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Abstract 

Anthropogenic CO2 is the most important long-lived greenhouse gas, and 

with atmospheric concentrations over 40% above pre-industrial levels, it is the 

main cause of climate change. The terrestrial carbon sink has increased in 

proportion with anthropogenic CO2 emissions over the last century and 

dampened climate change. Yet, the mechanisms behind the increase remains a 

puzzle and this limits our predictive abilities to estimate climate-carbon 

feedbacks in projections of future climate changes. Since the turn of this century, 

the terrestrial sink has substantially increased during a time of rapid increase in 

fossil fuel CO2 emissions.  

In this thesis, the influence of increased diffuse radiation (due to 

anthropogenic aerosol) and nitrogen deposition (and carbon-nitrogen 

deposition synergies) associated with increased fossil fuel emissions on 

terrestrial carbon uptake, since the turn of this century is quantified. I also 

assessed interannual variations (IAV) and trends in climate-driven gross 

primary productivity (GPP) over the period 1982-2016. The distribution of 

atmospheric aerosols due to anthropogenic fossil fuel emissions was simulated 

with chemical transport-aerosol model TOMCAT-GLOMAP over the period 1998-

2010. The influence of aerosols on incoming solar radiation was calculated with 

the radiative transfer model Edwards-Slingo. Subsequently, the impact of 

variations in direct and diffuse radiation on net primary productivity (NPP) are 

quantified with the land-surface model JULES. Secondly, the Community Land 

Model (CLM4.5-BGC) was used to estimate the influence of changes in 

atmospheric CO2, nitrogen deposition, climate, and their interactions to changes 

in net primary production (NPP), and net biome production (NBP) over the 

historical (1901-2016) and modern (1990-2016) periods. Finally, the influence 

of climate on vegetation productivity is evaluated using upscaled flux tower 

observations (FLUXCOM), a satellite-based light use efficiency model (LUE), and 

a set of process based terrestrial biosphere models (TRENDYv6).   

I estimate that at global scale, changes in light regimes from fossil fuel 

aerosol emissions had only a small negative effect (-0.08 PgC/yr) on the increase 
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in terrestrial NPP over the period 1998–2010 (overall increase of 1.7 PgC/yr). 

Hereby, the substantial increases in fossil fuel aerosol emissions and subsequent 

plant carbon uptake over East Asia (33% of the 0.53 PgC/yr increase) were 

effectively cancelled by opposing trends across Europe and North America. Over 

1901-2016, nitrogen deposition and carbon-nitrogen synergistic effects 

contributed ~30% to increase in NBP (overall increase of 2.31 PgC/yr). 

However, since the turn of this century, nitrogen-related mechanisms had no 

contribution to the increasing sink. Opposing regional NBP trends due to 

nitrogen deposition (50 TgC/yr increase in East Asia, and 14 TgC/yr and 6 

TgC/yr decreases in North America and East Europe, respectively) cancel at the 

global scale. Nonetheless, I find that increased nitrogen deposition in East Asia 

since the early 1990s contributed 50% to the overall increase in NBP over this 

regions, highlighting the importance of carbon-nitrogen interactions. Therefore, 

potential large-scale changes in nitrogen deposition could have a significant 

impact on terrestrial carbon cycling and future climate. 

Regarding the impact of climate variations on vegetation productivity, I 

find large differences in global and regional trends between the observational 

and modelling products. FLUXCOM has a small positive global GPP trend 

(0.02±0.01 PgC/yr2) and has a smaller IAV than both other products. The 

TRENDYv6 models simulate a positive global GPP trend of 0.09±0.06 PgC/yr2, 

whereas the LUE product has a smaller increase of 0.06±0.02 PgC/yr2. For 

TRENDYv6 and LUE, the global pattern is predominately driven by a large 

northern latitude increase (driven by a warming trend). The products agreed on 

the direction of trend across 60% of the vegetated land surface. Large areas of 

Eurasia and North America exhibit positive summer trends due to warming. In 

contrast, warming in central South America has decreased GPP. Negative 

precipitation trends in South US and Mongolia/China have reduced GPP, 

whereas a wetting trend in South Africa has enhanced productivity.  There are 

clear differences in the sensitivity of each product to climate forcing, highlighting 

uncertainty in the processes that influence GPP. These differences in variability 

and trends in GPP, as well as underlying climatic controls in the three most 

commonly used products in carbon cycle studies, highlight the need for long-

term observations of GPP, particularly in underrepresented regions (e.g. tropical 
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forests), and the need to better constrain and improve GPP estimates from 

models.  
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b) TRENDYv6, c) LUE. d, Agreement in the direction of trend 
between the three products. Dark areas are where all agree on the 
direction of trend and light areas indicate disagreement (two 
products agree, and one differs). ................................................................ 125 

Figure 4.4 - Trends in regionally averaged monthly GPP based on each 
product and the level of agreement between them. Panels show 
latitude (y-axis) - month (x-axis) plots of the linear trend in 
monthly GPP over 1982-2016 (gC/m2/yr2) in 10° latitude bins 
between 60°S and 80°N for a) FLUXCOM, b) TRENDYv6, and c) LUE. 
Significant trends (P<0.05) are highlighted with a black circle. 
Panel d) summarizes agreement in monthly GPP trends amongst 
the products (Dark green – 3 products agree on positive trend, light 
green – 2 products agree on positive trend, light brown – 2 
products agree on negative trend, dark brown – 3 products agree 
on negative trend). ........................................................................................... 127 

Figure 4.5 - Sensitivity of global (G), northern (N), tropical (T), and 
southern (S) annual GPP to temperature (γ) and precipitation (λ) 
anomalies. Regions are defined in Figure D1. γ and λ are estimated 
from equation (2) over the period 1982-2016 (see Methods). Error 
bars show the standard error of the sensitivity estimates (see 
Methods). Dashed error bars indicate the multiple regression 
coefficient is statistically insignificant (P>0.05). Inset table shows 
the proportion of variance in GPP that is explained by the multiple 
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Figure 4.6 - Spatial pattern of the response of GPP to variability in mean 

annual temperature (MAT) and mean annual precipitation (MAP). 
Sensitivity of annual GPP to variations in (a, c, e) MAT 
(gC/m2/yr/°C) and (b, d, f) MAP (gC/m2/yr/100mm) for (a,b) 
FLUXCOM, (c,d) TRENDYv6, and (e,f) LUE. Sensitivities are 
calculated from multiple linear regression of annual GPP against 
MAT and MAP at each grid cell (see equation (2) in Methods). Only 
significant (P<0.05) sensitivities are shown. .......................................... 130 

Figure 4.7 - Spatial pattern of the relative importance of temperature 
and precipitation in explaining annual GPP variability for a) 
FLUXCOM, b) TRENDY, and c) LUE (see Methods). Percentage of 
dominance for temperature and precipitation for four large scale 
regions is also shown (d). A climate variable is dominant if it 
contributes more than 50% to the explained variance in the 
multiple linear regression. ............................................................................ 132 

Figure A.1 - Modular structure of JULES. Boxes show physical processes, 
and lines show links between modules. Biophysical processes are 
shown in blue and carbon cycle processes in green. Figure from 
Best et al., (2011). ............................................................................................. 167 

Figure A.2 - Conceptual design of the Community Land Model version 
4.5. Image from www.cesm.ucar.edu/models/clm ............................... 170 

Figure A.3 - Schematic of the coupled carbon-nitrogen cycles in CLM. 
Blue arrows represent carbon pathways and orange arrows 
nitrogen pathways. Figure from Thornton et al. (2009). .................... 171 
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Figure B.1 - Comparison between modelled and satellite AOD trends (yr-

1) for the period of overlapping data records 2001-2010. Panels 
depict linear Jul-Dec half-yearly mean trends for (a) GLOMAP, (b) 
MODIS, and (c) SeaWiFS. In (d), linear trends in AOD (yr-1) between 
2001 and 2010 are shown for the three focus regions (land points 
only): Europe (EU), North America (NA), and East Asia (EA) based 
on GLOMAP (green), MODIS (violet), and SeaWiFS (brown). The 
crosses represent the mean trend, the middle bars the median, the 
boxes the 25th and 75th percentile values and the error bars the 
minimum and maximum values with circles representing outliers 
(greater than 1.5 x interquartile range). The three focus regions are 
depicted in the top left panel. In the maps, white areas in (b) and (c) 
indicate regions where satellite retrievals were not available and 
statistically significant (P<0.05) trends are highlighted with 
stippling. In our GLOMAP AOD calculations we did not consider all 
aerosol size modes and so miss the majority of dust aerosol, which 
has potential to cause discrepancies between model and 
observations. To assess whether dust may have a strong influence 
on the annual AOD trends (Figure 1 in main manuscript), we also 
computed AOD trends based on Jul-Dec means since at that time 
dust is generally not dominating the AOD fields specifically in East 
Asia (Hansen et al., 2013; ref. in main manuscript). Comparing the 
(GLOMAP) simulated AOD trends with the satellite observed trends 
generally showed a good agreement specifically in areas where FF 
aerosol emissions dominate the AOD trends (see also Figure B1).  
Further, a comparisons of the satellite AOD trends based on annual 
and half-yearly means also shows good agreement suggesting that 
dust does not play a dominant role in the observed AOD trends. ... 173 

Figure B.2 - Simulated and observed annual mean AOD time series for 
five regions where discrepancies between modelled and observed 
AOD trends at some level were identified (see Figure 1 in main ms):  
a) Amazon, b) Europe, c) north east Russia, d) India, and e) Alaska. 
Regions are shown in f). Results are shown for GLOMAP 
(diamonds), SeaWiFS (squares), and MODIS (triangles). Linear best 
fit lines are plotted, with statistically significant trends (P<0.05) 
bolded. .................................................................................................................. 174 

Figure B.3 - Spatial pattern of linear trends (yr-1) in simulated annual 
AOD due to each factor (a-c) and the dominating driving factor in 
the trend (d) over 1998-2010. The isolated factors include (a) 
climate, (b) fire emissions, and (c) fossil fuel emissions. Panel (d) 
shows the dominating driver with climate (blue), fires (green), and 
fossil fuels (orange) depicted. White areas depict regions with no 
factor contributing more than 50% to the total trend (no 
dominating factor). .......................................................................................... 175 
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Figure B.4 - Scatterplot of monthly mean observed (FluxNet) versus ES 

modelled (a,c,e,g) total and (b,d,f,h) diffuse radiation at (a,b) 
Hyytiala, Finland (Hyy) (61.85°N, 24.30°E), (c,d) Bartlett 
Experimental Forest, New Hampshire, US (Bar) (44.06°N, 71.29°W), 
(e,f) Loobos, Netherlands (Loo) (52.17° N, 5.74° E), and (g,h) Walker 
Branch Watershed, Tennessee, US (WBW) (35.96°N, 84.29°W). The 
normalised mean bias (NMB), r2 and root-mean-square error 
(RMSE) between model and observations are shown in each panel. 
Linear best fit lines are also plotted. This data model comparison 
shows generally a good agreement, albeit with high model bias in 
total radiation (22%<NMB<37%). Simulated diffuse radiation 
matched the observations also well (-32%<NMB<-5%), with the r2 
value between modelled and observed radiation (total and diffuse) 
being high at all sites (r2>0.82). ................................................................... 176 

Figure B.5 - Observed (black) and ES modelled (blue) monthly mean 
total (solid) and diffuse (dashed) radiation at a) Hyy, b) Bar, c) Loo, 
and d) WBW.  Results show that the model also captures the 
observed seasonal cycle of surface radiation. The aforementioned 
high model bias in total radiation (Figure B4) is notable at Hyytiala, 
however the model performs well at the other three sites, 
especially in matching observed diffuse radiation trajectories. ...... 177 

Figure B.6 - Observed (black) and modelled (blue) GPP response to both 
direct (triangles) and diffuse (squares) photosynthetic active 
radiation (PAR) averaged for bins of 200 μmol m-2s-1 for the 
northern summer (Jun-Aug) at (a) Hyy (2002-2006), (b) Bar (2004-
2006), (c) Loo (2004-2006), and (d) WBW (1998-1999). Error bars 
show 1 standard deviation of the range of GPP responses. Data 
points are split into “diffuse” and “direct” conditions using 
thresholds of diffuse fractions >80% and <25% to discriminate 
between the two cases. The two European FluxNet sites, Hyy (panel 
a) and Loo (c), are needleleaf forests, whereas two North American 
FluxNet sites, Bar (b) and WBW (d), are broadleaf forests. Results 
show that observed and simulated GPP increase with PAR, 
saturating at high light levels. Further, GPP is consistently higher 
under diffuse light conditions as expected from the theory of 
radiative transfer in vegetation canopies. It should be noted, that 
the sensitivity simulations were performed without tuning 
important model parameters (eg Vcmax, tree height) to site level 
conditions and, hence, some discrepancies between model and 
observations are anticipated. Overall, however, this comparison 
along with the previous validation studies mentioned in the main 
ms demonstrate that the model can realistically simulate 
photosynthetic responses in a range of forest types and light 
regimes. ................................................................................................................ 178 
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Figure B.7 - Spatial pattern of linear trends (Wm-2yr-1) in simulated 

annual surface diffuse radiation due to each factor (a-d) and the 
dominating driving factor in the trend (e) over 1998-2010. The 
isolated factors include (a) climate, (b) fire emissions, (c) fossil fuel 
emissions, and (d) clouds. Panel (e) shows the dominating driver 
with climate (blue), fires (green), fossil fuels (orange), and clouds 
(grey) depicted. White areas depict regions with no factor 
contributing more than 50% to the total trend (no dominating 
factor). .................................................................................................................. 179 

Figure B.8 - Dominant driving factor in simulated (JULES) NPP trend 
over 1998-2010. ................................................................................................ 180 

Figure B.9 - Spatial distribution of trends in selected land climate 
drivers for the period 1998-2010, including (a) temperature (○Cyr-

1) and (b) precipitation (%yr-1). .................................................................. 180 

Figure C.1 - Global mean changes in model drivers from 1901-2016 for 
a) land surface temperature (C), b) total precipitation over land 
(mm/yr), c) total atmospheric nitrogen deposition over land 
(TgN/yr), and d) atmospheric CO2 concentrations (ppm). ................ 183 

Figure C.2 - Spatial trends in model drivers over the period (1901-1910) 
to (2007-2016) for a) land surface temperature (C), b) 
precipitation (mm/yr), and c) atmospheric nitrogen deposition 
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Figure C.3 - Change in Btran between (1901-1910) and (2007-2016). 
Btran represents soil water availability in CLM and is a scaling 
factor (range 0 – 1) on stomatal conductance related to plant-
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Figure C.4 - Change in net nitrogen mineralisation (gN/m2/yr) between 
(1901-1910) and (2007-2016) due to climate forcing alone. ........... 185 

Figure C.6 - Spatial maps of the change in nitrogen deposition 
(mgN/m2/yr) between 1990-1996 and 2010-2016 for a) total N 
deposition, b) NOy deposition, and c) NHx deposition. Since the 
early 1990s, global nitrogen deposition remained approximately 
constant (~80 TgN/yr), but there were large regional changes. 
Comparing the end (2010-2016) to the start (1990-1996) of this 
period, East Asia [75°E to 125°E and 10°N to 45°N] experienced a 
27% increase in annual nitrogen deposition, mostly driven by fossil 
fuel (NOx) burning, but with a significant contribution from 
agricultural (NHx) activities (a-c). Reductions in fossil fuel burning 
in Europe [10°W to 25°E and 40°N to 60°N] and North America 
[120°W to 75°W and 30°N to 45°N] caused declines in deposition 
rates (b), however increasing agricultural intensity has countered 
the fossil fuel trend (c). Overall, the relative changes in nitrogen 
deposition in Europe and North America are smaller than East Asia, 
a 3% increase and 16% decrease, respectively. .................................... 187 

Figure C.7 - Spatial trends in model drivers over the period (1990-1996) 
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Figure C.8 - Change in Btran between (1990-1996) and (2010-2016). 

Btran represents soil water availability in CLM and is a scaling 
factor (range 0 – 1) on stomatal conductance related to plant-
available soil water. ......................................................................................... 189 

Figure C.9 - Spatial patterns of heterotrophic respiration change 
(gC/m2/yr) due to a) CO2 fertilization, b) nitrogen deposition, c) 
climate, d) CN-synergy, e) CC-synergy, and f) combined effect. The 
patterns are based on a set of factorial simulations (see Methods). 
Respiration changes shown here are calculated as the difference 
between 2010-2016 and 1990-1996 mean values. Significant 
(p<0.05; Mann-Whitney U test) changes highlighted with hatching.190 

Figure C.10 - Spatial distribution of Γ (gC/ppm) for the extended (top 
row) and recent (bottom row) periods calculated from the 
difference in total ecosystem carbon between the start and end of 
the study period (see Methods in main ms) for simulations with 
varying atmospheric CO2, constant climate and constant nitrogen 
deposition, (a,d). Panels b,e depict the influence of carbon-nitrogen 
synergy on Γ, and panels c,f depict the combined influence of 
nitrogen deposition and carbon-nitrogen synergy on Γ. .................... 191 

Figure C.11 - Changes in Amazon N limitation for 1901-2016 (solid) and 
1990-2016 (dotted). Changes are relative to a control simulation 
with no variables changing. Contributions from CO2 (black), 
nitrogen deposition (red), climate (blue), combined (green), and 
CN-synergy (yellow) are shown. .................................................................. 192 

Figure C.12 - Changes in global nitrogen deposition expressed as a 
percentage change from the start of the simulation (1990). ............. 193 

Figure C.13 - Change (percentage from control run) in nitrogen 
limitation scalar from 1990 to 2016 using the recent simulations. 
The direct influence of nitrogen deposition (dotted) and carbon-
nitrogen synergy (dashed) are shown. Four regions are shown, 
namely a) Global, b) East Asia (75°E to 125°E and 10°N to 45°N), c) 
Western Europe (10°W to 15°E and 40°N to 60°N), and d) North 
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Figure D.1 - Regions used in the study. Regions are broadly defined from 
the TRANSCOM-3 experiment. North American boreal, North 
American temperate, Europe, Eurasian Temperate, and Eurasian 
boreal are grouped as North. South American tropical, North Africa, 
and tropical Asia are grouped as Tropics. We further used the 
MODIS land over product (MCD12C1) to isolate African tropical 
forest and included this in the Tropics region. Finally, South 
American temperate, Southern Africa, and Australia are grouped as 
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Figure D.2 - Global annual mean GPP distribution (PgC/yr) over 1982-
2016 for each ensemble member of the three products. Ensemble 
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Figure D.3 - Trends in annual GPP (PgC/yr2) over 1982-2016 in four 

regions for each ensemble member from FLUXCOM for three 
upscaling approaches (Artificial Neural Network – ANN, Random 
Forest – RF, and Multivariate Adaptive Regression – MARS); (1) 
ANN, (2) RF, (3) MARS, from TRENDY models; (4) CABLE, (5) CLASS-
CTEM, (6) CLM4.5-BGC, (7) DLEM, (8) ISAM, (9) JSBACH, (10) JULES, 
(11) LPJ-GUESS, (12) ORCHIDEE, (13) ORCHIDEE-MICT, (14) VEGAS, 
and (15) VISIT, and from LUE model for two parameterisations; 
(16) Zhao & Running, 2010, and (17) Robinson et al., 2018 
(references in main manuscript). Ensemble mean trend for each 
region and product is shown in light blue. .............................................. 197 
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Figure D.6 - Boxplots of grid scale correlations between FLUXCOM-
TRENDY (purple), FLUXCOM-LUE (yellow), and TRENDY-LUE (cyan) 
for each biome type defined in Figure D5. Grey dashed line (r=0.28) 
represents significant correlation (P=0.05). .......................................... 200 
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Figure D.8 - Correlation between detrended seasonal GPP (1982-2016) 
for each product. Seasons are defined as December-January-
February (DJF), March-April-May (MAM), June-July-August (JJA), 
and September-October-November (SON). Non-significant 
correlations (r<0.28, P>0.05) are in grey. Missing data is 
represented with white. (r=0.28, 0.33, 0.43 corresponds to P=0.1, 
P=0.05, P=0.01). ................................................................................................ 202 

Figure D.9 - Linear trends in mean annual temperature (°C/yr) and 
mean annual precipitation (%/yr) from CRUNCEPv8 reanalysis 
over the period 1982-2016. .......................................................................... 203 

Figure D.10 - Trends in seasonal GPP (gC/m2/yr2) for each product over 
the period 1982-2016. The maps depict significant (P<0.05) trends 
and seasons are defined as in Figure D8. Right column shows 
“synergy” between trends. Dark areas are where all agree on the 
direction of trend and light areas indicate disagreement (two 
products agree, and one differs). ................................................................ 204 

Figure D.11 - Annual mean (a,c,e,g) temperature (°C) and (b,d,f,h) 
precipitation (mm/yr) anomalies for (a,b) global, (c,d) northern, 
(e,f) tropical, and (g,h) southern regions. Best fit lines are shown in 
blue with slope and intercept depicted on plot.. Data is from 
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Chapter 1  

Introduction  

1.1 The global carbon cycle 

The cycling of elements in the Earth system is integral in the creation and 

maintenance of life. The major elements (carbon, oxygen, hydrogen, nitrogen, 

phosphorus, and sulfur) cycle through four components (biosphere, lithosphere, 

atmosphere, and hydrosphere) of Earth. Carbon is the main component of all life 

on Earth and (as carbon-dioxide) partially responsible for the greenhouse effect, 

warming the planet to hospitable conditions for life. Carbon flows between five 

major reservoirs; atmosphere, biosphere, oceans, sediments (fossil fuels and soil 

carbon), and the Earth’s interior (mantle and crust).  

The Earth’s interior contains over 99.9% of all planetary carbon. Only a 

small fraction (40,000 PgC) of carbon is stored in pools near the Earth’s surface. 

The oceans contain 95% of this biologically active carbon, with majority stored 

as dissolved inorganic carbon (DIC). Terrestrial carbon is stored as organic 

forms in soils (1500-2400 PgC) and vegetation (450-650 PgC) (Ciais et al., 2013). 

Permafrost soils are estimated to contain at least 1700 PgC (Ciais et al., 2013). 

The atmosphere is the smallest pool, containing over 850 PgC as of 2018 

(calculated using a conversion factor of 2.12 PgC/ppm, Prather et al. (2012)).  

However, these pools are not static and evolve over varying timescales. 

The carbon cycle is the superposition of two cycles, a slow cycle whereby carbon 

is exchanged between atmosphere, oceans, land by chemical weathering of rocks 

and tectonic activity over millions of years; and a fast cycle in which biological 
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and physical processes drive carbon exchange between the atmosphere, oceans, 

and terrestrial ecosystems on timescales of days to decades.  

Terrestrial carbon uptake is the balance of large, uncertain processes. 

Global photosynthesis, known as Gross Primary Production (GPP) is estimated 

to be roughly 110 PgC/yr during the pre-industrial era (Ciais et al., 2013). Half of 

this carbon is respired by plants during maintenance and biomass growth. The 

remainder is Net Primary Production (NPP) which represents the net production 

of organic matter in plants. Decomposition of dead organic matter by soil biota, 

known as heterotrophic respiration (Rh) is a main pathway for carbon to 

transfer from the land to the atmosphere. The difference between NPP and Rh is 

Net Ecosystem Production (NEP), which represents the net accumulation of 

carbon in an ecosystem. Fires and other disturbance processes lead to further 

carbon release to the atmosphere. The net flux of carbon to the land is known as 

Net Biome Production (NBP=NEP-disturbances) and is relatively small 

compared to the total fluxes (~1% of GPP), and therefore small changes in these 

gross fluxes can lead to relatively large changes in the net carbon flux.  

The majority (98%) of ocean carbon is stored as dissolved inorganic 

carbon (DIC). Deep ocean carbon is relatively stable with a turnover time of 

thousands of years (Ciais et al., 2013). Conversely, surface DIC is exchanged 

rapidly with the atmosphere.  

Prior to industrialisation the carbon cycle is thought to have been in a 

relative steady state with no net exchange between the atmosphere, oceans, and 

land. Human activities have disrupted this natural state. The burning of fossil 

fuels for heat, electricity and other industrial processes has transferred vast 

quantities of carbon from the slow carbon cycle to the fast.  

In the atmosphere, carbon exists predominately as carbon dioxide (CO2), 

with current concentrations exceeding 400 ppm (850 PgC). This is an increase of 

more than 45% since the beginning of the Industrial Revolution, which has been 

the predominant driver of increased concentrations, through the burning of 

fossil fuels and deforestation. Human emissions (ETOT) have totalled 645±80 PgC 

since 1750 (Le Quéré et al., 2018). However, less than half (270±5 PgC) of these 

emissions have remained in the atmosphere (GATM), with the remainder 

sequestered into the land (SLAND) and oceans (SOCEAN) (see Figure 1.1). The 
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biospheric sinks provide a valuable service due to the warming nature of 

atmospheric CO2. Increased CO2 concentrations due to anthropogenic activity 

has already warmed the planet by 1 °C since 1880 (Hartmann et al., 2013) and 

will continue to do so into the future (even if emissions stopped immediately) 

due to the thermal inertia of the oceans (Wigley, 2005). Current (2007-2016) 

fossil fuel and land-use change emissions are 9.4±0.5 and 1.3±0.7 PgC/yr, 

respectively. Similarly to the cumulative sink, the atmosphere retained 45% 

(4.7±0.1) of these emissions.  

Air-sea gas exchange is primarily driven by the difference in partial 

pressure of CO2 between the atmosphere and ocean surface. As such, the ocean 

sink has increased in proportion with atmospheric concentrations. The ocean 

has absorbed 160±20 PgC of human emissions since 1750, equating to roughly 

25% of total emissions (Le Quéré et al., 2018). This carbon is mainly in the 

surface waters as oceans take thousands of years to mix fully (Ciais et al., 2013). 

The current (2007-2016) sink is estimated at 2.4±0.5 PgC/yr and exhibits little 

inter-annual variability (Le Quéré et al., 2018).  

To close the historical global carbon budget, the cumulative terrestrial 

sink is 215±80 PgC (estimated as the residual term in SLAND = ETOT – GATM – 

SOCEAN). On an annual basis, the terrestrial sink increased from 1.8±0.8 PgC/yr in 

the 1960s to 3.6±1.0 PgC/yr in 2007-2016. The increased sink is due to a myriad 

of factors including; CO2 fertilization of photosynthesis (Schimel et al., 2015), 

climate warming leading to longer and more favourable growing seasons 

(Barichivich et al., 2013), regrowth on abandoned farm land (Kondo et al., 2018), 

and nitrogen deposition stimulating plant growth (Zaehle, 2013) (see Section 

1.2). All these effects do not act independently, and as such there may be 

important synergies between the carbon, nitrogen, and warming effects on plant 

growth.  
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Figure 1.1 – Schematic of the global carbon cycle. Stores of carbon are shown in boxes (PgC) and 
fluxes are shown next to arrows (PgC/yr). Numbers and text in black represent 
preindustrial/natural (year 1750) fluxes and stores. Red numbers in boxes represent the 
cumulative effect of anthropogenic activity over 1750-2011. Red arrows and number represent 
annual anthropogenic fluxes averaged over 2000-2009. Figure from Ciais et al. (2013). It should be 
noted that fluxes and stocks quoted in the text may differ from the figure due to slightly differing 
averaging periods.  
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There is large uncertainty in global terrestrial carbon uptake, and 

independent methods tend not to agree on the magnitude or spatio-temporal 

location of the sink. The budget residual estimate mentioned above inherently 

contains all biases from the other terms in the budget (Le Quéré et al., 2018). 

Atmospheric CO2 inversions estimate regional land and ocean fluxes using local 

atmospheric CO2 concentrations and atmospheric transport models (eg. Gurney 

and  Eckels (2011), Piao et al. (2013)). The sparse sampling network of CO2 

measurements and inaccuracies of the transport models means this approach 

can only be solved for large scale (continental) fluxes. Further, both these 

methods offer no understanding of the biospheric processes involved. There are 

local scale approaches such as using eddy covariance flux towers, which 

measure local scale NEP using vertical wind velocity and CO2 concentrations. 

However, the small footprint around the towers makes estimating global fluxes 

difficult and highly uncertain (Jung et al., 2009, Jung et al., 2011). Carbon stocks 

and fluxes can be estimated from forest inventories (Pan et al., 2011). However, 

these inventories suffer from minimal spatial coverage, hence regional flux 

estimates are uncertain. The gap between spatial scales can be addressed using 

terrestrial ecosystem models, which simulate GPP, plant growth, litterfall, and 

respiration and offer an estimate of the residual carbon sink given our current 

knowledge. The latest version of Global Carbon Budget (Le Quéré et al., 2018) 

uses a suite of dynamic global vegetation models to estimate the terrestrial sink 

(SLAND) at 3.0±0.8 PgC/yr over 2007-2016, giving a budget imbalance of 0.6 

PgC/yr (BIM = ETOT – GATM – SOCEAN – SLAND). 

Terrestrial ecosystem functioning can be observed in atmospheric CO2 

concentrations. This is clear in the annual Mauna Loa, Hawaii (MLO, 20°N) CO2 

record (Figure 1.2) which peaks in boreal winter and troughs in boreal summer 

– in-line with the growing season. The northern hemisphere dominates the 

global signal due to the majority of land located there. The amplitude of the 

seasonal cycle (difference between maximum and minimum concentrations) is 

larger at higher latitudes, where seasons are more pronounced. The amplitude 

also reflects terrestrial productivity (Forkel et al., 2016, Graven et al., 2013, 

Myneni et al., 1997, Randerson et al., 1997). At high latitudes, photosynthesis 
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only occurs during the relatively short growing season, whereas respiration 

occurs throughout the year. The northern hemisphere (>45°N) seasonal cycle 

has been increasing since the 1960s indicating a change in ecosystem 

functioning (Graven et al., 2013). This change is thought to be the response of 

boreal forests to warmer temperatures, increasing growing season length and 

carbon uptake (Forkel et al., 2016, Graven et al., 2013). However, warmer 

temperatures can lead to drier conditions, increasing plant water stress. This has 

been observed in North American boreal forests where an earlier growing 

season led to reduced peak summer productivity (Buermann et al., 2013). 

Further, dry conditions lead to higher chances of fire and insect outbreaks, 

which can release large quantities of carbon to the atmosphere in a short 

amount of time (Anderegg et al., 2012). 

 

 

 

 

 

 

 

 

Climate variability exerts a notable signal on the global carbon cycle, as 

can be observed with the annual atmospheric CO2 growth rate (Figure 1.3). The 

predominant climate feature controlling IAV of land carbon fluxes is the El Nino 

Southern Oscillation (ENSO). During El Nino years, the terrestrial biosphere 

releases more carbon to the atmosphere, with the converse true for La Nina 

Figure 1.2 – Monthly mean (black) and annual mean (red) atmospheric CO2 
concentration at Mauna Loa, Hawaii 1959-2018. Data from Scripps Institute of 
Oceanography.  
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(cool and wet) years. The strong El Nino years of 1997/98 and 2015/16 led to 

high atmospheric growth rates of 3 ppm/yr (~6 PgC/yr), as a result of reduced 

plant productivity and increased wildfires (Chatterjee et al., 2017, Liu et al., 

2017, Nemani et al., 2003, Van Der Werf et al., 2004).  

The low growth rate in the early 1990s can be attributed to the eruption 

of Mt. Pinatubo which injected substantial sulfate aerosol into the stratosphere. 

This aerosol cooled the atmosphere, reducing ecosystem respiration and also 

increased the ratio of diffuse to direct radiation, allowing deeper penetration 

into forest canopies, increasing NPP (Gu et al., 2003, Lucht et al., 2002). The 

majority (75%) of the inter-annual variability in the terrestrial carbon flux can 

be attributed to ENSO and volcanic eruptions (Raupach et al., 2008).  

There is no clear consensus on the driving mechanisms or region 

contributing most to carbon cycle variability. There is evidence for tropical 

forests responding to temperature variations to be the primary source of 

variability on inter-annual timescales (Gurney et al., 2008, Peylin et al., 2005). 

This can be observed in the strong correlation between tropical temperatures 

Figure 1.3 – Annual increase in atmospheric CO2 (ppm/year) 1960-2017. The 
background shows the intensity and duration of El Nino events based on the MEI. 
CO2 change is a 12 month running mean of differences for the same month in 
consecutive years. MEI data is a 12 month running mean. CO2 data is from the 
Scripps Institute of Oceanography.  
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and the atmospheric CO2 growth rate (Cox et al., 2013, Wang et al., 2013, Wang 

et al., 2014). Conversely, recent studies have highlighted the important role of 

water availability in controlling the carbon variability of semi-arid regions 

(Ahlstrom et al., 2015, Poulter et al., 2014). A recent study attempted to resolve 

this issue by considering carbon flux variations to both temperature and water 

availability at local and global scales (Jung et al., 2017). They conclude that local 

gross (GPP and Rh) carbon fluxes are controlled by water availability but as this 

is integrated to the net carbon flux (NEP) and larger spatial scales, temperature 

variability dominates the signal. This can be explained by two processes. First, 

the response of GPP and Rh to water availability are highly correlated, so the net 

flux response is reduced. Secondly, there is a larger spatial consistency in NEP 

response to temperature (higher temperatures lead to larger loss of carbon), 

whereas the NEP response to water availability is more heterogeneous. 

Together, this leads to temperature variability dominating the global carbon 

signal. Over the latter half of the 20th century (1960-2000) the atmospheric 

growth rate grew from less than 1 ppm/yr to ~2 ppm/yr (Figure 1.3). However, 

since the turn of the 21st century the growth rate has been relatively constant 

(Keenan et al., 2016). Alternatively, fossil fuel emissions of CO2 increased sharply 

since 2000 at a rate of 3 %/yr almost twice the rate of the prior three decades 

(Hansen et al., 2013).  

An informative metric is the airborne fraction (the ratio of CO2 growth 

rate and fossil fuel emissions) (Figure 1.4). From this it is clear the biospheric 

sink has increased in-line with emissions. Interestingly, the airborne fraction 

seems to decrease from 2000 onwards. The airborne fraction is affected by both 

changes in the efficiency of sinks and the rate of fossil fuel emissions (Gloor et al., 

2010). One would expect a sudden increase in emissions to cause an increase in 

the airborne fraction, since ocean mixing would not keep pace with additional 

carbon. Therefore, it is suggested that carbon sinks have increased significantly 

in the 21st century. Further, Hansen et al. (2013) hypothesised that the increased 

sink is causally linked to the rising emissions themselves. One potential 

mechanism is increased coal burning (predominately in East Asia) has fertilized 

the terrestrial biosphere by providing additional nitrogen, which is a crucial 

determinant of plant productivity (Gruber &  Galloway, 2008, LeBauer &  
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Treseder, 2008). Previous modelling (Churkina et al., 2009, Thornton et al., 

2007, Zaehle et al., 2010) and observation studies (Oren et al., 2001) have shown 

the impact of nitrogen deposition working synergistically with CO2 fertilization 

in increasing global plant productivity, especially in mid-latitude and boreal 

forests. A second mechanism is increased atmospheric aerosol loading (mainly 

sulfate aerosol) from coal burning has increased the ratio of diffuse to direct 

radiation, which allows deeper penetration into forest canopies. Observation (Gu 

et al., 2003) and modelling (Mercado et al., 2009, Rap et al., 2015) studies have 

shown forest canopy productivity can drastically increase in a more diffuse 

radiation regime.  

