Age-group estimates UN UN IFs

TABLE 2.8: Summary of the differences in the demographic and back-
ground disease data used in each thesis Chapter. ’GPW’ represents
Gridded population of the World dataset, ’IHME’ represents Insti-
tute Health Metrics and Evaluation data, ’UN’ United Nations, and
’IFs’ represents the International Futures socio-economic modelling
system. TOMCAT-GLOMAP in Chapter 4 refers to the prescribed ox-
idant configuration, while TOMCAT-GLOMAP in Chapter 5 refers to

the coupled chemistry configuration.

at 5-year intervals). Information on age-group structures used to estimate the fac-

tion of the population within specific age-groups are taken from either the United

Nations (UN) Population Division estimates (https://esa.un.org/unpd/wpp/) or

from Institute Health Metrics and Evaluation (IHME) (Health Metrics and (IHME),

2015). Estimates of cause-specific background disease data are taken from the cause

of disease the IHME (Health Metrics and (IHME), 2015), which use statistical and

analytical methods to redistribute modelled or reported deaths by their probable

underlying causes.

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

30S

0

30N

60N
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Population count (GPW)

FIGURE 2.4: Gridded population count data for the year 2015 taken
from the Gridded Population of the World (GPW) dataset. Spatial

resolution is on 15 arc-minute (0.25 degree) grid.

The data described above represents historical estimates. However, for the study

design in Chapter 5, estimates of demographic and background disease in the year

2050 were required. Here, the International Futures (IFs) socio-economic modelling

system (Hughes et al., 2011) was used. The IFs model draws on drivers of health and

https://esa.un.org/unpd/wpp/
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population, including demographic, economic, educational, socio-political, agricul-

tural and environmental to forecast estimates into the future. The model is initialised

with present-day conditions (based on UN and IHME estimates) and is run under

a future base case scenario where present-day dynamic patterns and relationships

relating to demographic and disease outcomes continue to unfold and evolve to

2050. IFs forecasts were obtained through the downloadable model version v7.31

(https://pardee.du.edu/access-ifs).

2.8 Thesis experiments

Table 2.9 summarizes the different experiments presented in this thesis. Using time

varying emissions from the MACCity emission inventory together with HadGEM3-

UKCA model (Turnock et al., 2015), the experiment presented in Chapter 3 inves-

tigates the global and regional health burden impacts due to changes in ambient

PM2.5 concentrations over the past 50 years (e.g., period 1960 to 2009). In Chapter 4,

the TOMCAT-GLOMAP configuration (with prescribed oxidants) was used with an-

thropogenic emissions from the MACCity and ACCIMP inventories to examine the

present-day (year 2000) impact of small-scale residential combustion activities (e.g.,

cooking and heating with solid fuels) on atmospheric aerosol and climate and PM2.5

air quality on human health. Finally in Chapter 5, the TOMCAT-GLOMAP config-

uration (with coupled chemistry) with anthropogenic emissions from the ECLIPSE

emission inventory was used to examine PM2.5 air quality and health burden im-

pacts in the year 2050 and the potential for clean residential combustion technologies

(e.g., widespread implementation of clean cookstoves) to avoid impacts.

Chapter 3 Chapter 4 Chapter 5
Experiment descrip-
tion

Examining changes
in PM2.5 and associ-
ated health impacts
from 1960 to 2009.

Examining the im-
pact of residential
combustion emis-
sions in the present-
day on atmospheric
aerosol, climate and
health.

Investigating PM2.5
and health impacts
in 5050 and potential
benefits of clean
combustion mea-
sures (e.g., clean
cookstoves)

Model configuration HadGEM3-UKCA TOMCAT-GLOMAP,
prescribed oxidants

TOMCAT-GLOMAP,
coupled chemistry

Simulation period 1960 to 2009 2000 2015 to 2050

TABLE 2.9: Summary of the different experiments presented in this
thesis.

https://pardee.du.edu/access-ifs
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Abstract
Long-term exposure to ambient particulate matter (PM2.5, mass of particles with an aerodynamic dry
diameter of < 2.5 𝜇m) is a major risk factor to the global burden of disease. Previous studies have
focussed on present day or future health burdens attributed to ambient PM2.5. Few studies have
estimated changes in PM2.5 and attributable health burdens over the last few decades, a period where
air quality has changed rapidly. Here we used the HadGEM3-UKCA coupled chemistry-climate
model, integrated exposure-response relationships, demographic and background disease data to
provide the first estimate of the changes in global and regional ambient PM2.5 concentrations and
attributable health burdens over the period 1960 to 2009. Over this period, global mean
population-weighted PM2.5 concentrations increased by 38%, dominated by increases in China and
India. Global attributable deaths increased by 89% to 124% over the period 1960 to 2009, dominated
by large increases in China and India. Population growth and ageing contributed mostly to the
increases in attributable deaths in China and India, highlighting the importance of demographic
trends. In contrast, decreasing PM2.5 concentrations and background disease dominated the
reduction in attributable health burden in Europe and the United States. Our results shed light on
how future projected trends in demographics and uncertainty in the exposure–response relationship
may provide challenges for future air quality policy in Asia.

1. Introduction

Long-term exposure to ambient concentration of par-
ticles withan aerodynamic dry diameter of < 2.5 𝜇m
(PM2.5) is associated with mortality and morbidity
and shortens life expectancy (Dockery et al 1993,
Pope and Dockery 2006, Pope et al 1995). It is esti-
mated that ∼87% of the global population live in areas
exceeding the World Health Organisation’s (WHO)
air quality guidelines for annual mean ambient PM2.5
(10 𝜇g m−3) (Apte et al 2015). Recent assessments
of the Global Burden of Disease (GBD) estimate that
exposure to ambient PM2.5 is a major contributing
risk factor to regional and global burden of dis-
ease (Forouzanfar et al 2016, Forouzanfar et al 2015,
Lim et al 2013).

Previous studies have reported present day and
future (Lelieveld et al 2015, Silva et al 2016b)
attributable health burdens assessments. Few studies
have estimated changes in PM2.5 attributable health
burdens over the last few decades (e.g. Wang et al
2017), a period where widespread implementation of
air quality regulation and emission controls in North
America and Europe coincided with extensive eco-
nomic growth and limited emission controls across
Asia. Over Europe and the United States, emissions
of sulphur dioxide (SO2) have decreased by more
than 70% over the last few decades (Leibensperger
et al 2012, Vestreng et al 2007), resulting in substan-
tial reductions in PM2.5 concentrations (Leibensperger
et al 2012, Tørseth et al 2012, Turnock et al 2015). In
contrast, SO2 emissions over Asia have increased by a

© 2017 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Annual emissions (Tg yr−1) of sulfur dioxide (SO2), organic carbon (OC) and black carbon (BC) from the MACCity
emission inventory for the period 1960 to 2010. Regional domains (identified in figure S1) for (a) US (United States), (b) Europe, (c)
East China and (d) India.

factor of 7 between 1960 and 2005 (Smith et al 2011),
resulting in increased PM2.5 concentrations (Brauer
et al 2015). Understanding these historical changes in
PM2.5 concentrations and attributable burdens across
these regions is vital to inform future air quality policy
design.

Estimating the health burden attributable to long-
term exposure to PM2.5 requires an understanding of
the exposure-response relationship, an accurate rep-
resentation of PM2.5 concentrations and demographic
and background disease trends. PM2.5 concentrations
can be simulated using global chemical transport mod-
els (Anenberg et al 2010, Lelieveld et al 2013, Silva et al
2016a), or through a combination of modelling, satel-
lite remote sensing data, ground-based observations,
and land-use regression (Brauer et al 2012, Brauer
et al 2015, Jerrett et al 2016, van Donkelaar et al
2010). Global health assessments (Forouzanfar et al
2016, Forouzanfar et al 2015, Lim et al 2013, Wang
et al 2017) are restricted to the last few decades (1990
onwards), when satellite and ground-based observa-
tions are typically available. For this reason, little is
known about how PM2.5 attributable burden changed
prior to 1990. Here we combine a global climate
model, with exposure-response relationships, demo-
graphic andbackgrounddiseasedata toprovide thefirst
estimate of the changes in global and regional PM2.5
attributable health burdens over the period 1960 to
2009.

2. Methods

2.1. PM2.5 concentrations
We used the coupled chemistry–climate model
HadGEM-3-UKCA, known hereafter as ‘UKCA’, to
simulate PM2.5 concentrations for the period 1960
to 2009. We use the same model setup described in
detail in Turnock et al (2015) with a horizontal res-
olution of 1.875◦ × 1.25◦ (approximately 140 km at
mid latitudes). Meteorological fields were nudged at
6 h intervals to the European Centre for Medium-
RangeWeatherForecastsReanalysis (ERA-40) (Uppala
et al 2005) for the years 1960 to 2000 and ERA-Interim
(Dee et al 2011) for 2001 to 2009.

UKCA simulates sulfate (SO4), black carbon (BC),
organic carbon (OC) and sea salt aerosol in five log-
normal modes (four soluble modes and one insoluble
Aitken mode) (Mann et al 2010) (see supplemen-
tary information (SI) 1.1 available at stacks.iop.org/
ERL/12/104017/mmedia). Monthly mean anthro-
pogenic emissions of CO, SO2, NOx, OC and BC from
1960 to 2009 are taken from the MACCity emission
inventory (Granier et al 2011). Figure 1 shows the
1960 to 2010 trends in SO2, BC and OC. Emissions
in Europe and the United States (US) have declined
from a maximum in the 1970s due to the implemen-
tation of air quality regulation and emission controls,
while emissions have increased substantially in China
and India. SO2 emissions in the region of East China

2
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Figure 2. Average annual mean PM2.5 concentrations at (a) IMPROVE sites in the United States and (b) EMEP sites in Europe.
Measured concentrations (black line with filled squares, shading represents standard deviation of annual mean concentrations across
all sites) are compared to simulated concentrations from the baseline of UKCA (green lines) and UKCA-PPE estimates (blue lines).
The mean bias (𝜇g m−3) and normalised mean bias factor (in brackets) for each UKCA simulation is shown on each panel in legend
order.

in the 2000s were a similar magnitude to US emissions
in the 1970s, but less than European emissions during
the same period. Other emission sources are described
in detail in Turnock et al (2015). Mineral dust con-
centrations are taken from a 10 year GLOMAP-mode
climatology taken from Reddington et al (2015). We
therefore assume no interannual variability or trends in
dust over the study period. There is no representation
of ammonium nitrate in this version of the model.

To account for uncertainty in PM2.5 estimated by
UKCA we used a perturbed parameter ensemble (PPE)
of 235 UKCA simulations for the year 2008 where
26 aerosol related parameters were perturbed simul-
taneously. The PPE represents the aerosol parametric
uncertainty in the model (see SI 1.3 and figure S2).
We use the median value of PM2.5 simulated across
the PPE as our best estimate of PM2.5 and the 5th
and 95th percentile values as an indication of uncer-
tainty inour estimate.We increment thebaselinemodel
(UKCA base) by the absolute difference in the year 2008
between the baseline and the median (UKCA ppe−med),
5th (UKCA ppe−05) and 95th (UKCA ppe−95) per-
centile of the PPE (see SI 1.3 and figure S3). We assume
that the same increment across the entire 1960 to 2009
simulation period.

We also used satellite-derived PM2.5 estimates
(Brauer et al 2015) known hereafter as ‘GBD-PM’. This
dataset provides annual mean PM2.5 concentrations at
0.1◦ × 0.1◦ horizontal resolution for the period 1990
to 2010 at five year intervals. In this dataset, PM2.5
is estimated through a PM2.5 to aerosol optical depth
(AOD) relationship using the GEOS-Chem model and
satellite remote sensing products calibrated to ground-
based measurements (Brauer et al 2015). This dataset
was used in the GBD2013 (Forouzanfar et al 2015) and
we use it compare with UKCA.

Figure 2 compares simulated PM2.5 against mea-
surements at surface sites in the US and Europe
(see figure S1). In the US we use observations from the
Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) and in Europe we use observations
from the European Monitoring and Evaluation Pro-
gramme (EMEP) network (see SI 1.2). There are few
long-term observations of PM2.5 outside of Europe and
the US with which to evaluate UKCA. The baseline
UKCA model (UKCA base) underestimates observed
concentrations in both Europe (normalised mean bias
factor (NMBF) = −1.2) and the US (NMBF = −0.54).
Similarly, Turnock et al (2015) found UKCA underes-
timated total suspended particles and PM10 observed
over Europe using the same model setup. We find that
UKCA ppe−med better matches observations in both
Europe (NMBF = −0.47) and the US (NMBF = 0.11),
The 5th to 95th percentile of the PPE brackets surface
observations in both Europe and the US. We therefore
report the results from these three simulations for the
rest of the paper.

2.2. Background disease and demographic data
We used national level population and age group distri-
bution data from the United Nations (UN) Population
Division (UN 2015), which are available for the period
1960 to 2010 (see figure S3). We used gridded pop-
ulation from the Gridded Population of the World
v3 (GPWv3) (CIESIN 2015), at a resolution of 2.5
arc-minutes for the period 1990 to 2010. We extrapo-
lated the GPWv3 to 1960 applying the rate of change
observed in the UN national level data (see SI 1.4).

We used age and cause-specific background dis-
ease data for the period 1980 to 2010 from the Institute
for Health Metrics and Evaluation (IHME 2014). This

3
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Figure 3. Annual mean population-weighted PM2.5 concentrations for (a) global, (b) China, (c) India, (d) European Union and
(e) United States. Regional values are reported for the shaded regions identified in figure S1. Percentage changes are shown for
UKCA ppe−med (Incr = (2009−1960)/1960, (2009−1990)/1990 in blue) and GBD-PM high (Incr = (2009−1990)/1990 in red).

dataset provides national level background disease end-
point data for cardiovascular ischemic heart disease
(IHD) and stroke (cerebrovascular disease), lung can-
cer (LungC), chronic obstructive pulmonary disease
(COPD) and lower respiratory infections (LRI). Dis-
ease data is not available prior to 1980, so we take a
conservative assumption and assume that background
disease rates remain constant at 1980 levels. In a sen-
sitivity study, we assume that background disease rates
between 1960 and 1980 follow the same trend as that
between the period 1980 to 1990 (see SI 1.4).

2.3. Attributable health burden calculation
We calculate relative risk (RR) due to long-term expo-
sure to PM2.5 using the integrated exposure-response
(IER) relationship (Burnett et al 2014), which compiles
epidemiological evidence across a wide range of PM2.5
exposures from different combustion sources. The IER
allows for age-dependent (i.e. ≥ 25 years of age at
five year intervals to age 80+) calculation of RR for IHD
and stroke, adult (≥ 25 years of age) for LC and COPD,
and all ages for lower respiratory infections (LRI). We
develop a lookup table compatible with the IER used
in GBD2013 (Forouzanfar et al 2015) (see SI 1.5). This
lookup table is provided in SI data 1. IER relationships
are non-linear with respect to PM2.5 exposure (figure
S4), with reduced sensitivity of RR to PM2.5 at higher
concentrations (Pope et al 2009a, Pope et al 2011),
particularly for IHD, stroke and LRI.

We use IER derived RRs to estimate attributable
deaths at the grid cell level using attributable frac-
tion type relationship described in Apte et al (2015)
(see SI 1.5). Years of lost life (YLLs) are calculated by
summing attributable deaths in each age group and
multiplying by the associated expected life expectancy
taken from the standard life table provide by Mur-
ray et al (2013). We estimate attributable deaths

using PM2.5 concentrations from UKCA for the period
1960 to 2009 and from GBD-PM for the period 1990
to 2010. We calculated attributable deaths at orig-
inal resolution of the GBD-PM data (0.1◦ × 0.1◦)
(GBD-PM high) and at the same resolution of UKCA
(1.875◦ × 1.25◦) (GBD-PM low). We find that
attributable deaths estimated using GBD-PM closely
match GBD2013, within 3%–4% globally, with simi-
lar regional mortalities (Forouzanfar et al 2015). We
also explored the relative contribution of estimated
attributable deaths over the period 1980 to 2009 to
changing PM2.5 concentrations, population demo-
graphics and background disease (see SI 1.6).

3. Results and discussion

Figure 3 shows annual mean population-weighted
PM2.5 concentrations over the period 1960 to 2009.
Population-weighted PM2.5 concentrations simulated
by the median PPE (UKCA ppe−med) closely match
those from GBD-PM over India but are lower in
other regions. We explored whether the coarser spa-
tial resolution of UKCA (1.875◦ × 1.25◦) compared
to GBD-PM high (0.1◦ × 0.1◦) is responsible for this
difference. When GBD-PM high (Brauer et al 2015)
is averaged to the same spatial resolution as UKCA
(GBD-PM low), mean population-weighted PM2.5
typically decreased by less than ∼4% (∼1 𝜇g m−3),
showing that lower PM2.5 concentrations simulated by
UKCA ppe−med is not entirely due to the coarse resolu-
tion of UKCA. The upper (UKCA ppe95) and lower
(UKCA ppe05) range of UKCA bracket values from
GBD-PM, except over Europe.

During the period 1990 to 2009, global
population-weighted PM2.5 concentrations simulated
by UKCA ppe−med increased by 11.6%, smaller than
the 15.8% increase estimated by GBD-PM. At the
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Figure 4. Annual total attributable deaths for (a) global, (b) China, (c) India, (d) European Union and (e) United States. Shaded areas
represent upper and lower range of UKCA-PPE estimates (light blue) and GBD-PM (orange). Regional values are reported for the
shaded regions identified in figure S1 and use a fixed background disease rate (year 1980) for years prior to 1980. Percentage changes
as for figure 3.

regional scale, UKCA ppe−med simulated broadly sim-
ilar fractional changes to GBD-PM in the EU and US,
but smaller changes in China and India. During the
period1960 to2009, global population-weightedPM2.5
simulated by UKCA increased by 37.5%, dominated
by large increases in China and India of 52.7% and
69.8%, respectively. In contrast, population-weighted
PM2.5 reduced in the EU and US by −55.3% and
−38%, respectively. Because of the positive correlation
between the spatial distribution of PM2.5 concen-
trations and population, population-weighted PM2.5
concentrations are higher than the regional average
(see figure S8). We find that the ratio of population-
weighted to regional average PM2.5 in the EU and US
has decreased over the period 1960 to 2009 (1.3 to
1.0 and 2.0 to 1.6, respectively), whereas the ratio has
increased in both China and India (1.4 to 1.6 and 1.1 to
1.3, respectively). These changes match those reported
previously (Wang et al 2017) and are driven by anthro-
pogenic emission changes (figure 1) and changes in
population (figure S5).

Figure 4 shows the estimated attributable deaths
over the period 1960 to 2009 (see SI data 2 for
all data values). Using PM2.5 concentrations from
GBD-PM high, we estimate 2.6 million global
attributable deaths in the year 2009, with a lower and
upper uncertainty interval of 1.87 to 3.57 million.
Estimated attributable deaths from UKCA ppe−med are
22.5% lower at 2.0 (1.4 to 2.9) million for the same
year, due to lower estimated PM2.5 concentrations.
When GBD-PM high is averaged to the same reso-
lution as UKCA (GBD-PM low), global attributable
deaths are reduced by less than 3%, again demon-
strating that the coarse resolution of UKCA is not the
dominant reason for the lowerglobalmortality estimate
in UKCA ppe−med. Larger regional differences occur in

regions with low PM2.5 concentrations such as the US
where estimated attributable deaths from GBD-PM low
are∼10% lower than GBD-PM high. This greater sensi-
tivity occurs because the IER relationship is non-linear
andparticularly sensitive to changes inPM2.5 just above
the theoretical minimum risk exposure level (TMREL)
(∼6 𝜇g m−3). This sensitivity also explains the large
difference in deaths estimated in UKCA ppe−med com-
pared to GBD-PM in the EU and US. Estimated
attributable deaths from UKCA and GBP-PM are in
better agreement over China and India, where higher
PM2.5 concentrations are associated with reduced sen-
sitivity in the IER. Attributable deaths estimated using
the upper and lower bound of the PPE bracket GBD-
PM, showing the contribution of uncertainty in model
processes to estimated mortality.

During the period 1990 to 2009, UKCA ppe−med
estimated global deaths increased by 15.6%, simi-
lar to the 22% change in GBD-PM. At the regional
scale, UKCA ppe−med simulates broadly similar frac-
tional changes to GBD-PM in both China and India,
but only simulates half the fractional change in the
EU and US. During the period 1960 to 2009, global
attributable deaths increased by an average of 124.4%.
If we assume background disease rates prior to 1980
vary, this increase is reduced to 88.5% (see figure S9)
because background diseases are comparatively higher
in 1960. The percentage increase in attributable deaths
is substantially greater than increases in population-
weighted PM2.5 concentrations over the same period,
owing to the non-linear IER and to increases in popu-
lation. Our results imply that global attributable deaths
are now larger in the present day than at any other point
since 1960.

Global increases in attributable deaths were dom-
inated by large increases in China (238%) and India
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Figure 5. Absolute change in attributable deaths (km−2 yr−1) between 1960 and 2009. Results are shown for UKCA ppe−med using a
fixed background disease rate (year 1980) for years prior to 1980.

Figure 6. Relative contribution of changes in PM2.5 , population growth, population ageing, and background disease endpoint rates to
changes in total attributable deaths between 1980 and 2009. Results are shown for UKCA ppe−med.

(194%). China and India accounted for 39% of global
deaths attributable to PM2.5 in 1960 growing to 55%
in 2009. In contrast, attributable deaths reduced in
the EU (−65.7%) and US (−47.9%) over this period.
The US and EU accounted for 27% of global
attributable deaths in 1960 falling to ∼1% in 2009. If
we assume that background disease rates prior to 1980
vary, attributable deaths in the EU and US peak in early-
1970s following that of population-weighted PM2.5
concentrations rather than peaking in early-1980s (see
figure S9).

Figure 5 shows the spatial pattern of change in
attributable deaths between 1960 and 2009. Large
increases in deaths attributable to PM2.5 are simu-
lated in China and India as well as parts of Africa, the
Middle East, and Central and South America. In con-
trast, reductions are simulated across much of Western
Europe and North America.

Attributable deaths from cardiovascular disease
contribute most to total global and regional attributable
deaths (see figure S10). Figure 6 explores the rel-
ative contribution to changes in attributable deaths
for the period 1980 to 2009 (see SI 1.6). Population
growth and ageing act to increase attributable deaths,
whereas declining background disease acts to reduce
attributable deaths. In China and India, population
growth and ageing and to a lesser extent increasing
PM2.5 concentrations act to increase mortality offset
by reductions in background disease rates. In con-
trast, in the US and EU, reductions in background
cardiovascular disease and PM2.5 concentrations offset
the contribution from population growth and ageing.
Our results imply that air quality regulation and emis-
sion controls in Europe and North America are acting
to reduce attributable burdens as observed in the US
(Correia et al 2013, Pope et al 2009b).
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Figure 7. Attributable deaths rate per 100 000 persons for (a) global, (b) China, (c) India, (d) European Union and (e) United States.
Shaded areas represent upper and lower range of UKCA-PPE estimates (light blue) and GBD-PM (orange). Regional values are
reported for the shaded regions identified in figure S1 and use a fixed background disease rate (year 1980) for years prior to 1980.
Percentage changes as for figure 3.

Since the end of our simulation period (year
2009) regional changes in PM2.5 concentrations and
population demographics may have occurred. For
example in China, population-weighted PM2.5 con-
centrations stabilised between 2010 and 2015 (Brauer
et al 2015, Cohen et al 2017), but attributable deaths
continued to increase (Cohen et al 2017, Forouzanfar
et al 2016). Our findings suggest that while primary
and precursor emissions in China (and other parts of
Asia) are likely to decrease over the next few decades
(Zhao et al 2013, Zhao et al 2014), attributable deaths
are likely to increase in the near future because of pro-
jected population growth and ageing (UN 2015). This
highlights the need of strict control of PM2.5 in the face
of changing demographics.

Figure 7 shows the attributable death rate per 105

of population for the period 1960 to 2009, which
removes the influence of population growth. China
had the highest attributable death rate in 2009, com-
parable to the EU in 1960. In contrast to the growth
in total global attributable deaths, global attributable
death rates reduced (−0.9%) over the period 1960 to
2009, a result of overall decreasing background disease
rates and health benefits of cleaner air quality in North
America and Western Europe. Decreasing background
disease rates played an important role in influenc-
ing changes in attributable years of life lost (YLLs).
For example, YLLs in India were markedly reduced
between 1990 and 2010 (see figure S11) because of
declines in infant (<5 yr) attributable mortality from
LRI (see figure S10), a result of reduced disease rates
(see figure S7), in part due to improved vaccination
efforts, poverty alleviation and access to health care
(Naghavi et al 2015).

Calculating the uncertainty in our attributable bur-
dens is challenging because there are multiple sources
of uncertainty. We have quantified uncertainty using

the lower and upper uncertainty bounds in the IER
and background disease rates. Applying an exposure-
response relationship (IER) based on epidemiological
data from North America and Europe to the rest of the
world, where lifestyles, age-structures, healthcare sys-
tems and PM2.5 composition differ, is a critical source
of uncertainty.

The IER neglects PM2.5 particle composition and
toxicity, which may be important (Lelieveld et al 2015,
Thurston et al 2016, Tuomisto et al 2008). Further
research is needed to establish the health implications
of particle toxicity and source which may differ for each
region.

The shape of the IER remains uncertain, particu-
larly in very clean and polluted regions. We follow the
GBD2013 and use a TMREL (∼6𝜇g m−3) below which
we assume zero risk. However, there is limited evidence
for such a threshold. Additional research to constrain
relative risks in very clean regions (Crouse et al 2012,
Shi et al 2016, Tomczak et al 2016), where there is a lack
of epidemiological data, is needed. Similarly, because of
a lack of data, relative risks in polluted regions are based
extrapolations from active and passive smoking cohort
studies (Pope et al 2009a, Pope et al 2011), leading to
uncertainty in the IER at high exposure levels. This is
important as the predicted shape of the IER is highly
non-linear in polluted settings (figure S4). This implies
thatpollutedregionswilldisplay the smallest reductions
in relative risk from incremental pollution reduction.
Our results suggest that current PM2.5 concentrations
in China and India are higher than those experi-
enced in the EU and US during the 1960s and 1970s
(figure 3). This suggests that stringent emission con-
trols will be required to reduce population-weighted
PM2.5 concentrations and attributable health burdens.

Simulated PM2.5 concentrations are uncertain due
to uncertainties in emissions, meteorological input and
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model processes. We have evaluated our estimated
PM2.5 concentrations using available long-term obser-
vations inNorth America and Europe. In regions where
long-term observations are not available, we compare
against satellite derived PM2.5 data. There is an urgent
need for more PM2.5 observations, particularly in
polluted and data sparse regions. We used the range
of PM2.5 concentrations from the PPE as an indica-
tion of the contribution of uncertain model processes,
which indicated large uncertainties associated with
dry deposition of accumulation mode particles in all
regions, and mass flux of small scale residential com-
bustion carbonaceous emissions in Asia (see SI 1.3 and
figure S2). This analysis confirms a large contribution
of residential emissions toPM2.5 overAsia that hasbeen
shown previously (Butt et al 2016, Lelieveld et al 2015).
Future research should prioritise constraining these
large model uncertainties. UKCA does not include
nitrate or anthropogenic secondary organic aerosol for-
mation which may contribute to the underestimation
of PM2.5 concentrations. Multi-decadal global simu-
lations of PM2.5 are currently restricted to relatively
coarse resolution, as used here. Differences in model
spatial resolutions have been found to affect estimated
attributable burdens (Ford and Heald 2015, Punger
and West 2013, Thompson et al 2014). Although we
find small differences between estimates at 0.1◦ × 0.1◦

versus the resolution of UKCA (1.875◦ × 1.25◦), fur-
ther research using higher resolution estimates below
0.1◦ × 0.1◦ like those used in Jerrett et al (2016) may
provide more realistic personal exposures and thus
attributable burdens.

Our estimates are subject to increased uncertainty
prior to 1980 where we do not have data on background
diseases.Wefindthat varyingassumptionsabout trends
in background disease prior to 1980 increases global
attributable deaths in 1960 by 16%. Information on
historical background diseases trends would improve
our attributable burden estimates prior to 1980. Back-
grounddiseasedata is alsoprovidedat thenational level,
which does not account for any subnational variability,
which may be important (Apte et al 2015, Chowd-
hury and Dey 2016, Cossman et al 2010). Similarly, we
use national level data for different age groups, which
is also unrealistic. Future research using subnational
background disease and age group distribution data
would improve future attributable burden estimates.

4. Conclusions

We used the HadGEM3-UKCA global coupled
chemistry–climate model to investigate changes in
ambient PM2.5 concentrations and attributable bur-
dens over the period 1960 to 2009. We found that
the uncertainty in the model, estimated using a
perturbed parameter ensemble of 235 simulations
across 26 aerosol parameters, brackets long-term
PM2.5 measurements and satellite derived PM2.5

concentrations used in the Global Burden of Disease
(GBD) 2013.

We estimate that global population-weighted
PM2.5 concentrations increased by 37.5% over the
period 1960 to 2009, dominated by increases in China
and India, a result of economic expansion and growth
in emissions. In contrast, air quality regulation and
emission controls in the European Union (EU) and
United States (US) has reduced population-weighted
PM2.5 concentrations over the same period.

We found that global attributable deaths increased
by 89% to 124% over the period 1960 to 2009,
much larger than the changes in PM2.5 over the
same period. Global changes were dominated by large
increases China and India. In contrast, attributable
deaths decreased in the EU and US.

Increases in attributable deaths in China and India
were dominated by population growth and ageing,
and to a lesser extent increasing PM2.5 concentrations.
Reduced attributable deaths in the EU and US were
driven by reductions in background disease rate and
PM2.5 concentrations. Our results suggest that pro-
jected changes in demography in China and India will
pose challenges as policy makers attempt to reduce
attributable deaths in the near future. Our results pro-
vide the first estimate of how PM2.5 concentrations and
associated health burden has changed over the 1960
to 2009 period. Understanding the reasons for these
changes is required to help policy makers craft sound
policies to reduce future health impacts.
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Abstract. Combustion of fuels in the residential sector for

cooking and heating results in the emission of aerosol and

aerosol precursors impacting air quality, human health, and

climate. Residential emissions are dominated by the combus-

tion of solid fuels. We use a global aerosol microphysics

model to simulate the impact of residential fuel combus-

tion on atmospheric aerosol for the year 2000. The model

underestimates black carbon (BC) and organic carbon (OC)

mass concentrations observed over Asia, Eastern Europe, and

Africa, with better prediction when carbonaceous emissions

from the residential sector are doubled. Observed seasonal

variability of BC and OC concentrations are better simu-

lated when residential emissions include a seasonal cycle.

The largest contributions of residential emissions to annual

surface mean particulate matter (PM2.5) concentrations are

simulated for East Asia, South Asia, and Eastern Europe.

We use a concentration response function to estimate the

human health impact due to long-term exposure to ambient

PM2.5 from residential emissions. We estimate global an-

nual excess adult (> 30 years of age) premature mortality

(due to both cardiopulmonary disease and lung cancer) to be

308 000 (113 300–497 000, 5th to 95th percentile uncertainty

range) for monthly varying residential emissions and 517 000

(192 000–827 000) when residential carbonaceous emissions

are doubled. Mortality due to residential emissions is great-

est in Asia, with China and India accounting for 50 % of

simulated global excess mortality. Using an offline radiative

transfer model we estimate that residential emissions exert

a global annual mean direct radiative effect between −66

and +21 mW m−2, with sensitivity to the residential emis-

sion flux and the assumed ratio of BC, OC, and SO2 emis-

sions. Residential emissions exert a global annual mean first

aerosol indirect effect of between −52 and −16 mW m−2,

which is sensitive to the assumed size distribution of car-

bonaceous emissions. Overall, our results demonstrate that

reducing residential combustion emissions would have sub-

stantial benefits for human health through reductions in am-

bient PM2.5 concentrations.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Combustion of fuels within the household for cooking and

heating, known as residential fuel combustion, is an impor-

tant source of aerosol emissions with impacts on air quality

and climate (Ramanathan and Carmichael, 2008; Lim et al.,

2012). In most regions, residential emissions are dominated

by the combustion of residential solid fuels (RSFs, see Ta-

ble A1 for list of acronyms used in the study) such as wood,

charcoal, agricultural residue, animal waste, and coal. Nearly

3 billion people, mostly in the developing world, depend on

the combustion of RSFs as their primary energy source (Bon-

jour et al., 2013). RSFs are usually burnt in simple stoves

or open fires with low combustion efficiencies, resulting in

substantial emissions of aerosol. It has been suggested that

reducing RSF emissions would be a fast way to mitigate cli-

mate and improve air quality (UNEP, 2011), but the climate

impacts of RSF emissions are uncertain (Bond et al., 2013).

Whilst it is clear that RSF combustion has substantial ad-

verse impacts on human health through poor indoor air qual-

ity, there have been few studies quantifying the impacts on

outdoor air quality and human health. Here, we use a global

aerosol microphysics model to estimate the impacts of resi-

dential fuel combustion on atmospheric aerosol, climate, and

human health.

Residential emissions due to the small-scale combustion

of biomass and fossil fuels used for cooking, heating, light-

ing, and auxiliary engines include black carbon (BC), par-

ticulate organic matter (POM), primary inorganic sulfate,

and gas-phase SO2. Residential emissions contribute sub-

stantially to the global aerosol burden, accounting for 25 %

of global energy-related BC emissions (Bond et al., 2013).

In China and India, residential emissions are even more im-

portant, accounting for 50–60 % of BC and 60–80 % of or-

ganic carbon (OC) emissions (Cao et al., 2006; Klimont et

al., 2009; Lei et al., 2011). The combustion of residential fu-

els also emit volatile and semi-volatile organic compounds

that lead to the production of secondary organic aerosols

via atmospheric oxidation. Residential emissions are domi-

nated by emissions from RSFs in many regions, due to poor

combustion efficiency of RSFs and extensive use across the

developing world (Bond et al., 2013). In China, residential

combustion of both biomass (referred to as “biofuel”) and

coal is important, whereas across other parts of Asia and

Africa residential combustion of biofuel is dominant (Lu et

al., 2011; Bond et al., 2013).

Estimates of residential emissions are typically “bottom-

up”, combining information on fuel consumption rates with

laboratory or field emission factors. Obtaining reliable es-

timates of residential fuel use is difficult because these fu-

els are often collected by consumers and are not centrally

recorded (Bond et al., 2013). Emission factors are hugely

variable, depending on the type, size, and moisture content

of fuel, as well as stove design, operation, and combustion

conditions (Roden et al., 2006, 2009; Li et al., 2009; Shen

et al., 2010). As a result, uncertainty in residential emissions

may be as large as a factor 2 or more (Bond et al., 2004).

There is a range of evidence that residential emissions may

be underestimated. Firstly, emission factors for RSF combus-

tion derived from laboratory experiments are often less than

those derived under ambient conditions (Roden et al., 2009).

Secondly, models typically underestimate observed aerosol

absorption optical depth, BC, and OC over regions associ-

ated with large RSF emissions such as in South and East Asia

(Park et al., 2005; Koch et al., 2009; Ganguly et al., 2009;

Menon et al., 2010; Nair et al., 2012; Fu et al., 2012; Moor-

thy et al., 2013; Bond et al., 2013; Pan et al., 2015). A further

complication is that residential emissions, particularly from

residential heating, also exhibit seasonal variability (Aunan

et al., 2009; Stohl et al., 2013), but this is rarely implemented

within global modelling studies.

Atmospheric aerosols interact with the Earth’s radiation

budget directly through the scattering and absorption of so-

lar radiation (direct radiative effect – DRE – or aerosol–

radiation interactions) and indirectly by modifying the mi-

crophysical properties of clouds (aerosol indirect effect –

AIE – or aerosol–cloud interactions) (Forster et al., 2007;

Boucher et al., 2013). The interaction of aerosol with radia-

tion and clouds depends on properties of the aerosol, includ-

ing mass concentration, size distribution, chemical composi-

tion, and mixing state (Boucher et al., 2013). BC is strongly

absorbing at visible and infrared wavelengths, exerting a pos-

itive DRE5. BC particles coated with a non-absorbing shell

have greater absorption compared to a fresh BC core due to

a lensing effect (Fuller et al., 1999; Jacobson, 2001). More

recent studies have shown that a fraction of organic aerosol

can absorb light (Kirchstetter et al., 2004; Chen and Bond,

2010; Arola et al., 2011), with the light absorbing fraction

termed “brown carbon”. The net DRE of residential combus-

tion emissions is a complex combination of these warming

and cooling effects.

Aerosol also impacts climate through altering the proper-

ties of clouds. The cloud albedo or first AIE is the radia-

tive effect due to a change in cloud droplet number concen-

tration (CDNC), assuming a fixed cloud water content. The

change in CDNC is governed by the number concentration

of aerosols that are able to act as cloud condensation nu-

clei (CCN), which is determined by aerosol size and chem-

ical composition (Penner et al., 2001; Dusek et al., 2006).

Modelling studies have shown the importance of carbona-

ceous combustion aerosols to global CCN concentrations

(Pierce et al., 2007; Spracklen et al., 2011a) and modifica-

tion of cloud properties (Bauer et al., 2010; Jacobson, 2010).

However, there is considerable variability in the size of par-

ticles emitted by combustion sources including those from

residential sources (Venkataraman and Rao, 2001; Shen et

al., 2010; Pagels et al., 2013; Bond et al., 2006) that will

impact simulated CCN concentrations (Pierce et al., 2007,

2009; Reddington et al., 2011; Spracklen et al., 2011a; Ko-

dros et al., 2015) and AIE (Bauer et al., 2010; Spracklen et

Atmos. Chem. Phys., 16, 873–905, 2016 www.atmos-chem-phys.net/16/873/2016/
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al., 2011a; Kodros et al., 2015). Aerosols can further alter

cloud properties through the second aerosol indirect effect

and through semi-direct effects (Koch and Del Genio, 2010).

The net radiative effect (RE) of residential emissions de-

pends on the fuel and combustion process (Bond et al.,

2013). Carbonaceous emissions from residential biofuel ex-

hibit higher POM : BC mass ratios compared to residen-

tial coal, which emits more BC and sulfur (Bond et al.,

2013). Aunan et al. (2009) found that despite large BC emis-

sions over Asia, RSF combustion emissions exerted a small

net negative DRE because of co-emitted scattering aerosols;

however, this study did not include aerosol–cloud effects. Ja-

cobson (2010) reported increased cloud cover and depth from

biofuel aerosol and gases as well as a net positive RE. In con-

trast, Bauer et al. (2010) found the negative AIE from resi-

dential biofuel combustion to be 3 times greater than the pos-

itive DRE, resulting in a negative net RE. Unger et al. (2010)

used a mass-only aerosol model to calculate a positive AIE

due to the residential sector. The review of Bond et al. (2013)

identified a net negative RE (DRE and AIE) for biofuel with

large uncertainty but a slight net positive RE (with low cer-

tainty) from residential coal (Bond et al., 2013). However,

a recent detailed global modelling study found that the cli-

mate effects of residential biofuel combustion aerosol are

largely unconstrained because of uncertainties in emission

mass flux, emitted size distribution, optical mixing state, and

ratio of BC to POM (Kodros et al., 2015)

In addition to impacting climate, aerosol from residen-

tial fuel combustion degrades air quality with adverse impli-

cations for human health. Epidemiologic research has con-

firmed a strong link between exposure to particulate mat-

ter (PM) and adverse health effects, including premature

mortality (Pope III and Dockery, 2006; Brook et al., 2010).

Exposure to PM2.5 (PM with an aerodynamic dry diame-

ter of < 2.5 µm) is thought to be particularly harmful to hu-

man health (Pope III and Dockery, 2006; Schlesinger et al.,

2006). Household air pollution, mostly from RSF combus-

tion (Smith et al., 2014) in low and middle income countries,

is estimated to cause 4.3 million deaths annually (WHO,

2014a), making it one of the leading risk factors for global

disease burden (Lim et al., 2012). Global estimates of pre-

mature mortality attributable to ambient (outdoor) air pol-

lution range from 0.8 million to 3.7 million deaths per year,

most of which occur in Asia (Cohen et al., 2005; Anenberg

et al., 2010; WHO, 2014b). These estimates rely on PM2.5

concentrations from coarse global models with mean spa-

tial resolutions of ∼ 200 km. At these resolutions, human

health estimates are likely underestimated at urban and semi-

urban scales. Emission inventories highlight residential com-

bustion as one of the most important contributors to ambi-

ent PM2.5, accounting for 55 % in Europe (EEA, 2014) and

33 % in China (Lei et al., 2011). However, while previous

studies have estimated the human health impacts from am-

bient air pollution due to fossil fuel combustion (Anenberg

et al., 2010), open biomass burning (Johnston et al., 2012;

Marlier et al., 2013), and wind-blown dust (Giannadaki et

al., 2014), fewer studies have quantified the impact of res-

idential combustion on ambient quality and human health.

Lim et al. (2012) estimated that 16 % of the global burden of

ambient PM2.5 was due to RSF sources but did not estimate

premature mortality. Another study concluded that ambient

PM2.5 from cooking was responsible for 370 000 deaths in

2010 (Chafe et al., 2014), but it did not include residential

heating emissions, which will cause additional adverse im-

pacts on human health (Johnston et al., 2013; Allen et al.,

2013; Y. Chen et al., 2013).

Here we use a global aerosol microphysics model to make

an integrated assessment of the impact of residential emis-

sions on atmospheric aerosol, radiative effect, and human

health. We used a radiative transfer model to calculate the

DRE and first AIE due to residential emissions. To im-

prove our understanding of the health impacts associated

with these emissions, we combined simulated PM2.5 con-

centrations with concentration-response functions from the

epidemiological literature to estimate excess premature mor-

tality.

2 Methods

2.1 Model description

We used the GLOMAP global aerosol microphysics model

(Spracklen et al., 2005a), which is an extension to the TOM-

CAT 3-D global chemical transport model (Chipperfield,

2006). We used the modal version of the model, GLOMAP-

mode (Mann et al., 2010), where aerosol mass and num-

ber concentrations are carried in seven log-normal size

modes: four hydrophilic (nucleation, Aitken, accumulation,

and coarse) and three non-hydrophilic (Aitken, accumula-

tion, and coarse) modes. The model includes size-resolved

aerosol processes including primary emissions, secondary

particle formation, particle growth through coagulation, con-

densation, and cloud-processing and removal by dry depo-

sition, in-cloud, and below-cloud scavenging. The model

treats particle formation from both binary homogenous nu-

cleation (BHN) of H2SO4–H2O (Kulmala et al., 1998) and

an empirical mechanism to simulate nucleation within the

model boundary layer or boundary layer nucleation (BLN).

The formation rate of 1 nm clusters (J1) within the BL is pro-

portional to the gas-phase H2SO4 concentration ([H2SO4])

to the power of 1 (Sihto et al., 2006; Kulmala et al., 2006)

according to J1=A[H2SO4], where A is the nucleation rate

coefficient of 2× 10−6 s−1 (Sihto et al., 2006). GLOMAP-

mode simulates multi-component aerosol and treats the fol-

lowing components: sulfate, dust, BC, POM, and sea salt.

Primary carbonaceous combustion particles (BC and POM)

are emitted as a non-hydrophilic distribution (Aitken insol-

uble mode). Dust is emitted into the insoluble accumulation

and coarse modes. Non-hydrophilic particles are transferred

www.atmos-chem-phys.net/16/873/2016/ Atmos. Chem. Phys., 16, 873–905, 2016
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into hydrophilic particles through coagulation and conden-

sation processes. The model uses a horizontal resolution of

2.8◦ by 2.8◦ and 31 vertical levels between the surface and

10 hPa. Large-scale transport and meteorology is specified at

6 h intervals from the European Centre for Medium-Range

Weather Forecasts (ECMWF) analyses interpolated to model

timestep. All model simulations are for the year 2000, com-

pleted after a 3-month model spin up. Oxidants of OH, O3,

H2O2, NO3, and HO2 are specified using 6 h mean offline

concentrations from a TOMCAT simulation with detailed

tropospheric chemistry (Arnold et al., 2005).

2.2 Emissions

The model uses gas-phase SO2 emissions for both continu-

ous (Andres and Kasgnoc, 1998) and explosive (Halmer et

al., 2002) volcanic eruptions. Open biomass burning emis-

sions are from the Global Fire Emission Database (van der

Werf et al., 2004). Oceanic dimethyl-sulfide (DMS) emis-

sions are calculated using an ocean surface DMS concentra-

tion database (Kettle and Andreae, 2000) combined with a

sea–air exchange parameterization (Nightingale et al., 2000).

Emissions of sea salt were calculated using the scheme of

Gong (2003). Biogenic emissions of terpenes are taken from

the Global Emissions Inventory Activity database and are

based on Guenther et al. (1995). Daily-varying dust emission

fluxes are provided by AeroCom (Dentener et al., 2006).

Annual mean anthropogenic emissions of gas-phase SO2

and carbonaceous aerosol for the year 2000 are taken from

the Atmospheric Chemistry and Climate Model Intercompar-

ison Project (ACCMIP) (Lamarque et al., 2010). This data

set includes emissions from energy production and distribu-

tion, industry, land transport, maritime transport, residential

and commercial, and agricultural waste burning on fields. To

test the sensitivity to anthropogenic emissions, we completed

sensitivity studies (see Sect. 2.6) using anthropogenic emis-

sions from the MACCity (MACC/CityZEN projects) emis-

sion data set for the year 2000 (Granier et al., 2011). MACC-

ity emissions are derived from ACCMIP and apply a monthly

varying seasonal cycle for anthropogenic emissions (Granier

et al., 2011). In both emissions data sets, anthropogenic car-

bonaceous emissions are based on the Speciated Particulate

Emissions Wizard (SPEW) inventory (Bond et al., 2007). In

GLOMAP, anthropogenic carbonaceous emissions are added

to the lowest model layer, while open biomass burning emis-

sions are emitted between the surface and 6 km (Dentener et

al., 2006).

We isolate the impact of residential fuel combustion

through simulations where we switch off emissions from the

“residential and commercial” sector. The term “residential”

includes emissions from household activities, while “com-

mercial” refers to emissions from commercial business activ-

ities (excluding agricultural activities). Both residential and

commercial activities use similar fuels for similar purposes,

but because emissions are dominated by residential activi-

ties, we refer to the “residential and commercial” sector col-

lectively as the “residential” sector. Residential fuels used in

small-scale combustion for cooking, heating, lighting, and

auxiliary engines, consist of many different types such as

RSFs (biomass/biofuel and coal) and hydrocarbon-based fu-

els including kerosene, liquefied petroleum gas, gasoline, and

diesel. The ACCMIP and MACCity residential data sets do

not allow us to isolate the impacts of different RSFs sepa-

rately from other residential hydrocarbon-based fuels, but ac-

cording to the results from the Greenhouse Gas and Air Pol-

lution Interactions and Synergies (GAINS) model, typically

≥ 90 % of PM emissions can be attributed to RSFs within

most regions, of which a large proportion is from biomass

sources. Compared with residential hydrocarbon-based fuels,

RSFs typically burn at lower combustion efficiencies, result-

ing in substantially higher aerosol emissions (Venkataraman

et al., 2005). Residential kerosene wick lamps can produce

substantial emissions (Lam et al., 2012); however, these are

not included in the ACCMIP and MACCity data sets. Resi-

dential biofuel and coal emissions from ACCMIP and MAC-

City differ to previous global emission inventories (Bond et

al., 2004, 2007) through the incorporation of updated emis-

sions factors from field measurements (Roden et al., 2006,

2009; Johnson et al., 2008) and laboratory experiments for

biofuel sources in India (Venkataraman et al., 2005; Parashar

et al., 2005) and residential coal sources in China (Chen et

al., 2005, 2006; Zhi et al., 2008). In both the ACCMIP and

MACCity emission data sets, global emissions for the resi-

dential and commercial sectors are BC (∼ 1.9 Tg yr−1), POM

(∼ 11.0 Tg POM yr−1), and SO2 (∼ 8.3 Tg SO2 yr−1).

Figure 1 shows the spatial distribution of BC, POM, and

SO2 emissions from the residential sector in the ACCMIP

data set (Lamarque et al., 2010). Residential emissions are

greatest over densely populated regions of Africa and Asia

where infrastructure and income do not allow access to clean

sources of residential energy. The dominant fuel type varies

spatially resulting in distinct patterns in pollutant emission

ratios (Fig. 1d–e). Residential emissions are dominated by

biofuel (biomass) combustion in sub-Saharan Africa, South

Asia, and parts of Southeast Asia and characterised by low

BC : POM and high BC : SO2 ratios. Residential coal com-

bustion is more important in parts of Eastern Europe, the

Russian Federation, and East Asia, characterised by higher

BC : POM and lower BC : SO2 ratios. In the ACCMIP and

MACCity data sets, residential sources account for 38 % of

global total anthropogenic BC and 61 % of total global an-

thropogenic POM emissions. The regional contribution of

residential emissions can be even greater (Fig. 1f). For China,

residential emissions represent 40 % of anthropogenic BC

and 60 % of anthropogenic POM emissions. In India, resi-

dential emissions represent 63 % of anthropogenic BC and

78 % of anthropogenic POM emissions.

We assume primary particles from combustion sources

are emitted with a fixed log-normal size distribution with

a specified geometric mean diameter (D) and standard de-
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Figure 1. Annual residential emissions from the ACCMIP emission data set for BC (a), POM (b), SO2 (c), BC : POM ratio (d), BC : SO2

ratio (e), and residential POM to total anthropogenic POM (f).

viation (σ ). Assumptions regarding D and σ for each ex-

periment are detailed in the footnotes of Table 2. This as-

sumption accounts for both the size of primary particles at

the point of emission and the sub-grid-scale dynamical pro-

cesses that contribute to changes in particle size and number

concentrations at short timescales after emission (Pierce and

Adams, 2009; Reddington et al., 2011). Subsequent aging

and growth of the particles are determined by microphysi-

cal processes such as coagulation, condensation, and cloud

processing simulated by the model. We assume that 2.5 % of

SO2 from anthropogenic and volcanic sources is emitted as

primary sulfate particles.

www.atmos-chem-phys.net/16/873/2016/ Atmos. Chem. Phys., 16, 873–905, 2016
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2.3 In situ measurements

To evaluate our model, we synthesised in situ measurements

of BC, OC, and PM2.5 concentrations, aerosol number size

distribution, and estimates of the contribution of biomass de-

rived BC from 14C analysis. GLOMAP has been evaluated

for locations in North America (Mann et al., 2010; Spracklen

et al., 2011a), the Arctic (Browse et al., 2012; Reddington et

al., 2013), and Europe (Schmidt et al., 2011). Here, we focus

our evaluation at locations that may be strongly influenced

by residential emissions (Fig. 1) and where the model has not

been previously evaluated. We focus on rural and background

locations because these are more appropriate for comparison

to global models with coarse spatial resolutions.

Figure 2 shows the locations of observations used in this

study. Information on the measurements for each location is

reported in Table 1. Note that the coloured geographical re-

gions in Fig. 2 are only used to distinguish differences in

mortality across different regions (see Sect. 3.3). The tech-

nique and instruments used to measure BC and OC vary

across the different sites (see Table 1). Thermal–optical tech-

niques measure elemental carbon (EC) whereas optical tech-

niques measure BC. Previous studies have documented sys-

tematic differences between these techniques but concluded

that measurement uncertainties are generally larger than the

differences between the measurement techniques (Bond et

al., 2004, 2007). We therefore treat different measurement

techniques identically and consider EC and BC to be equiv-

alent. For sites in Eastern Europe, we used BC and OC mass

concentrations from the Czech Republic and Slovenia (Ta-

ble 1). For sites in South Africa, we used PM2.5 and BC

mass and aerosol number size distribution (Vakkari et al.,

2013). For sites in South Asia, we used BC mass from the

Integrated Campaign for Aerosols gases and Radiation Bud-

get (ICARB) field campaign at eight locations across the In-

dian mainland and islands (Moorthy et al., 2013). For South

Asian sites, we also used PM2.5, EC, and OC mass, aerosol

number size distribution from the island of Hanimaadhoo in

the Maldives (Stone et al., 2007), and EC and OC measure-

ments from Godavari in Nepal (Stone et al., 2010). For sites

in East Asia, we used EC and OC mass data compiled by

Fu et al. (2012) for two background (Qu et al., 2008) and

seven rural sites (Zhang et al., 2008; Han et al., 2008) in

China, while measurements from Gosan, South Korea, were

taken from Stone et al. (2011). Few long-term observations

of CCN are available, so instead we use the number con-

centration of particles greater than 50 nm dry diameter (N50)

and 100 nm (N100) as a proxy for CCN number concen-

trations. We calculated N50 and N100 concentrations from

aerosol number size distribution measurements at Hanimaad-

hoo, Botsalano, Marikana, and Welgegund (see Table 1). We

note this approach does not account for the impact of particle

composition on CCN activity.

We also use information on BC fossil and non-fossil frac-

tions as obtained from three separate source apportionment

0 20E 40E 60E 80E 100E 120E 140E

30S

0

30N

60N

Kosetice

Iskrba
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1

Figure 2. Locations of aerosol measurements used in this study and

geographical regions of Eastern Europe and the Russian Federa-

tion (red), Africa (orange), South Asia (dark blue), Southeast Asia

(light blue), and East Asia (green). Note that geographical regions

are only used to distinguish difference in mortality across different

regions (see Sect. 3.3).

studies (Gustafsson et al., 2009; Sheesley et al., 2012; Bosch

et al., 2014) that use 14C analysis of carbonaceous aerosol

taken at Hanimaadhoo in the Indian Ocean. This technique

determines the fossil and non-fossil fractions of carbona-

ceous aerosol, since 14C is depleted in fossil fuel aerosol

(half-life 5730 years), whereas non-fossil aerosol (e.g. bio-

fuel, open biomass burning, and biogenic emissions) shows

a contemporary 14C content. As previously mentioned, resi-

dential emissions consist of a mixture of both fossil and non-

fossil sources, with a greater proportion coming from the for-

mer. To make distinctions on the fossil versus non-fossil frac-

tion of residential BC emissions, we make assumptions based

on information from other emission inventories and models

over the South Asian region (see Sect. 3.2 for more details).

2.4 Calculating health effects

We calculate annual excess premature mortality from expo-

sure to ambient PM2.5 using concentration response func-

tions (CRFs) from the epidemiological literature that relate

changes in PM2.5 concentrations to the relative risk (RR)

of disease. CRFs are uncertain and have been previously

based on the relationship between RR and PM2.5 concen-

trations using either a log-linear model (Ostro, 2004) or a

linear model (Cohen et al., 2004). These CRFs were based

on the American Cancer Society Prevention cohort study,

where observed annual mean PM2.5 concentrations were typ-

ically below 30 µg m−3. The log-linear model was recom-

mended by the WHO for use in ambient air pollution burden

of disease estimates at the national level (Ostro, 2004) due to

the concern that linear models would produce unrealistically

large RR estimates when extrapolated to higher PM2.5 con-

centrations above that of 30 µg m−3. The log-linear models

have been used in various modelling studies (Anenberg et al.,
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2010; Schmidt et al., 2011; Partanen et al., 2013; Reddington

et al., 2015). More recent models have been proposed to re-

late disease burden to different combustion sources in order

to capture RR over a larger range of PM2.5 concentrations up

to 300 µg m−3 (Burnett et al., 2014). However, given that we

use a global model with relatively coarse spatial resolution

where PM2.5 concentrations very rarely exceed 100 µg m−3,

we employ the log-linear model of Ostro (2004). We calcu-

late RR for cardiopulmonary diseases and lung cancer fol-

lowing Ostro (2004):

RR=

[(
PM2.5,control+ 1

)
(
PM2.5,R_off+ 1

)
]β
, (1)

where PM2.5,control is annual mean simulated PM2.5 concen-

trations of the control experiments and PM2.5,R_off is a per-

turbed experiment where residential emissions have been re-

moved. The cause-specific coefficient (β) is an empirical

parameter with separate values for lung cancer (0.23218,

95 % confidence interval of 0.08563–0.37873) and car-

diopulmonary diseases (0.15515, 95 % confidence interval

of 0.05624–0.2541). To calculate the disease burden at-

tributable to the RR, known as the attributable fraction (AF),

we follow Ostro (2004):

AF= (RR− 1)/RR. (2)

To calculate the number of excess premature mortality in

adults over 30 years of age, we apply AF to the total num-

ber of recorded deaths from the diseases of interest:

1M = AF×M0×P30+, (3)

where M0 is the baseline mortality rate for each disease risk

and P30+ is the exposed population over 30 years of age.

We only calculate premature mortality for persons over the

age of 30 years because this fraction of the population is

more susceptible to cardiopulmonary disease and lung can-

cer. We use country-specific baseline mortality rates from the

WHO “The global burden of disease: 2004 update” (Math-

ers et al., 2008) for the year 2004 and human population data

from the Gridded World Population (GWP, version 3) project

(SEDAC, 2004) for the year 2000.

2.5 Calculating radiative effects

We quantified the DRE and first AIE of residential emis-

sions using an offline radiative transfer model (Edwards

and Slingo, 1996). With nine radiation bands in the long-

wave (LW) and six bands in the shortwave (SW). We use a

monthly mean climatology of water vapour, temperature, and

ozone based on ECMWF reanalysis data, together with sur-

face albedo and cloud fields from the International Satellite

Cloud Climatology Project (ISCCP-D2) (Rossow and Schif-

fer, 1999) for the year 2000.

Following the methodology described in Rap et al. (2013)

and Scott et al. (2014), we estimate the DRE using the

radiative transfer model to calculate the difference in net

(SW+LW) top-of-atmosphere (TOA) all-sky radiative flux

between model simulations with and without residential

emissions. A refractive index is calculated for each individ-

ual mode separately, as the volume-weighted mean of the re-

fractive indices for the individual components (including wa-

ter) present (given at 550 nm in Table A1 of Bellouin et al.,

2011). Coefficients for absorption and scattering, and asym-

metry parameters, are then obtained from look-up tables con-

taining all realistic combinations of refractive index and Mie

parameter (particle radius normalised to the wavelength of

radiation), as described by Bellouin et al. (2013). The as-

sumption that BC is internally or homogeneously mixed with

scattering species is unrealistic, providing an upper bound for

DRE (Jacobson, 2001; Kodros et al., 2015).

To determine the first AIE we calculate the contribution

of residential emissions to CDNC. We calculate CDNC us-

ing the parameterisation of cloud drop formation (Nenes and

Seinfeld, 2003; Fountoukis and Nenes, 2005; Barahona et

al., 2010) as described by Pringle et al. (2009). The max-

imum supersaturation (SSmax) of an ascending cloud par-

cel depends on the competition between increasing water

vapour saturation with decreasing pressure and temperature

and the loss of water vapour through condensation onto acti-

vated particles. Monthly mean aerosol size distributions are

converted to a supersaturation distribution where the num-

ber of activated particles can be determined for the SSmax.

CDNC are calculated using a constant up-draught velocity of

0.15 ms−1 over sea and 0.3 ms−1 over land, which is consis-

tent with observations for low-level stratus and stratocumulus

clouds (Pringle et al., 2012). In reality, up-draught velocities

vary, but the use of average velocities in previous GLOMAP

studies has been shown to capture observed relationships be-

tween particle number and CDNC (Pringle et al., 2009), as

well as reproducing realistic CDNC (Merikanto et al., 2010).

The AIE is calculated using the methodology described pre-

viously (Spracklen et al., 2011a; Schmidt et al., 2012; Scott

et al., 2014) where a control uniform cloud droplet effective

radius re1= 10 µm is assumed to maintain consistency with

the ISCCP determination of liquid water path. For each per-

turbation experiment the effective radius re2 is calculated:

re2 = re1 × (CDNC1/CDNC2)
1
3 , (4)

where CDNC1 represents a control simulation including res-

idential emissions and CDNC2 represents a simulation where

residential emissions have been removed. The AIE is calcu-

lated by comparing the net TOA radiative fluxes using the

different re2 values derived for each perturbation experiment,

to that of the control where re1 is fixed. We do not calcu-

late the cloud lifetime (second indirect effect), semi-direct

effects, or snow albedo changes. We also do not account for

light absorbing brown carbon and the lensing effect of BC

particles coated with a non-absorbing shell, and thus we are
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unable to estimate the full climate impact of residential com-

bustion emissions.

2.6 Model simulations

Table 2 reports the model experiments used in this study.

These simulations explore uncertainty in residential emis-

sion flux and emitted carbonaceous aerosol size distributions

and the impact of particle formation. We test two different

emission data sets (see Sect. 2.2 for details) allowing us to

explore the role of seasonally varying emissions compared

to annual mean emissions. We refer to the simulation using

the ACCMIP emissions (annual mean emissions) with the

standard model setup as the baseline simulation (res_base),

while all other simulations explore key uncertainties rel-

ative to res_base or use the MACCity emission database

of monthly varying anthropogenic emissions (res_monthly).

To allow us to quantify the impact of residential emissions

we conduct simulations where residential emissions (BC,

OC and SO2) have been switched off (res_base_off and

res_monthly_off). To account for uncertainties in the nu-

cleation scheme, we conduct simulations where only BHN

is able to contribute to new particle formation (res_BHN

and res_BHN_off), while all other simulations include both

BHN and BLN. For the majority of our simulations, we use

D and σ recommended by Stier et al. (2005) (D= 150 nm

σ = 1.59). To account for the uncertainty in the size of emit-

ted residential carbonaceous combustion aerosol and uncer-

tainty of sub-grid ageing of the size distribution, we con-

duct simulations spanning the range of observed size distri-

butions for primary BC and OC residential combustion par-

ticles, while keeping emission mass fixed. We use AeroCom

(Dentener et al., 2006) recommended particle size settings

(res_aero) (D = 80nm σ = 1.8) and, following a similar ap-

proach to Bauer et al. (2010), we use the range identified by

Bond et al. (2006) for lower (res_small) (D= 20 nm σ = 1.8)

and upper (res_large) (D= 500 nm σ = 1.8) estimates. To ac-

count for possible low biases in residential emission flux, we

conduct simulations where residential primary carbonaceous

combustion aerosol mass (BC and OC) are doubled relative

to the baseline simulation (res_× 2) and the simulation using

monthly mean anthropogenic emissions (res_monthly_× 2).

We also perform experiments where only residential BC and

OC emissions are doubled separately relative to the baseline

simulation (res_BC× 2 and res_POM× 2) to explore uncer-

tainties in both emission mass flux and emission ratio. While

the uncertainties in primary carbonaceous aerosol emissions

are thought to be higher than for gas-phase SO2 (Klimont et

al., 2009), we also conduct an experiment where we double

residential SO2 emissions (res_SO2× 2).