 

1.2 Drivers of the terrestrial carbon cycle 

Figure 1.4 – Fossil fuel CO2 emissions and the airborne fraction (7 year running 
mean). Data from Le Quere et al 2018.  
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The size and location of the terrestrial carbon sink is uncertain. Certain 

studies emphasize the role of northern temperate and boreal forests. A recent 

synthesis of atmospheric CO2 inversion results indicates a northern (>25°N) land 

sink of 2.2±0.5 PgC/yr (2001-2004 mean) (Piao et al., 2013). There is 

considerable uncertainty in partitioning this to continental scale fluxes with 

large spread among inversions. Pan et al. (2011) estimate a boreal and 

temperate forest sink of 1.3±0.1 PgC/yr and a -0.1±0.8 PgC/yr tropical sink 

(2000-2007 mean) using forest inventories. This implies a tropical sink of ~3 

PgC/yr to balance the gross deforestation flux. Further evidence for a tropical 

sink comes from a subset of atmospheric inversion models which matched the 

observed vertical gradient of CO2 in the northern hemisphere (Stephens et al., 

2007). The “constrained” inversion models found weaker northern uptake of 1.5 

PgC/yr and weaker tropical emission of 0.1 PgC/yr compared to the Piao et al. 

(2013) tropical emission estimate of 0.9 PgC/yr.  

The consistency of land-surface models (Sitch et al., 2015), forest 

inventories (Pan et al., 2011), and constrained atmospheric inversions (Stephens 

et al., 2007) give some confidence into broad location and magnitude of the 

terrestrial sink (Table 1.1 and Figure 1.5). There are many potential mechanisms 

behind the increase. For example, increased CO2 concentrations can stimulate 

photosynthesis. Also, additional nitrogen deposition from agriculture and 

industrial fossil fuel burning can fertilize ecosystems. Further, changes in climate 

can influence ecosystem productivity and respiration, leading to changes in the 

net sink.  
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Figure 1.5 -  Comparison of independent carbon flux estimates partitioned 
into two broad latitude bands (Northern extratropics and 
southern/tropical lands). Atmospheric inversion estimates in red. The 
larger red circle shows the mean and standard deviation from Gurney & 
Eckels (2011) and the smaller red circle shows the three models selected 
by the additional vertical gradient constraint from Stephens et al. (2007). 
Light grey band shows the mass balance constraint by the global carbon 
budget (Le Quéré et al., 2018). Forest inventory estimate for the period 
1990-2007 is shown in green (Pan et al., 2011). The upward black arrow 
shows the gross deforestation flux, reduced by forest regrowth and 
established forest increased uptake. Finally, blue triangles represent flux 
estimates from DGVMs for the period 1990-2007 (TRENDY, Sitch et al., 
2015). Top right blue circle shows model estimates without the effect of 
CO2 fertilization, and bottom left blue circle includes CO2 fertilization. 
Figure and full description can be found in Schimel et al. (2015). 
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Table 1.1 - Summary of land carbon fluxes for the decade 2007-2016 
(PgC/yr) from bookkeeping methods, DGVMs, inversions, and budget 
residuals. DGVM uncertainties represent ±1σ of the decadal estimates from 
the individual DGVMs. *Inversion estimates are adjusted to account for a 
preindustrial river flux. Data and full list of references can be found in Le 
Quere et al., 2018. 

 

 

 

 

1.2.1 CO2 fertilization 

 2007-2016 C Flux (PgC/yr) 

Land-use emissions 

Bookkeeping 1.3±0.7 

DGVMs 1.3±0.4 

Terrestrial sink 

Residual (Fossil fuel + Land use – 

atmosphere growth – ocean uptake) 

3.6±1.0 

DGVMs 3.0±0.8 

Total land flux 

Budget constraint (Fossil fuel – 

atmosphere growth – ocean uptake) 

2.3±0.7 

DGVMs 1.7±0.7 

CTE Inversion* 1.8 

Jena CarboScope Inversion* 1.4 

CAMS Inversion* 2.3 
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Elevated CO2 concentrations increase plant photosynthesis and reduce 

transpiration, increasing water-use efficiency (carbon gain per unit of water 

loss). This “CO2 fertilization” effect is the dominant mechanism in terrestrial 

biosphere models in explaining the global land sink (Sitch et al., 2015), and is 

estimated to account for 60% of the current (1990-2007) sink (Schimel et al., 

2015). However, CO2 fertilization is one of the most unconstrained processes in 

these models. Free air CO2 enrichment (FACE) experiments enable direct 

measurement of the CO2 fertilization effect at ecosystem scale, and offer an 

opportunity to constrain this process. These FACE studies show enhanced 

photosynthesis, reduced stomatal conductance, and increased productivity in 

response to elevated CO2 concentrations, with an increase in NPP of 20-25% at 

double pre-industrial CO2 concentrations (Norby et al., 2005). Norby et al. 

(2005) compared the responses of various species and found the largest 

response for stands with lowest productivity. However, it is unclear as to 

whether the CO2 fertilization effect can be sustained long term. The Duke FACE 

experiment (Duke Forest, North Carolina) showed a sustained NPP and carbon 

accumulation due to enhanced CO2 over a ten-year period (McCarthy et al., 

2010). Conversely, the NPP response declined towards the end of the study at 

Oak Ridge National Laboratory (ORNL) FACE (Oak Ridge, Tennessee) (Norby et 

al., 2010). This reduction is attributed to increasing nitrogen limitation. 

Enhanced CO2 concentration cause an initial increase in plant growth and 

biomass which sequesters nitrogen, reducing available soil mineral nitrogen 

(Luo et al., 2004). Moreover, scaling ecosystem responses to global patterns is 

difficult due to the heterogeneity of the land-surface and varying results from 

FACE (Hickler et al., 2008).  

Terrestrial biosphere models which include a coupled carbon-nitrogen 

cycle have a reduced CO2 fertilization effect due to increasing nitrogen limitation 

(Bonan &  Levis, 2010, Gerber et al., 2010, Thornton et al., 2007, Zaehle et al., 

2010). However, a set of terrestrial ecosystem models which included coupled 

carbon-nitrogen cycles failed to reproduce the “long-term” behaviour of either 

the Duke FACE or ORNL FACE experiments (Zaehle et al., 2014). A better 

representation of above-ground-below-ground interactions and flexible plant 
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stoichiometry have been highlighted as areas for model improvement (Zaehle et 

al., 2014).  

Therefore, our current understanding of CO2 fertilization is still limited. 

How ecosystems will respond to future CO2 enhancement depends on a myriad 

of factors such as; stand age, species composition, local climate, nutrient 

availability. The nitrogen cycle also has an important role in regulating the CO2 

fertilization effect through impacts on productivity, allocation, decomposition, 

mineralisation. For example, if more carbon is allocated to leaves over woody 

biomass, then the CO2 fertilization effect will be limited. Nonetheless, there is 

evidence for the CO2 fertilization effect on larger scales. Satellite observations of 

foliar coverage indicate greening trends due to increased water-use efficiency in 

arid regions (Donohue et al., 2013). Keenan et al. (2013) used eddy covariance 

towers to show there has been an increase in water-use efficiency (driven by 

enhanced CO2 concentrations) in temperate and boreal forests of the northern 

hemisphere in the last two decades.  

 

1.2.2 Climate 

Variations in climate exert a strong control on terrestrial ecosystem 

processes and carbon fluxes. Changes in temperature, precipitation, and 

radiation influence the global carbon cycle on seasonal to decadal scales. One 

emergent trend since the early 1980s is the lengthening of the growing season, 

which has increased by 2.6 days per decade (1982-2014) in northern (>45°N) 

lands (Park et al., 2016). Over a similar period, multiple studies have found 

widespread northern summer greening, indicating an increase in summer 

productivity (Barichivich et al., 2013, Park et al., 2016, Xu et al., 2016). These 

shifts in vegetation activity are thought to be driven by increasing temperature 

over this period. However, there are conflicting reports as to whether warming 

leads to a net carbon gain because autumn respiration increases may cancel out 

increased summer uptake (Keenan et al., 2014, Piao et al., 2008). Further, 

increased summer uptake with warmer temperatures is not always guaranteed. 

Studies have shown a reduction in boreal forest peak summer activity, due to 
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earlier springs increasing growing season water stress (Barichivich et al., 2013, 

Buermann et al., 2013).  

Nemani et al. (2003) showed global NPP increased by 6% over 1982-

1999 due to a relaxation of climatic constraints. The global increase was 

dominated (42%) by Amazon rainforests where reduced cloud cover increased 

incoming solar radiation. However, southern hemisphere droughts in the 

following decade (2000-2009) caused a decline in global NPP (Zhao &  Running, 

2010). Overall, the net effect of climate on the carbon sink is a delicate balance 

between uptake and loss processes and their sensitivity to climate changes. 

Warming leads to a longer growing season in high latitudes, however this 

increases evaporative demand, which could potentially reduce carbon uptake. 

Further, warming increases soil decomposition and respiration, counteracting 

the potential positive effects of warming. A recent modelling study attributed 

70% of the greening over 1982-2009 to CO2 fertilization and only 8% to climate 

change (Zhu et al., 2016). However, on local (grid-cell) scale, climate dominated 

the greening trend in 28.4% of vegetated regions, compared to CO2 dominating 

23.2%. Greening trends due to warming were mostly in high latitudes and the 

Tibetan Plateau, whereas positive precipitation effects were in the Sahel and 

South Africa. Further contributing to the small global climate effect is drought 

conditions in South America leading to a browning over this period, 

counteracting increases in other regions. Yet, there is evidence of greening in 

Amazonian tropical forests during higher sunlight dry seasons, suggesting 

insolation is the dominant climate variable, and not water limitation as 

modelling studies suggest (Huete et al., 2006, Saleska et al., 2016). In terms of 

carbon, the same family of models (Trends in net land carbon exchange; 

TRENDY, see Section 1.3.2) reported a trend in NPP of 0.22±0.08 PgC/yr2 over 

1990-2009 with CO2 fertilization explaining 86% (0.19±0.08 PgC/yr2) of the 

increase and the remainder due to climate (0.03±0.05 PgC/yr2) (Sitch et al., 

2015). Focusing on the net carbon flux (NPP – Rh), the land sink trend is 

0.06±0.03 PgC/yr2 which is entirely accounted for by CO2 fertilization, indicating 

respiration trend due to climate balanced the uptake trend. The TRENDY 

intercomparison project is designed to quantify spatial trends and variability in 

terrestrial carbon fluxes over the historical period (1901-present), driven with 
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observed atmospheric CO2 concentrations, climate, and land-use change (Sitch 

et al., 2015).  

Extreme events such as droughts, heatwaves, and storms can have 

profound negative impacts on ecosystems, offsetting carbon sinks or causing 

carbon losses (Ciais et al., 2005, Page et al., 2002, Reichstein et al., 2013). 

Zscheischler et al. (2014) have shown that a few extreme events explain most of 

the inter-annual variability in GPP. For example, the European heatwave in 2003 

caused a net source of 0.5 PgC/yr to the atmosphere, offsetting the previous four 

years of carbon uptake (Ciais et al., 2005). This was predominantly driven by 

water shortages reducing plant productivity. Extreme events can cause 

immediate and lagged responses (fires, insect outbreaks) (Anderegg et al., 

2012), therefore their impact on the carbon cycle is non-linear. Further, a small 

shift in the mean state can have large influences on extremes, which can override 

the potential benefits of change in the mean state. For example, long term 

warming in the northern high latitudes is believed to have increased net carbon 

uptake (Keenan et al., 2014), but the potential increase in water shortages could 

increase the risk of fires and insect outbreaks, offsetting or outweighing carbon 

gains from changes in the mean state. Reichstein et al. (2013) highlighted key 

feedbacks triggered by extreme events. For example, heatwaves and dry spells 

can lead to higher temperatures through reductions in plant transpiration and 

evaporative cooling (De Boeck &  Verbeeck, 2011). Further, low soil moisture 

increases stress on the hydraulic system of plants which is intensified by higher 

temperatures. 

1.2.3 Atmospheric composition 

Changes in the composition of the atmosphere impact the carbon cycle. 

Tropospheric ozone burden varies with the emissions of precursor gases related 

to fossil fuel emissions (eg. NOx, CO), and concentrations have approximately 

doubled over the industrial period (Gauss et al., 2006). High levels of ozone can 

reduce stomatal conductance, leaf photosynthesis, and plant productivity 

(Ainsworth et al., 2012, Lombardozzi et al., 2015). Lombardozzi et al. (2015) 

estimate current ozone concentrations reduce GPP by 8-12%, and transpiration 

by 2-2.4%, which works to reduce the land carbon sink. 
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Further, increased atmospheric aerosols related to fossil fuel emissions 

influence incoming solar radiation, and the partitioning between direct and 

diffuse radiation. Leaf photosynthesis increases non-linearly with radiation, 

saturating at high light levels. Therefore, plants are more efficient in low light 

conditions. Leaves are often light saturated at the top of the canopy, whereas 

leaves deeper into the canopy suffer from low light levels. Increased aerosol 

enhances the diffuse fraction of radiation, and causes deeper penetration into 

the canopy. This works to increase canopy light-use efficiency and 

photosynthesis (Roderick et al., 2001). Between 1960 and 1999, variations in the 

diffuse fraction (associated with changes in cloud cover and aerosol loading) 

increased the land sink by 25% (Mercado et al., 2009). 

 

 

1.2.4 Land-use and Land Cover Change 

Human land use such as deforestation, afforestation and reforestation 

alter the global carbon balance. The net land use flux is the balance between 

gross emission terms. Gross emissions include “fast” emissions from 

deforestation fires and “legacy” emissions from the decomposition of woody 

debris. Gross uptake includes the regrowth in logged forests or abandoned land 

(reforestation) and the establishment of forest on new land (afforestation) 

(Houghton et al., 2012). Overall, the net land use flux is currently (2007-2016) a 

net source of 1.3±0.7 PgC/yr to the atmosphere (Le Quéré et al., 2018). Whilst 

this flux is only 12% of total human emissions currently, over the period 1750-

2016 changes in land use emitted 225±75 PgC, equating to 35% of total 

emissions. Tropical deforestation accounted for all the land use emission of 

carbon during 1990-2007 (Pan et al., 2011). Over the same period, regrowth in 

previously logged tropical forests and regrowth in abandoned lands on Europe 

and North America contributed to the land use sink flux (Ciais et al., 2008, Kondo 

et al., 2018, Pan et al., 2011, Williams et al., 2012).  

 

1.2.5 Fire 
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Although fires are either driven by climate (Section 1.2.2) or human 

activities (Section 1.2.4), they are a major source of carbon to the atmosphere, 

and therefore warrant a more detailed outline. Van Der Werf et al. (2017) 

estimate fires emit 2.2 PgC/yr (1997-2016) albeit with substantial inter-annual 

variability ranging from 1.8 PgC/yr (2013) to 3.0 PgC/yr (1997).  Over 50% of 

global emissions originate in Africa, with savanna fires contributing 90% of the 

continents total emissions (Van Der Werf et al., 2017). Other fire hotspot regions 

include savanna and tropical forests of South America (15% of global emissions) 

and South-East Asia (5%), tropical forest and peat fires in Equatorial Asia (8%), 

Australian savanna (5%), and temperate and boreal forests in Asia (6%). The 

burned area in these regions does not scale linearly with emissions. Regions of 

higher carbon density (eg. forests) contribute relatively more to total emissions, 

whereas savanna fires largely control burned area (Van Der Werf et al., 2017).  

The inter-annual variability in fire emissions contributes a significant 

proportion (~1/3) of the variability in the land-atmosphere CO2 flux (Keppel-

Aleks et al., 2014, Prentice et al., 2011). Fire emission variability is driven by 

changes in temperature, precipitation, fuel load, and human activities (Van Der 

Werf et al., 2017). 

 

1.2.6 Nitrogen availability 

Nitrogen is a key component of living organisms and regulates the land 

carbon cycle. Even though nitrogen is the most abundant element in the 

atmosphere, plants cannot use it in its common form, N2. Only reactive forms 

(NOy and NHx) can be absorbed and used by plants. Therefore, most land 

regions are nitrogen limited, and plant productivity is often controlled by 

nitrogen availability (Vitousek &  Howarth, 1991). Further, microbial 

decomposition, and hence soil respiration depends upon nitrogen content of the 

organic matter (Janssens et al., 2010). This leads to a tight coupling of the carbon 

and nitrogen cycles. As such, ecosystem net carbon exchange is strongly 

influenced by nitrogen availability.  

However, the inclusion of a coupled carbon-nitrogen scheme in terrestrial 

biosphere models is relatively new due to the complex interactions in all parts of 
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the ecosystem. Previous modelling studies which fail to include nutrient 

constraints tend to overestimate the CO2 fertilization effect (Smith et al., 2016, 

Thornton et al., 2007, Wieder et al., 2015, Zaehle et al., 2015). In future coupled 

carbon cycle climate projections, this has led to an overprediction of NPP by 

19% (Wieder et al., 2015) and net land uptake by 13% by 2100 (Goll et al., 2012, 

Wieder et al., 2015). This reduction in net land carbon uptake (“carbon-

nitrogen” models compared to “carbon-only”) is a balance between mostly two 

processes. Firstly, the CO2 fertilization effect is reduced as nitrogen limitation 

increases, a process known as progressive nitrogen limitation (Luo et al., 2004). 

This is countered by an increase in nitrogen mineralisation with warmer 

temperatures which enhances photosynthesis and carbon uptake (Bonan &  

Levis, 2010, Thornton et al., 2007, Zaehle et al., 2010). The net carbon effect of 

including the nitrogen cycle is uncertain however, with most modelling studies 

projecting smaller land carbon sinks compared to “carbon-only” models 

(Sokolov et al., 2008, Zaehle et al., 2010). However, other studies project a larger 

carbon sink by 2100 with the inclusion of a nitrogen cycle (Wårlind et al., 2014).  

Over the industrial period humans have doubled nitrogen inputs to the 

biosphere through fossil fuel burning and agricultural intensification (Gruber &  

Galloway, 2008). Greatest additions are in the industrialised regions of the 

northern hemisphere. Additional nitrogen works to fertilize the biosphere, but 

the impact on carbon uptake depends upon the nature of the underlying 

vegetation. Forests have a higher potential for carbon storage than shrubs or 

grasslands due to the high C:N ratio of woody biomass compared to leaves and 

roots. Studies estimate anthropogenic nitrogen deposition accounts for 0.2-0.5 

PgC/yr (10-20% of total sink) of the current carbon sink (Churkina et al., 2009, 

Liu &  Greaver, 2009, Wang et al., 2017, Zaehle, 2013). Further to enhancing 

photosynthesis, additional nitrogen deposition influences rates of soil microbial 

decomposition. Rates generally decreases with additional nitrogen (Janssens et 

al., 2010), but the opposite has also been observed (Janssens et al., 2010, Zhang 

et al., 2014).  

An important indirect effect of additional nitrogen deposition is 

permitting a further plant response to CO2 fertilization. Synergistic effects can 

arise when high CO2 concentrations bring about nitrogen limitation, which is 
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alleviated by concurrent rises in nitrogen deposition. This effect has been 

estimated to be a substantial contributor to increased plant productivity and 

carbon uptake over the 20th century, accounting for 15-25% of the 1990s sink 

(Churkina et al., 2009, Zaehle et al., 2010).  

 

 

1.2.7 Current state of play 

Many studies have simulated the historical carbon cycle over the 

industrial period and attempted to attribute processes and mechanisms to the 

observed changes. Models are forced with varying CO2 concentrations, nitrogen 

deposition, climate, land use in factorial style combination. This enables the 

quantification of single driver responses as well as the interactions between 

them. Most “carbon-only” models explain the increased carbon sink almost 

entirely through CO2 fertilization (Keenan et al., 2016, Sitch et al., 2015, Smith et 

al., 2016). However, when nitrogen is included the CO2 fertilization effect is 

reduced, but still dominant, and losses due to warming are reduced due to 

increased mineralisation (Thornton et al., 2007, Zaehle et al., 2010).  

Since the turn of this century, the land (Keenan et al., 2016, Le Quéré et 

al., 2018) and ocean (DeVries et al., 2017) sinks have increased. Some studies 

have attributed this increase to the warming hiatus reducing the increase of 

respiration (Ballantyne et al., 2017, Keenan et al., 2016). However, this theory 

has been challenged, arguing that seasonal trends in temperature and 

respiration do not match on global or regional scales (Ballantyne et al., 2017, 

Keenan et al., 2016, Zhu et al., 2018). Importantly, Zhu et al. (2018) challenge the 

“warming hiatus” hypothesis, but do not offer an alternative explanation of the 

sink. As of yet, there has been no certain conclusion on the mechanisms behind 

the 21st century land sink. 

 

1.3 Estimating carbon fluxes 



21 
 

1.3.1 Observing terrestrial carbon fluxes 

Carbon exchange between the biosphere and atmosphere is widely 

measured using the eddy covariance technique (Baldocchi et al., 1988). This 

technique is based on the turbulent transport theory in the atmosphere and 

calculates carbon, water, and energy fluxes from the covariance of vertical wind 

speed and gas concentration. There are hundreds of sites around the globe with 

towers measuring fluxes with this method. Together these towers make up a 

network named FLUXNET (Baldocchi et al., 2001). The measured CO2 flux 

represents the Net Ecosystem Exchange between the biosphere and atmosphere 

and is measured multiple times per second (5 Hz – 40 Hz), which is then 

aggregated to half hourly intervals (Baldocchi, 2003). For a deeper 

understanding of ecosystem functioning, the net carbon exchange is partitioned 

into component land fluxes, GPP and Rh. Two methods are used to partition 

fluxes. The first uses the fact that only respiratory fluxes are active during the 

night (Reichstein et al., 2005). Night time observations are used to derive 

respiration sensitivity to temperature variations, and then GPP is derived as the 

difference between daytime NEE and respiration. The second method uses a 

light response curve fit to daytime NEE, whilst accounting for the temperature 

sensitivity of respiration and the moisture control on photosynthesis (Lasslop et 

al., 2010). Here, photosynthesis is estimated from canopy light use efficiency, 

maximum rates of CO2 uptake at light saturation (scaled with moisture 

availability), and incoming solar radiation. Radiation is estimated using an 

Arrhenius-type model, used to describe the temperature dependence of 

ecosystem respiration (Lloyd & Taylor, 1994).  

However, the spatial coverage of towers is not uniform, and many areas 

across the globe are underrepresented (eg. tropical forests). The majority of 

sites are in temperate forests, and as such are well represented by FLUXNET.  

 

1.3.2 Modelling terrestrial carbon fluxes 

Terrestrial biosphere models (TBMs) are used to simulate the 

interactions between the land surface and the atmosphere. TBMs have 
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developed considerably over the last few decades and the current generation 

include some or all of four groups of sub-models – biogeography, vegetation 

dynamics, biogeochemistry, and biophysics (Fisher et al., 2014). Initially, 

biophysical processes involving radiative and water fluxes between soil, 

vegetation, and the atmosphere were simulated using land-surface models 

(LSMs). These models (eg. the Simple Biosphere Model, Sellers et al. (1986)) had 

a representation of canopy radiative transfer that treats visible and near-infared, 

and direct and diffuse radiation separately. They also simulated the influence of 

vegetation on evapotranspiration and provided the boundary conditions for 

atmospheric general circulation models.  

Biogeochemical sub-models simulate the cycling of carbon, water, and 

nutrients through ecosystems. One of the most important processes simulated is 

photosynthesis. Most current TBMs include the same coupling of stomatal 

conductance (Ball-Berry model, Ball et al. (1987)) and photosynthesis (Farquhar 

model, Farquhar et al. (1980)). This coupling was a pivotal step that enabled 

models to simulate the effect of increased atmospheric CO2 on stomatal 

conductance and photosynthesis, and allowed climate models to predict changes 

in atmospheric CO2 concentrations. The additional complexity of the 

photosynthesis-stomatal conductance model requires an understanding of leaf 

level processes. Important photosynthetic parameters are Vc max, the maximum 

rate of carboxylation, and Jmax, the maximum potential rate of electron transport. 

Further coefficients that relate photosynthesis to stomatal conductance are also 

required. These parameters are estimated for various plant species (Kattge et al., 

2011), but values of Vc max are highly uncertain (Walker et al., 2014). One 

important advance is the scaling of leaf photosynthesis to the canopy with the 

use of a multi-layer canopy scheme. Multi-layer schemes calculate radiation 

intercepted and photosynthesis at discrete layers in the canopy. Photosynthetic 

capacity varies with canopy depth depending on vertical profiles of light 

(potentially treating direct and diffuse separately) and leaf nitrogen content (eg. 

Mercado et al. (2007)).   

The land-surface is split into grid cells (spatial resolution eg. 0.5° x 0.5°) 

and the current generation of TBMs generally represent different land cover (eg. 

vegetation type, soil, urban, lake, wetland) using sub-grid mosaics (Essery et al., 



23 
 
2003). This splits the grid cell into a number of smaller cells, each with its own 

surface energy balance in relation to land cover type and the parent grid cell. A 

feature of current models is the ability to simulate dynamic vegetation in 

response to changes in climate and competition between species. These models 

are generally called dynamic global vegetation models (DGVMs) or TBMs when 

coupled with land-surface and biogeochemical models. The interactions between 

climate and the distribution of vegetation occur on much slower timescales than 

the processes mentioned above (eg. decades to millennia). Simple 

parameterisations exist whereby the plant functional type (PFT) fractional 

coverage is adjusted once a year depending on annual NPP (eg. TRIFFID, Cox 

(2001)), as well as more mechanistic approaches where individual plant 

behaviour and competition for space, light, water, and nutrients is simulated (eg. 

Hybrid, Friend et al. (1997)). 

A more recent addition to TBMs is the inclusion of land-use and land-use 

change. Urban land parameterisations represent the effect of cities on surface 

energy fluxes and the hydrological cycle (Best et al., 2006). When land-use 

change is simulated, cropland and pasture plant functional types (PFTs) are 

included, and the fractional coverage in each grid-cell is updated depending on 

local land-use. Changes in the carbon balance are tracked by the allocation of 

removed biomass to product pools with varying decay times (McGuire et al., 

2001). Further, biomass regrowth on abandoned land is also considered for each 

grid-cell (Shevliakova et al., 2009).  

Another recent improvement is the inclusion of coupled carbon-nitrogen 

cycles. The importance of nitrogen on constraining carbon uptake is highlighted 

in section 1.2.6. Models of terrestrial carbon and nitrogen cycles simulate carbon 

and nitrogen flows through vegetation and soil pools, the addition of nitrogen 

through atmospheric deposition and biological nitrogen fixation, and losses 

through leaching, outgassing, and denitrification (Gerber et al., 2010, Thornton 

et al., 2007, Zaehle &  Friend, 2010).  

Modelling communities have developed their own TBMs that often share 

a representation of processes (eg. many models use the Farquhar model of 

photosynthesis), but also differ on many other parameterisations (eg. number of 

PFTs, phenology, allocation, vegetation dynamics). Also, some models may not 
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include all relevant processes (eg. nitrogen cycle, fire). Therefore, there are 

structural differences between TBMs that lead to varying estimates of fluxes and 

pools. Work has been done to quantify this uncertainty and constrain the land 

carbon cycle to changing environmental conditions (climate, CO2, nitrogen 

deposition, land-use) using a group of TBMs forced with similar protocols. The 

“TRENDY” model inter-comparison investigated how land carbon fluxes and 

sinks have changed over the 20th century in response to historical forcing (Sitch 

et al., 2015). Results from TRENDY are used in Chapter 4 of this thesis.  

 

 

1.3.3 Global estimates of carbon fluxes 

Observations of carbon fluxes from FLUXNET occur at point locations 

(representative of 1-2 km2). Therefore, to obtain global flux estimates requires 

local observations to be “upscaled”. Generally, carbon fluxes are combined with 

local meteorology to create statistical relationships between global datasets (eg. 

climate, vegetation type) and local carbon measurements. The FLUXCOM project 

upscales FLUXNET carbon fluxes to global (gridded 0.5°) coverage with various 

machine learning methods. FLUXCOM uses 11 different algorithms from four 

broad families; tree based methods, regression splines, neural networks, and 

kernel methods (Tramontana et al., 2016). The model tree method was used to 

estimate a global GPP of 119±6 PgC/yr (Jung et al., 2011), and has been used as a 

benchmark for TBMs (Piao et al., 2013). One key feature of machine learning 

methods is that functional relationships are not prescribed, but are found from 

the patterns in observations. Machine learning algorithms therefore generate 

multivariate functional relationships between predictor (observed FLUXNET) 

and target variables. For FLUXCOM GPP, predictor variables include PFT type, 

mean seasonal cycle of NDVI, air temperature, water availability. Satellite 

information and climate reanalysis data are used along with the modelled 

relationships to estimate global scale fluxes.  

TBMs are currently the only tool able to predict future impacts of 

environmental change on the carbon cycle and ecosystem functioning. They have 

been used to estimate global GPP (Beer et al., 2010), to evaluate the response of 
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ecosystems to climate and CO2 changes (Piao et al., 2013), and how the net 

carbon balance has changed (Sitch et al., 2015).  

Another method of estimating global vegetation productivity is based on 

satellite observations of optical properties related to vegetation productivity 

(Myneni et al., 2002). One method uses the fraction of absorbed photosynthetic 

active radiation (FPAR) in a light-use efficiency model, which assumes a direct 

proportionality of FPAR with productivity (Monteith, 1972, Monteith &  Moss, 

1977). Another method uses leaf area index (LAI) to scale up leaf level 

photosynthesis to canopy, regional, and global scales (Ryu et al., 2011). The 

benefit of these remote sensing models is the global coverage at relatively high 

spatial (kilometres) and temporal (days) resolution. Overall, all these methods 

are used to estimate global and local carbon fluxes, and where estimates 

converge, more confidence can be placed in their results.  

All approaches to estimate global scale carbon fluxes have shortcomings 

and uncertainties. For example, partitioning FLUXNET NEE observations into 

gross fluxes (photosynthesis and respiration) is highly uncertain (Lasslop et al., 

2010, Reichstein et al., 2005) and scaling the small spatial footprint of eddy-flux 

towers to global scale introduces additional uncertainties (Beer et al., 2010, Jung 

et al., 2009). The machine learning methods used in FLUXCOM to upscale site 

level fluxes to global scale contain various sources of uncertainty. Machine 

learning methods can have different responses when applied beyond the 

conditions represented in their training data (Jung et al., 2009). Furthermore, 

the information contained in the driving data may not be adequate to capture 

the variability of carbon fluxes in a variety of conditions (Tramontana et al., 

2015). For example, soil moisture is a dominant driver of carbon uptake and 

would improve the machine learning estimates if included (Tramontana et al., 

2016). However, spatially explicit, long-term soil moisture data is not available, 

and so machine learning approaches are generally constrained by global gridded 

data available. Furthermore, another significant uncertainty with FLUXCOM GPP 

estimates is the poor global representativeness of FLUXNET sites, meaning not 

all PFTs and climates are represented. For example, few sites exist in tropical 

forests and extreme (eg. cold and dry) climates.   
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DGVMs also contain many sources of uncertainty. Model structures can be 

very different from one another, and as such can diverge in their response to the 

same forcing (Huntzinger et al., 2017). Fisher et al. (2014) highlighted 25 key 

processes these models simulate, and how differences in their implementation 

can cause large differences in ecosystem functioning.  

 

1.4 Research Aim 

The aim of this thesis is: 

 

To develop a better understanding of the regional distribution of 

carbon fluxes and sinks as well as associated drivers, processes, and 

mechanisms by combining model and observational analysis since the 

turn of this century. 

 

To address this aim, I had clear hypotheses which I tested by analysing 

land-surface models and observational data of climate, carbon fluxes from 

upscaled eddy covariance sites, and satellite-based vegetation indices. Land 

surface models were used to quantify potential drivers behind the recent 

changes in land fluxes and sink. Analysing key observational records enabled me 

to identify regions of significant change in ecosystem functioning using several 

independent data sources. I place a heavy emphasis on analysing spatiotemporal 

trends and variability in carbon uptake processes (GPP and NPP) throughout 

chapters two, three, and four of this thesis. This is because photosynthesis is the 

primary driver of the global carbon cycle, and so impacts all other fluxes and 

sinks. Moreover, trends and variability in the net sink have been shown to be 

predominantly driven by changes in productivity (Ahlstrom et al., 2015, Sitch et 

al., 2015). Further, I also analyse spatiotemporal changes in the net land sink in 

Chapter 3, as this work focuses on vegetation and soil processes, in which both 
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photosynthesis and respiration are key aspects of the study. Further, 

understanding (and quantifying) the driving mechanisms behind variations in 

past and present carbon fluxes is of vital importance in making realistic 

projections of future carbon cycling and climate.  

All chapters of this thesis make use of DGVMs to estimate changes in local 

and global scale carbon cycling. Currently, the drivers behind the increased 

terrestrial sink remain unquantified. To that end, each chapter has a particular 

novel focus regarding potential drivers of increased carbon uptake; changes in 

direct/diffuse radiation (Chapter 2), carbon-nitrogen interactions (Chapter 3), 

and climate change (Chapter 4). The model simulations I perform allow me to 

attribute changes in carbon uptake to these mechanisms, and address several 

hypothesis outlined below.  

 

1.5 Research hypotheses 

In this section the scientific background to each hypothesis is outlined 

and the research approach taken is discussed.  

 

1.5.1 Increases in the fraction of diffuse/direct radiation associated 

predominantly with East Asian sulfate aerosol emissions have 

spurred plant photosynthetic rates (Chapter 2) 

 

Objective 

To understand the relative roles of climate, light-regime, and CO2 

concentrations in explaining recent increases in terrestrial plant productivity by 

performing offline simulations with a land-surface model which simulates 

canopy photosynthesis by treating direct and diffuse radiation separately. 
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Scientific Background 

The influence of atmospheric aerosol on the carbon cycle was 

prominently seen during the eruption of Mt. Pinatubo in 1991, where additional 

stratospheric aerosol reduced incoming solar radiation by at least 1 W/m2 for 

over a year after the eruption (Soden et al., 2002). This led to a northern 

hemisphere cooling of 0.5K in the 1992-1993 growing season (Yang &  

Schlesinger, 2001). Using a dynamic global vegetation model and atmospheric 

inversions, Lucht et al. (2002) concluded that both NPP and Rh reduced due to 

this cooling, with the net effect as a net carbon sink due to the eruption. 

However, increases in atmospheric aerosol increase the diffuse fraction of solar 

radiation, which has been shown to increase canopy photosynthesis (Roderick et 

al., 2001). Sunlit leaves are often light saturated and therefore have low light use 

efficiency. Shaded leaves are more light use efficient but are generally light 

limited. Under diffuse conditions, top of canopy saturation reduces and total 

radiation increases deeper into the canopy (Figure 1.6). The net effect on canopy 

photosynthesis is a balance between a reduction in total radiation and an 

increase in diffuse radiation (Mercado et al., 2009, Rossow &  Schiffer, 1999).  
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Figure 1.6 - Schematic diagram of the impact atmospheric particles have on 
solar radiation. Direct radiation radiates top of vegetation canopy or 
scatters off aerosols, clouds, air molecules and penetrates deeper into 
canopies illuminating shaded leaves. The photosynthetic response to 
increased diffuse (a) and decreased direct (b) radiation is also shown. 
Figure from Kanniah et al. (2012). 