3 Results

3.1 Model evaluation

Figure 3 compares observed and simulated monthly mean

BC, OC, and PM2.5 concentrations and normalised mean bias

factor (NMBF) (Yu et al., 2006), where Mi are the simulated

concentrations by the model andOi are the observed concen-

trations at each measurement location, i,

NMBF=

∑
(Mi −Oi)∑

Oi
if M ≥O and

NMBF=

∑
(Mi −Oi)∑

Mi

if M <O. (5)

The baseline simulation underestimates observed BC

(NMBF=−2.33), OC (NMBF=−5.02), and PM2.5

(NMBF=−1.33) concentrations. The greatest model un-

derprediction is across East Asia (BC: NMBF=−2.61,

OC: NMBF=−6.56, and PM2.5: NMBF=−1.94). Over

South Asia the model is relatively unbiased against OC

(NMBF= 0.41) but underestimates BC (NMBF=−2.54).

In contrast, over Eastern Europe the model is unbi-

ased against BC (NMBF= 0.01) but underestimates OC

(NMBF=−2.63). The simulation with monthly varying

emissions compares slightly better with observations com-

pared to the baseline simulation but still underestimates

BC (NMBF=−2.29), OC (NMBF=−4.92), and PM2.5

(NMBF=−1.34), suggesting that seasonality in emissions

has little impact on reducing model bias. The low bias

in our model, particularly for BC and OC, is consistent

with previous modelling studies using bottom-up emission

inventories in South Asia (Ganguly et al., 2009; Menon et

al., 2010; Nair et al., 2012; Moorthy et al., 2013; Pan et al.,

2015) and East Asia (Park et al., 2005; Koch et al., 2009;

Fu et al., 2012). The contribution of residential emissions is

illustrated by the model simulation where these emissions

are switched off, with substantially greater underestimation

of BC (NMBF=−5.12), OC (NMBF=−11.46), and

PM2.5 (NMBF=−1.60) concentrations (Fig. 3d). Doubling

residential carbonaceous emissions improves model agree-

ment with observations, but the model still underestimates

BC (NMBF=−1.33), OC (NMBF=−2.96), and PM2.5

(NMBF=−1.17) concentrations.

Figure 4 compares observed and simulated concentrations

for South Asian locations. The baseline simulation under-

estimates carbonaceous aerosol concentrations at all loca-

tions, although there is better agreement at Godavari and

Hanimaadhoo. BC measurements at these two sites were

made through thermal–optical methods, whereas other loca-

tions in South Asia used optical methods (Table 1). Differ-

ent measurement techniques result in different mass concen-

trations (Stone et al., 2007) and may contribute to model–

observation errors. The emission inventory that we use is

based on carbonaceous measurements using thermal–optical
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1

Figure 3. Observed and simulated monthly mean BC (a), OC (b), and PM2.5 (c) concentrations for the baseline simulation (res_base) using

ACCMIP emissions at each measurement location depicted in Table 1 and normalised mean bias factor (NMBF) for each region defined

in Table 1. (d) NMBF where square shows the baseline simulation, bottom error bar shows the range for removed residential emissions

(res_base_off), and top error bar shows residential carbonaceous emissions doubled (res_× 2) for each region defined in Table 1. Colours

represent observed, simulated, and NMBF for measurement location regions defined in Table 1: all measurement locations (All: black), South

Asian locations (SAsia: blue), East Asian locations (EAsia: green), Eastern European locations (EEurope: red), and South African locations

(SAfrica: orange).

methods (Bond et al., 2004), which might explain the bet-

ter agreement at Godavari and Hanimaadhoo. Doubling res-

idential carbonaceous emissions improves the comparison

against observations but leads to slight overestimation at Go-

davari and Hanimaadhoo. Pan et al. (2015) found that seven

different global aerosol models underpredicted observed BC

by up to a factor 10, suggesting that anthropogenic emissions

are underestimated in these regions.

Observed BC and OC concentrations show strong sea-

sonal variability, with lower concentrations during the sum-

mer monsoon period (June–September). The baseline simu-

lation generally captures this seasonality relatively well (cor-

relation coefficient between observed and simulated monthly

mean concentrations r > 0.5 at most sites), with minimal im-

provement with monthly varying anthropogenic emissions.

This suggests that meteorological conditions such as en-

hanced wet deposition during the summer monsoon period

are the dominant drivers for the observed and simulated sea-

sonal variability, consistent with other modelling studies for

the same region (Adhikary et al., 2007; Moorthy et al., 2013).

Model simulations where residential emissions have been

switched off show that residential combustion contributes

about two-thirds of simulated BC and OC at these locations.

Figure 4k–l show a comparison of observed and simulated

aerosol number concentrations at Hanimaadhoo. At this loca-

tion, the baseline simulation simulates N20 (NMBF= 0.14),

N50 (NMBF= 0.14) and N100 (NMBF= 0.24) concentra-

tions well. Simulated number concentrations are sensitive to

emitted particle size. Emitting residential primary carbona-

ceous emissions at very small sizes (res_small) results in an

overestimation of N20 (NMBF= 1.84), N50 (NMBF= 1.28)

and N100 (NMBF= 1.05), suggesting that this assumption is

unrealistic.

Figure 5 compares observed and simulated surface

monthly mean BC and OC concentrations for East Asian

locations. Observed surface BC and OC concentrations

are generally enhanced during winter (December–February)

compared to the summer (June–August). At all locations, the

model underestimates BC (except for Gosan) and OC con-

centrations. The baseline simulation underpredicts both BC

(NMBF<−2) and OC (NMBF<−6) at Gaolan Shan and

Longfengshan (as well as Akdala, Dunhuang, and Wusumu,

which are not shown in Fig. 5), which is consistent with a

previous model study at these locations (Fu et al., 2012).
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1

Figure 4. Observed (black stars) and simulated monthly mean BC (a–f), OC (g–h), PM2.5 (i), and daily mean N20 (k), N50 (j), and

N100 (l) at South Asian locations. Normalised mean bias factor (NMBF) and correlation coefficient (r) are reported for each model sim-

ulation: NMBF(r). Experiments where residential emissions have been removed are represented by the blue (res_base_off) and green

(res_monthly_off) dotted lines. Note that additional experiments (res_BHN, res_aero, res_small, and res_large) are included in (k)–(i) be-

cause these experiments have little impact on aerosol mass (a–j).

The substantial underestimation at some locations (e.g. Dun-

huang, Gaolan Shan, and Wusumu) may be due to local par-

ticulate sources that are not resolved by coarse model res-

olution. If we exclude these locations, NMBF improves for

BC (−2.61 to −1.34) and OC (−4.43 to −3.29) for the East

Asian region. The model better simulates BC (NMBF<−1)

and OC (NMBF<−2) at Taiyangshan and Jinsha, although

the model is still biased low. The baseline simulation, without

seasonally varying emissions, fails to capture the observed

seasonal variability in East Asia, with negative correlations

between observed and simulated aerosol concentrations at a

number of locations. Fu et al. (2012) suggests that residen-

tial emissions (most likely heating sources) were the prin-

ciple driver of simulated seasonal variability of EC (BC)

at these locations. Implementing monthly varying anthro-

pogenic emissions (including residential emissions) gener-

ally improves the simulated seasonal variability (r > 0.3 at

most sites) compared to using annual mean emissions. Dou-

bling residential carbonaceous emissions also leads to im-

proved NMBF at most locations. Residential emissions typi-
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1

Figure 5. Observed (black stars) and simulated monthly mean BC (a–f) and OC (g–l) at East Asian locations. Normalised mean bias

factor (NMBF) and correlation coefficient (r) are reported for each model simulation: NMBF(r). Experiments where residential emissions

have been removed are represented by the blue (res_base_off) and green (res_monthly_off) dotted lines.

cally account for 50–65 % of simulated BC and OC concen-

trations at these locations.

Figure 6 compares simulated and observed aerosol at

South African and Eastern European locations. Marikana,

Botsalano, and Welgegund are all located within the same

region of South Africa and are influenced by both res-

idential emissions and open biomass burning during the

dry season, of which open biomass burning savannah fire

seasonality peaks in July–September (Venter et al., 2012;

Vakkari et al., 2013). Simulated aerosol number concen-

trations (N20 and N100) are underestimated at Marikana,

consistent with the underprediction in BC at the same lo-

cation, while number concentrations are better simulated

at Botsalano and Welgegund. The model underprediction

at Marikana is likely due to the location being closer to

emission sources, compared to Botsalano and Welgegund.

For N100 the model is generally good at simulating open

biomass savannah burning seasonality (peaking in August–

September), but increases in observed N100 earlier in the

season (May–August at Marikana and July at Welgegund)

are not simulated. At both locations this early season max-

ima is likely due to residential emissions (Vakkari et al.,

2013), which suggests that residential emissions are under-

represented in the model possibly due to resolution effects.
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1

Figure 6. Observed (black stars) and simulated monthly mean N20 (a–c), N100 (d–f), PM2.5 (g), BC (h–k), and OC (j–l) at South African

and Eastern European locations. Normalised mean bias factor (NMBF) and correlation coefficient (r) are reported for each model sim-

ulation: NMBF(r). Experiments where residential emissions have been removed are represented by the blue (res_base_off) and green

(res_monthly_off) dotted lines. Note that additional experiments (res_BHN, res_aero, res_small, and res_large) are included in (a)–(f) be-

cause these experiments have little impact on aerosol mass (g–i).

Aerosol number concentrations at Botsalano (NMBF= 0.47

to 1.01) and Welgegund (NMBF= 0.55 to 2.81) are overes-

timated when primary carbonaceous particles are emitted at

the smallest size (res_small), matching comparisons in South

Asia and further suggesting that this assumption is unrealis-

tic. The baseline simulation underestimates BC at Marikana

(NMFB=−2.38) and PM2.5 concentrations at Botsalano

(NMBF=−0.88), with a reduction in BC bias when residen-

tial carbonaceous emissions are doubled (NMBF=−1.62).

At both these locations the model simulates a reasonable sea-

sonality even without monthly varying residential emissions

(r > 0.7), possibly due to strong seasonality in open biomass

savannah burning emissions.

Similar to other locations, observed BC and OC concentra-

tions in Eastern Europe (Fig. 6i–l) are enhanced during win-

ter (December–February). The baseline simulation performs

well at simulating BC at Košetice (NMBF=+0.07) and

Iskrba (NMBF=−0.14) but underestimates OC at Košet-

ice (NMBF=−2.21) and Iskrba (NMBF=−3.27). Model

agreement does not improve much when monthly varying

anthropogenic emissions are used. The model performs bet-
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1

Figure 7. Percentage contribution of residential emissions to annual surface mean PM2.5 (a), BC (b), POM (c), and sulfate (SO4) (d)

concentrations (in size fraction PM2.5) for the baseline simulation (res_base), relative to an equivalent simulation where residential emissions

have been removed (res_base_off).

ter when residential carbonaceous emissions are doubled, but

overestimates BC at Košetice.

In summary, we find the model typically underestimates

observed BC and OC mass concentrations, which matches

results from previous studies. Doubling residential emissions

improves comparison against BC and OC observations, al-

though the model is still typically biased low. To explore this

further, we use 14C analysis (Sect. 3.2) to evaluate the con-

tribution of residential emissions to carbonaceous aerosol.

In general, the model compares better against observations

of particle number, except when carbonaceous particles are

emitted at small sizes leading to large overestimates in parti-

cle number.

3.2 Contribution of residential emissions to PM

concentrations

Figure 7 shows the fractional contribution of residential

emissions to annual mean surface PM2.5, BC, POM, and sul-

fate concentrations for the baseline simulation. Greatest frac-

tional contributions (15 to > 40 %) to surface PM2.5 are sim-

ulated over Eastern Europe (including parts of the Russian

Federation), parts of East Africa, South Asia, and East Asia.

Over these regions residential emissions contribute annual

mean PM2.5 concentrations of up to 6 µg m−3, dominated

by changes in POM concentrations of 2–5 µg m−3, with BC

and sulfate contributing up to 1 µg m−3. Residential emis-

sions contribute up to 60 % of simulated BC and POM over

parts of Eastern Europe, Russian Federation, Asia, southeast-

ern Africa, and northwestern Africa. Contribution of residen-

tial emissions to surface sulfate concentrations are typically

smaller, with contributions of 10–14 % over parts of Asia,

Eastern Europe, and the Russian Federation where residen-

tial coal emissions are more important (see Sect. 2.2). Over

China, residential emissions account for 13 % of simulated

annual mean PM2.5, with larger contributions of 20–30 %

in the eastern China. Over India, residential emissions ac-

count for 22 % of simulated annual mean PM2.5, with con-

tributions> 40 % over the Indo-Gangetic Plain. The contri-

butions to PM2.5 are increased to 21 % for China and 34 %

for India, when residential carbonaceous emissions are dou-

bled. The contribution of residential emissions to annual

mean surface BC (POM) concentrations is ∼ 40 % (44 %)

for China and∼ 60 % (58 %) for India. When residential car-

bonaceous emissions are doubled, BC (POM) contributions

are increased to 55 % (60 %) for China and 75 % (73 %) for

India.
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The absolute contribution of residential emissions to PM

concentrations are greatest in the NH between 0 and 60◦ N

below 500 hPa (not shown). The fractional contributions

within this region are up to 16–24 % for both BC and

POM and 1–4 % for sulfate. Residential emissions contribute

∼ 20 % of BC and ∼ 12–16 % of POM aloft (above 500 hPa)

but cause small reductions in sulfate (−1 to−4 %) due to the

suppression of nucleation and growth (see Sect. 3.4 for more

details).

Table 2 reports the impact of residential emissions on sim-

ulated global annual mean BC and POM burden and con-

tinental surface PM2.5 concentrations. In the baseline simu-

lation, the global BC burden is 0.11 Tg with a global mean

atmospheric BC lifetime of 4.95 days. This lifetime matches

the 4.4 to 5.1 days reported by X. Wang et al. (2014), sug-

gesting that our underestimation of observed BC is not due

to fast deposition and short atmospheric lifetime, at least in

comparison to other models. In the baseline simulation, res-

idential emissions result in a global BC burden of 0.024 Tg,

contributing 22 % of the global BC burden. Residential emis-

sions contribute 12 % of global POM burden. When residen-

tial carbonaceous emissions are doubled, residential emis-

sions contribute 33 % of the BC burden and 23 % of the

POM burden. Changing from annual mean to monthly vary-

ing emissions results in little change to the global BC or

POM burden. Emitting carbonaceous particles at very small

sizes (res_small) results in a greater fractional contribution

to global atmospheric BC (∼ 23 %) and POM (∼ 18 %) and

longer BC lifetime (5.4 days) compared to the baseline sim-

ulation. Because the removal of carbonaceous particles in

the model is size dependant (particularly for wet deposition),

small particles below a critical size can escape removal, lead-

ing to enhanced lofting to the free troposphere (FT) where

deposition rates are slow. In the res_small simulation, frac-

tional changes in BC burden can be as large as 60–100 %

in the FT, compared to 25–40 % in the baseline simula-

tion. Continental surface PM2.5 concentrations are increased

by ∼ 2 % in the baseline simulation, which is increased to

∼ 3.6 % when carbonaceous residential emissions are dou-

bled.

We further evaluate the simulated contribution of residen-

tial emissions to BC concentrations using 14C source appor-

tionment studies on the island of Hanimaadhoo (Gustafsson

et al., 2009; Sheesley et al., 2012; Bosch et al., 2014), which

is influenced by pollution transported from the Indian sub-

continent. The model simulates well both BC and OC con-

centrations observed at this location (Sect. 3.1). Figure 8

compares simulated and observed biomass contributions to

BC at Hanimaadhoo. The observed contribution depends on

not only the time of year the measurements were taken but

also the measurement technique used to derive BC (EC). For

example, during the same measurement period Gustafsson et

al. (2009) found that 46± 8 % of EC and 68± 6 % of BC

originated from non-fossil biomass (January–March). Bosch

et al. (2014) estimate that 59± 8 % of EC is from non-fossil

1

Figure 8. Comparison of simulated (squares) and observed (cir-

cles, error bars show uncertainty range) contributions of non-

fossil (residential biofuel and open biomass burning) sources to

BC concentrations in Hanimaadhoo, Indian Ocean. Observations

are from Gustafsson et al. (2009) (“Gus EC” (thermo-optical)

and “Gus BC” (optical) for January–March), Bosch et al. (2014)

(“Bos EC” (thermo-optical) for February–March), and Sheesley et

al. (2012) (“She EC” (thermo-optical) for November–February).

Model simulations are represented by squares: standard emissions

(blue: res_base; green: res_monthly) and where residential car-

bonaceous emissions have been doubled (yellow: res_× 2; orange:

res_monthly_× 2). Simulated fractional contributions are averaged

over the time of year that the observations were made.

biomass (February–March). Sheesley et al. (2012) estimated

that 73± 6 % of EC originated from non-fossil biomass dur-

ing the dry season (November–February). The observed con-

tribution of non-fossil BC (EC) therefore spans a range of

46–73 %. Residential biofuel/biomass combustion dominates

residential emissions in South Asia (Venkataraman et al.,

2005). To estimate non-fossil values from the model, we as-

sume that 90 % of residential BC transported to Hanimaad-

hoo originates from residential biofuel sources (consistent

with≥ 90 % estimates from the GAINS model), while the re-

maining non-fossil BC originates from open biomass burning

(including agricultural waste and open waste/rubbish burn-

ing). We find a small contribution (< 10 % for all simula-

tions) of open biomass burning to simulated BC at Hani-

maadhoo, confirming that the non-fossil contribution at this

location is likely dominated by residential biomass/biofuel

sources, which is supported by the observed consistent con-
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Figure 9. Simulated annual premature mortality (cardiopulmonary

diseases and lung cancer) due to ambient exposure to ambient

PM2.5 from residential emissions (res_base – res_off).

tribution from a non-fossil source (Sheesley et al., 2012). The

simulated contribution of non-fossil sources to total BC at

this location is ∼ 57–79 %, depending on the time of year

and model simulation. The baseline simulation has a 57 %

contribution of non-fossil sources to simulated BC concen-

trations, with little variation between different times of year

due to the annual mean emissions applied in this simulation.

Model simulations with monthly varying emissions have a

greater contribution of non-fossil sources to BC at this lo-

cation, as well as greater variability between seasons with a

contribution of 62–65 %. Doubling residential emissions in-

creases the contribution of non-fossil sources to ∼ 72 % for

annual mean emissions and ∼ 76–79 % for monthly varying

emissions. The spread in observed EC contributions makes

it difficult to constrain the contribution of residential emis-

sions, with baseline and doubling of residential BC emissions

bracketing the observed range. We do not analyse the non-

fossil fraction of OC since OC arises from a larger range

of sources including primary emissions and secondary or-

ganic aerosol (SOA). Nevertheless, non-fossil water-soluble

organic carbon at Hanimaadhoo is dominated (∼ 80 %) by

biomass and biogenic sources (Kirillova et al., 2013) but the

relative enrichment in the stable (δ13C) carbon isotope points

largely to aged primary biomass emissions sources (Bosch et

al., 2014). We estimate the simulated biomass contribution

to OC at Hanimaadhoo to be ∼ 50–70 % for baseline simu-

lations (res_base and res_monthly) and∼ 70–80 % for simu-

lations where residential carbonaceous emissions have been

doubled.

3.3 Health impacts of residential emissions

Figure 9 shows the simulated annual excess premature mor-

tality due to exposure to ambient PM2.5 from residential

emissions in the year 2000 for the baseline simulation. Great-

est mortality is simulated over regions with substantial res-

Figure 10. Simulated global annual premature mortality (cardiopul-

monary diseases and lung cancer for persons over the age of

30 years) due to exposure to ambient PM2.5 from residential emis-

sions. Results are shown for standard emissions (res_base and

res_monthly) and where residential emissions have been doubled

(res_× 2 and res_monthly_× 2). Mortality is shown for Eastern Eu-

rope and the Russian Federation (EEurope), Africa (Africa), South

Asia (SAsia), Southeast Asia (SEAsia), East Asia (EAsia), and the

rest of the world (as defined by the coloured regions in Fig. 2).

idential emissions and high population densities, notably

parts of Eastern Europe, the Russian Federation, South Asia,

and East Asia. Table 2 reports total global values for an-

nual mortality due to residential emissions. For the base-

line simulation, we estimate a total global annual mortality

of 315 000 (132 000–508 000, 5th to 95th percentile uncer-

tainty range). The simulation with monthly varying emis-

sions (res_monthly) results in total global annual mortality

of 308 000 (113 300–497 000), only a 2 % difference from

the baseline estimate. Uncertainty in the magnitude of resi-

dential emissions causes substantial uncertainty in the sim-

ulated impact on human health. When residential carbona-

ceous emissions are doubled, annual premature mortality

increases by 65 % to 519 000 (193 000–830 000) with an-

nual mean emissions and by 68 % to 517 000 (192 000–

827 000) with monthly varying emissions. Therefore, un-

certainty in the emission budget and uncertainty in the

health impacts of PM (as specified by 95 % confidence in-

tervals in the cause-specific coefficients) result in similar

uncertainties in estimated global mortality. The CRF func-

tion treats all aerosol components as equally harmful, so

simulations where residential emissions of POM, BC, and

SO2 are increased individually show that health effects are

most sensitive to uncertainty in POM emissions because

this component dominates the total emission mass. Doubling

POM emissions (res_POM× 2) increases estimated prema-

ture mortality by 50 %, whereas doubling BC emissions

(res_BC× 2) results in an 11 % increase and doubling SO2

emissions (res_SO2× 2) leads to a 6.5 % increase.

Figure 10 shows simulated annual total mortality by re-

gion. For the baseline simulation, we estimate that resi-
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Figure 11. Simulated absolute and percentage change in annual mean surface (a–b) and zonal (c–d) number concentration (N3; greater

than 3 nm dry diameter) due to residential emissions (res_base), relative to an equivalent simulation where residential emissions have been

removed (res_base_off).

dential emissions cause the greatest mortality in East Asia

with 121 075 (44 596–195 443, 95 % confidence intervals)

annual deaths – 38 % of global mortalities due to residen-

tial emissions. We also calculate substantial health effects in

other regions, with 72 890 (26 891–117 360) annual deaths in

South Asia (28 % of global mortalities) and 69 757 (25 714–

112 447) in Eastern Europe and Russia (22 % of global mor-

talities). Elsewhere we estimate lower mortality with 16 723

(6152–27 018) annual deaths in Southeast Asia (5 %) and

4791 (1751–7784) in sub-Saharan Africa (2 %). Annual pre-

mature mortality in sub-Saharan Africa is less than in Asia

due to a smaller contribution of residential emissions to

PM2.5 concentrations (Fig. 7), combined with typically lower

population densities, lower baseline mortality rates for lung

cancer and cardiopulmonary disease, and a smaller fraction

of the population over 30 years of age.

To our knowledge, this is the first study of the global ex-

cess mortality due to ambient PM2.5 from both residential

cooking and heating emissions. A recent study by Chafe et

al. (2014) concluded that ambient PM2.5 from RSF cook-

ing emissions resulted in 420 000 annual excess deaths in

2005 and 370 000 annual excess deaths in 2010. Chafe et

al. (2014) also simulated lower mortality in sub-Saharan

Africa (10 800 deaths in 2005) compared to Asia, consistent

with our findings. The regions where we estimate the largest

health impacts due to residential emissions are dominated by

RSF emissions. In East Asia, residential emissions are dom-

inated by both residential coal and biofuel sources whereas

in South Asia emissions are dominated by biofuel sources

(Bond et al., 2013).

3.4 Impact of residential emissions on total particle

number and N50 concentrations

Figure 11 shows the change in annual mean surface and zonal

mean particle number concentration (N3; particles greater

than 3 nm dry diameter) due to residential emissions for the

baseline simulation. Residential emissions increase N3 con-

centrations over source regions by up to 800 cm−3 due to

primary emitted particles. Downwind of source regions, N3

concentrations are reduced by up to ∼ 400 cm−3. This re-

duction is caused by primary particles acting as a coagula-

tion sink for nucleated particles and a condensation sink for

nucleating and condensing vapours, suppressing new parti-

cle formation (Spracklen et al., 2006), which is broadly con-

sistent with the findings of Kodros et al. (2015) for particle

number concentrations due to the effect of biofuel emissions.

Residential emissions decrease N3 concentrations in the FT

(> 500 hPa) by up to 100 cm−3 (7 %) due to suppression of

nucleation and growth from reduced availability of H2SO4

vapour due to increased condensation on primary particles.
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Figure 12. Simulated absolute and percentage change in annual mean surface (a–b) and zonal (c–d) soluble N50 concentrations due to

residential emissions (res_base), relative to an equivalent simulation where residential emissions have been removed (res_base_off).

In the baseline simulation, residential emissions reduce

annual global mean N3 concentrations by 1.0 % (Table 2).

When activation BLN is switched off (res_BHN), this sup-

pression is no longer important, and residential emissions in-

crease annual global mean N3 concentrations by 5.7 %. The

impact of residential emissions on global particle number

depends on the assumed particle size of primary carbona-

ceous emissions. When residential carbonaceous emissions

are emitted at smaller sizes (res_aero and res_small), global

mean N3 concentrations are increased by 2.4 and 164 % re-

spectively. This is because a greater number of particles are

being emitted per emission mass compared to the baseline

simulation.

Figure 12 shows the impact of residential emissions on

surface and zonal mean soluble N50 number concentrations

for the baseline simulation. Residential emissions increase

N50 concentrations over source regions of East Asia, South

Asia, and Eastern Europe by up to 300–500 cm−3. Simu-

lated N50 concentrations are increased by up to 20 % in the

Arctic, Eastern Europe, Russian Federation, North Africa,

and South Asia. Despite high absolute changes, fractional

changes in N50 concentration over East Asia (e.g. China) are

smaller (< 15 %) because of higher baseline N50 in this re-

gion from other sector emissions (e.g. from industry). N50

concentrations increase globally due to residential emissions,

but small reductions (< 5 %) are simulated in the remote

Southern Ocean because of the reduction in the amount of

H2SO4 and condensable vapour available for nucleation and

growth in FT, which results in reduced entrainment of nu-

cleated particles into the boundary layer. Absolute and frac-

tional changes in zonal mean N50 are greatest between 0 and

60◦ N and below 500 hPa.

Table 2 reports the global annual mean change in N50

concentrations between different simulations. In the baseline

simulation, residential emissions increase global mean sur-

face N50 by ∼ 5 %. When primary residential carbonaceous

particles are emitted at smaller sizes, residential emissions

cause a greater increase in N50 concentrations, with annual

global mean N50 concentrations increasing by ∼ 20 % in the

simulation with smallest particle size (res_small). Emitting

particles at larger sizes results in a smaller increase in global

meanN50 (3.1 %) because large particles are more efficiently

scavenged. The sensitivity of global mean N50 concentra-

tions to assumptions about emitted particle size is consistent

with previous studies (Adams and Seinfeld, 2003; Spracklen

et al., 2005b, 2011a). When residential carbonaceous aerosol

emissions are doubled, residential emissions increase global

annual mean N50 by ∼ 6.3 % (res_× 2). Simulations where

individual carbonaceous components are doubled separately

(res_BC× 2 and (res_POM× 2) show thatN50 is mainly sen-

sitive to change in OC emissions which dominate the car-

bonaceous aerosol mass. When residential SO2 emissions are

doubled, residential emissions increase global annual mean

N50 by 6.5 %. When activation BLN is assumed not to oc-
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Figure 13. Simulated absolute and percentage change in annual mean at low cloud height (850–900 hPa) (a–b) and zonal (c–d) CDNC due

to residential emissions (res_base), relative to an equivalent simulation where residential emissions have been removed (res_base_off).

cur, residential emissions increase global annual mean N50

by 6.5 % relative to the simulation with no residential emis-

sions. This greater sensitivity is because the baseline N50

concentrations without BLN are lower (287.4 cm−3) than the

baseline simulation (364.6 cm−3).

3.5 Impact of residential emissions on cloud droplet

number concentrations

Figure 13 shows the impact of residential emissions on an-

nual mean low-cloud level (850–900 hPa) and zonal mean

CDNC for the baseline simulation. Residential emissions in-

crease low-cloud level CDNCs by 20–100 cm−3 over source

regions. Smaller absolute and percentage changes in CDNC

are simulated over regions with greater baseline CDNCs due

to CDNC saturation effects. In contrast, CDNCs increases of

20 % are simulated over regions with low simulated back-

ground CDNCs, including parts of East Africa. Simulated

absolute increases in zonal mean CDNC are greatest be-

tween 0 and 60◦ N below 500 hPa, whereas greatest frac-

tional changes occur in the Arctic (6–8 %) due to low back-

ground concentrations. Small reductions in CDNC are simu-

lated in the FT (∼−2 %) and in the remote Southern Ocean

(1–2 %) at cloud level. This is caused by suppressed nucle-

ation in the FT.

In the baseline simulation, residential emissions increase

global annual low-cloud level CDNC by 2.1 % (Table 2).

Uncertainty in the emitted particle size of primary carbona-

ceous emissions causes most of the uncertainty in simulated

CDNC. When residential carbonaceous particles are emitted

at smaller sizes (res_small) emissions increase global annual

mean CDNC by 20 %. Emitting particles at smaller sizes re-

sulted in greater N50 concentrations, meaning more CCN-

sized particles are available to activate. While larger parti-

cle sizes can active cloud drops more easily compared to

smaller particles, large particles will deplete available wa-

ter vapour more quickly, which will lower SSmax, leading to

a suppression of small particles being activated. When ac-

tivation BLN is switched off (res_BHN), residential emis-

sions cause a greater increase in CDNC (3 %) compared to

the baseline simulation, due to lower background CDNCs.

Annual mean CDNC are increased by +2.7 % when primary

carbonaceous emissions are doubled (res_× 2), but greater

increases (+3.3 %) are simulated when residential SO2 is

doubled separately (res_SO2× 2). This suggests that residen-

tial SO2 is having a greater effect on CDNC compared to car-

bonaceous emissions because the small size distribution of

secondary sulfate is more efficient in the activation of cloud

drops.

3.6 Radiative effects of residential emissions

Figure 14 shows annual mean all-sky TOA DRE and first

AIE due to residential emissions for the baseline simulation.

Atmos. Chem. Phys., 16, 873–905, 2016 www.atmos-chem-phys.net/16/873/2016/



E. W. Butt et al.: The impact of residential combustion emissions 895

-200 -160 -120 -80 -40 0.0 40 80 120 160 200
Direct Radiative Effect (mW m-2)

-200 -160 -120 -80 -40 0.0 40 80 120 160 200
First Aerosol Indirect Effect (mW m-2)

1

Figure 14. Annual mean all-sky direct radiative effect (DRE) (left panel) and first aerosol indirect effect (AIE) (right panel) due to residential

emissions (res_base), relative to an equivalent simulation where residential emissions have been removed (res_base_off).

Figure 15. Global annual mean all-sky direct radiative effect (DRE)

(red) and first aerosol indirect effect (AIE) (blue) for all model sim-

ulations due to the impact of residential combustion emission, rel-

ative to simulations where residential combustion emissions have

been removed. DRE and AIE values for each simulation are detailed

in Table 2.

Residential emissions result in a negative (cooling) annual

mean DRE over large regions of South Asia, East Asia, sub-

Saharan Africa, and parts of southern Europe, with values as

large as −200 mW m−2. The simulated net negative DRE in

South Asia and East Asia is consistent with a previous study

(Aunan et al., 2009). In contrast, over parts of Eastern Europe

and the Russian Federation, North Africa, the Middle East,

and Southeast Asia, residential emissions lead to a positive

DRE. Residential emissions cause a negative first AIE over

most regions, with values as large as −200 mW m−2 over

eastern Africa, Eastern Europe, and West Africa. Small posi-

tive AIE (< 40 mW m−2) is simulated in the remote Southern

Ocean due to reductions in CDNC as mentioned in Sect. 3.5.

Figure 15 compares the annual mean all-sky DRE and

first AIE across the different model simulations (also re-

ported in Table 2). The simulated global annual mean DRE

has an uncertain sign, with our estimates between −66 and

+85 mW m−2. The baseline simulation results in a global

mean DRE of −5 mW m−2, similar to the simulation us-

ing monthly varying emissions (−8 mW m−2). Our estimates

differ somewhat to Kodros et al. (2015), who found a ho-

mogeneous optical mixing state produced a positive DRE of

+15 mW m−2 for biofuel emissions; however, because res-

idential emissions differ to biofuel emissions, comparisons

become problematic. We therefore assume that differences

in radiative effect compared to Kodros et al. (2015) are likely

dominated by differences in emissions used and differences

in the optical calculation. Doubling residential carbonaceous

emissions, but keeping SO2 emissions constant, results in a

positive global annual mean DRE (+21 mW m−2 for res_× 2

and +10 mW m−2 for res_monthly_× 2). This suggests that

the carbonaceous (BC and POM) component of residen-

tial aerosol in our model exerts a positive DRE, but this is

offset by cooling from SO2 emissions. Doubling only BC

emissions leads to a stronger positive DRE (+85 mW m−2),

whereas negative DRE are simulated for doubling only POM

(−66 mW m−2) or SO2 (−43 mW m−2) emissions. The DRE

is also sensitive to emitted particle size, resulting in positive

global mean DRE of between +1 and +63 mW m−2 when

carbonaceous particles are emitted at smaller sizes (res_aero

and res_small respectively). This change in sign to a posi-

tive DRE can be attributed to reduced removal rates for car-

bonaceous particles emitted at smaller sizes, which leads to

larger BC burden, particularly in the FT where BC influ-

ence on DRE is most efficient. Residential emissions ex-

ert a negative (cooling) but uncertain global annual mean

first AIE, estimated at between −502 and −16 mW m−2.

The baseline simulation results in a global mean first AIE

of −25 mW m−2, similar to the simulation using monthly

varying emissions (−20 mW m−2). Emitting residential car-

bonaceous aerosol at small sizes contributes most of the

uncertainly to simulated first AIE, with estimates between

−46 mW m−2 (res_aero) and−502 mW m−2 (res_small) due

to a greater increase in global CDNC. We find little sen-

sitivity of the AIE to changes in carbonaceous emission

mass: doubling carbonaceous emissions (res_× 2) changes
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AIE by less than 2 mW m−2 (∼ 10 %) due to limited changes

in CDNC. In contrast, doubling SO2 emissions leads to the

greater negative AIE (−45 mW m−2) due to greater global

contribution to CDNCs.

4 Discussion and conclusions

We used a global aerosol microphysics model (GLOMAP)

to quantify the impacts of residential emissions on ambi-

ent aerosol, human health, and climate in the year 2000. We

tested the sensitivity of simulated aerosol to uncertainty in

emission amount and seasonal variability, emitted primary

carbonaceous aerosol size distributions, and the impact of

particle formation.

To evaluate model simulations we synthesised in situ ob-

servations of BC, OC, and PM2.5 concentrations and aerosol

number size distribution. The baseline simulation underes-

timated observed BC, OC, and PM2.5 concentrations, with

the largest underestimation over East Asia and South Asia,

consistent with other modelling studies (Fu et al., 2012;

Moorthy et al., 2013; Pan et al., 2015). Applying monthly

varying emissions (MACCity emission data set), in place of

annual mean emissions (ACCMIP emission), has little im-

provement on overall model bias but does improve the abil-

ity of the model to simulate the observed seasonal variabil-

ity of aerosol. Doubling residential carbonaceous combus-

tion emissions improved model agreement, but GLOMAP

still underestimated BC, OC, and PM2.5 concentrations. The

model typically had a larger underestimation of OC com-

pared to BC concentrations, possibly due to uncertainty in

emission factors or potentially due to an underestimation of

anthropogenic SOA (Spracklen et al., 2011b).

We used source apportionment studies using 14C non-

fossil BC analysis at the island site of Hanimaadhoo in the

Indian Ocean as an additional constraint of the model. Non-

fossil sources have been estimated to contribute 46–73 % at

this location. This large range makes it difficult to constrain

the model. With standard emissions (ACCMIP and MACC-

ity), we estimate a non-fossil fraction of 57–65 %, whereas

when residential BC emissions are doubled, we simulate a

non-fossil fraction of 72–79 %.

Overall, our results suggest that residential emissions may

be underestimated in the MACCity and ACCMIP data sets.

Uncertainty in aerosol removal processes and transport and

missing anthropogenic SOA and nitrate formation may all

contribute to underestimation of aerosol mass. Nevertheless,

previous modelling studies have also suggested that residen-

tial emission data sets underestimate emissions (Park et al.,

2005; Koch et al., 2009; Ganguly et al., 2009; Menon et al.,

2010; Bergström et al., 2012; Nair et al., 2012; Fu et al.,

2012; Moorthy et al., 2013; Bond et al., 2013; Pan et al.,

2015). The ACCMIP and MACCity emission data sets are

constructed using national data on fuel use, which implies

uniform per capita fuel consumption at the country level. Us-

ing subnational fuel use data, R. Wang et al. (2014) showed

that the MACCity data set underestimated residential emis-

sions over source regions in Asia. Other studies have also

had to increase residential emissions over Europe in order to

match source apportionment studies (Denier van der Gon et

al., 2015). However, Wang et al. (2013) suggested that model

bias over China could partly be attributed to coarse model

resolution and comparison against urban data and monthly

mean observations. Kumar et al. (2015) also showed that a

high-resolution model was able simulate reasonable BC dis-

tributions in South Asian region. We have restricted our anal-

ysis to rural and background sites but use monthly mean

BC and OC data and a relatively coarse-resolution global

model. To help resolve uncertainties in residential emission

budget, higher-resolution emission inventories (using sub-

national fuel use data) and higher-resolution model simula-

tions evaluated against long-term and high temporal resolu-

tion data are required. In many regions, observational data

are lacking; there is an urgent requirement for detailed char-

acterisation of the chemical, physical, and optical properties

of aerosol in regions impacted by residential emissions, par-

ticularly in the developing world.

Particle number concentrations are generally predicted

within a factor of 2 at the limited number of locations where

observations are available. Simulated particle number is very

sensitive to emitted particle size, which has a large un-

certainty. Emitting residential carbonaceous particles at the

small end of the range reported by Bond et al. (2006) (ge-

ometric mean diameter= 20 nm) substantially overestimates

observed particle number, suggesting this assumption is not

appropriate for coarse-resolution global models.

Residential emissions contribute substantially to simulated

annual mean surface PM concentrations. Greatest fractional

contributions (15 to > 40 %) to surface PM2.5 concentra-

tions are simulated over Eastern Europe (including parts of

the Russian Federation), parts of East Africa, South Asia,

and East Asia. In these regions residential emissions con-

tribute> 50 % to total simulated BC and POM concentra-

tions. These findings support previous studies suggesting a

large contribution of residential emissions to PM2.5 concen-

trations over Asia (Venkataraman et al., 2005; Cao et al.,

2006; Klimont et al., 2009; Lei et al., 2011; Cui et al., 2015;

Fu et al., 2012; Gustafsson et al., 2009; B. Chen et al., 2013).

Our findings suggest that reductions in residential emissions

need to be considered alongside mitigation strategies for

other PM sources (e.g. industry and transport) within Asia

and in even more developed regions such as parts of Europe

(Fountoukis et al., 2014).

We estimated the impact of residential emissions on hu-

man health due to increased ambient PM2.5 concentrations

and tested the sensitivity to the emission data set and emis-

sion budget. We used a log-linear model of relative risk

from the epidemiological literature (Ostro, 2004) to relate

simulated changes in ambient PM2.5 concentrations to long-

term excess premature mortality for cardiopulmonary dis-
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ease and lung cancer for adults (> 30 years of age). In the

baseline simulation, we estimate that residential emissions

cause 315 000 (132 000–508 000, 5th to 95th percentile un-

certainty range) premature mortalities each year. Applying

a seasonal cycle to emissions changed our estimate by less

than 2 %, with residential emissions resulting in 308 000

(113 300–497 000) premature mortalities each year. Our es-

timate for residential emissions is equivalent to 8 % of the

total mortality attributed to exposure to ambient PM2.5 from

all anthropogenic sources (WHO, 2014b), although we note

that methodologies in the two studies are different. Doubling

residential carbonaceous emissions, which improved model

comparison against observed BC and POM concentrations,

increases simulated excess mortality by ∼ 64 % to 516 600

(192 000–827 000). Simulated mortality is greatest over re-

gions with large residential emissions and high population

densities including East Asia, South Asia, Eastern Europe,

and the Russian Federation. We find that half of simulated

global excess mortality from residential emissions occurs in

China and India alone. Our results are consistent with a pre-

vious estimate of RSF cooking emissions on premature mor-

tality (Chafe et al., 2014). The CRFs that are used to esti-

mate long-term premature mortality are uncertain. The log-

linear function used here is based on epidemiological stud-

ies from North America (Pope III et al., 2002), resulting in

greater uncertainty when these functions are extrapolated to

other regions (Silva et al., 2013). However, epidemiological

studies are not available for all regions, so global mortality

estimates often use functions based on these North Amer-

ican studies. Overall, we find that uncertainty in the rela-

tionship between PM concentrations and health impacts (as

quantified by the 95th percentile range given by the log-linear

model) and our measure of uncertainty in emissions (esti-

mated here as a factor of 2 uncertainty) result in compara-

ble uncertainty in the estimated global number of premature

mortalities. Future work therefore needs to improve both our

understanding of residential emissions and the relationships

between enhanced PM concentrations and human health im-

pacts. We also note that the coarse resolution of our global

model likely provides a conservative estimate of premature

mortality due to residential emissions because it cannot simu-

late high concentrations associated with highly populated ur-

ban and semi-urban areas. Further simulations using higher-

resolution models and emission inventories will be required

to accurately simulate PM2.5 concentrations in urban and

semi-urban areas. Health effects using more recent CRFs that

relate RR of disease to changes in PM2.5 over a large range of

concentration exposures (Burnett et al., 2014) will also be re-

quired. In addition, exposure functions, such as the one used

in this study, treat all aerosol components as equally toxic,

but carbonaceous aerosol, which dominate residential emis-

sions, may be more toxic compared to inorganic or crustal

PM (Tuomisto et al., 2008). New exposure response func-

tions will therefore need to account for the different toxicity

of chemical components present in atmospheric aerosols.

We used an offline radiative transfer model to estimate the

radiative effect (RE) of aerosol from residential emissions.

We estimate that residential emissions exert a global annual

mean DRE of between −66 and +85 mW m−2. The simu-

lated global mean DRE is sensitive to the amount and ratio of

BC, POM, and SO2 in emissions. Doubling residential car-

bonaceous emissions, but keeping SO2 emissions constant,

results in a positive global annual mean DRE, suggesting that

the carbonaceous component of residential aerosol exerts a

net positive DRE in our simulations, offset by cooling from

SO2 emissions. We also find a positive DRE when primary

carbonaceous emissions are emitted at smaller sizes, but this

simulation overestimates observed aerosol number, suggest-

ing it is unrealistic. Discounting this simulation, we provide

a best estimate of global mean DRE due to residential com-

bustion of between−66 and+21 mW m−2 for the year 2000.

Residential emissions exert a simulated global annual

mean first AIE of between −502 and −16 mW m−2. Un-

certainty in emitted primary carbonaceous particle size con-

tributes most of the uncertainly to calculated AIE. Emitting

carbonaceous aerosol at smaller sizes results in greater simu-

lated N50 and CDNC and a strong negative AIE as well as in

overestimation of observed particle number, suggesting that

emission at very small sizes is not realistic. We find little

sensitivity to annual mean first AIE due changes in carbona-

ceous emission mass compared to the baseline simulation.

Doubling carbonaceous emissions changes AIE by less than

2 mW m−2 (∼ 10 %), highlighting a non-linear relationship

between magnitude of emission and first AIE. Our best esti-

mate of the first AIE due to residential emissions is between

−52 and −16 mW m−2 in the year 2000.

We have restricted our analysis of the RE of residential

emissions to the aerosol DRE and first AIE. We treat POM

aerosol as scattering, although a fraction of POM aerosol

may absorb radiation (Kirchstetter et al., 2004; Chen and

Bond, 2010; Arola et al., 2011; X. Wang et al., 2014). Fur-

thermore, our DRE analysis is limited because we do not

fully explore the full range of optical mixing states for res-

idential emissions. We assume that BC is mixed homoge-

neously with scattering species, which provides an upper

limit for BC DRE (Jacobson, 2001). A full investigation of

the different optical mixing states commonly used in global

models, such as in Kodros et al. (2015), would yield a better

understanding of DRE from residential emissions. Because

we use an offline radiative transfer model, we also do not

treat cloud lifetime (second indirect effect) or semi-direct ef-

fects (Koch and Del Genio, 2010) and cannot explore ad-

ditional impacts such as the weakening of the South Asia

monsoon, altering of precipitation patterns (Ramanathan et

al., 2005), tropical cyclone intensification (Evan et al., 2011),

and accelerated melting of glaciers in the Himalayas (Xu et

al., 2009).

The introduction of cleaner and fuel efficient residential

combustion technologies, processed solid fuels, and clean al-

ternative energy (e.g. natural gas, electricity) has been sug-
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gested as one of the fastest ways to reduce residential emis-

sions (UNEP, 2011), thus slowing climate change and im-

proving air quality and human health (WHO, 2009). Our

study shows that the complete elimination of residential

emissions would result in substantially improved PM air

quality and human health across large regions of the world

regardless of the uncertainties between the different model

simulations explored here.

We have shown that residential combustion emissions ex-

ert an uncertain RE, which leads to uncertainties in predicting

the climate impact of emission reductions. Our work sug-

gests that residential emission flux, chemical composition,

and carbonaceous size distributions need to be better charac-

terised in order to constrain the likely climate impact. Given

these uncertainties, the missing processes within our model

framework (described above), and the use of an offline radia-

tive transfer model, it is difficult asses the full climate im-

pacts due to residential emissions. In addition, because we

find residential emission amount and resulting RE (particu-

larly aerosol–cloud effects) are not linearly related, our re-

sults cannot be used to estimate the impacts associated with

smaller, realistic reductions in residential emissions. Future

research is needed to explore the air quality and climate im-

pact of realistic emission reductions scenarios that could po-

tentially be achieved through the implementation of cleaner

combustion technologies and clean alternative fuels.

More people are using RSF for cooking than at any other

point in human history, even though the fraction of the popu-

lation using these fuels is falling (Bonjour et al., 2013). Over

the next few decades (2005–2030), combustion of RSF is

projected to increase in South Asia and Africa due to in-

creases in human population (UNEP, 2011). We have re-

ported human health and climate impacts for the year 2000,

but in China, residential emissions have increased 34 % dur-

ing the period 2000–2012 due to the growth of coal consump-

tion (Cui et al., 2015). The use of biomass for heating is also

expected to increase in developed countries such as in West-

ern Europe because of rising fossil fuel prices and use of

renewable biomass under climate change mitigation policy

(Denier van der Gon et al., 2015). The impact of residential

emissions on human health and climate is, therefore, likely

to persist in the future unless effective mitigation to address

the dependence on RSFs is taken.
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Appendix A

Table A1. Acronyms used in this study.

Acronym Description

ACCMIP Atmospheric Chemistry and Climate Model Intercomparison Project

AF Attributable fraction

AIE Aerosol indirect effect

BC Black carbon

BHN Binary homogenous nucleation

BLN Boundary layer nucleation

CCN Cloud condensation nuclei

CDNC Cloud droplet number concentration

CPD Cardiopulmonary disease

CRF Concentration response functions

DRE Direct radiative effect

EC Elemental carbon

FT Free troposphere

LC Lung cancer

LPG Liquefied petroleum gas

LW Longwave

MACCity MACC/CityZEN project

NH Northern Hemisphere

N3 Number of particles greater than 3 nm dry diameter

N50 Number of particles greater than 50 nm dry diameter

N100 Number of particles greater than 100 nm dry diameter

NMBF Normalised mean bias factor

OC Organic carbon

PM Particulate matter

PM2.5 Particulate matter with an aerodynamic dry diameter of < 2.5 µm

POM Particulate organic matter

RE Radiative effect

RR Relative risk

RSF Residential solid fuel

SOA Secondary organic aerosol

SW Shortwave

TOA Top of atmosphere
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Abstract

Long-term exposure to ambient particulate matter (PM2.5, mass of particles

with an aerodynamic dry diameter of < 2.5 μm) is causally associated with

respiratory and cardiovascular disease mortality and is a major risk factor to

the global burden of disease. Residential combustion of solid fuel for cook-

ing and heating contributes up to one-third of global deaths attributable to

ambient PM2.5. Despite this, few studies have examined the potential near-

term air quality and associated health burden benefits of clean residential

combustion technologies. We used a global chemistry-transport model cou-

pled to a global aerosol model together with exposure-response relation-

ships, to examine the extent of near-term changes in ambient PM2.5 con-

centrations and associated health burden impacts by 2050 under different

emission scenarios. Under a 2050 reference scenario, we found that global

annual mean population-weighted PM2.5 concentrations increased by 12.3%,

relative to 2015. Under the this same scenario, global mortality attributable

to ambient PM2.5 increased by 72.8%, corresponding to 7.1 [3.9-10.7] million

deaths in 2050. We found that population growth and ageing overwhelm-

ingly contributed to increases in mortality in 2050, even in some regions

where PM2.5 concentrations declined, such as across East Asia. We exam-

ined an additional scenario in 2050 assuming the widespread implementa-

tion of best available clean combustion technologies across the residential

sector, including adoption of clean cookstoves. We further compared this

clean residential scenario to a maximum anthropogenic emission reduction

scenario, where clean technologies and measures were implemented in all

anthropogenic emission sectors, to assess the important of clean residential

combustion in 2050. We found that clean residential combustion alone avoids

26.7% of the maximum preventable mean population-weighted PM2.5 con-

centration (4.9 µg m-3) globally by 2050 and 0.34 [0.28-0.4] million deaths or

20% of the maximum possible global avoidable mortality. Air quality and as-

sociated mortality benefits are highlighted across regions where residential
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emissions contribute to anthropogenic ambient PM2.5, such as across Sub-

Saharan Africa where half to two thirds of the maximum possible avoidable

PM2.5 and mortality benefits, can be achieved by clean residential control

technologies alone. However, in general, we found that the greater avoidable

PM2.5 and mortalities in 2050 under the maximum possible anthropogenic

reduction scenario in most regions highlights the priority for reducing all

anthropogenic emissions collectively. Nevertheless, clean residential com-

bustion technologies can provide substantial global and regional ambient

air quality and public health benefits by 2050, with total avoidable mortal-

ities being nearly 100% greater if considered under newly available health

exposure-response relationships. We hope that our findings can be used to

help inform ambient clean air quality policy management strategies, partic-

ularly across low-income regions where legislation is lacking and residential

combustion emissions are important.

5.1 Introduction

Nearly 40% of the world’s population, overwhelmingly in low and middle-

income countries, rely on solid fuels for basic household tasks such as cook-

ing, space heating and lighting (Bonjour et al., 2013). The incomplete com-

bustion of these residential solid fuels, often referred to as household or do-

mestic solid fuels (e.g., wood, coal, agricultural and animal waste) in tradi-

tional open fires (e.g., 3-stone fires) or simple cooking or heating stoves re-

sults in the emission of large amounts of particulate matter (PM) into house-

hold and ambient environments (Jetter and Kariher, 2009; Bond et al., 2013;

Winijkul, Fierce, and Bond, 2016).

Long-term exposure to PM with a median aerodynamic dry diameter of <

2.5 μm (PM2.5) is causally associated with respiratory and cardiovascular dis-

ease mortality (Dockery et al., 1993; Pope et al., 1995; Pope III and Dockery,
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2006; Krewski et al., 2009). The Global Burden of Disease’s (GBD) Compar-

ative Risk Assessment (CRA) places both ambient and household exposure

to PM2.5 within the top ten risk factors affecting global health in the present-

day (Gakidou et al., 2017). Long-term exposure to ambient PM2.5 is the fifth

largest risk factor, causing 4.1 million deaths annually in 2016, while expo-

sure to household air pollution (HAP) is the tenth largest risk factor, con-

tributing to 2.6 million deaths in the same year (Gakidou et al., 2017; Smith

et al., 2014a).

Emissions from residential solid fuel combustion contribute to ambient PM2.5

concentrations and thus directly contribute to the burden of disease attributable

to ambient PM2.5 exposure. (Chafe et al., 2014; Butt et al., 2016). In the

present-day, residential emissions contribute to about one-third of the at-

tributable deaths due to ambient PM2.5 globally (Lelieveld et al., 2015). Re-

gionally, they contribute to one-third of the attributable deaths in China (Archer-

Nicholls et al., 2016) and Africa (Lacey et al., 2017a), and one-third to one-

half attributable deaths in India (Conibear et al., 2018a; GBD MAPS Working

Group, 2018). Even among high-income countries (e.g., North America and

Europe), residential space heating emissions contribute about one-tenth the

attributable deaths due to ambient PM2.5 (Chafe et al., 2015). Given these

large contributions, understanding future impacts to changes in residential

emissions is vital for informing air quality management.

Use of residential solid fuels has undergone regional changes in the past few

decades. For low and middle-income regions, while urbanisation, income

and development transitions have led to a relative reduction in households

using solid fuels (Smith and Ezzati, 2005; Wilkinson et al., 2009; Shen et al.,

2017), the absolute number of people relying on solid fuels has remained

relatively stable due to population growth (Bonjour et al., 2013). For high-

income regions, such as those across Europe, while the relative contribution

of residential space heating PM2.5 may be increasing, absolute emissions are

generally declining due to energy diversification and air quality regulation
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(Chafe et al., 2015).

The issue of solid fuel use in low and middle-income countries has been a

focal point of international development for many decades. Since the 1980s,

household energy interventions targeting the adoption of fuel efficient or so

called ’improved’ biomass cookstoves, were part of efforts to alleviate envi-

ronmental impacts associated with unsustainable firewood collection (Anen-

berg et al., 2012). However, while achieving mixed results in terms of scale,

these early interventions did not necessarily reduce heath relevant PM emis-

sions or HAP exposures (Anenberg et al., 2012). Moreover, emissions and

health goals were often not considered part of an intervention’s aims.

More recently, intervention policy has shifted towards public health favour-

ing the use of advanced ’clean’ solid fuel stove technologies and/or use of

cleaner fuels (e.g., liquefied petroleum gas (LPG) and electricity) (Goldem-

berg et al., 2018). However, while the replacement of solid fuels with cleaner

fuels is seen as the most desirable for public heath goals (Goldemberg et al.,

2018; Steenland et al., 2018; Smith and Sagar, 2014; Lacey et al., 2017a), such

fuels remain elusive for many across low and middle-income regions as a re-

sult of accessibility and affordability barriers (Anenberg et al., 2013; Rehfuess

et al., 2014). This suggests a transitional or interim role for clean combustion

technologies using solid fuels, such as clean cookstoves.

Relative to traditional three-stone fires, advanced clean cookstove technolo-

gies can achieve up to 50% reductions in PM emissions, and forced draft (fan

assisted) stoves can achieve up to 90% reductions under controlled condi-

tions (Jetter and Kariher, 2009; Jetter et al., 2012). However, successful large-

scale implementation means that such technologies need to replace tradi-

tional polluting methods and be an attractive option for users. The widespread

adoption of these technologies are also attractive because they potentially not

only deliver improved air quality (both ambient and HAP), but also multi-

ple co-benefits, including climate change mitigation to other socio-economic
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benefits, such as reduced fuel collection or expenditure for poor households,

and business for stove manufacturers distributors (Grieshop, Marshall, and

Kandlikar, 2011; Bond et al., 2013; Anenberg et al., 2013; Amann, Klimont,

and Kupiainen, 2011). Nevertheless, few studies have examined the obvi-

ous global and regional ambient air quality and associated health burden po-

tential of such technologies, particularly when considering near-term future

transitions in residential fuel use, as well as demographic and epidemiologi-

cal transitions (Kuhn et al., 2016).

In this study, we investigate changes in ambient PM2.5 concentrations and

associated public health impacts between 2015 and 2050. We use a global

chemistry-transport model coupled to a modal aerosol model with estimated

changes in anthropogenic emissions, demographics and disease epidemiol-

ogy. We estimate ambient air quality and health impacts in a 2050 reference

scenario and compare it to a scenario where the widespread adoption of clean

residential combustion technologies has taken place. We further examine

these potential benefits against an additional 2050 scenario where available

clean combustion technologies are widely adopted in all anthropogenic sec-

tors. In examining such scenarios, we hope to identify regions where clean

residential combustion might be important for near-term ambient air quality

management.

5.2 Methods

5.2.1 TOMCAT-GLOMAP description

We use the offline 3-D global chemical-transport model (CTM) TOMCAT

(Chipperfield, 2006; Monks et al., 2017), with a horizontal resolution of 2.8◦

× 2.8◦ and 31 hybrid vertical σ–p levels extending from the surface to 10 hPa.

Vertical σlevels are terrain-following below about 100 hPa above which they

are purely pressure levels. Model transport and meteorology is driven by
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winds, temperature and humidity fields from the ECMWF (European Cen-

tre for Medium-Range Weather Forecasts) ERA-Interim (Dee et al., 2011) re-

analyses.

The TOMCAT chemistry scheme includes detailed tropospheric gas-phase

chemistry inclusive of reactions of odd oxygen (Ox), nitrogen (NOy), hydro-

gen (HOx = OH + HO2), as well as carbon monoxide (CO), methane (CH4)

and short chain non-methane volatile organic compounds (VOCs) (Chipper-

field, 2006; Monks et al., 2017). We use a version of TOMCAT that is fully

coupled to the aerosol microphysics model, the GLObal Model of Aerosol

Processes (GLOMAP) (Spracklen et al., 2005b). Coupling to GLOMAP allows

for the interaction and feedback of atmospheric chemistry and aerosol, such

as the changes in oxidant concentrations due to changes in gas-phase aerosol

precursor emissions. We use the modal version of GLOMAP (GLOMAP-

mode) where aerosol mass and number concentrations are carried in seven

log-normal size modes: four hydrophilic (nucleation (diameter (D) < 10 nm),

Aitken (D 10-100 nm), accumulation (D 100 nm - 1 µm), and coarse (D > 1

µm)), and three non-hydrophilic (Aitken, accumulation, and coarse) modes

(Mann et al., 2010). Size-resolved aerosol microphysical processes in GLOMAP-

mode include primary emissions, secondary particle formation, particle growth

through coagulation, condensation, and cloud-processing and removal by

dry and wet deposition.

GLOMAP-mode simulates aerosol components: sulfate (SO4
2-), mineral dust,

black carbon (BC), particulate organic matter (POM), and sea salt (NaCl).

Secondary organic aerosol (SOA) is formed from products of monoterpene

oxidation, generated at a 13% yield and assumed to be involatile (Spracklen

et al., 2006; Scott et al., 2014). We also assume a global organic carbon (OC)

to POM ratio of 2.1 as based on an upper regional estimate (Philip et al.,

2014). There is no representation of anthropogenic SOA or ammonium ni-

trate in this version of GLOMAP-mode (Mann et al., 2010). This version of
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the model also does not include mineral dust, instead we used a 10-year av-

erage PM2.5 dust climatology (Reddington et al., 2015; Butt et al., 2017) and

add it to simulated PM2.5 fields.

5.2.2 Emission scenarios

Table 5.1 summaries emission scenarios used in this study. Anthropogenic

gas-phase and primary aerosol emissions are taken from the ECLIPSE (Eval-

uating the Climate and Air Quality Impacts of Short-Lived Pollutants) emis-

sion inventory (see Section A.1.1). We include anthropogenic emissions in

2015 (present-day) and in a 2050 reference scenario. Emissions in the refer-

ence scenario are based on International Energy Agency (IEA) energy projec-

tions under an assumption of full implementation and enforcement of cur-

rent and planned national air quality legislation as of 2013 (refereed to by

ECLIPSE as CLE or ‘current legislation’) (Stohl et al., 2015; IEA, 2012). In

terms of carbon dioxide (CO2) concentrations, the reference scenario is com-

patible with the representative concentration pathway scenario (RCP6.0).

Scenario name Year Emission description
2015 present-day 2015 Anthropogenic emissions in 2015.
2050 reference 2050 Anthropogenic emissions in 2050 based on IEA energy projections under the assump-

tion of full implementation and enforcement of current and planned national air qual-
ity legislation as of 2013.

2050 clean residential 2050 Same anthropogenic emissions as in the reference scenario but with penetration of best
available emission control technologies in the residential sector only.

2050 MTFR (max-
imum technically
feasible reduction)

2050 Same as the clean residential scenario but with penetration of best available emis-
sion control technologies in all anthropogenic emission sectors, including some non-
technical measures.

TABLE 5.1: Air quality emission scenarios used. All scenarios include
natural emissions consistent with present-day meteorology.

We apply two additional 2050 scenarios to which we compare the reference:

a clean residential and maximum technically feasible reduction (MTFR) sce-

nario. The MTRF scenario is provided separately by the ECLIPSE inventory,

which starts at the level of the reference scenario, but instead allocates best

available emission control technologies in all anthropogenic sectors, regard-

less of implementation costs, barriers and institutional issues, but with some

technological, geophysical, and cultural limitations. The MTFR scenario ac-

counts for very limited fuel transitions (e.g., solid fuels to LPG or electricity)
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as these are accounted for in the reference scenario, but it does include some

non-technical measures, such as the elimination of highly emitting vehicles,

agricultural waste burning, and reduced gas flaring. Further details of con-

trol options used in the MTFR can be found elsewhere (Stohl et al., 2015;

Klimont et al., 2017).

To isolate the effects of clean residential combustion technologies only, we

created the hybrid 2050 ’clean residential’ scenario, which is identical to the

reference scenario, but instead allocates MTFR best available control tech-

nologies in the residential sector only. Because the MTFR scenario represents

the maximum possible anthropogenic emission reduction in 2050, compar-

ing it to the clean residential scenario will identify the relative importance

of near-term clean residential emission controls for improving regional air

quality and associated public health impacts.
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FIGURE 5.1: Energy consumption of combustible fuels in the residen-
tial sector in 2015 and 2050, split by geographical super region (see
Figure A.1 for super region breakdown). Projected energy use esti-
mates for consumption in 2050 are based on IEA forecasts (IEA, 2012)
consistent with 2050 ECLIPSE reference (i.e., CLE) and MTFR scenar-

ios.
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Figure 5.1 shows residential sector energy use per combustible fuel in 2015

and 2050, split by geographical super region (see Figure A.1 for super re-

gion breakdown). Energy consumption of solid fuel biomass remains impor-

tant in 2050, despite global reductions in modern biomass (5%) and tradi-

tional biomass heating (19%), driven largely by reductions across the super

region of Southeast Asia, East Asia, and Oceania (i.e., primarily East Asia),

and across high-income regions. Relative to 2015, global consumption of tra-

ditional biomass increases slightly by 2% in 2050, driven largely by a 25%

increases across Sub-Saharan African regions, despite reductions across East

Asia. Global coal consumption for cooking and heating experienced consid-

erable reductions in 2050 (79% and 57% respectively), particularly driven by

reductions across East Asia (83% and 76% respectively), due to planned lim-

its imposed by China. For non-solid residential fuels, global consumption of

heavy liquid fuels (e.g., oil) are expected to decrease by 6% in 2050, whereas

consumption of liquid light fuels and national gas are predicted to increase

by 21% and 38% respectively globally.