 

 

The year following the Mt. Pinatubo eruption, it was estimated that the 

increase in diffuse radiation enhanced photosynthesis of a deciduous forest by 

over 20%, and this finding can likely be extrapolated to a global phenomenon 

(Gu et al., 2003). In terms of the historical land carbon sink, variations in the 

diffuse fraction (due to increased anthropogenic aerosol and volcanic emissions) 

enhanced the land carbon sink by 25% between 1960 and 1999 (Mercado et al., 

2009). Since the turn of this century, there has been a sharp increase in fossil 

fuel emissions (Le Quéré et al., 2018), which has led to higher concentrations of 

atmospheric aerosols, predominately sulfate aerosol from East Asia (Van 

Donkelaar et al., 2008). It could be expected that this increase in the diffuse 

fraction of radiation enhanced photosynthetic activity, increasing carbon uptake 

(Hansen et al., 2013). 

 

 

Research approach 

As described in section 1.2, there are many drivers of the terrestrial 

carbon cycle. As I am interested in process attribution to changes in carbon 

cycling, I need to perform a series of “offline” simulations in which I prescribe 

model forcings. This allows me to estimate the combined effect of all forcing 

factors on carbon uptake as well as the single contributions. In a first step, to 

accurately simulate the influence fossil fuel aerosol emissions have on carbon 

uptake via changes in light regime I first needed to reproduce the spatio-

temporal distribution of aerosol in the atmosphere. Using these aerosol fields, I 

can then calculate short-wave direct and diffuse radiative fluxes for use as inputs 

to a land surface model (Figure 1.7). Although this model cascade approach may 
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miss important feedbacks between the atmosphere and land surface (Berg et al., 

2016, Cox et al., 2000), it does allow for process attribution, a focus of this thesis. 

 

 

Figure 1.7 - Model cascade approach used. Fossil fuel and biomass burning 
emissions are used along with prescribed meteorology to simulate the 
spatiotemporal distribution of aerosol using GLOMAP. Aerosol optical 
properties are then subsequently used with cloud fields and meteorology 
in Edwards-Slingo to simulate direct and diffuse radiation through the 
atmosphere. Surface radiative fluxes are used with surface climate to force 
JULES. Net primary production is the main output variable analysed in 
Chapter 2. 

 

Model choice 
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Aerosol model 

The GLObal Model of Aerosol Processes (GLOMAP) (Spracklen et al., 

2005a, Spracklen et al., 2005b) is an extension to the TOMCAT three-

dimensional, Eulerian chemical transport model (Chipperfield, 2006). GLOMAP 

is a global aerosol model, calculating particle size, concentration, and chemical 

composition. GLOMAP includes various aerosol processes, including nucleation, 

condensation, growth, coagulation, dry and wet deposition, and cloud 

processing. In the GLOMAP version used here, the aerosol species included are 

black carbon (BC), particulate organic matter, sulfate, sea salt, and dust. The 

horizontal resolution is 2.8° × 2.8°, with 31 vertical levels ranging from the 

surface to 10 hPa, with the layer thickness varying from 60 m (surface) to 1 km 

(tropopause). The model is driven with historical meteorology (wind, 

temperature, humidity) from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) at 6-hourly intervals and interpolated onto the model time 

step (30 min). Annually varying anthropogenic emissions (BC, organic carbon 

(OC), and SO2) including fossil fuel and biofuel emissions are taken from the 

MACCity inventory (Granier et al., 2011). This data set is based on historical 

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) 

(for years 1990 and 2000) and RCP 8.5 (2005 and 2010) emissions. The 

emissions were linearly interpolated for the years between those given. Biomass 

burning emissions (BC, OC, and SO2) are taken from the Global Fire Emissions 

Database version 3 (van der Werf et al., 2010) and are supplied as annually 

varying monthly means. 

This work uses the modal version of GLOMAP (Mann et al., 2010), which 

simulates the concentration, size, and mass of aerosol particles using a two 

moment (mass per particle and number concentration) modal scheme. The 

version used here has seven log-normal size modes, each containing particles 

with a range of geometric mean diameters (Dg) (Nucleation, Dg < 10nm; Aitken, 

10 < Dg < 100 nm; Accumulation, 100 < Dg < 1μm; Coarse, Dg > 1μm). Four are 

treated hydrophilic with a three non-hydrophilic Aitken, Accumulation, and 

Coarse modes. The original version of GLOMAP used a sectional scheme 

(Spracklen et al., 2005a). However, a sectional model can be computationally 

expensive for multidecadal coupled aerosol-climate simulations (Spracklen et al., 
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2005a). Realistic aerosol schemes are still required in climate models but at 

increased computational efficiency. I planned a series of factorial runs to 

simulate the changes in aerosol due to changes in various emission sources with 

a total length of 26 years. Therefore, GLOMAP-mode was the appropriate model 

to use in our study.  

Further, GLOMAP-mode has been evaluated extensively in previous 

studies and has been shown to capture observed aerosol concentrations (Mann 

et al., 2012, Mann et al., 2010, Reddington et al., 2016, Schmidt et al., 2012, 

Spracklen et al., 2011a, Spracklen et al., 2011b) and aerosol optical depth (AOD) 

(Bellouin et al., 2013, Rap et al., 2015, Reddington et al., 2015, Reddington et al., 

2016) in various regions and conditions. I also compare modelled AOD with 

satellite derived AOD (Chapter 2). 

A two-moment aerosol model that calculates aerosol number and mass 

has an advantage over “mass-only” models when interested in accurately 

simulating processes that affect the aerosol size distribution. The addition of 

aerosol in mass only models results in increased concentrations (Bellouin et al., 

2013). However, additional aerosol in two-moment schemes (eg. via 

condensation) may grow particles and not alter number concentrations. 

Accurately representing particle mass and number is important for 

quantification of aerosol radiative forcing as this requires knowledge on the 

spatial and temporal distributions of mass, number, chemical composition, size, 

and shape of aerosols (Bellouin et al., 2013).  

 

Radiative transfer model 

To most accurately describe radiative transfer through the atmosphere, 

the use of “line-by-line” calculations is required. This method loops through each 

frequency and calculates the radiance. This requires the calculation of each 

spectral line for all molecules in the atmosphere. A more efficient method is to 

define a small number of spectral bands to represent the whole spectra and 

calculate radiance for each band. These “parameterisations” have been shown to 

agree well with corresponding line-by-line calculations (Pincus et al., 2015). 

Therefore, in many coupled-climate modelling studies (eg. CMIP5, Taylor et al. 
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(2012)) and offline studies (Rap et al., 2013, Rap et al., 2015, Scott et al., 2018) 

radiative parameterisations are used for computational speed.  

The offline Edwards-Slingo (ES) radiative transfer model (Edwards &  

Slingo, 1996) was an appropriate choice due to its computational efficiency, 

extensive inclusion of physical processes, and heavy use throughout the 

scientific community (Edwards &  Slingo, 1996, Haywood et al., 1997, Sun, 

2011). ES calculates radiative fluxes for a given atmospheric state (eg. water 

vapour, cloud cover, temperature, aerosol loading). The radiative spectrum is 

split into six bands in the shortwave region and nine bands in the longwave 

region. Modelled surface short wave direct and diffuse radiative fluxes have been 

shown to match well to observations (Rap et al., 2015). The model was 

configured with a horizontal resolution of 2.8° x 2.8° on 32 vertical levels. The 

model is forced with monthly mean ECMWF climate (water vapour and 

temperature) and ozone reanalysis data. Cloud fields (liquid water path and 

cloud fraction) and surface albedo are taken from the International Satellite 

Cloud Climatology Project (ISCCP-D2) (Rossow and Shiffer, 1999).  

Further, aerosol radiative effects are calculated for four of the seven 

possible size modes (Aitken soluble, accumulation soluble and insoluble, and 

coarse soluble). Insoluble accumulation and coarse modes only contain dust 

aerosol, which is not a focus of this thesis.  

 

Land surface model 

The Joint UK Land Environment Simulator (JULES) land surface model is 

used to quantify the changes in direct and diffuse radiation have on carbon 

fluxes. JULES simulates the exchange of carbon, water, energy, and momentum 

between the land surface and atmosphere (Best et al., 2011, Clark et al., 2011). 

The model includes a multilayer canopy parameterisation to scale leaf 

photosynthesis to canopy (Mercado et al., 2009, Mercado et al., 2007). 

Photosynthesis is calculated on each level and the scheme considers variations 

in direct and diffuse radiation on sunlit and shaded leaves. The multilayer 

scheme contrasts with the original “big leaf” approach where the canopy is 

treated as a single leaf. “Big leaf” parameterisations do not distinguish between 
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direct and diffuse radiation, a distinction which has been shown to have a large 

impact on carbon uptake (Gu et al., 2003, Mercado et al., 2009, Roderick et al., 

2001). The multilayer scheme has been evaluated against eddy covariance data 

in a temperate coniferous site in the Netherlands (Jogireddy et al., 2006), 

temperate broad leaved and needle leaved sites (Mercado et al., 2009), and 

tropical broadleaf sites (Mercado et al., 2007, Rap et al., 2015) and matches the 

diurnal cycle and light response at high radiance well, an improvement on 

previous model versions. A more detailed description of JULES is given in Text 

A1. 

In this thesis, JULES is forced with ERA-Interim climate fields (Weedon et 

al., 2014) and runs at 0.5° spatial resolution with 3-hourly time steps. The 

climate drivers consist of 2 m air temperature, specific humidity, precipitation, 

10 m wind speed, and surface pressure. Further, JULES is forced with time 

varying atmospheric CO2 concentrations derived from National Oceanic and 

Atmospheric Administration (NOAA) monitoring stations. Model drivers also 

include downward surface radiation (short-wave direct and diffuse and long 

wave) from the ES model.  

 

Experiments 

The driving mechanisms behind the post-2000 land sink are unknown. 

Studies highlight the role of CO2 fertilization (Keenan et al., 2016, Schimel et al., 

2015), climate (Ballantyne et al., 2017, Keenan et al., 2016), nitrogen deposition 

(Quinn Thomas et al., 2010), and diffuse radiation (Mercado et al., 2009) in 

driving the carbon sink. I therefore performed a set of factorial simulations with 

JULES to estimate the carbon uptake response to combined and singular 

forcings. The version of JULES used (v3.2) does not include a coupled carbon-

nitrogen scheme and so I could not evaluate the carbon response to changes in 

nitrogen deposition. I did however, quantify the response to changes in CO2 

concentrations, climate, and light regime (direct/diffuse radiation). I further 

separated changes in light regime due to either fossil fuel aerosol, fire aerosol, 

and cloud cover (Table 1.2).  
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First, GLOMAP was used to simulate the changes in aerosol distribution 

over the period 1998-2010. Three simulations were performed, by either 

varying emissions of fossil fuel or biomass burning or keeping them fixed at year 

2000 levels (Table 1, blue box). Aerosol optical properties were then used in the 

ES model along with cloud fields to perform four more factorial simulations 

(Table 1.2, red box). These four ES simulations provided varying spatiotemporal 

fields of surface direct and diffuse radiation to force JULES. Five JULES 

simulations were performed. The impact of changing surface radiation to 1) Fire 

aerosol, 2) fossil fuel aerosol, and 3) Cloud cover, as well as changes in 4) 

Climate, and 5) CO2 was quantified (Table 1.2).  

I had a sole focus on analysing changes in NPP as changes in light regime 

predominately affect carbon uptake processes. This shortened the modelling 

time required as I only needed to equilibrate the vegetation with our initial 

conditions rather than the whole carbon cycle (eg soil pools). The model was 

spun-up for 60 years using a repeated 1995 meteorology. I performed 5 factorial 

simulations in which drivers were varied or held constant in turn (see Chapter 

2). Further, within the vegetation dynamics module TRIFFID (see Text A1), 

competition between species is disabled as simulations are over a small number 

of years. 

 

 

 

 

 

 

Table 1.2 - Summary of simulations performed by GLOMAP (blue box), 
Edwards-Slingo (red box), and JULES (whole table). The impact of 
changing emissions on aerosol distributions from fire and fossil fuel was 
quantified with GLOMAP, the subsequent impact of fire and fossil fuel 
aerosol and changing cloud cover on surface radiation was quantified 
with ES. Finally, the impact of changing climate, CO2, and changes in 
surface radiation due to fire aerosol, fossil fuel aerosol, and clouds was 
quantified with JULES. F stands for fixed and V stands for varying. 
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1.5.2 Increases in nitrogen deposition from East Asian fossil fuel 

burning have increased plant carbon uptake (Chapter 3) 

Objective 

Perform offline simulations with a land-surface model with a coupled 

carbon-nitrogen scheme to understand the relative roles of climate, nutrient, 

and CO2 concentrations in explaining recent increases in terrestrial plant 

productivity and carbon sinks.  

 

Scientific Background 

The importance of nitrogen availability for plant growth is outlined in 

sections 1.2.5 and 3.1. Process based (Thornton et al., 2009, Thornton et al., 

2007, Zaehle et al., 2010) and empirical (Wang et al., 2017, Zhu et al., 2017) 

modelling, as well as field studies (de Vries et al., 2014, Maaroufi et al., 2015, 

Magnani et al., 2007, Schulte-Uebbing &  de Vries, 2018) show the impact of 

nitrogen deposition on carbon uptake. One field study estimates boreal and 

temperate forest sensitivities (uptake of carbon per unit nitrogen deposition) as 

high as 300 gC/gN (Magnani et al., 2007). However, many more field studies give 

estimates between 5-30 gC/gN (de Vries et al., 2014, Maaroufi et al., 2015, 

Schulte-Uebbing &  de Vries, 2018). Schulte-Uebbing and  de Vries (2018) 

derived a nitrogen induced global carbon sink of 0.2 PgC/yr, a result not 

dissimilar from process model estimates of ~0.3 PgC/yr (Zaehle et al., 2010).   

How ecosystems respond to additional nitrogen depends on other factors 

(vegetation age, climate, CO2 concentrations, land-use) and the interactions 

between them (synergistically or antagonistically). Synergistic effects can arise 

when an ecosystem is co-limited by several factors and these limitations are 

relieved simultaneously (Oren et al., 2001). For example, carbon-nitrogen 
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synergies can arise when additional nitrogen alleviates nitrogen limitation 

brought about by rising CO2 concentrations (Churkina et al., 2009, Oren et al., 

2001, Zaehle et al., 2010). Carbon-nitrogen synergy has been estimated to be a 

substantial contributor of the 1990s land sink, from 0.3 PgC/yr (13% of total 

sink) (Zaehle et al., 2010) to 1.2 PgC/yr (47% of total sink) (Churkina et al., 

2009). Therefore, I hypothesize that the rapid increase in fossil fuel emissions 

since 2000 has contributed to the land carbon sink through a combination of CO2 

fertilization, nitrogen deposition, and the synergy between the two. Similarly to 

our “diffuse radiation” hypothesis, the location of nitrogen emissions/deposition 

is an important factor when considering the global carbon response. For 

example, increased deposition in agricultural regions will likely not elicit a 

response as these ecosystems are nitrogen saturated, whereas increased 

deposition over temperate and boreal forests will potentially see large carbon 

gains (Fisher et al., 2012). 

Many terrestrial ecosystem models now include a coupled carbon-

nitrogen cycle (Zaehle &  Dalmonech, 2011). All models reduce the strength of 

CO2 fertilization as nitrogen availability increases and reduce climate induced 

losses as mineralisation increases. Despite similar features these models differ in 

how they link carbon and nitrogen, and the degree of detail to which different 

processes are included. There is difficulty in knowing the “best” way to model 

the coupled carbon-nitrogen cycle due to the complexities in evaluating non-

linear processes that cannot be directly measured. When compared to FACE 

experiments, models do not capture important ecosystem processes due to 

model simplifications or missing mechanisms entirely (Zaehle et al., 2014).  

To address the second hypothesis, I decided to use the Community Land 

Model version 4.5 (CLM4.5). One benefit of CLM is its long standing in the 

scientific community, having been developed and evaluated for many years 

(Bonan et al., 2011, Bonan et al., 2012, Duarte et al., 2017, Koven et al., 2013, 

Lawrence et al., 2011, Oleson et al., 2008). A new feature in CLM4.5 is the 

inclusion of vertically resolved soil carbon-nitrogen dynamics (Koven et al., 

2013), which is vital in accurately simulating nitrogen uptake and mineralisation 

(Zaehle et al., 2014). However, CLM4.5 has fixed CN stoichiometry. Field 

experiments have shown both ecosystem stoichiometry to change with changing 
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CO2 concentrations and nitrogen deposition (Norby et al., 2005, Zaehle et al., 

2014). By not allowing these to vary, CLM is missing key processes, for example; 

plants adapting to nitrogen stress with rising CO2 concentrations. Nevertheless, 

CLM4.5 is an established model for studying carbon-nitrogen interactions 

(Thornton et al., 2009, Thornton et al., 2007) and so appropriate in addressing 

our hypothesis.  

Research Approach 

Model 

CLM4.5 simulates biophysical, hydrological, and biogeochemical 

exchange between the land and the atmosphere (Oleson et al., 2013). CLM4.5 is 

fully prognostic with regards to carbon and nitrogen state variables in the 

vegetation, litter, and soil organic matter pools. Nitrogen availability limits 

carbon uptake by downregulating GPP if plant demand (determined from fixed 

carbon-nitrogen stoichiometry) is higher than available nitrogen. This approach 

offers a direct link between plant nitrogen and carbon uptake but is not entirely 

realistic. Plant photosynthesis is controlled by leaf nitrogen content, not by 

available soil nitrogen that downregulates the photosynthetic rate (Evans, 

1989). Nonetheless, modelled GPP has been shown to have good agreement with 

observations (Bonan et al., 2011, Koven et al., 2013). Alternative approaches 

exist where CN stoichiometry is flexible meaning nutrient limitation is not 

represented by an instantaneous downregulation of potential GPP, but instead 

by leaf nitrogen content (Ghimire et al., 2016, Zaehle &  Friend, 2010). The latest 

version of CLM (version 5) uses this “foliar nitrogen content” method, but was 

not available for use at the time of this study. Nevertheless, CLM4.5 has been 

shown to capture the 20th century change in terrestrial carbon cycling (Koven et 

al., 2013). A more detailed description of CLM is given in Text A2. 

Climate driver data (precipitation, temperature, solar radiation, 

atmospheric pressure, specific humidity, and winds) used stem from the CRU-

NCEP dataset (Harris et al., 2014, Viovy, 2016) (0.5° spatial and 6h temporal 

resolution), which is aggregated/interpolated to the CLM4.5 spatial resolutions 

of 1.25° x 0.9° and 30 min time step. Further, I also used prescribed annual, 

globally averaged CO2 concentrations from the Earth Systems Research 

Laboratory (Dlugokencky &  Tans, 2017). I used fixed present-day land cover as 
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described in Oleson et al. (2013), meaning I did not consider land-use and land-

cover change in this study since my focus was broadly on carbon-nitrogen 

interactions. 

 

Experiments 

I decided to run two sets of experiments, an “extended period” (1901-

2016) and a “recent period” (1990-2016). Both sets were factorial simulations, 

whereby the land carbon response to atmospheric CO2, climate, and nitrogen 

deposition (and their interactions/synergies) was tested (Table 1.3). I first 

perform a model spin-up by cycling early 20th century climate and preindustrial 

CO2 concentrations and nitrogen deposition. When the model reaches a steady 

state (soil carbon pools are in equilibrium), the extended simulations would 

provide me with a historical evolution of the terrestrial carbon cycle and 

attribution to its underlying drivers, enabling a comparison to previous long-

term studies (eg. Zaehle et al. (2010), Thornton et al. (2007)). Further, the 

extended simulations provide initial conditions for the recent simulations 

starting in 1990. The recent period is chosen as such to enable me to quantify 

changes in carbon cycling relative to a modern baseline (in line with our 

hypothesis) and provide a long enough time-series for trends and changes to be 

analysed.  

 

 

Table 1.3 - Summary of factorial model simulations performed with CLM. C 
(constant) indicated 1900 (or 1990 for “recent” simulations) values are 
used for atmospheric CO2 and nitrogen deposition and 1901-1920 (or 
1990 for “recent” simulations) is recycled. T (transient) indicates 
historically varying CO2, nitrogen deposition, and climate is used. 

Experiment CO2 Nitrogen deposition Climate 

S1 C C C 

S2 T C C 

S3 C T C 

S4 C C T 

S5 T T C 

S6 T C T 
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S7 C T T 

S8 T T T 

 

 

 

 

1.5.3 A progressive relaxation of climatic constraints has led to 

increased plant productivity (Chapter 4) 

Objective 

Analyse variability and trends over the last three decades in key model 

and observational records including climate, and gross primary productivity 

from terrestrial biosphere models, upscaled eddy covariance data, and satellite 

derived vegetation observations. Objective is to identify regions of significant 

change in ecosystem functioning due to variations in climate alone.  

 

Scientific Background 

Gross primary productivity (GPP) is the largest global carbon flux, and as 

such, small variations can have a large influence on the net carbon balance. 

Further, it drives other major components of the carbon cycle, such as 

respiration and growth. Climate controls GPP inter-annual variability (IAV) and 

influences long-term trends. Global IAV is dominated by certain “hotspot” 

regions such as tropical forests (Cox et al., 2013) and semi-arid (Ahlstrom et al., 

2015, Poulter et al., 2014) regions. Zscheischler et al. (2014) found that just 7% 

of the spatio-temporal domain explains 78% of the global GPP IAV. GPP 

variability is often linked to extreme climate events such as; drought, heatwaves, 

and heavy precipitation, which can lead to large increases (Bastos et al., 2013) or 

decreases (Zhao &  Running, 2010) in vegetation productivity. The carbon cycle 

response to climate variations depends upon the underlying vegetation type, 

mean climate state, and previous conditions/disturbances, and as such is a result 

of many complex, interacting processes (Reichstein et al., 2013). Long-term 

warming in the northern high latitudes has been hypothesised to lead to 
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increase annual carbon uptake via an increase in length of the growing season 

(Keenan et al., 2014, Myneni et al., 1997, Piao et al., 2007). However, spring 

warming can also reduce peak summer productivity due to increased moisture 

stress (Buermann et al., 2013). There have been noticeable drying trends in 

large regions reducing carbon uptake as well such as; Southern USA (Anderegg 

et al., 2012), and South America (Zhao &  Running, 2010).  

There are three popular methodologies to calculating global GPP. These 

are: upscaling eddy covariance measurements using statistical (Jung et al., 2009) 

or empirical (Beer et al., 2009) techniques, the use of optical satellite data 

related to vegetation productivity, generally absorbed photosynthetic active 

radiation (APAR) or leaf-area index (LAI), and finally terrestrial biosphere 

models which simulate bio-physical/chemical processes on leaf to biome scales 

(eg. Sitch et al. (2008); Piao et al. (2009)). These methods rely on various 

assumptions and as such are inherently uncertain (Anav et al., 2015).  

Therefore, analysing the consistency between independent products in 

terms of IAV, trends, and sensitivity to climate variability on different spatial 

scales will provide valuable insight into the confidence that can be placed in local 

and regional estimates and the underlying climatic controls.  

Research Approach 

I assess the consistency in seasonal and inter-annual variability and long-

term trends of three independent GPP datasets over the period 1982-2016 in 

relation to climate variability alone. I use the FLUXCOM RS+METEO product 

(Jung et al., 2017, Tramontana et al., 2016), TRENDYv6 model inter-comparison 

(a suite of process based terrestrial biosphere models, Sitch et al. (2015)), and a 

satellite based light-use efficiency model (Running et al., 2004, Smith et al., 

2016). I focus on the influence of climate alone, and ignore greening due to CO2 

fertilization because this is a highly uncertain process in which models and 

observations disagree on (Smith et al., 2016). Secondly, the climate effect in the 

TRENDY models was calculated by subtracting the “S1” simulations (varying 

CO2) from the “S2” simulations (varying CO2 and climate). Further, FLUXCOM 

GPP does not include any greening effects due to CO2 fertilization, and so just 

evaluating the climate response leads to a more consistent comparison.  
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I use multiple linear regression to calculate the sensitivity of GPP to 

individual climate (temperature and precipitation) forcings on local (grid-cell, 

0.5°) and regional scales. I use the raw GPP output (as opposed to detrended) to 

calculate “trend correlations”, as I am interested in how climate has influenced 

GPP in the long-term as well. I further compare the datasets in terms of the 

dominant climate driver of GPP by evaluating which climate forcing contributes 

most to the explained variance (see Section 4.2). I omit incoming solar radiation 

from the regression analysis as it has been shown that anomalies in temperature 

and precipitation dominate local, regional, and global scale carbon flux 

variability (Jung et al., 2017). 
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Abstract 

The global terrestrial carbon sink has increased since the start of this 

century at a time of growing carbon emissions from fossil fuel burning. Here we 

test the hypothesis that increases in atmospheric aerosols from fossil fuel 

burning enhanced the diffuse light fraction and the efficiency of plant carbon 

uptake. Using a combination of models, we estimate that at global scale changes 

in light regimes from fossil fuel aerosol emissions had only a small negative 

effect on the increase in terrestrial net primary production over the period 
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1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and 

plant carbon uptake (14 TgC yr-2) over East Asia were effectively cancelled by 

opposing trends across Europe (-8 TgC yr-2) and North America (-10 TgC yr-2). 

This suggests that changes in the direct/diffuse light ratio has a large impact on 

photosynthesis. However, if the recent increase in the land carbon sink would be 

causally linked to fossil fuel emissions it is unlikely via the effect of aerosols but 

due to other factors such as nitrogen deposition or nitrogen-carbon interactions. 

 

2.1 Introduction 

Fossil fuel (FF) emissions of CO2 have sharply increased since the turn of 

the century at a rate of 3% yr-1, almost twice the rate of the prior three decades 

(Hansen et al., 2013). In contrast, global atmospheric CO2 growth rates were 

relatively constant during this period (Ballantyne et al., 2012). A coincident 

decline in land use carbon emissions (Harris et al., 2012) as well as a moderate 

strengthening of ocean carbon uptake (Le Quéré et al., 2015, Rödenbeck et al., 

2014) may have played a role but these contributions appear insufficient to 

explain the slow atmospheric growth rate of CO2, implying that terrestrial 

carbon sinks must have substantially increased in this period (Sarmiento et al., 

2010). 

 The recent divergence of trends in carbon emissions and 

atmospheric CO2 growth rates led to speculations that key carbon sink processes 

may be strongly controlled by the increasing emissions themselves, namely 

increased nitrogen deposition and a larger fraction of diffuse versus direct solar 

radiation from predominantly increased sulfate aerosol emissions originating 

from East Asia (Hansen et al., 2013). In regards to the latter, multiple studies 

have shown that the efficiency of plant photosynthesis increases under more 

diffuse light conditions (e.g. resulting from increased scattering of light by 

aerosols or clouds) since under such conditions radiation can penetrate deeper 

into the canopy, illuminating previously shaded leaves (Gu et al., 2003, Mercado 

et al., 2009, Roderick et al., 2001). However, these studies also show that a 

corresponding reduction in total radiation may have a negative impact upon 
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photosynthesis, whereby GPP tends to decline if the diffuse fraction surpasses 

0.4 (Mercado et al., 2009). The overall effect on photosynthesis and net primary 

production (NPP) thus depends upon the balance between these two 

mechanisms. Recent model results showed that increases in the fraction of 

diffuse radiation due to anthropogenic aerosols in the period 1960-1999 (the 

global dimming period) enhanced the global carbon sink by 24% (Mercado et al., 

2009). The extent at which the rapid increase in East Asian FF aerosol emissions 

since the turn of the century may have impacted plant growth and the global 

carbon sink is however not clear since anthropogenic aerosol emissions in 

Europe and United States have decreased persistently since the late 1980s (Wild 

et al., 2009). 

Here we therefore test the hypothesis that an increase in the fraction of 

diffuse light associated with increased FF aerosol emissions predominantly from 

East Asia have contributed to increased global plant carbon uptake which would 

provide a mechanism for a potential link between global carbon emissions and 

the land carbon sink. Using atmospheric models, including an aerosol model 

with size-resolved aerosol microphysics, we first simulate aerosol distributions 

(originating from fossil fuel and fires) and corresponding effects on light regimes 

over 1998 to 2010. We then use these to drive a land surface model to estimate 

their relative contributions to changes in regional and global NPP. 

 

2.2 Methodology 

The distribution of anthropogenic aerosols was simulated using a global 

aerosol model (Mann et al., 2010). The impact of aerosols and clouds on surface 

radiation was simulated using a radiative transfer model (Edwards &  Slingo, 

1996). Plant carbon uptake was simulated using a land surface model (Best et al., 

2011, Clark et al., 2011). A similar combination of models has also been used in a 

recent study by Rap et al. (2015).  

2.2.1 Aerosol Model 



58 
 

The aerosol distribution was simulated using the GLObal Model of 

Aerosol Processes (GLOMAP) (Mann et al., 2010), which is an extension to the 

TOMCAT 3-D chemical transport model (Chipperfield, 2006). GLOMAP is a global 

aerosol microphysical model that simulates the concentration, size, and mass of 

aerosol particles using a two-moment (mass per particle and number 

concentration) modal scheme. This model includes various aerosol processes, 

including nucleation, condensation, growth, coagulation, dry and wet deposition, 

and cloud processing. In the GLOMAP version used here, the aerosol species 

included are black carbon (BC), particulate organic matter (POM), sulfate, sea 

salt, and mineral dust. The horizontal resolution is 2.8º x 2.8º, with 31 vertical 

levels ranging from the surface to 10hPa, with the layer thickness varying from 

60 m (surface) to 1 km (tropopause). The model is driven with historical 

meteorology from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) at 6-hourly intervals and interpolated onto the model time-step (30 

minutes). Annually varying anthropogenic emissions (BC, organic carbon (OC), 

SO2) including fossil fuel and biofuel emissions are taken from the MACCity 

inventory (Granier et al., 2011). This dataset is based on historical ACCMIP (for 

years 1990 and 2000) and RCP 8.5 (2005 and 2010) emissions. The emissions 

were linearly interpolated for the years between those given. Biomass burning 

emissions (BC, OC, SO2) are taken from the Global Fire Emissions Database 

version 3 (GFED3) (van der Werf et al., 2010) and are supplied as annually 

varying monthly means.  

 GLOMAP has been evaluated extensively in previous work and 

generally found to match ground-based station observations (e.g. AERONET) 

well (Mann et al., 2010, Rap et al., 2015, Reddington et al., 2016, Reddington et 

al., 2014). In this study, we compared trends in simulated aerosol optical depth 

(AOD) with satellite-based (MODIS, SeaWiFS) estimates for the period of 

overlapping data records 2001-2010. Results showed generally good agreement 

between the modelled and observed AOD trends specifically in areas where 

fossil fuel emissions dominate the AOD trends (Figure 2.1 and Figures B1-B3 in 

the supporting information). In this study we are interested in trends in AOD 

driven by changing anthropogenic aerosol emissions. To exclude a 

contamination from dust, we calculate AOD only for the 4 aerosol size modes 
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(aitken-soluble, aitken-insoluble, accumulation-soluble, and coarse-soluble) that 

do not include dust. We demonstrated that satellite aerosol trends are similar 

both during periods with and without a large contribution from dust in East Asia 

(Figure B1), demonstrating that observed trends are not due to trends in dust.  

 

Figure 2.1 - Comparison between modeled and satellite annual mean AOD 
trends (year-1) for the period of overlapping data records 2001–2010. 
Panels depict linear trends for (a) GLOMAP, (b) MODIS, and (c) SeaWiFS. 
(d) Linear trends in AOD (year-1) between 2001 and 2010 are shown for 
the three focus regions (outlined in Figure 2.1a; land points only): Europe 
(EU), North America (NA), and East Asia (EA) based on GLOMAP (green), 
MODIS (violet), and SeaWiFS (brown). The crosses represent the mean 
trend, the middle bars the median, the boxes the 25th and 75th percentile 
values, and the error bars the minimum and maximum values with circles 
representing outliers (greater than 1.5 times interquartile range). White 
areas in Figures 2.1b and 2.1c indicate regions where satellite retrievals 
were not available, and in all maps statistically significant (P<0.05; 
Student’s t-test) trends are highlighted with stippling. Spatial resolutions 
in the original data sets differ between modeled (2.8°) and satellite (MODIS 
(1.0°) and SeaWiFS (0.5°)), and for this comparison the satellite AOD fields 
were aggregated to the coarser model resolution. 

 

 

2.2.2 Radiative transfer model 

The Edwards and  Slingo (1996) radiative transfer model is used to 

quantify the aerosol effect on direct and diffuse radiation (Rap et al., 2013). We 

used the aerosol optical properties (scattering, absorption, and asymmetry 
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coefficients) for each aerosol mode and spectral band based on Bellouin et al. 

(2013). The model is forced with monthly mean ECMWF climate (water vapour, 

temperature) and ozone reanalysis data together with cloud fields and surface 

albedo from the International Satellite Cloud Climatology Project (ISCCP-D2) 

(Rossow &  Schiffer, 1999). The simulated total and direct radiation fluxes are 

used to calculate diffuse radiation (diffuse = total – direct). Due to the 

uncertainty in aerosol-cloud interactions we do not allow changes in aerosol to 

alter cloud properties (aerosol indirect effect). The Edwards-Slingo (ES) model 

has been validated in recent studies to some extent (e.g. Rap et al. (2015)). We 

performed additional validations at four FluxNet sites in Europe and North 

America and found reasonable model performance (Figures B4 and B5). 

2.2.3 Land surface model 

The Joint UK Land Environment Simulator (JULES) land surface model 

used here simulates the exchange of carbon, water, energy and momentum 

between the land surface and atmosphere (Best et al., 2011, Clark et al., 2011). 

The model includes a multilayer (10 levels) canopy parameterization to scale 

photosynthesis from leaf to the canopy (Mercado et al., 2009, Mercado et al., 

2007). Photosynthesis is calculated at each level, and treats sunlit and shaded 

leaves separately. In our simulations, we used the dynamic phenology (TRIFFID) 

version of JULES. To ensure the plant pools and NPP are at steady state, the 

model was spun up for 60 years (10 in equilibrium mode and 50 in dynamical 

mode (see Cox (2001)) using a repeated driver climatology for 1995. The control 

simulation was then run with transient driving input for 1996-1998, providing a 

steady-state to start our simulations from. The model is forced with ERA-Interim 

climate fields (Weedon et al., 2014), and runs at 0.5° spatial resolution with 

three hourly time steps. The climate drivers consist of 2m air temperature, 

specific humidity, precipitation, 10m wind speed and surface pressure. Model 

drivers also include downwards surface radiation (short-wave direct and 

diffuse, long-wave) from the ES model. The JULES plant carbon uptake response 

to changes in solar radiation has also been validated to some extent at temperate 

needleleaf and broadleaf forest sites (Mercado et al., 2009) and in tropical 

rainforests (Rap et al., 2015). We conducted further validations at the same four 

FluxNet sites that were used in the ES validations (see above). Also in this case, 
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the modelled GPP responses to increases in PAR under both total and diffuse 

light regimes agree generally well with observed responses (Figure B6). 