Table 5.2 summarises the emission control technologies used in the 2050 clean

residential scenario in fuel sectors reported in Figure 5.1, where reduced

emissions through more efficient and optimised combustion are achieved.

Here, traditional cookstoves or three-stone fires using solid fuel biomass are

replaced with best available forced-air (fan assisted) cookstoves across mid-

dle and low-income countries, while the penetration of coal briquettes and

appropriate clean stoves are assumed for cooking with coal. For space heat-

ing in high-income regions, penetration of biomass pellet stoves and single

house boilers, and coal briquette stoves are assumed, while best available log

stoves and boilers, and coal briquette heating stoves are assumed across low

and middle-income regions. For lighting in low and middle-income coun-

tries, kerosene lamps are replaced with light-emitting diode (LED) lamps,

which is also largely accounted for in the reference scenario based on ambi-

tious national electrification projections.
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To isolate the effects of changes in anthropogenic emissions only, all scenar-

ios include natural emissions (see Section A.1.2) consistent with present-day

meteorology. Annual mean PM2.5 concentrations for each scenario are calcu-

lated as a 5-year average using meteorology for the period 2011-2015. Finally,

we remove residential emissions in all scenarios to examine residential emis-

sion contributions under each scenario.
Control option Non-

specific
Lighting Fireplace Stove Household

boiler
Medium
boiler

Improved × × × (Cooking and Heating) ×
New × × (Cooking and Heating) ×
Fan Stove × (Cooking)
Coal briquette × (Cooking and Heating)
Hurricane lamp ×
LED lamp ×
Pellets × (Heating) × ×
Cyclone ×
ESP × (Heating) × ×

TABLE 5.2: Residential control technology options used in the clean
residential scenario. Control options are based on laboratory and field
emission factors using best available control technologies. Table data

adapted from Klimont et al., 2017.

Future emission changes

Figure 5.2 shows anthropogenic emissions for each scenario by super region.

Regional changes in emissions between 2015 and the 2050 reference scenario

generally reflect differences in energy use and current and planned air qual-

ity management or lack of. Relative to 2015, global BC and OC emissions

decreased in the reference scenario by 6% and 4% respectively, due to reduc-

tions in East Asia, and high-income regions, despite increases in South Asia,

North Africa and Middle East and, Sub-Saharan Africa. Large emission re-

ductions in BC and OC in the super region of Southeast Asia, East Asian and

Oceania were largely a result of legislation controlling the use of residential

coal for cooking and space heating in China. The contribution of residential

combustion to global BC and OC emission is large relative to the other air pol-

lutants, and remains a significant contributor in the 2050 reference scenario,

despite falling 12.4 and 3.6 percentage points to 45.2% and 61.1%, respec-

tively. Relative to the reference scenario, global BC and OC emissions are

reduced by 33.7% and 48.4%, respectively under the 2050 clean residential
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scenario, with considerable decreases predicted across Sub-Saharan Africa

(64.9% and 68.4%, respectively) and South Asia (33.1% and 57.7%, respec-

tively), as well as reducing the global residential combustion contribution to

17.3% and 24.6%, respectively. However, larger reductions in global BC and

OC emissions are predicted in the MTFR scenario (82.8% and 82.1%, respec-

tively), with regional reductions typically above 70%.
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FIGURE 5.2: Anthropogenic air pollutant emissions (million tonnes
(Mt) for individual scenarios split by broad geographical super region
as identified in Figure A.1, including international shipping. Air pol-
lutants include, BC (black carbon), OC (organic carbon), SO2 (sulfur
dioxide), NOx (nitrogen oxides), CO (carbon monoxide), and VOCs
(volatile organic compounds). Total residential sector emissions for
each scenario are also included and represented by the smaller bar to

the right.

Relative to 2015, global sulphur dioxide (SO2) emissions increased 8.9% in

the 2050 reference scenario, despite reductions across high-income and East

Asian regions, and low sulphur fuel transitions in international shipping.

This global increase was driven mainly by a large 134% increase in South

Asian (mostly in India) SO2 emissions, due to poor legislation in the power

and industrial sectors in the face of rapid population growth and energy con-

sumption (Stohl et al., 2015). Residential combustion contributes only 5%

of global SO2 emissions in the 2050 reference scenario, down 4 percentage



120
Chapter 5. Near-term global and regional air quality and health benefits in 2050

due to widespread adoption of clean residential combustion technologies

points from 2015 largely due to residential coal controls in China. Therefore,

relative to the reference scenario, global SO2 emissions are only reduced by

1% in the clean residential scenario compared to the much larger reduction

under the MTFR scenario (68.5%). Similarly, global emissions of nitrogen ox-

ides (NOx) also increase in the 2050 reference scenario (22.9%), but because

of the small contribution of residential combustion to global NOx emissions

(4%), global emissions are reduced by only 0.9% in the clean residential sce-

nario, relative to the reference, which is compared to the much larger reduc-

tion in the MTFR scenario (74.1%).

Global carbon monoxide (CO) emissions decrease by 3.6% in the 2050 refer-

ence scenario, relative to 2015, which was largely due to emission controls in

high-income regions and East Asia. The contribution to residential combus-

tion to global CO emissions is 37.2% in the reference scenario. Relative to the

reference, global CO emissions decrease by 27.3% under the clean residen-

tial scenario, which is less than half the reduction under the MTFR scenario

(66.3%).

Relative to 2015, global volatile organic compound (VOC) emissions increase

by 12% in 2050 under the reference scenario. Residential emissions increase

under the reference scenario, but with little change between the relative con-

tribution to global emissions between 2015 (30.5%) and 2050 (29.9%). Relative

to the reference, global VOC emissions decrease by 19.7% in 2050 under the

clean residential scenario, which is less than half the reduction in the MTFR

(59.1%).

5.2.3 Evaluating simulated PM2.5 concentrations

We compare 2015 annual mean simulated PM2.5 concentrations with mea-

surements collected across multiple locations and regions (see Section A.2).

In general, simulated PM2.5 concentrations are underestimated compared to
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measurements (Figure A.2), with the exception across North America (nor-

malised mean bias factor (NMBF) = 0.29). The model underestimates by a

similar magnitude across Europe (NMBF = -0.22) and Southeast Asia (NMBF

= -0.29), as well as across Africa (NMBF = -0.24), but with a greater spread.

However, large underestimates of a factor 2 and 3 are estimated across China

and India, respectively.

PM2.5 measurements are taken from a mix of urban, semi-urban, rural, and

remote locations. For example, measurements across North America and

Europe are almost exclusively from rural or remote locations, whereas all

measurements in India are from urban locations, as are many of the mea-

surements in China. These differences may partly explain the very low bias

in India and China as the relatively coarse spatial resolution of TOMCAT

struggles to resolve urban concentration gradients. Low PM bias has been

shown in previous studies using the global aerosol model GLOMAP-mode,

each citing missing or uncertain emission sources, model processes, and spa-

tial resolution as possible contributing factors (Butt et al., 2016; Butt et al.,

2017; Turnock et al., 2015). Nevertheless, a Pearson’s correlation coefficient

(r) = 0.87 suggests that the model is well able to simulate the overall spatial

distribution of the observations, but not necessarily the magnitude in them.

To account for the low model bias, we use a ’semi-observational’ gridded

dataset of ambient PM2.5 concentration applied in recent GBD CRA, the DI-

MAQ (Data Integration Model for Air Quality) (Shaddick et al., 2018) (Sec-

tion A.3.1). We averaged DIMAQ from its original resolution of 0.1◦ × 0.1◦

( 11 km × 11 km at the equator) to the TOMCAT resolution (2.8◦ × 2.8◦)

and made a comparison (Figure A.3). Similar to the comparison with surface

measurements, we found that while the model underestimates compared to

DIMAQ in most regions (NMBF of between 0 and -1), TOMCAT is well able

to simulate the overall spatial distribution of DIMAQ PM2.5 estimates (r =

0.80) (Figure A.3 b). Supported by this good spatial correlation, we region-

ally scaled 2015 simulated concentrations as described in Section A.3.2.
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FIGURE 5.3: Comparison of simulated (scaled) PM2.5 concentrations
with measurements collected across multiple locations and regions. a
2015 TOMCAT simulated surface annual mean PM2.5 concentrations
(background) compared to measurements (filled circles). b Compar-
ison of PM2.5 concentrations, best fit line (red line), 1:1 (solid black
line), 2:1 and 1:2 (dashed black lines). Best fit line has slope = 0.32
and Pearson’s correlation coefficient (r) = 0.87. c Normalised mean
bias factor (NMBF) box and whisker by sub-region, showing the min-
imum, maximum and median distribution values, as well as the 10th,

25th, 75th, and 90th percentiles.

Figure 5.3 shows the comparison of the scaled TOMCAT 2015 PM2.5 con-

centrations to surface measurements (see also scaled comparison to DIMAQ,

Figure A.4). After scaling, we find an overall reduction in the regional low

bias compared to surface measurements, although low biases still persist

across China and India, but to a lesser extent. In addition, we find that scaling

also leads to a slightly greater overestimation across North America. Nev-

ertheless, we apply the same scaling methodology to all 2050 scenarios and

use these scaled estimates to report impacts on ambient PM2.5 and associated

health burdens in the current study.
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5.2.4 Health impact assessment

We use integrated exposure-response (IER) relationships (Burnett et al., 2014)

to estimate mortality burdens attributable to ambient PM2.5 exposure, which

have been used extensively for health assessments over the past few years.

Using epidemiological risk estimates from different combustion sources, the

IER is used to predict relative risk of mortality for cause-specific diseases over

the global range of PM2.5 exposure. Cause-specific diseases that have been

deemed consistent with causal relationships are predicted, ischaemic heart

disease (IHD), cerebrovascular disease (ischaemic stroke and haemorrhagic

stroke; CEV), lung cancer, chronic obstructive pulmonary disease (COPD),

and lower respiratory infections (LRI). Employing updates described in (Co-

hen et al., 2017), the IER takes the form:

RR(c) = 1 + α× (1− eβ(c−cc f )
γ+
)

RR(c) = 1 for c ≤ cc f

where RR(c) is the relative risk at PM2.5 concentration, and cc f is the the-

oretical minimum risk exposure level (TMREL), below which is no risk is

assumed. The TMREL is determined by a uniform distribution representing

the minimum and 5th percentiles of exposure distributions estimated in am-

bient air pollution prospective cohort studies (2.4-5.9 µg m -3). The grouping

1 + α is the maximum risk, β is the ratio of the IER at low to high PM2.5 con-

centrations, and γ is the power of PM2.5 concentration (Cohen et al., 2017).

Using 1000 parameter sets of cc f , α, β, and γ, we calculate the mean of the

IER at each PM2.5 concentration as a central estimate, with the uncertainty

range defined by the 5th and 95th percentiles.

The IER curves are generally non-linear, with reduced sensitivity to changes
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in PM2.5 at higher exposure distributions, particularly for cardiovascular dis-

eases (IHD and CEV) (Figure A.5). Age-specific RRs are also fitted for car-

diovascular diseases as risk factors for these diseases decline with age (Singh

et al., 2013; Burnett et al., 2014).

We calculate attributable mortality due to long-term ambient PM2.5 exposure

at the country-level following similar methods to the GBD CRA. For a given

year, country and sex, total attributable mortality (MortPM2.5) can be calcu-

lated by multiplying the population attributable fraction (PAF), representing

the country-level proportional reduction in population mortality that would

occur if PM2.5 exposures were reduced to the TMREL, with the total age-

cause-specific background disease mortality Mortbackgroundage :

MortPM2.5 =

[
PAF =

Pf age(RRage − 1)
Pf age(RRage)

]
×Mortbackgroundage

where RRage is the all-age or age-specific IER estimate derived from a annual

mean population-weighted PM2.5 concentration in a given country, and Pf age

is the fraction of the population age-group of interest. To estimate the con-

tribution of mortality due to residential emissions, we estimate attributable

mortality and averted mortality due to the removal of residential emissions

as described in Section A.4.

Calculating attributable mortality for the period 2015 to 2050 requires fore-

casts on background disease and demographic characteristics. Following

previous studies (Silva et al., 2016; Silva et al., 2017; West et al., 2013), we

use forecast data in 2050 from the International Futures (IFs) socioeconomic

modelling system (Hughes et al., 2011) described in Section A.5.

Understanding future changes in total attributable mortality requires knowl-

edge of the contribution from four different factors: PM2.5 exposure, pop-

ulation growth, population ageing, and rates in background disease mor-

tality. As these factors change over time, so does their contribution to the
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change in total attributable mortality. To examine factor change contribu-

tions to changes in attributable mortality between 2015 and 2050 (reference),

we use a decomposition analysis described in Cohen et al., 2017, where the

difference between factors incrementally is used as a measure of their contri-

bution.

5.3 Results and Discussion

5.3.1 Impacts in the future reference scenario

Figure 5.4 shows the change in annual mean surface PM2.5 concentrations in

2050 under reference scenario, relative to 2015 present-day. Large changes in

PM2.5 concentrations are simulated across regions, which is result of anthro-

pogenic emission changes alone consistent with present-day natural emis-

sions and meteorology. Distinct reductions in PM2.5 concentrations are simu-

lated across North America, Europe, and East Asia, with increases in concen-

trations simulated across Sub-Saharan Africa, North Africa and the Middle

East, South Asia, and Southeast Asia.
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FIGURE 5.4: Absolute (left) and percentage (right) change in annual
mean surface PM2.5 concentrations in the 2050 reference scenario, rel-

ative to the present-day 2015.

Figure 5.5 shows annual mean population-weighted PM2.5 concentrations
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across different regions in 2015 and in the 2050 reference scenario, includ-

ing fractional contributions from residential emissions and fractions of pop-

ulations exposed to WHO annual standards (see also Table A.1). Relative to

2015, global mean population-weighted PM2.5 concentrations increased by

12.3% in the 2050 reference scenario, exposing nearly half of the global popu-

lation to levels above the WHO annual interim target 1 (IT-1) of 35 µg m-3 or

exposing 90% to levels above the WHO annual air quality guidelines (AQG)

of 10 µg m-3. Global increase in mean population-weighted PM2.5 concentra-

tions are largely driven by the substantial increases across populated South

Asia (39.7%), despite reductions across North America (13.6%), Western and

Central Europe (13% and 18.5%, respectively), and East Asia (18.7%). Small

to modest increases in mean population-weighted PM2.5 concentrations were

also simulated in many other regions, notably across Central Asia (9.5%) and

Southeast Asia (15.5%), with smaller increases estimated across North Africa

and Middle East (4%) and regions of Sub-Saharan Africa.

The considerable increases in the PM2.5 concentrations simulated across South

Asia were dominated by sulfate PM (not shown), largely due to increases in

SO2 emissions associated with growth in the power generation and indus-

trial sectors. In the 2050 reference scenario, 91.3% of South Asian popula-

tion are exposed to ambient PM2.5 levels above the WHO IT-1 standard, the

largest population exposure fraction of any region. Despite a 10 µg m-3 re-

duction in mean population-weighted PM2.5 concentrations in the 2050 ref-

erence scenario, relative to 2015, 79.3% of the population across East Asia are

also exposed to unhealthy levels above the WHO IT-1 standard, presenting

the second largest population exposure fraction of any region. In contrast,

high-income regions have the lowest population exposure fractions to WHO

standards in 2050, with typically less than half of their populations exposed

to above the AQG and virtually zero exposed to above the IT-1.

Reflecting both changes in residential emissions and other anthropogenic
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PM2.5 concentrations due to residential combustion emissions (left
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of the population in each region exposed to PM2.5 concentration lev-
els above the WHO annual mean standards including the air quality
guideline (AQG) (10 µg m-3) and interim target 1 (IT-1) (35 µg m-3)

(right axis).

emission sources, the absolute and relative contribution of residential emis-

sions to PM2.5 concentrations also changed regionally in 2050 under the refer-

ence scenario (see Figure 5.5 and Figure A.8). Globally, absolute and relative

residential contribution to mean population-weighted PM2.5 concentrations

decreased from 8.5 µ g m-3 to 6.5 µ g m-3 and 23% to 16% respectively from

2015 to 2050. Absolute and relative contributions also decreased in many

other regions, such as in East Asia, where controls on residential sources

largely contributed to a 63.6% absolute and 18.6 percentage point relative

reduction in residential contribution. In contrast, residential contribution to

PM2.5 concentrations increased across South Asia and Sub-Saharan Africa,

where modest increases in residential emissions led to absolute and relative

increases in Sub-Saharan Africa, but only absolute increases in South Asia,

due to growth in other anthropogenic emissions (see also Figure A.8).
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averted mortality due to the removal of residential emissions (sub-
traction method) (see Section A.4). Note that the left axis is used for
global, East Asia and South Asia, while the right axis is for all other

regions.

Figure 5.6 shows total mortality attributable to long-term ambient PM2.5 ex-

posure in 2015 and the 2050 reference scenario, including mortality due to

residential emissions. Globally, mortality is estimated to increase by 72.8%

to 7.1 [3.9-10.7] million deaths in 2050, with East Asia and South Asia con-

tributing 63% (up 4.8 percentage points), representing 2 [1.1-3.0] and 2.4 [1.5-

3.4] million deaths, respectively. Mortality is estimated to increase in most

regions in 2050, even in regions where PM2.5 concentrations have declined,

such as across East Asia. In such cases, we find that while changes in PM2.5

exposure contribute to changes in mortality, demographic transitions of pop-

ulation growth and ageing dominate the magnitude in the overall mortality

change among regions (Figure A.9), which is consistent with previous studies

(Cohen et al., 2017; Wang et al., 2017; Butt et al., 2017; GBD MAPS Working

Group, 2016; GBD MAPS Working Group, 2018). For example, 2050 mortal-

ity increases across East Asia are driven exclusively by population ageing,
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despite declining PM2.5, total population, and background disease. Simi-

larly, population growth and ageing increased mortality across high-income

North America despite declining PM2.5 concentrations. We find that popula-

tion ageing tends to be more important in high and middle-income regions,

whereas population growth is more important among low-income regions

(e.g., Sub-Saharan Africa) as a result of high birth and death rates (Figure

A.9).
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FIGURE 5.7: Attributable mortality rates (deaths per 105) due to long-
term ambient PM2.5 exposure in 2015 and 2050. Bars show per capita
(e.g., crude) mortality rates while squares show age-standardised
mortality rates. Horizontal lines in bars represent mortality at-
tributable to residential emissions (attribution method), while small
circles in bars represent averted mortality due to the removal residen-

tial emissions (subtraction method) (see Section A.4).

Unlike changes in total mortality, attributable per capita (e.g., crude) mortal-

ity rates (deaths per 105) adjust for population size, while age-standardised

mortality rates also adjust for age profiles allowing comparisons across re-

gions with different population structures (Figure 5.7). Relative to 2015, global

attributable per capita and age-standardised mortality rates increase and de-

crease respectively in 2050. Global and regional declines in age-standardised

mortality rates reflect declines in background disease rates (Figure A.6), with
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the highest attributable rates found across regions with appreciably high am-

bient PM2.5 and high background disease rates (e.g., Sub-Saharan Africa and

South Asia) (Figure 5.7). In contrast, global per capita rates increase by 31.6%

in 2050, and largely dominated by changes in background COPD mortality,

whereas declines in background LRI dominated attributable per capita mor-

tality rate reductions across Sub-Saharan African regions (Figure A.10).

The contribution of mortality from residential emissions are also shown in

Figures 5.6 and 5.7. Globally, mortality attributable to residential emissions

increase in the 2050 reference scenario by 20% to 1.1 [0.6-1.7] million deaths

and 7 [3.9-10.6] age-standardised death per 105 (attribution method), relative

to 2015. Similarly, averted mortality from the complete removal of residen-

tial emissions increases in 2050 by 11% to 0.49 [0.4-0.6] million deaths and

3 [2.5-3.6] age-standardised deaths per 105 (subtraction method), relative to

emission removal in 2015. Attributable residential mortality is estimated be

greater than the mortality averted from residential emission removal in 2050,

simply because of non-linear IER effects influencing their methods of estima-

tion (Section A.4).

Assuming residential attributable mortality (attribution method, as recom-

mended by the GBD in the context of the policy making community), sizeable

residential mortalities are located across regions with appreciatively large at-

tributable mortality in 2050, such in South Asia (0.5 [0.3-0.7] million deaths

and 16.1 [10-23] age-standardised deaths per 105) and East Asia (0.3 [0.2-0.5]

million deaths and 7.1 [4-10.5] age-standardised deaths per 105). Relative to

2015, residential attributable mortality increased across South Asia by 59%

in 2050, owing to increasing residential emissions and large mortality bur-

dens. In contrast, East Asia saw an estimated 25.2% decline in residential at-

tributable mortality, a result of policies targeting residential emission sources.

Despite lower mortality compared to Asian regions, residential attributable

mortality increased across Sub-Saharan African regions in 2050, with residen-

tial age-standardised mortality rates comparable to those in Asian regions
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(e.g., 10.3 [5.4-15.8] deaths per 105 in Eastern Sub-Saharan Africa).

5.3.2 Benefits of the clean residential scenario

Figure 5.8 shows the estimated change in annual mean PM2.5 concentrations

in 2050 under the clean residential scenario, where relative to the 2050 refer-

ence scenario, mean PM2.5 concentrations decrease in all regions. Notable re-

ductions in PM2.5 concentrations of up to 35% are estimated across populated

regions of South Asia and Sub-Saharan Africa where combustion of residen-

tial biomass solid fuels for cooking is common. However, if concentrations in

the clean residential scenario are compared relative to the present-day 2015,

increases of up to 40% are estimated across South Asia, despite reductions

across most regions (Figure A.11). For South Asia, this suggests that the con-

siderable growth in other anthropogenic emissions in the 2050 reference sce-

nario may limit the potential of residential emission control technologies to

deliver reductions in PM2.5 concentrations from present-day levels.
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FIGURE 5.8: Absolute (left) and percentage (right) change in annual
mean surface PM2.5 concentrations in 2050 under the clean residential

scenario relative to the 2050 reference scenario.

Figure 5.9 shows the avoided population-weighted PM2.5 concentration due

to the clean residential scenario in 2050, including as a proportion of the

maximum possible avoided in the MTFR scenario. Relative to the refer-

ence scenario, the clean residential scenario reduces global mean population-

weighted PM2.5 concentrations by 11.9% and avoids 4.9 µg m-3, accounting

for 26.7% of the maximum avoided under the MTFR scenario (18.3 µg m-3).
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The largest avoidable concentrations are estimated across South Asia where

12.6 µg m-3 of mean population-weighted PM2.5 are avoided, representing

24.8% of the maximum avoided in the MTFR (50.9 µg m-3 avoided). Moder-

ately large avoidable concentrations from the clean residential scenario are

also estimated across East Asia (4.3 µg m-3 and 23.3% of MTFR) and re-

gions of Sub-Saharan Africa. Relative to the MTFR scenario, Sub-Saharan

African regions are estimated to gain the most from clean residential com-

bustion technologies, where moderately large avoidable concentrations (e.g.,

5.6 and 4.2 µg m-3 in Eastern and Central Sub-Saharan Africa, respectively)

typically represent 50% to 70% of the maximum avoidable concentrations in

the MTFR. Despite lower avoidable concentrations, technology measures un-

der the clean residential scenario also account for up to one third of the max-

imum avoidable concentrations in the MTFR across Central Europe (33.8%),

Andean (35.5%) and Central (32%) Latin America.

The near-term PM2.5 air quality benefits from technological controls in the

clean residential scenario, particularly across Sub-Saharan Africa, highlights

the potential interim role for technologies such as cookstoves to improve

ambient air quality. Potential for improved heating stoves and boiler tech-

nologies across regions such as Europe are also highlighted. However, while

these benefits may be considerable, perhaps larger than any one anthropogenic

emission sector in terms of mitigation potential, larger avoidable PM2.5 con-

centrations in the MTFR scenario (maximum reduction) across regions, high-

lights the priority for reducing all anthropogenic emissions collectively by

2050.

The clean residential scenario also reduces the global contribution of resi-

dential mean population-weighted PM2.5 in 2050 by 11.4 percentage points

to 4.5% (1.7 µg m-3), but also reduces the fraction of the global population

exposed to PM2.5 levels above the WHO IT-1 (35 µg m-3) (see Figure A.12).

However, in some regions (e.g., South Asia, North Africa and Middle East,

and Sub-Saharan Africa), fractional exposure to levels above the WHO AQG
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(10 µg m-3) remain at or very near 100%, under either the clean residential or

MTFR scenarios (Figure A.12). In such cases, relatively high levels of PM2.5

persist due to the failure of clean combustion technologies to eliminate all

PM emissions in the face of rapid energy demand and population growth

(e.g., South Asia), as well as due to contributions from natural sources, such

as mineral dust (e.g., North Africa and Middle East) and wildfires (e.g., parts

of Sub-Saharan Africa).
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FIGURE 5.9: Avoided population-weighted PM2.5 concentrations in
2050 due to the clean residential scenario and maximum feasible re-
duction (MTFR) scenario (bars, left axis), and change (reduction) in
population-weighted PM2.5 concentrations in 2050 due to both sce-
narios, relative to the reference scenario (right axis) a. Also shown
is the maximum avoidable population-weighted PM2.5 concentration
potential due to the clean residential scenario (i.e., clean residential

avoided / MTFR avoided) (a (left axis) and b).

Figure 5.10 shows the avoided mortality as a result of the clean residen-

tial scenario in 2050, including as a proportion of the maximum possible

avoided in the MTFR scenario. Relative to the reference scenario, the clean

residential scenario reduces global mortality by 5% and avoids 0.34 [0.28-0.4]

million deaths, accounting for 19.4% of the maximum avoided mortality in



134
Chapter 5. Near-term global and regional air quality and health benefits in 2050

due to widespread adoption of clean residential combustion technologies

the MTFR (1.8 [1.4-2.1] million deaths avoided). This suggests that nearly

20% of global maximum avoided PM2.5 mortality can be achieved by 2050

through the widespread use of clean residential combustion technologies

alone. However, despite lower PM2.5 concentrations, global attributable mor-

tality in 2050 under either the clean residential (6.7 [3.6-10.3] million deaths)

or MTFR (5.3 [2.5-8.6] million deaths) scenarios are larger than what is esti-

mated in the present-day 2015 (4.1 [2.3-6.2] million deaths), as is the case for

most regions (Figure A.13). This is largely because of demographic transi-

tions of population growth and ageing in 2050. In fact, we find that PM2.5

concentrations would have to be reduced to levels at or below 15 µg m-3

(IT-3) across all regions before global attributable mortality levels in 2050 ap-

proached that of levels in 2015 (not shown).
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due to the clean residential scenario (i.e., clean residential avoided /

MTFR avoided) (a (left axis) and b).
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The greatest numbers of avoidable mortalities as a result of the clean resi-

dential scenario are estimated across regions with appreciably large mortal-

ity burdens in the reference scenario, such as across South Asia (0.15 [0.1-0.2]

million deaths, 17.5% of avoided in MTFR) and East Asia (0.1 [0.07-0.11] mil-

lion deaths), both of which contribute to 17.5% and 19% of that avoided in the

MTFR, respectively. Both of these regions contribute 72% to the total global

mortality avoided in the clean residential scenario. Removing the influence

of total population, we find that clean residential scenario avoids 3.5 [2.9-

5.2] per capita deaths per 105 globally, with reasonably sizeable avoidable

per capita mortality rates estimated across Asian, Central and Eastern Euro-

pean and Sub-Saharan African regions (Figure A.14). For age standardised

deaths rates (deaths per 105), the clean residential scenario avoids 2.1 [1.8-2.5]

deaths globally, with sizeable deaths rates generally limited to South Asian

(4.8 [4.1-5.9] deaths) and Sub-Saharan African regions (e.g., 3.7 [3.2-4] deaths

in Eastern Sub-Saharan Africa) (Figure A.14).

Similar to avoidable PM2.5 concentrations reported in Figure 5.9, Sub-Saharan

African regions are estimated to gain the most from clean residential com-

bustion technologies, where sizeable avoided mortalities (e.g., 21,000 [18,000-

22,000] deaths avoided in Eastern Sub-Saharan Africa) represent greater than

half the maximum avoidable mortalities in the MTFR (e.g., 69%, 60% and 57%

in Central, Western and Eastern Sub-Saharan Africa regions) (Figure 5.10 and

Figure A.14). Similarly, avoided mortalities in the clean residential scenario

contribute a sizeable proportion of MTFR avoided across Central and West-

ern European regions (29.5% (3000 [2500-4000] deaths avoided) and 20.3%

(4000 [3000-5000] deaths avoided), respectively), and Andean and Central

Latin American regions (32% (600 [500-700] death avoided) and 27.4% (3000

[2000-3400] deaths avoided), respectively), also highlighting the potential

near-term public health benefits from clean residential combustion technolo-

gies in these regions. However, as for PM2.5 concentrations, the considerably

large avoided mortalities in the MTFR scenario, particularly across South and
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East Asia, also highlights a priority for reducing all anthropogenic emissions

collectively.

We find that, mortality averted from the removal of residential emissions in

2050 under the reference scenario (e.g., 0.49 [0.4-0.6] million deaths using the

subtraction method) is greater than mortality avoided from the clean resi-

dential scenario (e.g., 0.34 [0.28-0.4] million deaths). This is because not all

residential emissions are removed in the clean residential scenario, highlight-

ing the limitation of clean residential combustion technologies to remove all

residential emissions (Figure A.13). However, reduced residential emissions

substantially reduces residential mortality in the clean residential scenario

(73% for attributable and 70.3% for averted mortality) relative to the refer-

ence scenario. That being said, residential mortality slightly increases un-

der the MTFR scenario relative to the clean residential scenario, due to the

larger relative contribution of residential emissions to PM2.5 concentrations

and non-linear IER effects at lower PM2.5 concentrations in the MTFR sce-

nario (Figure A.13).

5.3.3 Comparison to previous work

Our global estimate of attributable mortality due to ambient PM2.5 in the

present-day 2015 is very close to the 4.1 million deaths estimated by recent

GBD studies (Gakidou et al., 2017; Cohen et al., 2017), with similar regional

estimates. This places confidence in our mortality estimates by which to com-

pare our scenarios in 2050. Our estimated PM2.5 attributable to residential

emissions in the present-day (attribution method) is also similar to that re-

ported by Lelieveld et al., 2015 at 1 million deaths in 2010. However, our

global averted mortality due to the removal of residential emissions (0.44

million deaths, subtraction method) is larger than that estimated by Butt et
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al., 2016 (0.31 million deaths), which is likely a result of a different exposure-

response relationship used in that study. Comparing to studies reporting at-

tributable residential mortality using the IER, our present-day estimates for

China (0.39 million deaths) are similar to Archer-Nicholls et al., 2016 (0.31

million deaths), but are mixed for India (0.27 million deaths) being lower

compared to Conibear et al., 2018a (0.51 million deaths) but similar to GBD

MAPS Working Group, 2018 (0.27 million deaths). These three studies use

much higher spatial resolution models, suggesting that our model (with ad-

ditional scaling) is broadly able to simulated relatively similar population ex-

posure distributions from residential combustion. For high-income regions,

such as Europe and North America, we find that our present-day residential

attributable mortality of 58,000 and 6,000 deaths respectively, are similar to

those estimated by Chafe et al., 2015 (61,000 and 10,000 deaths respectively),

which were largely reported to be attributable to residential space heating

emissions.