 We performed a set of factorial simulations with JULES over the 

period 1998-2010 to isolate the impact of single drivers on NPP. The five drivers 

considered include (1) climate, (2) atmospheric CO2, and incoming solar 

radiation due to aerosols associated with (3) anthropogenic emissions, (4) fire 

emissions as well as (5) cloud cover. We started with a 'control' simulation in 

which only climate variables were varied and anthropogenic and fire aerosol 

emissions remained at year 2000 values to avoid the anomalous 1998 ENSO year 

and atmospheric CO2 was held fixed at 1998 levels whereas cloud cover was 

based on a climatology for whole study period 1998-2010. Four additional 

simulations were carried out whereby in each simulation one additional driver 

was varied, so that our final simulation had monthly varying fire emissions and 

cloud cover for the whole period and anthropogenic emissions and the 

atmospheric CO2 level varied annually. We first calculated the trend (based on 

linear regression) in annual AOD, surface diffuse radiation (SDR), and NPP for 

each simulation. The climate effect and combined effect can be inferred directly 

from the first (only climate varied) and last (all drivers varied) model runs. To 

isolate the impact of the remaining single drivers, the difference between the 

trends of two simulations that only differ by that driver was used.  

2.3 Results 

The simulated impact of anthropogenic aerosol emissions on AOD and 

SDR from 1998 to 2010 is shown in Figure 2.2. As anticipated, AOD changes 

were largest in regions of significant FF aerosol emission change over this 

period. For example, East Asia show substantial increases in AOD and SDR 

coinciding with increasing anthropogenic aerosol and aerosol precursor 

emissions (Granier et al., 2011). In contrast, Europe and North America 

experienced declining AOD and SDR trends driven by a reduction in FF aerosol 

emissions (Figure 2.2, Table 2.1 and Figure B3). The spatial distribution of these 

trends in AOD and SDR are greatest close to the vicinity of the respective source 

regions, although changes extend for thousands of km due to atmospheric 
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transport of the aerosols. Our results also show that changes in fossil fuel aerosol 

emissions play an important role in the AOD trends compared to natural (e.g. sea 

spray) and fire induced changes in all three regions of interest (Figure B1). A 

subsequent analysis that isolates the contribution of each factor (FF, fire, and 

clouds) to trends in SDR further confirms this result, with fossil fuel burning also 

dominating the trend in the three focus regions of East Asia, Europe and North 

America (Figure B7). 

 

Figure 2.2 - Spatial pattern of linear trends in simulated annual (a) AOD 
and (b) SDR due to changes in fossil fuel aerosol emissions over the period 
1998–2010. In Figures 2.2a and 2.2b, trends are calculated as the 
difference in the trends based on two single simulations, with varying 
anthropogenic aerosol emissions as the only difference between the two 
(see section 2.2). Statistically significant (P<0.05) trends are highlighted 
with stippling. 
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Table 2.1 - Trends in AOD, SDR, and NPP over the period 1998-2010 for 
global land and three focus regions. The linear trends shown are based on 
simulations in which all drivers are varied and where the effect of FF 
aerosol emissions is isolated (in parentheses). The three focus regions 
(only land areas) are outlined in Figure 2.2a and number of asterisks 
indicate statistical significance of trends at P<0.05 (*), P<0.01(**) and 
P<0.001 (***) levels, respectively. 

Region AOD (yr-1) SDR (W m-2 yr-1) NPP (TgC yr-2) 

East Asia 0.0037*** (0.0035***) 0.31** (0.21***) 44.13* (14.44) 

Europe -0.0052*** (-0.0050***) -0.56*** (-0.47***) 19.10 (-8.09) 

North America -0.0021*** (-0.0021***) -0.16 (-0.18***) 17.32 (-9.78) 

Global -0.0002 (-0.0001) -0.002 (-0.03) 140.13 (-6.82) 

  

 

 

A factorial analysis based on multiple runs with the JULES land surface 

model (see Methods) was used to quantify the contribution of single drivers 

(changes in light regimes due to FF and fire emissions as well as changes in cloud 

cover, in addition to changes in near-surface climate and increased atmospheric 

CO2 concentrations) to the trend in NPP in the study period 1998-2010. Results 

show that the spatial patterns in the overall NPP trends (Figure 2.3a) were 

generally dominated by trends in near-surface climate (Figure 2.3b and Figure 

B8). In this regard, warming across northern Eurasia and cooling across Canada 

appeared to be responsible for the pronounced positive and negative NPP trends 

in these regions, respectfully (Figure 2.3b and Figure B9). Over many land 
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regions outside the northern high latitudes, trends in precipitation appeared to 

be the dominant driver for trends in NPP (Figure 2.3b and Figure B9). 

 

 

 

Figure 2.3 - Spatial pattern of linear trends (gCm-2yr-2) in annual NPP for 
the period 1998–2010. The maps depict trends in NPP based on factorial 
JULES simulations with (a) all drivers varied and corresponding to single 
drivers including (b) climate, as well as light regimes associated with (c) 
fossil fuel aerosol emissions, (d) fire aerosol emissions, and (e) cloud 
cover. (f) Trends in NPP associated with atmospheric CO2. Statistically 
significant (P<0.05) trends are highlighted with stippling. 

 

At more regional levels, changes in SDR associated with FF aerosols had a 

sizeable impact on trends in NPP in East Asia, Europe, and Eastern USA (Figure 

2.3c) broadly in line with the spatial pattern of the corresponding AOD and SDR 
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trends (Figure 2.2). Changes in NPP due to trends in SDR resulting from changes 

in fire emissions and cloud cover were of similar magnitude but displayed a 

more heterogeneous pattern across the continents (Figures 2.3d and 2.3e). Over 

central African rainforests, a relatively strong cloud cover – SDR effect was 

observed, where a reduction in SDR associated with a strong trend towards 

lower cloud cover (Figure B7) led to markedly lower NPP. Conversely, and as 

expected, the CO2 fertilization effect (Figure 2.3f) led to consistent increases in 

NPP across most of the vegetated land surface, with the largest impact in the 

highly productive tropics.  

In Figure 2.4, regionally aggregated and global contributions from each 

single driver to the overall NPP trends over the 1998-2010 study period are 

shown. Corresponding results show that over East Asia, changes in climate 

(negative contribution) as well as atmospheric CO2 (positive) were the most 

dominant drivers of trends in NPP (Figure 2.4a). However, increases in SDR due 

to increasing FF aerosol emissions caused a sizeable positive NPP trend (14 TgC 

yr-2; see also Table 2.1), which amounted to a substantial proportion (33%) of 

the total positive NPP trend over this region. In Europe and North America, 

changes in climate and atmospheric CO2 were generally also the dominant 

drivers of NPP changes, whereas declining SDR (from decreasing FF aerosol 

emissions) led to significant negative contributions to the overall NPP trends 

(Figure 2.4b and 2.4c; Table 2.1). At global scale, we estimated an overall 

increasing NPP trend of 0.14 PgC yr-2 over the study period 1998-2010 with 

changes in atmospheric CO2 (0.25 PgC yr-2) and near-surface climate (-0.09 PgC 

yr-2) playing a dominant role (Figure 2.4d). At this global level, the aerosol 

radiative effects from changes in FF emissions are relatively small (-6.8 TgC yr-2, 

-4.9% of total NPP trend) since the increasing contributions over East Asia are 

effectively cancelled out by the declining contributions from Europe and North 

America.  
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Figure 2.4 - Global, regional, and mechanistic attribution of trends in 
annual NPP for the period 1998–2010. Trends are based on annual means 
of spatially aggregated NPP for the three focus regions (a) East Asia, (b) 
Europe, and (c) North America as well as for (d) all land regions. The three 
focus regions are depicted in Figure 2.3a. Statistically significant (P < 0.05) 
trends are highlighted (asterisk). 

2.4 Discussion 

Our results suggest that the simulated increase in global NPP (0.14 PgC 

yr-2) over the period 1998 to 2010 is largely driven by increasing atmospheric 

CO2, through a combination of direct CO2 fertilization and the indirect effects of 

improved water use efficiency in line with previous model studies (Schimel et al., 

2015, Sitch et al., 2015). The dominant contribution of the CO2 fertilization effect 

on trends in NPP should however be viewed with caution as more recent studies 

showed that land surface models may overestimate corresponding impacts 

considerably (Brienen et al., 2015, Smith et al., 2016). At the global scale, 

climatic trends over this period contributed negatively to changes in global NPP 

consistent with results based on a more data-constrained approach (Zhao &  

Running, 2010).  



67 
 

Radiative effects associated with aerosol emissions from FF and fire 

activity and those related to clouds on trends in NPP played only a minor role at 

global scale. Our results however do show that at more regional levels, FF 

aerosol emissions and corresponding effects on diffuse radiation are potent 

drivers of NPP changes, particularly over East Asia where they contribute 33% 

to the total NPP trend. In this region, the recent trend in fossil fuel aerosol 

emissions are mainly driven by increases in coal burning and associated sulfate 

aerosols (Granier et al., 2011, Lu et al., 2010). Our results must be viewed with 

some caution since for example we did not consider potential adverse effects of 

acidic sulfate deposition on NPP (Büntgen et al., 2014). But one important 

inference is that due to the importance of this ‘FF aerosol driver’ and the 

relatively short atmospheric lifetime of aerosols (days to weeks), a decline in 

regional-scale FF aerosols (e.g. through implementing more strict air pollution 

standards) may reduce NPP and net carbon uptake substantially at relatively 

short time scales. 

Our findings presented here thus indicate that the marked post-2000 

increase in the global land carbon sink may not be explained by changes in light 

regimes resulting from coincident changes in fossil fuel aerosol emissions and 

corresponding effects on NPP. This is to a large part a result of the opposing 

contributions from Asia and from Europe and North America leading to a 

relatively small global impact. This opens the door for investigations of 

alternative carbon sink mechanisms that are causally linked to increasing FF 

emissions. In this regard, nitrogen deposition may act as a potent driver through 

both its direct effect on photosynthesis, plant respiration and soil respiration 

(Zaehle, 2013) as well as indirectly through easing nutrient constraints for NPP 

enhancements via the CO2 fertilization effect (Norby et al., 2010). In addition, 

decadal climatic trends that are largely independent of FF emission trajectories 

may induce strong impacts on NPP (as shown here) and also on plant and soil 

respiration. In this regard, the recent ‘hiatus’ in global temperatures (IPCC, 

2013) may have reduced respiratory carbon fluxes thereby contributing to the 

enhanced land carbon sink in this time frame.  
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Abstract 

The terrestrial carbon sink has increased since the turn of this century at 

a time of increased fossil fuel burning, yet the mechanisms enhancing this sink 

are not fully understood. Here, we assess the hypothesis that regional increases 

in nitrogen deposition since the early 2000s has alleviated nitrogen limitation 

and worked in tandem with enhanced CO2 fertilization to increase ecosystem 

productivity and carbon sequestration providing a causal link between the 

parallel increases in emissions and the global land carbon sink. We use the 

Community Land Model (CLM4.5-BGC) to estimate the influence of changes in 

atmospheric CO2, nitrogen deposition, climate, and their interactions to changes 

in net primary production (NPP), and net biome production (NBP). We focus on 

two periods, 1901-2016 and 1990-2016 to estimate changes in land carbon 
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fluxes relative to historical and contemporary baselines, respectively. We find 

that over the historical period nitrogen deposition (14%) and carbon-nitrogen 

synergy (14%) were significant contributors to the current terrestrial carbon 

sink, suggesting that long-term increases in nitrogen deposition led to a 

substantial increase in CO2 fertilization. However, relative to the contemporary 

baseline, changes in nitrogen deposition and carbon-nitrogen synergy had no 

substantial contribution to the 21st century increase in global carbon uptake. 

Nonetheless, we find that increased nitrogen deposition in East Asia since the 

early 1990s contributed 50% to the overall increase in NBP over this region, 

highlighting the importance of carbon-nitrogen interactions. Therefore, potential 

large-scale changes in nitrogen deposition could have a significant impact on 

terrestrial carbon cycling and future climate. 

 

3.1 Introduction 

Fossil fuel CO2 emissions have rapidly increased since the turn of this 

century, at rates almost doubling those of the previous three decades (Hansen et 

al., 2013). Annual growth rates of atmospheric CO2 have been, somewhat 

surprisingly, relatively low during this period which may imply that the global 

carbon sink has considerably strengthened (Ballantyne et al., 2012, Keenan et al., 

2016). During the same epoch there is also evidence of a decrease in land use 

and land cover change (LULCC) emissions (Houghton et al., 2012, Le Quéré et al., 

2018) and a parallel increase in the  strength of the ocean carbon sink (DeVries 

et al., 2017, Le Quéré et al., 2018, Rödenbeck et al., 2014), but both of these 

trends appear insufficient to account for the low growth of atmospheric CO2 (Le 

Quéré et al., 2018). As a result, the terrestrial carbon sink (estimated as the 

‘residual’ in the global carbon budget (Le Quéré et al., 2016)) does exhibit a 

sharp increase since the early 2000s. An increasing terrestrial carbon sink since 

the early 2000s is also consistent with independent lines of evidence based on 

forest inventories (Pan et al., 2011), and process-based modelling studies (eg. Le 

Quéré et al. (2018)). 
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Various observation-based (Clark et al., 2013, Los, 2013, Norby et al., 

2005, Terrer et al., 2016) and modelling (Cheng et al., 2017, Keenan et al., 2016, 

Schimel et al., 2015, Sitch et al., 2015, Zhu et al., 2016) studies have highlighted 

the role elevated CO2 levels have on photosynthesis and water-use efficiency in 

explaining the increase in the terrestrial carbon sink over recent decades. 

Schimel et al. (2015) estimated that 60% of the contemporary (1990-2007) 

terrestrial sink is due to increased atmospheric CO2 concentrations. However, if 

increased plant carbon uptake via the CO2 fertilization effect alone was the main 

driver behind the increase in global net carbon uptake since the turn of this 

century, we would expect a more transient increase over time (in line with 

gradual changes in atmospheric CO2 concentrations) than what is observed. 

Further, the strength of the CO2 fertilization effect based on carbon cycle 

simulations has been disputed by others, arguing that models tend to 

overestimate this effect (Gerber et al., 2013, Gerber et al., 2010, Hungate et al., 

2003, Huntzinger et al., 2017, Smith et al., 2016, Wieder et al., 2015) because 

they neglect important processes (e.g. role of colimitation by nutrients) that 

potentially limit the CO2 fertilization effect.  

Nitrogen availability may constrain the response of  ecosystem 

productivity to rising levels of atmospheric CO2 (Bonan &  Levis, 2010, Churkina 

et al., 2009, Norby et al., 2010, Thornton et al., 2007, Zaehle, 2013, Zaehle &  

Dalmonech, 2011) via its role as an essential plant nutrient that constrains 

productivity globally (LeBauer &  Treseder, 2008, Vitousek &  Howarth, 1991). 

Nitrogen has been found to be particularly important for plant productivity in 

mid- and high-latitudes, but may also be important in tropical regions (Elser et 

al., 2007, Fisher et al., 2012, LeBauer &  Treseder, 2008). Any additional nitrogen 

added to the terrestrial biosphere, could therefore enhance carbon storage 

directly by alleviating nitrogen limitation on plant productivity and indirectly by 

permitting a further plant response to CO2 fertilization (referred to as carbon-

nitrogen synergy). Synergistic effects can arise when high CO2 concentrations 

bring about nitrogen limitation, which is alleviated by concurrent rises in 

nitrogen deposition. Recent studies indicate enhanced terrestrial carbon uptake 

in the range of 0.2-0.5 PgC/yr (Churkina et al., 2009, Liu &  Greaver, 2009, Wang 

et al., 2017, Zaehle, 2013) due to the direct effect of increased terrestrial 
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nitrogen deposition from anthropogenic activities (~30 TgN/yr in 1850 to ~80 

TgN/yr presently (Kanakidou et al., 2016)). This enhancement of terrestrial 

carbon uptake would be equivalent to 10-20% of the total modern carbon sink. 

Since 1860, humans have doubled nitrogen inputs to the biosphere 

predominately through fossil fuel burning and agricultural intensification 

(Galloway et al., 2004, Gruber &  Galloway, 2008). Over the last two decades the 

trends of nitrogen emissions and subsequent deposition have differed 

regionally. East Asian deposition has increased substantially (Jia et al., 2016, Jia 

et al., 2014, Liu et al., 2013), whereas European (Banzhaf et al., 2015, de Vries &  

Posch, 2011, Waldner et al., 2014) and North American (Du et al., 2014) nitrogen 

deposition is thought to have decreased during this time. 

The influence of climate variability (via alterations in temperature, 

precipitation, cloudiness, seasonal pattern) on changes in terrestrial carbon 

fluxes and storage may also be substantial (Ahlstrom et al., 2015, Baldocchi et al., 

2016, Cox et al., 2013, Frank et al., 2015, Reichstein et al., 2013). The recent 

“warming hiatus” (1998-2013) was identified as a potential key mechanism 

behind the increased land sink during this period via reduced ecosystem 

respiration (Ballantyne et al., 2017). Hansen et al. (2013) speculated that the 

parallel increase in global fossil fuel emission and the land carbon sink since the 

turn of this century maybe a result of carbon uptake mechanisms that are 

controlled by the emissions themselves, namely a larger fraction of diffuse solar 

radiation from increased sulfate aerosol emissions, and increased nitrogen 

deposition. However, the “diffuse radiation” mechanism has been shown to play 

only a minor role at global scale (O'Sullivan et al., 2016). Alternatively, the 

concurrent rise in both anthropogenic carbon and nitrogen emissions 

(predominantly from East Asia) could have worked in tandem to fertilize the 

terrestrial biosphere via a combination of direct fertilization by increased 

nitrogen deposition along with an increased CO2 fertilization effect due to 

alleviation of nitrogen limitation. The latter synergistic effect can be observed in 

ecosystems co-limited by various factors, which when relieved together lead to a 

strong synergistic response (de Vries et al., 2014, de Vries et al., 2009, Finzi et al., 

2007).  
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In this study, we investigated the hypothesis that the parallel increases in 

fossil fuel emissions and the land carbon sink since the turn of this century are 

causally linked through the individual and synergistic effects of increased 

atmospheric CO2 concentrations and nitrogen deposition on ecosystem 

productivity. We used a process-based model of the terrestrial biosphere with 

fully interactive carbon-nitrogen cycling. We analysed sets of factorial 

simulations for two different periods (1900-2016 and 1990-2016) in order to 

quantify the effects of various model drivers (CO2, nitrogen, and climate) relative 

to historical and contemporary baselines.  

3.2 Methodology 

3.2.1 Model description 

For this study, we used the Community Land Model version 4.5 (CLM4.5-

BGC), which simulates biophysical, hydrological, and biogeochemical exchange 

processes between the land and the atmosphere (Oleson et al., 2013). CLM4.5-

BGC is fully prognostic with regards to carbon and nitrogen state variables in the 

vegetation, litter, and soil organic matter pools. The model also prognostically 

simulates the seasonal cycle of vegetation growth/decay, leaf area index (LAI), 

and vegetation height and includes explicit parameterizations of fire and harvest 

disturbance processes. We use a version of the model which includes an 

improved biogeochemistry scheme (CLM4.5-BGC) (Thornton et al., 2007). 

Compared to previous versions of the model, these improvements include 

vertically-resolved carbon and nitrogen soil dynamics, a new decomposition 

scheme, and a more detailed representation of nitrification and denitrification 

(Koven et al., 2013). As a result of these updates, simulated fluxes and pools (of 

carbon and nitrogen) more closely reflect observational data (Koven et al., 

2013). Also 20th century carbon dynamics are more realistic due to higher 

terrestrial carbon uptake because of reduced nitrogen constraints and longer 

turnover times for decomposing carbon (Koven et al., 2015).  

While CLM4.5-BGC has been described in detail (Oleson et al., 2013), we 

briefly summarize some key processes that are of relevance for this study. In 
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CLM4.5-BGC, leaf stomatal conductance (𝑔𝑠) is coupled to photosynthesis based 

on the Ball -Berry model (Collatz et al., 1991, Sellers et al., 1996): 

 𝑔𝑠 = 𝑚
𝐴𝑛

𝑐𝑠 𝑃𝑎𝑡𝑚⁄
ℎ𝑠 + 𝑏𝛽𝑡, (1) 

where 𝐴𝑛 is the leaf photosynthesis rate, 𝑐𝑠 is the CO2 partial pressure at 

the leaf surface, 𝑃𝑎𝑡𝑚 is the atmospheric pressure, ℎ𝑠 is the relative humidity at 

the leaf surface, 𝑚 is a plant functional type (PFT) specific slope coefficient, and 

𝑏 is a PFT specific minimum stomatal conductance, regulated by the soil 

moisture stress factor 𝛽𝑡. 𝛽𝑡 ranges between 0 (maximum water stress) and 1 

(minimum water stress), and works to reduce the minimum stomatal 

conductance 𝑏. Further, 𝛽𝑡  impacts 𝑔𝑠 through its influence on 𝐴𝑛, by scaling the 

maximum rate of carboxylation (𝛽𝑡 𝑉𝑐𝑚𝑎𝑥).  

Additionally, 𝐴𝑛 depends (in part) upon the internal leaf CO2 partial 

pressure (𝑐𝑖) via Fick’s law as follows: 

𝑐𝑖 = 𝑐𝑎 − (1.4𝑟𝑏 + 1.6𝑟𝑠)𝑃𝑎𝑡𝑚𝐴𝑛, (2) 

where 𝑐𝑎 is the atmospheric CO2 partial pressure, 𝑟𝑏 is the leaf boundary 

layer resistance, and 𝑟𝑠 is the stomatal resistance. The equations for 𝑐𝑖, 𝑔𝑠, and 𝐴𝑛 

(not shown) are solved iteratively until 𝑐𝑖 converges. This formulation couples 

the carbon and water cycles and both photosynthesis and stomatal conductance 

are reduced in dry conditions. Both 𝑔𝑠, and 𝐴𝑛 are solved separately for sunlit 

and shaded conditions and scaled through the canopy (as a function of LAI) to 

determine canopy level conductance and potential GPP (GPPpot). 

Nitrogen limitation is modelled through downscaling GPPpot depending 

on available nitrogen and required nitrogen by new carbon growth (Oleson et al., 

2013; Thornton et al., 2007). Actual GPP is defined as 

GPP=GPPpot(1 − 𝑓), (3) 

with the nitrogen scaling factor (f) defined as 

𝑓 =
CFavail_alloc‐CFalloc

GPPpot
, (4) 

where CFavail_alloc is the carbon flux from photosynthesis available for new 

growth, after accounting for maintenance respiration, and CFalloc is the carbon 
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allocation to new growth. In a first step, plant nitrogen demand is calculated 

depending on the amount of carbon available for growth (CFavail_alloc) and fixed 

C:N stoichiometry for each part of the vegetation (leaves, roots, wood) for each 

PFT on the soil column. The plant demand for nitrogen is (partially) 

compensated for by translocating nitrogen from senescing leaves. Total plant 

nitrogen demand is reduced by this translocating flux to give the plant demand 

for mineral nitrogen from the soil. The combined nitrogen demand for all PFTs 

and heterotrophic demand from the soil (immobilization) compete for available 

soil nitrogen. Plant nitrogen uptake is then calculated (depending on the ratio of 

demand to supply), which is then used along with allometric relationships and 

C:N stoichiometry to calculate CFalloc.  

Soil decomposition rates are also influenced by nitrogen availability. For 

decomposition from each upstream to downstream pool, a nitrogen source/sink 

term is calculated depending on the carbon and nitrogen content of each pool. 

Therefore, depending on plant demand for soil nitrogen, decomposition fluxes 

can be downregulated if nitrogen supply is limited. In addition to the rapid 

cycling of nitrogen in the plant-litter-soil system, CLM4.5 simulates dynamics of 

the ‘external’ nitrogen cycle, with inputs of bioavailable nitrogen entering the 

terrestrial ecosystem through biological fixation and atmospheric deposition. 

Nitrogen leaves the system through losses due to fire, denitrification, and 

leaching. Additions from deposition and biological fixation (BNF) are added 

straight to the mineral NH4+ pool, where plants and microbes compete for the 

nitrogen. This representation of carbon-nitrogen interactions in CLM4.5-BGC 

leads to a strong coupling between heterotrophic respiration and plant 

productivity, as respiration depends on organic matter produced, and 

productivity depends on the nutrients made available through the 

decomposition of this organic matter (Thornton et al., 2007). Hence, further to 

the positive impact nitrogen deposition has upon plant productivity another 

important pathway for nitrogen to fertilize plant growth is through warming 

induced increases in nitrogen mineralisation a process which is also simulated in 

CLM4.5-BGC (Thornton et al., 2007). 

The model driver data used include nitrogen deposition for the period 

1850-2000 from simulations based on the Community Atmosphere Model 
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version 3.5 (CAM3.5) using historical nitrogen emissions (Lamarque et al., 

2010). For the more recent period 2000-2016, we use nitrogen deposition fields 

generated following the emissions from Representative Concentration Pathway 

8.5 (also using CAM3.5) (Lamarque et al., 2011), as this most closely matches 

current emission levels (Peters et al., 2013).  Due to the temporal averaging of 

emissions data (linear interpolation between decadal means), there is a smooth 

transition (no step changes between years) between emission inventories at the 

year 2000, and hence the deposition fields used.  

Climate driver data used stem from the CRU-NCEP (version 7) dataset 

(Viovy, 2018) (0.5° spatial and 6h temporal resolution), which is designed to 

drive CLM over long timer periods and aggregated/interpolated to the CLM4.5 

spatial resolutions of 1.25° x 0.9375° and 30 min time step. CRUNCEP is a 

combination of two datasets; CRU TS3.2 0.5° x 0.5° monthly data over the period 

1901-2002 (Harris et al., 2014), and the NCEP reanalysis 2.5° x 2.5° 6-hourly 

data covering 1948-2016 (Kalnay et al., 1996). Further, we also used prescribed 

annual, globally averaged CO2 concentrations from the Earth Systems Research 

Laboratory (Dlugokencky &  Tans, 2017). We used fixed present-day land cover 

as described in section 21.3.3 of Oleson et al. (2013) , meaning we did not 

consider land-use and land-cover change in this study since our focus was 

broadly on carbon-nitrogen interactions. 

 

3.2.2 Model experiments 

3.2.2.1 The extended period 1901-2016 

We performed a set of factorial simulations to assess the land carbon 

cycle response to increasing atmospheric CO2, nitrogen deposition, and climate 

changes, as well as the interactions between these drivers. This design allowed 

estimation of the effects of individual drivers on carbon pools and fluxes, and 

hence on the overall terrestrial carbon budget during the period 1901-2016. 

Global annual means of model drivers (climate, nitrogen deposition, atmospheric 

CO2) are shown in Figure C1 (in the supporting information), and the spatial 

distribution of changes over this period are shown in Figure C2. Our model spin-

up procedure followed that of the multi-model TRENDY study (Sitch et al., 2015) 
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to be able to compare the results of this study to the TRENDY ensembles. It 

entails cycling early 20th century climate (1901-1920) with atmospheric CO2 

concentrations and nitrogen deposition of the year 1860 until carbon pools and 

fluxes were in a steady state. The model then ran from 1861-1900 with varying 

CO2 and nitrogen deposition and the same climate cycles as in the first step. We 

then ran a set of factorial off-line experiments over 1901-2016 with varying CO2, 

climate, nitrogen deposition, and fixed present-day land use (see Table 3.1). 

 

From this set of eight simulations, we estimated the contribution from 

each driver to changes in net primary production (NPP), heterotrophic 

respiration (RH), and net biome production (NBP) (estimated through 

NBP=NPP-RH-fire), and total ecosystem carbon as following: CO2 fertilization = 

(S2 – S1), nitrogen deposition = (S3 – S1), climate (S4 – S1*), carbon-nitrogen 

synergy = (S5 – S2) – (S3 – S1), carbon-climate synergy = (S6 – S4) – (S2 – S1), 

and the combined effect = (S8 – S1*). Here, simulation S1* represents the linear 

trend (from 1901-2016) in annual means of NPP, NBP, and total ecosystem 

carbon based on experiment S1. We use the trend in S1 rather than annual 

means to preserve the inter-annual variability of climate in the “Climate” and 

“Combined” contributions. Taking the difference between the simulations 

removes the background carbon trends from the non-equilibrium initial 

conditions (see Bonan and  Levis (2010)). 

We calculate the change in NPP and NBP due to each driver over the 

study period by differencing the 2007-2016 and 1901-1910 means. To 

statistically test for a difference between the two decades we use a Mann-

Whitney U test. As a result of our experiment design, contributions from CO2 

fertilization, nitrogen deposition, carbon-nitrogen synergy, and carbon-climate 

synergy use early 20th century climate as a source of variance in both decades 

(1901-1910 and 2007-2016). For the contributions from climate, and 

“combined”, the “actual” climate variability in each decade is the source of 

variance. 
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Table 3.1 - Summary of Factorial Model Simulations With CLM4.5-BGC. 

Experiment CO2 Nitrogen deposition Climate 

S1 C C C 

S2 T C C 

S3 C T C 

S4 C C T 

S5 T T C 

S6 T C T 

S7 C T T 

S8 T T T 
Note. C (constant) indicates 1900 values are used for atmospheric CO2 and nitrogen deposition and 1901-

1920 climate is recycled. T (transient) indicates historically varying CO2, nitrogen deposition and climate 

is used. 

 

3.2.2.2 The recent period 1990-2016 

We performed a second set of experiments for the more recent period 

(1990-2016) using initial conditions obtained from experiment S8 (at 1990) by 

branching out of experiment S8 (Table 3.1). Simulations are performed in a 

similar manner to the extended period; however, our constant values were from 

1990 for atmospheric CO2, nitrogen deposition, and climate. We performed these 

simulations of the recent period to quantify recent changes in carbon/nitrogen 

cycling relative to a more contemporary baseline. Such an analysis would be 

more closely aligned with the time frame of our main aim of evaluating 

explanations for the terrestrial sink increase since the turn of this century. 

Contributions from each factor are calculated through factorial simulations, 

similar to the extended period. 

 

3.2.3 Diagnosing model results 

Nitrogen limitation (N-lim) is a key metric in assessments of carbon-

nitrogen coupling and is directly estimated in CLM4.5-BGC through the ratio of 

actual GPP to potential GPP (GPP that would occur without nitrogen limitation) 

at each time step, and thus is a scalar between 0-1, with high/low N-lim values 

indicate low/high nitrogen limitation. 
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In diagnosing our model results we evaluate N-lim along with the Γ factor 

which expresses the sensitivity of terrestrial carbon storage to atmospheric CO2. 

For the Γ factor, we adopt the definition: Γ𝑋 =
∆𝑇𝐸𝐶𝑋

∆𝐶𝑎
=

∆(𝑇𝐸𝐶𝑌−𝑇𝐸𝐶𝑍)

∆𝐶𝑎
, where ∆𝑇𝐸𝐶𝑋 

is the change in total ecosystem carbon (PgC) due to factor 𝑋 over a certain 

period, calculated as the difference between simulations 𝑌 and 𝑍 (see Table 3.2). 

∆𝐶𝑎 is the change in atmospheric CO2 (ppm) over the same period. For the 

extended period we focus on the change in 𝑇𝐸𝐶 and 𝐶𝑎 from 1901-1910 to 2007-

2016 and for the recent period on the change from 1990-1996 to 2010-2016.  

 

Table 3.2 - Summary of Simulations Used in the Calculations for Γ. 

 Γ𝑪𝑶𝟐 Γ𝑪𝑶𝟐+𝑪𝑵𝒔𝒚𝒏 Γ𝑪𝑶𝟐+𝑪𝑵𝒔𝒚𝒏+𝑵𝑫𝑬𝑷 

∆(𝑇𝐸𝐶𝑆2 − 𝑇𝐸𝐶𝑆1)/∆𝐶𝑎 ∆(𝑇𝐸𝐶𝑆5 − 𝑇𝐸𝐶𝑆3)/∆𝐶𝑎 ∆(𝑇𝐸𝐶𝑆5 − 𝑇𝐸𝐶𝑆1)/∆𝐶𝑎 

Note. Γ is calculated for the direct CO2 effect Γ𝑪𝑶𝟐, the direct CO2 and carbon-nitrogen synergy effects 

Γ𝑪𝑶𝟐+𝑪𝑵𝒔𝒚𝒏, and finally the direct CO2, direct nitrogen deposition effects, and the synergy between them 

Γ𝑪𝑶𝟐+𝑪𝑵𝒔𝒚𝒏+𝑵𝑫𝑬𝑷. 

 

3.3 Results 

3.3.1 Long-term changes in net terrestrial carbon uptake and 

attribution of underlying drivers 

To evaluate our hypothesis that nitrogen deposition, CO2 fertilization, and 

their interactions have enhanced the terrestrial carbon sink, we first analyse our 

CLM4.5-BGC model simulations of the carbon component fluxes NPP and RH, as 

well as NBP covering the extended period over the last century.  

At the global scale, simulated NPP increased substantially over the 20th 

century to present day from 56.2 (mean of 1901-1910) to 66.0 PgC/yr (mean of 

2007-2016) with positive contributions from all drivers considered, including 

rising CO2 concentrations (referred to as CO2 fertilization), nitrogen deposition, 
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climate, and carbon-nitrogen as well as carbon-climate synergies (Figure 3.1, 

Table 3.3). The relative contribution of these drivers to this overall NPP increase 

amounts to 60% for increased CO2, 15% for nitrogen deposition, 8% for carbon-

nitrogen synergy, 9% for carbon-climate synergy and 8% for climate. Both CO2 

fertilization and nitrogen deposition individually caused a smooth, transient 

increase in NPP, in line with the trajectory of the corresponding drivers (see 

Figure 3.1 and Figure C1). The positive carbon-nitrogen synergistic contribution 

to NPP implies that (as expected) the efficiency of the CO2 fertilization effect is 

enhanced as nitrogen limitation is diminished (through nitrogen deposition). In 

addition, a similar positive contribution of comparable magnitude is observed 

for the carbon-climate synergistic effect.  

 

Table 3.3 - Change in Global NPP and NBP (PgC/yr) for the extended 
((2007-2016) - (1901-1910)) and recent ((2010-2016) - (1990-1996)) 
periods. 

Period Variable 

Change due to each driver (PgC/yr) 

CO2 NDEP CLIMATE 
CN-

SYN 

CC-

SYN 

SUM of 

three 

effects (% 

of 

COMBINED) 

COMBINED 

Extended 
NPP 5.93 1.50 0.84 0.77 0.86 8.27 (85%) 9.75 

NBP 2.39 0.34 -1.07 0.35 0.44 1.66 (72%) 2.31 

Recent 
NPP 1.91 0.03 1.22 0.01 0.24 3.16 (93%) 3.41 

NBP 1.22 0.03 -1.17 0.00 0.18 0.08 (30%) 0.27 

Note. Positive values for NBP indicate a sink of carbon to the land surface. SUM of three effects indicates the 

sum of CO2, NDEP, and CLIMATE. 
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Figure 3.1 - Global, annual mean change in NPP (PgC/yr) relative to the 
control simulation (S1) during 1901-2016 due to CO2 fertilization (CO2), 
nitrogen deposition (Ndep), climate change (Clim), carbon-nitrogen 
synergy (CN-Syn), carbon-climate synergy (CC-Syn) and the combined 
effects (Comb). Inset shows the change in NPP from 1901-1910 to 2007-
2016. Statistically significant (• p<0.05, •• p<0.01; Mann-Whitney U test) 
changes are highlighted. 

 

 

A spatially explicit analysis of the factorial simulations shows that the CO2 

fertilization effect is most profound in tropical regions (Figure 3.2a).  Substantial 

contributions from nitrogen deposition are also evident over the industrialised 

regions of Europe, East Asia, and North America, and the agricultural regions of 

India and South-East Asia (Figure 3.2b). Whilst NPP increases due to nitrogen 

deposition have the largest footprint in industrialised regions, the associated 

NPP response also depends on the nitrogen limitation of a given ecosystem. This 

is apparent in the grasslands of Africa and South America, where nitrogen 

deposition (Figure C2) induced a substantial NPP response (Figure 3.2b). The 

increase in NPP due to climate can be attributed to mid and high northern 

latitudes, where warming has led to a longer growing season and increased soil 

moisture (Figure C3), enhancing annual net plant carbon uptake (Figure 3.2c). 

Further, warming enhanced nitrogen mineralisation in these soils (Figure C4) 

increasing plant productivity, which is also captured in the climate response. 

The positive carbon-nitrogen synergistic contribution is prevalent in tropical 

forests and East Asia (Figure 3.2d), regions that are also exhibiting high 
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sensitivity to CO2 fertilization (Figure 3.2a). Similarly, positive carbon-climate 

synergistic effects are substantial in the tropics, as well as regions in the 

mid/high latitudes (Figure 3.2e). 

 

 

Figure 3.2 - Spatial patterns of NPP change (gC/m2/yr) as a result of all 
drivers considered. Maps show single driver contribution from a) CO2 
fertilization, b) nitrogen deposition, c) Climate, d) CN-synergy, e) CC-
synergy, and f) the combined effect, respectively. The patterns are based 
on a set of factorial simulations (see Methods). NPP changes shown here 
are calculated as the difference between 2007-2016 (final decade) and 
1901-1910 (first decade) mean values. Significant (p<0.05; Mann-Whitney 
U test) changes highlighted with hatching. 

 

 

Globally, NBP has increased from 0.8 to 3.2 PgC/yr (1901-1910 to 2007-

2016 means) with positive contributions from CO2 fertilization, nitrogen 

deposition, carbon-nitrogen synergy, and carbon-climate synergy whilst an 
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overall negative contribution from climate (Figure 3.3, Table 3.3). The relative 

contribution of these drivers to this overall NBP increase amounts to 99% for 

increased CO2, 14% for nitrogen deposition, 14% for carbon-nitrogen synergy, 

18% for carbon-climate synergy and -45% for climate. Whilst the CO2 

fertilization effect steadily contributed to NBP changes throughout the whole 

period, nitrogen deposition induced NBP increases became significant from the 

1970s onwards (Figure 3.3), a period of increased anthropogenic nitrogen 

deposition (fossil fuel NOx and agricultural NHx) (Lamarque et al., 2010). 

Results also show that the carbon-nitrogen synergistic effect is as large as the 

effect from nitrogen deposition alone, implying additional nitrogen had a large 

positive impact on CO2 fertilization. NBP is highly sensitive to climatic changes 

especially at inter-annual time scales (Figure 3.3 and Figure C1). Overall, 

changes in climate have led to a net carbon source, with accelerated losses since 

the 1990s, due to warming induced soil respiration rates increasing faster than 

NPP.  

 

 

Figure 3.3 - Global, annual mean change in NBP (PgC/yr) relative to the 
control simulation (S1) during 1901-2016 due to CO2 fertilization (CO2), 
nitrogen deposition (Ndep), climate change (Clim), the combined effect 
(Comb), carbon-nitrogen synergy (CN-Syn), and carbon-climate synergy 
(CC_Syn). Zero line is shown in grey. Inset is the change in NPP from (1901-
1910) to (2007-2016).  Statistically significant (• p<0.05, •• p<0.01; Mann-
Whitney U test) changes are highlighted. 
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The spatial distribution of changes in NBP over roughly the last century 

from CO2 fertilization and nitrogen deposition mirrors those seen in NPP (Figure 

3.4a,b and Figure 3.2a,b) and is consistent with the notion of a strong influence 

of NPP on net carbon uptake. Interestingly, increased nitrogen deposition seems 

to have had no direct effect on tropical forest net carbon uptake (but instead 

increased the efficiency of CO2 fertilization: the CN synergistic effect as discussed 

below). NBP decreases due to climate can be attributed predominately to 

tropical regions as well as large areas across Eurasia and North America (Figure 

3.4c). Both the carbon-nitrogen and carbon-climate synergistic effects follow the 

NPP patterns of large tropical increases, as well as vast areas of the mid-high 

latitudes (Figure 3.4d,e). These synergistic effects occur when there is both a 

high sensitivity to CO2 fertilization and a concurrent release of nitrogen 

limitation. This is seen in the case of tropical forests where increased 

atmospheric CO2 concentrations increases nitrogen limitation that is then 

alleviated with simultaneous increases in nitrogen deposition (Figure 3.4d). 

Overall, the majority of the vegetated land surface has increased net carbon 

uptake over the historical period, with the tropics, East Asia, North America, and 

northern Eurasia dominating (Figure 3.4f). However, areas in South America, 

Southern Africa, and the Eurasian Steppe are now carbon sources to the 

atmosphere.  
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Figure 3.4 - Spatial patterns of NBP change (gC/m2/yr) due to a) CO2 
fertilization, b) nitrogen deposition, c) Climate, d) CN-synergy, e) CC-
synergy, and f) combined effect. The synergistic effect is calculated as the 
difference between 2007-2016 and 1901-1910 mean values. Significant 
(p<0.05; Mann-Whitney U test) changes highlighted with hatching.  

 

 

 

Recent published findings based on the Global Carbon Budget (GCB) show 

that the land carbon sink has increased over the last five decades (Le Quéré et 

al., 2018). In the GCB, the land sink is estimated as the ‘residual’ in the global 

carbon mass balance between fossil fuel and land-use emissions, atmospheric 

CO2 growth rates, and ocean uptake. This ‘residual’ sink has increased from ~1.5 

PgC/yr to ~3 PgC/yr from the 1960s to the 2000s (Figure 3.5). The estimated 

decadal carbon sinks in our study are in general agreement and within the 
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uncertainties of the GCB estimates, giving some confidence in our modelled 

magnitude (Figure 3.5). 

We also compared our results to those based on the recent TRENDY 

multi-model inter-comparison, which consider the influence of varying 

atmospheric CO2 concentrations and climate on carbon fluxes (S2 simulations) 

(Sitch et al., 2015). As carbon-nitrogen interactions are a focal point of this 

study, we compared our results with the TRENDY models that include a coupled 

carbon-nitrogen scheme (CLM4-CN and OCN) separately to the ‘carbon-only’ 

models. Whilst CLM4-CN and OCN tend to simulate lower net carbon uptake 

compared to the “carbon-only” mean, they are both still within the range 

spanned by the TRENDY ‘carbon-only’ ensemble (Figure 3.5). Therefore, while 

introducing a coupled carbon-nitrogen scheme tends to have a strong influence 

on land carbon uptake in DGVMs (Friedlingstein &  Prentice, 2010, Thornton et 

al., 2007, Zaehle et al., 2010), the structural difference between models is a 

larger source of uncertainty. Our results match the mean TRENDY carbon sink 

estimate well on decadal scales, albeit with noticeable differences in the 1960s 

and 1980s.  
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Figure 3.5 - Multiple estimates of the decadal mean land carbon sink for 
the 1960s – 2010s based on the GCB, TRENDY (S2) and this study. Note that 
the TRENDY simulations and our results do not consider LULCC, and the 
GCB residual sink inherently accounts for LULCC fluxes. Carbon sink 
(PgC/yr) estimates correspond to the GCB ‘residual’ (green bars), this 
study (red bars), this study with 1900 nitrogen deposition (black crosses), 
and the ensemble-mean from Trendy based on “carbon-only” models 
(purple bars). Estimates for the two Trendy models with interactive 
nitrogen are also shown: CLM4CN (blue triangles) and OCN (orange 
diamonds). The GCB error bars represent the uncertainty in the 
corresponding sink estimate as provided by Le Quere et al [2018]. The 
error bars for the Trendy estimate represent one standard deviation based 
on the multi-model ensemble mean. The final decade (2010s) captures the 
mean land sink for the period 2010-2016. For our study, the influence of 
anthropogenic nitrogen deposition (direct and synergistic effects) can be 
inferred by the difference between the black cross and red bar. This effect 
has grown from 0.2 PgC/yr in 1960s to 0.7 PgC/yr in 2010s. 

 

 

 

3.3.2 Recent changes in net terrestrial carbon uptake and 

attribution of underlying drivers 

We next evaluated whether the marked strengthening of the terrestrial 

carbon sink since the turn of this century was due to the hypothesised causal 

link between concurrent changes in the sink and anthropogenic fossil fuel 

emissions (Hansen et al., 2013, Keenan et al., 2016). In a first step, we tested to 

what extent the model (with all drivers varied) captures the uptick in the 
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‘residual’ land carbon sink since the turn of the century. The trend in the residual 

sink increased by 0.33 PgC/yr2 between 1990-2002 and 2002-2014 (Figure C5). 

Our model simulated a smaller increase of 0.08 PgC/yr2, in line with the change 

simulated by the TRENDY multi-model mean, 0.09 PgC/yr2 (Figure C5) 

Next, we performed factorial simulations starting from contemporary 

1990 baseline conditions (see Methods) to attribute drivers and processes in the 

context of the more recent uptick in the terrestrial carbon sink. Corresponding 

results show a global NPP increase of 3.4 PgC/yr between the early 1990s (mean 

of 1990-1996) and the end of our study period (2010-2016), with CO2 

fertilization and climate being the dominant drivers, accounting for 56% and 

35% of the overall change, respectively (Table 3.3). On a global scale, terrestrial 

nitrogen deposition increased by 3% over this period (70 TgN/yr to 72 TgN/yr), 

hence had little impact on NPP changes (Table 3.3). However, the effect of 

deposition differed across regions, reflecting the spatial pattern of nitrogen 

deposition. East Asia and Western Europe experienced enhanced NPP consistent 

with the positive change in nitrogen deposition over this period, whilst Eastern 

Europe, North America, and the African savannah had a decline in NPP 

consistent with a decrease in nitrogen deposition (Figure 3.6b and Figure C6, 

Table C1). Northern hemisphere warming between the two focal epochs (1990-

1996 and 2010-2016) led to widespread NPP increases in boreal regions of 

Eurasia and North America (Figure 3.6c and Figure C7). In regions outside of the 

northern high latitudes, changes in water availability (e.g. soil moisture) also 

drove positive NPP changes (Figure C8). In contrast to the extended study period 

(1900-2016, see above), the carbon-nitrogen synergistic effect is near zero over 

the recent period, with only a small increase in East Asia (Figure 3.6d). 

Conversely, carbon-climate synergy has a small but noticeable positive 

contribution to NPP (Figure 3.6e). In this case, tropical forests in South America 

and Central Africa have a positive response, whilst most other regions exhibit 

small and spatially heterogenous responses. Potential factors underlying the 

difference in simulated synergistic effects between the extended and the more 

recent periods are discussed below. 
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Figure 3.6 - Spatial patterns of NPP change (gC/m2/yr) due to a) CO2 
fertilization, b) nitrogen deposition, c) climate, d) CN-synergy, e) CC-
synergy, and f) combined effect. The synergistic effect is calculated as the 
difference between the combined effect and sum of effects. NPP changes 
shown here are calculated as the difference between 2010-2016 and 1990-
1996 mean values. Significant (p<0.05; Mann-Whitney U test) changes 
highlighted with hatching. 

 

 

 

At global scale, changes in climate led to a loss of NBP by 1.17 PgC/yr 

between the two focal periods 1990-1996 and 2010-2016, whereas CO2 

fertilization increased NBP by 1.22 PgC/yr (Table 3.3). Changes in nitrogen 

deposition played only a minor role, sequestering an additional 0.03 PgC/yr, 

whilst carbon-nitrogen synergy had an insignificant contribution. Carbon-

climate synergy effects induced a relatively small (but important) positive 

increase in NBP of 0.18 PgC/yr, which in combination with all other drivers 
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considered led to an overall increase of 0.27 PgC/yr between 1990-1996 and 

2010-2016, with CO2 fertilization dominating the response (Table 3.3). 

The spatial pattern of changes in NBP between 1990-1996 and 2010-

2016 due to CO2 fertilization, nitrogen deposition, and CN-synergy effects 

(Figure 3.7a,b,d) were similar to the associated NPP pattern (see Figure 3.6) as 

expected since these drivers predominantly influence NBP through their effect 

on plant carbon uptake. Conversely, climate variations caused widespread 

declines in NBP due to either a combination of reduced NPP and increased soil 

respiration (such as in the Amazon) or respiration increases being larger than 

NPP increases, as observed over the mid/high latitudes (Figures 3.7c and Figure 

C9). Carbon-climate interactions led to significant increases in tropical forests 

and the forests of North America, Eurasia, and China (Figure 3.7e). The overall 

pattern of NBP change is dominated (on grid-box scale) by climate variability, 

although CO2 fertilization effects are visible across the tropics (Figure 3.7c,f). 
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Figure 3.7 - Spatial patterns of NBP change (gC/m2/yr) due to a) CO2 
fertilization, b) nitrogen deposition, c) climate, d) CN-synergy, e) CC-
synergy, and f) the combined effect. The synergistic effect is calculated as 
the difference between the combined effect and sum of effects. NBP 
changes shown here are calculated as the difference between 2010-2016 
and 1990-1996 mean values. Significant (p<0.05; Mann-Whitney U test) 
changes highlighted with hatching. 

 

 

 

3.3.3 Sensitivity of carbon-nitrogen interactions for the more recent 

and extended study periods 

We next examined the extent to which additional nitrogen deposition has 

changed the efficiency of the CO2 fertilization effect, in order to evaluate our 

hypothesis that nitrogen deposition has interacted with CO2 to increase the 

terrestrial carbon sink. Hence in a next step, we considered the sensitivity of 
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carbon storage to atmospheric CO2 concentrations (Γ = 
∆𝑇𝐸𝐶

∆𝐶𝑎
 ) and how this is 

modulated by carbon-nitrogen interactions (see Methods). For the extended 

period covering roughly the last century, we find Γ𝐶𝑂2 = 1.32 PgC/ppm CO2 

(Table 3.4). Including the carbon-nitrogen synergistic contribution increased Γ 

by 0.08 PgC/ppm CO2, and direct nitrogen deposition increased Γ by a further 

0.21 PgC/ppm. These estimates indicate that additional nitrogen enabled higher 

plant carbon uptake via more effective CO2 fertilization, and that the direct 

effects from additional nitrogen were approximately twice that of the synergistic 

contribution (increase of 0.21 PgC/ppm compared to 0.08 PgC/ppm) (Table 3.4). 

 

 

Table 3.4 -  Γ values (PgC/ppm) for the extended (1901-1910 to 2007-
2016) and recent (1990-1996 to 2010-2016) periods 

Period Γ𝑪𝑶𝟐 Γ𝑪𝑶𝟐+𝑪𝑵𝒔𝒚𝒏 Γ𝑪𝑶𝟐+𝑪𝑵𝒔𝒚𝒏+𝑵𝑫𝑬𝑷 

Extended 1.32 1.40 1.61 

Recent 0.45 0.45 0.45 

Note. Estimates are provided for Γ factors associated with the direct CO2 effect (CO2), CO2 and CN-

synergistic effects (CO2+CNsyn), and the combined CO2 and nitrogen deposition effects, including CN-

synergy (CO2+CNsyn+NDEP). 

 

The magnitude of Γ and the impact of nitrogen are sensitive to the 

baseline of simulations because of the influence of background carbon trends 

and the current state of carbon and nitrogen pools. Therefore, we also focus on 

the recent period (1990-2016), enabling us to quantify the contribution from 

changes in nitrogen deposition to CO2 fertilization relative to a more 

contemporary baseline. Our method of calculating Γ removes background trends 

in total ecosystem carbon from non-equilibrium conditions (see Methods) and 

so purely captures the response to rising CO2 and nitrogen deposition relative to 

the chosen baseline. For the recent period (1990-2016) the removal of a 

background trend in total ecosystem carbon and the relatively large ∆𝐶𝑎 since 

1990 led to much lower Γ values of 0.45 PgC/ppm (Table 3.4). The impact of 
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direct nitrogen deposition on Γ is limited due to opposing regional impacts 

(increases in Western Europe and China, decreases in North America, Eastern 

Eurasia, and Africa) leading to an insignificant global effect (Table 3.4, Figure C6 

and Figure C10f). Furthermore, the rate of nitrogen deposition globally changed 

little between the two periods (1990-1996 to 2010-2016), and the small spatial 

extent of increased deposition (restricted to Western Europe and East Asia, 

Figure C6a) also limited the global synergistic response. Although Γ increases in 

China due to carbon-nitrogen synergy, there is no response in Western Europe 

(Figure C10e). This lack of a synergistic effect is possibly due to the relatively 

low increase (7%) in deposition in Western Europe over this period, compared 

to the larger increase observed in East Asia (27%) (Table C1).  

Overall, nitrogen deposition and associated synergistic effects have 

increased the sensitivity of the biosphere to atmospheric CO2 over the 20th 

century. However, relative to a modern baseline, (which approximates the real-

world situation in regard to attributing mechanisms of the accelerated 21st 

century sink more closely), there are no synergistic effects. 

 

3.3.4 Tracking nitrogen limitation for the extended and more recent 

study period 

We also evaluated how nitrogen availability regulates carbon uptake 

using a “Nitrogen limitation scalar” (N-lim) the ratio of actual GPP to “potential-

GPP” (simulated GPP before nitrogen limitation is imposed, see Methods). 

Globally, at the baseline of our extended study period (1901) nitrogen limitation 

reduced GPP by 20% (161.3 PgC/yr to 129.3 PgC/yr). At global scale, our 

trajectories of N-lim showed decreases (increasing limitation) under increasing 

atmospheric CO2 (Figure 3.8a). Increased nitrogen deposition reduced the 

limitation,  in line with expectations (Figure 3.8a). But N-lim is also sensitive to 

changes in climate, exhibiting large inter-annual variability with a positive trend 

(reduced limitation) from 1980s onwards. Climate has a complex relationship 

with N-lim due to the influence on both the amount of required nitrogen for 

climate-driven changes in photosynthesis and available nitrogen (through 

impact on nitrogen soil remineralisation rates), meaning the exact cause of the 
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simulated behaviour is difficult to diagnose. Carbon-nitrogen synergy (the 

interaction of rising CO2 concentrations and rising nitrogen deposition) reduced 

nitrogen limitation from 1980 onwards (Figure 3.8a), matching the period in 

which we see a synergistic response in NPP and NBP (Figures 3.1 and 3.3). For 

the carbon-nitrogen synergistic contribution to be significant, additional 

nitrogen deposition needs to alleviate the progressive nitrogen limitation (PNL) 

brought about by rising CO2 concentrations. This synergistic contribution only 

occurs when additional nitrogen is required by vegetation due to rising CO2 

concentrations (as additional carbon inputs increase immobilization of nitrogen 

by plants and microbes), which in some ecosystems takes years to develop. This 

can be seen in the Amazon where N-lim is constant until the 1970s, and then 

decreases (higher nitrogen limitation) due to rising CO2, inducing an increase 

(reduced nitrogen limitation) in N-lim from carbon-nitrogen synergy (Figure 

C11). 

 

 

 

 

Figure 3.8 -  Changes in the global N limitation scalar for (a) extended 
simulations (1901-2016) and (b) short simulations (1990-2016). Changes 
are relative to a control simulation with no variables changing. Also note 
that the short simulations are relative to 1990 baseline. Contributions 
from CO2 (black), nitrogen deposition (red), climate (blue), combined 
(green), and CN-synergy (yellow) are shown. Note that negative values 
indicate a higher nitrogen limitation.   
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With a focus on the more recent study period (1990 baseline), increased 

CO2 concentrations increase nitrogen limitation at global scale similar to the 

extended period (Figure 3.8b). In addition, climate warming has increased 

nitrogen mineralisation rates, reducing the limitation , albeit this is masked to 

some extent by substantial inter-annual variability (Figure 3.8b). Importantly, 

over this timescale nitrogen deposition and carbon-nitrogen synergy had a near 

zero contribution to changes in N-lim. This is partly because the change in global 

nitrogen deposition between 1990-2016 was relatively small (Figure C12). 

However, nitrogen deposition increases in East Asia and West Europe, and 

decreases in North America over this period had noticeable but opposing 

influences on global N-lim (Figure C13). Furthermore, the direct influence of 

nitrogen deposition on N-lim was noticeable (in Western Europe and East Asia), 

there was however, virtually no change due to carbon-nitrogen synergy (Figure 

C13b,c). Therefore, additional nitrogen deposition in these regions was 

insufficient to alleviate substantially the nitrogen limitation brought about by 

high CO2 concentrations. It is difficult to pinpoint the exact cause of our 

simulated responses, but as previously stated, this is potentially due to the short 

time period considered, limiting the time for synergistic effects to arise. 

 

3.4 Discussion 

Understanding the mechanisms behind the ongoing changes in the 

terrestrial carbon cycle is critical for reliably predicting how the Earth system 

may change into the future. Here, we assessed the hypothesis that increases in 

CO2 concentrations and nitrogen deposition (both linked to increasing rates in 

fossil fuel burning) worked synergistically to increase the terrestrial carbon sink 

since the turn of this century using a modelling approach. Significant effects are 

found over the historical period (1901-2016, Figure 3.1), however, relative to a 

modern baseline (1990) we find that both nitrogen deposition and carbon-

nitrogen synergy had no substantial contribution to the increased land sink since 

the turn of this century (Figures 3.6 and 3.7) (Le Quéré et al., 2018), likely 

because global nitrogen deposition changed little during this period. Importantly 
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however, there have been significant shifts in the spatial patterns of nitrogen 

deposition and subsequent impacts on the carbon sink since the 1990s (Figures 

3.7 and C6). This highlights the pivotal role nitrogen availability has upon the 

local carbon cycle. Several studies suggest vegetation productivity is limited by 

nitrogen (Fisher et al., 2012, Janssens et al., 2010), and enhanced nitrogen 

deposition, predominantly from anthropogenic fossil fuel burning is thought to 

have contributed positively to the historical terrestrial carbon sink (Fleischer et 

al., 2015, Thornton et al., 2007, Wang et al., 2017, Zaehle et al., 2010). Our 

current (2010-2016) sink estimate of 0.36 PgC/yr (Table 3.3) is in agreement 

with these previous studies (0.2-0.5 PgC/yr). We found that nitrogen deposition 

induced effects start to occur towards the latter decades of the 20th century 

when the additional nitrogen worked to offset the increased nitrogen limitation 

brought about by increasing CO2 concentrations (Figures 3.1 and 3.3) (Finzi et 

al., 2006).  

Tropical ecosystems are considered not limited by nitrogen (Hedin et al., 

2009), but can become nitrogen limited as atmospheric CO2 concentrations rise. 

In our simulations, this process begins in the 1980s, at which point the direct 

CO2 fertilization effect is reduced (Figure C11). This increased nitrogen 

limitation is also an indication of when synergistic effects can develop, because 

from this time any additional nitrogen deposition can alleviate this limitation. 

Further, tropical forests can often be limited by phosphorus availability due to 

the typical old, weathered soils found in these regions (Vitousek & Sanford, 

1986). However, carbon-nitrogen-phosphorus dynamics are not currently 

included in CLM4.5-BGC, and so we do not capture the limitation on tropical 

carbon uptake by phosphorus availability.  

Our estimate (1990s mean) of the synergistic contribution to the 

terrestrial sink (0.32 PgC/yr) is similar to that of Zaehle et al. (2010) (0.4 

PgC/yr) but smaller than the Churkina et al. (2009) estimate of 0.7 PgC/yr 

(Table 3.3). Differences between estimates are not surprising given the complex 

interactions between the carbon and nitrogen cycles, different model 

parameterisations and the use of off-line (Zaehle et al., 2010) or coupled 

(Churkina et al., 2009) model simulations. 
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However, most studies that look to quantify the influence of nitrogen 

deposition on the land carbon sink perform long-term multi-decadal/century-

scale simulations (Bala et al., 2013, Churkina et al., 2009, Devaraju et al., 2016, 

Thornton et al., 2007, Wang et al., 2017, Zaehle et al., 2010), and so quantify 

changes in carbon cycling over given historical periods. In these modelling 

studies (and including this one), interaction effects are shown to develop over 

the course of many decades, and so highlight how the magnitude of simulated 

non-linear effects depend on the timescale and baseline considered. In this 

regard, the scientific community has given less attention to process attribution 

behind the post-2000 carbon sink. Our analysis indicates that for the most 

recent decade, changes in nitrogen deposition and corresponding effects on CO2 

fertilization had no influence on global carbon uptake (Figure 3.3). Thus, from 

our long-term historical simulations we conclude additional nitrogen deposition 

has increased the sink by ~0.7 PgC/yr, but recent regional changes in deposition 

have not altered the nitrogen induced global sink. This is primarily due to 

opposing responses from nitrogen deposition increases in East Asia and Western 

Europe and decreases in North America and Eastern Europe, respectively, 

resulting in a small overall impact globally (Figures 3.6 and 3.7). Furthermore, 

increased uptake from carbon-nitrogen synergy only occurs in regions of 

increased deposition (Churkina et al., 2009, Zaehle et al., 2010), however we find 

that in both East Asia and Western Europe high nitrogen limitation brought 

about by high atmospheric CO2 concentrations in this period inhibits carbon 

uptake, a constraint which is not fully alleviated by the extra nitrogen deposited. 

Despite the fact that evidence points towards nitrogen deposition induced East 

Asian greening and carbon sink increases in the last three decades (Gu et al., 

2015, Piao et al., 2015, Piao et al., 2012, Zhu et al., 2017), our results suggest that 

a significant contribution from additional nitrogen deposition to the enhanced 

global land sink since the turn of this century is unlikely.  

Thus, what processes and mechanisms are behind the post-2000 increase 

in the land carbon sink? Firstly, it should be noted that our modelled land carbon 

sink does not fully capture the magnitude of the uptick seen in the residual land 

sink since ~2000 (Figure 3.5 and Figure C5), exhibiting a more transient 

increase. While the limited ability of reproducing this uptick appears to be model 
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specific (Le Quéré et al., 2016), this may indicate that the model used is 

inadequately capturing and/or missing key processes. Yet, our analysis indicates 

that even in a scenario with high nitrogen limitation, CO2 fertilization is the main 

driver behind the increased sink, a result consistent with previous modelling 

studies (Keenan et al., 2016, Schimel et al., 2015, Sitch et al., 2015), with nitrogen 

deposition and its interactions with CO2 fertilization providing secondary 

drivers. However, this “transient” CO2 fertilization hypothesis contradicts the 

observed behaviour of the residual land sink, which seems to experience a step 

increase from ~2000 onwards (Le Quéré et al., 2016).   

 Furthermore, variations in climate have a strong influence on carbon 

cycling (Friedlingstein et al., 2006), and we simulated a net loss of carbon due to 

surface warming since the turn of this century. However, the impact of climate 

on the recent behaviour of the land sink is relatively uncertain (Friedlingstein, 

2015, Mystakidis et al., 2016). The findings of this study are contrary to the 

conclusions of Ballantyne et al. (2017), who argue that relatively cool surface 

temperatures (over 1998-2012 – ‘warming hiatus’) reduced soil respiration, 

inducing a carbon sink. However, this ‘warming hiatus’ hypothesis itself has 

been called into question because the changes in seasonal land sink trends 

between warming (1982-1998) and hiatus (1998-2014) periods do not match 

the changes in seasonal temperature trends (Zhu et al., 2018), and so changes in 

seasonal temperature are unlikely to be drivers of reduced annual ecosystem 

respiration. Thus, following contradictory studies, the mechanism(s) behind the 

increased terrestrial carbon sink since 2000 remain elusive.  

Although our results provide a useful indication of competing factors 

controlling the land carbon sink over the historical period, there are a number of 

process simplifications and limitations in our modelling methods that need to be 

considered. For example, we do not consider the effects of LULCC in this study. 

However, LULCC emissions are used directly in calculating the residual land 

sink, and so any errors in LULCC emissions propagate through to the residual 

sink estimate. So, if the 21st century decline in LULCC emissions is 

underestimated (Andela et al., 2017, Kondo et al., 2018, Liu et al., 2015), the 

uptick in the residual sink will be overestimated, meaning our modelled results 

would be more in agreement with the “observed” sink.  



101 
 

Further, the low temporal resolution (decadal mean) of our nitrogen 

deposition driver data will mask to some extent any abrupt related changes in 

the coupled carbon-nitrogen cycles. However, as our analysis is based on decadal 

scales we are reasonably confident in capturing the main response to changing 

nitrogen deposition. Regarding changes in spatial patterns of nitrogen 

deposition in the recent period, Chinese and North American trends are well 

validated (Liu et al., 2013, Xing et al., 2015). The simulated trends in nitrogen 

deposition over Western Europe seem, however, less robust as suggested by a 

recent satellite study indicating opposing trends (Jia et al., 2016). This 

discrepancy can be reconciled as Jia et al. (2016) did not include the contribution 

from ammonia to the total deposition flux due to lack of observations, yet 

ammonia could be an important component of changes in total nitrogen fluxes in 

agricultural and biomass burning regions (Warner et al., 2017). Nonetheless, as 

the large-scale changes seems to be realistic, we are satisfied we accurately 

capture recent changes in deposition. 

Additionally, even though CLM4.5-BGC simulates detailed carbon and 

nitrogen cycles, there are still a number of shortcomings associated with carbon-

nitrogen biogeochemistry schemes (Thomas et al., 2013). One example is the 

fixed C:N ratios for plant tissues, which prevents ecosystems adapting to new 

conditions. In-situ studies have shown that ecosystems exhibit increasing C:N 

ratios under increasing CO2, enabling high carbon storage per unit nitrogen 

(Dybzinski et al., 2015, Finzi et al., 2006). Further, CLM4.5-BGC does not account 

for the varying dynamics of above/below ground carbon allocation, whereby 

there is increased root allocation under elevated atmospheric CO2 and nitrogen 

stress. This process has been shown to mediate plant response to elevated CO2 

levels (Drake et al. 2011).  

 Newer versions of CLM improve upon the formulation used in this study, 

by introducing dynamic allocation and a more sophisticated representation of 

plant nitrogen uptake (Ghimire et al., 2016). Finally, our model does not 

consider the considerable uncertainty caused by biological fixation (Cleveland et 

al., 1999), which provides a major input of new nitrogen to terrestrial 

ecosystems, and which has been found to up-regulate during periods when net 

carbon uptake rates are high (Batterman et al., 2013a). Our model formulation 
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scales biological nitrogen fixation to NPP, which does not accurately reflect the 

up- and down-regulation that plants use in response to differences in nitrogen 

demand versus supply (Batterman et al., 2013a, Batterman et al., 2013b). Such 

an alternative modelling structure is recommended (Wieder et al., 2015). 

Furthermore, the carbon cost for acquiring nutrients, including from soil vs. 

nitrogen fixation, is not currently simulated and modelling studies have shown 

the importance of this in accurately simulating how plants respond to altered 

nitrogen availability (Brzostek et al., 2014, Shi et al., 2016). 

 

3.5 Conclusion 

Our results highlight the importance of synergistic effects between rising 

atmospheric CO2, nitrogen deposition, and a changing climate in regard to the 

evolution of the terrestrial carbon sink over the 20th century. However, with 

respect to the recent (post 2000) strengthening of the terrestrial carbon sink, 

our findings suggest that such synergistic effects between carbon, nitrogen and 

climate are not key factors because of the relatively small change in global 

nitrogen deposition over the last two decades. We find that CO2 fertilization to 

be a main driver behind the increased carbon sink since 2000, in line with 

previous studies (eg. Keenan et al. (2016)), although the recently-observed 

decline in the carbon sink across the Amazonian tropical forests suggest another 

factor, such as nitrogen, may be limiting the size of the sink (Brienen et al., 2015, 

Hedin, 2015). Alternatively, variations in climate have the potential to drive 

changes in carbon storage. Our analysis suggests climate variations weakened 

the carbon sink over the recent period. The response of the biosphere to recent 

variations in climate is, however, uncertain with conflicting conclusions about 

the magnitude of change in the post-2000 carbon sink (Ballantyne et al., 2017, 

Zhu et al., 2018). 

With signs of the “warming hiatus” ending (Fyfe et al., 2016) and the 

potential for increased nutrient limitation in the future with higher demand 

under enhanced CO2, along with the potential for reductions in nitrogen 

deposition in some regions (Kanakidou et al., 2016), it remains unclear how long 
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the  terrestrial carbon sink can continue to grow in line with fossil fuel 

emissions. Resolving this question is critical for resolving nutrient cycling and 

global change in the future. 
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Abstract 

Geographical variations in climate control the productivity of vegetation 

(gross primary productivity; GPP), and therefore have a large impact on the 

amount of carbon stored in the terrestrial biosphere. However, direct 

observations of global GPP are not possible, and current estimates rely on 

different modelling and quasi-observed approaches. Here, we assess the 

consistency in GPP estimates based on three widely used approaches; two 

observation-based approaches, the upscaling of FLUXNET site observations 

(FLUXCOM) and a satellite derived light-use efficiency model (LUE), and GPP 

estimates from a suite of terrestrial biosphere models (TRENDYv6). We compare 

climate-driven interannual variability (IAV) and trends in GPP from local to 

global scales over the period 1982-2016. We find large GPP differences across 

the multiple temporal and spatial scales considered between the products. 

FLUXCOM IAV and trends are systematically smaller than those based on the 

other two products at local and global scales. Large northern GPP increases for 

TRENDYv6 and LUE dominate positive global trends in these two approaches. 

Locally, we find robust year-to-year correlation in the various estimates, with 
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exception of tropical and high northern latitude regions. Further, there are large 

regions (58% of the vegetated land surface) where all products agree on the 

direction of trends. However, there are clear differences in variability and trends 

in GPP as well as underlying climatic controls, highlighting uncertainty in the 

processes that influence GPP. These results emphasise the need for long-term 

observations of GPP, particularly in underrepresented regions (e.g. tropical 

forests), and the need to better constrain and improve relevant processes in 

models, to more accurately quantify the climate sensitivity of terrestrial carbon 

uptake. 

4.1 Introduction 

Gross primary production (GPP), the amount of carbon fixed by 

photosynthesis per unit area in time, is the pathway for transferring 

atmospheric CO2 to the terrestrial biosphere. It is the largest carbon flux in the 

Earth system, and as such any small change can significantly alter the net carbon 

balance at the surface, atmospheric CO2 concentrations, and subsequently 

feedbacks to climate (Friedlingstein et al., 2014). Therefore, quantifying 

variations in GPP and attributing underlying drivers and mechanisms is an 

important area of research. GPP responds to changes in atmospheric CO2 

concentrations, nutrient availability, and climate (Ciais et al., 2005, Nemani et al., 

2003, Schimel et al., 2015, Zaehle & Dalmonech, 2011). Moreover, land use and 

land-cover change (e.g. deforestation) alter the spatial distribution of vegetation 

and therefore also impact GPP and carbon uptake.  

Variations in climate can influence both IAV and long-term trends in GPP. 