Comparing our estimated attributable mortalities in 2050 in the context of

the reference scenario is difficult given the different assumptions controlling

future emission scenarios used across studies. We used a ’semi’ business-as-

usual 2050 reference scenario in which current and planned environmental

policies are assumed. Using the same reference scenario, Stohl et al., 2015

estimated global mortality to increase by 335% to 3.7 million deaths by 2050

(relative to present-day), which is much larger than the increase predicted

here, but with a much lower overall mortality estimate. We attribute this dif-

ference to the use of a different exposure-response relationship. In that same

study, Stohl et al., 2015 also used the same MTFR scenario and estimated 0.7

million avoided deaths in 2050 (relative to 2050 reference), lower to what we

found (1.8 million deaths avoided), again attributed largely to the different

exposure-response relationship used.

The authors are aware of only one other study that has examined ambient

air quality mortality due to residential emission controls by 2050. In that



138
Chapter 5. Near-term global and regional air quality and health benefits in 2050

due to widespread adoption of clean residential combustion technologies

study, Lacey et al., 2017b reported 0.26 million deaths avoided in 2050 from

to a linear elimination of cookstove emissions. This estimate is similar to

the avoided mortality estimated reported from our clean residential scenario

(0.34 [0.28-0.4] million deaths avoided), despite the differences between the

scenarios (e.g., emission removal versus emission control through technol-

ogy used here).

5.3.4 Implications for policy

Our findings suggest that global total mortality attributable to ambient PM2.5

will be greater in 2050 compared to present-day 2015 levels, even when am-

bient PM2.5 concentrations are reduced below present-day levels. Demo-

graphic transitions in 2050, and to some extent non-linear exposure-response

(IER) relationships, are the main reason for this. This suggests that policy

makers implementing air quality management strategies, particularly across

many low and middle-come countries, will need to substantially reduce lev-

els of ambient PM2.5.

Examining avoidable mortality burdens (relative to the reference) provides

important insights on how improvements in air quality through near-term

emission controls can reduce attributable health burdens in 2050. In general,

our analysis shows that the very considerable maximum anthropogenic am-

bient air quality and public health benefits in the MTFR scenario highlights

the regional priority for reducing anthropogenic emissions collectively be-

tween now and 2050. However, targeting residential emissions alone through

the implementation of clean combustion technologies (e.g., clean cooking

and heating stoves) under the clean residential scenario can provide size-

able near-term air quality and public health benefits, contributing nearly 20%

of maximum preventable attributable mortality in 2050 globally, as well as

across polluted regions of South Asia (e.g., India) and East Asia (e.g., China).
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This is especially true among regions where residential combustion emis-

sions are an important component of anthropogenic PM2.5 concentrations,

such those across low and middle-income regions. In these regions, partic-

ularly across Sub-Saharan Africa, the widespread adoption of clean cook-

stove technologies provides up to half to two thirds of the maximum anthro-

pogenic ambient air quality and attributable health burden benefits. In these

regions, implementation of such technologies (or alternative clean fuels) can

also be considered alongside the additional, presumably substantial, pub-

lic health benefits associated with alleviating HAP, due to interconnection of

residential combustion emissions on ambient and household environments.

This suggests that mitigation efforts of ambient and household air pollution,

in such regions, should be closely linked. However, since many middle and

low-income regions do not have established ambient air quality management

strategies (Giannadaki, Lelieveld, and Pozzer, 2016), we hope our findings

can be used as a first step to help guide new policy.

Our findings also highlight air quality and health benefits across some high

to middle-income regions in the clean residential scenario. In these regions,

such as in Europe and high-income Latin America, penetration of pellet heat-

ing stoves potentially offsets emissions from low performing wood burning

stoves or open fires, contributing up to one-third of the maximum anthro-

pogenic avoidable benefits in some regions. While emissions from, and con-

sumption of, solid fuels for space heating is generally predicted to decline

across such regions by 2050, its contribution to poor winter time air qual-

ity, for example across Europe, has been highlighted recently. This has been

blamed on a number of reasons, including climate change policies favouring

’renewable’ biomass over fossil-fuels, rising fossil-fuel prices, recreational

popularity, and lack of enforcement across smoke control areas (Ots et al.,

2017; Denier Van Der Gon et al., 2015; Fuller et al., 2013; Chafe et al., 2015;

Mitchell et al., 2017). Inaction across these regions may potentially lead to

persistent or increasing air quality issues from this emission source in the
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near-term. We hope our findings can help guide policy regarding the bene-

fits of space heating emission controls.

We caution the widespread adoption of clean residential combustion tech-

nologies using solid fuels (e.g., as is the case in the clean residential sce-

nario) only in situations where they are used to partly offset substantial PM

emissions associated with combustion of traditional solid fuels, and where

it is not possible to use alternative cleaner residential fuels (e.g., gas and

electricity). As shown from the greater avoidable health burden from the

removal of residential emissions in 2050 (0.49 [0.4-0.6] million deaths, sub-

traction method), compared to the clean residential scenario (0.34 [0.28-0.4]

million deaths), removal of emissions through, for example the use of alter-

native clean fuels would provide larger public health benefits. Similarly, it is

important that decision makers be made aware of potential undesirable con-

sequences related to residential energy, especially when considering climate

change mitigation co-benefits. For example, climate policy favouring a shift

from light fossil fuels (e.g., gas) to ’carbon-neutral’ biomass (wood) for space

heating may worsen PM air pollution (e.g. Haluza et al., 2012). Alternatively,

a climate compatible development agenda favouring clean cookstoves burn-

ing ’carbon-neutral’ biomass solid fuel may offset air quality improvements

(both ambient and HAP) from the use of light fossil-fuel alternative fuels

(e.g., LPG) if they are available (Goldemberg et al., 2018; Smith and Sagar,

2014).

Other policy relevant conclusions can be drawn from our analysis. For exam-

ple, we find that large population fractions exposed to ambient PM2.5 levels

above WHO AQG and IT-3 standards under both the clean residential and

MTFR scenarios persist across some regions (e.g., Sub-Saharan Africa). The

contribution of wildfires may be partly responsible for this, suggesting that

reductions in open burning will likely complement air quality and health

improvements, as has been shown previously (e.g. Reddington et al., 2015).
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5.3.5 Additional uncertainties and sensitivities

There are many limitations and sources of uncertainties that are beyond the

scope of this study to address in full. Common sources of uncertainty regard-

ing low model bias in simulated PM2.5 include missing or underrepresented

model processes (e.g., deposition rates), missing PM components (e.g. ni-

trite and anthropogenic SOA), relatively coarse spatial resolution, as well as

uncertainties in emissions inventories.

Nitrate is an important aerosol component that is missing in the model, which

may be partly contribute to the overall low model bias. Low model bias could

also be partly explained by the fact that TOMCAT also does not account

for SOA formation from anthropogenic sources, which could be important

for residential combustion as this source includes significant SOA precursor

VOCs (Bruns et al., 2016; Ciarelli et al., 2017). Computational constraints

of multi-year, multi-scenario global simulations also limit us to a relatively

coarse model spatial resolution. We report health impacts from nation-level

population-weighted PM2.5 concentrations calculated at the original model

resolution of 2.8◦ × 2.8◦, with additional national scaling using the satellite-

derived DIMAQ averaged to 2.8◦ × 2.8◦ (see Section A.3). However, noting

the uncertainty in PM2.5 exposure distribution at coarse spatial resolutions

of a global model, we conducted a sensitivity where the satellite-derived DI-

MAQ was used to downscale TOMCAT simulated PM2.5 from 2.8◦ × 2.8◦ to

0.1◦ × 0.1◦ following a widely used approach (Lacey et al., 2017b; Chowd-

hury, Dey, and Smith, 2018; GBD MAPS Working Group, 2016; GBD MAPS

Working Group, 2018; Archer-Nicholls et al., 2016; Weagle et al., 2018) (see

Section A.3). We found that while mean population-weighted PM2.5 concen-

trations were greater across some regions under the higher resolution down-

scaled concentrations (e.g., South Asia), due to averaging effects in the coarse

resolution concentrations, these same effects also slightly increased concen-

trations across some regions as a result of concentration redistribution to
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more populated areas in the coarse resolution concentrations estimates (Fig-

ure A.15). In any case, differences in mean population-weighted PM2.5 con-

centrations between resolutions differ by only up to 20%, with a small overall

difference in calculated global mortality of a only a few percent (not shown).

As a result, we conclude that while the downscaling approach may repro-

duce a slightly better representation of exposure distributions, our estimated

exposure distributions at the original global model resolution (with addi-

tional national scaling) does not lead to very large differences in estimated

mortality, and thus does not change the overall study conclusions.

Understanding how changes in PM2.5 concentrations will unfold in the con-

text of a future 2050 reference scenario is uncertain. We used a reference sce-

nario employing energy projections based under the assumption that pollu-

tants are limited by the full implementation and enforcement of current and

planned national environmental legislations to 2050. While this scenario can

be interpreted as a business-as-usual scenario, it may in fact, be optimistic

given that it does not assume failure or delays in planned enforcement (Stohl

et al., 2015). However, we note that future anthropogenic emission changes

will be a result of complex interactions across different variables, including

socio-economic development, technological change, improved efficiency, en-

vironment and health policies directed at pollution control (e.g. Rao et al.,

2017). Thus, the reference scenario used here, is one on many possible emis-

sion pathways.

Climate change can also affect future changes in PM2.5 concentrations through

numerous pathways, such as changes in meteorology (e.g. precipitation,

stagnation events, ventilation, dilution, humidity, clouds etc.), temperature,

and natural emissions (Von Schneidemesser et al., 2015; Fiore, Naik, and

Leibensperger, 2015; Jacob and Winner, 2009), all of which are not accounted

for under our 2050 scenarios. However, while there is general agreement

among climate models for an increase in ambient PM2.5 by 2050 as a result

of climate change (Silva et al., 2017; Allen, Landuyt, and Rumbold, 2016),



5.3. Results and Discussion 143

changes in concentrations will most likely be dominated by future changes

in anthropogenic emissions (e.g. West et al., 2013). Changes in natural emis-

sions as a result of climate change, including of that of wildfire emissions (e.g.

Spracklen et al., 2009), are also not accounted for under our 2050 scenarios.

Specific uncertainties related to the 2050 clean residential scenario, include

the use of emissions factors (e.g., for clean cookstoves) based on a mixture

of laboratory and field measurements. However, laboratory emission fac-

tors are often lower than reported in field studies (Wathore, Mortimer, and

Grieshop, 2017; Roden et al., 2009; Sambandam et al., 2015; Lozier et al., 2016;

Aung et al., 2016; Grieshop et al., 2017), suggesting that emission reductions

estimated in this scenario may be an upper limit in some cases. Additionally,

the clean residential scenario is based on the assumption that clean combus-

tion technologies are widely implemented, adopted and completely displace

traditional combustion of solid fuels. However, evidence from cookstove

intervention studies conducted across low income countries, report mod-

est adoption and user rates, as well as ’stove stacking’, where intervention

clean stoves fail to replace traditional stoves, potentially offsetting air qual-

ity and health benefits (Clark et al., 2017; Pillarisetti et al., 2014; Lozier et

al., 2016). These undesirable outcomes are caused by interaction of multi-

ple implementation barriers, including the failure of intervention stoves to

meet user needs and preferences, supply chain distribution challenges, lack

of monitoring, training and maintenance, and financial constraints (Rehfuess

et al., 2014; Lewis and Pattanayak, 2012), all of which are not accounted for

under our residential scenario. Thus, our estimated near-term benefits in the

clean residential scenario represent a best case scenario, where solutions to

critical implementation barriers are in place.

Additionally, we report PM2.5 and mortality impacts at the national level but

cannot account for transboundary contributions from non-national sources.

Such information is important for national or sub-national authorities to help
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implement sound air quality management strategies. As a result, our anal-

ysis could be greatly improved under a receptor or adjoint modelling ap-

proach (Lacey et al., 2017b; Lee et al., 2015).

We note uncertainties in the shape of the IER, and whether it is appropri-

ate to apply such functions to all global populations under an additional

assumption of treating all PM2.5 components as equally toxic, regardless of

composition and source. We use the IER because of its extensive use over

the past few years, by which to compare to other studies. A leading assump-

tion underpinning the IER is the use of disease risks from other combustion

sources (e.g., active and passive tobacco smoking) to partly determine the

shape of the exposure-response relationship at high PM2.5 exposure distri-

butions, a direct consequence of the limited number of ambient air pollu-

tion cohort studies in polluted regions. However, using a newly available

exposure-response relationship based entirely on ambient air pollution co-

hort studies, including evidence from a cohort across polluted areas of China

(Burnett et al., 2018), we find that mortality burdens are increased quite sub-

stantially (see Section A.6 and Figure A.15). For example, under this alterna-

tive relationship, global attributable mortality in 2015 and the 2050 reference

scenario are nearly 100% greater than reported here using the IER (7.9 [6.6-

9.2] and 15.4 [12.8-17.8] million deaths, respectively), with the clean residen-

tial scenario avoiding 0.52 million more deaths in 2050 (0.86 [0.73-1] million

deaths avoided). This highlights large sensitivity to the use of different re-

lationships. However, while the health burden estimates are greater using

this alternative relationship, they do not change the overall message of our

findings using the IER, but instead highlight the uncertainty and fast pace of

scientific understanding regarding the shape of the exposure-response from

ambient PM2.5 exposure.
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5.4 Conclusions

We used the TOMCAT global chemistry-transport model coupled to an aerosol

model to examine near-term changes in ambient PM2.5 concentrations and

associated health burden impacts by 2050. We found that simulated PM2.5

concentrations typically underestimated measurements at surface locations

in the present-day 2015, particularly across China and India. However, this

low model bias was reduced after scaling concentrations using a separate

satellite-derived PM2.5 dataset.

Under a 2050 reference scenario employing energy projections based under

the assumption that pollutants are limited by the full implementation and

enforcement of current and planned environmental legislations, we found

that global annual mean population-weighted PM2.5 concentrations would

increase by 12.3% in 2050, driven largely be increases across South Asia and

Sub-Saharan Africa, despite reductions across East Asia, Europe and North

America. Additionally, we found that while the relative contribution of resi-

dential emissions to global mean population-weighted PM2.5 concentrations

decreased in 2050 by 7 percentage points, the contribution of residential emis-

sions to population-weighted PM2.5 is still expected to be considerable by

2050 at 16%. Global mortality attributable to ambient PM2.5 exposure is also

predicted to increase by 72.8% to 7.1 [3.9-10.7] million deaths in 2050 under

the reference scenario, a result of regional changes in PM2.5 concentrations,

demographic transitions of population growth and ageing. Demographic

transitions overwhelming contributed to increases in attributable mortality

by 2050 even in regions where ambient PM2.5 concentrations have declined,

such across East Asia. Additionally, we found that global attributable mortal-

ity from residential emissions increased in 2050 by 20% to 1.1 [0.6-1.7] million

deaths, representing 0.49 [0.4-0.6] million deaths averted if residential emis-

sions are removed by 2050.

We examined an alternative scenario in 2050 based on the reference scenario,
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but instead assuming the widespread implementation and adoption of best

available clean combustion technologies in the residential emission sector,

including the use of clean cooking and heating stoves. This clean residen-

tial scenario was then compared to a maximum possible anthropogenic re-

duction scenario, where best available emission control technologies were

installed in all anthropogenic emission sectors by 2050 (maximum techno-

logical feasible reduction, MTFR scenario). By comparing both the clean res-

idential and MTFR scenarios, we identified the relative importance of near-

term clean residential emission controls for improving regional ambient air

quality and associated public healths by 2050.

In general, we found that the very large avoidable ambient PM2.5 and at-

tributable mortality in 2050 under the MTFR scenario (relative to reference)

highlighted the regional priority for reducing all anthropogenic emissions

collectively. However, targeting residential emissions alone through the clean

residential scenario can provide large near-term air quality and public health

benefits, especially in regions where residential emissions are important for

ambient PM2.5 concentrations. Regions of Sub-Saharan Africa are expected

to benefit the most, where half to two thirds of the maximum anthropogenic

avoidable PM2.5 and mortality in the MTFR scenario can be achieved by

clean combustion technology measures under the clean residential scenario

alone. Clean residential combustion technologies are also found to be im-

portant across other regions, including Europe and Latin America, where up

to one third of the avoidable PM2.5 and mortality benefits in the MTFR are

achieved. Globally, the clean residential scenario avoids 0.34 [0.28-0.4] mil-

lion deaths in 2050 (relative to reference), suggesting that nearly 20% of max-

imum global avoidable mortality (e.g., in MTFR) can be achieved through

clean residential combustion technologies. However, exploring new devel-

opments in the PM2.5 health exposure-response relationship, we found that

the global avoidable mortality under the clean residential scenario could be

nearly 100% larger. We hope that our findings can be used to help inform
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ambient clean air quality management strategies, particularly among low-

income regions (e.g., Sub-Saharan Africa) where legislation in this area are

lacking and residential emissions are important.
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Chapter 6

Discussion and Conclusions

The last 50 years have seen considerable regional changes in anthropogenic

emissions. declining emissions across high-income regions due to the im-

plementation of air quality and emission control regulations have coincided

with a large rise in economic-related emissions across parts of Asia. This has

resulted in regional changes in ambient PM2.5 concentrations and associated

public health impacts, the understanding of which is important for future

air quality management strategies. Residential combustion of solid fuels for

heating and cooking also contributes a considerable amount to the global

burden of primary aerosol emissions in the present-day, especially across

many low and middle-income countries. Understanding this source con-

tribution to ambient air quality, and its associated public health impacts is

important for understanding the potential of emission mitigation measures.

Similarly, it is also important to understand the air quality and health po-

tential of emission mitigation measures across the residential sector in the

context of near-term changes in other anthropogenic emissions.

Using a global composition-climate model (CCM) and a global chemistry-

transport model (CTM) coupled (or uncoupled) to a global aerosol model,

this thesis examined the impacts of changing anthropogenic emissions on

ambient air quality and associated health impacts covering the past, present

and future. Additionally, it focused on the role of the residential emission
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sector to understand air quality and health impacts in the present-day and

its potential role for reducing impacts into the near-term future.

The following sections provide a summary of the results found in this thesis

and refer to the aims presented in Chapter 1.

6.1 Chapter 3: Global and regional trends in particulate air

pollution and attributable health burden over the past 50

years

The HadGEM3-UKCA CCM, together with exposure-response relationships,

was used to simulate global and regional changes in ambient PM2.5 concen-

trations and associated health burden impacts over the period 1960 to 2009.

Simulated PM2.5 concentrations were also compared to available long-term

observations and satellite-derived estimates of PM2.5 to evaluate model per-

formance. A summary of the findings from this study in relation to the posed

research questions is reported below:

(a) Can simulated changes in regional PM2.5 concentrations reproduce

long-term observed changes? The model is generally well able to sim-

ulate observed regional changes in annual mean ambient PM2.5 con-

centrations at long-term measurement locations in the United States

(IMPROVE, Interagency Monitoring of Protected Visual Environments)

and Europe (EMEP, European Monitoring and Evaluation Programme).

The baseline model simulated a 20% and 23% reduction in annual mean

ambient PM2.5 concentrations at both IMPROVE (1992 to 2009) and EMEP

(1999 to 2009) locations respectively, which was similar to the observed

25% and 14% reduction, respectively. However, the baseline model con-

sistently underestimated annual mean PM2.5 concentrations across both

IMPROVE (NMBF = -0.54) and EMEP (NMBF = -1.2) locations. Scaling

the baseline model to the median distribution of a perturbed parameter
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ensemble (PPE) improved the comparison at IMPROVE (NMBF = 0.11)

and EMEP (NMBF = -0.47) locations, with the PPE 5th and 95th per-

centile incremented baseline range bracketing the observations. Com-

paring annual mean population-weighted PM2.5 concentrations from

the baseline (plus median PPE) to satellite-derived PM2.5 estimates over

the period 1990 to 2009, showed that the model was broadly able to sim-

ulate changes across the US and Europe, but with smaller changes simu-

lated at the global level and across polluted regions of China and India.

However, the baseline (plus median PPE) underestimated the magni-

tude in satellite-derived population-weighted PM2.5 concentrations in

all regions, with the PPE 5th and 95th percentile incremented baseline

range bracketing the satellite-derived estimates.

(b) What are main sources of uncertainty in the model that are influenc-

ing the comparison to long-term measurements? There are a num-

ber of possible reasons for the low observed bias in the baseline model.

These included complex interaction of uncertain model processes, miss-

ing aerosol components (e.g., nitrite and anthropogenic SOA), and un-

certainties in the mass flux in emission inventories, and water content.

Attribution of individual uncertain model parameters to the variance in

the PPE identified the contribution of key uncertain parameters in the

model. These included large uncertainties associated with dry deposi-

tion of accumulation mode particles in all regions, and the mass flux

of residential combustion carbonaceous emissions, particularly across

Asian regions. The relatively coarse spatial resolution of the model was

also examined as a possible large contributor to the low model bias.

However, averaging the satellite-derived PM2.5 estimates (assumed to

be ’semi-observational’) to the same spatial resolution of the model, re-

sulted in less than expected reductions in regional population-weighted

PM2.5 concentrations, suggesting that other uncertain or missing pro-

cesses (described above) may be playing dominant roles.
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(c) How have global and regional simulated PM2.5 concentrations changed

over the period 1960 to 2009? Over the period 1960 to 2009, the model

predicted that global population-weighted PM2.5 concentrations increased

by 37.5%. This global increase was dominated by the regional increase

across China (52.7%) and India (69.8%), despite declines in concentra-

tions across the US (55.3%) and European Union (EU) (38%). Growth in

ambient population-weighted PM2.5 concentrations across China and

India were found to be a result of anthropogenic emission rises related

to economic growth at the expense of environmental and public health

degradation, whereas the implementation of air quality regulation and

emission controls resulted in an overall reduction in population-weighted

PM2.5 concentrations across the US and EU.

(d) How has the global and regional burden of disease attributable to

long-term exposure to ambient PM2.5 changed over the period 1960

to 2009? Using integrated exposure-response (IER) relationships, global

deaths attributable to long-term ambient PM2.5 exposure increased by

89% to 124% over the period 1960 to 2009, suggesting that the global

attributable burden of disease is now larger in the present-day than at

any other point since 1960. This global mortality increase was found to

be dominated by large increases across China (194.5 to 238%) and India

(166.7% to 194%), despite declines across the US (47.9% to 58.9%) and

EU (65.7% to 71.9%). In contrast, global attributable per capita mortal-

ity rates (deaths per 105) decrease slightly by about 1% over the same

period, which was due to reduce overall background disease rates and

improved air quality across North American and European regions.

(e) What factors have dominated the contribution to the change in to-

tal PM2.5 mortality over the period 1960 to 2009? Changes in total at-

tributable mortality were found to be a result of changes in contributing

factors. Over the period 1960 to 2006, it was estimated that population
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growth and ageing, and to a lesser extent increasing PM2.5 concentra-

tions, dominated the increases in mortality globally, driven mostly by

changes across China and India. In contrast, regional reductions in am-

bient PM2.5, and to a lesser extent reductions in background disease

rates, were the dominant contributors to reduced mortality across the

US and EU.

(f) How can trends in historical PM2.5 concentrations help inform policy

makers about the impacts of future changes in PM2.5 mortality? The

results from this study highlight the historical benefits of clean air pol-

icy in improving air quality and public health across North America and

Europe. This provides evidence for the benefits of clean air policy which

will be useful for policy makers in polluted low and middle-income

regions. However, given the non-linear exposure-responses in highly

polluted regions together with projected demographic transitions, low

and middle-income countries may need to introduce very stringent am-

bient air pollution standards in order to replicate the declines in total

attributable health burdens seen across high-income regions.

6.2 Chapter 4: The impact of residential combustion emis-

sions on atmospheric aerosol, human health, and climate

The TOMCAT-GLOMAP configuration with prescribed offline oxidants was

used to make an integrated assessment of the impact of residential combus-

tion emissions in the present-day (or near present-day year 2000) on atmo-

spheric aerosol, radiative effect, and human health. The use of exposure-

response relationships and an offline radiative transfer model were used to

estimate the impact of residential-derived aerosol on the radiative effect and

human health, respectively. In order to evaluate the model, simulated aerosol

mass and number concentrations were compared to observations at locations
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where residential combustion was thought to be important. Sensitivity ex-

periments examining the uncertainty in emission mass flux, seasonal emis-

sion variability, carbonaceous composition, and emitted primary carbona-

ceous aerosol size distributions were conducted to test simulated uncertainty

on observational comparison, radiative effect and human health. A summary

of the findings from this study in relation to the posed research questions is

reported below:

(a) Can a global model simulate observed aerosol mass and number con-

centrations at locations where influence of residential combustion on

atmospheric aerosol are thought to be important? The baseline model

simulation was found to underestimate observed black carbon (BC), or-

ganic carbon (OC) and PM2.5 mass concentrations at measurement lo-

cations across South Asia and East Asia, by greater than a factor of 2.

Applying monthly varying emissions in the model did little to improve

the low bias but did improve the simulated to observed seasonal vari-

ability in aerosol mass. The doubling of residential carbonaceous emis-

sions did improve the overall model agreement with observations, but

the low bias in simulated mass still persisted, particularly for organic

aerosol. This low bias was due possibly to uncertainties in emission

inventories and/or treatment of organic aerosol such as missing sec-

ondary organic aerosol (SOA) from anthropogenic sources. In agree-

ment with other studies, the sensitivity simulations indicated that res-

idential emissions may be underestimated in the model. A combina-

tion of uncertainties in model processes, missing aerosol mass from an-

thropogenic SOA and nitrate, relatively coarse model spatial resolution,

and emission inventory uncertainties, were all postulated as potential

contributing factors to low model bias. Observed particle number con-

centrations were generally better predicted by the model compare to
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aerosol mass and were typically within a factor of 2 at the limited num-

ber of locations where observations were available. Simulated parti-

cle number concentrations were estimated to be very sensitive to emit-

ted particle size range of primary residential carbonaceous emissions,

which have a large uncertainty. Emitting residential carbonaceous par-

ticles at the small end of size ranges substantially overestimated the

observed particle number concentrations suggesting that this was an

unrealistic assumption.

(b) What are the global regional contributions of residential combustion

emissions to atmospheric aerosol mass in the near present-day? Res-

idential combustion emissions were estimated to contribute substan-

tially to regional annual mean surface PM2.5 concentrations. The largest

relative contributions (15 to > 40 %) to mean PM2.5 concentrations were

estimated across Eastern Europe (including parts of the Russian Feder-

ation), parts of East Africa, South Asia, and East Asia. In these regions,

the residential emission contribution to annual mean simulated BC and

particulate organic matter (POM) concentrations can reach up to 60%.

In the baseline model, residential combustion emissions were estimated

to contribute to 22% of the total global BC burden and 12% of the global

POM burden. When residential carbonaceous emissions were doubled,

residential emissions contributed to 33% and 32% of the total global BC

and POM burden, respectively.

(c) What is the near present-day global and regional burden of disease

attributable residential combustion emissions on ambient PM2.5 con-

centrations? In the baseline model simulation, it was estimated that a

total of 315,000 (132,000-508,000) deaths could have been averted in the

year 2000 if PM2.5 concentrations associated with residential combus-

tion emissions were removed. This averted mortality burden increased

by 64% to 516,600 (192,000-827,000) if residential PM2.5 concentrations

were removed based on the simulation where residential emission were
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doubled. It was found that estimated averted mortalities were great-

est across regions with large residential emissions and high popula-

tion densities, including East Asia, South Asia, Eastern Europe, and the

Russian Federation, but with half of total averted mortality occurring

in just China and India. Estimated health impacts are sensitive to the

exposure-response relationship used, suggesting that the magnitude of

the health impact from residential combustion emissions may vary de-

pending on the relationship used, but is likely to be considerable.

(d) What is the near present-day direct and first indirect radiative effect

of residential combustion aerosol on the Earth’s radiation budget?

Using an offline radiative transfer model, it was found that residen-

tial combustion emissions exerted an uncertain global annual mean di-

rect radiative effect (DRE) of between −66 and +85 mW m-2 across all

simulations, with a best estimate of between −66 and +21 mW m-2 af-

ter discounting the unrealistic simulation emitting very small carbona-

ceous particles. Simulated DRE was estimated to be sensitive to the

amount and ratio of residential BC, POM, and SO2, with the carbona-

ceous component of residential-derived aerosol exerting an overall net

positive DRE in the simulations, offset by cooling from SO2 residential

emissions. It was found that residential combustion emissions exerted

a negative but uncertain global annual mean first aerosol indirect effect

(AIE) of between −502 and −16 mW m-2 across all simulations, with a

best estimated range of −52 and −16 mW m-2 after discounting the un-

realistic simulation emitting very small residential carbonaceous par-

ticles. Uncertainty in the emitted primary carbonaceous particle size

range was found to be the largest contributor of uncertainly to simu-

lated AIE, due to residential combustion emissions. Many limitations

exist in the methods used to estimate the radiative effect. These include

the use of an offline radiative transfer model that cannot examine other
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climate effects and interactions, as well as simplistic assumptions re-

garding the optical properties of POM and optical mixing states of BC.

(e) What might the uncertainties in residential combustion emission mass

flux and emitted size distributions mean for quantifying residential

impacts on air quality, human health and radiative effect? This study

highlighted that the removal of residential combustion emissions would

substantially improve particulate matter air quality and human health

across many regions, even when considering the uncertainties between

the different model simulations explored. However, residential com-

bustion emissions exert an uncertain radiative effect, with a DRE span-

ning both positive and negative signs. Better characterisation of res-

idential emission mass flux, chemical composition, and carbonaceous

size distributions, together with a more detailed optical treatment of

aerosol mixing states within a climate composition model, are needed

to assess the full climate impacts due to residential emissions.

6.3 Chapter 5: Near-term global and regional air quality and

health benefits due to widespread adoption of clean resi-

dential combustion technologies

The TOMCAT-GLOMAP configuration with coupled chemistry was used

to simulate changes in ambient PM2.5 concentrations and associated public

health burden impacts between 2015 and 2050. Estimated impacts in 2050

were first examined under a reference scenario using projected energy con-

sumption data from the International Energy Agency based under an as-

sumption of present-day current and planned environmental legislation, and

secondly under a similar scenario where widespread adoption of clean resi-

dential combustion technologies (e.g., implementation of clean cooking and
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heating stoves) had taken place. An additional 2050 scenario was also ex-

amined impacts after available clean combustion technologies were widely

adopted in all anthropogenic sectors. A summary of the findings from this

study in relation to the posed research questions is reported below:

(a) To what extent can a global chemical-transport model reproduce an-

nual mean observed PM2.5 concentrations across multiple global re-

gions? In general, the model underestimated annual mean ambient

PM2.5 concentration when compared to regional measurements in the

present-day (year 2015). Significant low biases were predicted across

measurement locations in China and India by a factor 2 and 3, respec-

tively. However, many of the measurements used for the evaluation

were taken from urban or semi-urban locations, which may largely ex-

plain the low model bias due to the relatively coarse spatial resolution

of the model. To account for the low model bias, simulated PM2.5 were

scaled nationally using a satellite-derived ’semi-observational’ PM2.5

dataset, which largely improved the model performance. The same

scaling factors were then applied to the simulated PM2.5 concentrations

in the 2050 scenarios, which were then used to estimate air quality and

health burden impacts.