IAV in global GPP has been found to be controlled by certain hotspot regions, 

specifically tropical forests (Jung et al., 2011, Wang et al., 2013, Wang et al., 

2014) and semi-arid regions (Ahlstrom et al., 2015, Poulter et al., 2014). IAV in 

GPP in these hotspot regions is dominated by climate variability associated with 

the El Nino Southern Oscillation (ENSO) (Ahlstrom et al., 2015, Bastos et al., 

2013, Zhao & Running, 2010), and other climate extreme climatic events 

(Zscheischler et al., 2014). With more frequent climate extremes under 
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projected climate change (Seneviratne et al., 2012), the impact of GPP IAV on the 

global carbon cycle is also likely to increase (Reichstein et al., 2013).  

In regard to longer-term variations, there is evidence that recent large-

scale climatic shifts have profoundly influenced global plant carbon uptake and 

the land carbon sink (Buermann et al., 2016). Specifically, the accelerated 

warming over northern latitudes appears to have substantially increased carbon 

uptake by plants (Keeling et al., 1996, Keenan et al., 2014, Myneni et al., 1997, 

Piao et al., 2007). However, northern warming during colder seasons can lead to 

moisture stress later in the year, offsetting the initial positive effects (Buermann 

et al., 2018, Buermann et al., 2013). Warming-induced drying trends with 

adverse impacts on GPP have also been identified in large regions of the 

southern hemisphere (Huang et al., 2016, Zhao &  Running, 2010, Zscheischler et 

al., 2014).  

GPP studies over large spatial scales (including those mentioned above) 

rely on modelling approaches. This is because observation-based estimates of 

GPP are only available at leaf levels through chambers (Welp et al., 2011) or 

local levels through eddy-covariance flux towers (Baldocchi et al., 2001). Scaling 

leaf-level observations to global scale is challenging due to the artificial nature of 

lab experiments and challenges associated with scaling leaf-level values to the 

entire canopy (Baldocchi, 2003). Furthermore, partitioning eddy-covariance 

data into component fluxes is an uncertain procedure (Lasslop et al., 2010, 

Reichstein et al., 2005, Wehr & Saleska, 2015, Wehr et al., 2016) and scaling the 

small spatial footprint of eddy-flux towers to global scale introduces additional 

uncertainties (Beer et al., 2010, Jung et al., 2009). Machine learning methods are 

often utilised to perform this upscaling from local flux tower levels to regional 

and global scales (e.g. Beer et al., 2010, Jung et al., 2011). The FLUXCOM 

initiative uses a variety of methods (including different partitioning methods 

and machine learning algorithms) to integrate site level observations, satellite 

remote sensing, and meteorological data to produce wall-to-wall estimates of 

carbon fluxes (Tramontana et al., 2016, Jung et al., 2017). 

An alternative data-driven approach to estimate GPP is using satellite 

observations of vegetation activity, such as the fraction of absorbed 

photosynthetic active radiation absorbed by plants (FPAR), combined with a 
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light-use efficiency formulation (Running et al., 2004, Zhu et al., 2013). Such 

satellite-driven production efficiency models can provide benefits of high 

spatiotemporal information owing to the satellites unique sampling capabilities. 

However, satellite observations often suffer from data contamination due to 

cloud cover and signal saturation in dense canopied regions and these influences 

together with uncertainties in LUE theory propagate into uncertainties in GPP 

(Smith, WK et al., 2016).  

Dynamic global vegetation models (DGVMs) offer another method of 

estimating global GPP. These prognostic process-based models represent our 

current understanding of the major processes of the terrestrial carbon cycle and 

other biogeochemical cycles (Fisher et al., 2014), and offer the only way to 

project future changes in carbon cycling. However, given the high complexity of 

terrestrial ecosystems, simplifications must be made, and often such simplifying 

assumptions are different and sometimes divergent across models. More 

specifically, differences arise between modelled estimates of GPP due to 

different sets of equations and parameterisations of processes, such as 

photosynthesis, physiology, phenology, and element cycling (Fisher et al., 2014).  

These observation-based and process-based modelling approaches all 

have their own merits and limitations and they do not necessarily agree with 

each other on various spatial and temporal scales (Smith, WK et al., 2016). Yet, 

corresponding model outputs have been used independently or in conjunction 

with one another in multiple studies focussing on the variability of the terrestrial 

carbon cycle (Ballantyne et al., 2017, Beer et al., 2010, Jung et al., 2017, Zhu et al., 

2016). It is thus important to assess the consistency of these ‘state of the art’ GPP 

products across multiple temporal and spatial scales including their sensitivity 

to climate variability. Highlighting similarities and discrepancies will provide 

information on the level of confidence we can place in the products and hence 

previously made inferences.  

The aim of this study is to compare climate-driven GPP estimates (see 

Methods) from an empirical approach based on eddy-covariance data 

(FLUXCOM, Jung et al. (2017)), a light-use efficiency model (Smith WK et al., 

2016), and a set of DGVMs from TRENDYv6 (Le Quéré et al., 2018). Specifically, 

over the 35-year study period 1982-2016, we investigate (i) to what extent are 
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these climate-driven GPP estimates consistent on seasonal, interannual, and 

longer-term timescales across multiple spatial scales and (ii) how do they differ 

in regards to their sensitivity to key climate drivers.  

 

4.2 Methods 

4.2.1 GPP Datasets 

FLUXCOM  

We used GPP obtained from FLUXCOM (version RS+METEO) (Jung et al., 

2017, Tramontana et al., 2016) at 0.5° spatial resolution and monthly time scale 

over the period 1982-2016. FLUXCOM GPP is based on machine learning 

methods that upscale FLUXNET (Baldocchi et al., 2001) site level information 

(carbon fluxes and local meteorology derived from flux towers) using gridded 

climate and satellite data. Three machine learning methods are used for the 

upscaling process; Artificial Neural Networks, Random Forests, and Multivariate 

Adaptive Regression (Jung et al., 2017, Tramontana et al., 2016). Flux towers 

measure net carbon exchange between land and the atmosphere. The 

component GPP flux is derived by estimating the temperature sensitivity of 

ecosystem respiration (TER) from night time flux data and then extrapolated to 

daytime to determine TER and GPP (Reichstein et al., 2005). Gridded (0.5°) 

predictor variables (e.g. local climate, vegetation type, normalized difference 

vegetation index (NDVI)) are used to produce spatio-temporal grids of GPP. 

Climate variables are from the CRUNCEPv8 product, which is based on a 

combination of Climate Research Unit monthly 0.5° dataset and the 6-hourly 

time resolution National Centres for Environmental Prediction (NCEP) 

reanalysis. Overall, there are three different GPP estimates (three upscaling 

products with different machine learning algorithms to form the FLUXCOM 

ensemble) and the spread in these ensemble members as a measure of 

uncertainty (see also below). By design, the FLUXCOM RS+METEO GPP product 

does not capture the effects associated with CO2 fertilization, vegetation 

greening or disturbances since in its generation only climatic input variables are 
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time-varying. The FLUXCOM product therefore largely captures the response of 

GPP to instantaneous climate variability alone and does not capture vegetation 

and soil moisture memory effects. 

In a complementary analysis, we also use another GPP product (0.5° over 

the period 1982-2008) based on upscaled FLUXNET observations (FluxNetG; 

Jung et al., 2011). FluxNetG is driven with a single satellite vegetation dataset 

(NDVIg), and unlike FLUXCOM, includes information on interannual variations in 

vegetation activity. Therefore, we assess to what degree including additional 

(interannual) satellite information influences upscaled GPP variability and 

trends.  

TRENDY 

We also used GPP data over the period 1982-2016 from twelve DGVMs 

that participated in the TRENDYv6 multi-model inter-comparison, which were 

all forced with a common protocol (Sitch et al., 2015). Models included are 

CABLE (Haverd et al., 2018), CLASS-CTEM (Melton & Arora, 2016), CLM4.5-BGC 

(Oleson et al., 2013), DLEM (Tian et al., 2015), ISAM (Jain et al., 2013), LPJ-GUESS 

(Smith et al., 2014), JSBACH (Reick et al., 2013), JULES (Clark et al., 2011), 

ORCHIDEE (Krinner et al., 2005), ORCHIDEE-MICT (Guimberteau et al., 2018), 

VEGAS (Zeng et al., 2005), and VISIT (Kato et al., 2013).  In order to isolate the 

climate-driven GPP portion in the TRENDYv6 model runs (consistent with our 

study aim) the following procedure was applied. We used the “CO2 varied only 

(S1)” and “(Climate and CO2 varied (S2)” simulations from the full set of 

simulations performed for TRENDYv6. Although the simulations were run from 

1700 onwards, we use data from the period 1901-2016. The “S1” simulation is 

forced with time varying atmospheric CO2 concentrations derived from ice cores 

and National Oceanic and Atmospheric Administration (NOAA) monitoring 

stations but meteorological data from the early 20th century (1901-1920) 

(CRUNCEPv8) is used repeatedly. Consequently, the S1 simulation does not 

capture changes in climate. To derive the desired “climate only” response for 

each model we first calculated the trend over 35 years using non-linear least 

squares (from the ‘stats’ package in R (Bates & Watts, 1988)) (1982-2016) for 

each month and grid cell in the S1 simulations. Then this trend was subtracted 

from that in the S2 simulations (the S2 simulations are run with both time 
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varying CO2 concentrations and meteorological data). This preserves interannual 

variability but removes the influence of rising CO2 concentrations over this 

period. We then created an ensemble mean and represent uncertainty by the 

standard deviation based on the 12 ensemble members (see below).  

Light use efficiency (LUE) 

LUE models offer an additional tool to estimate GPP patterns (Running et 

al., 2004). Thus, we have also included a 35-year estimate (1982-2016) based on 

Global Inventory Modelling and Mapping Studies (GIMMS3g) FPAR from NOAA-

AVHRR satellites (Zhu et al., 2013) and meteorological data using the MODIS 

GPP algorithm (Running et al., 2004, Smith WK et al., 2016) such that: 

𝐺𝑃𝑃 = 𝐹𝑃𝐴𝑅 × 𝑃𝐴𝑅 × 𝐿𝑈𝐸max × 𝑓(𝑇min) × 𝑓(𝑉𝑃𝐷)        (1) 

FPAR over this extended study period is derived from the Normalised 

Difference Vegetation Index version 3g (NDVI3g) using a neural network 

algorithm (Zhu et al., 2013). PAR represents incoming photosynthetically active 

radiation. The maximum light-use efficiency (LUEmax), minimum temperature 

function (f(Tmin)), and vapour pressure deficit function (f(VPD)) vary depending 

on biome type. Gridded, monthly mean Tmin and VPD from CRUNCEPv8 are used. 

This formulation assumes a temporally invariant LUE, and therefore doesn’t 

capture the primary photosynthetic response to increased CO2 concentrations 

(Norby et al., 2005, De Kauwe et al., 2016). Consequently, changes in GPP based 

on equation (1) are largely driven by climate variability. We use two sets of 

parameters for LUEmax, f(Tmin), and f(VPD) to provide an estimate of uncertainty 

in model structure (Robinson et al., 2018, Zhao & Running, 2010). We then 

formed an ensemble mean of the two estimates and use the spread as a measure 

of uncertainty (see also below).  

4.2.2 Climate datasets 

We calculate the sensitivity of each GPP dataset to mean annual surface 

air temperature (MAT) and precipitation (MAP) from the CRUNCEPv8 reanalysis 

at 0.5° resolution. All three products are driven by surface air temperature, 

however only TRENDYv6 is driven with precipitation directly. In the FLUXCOM 

approach, moisture limitations are represented through a water stress function 

based on  a soil water balance model (Tramontana et al., 2016), whereas in the 
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LUE formulation a VPD scalar is used (Running et al., 2004). Precipitation is a 

crucial parameter influencing VPD and soil moisture, and thus we use it 

consistently across datasets to estimate corresponding GPP sensitivities to water 

availability. 

4.2.3 Data processing 

To produce spatially consistent products, DGVM output is regridded to 

0.5°x0.5° to match both FLUXCOM and LUE. All products are available on 

monthly time steps from 1982-2016. For each ensemble member (3 for 

FLUXCOM, 12 for TRENDY, 2 for LUE) we calculated grid-cell and regional (see 

Figure D1 for regional definitions) anomalies by subtracting the 35-year mean at 

monthly, seasonal, and annual timescales. We then created ensemble means of 

these anomalies for each product and use the spread (1 stdev) as a measure of 

uncertainty in the various approaches. We focus on anomalies rather than 

absolute GPP as there are large differences between GPP estimates across all 17 

datasets (Figure D2). Also, we are interested in how climate-driven GPP has 

changed over the study period so focusing on anomalies is more appropriate. 

4.2.4 Statistical analysis 

In order to assess the climate sensitivity of the various products, we 

decomposed the annual GPP anomalies for each region (r) and year (y) into the 

components forced by temperature and precipitation as: 

𝐺𝑃𝑃𝑟,𝑦 = 𝛾𝑟 × TEMP𝑟,𝑦 + 𝜆𝑟 × PREC𝑟,𝑦 + 𝜀𝑟,𝑦 (2) 

where 𝛾𝑟 represents the sensitivity of GPP to temperature anomalies 

(TEMP𝑟,𝑦), 𝜆𝑟 the sensitivity of GPP to precipitation anomalies (PREC𝑟,𝑦), and 𝜀𝑟,𝑦 

is the residual error. We did not detrend the GPP data before performing the 

multiple regression since we are interested in how both IAV and long-term 

variations have influenced GPP. Importantly, the fitted regression coefficients (𝛾𝑟 

and 𝜆𝑟) represent apparent GPP sensitivities to variations in temperature and 

precipitation. These are not actual sensitivities because temperature and 

precipitation are not fully independent and there are also missing explanatory 

variables in the multiple regression (e.g. radiation, humidity). We omit incoming 

solar radiation from the regression analysis as it has been previously shown to 
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have a minor contribution to IAV in local and global GPP (Jung et al., 2017).   

Note that this multiple linear regression approach accounts for the covariation 

between temperature and precipitation. The regression coefficients are 

calculated using linear least squares and uncertainty in the coefficients is 

obtained from the standard error. Further, GPP sensitivity to temperature and 

precipitation may change over time and so here they represent mean 

sensitivities over the 35-year period. To derive the relative importance of the 

two climate regressors in determining GPP variability, we use the Lindeman-

Merenda-Gold (LMG) method (from the ‘relaimpo’ package in R (Grömping, 

2006)) which calculates the contribution of each regressor to the overall R2 of 

the linear model. 

For trend analysis, we first calculate trends for each ensemble member 

and report the ensemble mean trend. Uncertainty associated with the trend is 

calculated from the spread in trends among ensemble members. 

4.3 Results 

4.3.1 Large-scale GPP IAV and trends 

In a first step, we compared IAV and trends in large-scale climate-driven 

GPP based on the three approaches, FLUXCOM, LUE and TRENDYv6. At global 

scale, all three GPP products show a positive trend over the study period 1982-

2016 (Figure 4.1a, Table 4.1). However, the FLUXCOM GPP data show a 

substantially smaller non-significant increase (0.002±0.017 PgC/yr2; P>0.05) 

compared to TRENDYv6 (0.092±0.057 PgC/yr2; P<0.01) and LUE (0.062±0.022 

PgC/yr2; P<0.01) (Figure 4.1a, Table 4.1). We also find that individual FLUXCOM 

ensemble members do not agree on the direction of the trend, hence the large 

range compared to the mean (Figure D3). This highlights the influences of the 

choice of upscaling method on GPP estimates (Tramontana et al., 2016).  

A focus on regional scales shows that the northern latitudes dominate the 

global trend for all three products, with significant (P<0.01) increases for 

TRENDYv6 and LUE, but non-significant (P>0.05) increases for FLUXCOM 

(Figure 4.1b, Table 4.1). In the tropics, TRENDYv6 shows a significant positive 
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trend of 0.023±0.031 PgC/yr2 (P<0.05), whereas LUE and FLUXCOM show no 

significant change. Importantly, individual ensemble members of all three 

products disagree on the direction of trend, highlighting the uncertainty in 

tropical GPP estimates (Figure D3). All products agree on no GPP trends in the 

southern latitudes (Figure 4.1d).  

Differences in the IAV between the three GPP products (estimated 

through the standard deviation (σ) of annual (detrended) GPP over the period 

1982-2016) are also noteworthy. FLUXCOM GPP displays much lower IAV (0.34 

PgC/yr) than the other two products, (TRENDYv6: 1.21 PgC/yr and LUE: 1.01 

PgC/yr; Figure 4.1a). Similar differences in IAV between the three products are 

obtained for northern and tropical regions (Fig. 4.1b,c), but for the southern 

extratropics TRENDYv6-based GPP is twice as high as in the other products (Fig. 

4.1d). FLUXCOM captures only a portion (the instantaneous) of the climate-

driven GPP signal whereas the other products contain vegetation and soil 

memory effects (see also Methods). Namely, FLUXCOM has a climatological fixed 

seasonal cycle of satellite leaf area index (LAI), so LAI does not vary inter-

annually. Therefore, lower FLUXCOM IAV is expected. This is further 

corroborated by analysing trends and variability in FluxNetG (see Methods). We 

find the magnitude of trends and variability (over the period 1982-2008) of 

FluxNetG are more comparable to TRENDYv6 and LUE in all regions (Figure D4). 

Therefore, the inclusion of solely seasonal satellite data in FLUXCOM 

significantly reduces GPP IAV and trends.      

How well do the three GPP products agree at interannual time scales? To 

answers this, we computed correlations between the respective detrended 

annual GPP timeseries. The three GPP products are significantly (P<0.05) 

correlated in all large spatial domains, with the exception of FLUXCOM and LUE 

over northern latitudes and TRENDYv6 and LUE at global scales (Table 4.1). 

Generally, the correlations between FLUXCOM and TRENDYv6 at both regional 

and global scales are much higher compared to the other products and the 

agreement in IAV between all three products tends to be also greater in tropical 

and southern latitudes (Table 4.1). LUE simulates large negative tropical 

anomalies in 2005 (Figure 4.1c), in response to large-scale drought (Phillips et 

al., 2009, Zhao & Running, 2010), a feature not shared with the other two 
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products, however. Therefore, it seems the satellite based LUE model captures 

unique information compared to FLUXCOM and TRENDYv6, and generally 

satellite-driven models agree better with in-situ data than approaches without 

satellite data (Raczka et al., 2013). This implies that both FLUXCOM and 

TRENDYv6 are potentially missing important information about GPP variability.  

 

 

 

 

 

Figure 4.1 - Global and regional variations in annual GPP based on three 
GPP products. Annual gross primary production (GPP) anomalies (PgC/yr) 
over the period 1982-2016 estimated by upscaled flux tower observations, 
FLUXCOM (red), a subset of terrestrial biosphere models from TRENDYv6 
inter-comparison (blue), and a satellite based light use efficiency model 
(green). GPP anomalies are shown for a) Global, b) Northern, c) Tropical, 
and d) Southern regions, as defined in Figure D1. Shading represents 1σ 
spread among each products ensemble members (see Methods). Linear 
trends are depicted with a dashed line. Bar charts show the inter-annual 
variability of each product as the 1σ (PgC/yr) of the detrended timeseries. 
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Table 4.1 - Global and regional trends in climate-driven GPP for each 
product and correlation coefficients between each product. Trends show 
ensemble mean and the uncertainty is the standard deviation of the trends 
of each group of ensemble members. Correlations are performed on 
detrended data in each product combination; FLUXCOM-TRENDYv6 (FT), 
FLUXCOM-LUE (FL), and TRENDY-LUE (TL). Trends significantly different 
from zero and significant correlations are marked with an asterisk 
(*P<0.05, **P<0.01). Regions are shown in Figure D1.  

Region 

Trend (PgC/yr2) Correlation (r) 

FLUXCOM TRENDY LUE FT FL TL 

Global 0.002±0.017 0.092±0.057** 0.062±0.022** 0.84** 0.36* 0.27 

North 0.005±0.004 0.068±0.024** 0.050±0.010** 0.80** 0.33 0.37* 

Tropics 0.000±0.012 0.023±0.031* 0.005±0.010 0.90** 0.52** 0.46** 

South -0.003±0.003 0.000±0.022 0.008±0.003 0.91** 0.57** 0.55** 

 

 

4.3.2 Local-scale IAV and trends 

We further examined the temporal agreement between datasets at more 

local scales by performing grid-cell correlations between the detrended GPP 

timeseries. There are large areas of significant (P<0.05) positive agreement 

between the products (Figure 4.2), namely in temperate US, grasslands of 

Eurasia, and savannas and shrublands of the southern hemisphere (as classified 

by MODIS landcover product MCD12C1 (Friedl et al., 2010) Figures D5 and D6). 

Furthermore, for FLUXCOM and TRENDYv6, positive correlations are found 

across the globe (Figure 4.2a). Both FLUXCOM and TRENDYv6 GPP in the tropics 

have low agreement at these interannual time scales with GPP derived from LUE. 

Disagreement between FLUXCOM/TRENDYv6 and LUE in central Amazon and 

South East Asia is due to FLUXCOM and TRENDYv6 having relatively low 

variance, whereas the lack of correlation in Africa is primarily driven by low 
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covariance (Figure D7). Differences also exist in boreal regions, where FLUXCOM 

and LUE GPP have low agreement, but TRENDYv6 and LUE are ubiquitously 

significantly positively correlated. FLUXCOM GPP has very low variance in the 

northern high latitudes, which is likely adding to the low correlation with LUE 

(Figure D7). With a focus on seasonal timescales, the good agreement between 

FLUXCOM and TRENDYv6 is evident for all seasons (Figure D8). For TRENDYv6 

and LUE, strong positive correlations in the extratropics are apparent in all 

seasons, matching the annual correlation pattern (Figures 4.2 and D8). However, 

the seasonal patterns for FLUXCOM and LUE differ from the annual correlations. 

For high northern latitudes, for example, the GPP of each product in March-

April-May (MAM) is positively correlated, whereas there are no significant 

correlations in June-July-August (JJA) FLUXCOM and LUE (Figure D8). Other 

seasonal disparities exist, for example in the US and South Africa, where summer 

correlations tend to be higher than other seasons (Figure D8). The cause of the 

seasonal discrepancies is difficult to diagnose. Potential reasons could include; 

structural differences in the products (e.g. photosynthetic and/or phenological 

parameterisation, land cover parameterisation, method of including climatic 

constraints), or, e.g. for high northern latitudes biases in satellite data and lack of 

eddy covariance flux towers. 
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Figure 4.2 - Grid-cell correlation coefficient (Pearson’s r) patterns between 
detrended annual mean GPP anomalies (1982-2016) for a) FLUXCOM and 
TRENDYv6, b) FLUXCOM and LUE, c) TRENDY and LUE. (r=0.28, 0.33, 0.43 
corresponds to p<0.1, p<0.05, p<0.01). Panel d) shows boxplots of grid-
scale correlations for each product combination (FLUXCOM-TRENDY; FT, 
FLUXCOM-LUE; FL, and TRENDY-LUE; TL) and region. Regions are defined 
in Figure D1. Grey dashed line at r=0.33 (p<0.05). Numbers above each box 
represent the percentage of grid cells in the region with a correlation of at 
least 0.33. 

 

An ensuing trend analysis on annual GPP shows that all three products 

exhibit consistently positive trends for large areas across Boreal Eurasia, 

Europe, North America, West and South Africa, and Australia (Figure 4.3). 

However, for the northern high latitudes in general only TRENDYv6 and LUE 

predict large-scale significant increases (P<0.05), whereas in the case of 

FLUXCOM such widespread positive trends are less frequent (Figure 4.3). 

Northern hemisphere GPP increases are most likely due to a combination of 

enhanced photosynthesis within the growing season and a lengthening of the 

growing season (Forkel et al., 2016, Keenan et al., 2014; Figure D9a). The largest 

positive GPP trends in all three products are over Southern and West Africa, 

owing to increased precipitation trends (Figure D9b). Southern USA, South 

America, and East Africa exhibit a declining trend in GPP in all datasets (Figure 

4.3d). Warming temperatures in these regions could have led to increases in 

evaporative demand, leading to a reduction in photosynthesis (Zhao & Running, 

2010). There is no clear consensus in Central Africa, with LUE showing large 
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areas of declining GPP but corresponding patterns for FLUXCOM and TRENDYv6 

are much more heterogeneous due to no significant trends (Figure 4.3). Overall, 

the three products agree in regard to the direction of trends over 58% of the 

vegetated land surface (45% and 13% for positive and negative trends, 

respectively (Figure 4.3d). 

 

Figure 4.3 - Spatial pattern of climate-driven trends in annual mean GPP 
for each product. a, b, c, The maps depict significant (P<0.05) trends in 
annual GPP (gC/m2/yr2) over 1982-2016 for a) FLUXCOM, b) TRENDYv6, c) 
LUE. d, Agreement in the direction of trend between the three products. 
Dark areas are where all agree on the direction of trend and light areas 
indicate disagreement (two products agree, and one differs). 

 

The large annual GPP increases observed in northern latitudes in 

TRENDYv6 and LUE (and FLUXCOM to a smaller extent) stem from contributions 

throughout the growing season (March through November in Eurasia and June 

through November in North America; Figures 4.4 and D10). The three products 

also agree on the spring/summer decline in productivity over southern portions 

of North America. There is further agreement on the positive Western and 

Southern Africa trends in September through February and December through 

August, respectively. Further, the central South American decrease in annual 

GPP captured by all products is also consistently concentrated in the dry season 
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(Aug-Oct) (Figure 4.4). Apart from this, there is generally poor agreement over 

tropical forests in all seasons, with no clear patterns emerging (Figure D10). This 

highlights the potential lack of significant trends in tropical regions and/or 

deficiencies in all three products. Errors could be due to underrepresentation of 

tropical FLUXNET sites that form the basis of the FLUXCOM product 

(Tramontana et al., 2016), inadequacies in how process-based models simulate 

tropical GPP (e.g. due to phenology (Restrepo-Coupe et al., 2017) or physiology 

(Wu et al., 2016) parameterisations), low quality optical data driving the LUE 

model or how the MODIS GPP algorithm parameterises tropical forests. Since 

GPP and its IAV in tropical regions responds primarily to water stress and not 

temperature (as in the high-latitude regions) this also likely points to differing 

response of GPP to water stress in different models and approaches.  
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Figure 4.4 - Trends in regionally averaged monthly GPP based on each 
product and the level of agreement between them. Panels show latitude (y-
axis) - month (x-axis) plots of the linear trend in monthly GPP over 1982-
2016 (gC/m2/yr2) in 10° latitude bins between 60°S and 80°N for a) 
FLUXCOM, b) TRENDYv6, and c) LUE. Significant trends (P<0.05) are 
highlighted with a black circle. Panel d) summarizes agreement in monthly 
GPP trends amongst the products (Dark green – 3 products agree on 
positive trend, light green – 2 products agree on positive trend, light brown 
– 2 products agree on negative trend, dark brown – 3 products agree on 
negative trend). 

 

 

4.3.3 Attribution to climate drivers 

4.3.3.1 Large-scale sensitivity 

We next analysed the sensitivity of GPP based on the three products to 

changes in temperature and precipitation over the 35-year study period. For 

FLUXCOM, globally-averaged annual GPP anomalies are inversely associated 

with MAT anomalies (-0.26 PgC/yr/°C; P<0.1), whereas for TRENDYv6 and LUE 

these relationships are significantly (P<0.05) positive with similar sensitivities 

of 1.48 PgC/yr/°C and 1.30 PgC/yr/°C, respectively (Figure 4.5). Global annual 

GPP anomalies based on FLUXCOM and TRENDYv6 have a significant (P<0.05) 

positive sensitivity to mean annual precipitation, although in TRENDYv6 

(4.24±0.65 PgC gained per 100mm) this sensitivity is over four times higher 

than in FLUXCOM (0.94±0.18 PgC/100mm; Figure 4.5). Further, LUE-based 

annual GPP is only weakly (P=0.25) positively related to annual precipitation on 

a global scale.  

 In northern regions, temperature provides a key constraint on 

boreal vegetation growth. A warming trend of 0.04 °C/yr (Figure D11c) between 

1982-2016 has enhanced growing season photosynthesis and lengthened the 

growing season, and in turn increased annual GPP (Sitch et al., 2015). In these 

northern regions all three products agree on the (positive) sign of the sensitivity 

between annual GPP and MAT, but differ in regards to magnitude (Figure 4.5). 

While GPP from TRENDYv6 and LUE exhibit significant (P<0.05) positive 

temperature sensitivities of 1.46±0.17 PgC/yr/°C and 1.32±0.20 PgC/yr/°C, 

respectively, GPP based on FLUXCOM lacks a strong relationship with 
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temperature (γr = 0.09±0.06 PgC/yr/°C, P=0.52). Further, annual GPP from 

FLUXCOM and TRENDYv6 show significant positive sensitivities to MAP 

anomalies of 0.78±0.17 PgC/yr/100mm and 2.15±0.53 PgC/yr/100mm, 

respectively, whereas LUE (0.93±0.78 PgC/yr/100mm) shows a positive but 

non-significant sensitivity to precipitation across these northern regions. 

 

 

Figure 4.5 - Sensitivity of global (G), northern (N), tropical (T), and 
southern (S) annual GPP to temperature (γ) and precipitation (λ) 
anomalies. Regions are defined in Figure D1. γ and λ are estimated from 
equation (2) over the period 1982-2016 (see Methods). Error bars show 
the standard error of the sensitivity estimates (see Methods). Dashed error 
bars indicate the multiple regression coefficient is statistically 
insignificant (P>0.05). Inset table shows the proportion of variance in GPP 
that is explained by the multiple regression (using R2). 

 

 

 

In the tropics and southern latitudes, all products consistently show a 

positive relationship between annual GPP and MAP and a negative link between 

annual GPP and MAT. FLUXCOM has a significant (P<0.05) negative sensitivity of 

GPP to temperature (𝛾𝑇𝑟𝑜𝑝𝑖𝑐𝑠_𝐹𝐿𝑈𝑋𝐶𝑂𝑀 = -0.35±0.09 PgC/yr/°C; 𝛾𝑆𝑜𝑢𝑡ℎ_𝐹𝐿𝑈𝑋𝐶𝑂𝑀 = -
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0.30±0.08 PgC/yr/°C), whereas both TRENDYv6 and LUE do not have a 

significant temperature response in either the tropics or southern latitudes. 

FLUXCOM and TRENDYv6 have significant (P<0.05) sensitivities to precipitation 

(𝜆𝑇𝑟𝑜𝑝𝑖𝑐𝑠_𝐹𝐿𝑈𝑋𝐶𝑂𝑀 = 0.54±0.05 PgC/yr/100mm, 𝜆𝑇𝑟𝑜𝑝𝑖𝑐𝑠_𝑇𝑅𝐸𝑁𝐷𝑌𝑣6 1.65±0.18 

PgC/yr/100mm; 𝜆𝑆𝑜𝑢𝑡ℎ_𝐹𝐿𝑈𝑋𝐶𝑂𝑀 = 0.19±0.03 PgC/yr/100mm, 𝜆𝑆𝑜𝑢𝑡ℎ_𝑇𝑅𝐸𝑁𝐷𝑌𝑣6 

0.60±0.09 PgC/yr/100mm), but LUE has no significant (P>0.05) precipitation 

sensitivity. This lack of response of LUE-based GPP to precipitation is likely due 

to the use of VPD (and not precipitation) in the LUE approach, since VPD is more 

sensitive to temperature than precipitation (Smith, WK et al., 2016). Thus, 

neither temperature nor precipitation explain substantial portions of the 

variance in LUE-based tropical and southern GPP (Figure 4.5). Moreover, the 

negative response of tropical GPP to increasing temperatures implies that 

tropical ecosystems are already functioning near their temperature optimum 

and any further increases in temperature will negatively affect their GPP 

(Corlett, 2011). 

 

4.3.3.2 Local scale sensitivity 

We also calculated GPP sensitivities to temperature and precipitation at 

local scales based on our regression framework (see equation (2) in Methods). 

The geographic distribution for annual GPP against MAT is similar across the 

three products, with a positive relationship in Eurasia and North America and a 

negative relationship in the tropics and southern latitudes (Figure 4.6a,c,e). For 

FLUXCOM, annual GPP response to MAT is much lower than for TRENDYv6 and 

LUE (on average 4 gC/m2/yr/°C (FLUXCOM) compared to 23 gC/m2/yr/°C 

(TRENDYv6) and 18 gC/m2/yr/°C (LUE)) and corresponding robust (P<0.05) 

sensitivities are not as widespread  (35% of vegetated northern land (> 30°N) 

for FLUXCOM compared to 65% for TRENDYv6 and 61% for LUE). All products 

exhibit a similar spatial pattern of significant negative annual GPP responses to 

MAT across large parts of South America, Southern Asia, and Australia (Figure 

4.6a,c,e). Some differences are apparent, however, with FLUXCOM and 

TRENDYv6 showing significant negative GPP sensitivities to MAT in the Amazon, 

whereas the LUE approach does not. Further, negative GPP responses in respect 

to MAT for TRENDYv6 and FLUXCOM in Africa are predominately located in the 
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south of the continent, whereas in the case of LUE corresponding sensitivities 

include also Central Africa.  

 

 

Figure 4.6 - Spatial pattern of the response of GPP to variability in mean 
annual temperature (MAT) and mean annual precipitation (MAP). 
Sensitivity of annual GPP to variations in (a, c, e) MAT (gC/m2/yr/°C) and 
(b, d, f) MAP (gC/m2/yr/100mm) for (a,b) FLUXCOM, (c,d) TRENDYv6, and 
(e,f) LUE. Sensitivities are calculated from multiple linear regression of 
annual GPP against MAT and MAP at each grid cell (see equation (2) in 
Methods). Only significant (P<0.05) sensitivities are shown. 

 

 

In regards to annual GPP responses to MAP, the three products agree on 

significant positive sensitivities in the northern mid-latitudes (30°N-50°N), and 

the savannas and shrublands of South America, South Africa, and Australia 

(Figure 4.6b,d,f). However, FLUXCOM GPP is also positively correlated with 

precipitation at high northern latitudes, whereas for TRENDYv6 and LUE such 

responses are not apparent (or even of opposite sign; Figure 4.6d,f). Negative 

precipitation sensitivities are potentially due to increased cloud cover with 

increased rainfall, leading to a reduction in incoming solar radiation and 

consequently GPP (Nemani et al., 2003). For FLUXCOM and TRENDYv6, annual 

GPP across the tropics is robustly positively related to MAP but for LUE such 

positive sensitivities are less widespread or non-existent.  
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 In a final step, we examined which climatic factor dominates GPP 

variability in the various products. Using equation (2), we combine the 

sensitivity parameters and the actual variability in precipitation and 

temperature. Precipitation is the dominant factor (compared to temperature) on 

90% of the vegetated land surface for FLUXCOM, while this reduces to 64% and 

34% for TRENDYv6 and LUE, respectively (Figure 4.7). This major difference is 

due to contrasting sensitivity patterns in the high northern latitudes where MAT 

only dominates 9% of the land for FLUXCOM GPP variability, whereas this is 

47% for TRENDYv6 and 70% for LUE (Figure 4.6 and Figure 4.7d). There are 

further differences in the dominant factors in the tropics and southern regions, 

with FLUXCOM GPP being almost entirely dominated by MAP variability but GPP 

from TRENDYv6 and LUE showing more areas that are controlled by MAT. 