(b) How do annual mean ambient PM2.5 concentrations change region-

ally under a reference scenario in the year 2050? In the 2050 refer-

ence scenario, estimated reductions in annual mean PM2.5 concentra-

tions were simulated across North America, Europe, and East Asia,

with estimated increases simulated across Sub-Saharan Africa, North

Africa and the Middle East, South Asia, and Southeast Asia. Relative to

2015, global population-weighted PM2.5 concentrations were found to

increase by 12.3% under the 2050 reference scenario, which were largely

driven by large increases across South Asia (39.7%), despite reductions

across East Asia (18.7%). Reductions in ambient PM2.5 concentrations

across East Asia were estimated largely to be a result of current and
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planned residential emission controls, whereas increases across South

Asia were a result of weak regulation and emission increases in the

power and industrial sectors in the face of rapid population growth and

subsequent growth in energy demand.

(c) How does the disease burden attributable to ambient PM2.5 exposure

change in the year 2050 under the reference scenario? Relative to 2015,

global mortality attributable to ambient PM2.5 exposure was found to

increase by 72.8% in 2050 under the reference scenario to 7.1 [3.9-10.7]

million deaths. Mortality increases are predicted in most regions in

2050 and driven largely by demographic transitions represented by total

population growth and population ageing, and to a lesser extent by re-

gional changes in ambient PM2.5 concentrations. Even in regions where

ambient PM2.5 concentrations are estimated to decline in 2050, demo-

graphic transitions such as population ageing result in attributable mor-

tality increases (e.g., East Asia). PM2.5 mortality due to residential emis-

sions were also estimated to increase by 20% to 1.1 [0.6-1.7] million

deaths, representing 0.49 [0.4-0.6] million deaths averted if residential

emissions were removed in 2050.

(d) How does the widespread adoption and sustained use of clean resi-

dential combustion technologies improve ambient PM2.5 air quality

relative to a reference scenario and a maximum anthropogenic emis-

sion reduction scenario? Relative to the reference 2050 scenario, the

widespread implementation of clean residential combustion technolo-

gies, is estimated to reduce global mean population-weighted PM2.5

concentrations by 11.9% and avoid 4.9 µg m-3 in 2050. The largest PM2.5

air quality improvements are estimated across South Asia where the

implementation of clean residential combustion technologies can avoid



6.3. Chapter 5: Near-term global and regional air quality and health benefits due to

widespread adoption of clean residential combustion technologies
159

18.3 µ g m-3 of mean population-weighted PM2.5 concentrations. How-

ever, in other regions, particularly across Sub-Saharan Africa, the imple-

mentation of clean residential combustion technologies alone can con-

tribute one half to two thirds of the maximum anthropogenic avoidable

reduction in population-weighted PM2.5 concentrations.

(e) How does the widespread adoption and sustained use of clean res-

idential combustion technologies improve the PM2.5 mortality bur-

den relative to a reference scenario and a maximum anthropogenic

emission reduction scenario? Relative to the reference 2050 scenario,

the widespread implementation of clean residential combustion tech-

nologies, is estimated to reduce global attributable mortality by 5% and

avoid 0.34 [0.28-0.4] million deaths in 2050, which was estimated to be

nearly 20% of the maximum preventable mortality in same year. How-

ever, despite lower PM2.5 concentrations, demographic transitions in

2050 result in greater attributable mortality in 2050 under either the

clean residential and maximum reduction scenarios, relative to the present-

day 2015. The largest avoidable mortalities as a result of clean residen-

tial combustion technologies were estimated across South Asia (0.15

[0.1-0.2] million deaths) and East Asia (0.1 [0.07-0.11] million deaths),

with additionally relatively large age-standardised mortalities avoided

across South Asia (4.8 [4.1-5.9] deaths per 105 people) but also across

Sub-Saharan African regions (e.g., 3.7 [3.2-4] deaths per 105 people in

Eastern Sub-Saharan Africa). However, half to two thirds of the max-

imum avoidable mortality across Sub-Saharan Africa in 2050 were es-

timated to be achievable through residential emission controls alone,

representing the largest contributor to maximum preventable mortality

of any region.

(f) How can near-term scenarios of clean residential emission controls

inform ambient air quality management strategies? In general, this

study highlighted the regional priority for reducing all anthropogenic
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emissions collectively. However, targeting residential emissions alone

through clean combustion technologies or clean fuels can provide large

near-term air quality and public health benefits, especially across many

low and middle-income regions where residential emissions are impor-

tant to anthropogenic PM2.5 concentrations. Since many middle and

low-income regions do not have established ambient air quality man-

agement strategies, it is hoped that the findings of this study can help

guide new policy designed to protect public health and the environ-

ment.

6.4 Summary and synthesis

Anthropogenic emission trends in aerosol primary and precursors during the

last 50 years has resulted in considerable regional changes in ambient PM2.5

air quality. Findings reported in Chapter 3 showed that simulated changes

in ambient PM2.5, using the HadGEM3-UKCA CCM, generally followed that

of long-term regional observations highlighting pronounced declines across

high-income regions of North America and Western Europe with associated

growth across many low and middle-income regions, particular across Asian

countries. These findings are consistent with declining emissions associated

with air quality regulation and emission control technology implementation

in high-income regions to that of emission growth associated with popula-

tion and economic expansion at the expense of equivalent regulation and

control in many low and middle-income regions over the past 50 years. Re-

gional disease burdens attributable to ambient PM2.5 exposure generally fol-

lowed that of regional changes in ambient PM2.5, with an estimated increase

in global burden of disease of between 89% to 124% in 2009, relative to 1960.

This global attributable mortality increase which was largely driven by mor-

tality growth in Asia, the growth of which was strongly influenced by de-

mographic transitions (i.e., population growth and ageing), highlighting the
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importance of this transition when considering future near-term disease bur-

den trends. However, more importantly, the results reported in Chapter 3

highlight the advantages of clean air policy for improving air quality and

public health in North American and European regions. This provides the

evidence base needed for policy makers across polluted low and middle-

income regions can learn from and replicate. However, given the non-linear

disease exposure-responses relationships associated with highly polluted re-

gions (i.e., high exposure distributions) and near-term projected transitions

in demography, low and middle-income countries may need to introduce

very stringent ambient air pollution standards in order to replicate similar

public health benefits experienced by high-income regions since the 1960s.

Although not specifically addressed in Chapter 3, much of the anthropogenic

emission declines experienced across high-income regions, particularly West-

ern Europe, were a result of declines in residential solid fuel combustion,

typically coal for heating. This use and reduction in use of solid fuels, in part

due to combined air quality policy, economic and energy transitions, shares

some parallels with energy poverty and transitions facing many low and

middle-income countries today. For example, while combustion of solid fu-

els are generally less important for anthropogenic emissions in high-income

countries today, they remain an important fuel source across many low and

middle-income regions, where 3 billion poor people still rely on such fuels

(e.g., biomass and coal) to meet basic energy demands (e.g., cooking, heating

and lighting). At the same time, although the global number of poor house-

holds using solid fuels has decreased over the last few decades, population

growth has kept the total number of users at relatively stable levels. As a

result, the residential sector remains an important anthropogenic emission

source in the present-day, undoubtedly leading to large global and regional

negative impacts on public health and the wider environment. For poor com-

munities in low and middle-income, the use solid fuel clean cookstoves or
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clean fuels, such as LPG, is considered one of the best ways to reduce emis-

sions from residential solid fuel combustion, potentially leading to large pub-

lic health benefits through improved household and ambient air quality, and

additional climate and socio-economic co-benefits. However, until relatively

recently, little was known about the overall impact of residential emissions

on air quality, health and climate in the present-day. Understanding these

impacts are a vita first step in identifying where clean cookstoves and fuels

will have the most benefit, and was the focus of Chapter 4 of this thesis. Us-

ing the TOMCAT-GLOMAP CTM, results reported in Chapter 4 showed that

residential emissions contributed substantially to regional annual mean sur-

face PM2.5, BC and POM concentrations in the present-day, with significant

contributions across regions of Asia and Sub-Saharan Africa, as well as many

Eastern European countries of the former Soviet Union. The disease burden

due to the removal of residential emissions was estimated to be consider-

able (3.0 to 0.5 million deaths globally), highlighting the potentially large

public health benefits of residential emission controls, even when consider-

ing a number of key emission uncertainties. Understanding the present-day

radiative impacts due to residential emissions, however, was shown to be

uncertain and sometimes of opposite sign. This uncertainty was in part due

to the limitations of using a offline radiative transfer model together with

uncertainties associated with residential emission mass flux, size and com-

position, and other uncertain model parameters, highlighting the need for

more advanced modelling approaches and measurements.

The last chapter of this thesis (Chapter 5) was designed in such away that

would naturally lead on from Chapters 3 and 4. In particular, it focused on

understanding the possible impact of changes in anthropogenic emissions

on future near-term air quality and disease burdens in 2050, with an ad-

ditional focus on clean emission technologies, particularly residential clean
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cookstoves, as a means of reducing impacts by 2050. Using the TOMCAT-

GLOMAP CTM, Chapter 5 showed that despite ambient PM2.5 concentra-

tions declining many regions (apart from South Asia and to some extent

Sub-Saharan Africa) under a reference scenario, the attributable global bur-

den of disease increased by 73% in 2050 (relative to 2015). Similar to the

findings reported in Chapter 3, the growth in the mortality burden was sig-

nificantly influenced by demographic transitions, so much so that disease

burden increases were estimated in regions where ambient PM2.5 concentra-

tions had declined relative to 2015 (e.g., China). This finding further high-

lights a real need for polluted regions to adopt stringent limits on ambient

PM2.5 in order to reduce disease burdens in the near-term. Relative to this

reference scenario, the widespread implementation of clean residential com-

bustion technologies (i.e., clean cookstove) was found to improve near-term

air quality and public health benefits in 2050, especially for many low and

middle-income countries, such as Sub-Saharan Africa. The adoption of clean

cookstove technologies alone was found to represent one half to two thirds

of the maximum preventable ambient PM2.5 and mortality estimated across

Sub-Saharan African countries in 2050. At the global level, clean residential

technologies were found to represent 20% of global the preventable PM2.5

mortality in 2050. The findings reported in Chapter 5 thus highlight the po-

tential effectiveness of residential emission controls and technologies for im-

proving near-term ambient air quality and public health, particularly among

many low and middle-income regions, where they can also help towards al-

leviating many other environmental and socio-economic problems.

While the results reported in thesis represent a first step in identifying im-

pacts and potential areas of interested for policy, the section below provides

a discussion on additional work that could be undertaken to build on what

is reported here. Additionally, a further discussion is also provided below on

research priorities for the wider research community.
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6.5 Implications for Future Work

6.5.1 Priorities relating to my research

Reducing model biases

The evaluation of the different models used in each Chapter highlight a con-

sistent low bias, particularly when comparing to aerosol mass concentration

measurements. This suggests a contribution from missing and/or uncertain

model processes, aerosol components and emission sources. It is therefore

important that future model developments focus on key areas of uncertainty

in order to address model biases.

Nitrate is an important aerosol component missing in the model configura-

tions used in this thesis, which may partly contribute to low simulated bi-

ases. Accounting for nitrate formation may be important for understanding

historical and future aerosol changes, particularly where SO2 emissions (and

sulfate) have declined and are expected to decline in the future. For exam-

ple, because the formation pathway for ammonium nitrate requires an excess

of ammonia, beyond that required for sulfate formation, reductions in SO2

emissions with constant or increasing ammonia emissions may mean that ni-

trate concentrations do not respond linearly to changes in NOx emissions.

Historical reductions in SO2 emissions together with increasing agricultural-

related ammonia emissions since the 1960s over North America and Euro-

pean regions (Hoesly et al., 2018) may have limited the effects of NOx reduc-

tions on nitrate and increased the relative importance of nitrate PM fraction

(Erisman and Schaap, 2004; Fagerli and Aas, 2008). Similarly, nitrate concen-

trations may not respond linearly to future declines in NOx emissions across

regions where SO2 emissions are also declining (e.g., parts of Asia such as

China), but where ammonia concentrations remain level or are predicted to

increase (Bellouin et al., 2011; Hauglustaine, Balkanski, and Schulz, 2014).
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The implementation of nitrate formation in atmospheric models is challeng-

ing given the volatile nature of nitrate aerosol, however its implementation

and evaluation should be a priority.

Another missing aerosol component common in the model configurations

used in this thesis is the representation of SOA formation beyond that of

biogenic origin, which may in part explain the low bias in organic aerosol

reported in Chapter 4. The quantification of SOA from biogenic and anthro-

pogenic sources is a large source of uncertainty to the global burden of or-

ganic aerosol (Spracklen et al., 2011a; Tsigaridis et al., 2014). Additionally,

the global model configurations used in this thesis treat biogenic SOA for-

mation in a relatively simplistic way, via the oxidation of biogenic monoter-

pene that condense irreversibly onto existing aerosol under an assumption of

zero vapour pressure. Recent developments in the representation of organic

aerosol under different volatilities as part of the volatility basis set (VBS) pro-

vide a framework in which the evolution of organic aerosol can be simulated

in more physically-based way (Donahue et al., 2011). However, while the

implementation of VBS schemes is challenging in global models (Tsigaridis

et al., 2014), its implementation and evaluation should be a priority for the

future. This could be particularly important for estimating organic aerosol

contribution from residential combustion as emissions from this source in-

clude significant SOA precursor VOCs that are not well characterised (e.g.

Bruns et al., 2016; Ciarelli et al., 2017).

The PPE analysis reported in Chapter 3 (see Appendix A Figure S2) high-

lighted key uncertain model parameters responsible for uncertainties in sim-

ulated PM2.5 concentrations in the HadGEM3-UKCA model. Because GLOMAP-

mode was used in all the model configurations in this thesis, I assume that

the common parameter uncertainties highlighted in the PPE for HadGEM3-

UKCA also apply for TOMCAT-GLOMAP model variants used in Chapters

4 and 5. While the PPE sensitivity analysis in Chapter 3 provides a first step

in identifying the parameter uncertainty space in the model, identifying high
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skilled model variants with commonalities is the next step towards constrain-

ing uncertainty in model parameters (i.e., do PPE model variants capable

of reproducing observations have anything in common with each other?).

Since the writing (and publication) of Chapter 3, further analysis of PPEs

using GLOMAP-mode simulated aerosols have been conducted to identify

skilled model variants through comparison to aerosol observations. While

these analyses suggest that PPE model variants can be constrained to a high

degree, discounting up to 60% of model variants as implausible, the para-

metric range of the ’best’ model variants are very wide with the same model

skill arising from multiple parameter settings (Browse, 2019). Nevertheless,

some important uncertain parameters have been constrained through these

analyses, including dry deposition rate of accumulation mode (a large un-

certainty source identified in Chapter 3), boundary layer nucleation rate, an-

thropogenic SO2 emissions, sea salt emissions, biogenic VOCs emissions, and

monolayers (of secondary organic and sulphate) required for a insoluble par-

ticle to be soluble (Browse, 2019; Regayre et al., 2018; Johnson et al., 2018). As

a result, future model simulations including some of these constrained pa-

rameters would likely improve low simulated to observed biases.

The relatively large spatial resolution of the global models used in this the-

sis may also have contributed to low simulated to observed biases, partic-

ularly when evaluating against urban or semi-urban aerosol measurements

such as PM2.5. However, computational constraints needed to perform multi-

year and multi-sensitivity simulations, currently limit the global models used

here to relatively coarse spatial resolutions. Nevertheless, similar research

questions to those examined in this thesis could be examined using nested

regional simulations over a particular region of interest (e.g. Gordon et al.,

2018). Such a model setup would allow for comparisons between the coarse

spatial resolution of the global model to that of the regional nest, where the

high spatial resolution might resolve air pollutant concentration gradients

allowing for better simulated to observed comparisons.
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Representing uncertainty in future impacts

Understanding how emissions will change and evolve into the future is vital

for understanding the mitigation potential of certain policy measures. The air

quality and health benefits as a result of the emission scenarios reported in

Chapter 5 (i.e., clean residential and MTFR scenarios) were based by compar-

ing to the baseline reference scenario in 2050. This approach for measuring

the potential of the clean residential and MTFR scenarios is thus based under

assumptions in the reference scenario. While the emissions in the reference

scenario are based under the assumption that pollutants are limited by the

full implementation and enforcement of current and planned national envi-

ronmental legislation, they could be also be optimistic based on the fact that

they cannot possibly predict failures and/or delays in planned enforcement.

Nevertheless, future emission pathways may be more diverse, with anthro-

pogenic emissions being controlled by complex forces governing projected

changes in socio-economic development, technological change, improved ef-

ficiency, environment and health policies directed at pollution control. As

such, additional simulations exploring a range of possible pathways such as

those employed by the ’Shared Socio-economic Pathways’ (Rao et al., 2017)

would have benefited the analysis in Chapter 5.

Climate change will also likely affect air pollutant concentrations in the fu-

ture. Climate change affects air pollution through numerous pathways (Von

Schneidemesser et al., 2015; Fiore, Naik, and Leibensperger, 2015; Jacob and

Winner, 2009), such as changes in meteorology, temperature, and natural

emissions, as well as the frequency of wildfire events. In the case of PM2.5

concentrations, the ability to predict a robust response due to changes in

meteorology is uncertain because of the uncertainty among climate mod-

els to predict meteorological changes in a future climate. For relatively ex-

treme climate change scenarios (i.e., RCP8.5), there is considerable agree-

ment among climate model ensemble members for regional enhancements
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in PM2.5 concentrations by 2100, when emissions are fixed at present-day

levels (Silva et al., 2017; Allen, Landuyt, and Rumbold, 2016). These en-

hancements are generally attributed to a decrease in wet deposition associ-

ated with reduced large-scale precipitation over continental regions. In gen-

eral, the magnitude and sign of the PM2.5 response due to climate change is a

result of differences among climate models to predict large-scale meteorolog-

ical changes, treatments of atmospheric chemistry, and feedbacks such as the

response of natural emissions (Silva et al., 2017). However, while a chang-

ing climate will likely affect air quality levels, future changes are likely to be

dominated by changes in future anthropogenic emissions West et al., 2013.

Nevertheless, the PM2.5 concentration changes reported for 2050 in Chapter

5 (i.e., under the reference scenario) were forced with present-day meteorol-

ogy and so neglect additional impacts associated with climate change. Using

a climate composition model would provide the necessary setup to exam-

ine how climate change might affect ambient PM2.5 concentrations, but also

how climate might respond to different emission scenarios. In the case of

Chapter 5, understanding the climate implications due to the widespread

adoption of clean cookstoves might be of particular importance considering

that emissions from these technologies likely contain a higher proportion of

BC containing particles relative to traditional combustion (Aung et al., 2016;

Grieshop et al., 2017; Winijkul, Fierce, and Bond, 2016). Additionally, using

an earth-system model fully coupled to the land-surface may also provide

insights into whether widespread adoption of clean cookstoves would result

in energy efficiency leading to reduced pressures on woodfuel resources or

whether cookstoves overstate carbon savings (e.g. Bailis et al., 2015; Bailis et

al., 2017). Considering that many clean cookstove intervention programmes

are being implemented under climate compatible development goals and are

funded through carbon financing, having a complete understanding of their

overall climate impact is essential.

In addition, calculating mortality in 2050 as part of the analysis in Chapter 5
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were based on base case forecasts of underlying disease rates following other

modelling studies using the International Futures model (Silva et al., 2016;

Silva et al., 2017; West et al., 2013). However, as with future anthropogenic

emission pathways, underlying health pathways may be more diverse than

what is predicted in the base case scenario alone, with similar socio-economic

and environment variables driving uncertainties in health forecasts. As such,

additional simulations exploring a range of possible future health pathways

such as those employed by recent GBD studies (Foreman et al., 2018) would

have benefited the analysis in Chapter 5.

Finally, the clean residential scenario examined in Chapter 5 were based un-

der the assumption of widespread adoption and sustained use of clean resi-

dential combustion technologies by the year 2050. However, evidence from

historical and present-day cookstove interventions, report modest adoption

and user rates among communities and/or ’stove stacking’, where interven-

tion stoves fail to replace traditional stoves completely, potentially offsetting

air quality and health benefits (Clark et al., 2017; Pillarisetti et al., 2014; Lozier

et al., 2016). Such undesirable outcomes are caused by multiple implementa-

tion barriers, including the failure of intervention stoves to meet user needs

and preferences, supply chain distribution challenges, lack of monitoring,

training and maintenance, and financial constraints (Rehfuess et al., 2014;

Lewis and Pattanayak, 2012). These important implementation barriers are

not considered in Chapter 5, thus the introduction of additional scenarios ex-

amining the variability in adoption and user rates would provide additional

information to fully evaluate the potential impact of clean stove technologies

on air quality and health. Similarly, the emission factors used in Chapter 5 for

clean residential combustion technologies are largely taken from controlled

laboratory measurements, which are often lower than reported from field

studies (Wathore, Mortimer, and Grieshop, 2017; Roden et al., 2009; Samban-

dam et al., 2015; Lozier et al., 2016). Thus the inclusion of emission factors

exclusively from field measurements in the analysis reported in Chapter 5
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would be ideal.

Health impacts

Mortality reported in this thesis are based on long-term exposure to ambi-

ent PM2.5 only. As a result, the residential mortality estimates reported in

Chapter 4 and Chapter 5, exclude the considerable loss of life due to residen-

tial combustion adversely affecting household air pollution (HAP). The dis-

ease burden from HAP is considerable in the present-day, causing 2.6 million

deaths globally in 2016 (Gakidou et al., 2017; Smith et al., 2014a). However,

while approximate joint health burden estimates for ambient and HAP are

estimated by the Global Burden of Disease project under an assumption of in-

dependence, with little correlation and/or interaction (Gakidou et al., 2017),

new methodologies seeking to combine the exposure distributions from both

ambient and HAP PM2.5 can be useful in wanting to examine the combined

disease burden effect (e.g. Kodros et al., 2017). The additional use of this in-

tegrated methodology in Chapters 4 5, could provide a more comprehensive

understanding of the disease burden associated with residential combustion.

There are large uncertainties relating to exposure-response relationships used

in health impact assessments, including those used in this thesis. The inte-

grated exposure-response (IER) relationship used in both Chapters 3 and 5

was, until relatively recently, the most up-to-date relationship used by the

health assessment community. The strength of the IER was its use of disease

risks from other combustion sources (e.g., active and passive tobacco smok-

ing) to determine the shape of the exposure-response at high PM2.5 exposure

distributions in the absence of observed risk estimates from ambient air pol-

lution prospective cohort studies. However, new relationships have emerged

recently that are based entirely on observed risk estimates from ambient air

pollution cohort studies (Burnett et al., 2018), including recent observations

from China. A sensitivity analysis conducted in Chapter 5 showed that the
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use of these new exposure-response relationships increased attributable mor-

tality by nearly 100% compared to the IER. Considering that these new rela-

tionships are based on the most recent epidemiological evidence, employing

their use in future health burden assessments would be ideal.

Exposure to PM2.5 is not the only ambient air pollutant known to cause ad-

verse health outcomes (Table 1.4). However, exposure to ozone (O3) is the

only other pollutant that has enough evidence to justify its use in health im-

pact assessments. Ambient O3 is an important global pollutant, contributing

to between 233.6 (90.1-385.3) thousand to 1.04-1.23 million global deaths in

the present-day (Gakidou et al., 2017; Malley et al., 2017). Considering that

the model configurations used in both Chapters 3 and 5 provide changes in

O3, its health impact could also be considered under the same scenarios.

6.5.2 Research priorities for the wider community

The of value of PPEs in directing research priorities

The complexity of interacting uncertain parameters related to aerosol and

physical atmosphere processes, emissions and other assumptions within CCMs

and CTMs, means that traditional sensitivity experiments where uncertain

parameters are perturbed in isolation (e.g., what was done in Chapter 4),

cannot possibly be used to constrain model uncertainty. As a result, the use

of PPEs and associated emulation provide a useful tool for the modelling

community, in which modellers can explore the entire model parametric un-

certainty space to measure total uncertainty, as well as attribute individual

parameter contributions to uncertainty (e.g. Lee et al., 2013; Regayre et al.,

2014; Regayre et al., 2018; Johnson et al., 2018). As previously mentioned,

analysis of PPE simulations (using GLOMAP-mode simulated aerosol) with

large datasets of in-situ aerosol observations, including aerosol number, mass
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concentrations, and CDNC, can be used to remove implausible model vari-

ants, leaving only the ’best’ model variants (Browse, 2019). However, while

such analysis can remove a large proportion of implausible model variants,

and in the process constraining some important uncertain model parameters

(reported above), the parametric range of the ’best’ model variants remains

very wide with the same model skill being obtained from multiple parame-

ter settings (Browse, 2019). This principle of eqifinality (i.e., the same simu-

lated outcome from multiple pathways) means that many key uncertain pa-

rameters, including Aitken mode width, assumed activation diameter for in-

cloud scavenging, biomass burning and residential emissions, remain uncon-

strained. This suggests that existing in-situ aerosol measurements may not

be insufficient alone to constrain parametric uncertainty in complex models

(Browse, 2019; Regayre et al., 2018). This type of analysis using PPEs there-

fore not only has important implications for future modelling approaches,

but also identifies the need for future observational approaches. In particu-

lar, it identifies the need for processed-lead observations which are designed

to test the plausibility of uncertain model parameters rather than just model

simulated output (e.g. Browse, 2019).

Need for more air quality epidemiology

There are large uncertainties associated with exposure-response relationships

used to assess the health impacts due to PM2.5 exposure. Much of this un-

certainty stems from a lack of epidemiology evidence across highly polluted

regions such as Asia. For example, currently there has only been one co-

hort study conducted in a highly polluted region, with that study only con-

sidering adult men in various locations across China (Yin et al., 2017). As

such, many more epidemiology studies are required across polluted regions

in order to corroborate or refute current tools such as the IER used in most

current PM2.5 health impact assessments (e.g. Burnett et al., 2018). Addi-

tionally, the installation of surface air quality measurement networks across
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highly polluted regions, such as recently developed across China (e.g. Silver

et al., 2018), would also greatly benefit epidemiology studies, as well as the

air quality modelling community. At the same time, a greater amount epi-

demiology research should also be focused in very clean regions, so that a

greater understanding of the theoretical minimum risk exposure level (TEM-

REL) can be obtained (e.g. Shi et al., 2016). A greater understanding of the

TEMREL is vital particularly when considering the establishment and setting

of air quality standards designed to protect human health.

Health impact assessments currently assume that all PM2.5 mass as equally

toxic, regardless of composition and emission source. However, this is un-

likely given that differences in composition and emission sources will cer-

tainly affect the levels of toxicity present in PM2.5 (e.g. Thurston et al., 2016).

However, there is not enough current evidence to draw conclusive associa-

tions between the biological effects of PM2.5 composition at the population

level (e.g. Burnett et al., 2014). Such caveats support the need for greater

understanding in this area of toxicology and epidemiology, but also point

to additional routine measurements of air pollutant composition (e.g., PM2.5

speciation) so that specific health associations can be investigated.

Health impact assessments conducted in this thesis only consider five dis-

eases associated with PM2.5 exposure. However, while there is enough evi-

dence for a causal relation with these five cardiovascular and respiratory dis-

eases, evidence exists for other diseases, including Alzheimer’s disease (e.g.,

Cacciottolo et al., 2017), Parkison’s disease (e.g., Ritz et al., 2016), premature

birth and low birth weight (e.g. Fleischer et al., 2014; Pedersen et al., 2013),

mental health (e.g., Oudin et al., 2016), impaired cognitive function (e.g., Ail-

shire and Crimmins, 2014), and type 2 diabetes (e.g., He et al., 2017) (Table

1.4). However, as of yet, there is not enough evidence for their inclusion in

impact assessments, suggesting more research is needed. In addition, there is

suggestive health evidence for other air pollutants (Table 1.4). It is therefore
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important that sufficient research be conducted to identify the range of dis-

ease associated with various air pollutants in order to build the health impact

evidence base needed for proper and swift policy action.
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Supplementary information (SI) 

 

1 Methods 

 

1.1 Simulated PM2.5 concentrations 

HadGEM3-UKCA uses GLOMAP-mode to simulate aerosol processes (Mann et al., 2010). GLOMAP-

mode uses log-normal modes to represent the aerosol size distribution and simulates the evolution of 

the size-resolved number and mass of aerosol particles with different compositions. GLOMAP-mode 

simulates the interaction of various aerosol processes including primary emissions, cloud processing, 

new particle formation, hygroscopic growth, coagulation, condensation, deposition and scavenging. 

Log-normal modes are used to represent aerosols in the nucleation (diameter (D) < 10 nm), Aitken (D 

10–100 nm), accumulation (D 100 nm–1 µm) and coarse (D > 1 µm) modes. 

1.2 PM2.5 observations  

We use measurements of PM2.5 mass concentration at remote surface sites in the United States and 

Europe (Fig.S1). In Europe we use observations from the European Monitoring and Evaluation 

Programme (EMEP) network (http:// www.emep.int). The measurements were made using a range of 

techniques and time frequencies (hourly and daily). The data were screened to remove any 

anomalous data points according to flags in the original data records. For the United States we use 

observations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) 

database. The IMPROVE network makes observations of PM2.5 over a 24-hour period every 3 days 

(Malm et al., 1994). We calculate annual mean concentrations for locations with >75 measurements 



within a given year. We quantify the comparison between simulated and observed PM2.5 as the mean 

bias (MB) and the normalised mean bias factor (NMBF) as defined in Yu et al. (2006): 

MB =  ∑(𝑀𝑖 − 𝑂𝑖) = �̅� −  �̅�  

           (S1) 

NMBF =
∑(𝑀𝑖 − 𝑂𝑖)

∑ 𝑂𝑖

 𝑖𝑓 �̅� ≥  �̅� 

            =
∑(𝑀𝑖 − 𝑂𝑖)

∑ 𝑀𝑖

 𝑖𝑓 �̅� ≤  �̅� 

           (S2) 

Where Mi and Oi are the model and observation values at measurement site and/or year i, and �̅� and 

�̅� are the annual mean model and observation values, respectively. MB shows the mean deviation of 

the model compared to observations in the units of the original data (i.e., µg m
-3

), while NMBF is 

unitless and is interpreted as a factor+1 by which the model under or overestimates the observation 

value. For example, a NMBF of -1.0, implies the model underestimates the observation value by a 

factor of 2.  

1.3 UKCA perturbed parameter ensemble (PPE) 

We use a perturbed parameter ensemble (PPE) of 235 UKCA simulations for the year 2008 where 

26-related parameters are perturbed simultaneously (Yoshioka et al., 2017) to explore uncertainty in 

simulated PM2.5 concentrations.  The PPE encompasses the parametric uncertainty with respect to 

aerosols in the model. Using variance-based sensitivity analysis techniques we can decompose the 

overall variance in PM2.5 concentration across the PPE into individual parameter contributions.  Figure 

S2 shows the percentage contribution of individual model parameters to the variance of estimated 

PM2.5 concentrations both regionally and globally. Globally, dry deposition of accumulation mode size 

particles represents the largest uncertainty in model processes, accounting for approx. 50% of the 

uncertainty. Smaller, but important contributions to the uncertainty come from the perturbations in the 

biogenic secondary organic aerosol formation, sea spray aerosol emissions flux and the 

carbonaceous emission mass flux of biomass burning and small scale residential combustion. 

Regionally, the same parameters dominate the uncertainty in PM2.5 concentrations, with the largest 

contribution over the US and Europe also from processes relating to the dry deposition of 

accumulation mode size particles. However, for India and East China, it is the uncertainty relating to 

carbonaceous emission mass flux of small scale residential combustion that dominates the 

uncertainty in simulated PM2.5 concentrations, which is an important emission source in these regions 

(Butt et al., 2016).  

Figure S3 shows that the simulated population-weighted PM2.5 concentrations in the baseline of the 

UKCA model (UKCA_base) is towards to the bottom end of the PPE uncertainty range in all regions, 

which may be partly responsible for the low bias to observations seen in the US and Europe (Fig. 2). 



We use the uncertainty range provided by the UKCA PPE and apply it to the baseline of the UKCA 

model. We use the median of the PPE to increment the baseline model (UKCA_base): in each surface 

grid cell, we calculate the median PM2.5 concentration across the entire PPE and then apply the 

absolute difference between the median and UKCA_base in the year 2008. We then applied this 

difference throughout the entire UKCA simulation period (1960 to 2009). We use the same approach 

for two additional sensitivity simulations to explore the lower and upper bound range of the PPE using 

the 5
th
 (UKCA_ppe-05) and 95

th
 (UKCA_ppe-95) percentile range of the PPE represented by the error bars 

in Fig. S3. 

1.4 Background disease and demographic data  

National level population and age group distribution data are taken from the United Nations (UN) 

Population Division (UN, 2015) [https://esa.un.org/unpd/wpp/], which are available for the period 1960 

to 2010 at 5 year intervals. We linearly interpolated between these data to obtain values for all years 

over the period (see Fig. S5). We used gridded population count data from the Gridded Population of 

the World v3 (GPWv3) [http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/sets/browse] (CIESIN, 

2015), available at a resolution of 2.5 arc-minutes for the period 1990 to 2010 at 5 year intervals. We 

extrapolated the GPWv3 to 1960 applying the rate of change in the UN national level data. When the 

GPWv3 is summed to national level values are typically within ~0.1-2% of UN national totals as 

shown in Fig. S6. This method does not account for changes in spatial distributions of population at 

the subnational level over the period 1960 to 1990. 

Uncertainty bounds for the GPWv3 and UN national level population total and age group structure are 

not provided and so we assume no uncertainty in these datasets, although sources of error are 

documented elsewhere for GPWv3 (e.g., Deichmann et al., 2001).  

Age and cause-specific background disease endpoint data for the period 1980 to 2010 are taken from 

the cause of disease visualisation tool hosted by Health Metrics and Evaluation 

[https://vizhub.healthdata.org/cod/] (IHME, 2014). The IHME uses statistical and analytical methods to 

redistribute modelled or reported deaths by their probable underlying causes. The dataset provides 

national level background disease endpoint data for cardiovascular ischemic heart disease (IHD) and 

stroke, lung cancer (LungC), chronic obstructive pulmonary disease (COPD) and lower respiratory 

infections (LRI). We also use the reported upper and lower uncertainty bounds to explore uncertainty 

in background disease. The dataset provides national level data, which is an over simplification as it 

does not account for variation in background disease rates such as differences between urban, sub-

urban, and rural settings (Cossman et al., 2010), which can be influenced by differences in 

demographic characteristics, income and access to healthcare. 

Background disease rates are not available prior to 1980, so we assume that rates remain constant at 

year 1980 levels for the period 1960 to 1979 (for example, see Fig. S7 for LRI in infants). To explore 

how sensitive the attributable health burden is using fixed rates prior to 1980, we conduct an 

additional sensitivity study and instead assume that background disease rates follow the same trend 

to that between 1980 and 1990 and apply it to the period prior to 1980. We calculate the rate of 



change between 1980 and 1990 and multiply the fixed prescribed 1980 rate in the year 1960 for each 

country. Finally, we linearly interpolated between 1960 and 1980 to obtain new disease rates for all 

years between the period 1961 to 1979 (for example, see Fig. S7 for LRI in infants).  

1.5 Attributable health burden calculation  

We use the integrated exposure-response (IER) relationship (Burnett et al., 2014) to calculate the 

relative risk (RR) (equation S3). The IER compiles epidemiological evidence from different 

combustion sources to cover the range of exposures experienced by populations in all parts of the 

world (Burnett et al., 2014; Pope et al., 2009; Pope et al., 2011). The IER has been used in a number 

of recent studies (Apte et al., 2015; Chowdhury and Dey, 2016; Cohen et al., 2017; Ford and Heald, 

2015; Lelieveld et al., 2015; Wang et al., 2016; Xie et al., 2016; Zheng et al., 2015) including recent 

Global Burden of Disease (GBD) assessments (Forouzanfar et al., 2016; Forouzanfar et al., 2015; 

Lim et al., 2013). We use IER developed for the GBD2013 (Forouzanfar et al., 2015), which differs 

from the previous version developed for GBD2010 (Lim et al., 2013) and the most recent developed 

for GBD2015 (Forouzanfar et al., 2016). The IER allows for age-dependent (i.e. ≥ 25 years of age at 5 

year intervals to age 80+) calculation of RR for IHD and stroke, adult (≥ 25 years of age) for LC and 

COPD, and all ages for lower respiratory infections (LRI). The IER parameterises RR based on the 

PM2.5 concentration, C: 

𝑅𝑅(𝑐) = 1+∝ (1 − exp {𝛽 (
𝐶 − 𝐶0

1𝑒10
)

𝛾
}) 

𝑅𝑅 = 1    𝑓𝑜𝑟 𝐶 ≤ 𝐶𝑜 

      (S3) 

The theoretical minimum risk exposure level (TMREL), C0, is determined by the minimum (5.8 μg m
-3

) 

and 5% quantile (8.8 μg m
-3

) from the exposure distribution estimated from the aggregate of cohort 

studies used (Forouzanfar et al., 2015; Lim et al., 2013). We use 1000 combination of parameters of 

C0, α, β and γ used in the GBD2013 [http:// 

cloud.ihme.washington.edu/index.php/s/lXFBFXizUrOKXyS]. As in Apte et al. (2015), we developed 

an updated lookup table, compatible for GBD2013, for each disease endpoint using the mean of the 

estimated RRs at each PM2.5 concentration spanning a range 0−300 μg m
-3

 at 0.1 μg m
-3

 increments. 

This lookup table is reported in the supplementary data 1. We also produce the 5
th
 and 95

th
 percentile 

of the estimated RR ranges to explore upper and lower uncertainty bounds of the IER relationship. 

The IER relationships are non-linear (Fig. S4), with reduced sensitivity of RR to changes in PM2.5 at 

higher concentrations (Pope et al., 2009; Pope et al., 2011), particularly for cardiovascular IHD, stroke 

and LRI.  

To calculate attributable premature deaths in grid cell i for disease endpoint j and population age 

group structure z (Mi,j,z), we apply the attributable fraction type relationship (Apte et al., 2015): 

𝑀𝑖,𝑗,𝑧 = 𝑃𝑖,𝑧 × 𝐼𝑗,𝑧,𝑘 × (𝑅𝑅𝑗,𝑧(𝐶𝑖) − 1) 



𝑤ℎ𝑒𝑟𝑒 𝐼𝑗,𝑧,𝑘 =
𝐼𝑗,𝑧,𝑘

𝑅𝑅̅̅ ̅̅ 𝑗,𝑧,𝑘
  𝑎𝑛𝑑  𝑅𝑅̅̅ ̅̅

𝑗,𝑧,𝑘 =
∑ 𝑃𝑖,𝑧×𝑅𝑅𝑗,𝑧(𝐶𝑖)𝑁

𝑖=1

∑ 𝑃𝑖,𝑧
𝑁
𝑖=1

 

         (S4) 

where Pi,z  is population in each age group z in cell i, RRj,z(Ci) is RR for disease endpoint j for age 

group z at annual mean PM2.5 concentration Ci, Ii,k,z  is the background disease rate for endpoint j in 

age z stratum in country k. Pi,z  is calculated by multiplying the population in each grid cell by the age 

group fraction.  𝑅𝑅̅̅ ̅̅
𝑖,𝑧,𝑘 represents the average population-weighted RR for each disease endpoint  j for 

population age group z in country k. Attributable deaths are calculated at the spatial resolution of the 

gridded population data. We estimate the uncertainty range using the upper and lower uncertainty 

bounds of the IER relationship and background disease data. We assume no uncertainty in 

demographic data.  

We also estimate years of life lost (YLLs), which is an estimate of the average years a person would 

have lived had they not died prematurely from long-term exposure ambient PM2.5. YLLs are calculated 

by summing attributable deaths within each age group and multiplying it by the associated expected 

life expectancy taken from the standard life table provided by Murray et al. (2013). 

1.6 Relative contribution to attributable mortality 

We explored the relative contribution of estimated attributable deaths over the period 1980 to 2009 to 

changing PM2.5 concentrations, population demographics (total population growth and ageing) and 

background disease characteristic. In order to explore the relative contribution to changes in these 

four variables, we calculate new baseline estimates by holding each variable constant at 1980 levels 

one at a time. We then explored the relative contribution to changes in each individual variable by 

comparing the difference between the new baseline estimates to the original baseline estimates. This 

analysis was restricted to the period 1980 to 2009 when most data were available. 
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Figure S1: Location of IMPROVE in the US (United States) and EMEP in EU
(comprising current 28 member states of the European Union) measurement
sites (filled circles) and regional domains used in Fig 1. Shaded regions com-
prising China, India, EU and the US are where health burden estimates are
reported for.



Figure S2: Percentage contribution of individual UKCA model parameters to
the variance of estimated PM2.5 concentrations in perturbed parameter ensem-
ble (PPE). Note only includes contributions to uncertainty greater than 1% .
Regional domains identified in Fig S1.



Figure S3: Annual mean surface population-weighted PM2.5 concentration
for UKCA-PPE (light green squares) in the year 2008. Dark green squares
represent the median of the PPE (UKCA ppe-med), error bars represent the
5th (UKCA ppe05) and 95th (UKCA ppe95) percentile range of the PPE. Blue
crosses represent mean surface population-weighted PM2.5 concentration from
the UKCA base model (UKCA base) .



Figure S4: GBD2103 integrated exposure-response (IER) relationships for dis-
ease endpoints associated with long-term exposure to ambient PM2.5 a) ischemic
heart disease (IHD) and b) Stoke, c) lung diseases lung cancer and chronic ob-
structive pulmonary disease (COPD), and d) lower respiratory disease. Shaded
areas represents the upper and lower uncertainty bound of the IER relationship.
See supplementary data 1 for the IER lookup table.
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Figure S5: National level a) total population and b) fraction of population in
age groups < 5, c) 5-15, d) 15-49, e) 50-69 and f) 70 plus years in China, India,
EU and the US.
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Figure S6: National level total population. Country level UN population esti-
mates (open squares) (UN, 2015) and gridded population from GWPv3 dataset
(CIESIN, 2015) summed to the national level (solid line). Extrapolated summed
gridded population count data at the national level (dotted lines) based on the
rate of change of official national level.
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Figure S7: Background disease rates for lower respiratory infection (LRI) disease
(per 100 000) in age group < 5 years for China, India, EU and the US. Dotted
line represents fixed 1980 disease rates prior to 1980, while dotted and dashed
lines represents to rate of change between 1980 and 1990 used prior to 1980.
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Figure S8: Annual mean population-weighted (pop-wt mean) and regional av-
erage (regional mean) PM2.5 concentrations for a) China, b) India, b) Eu-
ropean Union and d) United States. Results are shown for UKCA ppe-med.
Ratio between pop-wt mean and regional mean are shown (Ratio=(pop-
wt1960/regional1960), (pop-wt2009/regional2009)).
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Figure S9: Attributable deaths for using a fixed background disease prior to
1980 (solid line) compared to using an alternative background disease rate prior
to 1980 based on the rate of change between 1980 and 1990 (UKCA (alt)).
Percentage changes (Incr = (2009-1960)/1960) are shown for UKCA ppe-med

using both a fixed background disease rate prior to 1980 and the alternative
varying disease rate prior to 1980, respectively



Figure S10: Contribution of different diseases to attributable deaths: cardiovas-
cular ischemic heart disease (IHD) and Stroke, and lung diseases including lung
cancer (LungC) and chronic obstructive pulmonary disease (COPD), and lower
respiratory infection disease (LRI). Results are shown for UKCA ppe-med using
a fixed background disease rate prior to 1980.
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attributable YLLs use a fixed background disease rate prior to 1980. Shading,
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Supplementary information

A.1 Emissions

A.1.1 Anthropogenic emissions

Anthropogenic gas-phase and primary aerosol emissions of black carbon (BC), organic carbon (OC), sul-
phur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), non-methane volatile organic com-
pounds (VOCs) and methane (CH4 are taken from the ECLIPSE (Evaluating the Climate and Air Quality
Impacts of Short-Lived Pollutants) project version v5a (http://www.iiasa.ac.at/web/home/research/
researchPrograms/air/ECLIPSEv5a.html). Anthropogenic emissions are provided for the following sec-
tors: energy (including flaring), industry, solvent use, transport, residential and commercial, agriculture,
agricultural waste burning, waste treatment and international shipping. Monthly variability in emis-
sions was applied off-line using sector specific monthly varying weights provided separately by ECLIPSE.
Lumped anthropogenic VOCs from ECLIPSE were separated according to TOMCAT species (Monks et al.,
2017) using anthropogenic sector ratios provided by the RETRO (REanalysis of the TROposhperic chemi-
cal composition) project for the reference year 2000.

ECLIPSE emissions are created by the GAINS (Greenhouse gas–Air pollution Interactions and Syner-
gies;http://www.iiasa.ac.at/web/home/research/researchPrograms/GAINS.en.html) model (Amann et
al., 2011), which holds key information about emission sources, environmental legislation and mitigation
opportunities for multiple country regions, including 2000 technologies to control air pollutant emissions
and at least 500 options to control green-house-gas (GHG) emissions (Stohl et al., 2015).

A.1.2 Natural emissions

Natural gas-phase emissions of biogenics are taken from the MACC (Monitoring Atmospheric Composi-
tion and Climate) project (MACCity), which provides simulated VOCs by MEGAN (Model of Emissions
of Gases and Aerosols from Nature) v2.0 for the reference year 2000 (Guenther et al., 2006). Oceanic CO
and VOC emissions and soil NOx are taken from the POET inventory. Lightning emissions of NOx are
coupled to convection activity in TOMCAT and thus vary in space and time (Stockwell et al., 1999). Vol-
canic emissions of SO2 are based on both continuous (Andres and Kasgnoc, 1998) and explosive (Halmer,
Schmincke, and Graf, 2002) volcanic eruptions. Open biomass burning emissions are taken from GFED
(Global Fire Emission Database) v3 (Van Der Werf et al., 2004) and are based on a 1997-2010 average.
Emissions of Oceanic dimethylsulfide (DMS) are calculated using an ocean surface concentration database
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(Kettle and Andreae, 2000). Gridded surface CH4 emission are read into TOMCAT then scaled to a suit-
able global mean surface concentration given the year under investigation (e.g., present-day 2015 or future
2050) based on a box model steady-state calculation (McNorton et al., 2016).

A.2 PM2.5 surface measurements

We collected a global dataset of surface PM2.5 concentration measurements at remote, rural, semi-urban
and urban locations across multiple countries and regions.

For measurements across Europe, we used measurements from the EMEP network (European Monitoring
and Evaluation Programme; http://www.emep.int). Measurements were made using a range of tech-
niques and time frequencies (hourly and daily). For measurements across North America, we IMPROVE
(Interagency Monitoring of Protected Visual Environments) network. The IMPROVE network makes ob-
servations of PM2.5 over a 24-hour period every 3 days (Malm et al., 1994). Measurements taken from
EMEP and IMPROVE were screened to remove flagged points, then annually averaged at locations with
the closest year of measurement to 2015, excluding locations with measurements before the year 2010.

For measurements across China, we use hourly PM2.5 observations published in real time by CNEMC
(China National Environmental Monitoring Center; http://www.cnemc.cn/). Measurements for 2014 were
downloaded from PM25.in (http://pm25.in/), a direct mirror of CNEMC. Repeated identical measure-
ments for three or more continuous hours were removed due to instrument malfunction. Measurements
less than 1 µg m -3 were also removed due to instrument detection limits. Daily average measurements
were calculated from hourly concentrations during 0:00-23:59 local time if 18 or more hourly measure-
ments were available.

For India, hourly measurements were taken from the Central Pollution Control Board (CPCB), Ministry
of Environment and Forests, Government of India (http://www.cpcb.gov.in/CAAQM/). We use the same
measurements as described in Conibear et al., 2018 for the year 2016. For Africa and Southeast Asia,
we manually selected measurements collected between 2015 and 2010 as part of the WHO Air Pollution
in Cities report (WHO, 2016) at individual monitoring locations via the ambient air pollution interactive
map (http://maps.who.int/airpollution/), some of which are estimated from PM10 measurements.

We quantify the comparison between TOMCAT simulated and measured PM2.5 concentrations as the mean
bias (MB) and the normalised mean bias factor (NMBF), defined by Yu et al., 2006:

MB = ∑(Mi − Oi) = M̄ − Ō

NMBF =
∑(Mi − Oi)

∑(Oi)
if M̄ ≥ Ō

=
∑(Mi − Oi)

∑(Mi)
if M̄ ≤ Ō
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Where Mi and Oi are the simulated and measured values at station and/or year i, and M̄ and Ō are the
annual mean simulated and measured values,respectively. MB shows the mean deviation of the simu-
lated value compared to the measured value in the original units (µg m -3). The NMBF is unitless and is
interpreted as a factor+1 by which the simulated value under or overestimates the measured value.

A.3 Scaling simulated PM2.5 concentrations

A.3.1 The DIMAQ dataset

The Data Integration Model for Air Quality (DIMAQ) is a high-resolution spatially extensive ’semi-observational’
gridded dataset of ambient PM2.5 concentrations at a resolution of 0.1◦ × 0.1◦ ( 11km × 11km at the equa-
tor) (Shaddick et al., 2018). DIMAQ estimates PM2.5 concentrations by combining satellite retrievals of
aerosol optical depth (AOD), 6003 ground measurements with simulated relationships between PM2.5 con-
centrations and AOD as prescribed by the GEOS-Chem chemical transport model (CTM). A CSV file con-
taining column information longitude, latitude and ambient PM2.5 estimates for the year 2014 was down-
loaded from the World Health Organisation (WHO) website (http://www.who.int/phe/health_topics/
outdoorair/databases/modelled-estimates/en/).

A.3.2 PM2.5 scaling methodology

We scaled TOMCAT 2015 PM2.5 concentrations at the country level using DIMAQ at 2.8◦ × 2.8◦ using a
country scale factor SFac:

SFac =

[
PM2.5DIMAQctry

PM2.52015unscaledcctry

]

where PM2.5DIMAQctry and PM2.52015unscaledcctry
are the country-level concentration average of DIMAQ (at 2.8◦

× 2.8◦) and TOMCAT 2015 for a given county ctry, respectively at the TOMCAT grid. Unscaled TOMCAT
2015 concentrations are then multiplied by the scaling factor SFac per grid cell for a given country cctry:

PM2.52015scaledcctry
= PM2.52015unscaledcctry

× SFac

where PM2.52015scaledcctry
is the scaled PM2.5 concentration in 2015 for grid cells in a given country cctry,

and PM2.52015unscaledcctry
are the unscaled TOMCAT 2015 grid cell concentrations. To estimate scaled PM2.5

concentrations for 2050 scenarios, we multiply by the same scaling factor:

PM2.52050scaledcctry
= PM2.52050unscaledcctry

× SFac

As a sensitivity, we also use DIMAQ to downscale TOMCAT simulated PM2.5 concentrations from 2.8◦

× 2.8◦ to 0.1◦ × 0.1◦ following a widely used approach (Lacey et al., 2017; Chowdhury, Dey, and Smith,
2018; GBD MAPS Working Group, 2016; GBD MAPS Working Group, 2018; Archer-Nicholls et al., 2016;
Weagle et al., 2018) to test sensitivity of spatial resolution to mortality estimation. The approach is similar
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to the one described above but uses a spatial map of the annual mean ratio of DIMAQ at 0.1◦ × 0.1◦ to
simulated TOMCAT PM2.5 re-gridded on a 0.1◦ × 0.1◦ grid.

A.4 Mortality attributable to residential combustion emissions

We estimate mortality due to residential emissions using two different methods used widely (Kodros et
al., 2016; Conibear et al., 2018). The first method estimates mortality attributable to residential emissions
Mortresidential_attribute (attribution method) based on a linear relationship where the total PM2.5 attributable
mortality from all sources MortPM2.5 is scaled by the PM2.5 fraction due to residential emissions (e.g., esti-
mated from simulations where residential combustion emissions have been removed) Res f rac:

Mortresidential_attribute = Res f rac × MortPM2.5

This attribution method is also considered by the GBD to be the most favourable method for attributing
emission sources to PM2.5 mortality in a manor that is understood by the policy making community.

The second method estimates the number of averted mortality due to a complete removal of residential of
emissions in isolation Mortresidential_averted (subtraction method). Here the averted mortality is estimated by
subtracting the total number of PM2.5 attributable mortality in a simulation where residential emissions are
present (MortPM2.5) from a simulation where residential emissions have been removed (Mortresidential_o f f ):

Mortresidential_averted = MortPM2.5 − Mortresidential_o f f

Residential mortality estimates using the two different methods described above will result in different
mortality estimates, which can be largely explained by the non-linearity of the IER (Kodros et al., 2016).

A.5 Data from International Futures

We use forecast data on background disease and demographic characteristics for the period 2015 to 2050
from the International Futures (IFs) socioeconomic modelling system (Hughes et al., 2011), which draw
drivers of health and population outcomes, including demographic, economic, educational, socio-political,
agricultural and environmental. IFs forecasts were taken through the downloadable model version v7.31
(https://pardee.du.edu/access-ifs), under a base case scenario where present-day dynamic patterns
and relationships continue to unfold and evolve to 2050. IFs model does not provide confidence inter-
vals for forecast data, thus we assume all uncertainty in attributable mortality from exposure-response
relationship.

Following similar methods (Silva et al., 2016; Silva et al., 2017; West et al., 2013), IFs country-level lumped
cardiovascular diseases are used to estimate ischaemic heart disease (IHD) and cerebrovascular (CEV)
disease given their present-day proportion in cardiovascular disease (e.g. using GBD proportions in 2015),
as are respiratory disease for chronic obstructive pulmonary disease (COPD), malignant neoplasms for
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lung cancers and respiratory infections for lower respiratory infections (LRI). For regional background
disease, age-cause-specific mortality rates are expected to decrease across all diseases by 2050 (Figure
A.6), however, with two exceptions (LRI, CEV), total cause-specific mortality is predicted to increase due
to population growth and ageing.

IFs country-level 2015 population data are gridded to a 15 arc-minute grid and spatially distributed using
the fraction of the total population per country for each grid cell using 2015 UN-adjusted Gridded Popula-
tion of the World version 4 (GPWv4) estimates (http://sedac.ciesin.columbia.edu/data/collection/
gpw-v4) (Doxsey-Whitfield et al., 2015). IFs Population forecasts for 2050 are gridded in a similar way, as-
suming that the spatial distribution of the fraction of the total population per country is unchanged from
2020 UN-adjusted GPWv4 estimates. As shown in Figure A.7, IFs national-level estimates closely match
summed national-level GPWv4 in 2015, as well as closely matching UN 2050 projections used to construct
ECLIPSE 2050 emission scenarios (UN, 2011; IEA, 2012). IFs forecasts predict that global population will
increase to nearly 10 billion in 2050, with an increasing ageing population relative to 2015.

A.6 Exposure-response relationship sensitivity

We conduct a brief sensitivity and estimate attributable mortality from our air quality scenarios using a
newly alternative exposure-response relationship. We used the Global Exposure Mortality Model (GEMM),
which was used recently to estimate global burden of disease attributable to long-term ambient PM2.5 ex-
posure (Burnett et al., 2018). Unlike the IER (Burnett et al., 2014), hazard ratios estimated from GEMM are
based entirely on 41 ambient air pollution cohort risks. The development of the GEMM attempts to ad-
dress some of the limitations associated with the IER (e.g., using risks from different combustion sources to
infer risks at high exposure distributions) by combining limited results from ambient air pollution cohort
studies conducted in polluted regions, including one from China.

We use parameters provided by Burnett et al., 2018 and estimate GEMM hazard ratios through a log-
linear relationship for non-accidental non-communicable plus lower respiratory infection endpoints. We
use GEMM parameters that include the Chinese cohort study and fix the maximum PM2.5 concentration
risk estimate to 84 µg m -3 to match the maximum exposure distribution measured in the single Chinese
cohort study. Figure A.16 shows attributable mortality using GEMM compared to that using the IER.
We find that while the estimated health burden are larger using the GEMM, relative to the IER, they do
not change the overall message we convey regarding the health impacts and benefits of our air quality
scenarios using the IER.
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FIGURE A.3: Comparison of TOMCAT 2015 simulated PM2.5 concentrations with DIMAQ
gridded estimate (averaged to the TOMCAT resolution). a Mean bias in the spatial distribu-
tion of annual mean surface PM2.5 concentrations. b Comparison of PM2.5 concentrations,
best fit line (yellow line), 1:1 (solid black line), 2:1 and 1:2 (dashed black lines). Best fit line
has slope = 0.48 and Pearson’s correlation coefficient (r) = 0.80. c Spatial distribution of Nor-
malised mean bias factor (NMBF), and c NMBF box and whisker by sub-region, showing the
minimum, maximum and median distribution values, as well as the 10th, 25th, 75th, and 90th

percentiles.
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FIGURE A.4: Comparison of scaled TOMCAT 2015 simulated PM2.5 concentrations with DI-
MAQ gridded estimate (averaged to the TOMCAT resolution). a Mean bias in the spatial
distribution of annual mean surface PM2.5 concentrations. b Comparison of PM2.5 concentra-
tions, best fit line (yellow line), 1:1 (solid black line), 2:1 and 1:2 (dashed black lines). Best fit
line has slope = 0.56 and Pearson’s correlation coefficient (r) = 0.83. c Spatial distribution of
Normalised mean bias factor (NMBF), and c NMBF box and whisker by sub-region, showing
the minimum, maximum and median distribution values, as well as the 10th, 25th, 75th, and

90th percentiles.
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FIGURE A.6: Cause-specific diseases per age group in the base case of the International Fu-
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Region Population-weighted PM2.5 Fraction of population
2050 Residential Residential fraction (%) > AQG (%) > IT-1 (%)

Global 41 (4.5,12.3%) 6.5(-1.9,-22.7%) 15.9(-7.2) 90.4(-0.0) 48.8(3.5)
East and Southeast Asia, and Oceania

East Asia 43.8 (-10,-18.7%) 6.6(-11.5,-63.6%) 15.1(-18.6) 99.6(0.0) 79.3(-1.6)
Southeast Asia 24.1 (3.2,15.5%) 3.5(0.1,3.9%) 14.5(-1.6) 93.7(2.1) 13.0(5.5)

Oceania 8.7 (0.4,4.7%) 0.1(0.01,27.5%) 1.1(0.2) 28.1(0.6) 0.0(0.0)
South Asia
South Asia 76.2 (21.6,39.7%) 16.4(1.2,7.8%) 21.6(-6.4) 100.0(0.0) 91.3(5.6)

Central and Eastern Europe, and Central Asia
Central Asia 26.4 (2.3,9.5%) 1.2(0.2,26.6%) 4.4(0.6) 96.7(0.9) 23.5(5.9)

Central Europe 16.1 (-3.7,-18.5%) 2.5(-1.9,-43.6%) 15.6(-6.9) 100(0.0) 0.0(0.0)
Eastern Europe 14.2 (-0.4,-2.4%) 1.3(-0.5,-29.9%) 9.0(-3.5) 92.4(1.9) 0.0(-0.0)
High-income
Australasia 6.8 (-0.1,-1.4%) 0.01(-0.01,-41.6%) 0.4(-0.3) 0.1(0.0) 0.0(0.0)

High-income Asia Pacific 14.0 (-2.0,-12.5%) 1.2(-2.6,-68.6%) 8.5(-15.2) 92.8(-3.5) 0.0(0.0)
High-income North America 8.0 (-1.3,-13.6%) 0.4(-0.1,-24.0%) 5.5(-0.8) 20.4(-14.2) 0.0(0.0)

Southern Latin America 10.9 (0,0.3%) 0.4(0.01,5.7%) 3.8(0.2) 40.8(-0.7) 0.0(0.0)
Western Europe 10.4 (-1.5,-13.0%) 0.6(-0.6,-48.6%) 6.2(-4.3) 48.4(-19.6) 0.3(0.1)

Latin America and Caribbean
Andean Latin America 15.7 (-0.1,-0.4%) 0.8(0.3,49.7%) 5.1(1.7) 90.7(-2.3) 0.7(0.0)

Caribbean 14.3 (-0.5,-3.6%) 0.3(0.0,18.2%) 2.0(0.4) 99.3(0.1) 0.0(0.0)
Central Latin America 18.5 (-0.6,-3.2%) 1.3(0.1,7.8%) 6.8(0.7) 95.4(0.3) 2.2(-0.3)
Tropical Latin America 9.5 (0.2,2.3%) 0.4(0.0,10.6%) 4.3(0.3) 32.8(2.4) 0.0(0.0)

North Africa and Middle East
North Africa and Middle East 44.6 (1.7,4%) 1.5(-0.1,-6.6%) 3.4(-0.4) 100(0.0) 63.8(10.0)

Sub-Saharan Africa
Central Sub-Saharan Africa 32.3 (1.4,4.6%) 5.3(1.5,38.9%) 16.4(4.1) 100(0.0) 33.3(6.7)
Eastern Sub-Saharan Africa 30.0 (1.6,5.5%) 7.1(0.8,12.9%) 23.5(1.5) 99.8(0.0) 30.3(3.9)

Southern Sub-Saharan Africa 16.2 (0.2,1.2%) 2.9(0.9,47.6%) 17.9(5.6) 99.5(0.5) 0.0(0.0)
Western Sub-Saharan Africa 48.1 (2.2,4.8%) 3.2(0.3,8.7%) 6.6(0.2) 100(0.0) 63.7(3.5)

TABLE A.1: Simulated values in 2050 under the reference scenario with associated changes (in
parenthesis), relative to 2015. Second column: population-weighted PM2.5 (µg m-3) with asso-
ciated changes (absolute and percentage, respectively). Third column: population-weighted
PM2.5 due to residential emissions (µg m-3) with associated changes (absolute and percentage,
respectively). Fourth column: percentage of mean population-weighted PM2.5 concentrations
due to residential emissions with associated changes (percentage point). Fifth column: per-
centage of regional population exposed to levels above the WHO air quality guideline (AQG)
standard of annual mean PM2.5 (10 µg m-3) with associated changes (percentage point). Sixth
column: percentage of regional population exposed to levels above the WHO interim target 1
(IT-1) standard of annual mean PM2.5 (35 µg m-3) with associated changes (percentage point).
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FIGURE A.10: Change in attributable per capita (e.g., crude) mortality rates (deaths per 105)
in the 2050 reference per cause-specific disease: lower respiratory infections (LRI), chronic
obstructive pulmonary disease (COPD), Lung cancer, and cardiovascular diseases: ischaemic
heart disease (IHD) and cerebrovascular disease (CEV; ischaemic stroke and haemorrhagic

stroke).
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FIGURE A.12: Annual mean population-weighted PM2.5 concentrations in 2050 under the ref-
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FIGURE A.16: Mortality attributable (millions) to long-term ambient PM2.5 exposure us-
ing the alternative exposure-response relationship the Global Mortality Exposure Mortality
Model (GEMM) (bars), mortality provided by the integrated exposure-response (IER) for
comparison (circles). Attributable mortality estimates are shown from 2015 and 2050 scenar-
ios: reference, clean residential and MTFR scenarios (bars). Horizontal lines in bars represent
residential mortality using the ’attribution’ method. Note that the left axis is used for global,
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