Tropical South America GPP is dominated by MAT variability in all three 

products. There is further agreement in Southern Africa, temperate USA, north 

east China, and parts of east Russia, where precipitation is the primary driver of 

GPP variability.   
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Figure 4.7 - Spatial pattern of the relative importance of temperature and 
precipitation in explaining annual GPP variability for a) FLUXCOM, b) 
TRENDY, and c) LUE (see Methods). Percentage of dominance for 
temperature and precipitation for four large scale regions is also shown 
(d). A climate variable is dominant if it contributes more than 50% to the 
explained variance in the multiple linear regression. 

 

4.4 Discussion 

In this study, we examined the consistency amongst climate-driven GPP 

data (at multiple spatial and temporal scales) from three widely used products 

(FLUXCOM, LUE, and TRENDYv6). Understanding and quantifying how GPP 

responds to past climate change is a necessary step in correct model 

parameterisations and future projections of carbon fluxes and sinks. The three 

GPP products investigated represent independent ‘state-of-the-art’ datasets and 

therefore any discrepancies in IAV, trends, and climate sensitivity need to be 

highlighted.  

One key result is that the FLUXCOM IAV in GPP is much lower than for 

TRENDYv6 and LUE, an issue discussed previously (Jung et al., 2009, Piao et al., 

2013). This underestimation could be due to several reasons. First, FLUXCOM 

does not capture vegetation and soil moisture memory effects and represents 
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more instantaneous GPP responses to climate (see Methods). This contrasts with 

FluxNetG GPP, which has significantly larger interannual variability and trends, 

with magnitudes more in line with TRENDYv6 and LUE (Figure D4). Therefore, 

this highlights the large influence the choice of input data has on the machine 

learning GPP estimates used in FLUXCOM and FluxNetG. Secondly, there are very 

few sites in regions that dominate the global IAV, such as tropical forests (Cox et 

al., 2013) and semi-arid regions (Ahlstrom et al., 2015), which could lead to 

biases at regional/global scales. Aside from differences in magnitude of 

variability, the GPP products show generally a good agreement in the their IAV 

at global and relatively broad regional scales (respective correlations are 

significant (P<0.05) in all regions (Table 4.1)). In general, FLUXCOM and 

TRENDYv6 year-to-year correlations were substantially higher when either are 

compared to LUE, also consistent with a previous study (Anav et al., 2015). On a 

grid-cell scale LUE does not correlate with FLUXCOM in the tropics and high 

northern latitudes, or with TRENDYv6 in the tropics (Figure 4.2). There are 

known issues with satellite optical data in these regions due to cloud 

contamination, which could influence derived FPAR data used in the LUE 

algorithm (Zhao et al., 2005, Smith, WK et al., 2016). Alternatively, the LUE 

algorithm could be a source of error and might not capture climate sensitivity 

correctly (Anav et al., 2015, Chen et al., 2017, Medlyn, 2011, Piao et al., 2013). 

For example, the ability of VPD to fully capture the down regulation of GPP, 

particularly in drought conditions, has been called into question (Stocker et al., 

2018). However, it is important to note that both FLUXCOM and TRENDYv6 GPP 

are also highly uncertain in tropical regions. FLUXCOM suffers from poor data 

coverage in the tropics and as such tropical GPP is poorly constrained (Anav et 

al., 2015). In addition, both FLUXCOM and TRENDYv6 have low variability in the 

Amazon and South East Asia compared to LUE, which can mask agreement 

amongst the products (Figure D7). In summary, all three GPP products have 

severe limitations in tropical regions, and so a lack of correlation at interannual 

timescales between them in this region is not surprising.  

We further analysed the long-term trends in GPP and explored linkages to 

underlying climatic controls. We find that the climate-driven GPP trends based 

on TRENDYv6 and LUE are consistent, with both simulating a large northern 
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increase (Figures 4.1 and 4.3). FLUXCOM GPP trends are systematically lower 

than other GPP estimates in all regions (Anav et al., 2015, Piao et al., 2013). 

Large scale northern warming led to increased uptake in the TRENDYv6 and LUE 

models, a finding in line with studies showing a lengthening of the growing 

season (Keenan et al., 2014, Richardson et al., 2010), and increases in annual 

carbon uptake (Keenan et al., 2014). FLUXCOM northern trends could be smaller 

for several reasons. By design, FLUXCOM has no greening trend, and so neglect a 

potential climate effect on plant biomass which could be captured by the 

TRENDYv6 models through increases in LAI or earlier leaf onset as well as in 

LUE through satellite FPAR. However, a previous TRENDY model inter-

comparison study simulated no trend in northern NPP due to climate variations 

over the period 1990-2009 (Sitch et al., 2015). Further, these contrasting results 

could be due to differences in GPP and NPP trends, or because this version of 

TRENDY (version 6) contains a different set of models to previous versions. 

Moreover, a difference in the time periods (three decades in this study compared 

to two decades in Sitch et al. (2015)) could influence trend analysis. Nonetheless, 

this difference between TRENDY versions highlights uncertainty in model 

structure and parameterisations. As mentioned previously, plant physiological 

response to climate controls GPP variability (Xia et al., 2015, Zhou et al., 2017). 

Incorrect (or missing) representation of related processes, such as the 

sensitivity and acclimation of photosynthesis to changes in temperature, can 

lead to errors in simulated GPP (Booth et al., 2012, Lombardozzi et al., 2015, 

Mercado et al., 2018). It is not clear how the inclusion of temperature 

acclimation would affect simulated GPP trends (in all regions) with studies 

showing both increased and decreased photosynthesis in a warming scenario 

with temperature acclimation included, depending on the underlying PFT and 

exact acclimation formulation (Lombardozzi et al., 2015, Mercado et al., 2018, 

Smith NG et al., 2016). 

It is important to note that precipitation variability is also important for 

temperate GPP (Anderegg et al., 2012), and corresponding influences are 

captured consistently in the three products. Examples include the large negative 

GPP trends in West and Southern USA due to precipitation declines (Figure 4.3). 

Further, GPP declines in China and Mongolia are consistent with previous 
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modelling and satellite studies that also highlighted the China/Mongolia pattern, 

attributing the decrease in GPP to negative precipitation trends (Poulter et al., 

2013). Over the tropics, we find similar and contrasting GPP trends amongst the 

products, and differences in the underlying climate sensitivities. All three 

products exhibit comparable negative GPP trends in central South America, 

driven by rising temperatures increasing evaporative demand (Zhao & Running, 

2010). Precipitation increases in the Sahel led to positive GPP trends in all 

products, a feature highlighted previously (Brandt et al., 2015, Hickler et al., 

2005). Further, positive precipitation trends in South East Asia led to a spatially 

uniform (albeit small) increase in TRENDYv6 GPP. However, FLUXCOM and LUE 

simulate no change in the majority of South East Asia (and other tropical forest 

regions). As stated previously, all three products suffer from uncertainties (e.g. 

from model structure or underlying observations) in the tropics, making tropical 

trends less robust (Chen et al., 2017, Wu et al., 2018).  

In regard to comparative analysis of climate sensitivities, we find GPP 

from both TRENDYv6 and LUE exhibit widespread positive sensitivities to MAT 

in northern latitudes, a result in-line with previous observation-based studies 

(Keenan et al., 2014, Xu et al., 2013, Zhou et al., 2001; Figures 4.5 and 4.6). In 

contrast, GPP from FLUXCOM shows significant sensitivities to MAT in relatively 

few regions across the northern latitudes, a result found previously (Jung et al., 

2017; Figure 4.6). Further, GPP from FLUXCOM and TRENDYv6 have significant 

positive sensitivities to MAP in northern temperate latitudes (Figure 4.6), a 

region previously shown where water availability is a dominant driver of GPP 

(Ahlstrom et al., 2015, Anderegg et al., 2012). However, contrary to TRENDYv6 

and LUE, GPP IAV in boreal latitudes from FLUXCOM is predominantly driven by 

MAP variability. Potential reasons for this pattern include that FLUXCOM is 

driven with seasonally varying climatology of satellite FPAR, and so could be 

missing an important inter-annual climate signal (see Figure D4). Further, 

FLUXCOM is known to have poor performance in cold regions as GPP 

magnitudes and variability are generally low which causes issues in explaining 

variability using empirical models (Tramontana et al., 2016). There are large 

regions across the tropics and southern latitudes where GPP has a negative 

relationship to MAT (Piao et al., 2013, Zhao & Running, 2010), however when 
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integrated from local to regional scales (see Figure D1), variability in GPP is not 

correlated to regional MAT anomalies. For both FLUXCOM and TRENDYv6, 

variability in MAP is a dominant driver of GPP IAV at local and regional scales in 

tropical and southern latitudes. This is consistent with previous work showing 

water availability to be a principal driver of productivity across much of the 

tropical/southern latitudes (Ahlstrom et al., 2015, Jung et al., 2017, Piao et al., 

2013, Zscheischler et al., 2014). Interestingly, we find tropical LUE GPP does not 

correlate significantly with MAP in any grid cells (Figure 4.6), although increased 

precipitation has been shown to enhance tropical GPP (Beer et al., 2010). This 

disparity between products is most likely due to both FLUXCOM and TRENDYv6 

being driven by soil water availability which is strongly related to precipitation, 

whereas LUE is driven with VPD, which is more strongly related to temperature. 

Nevertheless, previous work (using FLUXCOM and TRENDYv6) explains tropical 

GPP variability through moisture availability, giving confidence in our 

explanatory analysis (Jung et al., 2017).  

Strikingly, the spatial pattern of the dominant climatic driver on GPP 

variability is not consistent amongst the products. TRENDYv6 and LUE agree on 

the general pattern of temperature controlling GPP in the northern-high 

latitudes and precipitation controlling GPP in northern temperate, tropical, and 

southern regions (Nemani et al., 2003, Piao et al., 2009). In stark contrast, 

FLUXCOM GPP variability is dominated by precipitation almost everywhere 

globally, including the northern high-latitude boreal regions. The latter is 

somewhat inconsistent with our general understanding of climatic constraints 

on plant productivity (Nemani et al., 2003).  

 

4.5 Conclusion 

We observed notable similarities and differences in the IAV and long-

term trends in GPP from three key products in carbon cycle science (FLUXCOM, 

TRENDY, and LUE). GPP IAV and trends from FLUXCOM are systematically lower 

than satellite (LUE) and process-based (TRENDYv6) products, indicating 

significant uncertainties exist. Temperature increases in the northern latitudes 
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appear to have significantly increased GPP on the global scale. However, changes 

in tropical GPP due to variations in climate are not consistent, with products 

disagreeing on the spatial pattern and underlying drivers of trends. The 

northern warming and increased GPP trend is more robust, with temperature 

limitation of high latitude productivity exerting a primary control (Nemani et al., 

2003), and the gradual relaxation of this constraint has been observed via 

independent methods (Barichivich et al., 2013, Graven et al., 2013, Keenan et al., 

2014, Myneni et al., 1997). 

All three products agreed on the direction of trend across 60% of the 

vegetated land surface, however magnitudes of trends were generally less 

consistent among the three products and thus are more uncertain. Differences in 

GPP estimates between TRENDY models indicate that models need to be 

improved since processes are either not included or misrepresented. For 

example, large uncertainties associated with the parameterisation, acclimation, 

and scaling (vertically through the canopy and spatially across the landscape) of 

photosynthesis have been highlighted (Rogers et al., 2017). However, including 

more processes does not necessarily improve a model as the added complexity 

can lead to more uncertain parameterisations (Prentice et al., 2015, Zaehle et al., 

2014). 

Furthermore, there are key similarities and differences in GPP sensitivity 

to climate forcings between the products. All products agree on a general pattern 

of positive GPP correlations to MAT in northern regions, and negative 

correlations in tropical/southern lands. However, spatial patterns and 

magnitudes of GPP sensitivity to MAP are not consistent. Interannual variability 

in GPP from FLUXCOM is seemingly driven solely by MAP anomalies in majority 

of regions whereas LUE shows few regions sensitive to MAP variability. Thus, 

isolating the regional/local sensitivity of GPP to individual climate forcings is not 

straightforward. Firstly, by design, different methodologies of calculating GPP 

will inherently lead to different sensitivities to environmental drivers. In 

addition, products use different variables and data sources to represent the 

same environmental stresses (e.g. temperature and moisture). However, as 

moisture availability and temperature are key climatic constraints on plant 

productivity, we have confidence in our regression framework and analysis.  
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Nonetheless, there is a need for more long-term, direct observations of 

GPP especially in underrepresented regions (e.g. tropical forests) to reduce 

uncertainties in all products. With novel satellite measurements capturing 

photosynthesis more directly (e.g. chlorophyll fluorescence and new optical 

metrics, Badgley et al. (2017)), in the future there will be a new means to 

reliably constrain interannual variability and long-term trends of GPP on local 

and global scales.  
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Chapter 5  

Discussion 

The terrestrial carbon sink has increased over the past decades, however 

the exact driving processes and mechanisms remain unquantified. Increased CO2 

concentrations, nitrogen deposition, changes in climate, and land-use / land-

cover change have all played a role on uptake and release processes on various 

spatial and temporal scales. Locating the changing carbon fluxes and sinks and 

the finding driving mechanisms is a primary research goal for the scientific 

community because to make any predictions about the future of the carbon cycle 

and climate, we need to correctly understand the past.  

The aim of this thesis was to study the recent changes in the terrestrial 

carbon cycle, and to identify drivers, processes, and mechanisms behind 

observed changes. A combination of models was used to study the influence of 

anthropogenic fossil fuel emissions on atmospheric aerosol distribution, surface 

radiation, and net primary productivity, as well as the impact of nitrogen 

deposition on the net carbon balance. I also analysed observational and model 

data of vegetation productivity to quantify the influence of climate on carbon 

uptake over the period 1982-2016.  

I used a variety of modelling and observational tools to address the three 

hypotheses: 

H1: Increases in the fraction of diffuse/direct radiation associated 

predominantly with East Asian sulfate aerosol emissions have spurred plant 

photosynthetic rates (Chapter 2) 

H2: Increases in nitrogen deposition from East Asian fossil fuel burning 

have increased plant carbon uptake (Chapter 3) 
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H3: A progressive relaxation of climatic constraints has led to increased 

plant productivity (Chapter 4) 

 

The following sections provide a summary of the results from each 

chapter in relation to the thesis hypotheses. 

 

5.1 Small global effect on terrestrial net primary production 

due to increased fossil fuel aerosol emissions from East 

Asia since the turn of the century 

A three-model cascade was used to quantify the influence of changes in 

anthropogenic fossil fuel emissions had on atmospheric aerosol (GLOMAP), 

surface radiation (Edwards-Slingo), and NPP (JULES) over 1998-2010. GLOMAP 

is compared to satellite observations of aerosol optical depth, and both Edward-

Slingo radiation and JULES GPP are compared to tower site observations. A 

summary of the findings from this study in relation to the first hypothesis is 

presented below: 

a) There have been large regional changes in modelled aerosol optical depth 

(AOD) over 1998-2010, with an increase of 0.04 in East Asia, and 

decreases of 0.06 and 0.03 in Europe and North America, respectively. 

Trends in fossil fuel emissions dominate the AOD trends in these 

industrialised regions, accounting for 95% of the overall change. The 

absolute magnitude of modelled AOD is systematically lower than 

satellite observations. However, in fossil fuel aerosol dominated regions, 

modelled trends matched satellite observations well. Potential reasons 

for an underestimation in modelled aerosol loading include; uncertainty 

in observations, overestimation in deposition processes, coarse spatial 

and temporal model resolution, and omission of various atmospheric 

species (eg. dust, nitrate).  
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b) In the industrialised northern hemisphere changes in surface diffuse 

radiation (SDR) are dictated by fossil fuel aerosol, with higher/lower 

aerosol loading leading to higher/lower SDR. Isolating the fossil fuel 

aerosol effect over 1998-2010, SDR increased in East Asia by +2.5 W/m2, 

and decreased in Europe and North America by 5.6 W/m2 and 2.2 W/m2, 

respectively. These opposing regional trends led to a small global 

reduction in SDR of 0.36 W/m2. Compared to site level observations, the 

model under predicts SDR and over predicts total surface radiation, with 

the main differences in summer months, when radiation is highest. This 

could be due to the underestimation of the modelled aerosol loading. 

c) Global changes in NPP over the study period are dominated by CO2 

fertilization (+2.9 PgC/yr) and climate variations (-0.96 PgC/yr), with an 

overall increase of 1.7 PgC/yr over 1998-2010. Changes in SDR due to 

fossil fuel aerosol contribute less than 5% of the overall NPP change (-

0.08 PgC/yr). Regionally, changes in SDR due to fossil fuel emissions have 

a large influence on NPP trends, contributing 33% of the 0.53 PgC/yr 

increase in East Asia. In Europe and North America, reductions in SDR led 

to NPP decreases of similar magnitudes of CO2 fertilization, in the 

opposing direction. Climate variability dominates NPP trends on 74% of 

vegetated land, with CO2 fertilization dominating 22%, predominately in 

tropical forests. Warming in the high northern latitudes spurred on plant 

growth and increased annual NPP, whereas wetting and drying trends in 

the mid and southern latitudes controlled annual NPP changes.  

d) Modelled GPP sensitivity to direct and diffuse radiation generally matches 

flux tower observations, with increased GPP at higher radiation levels. 

GPP is higher under diffuse light conditions than direct light, as expected 

from the theory of radiative transfer in vegetation canopies. The model 

does underestimate GPP sensitivity to diffuse light in the two needleleaf 

forests (Hyytiala and Loobos). The model parameters (eg. Vcmax) were 

left at global values for the comparison and could be the reason behind 

this discrepancy. This could potentially lead to an underestimation of the 

“fossil fuel – diffuse light” effect in these forest biomes. However, as 

diffuse radiation is underestimated in our study, the diffuse effect on NPP 
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is potentially overestimated due to the nonlinearity of plant carbon 

uptake to changes radiation.  

 

5.2 Have synergies between nitrogen deposition and 

atmospheric CO2 driven the recent enhancement of the 

terrestrial carbon sink? 

CLM4.5-BGC was used to simulate changes in carbon uptake and storage, 

with a focus on two time periods (with different baselines). Extended factorial 

simulations were performed over 1901-2016 to attribute drivers to changes in 

carbon uptake, with a focus on nitrogen deposition and carbon-nitrogen synergy. 

Recent simulations over the period 1990-2016 were also performed to quantify 

changes relative to a more contemporary baseline. A summary of the findings 

from this study in relation to the second hypothesis is presented below: 

a) Fossil fuel emission and atmospheric deposition of nitrogen increased 

over the 20th century due to industrialisation in many regions across the 

globe. Global nitrogen deposition increased from 24 TgN/yr in 1900 to 70 

TgN/yr in 2016 due to a combination of increased fossil fuel burning and 

agricultural intensification. Regional deposition patterns are dictated by 

emission sources, with major source regions of USA, Europe, and East 

Asia. More recently (1990-2016), global deposition has been relatively 

constant, however regional changes have occurred. Air quality measures 

in Europe and the US have decreased nitrogen deposition by 0.13 TgN/yr 

and 0.89 TgN/yr, respectively. Contrary, large increases in fossil fuel 

burning increased nitrogen deposition by 3.74 TgN/yr in East Asia.  

b) Over the 20th century, NPP increased by 10 PgC/yr (+17%), with the 

largest contribution from CO2 fertilization (60%). Increased nitrogen 

deposition accounted for 15% of the increase, with non-linear 

interactions between carbon, nitrogen, and climate accounting for 17%. 

Similarly, increases in the net land flux were dominated by CO2 
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fertilization, with nitrogen deposition and synergistic effects each 

amounting to 15% of the overall 2.3 PgC/yr increase. Changes in climate 

decreased net carbon uptake as warming increased soil respiration and 

drying trends reduced photosynthesis. 

c) There are regional differences between the contribution of each driver to 

changes in net carbon uptake. CO2 fertilization predominates in tropical 

and northern hemisphere forests, whereas the influence nitrogen 

deposition is most apparent in North America, Europe, and East Asia. 

Carbon-nitrogen synergistic effects arise in tropical regions as well as in 

China, where additional nitrogen deposited worked to offset the 

limitation brought about by increased CO2 fertilization. Climate trends 

caused widespread losses of carbon across parts of temperate Eurasia, 

tropical regions, and southern Africa. On the contrary, precipitation 

trends in South America and USA have increased net carbon gain over the 

historical period.  

d) Regarding the increased 21st century sink, CO2 fertilization increased 

NBP by 1.22 PgC/yr between 1990-2016, whilst changes in climate led to 

a loss of 1.17 PgC/yr. Warming trends increased NPP over the majority of 

the northern (>30°N) lands, however concurrent rises in soil respiration 

reversed initial increases in temperate US and Eurasia. Declines in South 

American NBP are driven by decreases in productivity due to warming 

and drying trends. Nitrogen deposition increased by only 3% globally 

since 1990, and as such there was a limited carbon response. Regionally 

however, changes in nitrogen deposition caused large changes in net 

carbon uptake. Increased NBP due to deposition in East Asia was on the 

order of 50% of the total NBP change. Synergistic effects are limited over 

this period, with only a small response seen in China. This is primarily 

due to the small spatial footprint of nitrogen increases across the globe, 

being limited to East Asia and Western Europe, and also because large 

synergistic effects take years to develop.  

e) Therefore, from the results of Chapters 2 and 3, I conclude that the 

increased global terrestrial sink since the turn of this century is likely not 

due to increased nitrogen deposition, carbon-nitrogen synergies, or 



150 
 

increased atmospheric aerosols related to fossil fuel burning. 

Accordingly, other drivers and mechanisms must be responsible for the 

increased sink. Both JULES and CLM4.5-BGC simulate a large CO2 

fertilization effect (even with the nitrogen limitation included in CLM). 

Further, both simulate carbon losses due to changes in climate in the past 

two decades (studied further in Chapter 4). Other mechanisms not 

included in these studies such as land-use and land cover change could 

have driven large changes in vegetation distribution and carbon cycling, 

impacting the terrestrial carbon balance.  

 

5.3 Climate-driven variability and trends in plant productivity 

over the last three decades based on three global products 

Three independent ‘state of the art’ datasets of gross primary production 

(GPP); upscaled eddy-flux observations (FLUXCOM), a set of process-based 

terrestrial biosphere models (TRENDY), and a satellite driven light-use 

efficiency model (LUE) were compared in regard to the interannual variability 

and trends due to changes in climate over the period 1982-2016. The sensitivity 

of global, regional, and local GPP to changes in temperature and precipitation 

was quantified for each product. A summary of the findings from this study is 

highlighted below: 

a) FLUXCOM exhibits much lower IAV than both TRENDY and LUE on global, 

regional, and local scales. TRENDY and LUE have a mean variation (1σ of 

detrended annual timeseries) of 1.21 PgC/yr and 1.01 PgC/yr, 

respectively, whereas FLUXCOM has a smaller IAV of 0.34 PgC/yr. 

FLUXCOM captures on a portion of the climate-driven GPP signal, and 

does not contain an vegetation memory effects. Namely, FLUXCOM uses a 

fixed seasonal cycle of satellite LAI, and therefore IAV and trends in 

vegetation activity are not captured. However, on inter-annual timescales 

the products significantly (p<0.05) correlate on global and broad regional 

scales. On grid-cell scale, the products all agree on inter-annual scales in 
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temperate US, grasslands of Eurasia, and savannas and shrublands of the 

southern hemisphere. LUE grid-cell GPP correlates poorly with both 

FLUXCOM and TRENDY in tropical regions. Tropical GPP is highly 

uncertain in all products. FLUXCOM suffers from poor data coverage, and 

terrestrial biosphere models are unconstrained in this region.  

b) Global GPP trends over 1982-2016 differ between the products. 

FLUXCOM has a small non-significant positive trend of 0.002±0.017 

PgC/yr2 compared to the larger significant trends of 0.092±0.057 PgC/yr2 

and 0.062±0.027 PgC/yr2 for TRENDY and LUE, respectively. Large-scale 

northern warming led to increased uptake in TRENDY and LUE models, a 

finding in line with previous studies which suggest temperature is a 

primary control on northern photosynthesis. All three products exhibit 

negative GPP trends in central South America, driven by warming 

temperatures increasing evaporative demand. Tropical trends are 

generally less robust, with positive precipitation trends in South East Asia 

lead to a spatially uniform (albeit small) increase in TRENDYv6 GPP. 

However, FLUXCOM and LUE simulate no change in the majority of South 

East Asia (and other tropical forest regions). 

c) On grid-cell scale, all products agree in the direction of trend over 58% of 

the vegetated land surface. Large areas of Eurasia and North America 

exhibit positive summer trends due to warming. In contrast, warming in 

central South America has decreased dry season GPP over the study 

period. Negative precipitation trends in South US and Mongolia/China 

have reduced GPP, whereas a wetting trend in South Africa has enhanced 

productivity.  

d) The spatial pattern of GPP sensitivity to temperature is similar between 

all products. Northern lands show a positive sensitivity to temperature 

(with TRENDY showing highest values), and tropics and southern lands 

being negatively related to temperature (with LUE have largest negative 

sensitives). The spatial pattern of GPP precipitation sensitivities varies 

between the products. FLUXCOM has a significant (p<0.05) positive 

sensitivity ubiquitously across the land surface, whereas TRENDY has 

significant sensitivities located in northern temperate, tropical, and 
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southern regions. LUE GPP is generally less sensitive to precipitation, 

with only the grasslands of North America, and grasslands and 

shrublands of the southern hemisphere showing a positive response. 

e) Furthermore, the relative importance of temperature and precipitation in 

grid scale GPP variability differs across the products. FLUXCOM GPP is 

controlled by precipitation across the globe, apart from central South 

America where temperature exerts a dominating influence. Both TRENDY 

and LUE northern GPP is controlled by temperature. In line with 

FLUXCOM, TRENDY is controlled by precipitation in grasslands and 

shrublands across the globe. However, for LUE, large parts of the tropics 

and southern hemisphere are controlled by temperature variability.  

5.4 Summary 

The terrestrial carbon sink has increased over the past decades due to a 

myriad of factors including; CO2 fertilization of photosynthesis (Schimel et al., 

2015), climate warming leading to longer and more favourable growing seasons 

(Barichivich et al., 2013), regrowth on abandoned farm land (Kondo et al., 2018), 

increased diffuse radiation fraction (Mercado et al., 2009), and nitrogen 

deposition stimulating plant growth (Zaehle, 2013). However, the exact 

contribution of these drivers and the location of changes in component fluxes 

and sinks remains uncertain. Identifying the location and driving mechanisms is 

vital for a holistic understanding of the carbon cycle and the ability to 

confidently and accurately predict future environmental changes. Of initial 

interest in this thesis is the apparent increase in terrestrial carbon uptake from 

the beginning of the 21st century. Enhanced nitrogen deposition and diffuse 

radiation associated with increased fossil fuel emissions were hypothesised to 

increase carbon uptake and explain the recent sink (Hansen et al., 2013). Both 

mechanisms have a positive influence on primary productivity (Mercado et al., 

2009, Zaehle, 2013) and have altered regional carbon uptake in the 20th century.  
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Chapter 2 of this thesis quantified the roles of various drivers on changes 

in carbon uptake over the first decade of the 21st century. A particular focus was 

on the impact of changes in fossil fuel emissions on atmospheric aerosol, 

direct/diffuse light, and subsequently NPP. Previous studies have highlighted the 

important role of the ratio of diffuse to direct light (Mercado et al., 2009, Gu et 

al., 2003). However, this is the first study to quantify the effects of changes in 

fossil fuel aerosol (along with CO2 fertilization, climate change, and changes in 

biomass burning aerosol) on carbon uptake since the start of the 21st century. 

This is of particular importance as the period 2000-2010 saw a large increase in 

the terrestrial carbon sink (Le Quéré et al., 2018), with conflicting reports on the 

drivers behind the increase (Ballantyne et al., 2017, Keenan et al., 2016, Zhu et 

al., 2018). This study used a 3-model cascade in order to attribute drivers to 

changes in carbon uptake over 1998-2010. The ability of each model to 

reproduce observed patterns of AOD, surface solar radiation, and photosynthetic 

response to direct and diffuse PAR was evaluated. GLOMAP is a comprehensive 

microphysical aerosol model and successfully reproduced observed AOD trends 

in fossil fuel dominated regions (North America, Europe, and East Asia) over 

1998-2010. Further, modelled incoming surface solar total and diffuse radiation 

matched observations at forest sites. This study also further evaluated JULES in 

four northern temperate and boreal forest sites (two broadleaf, two needleleaf), 

complementing the evaluation performed in previous work (Mercado et al., 

2009, Rap et al., 2015), that JULES is able to capture observed response to 

varying PAR levels in different biomes and diffuse/direct light regimes. It is 

important a model is able to reproduce observed patterns in response to 

changes in incoming PAR when using the same model to simulate future 

responses to changes in fossil fuel emissions, aerosol concentrations, and 

subsequent light regime.  

The decadal trend in NPP due to changes in fossil fuel aerosol was 

dominant (compared to other drivers) in localised regions (North America, 

Europe, East Asia), highlighting the first-order influence of the ratio of direct to 

diffuse radiation has on canopy photosynthesis. Therefore, all DGVMs should 

include the influence of diffuse radiation and changes in light regime in historical 

and future carbon cycle simulations. For example, a comparison of the simulated 
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historical sink (1900-present) using TRENDY DGVMs (Sitch et al., 2015) with the 

residual land sink indicates there is a budget imbalance (difference between two 

estimates) for any particular year (Le Quéré et al., 2018). This imbalance is most 

pronounced following the eruption of Mt. Pinatubo (1991-1992), whereby the 

DGVMs are missing processes related to diffuse radiation (Mercado et al., 2009). 

Importantly, JULES does not include the effects of nitrogen availability on 

carbon uptake, which is a key determinant of plant growth, due to stoichiometric 

demands (Cleveland et al., 2013). Further, nitrogen is generally a limited 

resource due to the large energy requirement of converting atmospheric N2 to 

plant available forms, and losses from the biosphere due to fires, leaching, and 

denitrification (Vitousek & Howarth, 1991). Chapter 3 expands on the results 

from Chapter 2 by considering the secondary impact of changes in fossil fuel 

emissions; effects of nitrogen deposition and carbon-nitrogen interactions on 

the recent carbon sink. Chapter 3 quantifies the roles of CO2 fertilization, 

nitrogen deposition, climate and the synergistic effects between them on gross 

and net carbon fluxes over the historical period. Firstly, the simulated deposition 

trends (increase in East Asia, decrease in Europe and North America) are in line 

with observations (Liu et al., 2013, De Vries & Posch, 2011, Du et al., 2014). The 

nitrogen deposition induced sink simulated by CLM4.5-BGC matches previous 

studies well (Thornton et al., 2007, Zaehle et al., 2010), and the simulated CN-

synergistic effect is (to a lesser extent) in further agreement with other models 

(Churkina et al., 2009, Zaehle et al., 2010). This study expands on previous work 

by additionally focusing on changes to the terrestrial carbon cycle relative to a 

more recent baseline (hereby removing background carbon trends from non-

equilibrium conditions; Bonan & Levis, 2010). Over the last two decades, 

changes in nitrogen deposition and carbon-nitrogen synergistic interactions are 

important drivers of carbon uptake on regional levels (North America, Europe, 

and East Asia), however these effects are negligible when integrated to the 

global scale (due to opposing regional trends). Therefore, carbon-nitrogen 

interactions do play a pivotal role in terrestrial carbon cycling, but in the context 

of the strengthening global carbon sink over the last two decades, these 

processes seem not to be dominant.  
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Both Chapters 2 and 3 (and numerous other studies; Keenan et al., 2016, 

Schimel et al., 2015, Sitch et al., 2015) indicate a primary role for CO2 

fertilization in the explaining the recent sink. Yet, the CO2 fertilization effect is 

still largely unconstrained in DGVMs (Arora et al., 2013, Zaehle et al., 2014), as 

the full interaction with nutrient cycling (e.g. nitrogen, phosphorus) is still 

largely unknown (Goll et al., 2012, Zaehle et al., 2014). Overall, both the ratio of 

diffuse to direct light and nitrogen availability are key factors in determining 

gross and net carbon uptake. The results from Chapters 2 and 3 highlight the 

regional importance of taking into account spatiotemporal changes in fossil fuel 

aerosol in determining carbon fluxes, and the need for modelling studies to 

include all relevant processes. Although these mechanisms appear not 

responsible for the increased 21st century sink (thus far), future fossil fuel 

emission trajectories will determine aerosol trends (and hence the light regime 

and deposition patterns). Therefore, our results stress the need for the inclusion 

of these necessary processes and mechanisms in DGVMs for future carbon cycle 

studies, in which emission trajectories are expected to drastically change (Moss 

et al., 2010). 

One of the largest (and most important) uncertainties in future carbon 

cycle projections is how GPP will evolve (temporally and spatially). Terrestrial 

GPP is the largest carbon flux into the biosphere and therefore drives other 

ecosystem functions (e.g. growth and respiration). It is also one of the major 

fluxes influencing the net carbon sink, which works to offset anthropogenic CO2 

emissions. The future evolution of global GPP depends in part on the sensitivity 

of plant level GPP to local climate (e.g. temperature and precipitation), and how 

these sensitivities and responses integrate to the global scale. Chapter 4 

addresses this question by analysing three global GPP datasets (upscaled 

FluxNet observations; FLUXCOM, a suite of DGVMs; TRENDYv6, and a LUE 

model) spanning the period 1982-2016. For TRENDY and LUE, northern 

warming led to large increases in growing season GPP throughout North 

America and Eurasia, in agreement with our understanding of temperature 

constraints on northern productivity (Nemani et al., 2003). However, FLUXCOM 

shows limited GPP increases in northern latitudes, and FLUXCOM has overall 

lower GPP variability than the DGVMs and LUE model. Low FLUXCOM GPP 
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variance is highlighted in this study, and is a previously known issue for the 

product (Jung et al., 2011, Tramontana et al., 2016). There are noticeable 

similarities and differences in GPP sensitivities to climate forcings amongst the 

three products. Overall, the spatial patterns of GPP sensitivity to temperature 

are consistent between all three products (positive in north, negative in the 

tropics/south). The consistency between products and also with previous 

studies (Beer et al., 2010, Jung et al., 2017) gives confidence in the reported 

temperature sensitivities. However, IAV in GPP from FLUXCOM is mostly driven 

by precipitation anomalies across the globe, whereas the corresponding pattern 

for LUE GPP is only observed in a number of shrubland regions. Thus, the 

FLUXCOM GPP pattern is inconsistent with “northern regions are temperature 

limited” paradigm (Nemani et al., 2003).  

One important feature must be highlighted. The high northern latitudes 

are generally characterised by cold/dry conditions and relatively low magnitude 

and variance of GPP, which leads to difficulties in trying to explain the variability 

using machine learning / empirical methods (i.e. there is nothing to explain). 

Further, the predictor variables used in the machine learning methods do not 

capture all drivers of GPP variability (Tramontana et al., 2016). For example, 

there is no information on the IAV of vegetation activity in FLUXCOM. The 

impact of this on estimated GPP IAV is highlighted by analysing a previous 

version of upscaled flux tower GPP (FluxNetG), which includes interannual 

satellite vegetation information. The large northern GPP increase over 1982-

2016 estimated by FluxNetG, as well as IAV magnitudes similar to TRENDYv6 

and LUE indicate the importance of input data in the machine learning methods. 

Further, machine learning methods generally perform poorly outside of 

conditions of the training data, and as there are very few sites in high northern 

latitudes, the models may not be suitable for these regions.  

The dominance of temperature over precipitation regarding IAV in GPP 

from LUE is most likely due to the structure of the LUE model, which is driven by 

two climate scalars; a function of temperature, and a function of  VPD. VPD is a 

measure of moisture in the atmosphere and is heavily influenced by 

temperature. Therefore, a larger dependence of LUE GPP on temperature in the 

multiple linear regression is not surprising. Further, the LUE model was 
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parameterised with site observations from northern temperate forests 

(Robinson et al., 2018, Zhao & Running, 2010), and so using this model in other 

biomes introduces additional uncertainties. Moreover, the model maybe missing 

important information on plant water availability by excluding a soil moisture 

term (Stocker et al., 2018). There are many sources of uncertainty across all 

products (missing or poorly represented processes), and as such differences in 

driver attribution to GPP variability is not unexpected. Overall, Chapter 4 

highlights robust patterns of GPP change (e.g. northern latitude and Sahel 

increases, North and South America decreases), however this study also 

highlights the large uncertainties associated with the underlying drivers and 

climate sensitivities with all three global GPP products. 

 

5.5 Implications for Future Work 

The results of this thesis highlight the important role of both the type 

(direct or diffuse) of incoming radiation and also nitrogen availability on 

terrestrial carbon fluxes. Chapter 2 indicated that JULES was able to generally 

capture observed GPP responses to PAR in a range of light conditions, although 

the model does underestimate GPP in needleleaf forests. This is most likely 

because I do not tune any model parameters such as the maximum 

photosynthetic capacity, unlike previous model evaluation (Mercado et al., 

2009). Under estimation of JULES carbon uptake has been reported previously 

(Mercado et al., 2007; Slevin et al., 2015), due to biases in global values for 

photosynthetic capacity generally underestimating local site conditions. There 

could therefore be a need to increase the number of PFTs in JULES to account for 

more of the spatial variability among biomes. Generally for all DGVMs, the 

separation of diffuse and direct radiation for sunlit and shaded leaves, along 

with accurate representation of radiative transfer through the canopy is vital for 

correction simulation of canopy GPP (Mercado et al., 2007). Currently, in 

modelling intercomparison studies (e.g. TRENDY), the influence of 

spatiotemporally changing diffuse radiation is neglected. Addressing this should 

be a high priority for the modelling community.  
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In Chapter 2, the atmospheric aerosol loading was underestimated, 

although AOD trends matched well with satellite observations. An 

underestimation of aerosol will lead to subsequent biases in radiative fluxes in 

the atmosphere and vegetation canopy. Due to the non-linear relationship 

between carbon uptake and incoming radiation, the diffuse radiation response 

simulated here may be overestimated. GLOMAP underestimating aerosol 

burdens has been reported previously (Mann et al., 2010) and could be due to 

missing processes such as; underestimation of primary emissions or missing 

species (eg. nitrate). The first two hypothesis of this thesis are directly related to 

emissions of fossil fuel gas/aerosol. The emission datasets used in Chapters 2 

(MACCity) and 3 (Lamarque et al., 2010) have a low temporal resolution, with 

annual values calculated by interpolating between decadal means. Therefore, by 

design our model simulations may not be able to produce the increase in carbon 

uptake due to increased aerosol or nitrogen deposition around 2000, but instead 

capture decadal changes. Future work by the community into developing high 

temporal resolution datasets of emissions would overcome this issue.  

Furthermore, future work to improve the modelling studies of Chapters 2 

and 3 would be to include additional important processes associated with fossil 

fuel emissions that are missing from current DGVMs. For example, fossil fuel SO2 

contributes to acid deposition, which depletes nutrients in soils and can lead to 

plant mortality (Driscoll et al., 2001). Further NOx emitted from fossil fuel 

burning is a precursor to atmospheric ozone, which can cause plant cellular 

damage (Ashmore, 2005). Although JULES does include the adverse effects of 

ozone on photosynthesis, they were not considered in this study. Future work 

should attempt to include all these relevant processes, so a more realistic, 

combined effect on carbon uptake can be quantified.  

In Chapter 3, the importance of carbon-nitrogen interactions in driving 

the response of the terrestrial biosphere to increases in CO2 and variations in 

climate is highlighted. Therefore, it is critical DGVMs include a representation of 

nitrogen availability on carbon uptake, especially in future coupled carbon cycle 

climate simulations. How terrestrial biosphere models represents inputs and 

losses of nitrogen, as well as the coupling to the carbon cycle is a key uncertainty 

that propagates through to other ecosystem processes such as; water and energy 
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fluxes, species composition, stomatal conductance and evapotranspiration 

(Zaehle & Dalmonech, 2011). Nitrogen limitation in CLM4.5-BGC is implemented 

via a downscaling of GPP as a function of available plant nitrogen and fixed C:N 

tissue ratios. Other, more realistic approaches exist whereby the acclimation of 

photosynthesis to nitrogen stress is simulated by allowing changes in allocation 

patterns, and foliar nitrogen concentrations (Zaehle et al., 2010). Further, the 

fixed C:N ratios used in CLM prevent plants acclimating to new conditions. 

Therefore, CLM may potentially underestimate the carbon impact of additional 

nitrogen deposited as in-situ studies have shown increasing C:N ratios under 

increasing CO2 (Finzi et al., 2006; Dybzinkski et al., 2015). Models which include 

flexible C:N ratios (eg. O-CN (Zahele et al., 2011), Hybrid (Friend et al., 1997), LPJ 

(Xu-Ri & Prentice, 2008)) have the capacity to capture observed changes in 

stoichiometry in ecosystem experiments (Norby et al., 2005) and have better 

agreement with observed foliar nitrogen concentrations at FACE sites (Medlyn 

et al., 2015). These are all factors modellers should take into account when 

implementing coupled carbon-nitrogen schemes into DGVMs, in order to 

accurately capture the carbon response to future global change. 

Furthermore, I addressed my first two hypothesis in separate modelling 

studies. However, including both processes simultaneously would have 

amplified the carbon response in regions of changing diffuse radiation and 

aerosol deposition. The global effect however, would most likely have been 

unchanged as regional compensations would remain. Although both JULES and 

CLM have been extensively evaluated, the use of a single model in Chapters 2 

and 3 may lead to biases due to structural uncertainties in all terrestrial 

biosphere models (Fisher et al., 2014; Huntzinger et al., 2017). Model inter-

comparisons such as TRENDY (Sitch et al., 2015) and MsTMIP (Huntzinger et al., 

2013 – Overview and experimental design) provide an opportunity to 

understand how model structural differences impact estimates of carbon uptake.  

Chapter 4 assessed the consistency in IAV and trends for three prominent 

climate-driven global GPP datasets. Various uncertainties with these products 

are discussed above. The machine learning methods used in the FLUXCOM 

product suffer from incomplete predictor variables that do not contain enough 

information regarding the variability of carbon fluxes (Tramontana et al., 2016). 
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Inclusion of interannual vegetation information would help to solve this issue. 

Further, increasing the number of flux tower sites in underrepresented regions 

(high northern latitudes and tropical forests) will improve the predictive 

capability of these methods. Additionally, this study used the ensemble mean 

GPP of 12 DGVMs, all of which have different model structures, and carbon flux 

sensitivities to climate. A more thorough analysis of each of the individual 

TRENDY models, indicating regions of agreement and disagreement in GPP 

variability, trends, and dominant climate drivers would enable a deeper 

understanding of the simulated patterns. This would then indicate which 

processes are most important in determining GPP variability, and allow for 

model development into constraining these processes.  

The increased availability of observations via satellites, atmospheric 

inversions, flux towers, FACE sites, and forest plots provide an opportunity to 

evaluate terrestrial biosphere models and provide direct estimates of changes to 

the environment. Satellites offer global coverage at high temporal (daily-weekly) 

resolution and can observe a range of variables (eg. FPAR, VOD, SIF, LAI) 

representing various ecosystem functions. FPAR and LAI have been critical in 

estimating vegetation productivity over the past three decades (Myneni et al., 

1997, LAI reference), but are not direct measurements of carbon uptake. Solar-

induced fluorescence (SIF) on the other hand is a direct by-product of 

photosynthesis, and new (~2007) satellite monitoring offers a direct 

measurement of global GPP (Frankenberg et al., 2011). Further, observations 

from field data, particularly FACE experiments (Ainsworth & Long, 2004), and 

forest inventory plots (Brienen et al., 2015) can be used to test model 

parameterisations and reduce model uncertainty (Medlyn et al., 2015).  

This thesis has focused on past changes in the terrestrial carbon cycle and 

potential driving mechanisms. However, a key topic in carbon/climate research 

is estimating the evolution of carbon sinks under climate change and evaluating 

potential carbon-climate feedbacks. All analysis conducted in this thesis used 

“offline” terrestrial biosphere models. However, all parts of the Earth system 

interact and are coupled together. Therefore, coupled climate-carbon cycle 

models that capture relevant processes and feedbacks are required to make 

accurate projections. A model inter-comparison of coupled carbon-climate 
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models (CMIP5, Friedlingstein et al., 2014) predicts an increased terrestrial sink 

in the future, however with large differences between models.  
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Appendix A  

Supplementary information for Chapter 1 

 

Text A1 

The Joint UK Land Environment Simulator (JULES) is a land-surface 

model that originated from the Met Office Surface Exchange Scheme (MOSES), 

initially designed as the land component in weather forecasting and Earth 

system models (Cox et al., 1999). JULES contains various interacting sub-models 

representing different parts of the land surface. Surface exchange of energy, 

water, and momentum as well as snow cover, hydrology (including surface 

runoff) and soil dynamics (temperature and moisture) are simulated. Soil 

moisture and temperature couple to the carbon cycle by influencing modelled 

photosynthesis and respiration (Figure A1 and Best et al., 2011).  

JULES describes vegetation in grid cells using a small number of PFTs 

(broadleaf trees, needleleaf trees, C3 grasses, C4 grasses, and shrubs). Surface 

carbon fluxes related to photosynthesis and plant respiration are calculated in 

the plant physiology module on a half hourly timestep. Accumulated carbon 

fluxes are passed to the vegetation dynamics module, Top-down Representation 

of Interactive Foliage and Flora Including Dynamics (TRIFFID). Species 

competition is not simulated in this thesis as all simulations are on short 

timescales. However, TRIFFID does update vegetation carbon storage and 

allocation to leaves, wood, and root pools based on each PFTs LAI. After each call 

to TRIFFID (every 10 days), LAI and canopy height are updated depending on 

changes in vegetation carbon storage. This influences land-surface parameters 

(eg. albedo and surface roughness) used in the biophysical sub-model for surface 

energy fluxes. Leaf phenology is updated (every 10 days) using accumulated 

temperature-dependent leaf turnover rates. Litterfall calculated from TRIFFID is 

input to the soil carbon model RothC (Coleman and Jenkinson, 1999) which 
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calculates the rate of microbial decomposition and subsequent CO2 flux back to 

the atmosphere (depending on carbon content, moisture, and temperature). 

Plant input is split between four pools: decomposable plant material (DPM), 

resistant plant material (RPM), biomass (BIO), and humus (HUM).  

JULES scales leaf level photosynthesis to canopy scale using a multi-layer 

scheme. The canopy is split into 10 layers and uses the two-stream approach of 

Sellers et al. (1985) to calculate surface spectral albedos and absorbed radiation 

at each layer. This approach considers leaf angle distribution, zenith angle, and 

describes absorption and scattering of direct and diffuse radiation in visible and 

near-infared wavebands. At each canopy level, the model also considers sunlit 

and shaded leaves separately and further accounts for sunfleck penetration 

(small regions of the vegetation understory exposed to direct sunlight). 

Therefore, radiative fluxes are split into direct beam radiation, scattered direct 

radiation, and diffuse radiation. Sunlit leaves absorb all radiation and shaded 

leaves only absorb diffuse. Leaf photosynthesis is calculated using a vertically 

varying light limited rate and decreasing photosynthetic capacity (Vc max) down 

through the canopy. Decreasing Vc max is implemented by assuming an 

exponential decline in leaf nitrogen.  
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Text A2 

 

The land component of the Community Earth System Model (CESM), 

known as the Community Land Model (CLMv4.5; Oleson et al., 2013) represents 

many aspects of the land surface. CLM has various sub-models relating to 

biogeophysics, hydrology, biogeochemistry, land-use, and vegetation dynamics 

(Figure A.2). Like JULES (see Text A1), CLM simulates sub-grid heterogeneity 

with different land units (here vegetation, lake, urban, wetland, and glacier are 

included) and various PFTs (8 tree species and 7 herbaceous/understory 

species). Each PFT has its own LAI and canopy height that varies depending on 

local conditions. The land-surface component simulates the exchange of energy, 

water, and momentum with the atmosphere. This thesis focuses on 

Figure A.1 - Modular structure of JULES. Boxes show physical processes, and lines show 
links between modules. Biophysical processes are shown in blue and carbon cycle 
processes in green. Figure from Best et al., (2011).  
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biogeochemical processes and a short description is provided. CLM4.5-BGC is 

fully prognostic with respect to all carbon and nitrogen pools (vegetation, litter, 

soil organic matter) as well as phenology (seasonal timing of new growth and 

litterfall).  

Leaf level photosynthesis is based on the Farquhar et al. (1980) model for 

C3 plants and Collatz et al. (1992) for C4 plants. Simply, leaf photosynthesis is 

the minimum of three limiting rates: 1) Rubisco limited rate, 2) light limited rate, 

and 3) rate of transport of photosynthetic products (C3 plants) and 

PEPCarboxylase limitation (C4 plants). Photosynthesis is calculated separately 

for sunlit and shaded leaves, and the maximum rate of carboxylation (Vc max) 

depends on foliar nitrogen content, which exponentially declines throughout the 

canopy. Stomatal conductance is calculated from the Ball-Berry model as 

described in Collatz et al. (1991). The model relates stomatal conductance to 

photosynthesis, scaled by the relative humidity and CO2 concentration at the leaf 

surface. Soil water stress reduces both the stomatal conductance and Vc max.  

After sunlit and shaded photosynthesis is simulated (and scaled through 

the canopy), potential canopy GPP (GPPpot) is calculated. GPPpot is downscaled 

depending on available nitrogen and required nitrogen by new carbon growth. 

Actual GPP is defined as: 

GPP=GPPpot ∗ (1 − 𝑓), 

with the nitrogen scaling factor (f) defines as: 

𝑓 =
CFavail_alloc‐CFalloc

GPPpot
 

where CFavail_alloc is the carbon flux from photosynthesis available for new 

growth, after accounting for maintenance respiration. CFalloc is the actual carbon 

allocation to new growth, limited by nitrogen availability.  

Coupling of the carbon and nitrogen cycles is a major advance on CLM 

which is briefly outlines here (Figure A.3). As a first step, plant nitrogen demand 

is calculated depending the amount of carbon available for growth (CFavail_alloc) 

and fixed C:N ratios for each part of the vegetation (leaves, roots, wood) for each 

PFT on the soil column. The plant demand for nitrogen is (partially) 

compensated for by translocating nitrogen from senescing leaves. Total plant 
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nitrogen demand is reduced by the translocating flux to give the plant demand 

for mineral nitrogen from the soil. The combined demand for all PFTs and 

heterotrophic demand from the soil (immobilization) compete for available soil 

nitrogen. The fraction (0-1) of the plant demand that can be met given soil 

supply is multiplied by plant soil demand to calculate plant nitrogen uptake. The 

total allocated nitrogen (NFalloc) is the sum of translocation and soil uptake. This 

is then used along with allocation and C:N ratios to calculate carbon allocation, 

CFalloc. 

Litter decomposition into soil organic matter is represented as a cascade 

of transformations between a certain number of decomposing coarse woody 

debris (CWD), litter, and soil organic matter (SOM) pools, each defined at several 

vertical levels. The soil decomposition scheme is based on the Century model 

(Parton et al., 1988) and contains 10 vertical soil layers. The carbon balance of 

each soil pools is the balance between inputs (directly from litter or “upstream” 

pools) and outputs (respiration to atmosphere, decay to “downstream” pools) to 

the pool. Soil respiration is modified by temperature, moisture content, and 

oxygen levels. A recent addition where respiration decreases exponentially with 

depth is included (Koven et al., 2013).  

Decomposition rates are also influenced by nitrogen availability. For 

decomposition from each upstream to downstream pool, a nitrogen source/sink 

term is calculated. In general, if the downstream pool has a much higher C:N 

ratio than the upstream pool, a new source of nitrogen is created 

(mineralisation). However, if the upstream pool is nitrogen limited compared to 

the downstream pool, then the decomposition flux results in a demand for 

nitrogen (immobilization). Therefore, depending on plant demand for soil 

nitrogen, decomposition fluxes can be downregulated if nitrogen supply is 

limited. Nitrogen mineralisation is a critical feedback connecting heterotrophic 

respiration and plant growth. Not only does decomposition release CO2 to the 

atmosphere, but also potentially releases nitrogen that can be taken up by plants 

(see thick orange arrows in Figure A.3).  

Finally, in addition to the rapid cycling of nitrogen in the plant-litter-soil 

system, CLM has a representation of an “external” nitrogen cycle. Inputs to the 

system come from atmospheric deposition and biological nitrogen fixation 



170 
 
(BNF). Losses are due to denitrification, leaching, and fire. Additions from 

deposition and NBF are added straight to the mineral NH4+ pool. Deposition flux 

represents total reactive nitrogen from lightening NOx formation, NOx and NH3 

emissions from wildfire, fossil fuel combustion, deforestation fires, and NH3 

from agriculture and animal waste. BNF is assumed to be a function of annual 

net primary productivity (levelling at high NPP values). Nitrification of NH4+ to 

NO3- is a function of temperature, moisture, and pH and denitrification depends 

on NO3- concentrations, carbon consumptions rates, and only occurs in anoxic 

fractions of the soil.  

 

 

Figure A.2 - Conceptual design of the Community Land Model version 4.5. 
Image from www.cesm.ucar.edu/models/clm 
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Figure A.3 - Schematic of the coupled carbon-nitrogen cycles in CLM. Blue 
arrows represent carbon pathways and orange arrows nitrogen pathways. 
Figure from Thornton et al. (2009). 
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Appendix B  

Supplementary information for Chapter 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 
 

 

 

 

 

 

Figure B.1 - Comparison between modelled and satellite AOD trends (yr-1) for the 
period of overlapping data records 2001-2010. Panels depict linear Jul-Dec half-yearly 
mean trends for (a) GLOMAP, (b) MODIS, and (c) SeaWiFS. In (d), linear trends in AOD 
(yr-1) between 2001 and 2010 are shown for the three focus regions (land points only): 
Europe (EU), North America (NA), and East Asia (EA) based on GLOMAP (green), MODIS 
(violet), and SeaWiFS (brown). The crosses represent the mean trend, the middle bars 
the median, the boxes the 25th and 75th percentile values and the error bars the 
minimum and maximum values with circles representing outliers (greater than 1.5 x 
interquartile range). The three focus regions are depicted in the top left panel. In the 
maps, white areas in (b) and (c) indicate regions where satellite retrievals were not 
available and statistically significant (P<0.05) trends are highlighted with stippling. In 
our GLOMAP AOD calculations we did not consider all aerosol size modes and so miss 
the majority of dust aerosol, which has potential to cause discrepancies between model 
and observations. To assess whether dust may have a strong influence on the annual 
AOD trends (Figure 1 in main manuscript), we also computed AOD trends based on Jul-
Dec means since at that time dust is generally not dominating the AOD fields 
specifically in East Asia (Hansen et al., 2013; ref. in main manuscript). Comparing the 
(GLOMAP) simulated AOD trends with the satellite observed trends generally showed a 
good agreement specifically in areas where FF aerosol emissions dominate the AOD 
trends (see also Figure B1).  Further, a comparisons of the satellite AOD trends based 
on annual and half-yearly means also shows good agreement suggesting that dust does 
not play a dominant role in the observed AOD trends. 



174 
 

 

Figure B.2 - Simulated and observed annual mean AOD time series for five 
regions where discrepancies between modelled and observed AOD trends 
at some level were identified (see Figure 1 in main ms):  a) Amazon, b) 
Europe, c) north east Russia, d) India, and e) Alaska. Regions are shown in 
f). Results are shown for GLOMAP (diamonds), SeaWiFS (squares), and 
MODIS (triangles). Linear best fit lines are plotted, with statistically 
significant trends (P<0.05) bolded. 
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Figure B.3 - Spatial pattern of linear trends (yr-1) in simulated annual AOD due to each factor 
(a-c) and the dominating driving factor in the trend (d) over 1998-2010. The isolated factors 
include (a) climate, (b) fire emissions, and (c) fossil fuel emissions. Panel (d) shows the 
dominating driver with climate (blue), fires (green), and fossil fuels (orange) depicted. White 
areas depict regions with no factor contributing more than 50% to the total trend (no 
dominating factor). 



176 
 

 

 

Figure B.4 - Scatterplot of monthly mean observed (FluxNet) versus ES modelled 
(a,c,e,g) total and (b,d,f,h) diffuse radiation at (a,b) Hyytiala, Finland (Hyy) 
(61.85°N, 24.30°E), (c,d) Bartlett Experimental Forest, New Hampshire, US (Bar) 
(44.06°N, 71.29°W), (e,f) Loobos, Netherlands (Loo) (52.17° N, 5.74° E), and (g,h) 
Walker Branch Watershed, Tennessee, US (WBW) (35.96°N, 84.29°W). The 
normalised mean bias (NMB), r2 and root-mean-square error (RMSE) between 
model and observations are shown in each panel. Linear best fit lines are also 
plotted. This data model comparison shows generally a good agreement, albeit 
with high model bias in total radiation (22%<NMB<37%). Simulated diffuse 
radiation matched the observations also well (-32%<NMB<-5%), with the r2 value 
between modelled and observed radiation (total and diffuse) being high at all 
sites (r2>0.82). 
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Figure B.5 - Observed (black) and ES modelled (blue) monthly mean total 
(solid) and diffuse (dashed) radiation at a) Hyy, b) Bar, c) Loo, and d) 
WBW.  Results show that the model also captures the observed seasonal 
cycle of surface radiation. The aforementioned high model bias in total 
radiation (Figure B4) is notable at Hyytiala, however the model performs 
well at the other three sites, especially in matching observed diffuse 
radiation trajectories. 

 

 

 

 

 

 



178 
 

 

Figure B.6 - Observed (black) and modelled (blue) GPP response to both 
direct (triangles) and diffuse (squares) photosynthetic active radiation 
(PAR) averaged for bins of 200 μmol m-2s-1 for the northern summer (Jun-
Aug) at (a) Hyy (2002-2006), (b) Bar (2004-2006), (c) Loo (2004-2006), 
and (d) WBW (1998-1999). Error bars show 1 standard deviation of the 
range of GPP responses. Data points are split into “diffuse” and “direct” 
conditions using thresholds of diffuse fractions >80% and <25% to 
discriminate between the two cases. The two European FluxNet sites, Hyy 
(panel a) and Loo (c), are needleleaf forests, whereas two North American 
FluxNet sites, Bar (b) and WBW (d), are broadleaf forests. Results show 
that observed and simulated GPP increase with PAR, saturating at high 
light levels. Further, GPP is consistently higher under diffuse light 
conditions as expected from the theory of radiative transfer in vegetation 
canopies. It should be noted, that the sensitivity simulations were 
performed without tuning important model parameters (eg Vcmax, tree 
height) to site level conditions and, hence, some discrepancies between 
model and observations are anticipated. Overall, however, this comparison 
along with the previous validation studies mentioned in the main ms 
demonstrate that the model can realistically simulate photosynthetic 
responses in a range of forest types and light regimes. 
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Figure B.7 - Spatial pattern of linear trends (Wm-2yr-1) in simulated annual 
surface diffuse radiation due to each factor (a-d) and the dominating driving 
factor in the trend (e) over 1998-2010. The isolated factors include (a) climate, 
(b) fire emissions, (c) fossil fuel emissions, and (d) clouds. Panel (e) shows the 
dominating driver with climate (blue), fires (green), fossil fuels (orange), and 
clouds (grey) depicted. White areas depict regions with no factor contributing 
more than 50% to the total trend (no dominating factor). 
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Figure B.8 - Dominant driving factor in simulated (JULES) NPP trend over 1998-2010. 

Figure B.9 - Spatial distribution of trends in selected land climate drivers 
for the period 1998-2010, including (a) temperature (○Cyr-1) and (b) 
precipitation (%yr-1).              
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Appendix C  

Supplementary information for Chapter 3 
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Table C.1 - Regional change in nitrogen deposition (Ndep) (TgN/yr) 1990-
1996 to 2010-2016. Percentage change for Ndep shown in parenthesis. 
Changes in NPP (TgC/yr) and NBP (TgC/yr) due to the direct nitrogen 
deposition effect (Ndep) and the carbon-nitrogen synergistic effect (CN-
syn) are also shown. Regions are defined as follows: East Asia (75°E to 
125°E and 10°N to 45°N), East Europe (15°E to 40°E and 45°N to 70°N), 
North America (120°W to 75°W and 30°N to 45°N), West Europe (10°W to 
15°E and 40°N to 60°N), and Central Africa (10°W to 30°E and 5°S to 10°N). 

 

 

 

 

 

 

 

 

 

 

Region ΔNdep 

(TgN/yr) 

ΔNPP 

(TgC/yr) 

ΔNBP (TgC/yr) 

Ndep CN-

syn 

Ndep CN-syn 

Global 1.78 (2.6) 30.9 13.3 33.0 3.0 

East Asia 3.74 (26.6) 96.9 8.7 49.0 1.0 

East Europe -0.47 (-11.6) -16.9 0.0 -6.6 0.5 

North America -0.89 (-16.2) -19.7 -3.0 -10.9 -2.7 

West Europe 0.22 (7.0) 9.2 -0.3 3.5 -0.6 

Central Africa -0.52 (-11.2) -21.8 -5.6 -5.9 -4.4 
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Figure C.1 - Global mean changes in model drivers from 1901-2016 for a) 
land surface temperature (C), b) total precipitation over land (mm/yr), c) 
total atmospheric nitrogen deposition over land (TgN/yr), and d) 
atmospheric CO2 concentrations (ppm). 
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Figure C.2 - Spatial trends in model drivers over the period (1901-1910) 
to (2007-2016) for a) land surface temperature (C), b) precipitation 
(mm/yr), and c) atmospheric nitrogen deposition (mgN/m2/yr). 
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Figure C.3 - Change in Btran between (1901-1910) and (2007-2016). Btran 
represents soil water availability in CLM and is a scaling factor (range 0 – 
1) on stomatal conductance related to plant-available soil water. 

 

 

 

 

 

Figure C.4 - Change in net nitrogen mineralisation (gN/m2/yr) between 
(1901-1910) and (2007-2016) due to climate forcing alone. 
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Figure C.5 - Change in trend in land carbon uptake (PgC/yr2) between 
1990-2002 and 2002-2014. Changes in trend are shown for (this study) 
CLM4.5-BGC, the Global Carbon Budget residual sink (green), and TRENDY 
multi model mean (purple). The error bars for CLM4.5-BGC and GCB 
Residual Sink are calculated as the square root of the sums of squares of 
standard errors of trends for the two periods. The TRENDY error is 
calculated as the standard deviation of the change in trend across all 
models. 
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Figure C.6 - Spatial maps of the change in nitrogen deposition (mgN/m2/yr) 
between 1990-1996 and 2010-2016 for a) total N deposition, b) NOy 
deposition, and c) NHx deposition. Since the early 1990s, global nitrogen 
deposition remained approximately constant (~80 TgN/yr), but there were 
large regional changes. Comparing the end (2010-2016) to the start (1990-
1996) of this period, East Asia [75°E to 125°E and 10°N to 45°N] 
experienced a 27% increase in annual nitrogen deposition, mostly driven 
by fossil fuel (NOx) burning, but with a significant contribution from 
agricultural (NHx) activities (a-c). Reductions in fossil fuel burning in 
Europe [10°W to 25°E and 40°N to 60°N] and North America [120°W to 
75°W and 30°N to 45°N] caused declines in deposition rates (b), however 
increasing agricultural intensity has countered the fossil fuel trend (c). 
Overall, the relative changes in nitrogen deposition in Europe and North 
America are smaller than East Asia, a 3% increase and 16% decrease, 
respectively. 
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Figure C.7 - Spatial trends in model drivers over the period (1990-1996) – 
(2010-2016) for a) land surface temperature (C), b) precipitation (mm/yr). 
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Figure C.8 - Change in Btran between (1990-1996) and (2010-2016). Btran 
represents soil water availability in CLM and is a scaling factor (range 0 – 
1) on stomatal conductance related to plant-available soil water. 
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Figure C.9 - Spatial patterns of heterotrophic respiration change 
(gC/m2/yr) due to a) CO2 fertilization, b) nitrogen deposition, c) climate, d) 
CN-synergy, e) CC-synergy, and f) combined effect. The patterns are based 
on a set of factorial simulations (see Methods). Respiration changes shown 
here are calculated as the difference between 2010-2016 and 1990-1996 
mean values. Significant (p<0.05; Mann-Whitney U test) changes 
highlighted with hatching. 
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Figure C.10 - Spatial distribution of Γ (gC/ppm) for the extended (top row) 
and recent (bottom row) periods calculated from the difference in total 
ecosystem carbon between the start and end of the study period (see 
Methods in main ms) for simulations with varying atmospheric CO2, 
constant climate and constant nitrogen deposition, (a,d). Panels b,e depict 
the influence of carbon-nitrogen synergy on Γ, and panels c,f depict the 
combined influence of nitrogen deposition and carbon-nitrogen synergy on 
Γ. 
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Figure C.11 - Changes in Amazon N limitation for 1901-2016 (solid) and 
1990-2016 (dotted). Changes are relative to a control simulation with no 
variables changing. Contributions from CO2 (black), nitrogen deposition 
(red), climate (blue), combined (green), and CN-synergy (yellow) are 
shown. 
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Figure C.12 - Changes in global nitrogen 
deposition expressed as a percentage change 
from the start of the simulation (1990). 
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Figure C.13 - Change (percentage from control run) in nitrogen limitation 
scalar from 1990 to 2016 using the recent simulations. The direct 
influence of nitrogen deposition (dotted) and carbon-nitrogen synergy 
(dashed) are shown. Four regions are shown, namely a) Global, b) East Asia 
(75°E to 125°E and 10°N to 45°N), c) Western Europe (10°W to 15°E and 
40°N to 60°N), and d) North America (120°W to 75°W and 30°N to 45°N). 
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Appendix D  

Supplementary information for Chapter 4 

 

 

 

 

 

 

 

 

Figure D.1 - Regions used in the study. Regions are broadly defined from the 
TRANSCOM-3 experiment. North American boreal, North American temperate, 
Europe, Eurasian Temperate, and Eurasian boreal are grouped as North. South 
American tropical, North Africa, and tropical Asia are grouped as Tropics. We 
further used the MODIS land over product (MCD12C1) to isolate African tropical 
forest and included this in the Tropics region. Finally, South American temperate, 
Southern Africa, and Australia are grouped as South. 
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Figure D.2 - Global annual mean GPP distribution (PgC/yr) over 1982-2016 for 
each ensemble member of the three products. Ensemble means are shown in 
bold. 
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Figure D.3 - Trends in annual GPP (PgC/yr2) over 1982-2016 in four 
regions for each ensemble member from FLUXCOM for three upscaling 
approaches (Artificial Neural Network – ANN, Random Forest – RF, and 
Multivariate Adaptive Regression – MARS); (1) ANN, (2) RF, (3) MARS, from 
TRENDY models; (4) CABLE, (5) CLASS-CTEM, (6) CLM4.5-BGC, (7) DLEM, 
(8) ISAM, (9) JSBACH, (10) JULES, (11) LPJ-GUESS, (12) ORCHIDEE, (13) 
ORCHIDEE-MICT, (14) VEGAS, and (15) VISIT, and from LUE model for two 
parameterisations; (16) Zhao & Running, 2010, and (17) Robinson et al., 
2018 (references in main manuscript). Ensemble mean trend for each 
region and product is shown in light blue. 
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Figure D.4 –  Global and regional variations in annual GPP based on three 
GPP products. Annual gross primary production (GPP) anomalies (PgC/yr) 
over the period 1982-2008 estimated by upscaled flux tower observations, 
FLUXCOM (red), and FluxNetG (purple), and a satellite based light use 
efficiency model (green). Both FLUXCOM and FluxNetG are based on 
FLUXNET site-level carbon flux observations. However, FLUXCOM is driven 
with seasonally varying NDVI whereas FluxNetG incorporates 
interannually varying NDVI in the upscaling procedure. Further, similarly 
to FluxNetG, LUE is driven with interannualy varying satellite data (see 
Methods). GPP anomalies are shown for a) global, b) northern, c) tropical, 
and d) southern regions, as defined in Figure D1. Shading represents 1σ 
spread among each products ensemble members (see Methods). Linear 
trends are depicted with a dashed line. Bar charts show the inter-annual 
variability of each product as the 1σ (PgC/yr) of the detrended timeseries.  
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Figure D.5 – Landcover based on the MODIS product (MCD12C1). Landcover types 

include Non-vegetated (Non-veg), broadleaf evergreen/broadleaf 

deciduous/needleleaf evergreen/needleleaf deciduous (BE/BD/NE/ND), tropical 

forests (TF), mixed forests (MixF), shrubs (SH), woody savanna (WoodSav), 

savanna (Sav), grassland (Grass), and cropland (Crop).  
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Figure D.6 - Boxplots of grid scale correlations between FLUXCOM-TRENDY 

(purple), FLUXCOM-LUE (yellow), and TRENDY-LUE (cyan) for each biome type 

defined in Figure D5. Grey dashed line (r=0.28) represents significant correlation 

(P=0.05). 
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Figure D.7 - Variance (left column) and covariance (right column) of detrended 

annual mean GPP for each dataset (FLUXCOM, TRENDY, LUE) and combination of 

datasets (FLUXCOM-TRENDY, FLUXCOM-LUE, TRENDY-LUE) over the period 1982-

2016. 
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Figure D.8 - Correlation between detrended seasonal GPP (1982-2016) for each 
product. Seasons are defined as December-January-February (DJF), March-April-
May (MAM), June-July-August (JJA), and September-October-November (SON). 
Non-significant correlations (r<0.28, P>0.05) are in grey. Missing data is 
represented with white. (r=0.28, 0.33, 0.43 corresponds to P=0.1, P=0.05, 
P=0.01). 
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Figure D.9 - Linear trends in mean annual temperature (°C/yr) and mean 
annual precipitation (%/yr) from CRUNCEPv8 reanalysis over the period 
1982-2016. 
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Figure D.10 - Trends in seasonal GPP (gC/m2/yr2) for each product over the 
period 1982-2016. The maps depict significant (P<0.05) trends and 
seasons are defined as in Figure D8. Right column shows “synergy” 
between trends. Dark areas are where all agree on the direction of trend 
and light areas indicate disagreement (two products agree, and one 
differs). 
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Figure D.11 - Annual mean (a,c,e,g) temperature (°C) and (b,d,f,h) precipitation 
(mm/yr) anomalies for (a,b) global, (c,d) northern, (e,f) tropical, and (g,h) 
southern regions. Best fit lines are shown in blue with slope and intercept 
depicted on plot.. Data is from CRUNCEPv8. 


